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ABSTRACT 

 

Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a 

Fully Coupled Displacement Discontinuity Method. (August 2011) 

Byungtark Lee, B.S., Korea Aerospace University 

Chair of Advisory Committee: Dr. Ahmad Ghassemi 

 

In geothermal reservoirs and unconventional gas reservoirs with very low matrix 

permeability, fractures are the main routes of fluid flow and heat transport, so the 

fracture permeability change is important. In fact, reservoir development under this 

circumstance relies on generation and stimulation of a fracture network.  This thesis 

presents numerical simulation of the response of a fractured rock to injection and 

extraction considering the role of poro-thermoelasticity and joint deformation. Fluid 

flow and heat transport in the fracture are treated using a finite difference method while 

the fracture and rock matrix deformation are determined using the displacement 

discontinuity method (DDM).  

The fractures response to fluid injection and extraction is affected both by the 

induced stresses as well as by the initial far-field stress. The latter is accounted for using 

the non-equilibrium condition, i.e., relaxing the assumption that the rock joints are in 

equilibrium with the in-situ stress state.  

The fully coupled DDM simulation has been used to carry out several case 

studies to model the fracture response under different injection/extractions, in-situ 
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stresses, joint geometries and properties, for both equilibrium and non-equilibrium 

conditions. The following observations are made: i) Fluid injection increases the 

pressure causing the joint to open. For non-isothermal injection, cooling increases the 

fracture aperture drastically by inducing tensile stresses. Higher fracture aperture means 

higher conductivity. ii) In a single fracture under constant anisotropic in-situ stress (non-

equilibrium condition), permanent shear slip is encountered on all fracture segments 

when the shear strength is overcome by shear stress in response to fluid injection. With 

cooling operation, the fracture segments in the vicinity of the injection point are opened 

due to cooling-induced tensile stress and injection pressure, and all the fracture segments 

experience slip. iii) Fluid pressure in fractures increases in response to compression. The 

fluid compressibility and joint stiffness play a role. iv) When there are injection and 

extraction in fractured reservoirs, the cooler fluid flows through the fracture channels 

from the injection point to extraction well extracting heat from the warmer reservoir 

matrix. As the matrix cools, the resulting thermal stress increases the fracture apertures 

and thus increases the fracture conductivity. v) Injection decreases the amount of 

effective stress due to pressure increase in fracture and matrix near a well. In contrast, 

extraction increases the amount of effective stress due to pressure drop in fracture and 

matrix.  
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1. INTRODUCTION 

 

A significant portion of worldwide petroleum and geothermal reservoirs are 

discovered in naturally fractured systems or low permeability reservoirs that need be 

fractured (Van Golf-Racht, 1982). The interest in behavior of fractured systems has 

increased in light of recent increase in petroleum production from unconventional 

reservoirs such as Marcellus, Haynesville and Bakken. From a geomechanical point of 

view, a fracture is a surface on which a loss of cohesion has occurred, creating a surface 

of rupture (Fig. 1.1). A fracture with relative displacement of its sides is called a fault, 

while a fracture in which no noticeable displacement has occurred can be defined as a 

joint (Van Golf-Racht, 1982). More generally, a fracture can be defined as a surface of 

discontinuity in displacements, where rock breaks into blocks along cracks, fissures, 

joints.  
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Fig. 1.1 An illustration of fault and joint (Van Golf-Racht, 1982). 
 

Natural or man-made fractures are the main channel for reservoir fluid as they 

often have significantly higher porosity and permeability than the reservoir matrix. 

Fracture permeability is critical to the hydrocarbon production and effective geothermal 

reservoir development. This section starts with a brief introduction on the history of 

naturally fractured reservoir modeling and the numerical methods used. Then, the 

objectives of this research are described and a summary of thesis is presented.  
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1.1  Modeling of Naturally Fractured Reservoir 

Modeling of naturally fracture reservoir to investigate the fracture aperture, stress 

change, flow channel and other related factors has been the subject of research for long 

time. Warren and Root (1963) introduced a model with dual-porosity to illustrate 

naturally fractured reservoirs (Fig. 1.2). The reservoir is simplified as a homogeneous 

system with rigid fractures and matrix. Both the matrix and the fractures were assigned 

porosity and permeability. Pseudo steady state flow was assumed in the matrix, as well 

as for flow between matrix and the fractures. 

 

Fig. 1.2 An actual reservoir and model reservoir with matrix and fracture in two- 
dimensional (unit height, 1m). 
 

However, the fractures and matrix do deform when the effective stress is 

increased by production or decreased by injection.  
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Goodman (1976) and Bandis et al. (1981, 1983) investigated the fracture aperture 

and permeability change by stress change through laboratory experiments. Generally, in 

a naturally fractured reservoir, fractures are more dependent on stress and pressure 

change than the matrix as the fractures are more deformable than the matrix. Fracture 

deformation pattern between normal and shear deformation is different. According to 

Bandis et al. (1983), the closure of joints varies non-linearly (hyperbolic behavior) with 

normal stress change while the shear deformation of joints shows an almost linear 

behavior before yielding and shows complicated (unpredictable) behavior after yielding.      

Considering an elastic impermeable porous medium, Crouch and Starfield (1983) 

developed the elastic displacement discontinuity method (DDM) to models the 

interactions not only between fractures but also the influence caused by fracture 

deformation. DDM is one of boundary element methods which can be used to solve time 

dependent boundary value problems such as dynamic elasticity. Asgian (1988, 1989) 

used the elastic DDM to study the fracture aperture changes in a naturally fractured 

reservoir subjected to isothermal injection (Fig. 1.3). 
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Fig. 1.3 Fluid-rock interactions in a deformable naturally fractured reservoir, ∆σ, ∆p , 
∆D  denote change in stress, pressure and deformation (Asgian, 1988, 1989). 

 

Generally, the fractured reservoirs, there is communication between the fractures 

and the matrix, including fluid and heat as well as chemical species. Biot (1941) 

introduced the theory of poroelasticity to consider the interactions between fluid 

diffusion and rock deformation in the elastic regime. Rice and Cleary (1976) further 

developed the theory of poroelasticity by expressing it material parameters in more 

explicit form.  
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The DDM also has been extended to poroelasticity by Curran and Carvalho 

(1987) and also applied to fracture and wellbore problems (Carvalho, 1990).  

The poroelastic DDM was then used by Tao (2010) and Tao et al. (2011) to 

investigate production and well testing in fractured reservoirs. The model fully coupled 

the fracture aperture change with stress and pore pressure in fractures and in matrix. 

 

 

Fig. 1.4 Figure of the induced deformation of porous medium by the fluid flow in the 
interconnected pores in a porous matrix (left) and figure of the induced pore pressure 
change by compression of a continuum porous matrix and fluid flow in the 
interconnected pores (right) (Tao,  2010). 

 

According to Fig. 1.4, there is a matrix deformation caused by fluid diffusion and  

an induced fluid flow caused by porous medium deformation. So, if there were natural 

fracture in reservoir, the fracture aperture would change by expansion and compression 

related to injection and/or production.  

Also, a three-dimensional DD-based numerical model for poroelasticity has been 

developed to simulate the fluid injection/extraction process and investigate fracture 

aperture changes by Zhou and Ghassemi (2011). 
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McTigue (1986) introduce the theory of poro-thermoelasticity to consider 

thermoelastic response of fluid-saturated porous rock. This theory contains thermal 

expansion of the fluid and also solid constituents and fluid compressibility. According to 

McTigue, in certain cases, convective heat transfer can be neglected and the temperature 

can be independently determined. In the context of DDM, this means that the thermal 

source term can be substituted in the pore pressure and stress equation as a known value. 

This procedure is specified in Section 2.6.3. 

Ghassemi and Zhang (2006) developed the transient poro-thermoelastic DDM. 

They examined the fracture response in poro-thermoelastic reservoir caused by stress, 

pressure and temperature changes. It was shown that the thermal effect causes pore 

pressure variations and connect between thermal and poro-mechanical processes. Also, 

the cooling of the fracture surfaces increases the fracture aperture drastically due to the 

temperature change and thermal and elastic rock properties. This DD formulation was 

used by Tao and Ghassemi (2010) to develop a poro-thermoelastic model for fluid flow 

and heat transport in fractured reservoirs. However, the fracture shear slip was not 

considered and the fracture system was assumed to be in equilibrium with the initial in-

situ stress field.  

In naturally fractured reservoirs, the fracture aperture are changed by shear slip 

and opening, which in turns influences fluid and heat flow. Therefore, investigating the 

fracture network response is directly related to effective design of an enhanced 

geothermal system (EGS) and its efficient operation.  
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1.2  Objective of Research 

 The objectives of the research are: 

• To study the theory of poro-thermoelsticity and understand the fully coupled 

poro-thermoelastic displacement discontinuity method (DDM) with fluid and 

heat transport in naturally fracture 

• To develop a joint model for the fully coupled DDM under non-equilibrium 

condition to investigate permanent shear slip caused by injection in anisotropic 

stress condition 

• To observe the induced pressure, temperature and stress in field by fluid injection 

or production in isothermal or cooling case with simple, regular and irregular 

fracture network cases 

• To investigate the fluid flow channels and temperature channels and distribution 

in irregular fracture network  

• To compare the fracture pressure, fracture aperture and temperature results in 

both with far field stress (non-equilibrium) and without far field stress   

1.3  Summary of Thesis 

This thesis consists of six sections. Section 1 describes the objective of this 

research with introduction of previous development of modeling of naturally fractured 

reservoir. In addition, the development history of elasticity, poroelasticity and poro-

thermoelasticity theory and the displacement discontinuity method (DDM) are reviewed. 
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Section 2 introduces the theory and derivation of equations used in this research. 

First, the elastic DDM in an infinite nonporous media which is developed by Crouch and 

Starfield (1983) is introduced. And this section introduces a brief derivation of equations 

of poroelasticity DDM which is developed by Biot (1941) and Carvalho (1990) in an 

infinite porous media and also introduce a brief derivation of poro-thermoelasticity 

DDM. After describing poro-thermoelastic DDM, the fluid transport equation and the 

heat transport equations are introduced (developed by Tao and Ghassemi, 2010). Also, 

Section 2.5 describes the concept of normal and shear fracture deformation. After 

completing the introduction, these equations are coupled and detail solving procedure 

are explained with the fully coupled poro-thermoelastic DDM.  

Section 3 reviews the elastic joint and failure mode. An elastic joint is 

permanently deformed when the joint is fully opened or slipped. Mohr-Coulomb failure 

criterion is introduced for this purpose. Section 3.3 introduces the non-equilibrium 

condition which means that the in-situ stresses affects the joint initially. Especially, the 

far-field stresses play a key role to permit the permanent shear slip caused by injection 

which decreases the amount of effective stress in the fracture.  

In Section 4, we generate the permanent shear slip caused by constant injection at 

the center of the fracture under non-equilibrium condition. And, using DD method, draw 

the field (matrix) distribution graphs of the induced pressure, temperature, normal and 

shear stress. Actually, under equilibrium condition, there is no significant shear 

displacement in a single fracture. So, the shear deformation mechanism in the simple 

fracture network cases will be investigated. In addition, at the beginning of this section, 
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an injecting well case is investigated to verify a fully coupled DDM comparing the 

results of pressure, temperature, tangential and radial stresses to analytical solution. 

Section 5 contains the simulation in regular and irregular fracture network with 

injection and extraction under equilibrium and non-equilibrium conditions. Also in this 

section, the fluid flow channel and the flow mechanism in irregular fracture network will 

be investigated. In addition, using DD method, find the induced pressure, temperature 

and stress distribution graphs in field (matrix).  

Finally, in Section 6, the thesis will be concluded with conclusion and future 

work. This research examines the results under restricted condition. The fluid is only one 

phase, water and the reservoir is two-dimensional. Therefore, several future studies will 

be recommended.  
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2. FULLY COUPLED DISPLACEMENT DISCONTINUITY METHOD 

 

In this section, the derivation of the equations used in numerical simulation will 

be introduced briefly. First, the elastic displacement discontinuity method (DDM) is 

described, and then the major features of the poro-thermoelastic DDM are explained. 

Second, the heat transport and fluid transport equations are derived to illustrate the basic 

concept of flow in fractures. Third, joint deformation in shear and normal mode is 

described. And finally, the fully coupled DDM for heat transport, fluid transport and 

joint deformation equations as developed by Tao and Ghassemi (2010) are presented. 

2.1  Overview of Elastic DDM 

 The elastic displacement discontinuity method (DDM) is mainly developed by 

Crouch and Starfield (1983) with applications in mining. In elastic DDM, it is assumed 

that the rock matrix is impermeable.   
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Fig. 2.1 A small thin fracture segment in a two-dimensional infinite nonporous medium 
(Crouch and Starfield, 1983). 

 

The DD method is constructed by considering a line segment with its center at a 

point (x,y) (Fig. 2.1), that is located in an infinite two-dimensional isotropic and 

homogeneous elastic rock. The line segment represents a surface of displacement 

discontinuity or a finite thin fracture. Both x- and y-components of displacement can be 

discontinuous, representing shear and normal DD, respectively. By considering the 

center of the fracture to be located at (0,0), and the length of the fracture to be 2a. 

Crouch and Starfield (1983) developed equations for the stresses caused by the DD over 

the line segment. These equations (Eq. 2.1) are called fundamental solutions and provide 

expression for the induced stress (σxx, σyy, σxy) at a point (x,y) due to the normal 

displacement discontinuity (Dn) and the shear displacement discontinuity (Ds) with its 

center at the origin.  



