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ABSTRACT 

 

A Study of Hydraulic Fracturing Initiation in Transversely Isotropic Rocks. 

(August 2011) 

Vahid Serajian, B.S.; M.S., Amirkabir University of Technology (Tehran Polytechnic) 

Chair of Advisory Committee: Dr. Ahmad Ghassemi 

 

Hydraulic fracturing of transverse isotropic reservoirs is of major interest for 

reservoir stimulation and in-situ stress estimation. Rock fabric anisotropy not only 

causes in-situ stress anisotropy, but also affects fracture initiation from the wellbore. In 

this study a semi-analytical method is used to investigate these effects with particular 

reference to shale stimulation. Using simplifying assumptions, equations are derived for 

stress distribution around the wellbore’s walls. The model is then used to study the 

fracture initiation pressure variations with anisotropy. A sensitivity analysis is carried 

out on the impact of Young’s modulus and Poisson’s ration, on the fracture initiation 

pressure. The results are useful in designing hydraulic fractures and also can be used to 

develop information about in-situ rock properties using failure pressure values observed 

in the field. Finally, mechanical and permeability anisotropy are measured using Pulse 

Permeameter and triaxial tests on Pierre shale. 
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NOMENCLATURE 

 

a Radius of the well 

aij Components of compliance tensor 

E, E’ Young’s modulus in parallel and perpendicular planes  

Eh, Ev  Young’s modulus in horizontal and vertical planes, respectively 

hi , hj Direction cosines of the i and j axes in relation to the axis of symmetry 

H’ Compliance matrix in anisotropy coordination system 

I Imaginary unit 

K Anisotropy ratio, permeability 

Kh, Kv Permeability in horizontal and vertical directions, respectively 

l,m,n Direction cosines of  the unit vectors in x, y, z directions respectively 

Pw  Mud pressure in the well 

Pp  Pore pressure 

e  Real component of a complex number 

  Biot effective stress coefficient 

h , v  Biot effective coefficient in horizontal and vertical directions 

ij   Reduced strain coefficient 



 vi 

h  , 
H  Strain component in min. and max. principal horizontal stress directions 

ij  Kronecker delta 

   Poro elastic coefficient ( 0 1  )  

1,2,3i i    Characteristic roots of the stress 

' , 1,2,3i i   Derivatives of the stress analytical functions 

v   Vertical stress 

h   Minimum horizontal stress 

H   Maximum horizontal stress 

t   Rock tensile strength 

eff   Effective stress 

xx , yy , zz  Total normal stresses in Cartesian coordination 

,x o , ,y o , ,z o  Original (in-situ) stresses in Cartesian coordination 

,x i , ,y i , ,z i  Induced stresses in Cartesian coordination 

xy , xz , xy  Total shear stresses in Cartesian coordination 

,xy o , ,xz o , ,xy o Original (in-situ)  shear stresses in Cartesian coordination 

 , '  Poisson’s ration in the parallel and perpendicular planes, respectively 
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h , v  Poisson’s ration in horizontal and vertical planes, respectively 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

 Unconventional petroleum resources are among the most important sources of 

energy and tend to occur in formations with elastic and hydraulic anisotropy.  The 

different mechanical properties in different directions can cause difficulty in accurately 

estimating the safe mud weight while drilling and the pressure required for stimulation 

during fracturing treatment. Consideration of general anisotropy is impractical, but the 

commonly encountered case of transverse isotropy lends itself to analytical treatment. A 

transversely isotropy rock is one with mechanical properties that are symmetric about an 

axis (called axis of rotation). Laminated sedimentary rocks such as shales can be 

classified as transversely isotropic. Very low permeability is the main constraining factor 

in gas production from shales so that stimulation from inclined or horizontal wells 

becomes necessary.  

 Prediction of fracture initiation pressure in inclined or horizontal wellbores is 

essential for safe drilling and efficient hydraulic fracture stimulation. To predict the 

pressure requirements in these activities, the stress distribution around the wellbore 

should be assessed. This is often achieved using (Kirsch 1898) solution for elastic and 

isotropic rocks. (Haimson and Fairhurst 1967) proposed analytical equations for stress 

state around a vertical borehole in elastic rock for estimating the fracturing pressure.  

 

____________ 
This thesis follows the style of SPE Journal. 
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(Hossain et al. 2000) also estimated the fracture initiation pressure for open hole 

wells drilled in isotropic rocks with different trajectories. Other equations have also been 

proposed for stress distribution around a wellbore in anisotropic elastic and poro elastic 

rock. (Deily and Owens 1969; Hsiao 1988; Jaeger et al. 2007) 

 Stress analysis assuming isotropy can be inaccurate and often underestimate 

fracturing pressure (e.g., Suarez-Rivera et al., 2006). (Amadei 1983) and (Lekhnitskii 

1963) solved the stress distribution around inclined boreholes in transverse isotropic 

rocks. Aadnoy (Aadnoy 1988; Aadnoy 1989; Aadnoy and Chenevert 1987) simplified 

Amadei and Lekhnitskii’s methods to estimate the stress distribution around horizontal 

wells but he neglected the effect of Poisson’s ration difference in vertical and horizontal 

directions for transversely isotropic rocks. His simplified equations may result in 

erroneous conclusions, especially during back analysis to estimate the in-situ stresses 

and rock mechanical parameters. Ong et al. (Ong 1994; Ong and Roegiers 1993; Ong 

and Roegiers 1996) also implemented (Amadei 1983) and (Lekhnitskii 1963) method for 

wellbore stability and fracture initiation estimation in inclined and horizontal wells. 

(Abousleiman and Cui 1998) solved the stress distribution around a well in transversely 

isotropic poroelastic rock drilled perpendicular to the plane of isotropy.  

 In this study, an analytical technique proposed by (Lekhnitskii 1963) and 

(Amadei 1983) is used to study the stress distribution around wellbore drilled 

horizontally in a transversely isotropic formation.  The focus is on linear elasticity and 

the time dependent and plastic behaviors of rock are not considered.  
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2. GENERAL DEFINITIONS, STRESS AND STRAIN EQUATIONS 

2.1 Introduction 

 

 A rock mass is subjected to a combination of gravitational and tectonic stresses. 

Knowledge of the stress distributions is critical in geosciences and geo-engineering 

projects since it is the most important factor in assessing the stability of the underground 

openings. 

 Different rocks with various mechanical properties exist in the nature. The most 

commonly used procedure in the engineering projects assumes the rock mass as a 

CHILE1 rock. Assuming the CHILE rock in real projects does not seems to be the 

perfect choice in all the cases since anisotropy, heterogeneity and nonlinearity is always 

seen in all rocks and should be taken into account in real world. Shales are one of the 

most important examples of such cases that assuming their mechanical properties as 

isotropic may lead to wrong interpretations in the projects especially in deep reservoirs 

with high pressures and challenging conditions.  

 In this section, the mechanical properties of the shales are reviewed and the 

effects of different foliation, in-situ stress orientation and the wellbore trajectory are 

studied on the overall compliance matrix of the stress-strain relation. The results will be 

used for studying the hydraulic fracturing initiation in horizontal wells in shales. 

                                                 
1 Continuous Homogeneous Isotropic Linearly Elastic  
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2.2 Basic Definitions 

 

 There are some important definitions which should be mentioned before starting 

the discussions; 

- Elasticity: A rock is called Elastic when the deformations associated with loading 

are all recoverable after the unloading. 

- Homogeneity, Heterogeneity: The rock is called homogeneous if the mechanical 

properties are identical in different locations and is heterogeneous if these 

properties vary with the location from point to point. 

- Orthotropic Materials: A material that possesses different mechanical properties 

in different orthogonal directions. 

- Isotropy, Anisotropy: A rock is called isotropic when its mechanical properties 

don’t change with the direction and is called anisotropic when these properties 

change with direction. Anisotropy is the characteristic of the rocks with long 

minerals and layered deposition. Shales, schists, slates and bedded sandstones are 

the most typical anisotropic rocks with layered structure. In case of sandstones, 

they are usually considered as isotropic but in some of them due to the mixture of 

clay minerals in the rock mass, existence of micro fracs in some orientations and 

some other structural characteristics, the behavior of the sandstones cannot be 

explained by isotropy and should be considered anisotropic. 
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2.3 Sign Convention  

 

 (Jaeger et al. 2007) suggest that in stress and strain analyses in the rocks, 

compressive stresses should be taken as positive. They mention that the compressive 

stresses are more common in rock mechanics than the tensile stresses. If we are to use 

the same sign convention as most other engineering (i.e. mechanical engineering), we 

should have added a negative sign to all the equations that deal with compressive 

stresses which finally increases the complexity in the analyses.  

In this study: 

 Normal stresses are shown with Sigma sign (i.e. xx ) 

 Shear stresses are shown with tau sign (i.e. xy ) 

The stress notations of the compressive and shear stresses are shown in Fig. 1. The 

coordinate system and the stress directions are also shown accordingly. Since this study 

is sensitive to the stress direction, knowledge of the sign convention is essential. 
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Fig. 1—Three dimensional stress notations. 

 
 

 As can be inferred from Fig. 1, the first subscript of the stresses shows the 

surface which the stress vector acts and the second subscript shows the direction of the 

stress component. For example, the shear stress xy indicates that the stress is in X plane 

and in Y direction. Other stress components can be explained the same way. 

2.4  Constitutive Relations 

 

In engineering, a constitutive equation is a relationship between the stress and 

strain in a specific material. In other words, constitutive equation can approximate the 

occurring strain of a material which is under stress. The constitutive equations can be 

linear, if the deformations are relatively small and can be non-linear in large 

displacements such as collapses and deteriorations. In this study, since we are dealing 
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with comparatively small deformations, the linear constitutive equations may be the 

most reasonable assumption. 

 To calculate the response of a linear elastic homogeneous and continuous 

anisotropic rock, generalized hook’s law has been used. Generalized Hooke’s law is 

given by: 

.ij ijkl klC   .............................................................................................................  (2.1) 

where ij and kl denote the stress and strain component, respectively and ijklC is called 

the tensor of elastic constants or tensor of compliance. ijklC  has 81 independent 

components in the most general case but due to the symmetry in stress and strain tensors 

it can be reduced to 21 components since: 

,ij ji kl lk      ....................................................................................................  (2.2) 

ijkl klijC C   .................................................................................................................  (2.3) 

ijkl jiklC C  ..................................................................................................................  (2.4) 

ijkl jilkC C  ..................................................................................................................  (2.5) 

Equation (2.1) can be rewritten as: 

.ij ijkl klA   ...............................................................................................................  (2.6)  

where ijklA is called the compliance tensor. (Lekhnitskii 1963) used the notation below to 

show the compliance tensor in its general case: 
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 

 ....................................  (2.7) 

where: 

 , ,x y zE E E  are Young’s moduli along the directions x,y, and z, respectively 

 , ,yz xz xyG G G  are shear moduli for planes parallel to YZ,XZ,XY planes, 

respectively 

 , , , , ,yx zx zy xy xz yz      are Poisson’s ration. If the rock is assumed to be 

compressed (or stretched) along the axial direction, the ratio of the strain in 

transverse direction to the strain along axial direction is called Poisson’s ration. 

For example, xy indicates Poisson’s ration in a plane where there is an axial 

strain (and axial stress) in X direction and a transverse strain in Y direction. 

Poisson’s ration for this case will be the fraction of strain in Y direction to strain 

in X direction. 
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 ,ij kl  characterizes the shear stress in the plane parallel to “ij-plane” that induces 

the tangential stress in the plane “kl”. 

 ,k ij is called the “coefficient of mutual influence of the first kind” and shows the 

stretching/shortening in the direction parallel to the one defined by “ij” 

  ,ij k is called the coefficient of mutual influence of the second kind. It 

characterizes the shear stress in the “ij-plane” under the influence of normal 

stress acting in the k-direction. 

Note that components of the compliance matrix are usually shown with ija . For 

example in (2.7), we have: 12

yx

y

a
E


  

The compliance tensor in (2.7) can be simplified using the assumptions below: 

ij ji

i jE E

 
  .....................................................................................................................  (2.8) 

, ,ik jk jk ik

jk ikG G

 
  .............................................................................................................  (2.9) 

, ,ij k k ij

k ijE G

 
  .................................................................................................................  (2.10) 

The last three equations above simplify the compliance tensor as some of elastic 

constants vanish and the compliance matrix becomes diagonally symmetrical. 
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2.5 Concept of Transverse Isotropy 

 

 A special type of orthotropic materials that possess similar mechanical properties 

in one plane (called plane of isotropy or plane of symmetry) and different properties in 

normal directions to this plane are called transversely isotropic materials.  Considering a 

coordination system XYZ, the X-axis coincides with the axis of elastic symmetry (Fig. 

