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ABSTRACT

Automatic Seedpoint Selection and Tracing of

Microstructures in the Knife-Edge Scanning Microscope Mouse Brain Data Set.

(August 2011)

Dongkun Kim, B.S., Korea Military Academy

Chair of Advisory Committee: Dr. Yoonsuck Choe

The Knife-Edge Scanning Microscope (KESM) enables imaging of an entire

mouse brain at sub-micrometer resolution. By using the data sets from the KESM,

we can trace the neuronal and vascular structures of the whole mouse brain. I inves-

tigated effective methods for automatic seedpoint selection on 3D data sets from the

KESM. Furthermore, based on the detected seedpoints, I counted the total number

of somata and traced the neuronal structures in the KESM data sets.

In the first step, the acquired images from KESM were preprocessed as follows:

inverting, noise filtering and contrast enhancement, merging, and stacking to create

3D volumes. Second, I used a morphological object detection algorithm to select seed-

points in the complex neuronal structures. Third, I used an interactive 3D seedpoint

validation and a multi-scale approach to identify incorrectly detected somata due to

the dense overlapping structures. Fourth, I counted the number of somata to inves-

tigate regional differences and morphological features of the mouse brain. Finally, I

traced the neuronal structures using a local maximum intensity projection method

that employs moving windows.

The contributions of this work include reducing time required for setting seed-

points, decreasing the number of falsely detected somata, and improving 3D neuronal

reconstruction and analysis performance.
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CHAPTER I

INTRODUCTION

A. Goal of the research

The goal of this research is (1) to develop a method for automatic seedpoint selection,

extending Han et al.’s previous work [1, 2], (2) to count the number of somata for

investigating regional differences and morphological features of the mouse brain, and

(3) to trace the neuronal structures in the KESM data sets.

B. Motivation

A neuron is a fundamental element of the neuronal system. The neuron transmits sig-

nals in response to input stimulus and sends them out to other neurons via neuronal

connections [3]. The complex neuronal circuits give rise to functions such as percep-

tion and cognition. Alterations of the architecture and morphology also contribute to

neurological diseases as well. In the case of Alzheimer’s disease, there is a deficiency in

the number of neurons and dendritic regressions in neuronal structures [4]. Research

about the neuronal structure can also help understand how the neuronal structure

processes information. In order to investigate neuronal structures, researchers at the

Brain Network Lab (BNL) at Texas A&M University (TAMU) developed techniques

for obtaining microscopic data from whole mouse brains [5] and algorithms for tracing

these data sets [1, 2].

The Knife-Edge Scanning Microscope (KESM) enables imaging of an entire

mouse brain at sub-micrometer resolution to investigate the neuronal structure. Us-

The journal model is IEEE Transactions on Medical Imaging.
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ing the data sets, Han et al. was able to trace the neuronal and vascular structures of

selective parts of the mouse brain based on manually selected seedpoints [1, 2]. How-

ever, to trace all fibers and neuronal structures in the brain, an automatic technique

is required to set the seedpoints.

C. Approach

In order to investigate the neuronal structure, I followed seven main steps: preprocess-

ing, morphological object detection, interactive 3D seedpoint validation, multi-scale

method, automatic seedpoint selection, soma counting, and tracing.

The preprocessing step after Golgi-stained data acquisition by KESM involved

image inverting, noise filtering and contrast enhancement, and the merging of image

columns and 3D image stacking. After obtaining the Golgi-stained data sets, the

images were inverted to negative images to clearly separate somata and dendrites.

Noise was removed by median filtering [6]. Additionally, after the noise filtering, I

used contrast enhancement to make reconstruction easier. I stacked the merged im-

ages into 3D volumes.

After preprocessing the data sets, I proceeded to set seedpoints automatically.

First, to implement automatic seedpoint selection, I applied an adaptive threshold

method for discriminating the foreground and the background. Second, I used a mor-

phological object detection (opening and closing) method, to remove small redundant

objects and holes in the data sets [7]. Third, when validating the detected seedpints,

I employed an interactive 3D seedpoint validation method. This method displayed

information from the volumetric KESM data sets by using three different orthogo-

nal slices centered around the detected seedpoint. Fourth, I generated multi-scale

representations from the raw images from the KESM. In the native resolution of the
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raw KESM data, it was difficult to obtain correct coordinates of a seedpoint due to

the complex neuronal structures. By reducing the resolution of the raw data, I was

able to determine whether a portion of the complex structure was a seedpoint or not.

Fifth, based on the morphological object detection method, I counted the somata

from the superficial layer of the brain (cortex) through the deep regions (colliculi and

hippocampus) perpendicular to the tangential direction to determine the quantity

and distribution of neurons in different areas of the mouse brain. Finally, I used

the obtained seedpoints to run Han et al.’s tracing algorithm [1, 2]. After neuronal

structure tracing was complete, I investigated morphological features of the neurons

in the mouse brain using image visualizing software: MeVisLab 1 and ParaView 2.

D. Significance

My automatic seedpoint selection method extended previously used manual seedpoint

selection methods [1, 2]. By combining morphological object detection processing,

interactive 3D seedpoint validation, and multi-scale method, I reduced the processing

time and decreased the error in seedpoint selection. In addition, I automatically

traced the neuronal structure of the mouse brain based on these seedpoints. This

thesis is expected to contribute to a broader understanding of brain function based

on the quantitative distribution of neurons.

E. Outline of the thesis

This thesis is organized as follows: In Chapter II, backgrounds and previous works

related to automatic seedpoint selection and neuronal structure tracing will be ex-

1http://www.mevislab.de
2http://www.paraview.org
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plained. In Chapter III, I will present methods employed to implement the automatic

seedpoint selection algorithm. Next, the experimental results of the automatic seed-

point selection method and quantitative analyses will be presented in Chapter IV.

Finally, in Chapter V, discussion about the experimental result, open issues, future

work, and conclusion will be presented.
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CHAPTER II

BACKGROUND AND PREVIOUS WORK

A. Background

In order to investigate neuronal structures, researchers developed methods for obtain-

ing the data sets and algorithms for tracing and analysis. Particularly, somata are

an important part of the neuronal structure because neurites are extended from the

somata and the main functional process of the neuron occurs in them. The somata

are the starting and ending points of the neuronal signal transmission, thus, they

serve the core function [8]. Here, I will review existing data acquisition techniques

and analysis approaches.

1. Automatic seedpoint selection

Han et al. experimented with manual and automatic seedpoint selection methods.