 

 

13















∂
∂+

∂
∂+

∂∂
∂−=

∂∂
∂−















∂
∂+

∂
∂=















∂∂
∂+

∂∂
∂+















∂
∂+

∂
∂=

3

3

2

2

2

3

2

3

3

3

2

2

2

32

3

3

2

2

22

22

222

y

F
y

y

F
GD

yx

F
yGD

yx

F
yGD

y

F
y

y

F
GD

yx

F
y

yx

F
GD

y

F
y

y

F
GD

snxy

snyy

snxx

σ

σ

σ

 .......................  (2.1) 

G is the shear modulus of the rock, and F is the relative position function at the 

point (x,y) from center point (0,0). And the function, F is described below.  
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υ is the Poisson’s ratio, respectively. 

 

Fig. 2.2 A curvy fracture divided by m fracture segments in a two-dimensional infinite 
nonporous medium. 
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The DD is used to describe fractures of any shape. A curved fracture (Fig. 2.2), 

e.g., is divided into m straight fracture segments, and the effect of all segments are added 

to find the stresses caused by the entire crack at point (x,y). So, by superposition, the 

induced stress components are simply: 
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If the arbitrary point of interest, (x,y), were located at the center point of the ith 

fracture segment, the induced stresses on the ith fracture segment caused by the jth 

fracture segment are described by 
ij

A ,
ij

B ,
ij

E  and 
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F  and: 

s

jij

n

jij

s

ij

s

jij

n

jij

n

ij

DFDE

DBDA

+=

+=

σ

σ
 .....................................................................................  (2.4) 



























∂
∂+

∂
∂









−−















∂∂
∂+

∂∂
∂=













∂∂
∂









−+

∂
∂=



























∂
∂+

∂
∂+

∂∂
∂−















∂∂
∂+

∂∂
∂=













∂∂
∂−

∂
∂









−+

∂
∂=

3

3

2

2
22

2

32

2

3
22

3

3

3

3

2

2

2

3
2

2

32
2

2

3

3

3
22

2

2

sincos2sin2

sincos2sin2

2sinsin2cos2

2sinsincos2

y

F
y

y

F

yx

F
y

yx

F
GF

yx

F

y

F
yGE

y

F
y

y

F

yx

F
y

yx

F
y

yx

F
GB

yx

F
y

y

F
y

y

F
GA

ijijijij

ijijijij

ijijijij

ijijijij

γγγ

γγγ

γγγ

γγγ

  ....................................................................................................................       (2.5) 



 

 

15

n

ij

σ  and s

ij

σ  are the induced normal and shear stresses (on the ith segment caused 

by the jth segment). ji

ij

ββπγ −+=
2

 and β  denotes the angle (counter clockwise) of 

the fracture segments from the x-axis. And upper bar above x, y and the position function 

F  means the local co-ordinate system of the influenced element.  

So, for the curvy fracture which is divided into m constant DD segments, the 

superposition of the influence of m DD segments for the normal and shear stress are: 
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So, if there were 4 fractures in the medium, the matrix form of the expression 

relating DD’s and to normal and shear stress vectors on the elements is:  
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If the values of the DDs are known, Eq. (2.7) can be used to the normal and shear 

discontinuity, Dn and Ds.  In the following section, we review the poro-thermoelastic 

DDM.  
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2.2  DD in Poro-thermoelasticity  

 The elastic DD was extended to poroelasticity by Curran and Carvalho (1987) 

within the framework of Biot’s theory. Using the linear theory of poro-thermoelasticity 

(McTigue, 1986), Ghassemi and Zhang (2006) developed the poro-thermoelastic DDM 

which is used recently for developing the fully coupled poro-thermoelastic DD by Tao 

and Ghassemi (2010) (Fig. 2.3). 

  

 

Fig. 2.3 A small thin fracture segment in a two-dimensional infinite porous medium. 
 

Biot (1941) theory of poroelasticity explains the relation of stress to strain and 

pore pressure in an isotropic poroelastic medium: 
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e  is the strain, kke  is the volumetric strain and ijδ  is the Kronecker delta.  

When rewriting this equation for strains:  

p
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ijε  is change of strain of the rock, ijσ  is the change of stress of the rock, p, T 

and ζ are the change of pore pressure, temperature, and increment of fluid content, 

respectively. α is Biot’s coefficient, υ  and uυ  are the drained and undrained Poisson’s 

ratios, G is the bulk shear modulus. 

According to Eq. (2.9), only a pore pressure term needs be added to the elastic 

equation, Eq. (2.1). Carvalho (1990) developed the following equations for the induced 

normal and shear stresses and pore pressure on the ith fracture segment caused by a 

constant fluid injection, normal and shear displacement discontinuities of m constant DD 

segments (A curvy fracture is divided m segments). 
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B , 
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C , 
ij

E , 
ij

F , 
ij

K , 
ij

L , 
ij

H  and 
ij

M  denote the jth DD element influence 

coefficients  on the ith DD segment. So, the induced normal and shear stresses, and pore 

pressure as time (t). 
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denote the jth fracture element influence coefficients  on the ith fracture segment at 

given time (t). In Eq. (2.11), these equations show the induced pore pressure, normal and 

shear stresses with time (t) dependent for poroelasticity without temperature effect.  

For the poro-thermoelasticity, McTigue (1986) introduced the constitutive 

equations of the linear theory of poro-thermoelasticity.  
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αs and αf are the volumetric thermal expansion coefficient of the solid and the 

pore fluid, respectively. Using this theory, Ghassemi and Zhang (2006) developed the 

poro-thermoelastic DDM considering a normal and shear deformation, fluid source 

(leakoff rate) and heat source (interface heat flow rate). 
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Using these equations, the pore pressure and stress caused by a normal and shear 

deformation (∆Dn and ∆Ds), fluid leakoff rate (∆qint) and heat flow rate (∆qh-int), at a 

point (x,y) at time (t) will be obtained. Note that ∆qint and ∆qh-int are the fluid leakoff rate, 

and heat flux rate (between fracture and matrix) per fracture length each. And the 

superscript dn is normal displacement discontinuity source, ds is shear displacement 

discontinuity source, q is fluid source (injection or production) and T is heat source, 

respectively.  

For the heat conductive case, heat source (∆qh-int) is not dependent on the ∆Dn, 

∆Ds and ∆qint, so that: 

int),,(),,( −∆=∆ h
T qtyxTtyxT  ...................................................................  (2.15) 

For the multiple (m) fracture segments on a curvy fracture,  
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T  denote the influence of the jth element (influence 

coefficient) on the ith element at a given time (t). Eq. (2.16) is the poro-thermoelastic 

DD equations, pressure, temperature, normal and shear stresses, in multiple fractures in 

an infinite two-dimensional porous medium. 
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2.3  Fluid Transport in Fractured Porous Rock  

   

 

Fig. 2.4 Illustration of a single fracture segment in a fracture-matrix system and fluid 
flow in the fracture. 

 

Mass balance equation can be used for fluid transport in fractured porous rock. 

General mass balance equation is shown below.   

[Mass out flow rate] – [Mass in flow rate] = [Increase flow rate] .............  (2.17) 

The mass balance equation in fracture segment is (Tao and Ghassemi, 2010).    
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ρ
ρνρρρ int  ................  (2.18) 

�f is the density of the fluid, wf is the fracture aperture, (∆L = 2a) is the fracture 

length, ∆h is the fracture height and vint is the interface fluid. So, ( ) ( )
infoutf QQ ρρ ,  

mean the flow in and out through fracture, hLf ∆∆intνρ  means the interface flow rate 

between fracture space and matrix. F
injf Qρ  means the injection flow rate and 

( )
t

hLw ff

∂
∆∆∂ ρ

 means the increase rate of fluid mass in the fracture. Applying 2a as a 

length (Fig. 2.4) and unit height 1 m, get Eq. (2.18). 
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In reality, the fracture surface is usually very rough so the fracture aperture varies 

in every location. But using average aperture to simplify the fracture aperture, Darcy’s 

law can be used for fluid flow in fracture (Witherspoon et al., 1980).  
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µ is the fluid viscosity and wf fracture permeability (where,
 
kf = wf

2/12). In this 

thesis, the fluid is compressible (consider fluid compressibility) and the density of the 

fluid is pressure dependent.  

ff
f

C
p

ρ
ρ

=
∂

∂
 ............................................................................................  (2.21) 
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Cf is the fluid compressibility. ( ) ( )
infoutf QQ ρρ − is rewritten to  

x

q ff

∂

∂ )(ρ
 

(flow rate in fracture). So, substituting Eq. (2.20) to Eq. (2.21), a simplified relation is 

derived by neglecting the term that is multiplied by small compressibility (Lee et al., 

2003).  

2

2)(

x

pwk

x

q fffff

∂
∂

−=
∂

∂

µ
ρρ

 ...................................................................  (2.22) 

The fracture volume changes with fracture aperture, so for a unit height, the 

fracture volume change is expressed below.  

t

w
L

x

V ff

∂
∂

∆=
∂

∂
 .........................................................................................  (2.23) 

And the fracture aperture is expressed by the fracture closure ( nD ). So, 

t

D

t

w
nf

∂
∂

−=
∂

∂
 ...........................................................................................  (2.24) 

Substituting Eq. (2.24) to Eq. (2.23), Eq. (2.25) is derived.  

t

D
L

x

V
nf

∂
∂

∆−=
∂

∂
 .......................................................................................  (2.25) 

The mass of the fluid changes mainly due to density change, so get Eq. (2.26). 

t
Lw

t

m f
f ∂

∂
∆−=

∂
∂ ρ

 ....................................................................................  (2.26) 

And substituting Eq. (2.21) to Eq. (2.26). 

t

p
LwC
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m
fff ∂

∂
∆−=

∂
∂ ρ  .............................................................................  (2.27) 
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Finally, rearrange Eq. (2.19) by substituting Eq. (2.24), (2.25) and Eq. (2.27), the 

final fluid transport equation is constructed. 

s
n

ff
ff

qaq
t

D
a

t

p
cawp

wk
++

∂
∂

−
∂
∂=∇ int

2 222
µ  ....................................  (2.28) 

qs is the injection and production and qint  is flow leakoff rate into matrix.  

2.4  Heat Transport in Fractured Porous Rock  

 

Fig. 2.5 Illustration of fluid flow in the fracture with heat transport. 
 

The heat transport equation is derived using energy conservation and general 

energy conservation equation is introduced.   

int−+∆+∆=∆ hconvectiveconductive QEEU  ....................................................  (2.29) 

∆U is the rate of internal energy, Qh-int is the heat flow rate between fracture and 

matrix, ∆Econductive and ∆Econvective are the energy change rate by conductive transport in 

fracture and convective transport within fracture. This thesis only considers that the 

temperature change effects the internal energy change because the internal energy 
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change caused by fracture aperture and fluid density variations are negligible (Fig. 2.5). 

So, ∆U is simplified as:  

t

T
cwaU wwf ∂

∂=∆ ρ2  ..................................................................................  (2.30) 

wf are the fracture aperture, �w and cw are the fluid density and heat capacity. 

∆Econductive and ∆Econvective are defined.       

heatd QE ⋅−∇=∆  ..........................................................................................  (2.31) 

TqcaE fwwv ∇−=∆ ρ2 ..................................................................................  (2.32) 

qf is the flow rate in the fracture segment and kT is the thermal conductivity in 

fluid. Applying Fourier’s law ( TwkQ fTheat ∇−= ), ∆Econductive is rearranged.  

TwkE fTd

2∇=∆  .........................................................................................  (2.33) 

The interface heat rate per unit height is,  

intint 2 −− −= hh aqQ  ..........................................................................................  (2.34) 

Substitute Eq. (2.30), (2.32), (2.33) and (2.34) to Eq. (2.29), the heat transport 

equation is defined. 

int
2 222 −−∇−∇=

∂
∂

hfwwfTwwf aqTqcaTwk
t

T
cwa ρρ  .............................  (2.35) 

In this thesis, convective transport within the matrix is not considered because in 

this work, this coupled theory is applied when neglecting convective heat transport in the 

porous matrix (Ghassemi and Zhang, 2004). 
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2.5  Fracture Deformation  

The joint deformation is usually modeled using the Barton-Bandis (1983) joint 

model in which the normal effective stress and the normal joint closure are related 

hyperbolically:    

max

'

/1 nn

nni
n DD

DK

−
=σ  ..................................................................................  (2.36) 

When the fracture deformation is small, this equation can be approximated 

linearly: 

nnn DK ∆−=∆ 'σ  .........................................................................................  (2.37) 

'
nσ  is the effective normal stress (where, pnn += σσ ' , tension positive), Kni is 

the initial normal stiffness, Kn is the tangent normal stiffness, Dn is the closure and Dn max 

is the maximum possible closure of the fracture.  

