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ABSTRACT

Systems and Algorithms for Automated Collaborative Obsgon Using Networked
Robotic Cameras. (August 2011 )
Yiliang Xu, B.S., Zhejiang University; Ph.D., Nanyang Teclogical University

Chair of Advisory Committee: Dr. Dezhen Song

The development of telerobotic systems has evolved frongl&i@perator Single
Robot (SOSR) systems to Multiple Operator Multiple RoboOMR) systems. The rela-
tionship between human operators and robots follows théemakve control architecture
and the requests for controlling robot actuation are cotalylgenerated by human oper-
ators.

Recently, the fast evolving advances in network and comgatdnologies and de-
creasing size and cost of sensors and robots enable ustterfagtend the MOMR system
architecture to incorporate heterogeneous componentsagibiumans, robots, sensors,
and automated agents. The requests for controlling rodoaten are generated by all
the participants. We term it as the MOMR++ system. Howeweretach the best po-
tential and performance of the system, there are many teghchallenges needing to be
addressed. In this dissertation, we address two majoresigdk in the MOMR++ system
development.

We first address the robot coordination and planning issu@enapplication of an
autonomous crowd surveillance system. The system comsistsitiple robotic pan-tilt-
zoom (PTZ) cameras assisted with a fixed wide-angle cameha. wide-angle camera
provides an overview of the scene and detects moving objadtich are required for
close-up views using the PTZ cameras. When applied to thegbeah surveillance ap-
plication and compared to a previous work, the system aeBi@wreasing number of

observed objects by over 210% in heavy traffic scenarios. Kelyeissue here is given



the limited number (e.gp (p > 0)) of PTZ cameras and many more (e®g.(n > p))
observation requests, how to coordinate the cameras teshtsty all the requests. We
formulate this problem as a new camera resource allocatioiolgm. Givenp cameras,

n observation requests, andeing approximation bound, we develop an approximation
algorithm running in0(n /e + p?/€%) time, and an exact algorithm, when= 2, running

in O(n?) time.

We then address the automatic object content analysis angniion issue in the ap-
plication of an autonomous rare bird species detectioresystVe set up the system in the
forest near Brinkley, Arkansas. The camera monitors the dddects motions, and pre-
serves video data for only those targeted bird speciesnDtine one-year search, the sys-
tem reduces the raw video data of 29.41TB to only 146.7MBucédn rate 99.9995%).
The key issue here is to automatically recognize the flying §pecies. We verify the bird
body axis dynamic information by an extended Kalman filté€ffzand compare the bird
dynamic state with the prior knowledge of the targeted bjrelcges. We quantify the un-
certainty in recognition due to the measurement unceytaind develop a novel Probable
Observation Data Set (PODS)-based EKF method. In expetinvath real video data,
the algorithm achieves 95% area under the receiver opgreliaracteristic (ROC) curve.

Through the exploration of the two MOMR++ systems, we codelthat the new
MOMR++ system architecture enables much wider range ofgyaaints, enhances the
collaboration and interaction between participants soitifarmation can be exchanged
in between, suppresses the chance of any individual biasstakes in the observation
process, and further frees humans from the control/obgBenarocess by providing auto-
matic control/observation. The new MOMR++ system arcliitexis a promising direc-

tion for future telerobtics advances.
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1. INTRODUCTION

A telerobot is a robot remotely controlled by a human opertointeracting with a
remote physical environment [1]. In most practice, the Heylel robot planning or cogni-
tive decisions are by the human operator while the robotsigaesible for the mechanical
implementation. The research on telerobotics has been poriamt aspect in the field of
robotics for a long history and it has found many applicatisach as space exploration [2],
health care [3], and natural observation [4].

In traditional telerobotic systems, a human operator andbatrcommunicate by
transmitting control commands and state feedback throudadicated communication
medium. According to the taxonomy proposed by Chengl. [5], this class of systems
belongs to Single Operator Single Robot (SOSR) systemst &kisting telerobotic sys-
tems can be modeled by this master-slave architecture. 98,18icola Tesla [6] first
demonstrated a radio-controlled vessel in the New York.Qity1950’s, Goertz [7] de-
veloped systems which are directly controlled by human tedleradioactive materials
behind shield walls. However, under this architecturecthrgrol commands and decisions
are made by individual human operator. Therefore, the tyuaflthe control and operation
is significantly affected by the individual human operatanjch limits its accessibility to
only trained specialists and experts.

The development of network technology allows a new comnatiin medium be-
tween the local control site and the remote robot site ansl tipens up new possibilities
in system architecture. In 1994, the telegarden [8] (Fig.tkecame the first robot on web
that allows World Wide Web (WWW) users to control a remoteatoln a garden filled
with living plants. Since the system queues the users tosadbe robot sequentially, it
essentially still belongs to SOSR category through it dyesattends system'’s accessibility
to general public including both amateurs and experts tiitd/WW.

