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ABSTRACT

Reduced Order Structural Modeling of

Wind Turbine Blades. (August 2011)

Yellavenkatasunil Jonnalagadda, B.Tech., Indian Institute of Technology Kanpur

Chair of Advisory Committee: Dr. John D. Whitcomb

Conventional three dimensional structural analysis methods prove to be expen-

sive for the preliminary design of wind turbine blades. However, wind turbine blades

are large slender members with complex cross sections. They can be accurately mod-

eled using beam models. The accuracy in the predictions of the structural behavior

using beam models depends on the accuracy in the prediction of their effective section

properties. Several techniques were proposed in the literature for predicting the ef-

fective section properties. Most of these existing techniques have limitations because

of the assumptions made in their approaches.

Two generalized beam theories, Generalized Timoshenko and Generalized Euler-

Bernoulli, for the static analysis based on the principles of the simple 1D-theories

are developed here. Homogenization based on the strain energy equivalence principle

is employed to predict the effective properties for these generalized beam theories.

Two efficient methods, Quasi-3D and Unit Cell, are developed which can accurately

predict the 3D deformations in beams under the six fundamental deformation modes:

extension, two shears, torsion and two flexures. These methods help in predicting the

effective properties using the homogenization technique. Also they can recover the

detailed 3D deformations from the predictions of 1D beam analysis.

The developed tools can analyze two types of slender members 1) slender mem-

bers with invariant geometric features along the length and 2) slender members with

periodically varying geometric features along the length. Several configurations were
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analyzed for the effective section properties and the predictions were validated using

the expensive 3D analysis, strength of materials and Variational Asymptotic Beam

Section Analysis (VABS). The predictions from the new tools showed excellent agree-

ment with full 3D analysis. The predictions from the strength of materials showed

disagreement in shear and torsional properties. Explanations for the same are pro-

vided recalling the assumptions made in the strength of materials approach.
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CHAPTER I

INTRODUCTION

The wind power industry is the fastest growing among all renewable sources of energy.

Efficient and robust wind turbine design techniques are required to sustain this rapid

growth. A wind turbine has several components performing various functionalities,

each of them playing a critical role in accounting for its efficiency. Wind turbine

blades form an important structural component in wind turbines in converting the

wind energy to electrical energy. The blades can cost about 20% of the total cost of

the wind turbine. The efficiency of converting the wind energy to electrical energy

depends on the size of the wind turbine blades. Hence the sizes of the newly designed

wind turbines are increasing from day to day. The blades are slender members with

the cross sectional dimensions being much smaller than their length along the axial

direction. They are subjected to various loads like gravitational, aerodynamic and

inertial loads under normal operational conditions.

Preliminary design of the wind turbine blades involves modeling using compu-

tational tools to perform static and dynamic analyses. This procedure can involve

several design iterations during which the the blade geometry and the material prop-

erties are appropriately adjusted to meet all the design requirements. Complex cross

section geometries and varying geometric features along the blade length make full

3D analysis computationally expensive. However the structural behavior of blades

due to their slenderness can be accurately predicted with 1D beam models. The

accuracy in the prediction using beam models depends on the degree of accuracy in

the prediction of effective section properties. For static analysis the effective stiffness

The journal model is IEEE Transactions on Automatic Control.
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properties need to be obtained and for dynamic analysis, in addition to the stiffness

properties, effective inertial properties need to be obtained.

A. Literature Survey

The method of modeling of structural members as beams has been employed in the

structural design of wind turbines for improving efficiency. Figure 1 shows a wind

turbine modeled using beam elements for aeroelastic analyses. A similar approach is

also used for modeling aircraft during the preliminary design stages [1]. Beam models

require effective properties along with the loads acting on the structure to predict the

response. There are several methods proposed in the literature to find the effective

section properties for slender members of arbitrary sections. References [2] and [3]

provide a brief review of the existing methods and they assess the capabilities of each

of the existing methods by analyzing some example cross sections.

Most of the existing methods are based on the assumptions which simplify the

analysis at the cost of accuracy. For example FAROB [4], Cross-sectional Stability

of Anisotropic Blades (CROSTAB) [2] and Pre-Processor for Computing Compos-

ite Blade Properties(PreComp) [5] are based on Classical Laminate Plate Theory

(CLPT). Though these methods can accurately predict the effective properties for

several cross sections which meet the corresponding assumptions, they can fail when

the complexity of the cross sections increase. FAROB, developed by the Dutch Knowl-

edge Center Wind Turbine Materials and Construction, considers the cross sections

as being composed of thin walled laminated flanges and calculates the section prop-

erties based on CLPT assumptions. Though FAROB is fast in obtaining the effective

properties, since it is based on analytical formulations, it cannot predict the coupling

behavior of blades with complex cross sections. CROSTAB, developed by the Energy
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Fig. 1. Slender members modeled as beams - wind turbine [6]

Research Center of the Netherlands, also assumes the cross section being composed of

thin walled layered flanges. It assumes that the flanges behave as membranes which

do not contribute to the bending and torsional stiffnesses. It employs the shear flow

analysis [2] to predict all the necessary effective properties, including the coupled

terms, for a generalized Euler-Bernoulli beam. The limitations of CROSTAB are

that it neglects the torsional and bending stiffness contributions from the flanges and

moreover it cannot predict the effective shear properties. PRECOMP, developed at

the National Renewable Energy Laboratory, uses a combination of CLPT and shear

flow analysis. It neglects the hoop stresses in the flanges and the contributions from

the shear deformation modes in calculating the effective properties.

Blade Property Extraction (BPE) [7], developed at Sandia National Laboratories,

has proven to be capable of predicting all coupling behaviors for blades with general
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cross sections, including the contributions from the shear modes. The method relies on

3D finite element analysis (FEA) of the full length model. The effective properties are

determined by curve fitting the 3D deformation parameters to the beam deformation

parameters using the least squares approach. The effective properties obtained for

some cross sections using BPE were reported in reference [5] to be 50 to 60 times

stiffer than the actual values. This approach is computationally expensive although

it can capture the 3D details of the blades.

Variational Asymptotic Beam Section Analysis (VABS) [8], developed at Geor-

gia Institute of Technology, is based on the Variational Asymptotic Method (VAM)

which relies on expanding the strain energy functionals with respect to small param-

eters that are characteristic of the blade geometry (for example, aspect ratio). The

formulation of VABS is complex and difficult to implement independently. This be-

comes a drawback if one wants to extend the approach to computationally intensive

study of failure mechanics of wind turbine blades.

B. Overview of the Current Work

The objective of the current work is to develop a simple, robust and efficient method

of determining the effective properties without any restrictions on the arbitrariness

or the complexity of the cross sections. Also it is desired to attain the accuracy

equivalent to the expensive full 3D analysis in predicting the mechanical behavior of

slender members using beam models. Governing equations are derived for generalized

Euler-Bernoulli and Timoshenko beam models based on equilibrium principles of

linear elasticity. The Generalized Euler-Bernoulli beam model can analyze beams

which exhibit couplings between extension, torsion and two flexures. It neglects the

coupling behavior with the shear modes. The Generalized Timoshenko beam model
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on the other hand can analyze beams which exhibit the couplings among all six

fundamental deformation modes - extension, two shears, torsion and two flexures. A

homogenization technique based on strain energy equivalence is employed to find the

effective properties for both the beam models. The homogenization method requires

the deformation fields corresponding to the fundamental deformation modes to be

predicted to determine the effective properties.

The deformation fields for the fundamental modes can be obtained by analyzing

a full length beam. But analyzing the full length beam can be expensive as is the

case with BPE method. Two efficient methods are proposed here which can predict

the deformation fields corresponding to the fundamental modes for arbitrary cross

sections made of orthotropic materials. One is the Quasi-3D method which analyzes

only a 2D section of the beam but assumes no coupling with shear modes. The other

method is the Unit Cell method which analyzes only a small section along the length of

the beam instead of the full length beam. The deformation fields obtained from these

methods for various cross sections are validated using full 3D analyses. The strain

energy fields corresponding to the predicted deformation fields are then utilized to

predict the effective section properties using homogenization. Several cross-section

shapes are analyzed and the results for effective properties are compared with the

ones obtained from strength of materials (for simple cross sections), full 3D FEA

and VABS. In addition, beams made of pain weave composite laminates are analyzed

for transverse shear deformation behavior and effective properties. Unlike the usual

prismatic slender members in which the geometry and the material distributions do

not change along the length, the material distribution in plain weave composite beams

varies periodically along the length. The analysis of plain weave composite beams

illustrates the capability of the newly developed tools to predict mechanical behavior

of slender members which have varying geometric features along the length.
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CHAPTER II

THEORY

All engineering materials undergo deformations when subjected mechanical loads.

The deformations are in general related to the mechanical loads applied on the mate-

rial through certain characteristic properties. The deformation in most cases, to some

extent, is recoverable under the removal of loads. The property of a material to be

able to recover its original shape under the removal of loads is referred to as elastic-

ity. This recoverable deformation is often referred to as elastic deformation. Most of

the engineering applications which are based on the mechanical loading of materials

deal with elastic deformations. Solid materials can be classified into two types based

on their elastic deformations. The elastic materials in which the deformations vary

linearly with the applied loads are called as linear elastic materials. The materials in

which deformations do not vary linearly with the applied loads are called as nonlin-

ear elastic materials. While many materials exhibit linear elastic behavior before the

onset of plasticity (e.g. metals like iron, copper etc.), some exhibit nonlinear behav-

ior (e.g. rubbers etc.). Structures made of linear elastic materials can also exhibit

nonlinearity under large deformations. This is referred to as geometric nonlinearity.

If the deformations and rotations are infinitesimal, geometric nonlinearity can be ne-

glected. The theory of linear elasticity studies the infinitesimal elastic deformations

(and infinitesimal rotations) of structures made of linear elastic materials which are

under static or dynamic equilibrium when subjected to various mechanical loads.

The deformations of any three dimensional structure in general varies in all three

directions. Hence a general elasticity problem is usually formulated in 3D. However,

in many engineering applications the primary load bearing members are slender in

shape i.e. the dimensions of such members are much larger in one direction (length)
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than in the other two directions (cross section). The 3D mechanical behavior of such

slender members, also called as beams, can be approximately treated as a combina-

tion of certain characteristic deformation modes. This reduces the analysis of such

structures to 1D yet predicts the corresponding behavior with reasonable accuracy.

The structural behavior of beams have been studied for many years and several 1D

theories have been proposed in the literature. Most of the theories are developed

for beams made of simple cross sections based on various characteristic deformation

modes. Since the complexity of the deformation increases with the increase in the

complexity of cross section, rigorous techniques are required to predict the behav-

ior of such complex slender members for good accuracy. Two such robust theories,

Generalized Euler-Bernoulli and Generalized Timoshenko beam theories, which are

based on the existing simple theories are introduced in this chapter. First, the 3D

linear elasticity and the simple 1D models are discussed then the two new theories

are discussed in detail which can analyze slender members of any complexity. Some

of the discussion in this chapter is quoted from reference [9].

A. Three-Dimensional (3D) Linear Elasticity

Consider an arbitrarily shaped body (Ω) subjected to various loads on the boundary

(Γ) as shown in Figure 2. Linearized elasticity deals with finding the deformation

state in the interior of the body corresponding to the applied loads at the bound-

ary. A completely defined problem statement in linearized elasticity comprises four

parts. They are equilibrium equations, kinematic relations, constitutive relations

and boundary conditions (BC’s). The field variables in linear elasticity are forces,

displacements, stresses and strains.
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Fig. 2. Three dimensional body subjected to various loads

The equilibrium equations are given by,

∂σij
∂xj

+ fi = 0 i, j = 1, 2, 3 (2.1a)

σij = σji for i 6= j (2.1b)

where fi are the body forces. The Eq. (2.1a) corresponds to the balance of linear

momentum whereas Eq. (2.1b) corresponds to the balance of angular momentum.

The balance of angular momentum dictates the stress tensor to be symmetric.

The constitutive relations for a general anisotropic material based on Hooke’s

law are given by,

σij = Cijεij (2.2)

The kinematic relations which relate the engineering strains with the displace-
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ments are given by,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
for i = j

εij =

(
∂ui
∂xj

+
∂uj
∂xi

)
for i 6= j

(2.3)

Note that the engineering shear strains are used.

The boundary conditions at Γ can be specified either in terms of tractions or

displacements.

Ti ≡ σjinj = T̂i on Γσ (2.4a)

ui = ûi on Γu (2.4b)

The above set of equations are to be solved for the unknown σij, εij and ui values

at each interior point of the body Ω. Also the displacements which satisfy all above

equations can be shown to be unique if the following compatibility conditions are

satisfied at every interior point of the body [10].

∂2ε11

∂x2
2

+
∂2ε22

∂x1
2

=
∂2ε12

∂x1∂x2

∂2ε22

∂x3
2

+
∂2ε33

∂x2
2

=
∂2ε23

∂x2∂x3

∂2ε33

∂x1
2

+
∂2ε11

∂x3
2

=
∂2ε12

∂x3∂x1

∂2ε11

∂x2∂x3

=
1

2

∂

∂x1

(
−∂ε23

∂x1

+
∂ε31

∂x2

+
∂ε12

∂x3

)
∂2ε22

∂x3∂x1

=
1

2

∂

∂x2

(
−∂ε31

∂x2

+
∂ε12

∂x3

+
∂ε23

∂x1

)
∂2ε33

∂x1∂x2

=
1

2

∂

∂x1

(
−∂ε12

∂x3

+
∂ε23

∂x1

+
∂ε31

∂x2

)

(2.5)

The exact solutions for the above equations in general are difficult to be obtain.

