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ABSTRACT 

 

Historical Reconstruction of Terrestrial Organic Matter Inputs to Fiordland, NZ Over the 

Last ~500 Years. (August 2011) 

Richard William Smith, B.A., SUNY Brockport 

Chair of Advisory Committee: Dr. Thomas Bianchi 

 

Fjords contain a significant quantity of sediments deposited in coastal zones over  

the last ~100,000 years.  Studies of Northern Hemisphere fjords have shown that a large 

part of the high concentration of sedimentary organic matter (OMsed) is terrestrial in 

origin (OMterr), composed of a modern detrital fraction and an old mineral-associated 

fraction (OMfossil).  These results suggest that fjords are disproportionately responsible, 

on a per area basis, for the burial of organic matter in coastal zones.  This study, after a 

rigorous examination of CuO and GDGT biomarker methods used to quantify terrestrial 

organic matter in coastal environments, demonstrated this hypothesis in a Southern 

Hemisphere fjord system, Fiordland, New Zealand 

 CuO analysis of Doubtful Sound surface sediments indicated a large contribution 

of vascular plant material to fjord sediments.  The BIT Index correlated strongly with 

both 
13

C and C/N values in Doubtful Sound surface sediments, indicated that it may 

accurately trace the relative proportions of marine and soil organic matter (OMsoil) in 

Fiordland.  However, a detailed analysis of the conversion of the BIT Index to 

quantitative estimates of terrestrial (soil) organic matter revealed that these values are 
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overestimates.  Reconstructions of the BIT Index and tetraethers in cores from two 

locations on the Louisiana continental shelf demonstrated the influence of the 

crenarchaeol term on BIT Index-based terrestrial organic matter estimates.  The 

differences in the applicability of the BIT Index to these two coastal environments was 

most likely due to large seasonal changes in productivity on the Louisiana Continental 

Shelf as well as higher marine relative to terrestrial inputs.  

 Six cores were reconstructed for contributions from marine OM (OMmar), 

OMfossil, and OMterrestrial representing the last ~500 years of sedimentation.  Spatial 

variations were larger than temporal variations, owing to negligible development and 

deforestation in the region.  OMterr was the dominant fraction in all but one core, and 

OMfossil inputs were significant.  Additionally, source reconstructions from a variety of 

biomarkers indicated that Landslides deliver large volumes of detrital organic matter to 

fjord sediments.  These results confirm that fjords bury quantitatively significant 

volumes of organic carbon on a global scale. 
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NOMENCLATURE 

 

OMterr Terrestrial Organic Matter 

OMsed Sedimentary Organic Matter 

OMmar Marine Organic Matter 

OMfossil Fossil Organic Matter 
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CHAPTER I 

INTRODUCTION 

 

Terrestrial Organic Matter Fluxes to Marine Systems 

The transport of terrestrial organic matter (OMterr) to coastal sediments represents 

a significant flux in the global carbon cycle (Raymond and Bauer, 2001).  This flux is 

large enough to account for all the organic carbon (OC) buried in the world oceans 

(Ludwig et al., 1996).  Continental shelves and slopes are the primary sinks for OC in 

marine sediments (Berner, 1989) due to the constant input of dissolved organic carbon 

(DOC) and particulate organic carbon (POC) from rivers (Hedges et al., 1997), the 

former which can be incorporated into sediments via sorption to particulates.  Global 

estimates of riverine DOC and POC fluxes range from 0.25 - 0.36 Pg y
-1

 (Aitkenhead 

and McDowell, 2000; Meybeck, 1982) and 0.21 Pg y
-1

 (Hedges and Keil, 1995; McKee 

et al., 2004), respectively, although recent work suggests the total DOC + POC flux is 

significantly higher, approximately 0.8 Pg C y
-1

 (Richey, 2004).  High percentages of 

riverine carbon fluxes are be terrestrial in origin, including soil organic matter (OMsoil) 

and vascular plant organic matter; however we find much less OMterr in coastal 

sediments than predicted from riverine fluxes to the ocean  (Hedges et al., 1997.  This 

paradox may be in part due to poor estimates of the total flux (Hedges et al., 1997).  The 

complex molecular make-up of the OMterr pool requires the use of a multi-biomarker 

approach to accurately quantify fluxes from rivers and burial in coastal sediments. 

____________ 

This dissertation follows the style of Geochimica Et Cosmochimica Acta. 
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Biogeochemical, Climatic, and Ecological Impacts 

Changes in OMterr burial on glacial-interglacial time-scales have the potential to 

impact atmospheric CO2 levels (Burdige, 2005).  This pool of organic carbon is 

considered much more refractory than the more labile marine organic matter (OMmar) 

pool, such as that derived from photosynthetic carbon leaching from plankton and algae, 

and so is thought to be preferentially buried on continental shelves and slopes.  

Approximately one-third of the organic matter buried in marine sediments, primarily in 

muddy deltaic sediments, is terrestrial in origin (Burdige, 2005).  The delivery and burial 

rates of OMterr to marine sediments, and the potential change in these rates with 

anthropogenic climate change and watershed modifications have important implications 

on the flux of CO2 to the atmosphere. 

While OMterr is typically considered resistant to microbial attack relative to 

OMmar, increasing evidence suggests not only that OMterr inputs to both marine and 

freshwater trophic systems are underestimated, but may actually be the dominant carbon 

source utilized by trophic systems under certain environmental conditions (Cole and 

Caraco, 2001; Cole et al., 2006; Hoffman et al., 2007; Kritzberg et al., 2004; McCallister 

et al., 2004; McLeod and Wing, 2007; McLeod and Wing, 2009; Moran & Hodson, 

1994).  Incorporation of OMterr into marine food webs is facilitated in a variety of ways 

by microbes.  Certain microbes are capable of utilizing OMterr in high O2 environments 

through enzymes (e.g., phenoloxidase) which can hydrolyze various ringed-compounds 

in macromolecules (Ander and Eriksson, 1976) such as lignin.  The resulting microbial 

biomass then becomes available to higher consumers. Additionally, microbial activity 
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enriches the caloric and nitrogen content of detritus, increasing its availability to higher 

consumers (Mann, 1972).  

From an ecological perspective, inputs of OMterr in both dissolved and particulate 

forms can also have an impact on the turbidity of the water and the size of the photic 

zone.  Turbidity may limit the existence of particulate sensitive organisms such as corals.  

In New Zealand Fjords, dissolved tannins reduce the penetration depth of light, allowing 

deep-water organisms, such as black corals, to live at relatively shallow depths. 

Bulk Sedimentary Organic Matter Proxies 

 In the past a variety of bulk OMsed methods have been used to quantify the flux 

of OMterr to marine sediments, including isotopic (
13

C) and elemental (carbon to 

nitrogen molar ratios (C/N)) analysis (Bianchi et al., 2007a).  OMterr generally has 

relatively depleted 
13

C values of ~ -26‰ (when inputs of C4 plant material are 

minimal) while OMmar generated from plankton generally has 
13

C of ~ -18‰ (Sackett 

and Thompson, 1963).  However, terrestrial 
13

C values can be enriched in 
13

C with the 

addition of C4 plant material, which is more enriched than marine carbon (Deines, 1980).   

OMterr contains the low nitrogen remains of terrestrial organisms, and therefore high C/N 

ratios can be indicative of a higher proportion of OMterr in the bulk sedimentary organic 

matter.  However, the selective loss of labile N (e.g., amino acids), as well as N 

enrichment in fine soil particles (Hedges and Keil, 1995) limits the accuracy of this ratio 

as a sole tracer.   
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Vascular Plant Biomarkers 

 The use of organic molecules with a known source, or “biomarkers,” has 

provided researchers with new information on biogeochemical cycling previously 

unattainable by the bulk analysis of soils, sediments, and water.  This is in part due to the 

large number of different organic molecules found in any one sample, which generally 

have varying sources, elemental signatures, and degradation rates.  However, any 

biomarker chosen to address a hypothesis is likely only a small portion of the total 

organic pool.  Therefore, a multi-proxy approach, including both biomarkers and bulk 

elemental properties, is essential in providing accurate interpretations of organic 

sedimentary records.   This can prove to be a large effort, involving high costs and 

analysis time, as many biomarkers require unique extraction techniques and analytical 

equipment. 

 Cupric oxide (CuO) oxidation at elevated temperatures, a technique developed by 

wood chemists (Pearl and Dickey, 1952; Sarkanen and Ludwig, 1971), was adapted by 

Hedges and Ertel (1982) to characterize lignin byproducts by gas chromatography/mass 

spectrometry (GC/MS).  CuO oxidation cleaves a large variety of ether and carbon 

bonds in the lignin macromolecule, releasing phenolic monomer and dimer subunits 

(Goñi and Hedges, 1992; Hedges and Ertel, 1982).  This process also releases other 

types of molecules that can be quantified and originate from cutin (Goñi and Hedges, 

1990a; Goñi and Hedges, 1990b; Goñi and Hedges, 1990c) soil humification processes 

(Prahl et al., 1994; Houel et al., 1996), and OMmar (Goñi and Hedges, 1995).  
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Additionally, a suite of benzene carboxylic acids are produced with a variety of potential 

sources (Dickens et al., 2007). 

 Vascular plant biomarkers, including lignin and cutin, will be used to quantify 

vascular plant OC fluxes into Fiordland sediments.  Lignin and cutin oxidation products 

can be accurately quantified through the use of known standards.  If soil and vegetation 

end-member concentrations are measured, the total yearly carbon contribution to 

sediments can be calculated. 

 Lignin 

 Lignin, a polymer found exclusively in vascular plants composed of 

phenylpropanoid units linked through carbon to carbon (C-C) and ether (C-O-C) bonds 

(Adler, 1977), is the most abundant aromatic substance in the biosphere (Vicuna, 1988). 

Due to its refractory nature, lignin can make up a large component of humic substances 

(Ertel and Hedges, 1985) and is found almost universally in soils (Hedges and Oades, 

1997), marine (Gordon and Goñi, 2004; Hedges and Parker, 1976) and lake (Hedges et 

al., 1982; Hu et al., 1999) sediments. Consequently, lignin has been a useful chemical 

biomarker for estimating OMterr inputs to coastal regions (Bianchi et al., 2007a; Gordon 

and Goñi, 2004). Cupric oxide (CuO) oxidation of marine sediments releases three major 

types of phenols; cinnamyl, vanillyl, and syringyl (Hedges and Parker, 1976), which are 

indicative of the source and degradation state of the lignin(Hedges et al., 1982).  It is 

also assumed that the abundance of phenols released during oxidation is proportional to 

the total amount of lignin present in sediment.  Using this method, lignin concentration 

is calculated as the mg of eight types of phenols (vanillic acid, vanillic aldehyde, 
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vanillone, syringic acid, syringic aldehyde, syringone, cinnamic acid, and ferulic acid) 

normalized to 100 mg of organic carbon ( 8).  Another method that has recently gained 

interest is a thermochemolytic method, which uses tetramethylammonium hydroxide 

(TMAH) to examine lignin in natural systems such as soils and sediments (Chefetz et al., 

2002; Mannino and Harvey, 2000; Nierop and Filley, 2007), and plant litter (Filley et al., 

2006).   

End-member measurements of cinnamyl, syringyl and vannillyl contents of both 

woody and non-woody angiosperm and gymnosperm sources have provided a 

framework for source determination (Hedges and Mann, 1979).  However, one must be 

careful in interpreting this data as vanillyl phenols are more resistant to degradation than 

syringyl and cinnamyl phenols (Ertel and Hedges, 1984; Hedges and Weliky, 1989).  

Additionally, end-member values have largely excluded pollen, which has been shown 

to be more resistant to microbial attack in marine sediments and has very specific lignin 

signatures (Keil et al., 1998).  Finally, the degradation state of lignin in marine 

sediments can be estimated using the ratio of acid and aldehyde functional groups in 

vanillyl and syringyl phenols ((Ad/Al)v and (Ad/Al)s, respectively.  These ratios 

increase with increasing oxidative degradation, which can occur by photooxidation 

(Hernes and Benner, 2002; Opsahl and Benner, 1998), microbial attack under high O2 

conditions (Goñi et al., 1993; Hedges et al., 1988; Hernes and Benner, 2002), or thermal 

oxidation (Kuo et al., 2008). 
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Cutin 

CuO oxidation of plant material yields a suite of long-chain (primarily C16-C18) 

hydroxy fatty acids with a cutin origin (Goñi and Hedges, 1990a).  Cutin is a polyester 

biopolymer that protects the aerial parts of soft vascular plant tissue (Martin & Juniper, 

1970).  Hydroxy fatty acids indicative of a cutin source have been measured in both 

lacustrine (Cardoso and Eglinton, 1983) and marine environments (Goñi et al., 2000).  

The original comparative studies of cutin and lignin suggest that lignin is more resistant 

to degradation and less susceptible to diagenetic alteration of its source signature, and 

therefore cutin should only be used supplementary to lignin data (Goñi and Hedges, 

1990b; Opsahl and Benner, 1995).  However, other studies show that cutin gets enriched 

in soil mineral horizons (Riederer et al., 1993), and may be more diagenetically stable 

than lignin (Mendez-Millan et al., 2010).  Additionally, while lignin distinguishes 

between woody and non-woody angiosperm and gymnosperm sources, cutin oxidation 

products, with a wider range of CuO produced constituents, can be used to distinguish 

between monocots and dicots (Goñi and Hedges, 1990c). 

Soil Biomarkers 

 OMsoil represents an estimated ~1400 x 10
15

g of carbon, a globally significant 

carbon pool (Gregory and Hinsinger, 1999).  Recently, a number of studies have 

attempted to use specific OMsoil markers to distinguish this fraction from bulk OMterr 

(Kim et al., 2009a; Smith et al., 2010; Walsh et al., 2008). 
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Glycerol Dialkyl Glycerol Tetraethers (GDGTs) 

 A biomarker technique originally proposed as a qualitative indicator of the 

relative amounts of OMterr and OMmar in marine sediments uses the relative abundances 

of tetraether membrane lipids, specifically GDGTs (Hopmans et al., 2004).  As with 

vascular plant biomarkers, this index has been found to track a particular fraction of the 

total OMterr pool, in this case OMsoil (Walsh et al., 2008).  Branched GDGTs are 

produced in the membrane lipids of anaerobic bacteria found ubiquitously in soils and 

peat (Weijers et al., 2006a; Weijers et al., 2006b).  The amounts of these lipids found in 

marine sediments are compared to the abundance of crenarchaeol, an isoprenoid 

membrane lipid found in the Archael bacteria, Crenarchaeota (Sinninghe Damsté et al., 

2002).  Crenarchaeota have recently been found to be the most predominant prokaryotes 

in today‟s oceans, and are ubiquitous in both the waters and sediments of marine and 

fresh water environments (Hopmans et al., 2004; Powers et al., 2004; Schouten et al., 

2000; Schouten et al., 2002; Sinninghe Damsté et al., 2002; Wakeham et al., 2003).  The 

BIT Index in suspended particulate matter and sediments has been shown to decrease 

from rivers to the continental shelf (Walsh et al., 2008), and has been used as a proxy to 

trace storm-water (Kim et al., 2007).  Additionally, high BIT Index values have been 

shown to correlate with depleted 
13

C values and high OMterr and n-alkane contents in 

marine sediments (Kim et al., 2006). 

 Recent studies have called into question assumptions inherent in the BIT Index, 

and have also started to lay a framework for the particular types of environments it is 

and accurate proxy in.  For example, (Walsh et al., 2008) demonstrates that in peat and 



9 

 

 

 

soil-poor environments, the BIT Index does not provide similar estimates of %OMterr in 

Northern Hemisphere fjords as 8, 
13

C, and C/N analysis.  Additionally, it has been 

shown that the soil and marine GDGTs may vary in their degradation rates and their 

degree of lateral transport during resuspension or prior to deposition (Huguet et al., 

2009; Shah et al., 2008).  Therefore, in environments with high amounts of bottom-water 

advection or conditions promoting fast OM degradation rates, care must be used in 

interpreting the BIT Index.  Finally, marine GDGTs can be added in situ by archaeal 

communities rather than exported from the water column, artificially increasing the 

marine component (Lipp and Hinrichs, 2009). 

3,5-dihydroxybenzoic Acid  

3,5 Dihydroxybenzoic acid (3,5-Bd) is not found as a CuO oxidation product of 

pure plant matter, but is found in soils and marine sediments (Ugolini et al., 1981).  

When normalized to vanillyl phenols (DHA:V), this proxy correlates with (Ad/Al)v, and 

also decreases with distance offshore (Prahl et al., 1994).  It has therefore been proposed 

as a marker of soil humification of tannin and other flavenoids (Goñi and Hedges, 1995; 

Louchouarn et al., 1999).  However, this compound has also been produced from CuO 

oxidation of brown macroalgae (Dickens et al., 2007; Goñi, 1992).  Despite this, the 

DHA:V index has proved useful as a OMsoil biomarker (Goñi et al., 2000; Louchouarn et 

al., 1999; Sánchez-García et al., 2009). 

New Zealand Fjords 

Fjords are deep, glacially carved estuaries located in high latitudes of both the 

Northern and Southern Hemisphere.  This method of formation leads to a unique 
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morphology characterized by steep valley walls.  Fjords contain a sill at the mouth, and 

oftentimes multiples sills are present separating various basins within the fjord.  

Temperate Fjords are estimated to contain at minimum 12% of the organic carbon buried 

over the last 100,000 years in continental margins (Nuwer and Keil, 2005).  

Additionally, up to 76% of Fjord organic carbon may be terrestrial in origin (Walsh et 

al., 2008).  Therefore the flux of OMterr into fjords is significant when considering global 

carbon budgets. 

Fiordland, New Zealand is an area comprising 14 fjords on the southwestern tip 

of the southern island of New Zealand.  Large annual rates of rainfall (6200-8000 mm  

y
-1

) (Sansom, 1984) coupled with steep topography and periodic seismic events (Keefer, 

1994) lead to large inputs of OMsoil and intact plant material to the fjord from the 

surrounding slopes.  High sedimentation rates in deeper areas of the fjord (84-430 

cm/103 yr in 200-250 m depth) have been shown to contain high amounts of terrestrial 

components, based on C/N analysis (R. J. McLeod, unpublished data).  Two recent 

studies show strong evidence that OMterr entering Doubtful Sound is the dominant 

carbon source utilized by the local trophic systems (McLeod and Wing, 2007; McLeod 

and Wing, 2009). 

Hypothesis and Approach 

 Fiordland is a unique setting for examining OMterr inputs to estuarine systems.  

The steep slopes on these fjords, high regional rainfall, and tectonic activity all allow for 

non-point and more dramatic point-source inputs from land-slips into these largely 

understudied fjords.  To this end, the purpose of this study is to determine the spatial 
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distribution and historical changes in OMterr entering Fiordland fjords.  The overarching 

hypothesis is that high rainfall rates and mass-wasting events in Fiordland’s intact 

watershed create large fluxes of OMterr fjord sediments, which when applied to the total 

area of Southern Hemisphere fjord sediments represents a significant organic carbon 

sink relative to global coastal zones. 

This study will use a multi-disciplinary approach that includes: (1) use of 

radioisotopes to quantify sediment accumulation rates and seabed mixing to develop 

accurate geochronologies at sites where cores are collected, (2) down-core and spatial 

analysis of lipid, vascular plant, and soil biomarker compounds and stable isotopes to 

apportion the sources of vascular plant and soil inputs to fjord sediments, and (3) 

extensive analysis of soil and vegetation end-members to make quantitative statements 

on total carbon burial.  The specific objectives for this work are to determine: 

1) The regional quantitative flux of OMterr into Fjordland and associated carbon burial 

rates, which may be applicable to other fjord environments, and may help to better 

constrain global flux estimates; 

2) Relationships between transport mechanisms and OMterr accumulation in the fjords 

over time, by comparing graphs of rainfall, seismic activity, plant and soil biomarker 

abundance and characteristics, BIT indices, and bulk OMsed proxies in cores from 

multiple fjords representing the last ~300 years of sediment accumulation; 

 3)  Future predictions on changes in OMterr burial in Fjordland estuaries based on 

climate change induced precipitation anomalies. 

 



12 

 

 

 

Significance 

 Biogeochemical perturbations brought about by climate change are an important 

current issue in multiple fields.  To fully understand how all chemical cycles, especially 

carbon, will react to changes in temperature and precipitation we must look to the large 

sinks – in this case the coastal ocean.  The flux of OMterr to the coastal ocean must be 

accurately quantified due to its relatively refractory nature and tendency to accumulate 

in coastal sediments.  The flux of OMterr to the coastal ocean represents a “bottleneck” 

in the modern active organic carbon cycle and is the only modern avenue towards 

preservation (Hedges, 1992).  To accurately quantify this flux, it is necessary to measure 

it in a variety of environments in both the northern and southern hemispheres.  The bulk 

of the biogeochemical fjord literature focuses on fjords in the northern hemisphere 

(Nuwer and Keil, 2005; Walsh et al., 2008).  However, northern hemisphere fjords are 

closer to the pole and therefore have experienced glaciation more recently and have less 

developed soils.  Therefore, this dissertation work will take place in Fiordland, New 

Zealand, a remote southern hemisphere fjord system with an intact temperate rainforest 

watershed.  This will be the first biogeochemical work of its kind in a southern 

hemisphere fjord system.  Additionally, the cores used for this study are the first ever 

taken in many of the fjords. 

 In addition to the uniqueness of performing this study in Fiordland and the 

implications for global carbon cycling, the BIT Index is still in the beginning stages of 

its progression as a biomarker.  This study will use the BIT Index along with other well-

established biomarkers to confirm a complex hypothesis.  
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CHAPTER II 

A COMPARISON OF LIGNIN PHENOLS AND BRANCHED/ISOPRENOID 

TETRAETHERS (BIT INDEX) AS INDICES OF TERRESTRIAL ORGANIC 

MATTER IN DOUBTFUL SOUND, FIORDLAND, NEW ZEALAND 

 

Introduction 

The transport of terrestrial OM (OMterr) to coastal sediments represents a 

significant flux in the global carbon cycle (Ludwig et al., 1996; Raymond and Bauer, 

2001).  Fluvial transport of OMterr alone represents a flux of 4 x 10
14

 g C yr
-1

 to the 

global ocean (Schlesinger and Melack, 1981).  To fully estimate how coastal 

sedimentary organic matter (OMsed) would respond to changing climatic conditions, it is 

necessary to accurately quantify inputs, sources, and sedimentary preservation and 

remineralization of OMterr.  Much less OMterr is found in coastal sediments than 

predicted from riverine fluxes to the ocean, due in part to poor estimates of total riverine 

flux (Hedges et al. 1997 and references therein).  Therefore, quantifying techniques need 

to be revised, either by adding new OMterr abundance proxies (such as biomarkers) to 

compare with older markers, or by providing additional data from under-studied coastal 

regions of the globe. 

  Lignin, a macromolecule found exclusively in vascular plants, is often measured 

in coastal sediments to provide information on terrestrial plant input (see Bianchi et al., 

2007b and references therein).   The use of lignin phenols produced by CuO oxidation 

has been the most commonly chosen method for determining lignin abundance, source 
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and degradation state (Hedges and Ertel, 1982).  For example, the method allows 

differentiation of woody and non-woody sources of angiosperms and gymnosperms 

(Ertel and Hedges, 1984).  Additionally, as lignin is degraded, acidic aromatic chain 

functional groups are produced from aldehyde functional groups (Hedges et al., 1986) 

and become relatively more abundant.  Therefore, ratio values of acidic to aldehyde 

(Ad/Al) functional groups are calculated as a proxy for lignin degradation state in 

vanillyl and syringyl phenols [(Ad/Al)v and (Ad/Al)s, respectively].  Another method 

that has recently gained interest is a thermochemolytic method, which uses 

tetramethylammonium hydroxide (TMAH) to examine lignin in natural systems such as 

soils and sediments (Chefetz et al., 2002; Mannino and Harvey, 2000; Nierop and Filley, 

2007; Wysocki et al., 2008) and plant litter (Filley et al., 2006).   

 Another biomarker technique recently proposed is an indicator of the relative 

amounts of soil and marine OM in marine sediments.  This proxy, the 

branched/isoprenoid tetraether (BIT) index (Hopmans et al. 2004), uses the relative 

abundances of two types of glycerol dialkyl glycerol tetraethers (GDGTs) in marine 

sediments.  Branched GDGTs are membrane lipids from an unknown type of anaerobic 

bacteria found ubiquitously in soils and peat (Weijers et al. 2006a, b).  The amounts of 

these lipids found in marine sediments are compared with the abundance of 

crenarchaeol, a membrane tetraether lipid with a unique cyclohexyl moiety found in 

Crenarchaeota, a phylogenetic group in Archaea (Damste et al., 2002).  Crenarchaeol 

occurs ubiquitously in both the marine water column as well as in marine and lake 

sediments, hot springs and soils (Schouten et al., 2000; Schouten et al., 2002; Sinninghe 
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Damste et al., 2002; Wakeham et al., 2003; Hopmans et al., 2004; Powers et al., 2004).  

Pure marine OM, in which only crenarchaeol (GDGT IV)  is present, would have a 

theoretical BIT value of 0, while pure soil OM, in which only the branched GDGTs are 

present, would have a theoretical BIT value of 1.  Deviations from the terrestrial end 

member exist because of the presence of small to moderate amounts of crenarchaeol in 

soils and peat (Weijers et al., 2006b; Kim et al., 2006). The BIT index in suspended 

particulate matter and sediments has been shown to decrease from rivers to the 

continental shelf (Hopmans et al., 2004; Kim et al., 2006; Walsh et al., 2008), and has 

been used as a proxy for tracing river flood events (Kim et al., 2007) and OMsoil 

deposition into coastal oceans (Herfort et al. 2006).  Additionally, high BIT index values 

have been shown to correlate with depleted 
13

Corg values and high OMterr and n-alkane 

content in marine sediments (Kim et al., 2006).  Using a three end member mixing 

model, the BIT index, along with 
13

Corg and n-alkane/alkenone values allows the 

separation of soil, plant and marine OM inputs in marine sediments (Weijers et al. 2009).   

The major goal of this study was to determine whether BIT index values 

correlate or not with lignin phenol abundance in surface sediments from Doubtful 

Sound, a New Zealand fjord.  These biomarkers were also compared with bulk OM 

properties (
13

C and C/N).  Proxy comparisons were made for both shallow and deep 

water surface sediments from different locations in Doubtful Sound, varying in distance 

from the sill.   Biomarker distributions with depth and distance from headwater streams 

were compared to give insight into potential differences in sources, hydrodynamic 

sorting and diagenesis.  However, the primary focus was on method comparison.   
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Methods 

 

Site Description 

  

Doubtful Sound is a fjord in Fiordland National Park on the southwest coast of 

the South Island of New Zealand (Fig. 1).  This pristine estuarine coastal region offers a  

 

 

 

 

 

 

Figure 1.  Fiordland National Park.  Shown are sixteen locations at which 0-2 cm 

sediment surface intervals were sampled. 
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unique opportunity to study pristine sediments with high OMterr burial and preservation 

rate as a result of relatively high sedimentation rate and the occurrence of anoxic bottom 

water in the deeper parts of the basins.  High sedimentation rates are a result of periodic 

mass-wasting events, in which soil, trees and the associated understory vegetation fall 

into the fjord (Whitehouse 1988; Keefer, 1994), as a result of both high rates of rainfall 

and seismic activity (Keefer, 1994).  Bottom water anoxia occurs because of a strong 

halocline and bathymetric sills preventing bottom water mixing.  OMterr input to the 

fjords has been a recent topic of interest, as it has been shown to be an important 

contributor to the food web in Doubtful Sound and surrounding fjords in (McLeod and 

Wing, 2007).  In fact, New Zealand has been found to have some of the highest erosion 

rates in the world (Hicks et al., 1996).  Some of these high rates of erosion result from 

high relief, shallow soil (Ahnert, 1970, Willet and Brandon, 2002) and a rainfall rate that 

averages 7 m year
-1

 (Hicks et al., 1996).   

Sediment Samples 

 Van Veen grab samples (0.1m
2
) were collected throughout Doubtful Sound and 

nearby fjords and core sub-samples from the surface sediments (0-2 cm) were taken.  

The presence of bacterial mats at the water-sediment interface attests to the collection of 

the surface sediments.  This was also verified using naturally occurring radionuclide 

downcore profiles of 
210

Pb and 
137

Cs (M. Allison, University of Texas, unpublished 

data).  Sampling locations included a range from the mouth to the head of the estuary, as 

well as its upstream reaches.  16 sediment samples were collected for both BIT and 

lignin phenol analysis from the sound (Fig. 1).  Numbered locations on the map are 
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given a „DS‟ prefix in the text and tables.  Two additional surface sediment samples 

were collected from Doubtful Sound in Malaspina Reach and Deep Cove (Fig. 1) (MR2, 

DC1 respectively) that were not analyzed for tetraethers, as well as one surface sediment 

sample from both Broughten Arm (BA1) and Dusky Sound (SC2), located within fjords 

to the south of Doubtful Sound.  These are not shown on Fig. 1 as lignin-phenol and BIT 

comparisons were not made.  However the values are included in lignin interpretations.  

