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ABSTRACT 

 

Thermomechanical Cyclic Response of TiNiPd High-Temperature Shape Memory 

Alloys. (August 2011) 

Kadri C. Atli, B.S., Bogazici University; 

M.S., Bogazici University 

Chair of Advisory Committee: Dr. Ibrahim Karaman 

 

TiNiPd high-temperature shape memory alloys (HTSMAs) have attracted 

considerable attention as potential solid-state actuators capable of operating at 

temperatures up to 500 °C, exhibiting excellent corrosion resistance, adequate ductility 

levels and significant strain recovery under both constrained and unconstrained 

thermomechanical conditions. During operation, these actuators may be subjected to 

multiple cycles and from an application point of view, the functional stability, i.e. 

conservation of original actuator dimensions and transformation temperatures during 

repeated employment, is of considerable importance.  

This study addresses functional stability in a model HTSMA, Ti50.5Ni24.5Pd25, for 

actuator applications. Since the primary reason for functional instability is the creation of 

lattice defects (dislocations, vacancies, etc.) during repeated transformation cycles, 

several methods were successfully undertaken to improve the functional stability 

through inhibiting the generation of these defects. Solid-solution strengthening through 

Sc microalloying and severe plastic deformation (SPD) were two approaches used to 
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strengthen the HTSMA against defect generation. Thermal cycling under stress was the 

third method to voluntarily introduce defects into the microstructure such that further 

defect generation during application would be impeded. Overall, SPD was found to be 

more efficient than other strengthening methods in improving the functional stability, yet 

it brought about disadvantages such as reduction in transformation strain and 

transformation temperatures. 

While functional instability is due to the creation of lattice defects, the generation 

of these defects is mainly controlled by the crystallographic incompatibility between 

martensitically transforming phases and the strength levels for plastic deformation. It 

was shown that TiNiPd HTSMAs, which exhibited martensitic transformation from a 

cubic to orthorhombic symmetry, illustrated better compatibility and thus better 

functional stability levels compared to TiNi SMAs, which had a cubic to monoclinic 

transition. Although crystallographic incompatibility seems to be the governing factor 

for the functional stability of the TiNiPd HTSMA, the strength differential between the 

onset of plastic deformation and local constraint due to the martensitic transformation 

was also found to be an influential factor determining the overall stable behavior.  

Functional stability was also investigated for the two-way shape memory effect 

(TWSME) in TiNiPd HTSMAs. Better strength and compatibility levels compared to 

TiNi SMAs were also reflected in the TWSME characteristics in the form of enhanced 

stability under stress-free thermal cycling. The stability during constrained thermal 

cycling was not as good and TWSME degraded rapidly while doing work against an 

opposing stress.   
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NOMENCLATURE 

 

AISI:  American Iron and Steel Institute 

Af:  Austenite finish  

As:  Austenite start 

BSE:  Backscattered electron 

CSS:  Critical shear stress 

ΔHnet:  The net amount of heat released during phase transformation 

DSC:  Differential scanning calorimetry 

EDM:  Electrical discharge machining 

EDS:  Energy-dispersive spectroscopy 

εirr: Irrecoverable strain 

εrec:  Recovered transformation strain 

εtotal:  Total irrecoverable strain generated during thermomechanical training 

GNLTM:  Geometric non-linear theory of martensite 

HTSMA:  High-temperature shape memory alloy 

HV:  Vickers hardness 

ICP-AES:  Inductively coupled plasma atomic emission spectroscopy  

Mf:  Martensite finish  

Ms:  Martensite start  

OWSME:  One-way shape memory effect 

SAD:  Selected area diffraction 
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SE:  Superelasticity 

SEM:  Scanning electron microscopy 

SIM :  Critical stress to induce martensite 

M

y :  The yield strength of the stress-induced martensite
 

SMA:  Shape memory alloy 

TEM:  Transmission electron microscopy 

TRIP:  Transformation induced plasticity 

TWSME:  Two-way shape memory effect 

WDS:  Wavelength-dispersive spectroscopy 

XRD:  X-ray diffraction 
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CHAPTER I 

INTRODUCTION 

 

This chapter introduces the need and significance for the development of 

functionally stable TiNiPd high-temperature shape memory alloys (HTSMAs) to be used 

as solid-state actuators. The issue of functional stability, which is critical for the 

application of HTSMA actuators, is discussed and the methods for its improvement are 

summarized.  At the end, the objectives of the present study are stated along with an 

outline of the experimental work to meet these objectives. 

 

1.1 Motivation and Significance 

Shape memory alloys (SMAs) undergo a diffusionless martensitic 

transformation, giving them the ability to recover large amounts of inelastic strains 

through superelasticity (SE) and shape memory effect (SME). Since their discovery in 

1960s, TiNi based SMAs have attracted a great deal of interest due to their excellent 

mechanical properties. Despite being an intermetallic compound, TiNi is quite ductile, 

such that 60 % cold work is possible under certain conditions [1]. It also has outstanding 

corrosion resistance. Due to these advantages, most of the applications utilizing SMAs 

developed so far (e.g. cell-phone antenna, orthodontic wires, stents, switches, coupling 

for piping…) make use of TiNi alloys. The biomedical field, exploiting mostly the SE 

_______________ 

This dissertation follows the style of Acta Materialia. 



 2  
  

effect of SMAs, holds a major part of the actual market share. However, TiNi based 

SMAs are more often cited for their actuation capabilities, which stem from their shape 

memory behavior. Indeed, they can exhibit large recovery strains (up to 8 %) and large 

recovery stresses under constrained conditions (up to 800 MPa) in the solution treated 

condition when heated above their transformation temperatures [2]. This effect has led to 

the commercial application of TiNi SMAs as actuators performing work against a 

biasing force, and as fastening or clamping devices. Some potential applications, such as 

various aeronautic and underhood automobile applications require the SMA to operate at 

elevated temperatures. However, conventional binary TiNi SMAs have low 

transformation temperatures limiting their use well below 100 °C [3]. The unique 

properties of SMAs become much more critical at higher operating temperatures, since it 

is desirable to adopt simple, monolithic adaptive structures over complicated multi-

component assemblies, which will occupy smaller spaces and be exposed to less wear 

and damage. 

The use of ternary additions to TiNi, such as Au, Pt, Hf, Zr and Pd, has been 

successfully implemented to achieve increased transformation temperatures above 100 

°C. Since the discovery of the martensitic transformation in TiPd by Donkersloot and 

Van Vucht [4], and the fact that TiPd and TiNi binaries form a continuous solid solution 

with a high temperature B2 phase, TiNiPd high-temperature SMAs (HTSMAs) have 

attracted significant attention as a potential choice for commercial actuator applications 

requiring high operating temperatures [5-10]. There are several reasons for such interest. 

TiNiPd alloys offer a potential operating temperature range, based on the transformation 
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temperatures, of 100 °C to about 500 °C at Pd contents ranging from 20 % to 50 % [3, 4, 

10-12]. Their thermal hysteresis is narrow, which is ideal for applications requiring 

efficient and active, fast control. They have reasonable ductility and do not exhibit 

premature intergranular cracking, as frequently observed in some alternative alloys like 

CuAlNi [13]. Finally, TiNiPd alloys are capable of significant strain recovery under 

stress-free, as well as constrained conditions upon heating [5, 9, 14, 15].  

In addition to the aforementioned properties, a reliable HTSMA should 

demonstrate long term microstructural stability and resistance to oxidation over its 

operating temperatures. It should have high resistance to dislocation slip in the high-

temperature austenite phase to resist high-temperature deformation and thermally driven 

mechanisms such as recovery, recrystallization, and creep. At the same time, a stable 

HTSMA should be strong in both the high-temperature austenite and the low-

temperature martensite phase, to prevent simultaneous macroscopic plasticity during 

detwinning/reorientation processes [12, 16, 17]. Transformation induced plasticity 

(TRIP), which is due to the accommodation of the transformation shear and volume 

change with defect generation, such as dislocations, during the transformation is also a 

concern [18, 19]. TRIP can take place at externally applied stress levels much lower than 

the plastic yield strengths of either of the transforming phases [16]. In addition, if the 

critical shear stress (CSS) for slip is low, then macroscopic plasticity can take place 

simultaneously during the transformation process [16]. However, macroscopic plasticity 

is usually pronounced above a certain temperature; whereas TRIP may even occur at low 
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temperatures [12]. All these problems contribute to the deterioration of shape memory 

behavior and lead to functional instability during actuation. 

Functional stability of an SMA actuator has been characterized by the changes in 

its transformation temperatures and its cold and hot shapes during repeated actuation 

[20]. Hornbogen [21] listed several conditions to achieve improved functional stability 

in SMAs. Most of these conditions, such as the degree of order, interference of 

transformation by diffusion, and embrittlement of grain boundaries, are intrinsic material 

properties and overcoming these limitations is difficult, if not impossible and may 

require substantial changes in the constitution and composition of the alloy. However, 

one condition, i.e. maximizing the strength of the parent phase, is more practical and has 

been exploited frequently for conventional alloys such as TiNi and Cu-based SMAs. 

Yet, there is limited work in this area for HTSMAs.  Within this framework, several 

methods have been proposed to improve the functional stability of TiNiPd HTSMAs 

through increasing the strength of the parent phase [12]. Some of these methods are solid 

solution strengthening through quaternary alloying [22-26], thermomechanical 

processing using severe plastic deformation (SPD) and post deformation annealing heat 

treatments [5, 7], and precipitation hardening [9]. All these possibilities are geared 

towards increasing the CSS for slip deformation of the material hindering the formation 

of additional defects. Therefore, the goal is to make sure that any strain generated within 

the material during the martensitic transformation would be reversibly accommodated, 

minimizing the chances of slip deformation and other defect generation mechanisms, 

leading to improved high-temperature shape memory properties. 
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With the exception of the works performed by Bigelow et al. [14, 15, 25] and 

Kumar et al. [27], the previously mentioned studies on the TiNiPd alloy system have 

primarily focused on the determination of transformation temperatures as a function of 

composition and the characterization of phase transformation and shape recovery under 

no-load conditions. However, for a new SMA to be used effectively in an actuator 

application, it is imperative to know the shape memory behavior of the material under 

constrained conditions, including its work output and functional stability under isobaric 

thermal cyclic loading. Functional stability is of utmost importance, since a permanent 

change in the shape of the material or a shift in transformation temperatures during 

cyclic loading may render the SMA inoperable and necessitate the replacement of the 

actuator. Among the very few works focusing on actuation characteristics of TiNiPd, 

Noebe et al. [14] have recently determined the strain-temperature response and work 

output of Ti50.5Ni19.5Pd30 (at. %) under different stress levels both in tension and 

compression. Bigelow et al. [15] compared the transformation temperatures, work output 

and dimensional stability of different Ti50.5Ni49.5-xPdx compositions containing 15 to 46 

at.% Pd. From this limited number of investigations, it is clear that functional stability 

during isobaric thermal cycling is a major concern with this family of HTSMAs and any 

of the previously mentioned strengthening methods should be directed towards 

improving the functional stability of this alloy system for actuator applications. 

Thermomechanical cycling, also known as “training”, is the most commonly 

used method in the SMA community to obtain stable material behavior [28]. It thus 

represents an alternate method to the aforementioned classical strengthening methods. 
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Through either stress cycling above the austenite finish (Af) temperature, or thermal 

cycling through the martensitic transformation under a constant stress, structural defects 

(e.g. point defects, dislocations and internal interfaces) are created in the material to 

accommodate the strains generated during the transformation [29, 30]. Each subsequent 

cycle induces fewer defects until a saturation level is reached and eventually only minor 

changes are seen in the functional stability upon further cycling (i.e. a stable behavior is 

obtained). A training procedure may consist of as low as ten thermal cycles, or as high as 

thousands of cycles depending on the level of stability desired from the SMA. For the 

sake of clarity throughout this dissertation, the term “thermomechanical training” or 

simply “training” will be used for any thermomechanical cycling procedure involving a 

hundred or more cycles. 

While there is a vast amount of information available for the training of 

conventional SMAs such as TiNi or Cu-based SMAs, there are only a limited number of 

studies on the training of TiNiPd HTSMA‟s. Early studies were conducted by Cai et al. 

[31] on Ti50.6Ni19.4Pd30 (at. %) focusing on the evolution of shape memory characteristics 

during the course of a training procedure consisting of a hundred thermal cycles under 

different training stress levels, i.e. shift of transformation temperatures, evolution of 

transformation strain and total plastic strain. In a recent study by Bigelow et al. [32], the 

hundred cycle training response of Ti50.5Ni24.5Pd25 (at. %) HTSMA was compared to that 

of equiatomic TiNi. The two materials illustrated very different evolutionary behaviors 

evidenced by the number of cycles to reach stable behavior and the level of stability at 

the end of training.  
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 An ideal practical SMA should acquire a stable behavior in as few cycles as 

possible since the training itself is a long and costly process. The understanding of the 

SMA‟s response to training and the identification of microstructural parameters involved 

in this process is thus of critical importance. Ultimately, it would be very convenient for 

SMA designers, if it were possible to come up with simple microstructural parameters 

that are easily measurable and that will indicate whether an SMA would demonstrate 

good functional stability without actually testing for it. Essentially, strength of the parent 

phase, which could be increased by several strengthening methods as previously 

mentioned, is one of these parameters. Another parameter is the crystallographic 

compatibility between transforming phases, which was recently studied by Grossman et 

al. [33] on TiNi and TiNiCu spring actuators. The substitution of Cu in place of Ni 

changed the crystal structure of the martensite from monoclinic (B19‟) to orthorhombic 

(B19). TiNiCu actuators accumulated a smaller amount of total plastic strain during 

training and acquired a stable behavior in a fewer number of cycles compared to TiNi 

actuators, due to increased crystallographic compatibility between the transforming 

phases and solid-solution hardening effect of Cu addition.  

To the author‟s best knowledge, the effects of microstructural parameters, such 

as crystal structure, grain size, dislocation density, existence of second-phase particles, 

on the evolutionary transformation response during training has not yet been studied in 

TiNiPd HTSMAs. For a better understanding of the actuation properties of the stable 

material, evolutionary response of TiNiPd HTSMAs during training should be assessed 

taking these microstructural effects into consideration. In addition, training parameters 
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such as the applied stress level and temperature interval should also be considered. The 

results of such a study will greatly benefit the SMA community in terms of materials 

selection, optimization of the parameters for less cumbersome and quick training 

processes and at the same time providing data for model development to predict actuator 

response. 

The fact that the shape memory effect can be used to do work against a load has 

led to the development of SMAs as compact, solid-state actuators. Compared to D.C. 

motors or their pneumatic counterparts, these actuators have several advantages such as 

light weight, reduction in total part count, ease of inspection and higher energy densities. 

SMA actuators mostly operate based on the one-way shape memory effect (OWSME) 

combined with a biasing force to reset the SMA after each actuation cycle. However, it 

would be advantageous in terms of the simplicity of design to eliminate the need for 

resetting the actuator. In this respect, the two-way shape memory effect (TWSME) 

renders it possible for an actuator to remember both its low-temperature and high-

temperature shapes without the need for a biasing force. Unlike OWSME, TWSME is 

not an inherent characteristic of SMAs, but rather it is obtained after thermomechanical 

treatments (training), such as stress or temperature cycling.  

Early studies on TWSME mostly concentrated on conventional Cu-based [28, 

34-41] and binary TiNi SMAs [42-59]. These studies mainly focused on the mechanism 

of TWSME, its generation using different training procedures, and the effects of training 

parameters on the magnitude and stability of the TWSME. Similar studies were also 

conducted on ternary TiNi based SMAs, such as TiNiCu [59-62], TiNiFe [56] and 
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TiNiNb [63, 64]. However, there is very limited data on the characterization of TWSME 

in HTSMAs. The only study in this field for TiNi based HTSMAs was performed for 

TiNiHf [65], which exhibited a poor TWSME with a small strain output and large 

degradations upon thermal cycling due to the low strength of the alloy.    

To date, there has not been a systematic study on the TWSME characterization of 

TiNiPd HTSMAs. There is an urgent need to reveal the existence, methods of generation 

and cyclic stability of TWSME in these HTSMAs for actuator applications and 

investigate the methods to enhance the stability. Since most of the emerging actuator 

applications require SMAs to do work against a load, it is also essential to determine the 

work output of TWSME in HTSMAs and its stability during actuation. 

 

1.2 Objectives 

With this short background, the purpose of the present research can be 

summarized as an intensive thermomechanical processing and characterization study of 

a model HTMSA, Ti50.5Ni24.5Pd25 (at.%), in an effort to obtain enhanced functional 

stability for high-temperature actuator applications and understand the influence of 

microstructural parameters on the functional stability. The selection of the TiNiPd 

HTMSA with 25 at.% Pd as the baseline model alloy is due to its intermediate 

transformation temperatures (near 200 °C) with relatively good shape memory 

characteristics.  

The first focus of the study is on the enhancement of shape memory properties, in 

particular the functional stability during repeated thermomechanical cycles. Several 
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processing methods, such as solid-solution strengthening using a quaternary alloying 

element, severe plastic deformation (SPD) and thermomechanical cycling under a 

constant stress are undertaken to accomplish this goal. These methods have already been 

proven to work for conventional TiNi and Cu-based SMAs. 

The second focus is to investigate the evolutionary response of the HTSMA 

during high-cycle training in an effort to understand how microstructural characteristics 

and training parameters influence the functional stability of the trained material. The 

feasibility of utilizing the TWSME for high-temperature actuator applications is also 

evaluated by characterizing its stability during thermal cycling and work production. 

The overall objectives of the current study are: 

1. Thermomechanical characterization of a base model Ti50.5Ni24.5Pd25 (at.%) HTSMA 

through extensive thermomechanical testing, electron microscopy, and X-ray 

diffractometry. 

2. Investigation of the effects of thermomechanical processing including 

a. solid-solution strengthening via Sc additions (0.5 and 3 at. %), 

b. work hardening and grain refinement through SPD using equal channel 

angular extrusion (ECAE) and 

c. thermomechanical cycling under constant stress levels 

on the shape memory characteristics, particularly the functional stability of the 

Ti50.5Ni24.5Pd25 (at.%) HTSMA using the above mentioned characterization techniques. 

3. Understanding of the evolution of shape memory behavior through extensive 

experimentation and structural characterization to reveal correlations with functional 
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stability and to eventually define simple indications of functional stability. Specifically, 

the effects of microstructural parameters such as  

a. crystallographic compatibility between transforming phases (by 

comparing HTSMA systems with different crystal structures and lattice 

parameters), 

b. grain size and dislocation density (through ECAE processing) 

c. differences in chemistry (using off-stoichiometric alloy systems, e.g. Ni-

rich TiNiPd) 

on the evolution of the shape memory behavior of Ti50.5Ni24.5Pd25 HTSMA are 

investigated during training under various stress levels. In addition to Ti50.5Ni24.5Pd25, a 

quaternary alloy with Sc addition, a slightly Ni-rich TiNiPd composition, TiNiPt 

(another HTSMA system), as well as binary TiNi SMA, which all have similar 

processing histories are subjected to training cycles for this purpose. 

4. Characterization of the TWSME for these trained materials, in terms of stability and 

the magnitude of the TWSM strain during repeated thermal cycling. The effects of 

training parameters such as applied stress and upper cycle temperature on the stability of 

the TWSME are also investigated. 

5. Characterization of the work output of the TWSME in HTSMAs and investigation 

of its stability during thermomechanical cycling. The influence of starting microstructure 

(i.e. dislocation density, grain size, etc.) on the work output stability is also studied. 

It is believed that the outcomes of this study will be invaluable for the design of HTSMA 

actuators exploiting both the OWSME and the TWSME, while accelerating the 
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incorporation of these HTSMAs into high-temperature actuator applications. The results 

will also serve as background for model development for the design of actuators and 

predicting actuator responses. With these objectives, the outline of the dissertation is as 

follows: 

Chapter II: A brief literature review related to the aforementioned objectives, 

mainly covering several different strengthening methods used to improve the functional 

stability of TiNiPd HTSMAs. Also included in this review is the significance of the 

crystallographic compatibility between transforming phases in SMAs and the utilization 

of different thermomechanical training procedures to obtain stable material behavior 

while generating the TWSME.  

Chapter III: Experimental methods and materials that are used in this study. 

Chapter IV: Investigation of the effects of different amounts of Sc, as a model 

solid-solution strengthener, on the shape memory characteristics and in particular the 

functional stability of Ti50.5Ni24.5Pd25 HTSMA during repeated actuation.  

Chapter V: Investigation of the effects of SPD via ECAE on the shape memory 

characteristics, in particular the functional stability of Ti49.5Ni25Pd25Sc0.5 HTSMA during 

repeated actuation. 

Chapter VI: A comparison of the effects of SPD and a low-cycle 

thermomechanical cycling procedure on the functional stability of Ti50.5Ni24.5Pd25 

HTSMA. 

Chapter VII: High-cycle thermomechanical training of TiNiPd HTSMAs along 

with other SMA and HTSMA compositions. Characterization of the TWSME, induced 
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by the training process, in terms of its magnitude and stability during stress-free thermal 

cycling. 

Chapter VIII: An investigation of the work output of the TWSME induced by the 

high-cycle thermomechanical training procedure employed in Chapter VII and its 

stability during repeated work actuation. 

Chapter IX: An investigation of the influence of microstructural parameters such 

as crystallographic compatibility, grain size and dislocation density on the evolutionary 

behavior of the Ti50.5Ni24.5Pd25 HTSMA during thermomechanical training. 

Chapter X: Main conclusions and future directions. 
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CHAPTER II 

BACKGROUND 

 

This chapter summarizes the previous literature related to the objectives of the 

present study. It thus provides background to the reader to better interpret the 

experimental results. In general, this literature review is presented in the same order as 

the objectives presented in Section 1.2. 

 

2.1 Methods to Obtain Enhanced Functional Stability 

2.1.1 Solid-solution Strengthening of TiNiPd Using Quaternary Additions  

Tian et al. [24] found that the addition of 1 wt. % cerium (Ce) to Ti51Ni21Pd28 

improved mechanical properties through an increased elastic modulus and yield strength 

and delayed recrystallization times. However, the Ce addition deteriorated 

pseudoelasticity and depressed transformation temperatures by about 40 °C.  

Bigelow et al. [25, 26] investigated the effects of quaternary additions of gold 

(Au, 5 at. %), platinum (Pt, 5 at. %) and hafnium (Hf, 3 at. %) on the load-biased shape 

memory response of different compositions of TiNiPd, i.e. dimensional stability, 

transformation temperatures, and monotonic tensile behavior. While additions of Au and 

Pt had relatively no effect on the transformation temperatures, Hf suppressed both the 

martensite finish (Mf) and Af temperatures by 63 ºC and 70 ºC, respectively. As 

observed from the monotonic tensile test results, all three quaternary additions improved 

the yield strength of the austenite phase, which resulted in a more stable 
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thermomechanical response. The improvements in strength were attributed to solid 

solution hardening, since no change in microstructure, including the precipitation of any 

new phase, was observed between the ternary and quaternary alloys. 

Other quaternary alloying studies included the addition of boron (B) primarily to 

improve the ductility of TiNiPd. Yang et al. [22] investigated the effects of 0.12 at. % B 

addition to Ti50.7Ni22.3Pd27 and showed an improvement in the room-temperature 

ductility as a result of grain refinement due to the presence of TiB2 particles. However, 

no change in shape memory behavior including the phase transformation temperatures 

was detected with this B addition. Suzuki et al. [23] confirmed the results of Yang et al. 

[22] using 0.2 at. % B addition to Ti50Ni20Pd30, which resulted in improved high-

temperature strength and ductility, again attributed to a decrease in grain size. As in the 

previous study, the addition of boron had no significant effect on shape memory 

behavior, since the resulting TiB2 particles were too coarse for effective precipitation 

hardening. 

 

2.1.2 Thermomechanical Processing Using Severe Plastic Deformation 

While there is a substantial amount of work covering the effects of 

thermomechanical processing on the shape memory behavior of TiNi [66-71], data is 

quite limited for the TiNiPd system. Golberg et al. [5-7] studied the effects of cold 

rolling with different reductions and subsequent annealing at different temperatures on 

the shape memory behavior of Ti50NixPd50-x HTSMA (x = 10, 15, 20). They recorded 

100 % recovery at a total strain of 5.3 % in Ti50Ni20Pd30, which was cold rolled down to 
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a 24-25 % thickness reduction and subsequently annealed at 400 °C for 1 hour [5, 6]. 

The recovered strain level was more than twice that of the solutionized material, which 

was only about 2 %. They also demonstrated a partial superelastic effect at Af  + 10 °C in 

the same processed material for the first time in this alloy system. 

Tian et al. [72] investigated the mechanical properties of an off-stoichiometric, 

cold-rolled and annealed Ti50.6Ni19.4Pd30. They recorded full recovery of up to 7.2 % 

strain and up to 95 % recovery at 11% applied strain after deformation at room 

temperature and subsequent heating above the Af temperature. Wu et al. [73] recorded a 

7 % recoverable superelastic strain in Ti51Ni19Pd30 at 240 °C after the sample was trained 

with multiple superelastic cycles. However, the relatively large strain values recorded in 

both of these studies are considered to be a result of erroneous strain measurements. An 

elastic strain of about 5 % was reported for the superelastic loading, corresponding to an 

elastic modulus of 12 GPa for the austenite phase. On the other hand, the elastic strain of 

a similar composition, Ti50.5Ni19.5Pd30, was found to be around 1 % at a testing 

temperature of 309 °C (Af + 50 °C) by Bigelow et. al [74]. 

Kockar et al. [75] improved the functional stability of a Ti50.3Ni33.7Pd16 HTSMA 

during thermo-mechanical cycling through the use of ECAE processing. The processed 

samples accumulated smaller amounts of plastic strains during isobaric cooling-heating 

experiments as compared to the as-received samples. The improvements in the 

functional stability levels were attributed to the increase in critical stress for dislocation 

slip due to the microstructural refinement during the ECAE process.  
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2.1.3 Precipitation Hardening  

Although precipitation hardening is not utilized in the current study as a method 

to enhance the shape memory behavior of TiNiPd HTSMAs, there are a couple of 

studies showing its effects. Therefore, it is worth mentioning the past work on the 

precipitation hardening of TiNiPd HTSMAs for the sake of completeness. 

 Precipitation hardening has been successfully implemented for both Ti-rich [76] 

and Ni-rich [77] binary TiNi SMAs to improve the shape memory characteristics. 

Similarly, it is possible to produce fine precipitates in off-stoichiometric TiNiPd 

HTSMAs by aging treatments in order to increase the CSS for slip and thus improve 

shape memory characteristics as well as the functional stability. Within this framework, 

Shimizu et al. [9] improved the recoverability of a Ti-rich Ti50.6Ni19.4Pd30 after an aging 

heat treatment at 500 °C for 3.6 ks. They obtained 10 % more strain recovery at a total 

strain of 6 % at 197 °C as compared to the stoichiometric Ti50Ni20Pd30. The 

improvement in the shape memory characteristics was reported to be due to the fine, 

homogenously distributed Ti2Ni type precipitates increasing the strength of the material. 