First, they experimented with manual seedpoint selection and adjusted the selected

point to correct the position [1]. However, as the number of fibers and their complex-

ity grew, fully automatic method to set the seedpoint became necessary. For more

efficiency, Han et al. used a semi-automatic seedpoint selection method [2]. With a

global threshold value, the foreground and background were determined by the value.

If the seedpoint was detected previously, the algorithm ignored the point. After the

tracing has been initiated, the seedpoint was relocated by a momentum operator.

Can et al. [9] experimented with an automatic estimation method for setting the

initial seedpoints and initial tracing directions based on grid analysis on retinal fundus

images. An initial seedpoint was defined by setting 2N line searches: vertical and

horizontal. The gray-level value on each line was low-pass filtered using a discrete
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approximation to 1D Gaussian kernels. By employing a 1D sliding window, local

intensity minima were searched. Some detected local minima were noise and had to

be removed to avoid spurious tracing. Additionally, a directional template provided

an extensive method for eliminating noise and estimating an initial direction for

tracing. With these mechanisms, seedpoint selection was performed effectively on

straight segments of all the fibers and branching points.

Zhang et al. [8] developed a method to automatically select seedpoints in micro-

scopic neuron images. The seedpoint selection method was fully automatic without

human intervention. A seedpoint was selected on or near the center line of a dendritic

or axonal segment. The seedpoint detecting algorithm was composed of two steps.

First, by examining the local maxima on a set of grid lines of vertical and horizontal,

the candidate seedpoint was automatically detected. The crossing pixel on the ver-

tical and horizontal was low-pass filtered by employing 1D Gaussian kernels. After

the filtering, candidate seedpoints were identified on the local intensity maxima. Sec-

ond, signal-to-noise ratio analysis was used to remove a seedpoints that were falsely

detected due to noise or artifacts. The result was good enough to extract seedpoints

in poor quality, low resolution, and low contrast data.

Al-Kofahi et al. [10] traced neurons from 3D fluorescence confocal microscopy

data. In order to select a seedpoint, they proceeded in two steps. In the first step,

by employing maximum intensity projection, the 3D image was projected onto the

xy plane. On the resulting 2D image, a grid of N horizontal lines and M vertical

lines were superimposed. The gray-level of each line was low-pass filtered by the 1D

Gaussian Kernel. Many of the seedpoint candidates had to be eliminated because

they were generated due to noise. In the second step, the shift-and-correlate method

was applied to filter the result of the first step. By using entire left and right templates

lying on the xy plane, they validated the accuracy of the seedpoints. For selecting
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the seedpoint on 3D, the z-coordinate was defined on the plane with local maximum

intensity in the neighbourhood of detected 2D coordinates.

In summary, various methods have been developed for automatic seedpoint se-

lection for tracing of neuronal structures. However, the methods may not be suitable

for data containing multiple complex 3D structures, such as the KESM data sets.

Also, the resolutions for showing morphological details of neurons or microvascular

segments were not enough for tracing the entire span of the data.

2. Interactive 3D seedpoint validation

In order to ascertain the correctness of automatically selected seedpoints, interactive

3D seedpoint validation is needed. Interactive 3D seedpoint validation can ensure

segmentation quality that simple visualizations in 2D can not.

Kang et al. [11] developed interactive 3D editing tools to correct or improve

results of initial automatic segmentation. By employing an interactive 3D approach,

they examined the segmentation result from computed tomography (CT) data sets

of the proximal femur. They used three types of editing tools: hole-filling, point-

bridging, and surface-dragging. The tools were evaluated by different level of noise

on CT data sets. The tools corrected inadequate automatic segmentation results

efficiently, as shown by quantitative results.

Varandas et al. [12] developed an interactive 3D ultrasonic system, which enabled

acquisition and visualization of anatomy from different perspectives and measures of

organ size and volume. The system helped reveal high contrast structures in freehand

ultrasonic images. Also, multi-planar slice of the reconstructed grey level volume

was useful for distinguishing genuine structure and was desirable in regions that

were difficult to segment using thresholding. By applying VOLumetric Ultra-Sound

(VOLUS), the 3D ultrasonic system could reduce the error rate caused by shade,
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speckle, and reverberation in 2D images.

Westover [13] developed an interactive volume rendering algorithm to investigate

an ambiguous volume data with enough flexibility. The algorithm was comprised of

three parts: viewing transformation, signal reconstruction, and converting an input

sample into a shaded intermediate sample. Since the renderer was interactive, users

were able to specify application-specific mapping functions: processing speed of oil

exploration, light wavelength data for galaxies, and stacks of computed tomography

scans for medical imaging.

In sum, for investigate complex 3D structures, applying interactive 3D explo-

ration has been found to be an effective technique.

3. Multi-scale approach

Multi-scale approach was inspired by the fine-to-coarse feature hierarchy in the hu-

man visual system [14].

Zhang et al. [14] experimented with a multi-scale technique using the object

detecting strategy in humans. By using the fine-to-coarse detection strategy, many

redundant objects could be excluded solely based on the low-resolution data, where

they could detect features of objects with shorter computational time and minimal

training time.

Murtagh et al. [15] used a multi-scale approach to detect globular cluster sys-

tems around elliptical galaxies. In order to investigate the environment, they applied

pyramidal median image transform. Based on a 512 × 512 resolution image, other

lower resolution images (50% decrease per each step) were generated. Multi-resolution

transform provided several useful properties: multi-scaling of object resolution, auto-

matically ignoring unwanted background object, and detecting specific objects. They

concluded that multi-scale approaches improve the generality of the treatment and
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the accuracy of the object detection results.

4. Soma counting

Soma count serves as an important metric for investigating brain function and dis-

function, since the loss of neurons could cause physical and mental disorders [16].

D’Souza [17] developed an algorithm for counting the cell bodies in Nissl-stained

cross sectional images. The algorithm consisted of five major steps: image acquisition

from KESM, preprocessing, postprocessing, analysis and refinement, and visualiza-

tion. D’Souza applied two different methodologies depending on the cell density,

either sparse or high density. In the case of sparse population regions, he combined

connected component labelling and template matching. In dense areas, he used the

watershed algorithm. This research enabled segmentation, counting, and visualization

of cells in the KESM Nissl data.

Rapp et al. [18] analyzed the relationship between the loss of hippocampal neu-

rons and changing in mouse behaviour. By using the optical fractionator technique,

they counted the entire number of neurons in the principal cell layers of the denate

gyrus and hippocampus. They demonstrated the connection between deficit in learn-

ing and memory, and decrease in neuronal population.

Brizzee [4] elucidated the relationship between number of neurons and Alzheimer’s

disease (AD). In case of AD, there was serious decrease in the number of neurons and

dendritic regression in the affected regions.