For biomarker depth comparisons, differences were made between shallow and deep 

sites, with the cutoff depth as follows: shallow (19, 38, 42, 43, 64, 76 m) and deep (94, 

96, 135, 142, 182, 185, 279 m) sites in Doubtful Sound.  Differences in average depth 

between shallow (x = 50.8 +/- 21.3, n = 7) and deep (x = 158.9 +/- 59.3, n = 7) sites are 

significant (p <0.05, t-test).  Only sites for which both lignin and GDGT data are 

available are used for the comparison.  Soil (S1, S2, S3, S4) and leaf-litter (LL1, LL2, 

LL3) samples were obtained close to Doubtful Sound using grab sampling.  These 

samples were obtained from the headwater regions of the fjord as well as some of areas 

where the forest could be accessed from the shoreline.  All samples were shipped from 

the University of Otago in dry ice and were kept frozen at Texas A&M University.  

Sediments were freeze-dried and homogenized with a mortar and pestle prior to BIT, 

lignin phenol, and bulk carbon analyses. 

Bulk Isotope and Elemental Analysis 

 Total organic carbon (OC), total nitrogen and stable carbon isotope analyses of 

sediments were carried out by T. Boutton, Stable Isotope Laboratory, Department of 

Ecosystem Science and Management at Texas A&M University.  Measurements were 
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made using an elemental analyzer (Carlo Erba EA-1108; CE Elantech, Lakewood, NJ) 

interfaced with an isotope ratio mass spectrometer (Delta Plus, Thermo Electron, 

Waltham, MA) operating in continuous flow mode.  Carbon isotope ratios were 

calculated in  notation as follows: 

 = [(Rsample – RSTD)/RSTD] x 10
3
           (1) 

where, RSTD is the 
13

C/
12

C ratio of the Vienna Pee Dee Belemnite  (V-PDB) standard 

(Coplen, 1996) and Rsample is the 
13

C/
12

C ratio of the sample.  The precision of duplicate 

measurements was +/- 0.1‰.  C/N values are calculated as molar ratios.  While Perdue 

and Koprivnjak (2007) show the misuse of this proxy as an OC tracer and suggest using 

N/C ratios, C/N ratios are still used, as conversions to % OMterr from end-members are 

not made. 

BIT Index 

 Ca. 1 to 4 g sediment were extracted (3 x, 5 min each) in 9:1 dichloromethane 

(CH2Cl2):methanol (CH3OH) using a Dionex accelerated solvent extractor (ASE) at 

100
o
C and 7.6 x 10

6
 Pa.  The extracts were loaded onto an activated (2 h, 150 

o
C) 

alumina pipet column.  Four column volumes of 9:1 hexane:CH2Cl2 were used to elute 

the apolar fraction and 3 of 1:1 CH2Cl2:MeOH to elute the polar fraction, which 

contained the GDGTs.  Polar extracts were dissolved in ~1 m hexane/isopropanol (99:1; 

% vol:vol).  Aliquots (100 μl) were placed into silianized 150 μl vial inserts and 

analyzed according to Hopmans et al. (2004).  Analysis were performed with a 

Shimadzu 2010A Series liquid chromatography-mass spectrometry (LC-MS) instrument 

with LCMSsolution software.  Separation was achieved on a Prevail Cyano column (4.2 
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x 150 mm, 3 μm; Alltech) maintained at 30
o
C.  GDGTs were eluted at a flow rate of 1 

ml min
-1

, first isocratically with hexane/isopropanol (99:1; % vol:vol) for 5 min, then 

with a linear gradient up to 1.8% isopropanol over 40 min.  After each analysis the 

column was cleaned by backflushing 10% isopropanol for 10 min.  Detection was 

achieved using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) 

of the eluent using the following conditions: nebulizer pressure 65 psi, vaporizer 

temperature 400 
o
C, N2 drying gas flow 2.5 l min.

-1
 at 220 

o
C, capillary voltage -4.5 kV.  

Single ion monitoring (SIM) was used instead of full scanning due to increased 

reproducibility and signal-to-noise ratio (Schouten et al. 2007).  SIM was set to scan 

[M+H]
+
 of crenarchaeol (1292) and the three [M+H]

+
 ions of the branched GDGTs 

(1050, 1036 and 1022), with a dwell time of 100 ms for each ion.  Recent studies 

(Schouten et al., 2009; Escala et al., 2009)  have shown that BIT indices vary 

significantly among laboratories as a result of MS sensitivity differences among 

molecules of varying MW (i.e. terrestrial GDGTs vs crenarchaeol).  Therefore, a sample 

with a previously measured BIT value was analyzed every 8 injections to ensure 

consistency in our laboratory.  An example chromatogram is provided in Fig. 2.  

Labeling of branched GDGTs (I – III) and crenarchaeol (IV) are consistent with the 

structures and labeling in Hopmans et al. (2004). 

The average relative standard deviation (%) of BIT index, based on 3 extraction 

replicates, was 0.4 %.  Absolute amounts of GDGTs are not known because of a lack of 

a quantitative standard.   The BIT index was calculated according to Hopmans et al. 

(2004).   
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Lignin Phenols 

 Freeze-dried sediment containing 3 to 5 mg OC were analyzed for lignin phenols 

using the CuO method of Hedges and Ertel (1982) as modified by Goñi and Hedges  

 

 

 

  

 

 

 

 

 

 

Figure 2.  LC/MS glycerol dialkyl glycerol tetraether (GDGT) chromatogram.  The 

total ion count (TIC) shown was the sum of 8 GDGTs scanned for in SIM mode.  

Labeled GDGT peaks include those used in the branched/isoprenoid tetraether (BIT) 

index.  Compound labeling (I – IV) is consistent with GDGT labeling in Hopmans et 

al. (2004); IV is the marine crenarchaeol GDGT, while peaks I – III represent the 

branched terrestrial GDGTs. 
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(1992).  Sediments were transferred to stainless steel reaction vials and digested with 

330 mg (+/- 4 mg) CuO in 2N NaOH under N2  at 150 
o
C for 3 h.  Reaction products 

were allowed to cool and extracted with three successive 3 ml aliquots of Et2O 

(peroxides removed), filtered through combusted glass fiber, dried under N2, 

reconstituted in pyridine and converted to trimethylsilyl derivatives using bis-

(trimethylsilyl)trifluoroacetamide (BSTFA).  Lignin phenol derivatives were analyzed 

using an Agilent 6890n gas chromatography instrument/ coupled to an Agilent 5973N 

mass spectrometry instrument (GC-MS). 

 Quantification and of lignin phenols was based on an ethyl vanillin internal 

standard and a mixed standard (containing known amounts of all lignin reaction products 

of interest) was analyzed with each batch of 12 samples batch to determine new response 

factors.  8 values were calculated as the mg sum of 8 lignin phenols [3 syringic phenols 

(S), 3 vanillylic phenols (V), cinnamic aldehyde and ferulic aldehyde (C)] per 100 mg 

OC
-1

.  Individual phenols include vanillin (VAL), acetovanillone (VON), 

syringealdehyde (SAL), vanillic acid (VAD), acetosyringone (SON), syringic acid 

(SAD), 4-hydroxybenzaldehyde (PAL), 4-hydroxyacetophenone (PON), p-

hydroxybenzoic acid (PAD), 3, 5-dihydroxybenzoic acid. (3,5-Bd), p-hydroxycinnamic 

acid (CAD) and ferulic acid (FAD).  The acid to aldehyde ratios of both vanillic and 

syringic phenols were used as indicators of lignin degradation state.  S/V values vs. C/V 

values were plotted as indicators of lignin source.  The relative standard deviation of 8 

values from duplicate extractions ranged from 0.8 to 3.9%, and that of individual phenol 

concentrations from 1.4 to 6.9%. 



23 

 

 

 

Statistics 

 Simple regression analyses were performed using Sigma Plot, Inc. (Version 

11.0).  Means are reported with a 95% confidence interval and differences between 

means were established using unpaired t-tests (Sokal and Rohlf, 1995). One-way 

analysis of variance (ANOVA) was performed using Sigma Plot Inc., (Version 11).  An 

Fmax test was used prior to ANOVA and regression analyses to check for homogeneity 

of variances. This test uses the ratio of the maximum and minimum variances and then 

compares the ratio with the cumulative probability distribution of Fmax to determine 

homogeneity of variances (Sokal and Rohlf, 1995). 

Results 

Bulk OC 

 

The average amount of OC (% w/w) in samples decreased significantly from leaf 

litter (40.6 +/- 4.4 %, n = 3) to soil (10.7 +/- 3.6 %, n = 5) (p < 0.001) and from soil to 

sediments (5.3 +/- 3.4 %, n = 20) (p = 0.004), which contained up to 11.4 % and as little 

as 0.6 % OC (Appendix A, B).   

Bulk 
13

C values of end members, both soil and leaf litter, were not significantly 

different (p 0.220).  Therefore, the depleted 
13

C values for both Fiordland soil (-29.8 +/- 

0.9 ‰, n = 5) and leaf-litter (-30.6 +/- 0.7 ‰, n = 3) were averaged to give an estimate 

of the bulk 
13

C signature of OMterr in the region (-30.1 +/- 0.9 %, n = 8).  Fjord surface 

sediments were significantly 
13

C enriched (-26.9 +/- 1.2 ‰, n = 20) compared to the 

terrestrial end member value (p < 0.001) and had a range of OM signatures from 

predominantly terrestrial (-28.7 ‰), based on terrestrial end-members, to more 
13

C 
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enriched values (-24.3 ‰; Appendix A), indicating increased inputs of marine carbon.  

Ranges of 
13

C values are similar to those found in Northern Hemisphere fjords (Huguet 

et al., 2007; Smittenberg et al., 2005; Breugel et al., 2005). 

C/N values for sediments ranged from 5.7 to 36.8 (20.1 +/- 7.5, n = 16) (Table 1).  

The highest values, 36.8 and 26.3 at sites 1 and 4, respectively, were located in close 

proximity to runoff from a local hydroelectric power plant.  The lowest values, 16.2 and 

14.7 at sites 11 and 13, respectively, were found in sediments from the widest area of the 

fjord, close to the mouth.   

No significant difference was found in surface sediment C/N values, bulk 
13

C 

and OM content averages at shallow (<90 m) and deep (>90 m) sites (Appendix C). 

Abundance, Composition, and Degradation State of Lignin 

Average 8 values were not statistically different between leaf litter (8.62 +/- 

4.26, n = 3), soil (6.24 +/- 6.37, n = 4) and sediment (6.76 +/- 2.27, n = 20) samples (p = 

0.587, one way ANOVA).  However , the sediment samples exhibited a much smaller 

range than the three leaf litter and four soil samples, which had 8 values as high as 12.5 

and 16.6, respectively (Appendix A, B). 8 values for Doubtful Sound surface 

sediments ranged from 2.73 to 11.2, indicating a spatially heterogenous distribution of 

plant OM input.  8 values at shallow (6.74 +/- 2.24, n = 7) and deep water (5.30 +/- 

1.68, n = 7) sites were not significantly different (p = 0.198; Appendix C).   

Average C/V and S/V ratio values for lignin in sediments, soils and leaf litter did 

not vary significantly (p = 0.109, One Way ANOVA).  However, two soil samples, S1 

and S2, had significantly different C/V and S/V values from the rest of the samples, 
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indicating mixed lignin sources (Fig. 3).  C/V and S/V values for sediment samples 

ranged from 0.05 to 0.66 (0.10 +/- 0.13) and 1.00 to 1.34 (1.22 +/- 0.11), respectively 

(Appendix A).  The source plot indicated that the predominant source of lignin in soils 

and sediments was woody also angiosperms (Fig. 3).  However, one sediment sample 

(DS07) had S/V and C/V values indicating non-woody angiosperms as the predominant 

source of lignin.  
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S
/V

0

1

2

3

4

Sediment

Soil 

Leaf Litter 

 Figure 3.  Fiordland surface sediment lignin-phenol source plot.  Shown are syringyl 

to vanillyl (S/V) phenol abundance vs. cinnamyl to vanillyl (C/V) phenol abundances 

obtained from cupric oxide (CuO) oxidation of Fiordland leaf litter, soil and sediment 

samples.  The boxes represent known ranges of S/V vs. C/V for woody and non-

woody gymnosperms and angiosperms.  Designations are as follows: woody 

angiosperm (A), non-woody angiosperm (a), woody gymnosperm (G), and non-

woody gymnosperm (g). 
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 On average, Ad/Al values of lignin for sediments, soils and leaf litter were all 

relatively low, indicating fresh or preserved lignin.  Leaf litter end members, 

representing the freshest pool of lignin, had average (Ad/Al)s and (Ad/Al)v values of 

0.15 +/- 0.01 and 0.16 +/- .00 (n = 3), respectively.  As indicated by the small standard 

deviations, these two parameters were very similar for all three leaf litter samples, 

providing an end member estimate of lignin “freshness” before it enters soil or fjord 

sediments.  Ad/Al values for soil samples were as high as 0.30 in vanillyl phenols and 

0.24 in syringyl phenols, and one sediment sample had a very degraded signature (DS07; 

0.97 and 0.99 for vanillyl and syringyl phenols, respectively).  While no significant 

difference was found between average Ad/Al values (for both phenol types) in soils and 

sediments, both of these lignin sinks contained significantly higher averages than leaf 

litter. 

BIT Index 

The average BIT index decreased significantly from soil to sediments (p = 

0.001).  No crenarchaeol was present in Fiordland soils, so all soil samples had a 

calculated BIT index of 1.00, consistent with the soil end member found in Hopmans et 

al. (2004).  BIT values in Doubtful Sound surface sediments, ranging from 0.24 to 0.93 

(0.57 +/- 0.24) (Appendix A), indicated large variations in the relative amounts of OMsoil 

and OMmar, based on soil end members and an assumed marine end member of 0 

(Hopmans et al., 2004).  Sites 1 and 16 both had a value of over 0.9 (Appendix A).  Site 

1 receives large freshwater input (~450 m
3
 s

-1
) from a local hydroelectric power plant 
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that drains a large catchment in the upstream reaches of the fjord.  Site 16 is, however, 

located in a more downstream area in the fjord (Fig. 1).   

 Biomarker Comparisons  

 8 values did not correlate significantly with C/N values (R
2 

0.005, p 0.776, n = 

20).  The correlation contained, however, six sediment samples not used in the BIT 

index correlation with the same bulk sediment proxy.  Removing these samples and only 

using sediments for which BIT values were provided did not increase the significance of 

the correlation (R
2
 0.010, p 0.710, n = 14).  8 values showed a better correlation with 

13
C values (R

2
 0.191, p 0.054, n = 16), although the correlation was still not significant. 

However, in this case we did find a significant correlation with 8 and 
13

C values when 

the data were reduced to only those samples for which we have BIT index data (R
2 

0.320, p 0.022, n = 14). 

BIT indices showed increased correlations with both 
13

C values (R
2 

0.774, p 

<0.001, n = 14) and C/N values (R
2 

0.629, p <0.001, n = 14) as compared to 8 

correlations with the same bulk proxies.  When plotted against each other, BIT index and 

8 values showed a weak correlation (R
2
 0.313, p 0.038, n = 14).  Additionally, the 

highest BIT value and 8 value for sediments were both from at Site 16, located in the 

upstream reaches of Doubtful Sound. 

 Biomarker Spatial and Depth Variation 

 A transect was chosen for spatial analysis starting at DS01, near the stream-fed 

head of the fjord and ending at DS14, near the mouth.  This transect included, in order of 

stations, DS01, DS03, DS04, DS07, DS08, DS11 and DS14.  DS01 was chosen to be the 
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“0 km” point and, for spatial analysis, distances were estimated for all other transect 

stations from this point.  Both BIT and 
13

C values showed strong terrestrial signals at 

DS01 (0.92 and -28.7 ‰, respectively) with an increasing marine influence towards the 

mouth.  8 values did not show this trend until the fourth site, DS07.  C/N values also 

did not show the trend until the third site (DS04).  All four proxies showed an increase in 

the OMterr component at station DS14.   

 BIT indices in shallow water (< 90 m) surface sediments (x = 0.70 +/- 0.23, n = 

7) were significantly higher than those located at deeper water (< 90 m) sites (x = 0.44 

+/- 0.17, n = 7; Appendix C).  No significant difference was found between these two 

depth groups in lignin and bulk carbon parameters. 

Discussion 

Source and Diagenetic State of OMterr 

 C/V and S/V ratios indicated that woody angiosperms were the dominant source 

of lignin for all surface sediments in Doubtful Sound.  Cinnamyl as well as syringyl 

oxidation products can be depleted relative to vanillyl oxidation products if the lignin 

has undergone extensive degradation (Bianchi et al., 2002).  However, it was likely that 

our S/V and C/V ratios had not been skewed by selective degradation due to low Ad/Al 

ratios and a dominance of C3 plants in the watershed.  However, DS07, with high Ad/Al 

ratios and a unique source signature, may have been diagenetically altered.  The role of 

landslides in delivering large point-source amounts of vegetation, including trees, 

understory, leaf litter and detritus to the sound may be reflected in the variable, but often 

large, amount of undegraded woody plant tissue in surface sediments, and  high 8  
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Figure 4.  Linear regressions of bulk organic carbon proxies and biomarkers.  a) BIT 

index vs. 
13

C, b) BIT index vs. C/N, c) 8 vs. 
13

C, d) 8 vs. BIT index. 
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values relative to other coastal, non- fjord studies.  Ad/Al values of both syringyl and 

vanillyl phenols show that pre-depositional decay was minimal, but moreover that post-

depositional decay may also not be very high, with the exception of one sample location.  

However, since (Ad/Al) values do not increase during anaerobic oxidation of lignin 

(Hamilton and Hedges, 1988), we cannot determine whether or not the lignin had 

undergone degradation after it made it to the deeper fjord sediments. 

8 vs. Bulk Carbon Parameters (C/N, 
13

C) 

 The only significant correlation between lignin abundance and terrestrial/marine 

signatures of bulk carbon parameters was between 8 values and 
13

C among 14 surface 

sediment samples (Fig. 4).  The most likely scenario for the scatter observed and the 

resulting weak, but significant, correlation, is the wide range of 8, relative to 
13

C 

values, found in soil and leaf litter samples.   

BIT Index vs. OMterr Proxies 

 Soil end members and sediment BIT index values vs. C/N and 
13

C values 

showed a clear, significant linear mixing line from pure terrestrial OM to a mix of 

marine organic matter (OMmar) and OMterr (Fig. 4).  This is the first study, to our 

knowledge, in which such a strong significant correlation has been found between the 

BIT index and C/N values, although a previous study has also found a strong 

relationship between the BIT index and 
13

Corg values (Kim et al. 2006).   

A weak trend exists between the magnitude of the BIT index and 8 in Doubtful 

Sound sediments, suggesting that, while to some extent these biomarkers behave 

similarly, the biomarkers involved in these two proxies vary significantly in their (i) 
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transport mechanisms to sediments, (ii) degradation during transport and burial and/or 

(iii) sources.  A majority of lignin transported to fjord sediments may be from large 

mass-wasting events, in which vegetation and leaf litter were transported, intact to the 

fjord, after which they began to degrade and concentrate lignin in surface sediments.  

These events in any one area may be few and far between, causing OMsoil from large rain  

events to be the predominant type of OM in fjord sediments.  Therefore, bulk carbon 

parameters will reflect OMsoil input rather than bulk lignin input.  Recent work in 

Vancouver Island fjords found that lignin phenols did not correlate with the BIT index 

(Walsh et al., 2008).  Additionally in that study no correlation was found between BIT 

index and bulk carbon parameters.  The authors attributed this to the lack of developed 

soil and peat in the local watershed.  Although New Zealand fjords receive large inputs 

of undegraded woody lignin, as indicated by high 8 and low Ad/Al values, the 

significant correlation of BIT values with bulk carbon parameters suggests that OMsoil 

represented the dominant fraction of OMterr delivered to the sediment.  If the dominant 

source of lignin to fjord sediments was plant matter that had already been incorporated 

into the sediment through leaching and degradation, we would expect a better correlation 

between the BIT index and 8 values, as their source would have been consistent.  

Additionally, this lack or correlation may have been due to a greater “patchiness” in soil 

lignin abundance than in terrestrial GDGT abundance.  This conclusion needs more soil 

and leaf litter end members for further corroboration. 
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Spatial and Depth Trends 

Significantly higher BIT values in shallow water surface than in deep-water 

sediments were not reflected in 8 values, possibly suggesting that these two proxies 

were subjected to differences in hydrodynamic sorting mechanisms.  The intensity of 

transport events may also have had a role here.  More woody material may have been 

deposited into the deeper basins from the steep slopes of the fjord during periodic mass-

wasting events.  This is in contrast to the more gradual overland flow of soil erosion and 

riverine inputs that allowed accumulation of OMsoil in the shallower regions.  

Additionally, as no significant differences were found between shallow and deep 

sediments in bulk carbon parameters, GDGTs may have been differentially associated 

between particulate and dissolved phases, compared to the bulk OM pool.  Finally, 

degradation can be one or two orders of magnitude greater in oxic than anoxic 

environments, and favors the enrichment of terrestrial, or branched GDGTS, relative to 

crenarchaeol (Huguet et al., 2009), resulting in larger BIT values.  However, shallow 

water surface sediments have not likely been degraded post-deposition extensively 

enough to account for the observed differences in the Bit Index values. 

 BIT and 
13

C values revealed high concentrations of terrigenous material at the 

head of the fjord, that were quickly diluted by OMmar even in nearby stations (Figure 5).   

8 values did not show this trend at the beginning of the transect; however a decreasing 

trend towards the mouth of the fjord starts at 10 km away from DS01.  The BIT index, a 

proxy for only the soil component of the total OMterr, indicates that the headwater stream 

feeding the fjord is responsible for delivering large amounts of OMsoil that either settles 
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quickly or becomes significantly diluted by a marine component (crenarchaeol) within a 

short distance.  The role of hydrodynamic sorting in transporting and separating out bulk 

components has been shown in coastal areas dominated by large rivers (Bianchi et al., 

2002).  While headwater streams in Fiordland do not have as large annual discharges as 

large rivers, high annual rainfall rates, known to occur in periodic intense events, may 

have resulted in higher than normal discharge rates and increased levels of  
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Figure 5.  Doubtful Sound surface sediment transect.  a) Branched/isoprenoid 

tetraether (BIT) index, b) 
13

Corg (‰), c) 8 (mg 8 lignin-phenols/100 mg OC), and d) 

C/N molar ratios.  The x-axis in all four graphs represents the distance from station 

DS01, arbitrarily chosen as 0 km. 
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hydrodynamic sorting of OMterr.  Because of the similarity in 
13

C values with distance 

from DS01, it is reasonable to suggest that OMsoil is concentrated in the upper reaches of 

the fjord.  These data also support the role of headwater streams in transporting 

significant amounts of OMterr to the upper estuary. 

Conclusions 

A weak correlation between 8 and BIT index values suggested differences in 

the relative amounts of lignin and terrestrial GDGTs input to NZ fjords by the dominant 

regional OMterr transport mechanisms.  7 m of annual rainfall delivered large amounts of 

OMsoil via slope runoff and headwater streams to fjord sediments.   While non-point 

source inputs throughout the entire estuary are responsible for delivering the bulk of the 

OMsoil, large amounts of undegraded lignin in deeper basins may have originated from 

mass-wasting events.  The linear correlation between the BIT index and bulk carbon 

parameters was a result of the areal extent of a forested catchment, steep fjord slopes, 

and high annual rainfall rates, all of which resulted in inputs of large amounts of OMsoil.  

The results highlight the importance of using multiple biomarkers due to variations in 

OMterr sources. Further study is needed to better estimate the occurrence, size and 

distribution of mass-wasting events in these fjords, as well as their impact on 

biogeochemical cycling in Fiordland. 
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CHAPTER III 

A RE-EVALUATION OF THE USE OF BRANCHED GDGTS AS TERRESTRIAL 

BIOMARKERS: IMPLICATIONS FOR THE BIT AND TEX86 INDICES 

 

 

Introduction 

 

 Terrestrial organic matter (OMterr) derived from rivers and coastal erosion is 

typically a complex mixture of both woody and non-woody vascular plant debris and 

mineral associated soil organic matter (OMsoil) (Bianchi and Canuel, 2011 and references 

therein).  Multi-proxy approaches have become increasingly common to distinguish 

OMsoil from vascular plant detritus (OMVPD) organic fractions on continental shelves 

(Kim et al., 2006; Huguet et al., 2007; Walsh et al., 2008; Belicka and Harvey, 2009; 

Kim et al., 2009a; Weijers et al., 2009; Schmidt et al., 2010; Smith et al., 2010); where 

the majority of sedimentary organic matter (OMsed) is buried in the global ocean (Berner 

and Lasaga, 1989; Hedges, 1992).  Stable carbon isotopic signatures (
13

C) have been 

successfully used in coastal regions, but suffer from the wide range of values found in C3 

and C4 plants (Gordon and Goñi, 2004; Bianchi and Canuel, 2011).  The most common 

biomarkers to date to differentiate organic matter sources in marine sediments are lignin-

phenols produced from alkaline CuO oxidation of lignin macromolecules (Hedges and 

Ertel, 1982).  While the relative abundance of the various lignin-phenols produced 

provide information on source and diagenetic state of vascular plant material (Hedges 

and Mann, 1979; Hedges et al., 1988), it is impossible from this method alone to 

quantify the relative amounts of OMsoil and OM from OMVPD.  In order to accomplish 
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this without implementing a separate analytical technique, 3,5-dihydroxybenzoic acid, a 

CuO oxidation product derived from the humification of tannins and other flavenoids, is 

normalized to the sum of vanillyl phenols (3,5Bd:V) as a qualitative indicator of the 

relative amount of OMsoil present (Prahl et al., 1994).  A more recent study suggests that 

the ratio of hydroxylated to non-hydroxylated benzene carboxylic acids (BCA
OH

/BCA
no-

OH
) is higher in soils than in fresh plant material and OMsed, and therefore may be used 

as an additional CuO OMsoil proxy (Dickens et al., 2007).  However, most non-lignin 

CuO products have been identified in multiple terrestrial sources, and therefore it is 

necessary to develop the use of biomarkers identified only in soils. 

Core-lipid branched glycerol dialkyl glycerol tetraethers (brGDGTs; structures I-

III, Hopmans et al. (2004)), are produced with glucuronosyl and glucosyl headgroups 

(“parent” molecules) (Liu et al., 2010) by a yet unknown group of soil anaerobic 

bacteria, possibly Acidobacteria (Peterse et al., 2010).  These bacteria have been shown 

to be ubiquitous in peat and soils (Damste et al., 2000; Schouten et al., 2000; Hopmans 

et al., 2004; Weijers et al., 2006b, 2007; Huguet et al., 2010a), as well as in marine and 

lacustrine environments associated with the deposition of OMsoil (Schouten et al., 2007; 

Belicka and Harvey, 2009; Blaga et al., 2009; Kim et al., 2009a; Powers et al., 2010; 

Smith et al., 2010).  Preliminary evidence suggests possible production in the water 

column of lakes based on the degree of methylation and cyclization of brGDGTs in soils 

vs. lake waters as well as anomalously high concentrations in lake sediments (Tierney 

and Russell, 2009; Tierney et al., 2010).  Due to the large amount of OMsoil relative to 

organic matter derived from peat delivered to the sea by large rivers, brGDGTS provide 
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a specific tracer for soil-derived organic matter on continental shelves.  In addition to 

having a unique source, they have been shown to degrade slower than lignin (Huguet et 

al., 2008).  

Hopmans et al. (2004) introduced the branched/isoprenoid tetraether (BIT) Index, 

a proxy for OMsoil that normalizes the abundance of brGDGTs to crenarchaeol, a 

tetraether membrane lipid synthesized by group 1.1b crenarchaeota (Sinninghe Damsté 

et al., 2002; Pitcher et al., 2010).  Due to the widespread occurrence and high 

abundances of crenarchaeota, crenarchaeol has ubiquitously been identified in the water 

column and sediments of marine and lacustrine environments, and is even produced to a 

minor degree in soils (Schouten et al., 2000,2002; Powers et al., 2004; Weijers et al., 

2006a,b; Blaga et al., 2009; Damste et al., 2009; Tierney and Russell, 2009; Powers et 

al., 2010).  The BIT Index ranges from 0 to 1, with a value of 0 indicating the presence 

of pure OMmar with no terrestrial inputs, and a value of 1 is the theoretical end-member 

for soils.  The soil end-member can be less than 1 due to the production of small to 

moderate amounts of crenarchaeol in soils (Weijers et al., 2006b).  BIT Index values are 

generally low on continental shelves, and increase towards the mouths of large rivers 

(Kim et al., 2006; Walsh et al., 2008; Kim et al., 2009a).  The Index has seen increasing 

use in separating OMsoil from OMVPD as a quantitative proxy for %OMsoil (Belicka and 

Harvey, 2009; Kim et al., 2009a; Weijers et al., 2009; Schmidt et al., 2010). 

Recent studies have revealed discrepancies between the BIT Index and vascular 

plant biomarkers in sediments (Huguet et al., 2007; Walsh et al., 2008; Belicka and 

Harvey, 2009; Weijers et al., 2009; Schmidt et al., 2010; Smith et al., 2010).  In this 
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study, evidence from branched and isoprenoidal GDGT and CuO biomarker profiles 

from four cores taken from the Louisiana Continental Shelf (LCS), Gulf of Mexico, 

USA (along with comparisons of GDGT-based mixing models) are used to show that the 

BIT Index may be inaccurate in some circumstances as a OMsoil proxy, and that 

brGDGTs should be considered as a OMsoil biomarker without normalization to 

crenarchaeol.   These results provide the first detailed explanation of the non-linearity of 

the BIT Index and the influence of the crenarchaeol term on %OMsoil estimates in marine 

sediments, which have been suggested in previous literature as inherent bias in the index 

(Herfort et al., 2006; Huguet et al., 2007, 2008; Walsh et al., 2008; Belicka and Harvey, 

2009; Weijers et al., 2009; Schmidt et al., 2010), and also suggests a more accurate 

calculation substituting brGDGT concentrations. 