In most cases, simplifying assumptions based on the nature of the problem are made
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to obtain approximate closed form solutions. The 1D beam theories are some of such

approaches which predict the behavior of slender members.

B. One-dimensional Theories for Simple Slender Members

Slender members are usually cylindrical in shape bound by a lateral surface and a

pair of surfaces perpendicular to the lateral surface (cross sections). As mentioned

previously, several simple models were proposed which can accurately predict their

structural behavior. Some of the simplest models which are still being used for struc-

tural design are uniaxial extension, St. Venant’s torsion, Euler-Bernoulli and Timo-

shenko beam models. Though these models are based on several assumptions, they

demonstrate very good accuracy in predicting the behavior of slender members of

simple cross sections.

The uniaxial extension theory predicts the mechanical behavior of slender mem-

bers made of homogeneous material when subjected to axial loads. The theory as-

sumes that the cross sections translate relative to adjacent ones with a constant axial

displacement throughout each cross section i.e. they remain planar after the defor-

mation. In such a case the stress state in the cross section can be shown to be with

only one non-zero axial stress component σ11. This model can accurately predict the

behavior away from the boundaries. Figure 3 shows a schematic of slender mem-

ber subjected to concentrated and distributed axial loads. Equation (2.6a) gives the

equilibrium equation in terms of the resultant axial force F1 and the distributed load

f1. The resultant axial force is related to the axial strain at each cross section of the

member through the cross section property EA where E is the Young’s modulus and
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A is the area of the cross section. (see Eq. (2.6b)).

dF1

dx1

+ f1 = 0 (2.6a)

F1 = EAε11 (2.6b)

Fig. 3. Simple uniaxial extension model

The St. Venant’s torsion theory analyzes slender members made of homogeneous

materials which are subjected to pure torsional loads as shown in Figure 4. The

solutions were first rigorously developed for beams circular cross sections and later

extended for some other cross section shapes. For beams of circular cross sections,

from symmetry arguments the theory assumes that cross section planes remain planar

and rotate about the axis along length relative to the adjacent cross section planes.

For slender members of non-circular cross sections, the cross section planes rotate

relative to each other but do not remain planar and tend to warp in the axial direction.

This warping displacement, however, remains constant for all cross sections if the rate

of twist is constant. The theory predicts only two non-zero stress components, σ12

and σ13, and all other components are zero throughout the slender member [8]. The

equilibrium condition is given by Eq. (2.7a) in terms of the resultant torque M1 and

the distributed moment m1. The resultant torque is related to the rate of twist, κ1,

as given by Eq. (2.7b). Here D is called the torsional rigidity of the cross section.

For circular cross section D can be shown to be equal to GJ where G is the shear



12

modulus and J is the polar moment of area of the cross section.

dM1

dx1

+m1 = 0 (2.7a)

M1 = Dκ1 (2.7b)

Fig. 4. St. Venant’s torsion model

The Euler-Bernoulli beam theory analyzes the behavior of slender members made

of homogeneous material subjected to transverse loads and bending moments. Figure

5 shows a schematic of a beam subjected to transverse loads and bending moments.

The theory assumes that the beam is made of several longitudinal fibers bundled to-

gether. Under pure bending, the theory assumes that the plane sections remain planar

and rotate normal to the neutral axis. This assumption leads to a zero transverse

shear strain in each cross section. The only non-zero component under these assump-

tions is the axial stress σ11. The equilibrium conditions are given by Eqs. (2.8a) and

(2.8b). Here, F3 is the resultant transverse shear force, M2 is the resultant bending

moment and f3 and m3 are the applied distributed forces and moments respectively.

The Eq. (2.8c) relates the resultant bending moment M2 and the bending curvature

κ2 through the cross section property, EI22. Here E is the Young’s modulus and I22
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is the second moment of area about x2.

dF3

dx1

+ f3 = 0 (2.8a)

dM2

dx1

− F3 +m2 = 0 (2.8b)

M2 = EI22κ2 (2.8c)

Fig. 5. Euler-Bernoulli beam model

The Euler-Bernoulli beam theory can accurately predict the behavior of slender

members which are of large aspect ratios i.e. the ratio of length to the cross sectional

dimensions. But for the slender members with smaller aspect ratios the shear strain

can be significant and cannot be neglected. The Timoshenko beam theory which also

addresses the problem of beam bending considers the transverse shear strain to be

non-zero and uniform in each cross section (see Figure 6). In general the shear strain

in each cross section follows a complex distribution depending on the cross section

shape and material properties. In addition to Eqs. (2.8) which are also valid for the

Timoshenko beam theory, the cross section property relation corresponding to the

shear resultant must be considered. The shear resultant F3 is related to the average
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transverse shear strain ε13 in each cross section as,

F3 = KGAγ13 (2.9)

where K is the shear correction factor which accounts for the non-uniform shear strain

in the actual slender member and G is the shear modulus.

Fig. 6. Timoshenko beam model

Each of the simple models described above are based on assumptions on the

nature of deformation, material property and the loading conditions. Note that there

is one common assumption for all the above theories. The common assumption is

that the lateral surfaces of the beam are traction free and the stress components

σ22, σ33 and σ23 are zero throughout the beam. Since these theories were initially

developed for homogeneous beams, this assumptions turn out to be valid in most

cases. However if they are extended to analyze inhomogeneous beams as discussed

in [11], the stress components σ22, σ33 and σ23 can be non-zero at the interface of

two different materials. The equilibrium and compatibility conditions of elasticity

dictate that the tractions and displacements on the interface between two different
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materials must be continuous. If the materials have different Poisson’s ratios, these

conditions can lead to non-zero inter facial stresses. Additional equations are required

to account for such a behavior of inhomogeneous beams which the above mentioned

simple models fail to address. Also these simple models can fail if the material

anisotropy leads to deformations in which the cross section planes do not remain

planar under extension and flexure modes. This can happen if the beams are made

of angled unidirectional composite plies. The wind turbine blades are usually made

of different layups of composite materials and their distribution is not uniform in

each cross section. In general such complex blades exhibit coupling between different

fundamental deformation modes (extension, shears, torsion and flexures) in beams.

To analyze such complex cross sections, two generalized beam theories are developed

here based on the principles of the simple theories. The generalized theories which

are discussed in detail in the next section, employ the finite element analysis (FEA)

tools to enforce all required continuity conditions and predict the detailed stress

distributions in beams with accuracy equivalent to full 3D analysis. Note that all

these simple models were developed making predictions away from the boundaries of

the slender member.

C. Generalized Beam Theories

The two generalized theories which are formulated in this section are Generalized

Euler-Bernoulli and Generalized Timoshenko beam theories. The generalized Euler-

Bernoulli theory neglects the contributions from transverse shear strains (like the cor-

responding simple theory) whereas the generalized Timoshenko considers the trans-

verse shear strains to be significant. Both the theories extend the principles of the

simple theories presented in the previous section to analyze slender members of any
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arbitrary cross sections (including the ones which show coupling among the funda-

mental modes) subjected to any combination of forces and moments (see Figure 7).

First the governing equations are developed for the Generalized Timoshenko beam,

i.e. considering the shear strain to be non-zero. The governing equations for the

Generalized Euler-Bernoulli beam are then developed as a special case of Generalized

Timoshenko beam by considering the transverse shear strains to be zero.

Fig. 7. Generalized beam model

1. Generalized Timoshenko Beam Theory

a. Kinematic Relations

The kinematic relations relate the six generalized strains, ei, of the beam which include

axial strain (ε1), two shear strains (γ12 and γ13), rate of twist (κ1) and two flexural

curvatures (κ2 and κ3), with the displacements (vi) of the beam reference axis and

rotations (φi) of the cross section planes about the reference axis. Equation (2.10)
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gives the kinematic relations for the generalized Timoshenko beam. The transverse

shear strains, γ12 and γ13, are defined according to the simple Timoshenko beam

theory, in terms of the transverse displacements v2, v3 and rotations φ2, φ3.

e1 = ε11 =
dv1

dx1

e2 = γ12 = −φ3 +
dv2

dx1

e3 = γ13 = φ2 +
dv3

dx1

e4 = κ1 =
dφ1

dx1

e5 = κ2 =
dφ2

dx1

e6 = κ3 =
dφ3

dx1

(2.10)

where the beam displacements vi and rotations φi are given by,

v1 = u1 (x1, 0, 0)

v2 = u2 (x1, 0, 0)

v3 = u3 (x1, 0, 0)

φ1 =
∂u3

∂x2

(x1, x2, x3)− ∂u2

∂x3

(x1, x2, x3)

φ2 =
∂u1

∂x3

(x1, x2, x3)

φ3 = −∂u1

∂x2

(x1, x2, x3)

(2.11)

Note that under pure torsion and flexure modes in cross sections made of orthotropic

materials, the rotations φi do not vary with x2 and x3.

b. Stress Resultants

The six stress resultants, Ri, which include an axial force (F1), two shear forces (F2

and F3) and one torque (M1) and two bending moments (M2 and M3) are related
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to the stresses in each cross section as given in Eq. (2.12). Figure (8) shows the

positive directions of the stress resultants indicating the sign conventions used for the

formulation. Note that the resultants are left in the integral form unlike the simple

theories, since the distribution of stresses on the cross section planes are unknown for

slender members of arbitrary cross sections.

R1 = F1 =

∫
A

σ11dA

R2 = F2 =

∫
A

σ12dA

R3 = F3 =

∫
A

σ13dA

R4 = M1 =

∫
A

(σ13x2 − σ12x3) dA

R5 = M2 =

∫
A

σ11x3dA

R6 = M3 = −
∫
A

σ11x2dA

(2.12)

c. Equilibrium Equations

The differential form of equilibrium equations for the generalized beam shown in

Figure (7) can derived by considering the equilibrium of an infinitesimal element

along length of the beam. Considering that the beam is loaded with distributed

forces (fi) and moments (mi) along the length, the equilibrium conditions are given
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Fig. 8. Positive directions of the six stress resultants indicating the sign convention

used for the generalized beam formulation

by,

dF1

dx1

+ f1 = 0

dF2

dx1

+ f2 = 0

dF3

dx1

+ f3 = 0

dM1

dx1

+m1 = 0

dM2

dx1

− F3 +m2 = 0

dM3

dx1

+ F2 +m3 = 0

(2.13)
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d. Effective Properties

The stress resultants in the simple theories are related to the corresponding gener-

alized strains through the cross section properties EA, KGA, GJ and EI22. These

properties were derived assuming the beams exhibit no coupling among extension,

shear, torsion and flexures. If a beam exhibits coupled behavior, one stress resultant

can lead to more than one deformation mode (i.e. more than one non-zero general-

ized strain ei). To represent all possible coupling behaviors in a general beam, the

six stress resultants are related to the six generalized strains by Eq. (2.14).

Ri = Cijej i, j = 1 . . . 6 (2.14)

where Cij are the beam effective properties. The Eq. (2.14) for homogeneous beam

of solid cross section showing no coupling behavior is,

F1

F2

F3

M1

M2

M3



=



EA 0 0 0 0 0

0 K2GA 0 0 0 0

0 0 K3GA 0 0 0

0 0 0 GJ 0 0

0 0 0 0 EI22 0

0 0 0 0 0 EI33





ε1

ε2

ε3

κ1

κ2

κ3



(2.15)

However, for complex cross sections such as in wind turbine blades, the matrix Cij

can be fully populated.

2. Generalized Euler-Bernoulli Beam Theory

The governing equations for the generalized Euler-Bernoulli beam can be obtained

as special case of the generalized Timoshenko beam model by considering the trans-

verse shear strains at each cross section to be zero. This implies, from the kinematic
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relations given in Eq. (2.10), the rotations φ2 and φ3 must be equal to the displace-

ment gradients − dv3
dx1

and dv2
dx1

respectively. The kinematic relations for the flexural

curvatures, κ2 and κ3 are then given by Eq. (2.16).

e5 = κ2 = −d
2v3

dx1
2

e6 = κ3 =
d2v2

dx1
2

(2.16)

The definition of stress resultants and the equilibrium equations given in Eqs. (2.12)

and (2.13) respectively are still valid for the generalized Euler-Bernoulli beam. How-

ever, the effective properties correspond to only four resultants and four generalized

strains which are given by Eq. (2.17).

Ri = Cijej i, j = 1, 4, 5 and 6 (2.17)

Note that the effective properties in the simple theories were obtained easily

because the corresponding assumptions led to simple stress distributions in the cross

section which in most cases can be obtained in closed form. But for beam of arbitrary

cross sections, such closed form solutions are difficult to obtain and hence a robust

approach is needed to extract the effective properties. One such approach is described

in the next section based on the homogenization principles.

D. Homogenization Method for Determining the Effective Properties

Engineering materials with complex micro structure subjected to even simple loads

can exhibit complex distribution of stresses and strains internally. But the global

average response of the same material can be simple if the applied loads do not vary

severely over the material space. Also the prediction of detailed internal stresses

and strains is not required for most of the applications. Hence “effective properties”
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which relate the average response to the applied loads are often defined to reduce the

effort in making predictions of the mechanical behavior. Homogenization in elasticity

refers to predicting these effective properties based on the strain energy equivalence

principle. The principle states that the strain energy of the complex body should

be equal to that of the equivalent homogenized body. Reasonable accuracy can be

achieved in the predictions of mechanical behavior using effective properties if the

irregularities in the original micro structure are not severe.

In the current problem of beam-like modeling of wind turbine blades, the princi-

ple of strain energy equivalence states that the strain energy of the 3D slender member

when subjected to any arbitrary loading should be equal to the strain energy of the

equivalent beam when subjected to the same loading. Here, the complex cross section

is homogenized to predict the effective properties required for beam-like modeling.