TiNiHf alloy system is another attractive candidate for HTSMA applications due 

to its lower cost compared to TiNiX (X=Pd,Pt) HTSMAs and high transformation 

temperatures [78]. However, it exhibits small recoverable strains and large thermal 

hysteresis values due to its low CSS for slip and the formation of (001) compound twins 

instead of Type-I or Type-II twins [79]. Recently, Meng et al. [80] proposed a new 

method to use Ni-rich TiNiHf alloys as HTSMAs through similar aging heat treatments 

performed for Ni-rich TiNi SMAs. They showed that after an aging treatment at 550 °C 
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for 5 hrs, transformation temperatures of Ti29.4Ni50.6Hf20 increased to the level of the 

stoichiometric alloy with added strength and enhanced stability of transformation 

temperature during stress-free thermal cycling. The depletion of Ni from the matrix due 

to the precipitation of (Ti,Hf)3Ni4 particles and the concomitant increase in CSS for slip 

were the reasons for the increase in transformation temperatures and thermal stability, 

respectively.  

 

2.1.4 Thermomechanical Training  

Cai et al. [31] studied the evolution of shape memory behavior in a 

Ti50.6Ni19.4Pd30 HTSMA during a training procedure of 100 thermomechanical cycles 

under various stress levels. They found that shape memory characteristics, such as 

transformation temperatures, recovered transformation strain, and total irrecoverable 

strain evolved with the number of cycles and reached stability after about 40 cycles. 

While the magnitude of the training stress affected the amount of change in the shape 

memory characteristics, it did not affect the number of cycles required to reach stability.  

Bigelow et al. [32] investigated the shape memory responses of Ti50.5Ni49.5-xPdx 

(x = 15 to 46) HTSMAs during isobaric cooling-heating experiments under different 

stress levels. It was shown that with increasing Pd content, the amount of recovered 

transformation strain decreased while irrecoverable strain increased under a given stress 

level. It should be noted that transformations taking place at higher temperatures might 

be partially responsible for the high irrecoverable strain levels due to the reduced CSS 

for slip of the materials at elevated temperatures. However, continued thermal cycling 
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under the same stress level resulted in a reasonably stable material behavior after about 

40 thermomechanical cycles, with almost the same transformation and irrecoverable 

strain values per cycle. At the end of 100 thermal cycles under 172 MPa applied stress, 

Ti50.5Ni24.5Pd25 had a saturation value of 0.0087 % for the irrecoverable strain per cycle, 

which suggested that the material reached an almost dimensionally stable behavior. 

 

2.2 Crystallographic Compatibility and the Evolution of Shape Memory Behavior 

during Training 

Thermal hysteresis is an important criterion in the selection of SMAs for actuator 

applications. It dictates the amount of undercooling and superheating required to 

complete transformation. Thus, it is a measure of thermal efficiency. It is also correlated 

with the fatigue life of the actuator, since the energy lost due to the thermal hysteresis is 

an indirect indication of the creation of defects [81]. SMAs with low thermal hysteresis 

values are expected to generate fewer defects during thermomechanical cycling and thus 

exhibit longer thermomechanical fatigue life.  

Recently, a theory called the “geometrically non-linear theory of martensitic 

transformations”, or geometric non-linear theory of martensite (GNLTM) has emerged 

on the origins of the reversibility of phase transformations [82, 83]. The theory explains 

how the shape memory effect is related to the symmetry of the crystal and 

crystallographic compatibilities. One critical statement of the theory is that the 

fundamental cause of the transformation hysteresis seen in SMAs arises from the 

crystallographic incompatibilities between the austenitic and martensitic phases and that 
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the hysteresis can be significantly reduced by the improvement of the compatibility. 

Thus, SMAs with improved crystallographic compatibilities are less prone to generation 

of defects during transformation and are expected to be more resistance to failure during 

repeated thermomechanical cycling.  

The GNLTM postulates two criteria in order for an SMA to exhibit a small 

hysteresis. The first condition is detU = 1, where U is the transformation stretch matrix 

that maps the austenite lattice to martensite lattice during transformation. In geometric 

terms, detU=1 represents the condition of no volume change. This condition has been 

widely considered as a prerequisite for the reversibility of martensitic transformations 

[84, 85]. If there is a volume change associated with the transformation, an island of 

martensite growing in austenite will impose stress to its surroundings. This would also 

happen during the reverse transformation. Thus, the free energy decreasing path between 

transformation phases would necessarily show a hysteretic behavior.  The second 

condition is 2 = 1, where 1 ≤ 2 ≤ 3 are the ordered eigenvalues of U. Eigenvalues 

represent the amount of elongation or contraction of the austenite lattice along the 

principal directions. 2 = 1 represents the presence of an invariant plane between 

austenite and martensite, which is a perfectly coherent interface. This means that 

austenite is directly compatible with a single variant of martensite, which seldom occurs 

in SMAs. For an SMA which does not satisfy the 2 = 1 requirement, the interface is 

usually comprised of alternating layers of martensite variants meeting a homogenous 

austenite region (Figure 2.1). Due to the incompatibility between the phases, there is 

both elastic and interfacial energy stored. This stored energy manifests itself as a barrier 
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against transformation which must be overcome by overheating-undercooling or by 

additional stress. Thermal hysteresis is caused by the dissipation of this stored energy 

due to lattice friction and generation of defects to accommodate transformation shear 

and volume change. In the case of full compatibility, there is no need for the elastic 

transition layer or the interfacial energy on the twin boundaries, which leads to the 

minimization of hysteresis. 

 

 

Figure 2.1 Austenite/martensite interface during martensitic transformation in CuAlNi 

SMA [81]. 

 

The form of the stretch matrix U can be derived if lattice parameters of both the 

austenite and the martensite phases and their symmetries are known. For example, there 

are six martensitic variants for a cubic-to-orthorhombic transformation [86]. The 

transformation stretch matrix for one of the variants can be described as U1: 
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where =a/a0, =b/2a0, = c/2a0, a0 is the lattice parameter of the cubic unit cell and 

a,b and c are the lattice parameters of the orthorhombic unit cell. The other five 

transformation stretch matrices have identical components and will yield the same 

eigenvalues. 

Cui et al. [81] have investigated the validity of both detU=1 and 2 = 1 for the 

minimization of thermal hysteresis in Ti50Ni50-xCux alloy system over a broad range of 

compositions using combinatorial synthesis methods. They reported a weak correlation 

between the volume change during transformation and the thermal hysteresis. Alloys 

with detU values close to 1 exhibited either very large or very small hysteresis values. 

On the other hand, a strong correlation was found between 2 and the thermal hysteresis. 

Hysteresis values showed a decreasing trend as 2 got closer to 1. Stress and thermal 

hysteresis of 100 MPa and 20 °C were reported, respectively for Ti49.5Ni40.5Cu9 which 

had 2 = 0.9986 and detU = 1.0002.   

Delville et al. [87] conducted a similar study on the Ti50Ni50-xPdx HTSMA 

system. In addition to displaying the same decreasing hysteresis trend as 2 got closer to 

1, they also explained the underlying mechanisms of the reduction in hysteresis by 

investigating the evolution of the microstructure as the composition was systematically 

tuned. According to their results, as 2 approached 1, the fully twinned martensite plates 
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in the microstructure were replaced by twinless martensite plates, which resulted in a 

decrease in overall interfacial energy and an increase in compatibility.  Ti50Ni39Pd11 was 

found to have a 2=1.0001 and thermal hysteresis of 13 °C. 

 In a recent study by Zarnetta et al. [88], the compatibility levels of TiNiCu SMA 

were further increased through quaternary alloying with different amounts of Pd 

additions. The quaternary alloys, which had 2 values close to 1, were shown to exhibit 

very small thermal hysteresis values and exceptional stability of transformation 

temperatures during stress-free thermal cycling. 

It has been long known that the Ms temperature of TiNi SMAs is strongly 

dependent on Ni concentration on the Ni-rich side of stoichiometry [1]. Frenzel et al. 

[89] have shown that increasing Ni content does not only affect the transformation 

temperatures of TiNi based SMAs but also the width of the thermal hysteresis and the 

transformation heats during stress-free thermal cycling. Increasing Ni contents were 

shown to result in a better crystallographic compatibility (2 values closer to 1) and thus 

lower hysteresis widths. 

All of the aforementioned studies correlated the compatibility in an SMA with 

the thermal hysteresis and stability under stress-free conditions. The functional stability 

of SMAs during thermal cycling under stress is equally important, especially for actuator 

applications. Thus, it is of interest to know if the compatibility has a similar influence on 

the shape memory behavior during repeated actuation cycles. This issue was recently 

addressed by Grossmann et al. [33], who studied the effects of cold-working and ternary 

alloying with Cu on the thermomechanical cyclic stability of TiNi spring actuators. 
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Addition of Cu reduced the width of the thermal hysteresis and improved the functional 

stability by resulting in a better crystallographic compatibility between the transforming 

phases. Unlike cold-working, the improvement in the functional stability with Cu 

addition (up to 10 at. %) was achieved without a compromise in the actuator stroke.  

 

2.3 Two-Way Shape Memory Effect in High-Temperature Shape Memory Alloys 

 While there are several studies on the TWSME characterization of conventional 

TiNi and Cu-based SMAs, there are limited studies on the TWSME characterization of 

HTSMAs. The only study on the characterization of TWSME in an HTSMA was 

conducted by Meng et al. [65]. In this study, Ni49Ti36Hf15 plates were trained via 

bending in martensite followed by unconstrained recovery for up to 30 cycles at different 

temperatures. The highest two-way shape memory (TWSM) strain of 0.88 % was 

achieved after a bending strain deformation of 7.1 % at room temperature.  However, the 

stability of the TWSME was found to be poor due to the low strength of the martensite, 

which eased the introduction of dislocations during the TWSME cycles, relaxing the 

oriented stress fields. The TWSM strain decreased by almost 50 % in only 10 stress-free 

thermal cycles. 

 

2.3.1 Origin of TWSME 

Two mechanisms have been proposed in the literature as the mechanisms 

responsible for TWSME. The first mechanism attributes the TWSME to the oriented 

residual stress fields of the dislocation arrays generated during thermomechanical 
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training [34]. These residual stress fields are able to induce the same variants of 

martensite under no stress as the ones which are generated by the external training stress, 

thus causing the TWSME [28]. The magnitude and stability of the TWSME depends to a 

great extent on the magnitude of these stress fields and how they can be maintained 

through repeated thermal cycling. The same mechanism has also been explained from a 

thermodynamics point of view [37]. According to [37] , the dislocation arrays generated 

during thermomechanical training create low energy configurations in the repeatedly 

induced martensite variants, while a relatively higher energy configuration is induced in 

the less frequently induced variants. As a result, the growth of martensite variants with 

the low energy configuration is favored under no external stress, causing the TWSME. 

The second mechanism is based on the local stabilization of martensite, retained 

above the Af temperature. Similar to the residual stress fields in the first mechanism, 

retained martensite plates influence the growth and positioning of other variants, 

resulting in TWSME [34]. However, this mechanism has grown out of favor [36]. 

Common to these two mechanisms is the prerequisite for some amount of 

irreversible strain that should be imposed to the material during training cycles for the 

manifestation of the TWSME [34]. Thus, the approach for obtaining maximum TWSM 

strain is to induce enough plasticity that will yield the highest magnitude of oriented 

stress fields [49]. However, it has also been shown that irreversible strain in the form of 

true plastic deformation and retained martensite have undesirable effects on the TWSME 

[36]. 
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2.3.2 Thermomechanical Training Procedures to Obtain TWSME 

Different training techniques have successfully been implemented to obtain 

TWSME. The most common training techniques used so far are: deformation in 

martensite followed by constrained or unconstrained recovery (OWSME cycling) [45, 

47, 58, 61, 63, 65]; stress cycling above the Af temperature (pseudoelastic cycling) [34]; 

temperature cycling through the martensitic transformation under a constant stress level 

(thermal cycling) [28, 35, 36, 44-46, 48, 49, 53, 57] or a combination of the latter two 

methods [50]. Common to all these techniques is the repeated growth and shrinkage of 

particular martensitic variants, which is responsible for the generation of favorable 

dislocation arrays and defects. Another technique which is different in principle than the 

aforementioned techniques is aging heat treatment under constraint. This method has 

been used to obtain TWSME in Ni-rich TiNi SMAs. With this method, coherent 

precipitates are formed in preferred orientations under applied stress, resulting in 

oriented internal stress biasing the formation of single-variant martensite [51]. 

Among the training procedures mentioned above, thermal cycling through the 

martensitic transformation under a constant stress level has been shown to yield 

satisfactory results in terms of the magnitude and stability of the TWSME [28]. This 

method has been proven to be an efficient procedure, involving relatively low training 

stresses and generating a low amount of true plastic deformation compared to other 

training procedures. The high temperature shape at the end of training is close to the 

initial shape which is important for applications and design.  
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2.3.3 Work Output of the TWSME 

TWSME has been considered as an unstable effect, which could easily be 

suppressed by applying an opposing force during transformation, thus having no 

capability of performing work [90]. However, Stalmans et al. [37] demonstrated that in a 

well-trained CuZnAl SMA, the TWSME was actually capable of resisting a significant 

amount of force. The TWSME was capable of performing 0.025 J/g of work and 52 MPa 

was required to suppress it completely. Fukuda et al. [91] investigated the work output 

of the TWSME in a Ti49Ni51 (at. %) SMA. The TWSME was induced by aging heat 

treatment under stress, which led to the formation of aligned Ni4Ti3 precipitates relative 

to the applied stress. The transformation took place under the influence of the coherency 

stress fields of these precipitates, resulting in specific martensitic variant selection and 

thus, shape change under no external stress. The aged specimens could perform around 

0.040 J/g of work under opposing stress levels of 50 to 100 MPa. In addition, no 

deterioration was seen in the work output levels during repeated actuation up to 100 

thermomechanical cycles. 
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CHAPTER III 

EXPERIMENTAL METHODS 

 

The aim of this chapter is to present details on the fabrication and processing of 

the materials as well as several thermomechanical testing and characterization methods 

used throughout the study. 

 

3.1 Materials Fabrication 

Ingots of different compositions were prepared by vacuum induction melting of 

high purity elemental constituents (99.98 wt. % Ni, 99.95 wt. % Ti, 99.995 wt. % Pd, 

99.995 wt. %Pt  and 99.95 wt. % Sc) using a graphite crucible. The induction unit was 

equipped with tilt-pour capability and the melts were cast into a copper chill mold, 

resulting in 25.4 mm diameter by 102 mm long cylindrical ingots. Each ingot was 

homogenized in a vacuum furnace at 1050 °C for 72 hours and allowed to furnace cool.  

 

3.2 Thermomechanical Processing 

Following the homogenization process, ingots were placed into mild steel 

extrusion cans and extruded at 900 °C with an area reduction ratio of 7:1. The extrusion 

can was used to prevent oxidation during the extrusion process and to reduce the friction 

between the extrusion die and the billet. For ECAE processing, 3” long samples were cut 

from these billets (so-called as-received billets) and encapsulated in square AISI 316 
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stainless steel cans to conform to the shape of the existing ECAE die. The ECAE die and 

thus, the stainless steel cans had a cross-section of 19.05 mm x 19.05 mm.  

 

3.2.1 Equal Channel Angular Extrusion (ECAE) Processing 

ECAE is an SPD process where the sample is pressed through a die in which two 

channels of equal cross section intersect at an angle of usually 90° [92] (Figure 3.1).  

Large amounts of strain can be imposed on the sample without a change in its cross 

section unlike in traditional metal forming processes such as rolling, forging and 

conventional area-reduction extrusion. Since the cross-section of the sample does not 

change after a single pass extrusion, the extruded sample can be reinserted into the die 

and reprocessed to achieve even more plastic strain. For instance, it is possible with a 4-

pass ECAE to obtain an equivalent strain level of 99 % thickness reduction in cold-

rolling [93]. ECAE processing followed by recovery and annealing can be used to obtain 

structures with sub-micron grain size, which show superior physical and mechanical 

properties [94, 95]. There is a considerable amount of work on the SPD of TiNi SMAs 

showing the effectiveness of ECAE on improving the shape memory behavior [66, 69, 

79, 96-102]. The processed materials display better functional stability under cyclic 

loading due to increased resistance to slip and other defect formation mechanisms. An 

alternative SPD method used to enhance the shape memory properties of TiNi SMAs is 

the high pressure torsion (HPT), where nanocrystalline structures can be obtained after 

proper annealing of the processed samples [70, 99, 103, 104]. The advantages of ECAE 

over HPT are that there is no sample size limitation with ECAE and it is possible to 
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apply large uniform strains on bulk samples. In addition,  better control on the final 

texture and microstructure of the product can be achieved through different extrusion 

routes in ECAE [92].  

 

 

Figure 3.1 A schematic of the ECAE process showing different planes on the extruded 

billet. 

 

Throughout this study, several ECAE processes were performed on 

Ti50.5Ni24.5Pd25 and its quaternaries with Sc addition. Following ECAE, post-deformation 

annealing treatments were applied to selected samples to relieve internal stresses and 

recover some of the dislocation substructure. From our previous experience with the 

extrusion of TiNi [66] and TiNiPd SMAs [105], the thermomechanical behavior of the 

final product depends on the process variables such as extrusion rate, strain rotation 
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(processing route), processing temperature, number of passes and canning material. 

Table 3.1 lists the extrusions performed on the ternary and quaternary alloys to date.  

 

Table 3.1 A summary of the ECAE processes conducted within the scope of this study. 

Material 

Processing 

Temperature 

(°C) 

Processing 

Route 

Post-

processing 

treatment 

Result 

Ti50.5Ni24.5Pd25 425 4Bc  Success 

Ti50.5Ni24.5Pd25 425 4E Low-T Anneal Success 

Ti49.5Ni25Pd25Sc0.5 425 4Bc  Success 

Ti49.5Ni25Pd25Sc0.5 425 4E Low-T Anneal Success 

Ti50Ni24.5Pd25Sc0.5 425 4Bc  Failure 

Ti50Ni24.5Pd25Sc0.5 425 4E  Success 

 

ECAE was performed isothermally at 425 °C for 4 passes using route Bc or E at a 

rate of 0.127 mm/sec. 425 °C was the lowest processing temperature that gave a good 

level of microstructural refinement while minimizing recovery and recrystallization. 

Trials at lower processing temperatures were not successful due to the intense shear 

localization before the completion of 4 passes. Immediately after each pass, the billet 

was quenched in water to preserve the ECAE microstructure. Before each subsequent 

pass, the billet was held in the die for 15 minutes at extrusion temperature. Route Bc was 

selected as one of the processing routes, since it was shown to be the most effective 
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route for grain refinement [106]. It involves the rotation of the billet 90° after each pass.  

Route E was also preferred as a processing route since it required less punch pressure 

during extrusion as compared to other routes.  In terms of the processing schedule, route 

E involves the rotation of the billet by 180° around the extrusion direction after the first 

pass, 90° after the second pass, and 180° again before the last pass. Our previous 

experience with equiatomic TiNi [66] and TiNiPd, with lower Pd contents than  the 

current alloy [75], showed that route E yielded the best results in terms of shape memory 

characteristics. Furthermore, route E was shown to be the most effective route for 

achieving uniform, equiaxed, ultra-fine grain structure along with route Bc, but the 

uniformly deformed region in route E processed samples is significantly larger as 

compared to that of samples processed with route Bc [107]. In terms of the processing 

schedule, route E represents a hybrid pattern between route C and B, the sample being 

rotated 180° around the extrusion direction after the first pass, 90° after the second pass 

and 180° again before the last pass. Further information about the ECAE processing 

routes as well as the other fundamental parameters like shearing patterns and imposed 

strains can be found in [92]. 

 

3.3 Microstructural Characterization 

3.3.1 Crystal Structures 

Crystal structures of the transforming phases in as-received materials were 

determined using a Bruker-AXS D8 X-ray diffractometer with CuKα (1.5406 Å) 

radiation. The X-ray diffraction (XRD) patterns of the specimens were measured in the 
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2θ range of 20-80° both in the martensite and austenite phases. Measurements in the 

austenite phase were performed in vacuum using a Pt heating-strip with an x-ray 

transparent beryllium dome. Heating and cooling of the samples was achieved at a rate 

of 30 °C/min. For the calculations of crystallographic compatibility between 

transforming phases, i.e. 2, the lattice parameters of martensite and austenite phases 

were measured at Mf – 30 °C and Af + 30 °C, respectively, in order to achieve 

thermodynamically equivalent conditions for all materials. Before the start of the 

analyses, specimens were kept at the aforementioned temperatures for 15 minutes to 

ensure a homogeneous temperature distribution. 

 

3.3.2 Microstructure and Compositional Analysis  

Microstructural and chemical analyses were carried out on a Cameca SX50 

(Gennevilliers Cedex, France) scanning electron microscope (SEM) equipped with four 

wavelength dispersive X-ray spectrometers (WDS) and an energy dispersive X-ray 

spectrometer (EDS) using standard microprobe imaging and microanalytical methods. 

As an alternative method to WDS, bulk compositional analyses were also conducted 

using inductively coupled plasma - atomic emission spectroscopy (ICP-AES) to assess 

the validity of the results. Electron imaging was performed using a six component 

backscattered electron (BSE) detector.  X-ray elemental distribution images were 

acquired by scanning the beam in a 512 by 256 grid; dwell time at each step (pixel) was 

6 ms. Each of the four WDS spectrometers was set to the major X-ray emission line of 
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an element.  The brightness of each pixel in the image was proportional to the number of 

X-rays from that element detected at that point on the sample.  

Transmission electron microscopy (TEM) studies were conducted using JEOL 

2010 and Philips CM200 microscopes operated at an accelerating voltage of 200kV. For 

the ECAE processed samples, TEM images were taken from the flow plane which is 

parallel to the side face of the ECAE processed billet (Figure 3.1). TEM foils were 

prepared by mechanically grinding samples to 100μm, followed by punching out 3mm 

diameter disks from the thin foils. The disks were subsequently polished using a twin-jet 

electropolisher with a 20 vol. % H2SO4 and 80 vol. % methanol solution at -10 °C. The 

TEM was equipped with an in-situ heating stage for observation of the austenite 

microstructure. 

 

3.3.3 Microhardness  

Microhardness samples were extracted from both the as-received and ECAE 

processed billets (see the figure on p. 37). The transverse plane of the ECAE processed 

billets was used for the extraction of samples. ECAE processed samples were 

subsequently heat treated at various temperatures for 1 hour followed by a water quench. 

Room temperature Vickers microhardness values were determined using a Buehler 

Omnimet (Lake Bluff, IL) microhardness tester. Hardness values were recorded using 

300 g load (i.e. HV0.300) and a loading time of 15 s. While low temperature heat 

treatments (<400 °C) were conducted in air, higher temperature heat treatments were 

performed under a vacuum of 10
-6

 Pa. Heat treatment at 300 °C was selected as the 
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condition for further microstructural and thermomechanical investigations. Samples of 

this condition are referred to as “post-ECAE annealed” samples throughout the 

dissertation. 

 

3.4 Calorimetry 

Stress-free phase transformation temperatures (martensite finish, Mf; martensite 

start, Ms; austenite start, As; and austenite finish, Af) were measured using a Perkin-

Elmer Pyris I differential scanning calorimeter (DSC) at a heating-cooling rate of 10 °C 

min
-1

. Sample preparation greatly affects the measured transformation temperatures due 

to residual stresses that can develop depending on how the samples are prepared. Thus, 

all DSC specimens were prepared as 5 mm x 1 mm discs using wire electrical discharge 

machining (EDM), which is a non-contact, stress-free machining technique. 

Transformation temperatures were determined from the DSC peaks using the slope line 

extension method [108]. The net amount of heat released during phase transformation 

(Hnet) was also calculated from the area under the transformation peaks. Specimens of 

different compositions were thermally cycled five times to assess the cyclic stability of 

the transformation temperatures.  

 

3.5 Thermomechanical Characterization 

Small dog-bone shaped tension specimens with gage dimensions of 8 mm x 3 

mm x 1.5 mm and compression specimens of 4 mm x 4 mm x 8 mm were cut from the 

as-received and ECAE processed billets using wire EDM (Figure 3.2). Short-duration 
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thermomechanical experiments such as isobaric cooling-heating tests, thermal cyclic 

tests under constant stress consisting of relatively small number of cycles and isothermal 

monotonic loading tests were performed on a servo-hydraulic MTS test frame. For 

tensile tests, the axial strain was measured using an MTS high-temperature 

extensometer, which had a pair of ceramic rods, 3.5 mm in diameter with V-chisel ends 

exerting a 300 g force per rod on the sample. The extensometer had a gage length of 12.7 

mm and a range of  20%, which means that the maximum extension and compression 

levels were  2.54 mm. Since the gage length of the tension specimens were only 8 mm, 

the extensometer had to be attached to the specimens in its fully compressed form, 

measuring an actual gage length of 10.5 mm. Therefore, the measured strain values were 

recalculated according to the gage length of the tension specimen (8mm) assuming that 

the inelastic deformation occurs only in the gage section. Obviously, this approach does 

not result in 100% accurate results in terms of strain levels but it should be very close to 

reality and the measurements are much more accurate than strains calculated using the 

crosshead displacement of the MTS test frame. 

 Prior to mechanical testing, one side of each sample was polished to remove the 

residual EDM layer. The polished side of the samples was used for thermocouple 

attachment, while the extensometer was placed on the other side. For compression tests, 

a miniature MTS extensometer with 3 mm gage length was used.  Samples were heated 

through conduction from the grips with heating bands. Cooling of the samples was 

achieved again by conduction through flowing liquid nitrogen in copper tubes wrapped 

around the grips. The rate of heating and cooling during mechanical testing was 10 ± 2 
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°Cmin
-1

. The temperature was measured using a K-type thermocouple, directly attached 

to the gage section of the sample.  

 

 

Figure 3.2 A schematic showing how several different samples for microstructural and 

thermomechanical characterization were extracted from ECAE processed (and as-

received) billets. The visible surface of the ECAE processed billet is the longitudinal 

plane and the horizontal direction is the extrusion direction. 

 

Thermal cycling tests involving relatively higher number of cycles 

(thermomechanical training tests) were conducted on a custom-built constant-stress 

testing frame, which did not rely on liquid nitrogen as the cooling agent. On this test 

setup, heating and cooling was achieved at a rate of 5 ± 1 °C/min. Samples were heated 

by conduction from the grips which were in turn heated by radiation through the use of 

an environmental furnace equipped with four 1kW halogen lamps. For cooling, water 

was circulated around the grips flowing through copper tubing. Temperature was 

controlled with a K-Type thermocouple attached to the middle of the sample gage 

section with a copper wire. To minimize the radiation heat transfer on the sample surface 
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(which will lead to erroneous temperature readings that are not representative of the bulk 

of the specimen), the sample was shielded with a 1 mm thick reflective aluminum foil. A 

capacitive displacement probe (Capacitec
®
 HPC-75) with a linear range of 0-1.5 mm 

was attached to the grips to measure the displacements during the training process. Axial 

strain was calculated by dividing the change in length to the initial gage length.  