B. Prior work

The KESM can obtain data sets of whole mouse brains at a sub-micrometer resolution

[5, 19, 20, 21]. Also, Han et al. applied a neuronal and vascular structure tracing
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technique to reconstruct the mouse brain vascular network [1, 2].

1. Imaging with the Knife-Edge Scanning Microscope

The KESM [5, 19, 20, 21] was invented by Bruce H. McCormick and improved by re-

searchers at the Brain Network Laboratory (BNL) at Texas A&M University (TAMU)

to scan entire mouse brains at a sub-micrometer resolution (down to 300 nm). This

instrument consists of a high-precision stage, a diamond knife and an illuminator, a

modified microscope, and a high-speed line-scan camera as shown in Fig. 1. A spec-

imen of mouse brain (stained in Golgi, Nissl, or India ink) was mounted on top of a

three-axis precision positioning stage, then cut by the diamond knife illuminated by

white light from the rear of the diamond knife as shown in Fig. 2. The newly cut

sections of the specimen were sampled by a high-sensitivity line-scan camera. The

obtained digital images were transmitted to the two image acquisition boards and

saved in a cluster computing system at the BNL [5].

2. Tracing vasculature of the KESM image data sets

In order to extract geometric descriptions from the raw data sets of the KESM, a

Maximum Intensity Projection (MIP) based algorithm was developed for 3D vector

tracing [1, 2]. First, manually selected seedpoints were required to start tracing.

Often, the manually selected seedpoints were not correctly centered in the vessels.

So, by employing ray casting and momentum operator, the off-center seedpoints were

adjusted to the center of the vessels as shown in Fig. 3.

Next, in order to determine the local volume size, boundaries were detected along

the three axes (x, y, and z). The three local axis lengths were calculated by distance

from the min and max-value along each axis (x− to x+, y− to y+, and z− to z+)

as shown in Fig. 4(a), (b). The obtained lengths of the three local axis were used to
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Fig. 1. The Knife-Edge Scanning Microscope (KESM) : The KESM is composed

of 3D precision stage, granite bridge, knife/illuminator assembly, and lines-

can/microscope. Adapted from [5].

(a) (b)

Fig. 2. (a), (b) A specimen of mouse brain is cut by diamond knife as the illumination

passes through the knife. Images are taken while the tissue is being sectioned.

Adapted from [5].
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(a) (b)

Fig. 3. Adjusting seedpoint to the center. (a) The procedure of adjusting seedpoint.

(b) An example of screen shot of a real seedpoint adjustment. (x denotes

a seedpoint selected by manual method and o shows an adjusted seedpoint).

Adapted from [1].

Fig. 4. Procedure for tracing. (a) Three local axes boundary detection. (b) Calculated

local axis lengths. (c) Local volume estimation based on the medium axis

length. (d) Local MIP result (the MIP of the longest local axis was ignored)

and 2D tracing. (e) 3D vessel direction estimation and adjustment using the

eigenvalue of the Hessian matrix. Adapted from [2].
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generate a fitting 3D volume. Based on the three local MIPs of this volume, fiber

direction was estimated. The local MIP along the longest local axis was ignored due

to the lack of information about the fiber direction. Therefore, only two local MIPs

were used to determine fiber direction. A multi-scale filter applying the eigenvalue of

the Hessian matrix was used to estimate fiber direction based on the two local MIPs

[22]. The tracing was stopped when two conditions were met: maximum intensity of

the next segment was less than a predefined threshold and the next candidate center

point located on the traced axes. Fig. 4 outlines the whole process.
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CHAPTER III

METHODS

In this chapter, I elaborate on the methodologies for the research. Broadly, there

are seven main steps for conducting the experiment: preprocessing, morphological

object detection, interactive 3D seedpoint validation, multi-scale method, automatic

seedpoint selection, somata counting, and tracing as shown in Fig. 5. Each procedure

is described in detail in the following sections.

Fig. 5. The overall steps for experiment.
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A. Preprocessing

In this section, I describe preprocessing steps for the experiment. Initially, the ob-

tained KESM data sets have various sources noise, which need to be removed. With-

out preprocessing, seedpoint selection algorithms could select a noise as a seedpoint.

In order to scale the method from small regional samples to the entire mouse brain,

preprocessing is an essential step. The preprocessing stage consists of five steps: data

acquisition, image inverting, noise filtering and contrast enhancement, merging image

columns, and 3D image stacking.

1. Data acquisition

The Golgi-stained data obtained from the KESM was from a whole mouse brain

(2TB, 60,000+ images). The Golgi method stains somata, dendrites, and axons of

neurons, so the full neuronal structure could be investigated [23]. Each image had

the dimension of 2,400 × 12,000 pixels with size of ∼5,000 KB (compressed). These

images were cropped down to 128 × 128 pixels to insure quick rendering. Fig. 6 shows

an example of the Golgi-stained coronal section of a mouse cortex.

2. Inverting image

The Golgi-stained images reveal the whole structure of the neurons while only staining

about one percent of the neurons in the tissue [24]. In the raw image data sets, somata

and dendrites were not clearly separated due to other random cells and noise. Those

raw images were first inverted to negative images. The inverting function of Matlab 1

was used to change the raw images. Algorithm 1 explains the step of image inverting.

Fig. 7 shows an original image (a) and its inverted version (b).

1http://www.mathworks.com
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(a)

(b)

(c)

Fig. 6. (a) Coronal sections of Golgi-stained mouse cortex can be viewed from the side

of the stack (resectioning). (b) Because Golgi-stain has sparse data, neuronal

structures can be seen easily by stacking several slices. (c) A single neuron can

be seen by overlaying 300 slices. Adapted from [5].
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1: convert the image matrix to double data type

2: find the max value in this new array and take its inverse

3: Multiply the image matrix by the factor of negImageScale and subtract the

total from 1

Algorithm 1: Inverting algorithm.

(a) (b)

Fig. 7. Inverting image. (a) Cropped (128 × 128 pixels) KESM image. (b) Inverted

image of (a). Background and foreground color was switched.

3. Noise filtering

The raw KESM images contained background noise caused by the sectioning process

and certain lighting artifacts [5]. The noise must be eliminated from the images for

the data sets to be useful. Noise was eliminated by median filtering [6]. Median

filtering not only removes extreme values, but also preserves foreground pixel values

to retain its original image.
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(a) (b)

Fig. 8. Median filtering principle. (a) Image with a noise in the center with pixel

value (150), surrounded by correct neighboring values. (b) The median filtering

result. The noise pixel value 150 is replaced with 124, so that the distinctive

pixel value is smoothed to be similar to neighboring pixel values. Adapted

from [6].

a. Median filtering

Fig. 8 displays an example result of median filtering. All surrounding pixel values of a

target pixel to be denoised are reordered as an ascending sequence. By calculating the

median pixel value among the ascending sequence, the target pixel value is adjusted.