Methods 

Site Description and Sampling 

 For the past few decades there has been considerable interest in understanding 

the source and fate of OMterr delivered to the LCS (Hedges and Parker, 1976; Hedges 

and Vangeen, 1982; Goñi et al., 1997; Gordon and Goñi, 2003, 2004; McKee et al., 

2004; Corbett et al., 2006; Bianchi et al., 2007a,b; Sampere et al., 2008; Bianchi et al., 

2009).  The Mississippi River Delta is one of the most anthropogenically modified river 

systems in the world, and the shelf experiences the largest hypoxic events in the Western 

Hemisphere (Rabalais et al., 2002a; Rabalais et al., 2002b; Syvitski et al., 2009; Bianchi 

et al., 2010). 

Four box-cores were collected on two 2008 Mechanisms Controlling Hypoxia 
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(MCH) cruises aboard the R/V Pelican along the 20 m isobath south of Atchafalaya Bay 

on the LCS (Fig. 6).  Sites 8C and BC1 were sampled during MCH11 in April (8Capr and 

BC1apr), and again in July (8Cjuly and BC1july).  Sediments were immediately sectioned 

into 2 cm intervals down to ~20 cm and frozen until analysis.  These sites are outside of 

the primary depositional path of the Mississippi and Atchafalaya Rivers (Corbett et al., 

2006, 2007; Allison et al., 2000; Neill and Allison, 2005).  Therefore some of the muds  

 

 

 

 

Figure 6.  The Louisiana Continental Shelf and Louisiana Coastline.  Shown are the 

three stations cores were retrieved from for this study. 

 

 

 

in these regions may represent old deltaic lobe sediments that have been exposed due to 

low sedimentation rates and a net erosion of fresh surface muds.  Thus, these sediments 
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are very different than the organic-rich mobile mud belts to the east, where much of the 

suspended sediments are deposited along the 50 m isobath in the primary depositional 

pathway (Corbett et al., 2006, 2007; Sampere et al., 2008). 

CuO Oxidation and GC/MS Analysis 

 Freeze-dried sediment containing 3 to 5 mg OC were analyzed for lignin 

monomers and 3,5-dihydroxybenzoic acid using the CuO method of Hedges and Ertel 

(1982) as modified by Goñi and Hedges (1992).  Briefly, sediments were transferred to 

stainless steel reaction vials and digested with 330 mg (+/- 4 mg) CuO in 2N NaOH 

under N2 at 150 
o
C for 3 h.  Reaction products were allowed to cool, extracted with three 

successive 3 mL aliquots of diethyl ether (peroxides removed with ferrous ammonium 

sulfate dissolved in water), dried with sodium sulfate, evaporated under a stream of N2, 

reconstituted in pyridine, and converted to trimethylsilyl derivatives using bis-

(trimethylsilyl)trifluoroacetamide (BSTFA) at 70
o
C for 1 hour.  Oxidation products were 

analyzed using an Agilent 6890n gas chromatography instrument/ coupled to an Agilent 

5973N mass spectrometry instrument (GC-MS). 

Compound identification of lignin-phenols was made by comparison with pure 

standards.  Quantification and % recovery of oxidation products was based on an ethyl 

vanillin (EVAL) internal standard.  The relative response factors (RRFs) to EVAL for all 

compounds were calculated from a mixed standard analyzed with every batch of 12 

samples.  The mixed standard contained vanillin (VAL), acetovanillone (VON), vanillic 

acid (VAD), syringaldehyde (SAL), acetosyringone (SON), syringic acid (SAD), p-

coumaric acid (CAD), ferulic acid (FAD), p-hydroxybenzaldehyde (PAL), p-
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hydroxyacetophenone (PON), p-hydroxybenzoic acid (PAD), and 3,5-dihydroxybenzoic 

acid (3,5-Bd).  RRFs were calculated using the pure compounds in the mixed standard. 

All compound yields are normalized to mass (mg g
-1

: ) (Appendix A).  Lignin 

concentrations are calculated as the yield of S, V, and C phenols per 10 g of sediment 

( 810) and used as a proxy for OMterr (precision, based on coefficient of variation (CV), 

less than 5% in selected triplicate runs).  Sediment mass normalized concentrations of 

3,5-Bd (3,5:g) are used as a proxy for OMsoil (Prahl et al., 1994).  Acid to aldehyde ratios 

of vanillyl phenols are used as indicators of lignin degradation state ([Ad/Al]v (Hedges 

et al., 1988).  The lignin-phenol vegetation index (LPVI) was first introduced by Tareq 

et al. (2004) and is used as an indicator of lignin source. 

GDGT Isolation and LC/MS Analysis 

GDGTs were analyzed according to Hopmans et al. (2004), as modified by Smith 

et al. (2010).  Ca. 1 to 4 g of sediment were extracted (3X, 5 min each) in 9:1 

CH2Cl2:CH3OH using a Dionex accelerated solvent extractor (ASE) at 100 
o
C and 7.6 x 

10
6
 Pa. The extracts were loaded onto an activated (2 h, 150 

o
C) alumina pipet column. 

Hexane:CH2Cl2 (9:1 vol:vol) was used to elute the apolar fraction and CH2Cl2:MeOH 

(1:1) to elute the polar fraction, which contained the GDGTs. Polar extracts were 

dissolved in hexane/isopropanol (99:1; % vol.:vol.) at a concentration of 2 mg mL
-1

, and 

filtered through a 0.2 µM  PTFE syringe-tip filter into silianized 150 µL vial inserts.. 

Analysis were performed with a Shimadzu 2010A Series liquid chromatography–mass 

spectrometry (LC–MS) instrument with LC-MS solution software. Separation was 
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achieved with a Prevail Cyano column (4.2 x 150 mm, 3 µm; Alltech) maintained at 30 

o
C. GDGTs were eluted at a flow rate of 1 mL min.

-1
, first isocratically with 

hexane/isopropanol (99:1; %vol.:vol.) for 5 min., then with a linear gradient up to 1.8% 

isopropanol over 40 min. The gradient was then increased to 75% 2-propanol over a 

period of three min., and held for ten min. to clean the column.  The system was then re-

equilibrated for five min. with 99:1 hexane/isopropanol.  Analysis was achieved using 

atmospheric pressure chemical ionization–mass spectrometry (APCI–MS) using the 

following conditions: nebulizer pressure 65 psi, vaporizer temperature 400 
o
C, N2 drying 

gas flow 2.5 L min.
-1

, capillary voltage of 4.5 kV. Single ion monitoring (SIM) was used 

instead of full scanning to increase the reproducibility and signal-to-noise ratio 

(Schouten et al., 2007). SIM was set to scan the [M + H]
+
 parent ion of crenarchaeol 

(1292) and the three [M + H]
+
 parent ions of the branched GDGTs (1050, 1036 and 

1022), with a dwell time of 200 ms for each ion.  The BIT Index was calculated as 

follows: 

BIT Index = (I + II + III)/(I + II + III + IV)          (2) 

where,  I, II, and III are the concentrations (or relative abundances) of brGDGT 

structures in Hopmans et al. (2004), and IV is the concentration of crenarchaeol.  Recent 

studies (Schouten et al., 2009; Escala et al., 2009) have shown that BIT indices vary 

significantly among laboratories as a result of MS sensitivity differences among 

molecules of varying MW (i.e., terrestrial GDGTs vs. crenarchaeol).  Therefore, a 

sample with a previously measured BIT value was analyzed daily to ensure consistency 

in our laboratory.  The precision of repeat BIT Index measurements (%CV) was 6.7 %. 
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 Three µL of a synthesized tetraether internal (surrogate) standard (IS) (Rethore, 

2007); structure “GR”) was added to the ASE extract after evaporation and before 

column separation.  The IS has a mass of 1207.2 and is ionized during APCI analysis; 

therefore M/Z 1208.2 was measured in SIM mode.  This IS is advantageous compared to 

previously used ISs (Huguet et al., 2006) as its mass is between the low terrestrial 

masses and high crenarchaeol mass, and also does not occur naturally.  The latter allows 

the IS to be added before extraction and used as a measure of extraction efficiency.  RRF 

of the IS to GDGTs in the BIT Index is not known, and therefore absolute quantities of 

GDGTs are not known.  However, the IS can still be used to quantify the relative 

proportions of marine and terrestrial GDGTs as it corrects for extraction efficiency, 

which can vary from 20 to 90% (Huguet et al., 2010b).  The ion count (IC) of each 

GDGT was first corrected based on the extraction and detection efficiency of the IS.  

The corrected IC was then normalized to the lowest GDGT response in the entire data 

set for the purpose of reducing the magnitude of the values, as well as the sample mass.  

The sample producing the lowest GDGT response in this data set was from a separate 

core not included in this study.  The two parameters calculated this way are: 

GDGTcren = (1292IC*ISf)/(ICmin*gsample)          (3) 

GDGTsoil = ((1050IC + 1036IC + 1022IC)*ISf)/(ICmin*gsample)       (4) 

where, ISf is the ratio of the IS ion count of the sample to the highest IS ion count of the 

entire data set, ICmin is the lowest ion count produced by a GDGT in the data set, gsample 

is the mass of sediment extracted, and 1292IC, 1050IC, 1036IC, and 1022IC are the ion 

counts of the respective mass to charge (M/Z) ratios in SIM mode.  GDGTcren and 
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GDGTsoil therefore represent the relative abundances of crenarchaeol (marine) and 

branched (soil-produced) GDGTs, respectively.  These parameters differ from the BIT 

index in that they do not reflect the absolute abundance of marine and terrestrial GDGTs 

to each other, but rather the absolute amount of each GDGT type normalized to sediment 

mass.  The precision of repeat (n = 4) GDGTcren and GDGTsoil measurements (%CV) 

was 7.7 % and 7.0 %, respectively. 

Results 

 

CuO Oxidation Products 

 

 All nine V, S, and C lignin-phenols (SAL, SON, SAD, VAL, VON, VAD, CAD, 

and FAD), as well as three p-hydroxy phenols (PAL, PON, PAD) with multiple sources 

were identified in this study; however not all were present in every sample.  In addition 

to these phenols, p-hydroxyphenylglyoxalic acid (Pg) and syringylglyoxalic acid (Sg) 

were also identified (Goñi and Hedges, 1995).  Three fatty acid products (n-C14FA, n-

C16FA, and n-C18FA) were identified in a small number of sediment samples (Goñi and 

Hedges, 1995).  BCAs identified include only 3,5 dihydrozybenzoic acid (3,5-Bd) and 

m-hydroxybenzoic acid (m-Bd) (Dickens et al., 2007).  Cutin hydroxy acids and lignin-

dimers were absent in all sediment samples included in the study (Goñi and Hedges, 

1990; Goñi and Hedges, 1992).  Due to low concentrations and low frequency of Pg, Sg, 

fatty acid products, and m-Bd, only 3,5-Bd was quantified along with the twelve V, S, C, 

and P phenols. 

 810 values ranged from 0.01 to 0.87 (0.28 +/- 0.21, n = 37) (Appendix D).  The 

LPVI of all sediment samples ranged from 48.4 to 131, suggesting lignin-phenols were  
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Figure 7.  Lousiana Continental Shelf downcore biomarker reconstructions.  Shown 

are sedimentary profiles of lignin (mg V, S, and C phenols g
-1

 sediment; 810), 3,5-

Bd (μg 3,5 dihydroxybenzoic acid g
-1

 sediment; 3,5:g), and branched GDGTs 

(GDGTsoil) at four locations. 
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produced dominantly from the oxidation of angiosperm woods, and to a lesser extent 

from gymnosperms (woody and non-woody) (Tareq et al., 2004).  This was in agreement 

with other sedimentary studies in the region as well as with Mississippi River POC 

signatures (Bianchi et al., 2007a; Sampere et al., 2008).  [Ad/Al]v values ranged from 

0.17 to 0.76, indicating varying states of lignin degradation among samples.  Values of 

3,5:g ranged from 0.00 (below detection limit) to 1.39 µg g
-1

. 

CuO biomarkers showed no major trends with depth (Fig. 7).  Lignin and 3,5-Bd 

concentrations fluctuate by a factor of 2 to 4, and correlated significantly in all cores (R
2
 

= 0.55).  In core BC1apr (R
2
 = 0.40), 810 and 3,5:g remained low until ~4 to 8 cm depth 

(0.22-0.36 mg g
-1

 and 0.30 to 0.42 µg g
-1

, respectively), and then spiked to 0.87 mg g
-1

 

and 1.39 g g
-1

, the highest concentrations in the dataset, before decreasing again in 

surface sediments.  At the same location in July (BC1july, R
2
 = 0.85), both proxies had 

increased concentrations from 12 to 20 cm depth ( 810: ~0.3-0.4 mg g
-1

, 3,5:g: ~0.6-1 µg 

g
-1

), followed by a period of decreased abundance from 2 to 10 cm ( 810: ~0.1 mg g
-1

, 

3,5:g: ~0.1 µg g
-1

), then elevated concentrations again at the surface.  At 8C in April 

(8Capr; R
2
 = 0.60), 810 and 3,5:g peak at 8 to 10 cm depth (0.83 mg g

-1
 and 0.91 µg g

-1
, 

respectively), and exhibited a smaller peak at 2 to 4 cm depth.  At the surface (0-2 cm), 

3,5-Bd was below detection limits and lignin yields dropped to 0.03 mg g
-1

.  In July 

(8Cjuly; R
2
 = 0.43), 810 and 3,5:g peaked at 16 to 18 cm depth (0.25 mg g

-1 
and 0.45 µg 

g
-1

, respectively), followed by an excursion at 10 to 12 cm where no 3,5-Bd was detected 

and lignin concentrations are 0.01 mg g
-1

.  Both proxies then steadily increased to 0.40 

mg g
-1

 ( 810) and 0.45 µg g
-1

 (3,5:g) in the surface sediment. 
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GDGTs 

 

 Crenarchaeol and brGDGTs I, II, and II were detected and quantified in every 

sediment interval, along with the IS (Fig. 8). The BIT Index in all four cores ranged from 

0.50 to 0.03, within the previously measured ranges for continental shelves (Hopmans et 

al., 2004; Walsh et al., 2008; Kim et al., 2009a; Schmidt et al., 2010).  However, the 

majority of continental shelf BIT values in the literature are on the low end of this  

Figure 8.  LC/MS chromatogram.  Shown are crenarchaeol (IV), branched GDGTs 

(I, II, III), and the internal standard (IS; m/z: 1208.2) on SIM mode. 
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Figure 9.  Sedimentary profiles of GDGT-based parameters.  Shown are the BIT 

Index, GDGTcren (sediment mass normalized relative crenarchaeol concentration), 

and GDGTsoil (sediment mass normalized relative branched GDGT concentration).  

In most cases, large changes in GDGTcren correspond with fluctuations in the BIT 

Index. 
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spectrum (<0.10).  It was not possible to determine if there are differences in the amount 

of OMsoil delivered among regions or if the differences were largely analytical based on 

results from Schouten et al. (2008) and Escala et al. (2008).  Although the relative 

magnitude of change in GDGTsoil (CV% = 46.2, all cores) was only slightly smaller than 

for GDGTcren (CV% = 65.6%), the absolute magnitude of change of GDGTcren was much 

larger.  GDGTsoil and GDGTcren ranged from 22.4-248 (88.7 +/- 41.0) and 73.7-1390 

(526 +/- 345), respectively, which implied higher concentrations of crenarchaeol than 

brGDGTs if their ionization efficiencies were similar. 

While lignin and 3,5-Bd concentrations correlated strongly in all cores, the BIT 

Index exhibited very low correlations with either proxy.  When brGDGT concentrations 

(GDGTsoil) were used in place of the BIT Index, R
2
 values improved in all cores except 

for 8Cjuly (Appendix E).  GDGTsoil was plotted against terrestrial biomarker proxies to 

see if they had similar downcore trends (Fig. 9).  In core BC1apr, brGDGT concentrations 

were low from 6 to 16 cm along with 810 and 3,5:g.  GDGTsoil peaked at the same time 

as 3,5:g, rather than following the slightly earlier lignin peak.  In core BC1july, brGDGTs 

followed the same trend as lignin and 3,5-Bd, with the exception of lower values at 12 to 

14 cm and 18 to 10 cm.  Additionally, the peak at the surface is deeper, down to 4 cm.  

In core 8Capr, GDGTsoil peaked at 6 to 8 cm along with the other proxies, and again 

slightly at 2 to 4 cm.  The brGDGTs did not drop as drastically in concentration at the 

surface as lignin or 3,5-Bd.  In core 8Cjuly, GDGTsoil peaked at 8 to 10 cm, which was 

shallower than the lignin and 3,5-Bd peak.  This region of disagreement explains for the 
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anomaly of 8Cjuly in Appendix E.  Above 10 to 12 cm, GDGTsoil values increased 

linearly with 810 and 3,5:g, and peaked at the surface sediment.   

All four cores have elevated GDGTcren values towards the surface (Fig. 9).  Cores 

8Capr and 8Cjuly exhibit very similar trends in GDGT-based proxies.  In both cores at this 

location, BIT Index values were high and relatively constant (~0.40) downcore from ~8 

to 10 cm, and drop to ~0.10 towards the surface.  The upcore decrease in BIT Index 

values coincided with the timing of large increases in GDGTcren.  In 8Capr, the drop in the 

BIT Index occurs 2 cm shallower than the onset of crenarchaeol increase due to a 

temporary spike in GDGTsoil.  Core BC1apr has increasing crenarchaeol concentrations 

above the 14 to 16 cm interval, with the exception of a sharp decrease in GDGTcren at 2 

to 4 cm.  Values then increased again in the surface sediment.  The BIT Index was 

slightly elevated below 14 to 16 cm, and then dropped to 0.01 corresponding with the 

onset of increased crenarchaeol concentrations.  At 2 to 4 cm, the drop in GDGTcren 

corresponded with a large spike in the BIT Index (0.45).  The BIT Index was again low 

in the surface sediment.  In core BC1july, BIT Index values were consistently low (~0.10) 

corresponding with low concentrations of brGDGTs at this site and high values of 

GDGTcren.  The upcore increase of GDGTcren at this site did not begin until 4 to 6 cm.   

Discussion 

Louisiana Continental Shelf Organic Matter Composition 

Based on previous studies, there are two main pools of river-derived particulate 

OMterr  transported to the Louisiana Continental Shelf by the Atchafalaya and 

Mississippi Rivers: 1) recalcitrant OMsoil) associated with fine-grained minerals (clays); 
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and 2) waterlogged OMVPD (Gordon and Goñi, 2004; Bianchi et al., 2007b).  River-

derived OMsoil associated with clays is primarily transported to deeper regions of the 

Gulf of Mexico and contained the residues of C4 grasses, while much of the OMVPD in 

this region is derived from C3 plants from coastal forests and swamps  (Goñi et al., 

1997).  Due to hydrodynamic sorting involving resuspension and cross-shelf transport, 

the denser C3 plant detritus was concentrated in bays and on the inner shelf along with 

POM associated with sand and silt sized particles (Gordon and Goñi, 2004;  Bianchi et 

al., 2007a).  The composition of this OMVPD may be derived from the extensive amounts 

of sand-sized woody materials (coffee-grinds) found in the sandy sediments in both the 

Atchafalaya and Mississippi Rivers - likely derived from woody plant materials (Bianchi 

et al., 2007a).   

Low lignin and high 3,5-Bd concentrations suggest OMsoil was a large 

component of the terrestrial OC content at these sites. Additionally, significant 

correlations between the two proxies suggest minimal input from OMVPD, which would 

increase 810 but not 3,5:g.  Terrestrial biomarker profiles at each site were variable 

between cores taken in April and July.  The cause of this cannot be positively identified 

without additional analysis, but may be due to sedimentary transport mechanisms on the 

shelf.  Lignin source and degradation parameters downcore were quite variable, and 

likely reflected changes in the magnitude of OMterr delivered from the Mississippi River, 

Atchafalaya River, and associated coastal marshes (Bianchi et al., 2010; Gordon and 

Goñi., 2004).  Since much of the aforementioned literature has focused on the transport 

and sedimentary dynamics of OMsed along the Louisiana shelf, we have kept our 
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interpretation of this very brief and now focus largely on methodological considerations. 

BIT Index Versus the CuO Method 

The lack of correlation between the BIT Index and lignin concentration was 

similar to the finding of most studies involving these comparisons (Walsh et al., 2008; 

Belicka and Harvey, 2009; Weijers et al., 2009; Schmidt et al., 2010; Smith et al., 2010).  

These studies have attributed these differences to two primary explanations.  The first is 

that the BIT Index is a measure of only the soil fraction of OMterr, while lignin is derived 

from fresh plant matter, as well as more degraded plant material incorporated into soils 

(Walsh et al., 2008; Smith et al., 2010).  Lignin based OMterr estimates should therefore 

be higher than those based on the BIT Index, as is generally the case (Walsh et al., 2008; 

Belicka and Harvey, 2009).  However, in this study, due to the strong correlation 

between lignin and 3,5:g, an independent proxy for OMsoil, OMVPD was not a large 

component in these sediments, and cannot explain for the poor correlation between the 

BIT Index and lignin concentrations. 

The second explanation was that large variations in crenarchaeol concentrations 

can control BIT Index values (Belicka and Harvey, 2009; Schmidt et al., 2010).  To 

determine the degree to which the BIT Index in this study was controlled by variations in 

crenarchaeol rather than brGDGTs, R
2
 values were measured in all four cores for 

GDGTcren vs. BIT Index and GDGTsoil vs. BIT Index (Appendix F).  The response of the 

BIT Index to changes in crenarchaeol concentrations was non-linear (due to the equation 

of the BIT Index), and therefore required the Log values from both sets of values.  The 

linear regressions revealed that in all four cores, a strong relationship existed between  
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Figure 10.  Linear regressions of GDGTcren and the BIT Index. 
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BIT Index values and crenarchaeol abundance (Fig. 10).  When this was applied to 

individual cores, 8Capr and 8Cjuly showed the strongest relationship between the BIT 

Index and crenarchaeol, while BC1apr and BC1july did not exhibit strong relationships 

between the BIT Index and either GDGT type.  These data suggests that in two out of 

four cores (8Capr and 8Cjuly), crenarchaeol concentrations are controlling BIT Index 

values.  In BC1apr and BC1july, BIT Index values were a function of both the amount of 

branched GDGTs and crenarchaeol.  The compiled core data suggested that overall, on 

the LCS large vertical variations in crenarchaeol sedimentary concentrations were the 

driving force of changes in BIT Index values, as opposed to the concentration of OMsoil.  

These results have major implications for the way BIT indices have been and should be 

interpreted in the future. 

Crenarchaeol and Linkages with Nitrogen Loading  

To extend the implications of this regional study to other types of aquatic and 

marine environments, it was necessary to explain the large variations in crenarchaeol.  

Upcore increases of GDGTcren concentrations in all cores could be due to three possible 

explanations: 1) increased production of crenarchaeota and subsequent delivery to 

sediments over the last several decades; 2) in situ production of isoprenoidal GDGTs in 

the shallower oxygenated zone of the sediments; and 3) selective degradation of 

GDGTcren over brGDGTs.   

An estimated 1.2 million metric tons of N are currently delivered to the LCS 

annually by the Mississippi River (Aulenbach et al., 2007) down from the peak during 

1990 (Turner et al., 2007).  This stimulates seasonally high levels of production on the 
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shelf (Justic et al., 2002).  Primary production rates however are highly variable 

throughout the year, ranging from 0.5 g C m
-2

 d
-1

 in the winter to 10 g C m
-2

 d
-1

 in the 

summer, a difference of a factor of 20 (Lohrenz et al., 1990; Redalje et al., 1994; 

Lohrenz et al., 1999).  Organic matter loading to shelf sediments over several decades 

has created a “memory” effect, whereby excess levels of organic carbon stimulate 

respiration and oxygen consumption in sediments (Rowe et al., 2002; Turner et al., 2008; 

Bianchi et al., 2010).  This in turn causes the production and efflux of ammonia and 

other metabolites from sediments, which stimulates more primary production in the 

water column (Eldridge and Morse, 2008).   

Group 1.1b marine crenarchaeota have recently been realized to play a large role 

in the biogeochemical cycling of nitrogen by aerobically oxidizing ammonia 

(nitrification) (Wuchter et al., 2006; You et al., 2009; Pitcher et al., 2010).  Recent 

studies on continental shelves and lakes have shown that crenarchaeota GDGT 

concentrations in the water column follow seasonal trends in ammonia levels, generally 

lagging behind peaks in primary production (Wuchter et al., 2005; Damste et al., 2009).  

It is therefore likely that increases in nutrient loading and primary production on the 

Louisiana shelf over the past several decades has resulted in increased crenarchaeotal 

populations and fluxes of isoprenoid GDGTs to sediments.  If we apply the low and high 

210
Pb determined sedimentation rates calculated by Gordon and Goñi (2004) on the 

Atchafalaya Shelf (0.18 – 0.68 cm yr
-1

) and assume constant sedimentation rates and that 

no large erosion or deposition events disturbed the sediment column, the increasing 

upcore trend of crenarchaeol at 10 cm depth at location 8C falls between the years 1952 
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and 1993, which coincides with the time range of increased nutrient fluxes from the 

Mississippi River.  However, these 
210

Pb sedimentation rates may not be applicable to 

our sites, as sediments in this region are often relict (Allison et al., 2000; Neill and 

Allison, 2005). 

High levels of ammonia production in Louisiana shelf sediments may also 

stimulate crenarchaeotal populations in situ.  Lipp and Hinrichs (2009) demonstrated 

that sedimentary archaeal communities can contribute parent GDGT molecules to the 

sedimentary record that degrade within relatively short periods of time into fossil 

molecules, thereby post-depositionally lowering the BIT Index value of the sediment.  It 

is possible that in situ crenarchaeota communities have contributed to the increase in 

crenarcheaol in shallow sediments in this study, as they are aerobic and would 

proliferate more in aerated surface sediments (Lipp and Hinrichs, 2009; You et al., 2009;  

Pitcher et al., 2010).  This could in part explain the varying terrestrial biomarker profiles 

but similar crenarchaeol profiles between April and July at 8C. 

Finally, decreasing crenarchaeol concentrations with depth relative to branched 

GDGTs can be also explained by varying degradation rates.  In a study of OM-rich 

turbidites from the Madeira Abyssal Plain, the BIT Index increased from 0.02 to 0.4 

across an oxidation front due to the selective degradation of crenarchaeol in oxygenated 

sediments (Huguet et al., 2008).  Calculated degradation rates indicated that 

crenarchaeol degrades twice as fast as brGDGTs.  This selective degradation has been 

confirmed by subsequent studies (Huguet et al., 2009; Kim et al., 2009b).  The 

mechanism for this may be the association of brGDGTs with fine-grained mineral 



57 

 

 

 

particles (Keil et al., 1994; Hedges and Keil, 1995; Kim et al., 2007), although some 

studies have shown brGDGTs and crenarchaeol to occupy the same sediment density 

fractions (Walsh et al., 2008 and references therein).  It is unclear to what extent this 

process is influencing sedimentary GDGT profiles in this study, however based on 

sediment accumulations rates in Gordon and Goñi (2004), the timeframe of our sediment 

profile is shorter than in other studies that have seen sufficient degradation of GDGTs 

(Yamamoto and Polyak, 2009).  If these sediments are in fact relict, as described in 

previous sections, sufficient time for selective degradation may have passed. 

Without the aid of stable and radioactive isotopes (
210

Pb, 
137

Cs, 
7
Be, 

234
Th), it is 

unclear to what extent each of these mechanisms are responsible for the measured 

GDGT profiles in our study.  Additionally, many of the studies involving 

biogeochemical cycling on the shelf have been conducted further east near the main 

depositional zone of the MR, and it is not clear to what extent the western Louisiana 

shelf demonstrates similar processes.  However, these situations are likely in many types 

of marine environments, and therefore care must be taken in strictly interpreting the BIT 

Index as a OMsoil proxy. 

GDGT-based %OMsoil Estimates 

 Previous studies have converted BIT index values to %OMsoil in sediments by 

multiplying them by 100 (Kim et al. 2006; Belicka and Harvey 2009).  The equation is: 

%OMsoil = (I + II + III * 100) /(I + II + III + IV)         (5) 

where, IV is the concentration (or relative abundance) of crenarchaeol, and I, II, and II 

are the concentrations of branched GDGTs as in Hopmans et al. (2004).  This equation
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literally translates as the percent of total GDGTs (brGDGTs + crenarchaeol) in the 

sediment that were branched.  The main assumption in equating this value to %OMsoil is 

that brGDGTs are a fixed proportion of the total soil organic matter pool, and 

crenarchaeol concentrations are fixed.  The mixing line between marine and terrestrial 

endmembers is not linear (Fig. 11), as changes to the numerator also occur in the 

Figure 11.  BIT Index-based binary mixing curves.   The response of %OMsoil 

estimates in marine sediments with fixed crenarchaeol concentrations (as indicated 

next to each curve) to increases in brGDGT concentrations (and the BIT Index).  