 

3.5.1 Isobaric Cooling-Heating Experiments 

The principal anticipated application for most HTSMAs, including those in this 

investigation, is in the field of actuation. Consequently, one of the main focuses should 

be on the thermomechanical response of these alloys under the loading conditions that 

real actuators would experience. In this study, the primary thermo-mechanical 

characterization technique that was utilized consisted of a series of isobaric cooling-

heating experiments to characterize the transformation behavior of the materials, 

including the evolution of transformation temperatures, recovered transformation strain 

(rec), irrecoverable strain (irr), and thermal hysteresis as a function of externally applied 

stress. In these experiments, the specimen is incrementally loaded to predefined stress 

levels (i.e., 50,100,150, ... MPa) starting from the lowest stress and working up. At each 

stress level, the sample is thermally cycled through full transformation between a 

temperature below fM
 and a temperature above fA

 (where fM
 and fA

 are the 

respective transformation temperatures under stress) while the strain response is 

recorded as a function of temperature. Load changes take place at the upper temperature 
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limit of the thermal cycle when the sample is completely austenite and then the sample is 

cooled under the new load level and reheated.   

 

 

Figure 3.3 A schematic illustration showing the determination of thermal hysteresis, 

recovered transformation strain (rec), irrecoverable strain (irr) and transformation 

temperatures from a constant-stress thermal cycle. 

 

Figure 3.3 shows how the relevant shape memory characteristics are determined 

from a single thermomechanical cycle. rec was measured as the strain recovered during 

the reverse transformation, which is also a measure of actuation strain. irr was defined as 

the amount of open-loop strain at the end of each cycle measured at C30A f


. 

Thermal hysteresis was defined as the width of the strain-temperature curve measured at 

half the reverse transformation strain. Transformation temperatures fM
, 


sM , sA

and 
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

fA  were determined in a similar fashion to the slope line extension method used in 

[108]. 

 

3.5.2 Thermal Cycling Experiments under Constant Stress 

The objective of thermomechanical training experiments was to investigate the 

evolution of the shape memory response under a constant stress level. Experiments 

consisting of 10 thermal cycles were performed for a quick assessment of the 

evolutionary behavior during the first few cycles. Experiments with 100 thermal cycles 

were primarily aimed at investigating the response of the material during the course of 

achieving stable shape memory behavior and secondarily observe the concomitant 

TWSME effect. These high-cycle experiments will also be called thermomechanical 

training experiments throughout the study. 

Similar to the isobaric cooling-heating tests, transformation temperatures, rec, irr 

and thermal hysteresis values were calculated for each thermal cycle (Figure 3.1) and 

were plotted as a function of cycle number.  

 

3.5.3 Isothermal Monotonic Loading Tests 

In addition to the thermomechanical tests described in the previous two sections, 

isothermal monotonic loading experiments were conducted to assess the strength levels 

of materials. Critical parameters such as SIM , the critical stress to induce martensite, 

and 
M

y , the yield strength of the stress-induced martensite, were extracted from these 

experiments. Since some of the samples experienced premature failure under tension 
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before reaching the plastic deformation of martensite and therefore not allowing for the 

detection of
M

y , these experiments were mainly conducted under compression.  

The compression samples were initially heated above their Af temperatures to 

ensure a completely austenitic structure. They were then cooled to a temperature of Ms + 

15 °C while still in austenite and subsequently loaded at a strain rate of -10
-4 

sec
-1

. The 

selection of the testing temperature with respect to the Ms temperature as opposed to 

testing at a fixed temperature was to ensure equal thermodynamic conditions for all 

materials investigated.  
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CHAPTER IV 

EFFECTS OF SC ADDITIONS ON THE SHAPE MEMORY 

CHARACTERISTICS OF Ti50.5Ni24.5Pd25
*
 

 

This chapter investigates the effects of different amounts of scandium (Sc) 

additions on the shape memory behavior, in particular, the functional stability, of 

Ti50.5Ni24.5Pd25 (at. %). The research started with the characterization of the ternary 

Ti50.5Ni24.5Pd25 and its quaternary with 0.5 at. % Sc addition. After initial microstructural 

and thermomechanical characterization studies were conducted and a solid knowledge 

base was established on the quaternary alloy, addition of 3 at. % Sc was attempted.  

0.5 at. % Sc addition proved to be useful in enhancing the functional stability of 

Ti50.5Ni24.5Pd25. The improvements came in the form of smaller thermal hysteresis, 

smaller irrecoverable strains and smaller shifts in transformation temperatures during 

both stress-free and isobaric thermal cycling. Larger additions of Sc further improved the 

functional stability of Ti50.5Ni24.5Pd25, however, severely depressed its transformation 

temperatures (140 °C drop in Ms with 3 at. % addition), making it no longer qualify as 

an HTSMA. As a result, most of the characterization and the processing work focused 

on the 0.5 at. % Sc microalloyed Ti50.5Ni24.5Pd25 HTSMA. 

                                                

* Reprinted with permission from “Improvement in the shape memory response of 

Ti50.5Ni24.5Pd25 high-temperature shape memory alloy with scandium microalloying” by 

Atli KC, Karaman I, Noebe RD, Garg A, Chumlyakov Y, Kireeva I, 2010. Metallurgical 

and Materials Transactions A, 41, pp. 2485-2497, Copyright 2010 by The Minerals, 

Metals & Materials Society and ASM International. 
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4.1 Sc as the Choice of Quaternary Alloying Addition 

The selection of Sc as a quaternary alloying addition to Ti50.5Ni24.5Pd25 is due to 

multiple reasons:  

1. Sc is expected to have a strong site preference for Ti (similar to Hf and Zr). 

However, unlike Hf and Zr, it is expected to have a wide range of solubility in TiNi 

because it also forms B2 compounds with Ni. Therefore, a wide range of Sc solubility is 

expected in TiNiPd without second-phase formation. 

2. According to currently unpublished atomistic simulations for quaternary 

additions to TiNiPd by Bozzolo, performed in a similar manner to the ternary additions 

studied by Bozzolo et al. in TiNi [109]  and TiPd and TiPt [110], Sc was found to have a 

significant effect on the formation energy of TiNiPd, increasing the formation energy for 

a given unit of alloying addition more than any other element studied. Therefore, it can 

be inferred that Sc affects the bond strength in the alloy, which may affect both the 

transformation and slip behavior. 

3. In the same unpublished study by Bozzolo, Sc was found to have a moderate 

effect on the lattice strain in B2-TiNiPd as determined by its influence on lattice 

parameters. Thus, it should have potent solid-solution strengthening effects. 

 

4.2 Initial Alloying Trials with 0.5 at. % Sc Addition 

4.2.1 Microstructure 

 For the Ti50Ni50-xPdx (at. %) system, when x ≥ 10, the martensitic transformation 

occurs between the B2 (cubic) high temperature austenite and B19 (orthorhombic) low 
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temperature martensite phases [111-114]. Figure 4.1a is a comparison of the XRD 

spectra at room temperature for Ti50.5Ni24.5Pd25 and Ti50Ni24.5Pd25Sc0.5, which confirms 

the B19 structure of the martensite for both alloys. Figure 4.1b shows the XRD spectra at 

225 °C which is above the Af temperature of both alloys. The structure of austenite for 

both alloys was confirmed to be B2. The small Sc addition did not change the structure 

of either the martensite or austenite. 

 

 

(a) 

 

(b) 

Figure 4.1 A comparison of the XRD spectra for Ti50.5Ni24.5Pd25 and Ti50Ni24.5Pd25Sc0.5 

alloys. (a) At room temperature (below Mf) XRD patterns show that both materials have 

a B19 orthorhombic martensite structure and (b) at 225 °C (above Af) both materials 

exhibit a B2 crystal structure. 

  

Lattice parameters were calculated from the observed peaks and are listed in 

Table 4.1. Microalloying Ti50.5Ni24.5Pd25 with Sc slightly increased the lattice 

parameters, as expected from the atomistic simulations. The volume of the B2 austenite 
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phase increased by 0.6 %, while the volume of the B19 martensite phase increased by 

0.5 % due to the Sc addition. 

 

Table 4.1 Lattice parameters of Ti50.5Ni24.5Pd25 before and after microalloying with 0.5 

at. % Sc. Errors reported are the standard deviations of the measurements taken. 

Lattice Parameters Ti50.5Ni24.5Pd25 (Å) Ti50Ni24.5Pd25Sc0.5 (Å) 

a0 (B2) 3.102 ± 0.002 3.108 ± 0.001 

a (B19) 2.788 ± 0.001 2.796 ± 0.001 

b (B19) 4.462 ± 0.001 4.465 ± 0.001 

c (B19) 4.700 ± 0.001 4.706 ± 0.001 

 

From the lattice parameters in Table 4.1, λ2 for Ti50.5Ni24.5Pd25 was calculated as 

1.0171, while for Ti50Ni24.5Pd25Sc0.5, λ2 was 1.0158. Both values are very similar and 

resulted in alloys with low thermal hysteresis around 15°C, as further mentioned in 

Section 4.2.2.  However, at some larger Sc addition it may be possible to drive the value 

of λ2 closer to 1 and produce an alloy with even smaller thermal hysteresis.   

Grain sizes were relatively smaller in the quaternary alloy, ranging from 5 µm to 

10 µm with an average size of 7 µm, while for the ternary alloy the range was 5 µm to 

15 µm with an average of 10 µm. Scanning electron micrographs of both materials in 

back-scattered electron mode revealed a martensitic structure with a fine precipitate 

distribution.  For Ti50.5Ni24.5Pd25, the average size of the particles was 1.5 ± 0.6 µm, 
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whereas for Ti50Ni24.5Pd25Sc0.5, the average was 0.9 ± 0.4 µm (Figures 4.2a and 4.2b, 

respectively).  

 

 

(a) 

 

 (b) 

Figure 4.2 Backscattered electron images of (a) Ti50.5Ni24.5Pd25 with predominant 

Ti(C,O) type precipitates and, (b) Ti50Ni24.5Pd25Sc0.5 with relatively finer Ti(C,O) type 

precipitates. 

 

EDS analysis indicated that these particles were predominantly Ti(C,O). The 

volume fraction of particles in the ternary alloy was found to be more than twice that in 

the quaternary alloy: 3.4 % as compared to 1.4 %. This significant difference may have 

resulted from possible variations in the melting conditions for the two alloys, such as the 

amount of superheat and time molten before casting, which would affect the amount of 

carbon pickup from the crucible.   

Ti2(Ni,Pd) type precipitates, which are usually observed in Ti-rich compositions 

of TiNiPd, were not detected in either material. EDS analyses on relatively small 

(<1µm) particles, which were suspected to be  Ti2(Ni,Pd), were not conclusive due to the 
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large errors associated with trying to do EDS on such a small volume because of 

overwhelming contributions from the matrix. Finally a few Sc2O3 type precipitates were 

observed in the Ti50Ni24.5Pd25Sc0.5 alloy as illustrated in x-ray elemental distribution 

images (Figures 4.3a and 4.3b). The formation of these oxides are a consequence of the 

strong affinity of Sc for oxygen, similar to the formation of Ti(C,O) during melting. 

 

 

(a) 

Figure 4.3 (a) X-ray elemental mapping of Ti50.5Ni24.5Pd25. Different colors indicate 

different constituent elements. Precipitates are predominantly TiC. (b) X-ray elemental 

distribution image of Ti50Ni24..5Pd25Sc0.5. A small percentage of Sc2O3 precipitates is 

present besides the TiC. 
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 (b) 

Figure 4.3 Continued. 

 

WDS analyses were also performed on both samples to quantify the composition 

of the matrix. A total of 6 measurements were taken at random spots. Table 4.2 lists the 

averages of these measurements along with the ICP-AES results. The measured values 

were essentially indistinguishable from the nominal target compositions given the 

tolerances and uncertainties (±1 % of the absolute level of the element being analyzed) 

in using WDS and ICP-AES as bulk chemical analysis techniques. The measurement 

trends were consistent with the fact that Ti values are less than the nominal composition 

values due to the formation of Ti(C,O) precipitates. Sc levels in the solid solution were 

found to be comparable with both measurement techniques. Clearly, the drop in 

transformation temperatures of the Ti50Ni24.5Pd25Sc0.5 alloy is due to the addition of 0.5 

at. % Sc. 
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Table 4.2 Compositional analysis results for Ti50.5Ni24.5Pd25 and Ti50Ni24.5Pd25Sc0.5 as 

determined using WDS and ICP-AES. Errors reported for the WDS analysis are the 

standard deviations from the six measurements. ICP-AES errors represent the deviation 

from the average of two measurements.  

 Ti (at. %) Ni (at. %) Pd (at. %) Sc (at. %) 

Ti50.5Ni24.5Pd25 

(WDS) 
49.18 ± 0.12 25.07 ± 0.14 25.75 ± 0.09 - 

Ti50.5Ni24.5Pd25 

(ICP-AES) 
48.87 ± 0.10 24.32 ± 0.02 25.82 ± 0.12 - 

Ti50Ni24.5Pd25Sc0.5 

(WDS) 
49.00 ± 0.11 24.77 ± 0.14 25.75 ± 0.08 0.48 ± 0.01 

Ti50Ni24.5Pd25Sc0.5 

(ICP-AES) 
48.65 ± 0.04 24.37± 0.04 25.97± 0.07 0.47± 0.01 

 

Figure 4.4 includes typical bright-field TEM images for the Ti50.5Ni24.5Pd25 and 

Ti50Ni24.5Pd25Sc0.5. Corresponding selected area diffraction (SAD) patterns are also 

shown. Both images show a twinned martensitic structure with {111} type I twins. The 

SAD pattern for Ti50.5Ni24.5Pd25 in Figure 4.5a was recorded in the [110] zone axis and 

an orthorhombic structure is revealed with the expected 125° angle between the (002) 

and (1-1-1) reflections. Figure 4.4b shows the martensite variants in Ti50Ni24.5Pd25Sc0.5 

with fine internal twins. The martensite structure remains orthorhombic after the 0.5 at. 

% Sc addition, consistent with the XRD analyses. Also, (11-1) type I twins observed 

from the SAD patterns in Figure 4.4b were predominant in this microstructure.  
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(a) 

 

  

(b) 

Figure 4.4 Bright field TEM images of (a) Ti50.5Ni24.5Pd25 at room temperature together 

with the electron diffraction pattern taken from region A showing an orthorhombic 

martensite structure with {111} type I twinning mode, (b) Ti50Ni24.5Pd25Sc0.5 at room 

temperature showing martensite variants with very thin internal twins and corresponding 

electron diffraction patterns of (11-1) type I twins. 
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4.2.2 Stress-free Phase Transformation Temperatures 

DSC results for the Ti50.5Ni24.5Pd25 and Ti50Ni24.5Pd25Sc0.5 alloys are shown in 

Figure 4.5. Five heating and cooling cycles were conducted on each material. Figure 

4.5a shows the second DSC cycle for each alloy and illustrates how the stress-free phase 

transformation temperatures and ΔHnet were determined from these curves. The reason 

why first cycle results were not taken into account is due to the so-called martensite 

“stabilization effect” [115]. Figures 4.5b and 4.5c demonstrates the evolution of 

transformation temperatures during thermal cycling for both materials. The first heating 

cycle usually results in higher reverse transformation temperatures since residual 

dislocations in the as-extruded material, especially at the martensite and internal twin 

boundaries, create extra resistance during the reverse transformation. This extra 

resistance requires overheating of the material to complete the reverse transformation, 

resulting in an unusually high, first cycle As temperature. However, after the first reverse 

transformation, this “stabilization effect” vanishes [97]. The results of the DSC analyses 

are summarized in Table 4.3.  
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(a) 

 

(b) 

 

 (c) 

Figure 4.5 (a) Second cycle DSC responses for Ti50.5Ni24.5Pd25 and Ti50Ni24.5Pd25Sc0.5 

indicating how transformation temperatures and ΔHnet were determined. Evolution of 

transformation temperatures during five thermal cycles between 100 C and 260 C for 

(b) Ti50.5Ni24.5Pd25 and (c) Ti50Ni24.5Pd25Sc0.5. 

 

Both materials exhibited very similar, single stage martensitic transformations 

with nearly identical thermal hysteresis. According to the second cycle data in Table 4.3, 

the absolute transformation temperatures for the Sc-doped alloy are 6 - 10 °C lower than 

the respective transformation temperatures for the ternary Ti50.5Ni24.5Pd25 alloy. The 
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change in transformation temperatures with thermal cycling occurs due to the repetitive 

motion of the transformation interface and the accommodation of the transformation 

shape change with dislocations and other defects [2]. For Ti50.5Ni24.5Pd25, there is a drop 

of 2.6 °C in Ms temperature after five thermal cycles, whereas for Ti50Ni24.5Pd25Sc0.5, the 

same value is 2.3 °C. The difference between these values is negligible, especially 

considering that the uncertainty levels associated with the DSC measurements are ± 0.2 

°C. Consequently, the change in transformation temperatures with thermal cycling is 

basically unaffected by the Sc addition, and overall the change in transformation 

temperature is relatively small. To put these cyclic changes into perspective, equiatomic 

hot-rolled TiNi with a similar microstructure to these alloys, exhibits a shift of 9 °C in 

Ms temperature [66] after five thermal cycles.  

 

Table 4.3 Transformation temperatures, thermal hysteresis, and total amount of heat 

released during the transformation (ΔHnet, observed enthalpy change) for Ti50.5Ni24.5Pd25 

and Ti50Ni24.5Pd25Sc0.5 determined from the DSC results in Figure 4.5c.  

Material 
Mf 

(°C) 

Ms 

(°C) 

As 

(°C) 

Af  

(°C) 

ΔHnet 

(J/g) 

Ms
5th

-Ms
1st

 

(°C) 

Thermal 

Hysteresis 

(Af-Ms) (°C) 

Ti50.5Ni24.5Pd25 166.5 179.4 184.1 195.1 22.4 2.6 15.7 

Ti50Ni24.5Pd25Sc0.5 160.3 170.1 177.6 185.1 17.9 2.3 15.0 
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For a thermoelastic martensitic transformation induced by cooling from the 

parent phase, Hnet can be approximated as [116]  

MP

el

MP

ch

MP

net HHH  
        

where P M

ch
H

 is the change in the chemical enthalpy and P M

el
H

 is the change in the 

stored elastic energy. According to the sign convention used in this equation, heat given 

to the system is positive and work done on the system is negative. The subscript „net‟ is 

used to differentiate between the chemical enthalpy change during forward 

transformation, ΔHch, and the total amount of heat released during the transformation, 

ΔHnet. It is known that for multiple-interface and polycrystalline transformations, part of 

the chemical enthalpy is stored as elastic strain enthalpy [117]. Thus, the area under the 

transformation peak is not necessarily equal to ΔHch. In Table 4.3, it is noted that 

Ti50Ni24.5Pd25Sc0.5 has a slightly lower ΔHnet (as measured from the area under the 

cooling curve of the second cycle) as compared to Ti50.5Ni24.5Pd25. Increased stored 

elastic strain energy might be one of the factors that contribute to this behavior, since 

Ti50Ni24.5Pd25Sc0.5 had a smaller grain size.  

 

4.2.3 Isobaric Cooling-Heating Experiments   

Figure 4.6 shows the strain vs. temperature response of both Ti50.5Ni24.5Pd25 and 

Ti50Ni24.5Pd25Sc0.5 at selected stress levels. εrec and εirr levels for both materials, 

determined from the complete set of strain-temperature curves, as well as thermal 

hysteresis values as a function of bias stress are presented in Figures 4.7a and 4.7b, 

respectively. For comparison, the results for a hot-rolled binary near-equiatomic TiNi 



 55  
  

alloy, with a similar microstructure to the present alloys, are also included in Figures 

4.7a and 4.7b. It should be emphasized that εrec values as measured from the heating 

curves do not necessarily reflect the exact level of transformation strain in the material. 

In addition to macroscopic plasticity, a part of εirr might also originate from the retained 

martensite which may require higher levels of overheating to transform back to 

austenite.  

 

 

Figure 4.6 Strain vs. temperature responses of Ti50.5Ni24.5Pd25 and Ti50Ni24.5Pd25Sc0.5 

alloys at selected tensile bias stress levels.  
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4.2.3.1 Effect of Sc Addition on Recovered Transformation Strain and 

Irrecoverable Strain 

During cooling through the forward transformation, the amount of strain 

generated increases with increasing stress in the present ternary and quaternary 

HTSMAs indicating the growth of a single or a few preferred variants of martensite 

favored by the external stress. While almost full recovery of this strain is seen at low 

stress levels upon heating above the fA
 temperature, only partial recovery is recorded at 

high stress levels (Figures 4.6 and 4.7). The amount of εrec reaches a saturation value 

above a certain stress level even though εirr continues to increase with increasing bias 

stress. εrec levels are essentially the same for both ternary and quaternary alloys, 

however, they have smaller εrec as compared to binary TiNi, due to the  B2 → B19 

(orthorhombic) transformation path, which represents a smaller change in symmetry as 

opposed to the  B2 → B19‟ (monoclinic) transformation in binary TiNi. ε irr levels are 

much smaller in the TiNiPd alloy than that for binary TiNi. The Ti50Ni24.5Pd25Sc0.5 alloy 

exhibits a much smaller εirr at stresses greater than 150 MPa compared to Ti50.5Ni24.5Pd25, 

which is a consequence of solid solution hardening due to the Sc addition or the 

relatively smaller grain size, both resulting in a matrix more resistant to dislocation slip 

or other irreversible processes.  
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(a) 

 

(b) 

Figure 4.7 (a) Recovered transformation strain (εrec) and irrecoverable strain (εirr) 

responses of Ti50.5Ni24.5Pd25 and Ti50Ni24.5Pd25Sc0.5 alloys and (b) corresponding thermal 

hysteresis levels as a function of bias stress determined from the isobaric cooling-heating 

experiments and DSC. The results from an equiatomic binary TiNi in the hot-rolled 

condition are also included for comparison. 

 

4.2.3.2 Effect of Sc Addition on Thermal Hysteresis 

Thermal hysteresis is caused by the dissipation of the energy input to the system 

through undercooling or applied stress. It arises due to the frictional losses against lattice 

friction and the generation of new interfaces or point and line defects, such as vacancies, 

self-interstitials, or dislocation formation to accommodate transformation shear and 

volume change [18, 117, 118].  If a material is strengthened due to solid solution 

hardening or precipitation hardening, defect generation and accommodation of 

transformation shear by defect formation becomes more difficult, and the shear is 

accommodated mainly in an elastic manner, resulting in a relatively lower thermal 

hysteresis [119]. Compatibility of the transforming phases also plays a major role in the 
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manifestation of thermal hysteresis. If the phases are very compatible, transformation 

shear and small volume change can be accommodated by only elastic distortion instead 

of twin formation or slip dislocations [81]. As discussed previously, λ2, the second 

eigenvalue of the transformation stretch tensor, is an indicator of the compatibility 

between the austenite and martensite phases. Since λ2 is essentially the same in both the 

ternary and quaternary TiNiPd alloys, the two materials display essentially the same 

thermal hysteresis under stress-free conditions, as would be expected. Also, as Figure 

4.7b indicates, thermal hysteresis for both TiNiPd alloys increases with increasing stress 

levels. This is because of the fact that the accommodation of the transformation shear 

and volume change proceeds with increasing buildup in internal strain due to the 

aforementioned defect generation mechanisms under increasing applied stress levels. 

However, with exception of the stress-free condition, the Ti50Ni24.5Pd25Sc0.5 alloy 

exhibits slightly less thermal hysteresis at all stress levels than Ti50.5Ni24.5Pd25. This 

infers that the Ti50Ni24.5Pd25Sc0.5 alloy has a stronger matrix which resists the formation 

of defects better than the ternary alloy at equivalent stress levels, due to solid solution 

hardening by Sc.  So less internal strain develops at each stress level.   

Both TiNiPd alloys exhibit significantly smaller thermal hysteresis than near-

equiatomic binary TiNi. This is, in part, due to the fact that λ2 for TiNi is 0.9663 [120], 

notably different as compared to λ2 values for the TiNiPd alloys which are closer to 1. 

Additionally, Pd improves the lattice compatibility between the transforming phases, due 

to the change in martensite symmetry, (i.e., TiNiPd austenite transforming to 
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orthorhombic martensite and TiNi austenite transforming to monoclinic martensite), 

contributing to the significant reduction in thermal hysteresis in the TiNiPd alloys. 

 

4.2.3.3 Effect of Sc Addition on Transformation Temperatures 

Figures 4.8a and 4.8b are the stress vs. temperature phase diagrams for 

Ti50.5Ni24.5Pd25 and Ti50Ni24.5Pd25Sc0.5, respectively. Transformation temperatures sM
, 

fM
, sA

, fA
, as determined from the isobaric cooling-heating experiments, are plotted 

as a function of the bias stress levels. Least square lines are fit through these data points 

and the slope of each line is presented in the figures.  For the zero stress level, the 

temperatures obtained from the second thermal cycle of the DSC analyses are used. 

Clearly, transformation temperatures change almost linearly with stress, though in some 

cases a bilinear relationship is observed. 

 

 
(a) 

 
(b)  

Figure 4.8 Stress vs. temperature phase diagram of (a) Ti50.5Ni24.5Pd25 and (b) 

Ti50Ni24.5Pd25Sc0.5. 
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It is immediately obvious that the stress-transformation temperature linear fits for 

each transformation temperature are not parallel to each other for both alloys, indicating 

changes in stored elastic energy and dissipated energy as a function of stress [119]. To 

better understand these changes, we discuss how the different energy contributions affect 

the shape of the strain-temperature responses in Figure 4.6 from which the stress vs. 

transformation temperature data points were extracted.  According to Hamilton et al. 

[119], the slope of the strain vs. temperature response during the forward and reverse 

transformations under each stress (Figure 4.6) is mainly dictated by evolution of stored 

elastic strain energy with stress. Higher the stored elastic strain energy is, shallower the 

slope of the curve becomes [119]. Clearly, these slopes become shallower with 

increasing bias stress, as seen in Figure 4.6, since the escalating transformation strain 

with stress (Figure 4.7a) leads to a rise in stored elastic strain energy. Thus, the 

ramification of such rise is the increase in sM
- fM

 and fA
- sA

 with stress, as observed 

in Figures 4.8a and 4.8b. It can be concluded, from the difference between the slopes of 

the stress- fM
 (or stress- sA

) fit lines for the two alloys (while they have similar slopes 

for the stress- sM
 (or stress- fA

) fit lines), that Ti50Ni24.5Pd25Sc0.5 has a larger stored 

elastic energy under stress as compared to Ti50.5Ni24.5Pd25. Since the recovered 

transformation strains of both alloys are about the same (Figure 4.7), then the difference 

in stored elastic energies should arise from more pronounced dissipation of stored elastic 

energy in the ternary alloy due to the relaxation of the coherency strains of martensite–

austenite interfaces [121, 122]. Plastic accommodation of transformation volume change 

and transformation shear causes the relaxation of the coherency strains. Thus, plastic 
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accommodation in the quaternary alloy should be less, pointing out the solid-solution 

hardening effect of Sc. 

