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ABSTRACT

Applications of Irreversible Thermodynamics:

Bulk and Interfacial Electronic, Ionic, Magnetic and Thermal Transport.

(August 2011)

Matthew Ryan Sears, B.S., University of Rochester

Chair of Advisory Committee: Dr. Wayne M. Saslow

Irreversible thermodynamics is a widely-applicable toolset that extends ther-

modynamics to describe systems undergoing irreversible processes. It is particularly

useful for describing macroscopic flow of system components, whether conserved (e.g.,

particle number) or non-conserved (e.g., spin). We give a general introduction to this

toolset and calculate the entropy production due to bulk and interfacial flow. We

compare the entropy production and heating rate of bulk and interfacial transport,

as well as interfacial charge and spin transport. We then demonstrate the power and

applicability of this toolset by applying it to three systems.

We first consider metal oxide growth, and discuss inconsistency in previous theory

by Mott. We show, however, that Mott’s solution is the lowest order of a consistent

asymptotic solution, with the ion and electron concentrations and fluxes going as

power series in t−k/2, where k = 1, 2, . . . . We find that this gives corrections to

the “parabolic growth law” that has oxide thickness going as t1/2; the lowest order

correction is logarithmic in t.

We then consider the effect on spin of electric currents crossing an interface

between a ferromagnet (FM) and non-magnetic material (NM). Previous theories for

electrical potential and spin accumulation neglect chemical or magnetic contributions

to the energy. We apply irreversible thermodynamics to show that both contributions

are pivotal in predicting the spin accumulation, particularly in the NM. We also show
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that charge screening, not considered in previous theories, causes spin accumulation

in the FM, which may be important in ferromagnetic semiconductors.

Finally, we apply irreversible thermodynamics to thermal equilibration in a thin-

film FM on a substrate. Recent experiments suggest that applying a thermal gradient

across the length of the system causes a spin current along the thickness; this spin

current is present much farther from the heat sources than expected. We find that, al-

though the interaction between the separate thermal equilibration processes increases

the largest equilibration length, thermal equilibration does not predict a length as

large as the experimentally measured length; it does predict, however, a thermal

gradient along the thickness that has the shape of the measured spin current.
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CHAPTER I

INTRODUCTION

Irreversible thermodynamics, the thermodynamic method to macroscopically de-

scribe systems undergoing irreversible processes, was formulated in the early to middle

20th century, by some accounts beginning with the seminal work by Onsager in 1931.1

For a complete treatment of the techniques of irreversible thermodynamics, see, for

example, Refs. 2, 3, or 4.

Most real-world processes involve continual irreversible flow; take, for instance,

the exchange of matter within living cells, the deposition of energy from the sun to a

planet’s atmosphere, or the flow of current through an ordinary resistor. This small

set demonstrates the broad and ubiquitous nature of such processes. Irreversible ther-

modynamics is a method by which one can find the fluxes and concentrations of the

carriers (of heat, mass, charge, etc.) in such systems, as well as the time evolution

and spatial dependence of thermodynamic quantities (such as temperature and volt-

age). Some phenomenological transport equations, such as Ohm’s Law, existed prior

to the foundation of irreversible thermodynamics, which gives the analytic framework

to derive such experimentally-observed relations.

Although very general, irreversible thermodynamics only applies to systems near

equilibrium; it does not treat situations like the free expansion of a gas.

Illustrated below by the example of one-dimensional heat flow, the general method

of irreversible thermodynamics for stationary states is as follows:

• write down the static thermodynamic energy differential dE in terms of exten-

sive thermodynamic quantities (e.g., entropy S) and their correlated intensive

The journal model is Physical Review B.
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quantities (e.g., temperature T );

• write the relation between the time rates of change of each of the extensive

thermodynamic quantities and the divergence of their respective fluxes, known

as “continuity equations” (e.g., the current density of entropy jSi is related

to its time rate of change ∂tS and the entropy production, or source, SS by

∂tS + ∂ij
S
i = SS);

• use the energy differential to replace the time rate of change of entropy (energy)

in the continuity equation for entropy (energy);

• use the other continuity equations to replace the remaining time derivatives;

• Write the equation for the rate of increase of the entropy density so that it

contains a single divergence term and terms associated with the appropriate

thermodynamic variables, each of which is shown to be a product of a thermody-

namic gradient or “force” and its conjugate flux or for non-conserved quantities

(e.g., spin), a thermodynamic sum or difference and its conjugate “source”;

• employ the Second Law of Thermodynamics to set the divergence term to zero

and to determine the form of all of the fluxes and sources (below we give an ex-

ample where the temperature gradient is the “force” associated with the energy

flux – this type of relation is called a “flux-force” relation);

• and substitute these flux-force relations into the continuity equations to obtain

a set of coupled partial differential equations.

Solving the resulting set of equations with the appropriate boundary conditions then

gives the intensive thermodynamic properties and the thermodynamic fluxes in the

subsystems.
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Throughout this work, rather than extensive thermodynamic quantities (e.g.,

entropy S) we employ thermodynamic densities (e.g., entropy density s = S/V , where

V is the volume). Since the volume is taken to be constant for the systems studied

by this work, this does not affect our results. To apply this technique to systems in

which the volume is not static, one must integrate the relevant equations over V .

To illustrate the method outlined above, consider the example of ordinary one-

dimensional thermal flow. With energy density ε, entropy density s, and temperature

T , static thermodynamics gives

dε = Tds. (1.1)

Continuity of energy and entropy give

ε̇+ ∂xj
ε
x = 0, (1.2)

ṡ+ ∂xj
s
x = Ss ≥ 0. (1.3)

Here, jε is the energy flux, js is the entropy flux, and Ss is the entropy production

(per unit volume). Energy conservation and the Second Law of Thermodynamics

have been employed by respectively setting the right-hand-side (RHS) of Eq. (1.2) to

be zero and the RHS of Eq. (1.3) to be non-negative. Substitution for ṡ from Eq. (1.1)

into Eq. (1.3) gives

ε̇

T
+ ∂xj

s
x = Ss ≥ 0. (1.4)

Substitution for ε̇ from Eq. (1.2) then relates the divergence of all the fluxes to the

entropy production, which must be non-negative:

−∂xj
ε
x

T
+ ∂xj

s
x = Ss ≥ 0. (1.5)
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In the spirit of irreversible thermodynamics, the left-hand-side (LHS) of Eq. (1.5)

is then rewritten to contain only a single divergence term:

∂x

(
jsx −

jεx
T

)
− jεx
T 2
∂xT = Ss ≥ 0. (1.6)

Because the divergence term cannot be guaranteed to be everywhere non-negative,

its argument must be zero, i.e.,

jsx −
jεx
T

= 0. (1.7)

One may alternatively argue that Eq. (1.1) guarantees the above relation. For the

gradient term −jεx∂xT to be non-negative regardless of the sign of ∂xT , we must have

jεx = −κ∂xT, (1.8)

where κ is a positive constant. This is the usual force-flux relation for heat flow,

and κ is the thermal conductivity. We note that Eq. (1.8) is a statistical rather than

mechanical law, whereas, for example, gravitational forces are mechanical in nature.

Combination of energy continuity Eq. (1.2) and the force-flux relation Eq. (1.8)

gives the steady-state temperature and energy (heat) flux. In steady state, the time

derivative ε̇ is neglected, so that substitution of Eq. (1.8) into Eq. (1.2) gives

∂2xT = 0. (1.9)

As expected, for a single one-dimensional system, the temperature is linear in x

and the heat flux is constant. Application of appropriate boundary conditions gives

the full solution for the temperature and heat flux. For the simple example of an

electrically insulating rod whose ends at x = −d/2 and x = d/2 are maintained at
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respective temperatures TL and TR,

T =
TL + TR

2
+

(
TR − TL

d

)
x. (1.10)

Application of this technique may be more complicated, particularly for complex

systems. There may be multiple subsystems, and fluxes of many different quantities,

which in principle each depend on the gradients of all of the varying intrinsic ther-

modynamic parameters. Further, consideration of multiple spatial dimensions can

make analytic solution difficult. Although such complexities increase the difficulty

of solving for the transport in a given system, they also increase the richness of the

physics involved. A number of approaches and applications close to the spirit of this

work are available,5–12 including works by the present author.13,14

Additional complications occur in systems where fluxes cross one or more in-

terfaces, as in most modern devices. (In reality, every real-world electronic system

involves electric flow across interfaces, e.g., any soldered joint.) The potentially non-

trivial contributions of interfaces to transport therefore bear study. The effect of

boundaries on flow was first studied in the context of heat flow between a superfluid

and an ordinary solid by Kapitza (see Ref. 15). More relevant to modern devices, the

first analytic theory for interfacial transport including spin using irreversible thermo-

dynamics was done by Johnson and Silsbee.16 Although this work is very general, it

does not consider spin flip due to the interface, nor does it find the entropy production

or heating rate. It also considers only the case of metals.

This dissertation addresses such concerns. For the general case, it finds the rate

of heating and entropy production due to transport in bulk and across interfaces, and

finds the conditions for interfacial heating to dominate bulk heating. In addition to

metals, it includes semiconductors and insulators, and discusses the parallels between

flow in semiconductors and in spintronics devices. The wide applicability of irre-
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versible thermodynamics to modern devices is demonstrated by consideration of three

particular systems: a long-considered system involving particle flow via electronic and

ionic transport; a more recently observed system involving bulk and interfacial mag-

netic flow via spin-up and spin-down electron transport; and a very recently observed

system involving bulk and interfacial thermal flow via phonon (lattice vibration) and

magnon (spin wave) transport.
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CHAPTER II

RATE OF HEATING AND ENTROPY PRODUCTION DUE TO BULK AND

INTERFACIAL TRANSPORT

Interfaces have a marked effect on flow. It is known that apparent voltage and

temperature discontinuities, determined by extrapolation from the bulk, appear at

interfaces in the presence of heat or electric current. For small currents, these dis-

continuities are proportional to the heat or electric current. For heat current, the

coefficient of proportionality is known as the thermal boundary resistance, and was

first studied at low temperatures by Kapitza for the solid–liquid 4He interface.15,17–19

For electric current, the coefficient of proportionality is known as the surface resis-

tance, or specific resistance.20 In principle, there can also be off-diagonal terms, e.g.,

corresponding to a discontinuity in the temperature causing an electric current.16

There also are spin-dependent conduction effects across surfaces, as studied, for ex-

ample, in Refs. 16, 21, and 22.

Johnson and Silsbee16 studied the surface and bulk transport coefficients in-

cluding spin-dependent conduction and off-diagonal terms, but without considering

details of the non-conservation of the spin current due to spin-flip processes, and did

not study the rate of heating or entropy production near the surface. This chapter

considers these non-conservation phenomena. It also includes the chemical potential

µ of the charge-carriers. For metals, µ is nearly independent of carrier density and

can be neglected (compared to electrical potential energy), but the same is not nec-

essarily true for semiconductors or insulators, where small changes in carrier density

can have a large effect on µ.

This chapter determines the conditions under which bulk heating dominates sur-

face heating, and vice-versa. It also discusses the distinction between heating and
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entropy production; the former implies the latter, but the converse is not true. (We

note that the only commonly-known case where entropy production does not imply

heating is that of thermal conduction.) It does not consider length scales so small

that ordinary heat conduction (e.g., the Fourier law) is not expected to hold, due

either to classical or quantum size effects.23

This dissertation does not consider systems for which the interface is a distinct

thermodynamic system. For a system that is out of thermodynamic equilibrium a

surface temperature may not be a well-defined quantity. (See Refs. 24 and 25 for

molecular dynamics simulations of heat flow across an interface, which show a sharp

temperature jump at the atomic level.) Moreover, thermometers that measure differ-

ent properties, but are calibrated in the bulk, need not read equivalent temperatures

near the surface. This is because near surfaces the thermal distribution function is

not defined solely in terms of thermodynamic properties, but also in terms of surface

solutions of the transport equation.26,27

Section A of this chapter calculates bulk and interfacial fluxes, heating rates, and

entropy production in systems in which a single carrier is transported. It also dis-

cusses the distinction between heating and entropy production, giving some examples

where the latter increases while the former remains constant. It further estimates the

conditions under which entropy production from interfacial flow dominates that from

bulk flow. Section B calculates fluxes, the rate of heating, and entropy production

a two-carrier system, specifically considering up- and down-spin electrons; its results

qualitatively apply to semiconductors where electrons and holes are the carriers. It

also estimates when heating from interfacial spin currents is of comparable magnitude

to heating from interfacial electric currents.

This chapter (and much of this dissertation) is related to recent work on “spin

caloritronics,” whereby heat currents can cause spin currents and spin currents can



9

cause heat currents.28–30 (More precisely, gradients of temperature cause both heat

and spin currents, as do gradients of spin-dependent potential.) The former, known

as the spin-Seebeck effect, has recently been measured31–33 using the inverse spin Hall

effect, and in one case33 the measurements (of an electrical voltage) display a profile

that is associated with spatially exponential decay away from the heat input and

output leads. Chapter V gives those details.

A. Single Carrier Systems

1. Rate of Entropy Production

For a single carrier conductor, we assume that the bulk energy density ε, bulk

number density n, and bulk entropy density s are related by

dε = Tds+ µ̃dn. (2.1)

The electrochemical potential

µ̃ = µ− eφ, (2.2)

where µ is the chemical potential. The continuity relations for the conserved number

and energy densities are

∂n

∂t
+ ∂ij

n
i = 0, (2.3)

∂ε

∂t
+ ∂ij

ε
i = 0. (2.4)

The equation for the non-conserved entropy density is

∂s

∂t
+ ∂ij

s
i ≡ Ss ≥ 0. (2.5)
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Alternatively one can use the dissipation function

R = TSs (2.6)

as the primary quantity. R has the units of a rate of heating, but is only a rate of

heating when energy is transformed into heat, not when it already is in the form of

heat.

In considering heat transfer between systems at different temperatures, and in

the absence of temperature jump effects, one must work with TR rather than the

dissipation function R for the net entropy to increase. See Sec. 4.2.1 of Ref. 34.

Combining the above Eqs. (2.1)-(2.5) yields

0 ≤ TSs = −∂ijεi + µ̃∂ij
n + T∂ij

s

= ∂i (−jεi + µ̃jni + Tjsi )− jsi ∂iT − jni ∂iµ̃.
(2.7)

Following the approach of irreversible thermodynamics, this has been written as a

single divergence term and the sum of products of unknown fluxes with gradients of

the thermodynamic intensive quantities. Since the divergence term may be either

positive or negative, it must always be zero to ensure that entropy never decreases,

i.e., Ss ≥ 0. Thus

jεi = µ̃jni + Tjsi , (2.8)

and

0 ≤ TSs = −jsi ∂iT − jni ∂iµ̃. (2.9)

As in the example in Chapter I, if there is no number current jni , then the energy

current jεi consists only of a heat current jQi ≡ Tjsi . In that case the energy is only

in the form of heat, and there is no additional heat production, although there is

entropy production.
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2. Bulk Fluxes and Rate of Entropy Production

In bulk, by the non-negativity of Eq. (2.9), the linearized (that is, neglecting

second and higher order derivatives) flux densities take the form

jsi = − κ
T
∂iT − Lsn∂iµ̃, (2.10)

jni = −Lns∂iT −
σ

e2
∂iµ̃, (2.11)

where κ is the (positive) thermal conductivity, σ is the (positive) electrical conduc-

tivity, e is electric charge, and Lsn = Lns by the Onsager principle. Irreversible

thermodynamics cannot provide values for any of these material-dependent coeffi-

cients, but Kubo theory can give these coefficients in terms of equilibrium correlation

functions.11,12,35 Moreover, although they are treated in this chapter, cross-terms are

typically neglected in normal mode calculations for real world systems (including the

calculations in Chaps. IV and V).

By Eqs. (2.9)-(2.11), the rate of entropy production in the bulk (per unit volume)

is given by

Ss =
κ

T 2
(∂iT )2 +

σ

e2T
(∂iµ̃)2 + 2

Lsn
T

(∂iµ̃) (∂iT ) . (2.12)

By Ss ≥ 0 we have κ ≥ 0, σ ≥ 0, and L2
sn ≤ (σκ)/(e2T ). As noted in the introduction,

pure thermal conduction already involves heat flow, so there is no production of heat

in that case.

On the other hand, the entropy production due to current flow does cause heating,

at the rate per volume of

R ≡ −jni ∂iµ̃ =
σ

e2
(∂iµ̃)2 + Lsn(∂iµ̃)(∂iT ). (2.13)

Only the first term is Joule heating. The second term is like Thomson heating, in that

it can have either sign. (Because Thomson heating, as discussed in Ref. 36, involves
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the artificial maintenance of the same temperature distribution both with and without

current flow, we hesitate to call this cross-term Thomson heating, although the latter

involves both a temperature gradient and a voltage gradient.) For a large ∂iT , this

term can even dominate, but the net entropy production Ss remains non-negative.

3. Distinguishing Heating from Entropy Production

When calculating the rate of heating, this elimination, by hand, of the part of

TSs associated with heat flow is related to a similar effect discussed in Ref. 37 of

damping of a sound wave. In that case the mechanical energy Emech of the sound

wave (which, implicitly, has zero entropy) dissipates into heat, which increases the

entropy S of the background system by Ėmech = −T Ṡ. Ėmech is determined by

a volume integration over the equivalent of R, evaluated for the sound wave, and

is proportional to the square of the sound wave amplitude (including temperature

oscillations in the sound wave). This results in hot spots (as, for a standing wave,

is perhaps familiar from a microwave oven) that separately diffuse. However, this

energy is already heat energy. Once deposited as heat, its diffusion causes a further

increase in entropy, but no additional energy goes into the system.

Another example where entropy increase and heating are distinct is a gas of

interacting atoms that has a multi-nanometer range for repulsion. Let all the atoms

initially be placed within an interaction volume of one another. When they become

thermally disordered, the increase in entropy can be treated as in the present work,

but only the interaction energy converts into heat.

In spin-Seebeck experiments,31–33 the applied thermal gradient causes heat flow

between various subsystems, which in turn induces a spin current.38 Although it

increases the entropy of the system, the heat flow is not associated with heating;

however, spin and electrical currents both increase the entropy of the system and
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cause heating. Spin currents are addressed in Section B. The spin-Seebeck effect is

discussed in detail in Chapter V.

4. Surface Fluxes and Rate of Entropy Production

At low temperatures, or when the material properties change significantly on

crossing the interface (int), the changes in T and µ at the interface can be very large,

and Eq. (2.12) integrated over the surface region (assuming that T and µ̃ are well-

defined in this region) can be smaller than the surface entropy production rate Sint.

We now consider Sint. This involves considerations of the characteristic mean-free-

path `mfp and the distance a over which the thermodynamic quantities adjust to the

surface.

The total rate (per unit area) of entropy production at the interface, Sint, is

obtained by integrating the volume rate of entropy production over the surface region.

By Eq. (2.9), taking flow only in the x-direction,

Sint =

∫
int

dxSs = −
∫
int

dx
(jsx∂xT + jnx∂xµ̃)

T
. (2.14)

In steady-state, the energy and number flux densities given in Eqs. (2.8) and (2.11)

are uniform across this region. If T and µ are also nearly uniform, by Eq. (2.8) the

entropy flux density will also be nearly uniform, so

Sint ≈ −
jsx
T

∫
int

dx∂xT −
jnx
T

∫
int

dx∂xµ̃

≈ −j
s
x

T
(∆T )int −

jnx
T

(∆µ̃)int .

(2.15)

Here (∆T )int and (∆µ̃)int are the differences of temperature and electrochemical po-

tential across the interface region. On setting µ̃ = µ− eφ ≈ −eφ (not appropriate for

insulators or semiconductors), Eq. (2.15) agrees with Eq. (12) of Ref. 16.

We now apply the same type of irreversible thermodynamics approach to the
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surface region as to the bulk in Section 2. In bulk the fluxes are proportional to

the gradients of the intensive thermodynamic quantities. At a surface, the fluxes

are taken to be proportional to the differences across the interface of the intensive

thermodynamic quantities. Thus

js = −hK
T

(∆T )int − L
′
sn (∆µ̃)int , (2.16)

jn = −L′ns (∆T )int −
ḡ

e2
(∆µ̃)int . (2.17)

Here, hK is the thermal boundary resistance, and is of the order of the difference in

the products of the specific heat times a characteristic sound velocity on each side,

and ḡ is a surface conductance, with units 1/Ω-m2. (We reserve g for the g-factor of

the charge carriers; for metals g ≈ −2.) By the Onsager principle (assumed to apply

at surfaces as well as in bulk), L′sn = L′ns. Thus, the total rate of entropy across the

surface region is

Sint ≈
hK
T 2

(∆T )2int +
ḡ

e2T
(∆µ̃)2int + 2

L′sn
T

(∆µ̃)int (∆T )int . (2.18)

The condition Sint ≥ 0 implies that hK ≥ 0, ḡ ≥ 0, and L
′2
sn ≤ (ḡhK)/(e2T ).

5. Estimates

We consider a metal-metal interface, for which µ̃ ≈ −eφ. For characteristic

values of current density39 (J ≈ 1012 A/m2) and surface conductance20 (ḡ ≈ 1015

1/Ω-m2), a characteristic potential difference across the interface is (∆φ)int ≈ 10−3

V. Then, when (∆T )int = 0 the appropriate part of TSint gives a rate of heating per

unit area of

Rint = TSint =
ḡ

e2
(∆µ̃)2int ≈ ḡ(∆φ)2int ≈ 109 W

m2
. (2.19)

We may also apply this to a multilayer system where interference effects between
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the layers, and where mean-free paths connecting them, can be neglected.22 At a

separation s of 100 nm between layers, the net effect of the interfaces corresponds to

a bulk conductance of ḡs ≈ 108 1/Ω-m and the rate of heating per unit volume (from

the values above) is approximately 1016 W/m3.

As already discussed, there is entropy production because of heat flow, but there

is no heating rate associated with heat flux, because the energy is already in the form

of heat. For an interface across which there is only a temperature jump, the rate of

entropy production is given by

Sint ≈
hK
T 2

(∆T )2int . (2.20)

Nevertheless, there is an apparent heating rate, whose value we now determine. Typi-

cal values for thermal boundary resistance19 (RK = h−1K ≈ 2×10−3K-m2/W at T = 1K

for Rh:Fe on Al2O3) and energy flux (Jε ≈ 10−7W/m2) give a value for the temper-

ature difference across the interface of (∆T )int ≈ 2 × 10−2K, so (∆T )int/T ≈ 0.02.

Then

TSint =
hK
T

(∆T )2int ≈ 0.2
W

m2
. (2.21)

This apparent heating rate is about ten orders of magnitude smaller than for the

example of a true surface heating rate due to the electrochemical potential gradi-

ent, given above in Eq. (2.19). Thus, if thermal flow were erroneously included in

calculations of heating in a real world system, the error would likely be negligible.

6. Entropy Production Rates: Bulk vs Surface

We now consider the conditions under which the interface entropy production

rate Sint can dominate over the near-surface space-integral Sbulk of the bulk entropy

production rate Ss. For simplicity we consider only carrier flow in the x-direction,
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with no cross-terms, so Lsn ≈ 0.

Three characteristic lengths are associated in this problem: one associated with

transport (a mean-free path `mfp), a characteristic sample size (d), and a distance

over which there is an interface adjustment (a).

Equating the bulk and surface carrier currents µjn and using ∂xµ̃ ∼ (∆µ̃)bulk /d

gives

(∆µ̃)int ≈
σ

hd
(∆µ̃)bulk . (2.22)

With this result, Eq. (2.13), and Eq. (2.18), for (∆T )int = 0 the integrated bulk rate

of entropy production near the surface (per unit area) is on the order of

Sbulk ∼ aσ
(∆µ̃)2bulk

d2
∼ a

ḡ2

σ
(∆µ̃)2int ∼

aḡ

σ
Sint. (2.23)

Thus, when aḡ/σ � 1 (good electrical matching between the two materials), the

contributions from the bulk electrochemical potential gradients dominate those near

the surface. On the other hand, when aḡ/σ � 1 (poor electrical matching between the

two materials), the contribution from the surface jump in electrochemical potential

dominates.

B. Two-Carrier Systems – Spin

For itinerant magnets the theory should include two carriers. A specific case

would be the interface between a metal and a magnetic material, where spin-up

and spin-down electrons have different electrochemical potentials on each side of the

interface. (The same approach can be applied to interfaces involving electrons and

holes, rather than up-spin and down-spin electrons. Just as the spin current is not

conserved, because up-spins and down-spins can flip, so too the difference between

the electric currents due to electrons and holes is not conserved, due to electron-hole
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recombination.) For simplicity we consider that the magnetization direction M̂ is

fixed, and takes the same value in both materials. Because of spin-flip processes

even a nonmagnetic material can develop a magnetization (this effect, known as spin

accumulation, is discussed in more detail in Chap. IV). With a somewhat different

notation, and including terms associated with ∂iM̂ , for the bulk many of these results

(but not surface heating) have been derived previously.40 Transport of spin across

surfaces was considered by a number of authors, but they did not consider heating

rates.16,21,22

Before presenting the thermodynamics a few definitions are needed. First, the

theory employs the “magnetization potential” − ~H∗. ~H∗ is the difference between the

external fields (magnetic, anisotropy, dipole) and the internal field due to exchange.