Equation from (3.1) to (3.3) explains the median filtering mathematically. The pixel

values are stored in an N [0...n-1] array in an ascending manner.

Rx,y = Nbn/2c (3.1)

where,

Rx,y : median pixel value.

For example, in Fig. 8(a), there are 5 × 5 -1 neighbors. Suppose the center pixel value

150 is regarded as noise and needs to be smoothed out using these surrounding pixels.
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(a) (b)

Fig. 9. Median filtering result. (a) Before median filtering. (b) After median filtering.

Median filtering removed unwanted noise and smoothed the original image to

be useful for experiment.

By ascending sorting, the sequence of immediate neighbor pixel values is reordered

as

N [0...8] = {115, 119, 120, 123, 124, 125, 126, 127, 150} (3.2)

The median is 124, so the noise pixel value is changed to

Rx,y = Nb9/2c = N [4] = 124 (3.3)

Fig. 9 illustrates a median filtering result. Ambiguous background noise was elimi-

nated and overall image was smoothed so that seedpoint can be clearly identified.

4. Contrast enhancement

Additionally, with the median filtered image, I applied contrast enhancement. Con-

trast is the difference in brightness of region compared to neighboring regions [17].
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The KESM image had various brightness and gray-scale range due to uneven illumi-

nation during imaging. Such irregularities could hide and obscure an object that is to

be detected as a seedpoint. Contrast enhancement technique provided an important

role in image processing to clear the noise as shown in Fig. 10. In order to enhance

the contrast, a contrast stretching technique was applied [17]. Based on the original

contrast and brightness of the image, a linear mapping function increased the contrast

and brightness level of the image to clarify the original image [25].

Pk =
(max−min)

fmax − fmin

(qk − fmin) +min (3.4)

where,

Pk : contrast enhanced pixel value

qk : raw input pixel value

fmax : maximum pixel value of the raw input image

fmin : minimum pixel value of the raw input image

max & min : target maximum and minimum pixel value of the contrast enhanced

image.

5. Merging image columns and 3D image stacking

In order to make 3D volume data sets, image merging was needed. The whole mouse

brain slices were cut as eight deep columns using a stair-stepping method shown in

Fig. 11 to reduce knife chatter and increase the quality of the images [24]. By using the

obtained 3D data sets, whole neuronal structures in the mouse brain can be traced.

Fig. 12 illustrates how image stacking is done to obtain the 3D data sets. Whenever

a slice of a specimen was cut and scanned, the whole image was saved [24]. Part of

the images were cropped to render small 3D volumes. For efficiency of computation, I
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(a) (b)

Fig. 10. Contrast enhancement. (a) An original image before contrast stretching. (b)

The result of contrast stretching. The brightness of (b) is much stronger than

(a) and objects can be detected easier than (a).

Fig. 11. Stair step cutting. Adapted from [24].
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Fig. 12. Each column (1, 2, 3, 4, and 5) was stacked to construct a 3D volume data

set. Adapted from [24].
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chose 128 × 128 × 128 volume size as shown in Fig. 13. Also, I applied alpha channel

to all of the images to observe soma and dendrite so that seedpoints can be easily

selected [7].

Fig. 13. Stacked 3D image from 2D slices.

B. Automatic seedpoint selection

Based on the preprocessed KESM data sets, image processing techniques were em-

ployed to implement automatic seedpoint selection. The KESM data included objects

of multiple shapes and density depending on the region. So, in order to investigate

the neuronal structure within the KESM data, several image processing techniques

were required: adaptive thresholding, morphological object detection, interactive 3D

seedpoint validation, and multi-scale approach.
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(a) (b)

Fig. 14. Deciding threshold value. (a) A result of global threshold. (b) An adaptive

local threshold result. The segments in (b) are observed to maintain better

details than (a).

1. Deciding the threshold value

To implement an automatic seedpoint selection method, an optimal threshold was

required to segment the foreground and the background based on the intensity value

of the pixels. The acquired images have various structures and complex shapes. Using

only one global threshold for all pixels was not suitable for segmentation. I applied

an adaptive threshold method for discriminating the foreground and the background

[26]. Adaptive thresholding changes the threshold value dynamically over the complex

images. Based on the range of intensity values in its local neighbourhood, the adaptive

thresholding method selects an individual threshold for each pixel. Fig. 14 illustrates

different results of image segmentation with global and adaptive local threshold.
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2. Morphological object detection (opening and closing)

I employed a morphological object detection approach in order to define seedpoints.

Most of the objects obtained from the KESM locally resemble spheres (somata) and

cylinders (dendrites) connected to form complex structures. To extract useful ge-

ometric components of the KESM data sets (somata and dendrites), morphological

object detection processing was needed to preserve shapes and remove irrelevant com-

ponents in the images.

By applying the opening and closing method [7], I identified specific objects as

somata. Fundamentally, morphological image processing (opening and closing) is

implemented by dilation and erosion to remove or to add a segment.

a. Dilation

Dilation transforms a binary image to grow or become thicker by adding pixels to the

boundaries of the existing foreground object. Depending on the structure element,

additional number of pixels are determined. The structure element is a basic shape

for adding and eliminating pixel shapes in a given image. By employing the structure

element, shapes are extracted from the image depending on the structure element’s

morphological feature [7]. If A is dilated by B (structure element), the resulting set

is defined as follows [27]

A⊕B = {c ∈ EN | c = a+ b for some a ∈ A and b ∈ B} (3.5)

where,

EN : Euclidean N -space

a = (a1, · · · , aN), elements of A

b = (b1, · · · , bN), elements of B



26

Fig. 15. Principle of dilation.

A = {(0, 1), (1, 1), (2, 1), (2, 2), (3, 0)}, B = {(0, 0), (0, 1)},
A⊕B = {(0, 1), (1, 1), (2, 1), (2, 2), (3, 0), (0, 2), (1, 2), (2, 2), (2, 3), (3, 1)}.