The stress- sA
 and stress- sM

 lines cross for both alloys but at significantly 

different stress levels. At stresses above the intersection, the elastic strain energy stored 

during the forward transformation is enough to start the reverse transformation at a 

temperature equal to or lower than sM
. Ti50Ni24.5Pd25Sc0.5 has a lower cross-over stress 

compared to Ti50.5Ni24.5Pd25, which implies higher elastic strain energy storage at a given 

stress level for Ti50Ni24.5Pd25Sc0.5.  

It is interesting to note that the linear fits in Figure 4.8, especially for the stress-

sM
 and stress- fA

 lines, do not extrapolate well to the transformation temperatures at 

zero stress level determined from the DSC analyses. For Ti50.5Ni24.5Pd25, within the 0-

100 MPa applied stress range, sM
 and fA

 shift 1 °C per 34.5 MPa and per 11.9 MPa 

stress increase, respectively. At higher stress levels, sM
 increases at a rate of 5.9 

MPa/°C, whereas fA
 increases at 4.6 MPa/°C. On the other hand, for Ti50Ni24.5Pd25Sc0.5 

the discrepancy is less pronounced. Within the 0-50MPa applied stress range, sM
 and 

fA
 temperatures shift 1 °C per 21.7 MPa and 7.4 MPa stress increases, respectively. At 

higher stress levels, sM
 increases at a rate of 5.8 MPa/°C, whereas fA

 increases at 4.9 

MPa/°C.  

Kockar et al. [66] explained this two slope stress-transformation temperature 

relationship by a large elastic modulus mismatch between the transforming phases 
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especially at close proximity to sM
 due to lattice softening, and by the inelastic 

accommodation of this mismatch. As the accommodation proceeds, the defect density is 

expected to increase leading to a need for larger undercooling to grow martensite. 

However, once the amount of single variant martensite increases and the transformation 

temperatures move significantly above the Ms temperature due to stress, the extent of the 

mismatch decreases resulting in the stress-temperature response with shallower slopes.    

 

4.2.4 Thermal Cycling Experiments under Constant Stress 

Both alloys were thermally cycled ten times between 100 °C and 280 °C, the 

same temperature range used in the isobaric cooling-heating experiments, under a 

constant stress of 200 MPa. This is an intermediate stress level, which is expected to 

provide a good representation of the evolution of thermal hysteresis, εrec and εirr levels as 

a function of cycle count. Similar to isobaric cooling-heating experiments, the samples 

were first heated to the upper temperature of the cycle under no load and then the stress 

was applied at this temperature while the material was fully austenitic and then thermally 

cycled repeatedly. The strain vs. temperature responses of both materials are shown in 

Figures 4.9a and 4.9b. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.9 Cyclic strain vs. temperature response of (a) Ti50.5Ni24.5Pd25 and (b) 

Ti50Ni24.5Pd25Sc0.5 at 200 MPa for 10 cycles. (c) The evolution of recovered 

transformation strain, εrec, irrecoverable strain, εirr, (d) transformation temperatures and 

(e) thermal hysteresis as a function of the number of cycles during thermal cycling under 

200 MPa. 
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Figure 4.9 Continued. 

 

At the end of ten cycles, Ti50Ni24.5Pd25Sc0.5 has a significantly lower accumulated 

εirr of 1.7 % as compared to the 2.1 % εirr for Ti50.5Ni24.5Pd25 (Figure 4.9c). Both 

materials display a decrease in εirr with increasing cycle count, with Ti50Ni24.5Pd25Sc0.5 

exhibiting lower values at each cycle. At the end of ten cycles, εirr per cycle stabilizes, 

yet still continues to accumulate. Ti50.5Ni24.5Pd25 has an εirr of 0.08 %, while εirr of 

Ti50Ni24.5Pd25Sc0.5 is 0.05 % for the tenth cycle. The reason for εirr accumulation might be 

due to the build-up of dislocations and other defects, or retained martensite during 

repeated phase transformations. Cycling appears to have little effect on εrec, since both 

materials show similar εrec values throughout the cycling process. For example, εrec is 

approximately 2.9 % in the first cycle and stabilizes at 3.3 % for Ti50.5Ni24.5Pd25 while it 

is initially 3.0 % for Ti50Ni24.5Pd25Sc0.5 and saturates at 3.4 %. 

In contrast to the slightly depressed transformation temperatures observed during 

thermal cycling under no load in the DSC (Figure 4.1), transformation temperatures of 
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both materials remain constant or actually increase with cycling while under load 

(Figure 4.9d). The sM
 temperature for Ti50.5Ni24.5Pd25 is 192 °C for the first cycle and 

stabilizes at 210 °C at the end of the ninth cycle, whereas the sM
 temperature for 

Ti50Ni24.5Pd25Sc0.5 is initially 186 °C and stabilizes at 200 °C at the end of the eighth 

cycle. The fA
 temperature follows a similar trend to that of sM

.temperature. It is 

initially 224 °C for Ti50.5Ni24.5Pd25 and stabilizes at the end of the fourth cycle at 232 °C. 

For Ti50Ni24.5Pd25Sc0.5, fA
 is 215 °C for the first cycle and stabilizes at the end of the 

fourth cycle at 220 °C. On the other hand, fM
 and sA

 temperatures are almost 

unaffected by thermal cycling under load. Thermal hysteresis values for 

Ti50Ni24.5Pd25Sc0.5 are on average 4 °C lower than those of Ti50.5Ni24.5Pd25 throughout the 

cycling process (Figure 4.9e).  

Any retained martensite and local internal stresses associated with defects, which 

should have preferred directions due to the cycling under stress and 

reoriented/detwinned martensite formation, assist the nucleation of the same martensite 

variants that  are biased by the external stress during cycling, thus raising the sM
 

temperature. Similarly, an increased dislocation or defect density with the number of 

thermal cycles may reduce energy dissipation caused through additional plastic 

deformation, especially at the onset of transformation, leading to a decrease in thermal 

hysteresis (Figure 4.9e) [123].  It is important to note here that the increase in sM
 

temperature with thermal cycling under stress is just the opposite of the effect seen 

during thermal cycling without stress in Section 4.2.1. This is mainly due to the local 
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oriented internal stress in the former case. The defects created during thermal cycling in 

DSC should lead to randomly distributed internal stresses, due to the self-accommodated 

structure of thermally-induced martensite, and thus, impede the nucleation of martensite 

variants in the subsequent cycles, resulting in a decrease in Ms temperature. 

Overall, the observations, especially in Sections 4.2.3 and 4.2.4, support the 

positive influence of a dilute Sc addition on the reversibility of the martensitic 

transformation and functional stability of TiNiPd alloys due to solid solution hardening, 

enhancing the material strength against irrecoverable deformation processes. Yet, the 

measured effects are relatively small, probably due to the small amount of Sc addition. 

However, as the thermal cycling results show, the cumulative effect can be quite 

significant, especially with long-term thermal cycling.  Furthermore, larger Sc additions 

may enhance these benefits as well as improve lattice compatibility, reducing the amount 

of inelastic/plastic accommodation of the transformation shear and shape change, and 

will be the subject of the following section. 

 

4.3 Furher Alloying Trials with 3 at. % Sc Addition 

Once successful results were obtained with 0.5 at. %Sc microalloying, billets 

with 3 at. % Sc were fabricated to analyze the effects of larger Sc additions. 3 at. % Sc 

addition decreased the transformation temperatures of the ternary Ti50.5Ni24.5Pd25 by 

more than 100 °C causing this material no longer to qualify as an HTSMA. In addition, 

except for a reduction in the thermal hysteresis, there was not a significant improvement 

in the functional stability compared to the 0.5 at. % Sc doped alloy. Therefore, a full 
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characterization study was not conducted for Ti47.5Ni24.5Pd25Sc3 as was done for 

Ti50Ni24.5Pd25Sc0.5. 

 

4.3.1 Isobaric Cooling-Heating Experiments   

Figure 4.10a compares the strain vs. temperature response of Ti50.5Ni24.5Pd25 and 

its quaternaries with 0.5 and 3 at. % Sc additions at selected stress levels. εrec values 

slightly decrease after the addition of 3 at. % Sc while εirr levels remain unchanged as 

compared to those of 0.5 at. % Sc doped alloy (Figure 4.10b). Thermal hysteresis values 

are improved upon the addition of 3 at. % Sc additions (Figure 4.10c), however, as 

mentioned above, transformation temperatures are severely suppressed. Attempts of 

recovering the transformation temperatures of  Ti47.5Ni24.5Pd25Sc3 through annealing heat 

treatments did not prove to be very useful, resulting in an increase of only 15-20 °C 

(Figure 4.10d). It is yet unknown whether most of the added Sc precipitated out leaving 

a Ni-rich matrix or Sc was in the solution and led to a change in the chemical energy 

balance of the material. Further characterization studies were abandoned after the 

attempts to increase the transformation temperatures. 
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(a) 

 

(b) 

 

 (c) 

 

(d) 

Figure 4.10 (a) Strain vs. temperature responses of Ti50.5Ni24.5Pd25 alloyed with 

different amounts of Sc. Sc was shown to decrease the transformation temperatures of 

Ti50.5Ni24.5Pd25. (b) The evolution of recovered transformation strain, εrec, irrecoverable 

strain, εirr and (c) thermal hysteresis as a function of applied stress. (d) The change in 

transformation temperatures after an annealing heat treatment at 500 °C for 24 hours. 
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4.4 Summary and Conclusions  

In this chapter, the effect of Sc microalloying on the microstructure and shape 

memory behavior of Ti50.5Ni24.5Pd25 HTSMA was investigated. The following results 

were observed: 

1. Under stress-free conditions, the Ti50Ni24.5Pd25Sc0.5 alloy exhibited slightly lower 

transformation temperatures, by 6-10 C, compared to Ti50.5Ni24.5Pd25. For 

example, the Mf temperature decreased from 166 °C to 160 °C, while the Af 

temperature decreased by 10 °C from 195 °C to 185 °C upon the addition of 0.5 

at. % Sc. The reason for the actual decrease in transformation temperatures was 

attributed to the presence of the Sc.   

2. The Sc addition was beneficial for increasing the strength of Ti50.5Ni24.5Pd25 

against irreversible deformation processes. As compared to Ti50.5Ni24.5Pd25, 

Ti50Ni24.5Pd25Sc0.5 demonstrated lower irrecoverable strain and thermal hysteresis 

when thermally cycled over a range of constant bias stresses. These benefits were 

attributed to solid-solution hardening effects.   

3. Both ternary and quaternary TiNiPd alloys exhibited significantly smaller 

thermal hysteresis than equiatomic binary TiNi due to the enhancement in the 

lattice compatibility between austenite and martensite, and the change in 

martensite crystal structure due to the Pd addition. As a result, εrec of the ternary 

and quaternary alloys were lower than that of the binary alloy. 

4. The 0.5 at. % Sc substitution for 0.5 at. % Ti in the Ti50.5Ni24.5Pd25 alloy seems to 

have no significant effect on εrec levels. 
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5. Lower thermal hysteresis and εirr accumulation in Ti50Ni24.5Pd25Sc0.5 during 

constant stress thermal cyclic experiments indicate the effectiveness of alloying 

Ti50.5Ni24.5Pd25 with Sc. The quaternary alloy responds to training more 

efficiently by reaching a given εirr value in a smaller number of cycles as 

compared to the ternary alloy. 

6. The overall results indicate the effectiveness of alloying Ti50.5Ni24.5Pd25 with Sc. 

The alloyed material has shown a trend towards enhanced functional stability as 

compared to the base ternary material.  

7. Higher Sc contents further improved the shape memory characteristics as 

evidenced by smaller irrecoverable strains and thermal hysteresis widths in 

isobaric cooling-heating experiments. However, the transformation temperatures 

were severely suppressed at the same time, rendering this material no more 

feasible to be used as an actuator in high-temperature applications.   
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CHAPTER V 

SHAPE MEMORY CHARACTERISTICS OF Ti49.5Ni25Pd25Sc0.5 HIGH-

TEMPERATURE SHAPE MEMORY ALLOY AFTER SEVERE PLASTIC 

DEFORMATION
*
 

 

In this chapter, the viability of using severe plastic deformation (SPD) combined 

with annealing heat treatments was investigated in an effort to enhance the functional 

stability of a Ti49.5Ni25Pd25Sc0.5 HTSMA during repeated thermal cycles under constant 

loads. Equal channel angular extrusion (ECAE) was selected as the method of the SPD 

process. The processed materials displayed enhanced shape memory response, exhibiting 

higher recoverable transformation and reduced irrecoverable strain levels upon thermal 

cycling as compared to the unprocessed material. This improvement was attributed to the 

increased strength and resistance of the material against defect generation upon phase 

transformation as a result of the microstructural refinement due to the ECAE process. 

 

5.2 Microstructural Characterization 

5.2.1 Microstructure 

 Figure 5.1a is a scanning electron micrograph of the as-received 

Ti49.5Ni25Pd25Sc0.5 in back-scattered electron mode recorded at room temperature. This  

 

                                                

* Reprinted with permission from “Shape memory characteristics of Ti49.5Ni25Pd25Sc0.5 

high-temperature shape memory alloy after severe plastic deformation” by Atli KC, 

Karaman I, Noebe RD, Garg A, Chumlyakov Y, Kireeva I, 2011. Acta Materialia, 59, 

pp. 4747-4760, Copyright 2011 by Acta Materialia Inc. published by Elsevier Ltd. 
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material was found to have a very similar microstructure to that of Ti50Ni24.5Pd25Sc0.5 

studied in the previous chapter. A homogeneous distribution of coarse second-phase 

particles, found out to be TiC and Sc2O3 from WDS analyses, was observed throughout 

the structure. The total volume percentage of TiC and Sc2O3 particles was 4.7 ± 0.2 %., 

while their average size was 1.7 ± 0.7 µm. Grain sizes ranged from 8 µm to 16 µm, the 

average being about 12 µm. The matrix composition was slightly Ti lean at 49.0 ± 0.1 

(at. %) according to the WDS measurements (Table 5.1). 

 

 

Figure 5.1 (a) Backscattered electron micrograph of the as-received Ti49.5Ni25Pd25Sc0.5 

showing the distribution of coarse second phase particles. (b) X-ray elemental mapping 

showing the types of second phase particles present in the microstructure. 
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Table 5.1 WDS analysis results for Ti49.5Ni25Pd25Sc0.5. Reported errors are the standard 

deviations from three measurements randomly taken on the matrix. 

Material Ti (at. %.) Ni (at. %.) Pd (at. %.) Sc (at. %.) 

Ti49.5Ni25Pd25Sc0.5 49.0 ± 0.1 25.1 ± 0.2 25.4 ± 0.1 0.49 ± 0.02 

 

 Figure 5.2a is a transmission electron micrograph of the as-received material 

taken at room temperature. )111(


 type I twins with sizes ranging from 50 to 100 nm 

were observed, which were also reported in [11] for the same alloy. The selected area 

diffraction patterns show the presence of a B19 orthorhombic structure. X-ray diffraction 

analysis also confirmed this finding, indicating a B19 martensite structure with lattice 

parameters of a = 2.79 Å, b = 4.44 Å c = 4.69 Å, and B2 austenite with a0 = 3.09 Å 

(Figure 5.3). These values are comparable to the lattice parameters of Ti50Ni24.5Pd25Sc0.5 

studied in the previous section.   

 Figure 5.2b is a transmission electron micrograph showing the heavily deformed 

microstructure of the ECAE processed sample at room temperature. The image was 

taken from the flow plane which is parallel to the side face of the ECAE processed billet. 

Martensite plates with much finer (on the order of 20 to 30 nm) )111(


 type I twins were 

observed in this condition. Figure 5.2c is the same location of the thin foil as shown in 

Fig. 5.2b when heated above the Af temperature, to 380 °C. The pronounced grain 

refinement after ECAE processing can easily be seen in this micrograph and in the 
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attached selected area diffraction pattern: the latter also confirms the B2 austenite 

structure. The nano-sized austenite grains, some of which are indicated by dashed 

circles, are on the order of 100-200 nm. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.2 Transmission electron micrographs for the (a) as-received Ti49.5Ni25Pd25Sc0.5 

with the corresponding selected area diffraction patterns showing a B19 orthorhombic 

structure, (b) the flow plane of the ECAE processed Ti49.5Ni25Pd25Sc0.5 at room temperature, 

(c) the same area in (b) when heated to 380 °C, demonstrating the austenitic structure with 
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sub-micron sized grains marked by dashed circles.  

 

Figure 5.3 XRD analyses confirming the low temperature B19 orthorhombic structure 

and high-temperature B2 cubic structure of the as-received Ti49.5Ni25Pd25Sc0.5.  

 

5.2.2 Microhardness  

It is a common practice to apply post-deformation annealing treatments to cold-

worked materials to relieve internal stresses and recover some of the dislocation 

substructure. For example, a post-ECAE low temperature annealing procedure was 

shown to result in improved functional stability in ECAE processed TiNiHf HTSMAs 

[79]. Similarly, for binary TiNi, it is essential to recover the microstructure to a certain 

extent and annihilate the undesired stored dislocations in the grain/subgrain interiors. 

These dislocations are believed to act as barriers to phase front motion and cause 

nucleation of additional martensite nuclei with further undercooling instead of the 
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propagation of existing phase fronts. Annihilation of these dislocations without 

recrystallization and the presence of a higher density of grain/subgrain boundaries are 

expected to improve the shape memory characteristics such as transformation 

temperatures and transformation strain as compared to those of the ECAE processed 

samples. These characteristics are, however, very sensitive to the temperature and 

duration of the heat treatment. Therefore, an annealing study was conducted to 

characterize the change in hardness in the ECAE processed material after heat treatments 

at various temperatures. The duration of the heat treatments was kept at 1hr.  

 As observed in Figure 5.4, there is a non-linear decrease in hardness with 

increasing annealing temperature. A dramatic decrease in hardness can be seen after heat 

treatment above 400 °C. At lower annealing temperatures the change in hardness is 

much less significant, and the corresponding change in microstructure should be 

minimal with some rearrangement and annihilation of less stable dislocations induced by 

the ECAE process. At higher temperatures above 500 °C, recrystallization is expected to 

occur with a decrease in the stored energy of the deformed structure, re-arranged or 

annihilated dislocations, and formation of new grains. It should be noted that the 

hardness value at 600 °C is still higher than the hardness of the as-received material.  

From the hardness profile in Figure 5.4, 300 °C was selected as the temperature 

for the annealing heat treatment of the ECAE processed material for further 

thermomechanical characterization. At this specific annealing temperature, the 

microstructure should be slightly recovered with less stable dislocations annealed out 

and more stable ones at the grain/subgrain boundaries while maintaining most of the 
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beneficial effects of SPD on shape memory characteristics. To prove this hypothesis, a 

series of isobaric cooling-heating experiments were conducted on both ECAE processed 

and post-ECAE 300 °C annealed samples. 

 

 

Figure 5.4 Vickers microhardness of the ECAE processed Ti49.5Ni25Pd25Sc0.5 before and 

after annealing heat treatments at various temperatures for 1 hr. The hardness of the as-

received material is included as the reference. The circles represent the average of five 

tests and the bars one standard deviation.  

 

5.3 Stress-Free Phase Transformation Temperatures 

 As-received, ECAE processed and post-ECAE annealed materials were cycled 5 

times in the DSC within a temperature range of 40 °C to 180 °C. DSC responses for the 

as-received and ECAE processed materials are shown in Figure 5.5a and 5.5b, 

respectively. Stress-free transformation temperatures Mf, Ms, As and Af along with Hnet 

values for the second cycle of each condition were measured from these results (see the 
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table on p.80). Transformation temperatures for the ECAE processed sample were found 

to be lower than the as-received material (Figure 5.5c). Ms temperatures differ by 18 °C, 

while there is a difference of 16 °C between the Af temperatures (Table 5.2). The 

decrease in the transformation temperatures upon ECAE results mainly from the high 

density of dislocations making the phase front motion difficult. The thermal hysteresis 

values, as defined by the difference between Af and Ms temperatures, are comparable: 

thermal hysteresis is 18.4 °C for the as-received material, while it is 21 °C after the 

ECAE processing. In terms of cyclic stability, the ECAE processed material shows a 

superior behavior having only a total shift of 0.9 °C in the Ms temperature after 5 

thermal cycles. On the other hand, the Ms temperature for the as-received material drops 

by 4.8 °C. Hnet values differ significantly before and after ECAE processing. The 

ECAE processed material has a Hnet of 9.5 J/g, which is nearly half of the Hnet value 

of the as-received material, 18.0 J/g. The post ECAE annealing heat treatment (300 °C 

for 1 hr.) hardly affected the transformation temperatures, thermal hysteresis and Hnet 

values of the ECAE processed material. A pronounced effect could only be seen in 

cyclic stability, from a change after 5 thermal cycles of 0.9 °C in the ECAE processed 

material to 2.7 °C in the post ECAE-annealed sample (Table 5.2).  

The decrease in Hnet after ECAE processing is due to the introduction of elastic 

constraints and refinement of the microstructure that results in a higher magnitude of 

stored elastic energy during transformation, which would otherwise be released as latent 

heat [117]. The transformation characteristics of the ECAE processed sample observed 

in the isobaric cooling-heating experiments (Section 5.5.1) also support this rationale.  



 79  
  

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.5 The change in stress-free transformation temperatures over five thermal 

cycles for (a) as-received Ti49.5Ni25Pd25Sc0.5 and (b) ECAE processed Ti49.5Ni25Pd25Sc0.5. 

(c) Comparison of the second heating-cooling cycles for the as-received (solid lines) and 

ECAE processed (dashed lines) material illustrating the effects of ECAE processing on 

the transformation behavior.  

 

 It is also possible that the amount of transforming volume is smaller in the ECAE 

processed samples due to retained austenite, which would also reduce P M

net
H

 . This 
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might be due to nano-sized grains and the associated large elastic mismatch across their 

boundaries [66] or to the high dislocation density induced by the ECAE process, which 

generates an internal stress state impeding the transformation. A similar decrease in 

Hnet has been reported for TiNi wires after cold-rolling [124].  

 

Table 5.2 Transformation temperatures (Mf, Ms, As, Af), net heat evolved during the 

transformation (ΔHnet), shift in the Ms temperature between the first and the fifth thermal 

cycles (Ms
5th

-Ms
1st

), and thermal hysteresis (Af-Ms) of the as-received, 4E-425 °C ECAE 

processed, and 300 °C-1hr post-ECAE annealed Ti49.5Ni25Pd25Sc0.5. Mf, Ms, As, Af, ΔHnet 

and thermal hysteresis values were calculated from the second cycle of the DSC 

analyses.  

Material 
Mf  

(°C) 

Ms 

(°C) 

As 

(°C) 

Af 

(°C) 

ΔHnet 

(J/g) 

Ms
5th

-Ms
1st

 

(°C) 

Thermal 

Hysteresis 
(Af-Ms) (°C) 

As-received 105.8 117.3 126.3 135.7 18.0 4.8 18.4 

ECAE 

processed 
62.1 99.1 93.7 120.1 9.5 0.9 21.0 

Post-ECAE 

Annealed 
65.3 94.6 99.4 115.7 9.0 2.7 21.1 

 

5.4 Thermomechanical Characterization 

5.4.1 Isobaric Cooling-Heating Experiments 

 Figure 5.6a shows the strain vs. temperature response of the as-received 

Ti49.5Ni25Pd25Sc0.5 at increasing stress levels. The material was loaded up to a stress of 

400 MPa, at which the rec level started to decline as illustrated in Figure 5.6c. Figure 

5.6b illustrates the strain vs. temperature behavior of samples with different processing 
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conditions under an applied stress of 200 MPa. ECAE processing leads to a reduction in 

the rec and transformation temperatures, but also resulted in a decrease in irr, leading to 

a more stabilized thermomechanical response.  As shown in Figure 5.6c, the annealing 

heat treatment improved the shape memory characteristics of the ECAE processed 

material. The post-ECAE annealed material exhibited both higher rec levels and better 

dimensional stability (lower irr levels) than those of the as-received material up to an 

applied stress of at least 200 MPa. It should be noted that the post-ECAE annealed 

material failed at 250 MPa due to a brittle fracture outside the gage section. A maximum 

rec of about 3 % was achieved for both the post-ECAE annealed and the as-received 

material, but these were reached at different stress levels: the former at 200 MPa and the 

latter at 350 MPa.  

The change in thermal hysteresis with increasing stress is shown in Figure 5.6d. 

The as-received material has an initial no-load thermal hysteresis of 10.7 °C, which 

increases with the applied stress reaching 27.7 °C at 400 MPa. It should be noted that 

thermal hysteresis of the as-received material as determined by DSC does not correlate 

well with the value measured during thermal cycling (Figure 5.6d). According to the 

DSC results, as-received material has a thermal hysteresis of 18.4 °C, which is nearly 

twice the value determined from the no-load thermal cycling result. A possible reason of 

this discrepancy might be that DSC directly measures the enthalpy of transformation, 

while it is the strain associated with the transformation that is measured during no-load 

thermal cycling. In other words, the indicators for the temperatures at which thermal 

hysteresis is measured are different; for example, the sample may transform notably, 
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forming self-accommodated martensite variants and releasing latent heat without 

showing significant external strain.  

  

 
(a) (b) 

 
(c) 

 
(d) 

Figure 5.6 (a) Strain vs. temperature response of the as-received Ti49.5Ni25Pd25Sc0.5 at 

various stress levels. (b) Comparison of the strain vs. temperature responses of the as-

received, 4E-425 °C ECAE processed, and post-ECAE annealed material under 200 

MPa. (c) Recovered transformation strain (rec) and irrecoverable strain (irr) values at 

each stress level, (d) evolution of the thermal hysteresis with successive stress levels and 

(e) change in Ms and Af temperatures as a function of applied stress for the as-received, 

ECAE processed and post-ECAE annealed materials. 
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(e) 

Figure 5.6 Continued. 

 

Both the ECAE processed and post-ECAE annealed materials have initially 

higher thermal hysteresis values as compared to the as-received material. The ECAE 

processed material has an initial thermal hysteresis of 24.0 °C at 0 MPa, increasing to 

31.0 °C at 50 MPa and finally decreasing to 24.6 °C at 300 MPa. The post-ECAE 

annealed material has a slightly lower initial thermal hysteresis due to the partial 

recovery of the microstructure after heat treatment. It starts with an initial thermal 

hysteresis of 21.9 °C at 0 MPa, increasing to 26.5 °C at 50 MPa, and dropping to 24.2 °C 

at 200 MPa.  