This dissertation follows the style ¢EEE Transactions on Image Processing



Using computer network as the communication medium, Sohgx{tended the sys-
tem architecture by including multiple human operatorscteas the robot simultaneously.
The control commands of the robot are generated by combthmthe requests for con-
trol from multiple operators. In [9], even a human actor wilmeras and microphones,
replace the role of robot and navigates and performs actiotise remote environment,
collaboratively controlled by multiple online users. Thiass of systems is categorized as
Multiple Operator Single Robot (MOSR) systems. MOSR agtttiire especially with net-
work as communication medium greatly extends system’sssduéity to general public.
Furthermore, since multiple human users share the conttbkeaobot, it helps improve
the system’s reliability due to the collaboration betwesera. However, since there is
only one robot, the system’s capability especially in tesksh as search, surveillance, and
exploration etc. is limited.

Recently, Multiple Operator Multiple Robot (MOMR) systefmsve emerged [10, 11].
It allows multiple human operators to control multiple @m®igeneous) robots. For ex-
ample, Liu and his colleagues [12], developed a competM@MR system with two
robotic arms controlled by two human users respectivelyeuadyame setting. However,
since most existing systems still allow only one operatatitectly control one robot, it is
still the master-slave control. Also the robots control caamds are still based on human

inputs.

1.1 MOMR++: Networked Automated and Collaborative ObstoveSystem

The limits of the existing systems motivate us to extend jlstesn architecture. Re-
cently, the fast evolving advances in network and compuetehriologies and decreasing
size and cost of sensors and robots enable us to furtherdettteMOMR system archi-
tecture to incorporate heterogeneous participating comps such as humans, robots,
sensors, and automated agents. It allows multiple humas,usmsors, automated agents
to access multiple robots. The requests for controllingtalctuation are generated by all

the participants. We term it as MOMR++ system. The MOMR++#elys consist of:



Fig. 1.1. Telegarden [8] is the first robot on web that allows World Wide
Web (WWW) users to control a remote robot in a garden filledh\Wwtng
plants.

Participants: humans, sensors, and automated agents.

Network communication medium

Web server: a computer running a web server software.

Robots.

Fig. 1.2 shows an example of MOMR++ system: networked autedand collabora-
tive observation system. The system allows multiple irgeusers to observe the remote
physical environment using multiple robotic cameras. Yskasignate regions of interest
by drawing rectangles in the display of the scene. Meanwhiléomatic agents may re-
guest to periodically check certain regions and the optoal/or wireless sensors detect
motions and anomalies and may request the cameras to fatlowherefore, control com-
mands of the robotic cameras are generated by combiningesktobservation requests
from heterogeneous participants instead of just humansnpthis class of systems has
many applications such as surveillance, nature obsenadiducation, journalism, and

entertainment.
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Fig. 1.2. The networked automated and collaborative observation sys
tem extends the traditional telerobotic system architedioiincorporate
heterogeneous participating components such as huméagsysensors,
and automated agents.

The new system enables much wider range of participants,asia large group of stu-
dents or researchers, to access to valuable resourcesefggnsive robotic cameras), so
that the utility of the these resources are improved. It aldzances the collaboration and
interaction between participants so that information caexchanged in between, which
is very useful in learning and education domains. Since #meras’ control are shared
with all participants, it suppresses the chance of any iddal bias or mistakes in the
observation process. Since automatic agents and senscoral the robot and perform
the observation task without human inputs, it further freesmans from the observation
process by providing automatic observation. It also redubhe human workload by re-
ducing the volume of data that requires human verificatiortesonly interesting content
is preserved by automated agents and sensors.

However, by incorporating various heterogeneous compsnéime relationship be-

tween these components becomes more complicated. Thentmmad master-slave ar-



chitecture no longer holds. For example, human users coufgbete for or collaboratively
share the control of robots; automated agents or even senmsy take over the control
of the robots and complementarily execute the observatiskstfor humans. As a re-
sult, to reach the best potential and performance of thesyghere are many technical
challenges need to be addressed. In this dissertation, dvessdtwo major challenges in

MOMR++ system development.

1.1.1 MOMR++: Autonomous Crowd Surveillance System

We first address the robot coordination and planning issu@enapplication of an
autonomous crowd surveillance system. The system comdistsiltiple robotic pan-tilt-
zoom (PTZ) cameras assisted with a fixed wide-angle camehna. wide-angle camera
provides an overview of the scene and detects moving objettieh are considered as
objects of interests. Based on the output of the wide angteeca the system generates
spatiotemporal observation requests for each object, hwéaiie candidates for close-up
views using the PTZ cameras. The system computes the caotmohands for the PTZ
cameras to track and observe the objects of interest by cimgpthe optimal PTZ cam-
eras’ frames that best satisfy these observation requégsmplement the system and
test it for pedestrian surveillance in a university campusrenment. When compared to
a previous work, the system achieves increasing numbersairobd objects by over 210%
in heavy traffic scenarios.