Before yielding, the shear stress has a linear relationship with shear 

displacement:  

sss DK ∆=∆σ  ..........................................................................................  (2.38) 

Ks is the shear stiffness. And shear displacement causes joint dilation which is 

accounted for by dilation angle (�d):  

dsdilationn DD φtan∆−=∆ −  ..........................................................................  (2.39) 

Adding Eq. (2.39) to Eq. (2.37) and expressing the effective stress as the sum of 

the total stress and fluid pressure yields:  

( )dsnnn DDKp φσ tan∆+∆−=∆+∆  ......................................................  (2.40) 
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2.6  Coupling Fracture and Matrix Processes Using DDM  

 Fully coupled poro-thermoelastic displacement discontinuity method is 

developed by Tao and Ghassemi (2010) to investigate the fracture aperture and 

permeability change in naturally fractured reservoirs. This numerical method uses 

displacement discontinuity method (DDM) for the related fracture deformation, finite 

difference method (FDM) for solving the fluid flow in fractures and the Barton-Bandis 

(1983) model for the joint deformation. Also, using this method, the pressure, 

temperature, leakoff flow rate, heat flux rate, shear and normal displacements in each 

fracture element at each time steps can be determined. Following equations show the 

details of numerical approaches. 

2.6.1  Coupling DD Equations and Fluid Transport Equation 

 

Fig. 2.6 Time marching scheme. χ represents Dn, Ds or qint (Curran & Carvalho, 1987). 
 

Fig. 2.6 shows the time marching scheme and to apply the DDM equations, recall 

the poro-thermoelastic DD equations, Eq. (2.16) from Section 2.2 and the fluid transport 

equation, Eq. (2.28) from Section 2.3.  
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Prior to applying the time marching scheme to the above DDM (Eq. 2.16), fluid 

and heat transport equations (Eq. 2.28 and 2.25), this is applied to )(tp
i

∆  and fracture 

deformation equations, Eq. (2.38) and Eq. (2.40), so we get Eq. (2.41):  
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Where ξ is the current time step and h  is the previous time from 1 to 1−ξ . 

After apply time marching scheme and substitute Eq. (2.16), rearrange the equations by 

known and unknown terms, the following four equations are obtained.  
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ij

pC is the fluid coefficient matrix. n

i

D
ξ

∆ , s

i

D
ξ

∆  and int

ξj
q∆  denote the 

increments of a normal and shear displacement discontinuities and leakoff rate of the jth 

fracture segment at time, t , ξτ  , hτ  denote total time, current time step and the time 

step counter. 
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2.6.2  Coupling DD Equations and Heat Transport Equation 

To arrange the DD equation for temperature and heat transport equation, recall 

Eq. (2.16) from Section 2.2 and Eq. (2.35) from Section 2.4. Also, )(tT
i

∆ shows the 

temperature change in current time step which expressed by two terms with current 

temperature and the temperature of previous time step.  

0)()(
iii
TtTtT −=∆  ......................................................................................  (2.46) 

 Apply the time marching scheme, substituting Eq. (2.16) and rearrange the 

resulting equations according to known and unknown terms results:  
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∑  ............................................  (2.48) 

ij

htC  is the coefficient matrix and cw is the heat capacity.  

2.6.3  Solution Procedure 

To solve the fully coupled poro-thermoelastic displacement discontinuity 

equations, the unknowns should be clearly defined. There are six unknowns namely; 

temperature (T), heat flux rate (qh-int), normal displacement discontinuity (Dn), shear 

displacement discontinuity (Ds), pressure (p) and fluid leakoff rate (qint). And there are 

six equations; Eq. (2.42), Eq. (2.43), Eq. (2.44), Eq. (2.45), Eq. (2.47) and Eq. (2.48). So, 
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this problem can be solved using implicit numerical procedure (refer the Appendix A for 

solving matrix, and to Appendix D for a detailed flow chart). 

First, using Eq. (2.47) and Eq. (2.48), temperature (T) and/or heat flux rate (qh-int) 

are determined. And input these results to Eq. (2.42), Eq. (2.43), Eq. (2.44) and Eq. (2.45) 

and using these four equations, determine normal displacement (Dn), shear displacement 

(Ds), pressure (p) and fluid leakoff rate (qint) at the end.  

2.6.4  Sign Convention 

In this thesis, all equations are expressed using the tension positive convention 

even though in rock mechanics, compression positive convention is usually used.  

 



 

 

32

3. JOINT ELEMENT 

 

This section reviews the elastic joint concept and the failure criteria for shear slip 

and full opening of the fracture. Also a non-equilibrium joint formulation is introduced. 

Considering joint deformation, there are two ways to investigate it under a far-field 

stress. When considering joint to be in equilibrium with the far-field stress, only 

perturbations of the stress will cause a deformation. However, when the joint is allowed 

to respond to the initial far-field stress, different results are obtained. Tao and Ghassemi 

(2010) investigate the fracture aperture and permeability change in naturally fractured 

reservoirs for joint in equilibrium with the far-field stress. In this section, the 

formulations for both conditions will be presented and their results will be compared in 

Section 5.3 for the same geometry and loading/material parameters. 

3.1  Elastic Joint 

A joint deforms by normal and shear stress (Fig. 3.1).  

 

Fig. 3.1 Elastic deformation by normal and shear stress. 
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The joint deformation is usually modeled using the Barton-Bandis (1983) joint 

model in which the normal stress and the normal closure are related hyperbolically:  

max

'

/1 nn

nni
n DD

DK

−
=σ  .................................................................................  (3.1) 

'
nσ  is the effective normal stress, Kni is the initial normal stiffness, Dn is the 

aperture close and Dn max is the maximum aperture close of the fracture. When the 

fracture deformation is small, this equation can be approximated linearly. Eq. (3.1) is 

used to set up initial condition of the normal deformation. Kn and Ks are the normal and 

shear stiffness. nσ  and sσ are the normal and shear stress, respectively. The total 

effective stress in elastic joint is introduced by Crouch and Starfield (1983).    
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σ
 ........................................................................................  (3.2) 

According to Eq. (3.2), when the rock joint has higher normal (Kn) and shear 

stiffness (Ks), the amount of normal and shear deformation is lower compared to when 

the rock has lower Kn and Ks. 

However, for example, when the shear stress is extremely high, the joint slips 

and the joint does not follow this elastic behavior and goes into a plastic condition. 

3.2  Failure Mode  

There are two failure modes. One is the permanent shear slip occurring when the 

shear stress is high enough to deform the fracture permanently or reducing the amount of 
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effective stress by fluid injection. The other one is the fully opened which occurs when 

the effective stress goes to zero by pressurization fluid. 

3.2.1  Shear Slip 

The joint is assumed to deform elastically until the stress conditions cause 

permanent slip to occur. The Mohr-Coulomb failure criterion (Fig. 3.2) is used to 

anticipate whether the joint will slip or not.  

 

 

Fig. 3.2 Mohr-Coulomb failure criterion. 
 

Using the maximum shear stress equation (Eq. 3.3) with '
nσ  as the effective 

normal stress, and ‘�f’ as the friction angle and ‘�d’ the dilation angle, respectively:  

The maximum shear stress criterion is:  

)tan('
max dfnS φφσσ +×=  .........................................................................  (3.3) 
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The joint yields when the shear stress exceeds the shear strength. In this case, the 

shear stress is set equal to the maximum allowable value and the joint is allowed to slip 

by an amount that corresponding to the excess shear stress, τp (peak). 

 

 

Fig. 3.3 Tangential displacement during direct shear (Goodman, 1989). 
 

Fig. 3.3 shows the shear displacement change by shear stress for a rough joint. 

But in this application, the joint is not rough, so that τp (peak) is close to τr (residual). 

Prior to reaching τp, the shear displacement is changed elastically (proportionally). 

However, after τp, the shear displacement is changed is no longer uniquely proportional 

to stress. So, it means that the shear displacement is under plastic condition.  
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So, using Fig. 3.2, Fig. 3.3 and Eq. (3.3), when the shear stress is larger than the 

maximum shear stress (Mohr-Coulomb line), the fracture is located on the right side of 

the graph (after up point) and the shear displacement is changed plastically. The actual 

shear stress and the maximum allowable shear stress are compared to, judge whether the 

fracture is yielding or not. 

3.2.2  Fully Opened Fracture   

 According to effective stress equation ( pnn −= σσ ' , compression positive), the 

effective stress ( '
nσ ) is positive when the normal stress (nσ ) is greater than pressure (p) 

in fracture. When injecting fluid into the fracture, the effective stress is decreased by 

increased pressure in fracture. Later, the effective stress value goes to below zero 

( 0' ≤−= pnn σσ ) and at that time, the joint is fully opened and not a joint anymore. In 

this thesis, the sign convention is tension positive, so the effective stress equation is: 

Pnn += σσ '  ..............................................................................................  (3.4) 

3.3  Non-equilibrium Condition   

 From Crouch and Starfield (1983), the amount of fracture deformation can be 

calculated including initial far-field stress or excluding initial far-field stress. Tao and 

Ghassemi (2010) found normal and shear deformations without initial far-field stress, it 

means that the deformations are calculated only by injection and extraction.  
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3.3.1  Fracture Deformation without Initial Far-field Stress 

 From Crouch and Starfield (1983), the total stresses at fracture element i are 

described in Eq. (3.5). 
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A , sn

ij

A  and ss

ij

A  represent the boundary influencing coefficients. And 

also, the local induced stresses are defined.  
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Actually, in this condition, the induced stresses are same with the total stresses 

because there are no initial stresses at the fracture. The initial stresses mean far-field 
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stresses or initial induced stresses by far-field. So, combining equation Eq. (3.6) and Eq. 

(3.7) by Eq. (3.5), Eq. (3.8) is derived.   
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3.3.2  Fracture Deformation under Initial (Constant) Far-field Stress 

Under non-equilibrium condition (in-situ stresses cause joints to deform), the 

total stresses on fracture element i are described by Crouch and Starfield (1983).  
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σσ , are the total stresses, 00 )(,)( s
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σσ  are the initial stresses and 
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are the induced stresses by injection/extraction (boundary condition), respectively. 

According to Crouch (1983), the initial stresses are composed of two terms, the resolved 

far-field stresses and the initial induced stresses due to any deformation on the joint 

element.  
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∞∞
00 )(,)(
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 are far-field stresses and 0

'
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n σσ are the initial induced 

stresses. The above equations show that the stresses on deformed joints are different 

from the initial state. So, substituting Eq. (3.10) to Eq. (3.9) results in: 
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The normal and shear stresses sum of the initial induced stresses and the induced 

stresses are defined: 
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And the total joint deformations are: 
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Substitute Eq. (3.13) to Eq. (3.12) yields: 

)()(

)()(

1

'
0

'

1

'
0

'

j

sss

ijm

j

j

nsn

iji

s

i

s

j

sns

ijm

j

j

nnn

iji

n

i

n

DADA

DADA

∑

∑

=

=

+=+

+=+

σσ

σσ

 ................................................  (3.14) 

The total stresses on joint element are related to the total joint deformations as 

already introduced in Section 3.1. 
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Substitute Eq. (3.2) and Eq. (3.14) into Eq. (3.11) gives:  
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Using a time marching scheme shown in Fig. 2.6 in previous section and 

rearranging both equations, we get new equations: 
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Eq. (3.16) represents the total normal stress of the system. But in numerical 

calculations, the effective stress equation is used. So, substituting Eq. (2.40) and Eq. (3.4) 

to Eq. (3.16) gives: 
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Therefore, using Eq. (2.42), (2.47), (3.17) and Eq. (3.18) with Eq. (2.45) and Eq. 

(2.48) which are introduced in previous section, the unknown values, ∆Dn , ∆Ds , ∆qint , 

∆qh-int , T and p can be determined.  
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4. MODEL VERIFICATION AND MECHANICAL ANALYSIS 

 

In this section, the fully coupled DDM is used to simulate a simple fracture 

network to investigate and analyze the mechanical movement of the fractures and to 

study the conditions for the onset of permanent shear slip. The input parameters used in 

eth simulation of this section and Section 5 are listed in Table 4.1 and Table 4.2. The 

joint parameters are extracted from Tao and Ghassemi (2010).  

 
Table 4.1   
Rock properties of Westerly granite (McTigue, 1990). 

 

Shear modulus G (GPa) 15 
Possoin’s ratio υ  0.25 
Undrained Possoin’s ratio uυ  0.33 
Matrix permeability (m2) 4×10-19 
Matrix porosity φ 0.01 
Biot’s coefficient α 0.44 
Fluid viscosity µ (cp) 3.547×10-4 
Fluid compressibility (MPa-1) 4.2×10-4 
Thermal expansion coefficient of solid αs (K

-1) 2.4×10-5 
Thermal expansion coefficient of pore fluid αf (K

-1) 2.1×10-5 
Thermal diffusivity of intact porous rock cT (m2/s)  1.1×10-6  
Fluid density ρf (Kg/m3) 1 ×103  
Heat capacity of fluid cw (J kg-1 K-1) 4200  
Thermal conductivity of fluid kT (J s-1 m-1 K-1) 0.6  
Normal Stiffness (GPa/m) 1 ×1011 
Shear Stiffness (GPa/m) 0.5 ×1011 

 
 
Table 4.2   
Input parameters. 

 

Initial reservoir temperature (K) 420 
Initial  normal stiffness (GPa/m) 0.5 
The maximum closure (mm) 0.3 
In-situ stress (MPa) 30 
Initial reservoir pressure (MPa) 27 
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4.1  Simulating an Injection Well Using Fracture Elements 

In this example, a single well is simulated using the DD and DD element (Fig. 