 Figure 5.6e is the stress vs. temperature phase diagrams showing the variation of 


sM and



fA  temperatures with respect to applied stress. Transformation temperatures 

were determined from the strain vs. temperature curves at each stress level per Figure 

5.6. It is clear from the Figure 5.7e. that ECAE processed materials exhibit steeper 

slopes than the as-received material for both 

sM and



fA , probably due to the lower εrec, 
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since according to the Clausius-Clapeyron relation for the first order phase 

transformations under stress, lower transformation strain leads to a higher stress vs. 

temperature slope [49]. In addition, according to Wollants et al. [49], the transformation 

enthalpy under stress may be different in these two materials due to the difference in the 

reversible elastic work of transformation, which again affects the stress vs. temperature 

slope through the Clausius-Clapeyron relation. 

 

5.4.2 Thermal Cycling Experiments under Constant Stress 

  The objective of thermal cyclic experiments was to investigate the evolution of 

the shape memory response of the materials under a constant stress. Tests were 

conducted for ten cycles under a tensile stress of 200 MPa for both the as-received and 

ECAE processed materials. As shown in the previous section, 200 MPa was an 

intermediate stress level, which was expected to provide a good representation of the 

evolution of rec, irr and thermal hysteresis. Repeated strain recovery vs. temperature 

behavior of the as-received and ECAE processed materials are shown in Figures 5.7a 

and 5.7b, respectively.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.7 A comparison of the strain vs. temperature response for ten cycles at 200 

MPa for both the (a) as-received Ti49.5Ni25Pd25Sc0.5 and (b) 4E-425 °C ECAE processed 

material. Comparisons of (c) rec and irr, (d) thermal hysteresis and (e) 

sM and 



fA

temperatures as a function of the number of cycles for the as-received material (circles), 

and ECAE processed material (triangles). 
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(e) 

Figure 5.7 Continued. 

 

The as-received material shows a total accumulated irr of 0.83 % while this value 

is only 0.18 % for the ECAE processed material at the end of the ten thermal cycles 

(Figure 5.7c). The irr shows a decreasing trend with cycling for the as-received material. 

On the other hand, it is almost stable for the ECAE processed material, not evolving with 

the number of cycles. Even at the tenth thermal cycle, irr for the as-received material is 

still higher than the irr value for the ECAE processed material at the first cycle. rec 

saturates quickly for both materials  during cycling (Figure 5.7c). rec of the as-received 

material is initially 2.73 % and saturates at 3.05 %  at the end of the sixth cycle. rec of 

the ECAE processed material is lower than that of the as-received material, having an 

average of 2.22 % and does not evolve with  cycle count, showing a stable response. The 

lower rec levels with the ECAE processed material are expected, since similar results 

have already been observed during isobaric cooling-heating tests under an applied stress 
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of 200 MPa (Figure 5.6b). This is likely a result of grain size and crystallographic 

texture difference between the as-received and ECAE processed materials, and difficulty 

in detwinning and martensite reorientation due to intergranular constraints introduced by 

ECAE processing. 

 Thermal hysteresis of the as-received material is nearly constant at 20 °C 

throughout the 10 thermal cycles (Figure 5.7d). This level of thermal hysteresis is quite 

low compared to binary TiNi, which is on the order of 40 °C [66] and other ternary 

alloys such as TiNiHf (60 °C) [79] under the same externally applied stress level. ECAE 

processed material, on the other hand, shows a decreasing hysteresis with cycle count, 

initially starting at 30 °C, and reaching a value of 24.5 °C at the end of the tenth cycle.  

 Figure 5.7e shows the evolution of transformation temperatures 

sM and 



fA as a 

function of the number of cycles. Transformation temperatures of the as-received 

material initially increase and then level off at the end of the seventh cycle. 

sM is 138.0 

°C at the beginning and reaches 150.6 °C at the end of the 10 cycles, while 


fA starts 

from 160.1 °C and saturates at 169.4 °C. The ECAE processed material has lower 

transformation temperatures under stress and displays a more stable behavior: 

sM

increases by only 3.6 °C from 120.3 °C to 123.9 °C, while 


fA actually decreases from 

148.3 °C to 146.6 °C. 
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5.4.3 Isothermal Monotonic Loading Tests 

 In the previous sections, SPD via ECAE has been shown to be an effective 

method to improve the shape memory response of Ti49.5Ni25Pd25Sc0.5. The improvements 

in performance demonstrated thus far should be a result of the strengthening due to 

microstructural refinement and increased dislocation density as seen in Figures 5.2b and 

5.2c. To demonstrate this strength increase, isothermal monotonic loading experiments 

were conducted. It is well known that SIM

M

y   , the difference between the critical 

stress to induce martensite, SIM , and the yield strength of the stress-induced martensite, 

M

y , is an indicator of enhanced shape memory response [66, 125]. A larger difference 

is a sign of superior shape memory behavior, due to the increased resistance of the 

material to plastic deformation. Monotonic experiments were carried out under 

compression for both the as-received and ECAE processed samples to determine

SIM

M

y   . Initial tests under tension resulted in premature failure of the samples, not 

allowing for the detection of
M

y . Instead, compression experiments were conducted to 

quantify the strengthening due to SPD.  

Figure 5.8 shows the stress-strain behavior of the as-received and ECAE 

processed material. It is seen that SIM
 
remains almost the same, around 480 MPa, for 

the onset of stress-induced martensite after ECAE processing in a nearly equivalent 

thermodynamic condition. However, the value of 
M

y is considerably higher for the 

ECAE processed material, which could not actually be detected during the test since the 



 89  
  

load cell limit was reached at 1800 MPa before the specimen plastically deformed 

macroscopically. 
M

y of the as-received material was found to be around 1350 MPa. 

Consequently, SIM

M

y    is noticeably larger for the ECAE processed material, 

consistent with the more stable shape memory response displayed by this material 

compared to the as-received condition. 

 

 

Figure 5.8 Isothermal monotonic compressive behavior of the as-received and 4E-425 

°C ECAE processed Ti49.5Ni25Pd25Sc0.5 at Ms+15 °C so that the initial loading is 

performed in the fully austenitic condition. It should be noted that Ms temperatures are 

different for the two materials but the experiments were conducted under nearly 

equivalent thermodynamic conditions with respect to the martensitic transformation. The 

method for determining the critical stress to induce martensite, SIM , and yield stress for 

martensite,
M

y , is illustrated on the stress-strain curves. 
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 5.5 Discussion  

In this section, a microstructural scenario is suggested for the interpretation of the 

thermomechanical characterization results. The schematic illustration of the possible 

changes in the microstructure of both the as-received and ECAE processed material 

during thermal cycling under different stress levels is shown in Figure 5.9 to better 

understand the differences observed in the rec, irr and thermal hysteresis levels. 

 

 

Figure 5.9 Representation of the microstructural evolution for both the as-received and 

4E-425 °C ECAE processed material during thermomechanical cycling. ECAE 

processed material has a microstructure with relatively finer grains and higher 

dislocation density as compared to the as-received material. The formation of martensite 

variants and the generation of dislocations during phase front motion under different 

stress levels are illustrated. 
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The initial as-received material has a relatively low dislocation density with 

coarse grains. At low actuation stresses, the transformation on cooling proceeds with a 

mixture of self-accommodated and single variant martensite. Phase front motion is easy 

due to the soft parent phase structure and the transformation is mainly nucleation 

controlled. Motion of these phase fronts result in the storage of elastic strain energy, 

increasing the amount of undercooling, i.e. Ms-Mf, required to complete the 

transformation. At higher stress levels, the structure is dominated by a larger fraction of 

single variant martensite that is most favored by the applied stress. In this case, most of 

the transformation shear and volume change is accommodated by dislocations due to the 

low strength of the material.  

ECAE processing introduces a high density of dislocations and refined grain size. 

At low actuation stresses, there is a mixture of self-accommodated and single variant 

martensite, as in the as-received case.  However, the size scale of the variants is smaller. 

Due to the higher strength of the material, resulting from the refined grain size and 

higher dislocation density, the movement of the phase fronts is now harder. In addition, 

due to the smaller grain size and the necessity to accommodate the mismatch across the 

grain boundaries, the martensitic transformation is expected to be more propagation 

controlled, leading to a larger fraction of self-accommodated martensite variants, and 

finer variant and twin structures. Indeed, the larger 

sM - 



fM  values in the ECAE case 

(Figure 5.6a and 5.6b) and much higher hardening during the stress-induced martensitic 

transformation in Figure 5.8 support this argument. Under an increased applied stress, 

the volume percentage of single variant martensite increases. In contrast to the as-
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received material, the transformation shear and volume change in the ECAE processed 

material is mostly accommodated elastically due to the higher strength of the material 

rendering additional defect generation difficult.  

The annealing heat treatment after ECAE processing partially recovers the 

structure through rearrangement and annihilation of dislocations. This type of change in 

the microstructure is expected to result in the formation of a larger volume percentage of 

single variant martensite at a given stress level, which can more easily propagate in the 

relatively softer annealed material as opposed to that of the ECAE processed material. 

 

5.5.1 Mechanisms Responsible for the Differences in rec and irr Levels 

 ECAE processing increases the strength of the as-received material due to 

microstructural refinement and increased dislocation density. As mentioned in Section 

5.2, while ECAE induced dislocations impede the phase front motion, they also cause 

the nucleation of more martensite nuclei instead of the propagation of existing phase 

fronts [20] . Thus, the ECAE processed sample has lower transformation strain as 

compared to the as-received sample because of lower fractions of reoriented/detwinned 

martensite.  To obtain a specific level of rec, higher external stresses are needed for the 

ECAE processed material as compared to the as-received material to obtain an 

equivalent volume fraction of single variant martensite, which would generate that level 

of rec. Even at very high stress levels, rec of the ECAE processed samples may not be as 

high as coarse-grained counterparts due to the intergranular constraints, assuming 

crystallographic textures to be the same. To satisfy the compatibility across the grain 
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boundaries in ultrafine grained SMAs, there should still exist martensite variants near the 

grain boundaries that are different than the ones favored by the externally applied stress. 

Since the volume fractions of these self-accommodated structures would be substantial 

in ultrafine grained samples, externally measured transformation strains should be 

smaller than those of the coarse grained samples.  After annealing, the dislocations in the 

grain/subgrain interiors are likely to relax, and thus, rec returns to levels typical of the 

as-received material.  

 ECAE processed material exhibits a more stable thermal cyclic response 

compared to the as-received material. Higher irr levels for the as-received material 

should be related to plasticity with the introduction of dislocations or other defects 

during repeated transformations under stress. These defects can also stabilize martensite 

variants and prevent reverse transformation to the parent phase upon heating. 

Regardless, the ECAE processed material displays more stable behavior with less 

plasticity and/or less change in the amount of stabilized martensite. In this case, post-

ECAE annealing had little effect on irr values of the ECAE processed material due to the 

limited recovery of the material.  And in both cases, the irr values were considerably 

smaller than those of the as-received material due to the increased strength. 

 

5.5.2 Mechanisms Responsible for the Difference in Thermal Hysteresis  

In Chapter IV, it was shown that the Sc addition decreased the energy 

dissipation, and thus the thermal hysteresis, in TiNiPd alloys through its solid solution 

hardening effect and by improving the compatibility between the transforming phases. 
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Still, the steady increase in the thermal hysteresis values of the as-received material 

during isobaric cooling-heating tests can be attributed to the relatively low strength of 

the material, which accommodates transformation shape change more plastically, 

generating additional defects and dissipating more energy. This is also evidenced by the 

continuous increase in the irr with increasing stress levels.   

  Due to the increased strength of the ECAE processed material, from a higher 

density of forest dislocations in the grain/subgrain interiors and more severe variant-

variant interaction, the movement of the phase fronts is harder, resulting in relatively 

higher energy dissipation and thus higher thermal hysteresis values under low stress 

levels. At increased stress levels, variant-variant interaction decreases leading to a drop 

in the dissipated energy during transformation (Figure 5.7d). Moreover, with the 

repeated passage of phase fronts, the existing defects in the ECAE processed sample are 

favorably rearranged such that they cause less lattice friction and energy dissipation in 

subsequent cycles, leading to a drop in thermal hysteresis values, as demonstrated in 

Figure 8.d.  

 

5.5.3 Anomaly in Stress vs. Temperature Phase Diagrams at Low Stress Levels  

The two-slope stress-transformation temperature relationship explained 

previously in Section 4.2.3.3 will be revisited here. In Figure 5.6e, it was shown that the 

linear fits did not extrapolate well to data below 100 MPa for the as-received and ECAE 

processed material, while they did extrapolate quite closely for the post-ECAE annealed 

material down to 0 MPa. This anomaly was explained by Kockar et al. [66] for as-
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annealed equiatomic TiNi in terms of elastic modulus mismatch between the 

transforming phases and the inelastic accommodation of this mismatch and 

transformation shape change under stress. They suggested that for the as-received 

material, the accommodation proceeds with defect generation leading to a need for larger 

undercooling to grow martensite. On the other hand, according to Kockar et al. [66], the 

ECAE processed material accommodates the mismatch elastically due to the increased 

slip resistance requiring the same amount of undercooling to grow martensite nuclei 

throughout the entire applied stress range. This is contrary to the present results for the 

ECAE processed quaternary TiNiPdSc, which shows a similar behavior to the as-

received material. There are three main factors that should be taken into account to better 

understand this behavior. Firstly, the main difference between the present case and that 

of Kockar et al. [17] is the differences in the martensite structures (and thus, elastic 

properties) and transformation temperatures. Secondly, the additional undercooling, 

which is the result of energy dissipation during the nucleation and growth of martensite 

nuclei to reach the critical size, is a consequence of both inelastic accommodation of the 

elastic mismatch and transformation shape change, and the frictional work to grow the 

nuclei. In the present case, the inelastic accommodation should have been suppressed 

due to the increase in the materials strength after ECAE, which is supported by the 

reduction in εirr. However, the frictional work required to grow the nuclei seems to 

increase as well, probably due to the high dislocation density and unstable dislocation 

structure. This, in turn, causes additional dissipation during the nucleation and further 

undercooling under stress. The noticeable difference in the transformation hysteresis of 
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as-received and ECAE processed materials in Figure 5.6d demonstrates the increase in 

the frictional work and support this hypothesis. At this point, it is reasonable to conclude 

that post-ECAE annealing recovers the structure enough, resulting in less unstable 

dislocations and dissipation during martensite nucleation, while still preserving 

sufficient strength to accommodate the transformation mismatch elastically. Therefore, 

no additional undercooling is required for the transformation at low stress levels 

resulting in better extrapolation of the data from high stress levels to the low-stress 

regime. 

 

5.6 Summary and Conclusions 

 In this chapter, a Ti49.5Ni25Pd25Sc0.5 HTSMA was processed using SPD via 

ECAE. ECAE was selected as opposed to more conventional processing techniques such 

as rolling to obtain large cross-section HTSMAs with uniform microstructures and stable 

shape memory response under repeated thermomechanical loading. Post deformation 

annealing heat treatments were also performed on the ECAE processed samples to 

further improve the shape memory characteristics. The major findings of this study can 

be summarized as follows in the light of electron microscopy, x-ray diffraction, 

microhardness, and thermo-mechanical characterization results.  

1. ECAE led to an overall increase in the strength of Ti49.5Ni25Pd25Sc0.5 against 

plasticity. While there was not a detectable change in the critical stress
 
to initiate 

stress-induced martensite under nearly equivalent thermodynamic conditions, 

ECAE processing significantly increased the value of the yield strength of the 
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stress-induced martensite from 1350 MPa to a level above 1800 MPa.  Such a 

significant increase in the yield strength of martensite is due to the high 

dislocation density and microstructural refinement upon ECAE, creating ultrafine 

austenite grains on the order of 100-200 nm. 

2. Stress-free transformation temperatures of the as-received Ti49.5Ni25Pd25Sc0.5 

decreased by almost 20 °C after ECAE processing. On the other hand, ECAE 

improved the thermal cyclic stability, resulting in a shift of transformation 

temperatures by only 0.9 °C after 5 thermal cycles in DSC as compared to the 4.8 

°C shift in the as-received material. The most beneficial result of the ECAE was 

the achievement of high stability in repeated thermal cycling tests under a 

constant stress.  

3. ECAE led to a decrease in recovered transformation strain, rec, and irrecoverable 

strain, irr, levels during thermal cycling tests under constant stress. Both 

observations were attributed to the increased strength of the material after ECAE 

processing and suppression of the plastic accommodation of transformation shear 

and volume change. rec for a given stress level declined since higher stresses 

were required in the ECAE processed sample for the formation of the same 

amount of single variant martensite as in the as-received material.  

4. Post deformation annealing heat treatments at low temperature improved the 

shape memory characteristics of the ECAE processed material, particularly rec. 

Also, the post-ECAE annealed material exhibited higher rec and lower irr levels 

as compared to those of the as-received material.  
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5. Overall, ECAE improved the thermal cyclic stability of Ti49.5Ni25Pd25Sc0.5, while 

suppressing the transformation temperatures and rec. The problem with a 

depressed rec for the ECAE processed samples can be remedied by partially 

recovering the deformed structure with post-processing annealing treatments. 

The resulting material can be a good candidate for high-temperature actuator 

applications.  
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CHAPTER VI 

SEVERE PLASTIC DEFORMATION OR THERMOMECHANICAL 

TRAINING? A COMPARATIVE ANALYSIS ON FUNCTIONAL STABILITY 

OF Ti50.5Ni24.5Pd25
*
 

 

Thermal cycling tests under a constant stress level, which were covered in 

Chapters IV and V, were primarily aimed at studying the evolution of shape memory 

behavior during repeated actuation. Later in the research, when the functional stability 

levels were investigated, as-received Ti50.5Ni24.5Pd25 exhibited irrecoverable strain levels 

comparable to those of the ECAE-processed material after only 10 thermal cycles under 

200 MPa. In addition, it also exhibited a relatively large amount of two-way shape 

memory strain (TWSM). In the previous chapter, the effects of ECAE followed by post-

deformation annealing heat treatments on the functional stability of Ti49.5Ni25Pd25Sc0.5 

HTSMA have been covered. This chapter compares the effectiveness of 10 thermal 

cycles under a constant stress level to the ECAE process in terms of achieving improved 

functional stability in a Ti50.5Ni24.5Pd25 HTSMA. Thermomechanical testing indicated 

that both methods resulted in enhanced shape memory characteristics, such as reduced 

irrecoverable strain and thermal hysteresis during actuation.  

                                                

* Reprinted with permission from “Comparative analysis of the effects of severe plastic 

deformation and thermomechanical training on the functional stability of Ti50.5Ni24.5Pd25 

high-temperature shape memory alloy” by Atli KC, Karaman I, Noebe RD, Maier HJ, 

2011. Scripta Materialia, 64, pp. 315-318, Copyright 2011 by Acta Materialia Inc. 

published by Elsevier Ltd. 
 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TY2-519630F-2&_user=952835&_coverDate=02%2F28%2F2011&_alid=1701440272&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5606&_sort=r&_st=13&_docanchor=&view=c&_ct=2&_acct=C000049198&_version=1&_urlVersion=0&_userid=952835&md5=54b3842e8b6b6432b40221fad60337e0&searchtype=a
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6.1 Experimental Methods 

ECAE processing of the as-received Ti50.5Ni24.5Pd25 was performed isothermally 

at 425 °C for 4 passes using route Bc. Further details concerning the ECAE processing 

were previously described in Section 3.2. Thermal cycling was conducted under an 

applied stress of 200 MPa for 10 cycles. The rationale behind the selection of the stress 

level as well as the number of cycles was explained in Section 4.2.4. The evolution of 

shape memory behavior during thermal cycling was illustrated in Figure 4.9a. 

 

6.2 Microstructure 

Figure 6.1a shows the microstructure of the as-received material. This material 

condition is taken as the reference state to explain how the functional behavior changes 

after different thermomechanical treatments. Martensite variants in several different 

orientations with fine internal twins can be observed. The structure developed after 10 

thermal cycles is illustrated in Figure 6.1b.  The microstructure of the thermally cycled 

material appears to have a higher degree of directionality as compared to the as-received 

material. Grossmann et al. [33] observed the same behavior in a TiNi actuator spring 

after 500 thermomechanical cycles. 

Figure 6.1c shows the heavily deformed microstructure of the ECAE processed 

material. Noting the higher magnification level, it is observed that the microstructure has 

a finer twin and variant structure. On the other hand, no preferred orientations of the 

variants can be seen as in the thermally cycled material in Figure 6.1b. Figure 6.1d is an 
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even higher magnification image of the ECAE processed sample, showing sub-micron 

grains on the order of 100 – 150 nm.   

 

  

  

Figure 6.1 Microstructure of the (a) as-received Ti50.5Ni24.5Pd25 showing multiple 

martensite variants with random orientations, (b) thermally cycled material showing a 

much more highly oriented microstructure. (c) Heavily deformed microstructure of the 

ECAE processed material having randomly oriented, finer variant and twin structures as 

compared to the as-received or the thermally cycled material and (d) high magnification 

image showing the sub-micron size grains in the ECAE processed material. 
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6.3 Thermomechanical Characterization 

6.3.1 Stress-free Phase Transformation Temperatures 

Stress-free transformation temperatures of the as-received, ECAE processed, and 

thermally cycled Ti50.5Ni24.5Pd25 samples from the DSC analyses are listed in Table 6.1. 

Transformation temperatures of the ECAE processed sample are about 30 °C lower than 

those of the as-received material. The decrease in transformation temperatures is due to 

the high dislocation density and reduced grain size induced by ECAE processing, which 

both act as obstacles against lattice shear processes, rendering martensite nucleation and 

propagation more difficult [103]. ECAE processing also resulted in an increase in the 

thermal hysteresis. This indicates that transformation proceeds with increased energy 

dissipation in the ECAE processed material as a result of the increased strength of the 

material through grain refinement and higher dislocation density, more interaction of 

finer martensite variants, and intergranular constraints. 

 

Table 6.1 Stress-free transformation temperatures of the as-received, ECAE processed 

and thermally cycled Ti50.5Ni24.5Pd25 HTSMA. 

 
Mf 

(°C) 

Ms 

(°C) 

As 

(°C) 

Af 

(°C) 

Thermal 

Hysteresis  

(Af - Ms) (°C) 

As-received 166.5 179.4 184.1 195.3 15.9 

ECAE processed 118.3 147.2 147.4 167.7 20.5 

Thermally Cycled 171.5 189.7 185.4 202.5 12.8 
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On the other hand, thermal cycling decreased the thermal hysteresis and 

increased the transformation temperatures, though only by a few degrees compared to 

the as-received material. Unlike the randomly oriented residual stress fields, which 

impede the transformation in the ECAE processed sample, stress fields remaining after 

thermal cycling assist the growth of preferential martensite variants in the thermally 

cycled sample, thereby resulting in an increase in transformation temperatures. 

Similarly, since each successive thermal cycle introduces a smaller amount of defects, 

transformation proceeds with less energy dissipation in the thermally cycled material 

yielding a lower thermal hysteresis. This behavior is analogous to the decrease in the 

stress required for triggering martensite formation and the width of the stress-strain 

hysteresis during repeated superelastic loading [126]. 

 

6.3.2 Isobaric Cooling-Heating Experiments 

Isobaric cooling-heating experiments at different stress levels were conducted to 

characterize the strain-temperature response of the Ti50.5Ni24.5Pd25 after the different 

processing conditions. Figure 6.2a is a comparison plot of the strain - temperature 

responses of the as-received, ECAE processed, and the thermally cycled materials at an 

applied stress of 200 MPa.  
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(a) 

 

(b) 

 

(c) 

Figure 6.2  (a) Comparison of the strain vs. temperature responses under an applied 

stress of 200 MPa for Ti50.5Ni24.5Pd25 after different processing treatments. (b) Evolution 

of the recovered transformation, rec, irrecoverable strain, irr, and (c) thermal hysteresis 

as a function of the applied stress for the as-received (diamonds), ECAE processed 

(triangles), and thermally cycled (circles) materials. 

 

Figure 6.2b shows the evolution of rec and irr as a function of the applied stress. 

Poor performance of the as-received material, as indicated by the highest irr levels, is 

probably related to plasticity with the introduction of dislocations or other defects during 
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repeated transformation under stress. The development of stabilized martensite variants, 

also known as retained martensite, which cannot revert to the parent phase upon heating 

to the upper temperature chosen in this study, might also constitute a part of these high 

irr levels and is a serious concern particularly for TiNiPd alloys [127]. The ECAE 

processed sample displays the best functional stability with the lowest irr values at each 

stress level. As illustrated in Figures 6.1c and 6.1d, ECAE processing induces a high 

dislocation density and refines the microstructure of the as-received material, increasing 

its strength against the generation of additional defects or the evolution of additional 

stabilized martensite, especially at stresses below the thermal cycling stress.  The major 

question is how much retained martensite is actually present in the ECAE processed 

material and whether ECAE processing actually stabilizes this fraction of retained 

martensite, so that it doesn‟t continue to evolve during subsequent thermomechanical 

testing. 

The thermally cycled sample also displays enhanced functional stability as 

compared to the as-received material at all stresses and comparable irr values to the 

ECAE processed sample at low stresses. The improvement over the as-received material 

can be explained with a similar dislocation-based scenario, i.e. the existence of 

dislocations induced by thermal cycling impedes further plasticity or the formation of 

additional stabilized martensite. Although this limited strength increase through thermal 

cycling gives an adequate functional stability at low stresses, irr values start to increase 

at the same rate as those of the as-received sample at higher stresses, especially above 

the thermal cycling stress. 
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The ECAE processed material and the thermally cycled material exhibit higher 

rec values as compared to the as-received material at low applied stresses. In addition, 

the thermally cycled material has a 2 % two-way shape memory (TWSM) strain, which 

results from the development of stabilized variants of martensite due to the stress fields 

associated with the defects induced by thermal cycling. This was previously illustrated in 

Figure 6.1b, where the thermally cycled sample had a large fraction of favorably 

oriented martensite variants. The rec increased only slightly with increasing stress in the 

thermally cycled material, saturating at about 200 MPa (thermal cycling stress).  In 

contrast, the rec values for the as-received and ECAE processed material started out 

lower than that for the thermally cycled material but eventually surpassed the thermally 

cycled material at stresses greater than 200 MPa. The maximum rec values are similar 

for the as-received and ECAE processed material and occurred at an applied stress of 

300 MPa, while the thermally cycled material was relatively insensitive to stress level 

saturating at a 0.4 % lower rec. It is likely that a fraction of the martensite variants was 

stabilized during the thermal cycling process, which decreased the maximum rec that 

could be obtained in this material.  However, below 200 MPa the thermally cycled 

material exhibited superior rec levels. 