2). This axis is called axis of elastic symmetry of rotation or axis of rotation. A rock that 

shows this kind of elastic symmetry is called a transversely isotropic rock. Most of the 

layered and deposited rocks are characterized as transverse (transversely) isotropic. Fig. 

2 shows the axis of rotation (X-axis) and isotropic plane (YZ plane). 

 

 

 

Fig. 2—Axes orientation in a transversely isotropic material. 
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For rocks with a plane of symmetry as shown in Fig. 2, components of (2.7) reduce to: 

y zE E E   ..............................................................................................................  (2.11) 

'xE E  .....................................................................................................................  (2.12) 

yz zy     .............................................................................................................. .(2.13) 

'xz xy     .............................................................................................................  (2.14) 

2(1 )
yz zy

E
G G G


  


 ............................................................................................  (2.15) 

'xz xyG G G    ..........................................................................................................  (2.16) 

 Among the elastic constants above, the shear modulus G can be expressed in 

terms of Young’s modulus E and Poisson’s ration, . Therefore, the number of 

unknowns in a transverse isotropic rock reduces to 5 from total 9 constants in fully 

anisotropic material. 

 The shear modulus perpendicular to the plane of isotropy, G’ can also be 

estimated to reduce the complexity in the problem. Several authors (Batugin and 

Nirenburg 1972; Cauwelaert 1977; Ellefsen et al. 1992) have worked on experimental 

methods to estimate the shear modulus G’ in anisotropic rocks. The relation proposed by 

(Cauwelaert 1977) is proved to be valid only for rocks with low anisotropy 

ratio(anisotropy of about 10 percent). (Ellefsen et al. 1992) proposed an experimental 

procedure for shear modulus estimation in transverse isotropic rocks but their method 

requires special devices and auxiliary parameters.  Among the researches, the relation 

suggested by (Batugin and Nirenburg 1972) follows relatively simpler analytical 
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solutions and agrees better with experiments. For example, for Y as the axis of rotation, 

the shear modulus in the XZ-plane is given by: 

.
'

2 .

x z
xz

x z xz z

E E
G G

E E E
 

 
 .....................................................................................  (2.17)  

To lower the complexity and simplifying the calculations (2.17) is used in this 

work to estimate G’. This reduces the number of elastic properties from 5 to 4. 

2.6 Pore Pressure and Effective Stress 

 

 Pore fluids play an important role in reservoir geomechanics because they 

support a portion of the total applied stress. Terzaghi’s definition of effective stress is: 

' .ij ij ij p      ........................................................................................................  (2.18) 

where: 

'ij  is the effective stress,  

ij is the total confining stress,  

ij is the Kronecker delta. 

p is the pore pressure.  

Biot suggested an “exact” effective stress law as below: 

' . .ij ij ij p       ....................................................................................................  (2.19) 

where,   is called “Biot” effective stress coefficient. It varies between 0 and 1 and 

describes the efficiency of the fluid pressure in counteracting the total applied stress. Its 
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value depends on the pore geometry and the physical properties of the constituents of the 

solid system and, hence, on the applied load. For example in sandstones with variable 

clay content,   changes considerably, but due to the results of (Kwon et al. 2001)in 

shales with extremely high clay content where there is no stiff rock matrix to support 

externally applied stresses, it seems that applying the “simple” Terzaghi model (2.18) is 

more representative. 

In this study, hydraulic fracturing initiation pressure has been studied regarding 

the effective stress law mentioned in (2.18). 

2.7 Transformation of Elastic Constants 

 

 As seen in (2.6) and (2.7), to define a relation between stress and strain in a 

material, we require a compliance tensor. In isotropic materials there is no change in 

rock’s mechanical properties with respect to axes of rotation. But in anisotropic 

materials, since the elastic constants vary from point to point, rotation of the 

coordination system has a significant effect on the components of the compliance matrix. 

 To study the effects of different anisotropy orientation and borehole trajectory on 

compliance tensor, three different coordination systems are required: 

- X,Y,Z is the global coordination system which in this study is chosen as the 

orientation of in-situ principal stresses. 

- X’,Y’,Z’ is the coordination system attached to the rectilinear anisotropy.  

- , ,b b bX Y Z is the coordination system attached to the borehole.(local coordination) 
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 The reason to define these three different axes is that the orientation of the plane 

of rectilinear anisotropy and the borehole trajectory do not necessarily coincide the 

global orientation. So to transform the stresses in global coordination system (principal 

stresses) and anisotropic elastic constants in borehole coordination system which we are 

interested to study, compliance tensor transformation calculations are required. 

 As mentioned, to find the stress compliance tensor in the generic form, we need 

to transform the mechanical properties in anisotropy and borehole coordination systems 

to a unique system such as the global one. Since in this study, the rock layering is 

assumed to be horizontal, the rectilinear anisotropy coordinate system coincides with the 

global one, and simplifies the calculations (Fig. 3). The matrix transformation 

calculations have been mentioned in Appendix 1. 

 

 

 

Fig. 3—Position of the horizontal well, local and global coordinate systems attached 

in a transverse isotropic rock.  
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 As a summary, in this section the basic definitions used in linear poro-elasticity 

are discussed and introduced and the mechanical properties of the rock in anisotropic 

(transverse isotropic) rocks are investigated. Also the concept of the compliance tensor 

and constitutive equations are described and the compliance tensor of the rock mass 

around the borehole in an anisotropic rock with arbitrary (horizontal) orientation was 

calculated. The calculated compliance tensor enables us to find the stress distribution 

around the well at every trajectory from principal stresses and with every different 

anisotropic characteristic. 
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3. ANALYTICAL EQUATIONS FOR FRACTURE INITIATION PRESSURE 

3.1 Introduction 

 

 The objective of this section is to develop an analytical solution for prediction of 

fracture initiation in a wellbore in transversely isotropic rock (i.e., horizontal drilling 

through horizontal layers of shales) for different anisotropic ratios. To find the “fracture 

initiation pressure”, the stress distribution around the well should be known. The stress 

distribution around the well in anisotropic rock is highly dependent on the respective 

angle of the well orientation with the plane of the transverse isotropy, rock mechanical 

properties and in-situ stresses. The induced components of the stresses around a wellbore 

are fist calculated and then added to in-situ stresses to find the total stress around the 

well. The calculated stress distribution is then used in a failure criterion to estimate the 

hydraulic fracture initiation pressure.    

To simplify the calculation of the stress distributions around the borehole some 

assumptions are required: 

- The rock is a transverse isotropic, in which, the plane of isotropy is horizontal. 

i.e. a shale reservoir which is horizontally deposited. 

- The principal stresses are horizontal and vertical and orthogonal to each other. Or 

in other words, we will have two principal stresses in horizontal plane and the 

third principal stress in the vertical plane. 
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- The drilled horizontal well trajectory can be along minimum/ maximum principal 

horizontal stress ( h or H ) or in between them. 

The procedure to find the hydraulic fracture initiation pressure is as follows: 

- The stress distribution around a horizontal well in transversely isotropic rock 

should be calculated.  

- A proper failure criterion is chosen to assess the fracturing initiation process. 

- Since in assessing the stress distribution around the wellbore, the stress 

distribution depends on the angle and also mud pressure inside the well, at any 

point around the well, the lowest mud pressure that can satisfy the failure 

criterion is considered as the fracture initiation pressure and the location in which 

the lowest satisfying mud pressure has been obtained is considered as the fracture 

initiation angle.  

 The general expressions for calculation of the stress distribution around the 

wellbore are discussed below. 

3.2 General Expressions for Calculation of the Stress Functions 

 

 To find the stress distributions at any point in an elastic anisotropic rock, five 

different sets of equations must be satisfied: 

1. Equation of Equilibrium 

2. Strain- Displacement Relations 
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3. Compatibility Equations for Strains 

4. Constitutive Equations 

5. Rocks Boundary Conditions 

 

 To find the stress state at any point in an elastic anisotropic rock, we need to use 

equations 1 to 4 and check the results in the 5th equation (boundary conditions). These 

sets of differential equations are called “Beltrami-Michell” equations of compatibility 

for anisotropic rocks it can be written as below: 

4 3 0L F L   ...........................................................................................................  (3.1) 

3 2 0L F L   ...........................................................................................................  (3.2) 

where: 

F and   are the stress functions at a point,  

And 2 3 4, ,L L L are the linear differential operators and can be calculated as below: 

2 2 2

2 44 45 552 2
2L

x x y y
  

  
  

   
 ...........................................................................  (3.3) 

3 3 3 3

3 24 25 46 14 56 153 2 2 3
( ) ( )L

x x y x y y
     

   
      

     
 ................................ ...(3.4)

 

4 4 4 4 4

4 22 26 16 12 66 114 3 3 2 2 4
2 2 (2 )L

x x y x y x y y
     

    
     

       
 ....................  (3.5) 

where: 

3 3

33

.
( , 1,2,4,5,6)

i j

ij ij

a a
a i j

a
     ...........................................................................  (3.6) 
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And ija are components of the compliance tensor, defined in previous section. 

If we solve the equations above in terms of F, the equation below is achieved: 

2

4 2 3( ) 0L L L F   ........................................................................................................  (3.7) 

According to (Amadei 1983), 3 0L   corresponds to the case where there is a 

plane of elastic symmetry perpendicular to the borehole axis.  

According to (Amadei 1983), the algebraic equation that corresponds to equation (3.7) 

can be written as: 

2

4 2 3( ). ( ) ( ) 0l l l     ...............................................................................................  (3.8) 

where: 

2

2 55 45 44( ) 2l          .......................................................................................  (3.9) 

3 2

3 15 14 56 25 46 24( ) ( ) ( )l                 .....................................................  (3.10) 

4 3 2

4 11 16 12 66 26 22( ) 2 (2 ) 2l                  ..............................................  (3.11) 

Equation (3.8) always has 6 roots of ( 1 6)i i   . (Lekhnitskii 1963) analytically 

showed that the roots are always purely imaginary and complex and also showed that 

three of the results are always conjugate roots of three others. So he ignored the 

conjugate roots and took the first third roots as the answer of the equations. So, to be 

able to calculate stress distribution in the cases of 3 0L  we need to calculate ( 1 3)i i   . 

(Amadei 1983) mentioned 4 different conditions of anisotropy for which the 

plane of symmetry is perpendicular to the borehole axis and called them “special cases 

of anisotropy”: 
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1- Orthotropic material with one elastic symmetry plane perpendicular to the well 

axis and two other planes parallel to the well axis 

2- Transverse isotropy in a plane perpendicular to the well axis 

3- Transverse isotropy in a plane striking parallel to the well axis 

4- complete isotropy 

Fig. 4 and Fig. 5 show the cases 2 and 3 of the four stress conditions Amadei has 

mentioned for analytical solutions mentioned above. 

 

 

  

Fig. 4—Transverse isotropy in a plane perpendicular to the well axis. 
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Fig. 5—Transverse isotropy in a plane parallel to the well axis. 

 

 
 
 Among these 4 cases, case 2 is the one that can model horizontal drilling in a 

horizontally deposited shale formation. (Ong 1994) used the methods proposed by 

(Amadei 1983) and (Lekhnitskii 1981) and suggested a series of equations for stress 

distribution around the wellbore and in this study his contributions will be used. 

3.3 Stress State around the Wellbore 

 

 Generally, the final state of the stress around a wellbore is sum of the in-situ 

stress (original, ,x o ) and the stress induced by drilling or excavation  ( ,x i ). Each of 

these will affect the total stress distribution; however, we will focus on the induced 
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stresses in this work and will not discuss the impact of rock anisotropy on the in-situ 

stress state. 

 

3.3.1 Wellbore Stresses in Transversely Isotropic Rock in Generic Form  

 

 The studies to find the stress distribution around a wellbore in an anisotropic rock 

are done using either analytical or numerical methods. For example, (Suarez-Rivera et 

al. 2006) used finite element modeling to estimate the stresses around a borehole drilled 

in transversely isotropic rock and extracted approximate expressions for the tangential 

stress around the hole. As mentioned before, the analytical approaches are based on the 

theoretical works of (Lekhnitskii 1981) and (Amadei 1983). Similarly to (Ong and 

Roegiers 1993) and (Ong 1994), in this study, the analytical work of (Amadei 1983) was 

used to derive expressions for induced stress distribution around the well and for 

different borehole orientations of interest.  