%OMsoil values are calculated as BIT Index*100.  The results indicate that the non-

linearity of the BIT Index increases with decreasing amounts of crenarchaeol. 
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denominator (I + II + III).  Changes in OMsoil concentrations will therefore produce 

different magnitudes of change in the BIT Index depending on several variables, 

including the concentration of brGDGTs in the soil, the flux of crenarchaeol to 

sediments, and the range of the BIT Index values being measured.  The brGDGT 

concentrations in soils however can range from approximately 0.1 to 300 ng g
-1 

(Weijers 

et al., 2006b), and their relative abundances can change as a function of both pH and 

mean annual air temperature (Weijers et al., 2007; Damste et al., 2008; Tierney et al., 

2010).  Additionally, crenarchaeota populations have been shown to vary in response to 

a number of factors (see section 4.3), and therefore can control BIT Index values.  The 

effect of sedimentary crenarchaeol concentrations on %OMsoil estimates are 

demonstrated in Figure 11. 

 These issues can be resolved by treating brGDGTs similar to other terrestrial 

biomarkers.   Estimates of %OMterr are made using terrestrial biomarkers such as lignin 

and cutin by using the following two-end-member mixing model: 

%OMterr = [([B]sample-[B]marine)/([B]terrestrial-[B]marine)]*100          (6) 

where,  [B]sample is the concentration of a particular biomarker (or group of biomarkers) 

in the sediment sample, [B]marine is the marine end-member concentration, and [B]terrestrial 

is the terrestrial end-member concentration.  brGDGTs are produced only in soils, so 

[B]marine = 0, and the equation solves for %OMsoil.  Therefore, we suggest the following 

equation be used as a GDGT-based estimate for OMsoil abundance: 

%OMsoil = ([brGDGT]sample*100)/[brGDGT]soil                             (7) 
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The terms in this equation can be substituted with either actual core-lipid brGDGT 

concentrations, relative values as calculated in this study (GDGTcren and GDGTsoil), or 

percent of total GDGTs as in Blaga et al. (2009).  So, [brGDGT]soil should be calculated 

using the average value of as many soil samples from a watershed as possible. 

 In addition to being non-linear, this method overestimates the amount of OMsoil 

compared to brGDGT-based estimates using equation (7).  The magnitude of this 

discrepancy is dependent on brGDGT concentrations in the source soils.  Figure 12 

examines the difference in these methods.  Curve „a‟ represents %OMsoil calculations 

made using equation (5).  In addition to being nonlinear, the BIT-based calculation has 

no term for soil end-member concentrations of brGDGTs, which makes BIT Index 

values incomparable among study sites receiving OMterr inputs from separate 

watersheds. 

To test the magnitude of the influence equation (7) will have on previous GDGT-

based estimates of %OMsoil, we applied it to a GDGT data set from the Arctic (Belicka 

and Harvey 2009) that has already calculated %OMsoil using the BIT Index and equation 

(5) for comparison.  The results are summarized in Appendix G.  In all sediment samples 

but one in which there was an increase of 1.4%, equation (7) reduced estimates of 

%OMsoil.  On average estimates were reduced by 8.5%, and by as much as 45.1%.  

Station WHS-12, which had the highest magnitude of change, in particular demonstrates 

the accuracy of equation (7).  Out of the nineteen stations included in the study, only 

WHS-12 had BIT-based %OMsoil estimates higher than the lipid biomarker based 
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terrestrial estimates (PCA and ALKOC).  Because brGDGTs are found only in soils and 

lipid biomarkers are found in both soils and vascular plant detritus, estimates using the  
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Figure 12.  Modeled GDGT mixing curves of marine and terrestrial end-members.  

Models are generated using the BIT Index and equation (5) (curve a), as well as 
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BIT Index (%OMsoil) should always be lower than the biomarker based methods.  

Equation (7) reduced this anomalously high value and produced a BIT-based %OMsoil 

value similar to the rest of the samples in the study. 

Branched GDGTs as Biomarkers 

Previous studies have suggested the importance of including brGDGT 

concentrations along with BIT indices when determining trends in OMsoil deposition 

(Herfort et al., 2006; Kim et al., 2006).  This study provides additional evidence on the 

utility of brGDGTs as soil biomarkers.  Correlations of brGDGTs versus lignin and 3,5-

Bd were stronger than correlations between the BIT Index and these biomarkers in all 

cores but one.  Discrepancies still exist between brGDGTs and these proxies, however 

this is to be expected, as nearby marshes can contribute vascular plant detritus, and 3,5-

dihydroxybenzoic acid can be produced by plankton (Goñi and Hedges, 1995).  

brGDGTs are still the only biomarkers with soil as their exclusive source, and therefore 

offer an opportunity to increase the resolution of organic matter fractions we can 

quantify in sediments to create more accurate carbon budget models. 

Implications for the TEX86 Index 

 The TEX86 Index is a paleotemperature proxy based on the distribution of 

crenarchaeota produced isoprenoid lipids (Schouten et al., 2002) in sediments.  Due to 

the presence of isoprenoidal GDGTs in soils, the presence of significant amounts of 

OMsoil in sediments can bias temperature reconstructions (Weijers et al., 2006b; Powers 

et al., 2010).  The BIT Index is therefore commonly measured along with TEX86 to 

determine possible soil-inputs of isoprenoidal GDGTs.  We suggest that while brGDGTs 
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are more appropriately used without reference to isoprenoidal GDGTs when quantifying 

soil inputs, the BIT Index is necessary to calculate in TEX86 temperature reconstructions.  

The relative bias of TEX86 measurements from soil inputs is based not strictly on the 

amount of OMsoil present, but also the amount of marine-derived isoprenoidal GDGTs 

present, which can effectively “dilute” the signal from the soil.  Therefore, quantification 

of brGDGTs, as suggested for in OMsoil studies, without reference to the concentration 

of isoprenoid GDGTs does not provide any information on the extent to which TEX86 

values will be biased.  Powers et al. (2010) systematically applied BIT Index cutoff 

points, and determined that only samples with a BIT Index less than 0.50 should be 

included in TEX86 temperature reconstructions.  This practice should continue use, 

although the cutoff point of the BIT Index will depend on the isoprenoidal and branched 

GDGT concentration in the source soils, which in paleoclimate studies may be difficult 

to determine. 

Conclusion 

 The BIT Index was originally proposed as a proxy for OMterr.  These results 

show for the first time that crenarchaeol concentrations can control BIT Index values 

with no variations in the amount of OMsoil present.  Due to the variety of factors that can 

control crenarchaeol concentrations in sediments, including those that directly increase 

the amount of crenarchaeota (ammonia concentration, seasonal stratification, in situ 

productivity) as well as diagenetic effects, this has the potential to affect terrestrial 

carbon reconstructions in a wide variety of marine and aquatic environments.  This will 

be especially pronounced in large-river delta-front estuaries (Bianchi and Allison, 2009), 
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which have seasonal variations in nutrient inputs and stratification.  Mixing between 

terrestrial and marine end-members of the BIT Index is non-linear, resulting in 

anomalously high %OMsoil values.  The degree of non-linearity is determined by 

sedimentary crenarchaeol concentrations; lower concentrations produce steeper curves 

and higher %OMsoil estimates.  By applying a new equation based on brGDGTs, 

estimates of OMsoil in many regions will be reduced.  Use of this equation removes the 

bias of BIT Index %OMsoil estimates towards higher values, and also takes into account 

the concentration of brGDGTs in source soils, which is necessary in any quantitative 

terrestrial biomarker study.  brGDGTs are soil-specific and relatively resistant to 

degradation, and show promise as a quantitative tracer of OMsoil.  The BIT Index should 

therefore be replaced with brGDGT concentrations in future studies involving the 

transport of OMterr to marine sediments.  Finally, we propose that the BIT Index be 

reserved to aid in TEX86 temperature reconstructions. 
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CHAPTER IV 

 

HISTORICAL RECONSTRUCTION OF TERRESTRIAL ORGANIC MATTER  

 

INPUTS TO NEW ZEALAND FJORDS OVER THE LAST ~500 YEARS 

 

 

 

Introduction 

  

 Quantifying the flux of terrestrial organic matter (OMterr), both soil organic 

matter (OMsoil) and vascular plant debris (OMVPD), to coastal environments is critical to 

understanding global carbon budgets (Hedges and Oades, 1997).  Changes in the size of 

this flux have the ability to regulate O2 and CO2 atmospheric budgets, as burial 

environments, which differ drastically between terrestrial, coastal and non-coastal 

marine systems, play a large role in organic matter remineralization and preservation 

rates (Berner and Lasaga, 1989; Burdige, 2005; Hedges and Keil, 1995; Hedges et al., 

1997).  Additionally, OMterr generally exhibits higher preservation rates than marine-

derived organic matter (OMmar), as this organic matter pool is derived in-part from 

refractory vascular plant biomolecules such as lignin, may be mineral-associated, and 

has generally already been extensively processed before entry into the marine 

environment (Ertel and Hedges, 1985; Hedges and Keil, 1995; Keil et al., 1994). 

 Fjords are narrow, deep glacially carved estuaries at high latitudes formed since 

the last glacial maximum, and worldwide contain a greater volume of water than 

drowned river estuaries (Syvitski et al. 1987).  They may contain over 12% of all the 

sedimentary organic matter (OMsed) buried during the last 100,000 years (Nuwer and 

Keil, 2005), suggesting they are quantitatively significant burial environments when 
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calculating global carbon budgets.  Sediments in fjords have been found to contain over 

10% by weight OC (Skei 1983; Walsh et al., 2008; Smith et al. 2010), the majority 

which is terrestrial in origin, especially in the upstream reaches of the fjords (Nuwer and 

Keil, 2005; Smith et al., 2010; Walsh et al., 2008; Huguet et al., 2007; Burrell 1988).  In 

addition its role in coastal carbon cycling, OMterr is becoming increasingly realized as an 

important carbon source for fjord ecosystems (McLeod and Wing, 2007, Vargas et al., 

2011). 

Methods 

Fiordland is a National Park containing 14 major fjords covering approximately 

175 km of the southwestern New Zealand coastline.  The physical characteristics of the 

fjords, along with the regional climate, result in high concentrations of OMsed in fjord 

basins with a strong terrestrial signature (Nuwer and Keil, 2005; Smith et al., 2010).  

First, unlike watersheds in the North Island which have lost 40-100% of their indigenous 

vegetation due to anthropogenic modification, Fiordland has lost almost none 

(Leathwick et al., 2003).  Second, Fiordland receives 6200-8000 mm yr-1 of rainfall 

(Sansom 1984).  Third, uplift and denudation rates in the Southern alps are 

approximately equal, resulting in a maintained relief of 2-4 km (Hovius et al., 1997) and 

inclination angles of 35-65
o
 or more.  Finally, the active Alpine Fault runs directly off 

the coast of Fiordland, making it one of the most seismically active areas of New 

Zealand (Hancox and Perrin, 2009).  These factors result in OMterr inputs to fjord 

sediments from; continuous leaching of organic-rich soils, large-mass wasting events of 

fjord slopes which deposit large areas of intact vegetation, soils, and bedrock, mountain 
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streams carrying over 20x the global average of POC (Lyons et al., 2002; Scott et al., 

2006), and physical erosion (up to 7 mm per year) of high-grade metamorphic rocks 

(Bull and Cooper, 1986; Tippett and Kamp, 1993).  Finally, Fiordland has been found to 

have some of the highest physical erosion rates in the world, and may have played a role, 

along with other geologically similar environments, in historical long-term CO2 

fluctuations due to weathering of OC aged on geological time scales (Hilton et al., 2008; 

Lyons et al., 2005). 

 To date, historical changes in OMsed composition in southern hemisphere fjords 

has not, to our knowledge, been measured, despite a number of studies in Northern 

Hemisphere fjords (Huguet et al., 2007; Nuwer and Keil 2005, Tunnicliffe et al. 2000; 

Walsh et al., 2008).  The handful of organic geochemical studies in southern hemisphere 

fjords have been restricted to the water column (Gonsior et al., 2008; Gonsior et al., 

2011; Vargas et al., 2011) or surface sediments (Smith et al., 2010; Sepulveda et al., 

2011; Silva et al., 2011).  This study uses a dual-isotopic (
13

C, 
14

C) and multi-

biomarker approach (lignin-monomers, lignin-dimers, cutin hydroxy acids) to quantify 

changes in the absolute amount and composition of OMterr deposited to fjord basins in 

Fiordland, New Zealand over the last ~500 years (as determined by 
210

Pb based linear 

sedimentation rates).  The purpose of this study is to show that high rainfall rates and 

mass-wasting events in Fiordland‟s intact watershed create large fluxes of OMterr to fjord 

sediments, which represents a significant organic carbon sink relative to global coastal 

zones. 
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Sample Collection 

Six piston-cores (Figure 13) were collected during a 2007 cruise aboard the R/V 

Polaris.  Cores were taken from a wide range of latitudes encompassing three fjords 

(Figure 13).  They were stored frozen onboard the ship, and sectioned into 2 cm intervals 

(down to 150 cm) at the university of Otago.  The sediment samples were freeze-dried 

and gently ground with a mortar and pestle at Texas A&M University.  They were then 

stored frozen until analysis.  Samples chosen for analysis included all 2 cm intervals 

down to ~500 years before present (ybp) as determined by 
210

Pb analysis, assuming 

constant sedimentation rate beyond the point at which no excess 
210

Pb is present.   

 Soil samples were taken using a spade with depth increments from a small craft 

at approximately the waterline.  In all cases the leaf litter layer was cleared before the 

sample was taken.  Samples were immediately frozen onboard, and freeze-dried and 

homogenized at Texas A&M.  Soil samples were passed through a 500 μm sieve in order 

to remove large pieces of wood, roots, and leaves.  S-DC1, S-DC2, and S-DC3 were 

taken from Deep Cove (DC) (Figure 13).  S-DC1 and S-DC2 were sampled from 

undisturbed soil while S-DC3 was sampled from a small (several meters in width) 

landslide.  S-GA1 and S-GA2 were sampled from Gaer Arm (GA) in a location close to 

the mouth of the Camelot River.  S-GA1 was a surface soil sample, while S-GA2 was 

taken after removing the top 6” of soil.  S-DS1 was a soil surface sample taken from 

Dusky Sound (DS), also near the mouth of a headwater stream.  The two southernmost  
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Figure 13.  Fiordland, NZ sampling locations.  Shown are locations of sediment 

cores (MR2, CA4, DC1, BA1, SC2, LS1) and soil samples (Gaer Arm (S-GA1, 

S-GA2), Deep Cove (S-DC1, S-DC2, S-DC3), Dusky Sound (S-DC), and 

Preservation Inlet (S-PI1, S-PI2)) taken from Fiordland, NZ). 
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soil samples (S-PI1 and S-PI2) were surface soil samples from Preservation Inlet (PI), 

close to the mouth of the fjord. 

Vegetation samples were collected from forested areas accessible from the 

shoreline, and were identified at the University of Otago by C. Savage and D. Rundgren.  

Samples were collected to represent a wide variety of vegetation types.  In the case of 

trees, leafs (or needles), wood, and bark were separated and analyzed separately.  All 

samples were pulverized with a Wig-L-Bug.  Peach Leaf (NIST) standards were 

pulverized using the same method and sent out for isotopic analysis in order to ensure no 

contamination from sample preparation procedure.  The identity of the samples, where 

possible, was listed in Appendix H.   

Bulk Isotope and Elemental Analysis 

 Total organic carbon (%OC) and stable carbon isotope analyses (
13

C of 

sediments were carried out by the Stable Isotope Geosciences Facility (SIGF) in the 

Departments of Oceanography and Geology at Texas A&M University.  Measurements 

were made using an elemental analyzer (Carlo Erba EA-1108; CE Elantech, Lakewood, 

NJ) interfaced with an isotope ratio mass spectrometer (Delta Plus XP, Thermo 

Finnigan) operating in continuous flow mode.  Carbon isotope ratios were calculated in 

 notation using equation (1).  The precision of duplicate measurements was +/- 0.1‰.  

C/N values are calculated as molar ratios.  N/C are also reported due the findings of 

Perdue and Koprivnjak (2007), which show that in a two end-member mixing model of 

terrestrial and marine C/N values, %N (marine or terrestrial) is actually being calculated.  
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%OC (marine or terrestrial) can therefore be calculated by taking the inverse of C/N 

values (N/C). 

14
C measurements were performed with Accelerator Mass Spectrometry (AMS) 

at the Woods Hole Oceanographic Institute (WHOI).  Fm values were corrected for 

ageing to the top sediment interval (fmCT) in each core by using the 
210

Pb linear-

sedimentation dates and 
14

C decay rates.  (fmCT) values therefore represent fm values at 

the time of sediment deposition. 

CuO Oxidation  

Freeze-dried sediment containing 3 to 5 mg OC were analyzed for lignin 

monomers and dimers, and cutin hydroxy acids using the CuO method of Hedges and 

Ertel (1982) as modified by Goñi and Hedges (1992).  Briefly, sediments were 

transferred to stainless steel reaction vials and digested with 330 mg (+/- 4 mg) CuO in 

2N NaOH under N2  at 150 
o
C for 3 h.  Reaction products were allowed to cool extracted 

with three successive 3 ml aliquots of diethyl ether (peroxides removed with ferrous 

ammonium sulfate dissolved in water), dried with sodium sulfate, evaporated under a 

stream of N2, reconstituted in pyridine and converted to trimethylsilyl derivatives using 

bis-(trimethylsilyl) trifluoroacetamide (BSTFA) at 70
o
C for 1 hour.  Oxidation products 

were analyzed using an Agilent 6890n gas chromatography instrument/ coupled to an 

Agilent 5973N mass spectrometry instrument (GC-MS). 

The identification of classic lignin-phenols monomers (V,S, and C), as well as 

3,5-Bd, was made by comparison with the pure standards.  Cutin hydroxy acids, and 

lignin dimers and extended monomers were identified based on published relative 
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retention times and mass spectra (Dickens et al., 2007; Goñi, 1992; Goñi and Hedges, 

1990; Goñi and Hedges, 1992).  Compound abundances were calculated by normalizing 

to both mass (mg/g: ) and to organic carbon (OC) (mg 100 mg OC
-1

: ).  

Quantification and % recovery of oxidation products was based on an ethyl vanillin 

(EVAL) surrogate standard.  The relative response factors (RRFs) to EVAL for 

compounds with an available standard were calculated from a mixed standard analyzed 

with every batch of 12 samples.  The mixed standard contained vanillin (VAL), 

acetovanillone (VON), vanillic acid (VAD), syringaldehyde (SAL), acetosyringone 

(SON), syringic acid (SAD), p-coumaric acid (CAD), ferulic acid (FAD), p-

hydroxybenzaldehyde (PAL), p-hydroxyacetophenone (PON), p-hydroxybenzoic acid 

(PAD), 3,5-dihydroxybenzoic acid (3,5-Bd), 12-hydroxystearic acid (12-HSA), 16-

hydroxyhexadecanoic acid (16-HHA), and hexadecanedioic acid (HDDA).   

RRFs of classic lignin-phenol monomers (Hedges and Ertel, 1982) were 

calculated using the pure compounds in the mixed standard (VAL, VON, VAD, SAL, 

SON, SAD, CAD, FAD, PAL, PON, PAD), as well as the RRF of 3,5-Bd (Prahl et al., 

1994), the only BCA a standard was available for.  The RRFs of cutin hydroxy acids 

(Goñi and Hedges, 1990) were assumed to be 1, based the on RRFs of the 12-HSA, 16-

HHA, and HDDA standards.  The RRFs of lignin dimers and extended monomers (Goñi 

and Hedges, 1992) are assumed to be 1, consistent with other studies due to a lack of 

available standards. 
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Radionuclide Dating 

Activities of the particle-reactive radiotracer 
210

Pb with depth were measured 

using a Canberra low-energy, intrinsic germanium γ-spectrometer (well-type) to 

examine the timing and rates of sediment accumulation in the fjord cores.  Freeze-dried 

sediment intervals were ground, packed in 60 mm long test tube vials, sealed to prevent 

222
Rn loss, and allowed to grow to secular equilibrium for 

210
Pb for at least three weeks. 

Samples were then counted for 1-2 days.  Total activities were determined using net 

peak area for gamma photopeaks at 46.5 keV (
210

Pb) and 661.6 keV (
137

Cs).  Detector 

efficiencies at each energy level were calibrated using a natural sediment standard 

(IAEA-300 Baltic Sea) and were corrected for self-absorption using the method of 

Cutshall et al. (1983).  

  Excess 
210

Pb in the cores is calculated from total 
210

Pb activity minus supported 

210
Pb activities obtained using the averaged activity of 

226
Ra daughters at 295 and 351.9 

keV (
214

Pb) and 609 keV (
214

Bi). A best fit linear regression of the natural log of excess 

210
Pb with depth below any surface mixed layer of homogenous activity was used to 

determine the sediment accumulation for the past ~100 years in the cores (Nittrouer and 

Sternberg, 1981).  Linear sedimentation rates (LSRs) given were indicative of maximum 

accumulation rates. 

Statistics 

In the case of biomarkers where yields are given normalized to both sediment 

and OC mass, the  values are used for the statistical tests.  Simple regression analyses 

were performed using Sigma Plot, Inc. (Version 11.0). Means are reported with a 95% 
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confidence interval and differences between means were established using unpaired t-

tests (Sokal and Rohlf, 1995). 

Results 

Averaged values with more than n=2 samples were given with their standard 

deviations.  Where two samples were been grouped together, the average was given with 

no standard deviation.  In some cases where biomarker yields were normalized to both g 

sediment and 100 mg OC, the more commonly published values were used to describe 

trends among sample fractions. 

Sedimentation Rates 

Excess 
210

Pb activities in all sediment cores were relatively low, resulting from 

lower than expected sediment accumulation rates, and therefore calculated dates are 

interpreted with caution.  Sedimentation rates are assumed to be linear (LSR), and 

represent the maximum accumulation rate (Fig. 14).  LSRs ranged from a minimum of 

0.012 +/- 0.0 cm yr
-1

 at SC to 0.099 +- 0.024 cm yr
-1

 at CA. 

Elemental and Isotopic Analysis  

13
C values of all fresh (non-submerged) vegetation samples analyzed ranged 

from -27.60 to -34.91 (x = -32.01 +/- 1.86 ‰) (Appendix H).  Fresh wood samples 

averaged -30.35 +/-.08 ‰ (n=4), while submerged wood samples were significantly 

more enriched in 
13

C (-26.80 +/- 0.14 ‰, n=3).  Gymnosperm wood was slightly more 

enriched than the angiosperm samples, although not enough samples were taken to prove 

significance.  Bark samples were significantly more enriched (x = -33.56 +/- 1.92 ‰,  

  



75 

 

 

 

 

 

 

 

 

Figure 14.  
210

Pb activities and maximum linear-sedimentation rates (LSRs). 
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n=2) than both wood and leaf (x = -32.74 +/- 1.16 ‰, n= 6) samples.  The needle sample 

(33.80 ‰) had a similar value to the leaf samples.  The most enriched soft-tissue sample 

was the marsh grass (-27.61 ‰).  The unidentified epiphytes were slightly more enriched 

(-30.70 +/- 0.65 ‰, n=2), but similar to the mean of all vegetation samples.  Soils ranged 

from -26.48 to -30.18 ‰ (x = -28.36 +/- 1.37 ‰, n=8).  In general, soils were more 

enriched in 
13

C in higher latitude fjords (Doubtful Sound vs. Dusky Sound and 

Preservation Inlet) (Fig. 13).  In all cases, soils were more enriched than the average 

vegetation value.  
13

C values in all cores ranged from -24.29 to -28.84 ‰ (-26.84 +/- 

1.18 ‰, n=76) (Appendix I).  The range in values of each core was much smaller than 

the range among cores, as indicated by low standard deviations.  CA had the most 

depleted 
13

C values (-28.0 +/- 0.51 ‰, n=17), followed by DC (-27.6 +- 0.30 ‰, n=21) 

and SC (-27.2 +/- 0.21 ‰, n=4).  BA had 
13

C values in an intermediate range of all the 

cores (-26.5 +- 0.12 ‰, n=11), while LS (-26.0 +/- 0.28 ‰, n=12) and MR (-24.8 +/- 

0.24 ‰, n=11) were the most enriched.  

Soil 
14

C values ranged from 70.2 to 129 ‰ (Appendix H), indicating that bomb 

radiocarbon had been incorporated into all soil samples and their dates can be considered 

post-1950.  
14

C values of sediments were more depleted, ranging from -34.3 ‰ in the 

2-4 cm interval of DC to -176 ‰ in the 16-18 cm interval of MR (Appendix I).  When 

corrected for 
14

C decay since deposition, fm values (fmCT) of sediments ranged from 

0.84 to 0.98.   

%OC values of pure vegetation samples ranged from 60.1 to 30.8 % (45.9 +- 6.6 

%, n=22) (Appendix H).  Bark samples contained the highest concentrations of OC, with 
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60.1% for angiosperm bark and 51.6% for gymnosperm bark.  Submerged wood 

contained significantly lower percentages of OC (38.0 +/- 6.2 %) than fresh wood 

samples (47.6 +/- 1.8 %).  Gymnosperm had %OC values (49.6%) slightly higher than 

angiosperm woods (45.5 to 48.6 %).  Angiosperm soft tissue (leaves: 48.2 +/- 4.0 %) and 

gymnosperm soft tissue (needles: 49.9 %) values were not significantly different than 

both wood and the average for all vegetation samples.  The two epiphyte samples had a 

wide range of %OC values, ranging from 31.8 % to 45.1 %.  Soils contained 

significantly lower percentages of OC than vegetation (20.4 +/- 22.1 %), although the 

range was quite large (0.8 to 49.1 %).  Soils overall seemed to be either depleted in OC, 

with concentrations less than 4%, or enriched with values similar to vegetation (42.1 to 

49.1%).  Only one sample (S-DC1) had an intermediate value (14.5 %).  OC 

concentrations in sediments ranged from 1.94-11.4 % (6.1+- 2.4 %) (Appendix I).  In 

general, ranges in each core were larger than among all six cores.  Averages ranged from 

8.8+/- 1.4 % (DC) to 3.7 +/- 0.2 % (MR). 

Vegetation had a large range of C/N values (121 +/- 173) (Appendix H).  Wood 

samples had the highest values, ranging from as high as 825 to 78.2, with fresh wood 

(274 +- 369) ratios higher than submerged wood, possibly due to the inclusion of 

nitrogen by submerged wood (Nuwer and Keil 2005 and references therein).  Bark 

values were on average lower than wood (142 +- 77.4), followed by needles (112), 

leaves (50.6 +/- 23.5), moss (32.6) and ferns (23.5).  Unlike vegetation, soils had a much 

smaller range of C/N values (21.8 +/- 12.1), which were lower in all cases than 

vegetation with the exception of Preservation Inlet soils (37.0, 44.3) which were similar 



78 

 

 

 

to moss, ferns, and soft-tissue.  The rest of the soils were lower than vegetation, ranging 

from 11.8 in GA to 22.9 in DS.  Sediments had C/N values statistically indistinguishable 

from soils (21.8 +/- 5.9), and ranged from 13.9 (MR) to 44.0 (CA) (Appendix I).  CA 

and DC had the highest C/N values (26.9 +/- 7.5 and 24.2 +- 4.7, respectively), followed 

by SC (21.9 +/- 1.4), BA (19.6 +/- 0.5), LS (18.9 +/- 0.8) and MR (14.7 +/- 0.5). 

Biomarkers 

Lignin parameters were the highest in the submerged wood samples ( 8 = 78.9 

+/- 18, 8 = 21.1 +/- 5.4) (Appendix J), suggesting that some labile components have 

been degraded.  For the non-submerged samples, gymnosperm wood ( 8 = 54.4, 8 = 

11.02) fell within the range of angiosperm wood ( 8 = 37.6 – 78.3, 8 = 8.05 – 17.2).  

Bark ( 8 = 22.1 +/- 12.2, 8 = 4.1 +/- 2.6) and leaf ( 8 = 23.1 +/- 18.5, 8 = 4.6 +/- 3.5) 

lignin concentrations were not significantly different.  Leaf samples in particular were 

highly variable, with 8 values ranging from 5.5 to 48.4 ( 8 ranged from 1.2 to 9.3).  

Marsh grass and moss gave lower yields of lignin-phenols ( 8 = 13.8 and 4.2, 8 = 1.3 

and 3.1, respectively), followed by epiphytes which were lignin-poor ( 8 = 0.2, 8 = 

0.1).  Soils varied in lignin content considerably based on location.  GA soils had the 

lowest concentrations of lignin ( 8 = 0.4, 8 = 1.5), followed by DC ( 8 = 2.7 +- 4.1, 8 

= 2.8 +/- 2.0).  DS and PI soils had on average higher values ( 8 = 10.8, 8 = 3.0, and 

8 = 21.3, 8 = 5.1, respectively).  8 and 8 values in sediments ranged from 0.9 to 9.0 

and 2.3 to 10.5, respectively (Appendix K).  CA and DC had the highest lignin yields 

( 8 = 4.9 +/- 2.5, 8 = 7.3 +/- 1.8 and 8 = 5.6 +/- 1.0, 8 = 6.5 +/- 1.2, respectively) 
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followed by BA ( 8 = 3.8 +/- 0.8, 8 = 6.8 +/- 1.0) and SC ( 8 = 2.5 +- 1.5, 8 = 5.3 +/- 

1.1).  MR and LS had the lowest values ( 8 = 1.8 +/- 1.0, 8 = 4.7 +/- 2.2 and 8 = 1.3 

+- 0.2, 8 = 3.4 +/- 0.8, respectively). 