Homogenization based on strain energy equivalence has been employed previously by

[12] and [13] but the approaches were not sufficiently rigorous to predict the full Cij

matrix.

If a 3D slender member is subjected to a specific loading, then the corresponding

strain energy is calculated in terms of the 3D stresses and strains as given by Eq.

(2.18),

U3D =
1

2

∫
V

σijεijdV (2.18)

If the same loading generates the stress resultants Ri and the generalized strains ej

in the equivalent beam, then the strain energy is given by Eq. (2.19).

UB =
1

2

L∫
0

Rieidx1 =
1

2

L∫
0

RiRjSijdx1 (2.19)

where Sij are the effective compliance properties of the slender member. According

to the strain energy equivalence principle, on equating the strain energies given in
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Eqs. (2.18) and (2.19), a relation in terms of the unknown Sij is obtained as follows

1

2

L∫
0

RiRjSijdx1 =
1

2

∫
V

σijεijdV (2.20)

Note that the stress resultants, Ri, in Eq. (2.20) can be obtained from the 3D analysis

of the slender member using the Eq. (2.12). The only unknowns in the Eq. (2.20) are

the effective properties Sij. Hence if the detailed 3D deformations corresponding to

21 independent loading cases which give relations like Eq. (2.20) are known, the fully

populated symmetric effective compliance matrix Sij can be determined completely.

Because of Sij being symmetric, it has only 21 unknowns. To establish the required

relations, there are two tasks to be performed. One is to determine what these 21

independent load cases should be and the second is to obtain the 3D deformations

for all those load cases.

Note that the beam strain energy in Eq. (2.20) is quadratic in terms of the

stress resultants, Ri. Hence the 21 independent load cases can be considered as linear

combinations of the six fundamental modes as shown in Eq. (2.21).

(Ri +Rj) i = 1, 6 and j = i, 6 (2.21)

The 3D solutions corresponding to the six fundamental load cases should not

have any end effects i.e. the deformations should correspond to the interior of a

long 3D slender member which do not depend on how the loads are applied at the

boundaries. The Saint-Venant’s principle ensures us that such deformations exist

considerable away from the ends of the beam. To avoid the end effects in calculating

the strain energies, the 3D deformations can be considered from only the interior of a

long beam model where the influence of the end effects is minimal. The solutions for

the long beam can be obtained by employing 3D FEA of linear elasticity. However this
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approach can be expensive, especially if the complexity of the cross section geometry

and material distributions increase. Since the deformations from only the interior of

the long beam are required, the computational time can be significantly reduced if

those deformations can be predicted by analyzing only the interior region instead of

the full length long beam. Two such methods are developed here which can predict

the 3D deformations corresponding to the fundamental modes by analyzing just a

small section of the full length model.

The first method is the Quasi-3D method which can predict the detailed 3D

deformations of slender members subjected to extension, torsion and flexures by ana-

lyzing just a 2D section of the full length model. The Quasi-3D method neglects the

contributions from shear strains and assumes that the slender member does not show

any coupling behavior with the shear modes. The second method is the Unit Cell

method which can predict the detailed 3D deformations of slender members when

subjected to any combinations of the six fundamental modes. The Unit Cell method

includes the contributions from the shear deformations and hence it can also analyze

cross sections which show coupling with the shear modes.

E. Quasi-3D (Q3D) Method

The term Quasi-3D (Q3D) in elasticity refers to a deformation which does not vary

in one of the 3 dimensions. The deformations in slender members which do not show

any coupling with the shear modes, remains constant along the length when subjected

to extension, torsion and/or flexure. Figure 9 shows flexure and torsion modes of a

3-cell homogeneous thin walled box beam. The stress contours can be seen to be

invariant along the axial direction x1. The contours (deformation) vary only in the

plane of the cross section. Hence these modes are referred to as Q3D deformation
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modes. If one can predict the detailed stresses and strains in one cross section, then

complete deformation of the full length model is known.

Fig. 9. Quasi-3D deformations in beams

Consider the Taylor’s series expansion of the 3D displacements up to second

order about the origin of the coordinate system as follows,

ui = ui|xi=0 +
∂ui
∂xj

∣∣∣∣
xi=0

xj +
1

2

∂2ui
∂xj∂xk

∣∣∣∣
xi=0

xjxk + h.o.t (2.22)

If all the terms that vary only with x2 and/or x3 are grouped together with the higher

order terms (h.o.t), then

u1 = u1|xi=0 +
∂u1

∂x1

∣∣∣∣
xi=0

x1 +
∂2u1

∂x1∂x2

∣∣∣∣
xi=0

x1x2 +
∂2u1

∂x1∂x3

∣∣∣∣
xi=0

x1x3 + U1 (x2, x3)

u2 = u2|xi=0 +
∂u2

∂x1

∣∣∣∣
xi=0

x1 +
1

2

∂2u2

∂x1
2

∣∣∣∣
xi=0

x1
2 +

∂2u2

∂x3∂x1

∣∣∣∣
xi=0

x3x1 + U2 (x2, x3)

u3 = u3|xi=0 +
∂u3

∂x1

∣∣∣∣
xi=0

x1 +
1

2

∂2u3

∂x1
2

∣∣∣∣
xi=0

x1
2 +

∂2u3

∂x2∂x1

∣∣∣∣
xi=0

x2x1 + U3 (x2, x3)

(2.23)
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where Ui do not depend on x1 and represent the variation of displacements in the plane

of the cross section. If the slender member is constrained for rigid body translations

at origin, then the terms (u0
i ) vanish. On assuming the transverse shear strains to be

zero, the terms ∂u2
∂x1

and ∂u3
∂x1

also vanish. Under pure extension, torsion and flexures

the corresponding generalized strains ε1, κ1, κ2 and κ3 remain constant throughout

the slender member. Hence, by using the Eqs. (2.10) and (2.16) in Eq. (2.23) the 3D

displacements in the slender members take the following form,

u1 (x1, x2, x3) = ε1x1 + κ2x1x3 − κ3x1x2 + U1 (x2, x3)

u2 (x1, x2, x3) =
1

2
κ3x

2
1 − κ1x1x3 + U2 (x2, x3)

u3 (x1, x2, x3) = −1

2
κ2x

2
1 + κ1x1x2 + U3 (x2, x3)

(2.24)

Using the definition of linearized strains from elasticity theory given in Eq. (2.3),

the 3D strains εij in terms of the beam generalized strains can be obtained as follows,

ε11 (x1, x2, x3) =
∂u1

∂x1

= ε1 + κ2x3 − κ3x2

ε22 (x1, x2, x3) =
∂u2

∂x2

=
∂U2 (x2, x3)

∂x2

ε33 (x1, x2, x3) =
∂u3

∂x3

=
∂U3 (x2, x3)

∂x3

2ε23 (x1, x2, x3) =
∂u2

∂x3

+
∂u3

∂x2

=
∂U2 (x2, x3)

∂x3

+
∂U3 (x2, x3)

∂x2

2ε13 (x1, x2, x3) =
∂u1

∂x3

+
∂u3

∂x1

=
∂U1 (x2, x3)

∂x3

+ κ1x2

2ε12 (x1, x2, x3) =
∂u1

∂x2

+
∂u2

∂x1

=
∂U1 (x2, x3)

∂x2

− κ1x3

(2.25)

Note that the 3D strains in Eq. (2.25) do not depend on x1 and hence illustrate

that the q3D deformations remain constant along the length of the slender member.

The in-plane variation of displacements, Ui need to be evaluated to predict the 3D

strains throughout the slender member. This in-plane variation of displacements can
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be predicted using finite element analysis of a 2D mesh of the cross section. The

detailed Q3D finite element formulation is derived in the next chapter.

F. Unit Cell Method

The Quasi-3D method can only capture the deformations which do not change along

the length of the slender member. When there is shear, the deformation varies along

the length. This is because of the shear-flexure coupling that arises from the beam

equilibrium. Equation (2.13) states that under the absence of distributed loads (fi

and mi), a constant shear resultant (F2 or F3) exists throughout the beam. This

constant shear resultant generates a linearly varying moment (M3 or M2) along x1

(also from equilibrium) which results in the variation of the deformation along x1.

Hence the deformation under a constant shear resultant can no more be classified as

Quasi-3D behavior.

To predict the effective shear properties by the corresponding 3D deformations

need to be evaluated. One can always analyze a full length beam and use the de-

formations away from the ends. As mentioned previously, it can be very expensive

approach for complex cross sections. Instead one can analyze a small section along

the length of the slender member, which is referred to as ”Unit Cell”(see Figure 10)

in the following discussion. By applying appropriate boundary conditions on the unit

cell, the shear deformation mode can be captured. The boundary conditions must

not induce any end effects in the unit cell.

1. BCs for Extension, Torsion, and Flexure Modes

The deformations under pure extension, torsion and flexure modes, do not change

along the length of the slender member even if the cross section exhibits coupling
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Fig. 10. Unit cell for a slender member with arbitrary cross section

with shear modes. This is because under pure extension, torsion or flexure, from the

equilibrium equations, the stress resultants do not vary along the length. A pure mode

here is defined as the deformation state in which only the corresponding resultant

force or moment is non-zero. For example, the pure extension mode corresponds to

the deformation state in which only the axial force F1 is non-zero. Also, if the unit

cell of the slender member exhibits symmetry (geometry and material distribution)

about the x2x3 plane, the cross section remains planar under these four deformation

modes. Hence the boundary conditions for such unit cells can be imposed as plane

translations and rotations of the end cross section planes.

BC’s for extension are,

u1

(
−λ

2
, x2, x3

)
= −c u1

(
λ

2
, x2, x3

)
= c

Ti

(
±λ

2
, x2, x3

)
= 0 i = 2, 3

(2.26)
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BC’s for torsion are,

u2

(
−λ

2
, x2, x3

)
= c ∗ x3 u3

(
−λ

2
, x2, x3

)
= −c ∗ x2

u2

(
λ

2
, x2, x3

)
= −c ∗ x3 u3

(
λ

2
, x2, x3

)
= c ∗ x2

T1

(
±λ

2
, x2, x3

)
= 0

(2.27)

BC’s for flexure about x2 are,

u1

(
−λ

2
, x2, x3

)
= −c ∗ x3 u1

(
λ

2
, x2, x3

)
= c ∗ x3

Ti

(
±λ

2
, x2, x3

)
= 0 i = 2, 3

(2.28)

BC’s for flexure about x3 are,

u1

(
−λ

2
, x2, x3

)
= c ∗ x2 u1

(
λ

2
, x2, x3

)
= −c ∗ x2

Ti

(
±λ

2
, x2, x3

)
= 0 i = 2, 3

(2.29)

where c can be any non-zero constant. Note that in all the above four cases, the

lateral surfaces are left traction free.

2. Shear Modes in Beams

Unlike pure extension, torsion and flexure modes, a pure shear mode does not exist in

beams. As mentioned earlier, a constant shear resultant generates a linearly varying

moment along the length. Hence the deformation does not exhibit symmetry about

the x2x3 plane, even if the geometry and the material properties do exhibit a mirror

symmetry about x2x3 plane. This implies the cross section planes do not remain

planar and tend to warp under a constant shear resultant. Hence the required BCs

for shear modes should accommodate for free warping of the cross section planes.

Otherwise stress concentrations arise in the unit cell which can lead to incorrect



30

predictions of the corresponding strain energies.

Fig. 11. Full length beam under end shear loads showing end effects

To illustrate the extent of end effects that arise on constraining the warping,

Figure 11 shows the deformation of a full length homogeneous beam with rectangular

cross section made of isotropic material subjected to plane translation BCs (i.e. u1 = 0

and u3 = constant at the end cross section planes). The figure shows σ13 contours

in the beam. It can be noticed that the shear stress contours are uniform along

the length away from the ends. But near the ends where the BCs are applied, the

contours are not uniform and varied drastically. This is because of the effect of

constrained warping. The end effects vanish after a certain distance away from the

ends in accordance with the Saint-Venant’s principle, but it is significant near the

ends. The end effects are more pronounced if the same plane translation BCs are

applied on a unit cell of short length as illustrated in Figure 12. Hence it is necessary

to derive the correct BCs for unit cell i.e. the BCs which do not constrain warping

of the cross sections. A method based on the superposition principle of elasticity was

developed and is discussed in the next section.
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Fig. 12. Unit cell with under plane translation BCs showing end effects

3. Superposition Method for Derivation of BCs for Shear Modes

The superposition method uses the basic principle of superposition in linear elasticity

to obtain relations between the deformations in adjacent unit cells in the long beam.

Then it employs the Equivalent Coordinate System (ECS) relations [14] to obtain the

relation between displacements and tractions on the either end faces of center unit

cell in terms of the known solution for uniform flexure.

a. Superposition Relations Using the Superposition Principle of Linear Elasticity

Consider a full length beam model being subjected to end shear loads, V as shown

in Figure 13. This loading generates a constant shear resultant F3 equal to V and

a linearly varying moment M3 in the beam. If the beam is considered to be divided

in to several unit cells each of length λ along the length of the beam, then the shear

resultant would be a constant equal to V in all unit cells. Since the moment varies

linearly, the difference in the moment resultants acting on adjacent unit cells would be
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a constant equal to λV . This implies the deformation in one unit cell can be obtained

from that in the adjacent unit cell by superposing it with the solution corresponding

to the constant moment equal to λV .

Fig. 13. Loads in each unit cell of a beam subjected to end shear loads

Consider the displacement gradients corresponding to adjacent unit cells in the

full length beam. Using the superposition principle they are related as,

∂ui
∂xj

(x1 + λ, x2, x3) =
∂ui
∂xj

(x1, x2, x3) +
∂ûi
∂xj

(x1, x2, x3) i, j = 1, 2, 3 (2.30)

where ûi correspond to the deformation in the unit cell under a constant moment.