 The total stress components around the wellbore wall are given by (Amadei 

1983) as the sum of the original (in-situ) stress (shown by “o” subscript) and a term for 

an induced component of the stress (shown by “i” subscript) as follows:  

, ,x x o x i     .......................................................................................................  (3.12) 

, ,y y o y i     .........................................................................................................  (3.13) 

, ,xy xy o xy i     .......................................................................................................  (3.14) 
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, ,xz xz o xz i     ....................................................................................................  (3.15) 

, ,yz yz o yz i     ...................................................................................................  (3.16) 

, ,z z o z i     .....................................................................................................  (3.17) 

The first term in these equations is the original (in-situ) stress (which should be 

measured or estimated separately and is assumed known) and the second term is the induced 

component of the stress.  

For induced component of the stresses, (Amadei 1983) proposed: 

     2 2 2

, 1 1 1 2 2 2 3 3 3 32x i e z z z                ..................................................  (3.18)  

     , 1 1 2 2 3 3 32y i e z z z            ............................................................  (3.19) 

     , 1 1 1 2 2 2 3 3 3 32xy i e z z z                 ............................................. .(3.20)

     , 1 1 1 1 2 2 2 2 3 3 32xz i e z z z                 .............................................  (3.21) 

     , 1 1 1 2 2 2 3 32yz i e z z z              ........................................................ .(3.22) 

 , 31 , 32 , 34 , 35 , 36 ,

33

1
z i x i y i y i xz i xy ia a a a a

a
            ..........................................  (3.23) 

In the above expressions: 

- e : is real component of an complex expression 

- 1  is the positive root of the equation: 

2

55 45 442 0        ............................................................................................. (3.24)  

- 2 3,   are the positive roots of: 
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4 3 2

11 16 12 66 26 222 (2 ) 2 0                ....................................................  (3.25) 

 Equations (3.24) and (3.25) are derived from the sixth order equation, shown in (3.4). 

The results of i  are pure imaginary numbers and half of the roots are conjugates of the other 

half.  

- ij  is called “the reduced strain coefficient” and can be calculated using (3.6) 

- ija are components of the compliance tensor, defined in the previous section. 

- , 1,2,3i i   are complex numbers defined by (Amadei 1983)and can be 

calculated using: 

3

2

( )
1,2,3

( )

i
i

i

l
i

l





    .............................................................................................. (3.26) 

where the functions 3( )il  and 2 ( )il  are introduced in (3.10) and (3.9) respectively 

- (Amadei 1983) proposed that the terms ' , 1,2,3i i   are derivatives of the 

stress functions and are calculated using equations below: 

1 1 , , 2 2 3 3

2 21
1 1

, , 2 3 , , 3 3 2

1
' ( ) [( )( )

2* * * ( ) 1

( )( 1) ( ) ( )]

xy o yy o w

xy o xx o w yz o xz o

z i P
z

a

i iP i

     

 

        

      

  

     

 ................  (3.27) 

 

2 2 , , 1 3 3 1

2 22
2 2

, , 1 3 , , 3 1 3

1
' ( ) [( )( )

2* * * ( ) 1

( )(1 ) ( ) ( )]

xy o yy o w

xy o xx o w yz o xz o

z i P
z

a

i iP i

     

 

        

      

  

     

 ...............  (3.28) 
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3 3 , , 2 1 1 2

2 23
3 3

, , 1 2 , , 2 1

1
' ( ) [( )( )

2* * * ( ) 1

( )( ) ( )( )]

xy o yy o w

xy o xx o w yz o xz o

z i P
z

a

i iP i

     

 

       

      

  

     

 ................  (3.29) 

- The complex number iZ  in the above equations is defined as: 

. , 1,2,3i iZ x y i    ............................................................................................  (3.30) 

where x and y are the coordinates of the points of interest around the wellbore. In polar 

coordinate system iZ can be written as: 

  (cos .sin )i iZ a      ........................................................................................  (3.31) 

where a is the well radius and   is the angle measured counterclockwise from the 

horizontal (x) direction (show in Fig. 6). 

 

 

 

Fig. 6— Transformation around the wellbore from rectangular to polar system. 
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- For parameters  and i we have: 

2 1 2 3 1 3 1 3 3 2( ) ( )                ...............................................................  (3.32) 

2 2( ) 1

, 1,2,3
1

i i
i

i

i

z z

a a
i

i






  

 


 ........................................................................  (3.33) 

Using (3.31) and at the wellbore wall (r=a), it can be mathematically shown that: 

i

i e    ......................................................................................................................  (3.34) 

If we substitute (3.31) and (3.34) in equations of derivatives of the stress 

functions eqns. 25-27, we simplified the derivatives of the analytic function '( )i as 

below: 

'

1 1 2 3 2 2 3 3 3 2 3( ) [ ( 1) ( ) ( ) ]iz A B C D                ........................................  (3.35) 

'

2 2 2 1 3 1 3 3 1 1 3 3( ) [ (1 ) ( ) ( ) ]z A B C D              ........................................  (3.36) 

'

3 3 3 2 3 2 2 3 3 3 2 3( ) [ ( 1) ( ) ( ) ]z A B C D                .......................................  (3.37) 

where: 

1

2 ( cos sin )
i

i

A
  


 

 ...........................................................................................  (3.38) 

, , , ,( )cos sin [( )sin cos ]w x o xy o w x o xy oB p i p              ..............................  (3.39) 

, , , ,( )sin cos [( )cos sin ]w y o xy o w y o xy oC p i p               ...........................  (3.40) 

, , , ,cos sin [ cos sin ]xz o yz o yz o xz oD i             ................................................  (3.41) 
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So in the generic form, to find the stress distribution around a well in an 

anisotropic (transversely isotropic) rock, a process should be followed and the 

parameters below should be calculated: 

(a) The in-situ stresses are specified. If the wellbore orientation is different from the 

orientation of the principal stresses, shear stresses also will exist and stress 

transformation relations (explained in previous section) should be used. 

(b) Mechanical properties of the rock (including Young’s moduli, Poisson’s ration 

and shear moduli) should be specified in XYZ directions and the compliance 

tensor should be formed. (according to equation (2.7) in SECTION 2) 

(c) Using components of the compliance tensor (aij) in (2.7) and (3.6), the parameter 

ij is calculated. 

(d) Using (3.24) and (3.25), the values of ij (that is already calculated), the values 

of 1 2 3, ,    are calculated. 

(e) The , 1,2,3i i   are used in  (3.26)  to find , 1,2,3i i   

(f) The value of   is calculated using (3.32) 

(g) The derivatives of the analytic function '( )i are calculated using eqns. 33-39. 

(h) The parameters obtained in (a-g) are finally plugged into eqns. 14-19 to give the 

induced components of the stresses. 
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(i) Induced stresses are added to original (in-situ) components of the stresses to give 

the total stress distribution around the well.  

 

3.3.2 Wellbore Stresses in Transversely Isotropic Rock Drilled along 

Principal in-situ Stresses 

 

 In SECTION 3.3.1, the general solutions for assessment of stress distribution 

around a horizontal well in horizontally bedded rocks are explained. Since drilling along 

the in-situ principal stresses is quite common in petroleum industry i.e., for achieving the 

best fracture shape (longitudinal or transverse fractures), borehole stability issues and 

minimizing drilling related problems, in this section, the equations mentioned above will 

be reduced to find the stress distribution around a horizontal well drilled along one 

principal in-situ stress. The results are then used to estimate the hydraulic fracture 

initiation pressure around the wellbore in horizontal wells drilled along a principal stress.  

By assuming that the horizontal well is drilled along one of the principal 

horizontal stresses, h or H , the far-filed shear stress components vanish: 

, , , 0xy o yz o xz o      .................................................................................................  (3.42) 

 Also, for horizontal wellbores drilled in horizontally laminated transversely 

isotropic reservoirs, consider that the plane of isotropy is the horizontal plane XZ and the 

axis of symmetry is the Y-axis. Also, let the principal stresses be vertical and horizontal 

and aligned with the global coordinate system XYZ and the wellbore is attached to the 
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local coordination system as shown in Fig. 7 (Yb is vertical, while Xb and Zb are 

horizontal). 

 

 

 

Fig. 7— Horizontal well orientation with respect to 3 coordination systems. 

 

 

By solving (3.24) and (3.25) for , 1,2,3i i   and substitution in equation 22-24, we get: 

0 , 1,2,3i i    ......................................................................................................  (3.43) 

Using (3.43) in (3.32) we get: 

2 1     ................................................................................................................  (3.44) 
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Also using eqns. 40-42 in eqns. 33-39, we simplified the values for derivatives of 

the stress analytical functions 'i  as follows: 

1 1 1 2' ( ) .[ ]z A B C     ............................................................................................  (3.45) 

2 2 2 1' ( ) .[ ]z A B C    ............................................................................................. (3.46)  

3' 0   ...................................................................................................................... (3.47)  

where iA   is defined in (3.38) and B, C have been simplified to:       

, ,( )cos [( )sin ]w x o w x oB p i p       ..................................................................  (3.48) 

, ,( )sin [( )cos ]w y o w y oC p i p         ...............................................................  (3.49) 

 By applying the solutions and simplification mentioned in eqns. 42-47, the stress 

distribution on a wellbore along the principal stresses can be calculated as illustrated in 

eqns. 48-53. Assuming that the wells have been drilled along maximum horizontal 

stress, the X, Y and Z directions should be along the v , h and H  stresses, 

respectively.  

For total stresses we will have: 

   2 2

, , 1 1 1 2 2 22x x o x i v e z z                 .................................................  (3.50) 

   , , 1 1 2 22y y o y i h e z z               ........................................................  (3.51) 

 31 , 32 ,

33

1
z H x i y ia a

a
      ................................................................................  (3.52)

   , 1 1 1 2 2 22xy xy i e z z              .............................................................. (3.53)   
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0xz   ......................................................................................................................  (3.54) 

0yz    ..................................................................................................................... (3.55) 

In these equations, the subscripts “i” and “o” stand for induced and original 

components of the stresses, respectively. 

The stress values are in Cartesian coordination should be converted to polar 

coordination to be used in borehole geometry. It will be assessed more in SECTION 4. 

3.4 Assessment of a Proper Failure Criterion for Fracturing Analysis 

 

 Different failure criteria are used to assess the hydraulic fracturing initiation. 

These criteria are for shear and tensile failure criteria. Shear failure is more common in 

wellbore stability analysis. However, tensile strength seems to be the best type of 

criterion for assessing the hydraulic fracture initiation in the wells since rocks have much 

lower tensile strength than shear strength, so they can break in tension easily. (Daneshy 

1973) in his paper presented a criterion for tensile fracturing in an inclined well where 

the borehole axis has an angle with the orientation of the principal stresses. He 

considered the effects of the fluid invasion inside the permeable zone on the variation of 

the induced stresses. But his solution was for isotropic and so not applicable to 

anisotropy. (Hossain et al. 2000) also studied the hydraulic fracture initiation pressure in 

inclined wells but he also considered the rock as isotropic. 
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 In this study, after finding the stress distribution around a wellbore in 

transversely isotropic rock, tensile strength criterion was used to assess the breakdown 

pressure in the wells.  

Tensile failure criterion of the rock states that the fracture initiates where and 

when the effective tangential stress magnitude equals to rocks tensile strength. In other 

words: 

 p tP     ...........................................................................................................  (3.56) 

 For simplicity, one can assume that the pore pressure at the wall equals the mud 

pressure ( )wp . By calculating the wellbore pressure ( )wp that satisfies the tensile strength 

criterion, the location and position of fracture initiation around the well can be estimated. 

Fracture initiation pressure is the pressure at which wp  overcomes the tangential stress at 

the wellbore’s weakest point. Since the hoop (tangential) stress is dependent on the 

angle, to find the weakest point around the well, (3.56) should be checked for all angles 

between 0 to 360 degrees, each yielding a different value of wp  pressure. Then, the 

minimum value of wp  is the fracturing pressure (breakdown pressure) at the weakest 

point around the well which is the fracture initiation point (point of lowest hoop stress). 