Thermal hystereses of the as-received and thermally cycled samples increase 

steadily with applied stress, reaching 32 °C and 22 °C, respectively, at 300 MPa (Figure 

6.2c). This increase can be attributed to the relatively low strength of the material against 

defect generation, accommodating more transformation shape change plastically and 

dissipating more energy.  In contrast, the thermal hysteresis associated with the ECAE 
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processed sample stays almost constant around 20 °C regardless of stress level, again 

demonstrating the resistance of this material against defect generation.  

 

6.4 Summary and Conclusions 

In this chapter, thermal cycling for multiple cycles under a constant stress level 

was applied to a Ti50.5Ni24.5Pd25 high-temperature shape memory alloy to improve its 

functional stability for actuator applications. For comparison purposes, the same material 

was severe plastically deformed using the ECAE process. Major findings and 

conclusions that can be drawn from this chapter are as follows: 

1. A low cycle thermomechanical cycling process improved the shape memory 

properties of the as-received Ti50.5Ni24.5Pd25 resulting in a 2 % TWSM strain, 

improved dimensional stability, and greater rec at stresses below the training 

stress (200 MPa). However, compared to the ECAE processed material, the 

thermally cycled material still had inferior functional stability at stress levels in 

excess of the training stress.  

2. Due to a high dislocation density and nano-sized grain structure, ECAE 

processed Ti50.5Ni24.5Pd25 exhibited increased strength leading to improved 

dimensional and thermal stability, at the expense of decreased transformation 

temperatures.   

3. The selection of the right process to get enhanced functional stability for an 

actuator application depends on the design requirements. ECAE increases the 

strength of the material. Therefore, smaller cross-sections may be used to 



 108  
  

perform the same work output without compromising functional stability. 

Thermal cycling gives adequate functional stability, especially under actuation 

stresses below the stress at which the thermal cycling took place. In addition, 

thermal cycling might also be utilized for applications requiring higher 

transformation temperatures.  However thermal cycling should be performed at 

stresses equal or greater than the anticipated use stress. 
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CHAPTER VII 

TRAINING AND TWO-WAY SHAPE MEMORY EFFECT OF TiNi AND TiNi 

BASED HIGH-TEMPERATURE SHAPE MEMORY ALLOYS 

 

Motivated by the large TWSM strain in Ti50.5Ni24.5Pd25 after a thermal cycling 

procedure of only 10 cycles in the previous chapter, a systematic investigation of 

different SMA systems was undertaken. Thermomechanical training in the form of 100 

thermal cycles under various constant stress levels was employed to induce the TWSME 

in binary Ti50.1Ni49.9 (at. %), Ti50Ni29Pt21 (at. %), Ti50.5Ni24.5Pd25 (at. %) and 

Ti50Ni24.5Pd25Sc0.5 (at. %) HTSMAs. The resulting TWSME in each material was 

characterized in terms of its magnitude and stability. 

The total residual strain generated during training was found to be indirectly 

related to the magnitude and the stability of the TWSME, by dictating the amount of 

transformable volume in the trained material, part of which was comprised of oriented 

martensite responsible for the TWSME. For TiNi, a negative correlation was found 

between the training stress and the magnitude of the resulting TWSM strain, while a 

positive correlation was observed for the TiNiPd based HTSMAs. The stability of the 

TWSME, measured by the strain changes of cold (martensitic) and hot (austenitic) 

shapes upon stress-free thermal cycling, was found to depend to a great extent on the 

temperature interval of the stress-free cycle, which would be expected to change the 

post-training microstructure including retained martensite and dislocation density. TiNi 

exhibited large degradations in cold and hot shapes, while Ti50.5Ni24.5Pd25 and 
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Ti50Ni24.5Pd25Sc0.5 HTSMAs had excellent TWSME stability attractive for actuator 

applications. No TWSME was seen in TiNiPt due to thermal cycling at elevated 

temperatures, which relaxed out the favorable dislocation structures generated during 

training. 

 

7.1 Experimental Methods 

7.1.1 Materials  

Four different material compositions were chosen for this study: conventional 

binary Ti50.1Ni49.9, Ti50.5Ni24.5Pd25, Ti50Ni24.5Pd25Sc0.5 and Ti50.5Ni28.5Pt21. It should be 

reminded that all compositions fall on the Ti-rich side of the stoichiometry so that 

precipitate strengthening is not an issue. TiNi was chosen to represent the baseline 

behavior of a conventional SMA without complications from off-stoichiometry 

strengthening and precipitation. Ti50.5Ni24.5Pd25 was selected as an HTSMA appealing to 

applications requiring intermediate transformation temperatures around 200 °C. 

Ti50Ni24.5Pd25Sc0.5 has transformation temperatures about 10 °C lower compared to the 

ternary alloy. However, as shown in Chapter IV, this HTSMA displays an improved 

shape memory in the form of better dimensional stability and enhanced thermal 

hysteresis during isobaric cooling-heating tests. It is of interest whether these 

improvements will also reflect to the TWSME response. Ti50.5Ni29Pt21 was chosen as the 

HTSMA for high-temperature applications, capable of actuation around 350 °C. 

Constant stress thermal cycling behavior of a similar composition, Ti50Ni30Pt20 has 



 111  
  

previously been studied by Noebe et al. [128] and this material exhibited good work 

output and dimensional stability with transformation temperatures around 300 °C.  

 

7.1.2 Thermomechanical Training and TWSME Characterization 

The choice of training procedure in order to obtain the TWSME in the currently 

studied materials was thermal cycling under constant stress for 100 cycles. For the 

TiNiPd and TiNiPdSc HTSMAs, training was carried out under tensile stresses of 80, 

150 and 200 MPa on a custom-built constant-stress testing frame. 100 was selected as 

the number of thermal cycles, since it was expected to yield a reasonably stabilized 

material response with minimal changes in shape and transformation temperatures upon 

further thermal cycling. The three training stresses were selected as low, intermediate 

and high stress levels under which the samples were anticipated to successfully endure 

100 cycles. Heating and cooling was done at a rate of 5 ± 1 °C/min. Samples were 

heated by conduction from the grips which were in turn heated by radiation through the 

use of an environmental furnace equipped with four 1kW halogen lamps. For cooling, 

water was circulated around the grips flowing through copper tubing. Temperature was 

controlled with a K-Type thermocouple attached to the middle of the sample gage 

section with a copper wire. To minimize the radiation heat transfer on the sample surface 

(which will lead to erroneous temperature readings that are not representative of the bulk 

of the specimen), the sample was shielded with a 1 mm thick reflective aluminum foil. A 

capacitive displacement probe (Capacitec
®
 HPC-75) with a linear range of 0-1.5 mm 
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was attached to the grips to measure the displacements during the training process. Axial 

strain was calculated by dividing the change in length to the initial gage section length.  

Following thermomechanical training, samples were unloaded and TWSME was 

characterized on a separate MTS testing frame for 10 stress-free cycles to assess its 

magnitude and stability. Strain was measured using an MTS high-temperature 

extensometer with a gage length of 12.7 mm and a -20/+20 % strain range. Samples 

were heated through conduction from the grips with heating bands. Cooling was 

achieved again by conduction through flowing liquid nitrogen in copper tubes wrapped 

around the grips. Heating and cooling rate of the samples was 10 ± 2 °C/min. Similar to 

the custom-built testing frame, temperature was measured using a K-type thermocouple 

attached to the middle of the sample gage section. 

For the TiNi and TiNiPt samples, both training and TWSME characterization 

were performed on a MTS servohydraulic load frame. Strain was measured using an 

MTS high-temperature extensometer with a gage-length of 12.7 mm and a strain range 

of -10/20 %. Heating of the samples was achieved through the use of a 7.5 kW induction 

heater, while cooling was performed with a muffin fan attached to one side of the load 

frame. Temperature was measured with a K-type thermocouple which was spot-welded 

to the middle of the gage section. Samples were heated and cooled at rates of 30 ± 2 

°C/min and 20 ± 2 °C/min, respectively. 
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7.2 Thermomechanical Training and the Evolution of Shape Memory Behavior 

Figure 7.1a illustrates the typical strain vs. temperature evolution during the 100-

cycle thermomechanical training procedure employed in this study. The results are for 

binary TiNi trained under 150 MPa. Training was initiated by loading the sample at 

room temperature in martensite and subsequently heating above the Af temperature to 

obtain full austenite under the applied load. One thermal cycle is comprised of cooling 

and heating the sample through forward and reverse transformations, respectively. As a 

common characteristic for all trained materials, the 1
st
 cycle of the training was 

completed with a relatively high value of irrecoverable strain, irr. As the number of 

cycles increased, the material obtained an almost stable shape memory response, 

demonstrating a completely different strain vs. temperature curve at the end of the 100
th

 

cycle with negligible irr per cycle. During the course of training, the material 

accumulated a total residual strain denoted by total. Following training, the sample was 

unloaded and heated above the stress-free Af temperature before the 1
st
 stress-free 

TWSME cycle, recovering the strain associated with the detwinned post-training 

microstructure. During TWSME cycling, a degradation in TWSME was encountered 

evidenced by a decrease in cold (martensitic) and hot (austenitic) shape strains (Figure 

7.1b). The TWSM strain was calculated as the strain difference between the cold and hot 

shapes for a given stress-free cycle. The stability of the TWSME was defined as the 

stability of TWSM strain as well as the stability of cold and hot-shape strain values 

during stress-free cycling. 
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 (a) 

 

(b) 

Figure 7.1 (a) The illustration of the thermomechanical training procedure used in the 

study. The 1
st 

and the 100
th

 cycles are highlighted. Total irrecoverable strain, total was 

measured as the sum of the irrecoverable strain per cycle, irr of all cycles.(b) 10 stress-

free TWSME cycles following training. TWSM strain, TWSM was calculated as the the 

strain difference between the cold and hot shapes for a given thermal cycle. 

 

Figure 7.2 is a compilation of the strain vs. temperature evolution curves for 

binary TiNi, TiNiPd, TiNiPdSc and TiNiPt during 100-cycle training under 80 MPa. In 

order to be able to better interpret the TWSME response of each trained material, 

pertinent information such as total, recovered transformation strain (rec) of the 1
st
 and 

100
th
 training cycles was extracted from these results along with 150 and 200 MPa 

training results and tabulated in Table 7.1. (See Appendix for the strain vs. temperature 

evolution curves for different materials trained under 200 MPa)   An investigation of 80 

MPa training results showed that all materials exhibited a relatively small value of rec at 

the first thermomechanical cycle, which increased by a large margin during the course of 

training. Highest rec values were seen in binary TiNi throughout the training, while 
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TiNiPt had the lowest values. As mentioned previously, all tested materials accumulated 

a certain amount of total at the end of the 100-cycle training procedure. Lowest plasticity 

levels were found in TiNiPd and TiNiPdSc HTSMAs, while binary TiNi showed the 

highest value of total. 

 

 

(a) 

 

(b) 

 

(c) 

 

 (d) 

Figure 7.2 100-cycle thermomechanical training results for (a) TiNi, (b) TiNiPd, (c) 

TiNiPdSc and (d) TiNiPt under 80 MPa.  
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Table 7.1 A summary of recovered transformation strain, rec and total irrecoverable 

strain, rec levels extracted from thermomechanical training tests conducted under 

different stress values and using different upper cycle temperatures.   

 Material 

Training 

Stress 

(MPa) 

Training 

UCT (°C) 
Rec Strain (rec) 

1
st
 Cycle (%) 

Rec Strain (rec) 

100
th

 Cycle (%) 

Total Irr 

Strain (tot) 

(%) 

Ti50.1 Ni49.9 

80 165 2.04 3.68 4.29 

150 165 3.62 3.39 7.15 

150 200 3.82 3.76 12.38 

200 165 3.76 3.44 10.11 

Ti50.5 Ni24.5Pd25 

80 280 1.68 2.40 1.10 

150 280 2.28 2.55 2.26 

150 320 2.43 2.73 2.36 

200 280 2.71 2.69 3.00 

Ti50.5 Ni28.5Pt21 

80 500 0.32 0.55 1.17 

150 500 1.34 2.24 4.53 

200 500 

   

Ti50Ni24.5Pd25Sc0.5 

80 280 1.8 2.41 1.12 

150 280 2.49 2.74 1.74 

200 280 2.73 2.75 2.80 

 

As expected, an increasing amount of training stress led to an increased value of 

total for all materials, though for a given stress, the values were larger for binary TiNi 

(Figure 7.3). It is also interesting to see that TiNiPt accumulated a relatively higher value 

of total under 150 MPa compared to TiNiPd and TiNiPdSc, while it had almost the same 

total under 80 MPa. This is most likely due to the creep deformation the material 

experienced under a combination of increased stress and thermal cycling at elevated 

temperatures. For the same reasons, this material could not endure 100 thermal cycles 

under 200 MPa and failed at the 60
th
 cycle generating a total of 8.3%. 
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Figure 7.3 Total irrecoverable strain (total) levels generated during thermomechanical 

cycling for different SMA systems studied as a function of training stress. 

 

Figure 7.4 illustrates the evolution of the TWSME during subsequent 10 stress-

free cycles (Figures 7.4a, 7.4c, 7.4e and 7.4g), as well as the changes in TWSM strain 

with number of cycles under different training stress levels (Figures 7.4b, 7.4d, 7.4f and 

7.4h). Table 7.2 lists 1
st
 and 10

th
 cycle TWSM strain values; efficiency factor for each 

trained material, defined as the ratio between the 1
st
 cycle TWSM strain and the rec of 

the 100
th
 training cycle; the amount of degradation in TWSM strain as well as the hot 

and cold-shape strain values during 10 stress-free TWSME cycles. With the exception of 

TiNiPt, efficiency factors for materials trained under 80 MPa were found to be quite 

similar around 85%, which indicated that 1
st
 cycle TWSM strain values were very close 

to the rec values of the 100
th

 training cycle. In terms of TWSME stability, binary TiNi 
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demonstrated poor performance with large degradations in TWSM strain and cold and 

hot-shape strains during stress-free TWSME cycling. TiNiPd and TiNiPdSc HTSMAs 

exhibited a superior stability with less degradation in both TWSM strain and cold and 

hot-shape strains. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.4 The evolution of strain vs. temperature behavior during stress-free TWSME 

cycling for (a) TiNi, (c) TiNiPd, (e) TiNiPdSc and (g) TiNiPt. The variation of the 

TWSM strain as a function of stress-free cycles for (b) TiNi, (d) TiNiPd, (f) TiNiPdSc 

and (h) TiNiPt. 
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(e) 

 

(f) 

 

 (g) 

 

(h) 

Figure 7.4 Continued. 

 

  



 120  
  

Table 7.2 TWSME characteristics of SMA compositions after thermomechanical training under different stress levels and 

upper cycle temperatures (UCTs).  

  

Training 

Stress 

(MPa) 

Training 

UCT 

(°C) 

TWSME 

UCT 

(°C) 

1st cycle 

TWSM 

Strain 

(%) 

Efficiency 

Factor 

10th cycle 

TWSM 

Strain 

(%) 

TWSM Strain 

Degradation 

(%) 

Hot Shape 

Degradation 

(%) 

Cold Shape 

Degradation 

(%) 

Ti50.1 Ni49.9 

80 165 165 3.06 83.00 2.75 0.31 -0.33 -0.6 

150 165 165 2.60 76.70 2.53 0.07 -0.68 -0.64 

150 200 
165 2.95 78.42 2.82 0.13 -0.46 -0.49 

200 2.43 64.59 2.09 0.34 -0.64 -0.91 

200 165 165 2.34 68.08 2.36 -0.02 -0.69 -0.58 

Ti50.5 Ni24.5Pd25 

80 280 280 2.12 88.27 1.99 0.13 -0.1 -0.24 

150 280 280 2.41 94.54 2.28 0.13 -0.17 -0.31 

150 320 280 2.34 85.71 2.20 0.14 -0.13 -0.27 

200 280 280 2.58 96.07 2.46 0.13 -0.08 -0.23 

Ti50.5 Ni28.5Pt21 

80 500 500 -0.04 -7.62 -0.08 0.04 -0.04 -0.09 

150 500 500 0.13 5.80 0.00 0.13 -0.03 -0.09 

200 500 
       

Ti50Ni24.5Pd25Sc0.5 

80 280 280 2.11 87.66 2.04 0.07 -0.2 -0.26 

150 280 280 2.46 89.92 2.38 0.08 -0.13 -0.22 

200 280 280 2.56 93.11 2.46 0.11 -0.1 -0.22 

 

  

1
2
0
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7.2.1 Effect of Training Stress on TWSME  

It is widely accepted that TWSME arises from the presence of oriented internal 

stress fields biasing the formation of specific martensite variants during martensitic 

transformation. The oriented stress field is usually imposed to the material through the 

presence of defects generated during thermomechanical training. As mentioned 

previously, some amount of irreversible strain during training cycles is necessary for the 

generation of TWSME, yet overstressing the material might result in an increase in the 

plastic deformation of the hot shape and facilitate the formation of retained martensite. 

This, in turn, results in a decrease in the TWSME due to a decrease in the amount of 

transforming volume. Thus, the question of what stress level to be used during 

thermomechanical training is a critical one. In addition, it is also imperative to know the 

differences between the low-stress and high-stress microstructures resulting in the 

observed differences in TWSME characteristics. 

 

7.2.1.1 TiNi 

For binary TiNi, training stress had a diverse effect on the magnitude of TWSM 

strain and stability of the TWSME. The magnitude of the 1
st
 cycle TWSM strain varied 

inversely proportional to the training stress. Increasing training stress levels resulted in 

lower 1
st
 cycle TWSM strain values (Figure 7.5b). However, with increasing training 

stress levels, the stability of the TWSM strain increased as evident from the small 

degradations in successive cycles. Upon unloading the 80 MPa-trained material and 

heating above the Af temperature, more than 4% strain was recovered (Figure 7.4a). 
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Only 73% of this strain, about 3% was carried over to the 1
st
 TWSME cycle but the 

initial TWSM strain degraded by 0.3% in 10 cycles (Table 7.2). The TWSM strain for 

the 150 MPa-trained material decreased from 2.6% to 2.5% in 10 cycles. The TWSM 

strain for the 200 MPa-trained material was found to be very stable during cycling, 

which actually increased slightly at the end of the 10
th

 thermal cycle (Figure 7.4b). Of 

course, this is a marginal effect which could result from experimental errors. At this 

point, it should be noted that a stable TWSM strain is not necessarily a sign of a stable 

TWSME. The TWSM strain, which is calculated as the strain difference between the 

cold and hot shapes, might be quite stable while there is a large and equal amount of 

degradation in cold and hot-shape strains. On the other hand, minimal changes in cold 

and hot-shape strains will by definition result in a stable TWSM strain. In the case of 

TiNi, this material was found to display poor dimensional stability associated with the 

TWSME by exhibiting large changes in cold and hot-shape strains upon TWSME 

cycling even though the changes in TWSM strain were minor (Table 7.2). After 10 

cycles, the hot-shape strain of the 200 MPa-trained material changed by 0.7% even 

though the magnitude of TWSM strain changed only 0.1%. 
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(a) 

 

(b) 

 

(c) 

Figure 7.5 (a) TWSM strain values after 10 stress-free cycles for the tested materials as 

a function of training stress. 10
th
 TWSME cycles for (b) TiNi and (c) TiNiPd after 

training under 80, 150 and 200 MPa. 

 

For the 150 MPa-trained TiNi, the total accumulated during training was around 

7% (Figure 7.3). Stress-free thermal cycling altered the post-training dislocation 

structure in a way that each cycle caused a relaxation of the oriented internal stresses. 
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This inevitably caused a decrease in the cold-shape strain due to the formation of more 

self-accommodated martensite instead of oriented martensite (Figure 7.4a). At the end of 

each cycle, it was noticed that the hot-shape strain did not match the strain value of the 

previous cycle, i.e. there was also a decrease in the hot-shape strain. There might be 

several reasons responsible for the decrease in hot-shape strain upon stress-free thermal 

cycling.  It is very likely that after a total residual deformation of 7%, there resides 

martensite in the structure that cannot transform to austenite [129]. One possible 

scenario is that the retained martensite might be of oriented type and some of this 

oriented retained martensite is able to revert back to austenite upon stress-free cycling 

resulting in a decrease in the hot-shape strain. It is also probable that due to the 

relaxation of the internal stress during stress-free cycling, some of the oriented retained 

martensite still cannot be reverted back to austenite but changes its structure to self-

accommodated type. Another possible scenario is that the retained martensite in the 

austenitic structure might be of self-accommodated type.  Upon stress-free thermal 

cycling, new dislocation structures will be generated to accommodate transformation 

shear and volume change. The stress fields of newly generated dislocations might switch 

some of the retained martensite to oriented type generating compressive strain upon 

thermal cycling. Unlike the dislocations generated during thermomechanical training 

which result in an increase in transformation temperatures, the new dislocation structures 

generated during stress-free thermal cycling decrease the transformation temperatures. 

Thus, although it is less likely compared to the first two scenarios, there is still 

possibility that some of the self-accommodated retained martensite might be converted 
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to compressive strain generating oriented retained martensite. In the end, the net effect 

after 10 stress-free thermal cycles is a relative increase in the volume fraction of self-

accommodated martensite which brings about a 0.1% degradation in TWSM strain. 

TWSME behaviors of 80 MPa and 200 MPa-trained TiNi can be described based 

on the same scenarios. The notable difference between these conditions is the amount of 

total generation during training. This difference definitely brings about different amounts 

of retained martensite and dislocation densities in the trained materials, which alter the 

volume fraction of oriented martensite variants giving the TWSME. For instance, the 

peculiar TWSM behavior of the 200 MPa-trained material, i.e. stable TWSM strains 

upon cycling, can be attributed to a recovery of a large volume fraction of retained 

martensite. For this material, the decrease in the hot-shape strain was actually larger 

compared to the decrease in the cold-shape strain, resulting in an increasing TWSM 

strain. 

 

7.2.1.2 TiNiPd(Sc) 

Unlike TiNi, increasing training stresses resulted in higher oriented internal 

stresses without significant plasticity for TiNiPd HTSMA. Compared to TiNi, much 

lower total values were recorded at the end of training under all stress levels. While a 

total of 1.1% was accumulated at 80 MPa training, this value doubled to 2.3% when the 

training stress was increased to 150 MPa. Under 200 MPa, total was found to be 3.0%. 

Higher internal stresses without significant plastic deformation led to increasing TWSM 

strains with increasing training stress levels. Furthermore, TWSM strains of trained 
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TiNiPd HTSMAs were found to be very close to the maximum recoverable strain levels 

under stress, exhibiting high training efficiencies (Table 7.2). It should be stated that the 

efficiency values increased for TiNiPd HTSMA with increasing training stress levels, 

while opposite behavior was seen in binary TiNi.  

In terms of TWSME stability, cold and hot-shape strains of TiNiPd were very 

stable and changed minimally upon stress-free thermal cycling (Figure 7.4c). The strain 

recovered during the initial heating of the 150MPa-trained material above the Af 

temperature was very close to the 1
st
 cycle TWSM strain. Out of the 2.9% strain 

recovered, 83%, 2.4%, was carried over to the subsequent TWSME cycles. Unlike TiNi, 

the amount of TWSM strain increased with increasing training stress and its degradation 

levels were around 0.1 % at the end of 10 stress-free thermal cycles for all training stress 

levels. In terms of stability of the TWSME, TiNiPdSc displayed very similar results to 

TiNiPd, with slightly improved TWSM strain and hot and cold-shape strain stability 

(Table 7.2).  

 

7.2.1.3 TiNiPt 

High transformation temperatures of TiNiPt necessitated thermal cycling at 

elevated temperatures to observe the TWSME. Heating of the 80 MPa-trained sample 

above the Af temperature resulted in a strain recovery of 0.5% (Figure 7.4g), which is 

almost the same as the rec of last training cycle (Table 7.2). Further stress-free cycling, 

however, did not yield any useful TWSM strain. At the end of 10 stress-free thermal 
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cycles, the TWSM strain of TiNiPt was almost non-existent regardless of the training 

stress. 

Although TiNiPt exhibited good shape memory behavior during training cycles 

with reasonable recoverable and residual strains, it did not show TWSME behavior due 

to the required temperature interval for thermal cycling. Regardless of the training stress 

used during 100 thermal cycles, the first consecutive stress-free cycle up to 500 °C 

erased almost all the beneficial dislocations giving the TWSME (Figure 7.4g and 7.4h).  

 

7.2.2 Effect of Alloying Additions on TWSME 

The most obvious change in the TWSME characteristics between the various 

SMA compositions is the change in transformation temperatures. Figure 7.6 shows the 

10
th
 TWSME cycles for all materials previously trained under 150 MPa. Substitution of 

25 at. % Pd with Ni increased the transformation temperatures of TiNi to 200 °C. 

Quaternary alloying addition of Sc to TiNiPd decreased its transformation temperatures 

about 10 °C, consistent with the isobaric thermal cycling test and differential scanning 

calorimetry (DSC) analysis results of shown in Chapter IV. Pt increased the 

transformation temperatures of TiNi higher per unit of alloying addition compared to Pd: 

addition of 21% Pt raised the transformation temperatures of TiNi so high (around 350 

°C) that, in the temperature range of transformation, the dislocations necessary for the 

TWSME were annealed out in the initial TWSME cycles regardless of the training 

stress. This resulted in a significantly low TWSM strain. Noebe et al. [130] have already 

shown that recovery processes begin at 450 °C and end around 600 °C in a 
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Ni29.5Ti50.5Pt20 HTSMA. It thus remains a technological challenge to obtain stable 

TWSME response in HTSMAs when high transformation temperatures close to 

recovery/recrystallization temperatures are involved. 

 

 

Figure 7.6 Effect of alloying additions to TiNi in terms of the TWSME. The materials 

have been previously trained under 150 MPa for 100 thermal cycles. 

 

Substitution of Pd with Ni did not only increase the transformation temperatures 

of the TiNi. Pd also acted as a solid-solution strengthener and converted the monoclinic, 

B19‟ martensite structure of TiNi to orthorhombic B19, resulting in improved 

compatibility between transforming phases (cubic, B2 austenite transforming to 

orthorhombic martensite instead of monoclinic martensite).  As a result of improved 

crystallographic compatibility coupled with increased strength levels, a much more 
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stable thermomechanical cycling response compared to that of binary TiNi, evidenced 

by smaller total values during training under all stress levels (Figure 7.3) and smaller 

changes in cold and hot-shape strains during TWSME cycles (Figure 7.5c), was obtained 

even though the sample was cycled to a higher UCT. Due to same reasons, there was 

also a decrease in energy dissipation during transformation, contributing to a significant 

reduction of the thermal hysteresis in both training and TWSME cycles. 