In equilibrium ~H∗ = ~0. For a more detailed discussion of ~H∗, see Ref. 40. The

chemical potentials are denoted by µ↑ and µ↓, and are determined, for example, from

energy band theory. The electrochemical potentials are denoted by µ̃↑ and µ̃↓, and

satisfy µ̃(↑,↓) = µ(↑,↓)− eφ. Finally, the magnetoelectrochemical potentials are denoted

by µ̄↑ and µ̄↓, and satisfy

µ̄(↑,↓) = µ(↑,↓) − eφ± (γh̄/2) ~H∗ · M̂, (2.24)

where γ is the gyromagnetic ratio, which satisfies

γ = |g|µB/h̄. (2.25)

Here g is the electron spin g-factor and µB is the Bohr magneton. In some cases it is

more convenient to write in terms of µB rather than γ. In equilibrium µ̄↑ = µ̄↓.

We note that there is some ambiguity in the definition of the external fields and

the internal fields, but there is no ambiguity in the definition of ~H∗. For example, the

lattice anisotropy and the dipole fields depends on the magnetization, and for that
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reason can be considered to be internal or external. The uniform exchange field is

certainly internal, but the non-uniform exchange field might be considered internal

or external. Only the applied magnetic field and the internal exchange field should

be uniquely considered external and internal.

1. Rate of Entropy Production

With these definitions, the bulk energy density ε, bulk electron number densities

for up spins n↑ and down spins n↓, and bulk entropy density s are related by

dε = Tds+ µ̄↑dn↑ + µ̄↓dn↓. (2.26)

The continuity relations for energy density and entropy density, Eqs. (2.4) and

(2.5) respectively, still apply. Continuity relations for the (non-conserved) number

flux densities are

∂n↑
∂t

+ ∂ij↑i = S↑, (2.27)

∂n↓
∂t

+ ∂ij↓i = S↓ = −S↑, (2.28)

where S↑ is the (density) rate at which spin-down electrons flip to spin-up electrons.

These forms ensure that the total number current,

Jni ≡ (j↑i + j↓i), (2.29)

is conserved, since summation of Eqs. (2.27) and (2.28) gives

∂ (n↑ + n↓)

∂t
+ ∂iJ

n
i = 0. (2.30)

However, the dimensionless spin current,

Jσi ≡ j↑i − j↓i, (2.31)
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is not conserved:

∂ (n↑ − n↓)
∂t

+ ∂iJ
σ
i = 2S↑. (2.32)

By Eqs. (2.4), (2.5), (2.27) and (2.28), we have

0 ≤ TSs =∂i (−jεi + Tjsi + µ̄↑j↑i + µ̄↓j↓i)

− jsi ∂iT − j↑i∂iµ̄↑ − j↓i∂iµ̄↓ − (µ̄↑ − µ̄↓)S↑.
(2.33)

As before, for the entropy to never decrease, the divergence must be zero, so we take

jεi = Tjsi + µ̄↑j↑i + µ̄↓j↓i. (2.34)

Then,

TSs = −js∂iT − j↑∂iµ̄↑ − j↓∂iµ̄↓ − (µ̄↑ − µ̄↓)S↑. (2.35)

Not only does each flux (carrier current and the heat current) contribute to the

rate of heating, but there is also a contribution from the source term for spin-flip.

Each flux appears with its conjugate “force” or thermodynamic gradient, whereas the

source term appears with a difference in thermodynamic potentials. (Reference 41

finds a similar heating rate for semiconductors, where the source term associated with

electron and hole recombination appears with the sum of electron and hole potentials.)

For conserved spin current (i.e., S↑ = 0), Eq. (2.35) agrees with Eq. (53) of Ref. 16.

2. Bulk Fluxes and Rate of Entropy Production

In the bulk, from Eq. (2.35), we take the linearized flux densities to be

jsi =− κ

T
∂iT − Ls↑∂iµ̄↑ − Ls↓∂iµ̄↓, (2.36)

j↑i =− L↑s∂iT −
σ↑
e2
∂iµ̄↑ − L↑↓∂iµ̄↓, (2.37)

j↓i =− L↓s∂iT − L↓↑∂iµ̄↑ −
σ↓
e2
∂iµ̄↓, (2.38)



20

where σ↑ and σ↓ are the respective electrochemical conductivities of up spins and

down spins. By the Onsager principle, L↑↓ = L↓↑, L↑s = Ls↑, and Ls↓ = L↓s. Further,

to ensure the non-negativity of Eq. (2.35) even in the absence of gradients of intensive

variables, S↑ is driven by the difference in electrochemical potentials

S↑ = −α (µ̄↑ − µ̄↓) , (2.39)

where α is positive, and proportional to a characteristic spin-flip rate. (A similar

relation holds in semiconductors, where, rather than up- and down-spin scattering,

there is electron and hole recombination.41)

We now expand the electromagnetochemical potentials as

µ̄↑ = µ̄
(0)
↑ +

∂µ̄↑
∂n↑

δn↑, µ̄↓ = µ̄
(0)
↓ +

∂µ̄↓
∂n↓

δn↓. (2.40)

Using µ̄
(0)
↑ = µ̄

(0)
↓ we then have

S↑ = −α
(

1

N̄↑
δn↑ −

1

N̄↓
δn↓

)
, (2.41)

where N̄↑ ≡ (∂n↑/∂µ̄↑) and N̄↓ ≡ (∂n↓/∂µ̄↓) are the densities of states.

We now relate this to T1 relaxation of the magnetization M of a uniform system,

where

M = −|g|µB
2

(n↑ − n↓). (2.42)

Recall that g is the charge carrier g-factor. Particle conservation gives δn↓ = −δn↑,

so δM = −|g|µBδn↑ and S↑ = −α(N̄−1↑ + N̄−1↓ )δn↑. Then Eq. (2.32), with ∂iJ
σ
i

neglected, yields

∂M

∂t
= −|g|µB

∂

∂t
(δn↑) = −M

T1
, (2.43)

where T−11 = α(N̄−1↑ + N̄−1↓ ).
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The dissipation function R = TSs is given for the bulk by

TSs =
κ

T
(∂iT )2 +

σ↑
e2

(∂iµ̄↑)
2 +

σ↓
e2

(∂iµ̄↓)
2 + 2Ls↑ (∂iµ̄↑) (∂iT )

+ 2Ls↓ (∂iµ̄↓) (∂iT ) + 2L↑↓ (∂iµ̄↑) (∂iµ̄↓) + α (µ̄↑ − µ̄↓)2 . (2.44)

This is sufficiently complex that each term deserves comment. The term in (∂iT )2

is from heat current, the terms in (∂iµ̄↑)
2 and (∂iµ̄↓)

2 are from Joule losses of the

individual carriers,42 the next three are cross-terms, and the last term gives the dis-

sipation due to spin-flip processes. Ss ≥ 0 forces various conditions on both the

diagonal and the cross-terms, of which the latter usually are small. The diagonal

terms satisfy κ ≥ 0, σ↑ ≥ 0, σ↓ ≥ 0, and α ≥ 0. Equation (2.44) indicates that it

is not the current or spin current (both of them thermodynamic fluxes) that deter-

mines the rate of entropy production and heating, but rather the gradients of the

magnetoelectrochemical potentials (both of them thermodynamic forces).

3. Surface Rate of Entropy Production

Consider flow along x, so that we may drop the directional indices on the fluxes.

Then, rewriting Eq. (2.35) with Eqs. (2.29) and (2.31) gives

TSs =− js∂xT −
1

2
Jn∂x (µ̄↑ + µ̄↓)−

1

2
Jσ∂x (µ̄↑ − µ̄↓)− (µ̄↑ − µ̄↓)S↑. (2.45)

In steady-state Jn is constant across the interface region, but Jσ is not. Moreover, js

is not obviously a near-conserved quantity, unlike for a single carrier. However, since

jε is conserved, we use Eq. (2.34) to write

js =
1

T
jε − 1

2
Jn
( µ̄↑
T

+
µ̄↓
T

)
− 1

2
Jσ
( µ̄↑
T
− µ̄↓
T

)
. (2.46)
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With both Jσ and the difference in electromagnetochemical potentials considered to

be first order in small deviations from equilibrium, the last term is second order. Thus

js is a nearly-conserved quantity.

Integrating the volume rate of heating given in Eq. (2.45) over the interface region

yields

TSint =− js (∆T )int −
1

2
Jn
[
(∆µ̄↑)int + (∆µ̄↓)int

]
− 1

2

∫
int

dxJσ∂x (µ̄↑ − µ̄↓)−
∫
int

dx (µ̄↑ − µ̄↓)S↑. (2.47)

Integrating the third term by parts and using Eq. (2.32) with the time-derivative set

to zero (steady-state, so that ∂xJ
σ = 2S↑) gives

−1

2

∫
int

dxJσ∂x (µ̄↑ − µ̄↓) =

∫
int

dx (µ̄↑ − µ̄↓)S↑ −
1

2
∆
(

(µ̄↑ − µ̄↓) Jσ
)
int
. (2.48)

The first term on the RHS of Eq. (2.48) cancels the last term on the RHS of Eq. (2.47),

and the second term is evaluated on each side of the interface. Then Eq. (2.47)

becomes

TSint = −js (∆T )int −
1

2
Jn
[
(∆µ̄↑)int + (∆µ̄↓)int

]
− 1

2
∆
(

(µ̄↑ − µ̄↓) Jσ
)
int
. (2.49)

The last term, which is a new result, appears to be well-defined, but because Jσ is not

conserved, it is not clear how to interpret this unambiguously. Nevertheless, if the

spin diffusion length, over which up and down spins flip, is sufficiently long relative

to the surface region, so that one measures Jσ within a spin diffusion length of the

interface, then this term should be well-defined. In what follows we will assume this

to be the case.
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4. Surface Fluxes and Rate of Entropy Production

The entropy and the spin up and spin down number fluxes can be linearized in

differences in the appropriate intensive thermodynamic quantities across the interface,

so

js =− hK
T

(∆T )int − L
′
s↑ (∆µ̄↑)int − L

′
s↓ (∆µ̄↓)int , (2.50)

j↑ =− L′↑s (∆T )int −
g↑
e2

(∆µ̄↑)int − L
′
↑↓ (∆µ̄↓)int , (2.51)

j↓ =− L′↓s (∆T )int − L
′
↓↑ (∆µ̄↑)int −

g↓
e2

(∆µ̄↓)int . (2.52)

Here g↑ and g↓ are surface conductances of spin up and spin down particles, and by

the Onsager principle L′↑↓ = L′↓↑, L
′
↑s = L′s↑, and L′s↓ = L′↓s. For a calculation of a

spin-dependent interfacial surface resistance, see Ref. 43.

By the definitions given by Eqs. (2.29) and (2.31), the total number current and

spin current can be written from Eqs. (2.51)-(2.52) as

Jn =−
(
L′↑s + L′↓s

)
(∆T )int −

(g↑
e2

+ L′↓↑

)
(∆µ̄↑)int −

(g↓
e2

+ L′↑↓

)
(∆µ̄↓)int , (2.53)

Jσ =−
(
L′↑s − L′↓s

)
(∆T )int −

(g↑
e2
− L′↓↑

)
(∆µ̄↑)int +

(g↓
e2
− L′↑↓

)
(∆µ̄↓)int . (2.54)

Substitution for js and Jn from Eqs. (2.50) and (2.53) into Eq. (2.49) yields

TSint =− 1

2
∆
(

(µ̄↑ − µ̄↓) Jσ
)
int

+
hK
T

(∆T )2int +
1

2

(g↑
e2

+ L′↓↑

)
(∆µ̄↑)

2
int

+
1

2

(g↓
e2

+ L′↓↑

)
(∆µ̄↓)

2
int +

1

2

(
3L′s↑ + L′↓s

)
(∆µ̄↑)int (∆T )int

+
1

2

(
3L′s↓ + L′↑s

)
(∆µ̄↓)int (∆T )int +

1

2

(
g↑ + g↓
e2

+ 2L′↓↑

)
(∆µ̄↑)int (∆µ̄↓)int .

(2.55)

If the spin current Jσ is approximately uniform near the surface, then use of
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Eq. (2.54) simplifies Eq. (2.55) to

TSint =
hK
T

(∆T )2int +
g↑
e2

(∆µ̄↑)
2
int +

g↓
e2

(∆µ̄↓)
2
int + 2L′s↑ (∆µ̄↑)int (∆T )int

+ 2L′s↓ (∆µ̄↓)int (∆T )int + 2L′↓↑ (∆µ̄↑)int (∆µ̄↓)int . (2.56)

as in Ref. 16, which gives an approximation for each of the coefficients.

5. Comparison of Electric and Spin Current Heating

Equation (2.56) permits a comparison of surface heating due to electric current

(equivalently, due to a voltage jump across the surface region) with heating due to

spin current (equivalently, due to the difference in ~H∗ · M̂ across the surface region).

We consider a metal-metal interface where temperature is uniform, spin is conserved

across the interface, and g↑ ≈ g↓ ≈ ḡ/2.

For the purposes of estimation, we neglect the chemical potentials µ↑ and µ↓,

appropriate for metals. The limitations of this approximation are discussed above.

Then Eq. (2.24) gives

(∆µ̄↑,↓)
2
int ≈ −e

2(∆φ)2int +
γ2h̄2

4
(∆H∗‖ )

2
int ∓ γh̄e(∆φ)int(∆H

∗
‖ )int. (2.57)

Here we define

H∗‖ ≡ ~H∗ · M̂. (2.58)

To find the heating due to (∆φ)int and (∆H∗‖ )int, we substitute Eq. (2.57) into the

second and third terms of Eq. (2.56).

Suppose (as above) that the surface region is characterized by surface conductiv-

ity ḡ = 1015 1/Ω-m2, and voltage difference (∆φ)int = 10−3 V. Neglecting cross-terms,
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the rate of heating, per unit area, due only to the voltage difference is given by

Relec
int = TSelecint ≈ ḡ [(∆φ)int]

2 ≈ 109 W

m2
. (2.59)

(Cancellation of the term proportional to (∆φ)int(∆H
∗
‖ )int is only approximate.)

On the other hand, neglecting cross-terms, the rate of heating due only to spin

current is given by

Rspin
int = TSspinint ≈

ḡ

e2

[
γh̄

2
(∆H∗‖ )int

]2
=

ḡ

4e2
[
|g|µB(∆H∗‖ )int

]2
, (2.60)

where the relation given by Eq. (2.25) has been used. For |g| ≈ 2 and µB ≈ 5.8 ∗

10−5 eV/T,

Rspin
int ≈ 3.4 ∗ 106

[
(∆H∗‖ )int

]2 W

T2−m2
. (2.61)

Thus, a (∆H∗‖ )int ≈ 20 T gives about the same heating as a voltage difference of

(∆φ)int = 10−3 V.
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CHAPTER III

METAL OXIDE GROWTH*

Most metals (M) develop a surface oxide layer (MO) on exposure to an oxygen

atmosphere (O), as depicted in Fig. 1. This metal oxide layer develops as metal ions

come in contact with oxide ions, presumably at the M/MO or the MO/O interface.

Once any oxide is present, further oxide growth is determined by the physical and

chemical properties of the oxide, through which ions (and electrons) must travel. The

ions transported through the oxide may be either oxygen ions or metal ions, the latter

being more likely as metal ions are generally more mobile, having lost electrons. In

some cases, oxygen ions rather than metal ions are transported, e.g., the oxidation

of copper.44 The results of this chapter apply to either case, on application of simple

mathematical transformations (such as sign reversal of the electric charge, e→ −e);

this is discussed further below. Effects due to lattice mismatch between the oxide

layer and the metal, such as the cracking or flaking of the oxide in the case of iron,

are not considered here.

Some metals develop oxides with a self-limited thickness, e.g., aluminum. At

room temperature, their respective oxides essentially stop growing at thicknesses on

the order of 10 Å. Presumably, such oxides do not allow direct ionic conduction, so

that growth is limited by an ionic tunneling length. Other metal oxides permit ionic

flow, and may grow to macroscopic thicknesses. Metals which develop such freely-

growing oxides include iron and zinc. These oxides are scientifically and industrially

useful. The rate of metal oxide growth is therefore of interest in device manufacturing.

*Reprinted with permission from “Consistent Asymptotic Expansion of Mott’s
Solution for Oxide Growth” by M. R. Sears and W. M. Saslow, 2010. Solid State
Ionics, 181, 1074, Copyright 2010 by Elsevier.
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(For some metal oxide device applications, alternative growth methods are used, such

as pulsed laser deposition; see, for instance, Ref. 45. However, for applications that

require a metal/metal oxide interface, native growth of metal oxide in an oxygen

environment is a technically simple and financially viable method.) As the size of

devices decreases, precise determination of the oxide growth rate is required.

Fig. 1. Growth of metal oxide (MO) on metal (M) in an oxygen atmosphere (O). The

thickness L, of interest for device fabrication, is dependent on the chemical reactions

at the M/MO and MO/O surfaces. Because the amount of metal is reduced as it

is ionized and converted into metal oxide, a moving coordinate system is employed

where the M/MO interface defines x = 0 and the MO/O interface is at x = L(t).

The growth rate was theoretically described in a series of works by N.F. Mott.44,46–48

Mott considered the implications of experimental results,49 in particular the parabolic

relation

L2 = 2At, (3.1)

where L is the thickness of the oxide, t is time, and A is a constant. The rate of
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growth is thus

dL

dt
=

√
A

2
t−1/2. (3.2)

For specificity, the metal fills x < 0, that metal oxide fills 0 < x < L, and the oxygen

gas fills L < x (see Fig. 1). This means that a moving coordinate system is employed

where x = 0 represents the M/MO interface, and x = L(t) represents the MO/O

interface.

Before proceeding, we note that although experimental results for metal oxide

growth rate imply a parabolic rate, precise measurement is difficult. Even recent

results that show parabolic growth do not have the precision to determine other

contributions to growth rate at low t. See, for example, Ref. 50.

A field and fluxes that vary as t−1/2 are expected on the basis of a gradient

of concentration, with the values of the carrier concentrations pinned by the two

surfaces and the length L determining the gradient.49 That is, dL/dt ∼ 1/L gives

a parabolic law. Wagner obtained a parabolic growth law using an oversimplified

theory involving only the Nernst-Planck equation, which is equivalent to a bulk ir-

reversible thermodynamics flux-force equation, and some additional assumptions.51

Mott obtained a parabolic growth law using a more complete argument46 that invokes

the Nernst-Planck equations, Gauss’s Law, and (implicitly) the continuity equations.

For electron and ion number currents (ja, jb) and ion valence Z = 1, Mott as-

sumed that the total current J = e(jb − ja) in the oxide is zero, so

ja = jb. (3.3)

Since oxide grows when metal ions reach the MO/O interface, the growth rate is

dL

dt
= jbΩ, (3.4)
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Fig. 2. The first of two methods by which oxide grows at the M/MO interface (see

also Fig. 3). Here, metal ions leave the bulk of the metal near the M/MO interface,

are transported across the oxide, and are taken up into new oxide at the MO/O

interface. The sites near the M/MO interface in the metal that are vacated by the

transported ions are then filled by ions from deeper in the bulk metal.

where Ω is the volume per metal ion in the newly formed oxide. Figures 2 and 3

model two processes by which oxides grow and adjust by ion deposition at the MO/O

interface. Comparison of Eq. (3.4) with Eq. (3.2) shows that

jb ∼ t−1/2 (3.5)
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Fig. 3. The second of two methods by which oxide grows at the M/MO interface

(see also Fig. 2). Here, as in Fig. 2, metal ions leave the bulk of the metal near the

M/MO interface, are transported across the oxide, and are taken up into new oxide

at the MO/O interface. Rather than bulk metal ions adjusting, however, after some

time the entire oxide adjusts inward toward the metal, now occupying the vacancies

left by ions that have been transported across the oxide.

for the asymptotic behavior of the ion fluxes. By the Nernst-Planck equations, the

electric field E and the ion density gradients (∂xna, ∂xnb) also have the same behavior.

Moreover, the quantities (ja, jb, E, ∂xna, ∂xnb) are all uniform throughout the oxide.
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The surface charge Σ predicted by Mott’s theory can be calculated. We as-

sume that the metal and the gas are neutral, so by Gauss’s Law the surface charges

(Σ(0),Σ(L)) and the electric fields (E(0), E(L)) are related by

E(0) =
Σ(0)

ε
, E(L) = −Σ(L)

ε
. (3.6)

Moreover, by continuity the assumption that there is charge and current only within

the oxide leads to the conditions

J(0) =
dΣ(0)

dt
, J(L) = −dΣ(L)

dt
. (3.7)

This model immediately poses the questions of whether Mott’s solution is self-

consistent, and whether it is the beginning of an asymptotic series in powers of t−1/2.

To answer self-consistency, note that the uniform but decreasing-with-time E ∼ t−1/2

leads to no bulk charge and to interfaces with equal and opposite charge, so they

behave like a capacitor. Since E decreases with time, so must the charge on the

capacitor. However, the model assumes zero current. Hence Mott’s solution is not

self-consistent.

Nevertheless we show, in response to the question about a consistent power series

solution, that each of the continuous variables can be expanded in an asymptotic series

in t−k/2, where Mott’s solution corresponds to k = 1, and that non-zero current J

appears at order k = 3. We also show that all of the continuous variables can depend

upon position. This means that the bulk can develop a local and total charge density,

with the surfaces not having equal and opposite charges, so that the capacitor model

holds only to lowest order. It has previously been shown that steady non-equilibrium

current flow can cause local charge densities in the bulk.52,53
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The fact that an expansion can be made of jb in powers of t−1/2 leads to

dL

dt
=

√
A

2
t−1/2 +Bt−1 + . . . , (3.8)

so that

L =
√

2At1/2 +B ln t+ . . . (3.9)

to higher accuracy than given by the pure parabolic law. This prediction can be

subjected to experimental study. In practice, we must assume that

L =
√

2At1/2 +B ln t+ C + . . . (3.10)

because ln t is of order unity. This gives corrections that might be important for thin

layers of oxides.

Section A of this chapter discusses transport in two-component ionic systems,

including the equations of motion, as well as the surface chemical reactions that drive

ionic transport and oxide growth. It also introduces the expansion notation used in

this chapter. Section B finds the relations between the expansion coefficients, and

discusses the method of solution at any order, which requires solution of all previous

orders. Section C gives the explicit solution for the lowest (first) order expansion

coefficients, and Sec. D summarizes the results for the second order expansion coef-

ficients. Section E discusses the oxide growth rate predicted by the current theory,

including the first correction to the parabolic growth law that, as mentioned above,

goes as ln(t). Appendices A and B give the explicit solution for the respective second

and third order expansion coefficients. (Most of the work in this chapter and its

associated appendices has previously been published.54)
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A. On Two-Component Ionic Transport

Let the subscripts a and b denote electrons and metal ions respectively. Let

n0 and n0/Z be the uniform equilibrium concentration of electrons and metal ions

respectively, na and nb be their additional concentrations, νa and νb be their mobilities,

Da and Db be their diffusion coefficients, qa = −e and qb = Ze be their charges, E

be the electric field, kB be the Boltzmann constant, T be the temperature, and x be

the position.

Note that we use the Einstein Relations to rewrite the mobilities, which can have

either sign, in terms of diffusion constants, which are always positive. Since we always

consider Z positive, if we want to consider oxygen ions and holes as the carriers, then

only the sign of the electric charge e must be changed. For M3+ and O2−, we let

e→ 2e and Z = 3/2. Therefore our results are quite general.

1. Equations for Two-Component Transport

The Einstein Relations are given by

νa
Da

=
qa
kBT

,
νb
Db

=
qb
kBT

, (3.11)

where all quantities are defined experimentally. For electrons and metal ions, −Zqa =

qb, so

νbDa = −ZνaDb, − νa
Da

=
νb
ZDb

=
1

VT
, (3.12)

where

VT =
kBT

e
(3.13)

denotes a thermal voltage.

The one-dimensional Nernst-Planck equations for the number flux densities as-
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sociated with metal ions and electrons are

ja = νa(n0 + na)E −Da∂xna, (3.14)

jb = νb

(n0

Z
+ nb

)
E −Db∂xnb, (3.15)

where the electric field E = −∇φ, and na and nb are deviations from the respective

equilibrium densities n0 and n0/Z. These are the flux-force relations analogous to

Eqs. (2.37) and (2.38) where cross-terms have been neglected, and the system is

taken to be non-magnetic so that µ̄ = µ̃. Rewriting mobilities in terms of diffusion

constants using Eq. (3.11),

ja = −Da

VT
(n0 + na)E −Da∂xna, (3.16)

jb =
Db

VT
(n0 + Znb)E −Db∂xnb, (3.17)

We also use the number continuity equations,

∂tna + ∂xja = 0, ∂tnb + ∂xjb = 0, (3.18)

and Gauss’s Law,

∂xE =
e

ε
(Znb − na), (3.19)

where e is electron charge in Coulombs, and ε is the permittivity of the oxide.

With the charge density and current density defined by

ρ = −e(na − Znb), J = −e(ja − Zjb), (3.20)

use of the number continuity equations yields the charge continuity equation

∂tρ+ ∂xJ = 0. (3.21)
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2. Expansion Notation

We seek a series solution in powers of t−1/2 for the electron and ion concentrations

(densities) and fluxes, as well as for the electric field. They must satisfy the Nernst-

Planck equations, the continuity equations, and Gauss’s Law. Following Mott (who,

in turn, was following experiment), we take the lowest order fluxes and field to vary

as t−1/2. Examining the structure of the Nernst-Planck equation for electrons given

in Eq. (3.16), and inserting terms of order t−1/2, the nonlinear term naE will contain

terms of order t−1. Iteration yields that the series must be in powers of t−k/2 for

integer k.

The assumption of no net bulk charge is consistent at lowest order, but it is not

true in general. We assume only that electron transport is dominated by thermal

emission rather than tunneling, and that metal ions are soluble in the oxide, but not

oxygen ions. (The theory however can be generalized to oxygen-soluble oxides with

the appropriate transformations of e and Z.) We also assume that any defects in the

oxide are “frozen,” so that no metal ions or electrons have their origin in the oxide

itself, and no new oxide is formed within the layer.