 As mentioned above, to find the breakdown pressure (
bwp ), first the tangential 

stress or  which is function of the mud pressure inside the well ( wp ) is calculated. 

Since the pore pressure and the rock tensile strength are already known, the critical mud 

pressure that can satisfy the equation above (the breakdown pressure) can be calculated. 
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 So, as the summary, in this section the general procedure for calculation of stress 

distribution around a horizontal well drilled inside a horizontally bedded transversely 

isotropic rock was explained. Also the equations are simplified for the case of a 

horizontal well drilled along maximum horizontal stress max( )H . At the end, to validate 

the proposed equations, the anisotropic solution was used to find the stress distribution 

for a nearly isotropic rock and the results are compared with classic isotropic solutions 

proposed by Kirsch and a perfect match was reported. In next section, the stress 

distribution equations will be used to find the breakdown pressure in rocks with different 

anisotropy ratios. 

3.5 Estimation of Fracture Initiation Pressure  

 

 Fracture initiation pressure is an important parameter in petroleum industry since 

it is used in pre-drilling analysis, wellbore stability, and safe mud weight design and 

should be known to avoid drilling problems such as ballooning, lost circulation and so 

on. As mentioned in the literature review, many different equations have been proposed 

to help estimate the formation fracturing pressure before drilling. One of the most 

common equations is the equation proposed by (Hubbert and Willis 1957). They used 

the linear isotropic assumption and assumed the well as vertical. In this study our results 

will be compared with the results of (Hubbert and Willis 1957). Their proposed equation 

for fracture initiation pressure in a vertical well is as follows: 

3b h H p tP         .............................................................................................  (3.57) 
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 Since in horizontal wells, the maximum and minimum in-plane stresses are 

different from vertical wells, equation of (Hubbert and Willis 1957) is applied to a 

horizontal well drilled along maxH  as follows: 

3b h v p tP         .............................................................................................  (3.58) 

 Equation (3.58) will be used in next sections to verify the results of fracture 

initiation pressure with anisotropic solutions. 
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4. CALCULATION OF FRACTURE INITIATION PRESSURE IN A 

HORIZONTAL WELL DRILLED IN SHALE 

4.1 Introduction 

 

 In SECTIONS 1 to 3, the basics of anisotropy, analytical solutions for calculation 

of stress distribution around the well in different orientations and proper failure criterion 

for fracturing purposes are explained. In this section, using the equations mentioned in 

previous sections, the isotropic solutions are compared with anisotropic ones to validate 

the proposed equations. Numerical examples are solved to show the applications of the 

proposed equations. Sensitivity analysis is also carried out to assess the effects of 

anisotropy (Young’s modulus and Poisson’s ration) on fracture initiation pressure. 

4.2 Numerical Example to Find Tangential Stress around the Well 

 

In this section a numerical example is shown to illustrate the procedure for 

calculation of the tangential stress in horizontal wells. Since the case of drilling along the 

principal stresses comparatively requires fewer calculations, it was chosen as the 

numerical example. Consider a horizontal well in shale under an in-situ stress and 

mechanical properties given in Table 1 and Table 2 for a depth of 10,000 ft. (3048 m) 

and Table 1 shows available in-situ stresses and rock mechanical properties for 

calculations. 
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Table 1―Available in-situ Stresses and Mechanical Properties for Calculations 

σy=σv 

psi/ft 

pa/m 

σx=σh 

psi/ft 

pa/m

 

σz=σH 

psi/ft 

pa/m

 

σp 

psi/ft 

pa/m
 

σt 

psi 

Mpa 

1 

(22.6x103) 

0.8 

(18.09x103) 

0.85 

(19.23x103) 

0.61 

(13.79 x103) 

100 

(0.69) 

 

 

 

Fig. 8 shows the coordination systems and in-situ stresses at the depth of 10,000 

ft. (3048 m). 

 

 

 

Fig. 8— Well position with respect to in-situ stresses and the coordination system. 
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In this example, the mechanical properties used in the calculations are chosen 

close to each other to make the rock nearly isotropic. The fracture initiation angle and 

pressure are calculated using transversely isotropic solutions. They are then compared 

with isotropic solutions. This step can be considered as the verification  of the 

transversely isotropics solution as well.  It should be noted that nearly isotropic material 

properties are used and not the exactly isotropic because in the later case, the anisotropic 

solution fails. Because using exactly similar rock mechanical properties results 
1 i    

and 
2 3 i    in (3.24) and (3.25). Now if the results of ' , 1,2i i   are calculated using 

equations (3.45) and (3.46) and used in equations (3.50) and (3.51), it can be seen that 

the right hand side expression which denotes the induced component of the stresses, is 

zero. Therefore, using exact rock mechanical properties causes wrong total stress values 

along X and Y directions. 

 

 
Table 2―Mechanical Properties of the Rock Used to Validate the Solutions 

Ehor=Ex=Ez 

(psi) 

Evert=Ey 

(psi) 

Gyz=Gxy 

(psi) 

Gxz 

(psi) 

νhor=νxz νvert=νyz=νxy 

1.40001x106 1.4x106 5.60002x105 5.60008x105 0.24999 0.25 

 
 
 

The compliance tensor of the rock with properties in Table 2 is: 
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1
0 0 0

1
0 0 0

1
0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

yx zx

x y z

xy zy

x y z

yzxz

x y z

yz

xz

xy

E E E

E E E

E E E

G

G

G

 

 



 
 
 
  
 
 
 

 
 

 
 
 
 
 
 
 
 
 
  

 ....................................................................... (4.1) 

7 7 7

7 7 7

7 7 7

6

6

6

7.142806*10 1.78571*10 1.78563*10 0 0 0

1.785701*10 7.142857*10 1.785701*10 0 0 0

1.785630*10 1.785714*10 7.142806*10 0 0 0

0 0 0 1.785709*10 0 0

0 0 0 0 1.78568*10 0

0 0 0 0 0 1.785709*10

  

  

  







  
 
  
  
 
 


 





 

 

The matrix Beta can then be calculated using the compliance tensor in (4.1) and (3.6): 

7 7

7 7

6

6

6

6.69641*10 2.23212*10 0 0 0 0

2.232109*10 6.69643*10 0 0 0

0 0 0

0 0 0 1.785709*10 0 0

0 0 0 0 1.785687*10 0

0 0 0 0 0 1.785709*10

ij

undefined

undefined undefined undefined


 

 







 
 
 
 

  
 
 
 
  

 .......... (4.2) 
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In equation above, the components 
3ia and 

3 , 1,2,3ia i   are undefined since 

equation (3.6) is not defined for , 3i j   because it causes a zero value for ij in equation 

(3.6) which makes equation 3.9 to 3.11 unsolvable. 

Using (3.24) and (3.25) (in SECTION 3) and the values of ij (already calculated 

in (4.2)), the values of 1 2 3, ,    are calculated. 

1 2 3( , , ) (0.999995 ,1.0000057 ,1.0000061 )i i i     .................................................  (4.3) 

According to SECTION 3, 0, 1,2,3i i   .............................................................  (4.4) 

Also 2 1 0.000010391i      ..............................................................................  (4.5) 

' ( ), 1,2,3i iz i   is calculated using equations 36 and 43-47 in SECTION 3. Before 

calculation of ' ( )i iz , we need to calculate the parameters iA , B, C as below: 

6

1

20.782*10 *( cos sin )
i

i

A
i   




 .......................................................................  (4.6) 

3 3( 8*10 )cos [( 8*10 )sin ]w wB p i p      ..........................................................  (4.7) 

4 4( 10 )sin [( 10 )cos ]w wC p i p       .................................................................  (4.8) 

Using eqns. 43-45 (in SECTION 3) and after calculating variables iA , B, C for 

calculation of ' ( )i iz and after some mathematical simplifications we have: 

' 2 7

1 1( ) (9.624 10 0.27750 )i

wz e p    ..................................................................  (4.9) 

' 2 7

2 2( ) ( 9.624 10 0.22250 )i

wz e p      ...............................................................  (4.10) 
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'

3 3( )z =0 ..................................................................................................................  (4.11) 

So by plugging the above mentioned variables in eqns. 48-49 (in SECTION 3) 

we will get: 

3 28 10 2 [ ]
2

i w
x

p
e e        ...................................................................................  (4.12) 

4 210 2 [ (5000 )]
2

i w
y

p
e e       .............................................................................  (4.13) 

And using (3.53) in SECTION 3 for xy calculations we have: 

[sin 2 ]xy wp e    .................................................................................................  (4.14) 

Now that all the required variables are calculated, the hoop stress ( ) for the 

case of a nearly isotropic rock can be found using equation below:  

2 2sin . cos . sin 2 . 2x y xy p tp             .................................................. (4.15) 

Equation above is calculated using a simple conversion from Cartesian to polar 

coordination system.  

 As seen above, the equations are functions of the angle around the well ( )  and 

the mud pressure inside the well ( )wp . In the next section, as an example, the hydraulic 

fracture initiation pressure is calculated using anisotropic solutions and the results are 

compared with the classic isotropic solutions. 
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4.3   Comparison around the Well Using Isotropic and Anisotropic Solutions 

 

 (Kirsch 1898) proposed a set of equations to calculate the stress distribution 

around a vertical well. Using (Kirsch 1898) equations and by changing the vertical well 

assumption to horizontal well (by changing the term H to v as the maximum in-plane 

stress in normal fault regime zones) and some simple mathematical manipulations, the 

tensile stress distribution around a horizontal well can be calculated as follows: 

2 4 2

2 4 2

1 1 3 *
( 2 )(1 ) ( )(1 )cos 2

2 2
v h p v h t

a a p a
P

r r r
      


          ...............  (4.16) 

At wellbore wall r=a , and it simplifies to: 

2( )cos2 2h v v h p tP             ...............................................................  (4.17) 

 Since due to the maximum tensile strength criterion, the fracturing initiates at the 

point with the minimum hoop (tangential) stress values, therefore, the fracture initiates 

in a horizontal well at the points with minimum tangential stress as below: 

min
3 2h v p tP p         ................................................................................  (4.18) 

where p  shows the pressure difference between the mud weight and pore pressure. 

Using the input examples mentioned in Table 1 and Table 2 in Fig. 9 the tangential 

stress is calculated with isotropic and anisotropic solutions and is compared to each 

other. These calculations are done with assuming the mud pressure of 8000 psi.  
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Fig. 9—   distribution around a nearly isotropic horizontal well drilled along 

maxH  and with mud pressure of 8000 psi using isotropic and anisotropic solutions. 

 

 

 As can be seen in figure above, at 90 ,270   which coincides the orientation 

of the maximum in-plane stress (upper most and lower most points of the well), the 

tensile strength has its minimum value and is the weakest point around the well for 

tensile fracturing. So at 8000 psi mud pressure inside the well, the tangential stress goes 

to tension at 90 ,270    and the fracture initiates at these two points. 

Fig. 9 shows how well the results of isotropic and anisotropic solutions match 

with each other for a nearly isotropic rock and can be considered as the validation of the 

solutions. 
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4.4   Comparison around the Well Using Different Anisotropy Ratios 

 

 In this section, to show how rock anisotropy can change the stress distribution 

around the well, three cases of Young’s modulus anisotropy are selected and the 

tangential stress distributions around the well in these three cases are compared. In these 

cases only the effects of Young’s modulus have been studied and the Poisson’s ration 

was assumed isotropic since it is assumed that Poisson’s ration doesn’t contribute 

significantly on changing the hoop stress around the well. 

These cases are: 

1. A nearly isotropic case, where 1hor

vert

E

E
  

2. Anisotropic case where 1.6vert

hor

E

E
   

3. Anisotropic case where 1.6hor

vert

E

E
  

  Fig. 10 shows the tangential stress distribution around the well for cases 1 to 3 

mentioned above. In these cases, the mud pressure inside the well is assumed to be 8000 

psi.  
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Fig. 10—Tangential stress distribution around the well for three cases with 

different anisotropy ratios. 

 
 

 As can be seen in figure above, at 8000 psi mud pressure, the isotropic rock (

1hor

vert

E

E
 or case 1) is about to fail at 90 and 270 degrees since at these two points, the 

tangential stress curves have zero values. For case 2 where 1.6vert

hor

E

E
 , the tangential stress 

increases and the tensile fracture can’t initiate in this case. In other words, to initiate the 

tensile fracture in case of 1.6vert

hor

E

E
 , we require the mud pressure slightly more than 

8000 psi. 
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 For case 3 where 1.6hor

vert

E

E
 , as can be seen in Fig. 10, the tangential stress has 

gone to tension since its values has become negative in a big zone. Therefore, at 8000 

psi mud pressure, the fracture has already been initiated in this case. So, it is obviously 

seen that Young’s modulus anisotropy can increase or decrease the minimum hoop 

stress- the parameter that plays a key role in hydraulic fracture initiation. 