 C/V values were higher in angiosperm soft tissue (leaves = 0.20 +/- 0.17) than in 

both wood (submerged = 0.01 +- 0.01, non-submerged = 0.03 +/- 0.04) and gymnosperm 

soft tissue (0.06) (Appendix J), similar to published trends (Hedges et al., 1988).  Fern 

non-woody tissue had a value (0.13) between wood and angiosperm soft tissue, while 

moss, grass, and the ephiphytes had the largest values in the dataset (0.79, 1.36, and 

0.75, respectively).  Soils values were dependant on location, ranging from high values 

in GA (0.27), to lower values in DS (0.15) and PI (0.10).  DC soils ranged considerably 

in C/V (.09 – 0.21).  Sediment values ranged from 0.04 - 0.21 (woody to soft tissue, 

based on vegetation end-members), with the highest values in SC (0.13 +/- 0.02) and the 

lowest in BA (0.05 +/- .01) (Appendix K). 

 S/V values also followed previously published trends (Hedges and Mann, 1979), 

with large differences between angiosperm and gymnosperm woods (4.07 and 0.01, 

respectively) and soft tissue (1.13 +/- 0.42 and 0.21, respectively) (Appendix J).  Moss 

and Epiphytes had relatively low values (0.31 and 0.13, respectively), while marsh grass 

values were higher (1.47).  Soils ranged from 0.27 to 0.98, with no discernable north to 

south trends, as GA soils ranged from 0.37 to 0.98 and PI soils from 0.62 to 0.73.  

Sediments ranged from a mixture of gymnosperm to pure angiosperm S/V values (0.23 

to 1.88), with similar averages for all sediment cores. 
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[Ad/Al]v values were less than 0.30 in all vegetation samples including the 

submerged woods, with the exception of one epiphyte sample (0.70).  Soils from GA 

were the most degraded (0.67), while soils from PI were the most fresh (0.28).  DC (0.39 

+/- 0.15) and DS (0.47) Ad/Alv values fell within this range.  Sediment values ranged 

from 0.18 to .73, although in general the averages were indicative of fresh vegetation 

(range 0.23 +/- 0.03 (CA) to 0.39 +/- 0.04 (SC)) (Appendix K).  [Ad/Al]s  followed 

similar trends as [Ad/Al]v values, although they were in general lower and had a smaller 

range, with sediments ranging from only 0.15 to 0.37. 

 Yields of the extended monomer series (Goñi and Hedges, 1992), including 

formyl- (5f) and carboxy- (5c, 6c, 2c) lignin-phenols are given for terrestrial end-

members and sediments in Appendix L and M, respectively. 

3,5:V values were lower than 0.01 in all wood samples with the exception of 

AW-MH (0.05) (Appendix J).  Bark values were higher, ranging from 0.03 to 0.08.  

Angiosperm leaves had low yields of 3,5-Bd with the exception of  the fallen brown 

five-fingers leaf (AL-FFFB = 0.15).  The needle sample was higher (0.12) than the 

angiosperm samples.  The fern and grass sample were also low (0.02 and <.01, 

respectively), and the moss (0.16) and epiphyte samples (1.5, 5.7) contained elevated 

concentrations of 3,5-Bd.  Soils, as expected, had higher 3,5:V values, ranging from 0.04 

to 0.17 (0.11 +/- 0.04), than fresh soft and woody tissue (Prahl et al., 1994).  

Sedimentary 3,5:V were surprisingly lower than soils (0.05 +/- 0.01), indicating they are 

probably a mix of soils and fresh plant material (Appendix K).  The averages among all 

cores were similar, with the lowest at BA (0.04 +/- 0.01) and the highest at SC (0.07 +/- 
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0.00).  Yields normalized to sediment mass ( 3,5:g) for terrestrial end-members and 

sediments are given in Tables 10 and 11, respectively. 

Dimer concentrations ( D) were the highest in the submerged wood samples (4.4 

+/- 2.4), followed by non-submerged wood (2.3 +/- 1.5) (Appendix N).  Bark had very 

similar yields as wood (2.4).  Soft tissue gave lower yields of dimers, both leafs (0.5 +/- 

0.3) and needles (0.8).  Moss and grass gave the lowest yields (0.1 and 0.2, respectively), 

while epiphytes were under the limit of detection.  Soil values ranged from 0.2 to 1.6, 

with the lowest yields from GA (0.4, 0.63) and the highest from PI (1.2, 1.6).  Sediment 

samples had D values ranging from 0 to 2.02 (Appendix O).  The lowest averages were 

from LS (0.5 +/- 0.1) and the highest from CA (1.2 +/- 0.6).  Concentrations of dimer 

classes, as well as dimer-based proxies, are given in Appendix N and O. 

Cutin hydroxy acid yields normalized to OC ( CA) in fresh plant material were 

the highest, although highly variable, in leaves (6.7 +/- 5.05) followed by needles (3.9), 

bark (2.4), and wood (1.4 +/- 2.1) (Appendix P).  The individual sample with the highest 

yield of cutin oxidation products was AL-FFFB (12.0), suggesting selective degradation 

of more labile components.  The fern, moss, epiphyte, and grass samples gave very low 

yields (< 0.6).  Soil samples varied considerably, with the lowest cutin concentrations in 

DC (0.9 +/- 0.1) and the highest in DS (17.8).  Cutin yields of sediments ranged from 0.0 

to 6.0 (Appendix Q).  MR had the lowest average yields (1.0 +/- 0.4) while CA (2.5 +/- 

1.5) and DC (2.7 +/- 1.2) gave the highest.  Cutin hydroxy acid yields normalized to 

sediment mass ( CA) were much more variable in pure vegetation, ranging from 0.2 to 

20.5 in woody material, 6.5 to 20.7 in bark, and 1.7 to 62.3 in leafs.  S-DS was enriched 
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similar to the OC normalized values (72.5), and sediments ranged from 0 to 4.25.  In 

most cases, the yield of C16 hydroxy acids was higher than C18. 

Discussion 

OMterr Composition 

Detailed compositional information of soils and sediments was obtained using 

source plots of several classes of CuO biomarkers and values of New Zealand 

angiosperm and gymnosperm vegetation.  Vegetation end-members were separated into 

angiosperm wood (A), angiosperm leaves (a), gymnosperm wood (G), and gymnosperm 

needles (g).  In the classic lignin monomer source plot (Fig. 15), fern values were also 

given, and gymnosperm and angiosperm woods fell within the same range and were 

labeled as wood (W).  Actual points for vegetation were not shown, only the range of 

values as indicated by boxes; however the ranges as well as the actual values for soils 

were shown in order to distinguish differences between samples collected at various 

locations.  The advantage of this data set was the use of vegetation from the study 

region, as opposed to Smith et al. (2010) in which traditional end-member values were 

used (Hedges and Mann, 1979). 

 Syringyl phenols are produced in much higher quantities from the oxidation of 

angiosperm tissue as opposed to gymnosperm tissue, while cinnamyl phenols are 

produced in significant quantities only in soft-tissue (Hedges and Mann, 1979).  The 

vegetation analyzed in this study produced a very similar source plot as in Hedges and 

Mann, (1979), with the exception of angiosperm woody and non-woody tissue which 

had S/V values as low as 0.5, as opposed to ~1 (Fig. 15).  Soil values overlapped only 
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with angiosperm soft-tissue, indicating this as the dominant source of OM.  The majority 

of sediment samples fell into the overlapping range of woody and non-woody 

angiosperm tissue, although cores DC and LS ranged from the overlapping area to the 

box representing only angiosperm soft-tissue, closer to the range of soils.  These results  
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Figure 15.  Lignin-phenol source plot as in Hedges and Mann (1979).  A = 

angiosperm wood; a = angiosperm leaves; G = gymnosperm wood; g = 

gymnosperm needles; F = ferns; S = soils.  Shown are values for soils and 

sediments. 
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indicated woody material is not incorporated in large amounts into soils, but does in fact 

make it into sediments.  The most likely physical method for this is landslides, which 

uproot trees, break them up, and deposit them into the fjords.  Soft-tissue on the other 

hand is incorporated efficiently into soils from falling leaves, as soils noticeably contain 

a top layer of leaf litter that had to be cleared before taking samples. 

 Dimers are present in both woody and non-woody angiosperm and gymnosperm 

tissue (Goñi and Hedges, 1992) and therefore can also be used to distinguish between 

these sources.  Lignin-dimers provide lignin structural information that can not be 

obtained from the quantification of monomers alone.  In many cases the structure of 

lignin is related to the relative yields of S, V, and C monomers, as additional functional 

groups prevent bonding of the ring structures (Goñi and Hedges, 1992).  Structural 

information can be viewed as the the ratio of dimers with side-chain to ring bonds (SR; 

1, 1, 5, and 2 dimers) versus dimers with ring to ring bonds (RR; 55‟VV and 

55‟PV dimers) (SR/RR), or as the ratio of C1-linked structures to dimers linked at the 

C5 and C2 aromatic carbons ( 1 + 1)/( 5 + 2) (Goñi and Hedges, 1992).  Goñi and 

Hedges (1992) found SR/RR and ( 1 + 1)/( 5 + 2) values were elevated in 

angiosperm tissue, due to increased occurrence of syringyl phenols which cannot form 

bonds on C5 ring carbons.  Gymnosperm wood was found to consist of primarily 5,5‟-

RR bonds and similar amounts of C1, and C5- and C2- linked structures (( 1 + 1)/( 5 

+ 2) approximately = 1).  Fiordland vegetation fell into different ranges of values than 

the vegetation analyzed in Goñi and Hedges (1992), highlighting the importance of using 

location-specific end-members (Fig. 16).  Angiosperm leaves had similar ( 1 +  
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Figure 16.  Lignin-dimer source plots as in Goñi and Hedges (1992).  A = 

angiosperm wood; a = angiosperm leaves; G = gymnosperm wood; g = gymnosperm 

needles; W = angiosperm and gymnosperm wood.  Shown are soils and sediments. 
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1)/( 5 + 2) values but were more depleted in SR linkages.  The gymnosperm sample 

had a similar SR/RR value, but was many times more enriched in C1-linkages, having 

the highest value of all the vegetation in this study and in Goñi and Hedges (1992).  

Soils cover a large range on the source plot.  Most of the sediments plotted on the region 

where angiosperm soft-tissue, wood, and soils overlap.  However, most of the soils had 

higher ( 1 + 1)/( 5 + 2) values, and the soil source box overlaps with angiosperm 

soft tissue due to only one PI sample.  Therefore, as indicated in the S, V, and C source 

plot, most sediments contain OMsoil but also variable inputs of fresh woody and non-

woody angiosperm material. 

 The extended suite of lignin monomers in Goñi and Hedges (1992) allowed 

additional source distinctions to be made.  The ratio of dimer to total monomer yields 

(D/M), has been found to be generally low in angiosperm wood and higher in soft-

tissues (Goñi and Hedges, 1992).  These values were plotted against cV/V ratios and 

shown in Fig. 16.  Angiosperm woody and non-woody tissue overlapped but had lower 

relative yields of cV monomers than soils.  Sediments had values of cV/V and  

D/M that were positively linearly correlated in all of the cores.  Sediments ranged from 

approximately the center of the soil range, towards angiosperm leaf and wood values.  

This also was in accordance with the findings of other lignin-based source plots in this 

study, with the linear mixing of soils and fresh vegetation providing additional robust 

evidence for incorporation of discrete vascular plant material into sediments. 

Cutin yields were either under the limit of detection or extremely low in woody 

samples.  Additionally, many of the vegetation types separated using other biomarkers  
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Figure 17.  Cutin hydroxy acid source plot as in Goñi and Hedges (1990).  Boxes 

represent ranges of values in soil samples.  Plotted are sediment values. 
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overlapped when constructing source plots found in Goñi and Hedges (1990b).  

However, cutin yields revealed distinct differences among our soil samples, and this was 

instead used to show relationships between sediments and soil location.  The first 

parameter observed was the relative abundance of positional isomers (9-OH vs 8-OH) of 

the x, -C16 hydroxy acids (Fig. 17).  All values are less than 0.3, as the 10-OH isomer 

was the dominant hydroxy acid.  GA, DC, and PI soils had similar 8-OH fractions 

(~0.08), with varying fractions of 9-OH isomers.  DS soils had a similar 9-OH fraction 

as GA soils but a higher fraction of 8-OH, which was the highest of all soils in the 

dataset.  Interestingly, all sediments plotted closest to GA soil values.  MR sediment 

values in particular, with the exception of two sediment fractions, fell entirely into the 

range of GA soil values.  No linear trends were seen as in lignin monomer and dimer 

source plots (Figs. 15 and 16), indicating no clear mixing of two sources with varying 

isomer fractions.  Similar results were obtained comparing the relative amounts of 

,9,10-C18 and ,x-C16 hydroxy acids to total cutin yields ( ,9,10-C18/ CA and w,x-

C16/ CA, respectively) (Fig. 17).  These parameters were used in Goñi et al. (1990b) to 

distinguish between lower and higher vascular plants, as well as monocots, 

gymnosperms, and dicots.  DC and PI soils fell nearly into the same range on the plot, 

with DC soils having slightly higher amounts of ,9,10 hydroxy acids.  DS soils had 

higher yields of this fraction, but significantly lower yields of ,x-C16 hydroxy acids 

than the other soils.  GA soils gave the highest yields of ,9,10-C18 hydroxy acids and 

intermediate yields of ,x-C16.  As in the previous cutin plot, sediment samples fell 

predominantly near or within the range of GA soils.  However, a major difference in this 
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source plot is the linearity of 2,9,10 and ,x-C16 values, indicating mixing of two end-

members, potentially OMterr delivered by overland runoff and landslides. 

13
Cmar 

Regressions of biomarker yields vs. 
13

C have been previously used in the 

literature to obtain an estimate of the 
13

C value of pure marine organic matter (
13

Cmar) 

(Goñi et al., 2000; Prahl et al., 1994).  This method is used due to the wide range of 
13

C 

values found among species of algae and plankton, complicating measuring an average 

13
Cmar value directly.  Additionally, variations in the levels of shading (irradiance) in 

Fiordland due to topography and fjord width may cause regional changes in 
13

Cmar 

values based on the availability of dissolved CO2 (Kubler and Raven, 1995).  To 

determine the usefulness of this method to our dataset, regressions were calculated as the 

OC normalized yields ( ; mg/100mg OC) of the main terrestrial CuO biomarker classes 

(V,S, and C monomers ( 8), dimers ( D), cutin hydroxy acids ( C)) vs. 
13

C values (Fig. 

18).  

In all three cases the regressions resulted in weak, but significant correlations (p 

< 0.05 in all cases) that intercept the x-axis at 
13

Cmar values ranging from -23.62 to -

21.66 ‰ (-22.83 +/- 1.03 ‰, n=3) (Fig. 18).  This technique however is sensitive to the 

choice of samples to include in the regression (Goñi et al., 2000).  Sediments with 
13

C 

values similar to terrestrial vegetation and soils may have wide ranges of biomarker  

yields, as pure terrestrial matter exhibits these large variations.   By applying a cutoff 

point of -28 ‰ based on values of terrestrial end-members which were more depleted  
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Figure 18.  Linear least squares biomarker regressions. 
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than this value, we recalculated the x-axis intercept and measured 
13

Cmar values of -

19.36 ‰ (monomers), -23.13 ‰ (cutin), and -19.65 ‰ (dimers), resulting in an average 

13
Cmar value of -20.71 +/- 2.09 ‰ (n=3).  The associated R

2
 values dropped (R

2
 = 

0.200, 0.231, and 0.100 respectively), while still retaining their significance.  An 

unpaired t-test (two-tailed) showed that this new intercept is significantly different (p < 

0.0001) than the previous estimate including all the sedimentary data.  The regressions in 

Goñi et al. (2000) did not have lower R
2
 values, as shown here, when samples with large 

yields of terrestrial biomarkers were excluded.  While the correlations are weakened, the 

estimated 
13

Cmar value seems more realistic, as the value is in between that of SPOM 

and macroalgae (McLeod and Wing, 2007), and therefore these intercepts will be used 

from this point on. 

The average intercept of all three regressions (-20.71 +/- 2.09 ‰; 
13

C>-28 ‰) 

should theoretically equal the 
13

C value of OMmar.  Suspended particulate organic 

matter (SPOM) analyzed by McLeod and Wing (2007) had a more depleted 
13

C value 

(-23.5 ‰) than the estimated 
13

Cmar values given here, likely due to a significant 

fraction of OMterr present in the samples.  However, Susanne and Schuller (unpublished 

data) gave a value of ~-23.5 ‰ for a phytoplankton bloom, suggesting that the SPOM 

may actually contain a negligible amount of OMterr relative to OMmar.  A 
13

C value of -

18% was obtained by Mcleod and Wing (2007) as a biomass weighted average of four 

genera of macroalgae that comprise 90 % of the population in the LSL (Ulva sp., 

Gracilaria sp., Gymnogongrus sp., and Cladophora sp.), a value which is several per mil 

more enriched than the value at which no recognizable terrestrial biomarkers are present.  
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Despite the potential of 
13

Cmar variations with topographic shading, out dataset was not 

sufficient to determine these differences, which should be examined in future studies. 

13
Cterr 

 The terrestrial end-member varied between soils and vegetation, as well as 

among plant tissue and type (-26.64 to -34.91 ‰).  Averaging all the measured values 

for soil and vegetation could potentially cause a bias in estimating the true 
13

Cterr value, 

as it would not reflect the real weighted average that would be based on the relative 

amounts of soil vs. vegetation input, as well as the relative abundance of plant tissues 

and types in the watershed.  An alternative is to use the average 
13

C value of soils (-

28.42 ‰), and assume they reflect weighted averages of local vegetation 
13

C values, 

which is the main source of their carbon.  However, averaging the soil 
13

C values to 

obtain a terrestrial end-member also creates a bias as we observed changes in the OC 

signature of the soils based on sampling location.  It was therefore necessary to take a 

detailed look at the soil samples obtained and see if unique 
13

Cterr end-member values 

needed to be assigned to sediments based on location. 

GA soils, the Northernmost soil samples taken, were the most enriched in 
13

C (-

26.5 and -26.9 ‰) and had correspondingly low C/N values and concentrations of lignin 

and 3,5-Bd (Fig. 19).  Additionally, GA soils had distinct values from other soils in 

lignin monomer and dimer source plots (Figs. 15 and 16).  DC soils spanned the largest 

range of 13C values, from -27.1 to -28.8 ‰, which were significantly more  

depleted than GA soils, but also had low C/N values and terrestrial biomarker 

concentrations, with the exception of  S-DC2 which was significantly more enriched in  
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lignin.  The DS soil sample was the most depleted in 
13

C (-30.2 ‰) and had higher C/N, 

L, and 3,5-Bd values than both GA and DC.  PI soil 
13

C were similarly more depleted 

than GA and DC, and these soil samples contained the highest terrestrial biomarker 

concentrations and had the highest C/N values. 

These results suggest that there are distinct differences in soil type that seemed to 

follow a general North to South trend.  The most apparent physical North to South trend 

in the watershed of Fiordland is a reduction in topographical height and slope gradients.  

This topographical trend also results in a reduction in the frequency of landslides the 

more southern fjords experience.  There are therefore two potential source variations that 

could cause the observed soil trends, both themselves a function of landslide frequency; 

1) variations in soil maturity and forest composition (successional stage), and 2) dilution 

of organic-rich soils with organic-poor minerals.   

Potential vegetational changes feeding soils were observed with lignin monomer 

and dimer source plots.  All of the soils plotted in the same region of the S, V, and C 

source plot (Fig. 15), with the expection of GA, which was significantly more enriched 

in both syringyl and cinnamyl phenols.  The values of GA gravitated towards those of 

angiosperm soft-tissue.   If the relative monomer yields are due to differences in 

vegetation, the terrestrial end-member data set is not sufficient enough to distinguish 

them.  It is possible that soils in GA are fresher than soils to the south, due to increased 

landslide frequency, and the higher S/V and C/V values reflect non-degraded lignin, 

which would reduce S and C phenols preferentially to V phenols (Opsahl and Benner, 

1995).  Soils in GA however in fact had higher Ad/Al ratios (~0.6), and soils to the south 
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were much fresher (Appendix J).  It was therefore likely that the compositional 

differences of monomers are due to variations in the relative abundance of vegetation 

types on slopes facing the fjord. 

The addition of mineral-rich organic-poor sediments (sourced from weathered 

sedimentary bedrock) was assessed with 
14

C values.  All of the soils had modern 
14

C 

signatures that were not significantly different except for GA, which had a more 

depleted, but still modern, value (Fig. 19).  It is therefore likely that GA soils have more 

OMfossil due to mechanical weathering of sedimentary bedrock from landslide activity.  

Without separation of the two fractions (organic soils and weathered bedrock), it was not 

possible to know if the addition of OMfossil contributed to the increased Ad/Al values in 

GA soils.    It was surprising that there was not a North to South gradient of soil 
14

C 

values; they were all similar except for GA.  Once again, GA soils were compositionally 

distinct from the rest of the samples. 

Although the compositional information provided important insight into 

Fiordland soils, no logical basis for assigning sediments unique 
13

Cterr values was 

found after a close look at soil composition.  In order to accomplish this, a larger number 

of soils would have to be sampled in order to determine if a North to South gradient in 

soil composition really exists or if GA soils are outliers due to the specific location they 

were sampled in.  Therefore, it was concluded that assigning unique 
13

Cterr values to 

sediments, or selectively excluding/including 
13

Cvegetation values would introduce 

more bias into our terrestrial end-member determination than taking an average of all the 

samples analyzed.  Because soils may in fact contain OMfossil with a more enriched 
13

C 
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value, an average was therefore taken of all vegetation types analyzed and used as a 

13
Cterr end-member value (

13
Cterr = -30.21 ‰, n = 22).                                                                                                                                                                      

OMfossil 

A major assumption of the biomarker regression method to determine 
13

Cmar is 

that a third source of OC is not present.  Previous studies have shown that OMfossil is 

delivered via rivers in significant quantities in the Southern Alps (Blair et al., 2010; 

Hilton et al., 2008).  OMfossil likely does not contain high yields of any recognizable 

biomarkers, and therefore its 
13

C signature (
13

Cfossil) may be influencing the 
13

Cmar 

value obtained from the x-axis intercept. To view the effect of OMfossil on 
13

Cmar, it was 

determined if any of this aged refractory carbon is present when the biomarker yields are 

zero.   

While studies have shown that OMsed consists of a spectrum of varying aged 

carbon (Torn et al., 2002; Trumbore, 1993; Eglinton et al, 1997; Pearson et al., 2001; 

Goñi et al., 2005), the main source of non-fossil OM in Fiordland is soils and vegetation 

with a modern 
14

C signature.  Therefore, deviations from sedimentary fm values of 1 

(when corrected for ageing post-depositionally) were assumed to represent additions of 

OMfossil from bedrock.  This was further supported by low sedimentary [Ad/Al]v values.  

The percentage of OMfossil present was therefore calculated as 

%OMfossil  = (1-fm)*100                       (8) 

Using this equation, %OMfossil contributions to sediments ranged from 2.5 (DC) to 15.9 

% (CA) (x = 10.1 +/- 4.1, n = 12) (Appendix R).  To determine the quantity of %OMfossil 

present at zero biomarker concentrations, a linear least-squares regression was calculated 
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of lignin monomer yields vs. %OMfossil (Fig. 20).  The resulting strong negative 

correlation indicated a significant relationship between the amount of modern and fossil 

OMterr present, which is discussed further in a later section.  The x-intercept of the  

graph suggested that 15.5% of theoretically biomarker free OMsed is fossil in origin.  

This falls between the range of Southern Alp riverine POC percentages found by Hilton 

et al. (2008) (37%) and Blair et al. (2010) (0.25%), which is large and most likely related 

to bedrock type. 

This quantity theoretically had a measurable effect on the biomarker-based 

13
Cmar estimates.  However, complications again arose when choosing the 

13
Cfossil end-

member.  Hilton et al. (2008) measured a large range of 
13

C values in Southern Alp 

sedimentary bedrock (-18.85 to -26.17 ‰) north of Fiordland in approximately the 

middle of the western flank of the Southern Island.  The mean value for n=10 bedrock 

samples was -21.1 +/- 1.1 ‰ (%OC = 0.15 +/- 0.05 %).  In the Waiapoa River 

watershed, Blair et al. (2010) 
13

Cfossil values of -22.8 to -26.5 ‰ (x = -25.1 +/- 1.3 ‰,  

n=11), while in the same system Gomez et al. (2004) published an average value of -

26.0 +- 1.2, n=11). 

While 
13

Cfossil values from the Waiapoa River fell within the range of values 

obtained by Hilton et al. (2008) in the Southern Island, without additional analysis of 

sedimentary rocks from Fiordland the mean of 
13

Cfossil values from the western flank of  

the Southern Island was used to correct the biomarker-based 
13

Cmar values.  While this 

value (-21.1 +/- 1.1 ‰, n=10) is not significantly different from the 
13

Cmar value of -

20.71 +/- 2.09 ‰ (n=3) (p=0.67), it is still useful to correct the 
13

Cmar value, as this will  
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Figure 20.  Linear least-squares regressions of dry sediment mass normalized 

lignin ( 8; A) and 3,5-dihydroxybenzoic acid ( 3,5; B) yields vs. 
14

C-based 

%OMfossil estimates. 
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ultimately effect the mean of end-member percentages during the final reconstruction.  

Assuming 15.5% OMfossil, the new 
13

Cmar value rose to -20.63 ‰.  This value was still 

not statistically different from 
13

Cfossil, but was used as the final 
13

Cmar value. 

Source Reconstruction : Marine, Terrestrial, Fossil 

Due to the wide range of C/N values found in NZ OMfossil (Blair et al., 2010; 

Gomez et al., 2004), and statistically similar 
13

Cfossil and 
13

Cmar values, a unique 

approach was used to separate out the relative abundances of marine, fossil, and modern 

OMterr.  First, a two end-member mixing model was constructed as follows: 

13
Cmeas = 

13
Cmar *f(mar+fossil) + 

13
Cterr*fterr                              (9) 

where 
13

Cmeas was the measured 
13

C value of bulk sedimentary organic carbon.  Next, 

the two %OMfossil values from each core were averaged to produce a static contribution 

for the core.  This percentage was then subtracted from f(mar+fossil)*100 to determine 

%OMmar. 

 This method was based on two assumptions; 1) 
13

C end-members of marine and 

fossil OC are statistically insignificant, and 2) fossil OC concentrations are constant 

downcore.  The first assumption was proven valid in the previous section.  The second 

assumption was not possible to prove within the limits of our dataset.  However, %  

OMfossil values among all cores (n=12) did not cover a wide range (2.49-15.89 %), and 

on average the % difference between the two samples measured in each core was 4.5%. 

 Overall, differences in % OMterr, OMmar, and OMfossil were larger between sites 

(spatially) than temporally at each site (Fig. 21).  The only discernable trend was an 

increase in the amount of OMmar over time at the CA site.  Percentages of the marine,  
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Figure 21. Historical source reconstruction.  %OMterr = the fraction of organic 

matter that is terrestrial in origin; %OMmar = the fraction of organic matter that is 

marine in origin; %OMfossil = the fraction of organic matter that is fossil in origin. 
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terrestrial, and fossil sources are listed in Appendix R.  Terrestrial contributions ranged 

as high as 85.7% at CA to as low as 38.2% at MR.  MR had the lowest relative terrestrial  

contributions overall (43.0 +/- 2.5, n=11) ranging from 38.2 to 47.0%.  The site with the 

next lowest relative terrestrial contribution to sediments was LS (55.4 +/- 2.9%, n=12), 

with significantly higher values (>10%) than MR (p < 0.05).  Values at this site ranged 

from 49.4 to 58.3%.  BA (61.1 +/- 1.3, n=11) and SC (68.5 +/-2.2%) had a midrange of 

terrestrial contribution among all cores, which varied by only 5% at each of these sites.  

DC (73.1 +/- 3.2%) had a significantly higher relative terrestrial contribution, and a 10% 

difference between the highest and lowest values.  CA contained the highest percentages 

of OMterr (77.09 +/- 5.3), and also the largest range (67.3 to 85.7%).   

 The lack of any large trends or changes at each site with time, except for site CA 

which had larger marine contributions over time, may be due to the pristine watershed of 

Fiordland which has nearly 100% of its original forest intact (Leathwick et al., 2003).   

The large compositional differences in OM between cores is not observed in the 

biomarker source plots, suggesting that if the differences are due to variable delivery of 

OMterr (as opposed to variations in OMmar input), the quality of OM delivered does not 

change.  If changes in the absolute amount of OMterr delivered to these sites caused the 

observed spatial differences, it may be due to either 1) variations in fjord width, or 2) 

variations in landslide activity determined by topography.  The first explanation is likely, 

as narrower regions at the fjord head concentrate delivered OMterr into a smaller region, 

whereas more open sites effectively dilute OMterr.  This would explain why MR has the 

lowest relative OMterr concentrations, as the core was taken from a very open location in 
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DS closer to the mouth of the fjord, while the other cores were taken from narrow basins 

close to the head of the fjords.  To prove that variations in landslide activity was 

responsible for the observed trends, x-rays of the cores would be necessary, which would 

allow counts of the frequency and thickness of landslide layers at each site. 