To obtain the relation between the gradients on the end faces of the center unit cell,

substitute x1 = −λ
2
.

∂ui
∂xj

(
λ

2
, x2, x3

)
=
∂ui
∂xj

(
−λ

2
, x2, x3

)
+
∂ûi
∂xj

(
−λ

2
, x2, x3

)
i, j = 1, 2, 3 (2.31)

The superposition relations similar to the ones in terms of displacement gradients

given in Eq. (2.30), also can be obtained for stresses as follows,

σij (x1 + λ, x2, x3) = σij (x1, x2, x3) + σ̂ij (x1, x2, x3) i, j = 1, 2, 3 (2.32)

where σ̂ij corresponds to the constant moment solution.

The Eqs. (2.31) and (2.32) alone are not helpful to obtain the required displace-

ments and tractions acting on the boundaries of the center unit cell. To derive the
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further helpful relations between the deformations on either faces of the center unit

cell, the concept of Equivalent Coordinate System (ECS) [14] is employed which is

discussed in the next section.

b. Symmetry Relations Using Equivalent Coordinate Systems (ECS)

Consider the free body diagram of the center unit cell shown in Figure 14. Consider

a new coordinate system x̄i obtained by taking the mirror image of the original

coordinate system xi about the plane x2x3. Note that the loads acting on the unit cell

in the new coordinate system are the same as those in original coordinate system but

with a switch in their sign. If the unit cell (both geometry and material distribution)

also exhibits a mirror symmetry about x2x3 plane, then the new coordinate system

acts as the Equivalent Coordinate System for the current problem[9].

Fig. 14. Equivalent coordinate system for a beam under end shear loads
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If x̄i = aijxj, then

aij =


−1 0 0

0 1 0

0 0 1

 (2.33)

The field variables in the unit cell corresponding to the original coordinate system

can be related to the ones corresponding to the new coordinate sytem as,

γūi (x̄α) = ui (xα)

γ
∂ūi
∂x̄j

(x̄α) =
∂ui
∂xj

(xα)

γε̄ij (x̄α) = εij (xα)

γσ̄ij (x̄α) = σij (xα)

(2.34)

where γ takes a value of −1 because the loads in the new coordinate system are

opposite to those in the original coordinate system. Since the new coordinate system

x̄i is related to xi through aij, the field variables in x̄i can be transformed to xi as

follows,

ūi (x̄α) = aijuj (aαkxk)

∂ūi
∂x̄j

(x̄α) = aimajn
∂um
∂xn

(aαkxk)

ε̄ij (x̄α) = aimajnεmn (aαkxk)

σ̄ij (x̄α) = aimajnσmn (aαkxk)

(2.35)
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Combining Eqs. (2.34) and (2.35) and using x̄i = aijxj gives,

ui (xα) = γaijuj (aαkxk)

∂ui
∂xj

(xα) = γaimajn
∂um
∂xn

(aαkxk)

εij (xα) = γaimajnεmn (aαkxk)

σij (xα) = γaimajnσmn (aαkxk)

(2.36)

Substituting the value of aij given in Eq. (2.33) into Eq. (2.36) gives the following

ECS relations,

For i = 1 ⇒ u1 (x1, x2, x3) = u1 (−x1, x2, x3)

i = 2, 3⇒ ui (x1, x2, x3) = −ui (−x1, x2, x3)

(2.37)

For i = j = 1, 2, 3 and (i, j) = (2, 3) or (3, 2)

∂ui
∂xj

(x1, x2, x3) = −∂ui
∂xj

(−x1, x2, x3)

⇒ εij (x1, x2, x3) = −εij (−x1, x2, x3)

σij (x1, x2, x3) = −σij (−x1, x2, x3)

(2.38)

For i 6= j = 1, 2, 3 and (i, j) 6= (2, 3) or (3, 2)

∂ui
∂xj

(x1, x2, x3) =
∂ui
∂xj

(−x1, x2, x3)

⇒ εij (x1, x2, x3) = εij (−x1, x2, x3)

σij (x1, x2, x3) = σij (−x1, x2, x3)

(2.39)

By substituting x1 = −λ
2

in Eqs. (2.34) - (2.39) give relations between the field

variables on the end faces of the center unit cell. Using the ECS relations for the

displacement gradients at x1 = −λ
2

in Eq. (2.31) gives for the cases of (i, j) =
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(1, 1), (2, 2), (3, 3) and (2, 3),

∂ui
∂xj

(
λ

2
, x2, x3

)
= −∂ui

∂xj

(
λ

2
, x2, x3

)
+
∂ûi
∂xj

(
−λ

2
, x2, x3

)
⇒ ∂ui

∂xj

(
λ

2
, x2, x3

)
=

1

2

∂ûi
∂xj

(
−λ

2
, x2, x3

)
=

1

2

∂ûi
∂xj

(
λ

2
, x2, x3

) (2.40)

Equation (2.40) shows that the displacement gradients on the end faces of the center

unit cell are explicitly related to the ones corresponding to the constant moment

deformation. The conditions on the gradients ∂u2
∂x2
, ∂u3
∂x3

and ∂u2
∂x3

can be imposed by

imposing the in-plane displacements u2 and u3 as follows,

ui

(
±λ

2
, x2, x3

)
= ±1

2
ûi

(
λ

2
, x2, x3

)
i = 2, 3 (2.41)

But the conditions on the displacement gradient ∂u1
∂x1

cannot imposed just by imposing

the conditions on the displacement u1 at the end faces. Hence a new set of relations

are required to get the conditions in the normal (x1) direction on the end faces of

the unit cell. The ECS and superposition relations in displacement gradients for the

cases of (i, j) = (1, 2) and (1, 3) do not give any useful relations.

To derive the BC’s in the normal direction on the end faces, we use the super-

position and ECS relations stresses. Substituting x1 = −λ
2

in Eq. (2.32) gives,

σij

(
λ

2
, x2, x3

)
= σij

(
−λ

2
, x2, x3

)
+ σ̂ij

(
−λ

2
, x2, x3

)
i, j = 1, 2, 3 (2.42)

Using the symmetry relations in terms of stresses given in Eqs. (2.37)-(2.39) for

x1 = −λ
2
, Eq. (2.42) gives the following relations for the stresses on the end faces,

For i = j : σij

(
λ

2
, x2, x3

)
= −σij

(
λ

2
, x2, x3

)
+ σ̂ij

(
−λ

2
, x2, x3

)
⇒σij

(
λ

2
, x2, x3

)
=

1

2
σ̂ij

(
−λ

2
, x2, x3

)
=

1

2
σ̂ij

(
λ

2
, x2, x3

) (2.43)
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Considering the case of i = j = 1, Eq. (2.43) gives,

σ11

(
λ

2
, x2, x3

)
=

1

2
σ̂11

(
λ

2
, x2, x3

)
(2.44)

Using Cauchy’s formula, Ti = σjinj, the relation in stresses given by Eq. (2.44) can be

converted to a relation in tractions. Here nj represent the components of the normal

the surface. For the end faces of the unit cell nj = (±1, 0, 0). So, the tractions in the

normal direction in terms of stresses on the end faces of the unit cell are given by,

T1

(
±λ

2
, x2, x3

)
= ±σ11

(
±λ

2
, x2, x3

)
(2.45)

Combining Eqs. (2.44) and (2.45) gives the following conditions on tractions in the

normal direction for the center unit cell,

T1

(
±λ

2
, x2, x3

)
=

1

2
T̂1

(
λ

2
, x2, x3

)
(2.46)

In summary, by combining Eqs. (2.41) and (2.46), the BC’s for the shear mode

can be written as,

T1

(
±λ

2
, x2, x3

)
=

1

2
T̂1

(
λ

2
, x2, x3

)
ui

(
±λ

2
, x2, x3

)
= ±1

2
ûi

(
λ

2
, x2, x3

)
i = 2, 3

(2.47)

Note that Eq. (2.47) gives BCs for both the shear modes. If the terms T̂1 and ûj

correspond to a constant incremental moment about x3 (∆M3), then the BC’s in Eq.

(2.47) correspond to the shear along x2 (F2) and if they correspond to a constant

incremental moment about x2 (∆M2) then the BC’s in Eq. (2.47) correspond to the

shear along x3 (F3). The solution for the constant moment part in Eq. (2.47) can

be obtained using the boundary conditions derived in the previous section i.e. using

Eqs. (2.28) and (2.29). Figure 15 shows the results obtained for the beam shown in
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Figure 11 using the correct BC’s given in Eq. (2.47). The figure illustrates that the

shear stress contours in the unit cell are uniform along the length showing no end

effects.

Fig. 15. Shear deformation of the unit cell using the correct BC’s derived from the

superposition method

Equations (2.26)-(2.29) and (2.47) give the complete set of BCs for the six fun-

damental modes. Note that the rigid body constraints are not specified in these BC’s

since they depend on the particular configuration being analyzed. 3D FEA is em-

ployed to evaluate the corresponding deformations and strain energies. Formulation

of the 3D FEA is derived in the next chapter.

G. Translation of the Beam Reference Axis and the Prediction of Centroid and Shear

Center Locations

The effective properties predicted from the homogenization method described in the

previous section depend on the location of the reference axis in the coordinate system.
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This is because the definitions of beam stress resultants (Ri in Eq. (2.12) and the

generalized strains (ei in Eqs. (2.10) and (2.16)) depend on the location of the coor-

dinate system. For the beam analysis, the x1 axis with respect to which the effective

properties are obtained, acts as the beam reference axis. If the effective properties

with respect to one coordinate system are known, then they can be transformed to

obtain the properties in a new coordinate system located at a different location in the

cross section. This can be accomplished by using the transformation matrices that

transform Ri and ei.

Fig. 16. Schematic showing the translation of reference axis in the cross section

Consider the arbitrary cross section with the two coordinate systems xi and x̄i

shown in Figure 16. Let the origin of the coordinate system x̄i (referred to as new

coordinate system in the following discussion) be located at (0, ξ2, ξ3) with respect
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to the coordinate system xi. Note that the resultants in each coordinate system are

defined relative to the location of the corresponding reference axis in the cross section.

Hence the resultants Ri in the coordinate system xi are related to the resultants R̄i

in the new coordinate system x̄i as follows,

Ri = TijR̄j

where T =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 −ξ3 ξ2 1 0 0

ξ3 0 0 0 1 0

−ξ2 0 0 0 0 1



(2.48)

Similarly, the generalized strain ei and ēi are related as follows,

ei = T−T
ij ēj (2.49)

Using the Eqs. (2.14), (2.48) and (2.49), the relation between R̄i and the strains ēi

can be obtained as,

R̄i = C̄ij ēj

where C̄ij = Tij
−1CjkTlk

−1

(2.50)

Hence the transformation matrix for the effective stiffness matrix is given by T−1CT−T

where T is given by Eq. (2.48). The relation for the transformed stiffness matrix given

in Eq. (2.50) can be used to predict the locations of weighted centroid and shear cen-

ter of the cross section. The weighted centroid and shear centers are characteristic

locations in each cross section of a slender member. The prediction of these locations

helps simplify the aeroelastic analyses of complex slender members like wind turbine

blades to a great extent.
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The weighted centroid of a cross section is defined as the point at which the

resultant axial force (F1) should act under a pure extension (i.e. e1 = constant and

rest all ei are zero) such that there are no resultant moments generated in the cross

section. In other words, if the reference axis is located at the weighted centroid of the

cross section, the extension-flexure coupling terms C15 and C16 in the corresponding

stiffness matrix should be zero. Suppose that the weighted centroid of a cross section

is located at (ξ2c, ξ3c) with respect to xi. If Cij is the stiffness matrix in xi and C̄ij is

the stiffness matrix in the coordinate system placed at weighted centroid ((ξ2c, ξ3c)),

then the terms C̄12 and C̄13 should be zero. Since these terms will be functions of (ξ2c

and ξ3c) from the relation given Eq. (2.50), the coordinates of the weighted centroid

can be found as given below,

ξ2c = −C16

C11

ξ3c =
C15

C11

(2.51)

The shear center of cross section is defined as the point at which the resultant

shear forces (F2 and F3) should act such that there is no torque generated in the

cross section (assuming no external torque is applied on the beam). In other words,

if the reference axis is located at the shear center, the shear-torsion coupling terms

C24 and C34 in the corresponding stiffness matrix should be zero. Following the same

procedure as described for finding the weighted centroid, the coordinates of the shear

center (ξ2sc and ξ3sc) can be found as given below,

ξ2sc =
C22C34 − C23C24

C22C33 − C23
2

ξ3sc =
C23C34 − C24C33

C22C33 − C23
2

(2.52)

The Eqs. (2.51) and (2.52) provide a quick and accurate way of predicting the

centroid and shear center locations once the effective stiffness matrix is predicted
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corresponding to at least one location of the reference axis.
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CHAPTER III

FINITE ELEMENT FORMULATIONS

In the previous chapter, BC’s are derived for analysis using the Quasi-3D (Q3D) and

Unit Cell methods. It is not possible in general to obtain the closed form solutions

for the deformations in the beam using these BC’s. Hence numerical techniques

are required to predict approximate solutions. In this chapter, detailed formulations

are derived for the finite element method based on linear elasticity. Note that the

Unit Cell method requires a 3D domain (unit cell) to be analyzed whereas the Q3D

method requires a 2D domain (cross section) of the slender member needs to analyzed.

Also the governing equations for the Generalized Euler-Bernoulli and Generalized-

Timoshenko beam theories require a 1D finite element formulation for the beam

analysis. First the weak form of governing equations are developed based on the

approach discussed in [15]. Then the concept of finite element discretization are

employed for solving the governing equations for 3D elasticity, the Q3D analysis and

the beam analysis.