4.1). Injection rate (or pressure) and temperature are prescribed and the radial stress and 

tangential stress change around the well are calculated. Refer the Appendix B for field 

points coordinates. The total injection rate in each of the 50 wells is 1 × 10-8  m3/sec for 2 

years (730 days) of operation. And the radius (rw) of the circular fracture is 0.1 m, 

similar to a real well. Other input parameters are from Table 4.1 and Table 4.2. 

(Variables such as in-situ stresses in Table 4.2 will be changed for each case study.) 

 

Fig. 4.1 A circle fracture network for simulating a well. 50 fracture elements are used in 
the simulations with the same injection rate prescribed on DD element (refer Appendix 
B). 
 

Cooling and heating cases are considered to investigate how the pressure changes 

in each case. The pressure changes both in cooling and heating cases shown in Fig. 4.2. 

It can be seen that the pressure for the non-isothermal cases (±120 K) are different from 

the start and after 0.1 days, they gradually converge to the isothermal case.  
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Fig. 4.2 Pressure variation in time at well in cooling, heating and isothermal cases. 
 

According to Fig. 4.2, the fracture pressure for the non-isothermal case changes 

(decrease or increase). However, after few hours of operations, the pressures in all cases 

are increased gradually with injections.  

 

 

Fig. 4.3 Pressure (MPa) distribution after 2 years injection in isothermal condition. 
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Fig. 4.4 Pressure (MPa) distribution after 1 hour (left)/ 2 years (right) injection in 
cooling. 
 
 
 

 

Fig. 4.5 Pressure (MPa) distribution after 1 hour (left)/ 2 years (right) injection in 
heating. 

 

In Fig. 4.2, 4.3, 4.4 and 4.5, the quick (after 1 hour) pressure change for the non-

isothermal cases caused by the temperature of the fluid itself. After 0.1 days, the 
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pressures are gradually increased by injection and the pressures in cooling, isothermal 

and heating reach 36 MPa, 36.4 MPa and 36.8 MPa, respectively.  

 

 

Fig. 4.6 Temperature (K) distribution after 2 years injection in cooling (left)/ heating 
(right). 
 

Fig. 4.6 shows that with time, the cold or hot temperature front spread out in the 

porous matrix by conduction and, the distances of the temperature distribution from the 

wellbore are about just 20 times of the radius at the end.  

To verify the result, the pressure, temperature, radial and tangential stress caused 

by injection is compared with analytical solutions came from Ghassemi and Tao (2010). 

Detail equations are introduced in Appendix C. 
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Fig. 4.7 Pressure (MPa) changes by distance in isothermal, cooling and heating. 
 
 
 

 

Fig. 4.8 Temperature (K) changes by distance in isothermal, cooling and heating. 
 

Fig. 4.7 and 4.8 show the pressure and temperature variation for each case as a 

function of distance from the wellbore. The pressure decreases non-linearly from the 
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injection well. Comparing Fig. 4.7 and Fig. 4.8, it can be seen that the pore pressure 

spreads out much faster than the temperature because of higher fluid diffusivity.  

 

 

Fig. 4.9 Radial stress (MPa) changes by distance in isothermal, cooling and heating. 
 
 

 

Fig. 4.10 Tangential stress (MPa) changes by distance in isothermal, cooling and 
heating. 
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According to Fig. 4.9 and Fig. 4.10, the radial and tangential stresses are 

compressive or tensile depending on the temperature change. Since the rock tends to 

shrink when cooled, the induced stresses are tensile. Note that the magnitude of 

tangential stress is higher than radial. Also, the tangential stress changes the sign at some 

distance from the injection well and becomes compressive for cold water injection. This 

is because of strain compatibility.  

The plots of temperature pore pressure and stress show that the numerical 

solutions are in very good agreement with the analytical solution and there is no 

significant difference between them.  

4.2  Shear Deformation and Permanent Slip under In-situ Stress   

 

Fig. 4.11 A 40 m fracture inclined at 45 degrees. The fracture is modeled using 39 
constant DD elements.  

 

In the single fracture case, water is injected into a well located at the center of the 

fracture, at a rate of 6 × 10-8 m3/sec. The rock mass is under anisotropic stress with an 
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initial pore pressure of 10 MPa. The initial far-field in y-direction is -20 MPa (tension 

positive) and in x-direction is -13 MPa and both stresses compress the fracture, resulting 

in 3.5 MPa of shear stress along the fracture (Fig. 4.11). Fracture slip, i.e., the permanent 

shear movement of the crack (Fig. 3.2) is assessed for an injection time of 6 months. 

When injecting under isothermal condition, the amount of effective normal stress on the 

fracture decreases as pressure in the fracture increases, enhancing the shear failure 

potential. On the other hand, when water is extracted from the fracture, the opposite 

occurs and the amount of effective stress increases, reducing the possibility of fracture 

slip. Referring to Fig. 3.2, the fracture status moves away from the Mohr-Coulomb 

failure line. We note that for the non-isothermal case, the joint fully opens and this 

opening causes shear slip on all fracture segments. 

 

 

Fig. 4.12 Fracture pressure variation with time at injection well for isothermal and non-
isothermal conditions. 
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According to Fig. 4.12, because of initial far-field stress and low compressibility 

of water, an initial rapid pressure rise to 16.5 MPa is observed, even though the initial 

pressure is 10 MPa in the fracture. With time, the pressure in the fracture decreases to 

the initial pressure of 10 MPa, with or without injection. However, when injecting, the 

pressure starts to increase after initial decay. A few points are worth noting in the 

pressure profiles. In non-isothermal (cooling) condition, the pressure is generally lower 

than isothermal case because of lower temperature (20 K cooling). Until the 9th time 

step, the pressures in all three cases are almost same. But in 10th time step in non-

isothermal case, the pressure starts to drop more rapidly because of the cooling effect 

that begins to spread out to the fracture surface from the injection well. And after several 

steps, the pressure increase gradually in response to continued injection. At a time of 1 

day, the pressure curve begins to show an increase followed by a rapid leveling off at 2 

days, and a subsequent gradual rise. This variable response is caused in response to full 

opening of the joint under combined hydraulic pressure and thermal stress. At this stage, 

the element properties and boundary conditions are changed to that of a fully opened 

fracture (when the effective normal stress is positive, the joint is opened). Fig. 4.13, 4.14, 

4.15 and 4.16 illustrate the normal displacement and the effective stress change at the 

injection point. 
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Fig. 4.13 Normal DD (fracture aperture) change with time at injection well for 
isothermal/non-isothermal conditions. 

 

Initially, the opening response follows the pressure profile in Fig. 4.12, but after 

1 day, the fracture aperture in the non-isothermal case begins to increase more than the 

isothermal case due to the cooling effect. As the cooling diffuses out from the fracture 

surface into the matrix, the rock starts to contract, increasing Dn and resulting in a lower 

pressure than the isothermal condition.  And from 15th time step (right after 1 day), the 

Dn is increased because of the injection. From 17th time step (right after 2 day), the Dn 

increases rapidly because the fracture is now fully opened by combining effect of 

cooling and injection and no resistance is offered by the joint stiffness. After 180 days, 

the Dn at the center of the fracture reaches 12.4 mm. 
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Fig. 4.14 Shear DD (Ds) change with time at the injection well for isothermal and non-
isothermal conditions (Initially, Ds = 0). 
 

Before operation, there is no deformation, so it is zero initially and as injection 

proceeds and effective normal stress is reduced, the shear stress caused by anisotropic 

in-situ stresses creates shear deformation. Fig. 4.14 shows the shear failure at the end of 

the time step in isothermal condition and at 19th time step in non-isothermal condition. 

Since the fracture is fully opened at the center of the fracture in early time step, the shear 

failure occurs earlier in cooling condition. Up to a time of 8 days, the shear displacement 

is nearly constant for both cases.  

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0.074

1.E-06 1.E-04 1.E-02 1.E+00 1.E+02

D
s

(m
m

)

Time (Days)

At Center - Isothermal

At Tip Element - Isothermal

At Center - Nonisothermal

At Tip Element - Nonisothermal



 

 

54

 

Fig. 4.15 Initial far-field shear stress and the maximum allowable shear stress (Eq. 3.2) 
at the injection well for isothermal and non-isothermal conditions. 
 
 
 

 

Fig. 4.16 Shear stress and its maximum change at injection well in isothermal and non-
isothermal conditions. 

0

2

4

6

8

10

12

14

1.E-06 1.E-04 1.E-02 1.E+00 1.E+02

S
tr

e
ss

 (
M

P
a

)

Time (days)

σs

σs max - Isothermal

σs max - Nonisothermal

0

2

4

6

8

10

12

14

0 5 10 15 20

σ
s 
(M

P
a

)

σ'n (MPa)

MC

Isothermal

σs max (Isothermal)

Non-isothermal

σs max (Non-isothermal)

1
15

20

1 10 11
1316

19



 

 

55

In Fig. 4.15 and 4.16, the sign convention of the effective stress is compression 

positive. In Fig. 4.15, in isothermal case, the maximum allowable shear stress is changed 

with time because the effective stress varies with fluid compression and injection (pore 

pressure changes). It can be seen in Fig. 4.16 that because of the fluid compressibility, 

the amount of effective stress initially increases, and then decreases as the fracture 

pressure starts to increase because of fluid injection. The amount of normal effective 

stress eventually declines and the condition for Mohr-Coulomb failure is reached and 

permanent shear slip occurs. Note that the shear stress value due to the in-situ stress is 

constant from the start. For the cooling case, the maximum shear stress rapidly drops at 

about 10 days and the fracture is fully opened. When cooling is taken into account, the 

amount of effective stress decreases drastically at time 8 days and becomes negative at 

time 10 days, so the joint is an open fracture. Before completely opening, the joint also 

slips in response to the reduced amount of normal effective stress. At this stage, the 

fracture segments at the center of the fracture are opened first. And after 30 days, the 

fracture is fully opened. The joint opening profile is shown in Fig. 4.17 and we can see 

that the fracture segments near the center of the fracture are fully opened while fracture 

segments are still closed. As expected, the non-isothermal injection results in the highest 

fracture aperture with its maximum at the injection point. 
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Fig. 4.17 Normal DD (Dn) along the joint. 
 
 
 

 

Fig. 4.18 Shear DD (Ds) along the joint. 
 

Fig. 4.18 shows the joint shear deformation along its length. There is no 

noticeable difference between isothermal and non-isothermal cases before failure 

0.2

0.7

1.2

1.7

2.2

2.7

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

D
n

(m
m

)

Location along the Fracture (m)

Isothermal (After Failure)

Nonisothermal (After Failure)

Nonsothermal (Before Failure)

W/O Injection

Initial

0.062

0.063

0.064

0.065

0.066

0.067

0.068

0.069

0.07

0.071

0.00 10.00 20.00 30.00 40.00

D
s

(m
m

)

Location along the Fracture (m)

Isothermal (After Failure)

Nonisothermal (After Failure)

W/O Injection

Initial Condition



 

 

57

because the shear deformation is entirely caused by initial far-field stress and not by 

injection. But after failure, the amount of shear slip is different for the cooling case as 

the fracture is fully opened by thermal stress not by injection pressure.  

When comparing Fig. 4.17 and Fig. 4.18, right after failure in cooling case, we 

can see that the fracture has also slipped when there is fracture opening at the center of 

the fracture. It means that when the fracture segment is fully opened at the center of the 

fracture, it causes the fracture slipped at the same time.  

The pore pressure and temperature distributions are illustrated in Fig. 4.19, 4.20 

and 4.21 for 180 days of injection. The pressure distribution for the isothermal case is 

higher everywhere when compared to the cooling case. This is because rock cooling 

reduces the pore pressure due to differential thermal contraction of the pore fluid and the 

rock matrix.  

 

 

Fig. 4.19 Induced pressure ∆p (MPa) distribution after 180 days of injection under 
isothermal condition (left) and non-isothermal condition (right). 
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However, according to Fig. 4.19, the fracture pressures in isothermal and non-

isothermal cases reach about 19 MPa and 12 MPa (initial pressure, 10 MPa) just before 

failure, respectively and at the end of operation those reach about 23 MPa and 19 MPa. 

In the isothermal case, failure occurs by injection at the end of time step due to high 

pressure. But in non-isothermal case, failure occurs earlier by cooling, so even though 

the fracture pressure is lower, the fracture is fully opened. 

 

 

Fig. 4.20    Temperature (K) distribution after 180 days of injection. 
 

The corresponding reservoir temperature distribution is shown in Fig. 4.20. The 

initial reservoir is 420 K and the temperature of cooling fluid is 400 K. In early time, 

even though the fracture temperature at injection well is very low, the matrix 

temperature is still high. With time, the cold front spreads out to the field. Note that even 

though a cool fluid is injected into the fracture, cooling does not spread out to other 

fracture segment (the pressure is nearly uniform because of the conduction domination 



 

 

59

in fracture) as the fluid can only diffuse into the matrix without a production well 

(convective transport within the matrix is not considered in this work). 

 

 

Fig. 4.21 Induced effective mean stress (MPa), (∆σ'xx+∆σ'yy)/2, distribution right before 
failure at 72 days for isothermal (left) and at 10 days for cooling (right) condition 
(tension positive). 