We thus make an expansion of the form

ja =
∑
k=1

Jakt
−k/2, jb =

∑
k=1

Jbkt
−k/2, (3.22)

na =
∑
k=1

Nakt
−k/2, nb =

∑
k=1

Nbkt
−k/2, (3.23)

Σ(0) =
∑
k=1

Σ
(0)
k t−k/2, Σ(L) =

∑
k=1

Σ
(L)
k t−k/2, (3.24)

E =
∑
k=1

Ekt
−k/2, (3.25)

J =
∑
k=1

Jkt
−k/2, ρ =

∑
k=1

ρkt
−k/2. (3.26)
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Here Jak, Jbk, Nak, Nbk, Ek, ρk, and Jk are functions of the position along the direc-

tion of growth, x. From the above definitions, the dimensionality of Jak and Jbk is

concentration times velocity times tk/2, the dimensionality of Nak and Nbk is concen-

tration times tk/2, the dimensionality of the surface charge density coefficients Σ
(0)
k

and Σ
(L)
k is charge per area times tk/2, the dimensionality of Ek is electric field times

tk/2, the dimensionality of ρk is charge density times tk/2, and the dimensionality of

Jk is current density times tk/2.

3. On Specifying Chemical Reaction Rates at Surfaces

In the presence of a true chemical reaction at a surface there is a single reaction

rate, typically specified by a Butler-Volmer relation55–57 between the fluxes of all of

the relevant components. In the present case the fluxes of the carriers are independent

of one another, so that there are two statements about carrier fluxes at each surface,

for a total of four conditions. Near equilibrium (as we have here, in the asymptotic

regime), neglecting cross-terms, each flux j will be proportional to its corresponding

∆µ̃ across the interface (either M/MO or MO/O), as in Eq. (2.17):

ja,b =
ḡa,b
q2a,b

(∆µ̃a,b)int (3.27)

at each surface, so there are four ḡ’s. (The equation becomes nonlinear far from

equilibrium.) Thus ja and jb are proportional to a non-equilibrium quantity, which

we take to be a field E1, as in Ref. 48. All of the unknown integration constants will

be linear or higher in E1.

This chapter does not carry this procedure any further by considering the chemi-

cal reactions at the surface in detail. It is sufficient for the purposes of this dissertation

to know that this can be done, and that in the present problem there are four con-

stants associated with boundary conditions at the two surfaces for the two carriers.
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In principle, all of the quantities appearing in the solutions to the transport equations

are determined by these surface reaction rates. For a true chemical reaction, which

we expect to be described by a Butler-Volmer equation, the fluxes at each surface,

because they are related, will be described by only a single independent coefficient

ḡ. Note also that the Butler-Volmer equation is non-linear, so that the boundary

conditions can be nonlinear. Because we do not consider the boundary conditions in

detail, we neglect this possibility.

B. Relations between Expansion Coefficients for Any t-dependence

1. Continuity Relations and Charge Conservation

The continuity relations given in Eq. (3.18) yield

∑
k=1

(∂xJak)t
−k/2 +

∑
m=1

Nam

(
−m

2

)
t−(m+2)/2 = 0, (3.28)

for subscript a, and a similar relation holds for b. With m = (k − 2), so that∑
m=1 →

∑
k=3, comparison of like powers of t yields, for k = 1 and k = 2,

∂xJak = 0, ∂xJbk = 0, (k = 1, 2), (3.29)

and, for k ≥ 3,

∂xJak =

(
k − 2

2

)
Na(k−2),

∂xJbk =

(
k − 2

2

)
Nb(k−2), (k ≥ 3). (3.30)

By definition we have

ρk = e (ZNbk −Nak) , Jk = e (ZJbk − Jak) , (3.31)
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and charge conservation for each k is

∂tρk + ∂xJk = 0. (3.32)

Charge conservation at each surface (x = 0 and x = L) yields

dΣ(0)

dt
= −J |x=0 = −e(Zjb − ja)|x=0, (3.33)

dΣ(L)

dt
= J |x=L = e(Zjb − ja)|x=L, (3.34)

so that

∑
k=1

(
−k

2

)
Σ

(0)
k t−(k+2)/2 = −e

∑
k=1

(ZJbk − Jak) |(x=0)t
−k/2, (3.35)

∑
k=1

(
−k

2

)
Σ

(L)
k t−(k+2)/2 = e

∑
k=1

(ZJbk − Jak) |(x=L)t−k/2. (3.36)

Comparing powers of t gives, for k = 1 and k = 2,

ZJbk|(x=0) = Jak|(x=0),

ZJbk|(x=L) = Jak|(x=L), (k = 1, 2), (3.37)

and, for k ≥ 3,

−
(
k − 2

2

)
Σ

(0)
(k−2) = −e (ZJbk − Jak) |(x=0),

−
(
k − 2

2

)
Σ

(L)
(k−2) = e (ZJbk − Jak) |(x=L), (k ≥ 3). (3.38)

Charge conservation over both surface and bulk yields

∑
k=1

(
Σ

(0)
k + Σ

(L)
k

)
t−k/2 = e

∫ L

0

∑
k=1

(Nak − ZNbk)t
−k/2dx, (3.39)

so that, for each k,

Σ
(0)
k + Σ

(L)
k = e

∫ L

0

(Nak − ZNbk)dx. (3.40)
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2. Gauss’s Law

Gauss’s Law, as given in Eq. (3.19), reads

∑
k=1

(∂xEk)t
−k/2 =

1

ε

(∑
k=1

ρkt
−k/2

)
, (3.41)

so, for each k,

∂xEk =
1

ε
ρk. (3.42)

Gauss’s Law at the surfaces, Eq. (3.6), gives, for each k,

Ek(0) =
Σ

(0)
k

ε
, Ek(L) = −Σ

(L)
k

ε
. (3.43)

3. Nernst-Planck (Flux-Force) Equations

The Nernst-Planck equation for species a, Eq. (3.16), can be written as

∑
k=1

Jakt
−k/2 = −Da

VT
n0

∑
k=1

Ekt
−k/2 − Da

VT

∑
m,k=1

NakEmt
−(m+k)/2 −Da

∑
k=1

(∂xNa)t
−k/2,

(3.44)

or,

∑
k=1

(
Jak +

Da

VT
n0Ek +Da∂xNak

)
t−k/2 = −Da

VT

∑
m,k=1

NakEmt
−(m+k)/2, (3.45)

with a similar form for species b,

∑
k=1

(
Jbk −

Db

VT
n0Ek +Db∂xNbk

)
t−k/2 =

ZDb

VT

∑
m,k=1

NbkEmt
−(m+k)/2. (3.46)

By matching coefficients of powers of t, equations are obtained for any k.
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4. Solving the Transport Equations

There are five first-order differential equations for five continuous variables, so

there are five integration constants at each order. For k ≥ 3 the current density Jk at

x = L is known from the k−2 (which must be previously determined) value of surface

charge density Σ
(L)
k−2. Therefore only four integration constants need be determined.

These can be thought of as fixed by the “reaction rates” of each charge carrier at each

of the interfaces discussed above, which will not be specified. A sequential solution

starting with k = 1 is thus necessary for solution at arbitrary k due to the dependence

of each solution on lower-order solutions.

The cases k = 1 and k = 2 are somewhat simpler than k ≥ 3. Nevertheless, for

each k the solution method is the same: (i) from the continuity equations find the

ion fluxes Jak and Jbk; (ii) from all of the five equations find an equation for ρk and

solve it; (iii) use this ρk in Gauss’s Law to find Ek; and (iv) find Nak and Nbk by

substitution of Jak, Jbk and Ek into the Nernst-Planck equations.

C. Transport in Metal Oxide for t−1/2-dependence

For k = 1, the calculations are simple, but illustrate what happens in higher

orders. The continuity relations given in Eq. (3.29) give Ja1 and Jb1 to be uniform,

and charge conservation at each surface, Eq. (3.37), gives

Ja1 = ZJb1. (3.47)

The Nernst-Planck Eqs. (3.45) and (3.46) yield

Ja1 +
Da

VT
n0E1 +Da∂xNa1 = 0, (3.48)

Jb1 −
Db

VT
n0E1 +Db∂xNb1 = 0, (3.49)
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where E1 is taken to be a uniform, experimentally determined value.

From the uniformity of E1,

∂xE1 = 0, (3.50)

so that Gauss’s Law yields

ρ1 = 0, Na1 = ZNb1. (3.51)

Substitution of fluxes from Eq. (3.47) and concentrations from Eq. (3.51) into

the Nernst-Planck equations gives

Ja1 +
Da

VT
n0E1 +Da∂xNa1 = 0, (3.52)

Ja1
Z
− Db

VT
n0E1 +Db∂xNb1 = 0. (3.53)

Thus, with Eq. (3.51), we have

Ja1 = ZJb1 = −(1 + Z)
DaDb

Db −Da

n0E1

VT
, (3.54)

Na1 = ZNb1 =
RDn0E1

VT
x+M1. (3.55)

Here, the dimensionless ratio between diffusion constants

RD ≡
(
Da + ZDb

Db −Da

)
, (3.56)

and M1 is a constant of integration, with units of concentration times s1/2, determined

by the surface reaction rates, and therefore linear in E1. (Recall that Ja1 and Na1 are

first order coefficients, which must be multiplied by t1/2 to find the respective flux

and number densities ja and na.) Although constants of integration associated with

reaction rates were discussed earlier, they are now considered more explicitly.

Figure 4 illustrates the effect of an “improper” value of M1. As M1 increases,
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Fig. 4. A model that illustrates the effect of the constant concentration M1 of metal

ions. The dotted lines represent the linear concentration of ions in the metal oxide,

as in equation (3.55). Here N ′M1
has too high a value of M1 to maintain steady-state

flow; this high concentration of ions in the oxide suppresses ion injection at the M/MO

surface and enhances ion expulsion at the MO/O surface. Only the particular value

of M1 in N
(eq)
M1

permits an equal rate of ions to enter and leave the oxide, here taken

to be 7 ions per second. The ion flux rates of 5 and 11 ions per second are fabricated

here for example.

the increasing concentration of metal ions near the metal/oxide surface opposes new

ions from entering, just as the high concentration of metal ions near the oxide/gas

interface encourages more ions to be deposited on the oxide/gas surface. For M1 too

large, the number of metal ions in the bulk would be insufficient to maintain the high

rate of ions exiting the oxide, and would drop to some equilibrium value. Thus, M1

is determined by constraining the oxide to have no net ion-loading or ion-unloading

in the bulk at order k = 1. Note that E1, which is proportional to the parabolic

growth rate coefficient A of Eq. (3.1), is also related to the surface reaction rates. As
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discussed above, net surface reaction rates generally involve a Butler-Volmer equation,

but not far from equilibrium (as in the Mott solution) they can be linearized in the

differences of various electrochemical potentials. This ensures that there is no net

surface reaction rate in the limit of equilibrium.

From Gauss’s Law at the surfaces. Eq. (3.43),

E1(0) =
Σ

(0)
1

ε
, E1(L) = −Σ

(L)
1

ε
. (3.57)

Since E1 is uniform,

Σ
(0)
1 = −Σ

(L)
1 = εE1. (3.58)

For |νa| � |νb| (or equivalently in this case, Da � Db), Mott and Cabrera48 find

for monovalent ions that

Ja1 = −2Db
∂Na1

∂x
. (3.59)

The above results are consistent with this.

D. Transport in Metal Oxide for t−1-dependence

The k = 2 results, that is, the t−1-dependent quantities, are the lowest order

for which the results are completely new. The mathematical details are given in

Appendix A, and the results are summarized here. Recall that all coefficients at this

order must be multiplied by t to find the physical variables j, n, and E. With the

constant M21, in units s/m2, determined by surface reaction rates, the second order

flux density coefficients are

Ja2 = ZJb2 = −(1 + Z)

(
DaDb

ZDb +Da

)
M21, (3.60)
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and there is no net charge flux,

J2 = ZeJb2 − eJa2 = 0. (3.61)

With the constants M20, P
(+)
a2 and P

(−)
a2 , each in units of s/m, given by surface

reaction rates (and thus linear in E1), the k = 2 coefficients of the concentrations of

electrons and ions are given by

Na2 = M20 +M21x+ P
(+)
a2 ex/ls + P

(−)
a2 e−x/ls , (3.62)

Nb2 =
M20

Z
− 1

Z

RDεE
2
1

VT e
+
M21

Z
x− P (+)

a2 ex/ls − P (−)
a2 e−x/ls . (3.63)

Here, ls is the screening length,

ls =

√
VT ε

(1 + Z)n0e
=

√
kBTε

(1 + Z)n0e2
. (3.64)

There is a net charge in the bulk, given by ρ2t
−1, where

ρ2 = P
(+)
2 ex/ls + P

(−)
2 e−x/ls − RDεE

2
1

VT
, (3.65)

and

P
(+)
2 = −(1 + Z)eP

(+)
a2 , P

(−)
2 = −(1 + Z)eP

(−)
a2 . (3.66)

Note that ρ2 has, in addition to surface charge within a screening length of the

two surfaces, a uniform charge density with sign determined by e/(Da − Db) and

independent of the sign of E1 (or, equivalently, the direction of current flow). Since

Da � Db here, the term is positive. If, rather than electrons and metal ions, holes

and oxygen ions are the carriers, then the sign of ρ2 goes as −e/(Da −Db); however,

for that case Db � Da, so it is again positive. As for the ionic system (battery)

considered by Ref. 52, this uniform charge density leads to a quadratic voltage profile

within the bulk, beyond a screening length of either surface.
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The second order coefficient of the electric field is

E2 =
ls
ε

(
P

(+)
2 ex/ls − P (−)

2 e−x/ls
)
− RDE

2
1

VT
x+

VTM21

n0RD

− M1E1

n0

. (3.67)

The surface charge coefficients are given by

Σ
(0)
2 = ls

(
P

(+)
2 − P (−)

2

)
+
εVTM21

n0RD

− εM1E1

n0

, (3.68)

Σ
(L)
2 = −ls

(
P

(+)
2 eL/ls − P (−)

2 e−L/ls
)

+
εRDE

2
1

VT
L− εVTM21

n0RD

+
εM1E1

n0

. (3.69)

The solution satisfies

Σ
(0)
2 + Σ

(L)
2 +

∫ L

0

ρ2dx = 0, (3.70)

so there is no net charge in the system.

E. Growth Rate of Metal Oxide Films

The t−1 solution (and the t−3/2 solution, found in Appendix B) gives new results

for the thickness and growth rate of metal oxide. As mentioned above, the oxide layer

grows as metal ions reach the MO/O surface and are taken into lattice positions to

form new oxide. Thus, the rate of growth of the oxide depends on the rate jb at which

metal ions arrive at the surface, according to Eq. (3.4), that is, dL/dt = Ωjb. The

metal ion number flux (using Eqs. (3.54), (3.60), and (B.4)) is given by

jb =−
(

1 + Z

Z

)
DaDb

Db −Da

n0E1

VT
t−1/2 −

(
1 + Z

Z

)(
DaDb

ZDb +Da

)
M21t

−1

+

(
RDn0E1

4VTZ
x2 +

M1

2Z
x+

K3

Z
+
εE1

2Ze

)
t−3/2 + . . . , (3.71)

where K3 is a constant of integration determined by interfacial reaction rates (and

thus linear in E1). Examination of the first term in Eq. (3.71) shows that, if Db < Da

(as for ions relative to electrons), then the microscopics must give E1 > 0 for a
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positive growth rate. Substitution of Eq. (3.71) into Eq. (3.4) gives the oxide growth

rate dL/dt. Then, keeping only terms of second order, integration with respect to t

gives

L =
√

2At1/2 +B ln t+ . . . , (3.72)

where

A = 2

(
1 + Z2

Z

)2(
DaDb

Db −Da

)2
n2
0E

2
1Ω2

V 2
T

, (3.73)

B =
DaDb

Da + Z2Db

[
(1− Z)

M1E1

VT
− 1 + Z2

Z
M21

]
Ω. (3.74)

A sampling of the current literature50,58–62 suggests more precise data is necessary to

confirm the logarithmic form of the correction term.

The Appendices present the k = 2 and k = 3 solutions in detail, and show that

the method can be used for any k to find the fluxes, concentrations, surface charges

and electric field. As a consequence one can have confidence that the Mott solution

gives the leading term in the complete solution of the complete set of transport

equations. The most easily verifiable prediction from the viewpoint of experiment is

the prediction that the first correction to the linear growth law is logarithmic. Thus,

by the methods detailed in this chapter, the approach taken by Mott for parabolic

growth of oxide films can be turned into a consistent asymptotic expansion, and the

explicit form of the lowest three orders is given. Up to four integration constants

appear at each order, related to the surface reaction rates. At higher order the bulk

film is found to be non-uniformly charged, with a corresponding nonzero current

density (see Eq. (B.5)).
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CHAPTER IV

INTERFACES, MULTILAYERS, AND SPIN VALVES: SPIN INJECTION AND

ACCUMULATION BY ELECTRIC CURRENT

Although electronic and ionic flow has been studied since the early 19th Cen-

tury, spin flow has become important only much more recently. In particular, spin

transport across interfaces between metals and ferromagnets has been an important

topic since the discovery of giant magnetoresistance (GMR).63,64 About a decade af-

ter its discovery, it became the principle behind the predominant method of reading

stored data, as it is to this day. The magnetic read-head of a hard drive contains

a multilayer consisting of a thin non-magnetic layer sandwiched between two ferro-

magnetic layers (see Fig. 5). Resistance to electrical current is strongly dependent

on whether the magnetizations of the ferromagnetic layers are aligned parallel or an-

tiparallel. As mentioned earlier, theory for spin current and electrical potential at a

metal/ferromagnet interface is given by Johnson and Silsbee;16 an appendix of that

work is devoted to electrical currents crossing such interfaces, and it considers the

effect on spin fluxes and on electrical voltage. Detailed theories for electrical currents

passing through metal/ferromagnet multilayers (that is, series of interfaces) is given

by Valet and Fert22 (including solutions for the electric field and spin fluxes) and

Hershfield and Zhao.65 However, each of these three works neglects some part of the

internal potential (discussed below), and none of them considers semiconductors.

This chapter revisits the problem of spin transport across the interface between

a non-magnetic material and a ferromagnet, and calculates the electric field, electric

potential, spin fluxes, and spin accumulation due to interfaces and multilayers of

ferromagnets and non-magnetic materials. It shows that inclusion of both internal

magnetic field (neglected by Ref. 65) and chemical potential (neglected by Refs. 16
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Fig. 5. A ferromagnetic multilayer, with a non-magnet sandwiched between two

ferromagnets. In principle, this is how the materials that comprise a hard disk read

head are arranged. In that case, material I is always magnetized in the same direction,

say z. The hard disk ”platter” then spins near material III, (to the far right of

the figure, not pictured) and depending on the local magnetization of the disk, the

magnetization of material III is along either z or -z. Electrical resistance to current

along x, which depends on the relative magnetization alignment of materials I and

III, is then measured, thereby determining the local magnetization of the hard disk.

For read heads, material II is typically copper, while materials I and III are typically

cobalt and/or permalloy.

and 22) are necessary for prediction of spin accumulation near the interface; the

effect on spin accumulation of neglecting either contribution is shown to be about a

factor of ten for copper. Further, it includes the surface screening mode, neglected by

previous works, which for semiconductors plays an essential role in determining the

spin current crossing the interface and the spin accumulation near the interface.

In this chapter, we use the phrase “isolated interface” to refer to an interface that

is effectively an infinite distance from any other interface, and the term “multilayer”

to refer to a system with two or more interfaces, where the spacing between interfaces

is on the order of a surface mode decay length (found below).

Section A of this chapter briefly discusses the equations that govern spin-dependent

transport in solids, discussed in detail in Chap. II. Section B finds the deviations from
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equilibrium associated with normal modes, including two surface modes associated

with spin-diffusion and charge screening, and one bulk mode associated with applied

electric current. Section C discusses the bulk and boundary conditions at an isolated

interface, and shows the electric field, voltage, charge, and spin accumulation near an

interface between cobalt and copper. It also discusses the effects of the approxima-

tions of previous theories, many of which can be significant. Section D discusses the

bulk and boundary conditions in a two-interface multilayer. Appendices C and D re-

spectively calculate the explicit form of the bulk and boundary conditions for isolated

interfaces and multilayers, and write them in terms of dimensionless variables.

A. Transport Equations

Within each material, Eqs. (2.27) and (2.28) give the respective continuity of up

and down spins. We consider the total electric current density J to be known, and

continuous across the interface; for an isolated interface between materials I and II,

we have J = j
(I)
↑x + j

(I)
↓x = j

(II)
↑x + j

(II)
↓x .

The magnetoelectrochemical potential µ̄ is defined in Eq. (2.24). In principle,

µ↑, µ↑, φ, and H∗ (defined by Eq. (2.58)) are different in each material (although φ

must be continuous across the interface). In the bulk of each material, the spin fluxes

are given in terms of thermodynamic gradients by Eqs. (2.37) and (2.38). We here

neglect off-diagonal terms, so that

j↑i = −σ↑
e2
∂iµ̄↑, j↓i = −σ↓

e2
∂iµ̄↓. (4.1)

We are interested in steady-state solutions, so that ∂tn↑ = 0 = ∂tn↓ in the continuity

Eqs. (2.27) and (2.28). Taking the gradient of Eq. (4.1) and employing Eqs. (2.27),
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(2.28), and (2.39) gives

−σ↑
e2
∂2i µ̄↑ = −α (µ̄↑ − µ̄↓) , (4.2)

−σ↓
e2
∂2i µ̄↓ = α (µ̄↑ − µ̄↓) . (4.3)

Finally, Gauss’s law for spin-up and spin-down electrons gives

∂2i φ =
e

ε0ε
(n↑ + n↓) . (4.4)

B. Normal Modes

In the following, for brevity we write solutions to be of the form e−x, although

for the material on the left side of the interface one should use ex (because it must

decay as x→ −∞).

1. Spin Mode (S)

One solution to Eqs. (4.2)-(4.4) is characterized by a nonzero spin current Jσ ≡

J↑ − J↓ 6= 0 (shown below). We therefore designate it the “spin mode,” and use the

subscript S to denote its properties.

Define

`2↑S ≡
σ↑
αe2

, `2↓S ≡
σ↓
αe2

, (4.5)

where ` has units of length. Equations (4.2)-(4.3) then give, with δ denoting deviations

from equilibrium,

∂2i δµ̄↑S =
1

`2↑S

(
δµ̄↑S − δµ̄↓S

)
, (4.6)

∂2i δµ̄↓S = − 1

`2↓S

(
δµ̄↑S − δµ̄↓S

)
. (4.7)
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Subtracting Eq. (4.7) from Eq. (4.6) gives

∂2i
(
δµ̄↑S − δµ̄↓S

)
=

1

`2sf

(
δµ̄↑S − δµ̄↓S

)
, (4.8)

where

1

`2sf
≡ 1

`2↑S
+

1

`2↓S
. (4.9)

On neglecting H∗‖ and making the identification α → (N↑/τ↑↓) = (N↓/τ↓↑), Eq. (4.9)

agrees with Ref. 65. We use Eqs. (4.5) and (4.9) to find α, `↑S and `↓S in terms of `sf ,

σ↑, and σ↓, since they are, in principle, measurable:

α =
σ↑σ↓

e2 (σ↑ + σ↓) `2sf
, (4.10)

`↑S = `sf

√
σ↑ + σ↓
σ↓

, `↓S = `sf

√
σ↑ + σ↓
σ↑

. (4.11)

Equation (4.8) gives

δµ̄↑S − δµ̄↓S = eVSe
−x/`sf , (4.12)

where VS is unknown (with units of potential). Since Eq. (4.12) shows the difference

in up- and down-spin magnetoelectrochemical potentials to decay over the length `sf

from an interface, this length is the distance over which an appreciable spin accumu-

lation may be induced by an interface, and is called the “spin-diffusion” or “spin-flip”

length. This length may be measurable by employing the Magneto-Optical Kerr Ef-

fect66,67 or the Inverse Spin Hall Effect,68 or may be derived using GMR measurements

and theory.69

It is shown below that

ξVS = δφS(0), (4.13)
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where δφS(0) is the deviation in electric potential at the interface due to the spin

mode, and ξ is a dimensionless quantity given by

ξ =

[
Nχ (N↑ −N↓) +RσN

2
β

NSNα − 2N2
β

]
. (4.14)

Here, we define

N↑ ≡
∂n↑
∂µ↑

, N↓ ≡
∂n↓
∂µ↓

, Nχ ≡
χ

gµ2
Bµ0

, (4.15)

NS ≡
ε0ε

e2`2sf
, Nα ≡ N↑ +N↓ + 2Nχ, (4.16)

N2
β ≡ 2N↑N↓ +Nχ (N↑ +N↓) , (4.17)

Rσ ≡
`2sf
`2↑S
− `2sf
`2↓S

=
σ↓ − σ↑
σ↑ + σ↓

, (4.18)

where χ is the magnetic susceptibility for an isotropic material (defined by χij = χδij).

Each N has units of a density of states, and Rσ is a dimensionless ratio (Rσ = 0 for

σ↑ = σ↓, i.e., a non-magnetic material). Thus, for a non-magnetic material (NM) we

have ξ(NM) = 0, since N
(NM)
↑ = N

(NM)
↓ and R

(NM)
σ = 0.