4.5 Estimation of Fracture Initiation Pressure in Horizontal Wells Drilled in 

Horizontally Deposited Rock 

 

 In this section, the effect of different rock properties (different Young’s modulus 

and Poisson’s ration) on changing the value of the fracturing initiation pressure is 

discussed. The in-situ stress conditions are similar to the case introduced in Table 1 in 

SECTION 3. Rock mechanical properties used for calculations are also mentioned below 

in Table 3.  It is assumed that the well is drilled along maximum horizontal stress (

maxH ) direction. 

 A sensitivity analysis was carried out to show how variations in rock mechanical 

properties change the values of fracture initiation pressure.  

As can be seen in Table 3, the Young’s modulus and Poisson’s ration in vertical 

direction was assumed constant ( 61.4 10vertE    and 0.2vert  ) and then Young’s 

modulus in horizontal direction changes between 0.5 3vert hor vertE E E     and the 

Poisson’s ration in horizontal direction between 0.05 0.45hor  .  
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 Due to equation 
2(1 )

E
G





 in the isotropic (horizontal) plane, assuming 

Poisson’s ration as constant, there is a linear relationship between Young and shear 

moduli and by changing  0.5 3vert hor vertE E E     , the shear moduli will also change to

0.5 3vert hor vertG G G     

 

 
Table 3―Mechanical Properties of the Rock Being Used for Sensitivity Analysis 

Evert=Ey 

(psi) 

Ehor=Ex=Ez 

(psi) 

Gyz=Gxy 

(psi) 

Gxz 

(psi) 

νhor=νxz 

(fraction)
 

νvert=νyz=νx

y 

(fraction)
 

1.4x106 (0.5-
3)x1.4x106 5.6x105 (0.5-

3)x5.6x105 (0.05-0.45) 0.2 

 
 

 
 Table 4 shows some numerical examples of how Young’s modulus and 

Poisson’s ration can change the value of fracturing pressure in a horizontal well drilled 

along the maximum horizontal stress direction. 6 numerical examples are shown in 

Table 4 with different Young’s modulus and Poisson’s ration values. As can be seen, the 

value of fracturing pressure when 1hor hor

vert vert

E

E




  equals to 8000 psi which matches with 

results of isotropic calculations (equation (3.58)) where: 

3 3 8000 10000 6100 100 8000b h v p tP               psi ......................... (4.19) 
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 Depending on the Young’s modulus and Poisson’s rations, the fracture initiation 

pressure can be more or less than the fracturing pressure in isotropic case. For example, 

when Young’s modulus is 0.5hor

vert

E

E
 and Poisson’s ration is 1hor

vert




 , the fracturing 

pressure changes from 8000 psi in isotropic to 8877 psi in transversely isotropic rock. 

 

 
Table 4—Numerical Example to Show Variations of Fracturing Pressure with 

Different Young’s Modulus and Poisson’s Ration 
           Young’s 

           Modulus              

     

Poisson  

Ratio 

hor

vert

E

E
 

0.5 1 1.5 

hor

vert




 

0.5 8845 psi 8030 psi 7650 psi 
1 8877 psi 8000 psi 7726 psi 

1.5 8914 psi 8153 psi 7835 psi 
 
 

 
 To further study the effects of anisotropy on fracturing pressure, 3000 data points 

are created using different combinations of Young’s modulus ratio hor

vert

E

E
 and Poisson’s 

ration hor

vert




. These points are selected using the criteria defined in Table 1.  

 The selected data points are then used in the proposed analytical solutions 

mentioned in SECTION 3.3.1 and 3.3.2 to find the stress distribution around the well 

and finally the required mud pressure to initiate the first tensile fracture (fracture 

initiation pressure) was calculated separately for each case. The calculated fracture 
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initiation pressures are plotted in Fig. 11 and Fig. 12 for the wells drilled along maxH

and minh respectively. These plots show the variations in fracturing pressure caused by 

changes in the mechanical properties.  

 

 
 

 

Fig. 11— Fracturing pressure variations in a well drilled along maxH by changing 

Young’s modulus and Poisson’s rations. 
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Fig. 12— Fracturing pressure variations in a well drilled along minh by changing 

Young’s modulus and Poisson’s rations. 

 
 

There are several points in Fig. 11 and Fig. 12 which should be noted: 

 The results of the sensitivity analysis clearly show dependency of fracture 

initiation pressure to variations in hor

vert

E

E
and hor

vert




. Depending on the values of 

Young’s modulus and Poisson’s ration, the values of fracture initiation pressure 

may change. 

 The case of isotropy is where there is no difference between mechanical 

properties in different directions. So, in Fig. 11 and Fig. 12, the points of 
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1hor hor

vert vert

E

E




   show the pressure required to initiate the tensile fracture (fracture 

initiation pressure) in the isotropic rock. 

 In Fig. 11 and Fig. 12, the contour lines are highly inclined showing that 

Poisson’s ration doesn’t significantly contribute in changing the fracture 

initiation pressure, but at higher Young’s modulus ratios, Poisson’s ration is also 

effective in changing the fracturing pressure. 

 Unlike the Poisson’s ration, the Young’s modulus ratio changes the fracturing 

pressure effectively and significantly. For example, for Fig. 11, it can be 

obviously seen in Table 4 that when the Poisson’s ration is constant at 1hor

vert




  , 

variation of Young’s modulus ratio from 0.5 to 1.5 causes about 1151 psi (8877-

7726=1151 psi) difference in the value of fracture initiation pressure. However, if 

the Young’s modulus is kept constant at 1hor

vert

E

E
 , variations of Poisson’s ration 

from 0.5 to 1.5 can only cause 123 psi (8153-8030=123 psi) difference in the 

fracturing pressures. So, the Young’s modulus ratio obviously has higher 

importance in changing the fracture initiation pressure than the Poisson’s 

ration. 

 As can be seen in Fig. 11 and Fig. 12, the contours of fracturing pressure 

variations are much denser in the case of drilling along maxH  than drilling along 
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minh and it indicates that rock anisotropy has higher effect on changing the 

fracturing pressure values during drilling along maxH than along minh . 

 Due to fundamentals of rock mechanics, the materials stiffness has a direct 

relation with the Young’s modulus and an inverse relation with the Poisson’s 

ration. In other words, materials with higher Young’s modulus and lower 

Poisson’s ration are respectively stiffer materials (i.e. granite) and those with 

lower Young’s modulus and higher Poisson’s ration are softer rocks (i.e. 

shale).Therefore, since in Fig. 11 and Fig. 12, the lower right corner of the plot 

has high hor

vert

E

E
and low hor

vert




, it represents the case where the rock mass is stiffer 

in horizontal direction. However, the upper left corner in Fig. 11 and Fig. 12 

corresponds to the case where the vertical direction has higher stiffness. 

 The results of sensitivity analysis in Fig. 11 and Fig. 12 indicate that in normal 

stress faulting regime where max minv H h    and drilling along maximum and 

minimum horizontal stresses, higher stiffness in vertical direction causes more 

resistance against fracturing and delays the hydraulic fracturing initiation from 

the well but higher rock mass stiffness in horizontal direction (having 

respectively lower stiffness in vertical direction) can cause fracturing earlier than 

the case of isotropic rock. 

 The analysis gives a good tool to predict in-situ rock mechanical properties by 

knowing the fracturing pressure in the field and doing the back analysis. For 
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example in Fig. 11 and Fig. 12, by assuming 1hor

vert




 (for simplicity) and by 

finding the fracturing pressure from the plot, in-situ hor

vert

E

E
can be estimated.  

 To better illustrate the importance of the findings, in this study, the fracturing 

pressure values obtained from those 3000 points in Fig. 11 are converted to equivalent 

mud weight at depth of 10,000 ft. (because the well is assumed to be drilled at 10,000 ft. 

depth).  

 For example, knowing that the fracturing pressure in Fig. 11 for isotropic rock is 

8000 psi, the mud weight that can cause hydraulic fracture initiation in the isotropic case 

can be calculated using the equation below: 

Pw(psi) 8,000 psi
Mw(ppg)= = =15.4 ppg

0.052 D(ft) 0.052 10,000 
 ............................................... (4.20) 

 So, it can be said that using 15.38 ppg mud weight in the assumed well can 

initiate the fracturing around the well.  

 Fig. 13 shows the equivalent mud weight that can cause fracturing in rock mass 

when the well is drilled along maxH with different mechanical properties. 
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Fig. 13—Variations in equivalent mud weight required to cause fracturing in rocks 

with different anisotropy ratios. 

 

 
In Fig. 13, it should be noted that: 

 The isotropic case with 1hor hor

vert vert

E

E




  shows equivalent mud weight of 15.4 ppg 

 As the rock mass stiffness decreases in vertical direction (respective stiffness 

increases in horizontal direction), which corresponds to lower right corner of Fig. 

13, the mud weight required to initiate the fracturing decreases. In other words 

the rock will break down earlier than expected. For example, if the required 
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mud weight to cause fracturing in isotropic rock is ~15.4 ppg, for a rock with 

1.5hor

vert

E

E
 and 1hor

vert




 , the mud weight falls to 14.85 ppg. 

 If rock mass stiffness increases in vertical direction (respective stiffness 

decreases in horizontal direction), corresponding to upper left corner of Fig. 13, 

the mud weight required to initiate the fracturing increases. In other words the 

rock may withstand more pressure without fracturing. For example, for a 

rock with 0.5hor

vert

E

E
 (twice higher Young’s modulus in vertical direction than 

horizontal direction) and 1hor

vert




 , the fracturing mud weight raises to ~17 ppg. 

 So, as an important result, depending on the respective higher stiffness 

direction in the transversely isotropic rock, the fracturing pressure and 

equivalent mud weight can be higher or lower than the fracturing pressure 

expected with isotropic solutions. But since in bedded rocks, the rock stiffness 

is usually higher in horizontal direction, it is expected that the actual fracturing 

pressure (calculated from anisotropic solutions) is less than the expected value 

calculated by isotropic solutions.  

As another study to show the effects of rock mechanical properties on changing 

the hydraulic fracture initiation pressure, equation (2.15) and (2.17) were used to 

calculate shear modulus anisotropy ratio hor

ver

G

G
 for the horizontal well drilled along 

maxH  and using the Young’s modulus and Poisson’s ration data in Table 3.  
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In this case also, 3000 data points were produced and the fracturing pressure 

values were calculated for each case and the results are plotted in Fig. 14. 

 

 

 

Fig. 14— Fracturing pressure variation by changing shear modulus and Poisson’s 

ration. 

 
 

 As can be seen in the figure above, the same trend between the Young’s modulus 

anisotropy ratio exists for the shear modulus ratio but the effects are less intense. Similar 

to Young’s modulus anisotropy vs. Poisson’s ration anisotropy results shown in Fig. 11, 

Poisson’s ration has a weak effect on changing the fracture initiation pressure while 

shear modulus changes the fracturing pressure significantly. 



 56 

 The other important difference is that since the Poisson’s ration changes between 

0 and 0.5 and due to (2.15), in the isotropic plane, the shear modulus should change 

between 1/3 to 2/3 of the Young’s modulus ratio. So, it can explain the reason why there 

are no data points for hor

ver

G

G
less than 0.5 and after 2.5. 

4.6 Direct and Indirect Estimation of Rock Anisotropy using Experimental Tests 

 

 As seen in previous section, estimation of hydraulic fracture initiation pressure is 

related to an estimate of Young’s modulus ratio hor

vert

E

E
 and Poisson’s ration hor

vert




 and the 

expected fracturing pressure (or equivalent fracturing mud weight) changes by variation 

in rock anisotropy ratio in shales. 

 To be able to find the Young’s modulus and Poisson’s ration anisotropy values 

we need to use experimental tests to measure Young’s modulus and Poisson’s ration in 2 

orthogonal directions. 