A. Weak Form for 3D Elasticity

The problem statement as presented for 3D elasticity in the previous chapter is re-

ferred to as the “strong form”. A “weak form” statement of the same problem rep-

resents an integral statement which can be obtained by multiplying the equilibrium

equations in Eq. (2.1) with virtual displacements, δui and integrating them over the

domain of the problem Ω. ∫
Ω

δui

(
∂σij
∂xj

+ fi

)
dΩ = 0 (3.1)



44

The derivatives on stresses in Eq. (3.1) can be transfered on to the virtual displace-

ments by using integration by parts.∮
Γ

σijδuinjdΓ−
∫
Ω

σij
∂δui
∂xj

dΩ +

∫
Ω

fiδuidΩ = 0 (3.2)

Using Eq. (2.1b) and Eq. (2.3),∮
Γ

σjinjδuidΓ−
∫
Ω

σij

(
∂δui
∂xj

+
∂δuj
∂xi

)
dΩ +

∫
Ω

fiδuidΩ = 0 (3.3)

Using the Cauchy’s formula, Ti = σjinj,∮
Γ

TiδuidΓ−
∫
Ω

σijδεijdΩ +

∫
Ω

fiδuidΩ = 0 (3.4)

The stresses σij can be written in terms of strains using the constitutive relations

given in Eq. (2.2),∮
Γ

TiδuidΓ−
∫
Ω

CijklεklδεijdΩ +

∫
Ω

fiδuidΩ = 0 (3.5)

Equation (3.5) along with BC’s given by Eq. (2.4) constitute the complete problem

statement in weak form for linear elasticity. Exact analytical solutions can be found

using either the strong form or the weak form for simple problems. But if the com-

plexity of the problem increases, it becomes impossible to obtain the exact solutions.

In such cases, the weak form can be used to find approximate solutions. If the virtual

displacements δui are chosen to take some form of a series of analytical functions

(known as approximation functions or shape functions) with unknown coefficients,

the integral statement can be reduced to a system of algebraic equations. Solving

these equations for the unknown coefficients, an approximate solution for the prob-

lem can be obtained. However the set of approximation functions need to satisfy the

following set of conditions to give a valid solution:
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1. They must be sufficiently differentiable and integrable to evaluate the integrals

in the weak form.

2. The set of functions must be linearly independent.

This approach of obtaining the solutions from the weak form of the partial differential

equations is known as the variational method. It is in general difficult to find the

set of approximation functions over the whole domain Ω of the problem. The finite

element analysis technique presents a systematic way of constructing these functions

which is discussed in the following section.

B. 3D Finite Element Analysis

Finite element analysis (FEA) is a method of obtaining approximate solutions using

the weak form of the partial differential equations. In 3D linear elasticity, the finite

element method discretizes the actual domain of the problem into sub domains called

elements and considers the weak form as a sum of integrals over each sub domain Ωe

given by,
N∑
e=1

∮
Γe

TiδuidΓe −
∫
Ωe

CijklεklδεijdΩe +

∫
Ωe

fiδuidΩe

 = 0 (3.6)

The integrals over each element give a sub-system of algebraic equations. These

element level equations are then assembled in to a global system of equations by

enforcing the continuity and equilibrium conditions at element boundaries. This

process is called as the “Assembly” process in FEA.

First the element level equations need to be obtained. An analytical form in

terms of approximation functions is assumed for the displacements in each element

as follows,

ui = ukiψk on Ωe (3.7)



46

where uki are the unknown coefficients and ψk are the known analytical functions

called shape functions. The unknown coefficients uki can be written in a vector form

as follows,

qβ =

{
u1

1 u1
2 u1

3

∣∣∣∣ u2
1 u2

2 u2
3

∣∣∣∣ ... ∣∣∣∣ un1 un2 un3

}
(3.8)

The variation of the displacements and strains can now be written as,

δui =
∂ui
∂qβ

δqβ

δεij =
∂εij
∂qβ

δqβ

(3.9)

Substituting the above notations in the Eq. (3.6) and taking the virtual unknown

coefficients δqβ as common factor from all terms gives,

N∑
e=1

∮
Γe

Ti
∂ui
∂qβ

dΓe −
∫
Ωe

Cijkl
∂εkl
∂qρ

∂εij
∂qβ

qρdΩe +

∫
Ωe

fi
∂ui
∂qβ

dΩe

δqβ = 0 (3.10)

The Eq. (3.10) should be satisfied for any arbitrary values of δqβ. Hence the terms

in the parenthesis must be zero over Ωe.∮
Γe

Ti
∂ui
∂qβ

dΓe −
∫
Ωe

Cijkl
∂εkl
∂qβ

∂εij
∂qβ

qρdΩe +

∫
Ωe

fi
∂ui
∂qβ

dΩe = 0 (3.11)

To derive the system of linear equations, it is convenient to adopt Voigt notation for

the tensors in Eq. (3.6). Voigt notation can be obtained by replacing the tensorial

indices with the new indices i.e. by replacing 11, 22, 33, 23, 13, 12 with 1, 2, 3, 4, 5, 6

respectively. Also the strains εi (Voigt notation) can be conveniently written in the

following form.

εα = Bαβqβ (3.12)
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where,

Bαβ =
∂εα
∂qβ

=



∂ψ1

∂x1
0 0

0 ∂ψ1

∂x2
0

0 0 ∂ψ1

∂x3

0 ∂ψ1

∂x3

∂ψ1

∂x2

∂ψ1

∂x3
0 ∂ψ1

∂x1

∂ψ1

∂x2

∂ψ1

∂x1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

......

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψn
∂x1

0 0

0 ∂ψn
∂x2

0

0 0 ∂ψn
∂x3

0 ∂ψn
∂x3

∂ψn
∂x2

∂ψn
∂x3

0 ∂ψn
∂x1

∂ψn
∂x2

∂ψn
∂x1

0


(3.13)

Also the gradients of displacements in Eq. (3.11) can be written in terms of the shape

functions as follows,

∂ui
∂qβ

=


ψ1 0 0

0 ψ1 0

0 0 ψ1

∣∣∣∣∣∣∣∣∣∣
ψ2 0 0

0 ψ2 0

0 0 ψ2

∣∣∣∣∣∣∣∣∣∣
...

∣∣∣∣∣∣∣∣∣∣
ψn 0 0

0 ψn 0

0 0 ψn

 (3.14)

Substituting Eqs. (3.12) and (3.14) in to Eq. (3.11) gives the following algebraic

equations,

Ke
βρqρ = F e

β

where Ke
βρ =

∫
Ωe

CαγBγβBαβdΩe

F e
β =

∮
Γe

Ti
∂ui
∂qβ

dΓe +

∫
Ωe

fi
∂ui
∂qβ

dΩe

(3.15)

The integrals in the element level matrices (Ke
ij and F e

i can be evaluated using

numerical integration schemes. Any numerical integration scheme evaluates definite

integrals (exactly or approximately depending on the order of the integrand) as a

weighted sum of values of the functions at finite number of points, called “integration”

points, in the domain of the integral. The Gauss-Legendre numerical integration
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scheme evaluates the integrals as shown below,∫ 1

−1

g (x)dx =

ngp∑
i=1

g (xi)Wi i = 1..ngp (3.16)

where G(x) is the integrand, xi are integration points and Wi are the weights. The

Gauss-Lengendre scheme gives a set of integration points and the corresponding

weights over the domain (−1, 1) which are shown in Table I. The 1D integral in

Eq. (3.16) can be extended to 3D to evaluate the element matrices given in Eq. (??).

The master domain for the 3D integration will be a cube ranging from −1 to 1 along

the three coordinate axes with its center at origin (see Figure 17).

Table I. Integration points and their weights for Gauss-Legendre numerical integration

ngp ξi wi

1 0 2

2 ±
√

1
3

1,1

3 0,±
√

1
3

8
9
,5
9
,5
9

To evaluate the integrals in the element matrices, since the integration points and

the weights are defined over the master domain shown in Figure 17, the geometry of

all elements need to be spatially mapped to the master domain. The geometry of the

element domain can be mapped to the master domain as follows,

xi = xki ψ̂k (ξ1, ξ2, ξ3) k = 1 . . .m (3.17)

where xki are the coordinates of some finite number of points in the element domain.

These points are referred to as “nodes” in FEA. The functions ψ̂k in the Eq. (3.17)

can be any arbitrary analytical functions. If ψ̂k and ψk are chosen to be the same

set of functions, then the element under consideration is termed as Isoparametric.

Isoparametric elements are used for all the models analyzed in the current work the
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(a) (b)

Fig. 17. 3D master elements (a) 8-Noded (b) 20-Noded

following discussion also correspond to the same.

The Jacobian of the transformation given in Eq. (3.17) is,

Jij =
∂xj
∂ξi

= xkj
∂ψ̂k
∂ξi

(3.18)

This implies the derivatives of shape functions with respect to the actual coordinates

xi can be written in terms of the derivatives in master element coordinates ξi as,

∂ψk
∂xj

=
∂ψk
∂ξi

∂ξi
∂xj

= J−1
ij

∂ψk
∂ξi

(3.19)

Substituting Eq. (3.19) into Eq. (3.15) gives,

Ke
βρqρ = F e

β

where Ke
βρ =

∫
Ωξe

(CαγBγβBαβ) |J | dΩξe

F e
β =

∫
Ωξe

(
fi
∂ui
∂qβ

)
|J | dΩξe +

∮
Γξe

(
Ti

∂ui
∂qβ

)
|J | dΓξe

(3.20)

Using the Guass-Legendre integration scheme, the element matrices can be written
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as,

Ke
βρ =

ngp∑
k=1

(CαγBγβBαβ)|ξk |J |w
k
1w

k
2w

k
3

F e
β =

ngp∑
k=1

(
fi
∂ui
∂qβ

)∣∣∣
ξk
|J |wk1wk2wk3 +

∮
Γξe

(
Ti

∂ui
∂qβ

)
|J | dΓξe

(3.21)

where ngp represents the number of integration points in the element.

Note that the above relations are derived for any set of shape functions which

satisfy the requirements mentioned previously. Regular polynomial functions can

be considered as shape functions but the unknown coefficients uki in such a case do

not possess any direct physical meaning. This makes the assembly process to be

tedious especially if there large number of elements in the domain. For a systematic

assembly process the shape functions are defined such that the unknown coefficients

uki represent the displacement values at certain points in or on the boundary of the

element. These points are termed as “nodes” of that particular element. Equation

(3.7) indicates that the number of shape functions corresponding to each displacement

component ui for a given element is equal to the number of unknown coefficients uki .

Hence if the unknown coefficients represent the displacement values at nodes, the

number of shape functions should be equal to the number of nodes in the element.

The shape functions for 8-noded and 20-noded brick elements shown in Figure 17 are

derived in the next section.

C. Shape Functions for Brick Elements

For 8-noded brick elements the displacement can at most vary in the form of a least

order polynomial of 8 terms.

ui (ξ1, ξ2, ξ3) = ai1+ai2ξ1 + ai3ξ2 + ai4ξ3 + ai5ξ1ξ2 + ai6ξ2ξ3

+ ai7ξ3ξ1 + ai8ξ1ξ2ξ3

(3.22)
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Equation (3.30) can be conveniently written in the following,

ui (ξ1, ξ2, ξ3) = X i
j (ξ1, ξ2, ξ3)Aij

where X i
j =

{
1 ξ1 ξ2 ξ3 ξ1ξ2 ξ2ξ3 ξ3ξ1 ξ1ξ2ξ3

}
Aij =

{
ai1 ai2 ai3 ai4 ai5 ai6 ai7 ai8

}T (3.23)

Since the unknown coefficients uki in Eq. (3.7) are the nodal displacement values,

uki = ui
(
ξk1 , ξ

k
2 , ξ

k
3

)
= X i

j

(
ξk1 , ξ

k
2 , ξ

k
3

)
Aij (3.24)

where ξki represent the nodal coordinates. Equation (3.24) can be written in the

matrix form as,

∆i
k = Gi

kjA
i
j

where ∆i
k =



u1
i

...

uki

...

uni


and Gi

kj =



X i
j

(
ξ1

1 , ξ
1
2 , ξ

1
3

)
...

X i
j

(
ξk1 , ξ

k
2 , ξ

k
3

)
...

X i
j (ξn1 , ξ

n
2 , ξ

n
3 )


(3.25)

The polynomial coefficient matrix Aij can now be written in terms of the nodal dis-

placements as,

Aij =
(
Gi
kj

)−1
∆i
k (3.26)

Substituting Eq. (3.26) into Eq. (3.23) gives,

ui = X i
j

(
Gi
kj

)−1
∆i
k (3.27)
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Hence the shape functions are given by the following matrix form,

Ψ = XG−1 (3.28)

Evaluating Eq. (3.28) for the 8-noded brick element gives the following set of shape

functions.