All possible combinations of elements of the sets A and B generate the dilation

of A by B [27]. Fig. 15 illustrates the principle of dilation and Fig. 16 shows an

example of dilation result.

b. Erosion

Erosion transforms a binary image to shrink or become thinner. Similar to dilation,

the structure elements control how the original image should be reduced. Fig. 17

illustrates the principle of erosion. Fig. 18 shows an example of erosion. If A is

eroded by B (structure element), the resulting set is defined as follows [27]

A	B = {x ∈ EN | x + b ∈ A for every b ∈ B} (3.6)

where,

EN : Euclidean N -space

a = (a1, · · · , aN), elements of A

b = (b1, · · · , bN), elements of B
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(a) (b)

Fig. 16. Dilation example. (a) The broken character. (b) Dilated by structure ele-

ments. Dilation makes characters more clearer than (a). Adapted from [7].

Fig. 17. Principle of erosion.

A = {(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (3, 1), (4, 1), (5, 1)},
B = {(0, 0), (0, 1)}, A	B = {(1, 0), (1, 1), (1, 2), (1, 3), (1, 4)}.

3. Opening and closing

Dilation and erosion are combined to identify a specific component without image

distortion. Opening removes sharp peaks and thin connections with various structure
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(a) (b)

Fig. 18. Erosion example. (a) An original image. There are thin and long lines be-

tween surface object and inner rectangular object. By applying the erosion

technique, the lines can be removed. (b) A result of erosion with a structure

element (disk of radius 10). The thin lines were eliminated and other objects

were preserved. Adapted from [7].

elements (diamond, disk, rectangle, line, and square) to smooth out the contour.

Closing links narrow breaks, fills long thin gulfs, and fills holes smaller than the

structure elements. The morphological opening of A by a structure element K is

defined as

A ◦K = (A	K)⊕K (3.7)

Morphological closing of A by structure element K is defined as

A •K = (A⊕K)	K. (3.8)

Fig. 19 shows an example of morphological object detection procedure. Based

on the morphological opening and closing method, seedpoints were selected on the

KESM data sets to trace. As can be seen in Fig. 20, the KESM data contains com-

plex structure. By employing morphological image processing, somata were reliably

selected as seedpoints. Because opening and closing method cuts dendrite segment
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(a) (b)

(c) (d)

Fig. 19. Morphological object detection. The figures show the result of applying the

opening and closing image processing method. By opening, small protruding

objects were removed; also by closing, small holes of the raw images were

eliminated. (b) The result of opening. The thin protrusions and outward

pointing boundary irregularities of (a) were removed. Also, the thin bridge

and small isolated objects were eliminated. (c) The thin gulf, the inward–

pointing boundary irregularities, and the small holes were removed. (d) The

result of combining a closing and an opening for removing noise. Adapted

from [7].
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(a) (b)

(c) (d)

Fig. 20. (a) An original KESM image. (b) A result of opening. Dendrites (cylinder

shape) is eliminated. The sphere shapes are somata. (c) Illustrations of the

result of soma detection applying opening. Somata (red dot) are detected

, however, there are redundant segments due to the overlapping dendrites

and some artifacts noise. (d) Combination opening and closing. Redundant

segments were removed.
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and adds more pixels around somata to be selected as seedpoints. In case of regions

with low density of structures, the technique extracted seedpoints correctly. However,

as the complexity grew, there were overlapping objects that were incorrectly marked

as soma as shown in Fig. 20(c). For example, when the dendrites are overlapping in

stacked slices, the region had enough clustered pixels to be confused as soma. So, a

validation procedures for morphological object detection approach was required. In

the next section, I will explain the interactive 3D seedpoint validation method.

4. Interactive 3D seedpoint validation

With the morphological object detection method, there was limitation about vali-

dating whether the detected object was soma or not. The KESM image structure

was not easy to validate with single layer images. In order to validate the detected

seedpoints, I employed an interactive 3D seedpoint validation method. This method

extracted information from the volumetric KESM data sets by using three different

orthogonal slices corresponding to the detected seedpoint, manipulating, and render-

ing with enough flexibility to validate the detected objects.

In order to validate a detected seedpoint in different planes, this method ana-

lyzes not only each 2D slice of a specific region, but also a 3D rendering of the spatial

information of the area related to the 2D image. In short, interactive 3D seedpoint

validation could ensure segmentation quality that simple visualizations in 2D can not.

Han et al. [1] set the seedpoints manually based on xy plane images. However, his

work was labor-intensive, since it had to set all initial points in a complex and massive

structure. This was because the morphology of neuronal objects has different shapes

depending on the perspective and transparency as shown in Fig. 21.

The proposed interactive viewer shows three different orthogonal slices (xy, yz,

and zx) of the data sets along with the seedpoints from three different views. If one
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(a) (b) (c)

Fig. 21. In 3D data set, in terms of one object, there are three different orthogonal

(xy, yz, and zx) planes depending on perspective. In the KESM, the original

soma is overlapped and shaded by other somata and dendrites. (a) A case of

partially overlapped structure; upper neuron’s dendrite shades on top of the

lower neuron. (b) Two overlapped somata. (c) Overlapped dendrites that can

be detected as a soma.

of the objects on the xy view was not selected, it can be corrected by referencing

other slices’ detected coordinates.

Fig. 22 illustrates the concept of the interactive 3D seedpoint validation approach.

Fundamentally, the raw KESM image slices were stacked along the z axis direction

(bottom to top). Thus, a voxel can have three orthogonal views (xy, yz, and zx). In

order to trace the neuronal structure, Han et al.[1] set seedpoints on xy plane and

the tracing was initiated on that plane.

In Fig. 22, the green dot s(x
′
, y

′
, z

′
) represents a voxel coordinate on the xz view

and the blue dot r(x
′′
, y

′′
, z

′′
) denotes a voxel of the zy view. The red dot, f(x, y, z),

is required to be validated as soma. If one of the seedpoints was not detected on the

xy orthogonal view, while it was detected on the other slices, the missed coordinate

of the object could be calculated by referencing the intersection coordinate of (x, y) of

xz and zy planes as shown in Fig. 23. In the example, the z, z
′
, and z

′′
have the same
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Fig. 22. f(x, y, z) is calculated by referencing the s(x
′
, y

′
, z

′
) and r(x

′′
, y

′′
, z

′′
). The

shared coordinate is the z axis (z = z
′

= z
′′
). From the shared value of the

three equations, the x and y are extracted from the relationship.

Fig. 23. z is a shared coordinate between two plane coordinates. The z value was

removed as a bridge to complement the missed (x, y) coordinate. The simple

mathematical equation results in (x, y).
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value. Fig. 23 shows an simple relationship between two coordinates which include

same z axis coordinate. Fig. 24 shows an example of validating ambiguous seedpoints

using the interactive 3D seedpoint validation.