 

Fig. 4.21 shows the induced effective mean, average value of ∆σ'xx and ∆σ'yy, 

(∆σ'xx+∆σ'yy)/2, stress distribution resulting from deformation under the in-situ stress, 

and fluid injection in both isothermal and non-isothermal condition. The net result is -1.7 

MPa in isothermal and 2.4 MPa in non-isothermal at the fracture. In isothermal case, 

because of the injection, the fracture pressure is increased. And this increased pressure 

compresses the surface of the fracture and it causes negative stress around the joint. In 

cooling case, its value near the center of the joint is positive, indicating tension. This 

tension and the accompanying fracture opening, induce a compressive stress zone behind 

the tensile region. The tensile stress can be explained by the cooling effect of the joint 
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surface. This stress distribution is consistent with Fig. 4.17 in which the Dn for non-

isothermal case is higher than the isothermal condition, especially at the center of the 

joint. Because of cooling, only high joint opening is initially observed in its center. 

However, with shear failure, the Dn substantially increases along the entire joint. Also, it 

can be seen in Fig. 4.21 that the induced effective mean stresses in other fracture 

segments are negative meaning that the surface is in compression and unaffected by 

cooling. Since Fig. 4.21 shows the mean effective stresses right after failure for 

isothermal and cooling conditions, we can see that the failure occurs earlier in the case 

than the isothermal case.  

 

 

Fig. 4.22 Induced differential stress (MPa), (∆σ'xx-∆σ'yy)/2, distribution right before 
failure at 72 days for isothermal (left) and at 10 days cooling (right) condition (tension 
positive). 

 

For isothermal condition, the induced shear, (∆σ'xx-∆σ'yy)/2, stress at injection 

location of the fracture is about 0 MPa (Fig. 4.22). For cooling condition, this stress at 
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injection location of the fracture is about 0.6 MPa. This tensile stress is caused by 

cooling effect which opens the fracture at the center, so these shear stresses are created 

while the fracture is opening. But these stresses are kinds of stress concentration shown 

at the tip. The differential stress in other area of this matrix is about 0 MPa. Therefore, 

the shear stress (3.5 MPa in this example) is caused by anisotropic in-situ stresses 

leading to shear deformation of the crack this case. When failure occurs, it is not because 

of additional shear stress change by injection, but because of the reduced amount of 

effective stress by injection. Therefore, if there were no shear stress on the joint, there 

will be no shear slip on the fracture caused by injection in this system.   

 

   

Fig. 4.23 Induced effective mean stress (MPa), (∆σ'xx+∆σ'yy)/2 and induced differential 
stress, (∆σ'xx-∆σ'yy)/2, distribution at 180 days for isothermal case (tension positive). 
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Fig. 4.24 Induced effective mean stress (MPa), (∆σ'xx+∆σ'yy)/2 and induced differential 
stress, (∆σ'xx-∆σ'yy)/2, distribution at 180 days for non-isothermal case (tension positive). 

 

In Fig. 4.23, the induced effective mean stress along the fracture is negative 

because of constant injection. In Fig. 4.24, even though cool fluid is injected at the 

center of the fracture, the induced effective mean stress is compressive (negative), this is 

because the fracture is fully opened and the Dn is only increased by the injected fluid. 

Also, there are higher tensile stresses of about 22 MPa next to both tips of the joint, 

because of stress concentration. For the induced differential, (∆σ'xx-∆σ'yy)/2, stress, there 

is no shear stress caused by injection of cooling even after failure.  

In Fig. 4.12, the fracture pressure is increased quickly in response to the initial 

far-field stresses because of fluid compressibility (Cf) i.e., as the fluid in the fracture is 

quickly compressed it causes the pressure increase initially. The fluid compressibility 

value is from zero to 1.0 and the unit is “Pa-1”. In this simulation, the water 

compressibility value is 4.2 × 10-10 Pa-1. 
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Fig. 4.25 Pressure variation in time at injection well with different Cf. 
 

In this thesis, the fracture networks are filled with fluid from beginning. So, 

without injection, the pressures can be changed by in-situ stresses under non-equilibrium 

assumption. In this case, the zero injection example is used to see how the pressures are 

stabilized to the prescribed initial pressure, 10 MPa. According to Fig. 4.25, when the 

fluid compressibility (Cf) value is high, the fluid is more compressible and when this 

value is close to zero, the fluid is incompressible. When Cf is 1.0 Pa-1, the pressure is 

almost constant with the initial pressure at 10 MPa because the fluid is compressed and 

absorbs the compression. However, in this example, because of lower fluid 

compressibility, there is a quick pressure increase initially. When the fluid 

compressibility is 4.2 × 10-10, 4.2 × 10-8 and 1 Pa-1, the initial fracture aperture is 0.56, 

0.47 and 0.41 mm, respectively. Therefore, this fluid compressibility is the reason for 

initial pressure increase in fractures.  
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The possibility of permanent shear slip is checked with Mohr-Coulomb failure 

criterion. In addition, the amount of elastic shear displacement in this case is about 0.07 

mm and this value is exactly 0.07 mm using analytical solution by Jaeger et al. (2007). 

axyayyxxs

axyayyxxyyxxn
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ασασσσσσ
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2
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2sin2cos)(
2

1
)(

2

1
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×+×−++=

 ..............  (4.1) 

αa is the angle of the fracture from x-axis.  

To compare the numerical solution to analytical solution, using same normal and 

shear stiffness given in Table 4.1 and put σxx is 30 MPa and change σyy from 30 MPa to 

150 MPa, plot the shear displacement versus σyy. 

 

 

Fig. 4.26 Shear DD (Ds) changes by σyy with angle as 0 ̊, 30 ̊ and 45 ̊ in both methods. 
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According to Fig. 4.26, the results from numerical solution and results from 

analytical solution are almost same.  

4.3  Mechanisms of Shear Displacement 

 In previous section, the induced shear stress caused by injection was zero on the 

fracture surface and permanent shear slip on a single fracture was caused by under non-

equilibrium condition. In this section, we investigate the shear movements in case of 

multiple fractures.  

 

 

Fig. 4.27 A 20 m fracture with connected 90 degree 5 m fracture at the center. The 
fracture is modeled using 25 DD elements (P1, P2 and P3 are measure points). 
 

According to Fig. 4.27, fluid is assumed to enter at the center of a secondary 

fracture at a flow rate, 1.5 × 10-8 m3/sec. And initial pressure is 27 MPa, initial far-field 

stress is 30 MPa (just used for initial normal displacement set up) and operation time is 

360 days. The fracture pressure, normal displacement and shear displacement changes 

when the fracture is fully opened at the injection well.  
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Fig. 4.28 Fracture pressure variation with time at injection well for isothermal and non-
isothermal conditions. 
 
 
 

 

Fig. 4.29 Normal DD (fracture aperture) change with time at injection well and P3 (Fig. 
4.27) for isothermal/non-isothermal conditions. 

26

27

28

29

30

31

32

33

34

35

1.E-06 1.E-04 1.E-02 1.E+00 1.E+02

P
re

ss
u

re
 (

M
P

a
)

Time (Days)

Isothermal

Non-Isothermal

0

1

2

3

4

5

6

7

1.E-06 1.E-04 1.E-02 1.E+00 1.E+02

D
n

(m
m

)

Time (Days)

Injection Well (Isothermal) 

P3 (Isothermal) 

Injection Well (Non-Isothermal) 

P3 (Non-Isothermal) 



 

 

67

The fracture pressure increases by injection and the pressure in the cooling case 

is slightly lower in Fig. 4.28. The fracture pressure reaches 33 MPa in both isothermal 

and cooling at the end of operation. Fig. 4.29 shows that the fracture aperture of the main 

fracture is bigger than the fracture aperture of the fracture branch. The reason for this is 

that the main fracture is 4 times longer, so under a similar fracture pressure it opens 

more. Also, the fracture aperture in the cooling case is bigger than the one in isothermal 

case because of cooling effect.  

 

 

Fig. 4.30 Shear DD (Ds) change with time at P2 and P3 (Fig. 4.27) for isothermal/non-
isothermal conditions. 

 

In the isothermal case, the fracture branch is fully opened at the 19th time (144 

days) step and in cooling case the branch is opened at the 15th time (10 days) step in Fig. 

4.30. And the shear slips at P2 and P3 occur at the same time step in both conditions. It 

means that this shear slip in main fracture is caused by the opening of fracture branch.  
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Fig. 4.31 Mechanism of normal and shear displacement generation. 
 

Fig. 4.31 shows how the normal and shear displacement are generated for 

intersecting cracks. Previously, under non-equilibrium condition, the fracture is 

permanently slipped by far-field (in-situ) stress. However, for equilibrium condition, 

there is no shear slip under the initial stress.   

 

 

Fig. 4.32 Mechanism of normal and shear displacement generation in regular fracture 
network. 
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Fig. 4.32 illustrates no shear slip in single fracture under equilibrium with in-situ 

stresses. However, in a fracture network, because of the fracture deformation and 

interaction, shear displacement is generated by injection or production.  

 

 

Fig. 4.33 A 35 m fracture with 5 m perpendicular fractures at seven locations. The 
fracture is modeled using 53 DD elements under equilibrium condition. 
 

In this example (Fig. 4.33), we investigate the mechanism of shear displacement 

in irregularly connected fracture network under equilibrium condition. There is fluid 

injection at the center of the main fracture and it causes fracture deformation in normal 

and shear because of the opening of the secondary cracks as they are pressurized.  

 

 

Fig. 4.34 Mechanism of shear displacement generation in irregular fracture network with 
isothermal (upper)/ cooling (lower) injection. 
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According to Fig. 4.34, in the main fractures network at the center (F1, F3, F5, 

F7, F9, F11 and F13), the shear displacements are caused by normal displacement in 

fracture branches (F2, F4, F6, F8, F10 and F12) due to injection. For cooling, the shear 

displacements in fracture branches are little bit different because of thermal effect, but 

the differences in Ds are negligible. So, in both isothermal and cooling cases, the pattern 

of Ds is similar.  

 

 

Fig. 4.35 A 20 m fracture with connected 90 degree 5 m fracture at the center. The 
fracture is modeled using 25 DD elements under anisotropic (45 ̊, 135 ̊, 225 ̊ and 315 ̊) 
in-situ stress (P1, P2, P3 and P4 are measure points).  

 

However, under anisotropic in-situ stresses, the shear displacements in fracture 

segments are different. Since the anisotropic in-situ stresses, initially generates shear 

displacement on all fractures. Fig. 4.35 shows the fracture network with anisotropic in-

situ stresses.  
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Fig. 4.36 Mechanism of initial normal and shear displacement generation under 
anisotropic in-situ stresses. 

 

Due to higher in-situ stress anisotropy (13 vs. 20 MPa), there are shear 

displacements (blue arrows) initially (Fig. 4.36). Comparing Fig. 4.36 to Fig. 4.31, there 

is shear displacement in fracture branch in this case because of in-situ shear stress.  

 

 

Fig. 4.37 Fracture pressure variation with time under in-situ stress at injection well for 
isothermal and non-isothermal conditions. 
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Fig. 4.38 Normal DD, Dn (fracture aperture) change with time at injection well and P3 
(Fig. 4.35) for isothermal/non-isothermal conditions. 

 

The pressure and fracture aperture changes for non-equilibrium condition was 

studied in Section 4.2. After a quick pressure increase due to fluid compressibility, the 

fracture pressure and fracture aperture decreased with time. Later when injection fluid 

was enough to increase the fracture pressure and apertures increased simoultaneously. 

Fig. 4.37 and Fig. 4.38 show a same pattern in fracture pressure and aperture changes 

(compare to Fig. 4.12 and Fig. 4.13). Fracture pressure in isothermal and cooling cases 

are uniform in all fracture segments. In cooling operation, the fracture aperture at P3 

reaches about 6.5 mm while at injection point, it is about 1.8 mm.  
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Fig. 4.39 Shear DD (Ds) change with time at P1, P2 and P4 (Fig. 4.35) for isothermal 
conditions (Initially, Ds = 0). 

 

When the upper surface of fracture moves left or the right-hand side surface of 

fracture moves up, shear displacement discontinuity (Ds) are considered positive. In Fig. 

4.39, Ds at P1 is its absolute value (actually, Ds at P1 has negative values). At point P1 

(fracture branch), the injection does not affect shear displacement at this point so it does 

not change significantly (just little changes caused by pressure changes in main fracture). 

At P3 and P4, there are initial shear displacements about 0.68 mm caused by the 

anisotropic in-situ stresses under non-equilibrium condition. And Ds at P3 is decreased 

by pressure decreases at fracture branch and it starts to increase by pressure increase due 

to injection, and when the shear strength is overcome by shear stress on this segment, 

permanent shear slip occurs (at the end of time step). At P4, there is exactly opposite 

situation. The Ds is increased (because of upper surface movement direction) by pressure 
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decrease at fracture branch and with time it starts to decrease by injection. At the end of 

simulation, there is permanent shear slip caused by injection.  

 

 

Fig. 4.40 Shear DD (Ds) change with time at P1, P2 and P4 (Fig. 4.35) for 
isothermal/cooling conditions. 
 

According to Fig. 4.40, in cooling operation, there is an early permanent shear 

slip at 16th time step. Because of tensile stress by cold temperature, the fracture aperture 

at fracture branch opens faster than for the isothermal case, and causes early shear failure 

in main fracture. At P1, since the injection does not affect any shear displacement in this 

location, there is no significant difference between the shear displacement in isothermal 

and cooling cases. This result at P1 shows that the main cause of permanent shear slip in 

the main fracture is the opening of a secondary fracture due to injection. 
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Fig. 4.41 Mechanism of normal and shear displacement generation under anisotropic in-
situ stress. 
 