Ψ =
1

8



(1− ξ1) (1− ξ2) (1− ξ3)

(1 + ξ1) (1− ξ2) (1− ξ3)

(1 + ξ1) (1 + ξ2) (1− ξ3)

(1− ξ1) (1 + ξ2) (1− ξ3)

(1− ξ1) (1− ξ2) (1 + ξ3)

(1 + ξ1) (1− ξ2) (1 + ξ3)

(1 + ξ1) (1 + ξ2) (1 + ξ3)

(1− ξ1) (1 + ξ2) (1 + ξ3)



(3.29)

To derive the shape functions for a 20-noded brick element, assume that the

displacements to vary according to the lowest order polynomial of 20 terms given by,

ui (ξ1, ξ2, ξ3) = ai1 + ai2ξ1 + ai3ξ2 + ai4ξ3 + ai5ξ1ξ2 + ai6ξ2ξ3

+ ai7ξ3ξ1 + ai8ξ1ξ2ξ3 + ai9ξ1
2ξ2 + ai10ξ2

2ξ1

+ ai11ξ2
2ξ3 + ai12ξ2

2ξ3 + ai13ξ3
2ξ1 + ai14ξ1

2ξ3

+ ai15ξ1
2ξ2ξ3 + ai16ξ2

2ξ3ξ1 + ai17ξ3
2ξ1ξ2

+ ai18ξ1
2ξ2

2ξ3 + ai19ξ2
2ξ3

2ξ1 + ai20ξ3
2ξ1

2ξ2

(3.30)

By following the same approach as described for 8-noded element, the shape functions
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for the 20-noded element can be found as,

Ψ =
1

8



(1− ξ1) (1− ξ2) (1− ξ3) (−ξ1 − ξ2 − ξ3 − 2)

(1 + ξ1) (1− ξ2) (1− ξ3) (ξ1 − ξ2 − ξ3 − 2)

(1 + ξ1) (1 + ξ2) (1− ξ3) (ξ1 + ξ2 − ξ3 − 2)

(1− ξ1) (1 + ξ2) (1− ξ3) (−ξ1 + ξ2 − ξ3 − 2)

(1− ξ1) (1− ξ2) (1 + ξ3) (−ξ1 − ξ2 + ξ3 − 2)

(1 + ξ1) (1− ξ2) (1 + ξ3) (ξ1 − ξ2 + ξ3 − 2)

(1 + ξ1) (1 + ξ2) (1 + ξ3) (ξ1 + ξ2 + ξ3 − 2)

(1− ξ1) (1 + ξ2) (1 + ξ3) (−ξ1 + ξ2 + ξ3 − 2)

2
(
1− ξ1

2
)

(1− ξ2) (1− ξ3)

2 (1 + ξ1)
(
1− ξ2

2
)

(1− ξ3)

2
(
1− ξ1

2
)

(1 + ξ2) (1− ξ3)

2 (1− ξ1)
(
1− ξ2

2
)

(1− ξ3)

2 (1− ξ1) (1− ξ2)
(
1− ξ3

2
)

2 (1 + ξ1) (1− ξ2)
(
1− ξ3

2
)

2 (1 + ξ1) (1 + ξ2)
(
1− ξ3

2
)

2 (1− ξ1) (1 + ξ2)
(
1− ξ3

2
)

2
(
1− ξ1

2
)

(1− ξ2) (1 + ξ3)

2 (1 + ξ1)
(
1− ξ2

2
)

(1 + ξ3)

2
(
1− ξ1

2
)

(1 + ξ2) (1 + ξ3)

2 (1− ξ1)
(
1− ξ2

2
)

(1 + ξ3)



(3.31)

D. Quasi-3D Finite Element Formulation

The deformation in the Quasi-3D (Q3D) behavior does not vary along the axial

coordinate x1 of beams. The deformation only varies within the cross section i.e.
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in the x2x3 plane. Hence Q3D can be considered as a special case of the 3D linear

elasticity. The integrands in Eq. (3.6) for Q3D behavior do not vary along x1. Hence

the integral results in,∮
Γe

TiδuidΓe −
∫
Ωe

CijklεklδεijdΩe +

∫
Ωe

fiδuidΩe

L = 0 (3.32)

Since the length of the beam L is a constant the Eq. (3.32) gives,∮
Γe

TiδuidΓe −
∫
Ωe

CijklεklδεijdΩe +

∫
Ωe

fiδuidΩe = 0 (3.33)

Note that the domain of the element Ωe is 2D. To derive the matrix form for the

finite element analysis, let the Q3D displacements given in Eq. (2.24) be written in

the following form,

u = Ψq =

[
Ψ ΨG

] q

qG


where Ψ =


ψ1 0 0

0 ψ1 0

0 0 ψ1

∣∣∣∣∣∣∣∣∣∣
ψ2 0 0

0 ψ2 0

0 0 ψ2

∣∣∣∣∣∣∣∣∣∣
...

∣∣∣∣∣∣∣∣∣∣
ψn 0 0

0 ψn 0

0 0 ψn



ΨG =


x1 0 x1x3 −x1x2

0 −x1x3 0 1
2
x2

1

0 x1x2 −1
2
x2

1 0


q =

{
U1

1 U1
2 U1

3

∣∣∣∣ U2
1 U2

2 U2
3

∣∣∣∣ ... ∣∣∣∣ Un
1 Un

2 Un
3

}T
qG =

{
ε1 κ1 κ2 κ3

}

(3.34)

The terms with “G” as the superscript correspond to the global modes i.e. extension,

torsion and two flexures. Here, Ψ are the shape functions for the variation of the

displacements in the cross section plane and hence are functions of x2 and x3 only. The
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elements level matrices can be obtained by following the same approach as described in

the previous section for 3D elasticity. TheB matrix in Eq. (3.21) for Q3D deformation

looks like,

B =



0 0 0

0 ∂ψ1

∂x2
0

0 0 ∂ψ1

∂x3

0 ∂ψ1

∂x3

∂ψ1

∂x2

∂ψ1

∂x3
0 0

∂ψ1

∂x2
0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

......

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0

0 ∂ψn
∂x2

0

0 0 ∂ψn
∂x3

0 ∂ψn
∂x3

∂ψn
∂x2

∂ψn
∂x3

0 0

∂ψn
∂x2

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 x3 −x2

0 0 0 0

0 0 0 0

0 0 0 0

0 x2 0 0

0 −x3 0 0


(3.35)

The Gauss-Legendre integration scheme corresponding to a 2D domain is em-

ployed to evaluate the integrals present in the element stiffness matrices. The shape

functions for the 4-noded and 8-noded 2D master elements are shown in Figure 18

are derived similar to the 3D shape functions.

(a) (b)

Fig. 18. 2D master elements (a) 4-Noded (b) 8-Noded
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The shape functions corresponding to 4-noded 2D element are given by,

Ψ2D =



1
4

(1− ξ2) (1− ξ3)

1
4

(1 + ξ2) (1− ξ3)

1
4

(1− ξ2) (1 + ξ3)

1
4

(1 + ξ2) (1 + ξ3)


(3.36)

The shape functions corresponding to 8-noded 2D element are given by,

Ψ2D =



−1
4

(1− ξ2) (1− ξ3) (1 + ξ2 + ξ3)

1
2

(
1− ξ2

2
)

(1− ξ3)

−1
4

(1 + ξ2) (1− ξ3) (1− ξ2 + ξ3)

1
2

(1− ξ2)
(
1− ξ3

2
)

1
2

(1 + ξ2)
(
1− ξ3

2
)

−1
4

(1− ξ2) (1 + ξ3) (1 + ξ2 − ξ3)

1
2

(
1 + ξ2

2
)

(1− ξ3)

−1
4

(1 + ξ2) (1 + ξ3) (1− ξ2 − ξ3)



(3.37)

The 3D FEA was performed using the in-house FE code BETA. The Q3D FE

analysis is implemented separately in MATLAB.
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CHAPTER IV

CONFIGURATIONS

Several slender members with different geometric features (including material distri-

butions) are analyzed with the developed tools. Since the developed tools can only

analyze beams which exhibit a mirror symmetry about x2x3 plane, all models that

are considered do exhibit this symmetry. All models that are analyzed here are cate-

gorized into two types based on the geometry and the distribution of materials. The

first type of models are the ones in which distribution of material properties does

not change along the length of the slender member. Hence these kind of models can

be analyzed using both Q3D and Unit Cell methods. The cross sections which are

analyzed under this category are: homogeneous isotropic rectangular, inverted T,

3-cell box beam and layered composite beams made of 00 and 900 deg plies. The

second type of models are the ones in which the geometric features change but vary

periodically along the length. Since the material properties change along the length,

these models can only be analyzed using the Unit Cell method. The plain weave

composite laminated beams of different layups are considered under this category.

The geometric features, material properties and finite element mesh configurations

for each model are presented in the following discussion. For all models in the finite

element analysis, 2D quadratic quadrilateral elements for the Q3D method and 3D

quadratic hex elements for the Unit Cell method are employed.

A. Slender Members of Type I

The material distribution and the geometry of this type of slender members remain

constant along the length. Five different models are analyzed with the geometric

features varied from one model to the other. Note that in all Type I models, the 2D
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mesh for the Q3D method is structured and composed of quadratic elements. For the

Unit Cell method, the same 2D mesh is extruded to obtain one layer of 3D quadratic

hex elements. This helps in making comparisons between the deformations predicted

from Q3D and Unit Cell methods.

1. Isotropic Rectangular Section

A simple homogeneous beam with rectangular cross section made of isotropic ma-

terial is analyzed. This model is considered here to compare the predicted effective

properties from the current analysis with those from the SOM calculations, which are

accurate in this case. The beam geometry and the mesh configuration is shown in

Figure 19. The material properties of the isotropic material used are: E = 10.153e6

and ν = 0.35. The origin of the coordinate system with respect to which the effective

properties are calculated is placed at the area centroid of the cross section.

Fig. 19. Isotropic rectangular section
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2. Layered Orthotropic Rectangular Section

A four-layered composite beam of rectangular cross section is analyzed. Each ply

is made of transversely isotropic material whose properties are: E11 = 22.909e6,

E22 = 1.309e6, E33 = 1.309e6, ν23 = 0.3749, ν13 = 0.2412, ν12 = 0.2412, G23 =

0.484e6, G13 = 0.743e6, G12 = 0.743e6. Three different layups, [0/90]s, [90/0]s and

[(0)2/(90)2], are considered for the analysis to compare the influence of stacking on

the mechanical behavior of the beam. Also for the [0/0/90/90] layup, which shows an

extension-flexure coupling behavior, the coupled terms in the effective stiffness matrix

are expected to be determined from the current analysis tools. The coordinate system

is placed at the area centroid of the cross section for all three layups. The geometry

and the mesh configurations are shown in Figure 20.

Fig. 20. Layered orthotropic configurations
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3. Inverted T-Section

A homogeneous beam with inverted T-section made of isotropic material is considered

(see Figure 21). This configuration is taken from [8] where it is analyzed using Vari-

ational Asymptotic Beam Sectional Analysis (VABS). Unlike the rectangular section

which has two planes of symmetry (x1x2 and x1x3), the inverted T-section has only

one plane of symmetry (x1x3). Also the coordinate system is placed with an offset

from the area centroid. This offset which gives rise to an extension-flexure coupling

term in the effective stiffness matrix helps in determining the robustness of the cur-

rent analysis tools in predicting the effective properties with respect to a coordinate

system placed at any point in the cross section. The material properties used in this

model are: E = 3.0e11 and ν = 0.49.

Fig. 21. Isotropic inverted T-section

4. 3-Cell Box Beam Section

A homogeneous 3-cell box beam made of isotropic material shown in Figure 22 is

analyzed. The configuration is again taken from [8] for comparison purpose. The

cross section is composed of 3 cells of different dimensions. The shear webs are
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placed asymmetrically in the cross section. From the SOM calculations using thin

wall approximations, it can be expected that the cross section due to asymmetry can

give rise to coupling between two shears and the torsion. The coordinate system is

placed away from the area centroid of the cross section which results in the coupling

between extension and two flexures. The material properties used for this model are:

E = 10.153e6 and ν = 0.35.

Fig. 22. 3-cell box beam section

5. Wind Turbine Blade Section

A cross section of a wind turbine blade shown in Figure 23 was considered. The

section dimensions and material properties are taken from the reference [16]. The

section has the shape of S818 airfoil with a chord length of 1m. The shear webs are

placed at 15% and 50% chord lengths. The coordinate system is placed at the fore

end of the airfoil. Five different materials (see Table II) with various layups are used

in different parts of the section (see Figure 23). The skin of the section is made of

5 layers whereas the shear webs are made of 3 layers. The thickness of the skin is

10mm till 15%, 30mm from 15% to 50% and 15mm after 50% of chord length. The

thickness of the shear webs are 10mm each. The core material for the shear webs and

for the skin till 15% and after 50% of the chord length is made of balsa.
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Fig. 23. Section of a wind turbine blade [16]

Table II. Material properties for the wind turbine blade section shown in Figure 23

Material E11 E22 = E∗
33 ν∗23 ν13 = ν12 G∗

23 G13 = G12

(GPa) (GPa) (GPa) (GPa)

Gel Coat 3.44 3.44 0.3 0.3 1.38 1.38

Random Mat 9.65 9.65 0.3 0.3 3.86 3.86

Triaxial Fabric 24.2 8.97 0.3 0.39 3.45 4.97

Balsa 2.07 2.07 0.22 0.22 0.14 0.14

Spar Cap Mixture 27.1 8.35 0.3 0.37 3.21 4.7

The core material for the skin between the shear webs (i.e. from 15% to 50%

chord length) is made of “Spar Cap Mixture”. The Spar Cap Mixture is made of

alternate layers of triaxial fabric and uniaxial fabric. It contains 70% of uniaxial fibres

and 30% of off-axis fibers [16]. The thicknesses of the layers of materials are slightly

altered from those given in the reference for simplicity in modeling of the section.

Also the material properties given in the reference were incomplete for 3D analysis

since they were obtained from experimental tests and laminated plate theory. Hence
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arbitrary (but reasonable) values are chosen for the unreported properties (highlighted

with “*” in the superscript in Table II) for the 3D analysis.