Substitution of Eq. (4.12) into Eqs. (4.6) and (4.7) yields

δµ̄↑S =
`2sf
`2↑S

eVSe
−x/`sf =

σ↓
σ↑ + σ↓

eVSe
−x/`sf , (4.19)

δµ̄↓S = − `
2
sf

`2↓S
eVSe

−x/`sf = − σ↑
σ↑ + σ↓

eVSe
−x/`sf . (4.20)

Equations (4.19) and (4.20) give δµ̄↑S = −(`2↓S/`
2
↑S)δµ̄↓S = −(σ↓/σ↑)δµ̄↓S , which

agrees with Ref. 65. Thus, the total electric current associated with the spin mode is

zero:

−eδJS =− e
(
δj↑S + δj↓S

)
=
σ↑
e
∂iδµ̄↑S +

σ↓
e
∂iδµ̄↓S = 0. (4.21)
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On the other hand, the total spin current Jσ in the spin mode may be nonzero:

δJσS =δj↑S − δj↓S = −σ↑
e2
∂iδµ̄↑S +

σ↓
e2
∂iδµ̄↓S = −2σ↑

e2
∂iδµ̄↑S = 2α`2sfeVSe

−x/`sf .

(4.22)

The deviation in the internal magnetic field H∗‖ in the spin mode can be written

in terms of the difference between δn↑ and δn↓:

δH∗‖ = δ ~H∗ · M̂ =
µ0δ ~M

χ
· M̂ =

µ0µB
χ

(δn↑ − δn↓), (4.23)

where where µ0 is the permeability of free space (necessary because we use the SI

unit of Tesla for H∗‖ and ~H∗) with units of T2-m3-J−1 and M̂ defines the direction of

up-spins. Then linearizing Eq. (2.24) gives

δµ̄(↑,↓) =
δn(↑,↓)

N(↑,↓)
− eδφ± (δn↑ − δn↓)

2Nχ

. (4.24)

Equations (4.12) and (4.24) give the difference of the spin potentials to be

δµ̄↑S − δµ̄↓S =

(
N↑ +Nχ

NχN↑

)
δn↑S −

(
N↓ +Nχ

NχN↓

)
δn↓S = eVSe

−x/`sf , (4.25)

and Eqs. (4.19), (4.20), and (4.24) give the sum of the spin potentials to be

δµ̄↑S + δµ̄↓S =
δn↑S
N↑

+
δn↓S
N↓
− 2eδφS = RσeVSe

−x/`sf . (4.26)

Equations (4.25)-(4.26) and Gauss’s law,

∂2i δφS =
e

ε0ε

(
δn↑S + δn↓S

)
, (4.27)

relate δn↑S , δn↓S , and δφS.
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a. Spin Diffusion Mode in a Non-Magnetic Material (NM)

We now solve for the simpler case of a non-magnetic material (NM). Equa-

tion (4.26) may be solved for δn↑S + δn↓S , which may then be substituted into

Eq. (4.27). For the non-magnetic case the solution is δφ
(NM)
S = 0, so that the to-

tal charge in the spin mode is −e(δn(NM)
↑S + δn

(NM)
↓S ) = 0; that is, the spin mode does

not lead to a nonzero potential or charge distribution in a non-magnetic material.

It does, however, lead to a nonzero spin accumulation, defined by

∆↑↓n ≡ δn↑ − δn↓. (4.28)

Solving Eq. (4.25) under the NM condition that δn
(NM)
↑S = −δn(NM)

↓S and N↑ = N↓

gives

δn
(NM)
↑S = −δn(NM)

↓S =
N↑NχeVS

2 (N↑ +Nχ)
e−x/`sf . (4.29)

The spin accumulation is therefore given by

∆↑↓n
(NM)
S = δn

(NM)
↑S − δn(NM)

↓S =
N↑NχeVS
(N↑ +Nχ)

e−x/`sf . (4.30)

Johnson and Silsbee16 (JS) and Valet and Fert22 (VF) neglect δµ↑,↓, and Hersh-

field and Zhao (HZ) neglect δH∗‖ , which by Eq. (4.24) are equivalent to respectively

taking N↑,↓ →∞ and Nχ →∞. So, with ζ(ref) defined by

∆↑↓n
(NM)
S(ref)

= ζ(ref)∆↑↓n
(NM)
S , (4.31)

so that comparison to Eq. (4.30) gives ζ(present) = 1 for the present theory, then we

find

ζ(HZ) = 1 +
N↑
Nχ

, ζ(JS/VF) = 1 +
Nχ

N↑
. (4.32)
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Using Eq. (4.29) and δφS = 0, Eqs. (4.24) and (4.19) give

δµ̄
(NM)
↑S =

eVS
2
e−x/`sf =

`2sf
`2↑S

eVSe
−x/`sf , (4.33)

which is consistent for a non-magnetic material (for which `2↑S = `2↓S = 2`2sf). Further,

for δn↑S = −δn↓S and δφS = 0, Eq. (4.24) gives that δµ̄↑S = −δµ̄↓S . By Eq. (4.1),

the up- and down-spin currents in a non-magnetic material are given by

δj
(NM)
↑S =

σ↑VS
2e`sf

e−x/`sf , (4.34)

δj
(NM)
↓S = −σ↓VS

2e`sf
e−x/`sf . (4.35)

Since σ↑ = σ↓, the spin current is given by

δJ (NM)
σS

= δj
(NM)
↑S − δj(NM)

↓S =
σ↑VS
e`sf

e−x/`sf . (4.36)

b. Spin Diffusion Mode in a Ferromagnet (FM)

We now solve for the spin mode potential and spin concentrations of a ferromag-

net (FM), where N↑ 6= N↓ and σ↑ 6= σ↓. As shown below, Eq. (4.25) relates δn
(FM)
↑S to

δn
(FM)
↓S , then Eq. (4.26) relates them to δφ

(FM)
S . Equation (4.27) can thus be written

in terms of only δφ
(FM)
S .

Equation (4.25) gives

δn
(FM)
↓S =

[
N↓ (N↑ +Nχ)

N↑ (N↓ +Nχ)

]
δn

(FM)
↑S −

(
NχN↓eVS
N↓ +Nχ

)
e−x/`sf . (4.37)

Substituting Eq. (4.37) into Eq. (4.26) multiplied by (N↑/Nα)(N↓ +Nχ) and solving

for δn
(FM)
↑S gives

δn
(FM)
↑S =

N↑
Nα

eVSe
−x/`sf [Nχ +R (N↓ +Nχ)] + 2e

N↑
Nα

(N↓ +Nχ) δφ
(FM)
S . (4.38)
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Finally, substitution of Eqs. (4.37) and (4.38) into Eq. (4.27) gives

∂2xδφ
(FM)
S =

e

ε0ε

{
1 +

[
N↓ (N↑ +Nχ)

N↑ (N↓ +Nχ)

]}
δn

(FM)
↑S − e

ε0ε

(
N↓NχeVS
N↓ +Nχ

)
e−x/`sf

=
2e2N2

β

ε0εNα

{
δφ

(FM)
S +

VS
2
e−x/`sf

[
Rσ +

Nχ (N↑ −N↓)
N2
β

]}
, (4.39)

where we have used the identity

N2
β −NαN↓ = (N↑ −N↓) (N↓ +Nχ) . (4.40)

Using Eq. (4.16) we write Eq. (4.39) as

∂2xδφ
(FM)
S =

2N2
β

NSNα`2sf

{
δφ

(FM)
S +

VS
2

[
Nχ

N2
β

(N↑ −N↓) +Rσ

]
e−x/`sf

}
. (4.41)

Equation (4.41) gives

δφ
(FM)
S =

[
Nχ (N↑ −N↓) +RσN

2
β

NSNα − 2N2
β

]
VSe

−x/`sf ≡ ξVSe
−x/`sf , (4.42)

Solving Eq. (4.42) for ξ gives Eq. (4.14).

Substituting Eq. (4.42) into Eqs. (4.38) and (4.37) on using Eq. (4.13) gives

δn
(FM)
↑S = N↑eξVSe

−x/`sf

{
−2NχN↓ +NS [Nχ +Rσ (N↓ +Nχ)]

Nχ (N↑ −N↓) +RσN2
β

}
, (4.43)

δn
(FM)
↓S = N↓eξVSe

−x/`sf

{
2NχN↑ +NS [−Nχ +Rσ (N↑ +Nχ)]

Nχ (N↑ −N↓) +RσN2
β

}
. (4.44)

Thus, the charge distribution in a ferromagnet associated with the spin mode is

δρ
(FM)
S =− e

(
δn

(FM)
↑S + δn

(FM)
↓S

)
= e2NSξVSe

−x/`sf = −ε0ε
`2sf
ξVSe

−x/`sf . (4.45)

This result may also be obtained by using Eq. (4.42) and Gauss’s Law.
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Further, Eqs. (4.43) and (4.44) give the spin accumulation to be

∆↑↓n
(FM)
S =δn

(FM)
↑S − δn(FM)

↓S

=eNχξVSe
−x/`sf

{
−4N↑N↓ +NS [N↑ +N↓ +Rσ (N↑ −N↓)]

Nχ (N↑ −N↓) +RσN2
β

}
. (4.46)

Substitution of Eq. (4.46) into Eq. (4.23) gives the deviation in effective magnetic

field

δH
∗(FM)
‖S =

µ0µB
χ

(
δn

(FM)
↑S − δn(FM)

↓S

)
=
eµ0µBNχξVS

χ
e−x/`sf

{
−4N↑N↓ +NS [N↑ +N↓ +Rσ (N↑ −N↓)]

Nχ (N↑ −N↓) +RσN2
β

}

=
eξVS
gµB

e−x/`sf

{
−4N↑N↓ +NS [N↑ +N↓ +Rσ (N↑ −N↓)]

Nχ (N↑ −N↓) +RσN2
β

}
. (4.47)

2. Charge-Screening Mode (Q)

The second solution to Eqs. (4.2)-(4.4) has δµ̄↑ = 0 = δµ̄↓ so that J↑ = 0 = J↓.

This mode is therefore entirely static (no spin nor charge current), corresponding

to electric screening and characterized only by charge and potential gradients. We

therefore follow Ref. 65 by designating it the “charge mode,” and use the subscript

Q to denote its properties.

By Eq. (4.24), setting δµ̄↑Q − δµ̄↓Q to zero (because each is individually zero)

gives

N↓ (N↑ +Nχ) δn↑Q = N↑ (N↓ +Nχ) δn↓Q , (4.48)

and setting δµ̄↑Q + δµ̄↓Q to zero gives

δφQ =
1

2e

(
δn↑Q
N↑

+
δn↓Q
N↓

)
. (4.49)
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Substitution of Eq. (4.48) into Eq. (4.49) multiplied by N↑(N↓ +Nχ) yields

N↑(N↓ +Nχ)δφQ =
Nα

2e
δn↑Q , (4.50)

where Nα is defined in Eq. (4.16). Substitution of Eqs. (4.48) and (4.50) into Gauss’s

Law, Eq. (4.4), multiplied by N↑(N↓ +Nχ) then gives

Nα

2e
∂2i δn↑Q =

2e2

ε0ε
[N↑ (N↓ +Nχ) +N↓ (N↑ +Nχ)] δn↑Q . (4.51)

Equation (4.51) can be written

∂2i δn↑Q =
1

`2Q
δn↑Q , (4.52)

where

`2Q ≡
ε0ε

2e2
Nα

N2
β

. (4.53)

For χ → ∞ and ε → 1, Eq. (4.53) gives `2Q = ε0ε/[e
2(N↑ + N↓)], which agrees with

Ref. 65.

We now define the quantity φ0Q (with units of V) such that

δn↑Q ≡ 2e
N↑
Nα

(N↓ +Nχ)φ0Qe
−x/`Q , (4.54)

which satisfies Eq. (4.52). Then Eq. (4.48) gives

δn↓Q =2e
N↓
Nα

(N↑ +Nχ)φ0Qe
−x/`Q , (4.55)

δρQ =− e
(
δn↑Q + δn↓Q

)
= −2e2

N2
β

Nα

φ0Qe
−x/`Q = −ε0ε

`2Q
φ0Qe

−x/`Q , (4.56)

and Eq. (4.49) gives

δφQ =φ0Qe
−x/`Q . (4.57)
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Equation (4.57) shows that φ0Q = δφQ(0).

Use of Eqs. (4.54) and (4.55) gives

∆↑↓nQ = δn↑Q − δn↓Q = 2e
Nχ

Nα

(N↑ −N↓)φ0Qe
−x/`Q , (4.58)

which is nonzero in a ferromagnet, where N↑ 6= N↓. Substitution of Eq. (4.58) into

Eq. (4.23) gives

δH∗‖Q =
2µ0µBeNχ

χNα

(N↑ −N↓)φ0Qe
−x/`Q =

2e

gµBNα

(N↑ −N↓)φ0Qe
−x/`Q . (4.59)

Like the spin mode, the charge mode has zero net current δJnQ = δj↑Q + δj↓Q ,

although unlike the spin mode the charge mode involves zero net spin current δJσQ =

δj↑Q − δj↓Q = 0.

3. Bulk Mode (dc)

This chapter considers a system which has, in the bulk, a uniform constant

electric current. The mode associated with this current, which we designate the “dc

mode” and denote by the sub/superscript dc, is characterized by a constant electric

field (which in principle differs for each material). We define this field as

δ ~Edc ≡ Ax̂, (4.60)

where A is a constant (with units of V/m) which must be determined. Furthermore,

Eq. (4.60) gives, for the potential associated with this mode,

δφdc = −Ax+B, (4.61)

where B is another constant (with units of V) which must be determined. By Gauss’s

Law there is clearly no overall (bulk or surface) charge associated with this mode, as
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expected. Further, Eqs. (4.61) and (4.24) give

δµ̄↑dc = δµ̄↓dc = −eδφdc = eAx− eB. (4.62)

Equation (4.1) gives

j↑dc = −σ↑A
e
, j↓dc = −σ↓A

e
. (4.63)

Because σ↑ is not necessarily equal to σ↓ (e.g., as for ferromagnets), there may be a

non-zero spin current associated with the dc mode.

4. Complete Description Near an Interface

A full description of the region near an interface involves the combination of both

surface modes (S and Q) derived above, and the bulk constant current (dc) mode.

For the potential, electric field, charge density near an interface located at x = xint,

from Eqs. (4.42), (4.45), (4.56), (4.57), (4.60), and (4.61) we have

δφ =ξVSe
±(x−xint)/`sf + φ0Qe

±(x−xint)/`Q − A(x− xint) +B, (4.64)

δE =∓ ξVS
`sf

e±(x−xint)/`sf ∓
φ0Q

`Q
e±(x−xint)/`Q + A, (4.65)

δρ =− ε0ε

(
ξVS
`2sf

e±(x−xint)/`sf +
φ0Q

`2Q
e±(x−xint)/`Q

)
. (4.66)

The top (bottom) sign corresponds to the material on the left (right) of the interface.

Recall that ξ → 0 for a non-magnetic material. For the spin accumulation, Eqs. (4.30),
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Fig. 6. An isolated interface between a ferromagnet (dark gray, at x < 0) and a

non-magnetic material (light gray, at x > 0). This work considers an electric current

density Jx̂, and magnetization of the FM along ±ẑ.

(4.46), and (4.58) yield

∆↑↓n
(NM) =

N↑NχeVS
(N↑ +Nχ)

e±(x−xint)/`sf + 2e
Nχ

Nα

(N↑ −N↓)φ0Qe
±(x−xint)/`Q , (4.67)

∆↑↓n
(FM) =eNχξVSe

±(x−xint)/`sf

{
−4N↑N↓ +NS [N↑ +N↓ +R (N↑ −N↓)]

Nχ (N↑ −N↓) +RN2
β

}

+ 2e
Nχ

Nα

(N↑ −N↓)φ0Qe
±(x−xint)/`Q . (4.68)

For an isolated interface at xint = 0 (see Fig. 6) between materials I (at x < 0)

and II (at x > 0), in general there are eight unknowns (A, B, φ0Q , and VS for

each of materials I and II). There are eight corresponding conditions, here designated

condition (i) through condition (viii):

(i-ii) the potential φ and field ~E must be continuous across the interface;

(iii-iv) the total electric current −e(j↑ + j↓) is equal to the (known) constant electric

current in each material;

(v) the spin current is assumed continuous across the interface (although we take

both up- and down-spin currents to be continuous, conditions (iii-iv) constrain
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their sum, so that interfacial spin-current continuity is only a single condition);

(vi-vii) the up- and down-spin currents across the interface are directly proportional to

the discontinuity in up- and down-spin magnetoelectrochemical potential across

the interface (i.e., Eqs. (2.51)-(2.52) hold with the cross-terms neglected); and

(viii) there is an arbitrary constant voltage (which we define by setting the voltage

B(II) ≡ 0).

Ref. 65 similarly numbers and discusses the conditions necessary to solve for the

unknowns at such a boundary. It uses the present work’s conditions (iii-vii) as its

conditions (1-5), although not in the same order. Furthermore, it makes use of the

present work’s condition (viii), though it does not number it. However, because it

neglects the charge mode at the interface, it does not take potential or field to be

continuous across the interface.

For a multilayer (a series of k interfaces between k + 1 materials), condition

(viii) remains a single condition because we may only define one arbitrary voltage,

and there is a single condition of the type (iii-iv) for each material (for a total of

k+ 1 conditions) because it applies in the bulk of each material. All five of the other

conditions apply for each interface. Thus, there are 1+k+1+5k = 6k+2 conditions.

C. Isolated Interfaces

For an isolated interface (as in Fig. 6), Appendix C uses each of the above condi-

tions to find an explicit equation for the eight unknowns and writes the unknowns in

terms of dimensionless variables. The numerical results for a cobalt/copper interface,

with material parameters given by Tables I and II, are shown in the figures below in

dimensionless units: Fig. 7 gives the electric potential; Fig. 8 gives the electric field;

and Fig. 9 gives the spin accumulation.



63

Table I. Bulk and interfacial properties of cobalt and copper, and well-known con-

stants. Here, A is the area of the interface, and R is the spin-dependent interface

resistance. †Value is for the (100) orientation. ‡The susceptibility of Cobalt is field-

-dependent, and takes a value between 70 and 250 (see Table 2.2 of Ref. 70); we take

an intermediate value.

Quantity Value Units Ref

σCo
↑ 2.47× 107 Ω−1-m−1 71

σCo
↓ 0.913× 107 Ω−1-m−1 71

σCu
↓ , σCu

↑ 8.35× 107 Ω−1-m−1 71

`Co
sf 59× 10−9 m 71

`Cu
sf 450× 10−9 m 71

NCo
↑ 5.10× 1046 J−1–m−3 71

NCo
↓ 19.7× 1046 J−1–m−3 71

NCu
↑ , NCu

↓ 3.89× 1046 J−1–m−3 71

AR
Cu/Co
↑ 0.31× 10−15 Ω–m2 43†

AR
Cu/Co
↓ 2.31× 10−15 Ω–m2 43†

χCo ≈ 100 70‡

χCu −0.932× 10−5 72

µB 9.27× 10−24 J–T−1

µ0 4π × 10−7 N – A−2

ε0 8.85× 10−12 A–s–V−1–m−1

e 1.6× 10−19 C

g ≈ 2
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Table II. Bulk and interfacial properties of cobalt and copper, calculated from the

results of the present work (and Table I). Here α is found from Eq. (4.10).

Quantity Value Units

σCu ≡ σCu
↑ + σCu

↓ 16.7× 107 Ω−1-m−1

g↑ 3.23× 1015 Ω−1-m−2

g↓ 0.433× 1015 Ω−1-m−2

NCo
χ 4.63× 1053 J−1–m−3

NCu
χ −4.32× 1046 J−1–m−3

NCo
S 9.93× 1040 J−1–m−3

NCu
S 1.71× 1039 J−1–m−3

NCo
α 9.26× 1053 J−1–m−3

NCu
α −0.851× 1046 J−1–m−3

NCo
β

2
1.15× 10101 J−2–m−6

NCu
β

2 −3.31× 1092 J−2–m−6

αCo 74.8× 1057 J−1–m−3–s−1

αCu 8.05× 1057 J−1–m−3–s−1

`Co
↑S 114× 10−9 m

`Co
↓S 69.0× 10−9 m

`Cu
↑S , `

Cu
↓S 636× 10−9 m

`Co
Q 0.0373× 10−9 m

`Cu
Q 0.0667× 10−9 m

RCo
σ −0.460

RCu
σ 0

ξCo 0.524

ξCu 0
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Fig. 7. The dimensionless electric potential (given by Eq. (4.64) normalized by

Ṽ ≡ −e`Cu
sf J/σ

Cu) near an interface between cobalt and copper. The horizontal axis

is position along x in nm. Here cobalt is at x < 0 and copper is at x > 0. The inset is

a 500x magnification at the interface (thus showing the potential within about 1 nm

of the interface), which shows that the electric potential is indeed continuous. The

present theory is shown as a solid line, the present theory neglecting charge screening

and chemical potential (as in JS) is shown as a dashed line, and the present theory

neglecting charge screening and effective field ~H∗ (as in HZ) is shown as a dotted line.

The three lines are difficult to distinguish except very near the interface (see inset).
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Fig. 8. The dimensionless electric field (given by Eq. (4.65) normalized by

Ṽ /`Cu
sf = −eJ/σCu) near an interface between cobalt and copper. The horizontal

axis is position along x in nm. Here cobalt is at x < 0 and copper is at x > 0. The

inset is a 500x magnification of the horizontal axis at the interface (thus showing the

field within about 1 nm of the interface), which shows that the electric field is indeed

continuous. The present theory is shown as a solid line, the present theory neglecting

charge screening and chemical potential (as in JS) is shown as a dashed line, and the

present theory neglecting charge screening and effective field ~H∗ (as in HZ) is shown

as a dotted line. The dotted line coincides closely with the present theory except

within the charge screening length of the interface.
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Fig. 9. The dimensionless spin accumulation (given by Eqs. (4.67) and (4.68) in

arbitrary units) near an interface between cobalt and copper. The horizontal axis

is position along x in nm. Here cobalt is at x < 0 and copper is at x > 0. The

present theory is shown as a solid line, the present theory neglecting charge screening

and chemical potential (as in JS) is shown as a dashed line, and the present theory

neglecting charge screening and effective field ~H∗ (as in HZ) is shown as a dotted

line. In the FM (x < 0), the HZ-predicted spin accumulation closely tracks that of

the present theory (deviating only within the charge-screening length of the interface,

see inset), and the JS/VF-predicted spin accumulation is several orders of magnitude

larger and not shown. In the NM, neither approximation predicts a spin accumulation

similar to the present theory.
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The insets of Figs. 7 and 8 respectively show the continuity of the electric po-

tential and electric field at the interface.

As mentioned earlier, previous theories by Johnson and Silsbee (JS), Valet and

Fert (VF) and by Hershfield and Zhao (HZ) neglect the charge mode (and therefore

cannot have field and potential continuity at the interface). Additionally, JS and VF

neglect the chemical potentials µ↑ and µ↓ and HZ neglects the internal magnetic field

H∗‖ . The spin accumulation for these modes is given by the dotted (HZ) and dashed

(JS/VF) lines in Fig. 9, with the relevant equations found below. The discrepancy

between predicted spin accumulation, particularly in the normal metal, demonstrates

that inclusion of all parts of the magnetoelectrochemical potential is essential for

calculating the spin accumulation in a non-magnetic material, even to the correct

order of magnitude.

1. Neglecting H∗‖ and the Charge Mode

Neglecting the last term (proportional to H∗‖ ) in Eq. (4.24), as in HZ,65 is equiv-

alent to taking χ→∞ (and therefore Nχ →∞) in the present results. We then have

Nα → 2Nχ, N2
β → Nχ(N↑ +N↓), and

ξ → N↑ −N↓ +Rσ(N↑ +N↓)

2NS − 2(N↑ +N↓)
.

Therefore, ξCo → 1.46, as in the present theory.

The charge mode is neglected by HZ, and various properties of the spin mode are

now calculated under its assumption that H∗‖ is zero. For a non-magnetic material,

δφ = 0 and δρ = 0 as before, and Eq. (4.29) gives

δn
(NM)
↑S = −δn(NM)

↓S =
eN↑VS

2
e−x/`sf . (4.69)

For a ferromagnet, Eqs. (4.42)-(4.44) give the electric potential and up and down spin
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concentrations in the spin mode to be

δφ
(FM)
S =

[
N↑ −N↓ +Rσ(N↑ +N↓)

2 (NS −N↑ −N↓)

]
VSe

−x/`sf , (4.70)

δn
(FM)
↑S = N↑eξVSe

−x/`sf
{
−2N↓ +NS(1 +Rσ)

N↑ −N↓ +Rσ(N↑ +N↓)

}
, (4.71)

δn
(FM)
↓S = N↓eξVSe

−x/`sf
{

2N↑ +NS(−1 +Rσ)

N↑ −N↓ +Rσ(N↑ +N↓)

}
. (4.72)

For the spin accumulation, Eqs. (4.69) and (4.71)-(4.72) give

∆↑↓n
(NM) = eN↑VSe

−x/`sf , (4.73)

∆↑↓n
(FM) = eξVSe

x/`sf

{
−4N↑N↓ +NS [N↑ +N↓ +Rσ (N↑ −N↓)]

N↑ −N↓ +Rσ(N↑ +N↓)

}
. (4.74)

As shown earlier in Eq. (4.32), in the non-magnet, when the charge mode and δH∗‖

are neglected, the spin accumulation is underestimated by the multiplicative factor

ζ(HZ) = (1 + N↑/Nχ), which is about 0.0986 for Cu. (Cu is a diamagnet, for which

Nχ < 0; in a paramagnet, for which Nχ > 0, the underestimation of spin accumu-

lation in this approximation is less striking, although it remains significant.) For

the ferromagnet, the contribution to spin accumulation from the charge mode is ne-

glected, and the spin accumulation from the spin mode agrees with the present theory

to within the precision of the present calculations. Hence, the approximation taken

by HZ is appropriate for ferromagnets but not for nonmagnetic materials.