 In this study, to be able to estimate rock anisotropy, Pierre shale rock was 

prepared and two sets of core samples were drilled in two different directions: 

- Parallel direction to the rock bedding 

- Perpendicular direction to the rock bedding 

Pierre shale is a geologic formation from upper Cretaceous and expands from 

North Dakota to New Mexico. It is described as dark gray shale and fossiliferous. The 

Pierre shale is known for its extremely low permeability but natural fractures improve its 



 57 

in-situ permeability in some areas and make it commercially attractive for gas 

production. (Wikipedia 2010) 

Fig. 15 shows the coring and rock bedding directions graphically.  

 

 

 

Fig. 15—Respective orientation of rock bedding and the core samples in Pierre 

shale rock. 

 

 

 The core samples were tested using triaxial testing machine to measure the 

Young’s modulus and Poisson’s ration in orthogonal directions directly. 

Fig. 16 shows the comparison of Young’s modulus for the core sample parallel 

to the rock bedding with the one being cut in perpendicular direction to the bedding. 
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Fig. 16— Comparison of Young’s modulus for samples cored in 2 orthogonal 

directions in Pierre shale rock. 

 
 

The average Young’s modulus for the rock sample in parallel direction was 

found to be 3.7 GPa (0.53x106 psi) and for the perpendicular direction to be 3 GPa (0.43 

x106 psi). So the Young’s modulus anisotropy ratio is 
3.7

1.2
3

hor

vert

E

E
   

The Poisson’s ration was also measured in two directions and the results were 

compared as shown in Fig. 17. 
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Fig. 17— Comparison of Poisson’s ration for samples cored in 2 orthogonal 

directions in Pierre shale rock. 

 

 

The Poisson’s rations in the linear part were compared to each other and the 

average Poisson’s ration anisotropy was found to be 
0.28

2.12
0.13

hor

vert




    

A short description about the principals of triaxial testing machine is mentioned 

in Appendix 2.   

As another experimental test, we studied the permeability of the two samples 

mentioned above using pressure pulse permeameter machine .We studied the 

permeability values in 3 different effective stresses in 2 orthogonal directions and 

compared the results as shown in Fig. 18. 
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Fig. 18— Stress dependent permeability for Pierre shale samples cored in parallel 

and perpendicular directions. 

 

 

The permeability axis has been shown in logarithmic scale as a common method 

of plotting permeability vs. stress values.  

 A curve was fitted to each case and a logarithmic function was obtained to each 

of them. Now using the obtained functions, it is possible to interpolate and estimate the 

permeability values where the test hasn’t been carried out. 

Since the effective stress values are not exactly similar in two cases, we need to 

use interpolation in order to estimate the permeability values in required points. This is 

done to estimate the anisotropy ratio ( )
parallel hor

perpendicular vert

K K

K K
  in Pierre shale sample in the 

range of 450 to 850 psi interval. 
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To estimate the anisotropy ratio in the range mentioned above, 10 effective stress 

values are chosen between 450 and 850 psi and divided to each other to find the average 

permeability anisotropy ratio. 

The average permeability anisotropy ratio was found to be 2.18hor

vert

K

K
   

4.7 Variations in Fracture Initiation Pressure Caused by Well Orientation and 

Rock Anisotropy  

 

 It is known that, the fracture initiation pressure around the well changes by 

changing the stress distribution around the well. As mentioned in SECTION 2, the state 

of stress at any point underground can be shown by 6 components (3 normal and 3 shear 

stresses) in the stress matrix. The theory of elasticity implies that changing the 

orientation of the well in respect to in-situ stresses changes the state of stress around the 

well. Therefore, well orientation is one of the most important factors that play a key role 

on changing the stress distribution around the well. 

 There are equations proposed by (Jaeger and Cook 1979) for stress and strain 

transformation from one state of the stress to another. The problem becomes more 

complicated for stress and strain transformation calculations in anisotropic rocks since in 

isotropic rocks the mechanical properties of the rock do not change with orientation. But, 

in anisotropic (or transversely isotropic) rocks, the effect of anisotropy on the resolution 

of far-filed stress should also be taken into account. So to get the stress distribution 

around the well at new orientation in anisotropic rocks, we need to deal with: 
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 New compliance tensor due to different mechanical properties at different 

directions 

 New stress state due to change in stress conditions   

 

 (Amadei 1983) mentioned the transformation matrices that should be used to 

transfer the compliance tensor from global to the new local orientation system. The 

transformation matrices are mentioned in Appendix1 of this thesis in detail. 

 To come up with the effect of formation anisotropy direction and borehole 

trajectory on the compliance tensor, three different coordination systems are required as 

shown in Fig. 19: 

- X,Y,Z is the global coordination system which in this study is chosen to coincide 

with the orientation of in-situ principal stresses 

- X’, Y’, Z’ is the coordination system attached to the rectilinear anisotropy. In 

horizontally laminated rocks, the system X’Y’Z’ coincides the global XYZ 

coordinate system. 

- , ,b b bX Y Z is the coordination system attached to the borehole (local coordination) 
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Fig. 19—Three different coordination systems in the anisotropic rocks. 

 

 

 To find the stress compliance tensor in a generic form, the mechanical properties 

need to be transformed from the anisotropy and borehole coordination systems to a 

unique system such as the global one. Since in this study, the rock layering is assumed to 

be horizontal, the rectilinear anisotropy coordinate system coincides with the global one, 

and simplifies the calculations (Fig. 19).The matrix transportation calculations are 

mentioned in Appendix.1 

 Fig. 20 shows the orientation of local coordination system (attached to the 

wellbore) in respect to the global coordination system which coincides to in-situ stresses. 

Also Fig. 21 shows orientation of the plane of rectilinear anisotropy in respect to the 

global coordination system. 
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 Fig. 20 and Fig. 21 show angles , , ,h h     that should be used in stress and 

strain transformation analysis (mentioned in Appendix1) to get the final stress state and 

the final compliance tensor. 

 

 

 

Fig. 20—Orientation of local coordination system vs. the global coordination 

(principal stresses direction)(Amadei 1983). 
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Fig. 21— Orientation of the rectilinear anisotropy plane vs. the global coordination 

system (principal stresses direction) (Amadei 1983). 

 
 
 

 Our case is a horizontal well, so in Fig. 20 the angle 0h    to lay the well in 

horizontal direction in XZ plane and if the goal is to study the variations of fracture 

initiation pressure when the well orientation varies between maximum horizontal stress

maxH  to minimum horizontal stress minh direction, the angle h  should change between 

0 and 90 degrees between global Z and X axes. Also since in horizontally layered rock, 

the plane of rectilinear anisotropy is vertical, angle   should be 0 degree and angle

90   .  

 



 66 

By knowing the angles , , ,h h     and plugging them in equations proposed in 

Appendix 1 to find the new compliance tensor and state of stress and then using the new 

analytical solutions described in SECTION 2 and 3, the fracture initiation pressure is 

calculated for three different anisotropy ratios and variable well orientation. 

To carry out the sensitivity analysis, 2 distinct analyses are necessary: 

- Rock Anisotropy:1 case of isotropy and 2 cases of anisotropy (with 0.8hor

vert

E

E
  

and 1.4hor

vert

E

E
 ) are selected for sensitivity analysis  

- Well orientation: the orientation of the well changed from maximum horizontal 

stress maxH  to minimum horizontal stress minh direction. 

Fig. 22 shows how rock anisotropy and well orientation can change the value of 

fracture initiation in transversely isotropic rocks. 
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Fig. 22— Fracturing pressure variations caused by well orientation from maxH and 

anisotropy ratio hor

vert

E
K

E
 .  

 
 
 
 The input parameters of the sensitivity analysis is similar to all other examples 

and only the variations in Young’s modulus ratio hor

vert

E
K

E
  and well orientation in 

respect to  maxH direction was monitored. 

Fig. 22 clearly shows that: 

 The Young’s modulus ratio can change the fracturing pressure even when the 

well is not drilled along the principal stresses.  
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 In the case where the Young’s modulus ratio is below 1 (for example in Fig. 22 

when 0.8hor

vert

E
K

E
  ) the fracturing pressure is more than the expected 

fracturing pressure in isotropic rock. But this pressure is less than the expected 

fracturing pressure when the Young’s modulus ratio is 1.4hor

vert

E
K

E
   

 The difference between fracturing pressure in isotropic and anisotropic cases 

when the wellbore orientation changes stays almost constant. For example the 

fracturing pressure when 1.4hor

vert

E
K

E
   has about 200 psi difference with 

1hor

vert

E
K

E
   and this difference has almost stayed constant when the well 

trajectory changes.  

 As another important result, it is obvious that well trajectory has much bigger 

effect on changing the fracturing pressure than the anisotropy. For example in 

this case, the difference in fracturing pressure when well orientation changes 

from 0 to 90 is over 1,500 psi but the variations caused by rock anisotropy is in 

the range of 200-300 psi. 

 

Fig. 23 is shown to make Fig. 22 more understandable.  
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Fig. 23—Variations of horizontal well angle from Z to X axes directions. 

 
 

As it is shown in Fig. 23, the well trajectory changes from the orientation of maxH to

minh  (From Z to X axis).  

 In Fig. 22, the fracturing pressures associated with the angle of zero show the 

case where the well is drilled along maxH . The fracturing pressure in this direction, for 

isotropic and anisotropic rocks can be seen in Fig. 22. For example the fracturing 

pressure for the isotropic rock is 8000 psi as expected but this pressure decreases to ~ 

7800 psi when the Young’s modulus ratio changes to 1.4. 

 The fracturing pressures associated with the angle of 90 degrees show the case 

where the well is drilled along minh . All the points in between, show the fracturing 
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pressure variations in the cases where the angle changes from 0 to 90 degrees. For 

example, Fig. 23 graphically shows when the well has a 20 degrees horizontal with the 

maximum horizontal stress. To estimate the hydraulic fracture initiation pressure in the 

well shown in Fig. 23 where the well has 20 degrees angle from maximum horizontal 

stress direction, if we draw a vertical line along 20 degrees point in Fig. 22 and intersect 

it with any of the 3 cases (with different Young’s modulus anisotropy ratio), the 

hydraulic fracturing pressure can be estimated. 
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5. CONCLUSIONS AND SUMMARY 

  

 The analytical solution for estimating the fracture initiation pressure while 

drilling in transverse isotropic rocks has been used to assess the impact of rock elastic 

anisotropy on the fracturing pressure. A sensitivity study on the effects of rock 

mechanical properties (Young’s modulus and Poisson’s ration) on the fracture initiation 

pressure indicates that depending on the preferred stiffness direction in the rock mass, 

the fracturing pressure may be higher or lower than the fracturing pressure value 

estimated by isotropic solutions. 

 The fracturing pressures in wells drilled along maximum horizontal stress are 

more sensitive to rock elastic anisotropy than the ones drilled along minimum horizontal 

stress. The angle of a horizontal well with the principal stresses has a higher impact on 

changing the fracturing pressure than the rock anisotropy. Also, the rock anisotropy 

effects remain nearly constant when the orientation of the horizontal well changes from 

maxH to minh directions. 

 Since assessing the fracturing pressure requires knowledge of anisotropy ratio in 

transversely isotropic rocks, triaxial test was carried out on Pierre shale samples which 

were cored in parallel and perpendicular directions to the rock bedding and Young’s 

modulus and Poisson’s ration was measured directly for hydraulic fracturing analysis. 

To assess possibility of replacing rock permeability ratio instead of Young’s modulus 

ratio in hydraulic fracturing studies, pulse Permeameter machine was used and the rock 

permeability values were measured in two orthogonal directions.  



 72 

REFERENCES 

 

Aadnoy, B.S. 1988. Modeling of the Stability of Highly Inclined Boreholes in 
Anisotropic Rock Formations (Includes Associated Papers 19213 and 19886 ). 
SPE Drilling Engineering 3 (3). DOI: 10.2118/16526-PA 

 
Aadnoy, B.S. 1989. Stresses around Horizontal Boreholes Drilled in Sedimentary Rocks. 

Journal of Petroleum Science and Engineering 2 (4): 349-360.  
DOI: 10.1016/0920-4105(89)90009-0 

 
Aadnoy, B.S. and Chenevert, M.E. 1987. Stability of Highly Inclined Boreholes 

(Includes Associated Papers 18596 and 18736 ). SPE Drilling Engineering 2 (4). 
DOI: 10.2118/16052-PA 

 
Abousleiman, Y. and Cui, L. 1998. Poroelastic Solutions in Transversely Isotropic 

Media for Wellbore and Cylinder. International Journal of Solids and Structures 
35 (34-35): 4905-4929. DOI: DOI: 10.1016/s0020-7683(98)00101-2 

 
Amadei, B. 1983. Rock Anisotropy and the Theory of Stress Measurements. Berlin: 

Springer-Verlag. Original edition.  ISBN  0387123881, 9780387123882. 
 