 Another possible explanation for the observed differences between cores is 

variations in the absolute amount of OMmar at each site.  Increased contributions of 

OMmar can be due to either increased preservation or increased delivery.  Increased 

preservation of OMmar would be more likely in basins near the head of the fjords that 

receive less input of new saltwater from the coast.  This trend is not observed, with sites 

near the head having the lowest contributions of OMmar.  The more likely explanation is 

that production, and therefore delivery of OMmar, is a function of fjord width as well, 

which determines the amount of incidence radiation available to phytoplankton.  

Schuller and Savage (unpublished data) used Variance Partitioning Analysis to show that 

the fjord light environment is the most important factor (22% of variance) controlling 

pigment concentrations, and therefore the absolute concentration of OMmar in surface 

sediments.  Therefore, fjord width may be controlling the relative amounts of OMmar and 

OMterr at sites from both ends, with narrow regions containing large amounts of OMterr 

relative to OMmar, and open regions with increased contributions of OMmar and more 

diluted OMterr.  In fact, OM signatures have been shown to resemble more closely OMmar 

in sediments towards the mouth of most fjords (Nuwer and Keil, 2005; Walsh et al., 

2008; Smith et al., 2010). 
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Conclusion 

12% of sediment deposited on continental margins in the last 100,000 years has 

been in temperate fjord systems (Syvitski et al., 1987).  Nuwer and Keil (2005) found 

that due to a high concentration of OMterr in the form of mineral-associated OM and 

organic debris (mostly woody material) in fjord sediments, they likely have contained 

more than 12% of organic material deposited over this time period.  In this study it has 

been shown that Fiordland also contains large amounts of OMterr, in the form of OMsoil, 

organic debris, and OMfossil.  Annual rainfall rates of several meters combined with steep 

topography and intact temperate rainforest sustained sediments that contained on 

average %OC composed of 64.9% terrestrial material and another % that was OMfossil 

from sedimentary bedrock.  Landslides are responsible for sediments that contain a large 

proportion of organic debris, and also contribute OMfossil from mechanical erosion, 

which breaks down both organic debris and sedimentary bedrock into smaller size 

fractions.    

 Over the last ~500 years, OMterr delivery to fjords has remained relatively 

unchanged.  Spatial differences in the relative percentages of OMterr, OMmar, and OMfossil 

were larger than differences downcore at each site.  The unchanging proportions of OM 

at each location were due to the pristine watershed in Fiordland, which contains nearly 

100% of its original forest.  Spatial variations are thought to be caused primarily by the 

width of the fjord, as narrower regions near the head of the fjord have reduced plankton 

biomass due to topographic shading, and also concentrate OMterr delivered by rain and 

landslides which is delivered to a smaller area. 
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This study supported the claim that fjords, with respect to other coastal 

environments, are disproportionately responsible for burying organic material, and 

should be considered when developing global carbon budgets. 
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CHAPTER V 

CONCLUSIONS 

 

  

The utility of the BIT Index is sensitive to the type of coastal environment with 

which it is being employed.  In Fiordland, BIT Index values had a strong positive linear 

correlation with bulk carbon parameters, 
13

C and C/N, indicating the potential of the 

Index to quantify OMsoil in coastal sediments.  However, modeled %OMsoil estimates 

as a function of branched tetraether concentrations revealed that mixing between marine 

and soil end-members is non-linear.  Additionally, this method overestimates the amount 

of OMsoil present, with the degree of overestimation increasing with higher 

concentrations of branched GDGTs in soils and lower concentrations of crenarchaeol in 

sediments.  It follows that the linear trend of the BIT Index and bulk carbon parameters 

in Fiordland is due to high crenarchaeol production in fjords and/or low production of 

branched-GDGT producing soil bacteria.  The latter is the most likely case, as Fiordland 

soils are relatively shallow and immature due to frequent landslides.  On the Louisiana 

Shelf, crenarchaeol concentrations in sediments controlled BIT Index values due to large 

seasonal changes in production and therefore ammonia.  Fiordland, unlike many other 

fjord systems, is not glacier-fed and therefore does not have large seasonal changes in 

production, contributing to the linear trend seen in BIT Index values.  However, due to 

the quantitative limitations of the index, it was not used in the historical reconstruction 

of terrestrial inputs to Fiordland. 
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 Sedimentary OC concentrations in Fiordland were high compared to other types 

of coastal environments, similar to findings in other fjord systems.  Spatial variations in 

bulk carbon and biomarker parameters were larger than temporal variations in the six 

cores taken.  OMterr was the predominant fraction of OMsed in all but one site, followed 

by OMmar and then OMfossil from the weathering of sedimentary bedrock.  High 

concentrations of OMterr in fjord sediments was due to an intact forested watershed, 

high annual rainfall rates, steep topography and frequent seismic activity, which resulted 

in both overland runoff containing POC from soils and landslides containing both POC 

from soils as well as from weathered sedimentary bedrock.  The intact forested 

watershed also explained the minimal temporal variation on the OMterr concentration of 

sediments, as the watershed has experienced negligible deforestation and development.  

Spatial variations in the relative amounts of OMterr and OMmar are related to fjord 

width.  Narrower, upstream regions of the fjord concentrate OMterr inputs over a smaller 

sedimentary area.  Additionally, topographic shading inhibits production in these areas. 

 These results confirm the hypothesis that while fjords have contained 12% of 

sediments deposited to coastal zones over the last 100,000 years, they contain over 12% 

of the OM deposited to coastal zones over this time due to high concentrations of 

OMterr in sediments, both detrital and mineral-associated (Nuwer and Keil 2005). 
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APPENDIX A 
 

 

 

Bulk carbon parameters and BIT Index values of Doubtful Sound surface (0-2 cm) 

sediments.  

Site DS01 DS03 DS04 DS06 DS07 DS08 DS09 DS10 

Latitude -45.4625 -45.4607 -45.4573 -45.4672 -45.4134 -45.3832 -45.3698 -45.4074 

Longitude 167.1637 167.1564 167.1525 167.0924 167.1122 167.0919 167.0196 166.9712 

Depth(m) 18.9 N/A 75.4 93.3 141.7 278.7 184.6 64.3 

% OC 10.1 3.2 7.7 11.4 4.3 7.4 10.1 9.1 

d
13

C -28.7 -27.6 -27.9 -27.4 -26.9 -26.3 -27.8 -27.6 

C/N 36.8 6.6 26.3 22.1 20.7 19.0 24.6 23.2 

BIT 0.92 N/A 0.64 0.50 0.47 0.29 0.77 0.77 

L8 5.76 9.65 6.01 6.03 8.15 5.95 4.70 6.31 

(Ad/Al)v 0.23 0.23 0.20 0.21 0.97 0.20 0.20 0.20 

(Ad/Al)s 0.20 0.18 0.16 0.16 0.99 0.18 0.17 0.16 

C/V 0.10 0.09 0.08 0.12 0.66 0.05 0.06 0.06 

S/V 1.24 1.32 1.30 1.30 1.00 1.32 1.23 1.26 

mg 100mg OC
-1
        

PAL 0.18 0.19 0.11 0.12 0.12 0.09 0.08 0.10 

PON 0.10 0.06 0.04 0.05 0.04 0.03 0.02 0.03 

VAL 1.63 2.58 1.61 1.63 2.25 1.62 1.31 1.75 

ARS 2.21 2.19 2.16 2.61 2.08 2.16 2.33 2.24 

EVAL 1.32 1.09 1.21 1.27 1.29 1.23 1.25 1.24 

VON 0.47 0.77 0.47 0.46 0.62 0.43 0.37 0.48 

PAD 0.12 0.10 0.06 0.06 0.07 0.05 0.04 0.05 

SAL 2.09 3.44 2.21 2.23 2.93 2.10 1.63 2.32 

VAD 0.37 0.60 0.32 0.34 0.51 0.34 0.27 0.36 

SON 0.53 0.95 0.48 0.53 0.80 0.58 0.44 0.49 

DAD 0.13 0.15 0.09 0.09 0.11 0.08 0.07 0.09 

SAD 0.42 0.66 0.37 0.37 0.56 0.41 0.29 0.38 

CAD 0.11 0.15 0.08 0.14 0.08 0.05 0.05 0.07 

FAD 0.14 0.21 0.11 0.15 0.13 0.07 0.07 0.10 
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Site DS11 DS12 DS13 DS14 DS15 DS16 DS17 DS20 

Latitude -45.3279 -45.3388 -45.3014 -45.2695 -45.2565 -45.2767 -45.2855 -45.3155 

Longitude 167.013 166.9099 166.9842 166.9026 167.1626 167.1044 167.0181 167.1704 

Depth(m) 96.4 N/A 75.4 135 37.6 41.5 182 42.8 

% OC 2.0 9.3 0.6 1.8 4.6 1.6 1.9 4.4 

d
13

C -25.3 -27.8 -24.3 -26 -27.2 -27.9 -25.5 -27.4 

C/N 16.2 5.70 14.7 17.4 24.6 23.8 16.9 22.3 

BIT 0.28 N/A 0.26 0.53 0.63 0.93 0.24 0.77 

L8 2.73 7.73 3.91 4.45 7.25 11.20 5.09 6.73 

(Ad/Al)v 0.25 0.23 0.25 0.21 0.19 0.24 0.26 0.24 

(Ad/Al)s 0.20 0.18 0.20 0.17 0.16 0.20 0.21 0.19 

C/V 0.05 0.07 0.05 0.05 0.05 0.10 0.05 0.07 

S/V 1.09 1.12 1.03 1.33 1.18 1.02 1.20 1.23 

mg 100mg OC
-1
        

PAL 0.06 0.13 0.10 0.07 0.11 0.22 0.10 0.13 

PON 0.02 0.05 0.02 0.01 0.04 0.07 0.02 0.04 

VAL 0.80 2.30 1.17 1.27 2.18 3.39 1.44 1.91 

ARS 1.91 3.46 2.55 2.40 2.41 3.00 2.41 2.60 

EVAL 1.30 1.52 1.32 1.34 1.24 1.36 1.23 1.27 

VON 0.21 0.67 0.33 0.34 0.60 1.03 0.42 0.53 

PAD 0.03 0.07 0.06 0.04 0.05 0.12 0.06 0.08 

SAL 0.88 2.58 1.23 1.74 2.61 3.55 1.70 2.35 

VAD 0.20 0.52 0.29 0.27 0.41 0.80 0.37 0.45 

SON 0.23 0.70 0.30 0.45 0.60 0.88 0.51 0.63 

DAD 0.05 0.12 0.08 0.05 0.09 0.20 0.09 0.11 

SAD 0.19 0.50 0.27 0.29 0.46 0.75 0.38 0.48 

CAD 0.02 0.09 0.04 0.04 0.07 0.20 0.04 0.08 

FAD 0.03 0.15 0.05 0.06 0.10 0.31 0.07 0.11 
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APPENDIX B 
 

 

 

Bulk carbon parameters and BIT Index values of Fiordland core-top (0-2 cm) and 

terrestrial samples (soil and leaf-litter). 
Site SC2 BA1 DC1 MR2 S1 S2 S3 S4 LL1 LL2 LL3 

Latitude -45.7333 -45.5501 -45.4501 -45.3002 N/A N/A N/A N/A N/A N/A N/A 

Longitude 166.7168 166.9002 167.15 166.9666 N/A N/A N/A N/A N/A N/A N/A 

Depth (m) 301 168 94.0 407 N/A N/A N/A N/A N/A N/A N/A 

% OC 3.1 4.2 6.2 2.7 13.4 12.0 14.4 6.7 39.8 36.8 45.4 

13
C -26.8 -26.4 -27.6 -24.7 -30.7 -30.4 -30.2 -28.9 -29.9 -30.6 -31.4 

C/N 24.0 19.4 21.9 15.4 N/A N/A N/A N/A N/A N/A N/A 

BIT N/A N/A N/A N/A 1.00 1.00 1.00 1.00 N/A N/A N/A 

L8 6.45 10.70 10.00 6.28 6.50 5.73 2.33 16.6 9.34 12.5 4.06 

(Ad/Al)v 0.24 0.25 0.22 0.27 0.23 0.27 0.19 0.30 0.17 0.16 0.16 

(Ad/Al)s 0.17 0.19 0.17 0.22 0.21 0.24 0.17 0.22 0.14 0.15 0.16 

C/V 0.08 0.06 0.09 0.06 0.16 0.20 0.05 0.07 0.15 0.11 0.08 

S/V 1.29 1.34 1.32 1.28 0.50 0.41 1.14 0.98 1.23 0.90 1.08 

mg 100mg OC
-1
                     

PAL 0.12 0.15 0.20 0.12 0.19 0.16 0.54 0.30 0.20 0.77 0.13 

PON 0.04 0.05 0.07 0.03 0.05 0.05 0.16 0.07 0.04 0.50 0.05 

VAL 1.73 2.85 2.71 1.69 2.67 2.30 8.07 4.96 2.82 4.40 1.29 

ARS 3.05 3.52 3.72 2.00 2.65 2.60 3.39 4.42 3.31 6.69 3.76 

EVAL 1.25 1.32 1.56 1.06 1.39 1.09 1.56 1.36 1.26 1.61 1.47 

VON 0.56 0.84 0.84 0.50 0.74 0.70 1.92 1.32 0.62 1.12 0.39 

PAD 0.07 0.10 0.11 0.08 0.10 0.10 0.35 0.15 0.12 0.33 0.11 

SAL 2.36 3.90 3.68 2.18 1.41 1.04 5.48 5.26 3.51 4.04 1.52 

VAD 0.40 0.69 0.58 0.45 0.62 0.64 1.71 1.47 0.47 0.72 0.21 

SON 0.57 1.02 0.93 0.62 0.31 0.22 1.32 1.17 0.81 0.97 0.28 

DAD 0.14 0.17 0.18 0.10 0.32 0.28 0.76 0.18 0.13 0.47 0.20 

SAD 0.44 0.80 0.68 0.50 0.30 0.26 1.14 1.15 0.49 0.62 0.24 

CAD 0.09 0.10 0.15 0.06 0.10 0.12 0.28 0.14 0.40 0.38 0.09 

FAD 0.12 0.15 0.22 0.09 0.55 0.62 0.63 0.42 0.17 0.32 0.06 
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APPENDIX C 

 

 

 

Bulk carbon, BIT Index values, and lignin parameters between surface samples taken at 

deep (> 90 m) and shallow (< 90 m) sites.  * Indicates parameters with significant 

differences between shallow and deep sites. 

    Depth* BIT* 8 (Ad/Al)v % OC C/N 13C 
Shallow Avg 50.8 0.70 7.73 6.74 5.5 24.5 -27.3 
  Std. Dev. 21.3 0.23 2.23 2.24 3.6 6.6 1.4 
           

Deep Avg 159 0.44 6.10 5.30 5.5 19.6 -26.5 
  Std. Dev. 59.3 0.19 2.16 2.68 4.1 3.1 0.9 

           
t-test p 0.0007 0.036 0.189 0.2 0.97 0.096 0.218 
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APPENDIX D 

 

 

 

Biomarker results from cores 8Capr, BC1apr, BC1july and 8Cjuly on the Louisiana 

Continental Shelf.   

Core 
Depth 
(cm) 

BIT 
Index GDGTcren GDGTsoil 810 LPVI [Ad/Al]v 3,5:g 

8Capr 0-2 0.10 587 62.0 0.03 48.4 0.29 b.d 
  2-4 0.10 567 65.1 0.35 71.2 0.23 0.54 
  4-6 0.10 462 53.4 0.28 79.5 0.22 0.49 
  6-8 0.26 282 99.7 0.30 75.2 0.19 b.d. 
  8-10 0.40 219 145 0.83 91.3 0.17 0.91 
  10-12 0.41 78.5 54.2 0.13 62.7 0.32 0.44 
  12-14 0.36 144 80.2 0.09 75.0 0.26 0.27 

BC1apr 0-2 0.10 1360 148 0.37 122 0.22 1.00 
  2-4 0.45 298 248 0.73 125 0.21 1.39 
  4-6 0.10 997 116 0.87 107 0.18 1.16 
  6-8 0.10 669 76.3 0.71 113 0.21 0.42 
  8-10 0.12 615 87.8 0.36 122 0.22 0.58 
  10-12 0.13 524 81.7 0.33 101 0.21 0.56 
  12-14 0.09 440 44.9 0.27 51.3 0.20 0.54 
  14-16 0.11 185 22.4 0.24 93.1 0.25 0.61 
  16-18 0.26 331 117 0.22 102 0.24 0.30 
  18-20 0.20 480 114 n.n n.m n.m n.m 

BC1july 0-2 0.08 1390 128 0.24 113 0.26 0.80 
  2-4 0.11 1080 129 0.07 51.5 0.20 b.d. 
  4-6 0.10 567 64.4 0.23 89.0 0.24 0.40 
  6-8 0.10 593 64.3 0.12 125 0.29 0.40 
  8-10 0.12 471 65.1 0.09 89.4 0.25 0.24 
  10-12 0.08 669 56.3 0.06 70.2 0.28 0.14 
  12-14 0.09 897 89.8 0.36 131 0.26 0.96 
  14-16 0.15 827 140 0.29 88.6 0.27 0.59 
  16-18 0.12 954 132 0.32 116 0.27 0.73 
  18-20 0.13 599 85.8 0.29 93.0 0.33 0.65 

8Cjuly 0-2 0.10 850 99.4 0.40 55.2 0.22 0.45 
  2-4 0.11 699 84.9 0.20 80.2 0.22 0.28 
  4-6 0.12 411 58.0 0.39 77.5 0.18 0.37 
  6-8 0.15 418 71.2 0.19 81.9 0.18 0.26 
  8-10 0.14 275 44.3 0.13 76.6 0.26 0.21 
  10-12 0.46 104 86.9 0.01 66.4 0.76 b.d. 
  12-14 0.34 137 69.6 0.10 57.2 0.34 0.28 
  14-16 0.42 89.5 63.8 0.16 61.2 0.24 0.44 
  16-18 0.48 73.7 68.0 0.25 70.0 0.24 0.45 
  18-20 0.35 117 64.3 0.17 86.5 0.24 b.d. 
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APPENDIX E 

 

 

 

Linear regression statistics between GDGT-based proxies and CuO based proxies.  The 

larger R
2
 value for each core is in bold. 

  R
2
 R

2
 

Core BIT vs. 810 GDGTsoil vs. 810 

All 0.00 0.27 

8Capr 0.08 0.68 

BC1apr 0.06 0.24 

BC1july 0.09 0.17 

8Cjuly 0.29 0.03 

  R
2
 R

2
 

Core BIT vs. 3,5:g 
GDGTsoil vs. 

3,5:g 

All 0.00 0.34 

8Capr 0.11 0.18 

BC1apr 0.20 0.54 

BC1july 0.01 0.18 

8Cjuly 0.04 0.00 
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APPENDIX F 

 

 

 

Linear regression statistics of the BIT Index vs. GDGTcren and GDGTsoil are shown in 

order to determine what value is controlling the BIT Index.  The regression producing 

the highest R
2
 value in each core is in bold. 

  R
2
 R

2
 

Core BIT vs. GDGTcren BIT vs. GDGTsoil 

All 0.72 0.03 

8Capr 0.82 0.28 

BC1apr 0.21 0.38 

BC1july 0.05 0.15 

8Cjuly 0.94 0.01 
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APPENDIX G 

 

 

 

GDGT data from Belicka and Harvey (2009).  %OMsoil (BIT) represents the estimates 

that were made from that study by multiplying the BIT Index by 100 (equation (4), this 

text.  To minimize the influence of crenarchaeol concentrations and to avoid non-linear 

mixing, equation (6) from this study is applied to the GDGT data set to produce a 

corrected estimate of %OMsoil (brGDGTs).  % indicates the direction and magnitude of 

change by using the new equation, which in generally causes a decrease in %OMsoil 

estimates. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Station GDGT-I GDGT-II GDGT-III GDGT-IV BIT Index GDGTsoil %OMsoil (BIT) %OMsoil (brGDGTs) %

STN-1 0.6 1.2 1 17.9 0.13 2.8 13 4.9 -8.1

WHS-2 0.7 1.2 1.8 73.4 0.05 3.7 5 6.4 1.4

WHS-5 0.1 0.1 0.2 10.5 0.03 0.4 3 0.7 -2.3

WHS-6 0.1 tr 0.1 2.1 0.07 0.2 7 0.3 -6.7

WHS-7 0.4 0.5 0.7 16.7 0.09 1.6 9 2.8 -6.2

WHS-12 0.3 0.1 0.1 0.6 0.46 0.5 46 0.9 -45.1

EHS-4 0.1 0.1 0.2 7.2 0.05 0.4 5 0.7 -4.3

EHS-6 0.3 0.3 0.5 36.9 0.03 1.1 3 1.9 -1.1

EHS-9 0.4 0.5 0.7 40.4 0.04 1.6 4 2.8 -1.2

EHS-11 0.9 1.1 1.4 64.1 0.05 3.4 5 5.9 0.9

EHS-12 0.1 0.1 0.9 6.9 0.13 1.1 13 1.9 -11.1

BC-3 0.9 2 1.9 22.3 0.18 4.8 18 8.3 -9.7

BC-4 1.3 2.4 2.1 47.6 0.11 5.8 11 10.1 -0.9

BC-5 0.7 1 0.8 17.3 0.12 2.5 12 4.3 -7.7

BC-7 0.2 0.4 0.4 24.3 0.04 1.0 4 1.7 -2.3

EB-2 0.4 0.7 0.6 7.4 0.19 1.7 19 2.9 -16.1

EB-4 0.7 1.6 1.4 9.6 0.28 3.7 28 6.4 -21.6

EB-7 0.3 0.1 0.1 3.8 0.11 0.5 11 0.9 -10.1

Ik Riv. 5.6 23.1 29 nf 1.00 58 100 100 0



141 

 

 

 

APPENDIX H 

 

 

 

Bulk elemental and isotopic data for vegetation and soil samples collected in Fiordland, 

NZ.  U.I = unidentified, N/A = not applicable, - = not measured. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Type Label ID %OC 13C N/C C/N
14C f m

Submerged Wood SUW-1 U.I. 40.9 -26.64 0.0087 114 - -

SUW-2 U.I. 42.1 -26.89 0.0028 352 - -

SUW-3 U.I. 30.8 -26.88 0.0128 78.2 - -

Angiosperm Wood AW-MH Mountain Horopito 48.6 -30.27 0.0086 116 - -

AW-SB Silver Beech 45.5 -31.50 0.0092 108 - -

Gynmosperm Wood GW-T Totara 49.6 -29.69 0.0012 825 - -

Angiosperm Bark AB-SB Silver Beech 60.1 -34.91 0.0114 87.7 - -

Gynmosperm Bark GB-T Totara 51.6 -32.20 0.0051 197 - -

Angiosperm Leaves AL-MH Mountain Horopito 50.1 -31.95 0.0193 51.7 - -

AL-SBG Silver Beech 51.1 -33.23 0.0215 46.6 - -

AL-SBB Silver Beech 52.2 -31.26 0.0220 45.5 - -

AL-FFAG Five-Fingers 44.7 -33.51 0.0471 21.2 - -

AL-FFFY Five-Fingers 41.7 -32.11 0.0222 45.1 - -

AL-FFFB Five-Fingers 49.3 -34.38 0.0107 93.3 - -

Gymnosperm Needles GN-T Totara 49.9 -33.80 0.0090 112 - -

Leaf Litter LL U.I. 44.1 -30.20 0.0216 46.4 - -

Fern Non-woody F-NW U.I. 47.9 -31.18 0.0447 22.4 - -

Fern Woody F-W U.I. 46.7 -29.95 0.0217 46.2 - -

Moss M U.I. 31.8 -29.81 0.0307 32.6 - -

Grass G U.I. 45.2 -27.61 0.0199 50.3 - -

Epiphytes E-1 U.I. 38.3 -31.16 0.0209 47.8 - -

E-2 U.I. 46.6 -30.24 0.0079 126 - -

Soils S-GA1 N/A 3.07 -26.48 0.0733 13.6 - -

S-GA2 N/A 2.06 -26.89 0.0848 11.8 70.22 1.08

S-DC1 N/A 3.04 -28.64 0.0659 15.2 - -

S-DC2 N/A 14.5 -28.76 0.0706 14.2 127.7 1.14

S-DC3 N/A 0.84 -27.07 0.0647 15.4 - -

S-DS N/A 42.1 -30.18 0.0437 22.9 128.5 1.14

S-PI1 N/A 49.1 -29.53 0.0226 44.3 128.5 1.14

S-PI2 N/A 48.2 -29.33 0.0270 37.0 - -
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APPENDIX I 

 

 

 

Bulk elemental and isotopic data for sediment samples collected in Fiordland, NZ.  U.I = 

unidentified, N/A = not applicable, - = not measured. 