Normalized Eqs. (4.73) and (4.74) are shown by the dotted lines in Fig. 9.

2. Neglecting µ↑, µ↓ and the Charge Mode

JS16 and VF22 neglect the chemical potentials µ↑ and µ↓ in Eq. (4.24), which is

equivalent to taking µ↑ → 0 and µ↓ → 0 and N↑,↓ →∞ in the present theory.

The charge mode is neglected by JS/VF, and various properties of the spin mode
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are now calculated under its assumption that µ↑ and µ↓ are zero. From Eq. (4.26) we

have

δφS = −Rσ

2
VSe

−x/`sf , (4.75)

so that ξ → −R/2. Then, from Eqs. (4.25) and (4.27) we find

δn↑S =

[
Nχ −

(
Rσ

2

)
NS

]
eVS
2
e−x/`sf , (4.76)

δn↓S = −
[
Nχ +

(
Rσ

2

)
NS

]
eVS
2
e−x/`sf . (4.77)

The spin accumulation is thus

∆↑↓n = NχeVSe
−x/`sf . (4.78)

As shown earlier in Eq. (4.32), in the non-magnet, when the charge mode and chemical

potentials are neglected, the spin accumulation is underestimated by the multiplica-

tive factor ζ(JS/VF) = (1 + Nχ/N↑), which is about −0.109 for Cu. Thus, this ap-

proximation is inappropriate for determining the spin accumulation in non-magnetic

materials, particularly those that are diamagnetic.

Normalized Eq. (4.78) is shown by the dashed line in Fig. 9.

D. Multilayers

As discussed above, for a multilayer with k interfaces there are 6k+ 2 boundary

conditions. For a multilayer of three materials with two interfaces (e.g., the read

head of a hard drive), there are therefore 14 boundary conditions, here designated

conditions (i) through condition (xiv):

(i-iv) the potential φ and field ~E must be continuous across both interfaces;

(v-vii) the total electric current −e(j↑ + j↓) is equal to the (known) constant electric
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current within each of the three materials;

(viii-ix) the spin current is continuous across each interface (again, conditions (v-vii)

constrain the sum of the spin currents, so that interfacial spin-current continuity

is only a single condition at each interface);

(x-xiii) the up- and down-spin currents across each interface are directly proportional to

the discontinuity in up- and down-spin magnetoelectrochemical potential across

the interface (i.e., Eqs. (2.51)-(2.52) hold with the cross-terms neglected); and

(xiv) there is an arbitrary constant voltage (which we define by setting the voltage

B(II) ≡ 0).

Appendix D explicitly finds these fourteen conditions and writes them in terms of

dimensionless variables.
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CHAPTER V

TEMPERATURE AND THERMAL FLUX IN A THIN-FILM FERROMAGNET

ON AN INSULATING SUBSTRATE: THE SPIN-SEEBECK EFFECT

As discussed in Chapter IV, passing electrical current through multilayers (by

applying a voltage gradient ∇φ) can generate a spin current and cause an accumu-

lation of spins. As discussed in Chapter II, however, gradients of other intrinsic

thermodynamic properties can also generate spin currents. For instance, a thermal

gradient ∇T can produce a spin current. This magnetic analog of the Seebeck effect,

whereby electric currents are generated by ∇T , is known as the spin-Seebeck effect.

This is an off-diagonal Onsager coefficient, and is not studied here; rather, we consider

the temperature and heat flux.

The spin-Seebeck effect has recently been observed31–33 in a ferromagnet film of

thickness dF ∼ 10 nm and length L ∼ 10 mm grown on an insulating substrate. When

subjected to a temperature gradient (see Fig. 10a), a nonzero voltage difference ∆Vy

across the width of the sample is observed; this signal is attributed to a spin flux along

z. It is observed to decay over a very large length (much greater than a spin-diffusion

length) from the heaters. Because the only applied gradient is of temperature, and

fluxes are driven by gradients of intensive parameters (e.g., voltage or temperature),

the temperatures in the ferromagnetic sample (F) and the substrate (s), and their

associated gradients, are of interest.
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Fig. 10. The substrate (s, dark gray) and ferromagnetic sample (F, light gray) of

the spin-Seebeck experiment. Here, (a) shows the typical experimental system, and

(b) shows the system with a disconnection (scratch) in the sample of length `d. An

external magnetic field is applied along x. The temperature at the far edges along x

is maintained by a heater and a heat sink. A voltage difference ∆Vy across the sample

in the y-direction is measured as a function of x by point electrodes33 or by Pt wires

(not shown) deposited on the sample.31–33 For a scratch length `d = 350 µm, Ref. 33

measures a similar signal ∆Vy as for the unscratched sample (a). The figure is not to

scale. The heater and heat sink, which are placed at each edge of the substrate along

x, are not pictured.
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Reference 33 observes the measured voltage ∆Vy along y to have a sinh (x)-like

form along the sample, suggesting that it is a surface effect related to the leads

that provide heat input and output. It has been suggested38 that this surface effect

is governed by magnon-phonon thermal equilibration73 within the sample. However,

Ref. 38 argues that for permalloy (Ni81Fe19) this equilibration should yield a maximum

characteristic length of only λmp = 0.3 mm, whereas experiment shows the spin-

Seebeck effect to have a characteristic length at least an order of magnitude larger.31

Further, the effect is unchanged for a large discontinuity33 (approximately 350 µm)

along x (see Fig. 10b); both with and without the discontinuity, a single sinh (x) is

measured across the entire length L of the system. It is thus likely that the substrate,

which is the only physical connection between the discontinuous regions of the sample,

plays an important role. To this effect, Ref. 33 states that a possible explanation of

the persistance of the signal regardless of disconnection is “thermal coupling through

the substrate in which heat is carried by phonons.”

The applications in Chapters II, III and IV deal with fluxes and concentrations

of (conserved) particles and (non-conserved) spins. This chapter instead deals with

(non-conserved) excitations, magnons (spin waves) and phonons (lattice vibrations),

which are responsible for thermal conduction. We use irreversible thermodynamics

to justify and extend the 1D, two-subsystem approach of Ref. 73 to the system of

Fig. 10, a 2D system (with perfect symmetry in the y-direction) that contains three

subsystems: sample phonons, sample magnons, and substrate phonons.

This chapter considers thermal equilibration both between magnons and phonons

in the sample, as well as between the sample and the substrate (although for the most

part it neglects direct equilibration between substrate phonons and sample magnons,

discussed further below). For a non-magnetic sample, the characteristic length of the
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sample-substrate thermal equilibration is shown below to be

λps ∼
√
κd

hK
. (5.1)

Here, κ is a thermal conductivity, d is a length related to the thicknesses of the sample

and substrate, and recall that hK is the thermal boundary (Kapitza) conductance.

In addition to the geometrical length, there are three different lengths associated

with Fig. 10: the magnon-phonon equilibration length λmp; the sample-substrate

phonon equilibration length λps; and an infinite length λ∞ that leads to the usual

linear thermal profile (see the example in Chapter I). Recall that Ref. 33 observes a

sinh (x/λ) profile of the effect. If λ � L, then sinh (x/λ) will decay too close to the

boundaries to be experimentally observed. Conversely, if λ� L, then sinh (x/λ) will

appear to be linear in x, which may explain the linear signal observed by Refs. 31

and 32. It is therefore likely that the longer of λps and λmp is the length observed.

When both magnon-phonon equilibration (internal to the ferromagnetic sam-

ple) and sample-substrate equilibration are present, the coupling between these two

modes further separates their characteristic lengths. That is, the longer of λps and

λmp increases, and the shorter decreases. With κm, κp, and κs denoting the respec-

tive thermal conductivities of sample magnons, of sample phonons, and of substrate

phonons, the coupling is given by a dimensionless coupling constant that is the prod-

uct of Rmp and Rps, which are shown below to be

Rmp ≡
(

κm
κm + κp

)
, Rps ≡

(
dsκs

dFκp + dsκs

)
, (5.2)

The thicknesses ds and dF are shown in Fig. 10. Thus, the sample-substrate coupling

strength (and the increase of the longer equilibration length) is enhanced via Rmp if

the magnons account for an appreciable amount of the thermal conductivity of the

ferromagnet, and is enhanced via Rps if the substrate is much thicker or has a much
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larger heat capacity than the ferromagnetic sample.

As mentioned above, this chapter focuses solely on thermal equilibration and heat

fluxes, and neglects off-diagonal Onsager coefficients, e.g., the spin currents induced

by the thermal gradients. In principle, the modes found in Chap. IV are present in

the spin-Seebeck system. It is possible that, in particular, the spin-diffusion mode

couples with the thermal equilibration modes found in this chapter, and modifies the

mode lengths accordingly. Because we show that thermal equilibration mode mixing

does not yield a decay length long enough to explain the spin-Seebeck experiments,

this possibility warrants further detailed study. We do not discuss it further.

Section A of this chapter employs irreversible thermodynamics to find the energy

transferred between two systems at different temperatures, specifically considering

systems that share a surface (e.g., the sample and substrate) and systems that share

a volume (e.g., magnons and phonons in the ferromagnet). For heat flow approxi-

mated to be only along x, Section B finds the characteristic lengths of the thermal

equilibration modes, as well as the spatial profiles of the phonon and magnon temper-

atures and heat fluxes. For heat flow along both x and z, Sec. C finds the shape of the

spatial profile of temperatures and heat fluxes, and numerically solves for the charac-

teristic lengths and z-dependence of the phonon and magnon heat flux magnitudes for

an example system. Section D discusses the lengths associated with thermal equilibra-

tion, and why the present theory likely does not explain the anomalously large length

measured by spin-Seebeck experiments. For heat flux along both x and z, Appendix E

discusses and explicitly finds the bulk and boundary conditions, and App. F shows

the algorithm used to solve the boundary conditions for the characteristic lengths,

the results of which are discussed in Sec. C.

It has recently been proposed74,75 that electron-phonon drag and magnon-phonon

drag processes are important in explaining the results of the spin-Seebeck experiments.
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(The kinetic theory of electron-phonon drag is found, for example, in Ref. 76.) This

dissertation does not consider such effects.

A. Thermodynamics

We present here a derivation of a result central to Ref. 73, which is the basis of

Ref. 38.

1. General Equilibration of Two Systems

We consider any two subsystems between which heat and entropy (but not mat-

ter, quasi-momentum, or momentum) flow. (This section essentially extends the

example in Chapter I to two subsystems.) We later specifically consider energy equi-

libration between the phonon-magnon subsystems in a ferromagnet (as in Refs. 38

and 73), as well as energy equilibration between the respective phonon subsystems of

a ferromagnet and a non-magnetic insulator in contact.

In two such subsystems, designated α and β, the energy differentials may be

written as

dEα = TαdSα, dEβ = TβdSβ, (5.3)

where T is the temperature and S is the entropy. By overall energy conservation

dEα = −dEβ, so

dSα =
dEα
Tα

, dSβ = −dEα
Tβ

. (5.4)

Since the total change in entropy must be non-negative, we must have

0 ≤ Ṡα + Ṡβ =

(
1

Tα
− 1

Tβ

)
Ėα =

(
Tβ − Tα
TαTβ

)
Ėα. (5.5)
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For Ṡα + Ṡβ ≥ 0 to hold we must have

Ėα = ζ (Tβ − Tα) , (5.6)

where ζ > 0. By now it should be unsurprising that the energy flux between two

subsystems is driven by a difference in intensive thermodynamic quantities. The

proportionality coefficient ζ has units of a specific heat divided by time, and as noted

below depends either on a boundary conductance (for systems that share a common

surface) or a relaxation time (for systems that share the same volume).

Specific heats per unit volume (C) are defined via

ε̇α = CαṪα, ε̇β = CβṪβ, (5.7)

where ε = E/V and V is the volume of the system. Use of Ėβ = −Ėα and Eqs. (5.6)

and (5.7) yields

Ṫα =
Tβ − Tα
τα

, Ṫβ =
Tα − Tβ
τβ

, (5.8)

where τα ≡ CαVα/ζ and τβ ≡ CβVβ/ζ have units of time. Then

∆Ṫαβ ≡ Ṫβ − Ṫα = −Tβ − Tα
ταβ

, (5.9)

where we define

ταβ ≡
τατβ
τα + τβ

. (5.10)

Equation (5.9) justifies Eq. (1) of Ref. 73.

2. Two Systems Occupying the Same Volume

Energy conservation in two systems that occupy the same volume V (e.g., the

phonon and magnon systems within a ferromagnet) gives ε̇α = −ε̇β, so that substi-
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tution of Eqs. (5.8) and (5.6) into Eq. (5.7) yields

Cα
τα

=
Cβ
τβ

=
ζ

V
. (5.11)

Then, with τβ = (Cβ/Cα)τα, equation (5.10) gives

Cα
τα

=
Cβ
τβ

=

(
CαCβ
Cα + Cβ

)
τ−1αβ . (5.12)

This is the case studied by Ref. 73.

3. Two Systems with a Contact Surface

For two systems in thermal contact over a surface of area A (e.g., the ferromagnet

and substrate’s respective phonon systems in Fig. 10a), we write ζ = hKA,15,19 so

that

Ėα = −Ėβ = hKA (Tβ − Tα) . (5.13)

Here hK is the thermal boundary conductance. Substitution of Eqs. (5.13) and (5.8)

into Eq. (5.7) gives

τα =
dαCα
hK

, τβ =
dβCβ
hK

, (5.14)

where d is the thickness of the material in the direction normal to the contact surface.

Equation (5.10) then gives

ταβ =
1

hK

(
dαCαdβCβ
dαCα + dβCβ

)
. (5.15)

B. Heat Flow in 1D in the Spin-Seebeck System

We now consider the system of Fig. 11, a ferromagnet/substrate system where a

thermal gradient is applied by a heater at x = −L/2 and a heat sink at x = L/2. For
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Fig. 11. An xz-plane cross section of the spin-Seebeck system (see Fig. 10a), depicting

the placement of the heater and heat sink. The heater and heat sink, represented

by squares at x < −L/2 and x > L/2, maintain temperatures TH and TC , where

TH > TC . For sample isolation, they are in contact only with the substrate (s, dark

gray), and not with the ferromagnetic sample (F, light gray); this affects the relative

amplitudes of the modes, but not the mode lengths. The total heat flux input by the

heater at x = −L/2 is j0, and a similar heat flux must exit the substrate at x = L/2.

sample isolation, we take them to be in contact only with the substrate. This affects

the relative amplitudes of temperature and thermal flux in each mode, but does not

change the mode lengths.

This section takes heat to flow only along the length of the materials (the x-

direction in Figs. 10 and 11), i.e., heat flow in each system is uniform in the yz-plane

(further below, both flow along x and z are considered). Conservation of energy,

with an energy source (which has not been considered thus far by this dissertation),

is given by

ε̇+ ∂xj
ε
x = Sε, (5.16)

where Sε represents the rate of heat transfer per unit volume from one subsystem

to another. We consider steady state solutions, so that ε̇ = 0. This section further
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takes the magnon subsystem (m) in the ferromagnet to only transfer energy to/from

the phonon subsystem (p) in the ferromagnet. Similarly it takes the substrate (s) to

only transfer energy to/from the phonon subsystem (p) in the ferromagnet, thereby

neglecting the magnon-substrate coupling.

The rate of energy transfer per volume (V = Ad) between substrate phonons

and sample phonons (an energy source S) is found from Eq. (5.13) as

Sεs→p =
hK
dF

(Ts − Tp) , Sεp→s =
hK
ds

(Tp − Ts) . (5.17)

Here Sεα→β is the volume rate of energy transfer from system α to system β. (This

is an approximation, as it treats the surface energy transfer between sample and

substrate as a volume energy transfer; this energy transfer is properly treated as a

z-directional heat flow further below.) The volume rate of energy transfer between

the magnons and phonons in the sample is found by substitution of Eqs. (5.8) and

(5.11) into Eq. (5.7), which gives

Sεm→p = −Sεp→m =
Cm
τm

(Tm − Tp) . (5.18)

Here we have used Eq. (5.11) to replace Cp/τp with Cm/τm. Applied in turn to the

substrate, magnons, and phonons, Eq. (5.16) gives

∂xj
εs
x =

hK
ds

(Tp − Ts) , (5.19)

∂xj
εm
x = −Cm

τm
(Tm − Tp) , (5.20)

∂xj
εp
x =

hK
dF

(Ts − Tp) +
Cm
τm

(Tm − Tp) . (5.21)

From Eqs. (2.8) and (2.10), with no particle flow,

jεi = −κ∂iT, (5.22)
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where κ > 0, i.e., heat flows from hot to cold. Substitution of Eqs. (5.19), (5.20), and

(5.21) into the linearized gradient of Eq. (5.22) in turn gives

−
(
dsκs
hK

)
∂2xTs = Tp − Ts, (5.23)

−
(
κmτm
Cm

)
∂2xTm = Tp − Tm, (5.24)

−κp∂2xTp = −hK
dF

(Tp − Ts)−
Cm
τm

(Tp − Tm) . (5.25)

1. Characteristic Lengths

We denote the inhomogeneous parts of Ts, Tp, and Tm with primes. They all

vary as e±qx, so the characteristic length is λ = q−1. Then, solving Eqs. (5.23) and

(5.24) for T ′s and T ′m yields

T ′s =
T ′p

1−
(
dsκs
hK

)
q2
, T ′m =

T ′p

1−
(
κmτm
Cm

)
q2
. (5.26)

Substitution of Eq. (5.26) into Eq. (5.25) gives

−κpq2 =
hK
dF

(
dsκs
hK

q2

1− dsκs
hK

q2

)
+
Cm
τm

(
κmτm
Cm

q2

1− κmτm
Cm

q2

)
. (5.27)

This is cubic in q2. One solution is q2∞ = λ−2∞ = 0, corresponding to the usual linear

temperature profile, which is equivalent for Ts, Tp, and Tm.

It is convenient to define the inverse lengths qmp = λ−1mp and qps = λ−1ps , the former

associated with magnon-phonon equilibration within the ferromagnet and the latter

associated with sample-substrate phonon equilibration. They satisfy

q2mp ≡
Cm
τm

(
κm + κp
κmκp

)
, q2ps ≡ hK

(
dFκp + dsκs
dFκpdsκs

)
. (5.28)

These can be thought of as representing pure modes of the magnon-phonon system

and the sample-substrate phonon system. Then for q2 6= 0, equation (5.27) can be
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written as

0 = q4 − q2
(
q2mp + q2ps

)
+
(
q2mpq

2
ps − q2mpq2psRmpRps

)
, (5.29)

where the dimensionless ratios Rmp and Rps are given by Eq. (5.2). The solutions are

q2± =
q2mp + q2ps

2
±

√(
q2mp − q2ps

2

)2

+ q2mpq
2
psRmpRps. (5.30)

We now consider two extreme cases. If there is no substrate (or if hK → 0), then

|q| → qmp =

√
Cm
τm

(
κp + κm
κpκm

)
, (5.31)

which on use of Eq. (5.12) reproduces the result of Ref. 73 (which employs A for q).

If there is a substrate but no magnons (or τm →∞), then

|q| → qps =

√
hK

(
dsκs + dFκp
dsκsdFκp

)
, (5.32)

as in Eq. (5.1).

The coupling factor (RmpRps ≤ 1) between these modes further splits the two

solutions; for RmpRps 6= 0, the (shorter) characteristic length λ+ = 1/q+ decreases

and the (longer) length λ− = 1/q− increases. For three values of qmp/qps ≥ 1, Fig. 12

shows the characteristic lengths λ− and λ+, normalized by the pure mode phonon-

magnon relaxation length (λmp = 1/qmp), versus the coupling factor RmpRps. For

qps ≥ qmp the plots are the same when λ+ and λ− are normalized by qps rather than

qmp.
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Fig. 12. The effect of mode coupling on the characteristic lengths associated with

thermal equilibration in the spin-Seebeck system. The two characteristic lengths λ+

and λ−, normalized here by λmp = q−1mp, are shown as functions of the coupling factor

RmpRps ≤ 1, for: (a) qmp = qps, which corresponds to equivalent pure mode lengths

λmp = λps; (b) qmp = 3qps, which corresponds to λps = 3λmp; and (c) qmp = 10qps,

which corresponds to λps = 10λmp. For qps ≥ qmp, the plots are the same when λ+

and λ− are normalized by λps rather than λmp. By definition, RmpRps ≤ 1.

2. Thermal Profile and Fluxes along x

We write the phonon temperature in the ferromagnet as

Tp = T0 + αx+
∑
γ=+,−

[
T aγ sinh (qγx) + T bγ cosh (qγx)

]
, (5.33)

where T0, T
a
+, T a−, T b+, and T b− are temperatures, and α is a temperature gradient.

The temperatures T a± and T b± are found by application of the boundary conditions on
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the heat currents, which are proportional to ∂xT(p,m,s), with T b± = 0 if the heat fluxes

have symmetric boundary conditions.

Recall that for a solitary isolated system under an applied temperature gradient,

as considered by the example in Chapter I, we have T = T0 + αx.

Using Eq. (5.28), substitution of the inhomogeneous part of Eq. (5.33) into

Eq. (5.26) gives, with no new parameters,

Ts = T0 + αx+
∑
γ=+,−

 q2ps

q2ps −
(
dsκs+dF κp

dF κp

)
q2γ

 [T aγ sinh (qγx) + T bγ cosh (qγx)
]
,

(5.34)

Tm = T0 + αx+
∑
γ=+,−

 q2mp

q2mp −
(
κm+κp
κp

)
q2γ

 [T aγ sinh (qγx) + T bγ cosh (qγx)
]
. (5.35)

Substituting Eqs. (5.33), (5.34) and (5.35) into Eq. (5.22) in turn gives the heat

current in each subsystem:

jεpx =− κpα− κp
∑
γ=+,−

qγ
[
T aγ cosh (qγx) + T bγ sinh (qγx)

]
, (5.36)

jεsx =− κsα− κs
∑
γ=+,−

qγ

 q2ps

q2ps −
(
dsκs+dF κp

dF κp

)
q2γ

 [T aγ cosh (qγx) + T bγ sinh (qγx)
]
,

(5.37)

jεmx =− κmα− κm
∑
γ=+,−

qγ

 q2mp

q2mp −
(
κm+κp
κp

)
q2γ

 [T aγ cosh (qγx) + T bγ sinh (qγx)
]
.

(5.38)
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The total heat flux in the ferromagnet jεFx ≡ j
εp
x + jεmx is

jεFx =− (κp + κm)α

−
∑
γ=+,−

qγ

(κm + κp)
(
q2mp − q2γ

)
q2mp −

(
κm+κp
κp

)
q2γ

 [T aγ cosh (qγx) + T bγ sinh (qγx)
]
. (5.39)

The boundary conditions on j
ε(s,p,m)
x at x = −L/2 and x = L/2 give α, T aγ and T bγ .

Because heat flux is continuous, the total heat flux (integrated over all sub-

systems) due to each surface mode must be zero. This condition is satisfied by

Eqs. (5.36), (5.37), and (5.38) on substitution from Eqs. (5.28) and (5.30).

There are five unknowns in Eqs. (5.36), (5.37), and (5.38) (α, T a+, T a−, T b+, and

T b−), and seemingly six boundary conditions (for each of the three fluxes, one at

x = −L/2 and one at x = L/2). However, because the total energy flux is conserved

(i.e., no heat losses at the top of the ferromagnet dF or at the bottom of the substrate

−ds in Fig. 10), there are only five independent conditions.

For comparison to the theory of Ref. 73, we now consider the bulk system if

the heaters contact the sample and there is no substrate (so that q2+ = q2mp and

q2− = 0 = q2s). Then jεFx → −(κp + κm)α, which reproduces the homogeneous result

of Ref. 73 (where Q ≡ jεFx ), and satisfies the condition of zero total heat flux due to

the surface mode. If the heaters directly transfer energy only to and from phonons

(so that heat flow in the magnon system vanishes at x = L/2 and x = −L/2), then

T a+ → κmα/[qmκp cosh (qmL/2)] and T b+ → 0, which reproduces the inhomogeneous

result of Ref. 73. As noted above, because T b± is associated with a term proportional

to sinh (q±x) in the heat flux, T b± = 0 for symmetric boundary conditions on the heat

fluxes (i.e., the same heat current is injected into each system at the “hot” side as is

withdrawn from each system at the “cold” side).
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C. Heat Flow in 2D in the Spin-Seebeck System

We have so far omitted any consideration of how heat flows across the sample-

substrate interface, which is now addressed. We now consider heat flux along z, to

explicitly permit heat transfer between the substrate and the sample. We first detail

the analytic theory, then present its numerical solution.

1. Analytic Theory

To completely describe the z-dependence of the temperatures and heat fluxes in

the system, the z-dependence of the heat flux input by the heater at x = −L/2 must

be considered. In principle, it may have any functional form, and therefore properly

requires a Fourier series in sin (kz) and cos (kz) that includes an infinite number of

lengths k−1 associated with the z-direction. However, if the thickness (along z) of the

substrate is much smaller than its length (along x), then k−1 should be very small

compared to λ± = q−1± of Eq. (5.30). The contributions from this z-dependence should

decay along x over a distance on the order of the non-uniformity along z, and therefore

we do not explicitly include them in the analytic theory. The cost of neglecting these

high k values is that we cannot specify a heat input with a complicated variation

along the thickness.