C. Multi-scale approach

1. Principle of resolution

Scale (resolution) means the level of detail in image information. Resolution is defined

as the number of pixels per inch. High resolution image contains more details in each

pixel, so it provides detailed information about the image. Pixels are the basic element

for digital image. When the total number of pixels in the image is fixed, the increase

of resolution results in the change of the physical dimension of the image and vice

versa. Multi-scale methods enable the analysis of image with different scales. Fig. 25

displays an example of multi-scale image and the loss of information as the resolution

is decreased. The purpose of using multi-scale approach was to discriminate multiple

overlapping segments from true seedpoints.

In the previous section, the morphological object detection technique provided

a method to define somata as seedpoints and interactive 3D seedpoint validation

method validated the detected somata. However, in the native resolution of the raw

image, it was difficult to obtain correct coordinates of a seedpoint due to the complex

neuronal structures in the KESM data. In case of a high resolution image, some parts

of the detailed object parts could be falsely identified as a seedpoint. On the other

hand, in low resolution images, legitimate seedpoints could be missed. By changing

the resolution of the raw image to higher or lower, I determined whether an object

in the complex structure was a seedpoint or not. Fig. 26 shows a screen shot of a
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Fig. 24. Interactive 3D seedpoint validation. SliceXY is for frontal, SliceXZ is for

trasversal, and SliceZY is for coronal view. Each orthogonal view of the

KESM data set is displayed with detected colorized seedpoint. The colors

are marked on the center point of the segment. The blue cross bar indicates

the individual seedpoint following mouse movement. The blue crossbar can

be moved by clicking on the orthogonal views. In the xy orthogonal slice

view, one segment below the crossbar was not detected as a seedpoint. By

referencing the other slice views’ detected seedpoint coordinates, the missed

segment was validated as a seedpoint.
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(a) (b) (c) (d)

Fig. 25. Samples of multi-scale. (a) An original image (128 × 128 pixel). (b) Resolu-

tion is decreased to fifty percent compared to original image. (c) Resolution

is decreased 75 percentage compared to original image. (d) Resolution is de-

creased 88 percentage compared to original image. The edge and shape is not

the same as original, also, the information of the pixel is missing along with

the resolution decline.

(a) (b)

Fig. 26. Multi-scale approach. By changing the image resolution, somata were dis-

criminated from densely overlapping dendrites. (a) The original image. (b)

40% resolution decreased from the original image. The unwanted overlapping

dendrites were not detected by decreasing the image scale.
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complex data set with multiple overlapping dendrites that could be misidentified as

cell bodies.

D. Automated tracing

After obtaining the seedpoints, I used the seedpoints to run Han et al.’s tracing al-

gorithm [1, 2]. After neuronal structure tracing, I analyzed morphological features of

neurons and other structures of the mouse brain with image visualization programs:

MeVisLab and ParaView. Also, I validated the seedpoint selection algorithm with

the tracing result. The two coordinate system used by the seedpoint selection algo-

rithm and the tracing algorithm were different, so synchronizing the two coordinates

was needed. After modifying the seedpoint coordinate system, the coordinates were

transferred to a seed-list file for use with the tracing algorithm. Finally, the tracing

algorithm was initiated to reconstruct the KESM data sets.

E. Counting soma

In this section, I investigate regional differences in neuronal distribution [28, 29]. The

brain is divided into several parts related to different functions. For example, different

parts of the brain are clearly distinguishable: the cortex, hippocampus, colliculi, and

cerebellum as shown in Fig. 27(a). Each region has different populations of neurons

and quantitative evaluation of the functional capacity of neuronal systems [30].

I counted somata to estimate the distribution of neurons in different areas in the

KESM Golgi data sets. The procedure was as follows. From the superficial layer of

the brain (cortex) to the deep regions (colliculi and hippocampus), the somata along

the perpendicular to tangential directions were counted as shown in Fig. 27(b). Using

the previous section’s methods (combining opening and closing), I implemented an
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algorithm for automatically counting somata on three different orthogonal directions

(xy, yz, and zx), and measured the number of somata across different regions. Neu-

ronal cell bodies are spherical or nearly spherical structures with a diameter of about

6 - 12 µm . So, soma can be identified as a counting unit within them [31].

In order to count the number of somata, I started with a small sample of 128 ×

128 × 128 volume as shown in Fig. 28. Depending on the the regions, I experimented

with various thickness and multiple scanning directions. The experimental regions

were cropped as rectangular blocks for counting as shown in Fig. 29. The counting

direction is illustrated in Fig. 28. The xy, yz, and zx projections were extracted using

the squeeze function in Matlab to count the number of somata. One projection, the

xy, was chosen for counting. With only a single projection, parts of neuron were too

small to distinguish. To detect the shape of neuronal features, I stacked 12 projections

as shown in Fig. 28. The counting results will be shown in the following chapter.
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(a)

(b)

Fig. 27. Soma counting. (a) A regional annotations of mouse brain. (b) The perpen-

dicular to tangential directions for counting somata from surface (cortex) to

deeper regions (hippocampus and colliculi).
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Fig. 28. Soma counting direction. Blue arrow represents the counting direction, which

is perpendicular to the xy projection.

Fig. 29. Overview of part of the mouse brain. The shaded rectangular area is selected

for counting.
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CHAPTER IV

RESULTS AND ANALYSIS

In the previous chapter, several methodologies for setting seedpoints in the KESM

data sets were described. In this chapter, through analysis and comparison of all

the methodologies, the efficiency and accuracy of each method is analyzed. Also,

I compared the performance between manual and automatic method for seedpoint

selection.

In order to evaluate the effectiveness of the methods; a comprehensive experiment

on various KESM data sets is necessary. The experimental volume size was 128 ×

128 × 128 (rows × columns × images) and the color depth was 256 gray-levels.

After obtaining the seedpoints automatically, the result was analyzed using F-measure

[32]. Detail regarding F-measure will be explained in section A. In section B, the

performance result of automatic seedpoint selection from three different regional data

sets will be presented. In section C, tracing results based on the automatically selected

seedpoints will be shown. In section D, comparison of the tracing result based on

manual or automatic seedpoints will be shown. In section E, the soma counting

result will be described.

A. F-measure

In order to measure the accuracy of the introduced methodologies, F-measure was

employed. F-measure consists of two primary metrics: precision (p) and recall (r).

Precision is the proportion of correctly selected seedpoints among all returned seed-

points. Recall is defined as the proportion of correctly selected seedpoints among all

true seedpoints. Below is the equation for F-measure [32].
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F =
2pr

p+ r
(4.1)

where,

p (precision) = n3 / n2

r (recall) = n3 / n1

n1 = true number of seedpoints

n2 = number of all selected seedpoints

n3 = number of correctly selected seedpoints

The F-measure values range between 0 to 1 and the higher the value of F-measure,

the higher the performance.