This exaggerated illustration (Fig. 4.41) shows how the shape of the fracture 

network is changed. When putting anisotropic in-situ stresses (Fig. 4.35), the fracture is 

deformed initially and with constant injecting the branch fracture is fully opened causing 

shear slip on the main fracture.  
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4.4  Single Fracture with Injection/Production 

. 

Fig. 4.42 A 90 m fracture with 30 DD elements with injection and production at each 
end of the fracture. 

 

In this case study (Fig. 4.42), fluid is injected and extracted for 180 days with 2.0 

× 10-3 m3/sec and 1.9999 × 10-3 m3/sec flow rate so the injection rate is slightly higher 

than production rate. In cooling operation, the fluid temperature is 300 K (reservoir 

temperature is 420 K). Other input parameters are same with Table 4.1 and Table 4.2. 

 

 

Fig. 4.43 Fracture pressure variation with time at injection/production well for 
isothermal and non-isothermal conditions. 
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According to Fig. 4.43, initially the pressure at injection well is higher than the 

pressure at production well. In isothermal operation, the pressure starts to increase after 

few hours of operations, but for the cooling case, the pressure is decreased first in early 

time step and it starts to increase after 2 days of operation because of slightly higher 

injection rate. When injecting cold water into the system, the pressure by the fluid itself 

is lower than isothermal operation. At the end of time step, the pressure gradients are 

decreased because when the cooling effect has fully developed at the end of the 19th time 

step, the fracture aperture and it does increase more because of higher injection rate. So, 

the initially small pressure gradients increase soon by injection.  

 

 

Fig. 4.44 Normal DD, Dn (fracture aperture) change with time at injection and 
production well for isothermal/non-isothermal conditions. 
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In Fig. 4.44, while cooling, the fracture apertures in both wells are bigger than 

those in isothermal operation because the cold fluid causes opening of the fracture by 

induced tension. The cooling effect is visible within 1 day of operation in this figure. In 

addition, the apertures at injection well are higher than at production well in isothermal 

and cooling cases. 

 

 

Fig. 4.45 Induced pressure, ∆p (MPa) distribution after 10 (up) and 180 (lower) days of 
injection and production operation in isothermal condition.  
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In Fig. 4.45, after 10 days simulation, the induced pressure around the injection 

well is positive and the pressure around the production well is negative because of 

injection and production. And after 180 days operation, the pressure around the fracture 

reaches about 6.5 MPa because of slightly higher injection rate. The induced pressure at 

the end of the injection fracture segment has negative value and the induced pressure at 

the production fracture segment has positive value because of stress concentration. But 

these are present only in early time steps and disappeared by pressure increase. 

 

 

Fig. 4.46 Induced pressure, ∆p (MPa) distribution after 2 (top) and 180 (lower) days of 
injection and production operation in cooling condition.  
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In cooling condition, the pressure is decreased by cold fluid itself so the 

pressures in matrix are decreased simultaneously. And the lowest pressure reaches about 

24 MPa (-3 MPa induced pressure) in fracture (Fig. 4.46). After 2 days of operation, the 

pressure starts to increase (Fig. 4.43) by higher injection rate and reached 2.4 MPa at the 

end. 

 

 

Fig. 4.47 Induced effective mean stress in rock matrix (MPa), (∆σ'xx+∆σ'yy)/2 after 10 
(top) and 180 days operation for isothermal (tension positive). 

 

According to Fig. 4.47, after 10 days, the induced effective mean stress near the 

injection well is compressive (negative) because of pressure due to injection. On the 
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other hand, this value is positive at production well because of tensile stress due to 

production. At the end of operation, the induced effective mean stress reaches about - 3.1 

MPa because of pressure increase and there are higher tensile stresses of about 5 MPa 

next to both tips of the joint due to strain compatibility. Comparing to Fig. 4.45, the 

pressure and this stress, (∆σ'xx+∆σ'yy)/2 is distributed similarly in early time. However, at 

the end of simulation, there are stress concentration effects at the tips, but this feature 

disappears with time and the pressure spreads out evenly to the field.  

 

 

Fig. 4.48 Induced effective mean stress in rock matrix (MPa), (∆σ'xx+∆σ'yy)/2 after 2 
(top) and 180 days operation for cooling. 
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For cooling injection, the induced effective mean stress are higher around the 

fracture early on and at the end of this operation, the higher value is reached 17 MPa 

which is generated by shrinkage of  fracture surfaces due to cooling operation (Fig. 4.48). 

Comparing to Fig. 4.21, the higher tensile stress affects along the fracture while in Fig. 

4.21 (single fracture case), the tensile stress affects just an area in the vicinity of 

injection well. The following figure for temperature distribution shows the reason of this 

difference.  

 

 

Fig. 4.49 Temperature (K) distribution after 180 days operation. 
 

In this case, there is both injection and extraction. So, when injecting cold fluid 

into system, the cold fluid flows in the fracture network and is extracted at the 

production well while in Section 4.2, the temperature spreads out to field evenly in all 

directions conduction (Fig. 4.49).  
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5. MODEL APPLICATIONS TO STIMULATION 

INJECTION/EXTRACTION; INDUCED SEISMICITY 

 

In this section, the fully coupled displacement discontinuity method (DDM) is 

used to analyze the induced pressure, temperature and stress in the reservoir matrix 

under anisotropic in-situ stresses conditions and to simulate injection/extraction in 

irregular fracture networks to investigate flow channels evolution. Finally, the pressures 

and fracture apertures under equilibrium and non-equilibrium conditions will be 

compared in regular fracture network. 

5.1  Irregular Fracture Network with Regular Pattern  

 

Fig. 5.1 Irregular fracture network having 129 fracture segments over an area of 150 × 
150 (m2).  
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In this study, the fracture pressure, temperature, aperture, and conductivity 

changes in fracture network subjected to and anisotropic in-situ stresses are considered 

under non-equilibrium condition. 

 

 

Fig. 5.2 Anisotropy field stresses (31 MPa, 29 MPa) with different angles (0 ̊, 30 ̊). 
 

Initially, because of fluid compressibility, the fracture pressure will increase to 

27 MPa, higher than initial pressure, and it will then decrease with time until fracture 

pressure is increased by the injection near the end of simulation time. The resulting 

pressure, temperature and normal displacements (fracture permeability) will be different 

for both cases in Fig. 5.2. In Fig. 5.1, the fluid is injected at the center of fracture 

network with rate, 2 × 10-5 m3/sec and cooling temperature, 120 K. The geometry and 

loading condition for eth two cases are show in Fig. 5.1 and 5.2. Other parameters are 

listed in Table 4.1 and Table 4.2. 
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Fig. 5.3 Pressure variation in time at injection well with Case 1 and Case 2 in isothermal 
and cooling condition. 

 

According to Fig. 5.3, the pressure decreases with time until the injection rates 

are enough to increase the fracture pressure (after 25 days injection). However, initially 

the pressures in Case 2 are higher than in Case 1. When comparing Case 1 and Case 2, 

the initial pressure in Case 1 is about 29.64 MPa while the initial pressure in Case 2 is 

about 29.89 MPa. The fracture pressure in Case 1 is slightly lower than the pressure in 

Case 2. In this example, the injection well is located a fracture which is parallel to y-

direction. And in Case 1, this fracture is compressed at the beginning by 31 MPa in y-

direction and by 29 MPa in x-direction while in Case 2 the fractures are compressed by 

about 30.5 MPa for horizontal fracture elements and 29.5 MPa for vertical fracture 

elements.   

26

27

28

29

30

31

32

33

1.E-05 1.E-03 1.E-01 1.E+01 1.E+03

P
re

ss
u

re
 (

M
P

a
)

Time (Days)

Case 1 - Isothermal

Case 1 - Cooling

Case 2 - Isothermal

Case 2 - Cooling



 

 

86

 

Fig. 5.4 Permeability (Darcy) distribution in fractures after 1000 days injection in 
isothermal condition (Case 1).  

 

According to Fig. 5.4, the fracture apertures for the vertical set are larger than the 

apertures for the horizontal set because of lower in-situ stress in x-direction (29 MPa). 

So that the fracture permeability (where, kf = wf
2/12, Witherspoon et al., 1980) in 

fractures varies due to their angles, so the vertical fractures have higher permeability and 

the horizontal fractures have lower permeability resulting in flow channeling in the 

vertical direction. 
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Fig. 5.5 Permeability (Darcy) distribution in fracture after 1000 days injection in 
isothermal condition (Case 2). 

 

In Fig. 5.5, the pattern of permeability distribution is similar to Case 1, but it is 

more regularly distributed than Case 1 and horizontal fractures experience higher 

permeability than in Case 1. The fracture permeability ranges from 80,000 ~ 220,000 

Darcy (Dn: 0.8 ~ 1.2 mm) and falls within the range of Case 1, 50,000 Darcy ~ 400,000 

Darcy (Dn: 0.6 ~ 1.4 mm). This variable permeability is caused by different directions of 

the in-situ stresses for each case. When the in-situ stresses compress the fracture network 

with 45 ̊ rotation in counter-clockwise, the fracture permeability ranges from 124,000 

Darcy to 140,000 Darcy.  
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Fig. 5.6 Permeability (Darcy) distribution in fracture after 1000 days injection in cooling 
(top: Case 1, lower: Case 2). 
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Fig. 5.7 Permeability (Darcy) change with time in fracture at injection well in isothermal 
and cooling cases. 

 

According to Fig. 5.8, the cold temperature spreads out only in the vicinity of the 

injection well fracture because of there is no extraction. Due to cooling, in Case 1 and 

Case 2, the permeability of fractures are noticeably higher at the injection well and in 

horizontal fractures at the top and bottom of the injection point (Fig. 5.6). In other areas, 

the fracture permeabiliy is under 500,000 Darcy. Since the lower in-situ stress 

compresses the fracture in x-direction, the fracture permeability in Case 1 is higher than 

Case 2 from the start (Fig. 5.7). 
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Fig. 5.8 Temperature (K) distribution in fracture after 1000 days injection in cooling. 
 

5.2  Irregular Fracture Network 

In this case study, we simulate heat extraction from a real fracture network that 

consists of irregular distribution of fractures (Fig. 5.9) used by Swenson and Hardeman 

(1997), and investigate the pressure, temperature and fracture aperture change. In this 

simulation, we assume that the fractures are in equilibrium under the initial far-field 

stress. The initial pore pressure is 27 MPa, the flow rates in both wells is set to 3.5 × 10-4 

m3/sec. The injection water has a temperature of 320 K while the reservoir rock is 

initially at 420 K, resulting in a maximum cooling of 100 K.  Other parameters are all 

same with Tao and Ghassemi (2010). 
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Fig. 5.9 Irregular fracture network having 111 fracture segments over an area of 132 × 
108 (m2).  
 

5.2.1  Isothermal Condition 

This section investigates the pressure and fracture aperture in the fracture 

network and also considers the induced pressure and stress distribution in the reservoir 

matrix. This can provide insight in relation to interpretation of induced seismicity.  
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Fig. 5.10 Pressure (MPa) distribution in fracture after 1000 days of injection and 
production. 

 

In Fig. 5.10, as expected, the pressure around the injection well is slightly higher 

and the pressure around the production well is slightly lower than other fracture 

segments and field (matrix). 
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Fig. 5.11 Induced pressure (top, MPa) and stress (lower) distribution in the rock after 
1000 days of injection and production.  

 

In Fig. 5.11, because of pore pressure, the pressure around the injection well is 

higher than around the production well.  Also, we can see the induced effective stress 

(mean stress, (∆σ'xx+∆σ'yy)/2) around the injection well is lower than other area since the 

higher pore pressure reduces the amount effective stresses in the matrix. In contrast, the 
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induced effective stress around the production well is higher since the lower pore 

pressure makes the rock (matrix) expanded.   

 

 

 

Fig. 5.12 Pressure and fracture aperture change with time in injection/production wells. 
 

According to Fig. 5.12, the fracture pressure is stabilized in early time and so the 

fracture aperture is also stabilized. And with time, the fracture aperture at the injection 
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well decreases and the aperture at production well increase very slightly because of 

matrix dilation and contraction (poroelastic effect). 

5.2.2  Non-isothermal Condition 

In this section, also investigate the pressure and fracture aperture in fracture 

network and both wells and also investigate the induced pressure and stress distribution 

in matrix in 100 K cooling condition. 

 

 

Fig. 5.13 Pressure (MPa) distribution in fracture after 1000 days of cooling injection and 
production. 

 

According to Fig. 5.13, the injection fluid flows following fracture network and 

cause pressure increase in fracture around the injection well. We can also see several 

flow channels from the injection well to the production well. It can be noted that despite 

equal injection/extraction rates, the pressure within the flow paths is much lower than 
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the initial reservoir pressure. This is because the fluid is colder and tends to open the 

fractures. 

 

  

Fig. 5.14 Induced pore pressure (MPa) distribution in the rock after 400 (top), 1000 
(lower) days of cooling injection and production. 
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In Fig. 5.14, after 400 days of cooling operation, the pressure in fractures are 

about 23 MPa and outside of fracture network are 25.4 MPa, so in fracture network and 

matrix inside or near the fracture network is lower than outside of fracture network 

because of cooling effect. And after 1000 days of operation, the pressure within the 

fracture network drops to about 21 MPa.  