We thus generalize equations (5.33)-(5.35) to take the form

T(s,p,m)(x, z) =T0(s,p,m)
+ α(s,p,m)x

+
∑
γ=+,−

[
T a(s,p,m)γ(z) sinh (qγx) + T b(s,p,m)γ(z) cosh (qγx)

]
. (5.40)

The forms of T a(s,p,m)γ(z) and T b(s,p,m)γ(z) are determined by the conditions on the

heat flux. We take symmetric boundary conditions on heat flux along x, which give

T b(s,p,m)γ(z) = 0. Then, substitution of Eq. (5.40) into Eq. (5.22) gives the heat fluxes
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along x and z to be

j
ε(s,p,m)
x = −κ(s,p,m)α(s,p,m) − κ(s,p,m)

∑
γ=+,−

qγT
a
(s,p,m)γ(z) cosh (qγx), (5.41)

j
ε(s,p,m)
z = −κ(s,p,m)

∑
γ=+,−

∂zT
a
(s,p,m)γ(z) sinh (qγx). (5.42)

This section finds the functional forms of T a(s,p,m)(z) and shows their amplitudes for

example material parameters. The details of determining the amplitudes from bulk

and boundary conditions are given below.

On properly treating the heat transfer between sample phonons and substrate

phonons as z-directional currents, and heat transfer between sample magnons and

sample phonons as a source/sink as for the 1D case, employing Eqs. (5.22) and (5.16)

gives

∂2i Ts = 0, (5.43)

−κp∂2i Tp =
Cm
τm

(Tm − Tp), (5.44)

−κm∂2i Tm = −Cm
τm

(Tm − Tp). (5.45)

Equations (5.43)-(5.45) are identical to Eqs. (5.23)-(5.25), but with phonon-substrate

heat transfer in the form of fluxes rather than sources. These equations give

T0m = T0p ≡ T0, αm = αp ≡ α, (5.46)

but they do not explicitly impose any conditions on T0s or αs. For steady-state flow,

however, we must take

T0s = T0, αs = α. (5.47)

This relation guarantees that for any two of κ(s,p,m) to continuously go to zero, we

recover the expected jεx = −κα. We now find T a(s,p,m)(z) by substituting Eq. (5.40)
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into Eq. (5.43) and the decoupled forms of Eqs. (5.44) and (5.45).

Substitution of Eq. (5.40) into Eq. (5.43) gives

∂2zT
a
sγ(z) = −q2γT asγ(z), (5.48)

so that T asγ(z) is sinusoidal:

T asγ(z) = A(1)
sγ cos (qγz) + A(2)

sγ sin (qγz). (5.49)

Here, A
(1)
sγ and A

(2)
sγ are constants determined by conditions on heat flux (see Ap-

pendix E).

Decoupled equations for Tp and Tm (and therefore T apγ(z) and T amγ(z)) are found

by combination of Eqs. (5.44) and (5.45). Addition and subtraction gives

−κp∂2i Tp − κm∂2i Tm = 0, (5.50)

−κp∂2i Tp + κm∂
2
i Tm = 2

Cm
τm

(Tm − Tp). (5.51)

Combination of Eqs. (5.50) and (5.51) gives

∂2i ∂
2
jTp − q2mp∂2i Tp = 0, (5.52)

∂2i ∂
2
jTm − q2mp∂2i Tm = 0. (5.53)

where we have employed Eq. (5.28). Use of Eq. (5.40) in Eqs. (5.52) and (5.53) gives,

for γ = ±,

∂4zT
a
(p,m)γ(z) + q4γT

a
(p,m)γ(z) + 2q2γ∂

2
zT

a
(p,m)γ(z)− q2mp∂2zT a(p,m)γ(z)− q2mpq2γT a(p,m)γ(z) = 0.

(5.54)
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The solution of Eq. (5.54) is

T a(p,m)γ(z) =A
(1)
(p,m)γe

√
q2mp−q2γz + A

(2)
(p,m)γe

−
√
q2mp−q2γz

+ A
(3)
(p,m)γ cos (qγz) + A

(4)
(p,m)γ sin (qγz). (5.55)

Here, A
(1,2,3,4)
(p,m)γ are constants determined by conditions on heat flux (see below).

Due to the mode splitting discussed above for 1D heat flow, q+ ≥ qm and q− ≤ qm.

Therefore, for coupling RmpRps 6= 0, the exponential terms in Eq. (5.55) are, in fact,

oscillating terms for qγ = q+.

Although T0, α, A
(1,2)
s± , and A

(1,2,3,4)
(p,m)± are twenty-two unknowns associated with

the temperatures and heat fluxes, they are not free parameters. Energy conservation

in the bulk gives eight conditions, energy conservation at the boundaries z = −ds

and z = dF (i.e., no heat loss to the vacuum at the surfaces) gives six boundary

conditions, and there are four boundary conditions associated with interfacial energy

transfer, given by Refs. 19 and 15. Only four conditions can be varied: the average

temperature T0, the temperature gradient α, and two conditions associated with the

relative amounts of heat carried by each subsystem at a given short distance from the

heater. All four of these conditions are set experimentally, but the last two are not

obvious; they are approximated in Appendix E.

If the 2D mode lengths are similar to those for 1D, the theory demonstrates

that, in the system shown in Fig. 10, there are two dominant surface modes (and

thus two largest characteristic lengths) associated with thermal equilibration: one

largely associated with energy equilibration between magnons and phonons within

the ferromagnet, and the other largely associated with energy equilibration between

phonons in the ferromagnet and the substrate. The coupling between the two surface

modes increases the larger and decreases the smaller of the characteristic lengths.
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This theory provides testable predictions for the change in the 1D characteristic

lengths. Equations (5.30) and (5.28) show that quadrupling the thickness of both

the sample and substrate should approximately double the observed characteristic

length. The theory also suggests that polishing (roughening) the substrate before

depositing the sample, which increases (decreases) hK , should decrease (increase) the

observed length; to test this behavior, measurements could be taken on a series of

samples with increasingly rough sample/substrate interfaces. Finally, regardless of

which mode causes the measured effect, changing the coupling factor between the

modes (by changing κm/κp or dsκs/dFκp) modifies the lengths.

2. Numerical Solution

We find, however, that it is an oversimplification to use the q± from Eq. (5.30)

as the inverse lengths associated with 2D flow. Indeed, numerical solution with ei-

ther of these values for q can be shown to be inconsistent with energy conservation.

Unfortunately, since the 2D heat flow equations are nonlinear, analytic solution is

not possible in general. However, an iterative approach (given for Mathematica in

pseudocode below) can be used to find consistent values for q: solve the appropriate

boundary conditions for the coefficients using qinit = q+ or qinit = q−; using these

values for the coefficients, find the qnew that guarantees energy conservation; begin

the loop again using an appropriately chosen q′init in between qinit and qnew. One must

iterate until qnew and qinit converge. The algorithm is given explicitly by Appendix F.

We now present the results of this method, calculated using Mathematica, for

material parameters given in Table III.

Following Table III, the 1D solution from Eq. (5.30) gives

q− = 3257 m−1, q+ = 3.651× 106 m−1. (5.56)
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Table III. Parameters used for numerical calculations of normal mode contributions

to the heat fluxes in the spin-Seebeck system. (a)Estimate for a Ni film on a Si-N

substrate at 100K from Fig. 5b of Ref. 77. (b)Value unknown; κm/κp is likely to be

lower at high temperature. (c)Estimate from Ref. 38 for the maximum phonon-magnon

equilibration length in Permalloy. (d)Estimate for Rh:Fe on Al2O3 from Fig. 34 of

Ref. 19. (e)Calculated using the above parameters and Eq. (5.32). (f)Calculated

using the above parameters and Eqs. (5.30) and (5.2).

Parameter Value Units Ref.

κs 3 W/m-K 77(a)

κp 30 W/m-K 77(a)

κm/κp 1/10 (b)

dF 50 nm 77

ds 500 nm 77

qmp 3.33×104 m−1 38(c)

hK 1×107 W/m2-K 19(d)

qps 5×102 m−1 (e)

q+ 5.00×104 m−1 (f)

q− 4.88×102 m−1 (f)

Using these as trial values for the numerical solution of 2D heat flow boundary con-

ditions, we find 2D inverse lengths consistent with energy conservation to be

q
(2D)
− = 3257 m−1, q

(2D)
+ = 2.839× 106 m−1. (5.57)

The subsystem contributions to heat flow along z and along x for the two modes

associated with q
(2D)
− and q

(2D)
+ are respectively shown in Figs. 13 and 14. Fig. 14

explains the significant difference between q+ and q
(2D)
+ ; the 1D solutions q+ and q−

should apply for heat flux along x uniform in z. This holds for the q
(2D)
− mode in

Fig. 14a, whereas the q
(2D)
− displays significant curvature in Fig. 14b.
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Fig. 13. The relative magnitudes of phonon and magnon heat flux along z at a given

x as a function of z (i.e., −κ(s,p,m)∂zT
a
(s,p,m)±(z)), in the thermal equilibration modes

with the largest lengths, (a) λ
(2D)
− = 1/q

(2D)
− and (b) λ

(2D)
+ = 1/q

(2D)
+ , in arbitrary

units. The substrate is at z < 0 and the sample is at z > 0, and the sample magnon

heat flux is dark grey to distinguish it from phonon heat flux. For the parameter

values of Table III, in both modes the sample is too thin for magnons to build up

much heat flux along z. No heat loss at the top of the sample dF or the bottom of

the substrate requires that each heat flux is zero at these points.
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Fig. 14. The relative magnitudes of phonon and magnon heat flux along x at a given

x as a function of z (i.e., −κ(s,p,m)T
a
(s,p,m)±(z)), in the thermal equilibration modes

with the largest lengths, (a) λ
(2D)
− = 1/q

(2D)
− and (b) λ

(2D)
+ = 1/q

(2D)
+ , in arbitrary units.

The substrate is at z < 0 and the sample is at z > 0, and the sample magnon heat

flux is dark grey to distinguish it from phonon heat flux. For the parameter values

of Table III, (a) shows that along x the heat in the q
(2D)
− surface mode is carried by

all three subsystems, with magnon heat flow opposing sample and substrate phonon

heat flow, and (b) shows that along x the heat in the q
(2D)
+ surface mode is carried

mostly by the phonon subsystems, with sample phonon heat flow opposing substrate

phonon heat flow. Integration over z from −ds to dF of the total heat flux along x

for each surface mode gives zero by continuity of the heat flux.
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It is noteworthy that other consistent solutions q
(2D)
n > q

(2D)
+ > q

(2D)
− can be found

numerically. These may in fact represent the Fourier-series with infinite wavevectors

necessary to fully treat any arbitrary heat input, as mentioned above, but this is

not obvious. Although further investigation into the nature of these solutions is

warranted, since we are here searching for the largest possible lengths associated with

heat flow, the larger q (and therefore smaller λ) solutions are irrelevant to the current

discussion.

D. On the Anomalous Spin-Seebeck Length

It is unlikely that the present theory can account for the anomalously large length

(∼ 1 mm) observed in the spin-Seebeck experiments.

On one hand, for the sample-substrate length λps to be on the order of 1 mm,

with κs ≈ κp ∼ 102 W/m-K, ds ∼ 100 nm, and dF ∼ 10 nm, Eq. (5.28) gives an

abnormally small thermal boundary conductance hK ∼ 1 W/m2-K. Although hK is

not known for the particular combinations of materials used in Refs. 31, 32, or 33,

Fig. 34 of Ref. 19 gives hK ≈ 107 W/m2-K (for Rh:Fe on Al2O3 at T = 50 K). We do

not expect that thermal matching between substrate and sample in the spin-Seebeck

experiments to be considerably worse.

On the other hand, for the magnon-phonon length λmp to be on the order of

1 mm, the mode coupling (given by RmpRps in Eq. (5.30)) would have to account for

a large increase of λmp (at least three-fold in the case of Permalloy.38) Because spin-

Seebeck experiments are carried out near room temperature31,32 or at T ≥ 40 K,33

it is unlikely that the magnons carry a significant amount of the heat flux in the

ferromagnet, i.e., it is likely that κm � κp. Since the mode coupling term Rmp is

proportional to κm/κp, mode coupling is likely a weak effect.
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However, the only applied gradient in the spin-Seebeck experiments is of tem-

perature. If, as has been suggested, the effect is due to a spin flux along z in the

ferromagnet, then the fluxes are likely driven in large part by internal thermal gradi-

ents along z; this thermal gradient is shown by the present theory to have a sinh (x)

dependence, as does the spin flux measured by Ref. 33. The present theory is thus

an important piece of the puzzle for describing such a spin flux.
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CHAPTER VI

SUMMARY

We have developed the irreversible thermodynamics of transport in both bulk

and interfacial systems. We have treated transport of both conserved and non-

conserved properties. To describe transport using irreversible thermodynamics, we

first make general calculations of entropy production and heating.

In general, entropy production calculations are relatively straightforward for sin-

gle carrier systems. We find the regime where interfacial heating and entropy pro-

duction dominate that due to bulk currents; it depends on the bulk conductivity and

interfacial conductance, as well the distance over which the interface adjusts.

Nontrivial complications occur for similar calculations for two-carrier systems

when scattering (e.g., of spins) or recombination (e.g., of holes and electrons in semi-

conductors) due to an interface is considered. On taking the generally nonconserved

current to be continuous at the interface, however, we make the comparison between

the interfacial entropy production (and the rate of heating) due to the electric poten-

tial and that due to the magnetization potential. For typical interfacial properties, we

find that a rather strong difference ∼ 20 T in internal magnetization potentials across

an interface is necessary to produce the same heating as a 10−3 V voltage difference.

We apply these general irreversible thermodynamics methods and results to

transport in three systems with a variety of carriers and interfacial properties.

Metal oxide growth is considered here as a bulk system driven by surface chemical

reactions at the metal/oxide and the oxide/atmosphere interfaces. Previous theory

by Mott is shown to be inconsistent, with a decreasing bulk electric field but no

discharge current. We show that Mott’s theory is instead the first order of a consistent

asymptotic series expansion in t−k/2 of field, fluxes, and concentrations. At second
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order (t−1), we find nonuniform concentrations in the bulk, and unequal charge on

the surfaces. At third order (t−3/2) we find unequal, nonuniform fluxes of ions and

electrons. The method used here can be employed to find the transport variables at

any order, provided all previous orders are calculated. Using these results, we show

the first correction to the parabolic growth rate law to be logarithmic in time.

We next consider magnetic and electric transport at isolated interfaces and in

multilayers of ferromagnetic and nonmagnetic materials. We calculate the normal

eigenmodes and associated characteristic lengths for spin and charge transport, and

consider the behavior of a such a system through which a constant electric current

is driven. We discuss and find all of the applicable boundary conditions, and show

numerical results for the field, potential, charge, and spin accumulation in copper and

cobalt. The present results differ from previous theory because of both the inclusion

of charge-screening (which allows continuity of electric field and potential, and affects

spin accumulation in a ferromagnet) as well as the inclusion of both the chemical

potential and the internal magnetic field. Results, particularly for a nonmagnetic

material, depend on the consideration of both of these properties.

Finally, we consider themal transport in the spin-Seebeck system, which consists

of a thin-film ferromagnet on an insulating nonmagnetic substrate. Transport within

and between both of the materials is considered, with phonons in the substrate and

magnons and phonons in the sample responsible for heat flow. We calculate the nor-

mal modes and their associated lengths for the simplified case of 1D heat flow, and

provide the analytic theory for heat flow in 2D, which requires the consideration of

at least twenty boundary conditions. Numerical results show that the analytically

calculated 1D lengths can be very close to the two largest 2D lengths. However,

using particular results of Ref. 38, the theory does not appear to explain the abnor-

mally large lengths associated with spin current that are observed in spin-Seebeck
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experiments by Refs. 31–33.

On the other hand, the present theory does find that heat flux along z displays

the same sinh (x) dependence as the spin current measured in one of the spin-Seebeck

experiments.33 The thermal gradient along z predicted by the present theory pre-

cisely tracks the measured spin current if a particular length predicted by Ref. 38 is

underestimated. Further study of this thermal equilibration length is thus warranted.
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APPENDIX A

TRANSPORT IN METAL OXIDE AT ORDER t−1

By the continuity Eqs. (3.29) Ja2 and Jb2 must be uniform, and by Eq. (3.37)

they are related by

Ja2 = ZJb2. (A.1)

For k = 2, the Nernst-Planck equations from Eqs. (3.45) and (3.46) are

Ja2 +
Da

VT
n0E2 +Da∂xNa2 = −Da

VT
Na1E1, (A.2)

Jb2 −
Db

VT
n0E2 +Db∂xNb2 =

ZDb

VT
Nb1E1. (A.3)

Taking spatial derivatives of Eqs. (A.2) and (A.3), and using Gauss’s Law, Eq. (3.42),

and the uniformity of Ja2 and Jb2, yields

Dan0

VT ε
ρ2 +Da∂

2
xNa2 = −Da

VT
∂x(Na1E1), (A.4)

− Dbn0

VT ε
ρ2 +Db∂

2
xNb2 =

ZDb

VT
∂x(Nb1E1). (A.5)

The right hand sides are found from Eq. (3.55);

Dan0

VT ε
ρ2 +Da∂

2
xNa2 = −Da

RDn0E
2
1

V 2
T

, (A.6)

− Dbn0

VT ε
ρ2 +Db∂

2
xNb2 = Db

RDn0E
2
1

V 2
T

, (A.7)

where the dimensionless ratio RD is defined in Eq. (3.56).

Subtracting Eq. (A.6) multiplied by 1/Da from Eq. (A.7) multiplied by Z/Db

yields

∂2xρ2 − (1 + Z)
n0e

VT ε
ρ2 = (1 + Z)

RDn0eE
2
1

V 2
T

. (A.8)
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The solution to this equation, with

ls ≡

√
VT ε

(1 + Z)n0e
=

√
kBTε

(1 + Z)n0e2
, (A.9)

and with new integration constants P
(+)
2 and P

(−)
2 , is

ρ2 = P
(+)
2 ex/ls + P

(−)
2 e−x/ls − RDεE

2
1

VT
. (A.10)

From Eq. (A.10) we infer that Na2 and ZNb2 are polynomials whose terms that are

linear or higher are equal, and they may have different exponential terms.

Substituting ρ2 from Eq. (A.10) into Gauss’s Law, Eq. (3.42), and integrating

∂xE2 yields

E2 =
ls
ε

(
P

(+)
2 ex/ls − P (−)

2 e−x/ls
)
− RDE

2
1

VT
x+ F2, (A.11)

where F2 is a new integration constant with units V-s/m.

By Eq. (3.55), (Na1, Nb1) are linear in x, so that the right-hand-side of the Nernst-

Planck Eq. (A.2) is linear in x. Moreover, the continuity Eq. (3.29) implies that

Ja2 is constant. Therefore by Eq. (A.11) for E2, the Nernst-Planck equation allows

∂xNa2 to be linear, so Na2 can be quadratic in x. Moreover, the exponential terms

in (Da/VT )n0E2 + Da∂xNa2 must cancel. Finally, from Eq. (A.10) any linear or

quadratic terms in Na2 and ZNb2 must be equal. With (M20,M21,M22, P
(±)
a2 ) being

new integration constants, we therefore conclude that the following form must hold:

Na2 = M20 +M21x+M22x
2 + P

(+)
a2 ex/ls + P

(−)
a2 e−x/ls . (A.12)
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Use of Eq. (3.31) for k = 2 (ρ2 = e(ZNb2 −Na2)), and ρ2 given Eq. (A.10), yields

Nb2 =
M20

Z
− 1

Z

RDεE
2
1

VT e
+
M21

Z
x+

M22

Z
x2

+

(
P

(+)
2 + eP

(+)
a2

Ze

)
ex/ls +

(
P

(−)
2 + eP

(−)
a2

Ze

)
e−x/ls . (A.13)

Addition of Eq. (A.2) divided by Da and Eq. (A.3) divided by Db gives, with

Eqs. (A.1) and (3.55),

Ja2

(
1

Da

+
1

ZDb

)
+ ∂x (Na2 +Nb2) = 0. (A.14)

Substitution for Na2 and Nb2 from Eqs. (A.12) and (A.13) gives an equation that can

be used to solve for some of the constants:

M21

(
1 +

1

Z

)
+ 2M22

(
1 +

1

Z

)
x+

1

ls

(
P

(+)
a2

(
1 +

1

Z

)
+
P

(+)
2

Ze

)
ex/ls

− 1

ls

(
P

(−)
a2

(
1 +

1

Z

)
+
P

(−)
2

Ze

)
e−x/ls = −Ja2

(
1

Da

+
1

Z2Db

)
. (A.15)

Since Ja2 is uniform, comparison of powers of x yields the conditions

P
(+)
2 = −(1 + Z)eP

(+)
a2 , P

(−)
2 = −(1 + Z)eP

(−)
a2 , (A.16)

Ja2 = ZJb2 = −(1 + Z)

(
DaDb

ZDb +Da

)
M21, (A.17)

M22 = 0. (A.18)

We may thus rewrite Eqs. (A.12) and (A.13) as

Na2 = M20 +M21x+ P
(+)
a2 ex/ls + P

(−)
a2 e−x/ls , (A.19)

Nb2 =
M20

Z
− 1

Z

RDεE
2
1

VT e
+
M21

Z
x− P (+)

a2 ex/ls − P (−)
a2 e−x/ls . (A.20)

Note that in Eq. (A.2) the exponential and linear coefficients already match, by
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construction. A new constraint, however, is found by comparing the constant terms,

− (1 + Z)

(
DaDb

Z2Db +Da

)
M21 +

Dan0

VT
F2 +DaM21 = −DaM1E1

VT
, (A.21)

yielding the condition that

F2 =
VTM21

n0RD

− M1E1

n0

. (A.22)

We are thus left with four independent constants of integration, which we take

to be M20, M21, P
(+)
2 , and P

(−)
2 . The reaction rates for electrons and ions at each

interface, needed to produce the correct ion fluxes, provide the 4 conditions necessary

to solve for these constants.

For completeness we note that, from Gauss’s Law at each surface (3.43),

E2(0) =
Σ

(0)
2

ε
, E2(L) = −Σ

(L)
2

ε
. (A.23)

Then Eqs. (A.11) and (A.22) yield

Σ
(0)
2 = ls

(
P

(+)
2 − P (−)

2

)
+
εVTM21

n0RD

− εM1E1

n0

, (A.24)

Σ
(L)
2 = −ls

(
P

(+)
2 eL/ls − P (−)

2 e−L/ls
)

+
εRDE

2
1

VT
L− εVTM21

n0RD

+
εM1E1

n0

. (A.25)
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APPENDIX B

TRANSPORT IN METAL OXIDE AT ORDER t−3/2

Recall that in order k = 3, all coefficients must be multiplied by t3/2 to find the

physical variables (j, n, E).

Using the k = 1 coefficients for electron and metal ion number densities from

Eq. (3.55) and the continuity equations from Eq. (3.30) for k = 3,

∂xJa3 =
RDn0E1

2VT
x+

M1

2
, ∂xJb3 =

RDn0E1

2VTZ
x+

M1

2Z
x. (B.1)

Integration of these two equations gives two integration constants. However, these

two constants are constrained by charge conservation across the interface at x = 0,

Eq. (3.38),

ZJb3|x=0 = Ja3|x=0 +
Σ

(0)
1

2e
, (B.2)

where Σ
(0)
1 is given by Eq. (3.58). Integration of the continuity relations in Eq. (B.1)

then yields only a single new integration constant, denoted K3:

Ja3 =
RDn0E1

4VT
x2 +

M1

2
x+K3, (B.3)

Jb3 =
RDn0E1

4VTZ
x2 +

M1

2Z
x+

K3

Z
+
εE1

2Ze
. (B.4)

There is a uniform net electric charge flux (i.e., current density) at order k = 3,

J3 = e (ZJb3 − Ja3) =
εE1

2
, (B.5)

due to the discharge of the surfaces in order k = 1.
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For k = 3, the Nernst-Planck equations from Eqs. (3.45) and (3.46) are

Ja3 +
Da

VT
n0E3 +Da∂xNa3 = −Da

VT
(Na2E1 +Na1E2) , (B.6)

Jb3 −
Db

VT
n0E3 +Db∂xNb3 =

ZDb

VT
(Nb2E1 +Nb1E2) . (B.7)

Taking spatial derivatives of Eqs. (B.6) and (B.7), and using Gauss’s Law, Eq. (3.42),

∂xJa3 +
Dan0

VT ε
ρ3 +Da∂

2
xNa3 = −Da

VT
∂x (Na2E1 +Na1E2) , (B.8)

∂xJb3 −
Dbn0

VT ε
ρ3 +Db∂

2
xNb3 =

ZDb

VT
∂x (Nb2E1 +Nb1E2) . (B.9)

Subtracting Eq. (B.8) multiplied by 1/Da from Eq. (B.9) multiplied by Z/Db yields

an equation for ρ3,

e

(
1

Db

− 1

Da

)
∂xJa3 − (1 + Z)

n0e

VT ε
ρ3 + ∂2xρ3 =

eE1

VT
(∂xNa2 + Z2∂xNb2) +

e

VT
(∂xNa1 + Z2∂xNb1)E2 +

e

VT
(Na1 + Z2Nb1)∂xE2.