B. Automatic seedpoint selection

The evaluation of the automatic seedpoint selection method was done with different

regions in the Golgi-stained KESM data sets. The data sets were sampled (128 ×

128 × 128 voxel) from the hippocampus region of the KESM data. The comparison

of seedpoint selecting was proceeded perpendicular to xy plane at intervals of eight

slices. As describe in the methods chapter, each seedpoint selection algorithm was

optimized for different density and neuronal morphology. Fig. 30 shows seedpoint se-

lection results. Table I shows the precision, recall, and F-measure result of automatic

seedpoint selection, respectively.

In Fig. 30, the blue segmentation is neuronal structure (somata and dendrites)

and the pink dot represents selected seedpoints, respectively. Depending on the image

resolutions and validation methods, the number of detected seedpoints was different

as can be seen in Fig. 30. The left column shows the result of morphological object

detection, the middle column is the visualization result of interactive 3D validation,
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Morphological Interactive Multi-scale

(a)

(b)

(c)

Fig. 30. Seedpoint selection result. (a), (b), and (c) Different regions of the KESM data

set (128 × 128 × 128 each). Morphological object detection, interactive 3D

validation method, and multi-scale approach were applied to select somata as

seedpoints. Pink dots illustrate selected seedpoints. Blue segments represent

the underlying neuronal structures.



44

Table I. F-measure comparison result from the three different hippocampus regions

of the KESM data sets ((a), (b), and (c)). Each corresponding result is

shown in Fig. 30. Each data sample is applied to different seedpoint selection

methodologies. In general, the recall value is higher than the precision value.

F-measure is increased when the multi-scale approach was applied to the same

sample.

Data sample Methods Precision Recall F-measure

(a)

Morphology 0.26 0.76 0.39

Interactive 0.27 0.76 0.40

Multi-scale 0.42 0.74 0.53

(b)

Morphology 0.37 0.82 0.51

Interactive 0.38 0.84 0.52

Multi-scale 0.44 0.87 0.58

(c)

Morphology 0.30 0.85 0.45

Interactive 0.32 0.89 0.47

Multi-scale 0.43 0.81 0.56
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and the right column represents the result of multi-scale approach. The morphological

object detection method and interactive 3D validation shows almost the same result.

Visualization alone is not enough to show the similarity between the two conditions,

however, Table I shows that they are approximately the same. Between morphological

object detection and interactive 3D validation, there are only one or two seedpoints

that need to be eliminated. By removing the redundant seedpoints, the precision and

recall result of interactive 3D validation is changed to slightly higher than that of the

morphological object detection method.

In case of sparse neuronal structure area, these two methodologies performed

good enough to set seedpoints efficiently. However, Fig. 30 shows the limitations of

these methodologies. There are several seedpoints that are set on the same segment

of complex neuronal structures. In a densely overlapping area, the multi-scale ap-

proach eliminates such redundant seedpoint problems and improves the F-measure

compared to the previous methodologies. As can be seen in Fig. 30, the right column

of the figure has fewer seedpoints than the left column images. Also, Table I shows

the result of improved precision, recall, and F-measure. The low resolution image

could remove unnecessary noise and small segments that are not parts of the soma.

C. Tracing results by automatic seedpoint selection

In order to trace the neuronal structure with the automatically selected seedpoints,

the voxel coordinates were transmitted to Han et al.’s tracing algorithm. Fig. 31 shows

the result of tracing. For computational efficiency, 128 × 128 × 128 volume data sets

were traced. Han et al.’s original tracing algorithm was optimized for vasculature

data sets. However, the algorithm worked well with the Golgi-stained data sets. In
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Fig. 31(a), the light green segments indicate the result of tracing. The long structures

shown as red in Fig. 31(a) are somata and dendrites. The complicated structures to

the left side are also neuronal structures. In dendrites, the tracing result was aligned

along the structure. In case of soma, there were loopy tracing results. As describe

before, Han et al.’s algorithm was originally for vessel tracing, so in case of soma, the

object diameter did not match that of the typical vessel segment, thus resulting in

incorrect tracing, since the boundary detection and tracing direction decision in Han

et al.’s algorithm did not apply well in this case.

Comparing the tracing results and the seedpoint selection results showed that

the total traced neuronal structure length depended upon the number of selected

seedpoints. More seedpoints led to much longer traces than traces started from fewer

selected somata in the same data sets. There was redundant tracing with more

seedpoints, however, it led to more detailed tracing results, thus there is a trade-off.

D. Manual and automatic seedpoint selection comparison

In order to validate the performance of the automatic seedpoint selection methods,

manual and automatic methods were compared. To evaluate the performance of the

seedpoint selection methods, three different conditions were given: manual, automatic

selection 1, and automatic selection 2. Manually, three users were asked to select fifty

seedpoints each in the three data sets. Automatic selection 1 was configured to select

similar number of seedpoints as that of the manual method. On the other hand,

automatic selection 2 was allowed to select seedpoints as many as possible. Table II

shows the results of the experiments. Automatic methods performed well in terms of

time, but F-measure was not better than the manual method. When users selected

a seedpoint, they checked and analyzed, rejecting small objects. However, in case of
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(a)

(b)

Fig. 31. Tracing result. (a) and (b) The tracing results. The green curves represent

the tracing result. The red objects are the underlying data showing somata

and dendrites.
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Table II. Comparison result of manual and automatic seedpoint selection.

Manual Automatic 1 Automatic 2

(a)

Seedpoints 50 68 301

Time (second) 95 3 6

F-measure 0.92 0.74 0.25

(b)

Seedpoints 50 64 269

Time (second) 105 4 7

F-measure 0.94 0.86 0.30

(c)

Seedpoints 50 58 320

Time (second) 125 5 7

F-measure 0.80 0.75 0.24

automatic method, the algorithm tended to identify small particle as seedpoints. For

the automatic selection 2 condition, seedpoint counts increased to almost six times

the usual value, and the F-measure was improved and tracing result was much better

than the automatic selection 1 condition. Fig. 32 illustrates the tracing results for the

three different seedpoint selection conditions. Manual seedpoint selection identified

seedpoints more correctly, but it took longer compared to automatic seedpoint selec-

tion methods. In general, automatic seedpoints performed well in terms of execution

time. However, in terms of F-measure, the manual seedpoint selection was better.