Batugin, S. and Nirenburg, R. 1972. Approximate Relation between the Elastic 

Constants of Anisotropic Rocks and the Anisotropy Parameters. Journal of 

Mining Science 8 (1): 5-9. DOI: 10.1007/bf02497798 
 
Cauwelaert, F.V. 1977. Coefficients of Deformation of an Anisotropic Body. Journal of 

the Engineering Mechanics Division 103 (5): 823-835. 
 
Daneshy, A.A. 1973. A Study of Inclined Hydraulic Fractures. Journal of the Society of 

Petroleum Engineers 13 (2). DOI: 10.2118/4062-PA 
 
Deily, F.H. and Owens, T.C. 1969. Stress Around a Wellbore. Paper SPE 2557 presented 

at the Fall Meeting of the Society of Petroleum Engineers of AIME, Denver, 
Colorado, 28 September-1 October. 

 
Ellefsen, K.J., Toksoz, M.N., Tubman, K.M., and Cheng, C.H. 1992. Estimating a Shear 

Modulus of a Transversely Isotropic Formation. Geophysics 57 (11): 1428-1434. 
DOI: 10.1190/1.1443210 

 
Goodman, R.E. 1989. Introduction to Rock Mechanics. New 

York/Chichester/Brisbane/Toronto/Singapore. Original edition, John Wiley and 
Sons Publication.  ISBN  0-471-81200-5. 



 73 

Haimson, B. and Fairhurst, C. 1967. Initiation and Extension of Hydraulic Fractures in 
Rocks. Journal of the Society of Petroleum Engineers. 7 (3): 310 - 318. DOI: 
10.2118/1710-PA 

 
Hossain, M.M., Rahman, M.K., and Rahman, S.S. 2000. Hydraulic Fracture Initiation 

and Propagation: Roles of Wellbore Trajectory, Perforation and Stress Regimes. 
Journal of Petroleum Science and Engineering 27 (3-4): 129-149. DOI: 
10.1016/s0920-4105(00)00056-5 

 
Hsiao, C. 1988. A Study of Horizontal-Wellbore Failure. SPE Production Engineering 3 

(4). DOI: 10.2118/16927-PA 
 
Hubbert, M.K. and Willis, D.G. 1957. Mechanics of Hydraulic Fracturing. Petr. Trans. 

AIME 210: 153-163.  
 
Jaeger, J.C., Cook, N.G.W., and Zimmerman, R.W. 2007. Fundamentals of Rock 

Mechanics, Fourth Edition. Blackwell Publishing. Original edition.  ISBN  978-
0-632-05759-. 

 
Jaeger, J.C. and Cook, N.W.G. 1979. Fundamentals of Rock Mechanics. New York: 

Chapman and Hall. Original edition.  ISBN: 0632057599, 9780632057597. 
 
Kirsch. 1898. The Theory of Elasticity and the Need of the Strength of 

Materials(Trans.). Journal of the Association of German Engineers 42: 797-807. 
 
Kwon, O., Kronenberg, A. K., Gangi, A. F., and Johnson, B. 2001. Permeability of 

Wilcox Shale and Its Effective Pressure Law. Journal of Geophysical Research 
106 (B9): 19339-19353. 

 
Lekhnitskii, S.G. 1963. Theory of Elasticity of an Anisotropic Elastic Body. San 

Fransisco: Holden Day Inc. Original edition.   
 
Lekhnitskii, S.G. 1981. Theory of Elasticity of an Anisotropic Body. Moscow: Mir 

Publications. Original edition. 
   
Ning, X. 1992. The Measurement of Matrix and Fracture Properties in Naturally 

Fractured Low Permeability Cores Using a Pressure Pulse Method. Ph.D. 
Dissertation, Texas A&M University. 

 
Ong, S.H. 1994. Borehole Stability. Ph.D. Dissertation, The University of Oklahoma. 
 
Ong, S.H. and Roegiers, J.-C. 1993. Horizontal Wellbore Collapse in an Anisotropic 

Formation. Paper SPE 25504 presented at the SPE Production Operations 
Symposium, Oklahoma City, Oklahoma, 21-23 March. 



 74 

Ong, S.H. and Roegiers, J.-C. 1996. Fracture Initiation from Inclined Wellbores in 
Anisotropic Formations. SPE Journal of Petroleum Technology 48 (7). DOI: 
10.2118/29993-PA 

 
Suarez-Rivera, R., Green, S.J., McLennan, J., and Bai M. 2006. Effect of Layered 

Heterogeneity on Fracture Initiation in Tight Gas Shales. Paper SPE 103327 
presented at the SPE Annual Technical Conference and Exhibition, San Antonio, 
Texas, 24-27 September. 

 
Wikipedia, 2010. Pierre Shale. http://en.wikipedia.org/wiki/Pierre_Shale. 

 

 

 

  



 75 

APPENDIX 1 

STRESS AND STRAIN TRANSFORMATION CALCULATIONS 

 

If we define the stress and strain components in matrix form for global coordination as 

below: 

 ( )t

XYZ X Y Z YZ XZ XY        ................................................................  (A.1) 

( ) ( )t

XYZ X Y Z YZ XZ XY        ..................................................................  (A.2) 

And in rectilinear anisotropy coordination as: 

 ' ' ' ' ' ' ' ' ' ' ' '( )t

X Y Z X Y Z Y Z X Z X Y        ......................................................  (A.3) 

' ' ' ' ' ' ' ' ' ' ' '( ) ( )t

X Y Z X Y Z Y Z X Z X Y        ........................................................  (A.4) 

And in borehole direction as: 

 ( )
b b b b b b b b b b b b

t

X Y Z X Y Z Y Z X Z X Y        .....................................................  (A.5) 

( ) ( )
b b b b b b b b b b b b

t

X Y Z X Y Z Y Z X Z X Y        .......................................................  (A.6) 

 So the purpose is to find the constitutive equation in a case of a well which might 

not be drilled along the principal stresses and the plane of anisotropy in the field. 

The constitutive equation in anisotropic coordination of X’Y’Z’ is as follows: 

' ' ' ' ' '( ) ( ').( )X Y Z X Y ZH   ............................................................................................  (A.7) 

where: 

H’ is the new compliance tensor in anisotropic coordination system  

The relation between the stresses in the global system and the anisotropic coordination 

system is as below: 
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' ' ' ' ' '( ) ( ) .( )X Y Z X Y Z XYZT   .......................................................................................  (A.8) 

 In fact, ' ' '( )X Y ZT  is the transformation matrix which is multiplied to the global 

stresses matrix to result the stresses in the rectilinear anisotropic coordination and will be 

illustrated later on SECTION A.1.2. 

The same type of relation governs between strain in the global and rectilinear 

anisotropy coordination systems, where: 

' ' ' ' ' '( ) ( ) .( )X Y Z X Y Z XYZT   .........................................................................................  (A.9) 

where ' ' '( )X Y ZT is the transformation matrix which transforms the strains from global to 

rectilinear anisotropy coordination system. 

In the transformation matrices, there is a relation between ' ' '( )X Y ZT  and ' ' '( )X Y ZT : 

' ' '

1

' ' '( ) ( )
X Y Z

t

X Y ZT T 

   ................................................................................................... (A.10) 

' ' '

1

' ' '( ) ( )
X Y Z

t

X Y ZT T 

  ................................................................................................... (A.11) 

where the superscripts “-1” and “t” denotes inverse and transpose matrices respectively. 

If we substitute (A.8) and (A.9) into (A.7) and use (A.10) and (A.11) , the 

constitutive equation in the global coordination system can be calculated using: 

' ' ' ' ' '( ) ( ) . '.( ) .( )t

XYZ X Y Z X Y Z XYZT H T    ..................................................................... (A.12) 

 The new constitutive equation results from multiplication of ' ' '( )t

X Y ZT , H’ and 

' ' '( )X Y ZT matrices. Using the equation above, the constitutive equation in the global 

coordination system can be calculated by knowing the transformation matrix (which will 

be illustrated later) and the constitutive matrix in rectilinear anisotropy coordination.  
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In the second case, If the wellbore has a different coordination from the global 

system or in other words, if the well is not drilled along the principal stresses, then the 

constitute equations for the rock mass around the wellbore are definitely different from 

the global constitutive equations.  

 The transformation equation between the global and local (attached to the 

wellbore) systems are as below: 

( ) ( ) .( )
b b b b b bX Y Z X Y Z XYZT   ....................................................................................... (A.13) 

( ) ( ) .( )
b b b b b bX Y Z X Y Z XYZT   ......................................................................................... (A.14) 

where ( )
b b bX Y ZT and ( )

b b bX Y ZT are the matrices which transform the stress and strain 

components in global coordination system (in-situ principal stresses) to the local system 

(attached to the wellbore) and will be illustrated in SECTION A.1.2 of this appendix. 

 In the transformation matrices, there is a relation between ( )
b b bX Y ZT  and ( )

b b bX Y ZT : 

1( ) ( )
X Y Z b b bb b b

t

X Y ZT T 

   ................................................................................................... (A.15) 

1( ) ( )
X Y Z b b bb b b

t

X Y ZT T 

  ................................................................................................... (A.16) 

 By substitution of  (A.13) and (A.14) into (A.12) to find out the simultaneous 

effect of different wellbore direction and plane of anisotropy and by using (A.15) and 

(A.16), equation below is obtained for the constitutive  relation in local coordination 

system for a well drilled with arbitrary trajectory and plane of anisotropy orientations . 

' ' ' ' ' '( ) ( ) .( ) . '.( ) .( ) .( )
b b b b b b b b b b b b

t t

X Y Z X Y Z X Y Z X Y Z X Y Z X Y ZT T H T T      ................................. (A.17) 

And if we assume A as the new compliance matrix, since we should have: 
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( ) .( )
b b b b b bX Y Z X Y ZA   .................................................................................................  (A.18) 

Therefore, the final compliance matrix is: 

' ' ' ' ' '( ) .( ) . '.( ) .( )
b b b b b b

t t

X Y Z X Y Z X Y Z X Y ZA T T H T T     ......................................................... (A.19) 

 The equation above states that to calculate the compliance tensor and the 

constitutive equation in local wellbore coordination system in presence of different 

anisotropy and principal stress orientations, we need to have the compliance tensor in 

rectilinear anisotropy coordination (Matrix H’) and multiply it to the stress and strain 

transformation matrices. In sections below, these transformation matrices are illustrated 

more in detail 

A.1 Transformation of Elastic Constants 

 

A.1.1 Compliance Tensor Transformation Caused by Anisotropy  

 

Fig. 24 shows the orientation of the coordination system XYZ and X’Y’Z’ in 

anisotropic rock. 
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Fig. 24—Orientation of global coordination system vs. the coordination system 

attached to the plane of rectilinear anisotropy (Amadei 1983). 

 
 

 (Amadei 1983) proposed a transformation matrix which by knowing the 

constitutive relation of an anisotropic material in the X, Y’, Z’ coordination system and 

the angles ,  as shown in Fig. 24, the constitutive equations in the global coordination 

system can be obtained. 

 The direction cosines of the transformation matrix from X’Y’Z’ to XYZ 

coordination systems are defined as follows: 

' ' '

' ' '

' ' '

cos( , ') cos( , ') cos( , ')

cos( , ') cos( , ') cos( , ')

cos( , ') cos( , ') cos( , ')

X Y Z

X Y Z

X Y Z

l X X l X Y l X Z

m Y X m Y Y m Y Z

n Z X n Z Y n Z Z

   
 

  
 
    

 .......................................... (A.20) 

To calculate these direction cosines in respect to angles ,  , (Amadei 1983) 

proposed the equations below: 
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' ' ' ' ' ' ' ' '

' ' ' ' ' '

' ' ' ' ' ' ' ' '

cos .cos cos .cos cos .cos

sin sin sin

cos .sin cos .sin cos .sin

X X X Y Y Y Z Z Z

X X Y Y Z Z

X X X Y Y Y Z Z Z

l l l

m m m

n n n

     

  

     

   
 

  
 
    

 ........................... (A.21) 

where: 

' ' '

' ' '

2

0
2

X Y Z

X Y Z


      


    
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 Since in this study, the main objective is to assess the hydraulic fracturing 

initiation in horizontal wells embedded inside horizontal transverse isotropic rocks, the 

global and anisotropic coordination axes should coincide. By choosing , 0    in Fig. 