 
 

Core Lat (S) Long (E) Depth (m) LSR (cm y-1) Depth (cm) Year %OC 13C N/C C/N
14C f m f m(CT)

MR2 45º18.6251' 166º58.0379' 407 0.049 0-2 1987 4.13 -24.70 0.0708 14.1 - - -

2-4 1946 4.00 -24.86 0.0696 14.4 - - -

4-6 1905 3.90 -24.63 0.0666 15.0 - - -

6-8 1864 3.60 -24.29 0.0715 14.0 -129.9 0.88 0.89

8-10 1823 3.69 -24.52 0.0708 14.1 - - -

10-12 1783 3.72 -24.59 0.0696 14.4 - - -

12-14 1742 3.66 -24.76 0.0686 14.6 - - -

14-16 1701 3.54 -24.88 0.0672 14.9 - - -

16-18 1660 3.45 -24.98 0.0664 15.1 -176.12 0.83 0.86

18-20 1619 3.54 -24.94 0.0667 15.0 - - -

20-22 1578 3.56 -25.13 0.0638 15.7 - - -

CA4 45º24.1444' 166º58.9259' 85 0.090 2-4 1974 7.83 -27.73 0.0491 20.4 - - -

4-6 1951 10.8 -27.08 0.0436 22.9 -71.68 0.94 0.94

6-8 1929 9.92 -27.17 0.0436 22.9 - - -

8-10 1907 6.88 -27.41 0.0395 25.3 - - -

10-12 1885 8.26 -28.08 0.0353 28.3 -176.38 0.83 0.84

12-14 1863 7.48 -27.93 0.0333 30.1 - - -

14-16 1840 6.74 -27.96 0.0356 28.1 - - -

16-18 1818 6.73 -27.52 0.0408 24.5 - - -

18-20 1796 4.91 -27.91 0.0402 24.9 - - -

20-22 1774 6.60 -28.19 0.0260 38.5 - - -

22-24 1751 4.50 -28.28 0.0389 25.7 - - -

24-26 1729 4.31 -28.32 0.0506 19.8 - - -

26-28 1707 4.54 -28.26 0.0507 19.7 - - -

28-30 1685 3.93 -28.41 0.0480 20.8 - - -

30-32 1663 2.62 -28.49 0.0480 20.9 - - -

34-36 1618 8.61 -28.84 0.0227 44.0 - - -

36-38 1596 8.50 -28.68 0.0245 40.7 - - -

DC1 45º27.4767' 167º09.2441' 94 0.099 0-2 1997 8.73 -27.76 0.0419 23.8 - - -

2-4 1977 8.60 -27.58 0.0387 25.9 -34.26 0.97 0.98

4-6 1956 6.11 -27.78 0.0424 23.6 - - -

6-8 1936 7.02 -27.79 0.0399 25.1 - - -

8-10 1916 8.11 -27.94 0.0313 32.0 - - -

10-12 1896 7.38 -28.09 0.0306 32.7 -80.64 0.93 0.94

12-14 1876 10.0 -27.87 0.0343 29.2 - - -

14-16 1855 11.3 -27.85 0.0356 28.1 - - -

16-18 1835 10.7 -27.87 0.0370 27.0 - - -

18-20 1815 11.4 -27.92 0.0345 28.9 - - -

20-22 1795 8.37 -28.08 0.0317 31.5 - - -

22-24 1775 7.57 -27.56 0.0462 21.6 - - -

24-26 1754 8.42 -27.51 0.0450 22.2 - - -

26-28 1734 8.48 -27.35 0.0506 19.8 - - -

28-30 1714 9.83 -27.49 0.0480 20.8 - - -

30-32 1694 9.30 -27.37 0.0513 19.5 - - -

32-34 1674 9.48 -27.35 0.0489 20.5 - - -

34-36 1653 9.41 -27.05 0.0518 19.3 - - -

36-38 1633 9.07 -27.07 0.0485 20.6 - - -

40-42 1593 8.38 -27.29 0.0553 18.1 - - -

42-44 1573 7.05 -27.61 0.0541 18.5 - - -

BA1 45º33.5850' 166º54.7416' 168 0.038 0-2 1981 6.08 -26.54 0.0529 18.9 - - -

2-4 1928 4.51 -26.70 0.0514 19.5 -119.93 0.89 0.89

4-6 1875 4.59 -26.48 0.0519 19.3 -97.87 0.91 0.92

6-8 1823 5.23 -26.49 0.0515 19.4 - - -

8-10 1770 6.03 -26.64 0.0485 20.6 - - -

10-12 1718 6.20 -26.59 0.0494 20.2 - - -

12-14 1665 5.78 -26.40 0.0516 19.4 - - -

14-16 1612 6.07 -26.45 0.0507 19.7 - - -

16-18 1560 6.10 -26.27 0.0519 19.3 - - -

18-20 1507 5.54 -26.40 0.0503 19.9 - - -

SC2 45º44.0007' 166º43.6567' 301 0.012 0-2 1924 3.53 -26.91 0.0495 20.2 - - -

2-4 1757 1.94 -27.36 0.0462 21.6 -154.53 0.85 0.87

4-6 1590 6.29 -27.34 0.0428 23.4 - - -

6-8 1424 6.36 -27.16 0.0445 22.5 -131.85 0.87 0.93

LS1 45º59.0507' 166º48.6033' 370 0.075 0-2 1994 4.75 -26.14 0.0542 18.5 - - -

2-4 1967 4.68 -26.02 0.0526 19.0 - - -

4-6 1940 4.11 -25.99 0.0515 19.4 - - -

6-8 1914 3.42 -26.18 0.0487 20.5 -159.6 0.85 0.85

8-10 1887 3.56 -26.02 0.0529 18.9 - - -

10-12 1860 4.10 -25.43 0.0547 18.3 - - -

12-14 1834 3.77 -25.36 0.0576 17.4 -154.58 0.85 0.87

14-16 1807 3.56 -25.80 0.0517 19.3 - - -

16-18 1780 4.20 -26.07 0.0518 19.3 - - -

18-20 1754 5.11 -25.91 0.0518 19.3 - - -

20-22 1727 3.65 -26.13 0.0554 18.0 - - -

22-24 1700 3.09 -26.21 0.0530 18.9 - - -
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APPENDIX J 

 

 

 

Lignin-phenol proxies and yields normalized to g dry sediment ( ) and 100 mg OC ( ) 

of Fiordland, NZ vegetation and soils. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Sample 8 L 3,5-Bd 8 L 3,5-Bd [Ad/Al]v [Ad/Al]s P/(V+S)) C/V S/V LPVI

SUW-1 14.9 61.1 127 31.0 0.11 0.36 0.00 0.01 1.29 73.9 0.00 0.06

SUW-2 23.4 98.5 181 42.9 0.15 0.16 0.00 0.01 2.07 139 0.01 0.24

SUW-3 25.0 77.0 163 53.1 0.19 0.18 0.00 0.03 1.17 66.5 0.00 0.06

AW-MH 9.31 45.2 75.2 15.5 0.13 0.14 0.02 0.08 2.92 258 0.05 0.55

AW-SB 17.2 78.3 115 25.3 0.11 0.26 0.00 0.01 5.21 420 0.00 0.05

GW-T 11.0 54.4 180 36.4 0.15 0.36 0.03 0.01 0.01 1.03 0.00 0.09

AB-SB 2.25 13.5 30.8 5.13 0.20 0.19 0.03 0.30 0.57 110 0.08 0.56

GB-T 5.96 30.7 91.6 17.8 0.18 0.19 0.09 0.06 0.12 3.25 0.03 0.81

AL-MH 1.58 7.89 15.1 3.02 0.17 0.19 0.05 0.46 1.22 521 0.05 0.16

AL-SBG 8.55 43.8 85.3 16.7 0.15 0.16 0.02 0.08 1.56 122 0.02 0.39

AL-SBB 9.28 48.4 95.8 18.3 0.15 0.18 0.02 0.03 1.53 98.4 0.02 0.44

AL-FFAG 1.22 5.46 13.3 2.97 0.16 0.17 0.14 0.14 0.53 40.8 0.02 0.06

AL-FFFY 3.54 14.8 32.0 7.67 0.16 0.16 0.09 0.37 0.70 194 0.00 0.03

AL-FFFB 3.70 18.3 37.4 7.59 0.16 0.19 0.03 0.12 1.23 113 0.15 1.19

GN-T 3.42 17.1 48.7 9.76 0.28 0.37 0.32 0.06 0.21 6.40 0.12 1.67

LL 8.10 35.7 75.1 17.0 0.16 0.16 0.03 0.06 1.18 76.5 0.04 0.60

F-NW 2.40 11.5 35.2 7.35 0.17 0.00 0.75 0.13 0.00 2.53 0.02 0.21

F-W 8.05 37.6 124.1 26.6 0.15 0.00 0.05 0.01 0.00 1.03 0.00 0.16

M 1.31 4.16 8.84 2.78 0.20 0.31 0.32 0.79 0.31 181 0.16 0.32

G 3.05 13.8 22.8 5.04 0.12 0.28 0.03 1.36 1.47 2766 0.00 0.01

E-1 0.09 0.34 0.76 0.20 0.70 0.00 2.87 0.76 0.12 67.5 5.68 1.02

E-2 0.03 0.14 0.32 0.07 0.20 0.00 1.80 0.74 0.14 66.9 1.54 0.12

S-GA1 1.19 0.37 0.88 2.85 0.67 0.65 0.18 0.32 0.37 68.0 0.17 0.04

S-GA2 1.78 0.37 0.78 3.77 0.67 0.69 0.12 0.22 0.98 148 0.16 0.03

S-DC1 1.06 0.45 1.09 2.60 0.56 0.39 0.17 0.21 0.44 48.4 0.13 0.04

S-DC2 5.00 7.54 18.8 12.5 0.31 0.26 0.07 0.09 0.51 27.5 0.04 0.17

S-DC3 2.35 0.19 0.44 5.52 0.30 0.25 0.12 0.12 0.67 50.4 0.12 0.01

S-DS 3.00 10.8 25.9 7.22 0.47 0.36 0.09 0.15 0.55 46.0 0.07 0.43

S-PI1 4.28 22.0 51.0 9.91 0.26 0.26 0.04 0.11 0.73 51.2 0.10 1.23

S-PI2 5.80 20.6 49.4 13.9 0.29 0.28 0.07 0.10 0.62 39.8 0.12 1.47
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APPENDIX K 

 

 

 

Lignin-phenol proxies and yields normalized to g dry sediment ( ) and 100 mg OC ( ) 

of Fiordland, NZ sediments. 

 

Core Depth (cm) 8 L 3,5-Bd 8 L 3,5-Bd [Ad/Al]v [Ad/Al]s P/(V+S)) C/V S/V LPVI

MR2 0-2 4.22 8.71 0.08 10.2 21.1 0.04 0.29 0.24 0.04 0.05 1.28 82.8

2-4 1.46 2.92 0.03 3.65 7.29 0.06 0.31 0.21 0.04 0.07 1.42 104

4-6 2.23 4.68 0.05 5.73 12.0 0.05 0.28 0.21 0.04 0.06 1.19 78.3

8-10 1.22 2.43 0.03 3.31 6.59 0.06 0.32 0.21 0.04 0.07 1.44 105

10-12 1.23 2.44 0.03 3.31 6.55 0.06 0.30 0.20 0.04 0.07 1.48 107

12-14 2.37 4.87 0.06 6.48 13.3 0.06 0.32 0.28 0.04 0.06 1.3 86.5

14-16 1.23 2.39 0.03 3.47 6.76 0.07 0.31 0.22 0.04 0.11 1.53 135

16-18 0.96 1.88 0.02 2.78 5.46 0.06 0.36 0.21 0.04 0.09 1.52 121

18-20 1.54 3.11 0.04 4.34 8.79 0.06 0.31 0.24 0.04 0.07 1.35 96.9

20-22 1.50 3.13 0.03 4.22 8.78 0.05 0.27 0.22 0.04 0.05 1.24 77.3

CA4 2-4 5.71 11.2 0.20 7.29 14.3 0.10 0.25 0.23 0.03 0.12 1.47 148

4-6 7.15 14.3 0.12 6.65 13.3 0.04 0.26 0.22 0.03 0.09 1.41 110

6-8 6.88 13.8 0.11 6.93 13.9 0.04 0.28 0.25 0.04 0.08 1.4 107

8-10 5.51 10.6 0.10 8.02 15.4 0.05 0.24 0.18 0.05 0.07 1.65 127

22-24 3.45 6.72 0.05 7.66 14.9 0.04 0.22 0.16 0.02 0.06 1.59 114

24-26 2.73 5.42 0.07 6.35 12.6 0.06 0.24 0.18 0.03 0.09 1.46 115

26-28 2.42 5.01 0.06 5.33 11.0 0.06 0.25 0.19 0.04 0.09 1.21 94.7

30-32 2.34 4.79 0.04 8.92 18.3 0.04 0.21 0.17 0.03 0.09 1.28 98.4

34-36 9.03 16.9 0.10 10.5 19.6 0.03 0.18 0.15 0.01 0.04 1.88 134

36-38 7.17 13.6 0.07 8.44 16.1 0.03 0.19 0.15 0.01 0.04 1.76 121

DC1 0-2 7.08 14.8 0.20 8.11 16.9 0.06 0.73 0.38 0.04 0.12 1.14 103

2-4 6.43 13.1 0.14 7.47 15.3 0.05 0.28 0.24 0.04 0.1 1.27 102

4-6 3.78 7.46 0.08 6.19 12.2 0.05 0.36 0.24 0.05 0.15 1.41 153

6-8 4.55 9.28 0.09 6.48 13.2 0.05 0.24 0.20 0.04 0.09 1.3 99.3

8-10 5.14 10.5 0.11 6.33 12.9 0.05 0.24 0.20 0.04 0.12 1.25 114

10-12 6.87 14.5 0.17 9.30 19.6 0.06 0.23 0.22 0.05 0.09 1.12 82.6

12-14 5.85 12.1 0.18 5.83 12.1 0.07 0.31 0.25 0.05 0.11 1.19 104

14-16 5.35 10.6 0.17 4.73 9.40 0.08 0.33 0.26 0.05 0.21 1.29 202

16-18 6.14 12.5 0.20 5.74 11.7 0.08 0.41 0.30 0.04 0.11 1.28 110

18-20 5.77 11.8 0.18 5.07 10.4 0.07 0.50 0.30 0.04 0.09 1.27 98.1

20-22 5.79 11.9 0.12 6.92 14.3 0.05 0.24 0.22 0.03 0.08 1.25 90.4

22-24 3.73 7.70 0.08 4.93 10.2 0.05 0.21 0.18 0.04 0.07 1.25 88.1

24-26 5.62 11.5 0.13 6.68 13.7 0.05 0.27 0.23 0.04 0.08 1.29 97

26-28 6.26 12.5 0.11 7.39 14.8 0.04 0.23 0.19 0.04 0.08 1.42 106

28-30 5.61 11.2 0.11 5.70 11.4 0.05 0.23 0.18 0.04 0.08 1.42 108

30-32 5.99 12.1 0.15 6.44 13.0 0.1 0.32 0.26 0.04 0.1 1.32 111

32-34 5.44 11.1 0.12 5.74 11.7 0.05 0.24 0.19 0.05 0.09 1.3 103

34-36 7.65 15.5 0.17 8.14 16.5 0.06 0.24 0.20 0.05 0.09 1.34 105

36-38 5.04 10.1 0.11 5.56 11.2 0.06 0.24 0.19 0.04 0.09 1.36 108

40-42 4.74 9.53 0.10 5.66 11.4 0.05 0.23 0.19 0.04 0.09 1.37 109

42-44 5.74 11.9 0.18 8.14 16.8 0.07 0.27 0.21 0.05 0.11 1.21 102

BA1 0-2 5.31 10.8 0.10 8.73 17.8 0.04 0.29 0.25 0.03 0.06 1.33 89.2

2-4 2.59 5.31 0.02 5.74 11.8 0.02 0.30 0.27 0.03 0.05 1.32 84.4

4-6 2.84 5.75 0.04 6.18 12.5 0.03 0.42 0.26 0.03 0.06 1.36 93.4

6-8 3.81 7.73 0.06 7.28 14.8 0.04 0.25 0.22 0.03 0.05 1.36 89.2

8-10 4.25 8.66 0.09 7.55 15.4 0.05 0.37 0.25 0.03 0.06 1.33 90.6

10-12 4.61 9.38 0.08 7.43 15.1 0.04 0.27 0.23 0.03 0.05 1.35 87.9

12-14 3.92 8.09 0.08 6.79 14.0 0.05 0.28 0.23 0.03 0.05 1.28 82.7

14-16 3.94 8.14 0.07 6.49 13.4 0.04 0.29 0.20 0.03 0.05 1.27 80.6

16-18 3.56 7.33 0.07 5.84 12.0 0.04 0.25 0.21 0.03 0.05 1.29 83

18-20 3.15 6.51 0.06 5.71 11.8 0.05 0.25 0.22 0.03 0.05 1.27 81.1

SC2 0-2 1.93 3.91 0.05 5.48 11.1 0.07 0.43 0.30 0.05 0.1 1.34 111

2-4 0.85 1.70 0.03 4.39 8.74 0.08 0.33 0.22 0.04 0.11 1.4 127

4-6 2.76 5.49 0.07 4.39 8.73 0.07 0.41 0.27 0.05 0.15 1.36 152

6-8 4.31 8.53 0.12 6.78 13.4 0.07 0.38 0.25 0.04 0.14 1.41 147

LS1 0-2 1.08 2.09 0.03 2.27 4.40 0.07 0.43 0.25 0.04 0.11 1.56 144

2-4 1.50 2.93 0.04 3.21 6.25 0.07 0.31 0.20 0.04 0.08 1.56 120

4-6 1.34 2.61 0.03 3.25 6.34 0.07 0.31 0.21 0.04 0.08 1.55 122

6-8 1.23 2.39 0.03 3.60 6.98 0.06 0.29 0.19 0.03 0.08 1.59 125

8-10 1.60 3.21 0.04 4.50 9.03 0.06 0.27 0.22 0.03 0.05 1.43 95.7

10-12 1.09 2.10 0.03 2.65 5.12 0.07 0.44 0.26 0.04 0.1 1.58 136

12-14 1.16 2.25 0.03 3.07 5.97 0.07 0.32 0.20 0.04 0.08 1.58 121

14-16 1.15 2.23 0.03 3.24 6.26 0.07 0.31 0.20 0.04 0.09 1.61 132

16-18 1.14 2.23 0.03 2.71 5.30 0.07 0.35 0.20 0.04 0.1 1.51 128

18-20 1.77 3.44 0.05 3.47 6.72 0.07 0.30 0.19 0.04 0.08 1.59 127

20-22 1.59 3.24 0.05 4.35 8.88 0.07 0.30 0.24 0.04 0.06 1.33 88.7

22-24 1.51 3.09 0.05 4.90 10.0 0.07 0.28 0.23 0.04 0.06 1.32 87.7
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APPENDIX L 

 

 

 

Formyl- and carboxy- lignin-phenol proxies and yields normalized to g dry sediment ( ) 

and 100 mg OC ( ) of Fiordland, NZ vegetation and soils. 

 
 

 

 

 

 

 

 

 

 

Sample 5f 5c 6c 2c cV 5f 5c 6c 2c cV cV/V

SUW-1 0.56 1.78 0.04 0.55 2.93 0.14 0.43 0.01 0.14 0.72 0.08

SUW-2 0.72 2.50 0.06 0.72 3.99 0.17 0.59 0.01 0.17 0.95 0.11

SUW-3 0.66 4.25 0.07 1.02 5.99 0.21 1.38 0.02 0.33 1.94 0.09

AW-MH 0.19 0.33 0.01 0.07 0.61 0.04 0.07 0.00 0.01 0.13 0.04

AW-SB 0.62 0.54 0.00 0.21 1.37 0.14 0.12 0.00 0.05 0.30 0.08

GW-T 0.39 2.43 0.07 0.90 3.80 0.08 0.49 0.01 0.18 0.77 0.06

AB-SB 0.00 0.34 0.00 0.00 0.34 0.00 0.06 0.00 0.00 0.06 0.04

GB-T 0.23 1.69 0.02 0.33 2.26 0.04 0.33 0.00 0.06 0.44 0.06

AL-MH 0.02 0.09 0.00 0.00 0.11 0.00 0.02 0.00 0.00 0.02 0.04

AL-SBG 0.22 0.59 0.00 0.18 0.99 0.04 0.12 0.00 0.03 0.19 0.05

AL-SBB 0.24 0.93 0.00 0.22 1.39 0.05 0.18 0.00 0.04 0.27 0.08

AL-FFAG 0.01 0.21 0.00 0.00 0.22 0.00 0.05 0.00 0.00 0.05 0.05

AL-FFFY 0.07 0.38 0.00 0.06 0.51 0.02 0.09 0.00 0.01 0.12 0.06

AL-FFFB 0.06 0.24 0.03 0.00 0.33 0.01 0.05 0.01 0.00 0.07 0.05

GN-T 0.12 0.55 0.02 0.03 0.72 0.02 0.11 0.00 0.01 0.14 0.05

LL 0.27 1.41 0.02 0.28 1.98 0.06 0.32 0.00 0.06 0.45 0.09

F-NW 0.05 0.73 0.01 0.13 0.91 0.01 0.15 0.00 0.03 0.19 0.07

F-W 0.27 1.52 0.00 0.40 2.19 0.06 0.33 0.00 0.09 0.47 0.05

M 0.01 0.18 0.00 0.03 0.22 0.00 0.06 0.00 0.01 0.07 0.09

G 0.04 0.12 0.00 0.02 0.19 0.01 0.03 0.00 0.01 0.04 0.04

E-1 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.04

E-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

S-GA1 0.01 0.10 0.00 0.01 0.12 0.03 0.31 0.01 0.05 0.40 0.27

S-GA2 0.00 0.06 0.00 0.01 0.07 0.02 0.27 0.01 0.03 0.33 0.32

S-DC1 0.01 0.07 0.00 0.01 0.09 0.02 0.16 0.00 0.03 0.21 0.23

S-DC2 0.08 0.72 0.01 0.12 0.93 0.06 0.50 0.01 0.08 0.64 0.15

S-DC3 0.00 0.01 0.00 0.00 0.02 0.02 0.18 0.01 0.02 0.23 0.12

S-DS 0.13 1.21 0.01 0.18 1.52 0.03 0.29 0.00 0.04 0.36 0.18

S-PI1 0.21 1.54 0.03 0.25 2.02 0.04 0.30 0.01 0.05 0.39 0.13

S-PI2 0.26 1.80 0.05 0.34 2.44 0.07 0.51 0.01 0.09 0.69 0.12
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APPENDIX M 

 

 

 

Formyl- and carboxy- lignin-phenol proxies and yields normalized to g dry sediment ( ) 

and 100 mg OC ( ) of Fiordland, NZ sediments. 

 
 

Core Depth (cm) 5f 5c 6c 2c cV 5f 5c 6c 2c cV cV/V

MR2 0-2 0.01 0.18 0.00 0.03 0.23 0.03 0.44 0.01 0.08 0.56 0.10

2-4 0.01 0.10 0.00 0.03 0.15 0.03 0.25 0.01 0.09 0.37 0.19

4-6 0.02 0.15 0.01 0.05 0.23 0.05 0.39 0.02 0.13 0.58 0.17

8-10 0.01 0.08 0.00 0.03 0.12 0.02 0.22 0.01 0.07 0.33 0.18

10-12 0.01 0.08 0.00 0.03 0.12 0.03 0.21 0.01 0.07 0.32 0.18

12-14 0.01 0.11 0.00 0.02 0.14 0.02 0.30 0.00 0.07 0.39 0.11

14-16 0.01 0.06 0.00 0.02 0.10 0.03 0.18 0.01 0.06 0.28 0.17

16-18 0.00 0.05 0.00 0.02 0.07 0.01 0.14 0.01 0.06 0.21 0.15

18-20 0.01 0.11 0.01 0.04 0.16 0.04 0.30 0.02 0.10 0.46 0.19

20-22 0.01 0.09 0.00 0.02 0.11 0.03 0.24 0.00 0.04 0.32 0.14

CA4 2-4 0.03 0.25 0.00 0.04 0.32 0.04 0.32 0.00 0.04 0.41 0.11

4-6 0.03 0.30 0.01 0.06 0.40 0.03 0.28 0.01 0.05 0.37 0.09

6-8 0.02 0.33 0.00 0.06 0.41 0.02 0.33 0.00 0.06 0.41 0.09

8-10 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00

22-24 0.02 0.15 0.00 0.03 0.20 0.05 0.34 0.00 0.06 0.45 0.11

24-26 0.02 0.12 0.00 0.02 0.17 0.05 0.28 0.00 0.06 0.38 0.12

26-28 0.03 0.20 0.00 0.03 0.26 0.06 0.43 0.00 0.07 0.56 0.15

30-32 0.02 0.13 0.00 0.02 0.18 0.07 0.51 0.01 0.09 0.68 0.12

34-36 0.07 0.38 0.01 0.07 0.53 0.08 0.44 0.01 0.08 0.61 0.12

36-38 0.05 0.30 0.00 0.06 0.41 0.06 0.35 0.00 0.07 0.48 0.12

DC1 0-2 0.00 0.03 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.03 0.01

2-4 0.04 0.28 0.00 0.06 0.38 0.04 0.32 0.00 0.07 0.44 0.11

4-6 0.03 0.24 0.01 0.06 0.33 0.05 0.39 0.01 0.10 0.54 0.17

6-8 0.02 0.34 0.01 0.06 0.43 0.04 0.48 0.01 0.09 0.61 0.08

8-10 0.04 0.23 0.01 0.09 0.38 0.05 0.29 0.02 0.11 0.46 0.13

10-12 0.03 0.23 0.00 0.06 0.32 0.04 0.31 0.00 0.08 0.43 0.08

12-14 0.02 0.24 0.00 0.05 0.31 0.02 0.24 0.00 0.05 0.31 0.10

14-16 0.04 0.31 0.02 0.09 0.46 0.03 0.28 0.01 0.08 0.40 0.17

16-18 0.02 0.10 0.01 0.01 0.14 0.02 0.10 0.00 0.01 0.13 0.05

18-20 0.02 0.06 0.00 0.00 0.08 0.01 0.05 0.00 0.00 0.07 0.03

20-22 0.05 0.29 0.02 0.11 0.47 0.06 0.35 0.03 0.13 0.57 0.14

22-24 0.02 0.16 0.00 0.03 0.21 0.02 0.21 0.00 0.04 0.27 0.11

24-26 0.01 0.13 0.00 0.00 0.15 0.02 0.16 0.00 0.00 0.18 0.07

26-28 0.02 0.19 0.00 0.01 0.23 0.03 0.23 0.00 0.01 0.27 0.11

28-30 0.05 0.29 0.00 0.05 0.38 0.05 0.29 0.00 0.05 0.39 0.12

30-32 0.01 0.08 0.00 0.00 0.09 0.02 0.08 0.00 0.00 0.10 0.05

32-34 0.05 0.30 0.00 0.05 0.40 0.05 0.31 0.00 0.05 0.42 0.12

34-36 0.05 0.29 0.00 0.05 0.39 0.05 0.31 0.00 0.05 0.42 0.12

36-38 0.04 0.27 0.00 0.04 0.35 0.04 0.29 0.00 0.05 0.38 0.13

40-42 0.04 0.29 0.00 0.05 0.39 0.05 0.35 0.00 0.06 0.46 0.14

42-44 0.03 0.20 0.00 0.03 0.26 0.04 0.28 0.00 0.04 0.37 0.14

BA1 0-2 0.03 0.23 0.00 0.05 0.31 0.04 0.38 0.00 0.08 0.51 0.11

2-4 0.02 0.08 0.00 0.02 0.12 0.05 0.18 0.00 0.04 0.27 0.09

4-6 0.02 0.13 0.01 0.00 0.16 0.04 0.29 0.02 0.00 0.34 0.13

6-8 0.02 0.17 0.00 0.03 0.22 0.03 0.32 0.01 0.06 0.42 0.09

8-10 0.02 0.19 0.01 0.02 0.25 0.04 0.34 0.01 0.03 0.44 0.12

10-12 0.03 0.22 0.00 0.03 0.29 0.05 0.36 0.00 0.05 0.46 0.12

12-14 0.03 0.25 0.00 0.03 0.32 0.05 0.44 0.00 0.05 0.55 0.13

14-16 0.04 0.26 0.00 0.05 0.34 0.06 0.43 0.00 0.07 0.57 0.15

16-18 0.03 0.25 0.00 0.04 0.33 0.05 0.41 0.00 0.07 0.54 0.15

18-20 0.02 0.18 0.00 0.03 0.23 0.04 0.32 0.00 0.05 0.42 0.13

SC2 0-2 0.01 0.09 0.00 0.00 0.11 0.03 0.27 0.01 0.01 0.32 0.13

2-4 0.01 0.05 0.00 0.01 0.07 0.05 0.27 0.02 0.04 0.38 0.17

4-6 0.02 0.18 0.02 0.06 0.27 0.04 0.28 0.03 0.09 0.43 0.18

6-8 0.03 0.27 0.03 0.09 0.42 0.05 0.43 0.04 0.14 0.66 0.18

LS1 0-2 0.00 0.06 0.00 0.02 0.09 0.01 0.13 0.00 0.05 0.19 0.16

2-4 0.01 0.10 0.01 0.04 0.15 0.02 0.21 0.01 0.08 0.32 0.20

4-6 0.01 0.08 0.00 0.03 0.13 0.03 0.20 0.01 0.07 0.31 0.18

6-8 0.01 0.07 0.01 0.03 0.12 0.03 0.21 0.02 0.08 0.34 0.19

8-10 0.01 0.07 0.00 0.01 0.09 0.02 0.20 0.00 0.03 0.26 0.12

10-12 0.01 0.06 0.00 0.02 0.09 0.01 0.14 0.01 0.05 0.21 0.16

12-14 0.01 0.08 0.00 0.03 0.12 0.02 0.21 0.01 0.07 0.32 0.20

14-16 0.01 0.07 0.00 0.03 0.11 0.02 0.20 0.01 0.07 0.31 0.19

16-18 0.00 0.06 0.00 0.02 0.09 0.01 0.14 0.01 0.06 0.22 0.16

18-20 0.02 0.11 0.01 0.04 0.17 0.03 0.21 0.01 0.08 0.33 0.19

20-22 0.00 0.05 0.00 0.01 0.06 0.01 0.12 0.00 0.01 0.14 0.11

22-24 0.01 0.08 0.00 0.01 0.10 0.04 0.25 0.00 0.05 0.34 0.14
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APPENDIX N 

 

 

 

Lignin-Dimer proxies and yields normalized to g dry sediment ( ) and 100 mg OC ( ) 

of Fiordland, NZ vegetation and soils. 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix O 

 

Table 15.  Lignin-Dimer proxies and yields normalized to g dry Fiordland, NZ 

sediments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Sample  D  5,5'  ,1  ,1  5  4-O-5'  D  5,5'  ,1  ,1  ,5  4-O-5' SR/RR (  1+  1)/(  2+  5) D/M 
SUW-1 10.0 4.15 2.94 0.75 0.40 1.75 2.44 1.01 0.72 0.18 0.10 0.43 1.41 1.72 0.22 
SUW-2 15.0 7.56 2.20 2.01 0.59 2.61 3.55 1.79 0.52 0.48 0.14 0.62 0.98 1.31 0.13 
SUW-3 21.9 13.0 4.04 0.66 1.19 3.00 7.10 4.21 1.31 0.21 0.39 0.97 0.68 1.12 0.16 
AW-MH 6.92 5.62 0.55 0.27 0.11 0.38 1.43 1.16 0.11 0.06 0.02 0.08 0.23 1.71 0.12 
AW-SB 5.23 0.71 2.22 0.96 0.08 1.26 1.15 0.16 0.49 0.21 0.02 0.28 6.45 2.36 0.05 
GW-T 22.0 15.3 4.47 0.26 1.35 0.58 4.45 3.10 0.90 0.05 0.27 0.12 0.43 2.43 0.32 
AB-SB 16.3 15.1 0.61 0.17 0.16 0.26 2.71 2.51 0.10 0.03 0.03 0.04 0.08 1.87 1.00 
GB-T 10.3 7.80 1.21 0.33 0.55 0.39 1.99 1.51 0.23 0.06 0.11 0.08 0.32 1.65 0.24 

AL-MH 0.82 0.59 0.11 0.05 0.02 0.06 0.16 0.12 0.02 0.01 0.00 0.01 0.39 2.05 0.12 

AL-SB G 4.44 2.87 0.72 0.12 0.21 0.52 0.87 0.56 0.14 0.02 0.04 0.10 0.55 1.16 0.08 

AL-SB 

SB 

B 4.54 

4 

2.93 

3 

0.66 

6 

0.10 

0 

0.30 

0 

0.55 

5 

0.87 

7 

0.56 

6 

0.13 

3 

0.02 

2 

0.06 

6 

0.11 

1 

0.55 

5 

0.89 

9 

0.10 

0 

AL-FF 

FF 

AG 

G 

0.73 

3 

0.62 

2 

0.11 

1 

0.00 

0 

0.00 

0 

0.00 

0 

0.16 

6 

0.14 

4 

0.03 

3 

0.00 

0 

0.00 

0 

0.00 

0 

0.18 

8 

N/A 

A 

0.10 

0 

AL-FF 

FF 

FY 

Y 

1.27 

7 

0.91 

1 

0.25 

5 

0.00 

0 

0.00 

0 

0.10 

0 

0.30 

0 

0.22 

2 

0.06 

6 

0.00 

0 

0.00 

0 

0.03 

3 

0.40 

0 

2.43 

3 

0.07 

7 

AL-FF 

FF 

FB 

B 

3.63 

3 

3.32 

2 

0.14 

4 

0.05 

5 

0.00 

0 

0.12 

2 

0.74 

4 

0.67 

7 

0.03 

3 

0.01 

1 

0.00 

0 

0.02 

2 

0.09 

9 

1.58 

8 

0.22 

2 

GN-T 

T 

4.21 

1 

3.12 

2 

0.70 

0 

0.22 

2 

0.13 

3 

0.04 

4 

0.84 

4 

0.62 

2 

0.14 

4 

0.04 

4 

0.03 

3 

0.01 

1 

0.35 

5 

7.37 

7 

0.20 

0 

LL 

L 

6.65 

5 

4.65 

5 

0.86 

6 

0.21 

1 

0.34 

4 

0.60 

0 

1.51 

1 

1.05 

5 

0.20 

0 

0.05 

5 

0.08 

8 

0.14 

4 

0.43 

3 

1.15 

5 

0.14 

4 

F-NW 

NW 

3.35 

5 

2.75 

5 

0.33 

3 

0.07 

7 

0.16 

6 

0.05 

5 

0.70 

0 

0.57 

7 

0.07 

7 

0.01 

1 

0.03 

3 

0.01 

1 

0.22 

2 

1.91 

1 

0.23 

3 

F-W 

W 

9.73 

3 

7.24 

4 

1.60 

0 

0.24 

4 

0.46 

6 

0.18 

8 

2.08 

8 

1.55 

5 

0.34 

4 

0.05 

5 

0.10 

0 

0.04 

4 

0.34 

4 

2.89 

9 

0.20 

0 

M 0.35 

5 

0.35 

5 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.11 

1 

0.11 

1 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

N/A 

A 

0.07 

7 

G 0.76 

6 

0.24 

4 

0.18 

8 

0.12 

2 

0.02 

2 

0.20 

0 

0.17 

7 

0.05 

5 

0.04 

4 

0.03 

3 

0.01 

1 

0.05 

5 

2.17 

7 

1.27 

7 

0.05 

5 

E-1 

1 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

N/A 

A 

N/A 

A 

0.00 

0 

E-2 

2 

0.03 

3 

0.03 

3 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.01 

1 

0.01 

1 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

0.00 

0 

N/A 

A 

0.21 

1 

S-GA1 

GA1 

0.13 

3 

0.13 

3 

0.00 

0 

0.00 0.00 0.00 0.43 0.43 0.00 0.00 0.00 0.00 0.00 N/A 0.16 
S-GA2 0.13 0.06 0.01 0.05 0.00 0.00 0.63 0.30 0.04 0.26 0.01 0.02 1.10 10.4 0.25 
S-DC1 0.10 0.09 0.01 0.00 0.00 0.00 0.23 0.21 0.01 0.00 0.00 0.00 0.06 N/A 0.14 
S-DC2 1.73 1.10 0.12 0.32 0.10 0.10 1.20 0.76 0.08 0.22 0.07 0.07 0.57 2.27 0.17 
S-DC3 0.03 0.02 0.00 0.00 0.00 0.00 0.33 0.28 0.03 0.00 0.01 0.00 0.17 2.43 0.09 
S-DS 4.50 3.42 0.18 0.63 0.12 0.15 1.07 0.81 0.04 0.15 0.03 0.04 0.34 4.81 0.31 
S-PI1 6.34 4.15 0.33 1.38 0.12 0.35 1.23 0.81 0.06 0.27 0.02 0.07 0.53 3.60 0.22 
S-PI2 5.68 4.63 0.32 0.11 0.26 0.37 1.60 1.30 0.09 0.03 0.07 0.10 0.23 0.69 0.16 
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Lignin-Dimer proxies and yields normalized to g dry sediment ( ) and 100 mg OC ( ) 

of Fiordland, NZ sediments. 