B. Slender Members of Type II

This type of slender members have periodic variation of geometry and material dis-

tributions along the length. The Unit Cell method can also analyze beams made of

periodic geometry and material distributions along the length. However the length of

the unit cell for analyzing such beams, should be an integer multiple of the wavelength

of the periodicity. The only other restriction the Unit Cell method has is that the

unit cell of the beam should have x2x3 as a plane of symmetry. Here different layups

of plain weave composite beams with varying number of plies and stacking sequences

are analyzed. Only one plain weave unit cell along the length of the composite beam

are considered here for the analysis.

1. Single Mat - Plain Weave Composite Beam

A single mat of plain weave unit cell with warp and fill tows made of homogeneous

transversely isotropic material and the matrix region made of homogeneous isotropic

material is considered here. The configuration of the unit cell is shown in Figure 24.

A waviness ratio (the ratio of wave length of the warp and fill tows to the thickness

Fig. 24. Single mat plain weave composite beam section
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of the mat) of 3 is considered for the analysis. The mat thickness is taken as 1 unit.

2. Multiple Mat - Plain Weave Composite Beam

Multilayered woven composite beam with each layer being a plain weave mat shown

in Figure 24. Different configurations with varying number of layers (2, 4 and 10)

and stacking sequences (simple and symmetric) are considered. Figure 25 shows unit

cells of a two-mat beam with simple and symmetric stacking configurations.

(a) (b)

Fig. 25. Two mats plain weave composite beam (a) simple stacking (b) symmetric

stacking
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CHAPTER V

RESULTS

The results for various configurations presented in the previous chapter are obtained

from the methods developed in the current work. All routines corresponding to the

Q3D method are implemented in MATLAB. For the Unit Cell (UC) method, the

in-house FE package BETA is used for predicting the deformations for the six funda-

mental modes. Additional subroutines implemented in MATLAB are used for post

processing the FEA output to obtain the effective properties and stress resultants.

The obtained results are compared with 3D finite element analysis (3D FEA) of long

full length beams, strength of materials (SOM) (only for simple models) and Varia-

tional Asymptotic Beam Section Analysis (VABS) [8]. The effective properties from

the full length beams are predicted from the strain energies for six modes correspond-

ing to the part of the beam sufficiently away from the ends i.e. only the interior

part of the beam. This is done to avoid the influence of end effects on the predicted

effective properties. The SOM calculations are done based on the simple 1D models

presented in Chapter 1. VABS software was obtained from Dr. Wenbin Yu [8]. The

effective properties from all methods are presented in a table format for each cross

section. Only the non-zero terms of the effective stiffness matrix are presented in the

tables. The VABS-C and VABS-T in the tables refer to VABS Classical and VABS

Timoshenko like analyses respectively.

A. Influence of End Effects on Predicted Effective Properties

A long homogeneous beam with rectangular cross section shown in Figure 11 was ana-

lyzed for the six deformation modes using simple plane translation and rotation BC’s.

As discussed in Chapter 3, these plane translation BC’s for shear modes constrain
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the warping of the end cross section planes and generate end effects. Considering

each layer of elements along the length as a single unit cell, effective properties are

predicted for all unit cells along the length. Figure 26 shows the variation of the

predicted effective properties C22 and C33 along the length. It can be seen that both

properties remained constant in the inner part of the beam but varied significantly

near the ends due to end effects. Also the the influence of end effects on C22 is much

greater than that on C33. The figure also illustrates the validity of the St. Venant’s

principle which states that the end effects vanish at a distance sufficiently away from

the ends.

Fig. 26. Variation of the stiffness values C22 and C33 along the length of a long beam

B. Effective Properties for the Slender Members of Type I

Since the material properties and the geometry are not changing along the length

the effective properties depend only on the cross section shape and the material

distribution in the cross section.
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1. Isotropic Rectangular Section

The cross section has low aspect ratio along x2 and high aspect ratio along x3. The

coordinate system is placed at the area centroid of the cross section. Since the material

is isotropic, the section exhibits symmetry about both the x2 and x3 axes. The

deformed shapes from the Unit Cell method are shown in Figure 27. The beam

constitutive relations predicted using Q3D method and Unit Cell methods are given

in Eq. (5.1).

F1

M1

M2

M3


=



1.0153e6 0 0 0

0 1.1759e3 0 0

0 0 8.4608e4 0

0 0 0 8.4608e2





ε1

κ1

κ2

κ3


(5.1a)



F1

F2

F3

M1

M2

M3



=



1.0153e6 0 0 0 0 0

0 5.6334e4 0 0 0 0

0 0 3.1332e5 0 0 0

0 0 0 1.1759e3 0 0

0 0 0 0 8.4608e4 0

0 0 0 0 0 8.4608e2





ε1

ε2

ε3

κ1

κ2

κ3


(5.1b)

Table III gives the properties predicted from various methods. Here, VABS Clas-

sical method is similar to the current Q3D method which neglects the contributions

from the shear modes and VABS Timoshenko method is similar to the Unit Cell

method which accounts for the shear modes. The table shows that the values pre-

dicted from Q3D and Unit Cell methods are in excellent agreement with 3D FEA as

well as VABS. The SOM predictions for the stiffness values are made following the
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Fig. 27. Shear deformation modes in isotropic rectangular section

simple 1-D models presented in Chapter 1. The simple 1D beam models (both Euler-

Bernoulli and Timoshenko) predict that the stresses do not vary along the thickness

direction (the direction perpendicular to the direction of shear resultants) of the cross

section. Hence they can accurately predict the behavior of beams with cross sections

having large height to thickness ratios. They can lead to large errors for the beams

having small height to thickness ratios. In the current model, the height to thickness

ratio along x2 is 0.1 ( = dimension along x2/dimension along x3) whereas along x3 it

is 10 ( = dimension along x3/dimension along x2). The shear stiffness C22 predicted

from SOM is 4.5 times larger than the value predicted from 3D FEA. Figure 28 shows

the shear stress contours under transverse shear forces F2 and F3. The contours un-
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Table III. Effective properties for isotropic rectangular section

Long Beam Q3D VABS-C UC SOM VABS-T

C11 1.0153e6 1.0153e6 1.0153e6 1.0153e6 1.0153e6 1.0153e6

C22 5.6334e4 — — 5.6334e4 3.1333e5 5.5655e4

C33 3.1332e5 — — 3.1332e5 3.1333e5 3.1333e5

C44 1.1759e3 1.1759e3 1.1759e3 1.1759e3 3.1563e4 1.1759e3

C55 8.4608e4 8.4608e4 8.4608e4 8.4608e4 8.4608e4 8.4608e4

C66 8.4608e2 8.4608e2 8.4608e2 8.4608e2 8.4608e2 8.4608e2

der load F3 do not vary along x2 (the thickness direction for the load along x3) and

hence agree with the predictions from SOM. But the contours under load F2 vary

significantly along x3 (the thickness direction for the load along x2) and hence the

predictions from the SOM fail in this case.

Fig. 28. Shear stress contours under shear loads in isotropic rectangular section
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2. Layered Orthotropic Section

Layered orthotropic beam with three different layups, [0/90]s, [90/0]s and [(0)2/(90)2],

shown in Figure 20 were analyzed for the effective properties. All layers are of equal

thicknesses and made of the same material. The first two layups are balanced sym-

metric layups whereas the third is an unsymmetric layup. Both symmetric layups do

not exhibit any coupling behavior i.e. the off-diagonal terms are zero for both layups.

The unsymmetric layup [(0)2/(90)2] exhibits extension flexure coupling about the

chosen coordinate system. The deformed shapes for various modes predicted from

Unit Cell method are shown in Figure 29. Tables IV to VI give the effective proper-

ties predicted from various methods. For the symmetric layups, the predictions for

all effective properties from all the methods agree well with each other except for C33

from SOM approach. The reason for the error in C33 from SOM is because, SOM

predicts that the stresses do not vary through the thickness which is not the actual

behavior seen from 3D analysis. Also, since there are no extension-flexure and shear-

flexure coupling terms for the symmetric layups, the locations of the shear center and

the weighted centroid are predicted to be at origin of the coordinate system.

Table IV. Effective properties for layered orthotropic [0/90]s section

Long Beam Q3D VABS-C UC SOM VABS-T

C11 1.2139e6 1.2139e6 1.2139e6 1.2139e6 1.2109e6 1.2139e6

C22 6.1783e4 — — 6.1783e4 6.1917e4 6.1783e4

C33 4.6465e4 — — 4.6465e4 5.1125e4 4.6374e4

C44 2.2933e2 2.2933e2 2.2933e2 2.2933e2 1.5488e4 2.2933e3

C55 1.6874e3 1.6874e3 1.6874e3 1.6874e3 1.6841e3 1.6874e3

C66 1.0113e5 1.0113e5 1.0113e5 1.0113e5 1.0091e5 1.0113e5
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Fig. 29. Shear deformations in the layered orthotropic rectangular section

The unsymmetric layup, [(0)2/(90)2], exhibits coupling behavior between ex-

tension and flexure (C15) as well as shear and torsion (C24). From Table VI, the

properties corresponding to extension and flexure are the same from both Q3D and

Unit Cell methods. But the torsion stiffness C44 predicted from Q3D differs from

that predicted using Unit Cell method by about 10%. The reason for this is because

of the coupling behavior of the beam between shear and torsion. Since Q3D cannot

accommodate shear deformation behavior, the predictions for the torsion deformation

are not accurate. Hence one should be careful in using Q3D because it can lead to

incorrect predictions of the properties for the beams which show coupling behavior

with shear modes. The predictions from the Unit Cell method for the coupled terms

matched well with 3D FEA as well as VABS Timoshenko methods. Figure 30 shows
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Table V. Effective properties for layered orthotropic [90/0]s section

Long Beam Q3D VABS-C UC SOM VABS-T

C11 1.2139e6 1.2139e6 1.2139e6 1.2139e6 1.2109e6 1.2139e6

C22 6.1780e4 — — 6.1780e4 6.1917e4 6.1780e4

C33 4.1131e4 — — 4.1131e4 5.1125e4 3.9923e4

C44 2.3145e2 2.3145e2 2.3145e2 2.3145e2 1.5488e4 2.3145e2

C55 3.3477e2 3.3477e2 3.3477e2 3.3477e2 3.3408e2 3.3477e2

C66 1.0113e5 1.0113e5 1.0113e5 1.0113e5 1.0091e5 1.0113e5

the two coupled deformation modes, extension-flexure and shear-torsion, of the un-

symmetric layup. The presence of these coupling behaviors indicate that the origin

of the coordinate system is away from both weighted centroid and the shear center.

The predicted locations of weighted centroid and shear centers for the unsymmetric

layup are (ξ2c = 0, ξ3c = −0.0220) and (ξ2sc = 0, ξ3sc = 0.0216) respectively. These

predictions were with in 1.4% when compared to VABS.

Fig. 30. Coupled deformation modes in [(0)2/(90)2] layered beam
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Table VI. Effective properties for layered orthotropic [02/902] section

Long Beam Q3D VABS-C UC SOM VABS-T

C11 1.2127e6 1.2127e6 1.2127e6 1.2127e6 1.2109e6 1.2127e6

C15 -2.7038e4 -2.7038e4 -2.7038e4 -2.7038e4 — -2.7038e4

C22 6.1406e4 — — 6.1406e4 6.1917e4 6.1406e4

C24 -1.3287e3 — — -1.3287e3 — -1.3287e3

C33 4.8652e4 — — 4.8652e4 5.1125e4 4.7495e4

C44 2.5913e2 2.3038e2 2.3038e2 2.5913e2 1.5488e4 2.5913e2

C55 1.0105e3 1.0108e3 1.0105e3 1.0105e3 1.0091e3 1.0105e3

C66 1.0103e5 1.0103e5 1.0103e5 1.0103e5 1.0091e5 1.0103e5

3. Isotropic Inverted T-Section

The inverted T-section beam is homogeneous and made of isotropic material. The

coordinate system is placed away from the area centroid of the cross section. Also

the cross section has only one plane of symmetry unlike the isotropic rectangular

section which has both in-plane axes as planes of symmetry. The shear deformation

modes predicted using the Unit Cell method are shown in Figure 31 along with the

shear stress contours. The warping of the cross section can be seen to be predicted

accurately for both the shear modes since no end effects are seen in the shear stress

contours. The effective properties predicted from various methods are shown in Table

VII.

Note that the SOM calculations for the shear modes are performed assuming the

cross section is divided into different rectangular subregions as shown in Figure 32.

The shear forces are distributed among the subregions assuming that each subregion

takes the shear load proportional to its area. The shear stress distributions in each
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rectangular subregion is considered as parabolic assuming that one region is not

interacting with the other.

Fig. 31. Shear deformation modes in inverted T-section

The effective properties from all methods agree exactly for the extension and

flexure modes. The shear properties from SOM are different because of the assump-

tions made on the distribution of shear stress under shear loads. The beam exhibits

two coupling modes, extension-flexure (C15) and shear-torsion (C24). Both the terms

arise due to the asymmetry in the cross section and the offset in the coordinate system

from the area centroid. The extension and flexure properties from Q3D and Unit Cell

methods agree with each other but the torsional properties are significantly different

because of the coupling between shear and torsion modes which Q3D neglects.
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Table VII. Effective properties for inverted T-section

Long Beam Q3D VABS-C UC SOM VABS-T

C11 3.6003e12 3.6000e12 3.6000e12 3.6003e12 3.6000e12 3.6000e12

C15 6.0004e12 6.0000e12 6.0000e12 6.0004e12 6.0000e12 6.0000e12

C22 0.8784e12 — — 0.8784e12 1.0000e12 0.8765e12

C24 -1.2757e12 — — -1.2757e12 -1.6667e12 -1.2692e12

C33 0.8118e12 — — 0.8118e12 1.0000e12 0.8091e12

C44 3.3484e12 1.4870e12 1.4880e12 3.3484e12 6.0000e12 3.3260e12

C55 1.4400e13 1.4400e13 1.4400e13 1.4400e13 1.4400e13 1.4400e13

C66 3.6000e12 3.6000e12 3.6000e12 3.6000e12 3.6000e12 3.6000e12

The locations of the weighted centroid and the shear center are predicted to be

at (ξ2c = 0, ξ3c = 1.6667) and (ξ2sc = 0, ξ3sc = 1.4522) respectively. These predictions

were with in 0.3% when compared to VABS.