24 the direction cosines in (A.21) will change to: 

' ' '

' ' '

' ' '

cos0 .cos0 1 cos( ).cos( ) 0 cos0 .cos 0
2 2

sin 0 0 sin( ) 1 sin 0 0
2
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2 2
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X Y Z
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m m m

n n n

 




 


 
         

 
       
 
 
        
  

 ........... (A.22) 

The matrix above becomes an identity matrix with diagonal values equal to 1 

which in fact has no effect on the transformation matrix. But if we choose other values 

of  ,   - meaning the well has an acute angle with the plane of isotropy- then the 

results might be different. (Goodman 1989) suggested the matrix below for stress 

transformation matrix ' ' '( )X Y ZT  
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 ... (A.23) 

 If the global and the anisotropy coordination systems coincide, which can happen 

in the case of a horizontally deposited reservoir with horizontal and vertical principal in-

situ stresses, by replacing the components of the transformation matrix calculated in 

(A.22) in (A.23) , the transformation matrix for anisotropy ' ' '( )X Y ZT   changes to: 

' ' '

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
( )

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

X Y ZT

 
 
 
 

  
 
 
 
 

 .............................................................................. (A.24) 

The matrix of (A.24) should be replaced in final compliance tensor matrix calculations 

in equation (A.19) 

 

A.1.2 Compliance Tensor Transformation Caused by Well Orientation  

 

  Fig. 25 shows the orientation of the global coordination system XYZ vs. local 

system b b bX Y Z . 
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Fig. 25— Orientation of global vs. local coordinate systems. 

 
 

The direction cosines should be calculated as follows: 
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 ............................ (A.25) 

where: 
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 ................................................................... (A.26) 

 Since in this study, the goal is to assess horizontal wells, the angle h should be 

90 degrees to lay the well orientation horizontally, but the angle h can vary between 0 

and 90 degrees. So the direction cosines will change to: 
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 The stress transformation matrix for the borehole coordination system is the same 

as the transformation matrix used for anisotropy coordination. What we need is simply 

replacing the direction cosines used in (A.23) with the ones calculated in (A.27). 

To calculated Strain compliance tensor ( )
b b bX Y ZT , the same direction cosines calculated 

in (A.27) are plugged in equation below to obtain the strain transformation matrix: 
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   ... (A.28) 

 

The matrix of (A.28) should be replaced in final compliance tensor matrix 

calculations (A.19). 

 
 
  



 84 

APPENDIX 2 

EXPERIMENTAL METHODS TO MEASURE ROCK ANISOTROPY IN SHALES 

 

In previous sections, analytical methods are used and developed to estimate the 

fracturing initiation pressure in transversely isotropic rocks. As seen, fracturing pressure 

is in direct relation with rock mechanical properties such as Young’s modulus and 

Poisson’s ration. In anisotropic and transversely isotropic rocks, due to the intrinsic 

variations of mechanical properties in different direction of the rock mass, estimation or 

measuring such properties is not easy. Routine log analysis methods can only estimate 

the mechanical properties indirectly and in a single direction and usually cannot predict 

the rock behavior in the direction perpendicular to the well. Therefore, it is essential to 

use core analysis methods to measure (and not estimate) the rock mechanical properties 

to use them in the equations.  

 From the engineering point of view, core analysis is the use of the core samples 

obtained from the drilling operation to obtain the properties of the rock in the reservoir. 

A good analysis of the core samples can give us valuable information about the behavior 

of the reservoir rock and eventually lead to proper formation evaluation, drilling method 

selection and production estimation. Core analysis is usually subdivided to “Routine” 

and “Special” Core Analysis. Routine Core Analysis is a set of measurements that can be 

made with minimal preservation. Porosity, grain density, fluid and/or gas saturation and 

absolute permeability are among the most important “Routine Core Analysis”. Any other 

measurement that can be made on the core samples and are not categorized as a “Routine 

Core Analysis” should be discussed in “Special Core Analysis”. 
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 In this appendix, 2 special core analysis methods will be used to measure directly 

and estimate indirectly the rock anisotropy in transversely isotropic rocks.  

In this study, rock anisotropy will be measured and estimated in two different ways: 

1. Directly:  Triaxial testing machine will be used to measure the Young’s modulus 

and Poisson’s rations directly 

2. Indirectly: Rock permeability anisotropy ( hor

vert

K

K
) will be measured using 

pressure pulse permeameter machine and will be compared with Young’s 

modulus ratio to see if it can be used as a substitute to the direct measurement 

methods.  

As the first way of measuring rock anisotropy, in the next section triaxial testing 

method will be explained and discussed briefly. 

Also in SECTION 5.3, pressure pulse permeameter method as an indirect method 

of evaluating the rock anisotropy will be assessed.  

A.1 Direct Rock Anisotropy Measurement using Triaxial Testing Machine 

 

 Triaxial testing machine enables us to apply axial and confining pressures to the 

core samples and study variation of the ultimate strength and rock stiffness with 

variation in confining pressure. Using this machine and by having at least 2 core samples 

being cut in perpendicular direction in respect to each other, the Young’s modulus  and 

also Poisson’s ration anisotropy can be measured. 
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A.2   Indirect Rock Anisotropy Measurement using Pressure Pulse Permeameter 

Method 

 

 As an indirect method of evaluating the rock anisotropy in shales, in this section 

we focused on “pressure pulse permeability” method and will study the indirect relation 

between Young’s modulus ratio hor

vert

E

E
which is already known in different stress values 

(from triaxial test) and the permeability anisotropy ratio hor

vert

K

K
in known stress values. 

The goal of the indirect rock anisotropy studies is to see if permeability anisotropy hor

vert

K

K
 

can be substituted with Young’s modulus anisotropy  hor

vert

E

E
 in the analyses or if there is a 

relation between these two between the above mentioned ratios so that by knowing the 

permeability anisotropy ratio, hydraulic fracture initiation pressure can be estimated.  

 Different methods are available for permeability measurement in rock samples 

but “steady state” and “unsteady state” methods are the most common ones. To measure 

the permeability of tight rock samples such as shales, unsteady state method is more 

common since the required time for permeability measurement in steady state method 

for tight samples may reach weeks or months.  

A.2.1 System Overview 

 

 Pressure Pulse Permeameter is laboratory equipment based on unsteady state 

measurement and is used in our studies. It has been developed and constructed by (Ning 
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1992) to conduct pressure pulse tests on fractured core samples but it can also be used in 

un-fractured samples as well.  

It can determine the following parameters, separately in a fractured core sample: 

- Porosity of the rock matrix 

- Permeability of the rock matrix 

- Effective width of the fractures 

- Permeability of the fracture 

Also, studying the mentioned parameters in various confining pressures 

(overburden pressure) and reservoir temperature is possible. It measures the matrix 

properties as low as 10-9 md which makes it unique in comparison to other permeability 

measurement techniques such as steady state method. This capability enables the 

machine to measure petrophysical parameters of tight (fractured) shale samples precisely 

and more importantly in a much shorter time.   

Fig. 26 shows the schematics of pulse permeability machine. 



 88 

 

Fig. 26—Schematic of pressure pulse permeameter. 
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 To carry out the test, the core sample is loaded to the machine and saturated with 

a system (pore) pressure. A desired confining pressure may be applied to the core 

sample. Then an upstream differential pressure is injected to the core sample. Depending 

on how permeable/porous the core sample is, the upstream pressure decreases and the 

downstream pressure increases with time which is acquired and recorded by the data 

acquisition system. The recorded pressure drawdown values are then reduced and 

prepared to be used in the history matching program. The last program, using analytical 

calculations and mathematical history matching suggests the permeability and porosity 

for the core sample.  

  

A.2.2 Accomplishments on Pulse Permeameter Machine 

 
 
 The pulse permeameter machine had several operational problems and it was 

necessary to solve them prior to running the tests. Some of the problems and the 

procedure to solve them are listed below: 

- Calibration and setting up the machine:  

 As mentioned above, since the machine was not operational for a while, 

the sensitive transducers were out of calibration. Also many connections and 

fittings were out of used and it was necessary to replace them. Calibration of 

transducers required very high degree of accuracy and was carried out with great 

precision. Also setting up the fittings and connections are very sensitive to the 

amount of torque and force applied to them since over tightening the connections 
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would damage the fitting threads easily and that was enough to cause the leakage 

in the system. 

 

- Leakage:  

 Pulse permeameter machine works based on injection of a gas pulse to a 

core sample which should also be saturated with the gas prior to the test. The 

core sample is usually saturated with 500-1000 psi gas pressure. So such a high 

gas pressure increases the chance of the gas leakage from the connections. Since 

this machine is supposed to measure the permeabilities in nano Darcy scales, any 

leakage above 0.5-1 psi/hr in the system is not acceptable. Dealing with such a 

low leakage rate and minimizing it while there is no common method for leakage 

detection in this scale for the whole machine, was a challenging project. To 

minimize the leakage, almost all the connections are replaced and sealed with 

special sealing materials. Also part of the leakage was because of the gas leakage 

through the rubber sleeve to the oil chamber and was stopped by using Teflon 

tubing or aluminum foil around the core samples. The final gas leakage rate for 

the whole machine was reported 0.35 psi/hr which is reasonable. 

 

- Data Acquisition:  

 There was a serious problem with data acquisition system. It was noted 

that the data acquisition system doesn’t record the pressure values in the right 
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assigned time step. For example, the system records every 2 seconds when it is 

assigned to record every 1 second.  

 To solve this problem and to deal with data sampling and data reduction 

analysis, a new file was developed in Mathematica®. The developed file gets the 

raw data from data acquisition system, deals with different time recording steps 

(since we may use different time steps during the test such as 0.1, 1 and 10 

seconds recording interval after the test begins), corrects the time interval for the 

input data, asks for number of the samples and prepares the sample file 

regardless of the number of raw data. Assume that we would like to have 100 

data points as the representatives of over 25000 data points. The program uses 

log-log sampling method to choose the best values. For the representative values 

where there is no direct value in the recordings (for example, we have recorded 

the pressure values in 10 and 12 seconds and now want the pressure at 10.5 

second) linear interpolation between two values was used to estimate the pressure 

in the unknown times. The output of the Mathematica file is an excel file which 

can be used at history matching program. 

 

- Confining Pressure System:  

 The electrical-hydraulic pump was used to build up the confining 

pressure around the core sample. The problem was that the pump was so 

powerful that it used to build up the confining pressure from 0 to 5000 psi in a 

few seconds. There were at least 3 problems with this pump: 
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o The pressure build up rate was too fast and would damage the core 

o The pump was strong and could cause safety problems 

o It was not practical to set the confining pressure at desired values due to 

fast build up rate. 

To solve these problems, the pump was replaced with a manual and controllable 

one. It enables us to study stress dependent permeability analysis 

 

- Use of Different Gasses: 

 In this machine, Helium was used for applying the system and pulse 

pressures. However, there are two important issues that should be taken into 

account while using Helium: 

o Helium molecule is one of the smallest gas molecules in the nature. The 

inert behavior of this gas and its tiny size makes it easy to leak from any 

sealed system and not to be detected. So the leakage rate may increase by 

using Helium. 

o Since Helium molecule is much smaller than Methane (as of dominant 

molecule in natural gas) and of course oil molecules, during the pulse 

permeability tests, it can be stored in micro pores that in fact neither 

methane nor oil molecules can be stored there. So it may show 

permeability and porosity values that are not realistic. 

To get reasonable porosity and permeability results and on the other hand 

to decrease the leakage rate in the machine, the gas was changed to Argon. 
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Argon has almost similar molecular diameter with methane with a 

difference in non-toxicity and being inert just like helium.  

Two separate modules are added to the history matching program for 

Argon and Argon gasses. Now the history matching program can analyze tests 

with Argon and Nitrogen in addition to Helium. 

 

- Using Core Samples with Different Sizes: 

 The machine was developed for 1.5 inch diameter core samples but the 

problem is that this size of core diameter is not common in petroleum industry 

and on the other hand some of the core samples are already cut in smaller size 

and cannot be re-cored. For example to solve this problem for 1 inch diameter 

samples, rubber spacers are made to fill up the gap between the core holder and 

the core sample and the appropriate adjustments are made in history matching 

program.   
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