 Microalloying with Sc further improved the compatibility of transforming 

phases in TiNiPd and increased the material strength again due to the solid-solution 

strengthening effect. As a result, TiNiPdSc had slightly smaller thermal hysteresis 

compared to TiNiPd during both training and TWSME cycles. Recently, the second 

eigenvalue, 2 of the transformation stretch tensor that maps the austenite lattice to the 

martensite lattice, has been related to the thermal hysteresis associated with the 

martensitic transformation [81]. It has been stated that as the 2 value gets closer to 1, 

compatibility between transforming phases increases, leading to a smaller thermal 

hysteresis. Current results for the 2 of binary TiNi (0.9663) [120], TiNiPd (1.0171) and 

TiNiPdSc (1.0158) (Section 4.2.1) are consistent with this finding for the thermal 

hysteresis associated with the TWSME, as well. 

In terms of two-way shape memory (TWSM) strain, TiNi exhibited a higher 

value at the end of 10 TWSME cycles compared to TiNiPd and TiNiPdSc. However, 

when the TWSM values were normalized with respect to the highest amount of 

recoverable strain that could be obtained from each material at a stress level of 150 MPa, 

it was seen that TiNiPd and TiNiPdSc HTSMAs outperformed TiNi with values very 
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close to 1 (Figure 7.6). This indicates that for a specific thermomechanical treatment 

procedure, TiNiPd based HTMSAs of this study respond to training more efficiently and 

have nearly perfect TWSME relative to the load-biased behavior during training.  A high 

value of training efficiency indicates that dislocation structures and local stress fields 

generated by cycling are very effective in biasing the orientation of the martensite 

variants, which form during subsequent thermal cycling under zero stress [49]. On the 

other hand, TiNiPt had a value close to 0, indicating that this material is not suitable for 

TWSME within the specified thermal cycling temperature range.  

It should also be noted that although the TWSME cycles are conducted under 

stress-free conditions, the transformation temperatures associated with these cycles are 

relatively higher compared to the transformation temperatures of the untrained 

conditions. This is due to the internal stresses generated during thermomechanical 

training which decrease the amount of undercooling needed to initiate and complete the 

transformation. 

 

7.2.3 Effect of Training Upper Cycle Temperature (UCT) on TWSME 

It is commonly accepted that for a chosen SMA system, transformation strains 

generated during thermomechanical training are quite representative of the resultant 

TWSM strain. Any training parameter that can potentially increase the rec of the last 

training cycle will most likely increase the TWSM strain of the following stress-free 

cycle. However, as previously seen in the previous section, the evolutionary behavior of 

TWSM strain might differ between different SMA systems. While rec is a function of 
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applied stress, it is also significantly affected by the UCT the material is exposed to. This 

is because the magnitude of the CSS to activate martensite reorientation, in addition to 

being dependent on different crystallographic planes, decreases with increasing 

temperatures. Similarly, a high UCT value also triggers true plasticity and TRIP due to 

the decrease in CSS for slip. On the other hand, higher UCT values may help reduce the 

amount of martensite retained at the end of each reverse transformation cycle due to 

overheating. It is thus imperative to know what kind of effects UCT selected during 

thermomechanical training has on the resultant TWSM behavior.   

The choice of UCT during thermomechanical training was done in such a way to 

ensure complete transformation under the applied stress. Since all materials have 

different transformation temperatures, different UCT‟s were used during training. TiNi 

was thermally cycled up to 165 °C, whereas TiNiPd and TiNiPdSc were cycled up to 

280 °C and TiNiPt was heated up to a temperature of 500 °C. Padula et al. [131] has 

already demonstrated that UCT affects the thermomechanical response of TiNi under 

isobaric thermal cycling consisting of a relatively low number of thermal cycles. They 

have shown that the material cycled using a higher UCT exhibited higher transformation 

strains under all stress levels. It is of interest whether similar responses will be seen upon 

a relatively higher number of thermal cycles and how the resulting TWSME will differ 

using different values of UCTs. To meet this objective, TiNi and TiNiPd alloys were 

trained using two different UCT values under 150 MPa. TiNi was cycled up to a UCT of 

165 °C and 200 °C, while TiNiPd was cycled up to a UCT of 280 °C and 320 °C.  
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7.2.3.1 TiNi 

Strain vs. temperature response of TiNi during thermomechanical training under 

150 MPa is shown in Figures 7.7a and 7.7b with UCT‟s of 165 °C and 200 °C, 

respectively. At a first glance, it is noticed that total generated during training increased 

from 7.2 % to 12.4 % due to an increase of UCT from 165 °C to 200 °C. There are 

similarities in the evolutionary responses of these two cases. For both materials, the 1
st
 

training cycle is characterized by a relatively large thermal hysteresis and irr. During the 

course of training, due to the introduction of oriented dislocation structures, there was 

both a hardening effect on the material and a domination of microstructure with 

increasingly more single-variant martensite instead of self-accommodated martensite. 

The consequences of these phenomena are double-fold. First, the material started to 

show a more stable behavior characterized by smaller shifts in transformation 

temperatures during cycling and smaller values of irr per cycle. Second, the interaction 

between martensite variant pairs was diminished, leading to smaller dissipation of elastic 

stored energy during transformation, resulting in a smaller thermal hysteresis value. 

There are also subtle differences between these two cases in terms of rec and 

temperatures.  If the 100
th

 cycle is compared to the 1
st
 cycle for the 165 °C UCT case, it 

is noticed that rec decreased from 3.6% to 3.4%. For the 200 °C UCT case, rec remained 

quite stable at 3.8 % during 100 cycles. Compared to the material trained with a UCT of 

165°C, the 100
th
 cycle of the material trained with a UCT of 200 °C had noticeably 

higher rec and transformation temperatures. This can be seen from the initial heating 

curves preceding the 10 stress-free TWSME cycles (Figures 7.7c and 7.7d). As true 
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plasticity was expected to be more prominent at higher UCT values leading to a reduced 

transforming volume, the higher transformation strain of the 200 °C UCT case could 

only be explained with the retained martensite. While a higher UCT results in higher 

values of total during training, the amount of retained martensite was diminished 

compared to the lower UCT case, evidenced by the increased rec. 

 

 

(a) 

 

(b) 

Figure 7.7 The evolution of strain vs. temperature response of TiNi trained under 150 MPa 

using a UCT of (a) 165°C and (b) 200 °C. The evolution of the TWSME during the 

consequent 10 stress-free cycles for the material trained with UCT of (c) 165 °C and (d) 200 

°C. (e) A comparison of 10
th

 stress-free TWSME cycles of the materials trained with 

different UCTs. 
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(c) 

 

(d) 

 

(e) 

Figure 7.7 Continued. 

 

The TWSME obtained from these two cases were different in terms of stability 

and magnitude. Unlike the effect of increased training stresses, a higher value of total as 

a result of higher UCT yielded a higher initial TWSM strain value of 3.0 % in TiNi 

(Figure 7.7d). The degradation levels associated with cold and hot-shape strains were 

also different. After 10 TWSME cycles, the material trained with a UCT of 165 °C 
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exhibited a TWSM strain of around 2.5 % (Figure 7.7e) with about 0.7 % degradation in 

both hot and cold-shape strains (Figure 7.7c). Figure 7.7d illustrates the TWSM response 

for the same material trained with a UCT of 200 °C. Compared to the material trained 

with a UCT of 165 °C, the degradation levels are lower about 0.2 % in both hot and 

cold-shape strains resulting in a TWSM strain of 2.8 % at the end of 10 TWSME cycles. 

Larger degradation of the cold-shape strain in the 165 °C UCT trained material is 

probably due to larger relaxation of internal stresses and thus the substitution of more 

self-accommodated martensite with oriented martensite. As it was mentioned previously, 

the larger dislocation density in the 200 °C UCT trained material due to a total of 12.4 % 

is likely to hinder the relaxation of internal stresses in this material, leading to an 

improved TWSME stability.  Smaller degradation in the hot-shape of the 200 °C UCT 

trained material is possibly associated with the smaller amounts of retained martensite 

present in the microstructure that can revert back to martensite during transformation. 

 

7.2.3.2 TiNiPd(Sc) 

Contrary to TiNi, a 40 °C increase in the UCT used during training of TiNiPd 

caused only 0.2% difference in total levels (Table 7.1). The sample which was thermally 

cycled under 150 MPa using a UCT of 280 °C had a total of 2.3 % (Figure 7.8a), while 

the same thermomechanical training with a UCT of 320 °C resulted in a total value of 

2.4% (Figure 7.8b). When the 1
st
 and 100

th
 cycles are investigated for both cases, it is 

noticed that the evolution of strain vs. temperature responses are hardly affected by the 

choice of the UCT. Unlike TiNi, the 1
st
 and 100

th
 cycles are very comparable for both 
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cases in terms of rec and thermal hysteresis. This is an indication of the conservation of 

the transforming volume during the training procedure without significant generation of 

retained martensite and plasticity. In addition, both materials have around 16 °C shift in 

transformation temperatures during the course of training compared to the 7 °C shift in 

TiNi, which shows the existence of larger oriented residual stresses assisting the 

transformation.  

 

 

(a) 

 

(b) 

Figure 7.8 The evolution of strain vs. temperature response of TiNiPd trained under 150 

MPa using a UCT of (a) 280°C and (b) 320 °C. The evolution of the TWSME during the 

consequent 10 stress-free cycles for the material trained with UCT of (c) 280 °C and (d) 

320 °C. (e) A comparison of 10
th
 stress-free TWSME cycles of the materials trained with 

different UCTs. 
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(c) 

 

(d) 

 

(e) 

Figure 7.8 Continued. 

 

The initial heating curves after the training procedure follow almost the same 

path for the two cases (Figure 7.8c and 7.8d) indicating similar values of internal stresses 

in both materials. In the same way, the changes in cold and hot-shape strains are 

indistinguishable. Both materials have minimal amounts of degradation in hot and cold-
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shape strains compared to TiNi. The 10
th

 stress-free TWSME cycle for each case is 

shown in Figure 7.8e. The two strain vs. temperature curves fall almost on top of each 

other with identical transformation strain, hysteresis and temperatures. The 0.1% 

difference in TWSM strain of the 10
th

 stress-free cycles might be a result of 0.2% extra 

plastic deformation during training with a UCT of 320 °C. 

 

7.2.4 Effect of TWSME Cycling Upper Cycle Temperature (UCT) on TWSME 

 In the previous section, the effect of UCT selection has only been demonstrated 

for the thermomechanical training cycles. The selection of UCT for the stress-free 

TWSME cycles deserves equal attention.  To show the effect of UCT in TWSME 

cycling on the stability and magnitude of TWSME, binary TiNi which has been trained 

under 150 MPa using a UCT of 200°C, was stress-free cycled using also a UCT of 200 

°C, instead of 165°C. It was shown that a higher UCT used during stress-free cycling 

severely affected both the magnitude and the stability of TWSME. Out of the 3.8% rec 

recorded in the last training cycles, only 2.4% could be carried over to the 1
st
 TWSME 

cycle (Table 7.2). The TWSM strain decreased by 0.3% in 10 cycles and the largest 

degradation in cold-shape strain was seen among all other conditions, which was 

undoubtedly due to the rapid relaxation of oriented internal stresses. 

 

7.2.5 Mechanisms Responsible for the Magnitude and Stability of TWSME 

In order to better explain the following results, a schematic is presented 

overviewing the parameters effective in the magnitude and stability of TWSME (Figure 
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7.9). The amount of total  generated as a result of training is primarily dictated by training 

stress. For all tested materials, total  increases with increasing training stress (Figure 7.3). 

Other training parameters that can affect the outcome of total are the number of thermal 

cycles and the UCT. The effect of number of cycles on the TWSME was not 

investigated in this study, since it was kept constant at 100. 

 

 

Figure 7.9 Schematic showing the parameters involved in the generation of TWSME, its 

magnitude and stability. 
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total might be partly due to dislocation structures or retained martensite that 

cannot revert back to austenite during transformation. Several factors play roles during 

the generation of dislocation structures such as true plastic deformation (slip) and TRIP. 

In addition, effects of creep deformation cannot be overlooked during thermal cycling at 

high temperatures as seen in the TiNiPt case. Obviously, microstructural features such as 

compatibility, texture, grain size and initial dislocation density also contribute to the 

manifestation of total. Higher strength levels through finer grain size, higher initial 

dislocation density or preferred orientations as well as improved crystallographic 

compatibility between transforming phases might decrease defect generation during 

training, resulting in low values of total. However, for the sake of simplicity, the effects 

of these microstructural parameters on the TWSME are beyond the scope of this study. 

The combination of retained martensite and dislocation structures determine the 

amount of transforming volume available after training. It should be emphasized that 

there might exist interplay between martensite stabilization and generation of dislocation 

structures during training, i.e. dislocations might assist in the stabilization process. Thus, 

a horizontal arrow is used to establish a connection between retained martensite and 

dislocation structures. On the other hand, it is not exactly known how dislocation 

structures contribute to the amount of transforming volume. Therefore, the connection 

between dislocation structures and transforming volume has been shown with a dashed 

arrow. Due to the presence of oriented internal stresses and/or retained martensite, a 

fraction of the transforming volume will be comprised of oriented martensite which is 

responsible for the TWSME and directly controls the magnitude of the TWSM strain.  
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Stress-free TWSME cycling of the trained material might cause rearrangement and 

annihilation of the dislocation structures generated during training. It may also assist in 

the reverse transformation of the retained martensite in the structure. At the same time, 

new dislocation structures might also be generated hindering subsequent 

transformations. Microstructural characteristics and the selection of UCT during stress-

free cycling have a strong influence on these phenomena. The combined effect of these 

competing mechanisms is a change in the volume fractions of oriented and self-

accommodated martensite. Depending on the relative amounts of both martensite 

structures, the magnitude of the TWSM strain and the stability of the TWSME are 

subject to change during stress-free TWSME cycling.  

 

7.3 Summary and Conclusions 

In this chapter, TiNi SMA and TiNiPt, TiNiPd and TiNiPdSc HTSMAs were 

characterized in terms of their TWSM behaviors. The TWSME was induced in these 

materials through a thermomechanical training procedure consisting of 100 thermal 

cycles under various stress levels with different UCTs. Stability of the TWSME was 

assessed by running 10 stress-free thermal cycles following the training cycles. 

A summary of the results and some of the conclusions that could be derived from this 

chapter are: 

1. The total residual strain generated during thermomechanical training was 

indirectly related to the magnitude and stability of the TWSME. It dictated the 

amount of transformable volume in the trained material, part of which was 
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comprised of oriented martensitic variants responsible for the TWSME. Residual 

strain was controlled by microstructural features such as the strength of the 

material and the compatibility between transforming phases. At the same time, it 

varied directly proportional to the training stress and the UCT.   

2. Trained under 150 MPa, TiNi exhibited a TWSM strain of 2.5% at the end of 10 

stress-free cycles. This value was about 60% of the strain recoverable from the 

same material under stressed conditions. On the other hand, both TiNiPd and 

TiNiPdSc HTSMAs had much more efficient responses to training. These alloys 

had TWSM strain values around 2.4%, which corresponded to almost 90% of the 

recoverable strain that could be obtained from these materials under 150 MPa 

thermal cycling. Stress-free cycling annealed out all the favorable dislocation 

structures in TiNiPt due to the inherently high transformation temperatures of 

this HTSMA, negating the TWSME.  

3. In terms of stability, a TWSME with minimal strain changes in the hot 

(austenite) and cold (martensite) shapes and the magnitude of the TWSM upon 

stress-free cycling is sought for actuator applications. The mechanism for the 

degradation of TWSME was explained through a retained martensite & 

dislocation structure based scenario. TiNi exhibited poor TWSME stability 

evidenced by large degradations in cold and hot-shape strains upon stress-free 

thermal cycling. TiNiPd and TiNiPdSc had superior stability levels characterized 

by minimal shape changes. 



 143  
  

4. Both UCT and stress selections for the thermomechanical training have been 

demonstrated to have significant effects on the outcome of TWSME. UCT 

deserves extra attention since it also has to be selected carefully for stress-free 

TWSME cycling. A higher UCT value during stress-free cycling was found to 

result in a faster degradation of the TWSME. 

5. TiNiPd based HTSMAs have been shown to be attractive candidates for TWSME 

applications. These alloys built up relatively small amounts of residual strains 

during thermomechanical training, regardless of the selection of UCT and 

stresses. The resultant TWSME was shown to have excellent stability of hot and 

cold-shape strains with adequate TWSM strain.  
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CHAPTER VIII 

WORK OUTPUT OF THE TWO-WAY SHAPE MEMORY EFFECT IN 

Ti50.5Ni24.5Pd25 HIGH-TEMPERATURE SHAPE MEMORY ALLOY 

 

If the TWSME is intended to be utilized for actuation purposes, its stability under 

stress is a major concern since most of the emerging actuator applications require the 

HTSMA to do work against a load. Thus, there is a need to characterize these HTSMAs 

in terms of the stability of TWSME during repeated actuation and investigate methods to 

enhance the stability. 

TWSME was induced in Ti50.5Ni24.5Pd25 HTSMA through the same training 

procedure employed in the previous chapter. Stability of the TWSME was characterized 

during both stress-free thermal cycling and thermal cycling under stress. In addition, 

isobaric cooling-heating tests were conducted to assess the work output of the TWSME 

under different stress levels. The effects of SPD on the stability and work output of the 

TWSME were also studied by training a sample processed with ECAE.  

Although outstanding TWSME stability was achieved during stress-free thermal 

cycling, large degradations were recorded during thermal cycling under stress. ECAE 

processing did not have a remedial effect on these large degradation levels and UCT was 

anticipated as the primary parameter responsible for the instabilities.  
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8.1 Thermomechanical Training 

Figure 8.1 shows the strain vs. temperature responses of as-received and ECAE 

processed samples during the 100-cycle training under 150 MPa. Both materials were 

thermally cycled to 280 °C to ensure complete reverse transformation while preventing 

any differences in response that could be attributed to different UCTs. The UCT was 

shown to significantly influence the evolution of shape memory characteristics, 

particularly the level of irrecoverable strain that develops, during load-biased thermal 

cycling of equiatomic TiNi [132].  

 

 

 (a) 

 

(b) 

Figure 8.1 Comparison of strain vs. temperature evolution during the 100-cycle 

thermomechanical training under 150 MPa for the (a)  as-received and (b)  ECAE 

processed Ti50.5Ni24.5Pd25. Recovered transformation strain (rec), irrecoverable strain 

(irr), martensite start ( σ

sM ) and austenite finish (
σ

fA ) temperatures are illustrated in (a). 
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Both materials exhibited a similar evolution of the shape memory response 

during training. The first cycle was characterized by a relatively high value of 

irrecoverable strain, irr.  Each subsequent cycle induced fewer defects, until a level of 

functional stability, with negligible irr, was achieved at the end of 100 cycles. For the 

as-received material, irr decreased from 0.31 % during the first cycle to 0.01 % at the 

end of 100 cycles, whereas for the ECAE processed material, the decrease was from 0.10 

% to 0.01 %. Hence, the total irrecoverable strains accumulated during training were 

2.25 % and 0.65 % for the as-received and ECAE processed Ti50.5Ni24.5Pd25, 

respectively. These results are not surprising since it has already been reported that 

ECAE improves functional stability during repeated thermomechanical cycling as a 

result of grain refinement and work hardening [75]. But these same processes also 

inhibit the amount of recoverable strain that can be generated because they result in a 

more homogenous nucleation of self-accommodative martensite variants with increased 

interaction between the variants compared to nucleation and propagation of a few 

preferred martensite variants as in the case of the hot-extruded material. Another result 

of ECAE processing was the decreased number of training cycles required to reach a 

certain level of stability (Figure 8.1b) compared to the as-received condition.  However, 

by the end of 100 cycles, the final levels of irrecoverable strain were quite similar for 

both materials.  Therefore, even though as-extruded Ti50.5Ni24.5Pd25 takes longer to reach 

a stable condition compared to ECAE processed material, both materials ultimately 

reach the same level of dimensional stability, while a much greater level of recoverable 

strain is achieved in the as-received condition.  Furthermore, this level of stability is 
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greater in the Ti50.5Ni24.5Pd25 alloy and achieved sooner compared to binary TiNi 

thermomechanically cycled under similar conditions (Figure 7.7a). 

In addition to the evolution of irr, there were also notable changes in thermal 

hysteresis (T), recovered transformation strain (rec) and transformation temperatures 

during the course of training. T increased from 23 °C to 25 °C for the as-received 

material, while it remained constant at 24 °C for the ECAE processed material. 

Transformation temperatures (  
 ) of both materials increased, indicating that the 

internal stress fields generated due to the applied stress favored the formation of 

martensitic variants.    
  of as-received TiNiPd increased from 192 °C to 210 °C in 100 

cycles, while   
  of the ECAE processed material increased from 172 °C  to 183 °C. For 

both materials, there was also an increase in rec as a result of training. The smaller rec of 

the ECAE processed sample can be explained by the difficulty of reorienting martensitic 

variants, i.e. higher stresses are needed for the ECAE processed sample to reorient the 

same amount of martensite. In 100 cycles, the 2.23 % recoverable strain increased by 

0.27 % for the as-received material, while for the ECAE processed material, the 2.09 % 

initial rec increased by 0.21 %. 

 

8.2 Stability of the TWSME during Stress-Free Thermal Cycling 

 Following training, samples were unloaded and heated above the stress-free 

austenite finish temperature,   
         During this heating process, a relatively large 

strain recovery took place which is associated with the reverse transformation of the 

detwinned post-trained martensite (Figure 8.2). Following this initial no-load cycle, 10 
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stress-free thermal cycles were performed to assess the stability of the TWSME that was 

developed due to training. 

 

 

It was observed that both materials displayed good TWSME stability during 

stress-free thermal cycling. However, there is still some degradation in TWSME for both 

materials evidenced by a decrease in martensitic (cold) and austenitic (hot) shape strains. 

In 10 stress-free cycles, the cold and hot-shape strains of the as-received material 

decreased by 0.31 % and 0.18 %, while a superior behavior was observed in the ECAE 

processed material, evidenced by 0.20 % and 0.03 % decreases, respectively. These 

results are in good agreement with similar work done on Ni49.7Ti50.3 (at.%) SMA by 

 

 (a) 

 

(b) 

Figure 8.2  Ten stress-free thermal cycles for the (a)  as-received and (b)  ECAE 

processed Ti50.5Ni24.5Pd25 performed after 100-cycle, 150 Pa training demonstrating the 

magnitude and stability of the TWSME. 
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Scherngell et al. [133], who showed that an increased dislocation density inhibited the 

degradation of TWSME during stress-free cycling.  

 The TWSM strain was calculated as the strain difference between the cold and 

hot-shape strains for a given stress-free cycle. This strain is reported to be highly related 

to the recoverable transformation strain, rec of the last training cycle [49], which is 

consistent with the current results. For the as-received material, rec of the last training 

cycle was 2.50 %, while the TSWM strain during the first stress-free cycle was 2.38%.  

For the ECAE processed material, rec during the last training cycle was 2.28%, while 

the TWSM strain during the first no-load cycle was 1.65%.  In terms of magnitude, these 

values are very close to the rec values that could be obtained from these materials under 

stress-assisted conditions prior to training. For instance, 2.48 % rec can be obtained from 

the as-received material under 150 MPa (Figure 4.7a), while this value is 1.95 % for the 

ECAE processed material. This indicates the efficiency of the training procedure 

employed in this study and the response of the Ti50.5Ni24.5Pd25 to the training in general.     

The stability of the TWSM strain was determined by comparing the TWSM 

strain at the first and tenth no-load cycles. For the as-received Ti50.5Ni24.5Pd25 the TWSM 

strain decreased from 2.47 % to 2.34 % in 10 cycles, while the decrease was from 1.65 

% to 1.48 % for the ECAE processed material.  For both materials, this represents about 

a 10% loss in TWSM strain capability after 10 cycles.  
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8.3 Work Output of the TWSME 

One of the most important characteristics of an SMA actuator is the work output, 

which is the product of rec and applied stress during a thermal cycle. As shown in Figure 

8.2, the trained samples exhibited TWSME by contraction and extension during reverse 

and forward transformations, respectively. If compressive stresses are applied to the 

samples during forward transformation, work may be done by the TWSME. To quantify 

the work output of TWSME, isobaric cooling-heating tests were conducted under 

different opposing compressive stresses. Both as-received and ECAE processed samples, 

which have previously been trained under 150 MPa and subsequently undergone 10 

stress-free cycles were loaded in compression in 25 MPa increments, starting at 0 MPa 

(Figure 8.3a and 8.3b). As-received materials trained for 100 cycles under 80 and 200 

MPa were also tested to assess the effect of training stress on the work output capability 

of the TWSME developed under different training conditions. At each stress increment, 

samples were thermally cycled through full transformation while recording the strain vs. 

temperature response. Loading was done to 75 MPa, at which point the TWSME was 

almost suppressed for the as-received materials and completely suppressed for the ECAE 

processed material, suggesting the level of internal stress generated during training, at 

least in the uniaxial direction, was greater in the as-received material compared to the 

ECAE processed material. Furthermore, the as-received material maintains its greater 

transformation strain at all stress levels compared to the ECAE processed material, 

resulting in a much greater work output as summarized in Figure 8.3c. 

 



 151  
  

 

(a) 

 

(b) 

 

 (c) 

Figure 8.3 Load-biased thermal cycling test results for the (a)  as-received plus trained 

and (b)  ECAE processed and trained Ti50.5Ni24.5Pd25 performed after 10 stress-free 

thermal cycles. Samples were loaded under different compressive stress levels to assess 

the work output of the TWSME. (c) A comparison of the work output values for the  as-

received and ECAE processed Ti50.5Ni24.5Pd25 trained under different stress levels, as 

well as the work output levels for a binary TiNi [91] and Cu-based SMA [37].  

  

Figure 8.3c is a compilation of work output results obtained from isobaric 

cooling-heating tests performed on the Ti50.5Ni24.5Pd25 HTSMA after various training 

conditions, along with data from the literature for other systems [37, 91]. If the work 
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output is defined as OPP TWSM
TWSME

σ ε
W

ρ
 , where OPPσ  is the opposing compressive 

stress, TWSM  is the TWSM strain obtained under OPPσ  and  is the density (taken as 

7.532 g/cc for Ti50.5Ni24.5Pd25) , it is clearly seen in Figure 8.3c that WTWSME increased 

with increasing training stress for the as-received material. WTWSME values reaching 0.12 

J/g could be obtained from the as-received Ti50.5Ni24.5Pd25 under appropriate training 

conditions. These values are substantially high compared to the reported TWSME work 

output values for TiNi [91] and Cu-based SMAs [37], which are also shown in Figure 

3.c. However, the work output for the TWSME is still less than what can be achieved 

under a biased OWSME, which is 0.491 J/g and 0.743 J/g  of work for Ti50.5Ni24.5Pd25 

under 150 and 200 MPa bias stresses, respectively. 