 

 

Fig. 5.15 Temperature (K) distribution in fracture network after 1000 days in cooling 
operation. 
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An interesting result from this figure is that the pressure in the matrix is lower 

than the pressure in fracture because of poro-thermoelastic effect. Excessive drop in pore 

pressure may not contribute to shear failure in those areas, particularly since they are not 

subjected to significant cooling-induces tensile stress. If the matrix is not fully 

surrounded by fracture network and the square is small, we cannot see this pattern. 

According to Fig. 5.15, the temperature is 320 K near the injection well. The 

temperatures in fracture segments located near the production well and on the right side 

are higher. This is because the injected fluid flows mostly from injection well to 

production along some of the fracture on the left side. When we see the temperatures in 

four corners of this fracture network, the temperature is still high because the cold fluid 

doesn’t flow the corner and also the temperature does not spread out to the corners yet. 

When looking the fractures at the bottom of the center area, the temperatures are lower 

because there is a fracture channel right above those fractures.  
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Fig. 5.16 Temperature (K) distribution in the rock after 400 (top), 1000 (lower) days of 
cooling injection and production. 
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Fig. 5.17 Induced mean, (∆σ'xx+∆σ'yy)/2, stress (MPa) distribution in the rock after 400 
(top), 1000 (lower) days of cooling injection and production (tension positive). 

 

In Fig. 5.16, after 400 days, the temperature around the injection well is about 

320 K but in production well, it still is close to the initial temperature of 420 K. After 

1000 days, the cold fluid spreads out from through fracture network and cools down the 
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reservoir matrix by heat conduction. Note the zones of higher matrix temperature occur 

in the central regions of each block except where the water has cooled the area from all 

sides. Also we can see a smooth temperature boundary in this figure; it means that the 

temperature also spreads out from fracture segments to matrix by poro-thermoelasticity.  

Fig. 5.17 shows the effective mean, average value of ∆σ'xx and ∆σ'yy, 

(∆σ'xx+∆σ'yy)/2, stress distribution. 400 days cooling of operation, since injecting cold 

fluid at injection well, the rock (matrix) around it is shrunk and it causes tensile stress. 

And after 1000 days, due to the cold temperature spreading, we can see that most parts 

of system show high tensile stress. When comparing Fig. 5.16 and 5.17, the distribution 

shapes are very similar but not exactly the same because the pore pressure increases by 

fluid injection causes compressive stresses (small compared to thermal stress). 

 

 

Fig. 5.18 Fracture pressure change with time at injection/production well in 
isothermal/non-isothermal cases. 
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 According to Fig. 5.18, the pressure at injection and production well is 27.01 

MPa and 26.99 MPa each, initially. (Because of small flow rate, the pressure difference 

in both wells is small.) After the cooling starts to affect to system, the pressure starts to 

decrease in both wells. And at the end of the time step, the pressures in both wells are 

21.26 MPa and 21.24 MPa. 

 

 

Fig. 5.19 Fracture aperture (Dn) change with time at injection/production well in 
isothermal/non-isothermal cases. 

 

According to Fig. 5.19, for the cooling case, Dn increases at the injection well 

and stabilizes after 400 days while it initially decreases at the production well and starts 

to increase after 200 days. The contribution of cooling to aperture increase at the 

production well is high at the time shown and the closure due to the pore pressure 

reduction is much smaller than cooling effect. 
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Fig. 5.20 Variation of temperature (K) at injection and production wells with time.   
 

In Fig. 5.20, the temperature at production well is changed by cooling effect at 

200 day and it reaches about 368 K at 1000 days of operation. A temperature near the 

injection well is decreased in early time step and it reaches 320 K after 200 days later. 
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Fig. 5.21 Permeability (Darcy) distribution in fracture after 1000 days in isothermal (top) 
and cooling (lower) operation. 

 

Fig. 5.21 shows the conductivity (kf = wf
2/12, Witherspoon et al., 1980) 

distribution in the fracture network. For isothermal condition, the fracture apertures at 

injection/production wells stabilized in early time step. So, the permeability values are 

more stable at the beginning and equal about 83,460 Darcy.  
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However in cooling case, the aperture of fracture segments are very high because 

the cooling makes the fracture aperture larger. Therefore, the fracture conductivity in 

cooling is higher comparing with isothermal condition. 

 

 

Fig. 5.22 Permeability change at injection/production wells in isothermal/cooling with 
time.   

 

According to Fig. 5.22, the conductivity of the fracture varies by time at injection 

and production well also both in isothermal and cooling operation. Due to the graph, the 

permeability at the injection well in cooling is increased quickly in early time step. After 

400 days, this value is stabilized around 1,200,000 Darcy.  

In following example (Fig. 5.23), a fluid channel with slightly different fracture 

network is examined. The fluid flows from injection well to the production well so the 

cold temperature mainly spreads out through the fracture network.  
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Fig. 5.23 Irregular fracture network (red line: slightly different with Fig. 5.9) having 111 
fracture segments over an area of 132 × 108 (m2).  
 
 
 

 

Fig. 5.24 Temperature (K) distribution in the rock after 1000 days of cooling injection 
and production. 
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When comparing this figure to Fig. 5.16, in Fig. 5.24, the fracture network is 

slightly changed affecting the flow channels in the central area. But in the outer regions 

the spread of temperature in both figures are very similar. The figures illustrate the 

importance of fracture flow on heat transport. The temperature profile near the edge of 

these fracture networks is similar because there is no fluid flow so the cold temperature 

spreads out by just conduction (Fig. 5.24).   

 

 

Fig. 5.25 Overall shape (top) and center (lower) area of Fig. 5.16 (left) and Fig. 5.24 
(right), the cold temperature spread out through the different fracture channels.  
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Fig. 5.25 shows the different flow channels in different fracture network. The 

cold temperature spreads out the fracture network and the cold temperature spreads out 

from fracture channel to matrix.   

To investigate more detail temperature distribution resulting from discontinuous 

injection/extraction, consider the smaller irregular fracture network for shorter route 

from injection point to extraction point shown in Fig. 5.26 to check more dynamic 

temperature changes in each measure point. The production well shut-in is simulated by 

reducing the rate to zero while the injection well rate is reduced from 3.5 × 10-4 m3/sec 

to 7 × 10-7 m3/sec at the 19th time step.  

 

 

Fig. 5.26 Irregular fracture network having 78 fracture segments over an area of 108 × 
96 (m2). P1 and P2 are measure points.  
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Fig. 5.27 Temperature (K) distribution in the rock after 160 days of cooling 
injection/production (upper), 240 days (lower left) and 840 days (lower right) days of 
cooling injection after shut in the production well. 
 

According to Fig. 5.27, we can see that until 160 days, the cold fluid flows 

through the fracture network so it spread out quickly from injection well towards the 

production well in several fracture channels. However after 240 days from shutting the 

extraction well, the temperature spreads out from fractures to field in the opposite 

direction, and the temperature inside of the fractures which are located in the middle of 
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fracture network increase again by spreading of warm temperatures from the extraction 

side.  

 

 

Fig. 5.28 Variation of temperature (K) at P1, P2, injection and production wells with 
time under stopped production with reducing injection rate. 
 

In Fig. 5.28, the temperature in the fracture at P2 decreases to about 385 K after 

160 days of operation, but after production well shut-in, the temperature is increased 

again because the cold fluid does not flow through the fracture network anymore. So, the 

water is heated up by the matrix. Also, note the cold front movement behind the 

production well. After 1000 days, this temperature starts to decrease again as the volume 

of cold water injection becomes sufficient to have an impact. However, at P1, the 

temperature reaches the lowest about 340 K so that it keeps increasing at the end.  
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Fig. 5.29 Induced mean, (∆σ'xx+∆σ'yy)/2, stress (MPa) distribution in the rock after 160 
days of cooling injection/production (upper), 240 days (lower left) and 840 days (lower 
right) days of cooling injection after shut in the production well. 
 

In Fig. 5.29, until 160 days of operation, there are higher tensile stresses about 16 

MPa near the injection zone. After stopping extraction, the cold fluid spreads out just 

near the injection well. But after 240 days injection, the fractures connected with the 

injection well and used as flow channels has higher tensile stress. Due to absence of 
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production well, the tensile stresses in the vicinity of injection well are decreasing until 

the cold effect appears again.  

 

 

Fig. 5.30 Fracture pressure change with time at injection/production wells under 
constant injection/production and stopped production with reducing injection rate (Case 
a: shut-in production well, Case b: continuous injection/production). 
 

In Fig. 5.30, when there is constant injection and production in cooling operation, 

the pressures in both wells keep decreasing with time. After shutting in the production 

well, the pressure in the fracture network starts to increase with smaller injection rate 

from 3.5 × 10-4 m3/sec to 7 × 10-7 m3/sec. In both cases, there is no significant pressure 

difference in both wells.  
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Fig. 5.31 Fracture aperture change with time at injection/production wells under constant 
injection/production and stopped production with reducing injection rate (Case a: shut-in 
production well, Case b: continuous injection/production). 
 

According to Fig. 5.31, in constant injection and production operation, the 

fracture aperture in injection well is drastically increased and stabilized after 400 days 

and in production well, the fracture aperture is decreased due to production. But after 

400 days of operation, the cold fluid reaches the production well, increasing the fracture 

aperture. However, when the production well is shut at 18th time step, the pressure at the 

injection well increases more than the constant production case and the pressure at 

production well starts to increase right after shutting the well.  
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Fig. 5.32 Variation of fracture aperture at P1 and P2 with time under stopped production 
with reducing injection rate (Case a: shut-in production well, Case b: continuous 
injection/production). 
 

Comparing Fig. 5.28 and Fig. 5.32, shows that there are temperature increases at 

P1 and P2 when shutting the production well, and the fracture apertures increase 

continuously. Even though the production well is shut and the fracture temperatures are 

increased, the matrix is still cold so the heating is not sufficient to cause fracture 

apertures decrease.  
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5.3  Regular Fracture Network   

Tao and Ghassemi (2010) already investigate the pressure, temperature and 

normal displacement change for and injection/production operation. However, it was 

assumed that the joint are in equilibrium under the initial stress state. In this work, non-

equilibrium under the initial far-field stress is considered an example simulations are 

provided using the same regular fracture condition and input data. The fractured domain 

is 2000 × 2000 (m2) and has a unit thickness (1 m). The initial fracture pressure is 27 

MPa, the flow rates in both wells is set to 1 × 10-4 m3/sec. The injection water has a 

temperature of 300 K while the reservoir rock is initially at 420 K.  Other parameters are 

all same with Tao and Ghassemi (2010). 

 

 

Fig. 5.33 Pressure distribution after a year injection/production (left: without initial far-
field stress, right: with initial far-field stress). 
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According to Fig. 5.33, this pressure distribution has a range of 25.5 ~ 28.0 MPa 

which is broader than 26.8 ~ 26.92 MPa obtained by Tao and Ghassemi (2010) and 

reflects the impact of fracture deformation under the initial far-field stress.   

 

 

Fig. 5.34 Pressure variation in time at injection/extraction wells with and without initial 
fracture deformation. 

 

When comparing the injection/extraction well pressure profile in time, large 

differences are observed in Fig. 5.34. The initial pore pressure is 27 MPa, but it is 

increased to 30 MPa because of compression and fracture closure. This effect is not 

noticeable for high fluid bulk modulus. The aperture increases at the production well 

after initially closing to some extent, but in the production well, the fracture pressure 

keeps decreasing. 
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Fig. 5.35 Fracture aperture (Dn) change with time at the wells (with and without the 
initial deformation). 
 
 
 

 

Fig. 5.36 Permeability (Darcy) change with time at the wells (with and without the 
initial deformation). 
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According to Fig. 5.35, the normal displacement (Dn) starts from 1 mm. But in 

reality, Dn under initial far-field stress condition is slightly smaller than when the 

response to initial stress condition is not included. Because of fluid compressibility, the 

fluid in the fracture is compressed and closes the fracture aperture slightly. After that, 

the Dn is decrease by pressure drop and at injection well, after several time steps, the Dn 

starts to increase with pressure increase by injection. When the Dn is larger, the fracture 

permeability is larger by Cubic Law. Therefore, Fig. 5.36 follows the results of Fig. 5.35. 

 

 

Fig. 5.37 Temperature (K) distribution after a year injection/production (left: without 
initial far-field stress, right: with initial far-field stress). 

 

In Fig. 5.37, comparing the temperature distribution figures between the 

simulation without initial far-field stress and with initial far-field stress, these are almost 

same. It means that the in this particular case, lack of equilibrium under the initial far-

field stress has no effect on the temperature distribution. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

In this thesis, a poro-thermoelastic model for injection and extraction in a 

fractured rock is developed by combining the DDM, and the finite difference method. 

The fracture deformation is modeled by considering the nonlinear joint deformation and 

non-equilibrium under the initial in-situ stress. The mode has been applied to investigate 

pressure, temperature, fracture aperture and shear displacement for single and multiple 

fractures. Also, using the model, the distribution figure of pressure, temperature, normal 

and shear stresses in a reservoir are studied for different injection/extraction cases and 

fracture networks.  

6.1  Conclusions 

1. The fracture pressure and aperture increase by injection resulting in decreased 

amount of effective stress in the vicinity of injection point. In contrast, the 

fracture pressure and aperture decrease by extraction resulting in increased 

amount of effective stress in the vicinity of extraction point. 