E. Soma counting result

Based on the seedpoint selection methodologies, we can measure the number of so-

mata in different area of the KESM data sets. I examined the result of the soma
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Manual Automatic 1 Automatic 2

(a)

(b)

(c)

Fig. 32. (a), (b), and (c) Tracing result of manual and automatic seedpoint selection

in different regions. Manual seedpoint selection chose fifty seedpoints. Auto-

matic selection 1 chose seedpoints between fifty and sixty, similar to the man-

ual condition. Automatic selection 2 selected seedpoints as much as possible.

The green curves are the tracing results based on the acquired seedpoints.
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(a) (b)

Fig. 33. Somata counting result. (a) and (b) The number of somata from cortex to

hippocampus, respectively. Regionally, distribution of somata is different.

distribution to obtain a quantitative information regarding the regional variations.

The distribution of soma was estimated from the superficial to the inner depth direc-

tion of the KESM data sets. To experiment, I connected 128 × 128 × 128 volumes

along the perpendicular to tangential direction. Regionally, the somata density is

uneven. Due to different functions of brain, the neuronal density is different as shown

in Fig. 33. Further visual inspection in MeVisLab shows that these gaps are areas

with sparse somata and neuronal structures as shown in Fig. 34. The soma counting

algorithm can be useful in diagnosing malfunction in the brain as previously explained

in the background chapter.
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Fig. 34. Visualization using MeVisLab. This figure represents a portion of a visual-

ization of soma distribution at a point in the middle of a counting direction

(oriented from cortex to hippocampus). There are different densities of neu-

ronal structures.
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CHAPTER V

DISCUSSION AND CONCLUSION

This chapter discusses the main contribution of this research compared to related

works, open issues, future directions, and conclusion.

A. Contributions

In order to overcome limitations in the related works in the background chapter,

I presented and evaluated new methodologies to set seedpoints automatically. The

main contributions of my methodologies are: (1) Automatic seedpoint selection: The

algorithm can significantly reduce time needed to set seedpoints, without human inter-

vention. (2) Tracing neuronal structures of the KESM data set with many seedpoints:

Han et al.’s tracing algorithm can be initiated with enough seedpoints to trace large

number of neuronal structures. (3) Quantitatively measured soma distribution: the

number of somata was counted to investigate regional differences and morphological

features. In summary, the proposed methodologies performed well on the large scale

KESM data sets.

B. Open issues and future work

In this thesis, I have demonstrated that the proposed automatic seedpoint selection

algorithm can complement Han et al.’s previous manual seedpoint selection method

and quantitatively measure the number of somata of the mouse brain. However, there

are several open issues: (1) a method to eliminate redundant seedpoints on the same

segment (2) an advanced method for determining the threshold, (3) a noise filtering

method (4) improvement on the interactive 3D validation framework. In this section,
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I will discuss these open issues and future work to overcome these problems.

1. Redundant seedpoints

In order to trace large portions of the KESM data set, I had to set as many seedpoints

as possible. As I described in the result and analysis chapter, the tracing result was

better when more seedpoints were selected. However, by using the automatic method,

redundant seedpoints were found, which made the tracing step inefficient. Due to the

unnecessary seedpoints, the neuronal structures were traced several times depending

on the number of seedpoints. Also, redundant seedpoints wandered off to a different

direction: opposite direction or overlapping preexisting traces. To reduce the tracing

time of the entire mouse brain and correctly trace the neuronal structures, redundant

seedpoints need to be eliminated.

As I explained in the methods chapter, adaptive thresholding was used to identify

a seedpoints in complex structures. The adaptive thresholding method performed

well, but it produced excessive seedpoints. It generated redundant seedpoints within

a single object. In the future, I will apply more advanced thresholding techniques to

overcome this limitation.

2. Loss of seedpoints

The KESM data sets contain neuronal structures of various shapes and sizes. Tiny

dots or thin lines were removed by morphological object detection and median fil-

tering. However, loss of essential segment happened at the same time due to the

intensity values or irregular shapes. Without verification, those components would

be incorrectly considered as noise, where the result of tracing would be disconnected

dendrites or abnormal connections.

In order to solve the loss of seedpoints due to excessive noise removal, I will
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develop methods to preserve seedpoints in significant parts of the data set. Also, I

will investigate other adaptive methods to decide the threshold value and filtering

conditions.

3. Limitations of the interactive 3D validation method

The interactive 3D validation method was used to discriminate overlapping seedpoints

and to define part of a neuron as a seedpoint in massively complex neuronal struc-

tures in the KESM data sets. However, performance of the method was not enough to

overcome all problems. The method was based on manually matching the coordinates

in all three orthogonal projections. However, it was hard to match the corresponding

points in the three projections. So, there was no big difference between the mor-

phological object detection algorithm and the interactive 3D validation method. In

order to enhance the interactive 3D validation method, another coordinate matching

technique is needed.

In the future, I will develop an advanced technique that can discriminate overlap-

ping seedpoints using the pixels’ intensity range. By fixing a specific intensity bounds

between obtained coordinates, this method will be able to pair more corresponding

coordinates as matching coordinates.

4. Experimenting with the entire KESM data set

In this research, only a small portion of the KESM data set was used. Basically,

I experimented with 128 × 128 × 128 volume data sets. Because the KESM data

sets’ size was too big to execute in one single experiment with the current computer

systems, small interesting portions of the KESM was sampled and processed. The

neuronal structures were traced well locally by using the automatic seedpoint selection

algorithm and Han et al.’s tracing algorithm. However, the ultimate goal of the BNL



55

is to investigate an entire mouse brain to understand the morphology and function

through the reconstructed connectivity. Therefore, by utilizing increasing computer

performance (CPU, GPU, memory, and programming language), I will experiment

with larger chunks of the KESM data set.

C. Conclusion

The aim of this research was to develop a robust algorithm for automatically set-

ting seedpoints for the KESM Golgi data set. A new automatic seedpoint selection

algorithm was developed to complement the previous manual approach in Han et

al.’s work. Through comprehensive experiments, this research improved the previous

manual seedpoint selection method [1, 2], to set the seedpoints automatically. This

method helped rapidly reconstruct the sub-micrometer resolution KESM data set.

By combining the morphological object detection algorithm, interactive 3D seedpoint

validation, and multi-scale approach, I reduced the processing time and decreased the

error rate in seedpoint selection. The proposed algorithms were more robust and com-

prehensive than conventional approaches. Furthermore, I contributed to the analysis

of quantitative distribution of neurons and to the tracing of neuronal structures in

the mouse brain. The methodologies introduced in this thesis are expected to help

analyze larger portions of the KESM data set.
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