In hindsight, it is not surprising that the as-received material has superior TWSM 

characteristics compared to the ECAE processed material.  During isobaric cooling-

heating experiments, preferred variants of martensite are formed during cycling that will 

maximize the recoverable strain during transformation.  The purpose of training, which 

is nothing more than repeated isobaric cooling-heating experiments, is to develop an 

internal stress state through the generation of dislocations and other defects, which 

stabilizes this group of preferred martensite variants during the transformation process.  

In essence, training stabilizes the martensite formation path, so even without the external 

applied stress this same path is followed [37].  The as-received material is superior to the 

ECAE processed material because it starts out as a clean slate.  It has a relatively low 

defect density, as it was hot extruded and relatively dislocation free, and therefore 
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training is free to imprint a particular transformation path with variants that can undergo 

maximum recoverable strain. The ECAE processed material, on the other hand, already 

has a significant density of dislocations resulting from the SPD processing and also a 

refined grain size.  This internal stress state would favor a more random selection and 

greater percentage of self-accommodative martensite variants with greater chance for 

interaction and less capability to carry strain.  Training then serves to reinforce this more 

self-accommodative transformation path resulting from the original ECAE processing.  

Thus, the variants that are stabilized in the as-received material carry much greater strain 

than those reinforced in the ECAE processed material due to the refined grain size and 

prior work already present in the latter material.  The recoverable strain levels developed 

in the two materials (as-received vs. ECAE processed) after training and resulting 

magnitude of the TWSME, which approaches the recoverable strain developed during 

training support this argument.  Thus, the lesson learned is that the magnitude of the 

TWSME is maximized by training a material that is initially internally stress free, with 

few prior dislocations, defects, or coherent precipitates rather than starting with a 

material that already contains some structure. 

 

8.4 Stability of the TWSME during Thermal Cycling under Stress 

 It should be emphasized that work output levels reported in the previous section 

were single cycle measurements. For a reliable implementation in actuator applications, 

the response of the TWSME during repeated thermal cycling under stress should be 

determined. To achieve this goal, following the isobaric cooling-heating tests, 10 
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thermal cycles under 50 MPa compressive stress were performed to assess the stability 

of the TWSME while performing work. Figure 8.4a and 8.4b show the results of these 

tests for the 150 MPa trained as-received and ECAE processed material, respectively.  

 

 

 (a) 

 

(b) 

Figure 8.4 Strain vs. temperature evolution during 10 thermal cycles under 50 MPa 

compressive stress for the (a) as-received and (b) ECAE processed Ti50.5Ni24.5Pd25 to 

assess the stability of TWSME while doing work. 

 

Both materials showed a rapid degradation in TWSM strain as evidenced by the 

large changes in cold-shape strains. The amount of overheating above   
         

temperature might play a role in this unforeseen behavior, i.e. ECAE processed sample 

had to be overheated by roughly an extra 25 °C under each stress level to reach to the 

same UCT. 

Although ECAE resulted in a superior TWSME stability during stress-free 

thermal cycling, it did not have the same effect on the stability of the TWSME work 
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output. In only 10 thermal cycles, the TWSM strain of the as-received sample dropped 

from 1.3 % to 0.8 %. The hot-shape strain of the ECAE processed sample remained 

quite stable, but the cold-shape strain degraded significantly, reducing the TWSM strain 

from 0.4 % to 0.1 %. The amount of overheating above σ

fA  temperature and the higher 

dislocation density expected in the ECAEed sample (Figure 5.2b) might play a role in 

this unforeseen behavior, i.e. ECAE processed sample had to be overheated by roughly 

an extra 25 °C under each stress level to reach to the same UCT and this may cause 

easier relaxation of the oriented internal stress due to higher dislocation density.  

 

8.5 Effect of Upper Cycle Temperature on the Stability of TWSME 

In order to show the effect of UCT on the TWSME stability, an ECAE processed 

sample was trained under the same conditions, except this time using a lower UCT of 

240 °C. All the subsequent thermomechanical characterization tests including 10 stress-

free thermal cycles (Section 8.2), isobaric cooling-heating test under compressive 

stresses (Section 8.3) and 10 thermal cycles under 50 MPa compressive stress (Section 

8.4) were also carried out using this lower UCT value. The results of these tests are 

illustrated in Figure 8.5. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8.5 Repeating of the thermomechanical characterization tests for the ECAE 

processed sample at a lower UCT of 240°C. (a) 100-cycle thermomechanical training 

under 150 MPa, (b) 10 stress-free thermal cycles, (c) isobaric cooling-heat test under 

various compressive stresses and (d) 10 thermal cycles under 50 MPa compressive 

stress.  

 

 A 40 °C decrease in the UCT barely affected the evolution of shape memory 

characteristics during training (Figure 8.5a). First cycle irr remained unchanged at 0.10 

%, while the total irrecoverable strain decreased from 0.65 % to 0.58 %. The change in 

other shape memory properties, such as T, rec and transformation temperatures 
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followed a similar trend as described in Section 8.1 with slightly different values. T 

stayed constant at 25 °C, while   
  increased from 171 °C to 181 °C. rec of the first 

cycle was found to be 2.13 % and increased to 2.23 % at the end of 100 cycles.  

The functional stability during stress-free thermal cycling was also marginally 

affected by the lower UCT choice. Cold-shape strain decreased by 0.13 %, while hot-

shape strain decreased by 0.06 %, resulting in a TWSM strain degradation from 1.76 % 

to 1.66 % in 10 cycles.  Nevertheless, the stability of the TWSME work output was 

significantly increased when a lower UCT was used during thermal cycling. The amount 

of opposing stress required to fully suppress the TWSME increased, leading to larger 

overall work output levels (Figure 8.5c). In addition, the degradation of the TWSME 

during thermal cycling under a constant stress level significantly decreased (Figure 

8.5d). 

  

8.6 Summary and Conclusions 

In this chapter, Ti50.5Ni24.5Pd25 HTSMA was subjected to a training procedure 

consisting of 100 thermal cycles under different stress levels (i.e., 80, 150, and 200 MPa). 

The resulting TWSME was characterized in terms of its stability during both stress-free 

and load-biased thermal cycling. The effect of ECAE on the stability of the TWSME 

was also studied. Major findings and conclusions that can be drawn from this study are 

as follows: 

1. TWSME could resist moderate opposing stresses, resulting in a maximum 

external work of 0.12 J/g after training under 200 MPa. This level of work output 



 158  
  

was significantly higher than that attributed to a TWSME developed in 

conventional TiNi and Cu-based SMAs. A maximum work output for the 

TWSME was achieved at an opposing stress of approximately 50 MPa, 

regardless of the training stress used to develop the TWSME. Additional 

increases in stress beyond this peak resulted in a substantial degradation in the 

TWSM strain and consequently work output of the TWSME.  In the as-received 

material an opposing stress of greater than 75MPa was necessary to suppress the 

TWSME.  

2. The effect of ECAE prior to training on the magnitude and stability of the 

TWSME was also studied. A stable TWSME with small degradations in cold and 

hot shape-strains upon stress-free thermal cycling was obtained, but due to the 

nature of the training and the already induced defect structure in the ECAE 

processed-material, the magnitude of the resulting transformation strain and work 

output generated by the TWSME effect was far less than that developed in the 

as-received material. Another reason for this might be the larger overheating 

above the   
  temperature used during the thermal cycling of the ECAE 

processed material and easier relaxation of the internal stresses due to the heavily 

deformed microstructure. 

3. The stability of TWSME during stress-free thermal cycling was not reflected to 

the stability under stressed conditions. For both as-received and ECAE processed 

materials, the cold-shape strains decreased considerably upon repeated thermal 
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cycling under a constant opposing stress, leading to large degradations in TWSM 

strains.  

4. Similar to the conclusion made in the previous chapter, UCT was demonstrated 

to have a major role on the outcome of the TWSME stability during both stress-

free and load-biased thermal cycling. A higher UCT value was shown to result in 

faster and larger degradation of the TWSME in the ECAE processed material. 
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CHAPTER IX 

INFLUENCE OF MICROSTRUCTURE ON THE EVOLUTION OF SHAPE 

MEMORY BEHAVIOR DURING THERMOMECHANICAL TRAINING 

 

The previous two chapters investigated the stability and work output of the 

TWSME in trained SMAs. The evolution of shape memory behavior during 

thermomechanical training is equally important as the characterization of the trained 

material. Most SMAs display a similar evolution of shape memory behavior during 

training. Transformation temperatures, hot and cold-shape strains change considerably in 

the early cycles, the amount of change decreasing with number of cycles. Eventually, an 

almost stable behavior is obtained upon which further cycling results in only minor 

changes in transformation temperatures and hot and cold-shape strains. Since 

conventional training procedures are long and costly, it is desired that the trained SMAs 

reach stability in as few cycles as possible.  

The objective of this chapter is to explain the role of microstructural parameters, 

with a special focus on the crystallographic compatibility between transforming phases, 

on the response of SMA to training. The influence of training parameters such as applied 

stress or UCT has to some extent been investigated in previous chapters and is also 

covered in the literature. With an understanding of the role of the microstructural 

parameters on evolutionary load-bias behavior, the material behavior during training can 

easily be predicted. This will greatly help in choosing the right SMA composition for a 
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specific application and choosing the right training parameters to obtain stability in as 

few cycles as possible. 

 

9.1 Evolution of Shape Memory Behavior during Training 

One interesting phenomenon observed from the thermomechanical training tests 

covered in both Chapter VII and Chapter VIII was that although materials reached 

stability in a similar number of thermal cycles, the saturation value of irr per cycle 

during training, at a given applied stress level, was not equal to zero. This indicated that 

most of the microstructural evolution took place during the early cycles, but there was 

still a finite amount of defect generation upon transformation at the end of 100 cycles, 

which was found to be different for different alloy systems. Since λ2 was previously 

associated with defect generation and thus the appearance of thermal hysteresis, it was 

reasonable to question whether λ2 might also have an influence on this phenomenon.  

In order to validate this hypothesis, λ2 values of all thermomechanically trained 

materials in Chapter VII, as well as a slightly Ni-rich TiNiPd composition were 

measured using XRD analysis. The goal was to determine whether a correlation existed 

between the λ2 values and the saturation values of irr per cycle from thermomechanical 

training tests under different stress levels or not. In addition to the crystallographic 

compatibility, strength of the material, as quantified by the SIM

M

y    value (see 

Section 5.4.3) was also expected to have an influence on the evolutionary behavior 

during training, thus was also examined.  
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Figure 9.1 illustrates irr per cycle vs. number of cycles for different SMA 

systems under different training stresses. Figure 9.1a shows the level of irr generated 

under 80 MPa. All the tested materials reach a saturated level of irr by the end of 100 

thermal cycles as evident from the trends of irr per cycle, indicating that additional 

thermal cycling will only cause minor changes in the total deformation of the materials.  

However, the number of cycles to reach a certain level of stability is different for 

different compositions. All TiNiPd based and TiNiPt HTSMAs require around 40 cycles, 

while equiatomic TiNi requires at least 80 cycles to obtain a stable behavior. Once least 

square lines are fitted to the almost linear regions (between cycles 40-100 for 

TiNi(Pd,Pt) HTSMAs and cycles 80-100 for equiatomic TiNi), it is obvious that the 

saturation value of irr per cycle is different for equiatomic TiNi and TiNi(Pd,Pt) 

HTSMAs (Figure 9.1a). Equiatomic TiNi generates a irr of 0.024 % per cycle after 100 

thermal cycles, while all TiNiPd based HTSMAs generate irr of 0.002 % per cycle, 

almost ten times smaller than that of equiatomic TiNi. TiNiPt, on the other hand, has an 

intermediate value of 0.011 % per cycle (see the table on p.168).  

Increasing the training stress level does not change the observed trend in irr per 

cycle or the number of cycles required to achieve stable shape memory behavior. One 

exception seen in the 150 MPa training results is the continuously increasing irr per 

cycle values for TiNiPt HTSMA (Figure 9.1b). As mentioned in Chapter VII, this 

material was thermally cycled between 50 °C and 500 °C to ensure full transformation. 

Thus, the failure to achieve stability is due to creep effect as a result of high 
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temperatures and intermediate loads. This effect is even more pronounced at 200 MPa 

(Figure 9.1c). 

 

(a) 

 

(b) 

 

(c) 

Figure 9.1 Irrecoverable strain, irr, per cycle vs. cycle number for different SMA 

systems under (a) 80 MPa, (b) 150 MPa and (c) 200 MPa.  

 

For the other SMA systems, the difference in the saturation levels of irr per cycle 

can still be discerned in Figure 9.1b. Equatomic TiNi converges to a value of 0.021 %, 
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while TiNiPd based HTSMAs have a saturation irr per cycle value of 0.002 %. On the 

same figure, it should be noted that ECAE processing significantly reduces the amount 

of plasticity generated during the early cycles and the number of cycles required to 

achieve a certain level of functional stability. However, at the end of 100 thermal cycles, 

the functional stability levels of the ECAE processed sample are indistinguishable from 

those of the unprocessed TiNiPd based HTSMAs. Similar shape memory evolution 

trends were also recorded for training under 200 MPa. TiNiPt sample fractured at the 

60
th
 cycle due to excessive irr caused by creep effects. 

As mentioned above, regardless of the processing method or slight changes in 

composition, all TiNiPd HTSMAs converge to a similar stability level at the end of 100 

thermal cycles. The effects of solid-solution strengthening using Sc, ECAE processing or 

using a slightly Ni-rich TiNiPd composition can be better observed from Figure 9.2, in 

which the total irrecoverable strains (tot) developed during the 100 thermal cycles are 

plotted as a function of cycle number. An increase in stress results in an increased tot for 

all materials. Equiatomic TiNi exhibits the highest levels of plasticity at all stress levels. 

Figure 9.2b shows the tot levels for different materials during training under 150 MPa. 

As-received TiNiPd exhibits a tot of 2.26 % at the end of 100 thermal cycles. Sc 

addition reduces this value to 1.74 %, whereas using a slightly Ni-rich TiNiPd 

composition results in a value of 1.52 %.  ECAE processing greatly reduces the amount 

of plasticity evidenced by a tot of 0.58 % at the end of 100 cycles. It should be noted a 

large part of these differences comes from the initial training cycles since the slopes of 

the curves after the first 40 cycles are very small. 
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(a) 

 

(b) 

 

 (c) 

Figure 9.2 Total irrecoverable strain (tot) levels generated for different SMA 

compositions during training under (a) 80 MPa, (b) 150 MPa and (c) 200 MPa. 

 

9.1.1 Influence of Strength on the Evolutionary Behavior during Training 

Isothermal monotonic loading tests were conducted to assess the strength levels 

of the SMAs before training. Tests were done under compression at Ms + 15 °C to 

measure the SIM

M

y    levels, which represented the resistance of the materials against 
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plastic deformation (See Section 5.4.3). A higher difference indicated a higher resistance 

to defect generation. Figure 9.3 illustrates the stress vs. strain behavior of different alloys 

tested. Strength levels were found to be quite similar among as-received materials. Since 

ECAE processing greatly improved the SIM

M

y    of Ti49.5Ni25Pd25Sc0.5 (Section 5.4.3) 

beyond the levels that could be measured within the capacity of the testing frame (Table 

9.1), similar behavior was also expected from the ECAE processed Ti50.5Ni24.5Pd25 and 

thus, an additional monotonic loading test was not conducted. The improvements in 

SIM

M

y   levels after ECAE processing were previously shown to be due to the 

increased dislocation density and refinement of grains. The same microstructural 

changes are considered to be effective in the early cycles of training for the ECAE 

processed TiNiPd, which accumulated smaller amounts of irr compared to all other as-

received compositions (Figure 9.1b and 9.2b). 

 

 

Figure 9.3 Monotonic loading test results for the SMAs in the as-received condition. 

Tests were performed under compression at Ms + 15°C  to ensure similar thermodynamic 

conditions for each material. 
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9.1.2 Influence of Compatibility between Transforming Phases on the Evolutionary 

Behavior during Training 

The assumption at the beginning of the chapter was that the dimensional stability 

of an SMA was mainly dictated by the 2 value. Materials with 2 values closer to 1 

were expected to generate less plasticity upon further thermal cycling after achieving 

stability of the microstructure, e.g. once the reorientation process and formation of 

retained martensite were saturated. Figure 9.4 shows a plot of saturation values of irr per 

cycle during 80 MPa training with respect to the deviation of 2 values from 1 for 

different SMA compositions tested in this study.  

 

 

Figure 9.4 Saturation level of irr per cycle at the end of thermomechanical training 

under 80 MPa for different SMA systems with respect to the deviation of 2 from 1. 

 

It was previously stated in Section 4.2.1 that 0.5 at. % Sc addition slightly 

improved the compatibility of Ti50.5Ni24.5Pd25 by decreasing 2 from 1.0171 to 1.0158. 2 
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calculations were repeated for this study, this time taking measurements from the as-

received tension specimens to be trained. All TiNiPd based HTSMAs had very close 2 

values between 1.020 and 1.022. Small differences were found between Ti50.5Ni24.5Pd25 

and its Ni-rich counterpart, confirming the results of Frenzel et al.[89], who showed that 

crystallographic compatibility increased with increasing Ni contents in binary TiNi. 

TiNiPt HTSMA exhibited a relatively higher value of 2 which might explain the higher 

saturation value of irr per cycle during 80 MPa training (Figure 9.4). Equiatomic TiNi 

had the largest deviation from 2=1, and also had the largest saturation value of irr per 

cycle.  To summarize the results, the   2 values for different SMA systems, along with 

SIM

M

y    values, and saturation values of irr during 80, 150 and 200 MPa training 

cycles are listed in Table 9.1. 

 

Table 9.1 SIM

M

y    , 2 values, saturation levels of irr during 80, 150 and 200 Mpa 

training cycles for different SMA systems.  

 

SIM

M

y  
 

(MPa)
 2 

Saturation level of irr (%) during 

100-cycle training under 

80 MPa 150 MPa 200 MPa 

TiNi 824 0.96630 0.024 0.021 0.034 

TiNiPd 930 1.02176 0.002 0.002 0.008 

TiNiPd (Ni-rich) 972 1.01998 0.002 0.001 0.006 

TiNiPd (ECAE) > 1300 1.02176  0.002  

TiNiPdSc 966 1.01999 0.002 0.002 0.007 

TiNiPt 1071 1.02439 0.011   
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9.2 Summary and Conclusions 

SIM

M

y    levels, which are heavily dependent on microstructural characteristics 

such as grain size and dislocation density, were found to have an influence on the 

evolution of shape memory behavior during early training cycles. Yet, the amount of 

defects that could be generated upon further thermal cycling once the SMA has reached 

an almost dimensionally stable behavior was determined by the level of compatibility 

between transforming phases, i.e. 2 value. A strong correlation was found between the 

2 value and the saturation level of irr per cycle. More compatible materials with 2 

values closer to 1 exhibited smaller irr per cycle values upon further thermal cycling 

after reaching stability.  

It is not exactly known whether 2 is solely responsible for the amount of defect 

generation after a stable behavior is achieved with negligible changes in shape and 

transformation temperatures upon further thermal cycling. Encouraged by the recent 

unpublished results of NASA Glenn Research Center (GRC) on Ni-rich TiNiHf 

HTSMAs, it is plausible to state that a highly incompatible structure with 2 values 

largely deviating from 1 might exhibit small levels of plasticity if it has high strength 

levels. The Ni-rich TiNiHf HTSMA, after proper aging heat treatments, illustrated 

exceptional dimensional stability with almost no tot generated during a100-cycle 

training under 150 MPa. On the other hand, the Ni-rich TiNiHf in its as-extruded form 

accumulated a certain value of tot at the end of the same training procedure. Both of 

these conditions have the same values of 2, yet the age-hardenend TiNiHf is known to 
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exhibit much higher strength levels compared to the as-extruded condition [134]. These 

results are hinting the fact that strength of a material might play a more influential role 

on the overall functional stability of an SMA actuator compared to crystallographic 

compatibility between transforming phases.  
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CHAPTER X 

MAIN CONCLUSIONS AND FUTURE DIRECTIONS 

 

The functional stability, determined as a measure of change in the shape and the 

transformation temperatures of an SMA during repeated actuation, was studied in a 

model HTSMA, Ti50.5Ni24.5Pd25 alloy. Different processing methods were undertaken to 

modify the response of the alloy and the underlying mechanisms responsible for 

property enhancement or deterioration were studied.  

The main reason for functional instability was attributed to the creation of lattice 

defects (primarily dislocations) during repeated transformation cycles and thus several 

methods were successfully conducted to improve the functional stability of 

Ti50.5Ni24.5Pd25 HTSMAs for actuator applications. The mechanism for the improvement 

was either strengthening of the material against defect generation or saturating the 

material with defects such that additional defect generation upon further thermal cycling 

was harder to occur. Solid-solution strengthening using Sc microalloying, and grain 

refinement and work hardening via ECAE were used to increase strength levels, while 

thermal cycling at a constant stress level was utilized to saturate the HTSMA with 

defects. The outcome of all these methods was a decrease in the amount of defects 

generated upon further actuation cycles, leading to more functionally stable behavior. 

While strength was a key parameter for functional stability during a relatively 

small number of thermal cycles, crystallographic incompatibility between transforming 

phases dictated the functional stability behavior of an SMA in the long run.  
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As a result of intensive characterization and processing studies conducted 

throughout this investigation, it is possible to outline fundamental mechanical and 

microstructural properties for the ideal HTSMA actuator, which is expected to show near 

perfect functional stability. 

1. The ideal HTSMA actuator should have increased strength levels against 

plasticity. Solid-solution strengthening of Ti50.5Ni24.5Pd25 HTSMA using Sc 

improved functional stability through an increase in strength and crystallographic 

compatibility between transforming phases, while slightly decreasing 

transformation temperatures. Grain refinement and work hardening through 

severe plastic deformation (SPD) is another viable method to achieve increased 

strength levels, however the decrease in transformation temperatures and 

transformation strain at a given actuation stress level should be taken into 

consideration. Post-deformation annealing heat treatments were found to recover 

both transformation temperatures and transformation strain levels without 

severely affecting functional stability.  

2. As an alternative to the aforementioned strengthening methods, further defect 

generation can be suppressed if there is already a large volume of transformation 

induced defects present in the microstructure. Thermal cycling Ti50.5Ni24.5Pd25 

HTSMA under constant stress for a relatively small number of cycles (10 cycles) 

improved the functional stability levels similar to the levels achieved with Sc 

addition. Thermal cycling came with added benefits of increased transformation 
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temperatures and a 2% TWSM strain. Even larger TWSM strains (up to 2.5%) 

could be obtained after a 100 thermal cycle training procedure.  

3. A high level of crystallographic compatibility between transforming phases is the 

signature for a reduced potential for defect generation, thus enhanced functional 

stability. The SMA systems examined in this study had a martensitic structure of 

either orthorhombic (B19) or monoclinic (B19‟) symmetry. Since the 

compatibility levels associated with B19‟ to cubic (B2) transformation were 

found to be lower compared to B19 to B2 transformation, the HTSMAs with B19 

martensite are preferred for a better functional stability. However, they exhibit 

lower transformation strains than the SMAs with B2 to B19‟ transformation. 

Most SMA actuators operate based on the one-way shape memory effect 

(OWSME) combined with a biasing force to reset the SMA after each actuation cycle. In 

this respect, the two-way shape memory effect (TWSME) was investigated as an 

alternative means of actuation in HTSMAs to eliminate the need for a rebiasing force. 

Thermomechanical training in the form of thermal cycling under constant stress levels 

was employed to induce the TWSME in Ti50.5Ni24.5Pd25 HTSMA. Compared to binary 

TiNi, Ti50.5Ni24.5Pd25 exhibited much smaller degradation during stress-free thermal 

cycling, which makes this material an ideal candidate for actuator applications exploiting 

the TWSME. 

 Although the stability of the TWSME during stress-free cycling is a pre-requisite 

for actuator applications, its stability during cycling under load is much more critical 

since most applications require the SMA to do work against a load. The TWSME in 
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Ti50.5Ni24.5Pd25 HTSMA degraded substantially during thermal cycling under an 

opposing external force. The amount of degradation was found to be related mainly to 

the upper cycle temperature. An increase in the strength of the HTSMA through SPD 

processing did not prove to be useful in preventing this degradation.  

Work output of the TWSME was measured for the first time in Ti50.5Ni24.5Pd25 

HTSMA. Work output levels well above those obtained from conventional TiNi and Cu-

based SMAs, were achieved. Although, these values are substantially lower compared to 

what can be achieved under a biased OWSME, it is still possible to utilize the TWSME 

in these HTSMAs for applications requiring relatively low work output.  

 Overall, through intensive processing and thermomechanical characterization, 

Ti50.5Ni24.5Pd25 HTSMA was proven to be a promising candidate for high-temperature 

actuator applications with reasonable functional stability for both OWSME and 

TWSME. However, the thermomechanical characterization in this study consisted of a 

relatively low number of thermal cycles compared to the large number of cycles required 

for real applications. Therefore, more work is needed to assess the high-cycle 

transformation-induced fatigue performance of these HTSMAs. To the author‟s best 

knowledge, there is no study on the fatigue life of TiNiPd HTSMAs during high-cycle 

OWSME actuation. The causes of fatigue failure and influences of microstructural 

parameters already mentioned in this study on the fatigue life should be investigated as a 

future work. Similarly, if TWSME is intended to be used for a high number of cycles in 

application, its stability during stress-free or load-biased thermal cycling should be 

addressed accordingly.   
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APPENDIX 

FIGURES 

 

(a) (b) 

 

(c) 

 

(d) 

Figure A.1 100-cycle thermomechanical training results for (a) TiNi, (b) TiNiPd, (c) 

TiNiPdSc and (d) TiNiPt under 80 MPa. 
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(a) 

 

(b) 

 

(c) 

Figure A.2 The evolution of strain vs. temperature behavior during stress-free TWSME 

cycling for (a) TiNi, (b) TiNiPd and (c) TiNiPdSc 

 

  



 185  
  

VITA 

 

Kadri C. Atli was born in Istanbul, Turkey. After receiving a B.S. degree in 

mechanical engineering from Bogazici University in 2002, he took a break from his 

academic studies until 2005. During this time, he worked as a research and development 

engineer in G-U Yapi Elemanlari A.S., Istanbul from 2002 to 2003 and Assan 

Aluminium, Istanbul from 2003 to 2005. In 2007, he received a M.S. degree in 

mechanical engineering from Bogazici University and started the Ph.D. program at 

Texas A&M University. During his graduate studies, he continuously held a research 

assistantship, while publishing five peer-reviewed journal articles and one conference 

proceeding. He also had the opportunity to present his research in nine international 

conference symposia. Upon graduation, he will continue his post-doctorate studies in 

Chemnitz University of Technology in Chemnitz, Germany, studying the dynamic 

behavior and high-strain rate response of shape memory alloys. His permanent address 

is: 

Department of Mechanical Engineering 

c/o Dr. Ibrahim Karaman 

Texas A&M University 

College Station, TX 77843-3123 

Email: canatli@gmail.com 

 

 