2. Since the thermoelastic effects cause significant tensile stress on the surfaces of 

fracture (rock shrinkage), it leads to large aperture and low fracture pressure 

compared to the isothermal condition. 

3. Under equilibrium condition, the mechanical interaction of individual fractures in 

the network has a key role in causing shear displacements within the network. 

Normal displacement caused by injection or extraction generates shear 
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displacements on connected fracture segments. However, when the fracture 

segments are only parallel, this normal displacement cannot create any shear 

displacement. Therefore, the fracture geometry plays an important role in 

permeability evolution under injection/extraction. 

4. A single fracture (divided in several elements) under non-equilibrium condition 

with an anisotropic in-situ stresses, there is a permanent shear slip due to the 

reduced amount of effective stress caused by constant injection under isothermal 

conditions. In cooling, the joint fully opens and this opening causes shear slip on 

all fracture elements at the same time. The failure modes are decided by Mohr-

Coulomb failure criterion. 

5. Under non-equilibrium condition, there is a quick pressure increase in the 

fracture because of the fluid compressibility (Cf). When the in-situ stresses 

compress the fracture, the pressure is increased and the fracture aperture is 

decreased. Also, the in-situ stress causes a significant pressure drop with 

decreasing fracture aperture in early time of simulation. 

6. For cooling operations, if there is only flow into a single short fracture, the 

temperature spreads out evenly from the injection point (as a circle) because 

there is no convective transport in the matrix. However, with production, the 

temperature spreads out through the fracture channels by the flowing fluid.  
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6.2  Recommendations  

 In this thesis, single phase water injection or production is for two-dimensional 

case (unit height of 1 m). So, for future studies, the following topics are recommended. 

• Hydraulic fracturing or propagation to naturally fractured reservoirs which have 

regular/irregular fracture network  

• Two phases flow simulation (water and steam, water and gas or water and oil) 

• 3-Dimensional simulation 
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NOMENCLATURE 

 

∆h (= 1m) Unit height of fracture 

∆L (= 2a) Length of fracture 

cT Thermal diffusivity of intact porous rock 

cw Heat capacity of fluid 

e ( kke ) Strain (volumetric strain) 

kf Fracture permeability 

kT Thermal conductivity of fluid 

p Pore pressure 

qf Flow rate in fracture 

qint (= vint) Interface (leakoff) flow rate 

qh-int Heat interface flow rate 

qs (= q) Injection/production rate 

rw Radius of well 

t Time 

wf Fracture aperture 

ss

ij

sn

ij

ns

ij

nn

ij

AAAA ,,,  Boundary influencing coefficient in Section 2 

ijijij

CBA ,,  Influence coefficient for normal stress  
                                    by normal and shear displacement discontinuity  
                                    and fluid/interface flow rate 

Cf Fluid compressibility 
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ij

p

ij

ht CC ,  Fluid and heat coefficient matrix 

Dn Normal fracture displacement 

Dn max Maximum closure 

Ds Shear fracture displacement 

ijijij

KFE ,,  Influence coefficient for shear stress  
                                    by normal and shear displacement discontinuity  
                                    and fluid/interface flow rate  

),( yxF  A function with global coordinate positions 

),( yxF  A function with local coordinate positions 

G Shear modulus 

Kn Normal stiffness 

Kni Initial normal stiffness 

Ks Shear stiffness 

ijijij

MHL ,,  Influence coefficient for pore pressure  
                                    by normal and shear displacement discontinuity  
                                    and fluid/interface flow rate in Section 2.2 

T Temperature 

α Biot’s coefficient 

αa Angle of linear fracture from x-axis 

αf Thermal expansion coefficient of pore fluid 

αs Thermal expansion coefficient of solid 

β  Angle from the x-axis segment (Counterclockwise) 
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ijε  Change of strain of the rock 

ij

γ  ji

ij

ββπγ −+=
2

 

� Matrix porosity 

�f Friction angle 

�d Dilation angle 

�f  (=  �w) Density of fluid 

nσ  Normal stress 

sσ  (= τ) Shear stress 

σxx, σyy, σxy Stress 

∆σ'xx Induced stress in x-direction  

∆σ'yy Induced stress in y-direction 

'
nσ  Effective normal stress 

s

i

n

i

σσ ,  Total stress 

00 )(,)( s

i

n

i

σσ  Initial stress 

i

s

i

n
'' ,σσ  Induced stress 

∞∞
00 )(,)(

i

s

i

n σσ  Far-field stress 

0
'

0
' )(,)(

i

s

i

n σσ  Initial induced stress 

hττ ξ ,  Time step 
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τp Peak shear stress 

τr Residual shear stress 

µ Viscosity of fluid 

υ  Poisson’s ratio 

uυ  Undrained Poisson’s ratio 

ijδ  Kronecker delta 

ζ Change of pore volume 

)(),(),(),( tttt
ij
T
n

ij
q
n

ij
ds
n

ij
dn
n σσσσ  Influence coefficient for normal stress by normal and shear 

                                    displacement discontinuity, fluid/interface flow rate and  
                                    temperature in given time t in Section 2 

)(),(),(),( tttt
ij
T
s

ij
q
s

ij
ds
s

ij
dn
s σσσσ  Influence coefficient for shear stress by normal and shear  

                                    displacement discontinuity, fluid/interface flow rate and  
                                    temperature in given time t in Section 2 

)(),(),(),( tptptptp
ij
T

ij
q

ij
ds

ij
dn  Influence coefficient for pore pressure by normal and shear 

                                    displacement discontinuity, fluid/interface flow rate and  
                                    temperature in given time t in Section 2 

)(tT
ij
T  Influence coefficient for temperature by heat flux in Section 2 

 

Over scripts 

i, j Index of fracture segment 

ξ  Index of current time step 

h  Index of time step 
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Super scripts 

q Fluid injection source and interface flow rate  
                                    between fracture and matrix 

dn Normal displacement discontinuity source 

ds Shear displacement discontinuity source 

T Temperature source 

 



 

 

127

REFERENCES 

 

Asgian, M., 1988. A numerical study of fluid flow in deformable naturally fractured 

reservoirs. Ph.D. Dissertation, University of Minnesota, Minneapolis, MN. 

Asgian, M., 1989. A numerical-model of fluid-flow in deformable naturally fractured 

rock masses. Int. J. Rock Mech. & Min. Sci. 26, 317-328. 

Bandis, S.C., Lumsden, A.C., Barton, N.R., 1981. Experimental studies of scale effects 

on the shear behavior of rock joints. Int. J. Rock Mech. Miner. Sci. Geomech. 

Abstr. 18, 1-21. 

Bandis, S.C., Lumsden, A.C., Barton, N.R., 1983. Fundamentals of rock joint 

deformation. Int. J. Rock Mech. Miner. Sci. Geomech. Abstr. 20, 249-268. 

Biot, M.A., 1941. General theory of three-dimensional consolidation. J. Appl. Phys. 12, 

155-164. 

Carvalho, J.L., 1990. Poroelastic effects and influence of material interfaces on 

hydraulic fracturing. Ph.D. Dissertation, University of Toronto, Toronto. 

Crouch, S.L., Starfield, A. M., 1983. Boundary Element Methods in Solid Mechanics. 

Unwin, New York, NY, USA. 

Curran, J.H., Carvalho, J.L., 1987. A displacement discontinuity model for fluid-

saturated porous media. In: Proceedings of the Sixth Congress of the ISRM, 

Montreal, Canada, pp. 73–78. 

Ghassemi, A., Zhang, Q., 2004. A transient fictitious stress boundary element method 

for porothermoelastic media. J. Eng. Anal. Boundary Elements 28, 1363–1373. 



 

 

128

Ghassemi, A., Zhang, Q., 2006. Poro-thermoelastic response of a stationary crack using 

the displacement discontinuity method. ASCE J. Eng. Mech. 132, 26-33. 

Ghassemi, A., Tao, Q., 2010. Poro-thermoelastic borehole stress analysis for 

determination of the in-situ stress and rock strength. Geothermics 39, 250-259. 

Goodman, R.E., 1976. Methods of Geological Engineering in Discontinuous Rocks. 

West Group, St. Paul, MN, USA. 

Goodman, R.E., 1989. Introduction to Rock Mechanics, 2nd ed. John Wiley & Sons, 

New York, NY, USA. 

Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W., 2007. Fundamentals of Rock Mechanics, 

4th ed. Blackwell Publishing, Malden, MA, USA. 

Lee, J., Rollins, J., Spivey, J., 2003. Pressure Transient Testing. SPE Textbook Series 

Vol. 9, Richardson, TX, USA. 

McTigue, D.F., 1986.  Thermoelastic response of fluid-saturated porous rock. J. 

Geophys. Res. 91, 9533–9542.   

McTigue, D.F., 1990. Flow to a heated borehole in porous, thermoelastic rock: Analysis. 

Water Resour. Res. 26, 1763-1774. 

Rice, J.R., Cleary, M.P., 1976. Some basic stress diffusion solutions for fluid-saturated 

elastic porous media with compressible constituents. Rev. Geophys. 14, 227–

241. 

Swenson, D., Hardeman, B., 1997. The effects of thermal deformation on flow in a 

jointed geothermal reservoir. Int. J. Rock Mech. & Min. Sci. 34, 308-327 



 

 

129

Tao, Q., 2010. Numerical modeling of fracture permeability change in naturally 

fractured reservoirs using a fully coupled displacement discontinuity method. 

Ph.D. Dissertation, Texas A&M University, College Station, TX. 

Tao, Q., Ghassemi, A., 2010. Simulation of fluid flow in naturally fractured poro-

thermoelastic reservoirs. In: Proceedings of the Thirty-fifth Stanford Workshop 

on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA. 

Tao, Q., Ghassemi, A., Ehlig-Economides, C.A., 2011. A fully coupled method to model 

fracture permeability change in naturally fractured reservoirs. Int. J. Rock Mech. 

& Min. Sci. 48, 259-268. 

Van Golf-Racht, T.D., 1982. Fundamentals of Fractured Reservoir Engineering. 

Elsevier, Amsterdam, The Netherlands. 

Warren, R.E., Root, P.J., 1963. The behavior of naturally fractured reservoirs. SPEJ 3, 

245-255. 

Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J. E., 1980.  Validity of cubic law for 

fluid flow in a deformable rock fracture. Water Resour. Res. 16, 1016-1024. 

Zhou, X.X., Ghassemi, A., 2011. Three-dimensional poroelastic analysis of pressurized 

natural fracture. Int. J. Rock Mech. & Min. Sci. 48, 527-534. 



 

 

130

APPENDIX A 

MATRIX FOR FULLY COUPLED PORO-THERMOELASTICITY DDM 

 

1. Matrix for pressure, leakoff flow rate, normal and shear displacement 
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2. Matrix for temperature and interface heat flow rate  
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APPENDIX B 

FIELD POINTS MAP 

 

1. Circle Fracture 
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2. Angled Single Fracture 
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3. Horizontal Single Fracture 
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4. Irregular Fracture Network 
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APPENDIX C 

INDUCED PORE PRESSURE AND STRESS AROUND BOREHOLE 
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Tangential Stress 
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To prevent nomenclature confusion with main article, the nomenclatures listed 

below in this Appendix C are only for this appendix and Section 4.1.  
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s is Laplace variable, over script ‘~’ is Laplace space, a is borehole radius, r is 

the radial distance to the center of borehole, fTc is the coupled thermal-fluid pressure 

coefficient, c is cohesion, Tc is the thermal diffusivity, fc is the fluid diffusivity, fm TT ,

are the temperature of mud and formation, fm pp ,  are the pressure of mud and 

formation, B is the Skempton pore pressure coefficient, 0S is the deviatoric stress, uυυ,

are Poisson’s ratio in drained and undrained, α is the Biot’s coefficient. All equations 

and figures are from Ghassemi and Tao (2010). 
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APPENDIX D  

FLOW CHART 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Set injection/ extraction rate  
(The flow rates could be set differently by time step) 

7. Find temperature (T) and heat flux (qh-int) using DDM 

Start 

1. Import Input 
Parameters 

(Rock Properties 
/ Initial values)  

2. Set up the shape of the fracture 
(If there were field points, set field points) 

5. Set normal stiffness (Kn) and normal displacement (Dn) by two options 
 
5.1. Using initial normal stiffness (Kni), maximum closure (Dn max),  
    and effective stress (σ�

� ), set above values using below equation 

   ( K� 	
K��


��
��

�

K���� ������
� �

�
 ) (Nonlinear) 

5.2. Set Kn, Dn by inputs (Linear) 

3. Set in situ stress σxx, σyy and σxy 
4. Initialize the pore pressure and set stresses  
    (σn and σs caused by in situ stresses)  
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8. Solving Part: Find ∆Dn, pressure (p), shear 
displacement (∆Ds) and leakoff rate (∆vint) using DDM 

Iteration>100 
& Temperature 
difference <10-4 

11. Update p, T, Ds, vint, fracture permeability (K) 
and other relative values 

End 

Is there field point 
calculation?      (III: 

Number of field points) 

Yes 

No 

Iteratin =  
√III ? 

No 

Yes 

Yes 

No 

10. Check failure mode in single fracture case: Find σs max and 
 if σs > σs max, σs is same with the σs in previous time step   
 ( It means Ks is ‘0’. σs max = σ� � � tan!"# $ "%& $ C, where  
  "#: Frictional angle, "%: Dilation angle and C: Cohesive) 

9. Update Dn, σ��  and σ( 
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