Fig. 32. SOM approximation for shear stress distribution in inverted-T Section
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4. 3-Cell Box Beam Section

The 3-cell box beam section resembles an idealized homogeneous multi-celled wind

turbine blade. The coordinate system is placed away from the area centroid of the

cross section to predict the coupling terms. The cross section has only one plane of

symmetry since the shear webs are positioned asymmetrically along x2. The shear

deformation modes predicted from the Unit Cell method are shown in Figure 33

along with the shear stress contours. The effective properties from various methods

Fig. 33. Shear deformation modes in 3-cell box beam section

are shown in Table VIII. The SOM calculations for the shear modes are performed

assuming the thin-wall assumption i.e. assuming that the flanges cannot take shear

loads in the thickness direction. The cross section has more non-zero coupling terms
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than the inverted T-section because of the offset in the coordinate system along both

the in-plane axes. This offset from the area centroid resulted in non-zero C15, C16 and

C56. The effective properties from all methods again agree exactly for extension and

flexure modes. Because of the coupling between torsion and shear mode correspond-

ing to F2, the torsion properties from Q3D and Unit Cell methods are significantly

different from each other. The locations of the weighted centroid and the shear center

are predicted to be at (ξ2c = 4.4231, ξ3c = 1.0000) and (ξ2sc = 4.3535, ξ3sc = 1.0000)

respectively. These predictions were with in 0.01% when compared to VABS.

Table VIII. Effective properties for 3-cell box beam section

Long Beam Q3D VABS-C UC SOM VABS-T

C11 2.3758e7 2.3758e7 2.3758e7 2.3758e7 2.3758e7 2.3758e7

C15 2.3758e7 2.3758e7 2.3758e7 2.3758e7 2.3758e7 2.3758e7

C16 -1.0508e8 -1.0508e8 -1.0508e8 -1.0508e8 -1.0508e8 -1.0508e8

C22 6.1431e6 — — 6.1431e6 5.6400e6 6.1437e6

C24 -6.1435e6 — — -6.1435e6 -5.6400e6 -6.1437e6

C33 1.4305e6 — — 1.4305e6 1.8800e6 1.4305e6

C34 6.2276e6 — — 6.2276e6 — 6.2275e6

C44 5.3585e7 2.0329e7 2.0329e7 5.3585e7 1.8800e7 5.3585e7

C55 4.1747e7 4.1747e7 4.1747e7 4.1747e7 4.1747e7 4.1747e7

C56 -1.0508e8 -1.0508e8 -1.0508e8 -1.0508e8 -1.0706e8 -1.0508e8

C66 6.6633e8 6.6633e8 6.6633e8 6.6633e8 6.5626e8 6.6633e8

5. Wind Turbine Blade Section

The section is made of S818 airfoil (chord length = 1m) with different layers of

materials. There are two shear webs at 15% and 50% chord lengths (see Figure 23).
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The section is considered from reference [16]. The coordinate system is placed at the

fore end of the cross section. The calculated properties are shown in Table IX. Since

the cross section is complex, the SOM calculations were not performed.

Table IX. Effective properties for the wind turbine blade section

Long Beam Q3D VABS-C UC VABS-T

C11 6.5606e8 6.5599e8 6.5605e8 6.5606e8 6.5605e8

C15 6.8113e6 6.8068e6 6.8076e6 6.8113e6 6.8076e6

C16 -2.5161e8 -2.5160e6 -2.5162e8 -2.5161e8 -2.5162e8

C22 8.5839e7 — — 8.5839e7 8.5841e7

C23 4.2060e6 — — 4.2060e6 4.1985e6

C24 2.9360e5 — — 2.9360e5 2.9287e5

C33 1.2262e7 — — 1.2262e7 1.2238e7

C34 3.5724e6 — — 3.5724e6 3.5706e6

C44 2.7616e6 1.7096e6 1.7103e6 2.7616e6 2.7623e6

C55 4.6406e6 4.6403e6 4.6404e6 4.6406e6 4.6404e6

C56 -3.8976e6 -3.8969e6 -3.8972e6 -3.8976e6 -3.8972e6

C66 1.2224e8 1.2224e8 1.2224e8 1.2224e8 1.2224e8

The cross section gave several coupling terms: extension-flexure (C15 and C16),

shear-shear (C23), shear-torsion (C24 and C34) and flexure-flexure (C56). The results

from the Unit Cell method showed excellent agreement with those from the 3D anal-

ysis of a long beam as well as from VABS Timoshenko-like analysis. The results

from Q3D and VABS classical analyses showed good agreement for extension and

flexure properties but not for torsion properties. The torsional property C44 from

Q3D differed from the 3D analysis of a long beam by about 38%. The reason for

this significant error is because of the presence of coupling between torsion and shear
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which the Q3D could not capture. The predicted location of weighted centroid is at

(ξ2c = 0.3835, ξ3c = 0.0104) whereas that of shear center is at (ξ2sc = 0.2951, ξ3sc =

0.0110). These predictions agreed well with those from VABS Timshenko like analysis

(error of about 0.14%).

C. Effective Properties for the Slender Members of Type II

The second type of slender members have geometry and/or material properties vary-

ing periodically along the length. Note that most of the existing cross section analysis

tools are based on analyzing a characteristic 2D cross section of a beam. Hence they

cannot capture the behavior of the beams which have varying geometric features

along the length since no single cross section is characteristic in such cases. The Q3D

method also fails in this context because of the same reason.

The Unit Cell method however can analyze such cross sections since the varia-

tion along the length is periodic. The length of the unit cell in such cases can be

considered as one wavelength (or a multiple of it) corresponding to the periodicity

in the geometric features. Plain weave woven-composite beams which fall under this

category of slender members are considered here for the analysis. The following mod-

els represent idealized configurations of plain weave composites. Also only one unit

cell is considered in the cross section of the beam for simplicity in illustrating the

capabilities of the current tools. In general several unit cells span the cross section

since the dimension of each unit cell is much smaller compared to the typical dimen-

sions of composite beams. Since no available analysis tool can analyze these slender

members, the results are validated only by comparison with the interior region of 3D

FEA of the long beam composed of several unit cells along the length to avoid the

end effects.
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1. Beams Made of a Single Plain Weave Mat

A single mat composite beam shown in Figure 24 was analyzed using the Unit Cell

method for the six deformation modes. The coordinate system was placed at the

geometric center of the unit cell. The deformed configurations of the unit cell under

the six deformation modes are shown in Figure 34.

Fig. 34. Fundamental deformations modes of single mat plain weave composite beam

The effective properties for this configuration were predicted similar to the pre-

vious models i.e. using the strain energy equivalence principle of the homogenization

scheme. The predicted effective properties are shown in Table X. The results matched

exactly with those from the long beam analysis. The unit cell, due to asymmetry

about the x1x2 plane, exhibits a coupling behavior between shear along x2 and the

torsion mode which resulted in non-zero C24 term. This coupling term leads to the

prediction of shear center to be at (ξ2sc = 0.0, ξ3sc = −0.0390).
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Table X. Effective properties for single mat plain weave composite beam

Single Mat

C11 7.1138e10

C22 1.1722e10

C24 4.5663e8

C33 2.2026e10

C44 2.6374e9

C55 3.4704e9

C66 5.3289e10

2. Beams Made of Multiple Plain Weave Mats

Laminated composite structures are usually composed of several mats to attain the

required stiffness and strength properties. Composite beams made of two, four and

ten plain weave mats with different stacking sequences were analyzed for the effective

stiffness properties (see Figure 25). The different stacking sequences here correspond

to simple and symmetric stacking. The symmetric stacking does have x1x2 as a plane

of symmetry whereas the simple stacking does not. Hence symmetrically stacked con-

figurations exhibit no coupling behavior whereas the simply stacked configurations,

similar to the single mat case discussed previously, show coupling between shear and

torsion. The deformed shapes of the unit cells with two-mats are shown in Figure 35.

The predicted effective properties for all configurations are shown in Table XI. All

values are in excellent agreement (maximum error of 0.001%) with the ones obtained

from the long beam analyses (not shown in the table). It can be seen that the term

corresponding to shear-torsion coupling C24 is non-zero only for the simply stacked

configurations. The prediction of the location of shear center for simply stacked two-
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mat, four-mat and ten-mat configurations are (ξ2sc = 0.0, ξ3sc = −0.0890), (ξ2sc =

0.0, ξ3sc = −0.1420) and (ξ2sc = 0.0, ξ3sc = −0.1810) respectively.

The effective properties in general are sensitive to the stacking sequence. For

example consider the effective properties of the two-mat beam. The stiffness terms

C11, C33, C55 and C66 changed significantly from simple to symmetric stacking with

the maximum change observed in C66 of about 18%. The out of plane transverse

shear stiffness C33 showed a change of about 13%. Similar trends are observed in

four-mat and ten-mat beams. These models illustrate the importance of the stacking

sequence in the design of layered woven composite beams. Since the shear stiffness

properties of the finitely thick woven composite beams were not investigated much in

the literature, the current approach proves to be a powerful tool since it captures the

detailed deformations with accuracy equivalent to full 3D FEA.

Table XI. Effective properties for multiple mat plain weave composite beams

Simple Symmetric Simple Symmetric Simple Symmetric

C11 1.5189e11 1.7152e11 3.1231e11 3.6550e11 7.9352e11 9.4729e11

C22 2.3491e10 2.3373e10 4.6627e10 4.5857e10 1.0384e11 1.0045e11

C24 2.1022e9 0.0 6.6032e9 0.0 1.8750e10 0.0

C33 1.4943e10 1.6925e10 3.5298e10 3.9536e10 9.2495e10 1.0373e11

C44 1.9216e10 1.9930e10 8.0517e10 8.7398e10 2.9534e11 3.3230e11

C55 4.9672e10 4.4994e10 4.1052e11 4.3389e11 6.5240e12 7.5383e12

C66 1.1539e11 1.3639e11 2.3946e11 2.9254e11 6.1164e11 7.6172e11
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Fig. 35. Fundamental deformations modes of two mat plain weave composite beams

simple vs symmetric
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

A. Conclusions

Slender structural members such as wind turbine blades can be accurately modeled

using beam models. Wind turbine blades have complex cross section shapes and are

made of various composite layups along the length. Hence simple 1D models like

uniaxial bar, St. Venant’s torsion rod, Euler-Bernoulli and Timoshenko models fail

to accurately predict the behavior of wind turbine blades.

The formulation for a generalized beam model is derived which can analyze any

slender member with arbitrary cross sections subjected to any combination of beam

loads i.e. extension, shears, torsion and flexures. To employ the generalized beam

theory for any slender member the corresponding effective section properties need to

be obtained. Several cross section analysis techniques existing in the literature were

based on various assumptions which in some cases lead to significant errors. The

accuracy of the prediction of the mechanical behavior of blades using beam models

depends on the accuracy in the prediction of the effective section properties. A

homogenization technique based on strain energy equivalence is presented for accurate

predictions of effective section properties. The technique requires the calculation of

detailed 3D deformations for the six fundamental modes of the beams.

The 3D deformations corresponding to six fundamental modes can be obtained

by analyzing a long beam. For accurate predictions, this approach can be expensive

especially for complex cross sections. To reduce the computational effort in predicting

the deformations corresponding to the six fundamental modes, two new methods -

Quasi-3D and Unit Cell - are presented. The Quasi-3D method can analyze extension,
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torsion and flexure of beams which do not show coupling behavior with the shear

modes. This method is useful for predicting the effective properties for the generalized

Euler-Bernoulli beam model. The Unit Cell method on the other hand predicts the

deformations corresponding to all six fundamental modes for any slender members

that have x2x3 as a plane of symmetry. The Quasi-3D method is implemented in

MATLAB whereas the Unit Cell method is implemented using the in-house finite

element code BETA.

Several models with different geometric features were analyzed for the effective

properties using the deformations predicted from Q3D and Unit Cell methods. The

results were compared with the 3D FEA of the long beam, Strength of Materials and

VABS approaches. Excellent agreement was seen in the predicted properties when

compared with the full 3D analysis for all cross sections.

B. Future Work

The homogenization technique based on strain energy equivalence works for any slen-

der members. However the boundary conditions (BC’s) derived in the current work

for the Unit Cell method can only analyze the slender members which have x2x3 as a

plane of symmetry. Hence efforts are in progress in developing a general set of BC’s

which can analyze the slender members which do not have this symmetry. An exam-

ple of slender members that fall under this category are ones made of plies oriented

in directions other than 0 and 90 degrees.

The current work discusses only the static analysis of slender members. An im-

portant extension for the current work would be to analyze the structural dynamic

behavior of slender members of arbitrary cross sections. For dynamic analysis, along

with the effective stiffness properties, effective inertia properties have to be deter-
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mined. Dynamic analysis of wind turbine blades is extremely important because all

loads that act on the blades under normal operational conditions vary severely with

time. Full 3D FEA analysis in such a case would be impractical and the beam mod-

els similar to the ones developed in the current work can again prove to be highly

powerful and efficient tools.

Also the BC’s developed for the unit cell method can be extended to analyze uni-

directional and woven composite laminated plates and shells. The current approach

can prove to be accurate and efficient especially in predicting the shear behavior of

thick composite plates and shells.
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