 

Core Depth (cm) D 5,5' ,1 ,1 5 4-O-5' D 5,5' ,1 ,1 ,5 4-O-5' SR/RR ( 1+ 1)/( 2+ 5) D/M

MR2 0-2 0.31 0.24 0.03 0.00 0.02 0.03 0.76 0.58 0.07 0.00 0.04 0.08 0.32 0.62 0.06

2-4 0.26 0.17 0.04 0.01 0.02 0.03 0.65 0.42 0.11 0.02 0.04 0.07 0.56 1.09 0.13

4-6 0.40 0.28 0.04 0.01 0.02 0.04 1.02 0.73 0.11 0.02 0.05 0.11 0.40 0.85 0.13

8-10 0.20 0.13 0.02 0.01 0.01 0.03 0.53 0.37 0.07 0.01 0.02 0.07 0.46 0.95 0.12

10-12 0.19 0.13 0.02 0.01 0.01 0.02 0.50 0.35 0.05 0.01 0.03 0.06 0.45 0.76 0.11

12-14 0.23 0.16 0.02 0.00 0.02 0.04 0.64 0.44 0.05 0.00 0.05 0.10 0.45 0.29 0.07

14-16 0.18 0.15 0.01 0.00 0.00 0.01 0.50 0.41 0.03 0.01 0.01 0.03 0.21 0.96 0.11

16-18 0.11 0.08 0.01 0.00 0.00 0.01 0.31 0.22 0.04 0.00 0.01 0.03 0.38 1.00 0.08

18-20 0.31 0.19 0.03 0.01 0.03 0.05 0.86 0.54 0.08 0.04 0.07 0.14 0.61 0.55 0.14

20-22 0.21 0.14 0.01 0.03 0.01 0.02 0.60 0.40 0.02 0.09 0.03 0.07 0.51 1.15 0.11

CA4 2-4 0.79 0.48 0.04 0.17 0.03 0.08 1.00 0.61 0.05 0.21 0.04 0.10 0.55 1.36 0.11

4-6 0.92 0.61 0.08 0.05 0.07 0.11 0.85 0.57 0.08 0.04 0.06 0.10 0.51 0.75 0.09

6-8 0.64 0.50 0.04 0.02 0.01 0.07 0.65 0.50 0.04 0.02 0.01 0.07 0.30 0.67 0.06

8-10 0.03 0.03 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00 N/A 0.01

22-24 0.57 0.33 0.05 0.06 0.08 0.05 1.26 0.73 0.11 0.13 0.17 0.12 0.75 0.83 0.12

24-26 0.44 0.32 0.03 0.01 0.02 0.06 1.02 0.75 0.07 0.03 0.05 0.13 0.37 0.53 0.12

26-28 0.63 0.40 0.04 0.09 0.04 0.06 1.39 0.89 0.09 0.19 0.09 0.14 0.57 1.24 0.16

30-32 0.51 0.33 0.05 0.05 0.04 0.05 1.96 1.25 0.18 0.18 0.14 0.21 0.57 1.06 0.15

34-36 1.75 0.98 0.21 0.23 0.08 0.25 2.03 1.14 0.25 0.27 0.09 0.29 0.79 1.35 0.13

36-38 1.26 0.70 0.13 0.19 0.06 0.18 1.48 0.83 0.16 0.22 0.07 0.21 0.80 1.35 0.14

DC1 0-2 0.49 0.44 0.04 0.00 0.00 0.00 0.56 0.51 0.05 0.00 0.00 0.00 0.10 N/A 0.07

2-4 0.35 0.31 0.02 0.00 0.00 0.03 0.41 0.35 0.02 0.00 0.00 0.03 0.15 0.53 0.04

4-6 0.82 0.52 0.10 0.04 0.06 0.10 1.34 0.85 0.17 0.06 0.09 0.17 0.59 0.89 0.17

6-8 1.14 0.82 0.12 0.02 0.09 0.09 1.62 1.17 0.17 0.03 0.13 0.13 0.39 0.74 0.09

8-10 1.07 0.72 0.13 0.05 0.06 0.11 1.32 0.88 0.16 0.06 0.08 0.14 0.50 1.01 0.16

10-12 0.76 0.57 0.06 0.03 0.04 0.07 1.03 0.77 0.08 0.04 0.05 0.09 0.34 0.78 0.09

12-14 0.87 0.65 0.07 0.03 0.05 0.08 0.87 0.65 0.07 0.03 0.05 0.08 0.34 0.81 0.12

14-16 1.35 1.02 0.11 0.05 0.06 0.10 1.19 0.90 0.10 0.05 0.06 0.09 0.32 1.01 0.19

16-18 0.41 0.38 0.02 0.01 0.00 0.01 0.39 0.36 0.02 0.01 0.00 0.01 0.08 2.52 0.06

18-20 1.87 1.78 0.01 0.05 0.03 0.00 1.65 1.56 0.01 0.05 0.02 0.00 0.05 2.48 0.31

20-22 1.15 0.72 0.16 0.06 0.07 0.13 1.37 0.87 0.19 0.07 0.08 0.16 0.58 1.07 0.15

22-24 0.37 0.28 0.02 0.00 0.02 0.05 0.49 0.37 0.03 0.00 0.02 0.07 0.32 0.31 0.08

24-26 0.48 0.31 0.03 0.10 0.01 0.03 0.57 0.37 0.03 0.12 0.01 0.03 0.53 3.39 0.10

26-28 0.55 0.38 0.07 0.01 0.02 0.07 0.65 0.44 0.08 0.01 0.03 0.08 0.46 0.90 0.10

28-30 0.78 0.54 0.06 0.02 0.05 0.11 0.79 0.55 0.06 0.02 0.05 0.11 0.44 0.48 0.10

30-32 0.56 0.40 0.07 0.01 0.03 0.06 0.60 0.43 0.08 0.01 0.03 0.06 0.42 0.95 0.12

32-34 0.85 0.59 0.07 0.03 0.06 0.11 0.90 0.62 0.07 0.03 0.06 0.11 0.44 0.58 0.11

34-36 0.82 0.57 0.09 0.01 0.05 0.10 0.87 0.61 0.10 0.01 0.05 0.10 0.43 0.70 0.11

36-38 0.70 0.48 0.07 0.02 0.04 0.09 0.77 0.52 0.08 0.02 0.04 0.10 0.47 0.73 0.11

40-42 0.80 0.54 0.07 0.02 0.06 0.11 0.96 0.65 0.09 0.03 0.07 0.13 0.48 0.59 0.12

42-44 0.52 0.38 0.04 0.01 0.04 0.06 0.74 0.53 0.05 0.01 0.05 0.09 0.38 0.50 0.12

BA1 0-2 0.39 0.31 0.02 0.00 0.01 0.04 0.64 0.51 0.04 0.00 0.02 0.07 0.24 0.39 0.06

2-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N/A N/A 0.00

4-6 0.37 0.24 0.05 0.01 0.02 0.06 0.81 0.53 0.10 0.01 0.04 0.13 0.53 0.73 0.12

6-8 0.55 0.37 0.05 0.01 0.06 0.06 1.06 0.71 0.10 0.03 0.11 0.11 0.49 0.56 0.09

8-10 0.53 0.33 0.06 0.02 0.03 0.08 0.96 0.59 0.12 0.03 0.06 0.15 0.62 0.68 0.11

10-12 0.64 0.40 0.06 0.01 0.09 0.08 1.04 0.64 0.09 0.02 0.15 0.13 0.57 0.45 0.12

12-14 0.62 0.40 0.05 0.03 0.04 0.10 1.07 0.69 0.08 0.05 0.07 0.18 0.54 0.49 0.11

14-16 0.80 0.44 0.07 0.13 0.06 0.10 1.31 0.73 0.12 0.21 0.09 0.17 0.81 1.25 0.15

16-18 0.76 0.42 0.07 0.12 0.05 0.11 1.25 0.69 0.11 0.20 0.08 0.17 0.82 1.25 0.15

18-20 0.51 0.33 0.03 0.04 0.03 0.08 0.92 0.59 0.05 0.08 0.06 0.14 0.56 0.63 0.12

SC2 0-2 0.07 0.07 0.00 0.00 0.00 0.00 0.21 0.20 0.01 0.00 0.00 0.01 0.04 N/A 0.03

2-4 0.17 0.13 0.02 0.00 0.01 0.02 0.88 0.65 0.10 0.00 0.03 0.11 0.37 0.70 0.16

4-6 0.58 0.37 0.08 0.02 0.04 0.06 0.92 0.59 0.12 0.04 0.07 0.10 0.57 0.94 0.15

6-8 0.86 0.52 0.12 0.04 0.07 0.11 1.35 0.82 0.19 0.06 0.11 0.17 0.64 0.90 0.14

LS1 0-2 0.15 0.11 0.02 0.00 0.01 0.01 0.31 0.24 0.03 0.00 0.02 0.02 0.29 0.97 0.10

2-4 0.25 0.17 0.04 0.01 0.01 0.03 0.54 0.37 0.08 0.02 0.01 0.07 0.46 1.22 0.13

4-6 0.23 0.15 0.04 0.01 0.01 0.03 0.57 0.37 0.09 0.02 0.02 0.07 0.52 1.14 0.13

6-8 0.23 0.15 0.04 0.01 0.01 0.03 0.68 0.44 0.11 0.02 0.04 0.08 0.57 1.19 0.14

8-10 0.18 0.11 0.01 0.02 0.01 0.02 0.49 0.32 0.03 0.07 0.03 0.05 0.47 0.93 0.09

10-12 0.15 0.10 0.02 0.00 0.00 0.01 0.36 0.26 0.06 0.01 0.01 0.02 0.42 2.08 0.10

12-14 0.21 0.14 0.03 0.01 0.01 0.03 0.56 0.37 0.08 0.01 0.03 0.07 0.52 0.96 0.13

14-16 0.19 0.12 0.03 0.00 0.01 0.02 0.52 0.34 0.08 0.01 0.03 0.06 0.55 1.02 0.12

16-18 0.17 0.12 0.03 0.00 0.00 0.02 0.40 0.28 0.07 0.00 0.01 0.04 0.43 1.66 0.11

18-20 0.29 0.19 0.04 0.01 0.01 0.04 0.57 0.37 0.09 0.02 0.02 0.08 0.54 1.04 0.12

20-22 0.08 0.07 0.00 0.00 0.01 0.01 0.22 0.17 0.01 0.00 0.02 0.02 0.24 0.18 0.08

22-24 0.18 0.13 0.01 0.00 0.01 0.03 0.58 0.43 0.03 0.00 0.04 0.09 0.36 0.21 0.10
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APPENDIX P 

 

 

 

Cutin hydroxy acid proxies and yields normalized to g dry sediment ( ) and 100 mg OC 

( ) of Fiordland, NZ vegetation and soils. 

 
 

 

 

 

 

 

 

 

 

Sample CA C16 C18 CA C16 C18 -C16/ CA x, -C16/ CA 9,10, -C18/ CA 8-OH 9-OH

SUW-1 0.05 0.05 0.00 0.01 0.01 0.00 0.00 1.00 0.00 0.00 0.00

SUW-2 0.04 0.04 0.00 0.01 0.01 0.00 0.00 1.00 0.00 0.00 0.00

SUW-3 0.04 0.03 0.01 0.01 0.01 0.00 0.00 0.77 0.23 0.00 0.00

AW-MH 20.5 17.5 3.05 4.22 3.59 0.63 0.08 0.69 0.01 0.03 0.04

AW-SB 0.19 0.19 0.00 0.04 0.04 0.00 0.00 1.00 0.00 0.00 0.00

GW-T 0.19 0.19 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00

AB-SB 20.7 16.5 4.17 3.45 2.75 0.70 0.10 0.27 0.00 0.48 0.28

GB-T 6.54 5.84 0.71 1.27 1.13 0.14 0.10 0.55 0.02 0.03 0.11

AL-MH 1.75 1.69 0.06 0.35 0.34 0.01 0.14 0.14 0.02 0.00 0.00

AL-SBG 47.4 47.3 0.08 9.26 9.24 0.01 0.01 0.92 0.00 0.05 0.03

AL-SBB 62.3 62.3 0.00 11.9 11.9 0.00 0.01 0.93 0.00 0.04 0.04

AL-FFAG 13.7 5.24 8.49 3.07 1.17 1.90 0.01 0.33 0.60 0.45 0.36

AL-FFFY 13.6 8.6 4.95 3.25 2.07 1.19 0.01 0.46 0.36 0.05 0.92

AL-FFFB 59.2 58.9 0.21 12.00 11.96 0.04 0.04 0.84 0.00 0.05 0.35

GN-T 19.4 19.3 0.08 3.88 3.86 0.02 0.00 1.06 0.00 0.03 0.07

LL 14.1 10.6 3.49 3.19 2.40 0.79 0.04 0.61 0.20 0.07 0.05

F-NW 1.51 1.51 0.00 0.32 0.32 0.00 0.90 0.96 0.00 0.00 0.00

F-W 0.41 0.41 0.00 0.09 0.09 0.00 0.72 1.00 0.00 0.00 0.00

M 0.37 0.32 0.05 0.12 0.10 0.02 0.38 0.87 0.13 0.00 0.24

G 1.29 0.29 1.00 0.28 0.06 0.22 0.04 0.21 0.60 0.19 0.71

E-1 2.15 2.15 0.00 0.56 0.56 0.00 0.00 1.00 0.00 0.04 0.03

E-2 0.03 0.03 0.00 0.01 0.01 0.00 0.74 1.00 0.00 0.00 0.00

S-GA1 0.49 0.39 0.11 1.60 1.25 0.34 0.05 0.58 0.21 0.06 0.15

S-GA2 0.38 0.25 0.12 1.82 1.22 0.60 0.05 0.51 0.33 0.07 0.12

S-DC1 0.33 0.20 0.13 0.79 0.49 0.31 0.08 0.50 0.39 0.10 0.25

S-DC2 1.20 1.07 0.13 0.79 0.71 0.09 0.10 0.73 0.09 0.08 0.21

S-DC3 0.08 0.07 0.01 1.01 0.92 0.10 0.06 0.80 0.09 0.06 0.22

S-DS 72.5 67.5 5.03 17.8 16.4 1.40 0.02 0.26 0.17 0.17 0.14

S-PI1 19.2 18.0 1.21 3.73 3.49 0.23 0.05 0.78 0.05 0.05 0.24

S-PI2 11.4 10.7 0.73 3.20 2.99 0.20 0.06 0.78 0.05 0.05 0.25
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APPENDIX Q 

 

 

 

Cutin hydroxy acid proxies and yields normalized to g dry sediment ( ) and 100 mg OC 

( ) of Fiordland, NZ sediments. 

 

Core Depth (cm) CA C16 C18 CA C16 C18 -C16/ CAx, -C16/ CA9,10, -C18/ CA8-OH 9-OH

MR2 0-2 0.18 0.15 0.03 0.43 0.36 0.07 0.08 0.55 0.16 0.08 0.10

2-4 0.49 0.40 0.09 1.22 1.00 0.21 0.04 0.68 0.18 0.06 0.13

4-6 0.74 0.55 0.19 1.91 1.42 0.49 0.04 0.61 0.25 0.06 0.14

8-10 0.35 0.29 0.06 0.95 0.79 0.16 0.04 0.67 0.17 0.07 0.14

10-12 0.39 0.33 0.06 1.05 0.88 0.17 0.05 0.69 0.16 0.06 0.14

12-14 0.15 0.12 0.03 0.42 0.34 0.08 0.03 0.63 0.19 0.07 0.16

14-16 0.37 0.31 0.07 1.05 0.86 0.19 0.12 0.70 0.18 0.06 0.13

16-18 0.32 0.27 0.05 0.92 0.77 0.15 0.05 0.69 0.17 0.07 0.13

18-20 0.27 0.22 0.05 0.76 0.62 0.14 0.03 0.54 0.18 0.06 0.13

20-22 0.40 0.31 0.09 1.12 0.87 0.25 0.04 0.64 0.22 0.07 0.12

CA4 2-4 1.72 1.23 0.49 2.19 1.57 0.63 0.05 0.59 0.26 0.08 0.10

4-6 1.05 0.73 0.33 0.98 0.67 0.31 0.04 0.46 0.31 0.08 0.12

6-8 0.52 0.45 0.07 0.53 0.45 0.07 0.06 0.55 0.14 0.08 0.12

8-10 0.32 0.32 0.00 0.47 0.47 0.00 0.11 0.84 0.00 0.07 0.09

22-24 1.28 0.88 0.41 2.85 1.95 0.90 0.04 0.55 0.31 0.07 0.08

24-26 1.70 1.09 0.61 3.94 2.53 1.41 0.04 0.53 0.35 0.10 0.10

26-28 1.87 1.18 0.69 4.13 2.61 1.52 0.04 0.51 0.36 0.06 0.07

30-32 1.35 0.86 0.49 5.14 3.28 1.87 0.04 0.52 0.35 0.07 0.09

34-36 1.77 0.93 0.85 2.06 1.08 0.98 0.06 0.40 0.44 0.08 0.08

36-38 1.82 0.72 1.10 2.14 0.85 1.29 0.04 0.32 0.56 0.08 0.13

DC1 0-2 2.49 1.99 0.50 2.86 2.28 0.58 0.04 0.65 0.20 0.08 0.11

2-4 0.42 0.39 0.03 0.49 0.45 0.04 0.12 0.58 0.06 0.02 0.14

4-6 1.01 0.78 0.23 1.65 1.28 0.37 0.06 0.47 0.21 0.07 0.12

6-8 0.87 0.59 0.28 1.24 0.84 0.40 0.04 0.47 0.31 0.09 0.11

8-10 3.80 2.76 1.04 4.69 3.40 1.28 0.03 0.59 0.26 0.06 0.09

10-12 1.43 1.19 0.24 1.94 1.62 0.32 0.05 0.65 0.15 0.06 0.09

12-14 2.45 1.74 0.71 2.44 1.73 0.71 0.04 0.51 0.28 0.06 0.08

14-16 2.79 1.73 1.06 2.47 1.53 0.93 0.11 0.41 0.37 0.06 0.09

16-18 2.36 2.20 0.16 2.21 2.06 0.15 0.06 0.72 0.05 0.07 0.10

18-20 2.48 2.35 0.13 2.18 2.07 0.11 0.07 0.76 0.03 0.07 0.11

20-22 1.69 1.08 0.62 2.02 1.29 0.74 0.03 0.45 0.36 0.07 0.10

22-24 1.34 1.00 0.34 1.76 1.32 0.45 0.05 0.65 0.25 0.07 0.10

24-26 2.29 1.69 0.60 2.72 2.00 0.71 0.04 0.63 0.26 0.07 0.11

26-28 2.26 1.69 0.57 2.67 1.99 0.68 0.04 0.63 0.25 0.07 0.10

28-30 1.90 1.45 0.45 1.93 1.47 0.46 0.04 0.64 0.23 0.07 0.11

30-32 3.52 2.40 1.11 3.78 2.58 1.20 0.03 0.57 0.31 0.08 0.10

32-34 2.94 2.31 0.62 3.10 2.44 0.66 0.03 0.66 0.21 0.07 0.10

34-36 3.97 2.72 1.26 4.22 2.89 1.34 0.03 0.57 0.31 0.08 0.11

36-38 2.57 1.79 0.77 2.83 1.98 0.85 0.03 0.59 0.30 0.08 0.10

40-42 2.54 1.71 0.84 3.03 2.03 1.00 0.03 0.55 0.32 0.08 0.11

42-44 4.26 2.72 1.54 6.04 3.85 2.19 0.03 0.51 0.36 0.07 0.10

BA1 0-2 0.22 0.19 0.02 0.36 0.32 0.04 0.06 0.59 0.11 0.00 0.13

2-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4-6 0.43 0.36 0.07 0.94 0.79 0.15 0.04 0.58 0.16 0.06 0.11

6-8 0.39 0.30 0.09 0.75 0.58 0.17 0.03 0.54 0.23 0.07 0.12

8-10 0.83 0.65 0.18 1.46 1.14 0.31 0.04 0.60 0.21 0.07 0.11

10-12 1.22 0.89 0.33 1.97 1.44 0.54 0.04 0.59 0.27 0.06 0.11

12-14 1.21 0.83 0.38 2.10 1.44 0.66 0.03 0.56 0.31 0.07 0.11

14-16 1.08 0.75 0.32 1.77 1.24 0.53 0.04 0.56 0.30 0.07 0.11

16-18 1.13 0.75 0.37 1.85 1.23 0.61 0.04 0.53 0.33 0.06 0.11

18-20 0.97 0.70 0.27 1.75 1.27 0.48 0.04 0.59 0.28 0.06 0.11

SC2 0-2 0.18 0.18 0.00 0.52 0.51 0.01 0.08 0.68 0.02 0.08 0.09

2-4 0.40 0.26 0.14 2.06 1.32 0.74 0.04 0.45 0.35 0.07 0.09

4-6 1.07 0.73 0.34 1.70 1.17 0.54 0.03 0.40 0.31 0.07 0.09

6-8 1.34 0.92 0.42 2.11 1.45 0.67 0.03 0.40 0.31 0.06 0.10

LS1 0-2 0.69 0.49 0.20 1.46 1.03 0.43 0.04 0.58 0.29 0.06 0.09

2-4 0.74 0.51 0.23 1.58 1.10 0.49 0.04 0.58 0.30 0.05 0.09

4-6 0.69 0.46 0.23 1.68 1.12 0.56 0.04 0.55 0.33 0.06 0.09

6-8 0.56 0.37 0.19 1.64 1.09 0.55 0.04 0.54 0.33 0.06 0.10

8-10 0.39 0.30 0.10 1.10 0.83 0.27 0.05 0.63 0.24 0.06 0.09

10-12 0.54 0.38 0.15 1.31 0.94 0.37 0.04 0.58 0.28 0.06 0.09

12-14 0.65 0.40 0.25 1.73 1.07 0.67 0.03 0.51 0.38 0.06 0.09

14-16 0.36 0.27 0.09 1.01 0.74 0.26 0.04 0.57 0.26 0.06 0.10

16-18 0.63 0.44 0.19 1.49 1.05 0.45 0.04 0.58 0.29 0.06 0.09

18-20 0.80 0.58 0.22 1.57 1.14 0.44 0.03 0.60 0.28 0.06 0.09

20-22 0.33 0.24 0.09 0.88 0.63 0.25 0.07 0.70 0.20 0.09 0.16

22-24 0.51 0.37 0.14 1.66 1.19 0.46 0.04 0.58 0.28 0.06 0.09
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APPENDIX R 

 

 

 

Historical source reconstructions of six sediment cores from Fiordland, NZ. 

 

Core Depth (cm) %OMfossil %OMfossil AVG %OMterr %OMmar

MR2 0-2 12.3 42.5 45.2

2-4 12.3 44.2 43.5

4-6 12.3 41.8 45.9

6-8 11 12.3 38.2 49.5

8-10 12.3 40.6 47.1

10-12 12.3 41.4 46.3

12-14 12.3 43.1 44.6

14-16 12.3 44.3 43.4

16-18 13.6 12.3 45.4 42.3

18-20 12.3 45.0 42.7

20-22 12.3 47.0 40.7

CA4 2-4 8.97 74.1 16.9

4-6 5.98 8.97 67.3 23.7

6-8 8.97 68.2 22.8

8-10 8.97 70.8 20.3

10-12 15.9 8.97 77.8 13.3

22-24 8.97 79.9 11.2

24-26 8.97 80.2 10.8

26-28 8.97 79.7 11.3

30-32 8.97 82.0 8.98

34-36 8.97 85.7 5.30

36-38 8.97 84.1 6.97

DC1 0-2 4.36 74.5 21.2

2-4 2.49 4.36 72.5 23.1

4-6 4.36 74.7 21.0

6-8 4.36 74.8 20.9

8-10 4.36 76.3 19.4

10-12 6.24 4.36 77.9 17.8

12-14 4.36 75.6 20.1

14-16 4.36 75.4 20.3

16-18 4.36 75.6 20.0

18-20 4.36 76.1 19.5

20-22 4.36 77.8 17.8

22-24 4.36 72.4 23.3

24-26 4.36 71.8 23.8

26-28 4.36 70.2 25.4

28-30 4.36 71.6 24.0

30-32 4.36 70.4 25.3

32-34 4.36 70.2 25.4

34-36 4.36 67.0 28.6

36-38 4.36 67.3 28.4

40-42 4.36 69.5 26.1

42-44 4.36 72.9 22.7

BA1 0-2 9.36 61.7 28.9

2-4 10.8 9.36 63.3 27.3

4-6 7.94 9.36 61.1 29.5

6-8 9.36 61.2 29.4

8-10 9.36 62.7 27.9

10-12 9.36 62.3 28.4

12-14 9.36 60.2 30.4

14-16 9.36 60.8 29.8

16-18 9.36 58.8 31.8

18-20 9.36 60.2 30.5

SC2 0-2 10.0 65.6 24.4

2-4 13.1 10.0 70.3 19.7

4-6 10.0 70.1 19.9

6-8 6.94 10.0 68.2 21.8

LS1 0-2 13.8 57.6 28.6

2-4 13.8 56.3 29.9

4-6 13.8 56.0 30.2

6-8 14.5 13.8 57.9 28.3

8-10 13.8 56.3 29.9

10-12 13.8 50.2 36.0

12-14 13.1 13.8 49.4 36.8

14-16 13.8 54.0 32.2

16-18 13.8 56.8 29.4

18-20 13.8 55.1 31.1

20-22 13.8 57.4 28.8

22-24 13.8 58.3 27.9
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