(B.10)

Substitution for (Na1, Nb1) from Eq. (3.55), (Na2, Nb2) from Eqs. (A.19) and (A.20),
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E2 from Eq. (A.11), and Ja3 from Eq. (B.3) yields

∂2xρ3 −
1

l2s
∆ρ3 =

e

(
Db −Da

DaDb

)(
RDn0E1

2VT
x+

M1

2

)
+
E1

VT

(
(1 + Z)eM21 −

(
1− Z2

1 + Z

)
P

(+)
2

els
ex/ls +

(
1− Z2

1 + Z

)
P

(−)
2

els
e−x/ls

)

+ (1 + Z)
RDn0eE1

V 2
T

(
F2 −

RDE
2
1

VT
x+

lsP
(+)
2

ε
ex/ls − lsP

(−)
2

ε
e−x/ls

)

+ (1 + Z)
e

VT

(
RDn0E1

VT
x+M1

)(
−RDE

2
1

VT
+
P

(+)
2

ε
ex/ls +

P
(−)
2

ε
e−x/ls

)
.

(B.11)

The solution to this second order differential equation, with two new integration

constants β
(+)
1 and β

(−)
1 , is

ρ3 =α1 + α2x+ β
(+)
1 ex/ls + β

(−)
1 e−x/ls + β

(+)
2 xex/ls

+ β
(−)
2 xe−x/ls + β

(+)
3 x2ex/ls + eβ

(−)
3 x2e−x/ls , (B.12)

where, with substitution of F2 from Eq. (A.22),

α1 = −
(
Db −Da

DaDb

)
M1el

2
s

2
− 2

εE1M21

n0

+ 2
εRDM1E

2
1

n0VT
, (B.13)

α2 = −
(
Db −Da

DaDb

)
εRDE1

2(1 + Z)
+ 2

εR2
DE

3
1

V 2
T

, (B.14)

β
(+)
2 =

(
−
(

1− Z2

1 + Z

)
E1

2VT
+
RDE1

4VT
+

M1

2n0ls

)
P

(+)
2 (B.15)

β
(−)
2 =

(
−
(

1− Z2

1 + Z

)
E1

2VT
+
RDE1

4VT
− M1

2n0ls

)
P

(−)
2 (B.16)

β
(+)
3 =

RDE1

4VT ls
P

(+)
2 , β

(−)
3 = −RDE1

4VT ls
P

(−)
2 . (B.17)

From Eq. (B.12) we infer that Na3 and ZNb3 may include polynomials whose terms

that are quadratic and higher are equal, and may include exponential terms that
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differ.

Substituting ρ3 from Eq. (B.12) into Gauss’s Law, Eq. (3.42), and integrating

∂xE3 gives

E3 =F3 +
α1

ε
x+

α2

2ε
x2

+
ls
ε

(
β
(+)
1 − lsβ(+)

2 + 2l2sβ
(+)
3

)
ex/ls − ls

ε

(
β
(−)
1 + lsβ

(−)
2 + 2l2sβ

(−)
3

)
e−x/ls

+
ls
ε

(
β
(+)
2 − 2lsβ

(+)
3

)
xex/ls − ls

ε

(
β
(−)
2 + 2lsβ

(−)
3

)
xe−x/ls

+
ls
ε
β
(+)
3 x2ex/ls − ls

ε
β
(−)
3 x2e−x/ls , (B.18)

where F3 is a new integration constant, with units V-s3/2/m.

Substitution of the coefficients Na1 from Eq. (3.55), Na2 from Eq. (A.12), E2 from

Eq. (A.11), Ja3 from Eq. (B.3), and E3 from Eq. (B.18) into the k = 3 Nernst-Planck

equation for electrons, Eq. (B.6), yields

∂xNa3 =−
(
M20E1

VT
+
M1F2

VT
+
n0F3

VT
+
K3

Da

)
+

(
RDM1E

2
1

V 2
T

− M21E1

VT
− RDn0F2E1

V 2
T

− n0α1

εVT
− M1

2Da

)
x

+

(
R2
Dn0E

3
1

V 3
T

− n0α2

2εVT
− RDn0E1

4DaVT

)
x2

+

(
E1P

(+)
2

(1 + Z)eVT
− lsM1P

(+)
2

εVT
− n0ls
εVT

(
β
(+)
1 − lsβ(+)

2 + 2l2sβ
(+)
3

))
ex/ls

+

(
E1P

(−)
2

(1 + Z)eVT
+
lsM1P

(−)
2

εVT
+
n0ls
εVT

(
β
(−)
1 + lsβ

(−)
2 + 2l2sβ

(−)
3

))
e−x/ls

+

(
−n0lsRDE1P

(+)
2

εV 2
T

− n0ls
εVT

(
β
(+)
2 − 2lsβ

(+)
3

))
xex/ls

+

(
n0lsRDE1P

(−)
2

εV 2
T

+
n0ls
εVT

(
β
(−)
2 + 2lsβ

(−)
3

))
xe−x/ls

− n0ls
εVT

β
(+)
3 x2ex/ls +

n0ls
εVT

β
(−)
3 x2e−x/ls . (B.19)
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The solution to this first order differential equation, with one new integration constant

M30, is

Na3 =M30 +M31x+M32x
2 +M33x

3 + γ
(+)
1 ex/ls + γ

(−)
1 e−x/ls

+ γ
(+)
2 xex/ls + γ

(−)
2 xe−x/ls + γ

(+)
3 x2ex/ls + γ

(−)
3 x2e−x/ls , (B.20)

where

M31 = −
(
M20E1

VT
+
M1F2

VT
+
n0F3

VT
+
K3

Da

)
, (B.21)

M32 =
1

2

(
RDM1E

2
1

V 2
T

− M21E1

VT
− RDn0F2E1

V 2
T

− n0α1

εVT
− M1

2Da

)
, (B.22)

M33 =
1

3

(
R2
Dn0E

3
1

V 3
T

− n0α2

2εVT
− RDn0E1

4DaVT

)
, (B.23)

γ
(+)
1 =

(
(RD + 1)lsE1

VT
− M1

n0

)
P

(+)
2

(1 + Z)e

− 1

(1 + Z)e

(
β
(+)
1 − 2lsβ

(+)
2 + 6l2sβ

(+)
3

)
, (B.24)

γ
(−)
1 = −

(
M1

n0

+
(RD + 1)lsE1

VT

)
P

(−)
2

(1 + Z)e

− 1

(1 + Z)e

(
β
(−)
1 + 2lsβ

(−)
2 + 6l2sβ

(−)
3

)
, (B.25)

γ
(+)
2 = − RDE1P

(+)
2

(1 + Z)eVT
− 1

(1 + Z)e

(
β
(+)
2 − 4lsβ

(+)
3

)
, (B.26)

γ
(−)
2 = − RDE1P

(−)
2

(1 + Z)eVT
− 1

(1 + Z)e

(
β
(−)
2 + 4lsβ

(−)
3

)
, (B.27)

γ
(+)
3 = − β

(+)
3

(1 + Z)e
, γ

(−)
3 = − β

(−)
3

(1 + Z)e
. (B.28)

Use of Eq. (3.31) for k = 3, that is, ρ3 = e(ZNb3−Na3), as well as ρ3 from Eq. (B.12)
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and Na3 from (B.20), gives

Nb3 =

(
α1 + eM30

Ze

)
+

(
α2 + eM31

Ze

)
x+

(
M32

Z

)
x2 +

(
M33

Z

)
x3

+

(
β
(+)
1 + eγ

(+)
1

Ze

)
ex/ls +

(
β
(−)
1 + eγ

(−)
1

Ze

)
e−x/ls

+

(
β
(+)
2 + eγ

(+)
2

Ze

)
xex/ls +

(
β
(−)
2 + eγ

(−)
2

Ze

)
xe−x/ls

+

(
β
(+)
3 + eγ

(+)
3

Ze

)
x2ex/ls +

(
β
(−)
3 + eγ

(−)
3

Ze

)
x2e−x/ls . (B.29)

We now have Ja3, Jb3, E3, Na3 and Nb3 with five constants of integration, K3,

β
(+)
1 , β

(−)
1 , F3, and M30. To reduce this from five to four, we add Eq. (B.6) divided

by Da and Eq. (B.7) divided by Db,

Ja3
Da

+
Jb3
Db

+ ∂x(Na3 +Nb3) =
1

VT

(
ρ2E1

e
+
ρ1E2

e

)
. (B.30)

As for k = 2, in Eq. (B.30) the exponential, quadratic, and linear terms match, by

construction. A new constraint, however, is found by comparing the constant terms,

K3

Da

+
K3

ZDb

+
εE1

2ZeDb

+M31 +
α2 + eM31

Ze
= −RDεE

3
1

V 2
T e

. (B.31)

Substituting M31 from Eq. (B.21) yields

F3 =

[
Db −Da

(1 + Z)DaDb

]
K3 −

M20E1

n0

− M1F2

n0

−
[

1

(1 + Z)e

](
ZRDεE

3
1

V 2
T

+
εE1

2Db

+ α2

)
, (B.32)

a relation between integration constants F3 and K3.

We are thus left with four independent constants of integration, which we take to

be K3, M30, β
(+)
1 , and β

(−)
1 . The reaction rates for electrons and ions at each interface,

needed to produce the correct ion fluxes, provide the four conditions necessary to solve
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for these constants.

For completeness, we note that from Gauss’s Law at each surface, Eq. (3.43),

E3(0) =
Σ

(0)
3

ε
, E3(L) = −Σ

(L)
3

ε
. (B.33)

Then, Eq. (B.18) yields

Σ
(0)
3 =εF3 + ls

(
β
(+)
1 − lsβ(+)

2 + 2l2sβ
(+)
3

)
− ls

(
β
(−)
1 + lsβ

(−)
2 + 2l2sβ

(−)
3

)
, (B.34)

Σ
(L)
3 =− εF3 − α1L−

α2

2
L2 − ls

(
β
(+)
1 − lsβ(+)

2 + 2l2sβ
(+)
3

)
eL/ls

+ ls

(
β
(−)
1 + lsβ

(−)
2 + 2l2sβ

(−)
3

)
e−L/ls − ls

(
β
(+)
2 − 2lsβ

(+)
3

)
LeL/ls

+ ls

(
β
(−)
2 + 2lsβ

(−)
3

)
Le−L/ls − lsβ(+)

3 L2eL/ls + lsβ
(−)
3 L2e−L/ls . (B.35)

We have verified that

Σ
(0)
3 + Σ

(L)
3 +

∫ L

0

ρ3dx = 0, (B.36)

so there is no net charge in the system.
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APPENDIX C

BOUNDARY CONDITIONS FOR PERPENDICULAR CURRENT CROSSING

AN ISOLATED INTERFACE

Boundary conditions (i-viii) for an isolated interface (that is, one that is effec-

tively an infinite distance from any other interface) through which an electric current

is passed are discussed in Chapter IV. They are here found explicitly, in numerical

order.

(i-ii): From Eqs. (4.64) and (4.65), continuity of δφ and δE across the interface

at xint = 0 gives

ξ(I)V
(I)
S + φ

(I)
0Q

+B(I) = ξ(II)V
(II)
S + φ

(II)
0Q

+B(II), (C.1)

−ξ
(I)V

(I)
S

`
(I)
sf

−
φ
(I)
0Q

`
(I)
Q

+ A(I) =
ξ(II)V

(II)
S

`
(II)
S

+
φ
(II)
0Q

`
(II)
Q

+ A(II). (C.2)

Recall that ξ = 0 for a non-magnetic material.

(iii-iv): Separately setting the current in each material (j↑ + j↓) to a known

(measurable) constant J gives

J =j
(I)
↑ + j

(I)
↓ = j

(I)
↑Q + j

(I)
↓Q + j

(I)
↑S + j

(I)
↓S + j

(I)
↑dc + j

(I)
↓dc , (C.3)

J =j
(II)
↑ + j

(II)
↓ = j

(II)
↑Q + j

(II)
↓Q + j

(II)
↑S + j

(II)
↓S + j

(II)
↑dc + j

(II)
↓dc . (C.4)

As discussed above, since the charge mode is associated with zero deviation of mag-

netoelectrochemical potential, it does not lead to any overall electric current (i.e.,

j↑Q = 0 = j↓Q). Also, as discussed above, the spin-diffusion mode has equal and op-

posite up- and down-spin currents, so that it too does not lead to any overall electric

current (i.e., j↑S + j↓S = 0). Substitution from Eq. (4.63) into Eqs. (C.3)-(C.4) then
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gives

J = −
(
σ
(I)
↑ + σ

(I)
↓

) A(I)

e
, (C.5)

J = −
(
σ
(II)
↑ + σ

(II)
↓

) A(II)

e
. (C.6)

(v): Although the electric current is continuous everywhere, in principle at the

interface there may be spin-flips, so that spin current is not continuous across the

interface. However, we neglect interfacial spin flips (as is typical in this type of

theory). We thus take

j
(I)
↑ (0) ≡ j

(II)
↑ (0), j

(I)
↓ (0) ≡ j

(II)
↓ (0). (C.7)

We now find the up- and down-spin currents in each mode, then substitute them

into Eq. (C.7). Recall that there is no up- or down-spin current associated with the

charge mode. For the spin mode, substitution of Eqs. (4.19)-(4.20) into Eq. (4.1)

gives

j
(I,II)
↑S = (∓)

1

e`sf

(
σ↑σ↓
σ↑ + σ↓

)
VSe

(±)x/`sf , (C.8)

j
(I,II)
↓S = (±)

1

e`sf

(
σ↑σ↓
σ↑ + σ↓

)
VSe

(±)x/`sf . (C.9)

Equation (4.63) gives the spin current for the dc mode.

At the interface (x = 0), substitution of Eqs. (C.8) and (4.63) into the first

relation given in Eq. (C.7) gives

− 1

e`
(I)
sf

(
σ
(I)
↑ σ

(I)
↓

σ
(I)
↑ + σ

(I)
↓

)
V

(I)
S −

σ
(I)
↑

e
A(I) =

1

e`
(II)
sf

(
σ
(II)
↑ σ

(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
V

(II)
S −

σ
(II)
↑

e
A(II). (C.10)

As discussed above, the second relation given in Eq. (C.7) is then automatically

satisfied by Eqs. (C.5)-(C.6), which constrain the sums of the up- and down-spin

currents.
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(vi-vii): Neglecting cross-terms in Eqs. (2.51)-(2.52), the spin currents across the

interface are given by

j↑int = −g↑
e2

(∆µ̄↑)int, (C.11)

j↓int = −g↓
e2

(∆µ̄↓)int, (C.12)

Since without the electric field associated with the dc mode there is no steady-state

current, the currents are proportional to the differences in δµ̄ rather than µ̄. We now

find (∆δµ̄)int for each mode and then substitute them into Eqs. (C.11)-(C.12).

The charge mode has δµ̄↑Q = 0 = δµ̄↓Q , so by Eqs. (C.11)-(C.12) it does not

affect the current crossing the boundary. At the x = xint = 0 interface, Eqs. (4.19)

and (4.20) give

(∆δµ̄↑S)int =

(
σ
(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
eV

(II)
S −

(
σ
(I)
↓

σ
(I)
↑ + σ

(I)
↓

)
eV

(I)
S , (C.13)

(∆δµ̄↓S)int = −

(
σ
(II)
↑

σ
(II)
↑ + σ

(II)
↓

)
eV

(II)
S +

(
σ
(I)
↑

σ
(I)
↑ + σ

(I)
↓

)
eV

(I)
S . (C.14)

At the x = xint = 0 interface, equation (4.61) gives

(∆δµ̄↑dc)int = (∆δµ̄↓dc)int =− e
(
B(II) −B(I)

)
. (C.15)

Substitution of Eqs. (C.13)-(C.15) into Eqs. (C.11)-(C.12) yields

j↑int = −g↑
e

[
σ
(II)
↓ V

(II)
S

σ
(II)
↑ + σ

(II)
↓

−
σ
(I)
↓ V

(I)
S

σ
(I)
↑ + σ

(I)
↓

−
(
B(II) −B(I)

)]
, (C.16)

j↓int = −g↓
e

[
−

σ
(II)
↑ V

(II)
S

σ
(II)
↑ + σ

(II)
↓

+
σ
(I)
↑ V

(I)
S

σ
(I)
↑ + σ

(I)
↓

−
(
B(II) −B(I)

)]
. (C.17)

Then, for spin currents continuous across the interface, we set

j↑int ≡ j
(II)
↑ (0), j↓int ≡ j

(II)
↓ (0). (C.18)
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By Eq. (C.7) one may equivalently use j↑int ≡ j
(I)
↑ (0) and j↑int ≡ j

(I)
↓ (0). Substitution

of Eqs. (4.63) and (C.8)-(C.9) (at x = xint = 0) into Eq. (C.17) then gives

j
(II)
↑ (0) =

1

e`
(II)
sf

(
σ
(II)
↑ σ

(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
V

(II)
S −

σ
(II)
↑

e
A(II)

=− g↑
e

[
σ
(II)
↓ V

(II)
S

σ
(II)
↑ + σ

(II)
↓

−
σ
(I)
↓ V

(I)
S

σ
(I)
↑ + σ

(I)
↓

−
(
B(II) −B(I)

)]
, (C.19)

j
(II)
↓ (0) =− 1

e`
(II)
sf

(
σ
(II)
↑ σ

(II)
↓

σ
(II)
↑ + σ

(II)
↓

)
V

(II)
S −

σ
(II)
↓

e
A(II)

=− g↓
e

[
−

σ
(II)
↑ V

(II)
S

σ
(II)
↑ + σ

(II)
↓

+
σ
(I)
↑ V

(I)
S

σ
(I)
↑ + σ

(I)
↓

−
(
B(II) −B(I)

)]
. (C.20)

(viii): There is an arbitrary constant potential. We set

B(II) ≡ 0. (C.21)

Equations (C.1)-(C.2), (C.5)-(C.6), (C.10), (C.19)-(C.20), and (C.21) are general

for an isolated interface between any two materials.

We now write the boundary conditions Eqs. (C.1)-(C.2), (C.5)-(C.6), (C.10),

(C.19)-(C.20), and (C.21) in terms of dimensionless variables.

We now consider the specific case of a FM-NM interface as in Fig. 6. Since

σ
(II)
↑ = σ

(II)
↓ , we define

σ(II) ≡ σ
(II)
↑ + σ

(II)
↓ = 2σ

(II)
↑ . (C.22)

Further, we take `
(II)
S↑ = `

(II)
S↓ and N

(II)
↑ = N

(II)
↓ , so that, as discussed above, we have

ξ(II) = 0.

We take the electric current −eJ to be known, and use J as a “reference” flux,

−eJ/σ(II) as a reference field, and −e`J/σ(II) as a reference voltage, where ` is a length
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(which we set to be `Cu
sf below). We therefore define the following variables:

γ̄
(I)
S ≡

σ(II)V
(I)
S

e`J
, γ̄

(II)
S ≡ σ(II)V

(II)
S

e`J
, γ

(I)
Q ≡

σ(II)φ
(I)
0Q

e`J
, γ

(II)
Q ≡

σ(II)φ
(II)
0Q

e`J
,

γ
(I)
dc ≡

σ(II)B(I)

e`J
, γ

(II)
dc ≡

σ(II)B(II)

e`J
, Υ(I) ≡

σ(II)A(I)

eJ
, Υ(II) ≡

σ(II)A(II)

eJ
. (C.23)

The terms γQ and γdc are the respective dimensionless potentials of the charge and

bulk modes. The bar on γ̄S is to distinguish it from the dimensionless potential in

the spin mode, which is given by ξγ̄S.

The eight boundary condition equations are now written in terms of these di-

mensionless variables. Multiplication of Eq. (C.1) by σ(II)/(e`J), and multiplication

of Eq. (C.2) by σ(II)/(eJ) gives

ξ(I)γ̄
(I)
S + γ

(I)
Q + γ

(I)
dc =γ

(II)
Q + γ

(II)
dc , (C.24)

−

(
`

`
(I)
sf

)
ξ(I)γ̄

(I)
S −

(
`

`
(I)
Q

)
γ
(I)
Q + Υ(I) =

(
`

`
(II)
Q

)
γ
(II)
Q + Υ(II). (C.25)

Multiplication of Eqs. (C.5)-(C.6) by 1/J gives

1 = −

(
σ
(I)
↑ + σ

(I)
↓

σ(II)

)
Υ(I), (C.26)

1 = −Υ(II). (C.27)

Multiplication of Eqs. (C.10) and (C.19)-(C.20) by 1/J gives

− `

`
(I)
sf σ

(II)

(
σ
(I)
↑ σ

(I)
↓

σ
(I)
↑ + σ

(I)
↓

)
γ̄
(I)
S −

σ
(I)
↑

σ(II)
Υ(I) =

`

4`
(II)
sf

γ̄
(II)
S − 1

2
Υ(II), (C.28)

`

4`
(II)
sf

γ̄
(II)
S − 1

2
Υ(II) = − g↑`

σ(II)

[
γ̄
(II)
S

2
−

σ
(I)
↓ γ̄

(I)
S

σ
(I)
↑ + σ

(I)
↓

−
(
γ
(II)
dc − γ

(I)
dc

)]
, (C.29)

− `

4`
(II)
sf

γ̄
(II)
S − 1

2
Υ(II) = − g↓`

σ(II)

[
− γ̄

(II)
S

2
+

σ
(I)
↑ γ̄

(I)
S

σ
(I)
↑ + σ

(I)
↓

−
(
γ
(II)
dc − γ

(I)
dc

)]
. (C.30)
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Here we have used σ
(II)
↑ = σ

(II)
↓ = (1/2)σ(II) from the definition given in Eq. (C.22).

Finally, Eq. (C.21) gives

γ
(II)
dc = 0. (C.31)

For the eight dimensionless unknowns in Eq. (C.23), there are eight conditions,

given in Eqs. (C.24)-(C.31). The numerical results for a Co/Cu interface are given in

Chapter IV.
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APPENDIX D

BOUNDARY CONDITIONS FOR PERPENDICULAR CURRENT CROSSING A

TWO-INTERFACE MULTILAYER

Boundary conditions (i-xiv) for a two-interface multilayer through which an elec-

tric current is passed are discussed in Chapter IV. They are here found explicitly for

interfaces at x = −d/2 and x = d/2, as in Fig. 5.

(i-iv): Equations (4.64) and (4.65) give

ξ(I)V
(I)
S + φ

(I)
0Q

+B(I) +

(
d

2

)
A(I)

= ξ(II)V
(IIa)
S + ξ(II)V

(IIb)
S e−d/`

(II)
sf + φ

(IIa)
0Q

+ φ
(IIb)
0Q

e−d/`
(II)
Q +B(II) +

(
d

2

)
A(II), (D.1)

ξ(III)V
(III)
S + φ

(III)
0Q

+B(III) −
(
d

2

)
A(III)

= ξ(II)V
(IIa)
S e−d/`

(II)
sf + ξ(II)V

(IIb)
S + φ

(IIa)
0Q

e−d/`
(II)
Q + φ

(IIb)
0Q

+B(II) −
(
d

2

)
A(II), (D.2)

− ξ(I)

`
(I)
sf

V
(I)
S −

1

`
(I)
Q

φ
(I)
0Q

+ A(I)

=
ξ(II)

`
(II)
sf

V
(IIa)
S − ξ(II)

`
(II)
sf

V
(IIb)
S e−d/`

(II)
sf +

1

`
(II)
Q

φ
(IIa)
0Q
− 1

`
(II)
Q

φ
(IIb)
0Q

e−d/`
(II)
Q + A(II), (D.3)

ξ(III)

`
(III)
sf

V
(III)
S +

1

`
(III)
Q

φ
(III)
0Q

+ A(III)

=
ξ(II)

`
(II)
sf

V
(IIa)
S e−d/`

(II)
sf − ξ(II)

`
(II)
sf

V
(IIb)
S +

1

`
(II)
Q

φ
(IIa)
0Q

e−d/`
(II)
Q − 1

`
(II)
Q

φ
(IIb)
0Q

+ A(II). (D.4)

Recall that ξ = 0 for a non-magnetic material (e.g., ξ(II) = 0 for the configuration in

Fig. 5).

(v-vii): We take the electric current −eJ to be a known, measurable quantity.

Because the total electric current in each surface mode is zero, the dc mode is respon-
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sible for the entire electric current. Equation (4.63) gives

J = j↑ + j↓ = −(σ↑ + σ↓)A

e
, (D.5)

so that application to each material yields

J = −

(
σ
(I)
↑ + σ

(I)
↓

)
A(I)

e
, (D.6)

J = −

(
σ
(II)
↑ + σ

(II)
↓

)
A(II)

e
, (D.7)

J = −

(
σ
(III)
↑ + σ

(III)
↓

)
A(III)

e
. (D.8)

(viii-ix): We take the spin current to be continuous at each interface. Since

conditions [5-7] already constrain the sum of the up- and down-spin currents, we only

have to enforce the up-spin current to be continuous, as the down-spin current is then

guaranteed to be so. In the context of the system shown in Fig. 5, we have

j
(I)
↑

(
−d

2

)
= j

(II)
↑

(
−d

2

)
, (D.9)

j
(II)
↑

(
d

2

)
= j

(III)
↑

(
d

2

)
. (D.10)

The charge mode is characterized by δµ̄↑ = 0 = δµ̄↓, so that it has zero up- and

down-spin currents. By Eqs. (4.63), (C.8), and (C.9), the total up- and down-spin

currents are given by

j↑ = ±σ↑VS
2e`sf

e∓(x−xint)/`sf − σ↑A

e
, (D.11)

j↓ = ∓σ↓VS
2e`sf

e∓(x−xint)/`sf − σ↓A

e
. (D.12)

Note that there is an exponential term from the spin mode current for each interface
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bordering a given material. Equations (D.9) and (D.10) may be written as

−
σ
(I)
↑ V

(I)
S

2e`
(I)
sf

−
σ
(I)
↑ A

(I)

e
=

σ
(II)
↑

2e`
(II)
sf

(
V

(IIa)
S − V (IIb)

S e−d/`
(II)
sf

)
−
σ
(II)
↑ A(II)

e
, (D.13)

σ
(II)
↑

2e`
(II)
sf

(
V

(IIa)
S e−d/`

(II)
sf − V (IIb)

S

)
−
σ
(II)
↑ A(II)

e
=
σ
(III)
↑ V

(III)
S

2e`
(III)
sf

−
σ
(III)
↑ A(III)

e
. (D.14)

(x-xiii): At each interface, the up- and down-spin currents are proportional to

the discontinuity in the respective deviations of up- and down-spin magnetoelectro-

chemical potentials:

j↑int

(
−d

2

)
= −

g
(a)
↑

e2

[
δµ̄

(II)
↑

(
−d

2

)
− δµ̄(I)

↑

(
−d

2

)]
, (D.15)

j↓int

(
−d

2

)
= −

g
(a)
↓

e2

[
δµ̄

(II)
↓

(
−d

2

)
− δµ̄(I)

↓

(
−d

2

)]
, (D.16)

j↑int

(
d

2

)
= −

g
(b)
↑

e2

[
δµ̄

(III)
↑

(
d

2

)
− δµ̄(II)

↑

(
d

2

)]
, (D.17)

j↓int

(
d

2

)
= −

g
(b)
↓

e2

[
δµ̄

(III)
↓

(
d

2

)
− δµ̄(II)

↓

(
d

2

)]
. (D.18)

Presumably, if material (I) is the same as material (III), then g
(a)
(↑,↓) = g

(b)
(↑,↓).

We find the magnetoelectrochemical deviations from Eq. (4.19), which gives



125

δµ̄↑S = −(`2↑S/`
2
↓S)δµ̄↓S , and from Eq. (4.61), which gives δµ̄↑dc = δµ̄↓dc = −eδφdc:

δµ̄
(I)
↑

(
−d

2

)
=
`
(I)
sf

2

`
(I)
↑S

2 eV
(I)
S − e

[
A(I)d

2
+B(I)

]
, (D.19)

δµ̄
(I)
↓

(
−d

2

)
= −`

(I)
sf

2

`
(I)
↓S

2 eV
(I)
S − e

[
A(I)d

2
+B(I)

]
, (D.20)

δµ̄
(II)
↑

(
−d

2

)
=
`
(II)
sf

2

`
(II)
↑S

2 e
(
V

(IIa)
S + V

(IIb)
S e−d/`

(II)
sf

)
− e

[
A(II)d

2
+B(II)

]
, (D.21)

δµ̄
(II)
↓

(
−d

2

)
= −`

(II)
sf

2

`
(II)
↓S

2 e
(
V

(IIa)
S + V

(IIb)
S e−d/`

(II)
sf

)
− e

[
A(II)d

2
+B(II)

]
, (D.22)

δµ̄
(II)
↑

(
d

2

)
=
`
(II)
sf

2

`
(II)
↑S

2 e
(
V

(IIa)
S e−d/`

(II)
sf + V

(IIb)
S

)
− e

[
−A

(II)d

2
+B(II)

]
, (D.23)

δµ̄
(II)
↓

(
d

2

)
= −`

(II)
sf

2

`
(II)
↓S

2 e
(
V

(IIa)
S e−d/`

(II)
sf + V

(IIb)
S

)
− e

[
−A

(II)d

2
+B(II)

]
, (D.24)

δµ̄
(III)
↑

(
d

2

)
=
`
(III)
sf

2

`
(III)
↑S

2 eV
(III)
S − e

[
−A

(III)d

2
+B(III)

]
, (D.25)

δµ̄
(III)
↓

(
d

2

)
= −`

(III)
sf

2

`
(III)
↓S

2 eV
(III)
S − e

[
−A

(III)d

2
+B(III)

]
. (D.26)

Substitution of Eqs. (D.11)-(D.12) and (D.19)-(D.26) into Eqs. (D.15)-(D.18)
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gives

−
σ
(I)
↑ V

(I)
S

2e`
(I)
sf

−
σ
(I)
↑ A

(I)

e
=−

g
(a)
↑

e

`(II)sf

2

`
(II)
↑S

2

(
V

(IIa)
S + V

(IIb)
S e−d/`

(II)
sf

)

−A
(II)d

2
−B(II) − `

(I)
sf

2

`
(I)
↑S

2V
(I)
S +

A(I)d

2
+B(I)

 , (D.27)

σ
(I)
↓ V

(I)
S

2e`
(I)
sf

−
σ
(I)
↓ A

(I)

e
=−

g
(a)
↓

e

−`(II)sf

2

`
(II)
↓S

2

(
V

(IIa)
S + V

(IIb)
S e−d/`

(II)
sf

)

−A
(II)d

2
−B(II) +

`
(I)
sf

2

`
(I)
↓S

2V
(I)
S +

A(I)d

2
+B(I)

 , (D.28)

σ
(III)
↑ V

(III)
S

2e`
(III)
sf

−
σ
(III)
↑ A(III)

e
=−

g
(b)
↑

e

`(III)sf

2

`
(III)
↑S

2V
(III)
S +

A(III)d

2
−B(III)

−`
(II)
sf

2

`
(II)
↑S

2

(
V

(IIa)
S e−d/`

(II)
sf + V

(IIb)
S

)
− A(II)d

2
+B(II)

 ,
(D.29)

−
σ
(III)
↓ V

(III)
S

2e`
(III)
sf

−
σ
(III)
↓ A(III)

e
=−

g
(b)
↓

e

−`(III)sf

2

`
(III)
↓S

2V
(III)
S +

A(III)d

2
−B(III)

+
`
(II)
sf

2

`
(II)
↓S

2

(
V

(IIa)
S e−d/`

(II)
sf + V

(IIb)
S

)
− A(II)d

2
+B(II)

 .
(D.30)

(xiv): We are free to choose a “zero” of electric potential, so we set

B(II) = 0. (D.31)

The fourteen boundary conditions in Eqs. (D.1)-(D.4), (D.6)-(D.8), (D.13)-(D.14),

(D.27)-(D.30), and (D.31) allow us to solve for the 14 unknowns. We now rewrite the

equations in terms of dimensionless variables.
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We define the voltage

Ṽ ≡ e`Cu
sf J

σCu
, (D.32)

where `Cu
sf is the spin-diffusion length in Cu and σCu = σCu

↑ + σCu
↓ is the total con-

ductivity of copper. For the 14 variables, we define 14 corresponding dimensionless

quantities:

γ
(I)
S ≡

V
(I)
S

Ṽ
, γ

(IIa)
S ≡ V

(IIa)
S

Ṽ
, γ

(IIb)
S ≡ V

(IIb)
S

Ṽ
,

γ
(III)
S ≡ V

(III)
S

Ṽ
, γ

(I)
Q ≡

φ
(I)
0Q

Ṽ
, γ

(IIa)
Q ≡

φ
(IIa)
0Q

Ṽ
,

γ
(IIb)
Q ≡

φ
(IIb)
0Q

Ṽ
, γ

(III)
Q ≡

φ
(III)
0Q

Ṽ
, γ

(I)
dc ≡

B(I)

Ṽ
,

γ
(II)
dc ≡

B(II)

Ṽ
, γ

(III)
dc ≡

B(III)

Ṽ
, Υ(I) ≡ A(I)`Cu

sf

Ṽ
,

Υ(II) ≡ A(III)`Cu
sf

Ṽ
, Υ(III) ≡ A(III)`Cu

sf

Ṽ
. (D.33)

Below we rewrite Eqs. (D.1)-(D.4), (D.6)-(D.8), (D.13)-(D.14), (D.27)-(D.30), and

(D.31) in terms of these variables.

Division of Eqs. (D.1)-(D.2) by Ṽ and multiplication of Eqs. (D.3)-(D.4) by
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`Cu
sf /Ṽ gives

ξ(I)γ
(I)
S + γ

(I)
Q + γ

(I)
dc −

(
−d

2

)
Υ(I)

= ξ(II)
(
γ
(IIa)
S + γ

(IIb)
S e−d/`

(II)
sf

)
+ γ

(IIa)
Q + γ

(IIb)
Q e−d/`

(II)
Q + γ

(II)
dc −

(
−d

2

)
Υ(II),

(D.34)

ξ(III)γ
(III)
S + γ

(III)
Q + γ

(III)
dc −

(
d

2

)
Υ(III)

= ξ(II)
(
γ
(IIa)
S e−d/`

(II)
sf + γ

(IIb)
S

)
+ γ

(IIa)
Q e−d/`

(II)
Q + γ

(IIb)
Q + γ

(II)
dc −

(
d

2

)
Υ(II),

(D.35)

− `Cu
sf

`
(I)
sf

ξ(I)γ
(I)
S −

`Cu
sf

`
(I)
Q

γ
(I)
Q + Υ(I)

=
`Cu
sf

`
(II)
sf

ξ(II)
(
γ
(IIa)
S − γ(IIb)S e−d/`

(II)
sf

)
+
`Cu
sf

`
(II)
Q

(
γ
(IIa)
Q − γ(IIb)Q e−d/`

(II)
Q

)
+ Υ(II),

(D.36)

`Cu
sf

`
(III)
sf

ξ(III)γ
(III)
S +

`Cu
sf

`
(III)
Q

γ
(III)
Q + Υ(III)

=
`Cu
sf

`
(II)
sf

ξ(II)
(
γ
(IIa)
S e−d/`

(II)
sf − γ(IIb)S

)
+
`Cu
sf

`
(II)
Q

(
γ
(IIa)
Q e−d/`

(II)
Q − γ(IIb)Q

)
+ Υ(II).

(D.37)

Division of Eqs. (D.6)-(D.8) by J gives

Υ(I) = − σCu

σ
(I)
↑ + σ

(I)
↓

, (D.38)

Υ(II) = − σCu

σ
(II)
↑ + σ

(II)
↓

, (D.39)

Υ(III) = − σCu

σ
(III)
↑ + σ

(III)
↓

. (D.40)
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Division of Eqs. (D.13)-(D.14) by J gives

−
σ
(I)
↑ `

Cu
sf

2σCu`
(I)
sf

γ
(I)
S −

σ
(I)
↑

σCu
Υ(I) =

σ
(II)
↑ `Cu

sf

2σCu`
(II)
sf

(
γ
(IIa)
S − γ(IIb)S e−d/`

(II)
sf

)
−
σ
(II)
↑

σCu
Υ(II), (D.41)

σ
(II)
↑ `Cu

sf

2σCu`
(II)
sf

(
γ
(IIa)
S e−d/`

(II)
sf − γ(IIb)S

)
−
σ
(II)
↑

σCu
Υ(II) =

σ
(III)
↑ `Cu

sf

2σCu`
(III)
sf

γ
(III)
S −

σ
(III)
↑

σCu
Υ(III). (D.42)
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Division of Eqs. (D.27)-(D.30) by J gives

−
σ
(I)
↑ `

Cu
sf

2σCu`
(I)
sf

γ
(I)
S −

σ
(I)
↑

σCu
Υ(I) =−

G
(a)
↑ `

Cu
sf

σCu

`(II)sf

2

`
(II)
S↑

2

(
γ
(IIa)
S + γ

(IIb)
S e−d/`

(II)
sf

)

− d

2`Cu
sf

Υ(II) − γ(II)dc −
`
(I)
sf

2

`
(I)
S↑

2γ
(I)
S +

d

2`Cu
sf

Υ(I) + γ
(I)
dc

 ,
(D.43)

σ
(I)
↓ `

Cu
sf

2σCu`
(I)
sf

γ
(I)
S −

σ
(I)
↓

σCu
Υ(I) =−

G
(a)
↓ `

Cu
sf

σCu

−`(II)sf

2

`
(II)
S↓

2

(
γ
(IIa)
S + γ

(IIb)
S e−d/`

(II)
sf

)

− d

2`Cu
sf

Υ(II) − γ(II)dc +
`
(I)
sf

2

`
(I)
S↓

2γ
(I)
S +

d

2`Cu
sf

Υ(I) + γ
(I)
dc

 ,
(D.44)

σ
(III)
↑ `Cu

sf

2σCu`
(III)
sf

γ
(III)
S −

σ
(III)
↑

σCu
Υ(III) =−

G
(b)
↑ `

Cu
sf

σCu

`(III)sf

2

`
(III)
S↑

2γ
(III)
S +

d

2`Cu
sf

Υ(III) − γ(III)dc

−`
(II)
sf

2

`
(II)
S↑

2

(
γ
(IIa)
S e−d/`

(II)
sf + γ

(IIb)
S

)
− d

2`Cu
sf

Υ(II) + γ
(II)
dc

 ,
(D.45)

−
σ
(III)
↓ `Cu

sf

2σCu`
(III)
sf

γ
(III)
S −

σ
(III)
↓

σCu
Υ(III) =−

G
(b)
↓

σCu

−`(III)sf

2

`
(III)
S↓

2γ
(III)
S +

d

2`Cu
sf

Υ(III) − γ(III)dc

+
`
(II)
sf

2

`
(II)
S↓

2

(
γ
(IIa)
S e−d/`

(II)
sf + γ

(IIb)
S

)
− d

2`Cu
sf

Υ(II) + γ
(II)
dc

 .
(D.46)

Finally, Equation (D.31) gives

γ
(II)
dc = 0. (D.47)

Thus, for the fourteen dimensionless unknowns in Eq. (D.33), there are fourteen

equations Eqs. (D.34)-(D.47). The numerical results are plotted in Chapter IV.
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APPENDIX E

DETAILS OF 2D HEAT FLOW IN THE SPIN-SEEBECK SYSTEM

With Eqs. (5.46) and (5.47) relating the linear terms in temperature, there are

twenty-one unknowns in Eqs. (5.41), (5.42), (5.49) and (5.55): one α, four A
(1,2)
s± ,

eight A
(1,2,3,4)
p± and eight A

(1,2,3,4)
m± . This section finds them using bulk conditions and

boundary conditions on heat flux.

Bulk Conditions

By matching coefficients of like terms, substitution of Eqs. (5.40) and (5.55) into

Eq. (5.51) gives

A(1)
mγ = − κp

κm
A(1)
pγ , A(2)

mγ = − κp
κm

A(2)
pγ , A(3)

mγ = A(3)
pγ , A(4)

mγ = A(4)
pγ . (E.1)

Since each is a single condition for each γ = ±, Eq. (E.1) gives eight conditions.

With no heat leaks at z = −ds and z = dF , the total heat flux along x is

conserved, and is everywhere equal the input heat flux.

j0 = jεpx + jεmx + jεsx . (E.2)

The surface terms contribute zero total heat current; there is no overall exponential

term in the input heat current, so the sum of all exponential heat currents in the

sample must equal zero. Substitution of Eq. (5.41) into Eq. (E.2) gives

j0 = −(κs + κp + κm)α. (E.3)

The total heat flux j0, and therefore α, is determined by the applied temperature

gradient.
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With the bulk conditions Eqs. (E.1) and (E.3), there are twelve unknowns re-

maining in Eqs. (5.41), (5.42), (5.49) and (5.55) for which to solve using boundary

conditions on the heat flux: the four coefficients A
(1)
s± and A

(2)
s± in Eq. (5.49); and the

eight coefficients A
(1,2,3,4)
p± in Eq. (5.55). Note that the T0(s,p,m)

≡ T0 of Eq. (5.40)

are related to the average temperature of the heaters, and do not appear in the heat

fluxes.

Boundary Conditions on Heat Flux along z

Ten conditions (five for each γ) are given by the boundary conditions on the heat

flux along z in the various subsystems at x = −ds, x = 0, and x = dF . Namely, for

each of γ = ± there are:

(i-ii) two conditions given by assuming that there is no heat loss at the top of the

sample (z = dF ) by either the magnons or the phonons, i.e.,

jεmz (z = dF ) = 0, (E.4)

jεpz (z = dF ) = 0; (E.5)

(iii) one condition given by assuming that there is also no heat loss at the bottom

of the substrate (z = −ds), i.e.,

jεsz (z = −ds) = 0; (E.6)

(iv-v) and two conditions given by the proportionality between the heat flux at the

interface in both the substrate and the phonons in the sample to the temperature

difference between them at the interface,15,19 i.e.,

jεsz (z = 0) = hK [Ts(z = 0)− Tp(z = 0)], (E.7)

jεpz (z = 0) = hK [Ts(z = 0)− Tp(z = 0)]. (E.8)
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We assume that the substrate does not transfer heat directly to magnons in the

sample. The details of these conditions now presented sequentially.

(i-ii) At z = dF , the sample is in contact only with vacuum (for point contact

detection; when Pt bars are used as detectors, one may determine the temperatures

and heat currents inside the Pt). Applying in turn the two conditions Eqs. (E.4) and

(E.5) to equation (5.42) gives

0 = ∂zT
a
mγ(z)|(z=dF ) =

√
q2mp − q2γA(1)

mγe
√
q2mp−q2γdF −

√
q2mp − q2γA(2)

mγe
−
√
q2mp−q2γdF

− qγA(3)
mγ sin (qγdF ) + qγA

(4)
mγ cos (qγdF ), (E.9)

0 = ∂zT
a
pγ(z)|(z=dF ) =

√
q2mp − q2γA(1)

pγ e
√
q2mp−q2γdF −

√
q2mp − q2γA(2)

pγ e
−
√
q2mp−q2γdF

− qγA(3)
pγ sin (qγdF ) + qγA

(4)
pγ cos (qγdF ). (E.10)

Here, we have used the forms of T a(p,m)γ(z) given in Eq. (5.55). Equations (E.9) and

(E.10) give four conditions (two for each γ = ±). In conjunction with Eq. (E.1), they

can be thought of as relating A
(3)
pγ and A

(4)
pγ to A

(1)
pγ and A

(2)
pγ .

(iii) Similarly, at z = −ds, the substrate is in contact only with vacuum, so we

assume that the heat current along z goes to zero at z = −ds. Applying Eq. (E.6) to

Eq. (5.42) gives

∂zT
a
sγ|(z=−ds) = 0. (E.11)

Substitution of Eq. (5.49) into Eq. (E.11) gives

A(2)
sγ = −A(1)

sγ tan (qγds). (E.12)

Equation (E.12) gives two conditions (one for each γ = ±).

(iv) Using Eqs. (5.46) and (5.47), substitution of Eqs. (5.40) and (5.42) into
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Eq. (E.7) gives

− κs
∑
γ=+,−

[∂zT
a
sγ](z=0) sinh (qγx) = hK

∑
γ=+,−

[T asγ(0) sinh (qγx)− T apγ(0) sinh (qγx)].

(E.13)

Substitution of Eqs. (5.49), (5.55), and (E.12) yields, for each γ,

κsqγA
(1)
sγ tan (qγds) = hK

[
A(1)
sγ −

(
A(1)
pγ + A(2)

pγ + A(3)
pγ

)]
. (E.14)

Equation (E.14) gives two conditions (one for each γ = ±), and can be thought of as

relating A
(k)
sγ to A

(n)
pγ .

(v) Subtracting Eq. (E.7) from Eq. (E.8) gives

jεpz (z = 0) =jεsz (z = 0). (E.15)

Substituting Eq. (5.42) into Eq. (E.15) and matching like terms gives

−κp[∂zT apγ](z=0) = −κs[∂zT asγ](z=0). (E.16)

Substitution from Eqs. (5.49), (5.55), and (E.12) into Eq. (E.16) gives

−κp
(√

q2mp − q2γA(1)
pγ −

√
q2mp − q2γA(2)

pγ + qγA
(4)
pγ

)
= κsqγA

(1)
sγ tan (qγds). (E.17)

Equation (E.17) gives two conditions (one for each γ = ±), and in conjunction with

the above conditions can be thought of as relating A
(2)
pγ to A

(1)
pγ .

In summary, boundary conditions on heat flux along z give ten conditions, five

for each surface mode qγ = q+ and qγ = q−: Eqs. (E.9), (E.10), (E.12), (E.14)

and (E.17). In conjunction with the bulk conditions given in Eq. (E.1), they give

the contributions to the heat flux for each surface mode. Although their absolute

magnitudes are related to the heat input by the heater, their relative magnitudes
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are determined by the above bulk and boundary conditions, which arise from energy

conservation. Figs. 13 and 14 show the contributions to heat flux along z and along

x at a given x as a function of z by each of the surface modes, using the parameters

in Table III.

Two unknowns remain, one A+ and one A−, now determined by conditions on

heat flux along x.

Boundary Conditions on Heat Flux along x

For heaters/heat sinks in contact only with the substrate, the boundary condi-

tions in the x-direction on each energy flux jεx are symmetric (we employ this above

in taking T b(s,p,m)(z) = 0). However, as stated above, we are only treating the region

far enough away from the heaters that the details of heat flux entering and leaving at

x = ±L/2 are irrelevant – only a full solution with an infinite sum over q’s can treat

the specifics of the interfacial input. Thus, we can not apply boundary conditions at

x = ±L/2.

We make the following approximation: at x = ±L/2 ∓ `S, where `S is just far

enough away from the heater/heat sink that the details of the input heat flux are

irrelevant, we take ∂xTp = 0 and ∂xTm = 0. In other words, we assume that the total

heat flux in the sample is negligible at this (short) distance away from the heater. We

take the heaters to be in contact only with the substrate, and assume that a significant

amount of heat does not seep into the sample over the distance `S. Explicitly,

∂xTm(x = −L/2 + `S) = 0, (E.18)

∂xTp(x = −L/2 + `S) = 0. (E.19)

Recall that we take heat flux (and therefore ∂xT ) to be symmetric about x = 0,

so that the conditions at x = +L/2 − `S are not independent. For asymmetric
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heater/heat sink, e.g., the heater contacts the substrate and the heat sink contacts

both the sample and substrate, there are two additional conditions.

Complete Solution

For the twenty-two unknowns in the temperatures and heat fluxes (one back-

ground temperature T0, one thermal gradient α, and twenty coefficients A
(n)
(s,p,m)±),

there are twenty-two conditions: one condition from the average temperature of the

heater and heat sink; four conditions for each of γ = ± from Eq. (E.1); one condition

from Eq. (E.3); one condition for each of γ = ± from each of Eqs. (E.9), (E.10),

(E.12), (E.14), (E.17); and one condition from each of Eqs. (E.18) and (E.19). As

expected, the entire solution is driven by the input heat flux j0 in Eq. (E.3), that is,

if j0 = 0 then all unknowns are zero and the solution is trivial.

In the end, there are only four unknowns: T0, the temperature gradient α, and

two conditions that specify how the heater (and symmetric heat sink) puts energy

into the substrate and the sample phonons and magnons.
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APPENDIX F

NUMERICAL ALGORITHM FOR 2D THERMAL EQUILIBRATION

EIGENVALUES IN THE SPIN-SEEBECK SYSTEM

To obtain the characteristic 2D thermal equilibration wavevectors q, we employ

an iterative algorithm that, on input of a test q, solves Eq. (E.1), Eqs. (E.9)-(E.11),

Eq. (E.13), and the additional condition [∂zTm](z=0) = 0 for the coefficients A
(1,2,3,4)
s,p,m .

It then uses that solution to find the q that satisfies Eq. (E.8). The algorithm, solved

using Mathematica, follows:

C := 100;

γ := 1;

while γ < 200 do

solnA = NSolve[

{A(1)
s == 1, A

(1)
m == −(κp/κm)A

(1)
p , A

(2)
m == −(κp/κm)A

(2)
p ,

A
(3)
m == A

(3)
p , A

(4)
m == A

(4)
p ,

∂zT
a
m[qinit, dF ] == 0, ∂zT

a
p [qinit, dF ] == 0, ∂zT

a
s [qinit,−ds] == 0,

−κp∂zT ap [qinit, 0] == hK(T as [qinit, 0]− T ap [qinit, 0]),

−κm∂zT am[qinit, 0] == hm(T as [qinit, 0]− T am[qinit, 0]) },

{A(1)
s , A

(2)
s , A

(1)
p , A

(2)
p , A

(3)
p , A

(4)
p , A

(1)
m , A

(2)
m , A

(3)
m , A

(4)
m },

WorkingPrecision → 8000− 15(γ − 1)

];

solnqnew =NSolve[

−κs(∂zT as [tmp, 0]/.solnA) == hK [(T as [tmp, 0]/.solnA)− (T ap [tmp, 0]/.solnA)]

+hm[(T as [tmp, 0]/.solnA)− (T am[tmp, 0]/.solnA)],

tmp, WorkingPrecision → 5000− 14− 15(γ − 1)
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];

qnew := (tmp/.solnqnew);

qinit = qinit − (1/C)(qinit − qnew);

γ++;

end while

The factor hm represents the thermal boundary conductance for direct sample magnon

excitation by substrate phonons incident to the interface. It has been set to zero in

the calculations presented in Chap. V.

We note that care must be taken in determining a new initial value for the

next iteration. For qinit far from a consistent value (that is, a value that satisfies

energy conservation), then qinit and qnew will differ significantly. Naively choosing

q′init = 1/2(qinit − qnew) may result in a non-converging series. Hence we include the

factor 1/C in the definition of q′init in the above code; in general, convergence is found

for C ≈ 100− 300.



139

VITA

Matthew Ryan Sears received his Bachelor of Science degree in physics from The

University of Rochester in 2005. He entered the physics program at Texas A&M

University in September 2005, and received his Doctorate of Philosophy degree in

August 2011. His research interests include magnetic, chemical, and mixed-ionic

transport, oxide film growth, defect flow in solids, and supersolidity. He plans to

continue his career as a research scientist.

Mr. Sears can be reached at c/o Wayne Saslow, 4242 TAMU, Texas A&M

University, College Station, TX 77843-4242. His email is matthewrsears@gmail.com.