The key issue in the autonomous crowd surveillance systagivés limited number
(e.g.,p (p > 0)) of PTZ cameras and much more (exg(n > p)) observation requests,
how to coordinate the cameras to best satisfy all the reguesé formulate the cam-
era planning problem as a new camera resource allocatidiigono We propose a new
similarity metric to measure the degree of satisfactiorefach request. We focus on the
development of scalable fast algorithms to solve this mnobl We develop an approxi-
mation algorithm with guaranteed approximation bound clvigrovides tradeoff between

the solution quality and speed. Givertamerasy observation requests, aadbeing ap-



proximation bound, the algorithm runsdn(n /e + p* /%) time. We also develop an exact
algorithm whenp = 2, which runs inO(n?) time. This algorithm addresses the online
computation requirements and fits many real-life apploceti

We report this autonomous crowd surveillance system anatighgn development in

Sections 2, 3, 4.

1.1.2 MOMR++: Rare Bird Species Detection System

We then address the automatic object content analysis aodnmiion issue in the
application of an autonomous rare bird species detectietesy. We set up the system
in the forest near Brinkley Arkansas for searching the tinig-be-extinct ivory-billed
woodpeckers. The camera monitors the sky, detects motamspreserves video data
for only those of targeted bird species. Without the humaguis, the system needs to
autonomously distinguish and recognize the targeted blijec the bird species here)
from other moving objects and environmental noises and pragerves the interesting
information for human verification. The system runs comimly from October 2006
to October 2007. During the one-year search, the systentesdhe raw video data of
29.41TB to only 146.7MB (reduction rate 99.9995%).

The key issue in the bird detection system it to automaticaltognize the flying bird
species. We verify the bird body axis dynamic informationaloyextended Kalman filter
(EKF), and compare the bird dynamic state such as body axgghend flying speed with
the prior knowledge of the targeted bird species. Howewes td significant measurement
data noise and insufficient measurement data volume, aarel§WIF fails to converge. To
resolve this issue, we quantify the uncertainty in recagnitiue to the measurement un-
certainty and develop a novel Probable Observation DatéP&dDS)-based EKF method.
The new PODS-EKF algorithm searches the measurement amge rfor all probable
observation data that ensures the convergence of the pondisg EKF, which guaran-
tees to bound the true (noise-free) bird state. We then flat@the recognition problem

as an optimization problem which searches in the PODS fontbst likely observation



corresponding to the true (noise-free) bird state. In @rpants with real video data, the
algorithm achieves 95% area under the receiver operatiagacteristic (ROC) curve.
We report this bird detection system and correspondingiligo development in Sec-

tions 5 and 6.



2. MOMR++ SYSTEM: AUTONOMOUS CROWD SURVEILLANCE SYSTEM

In this section, we report a example of the MOMR++ system: @orsomous crowd
surveillance system with multiple pan-tilt-zoom (PTZ) anas assisted by a fixed wide-
angle camera. Consider a wide-angle camera is installedl aitjgort for human activity
surveillance or in a forest for wildlife observation. Thedetangle camera can provide
large, low resolution coverage of the scene. However, r@tiog and identification of
humans and animals usually require close-up views at highlugon which needs PTZ
cameras. The resulting autonomous observation systenist®io$ a fixed wide-angle
camera with multiple PTZ cameras as illustrated in Fig. ZHe wide-angle camera mon-
itors the entire field to detect and track all moving objeéiach PTZ camera selectively
covers a subset of the objects.

However there are usually more moving objects than the numb®PTZ cameras.
With these competing spatiotemporal observation requigstsnajor challenge is the con-
trol and scheduling of the PTZ cameras to maximize the ‘fation” to the competing
requests. The system design emphasizes the “satisfatbidimé requests which takes into
account the 1) camera coverage over objects, 2) camera avefrsklection, and 3) cam-
era traveling time. We approach the control and schedulioglem in two steps. First, a
subset of the requests/objects is assigned to each PTZ&a8eugond, each PTZ camera
selects its PTZ parameters to cover the assigned objectdoViailate the problems in
both steps as frame selection problems. We propose an apation algorithm as in Sec-
tion 3, and an exact algorithm as in Section 4 to solve theraahtrme. We implement the
system and validate it in simulations and physical expenisieThe experimental results
show that our system outperforms an existing work by inénggihe number of observed

objects by over 210% in heavy traffic scenarios.
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2.1 Related Work

The proposed autonomous observation system relates taigtmeg works on motion
detection and tracking, and multiple and active cameraesilamce systems.

Our system critically relies on the motion detection andeobjracking techniques in
computer vision. Motion detection involves in detecting thoving objects and segment-
ing them out of the background from a video sequence in the sa@ne. To address the
noise and changes in background, various background mioalsbeen proposed. Exam-
ples include temporal average [13], mean average devi@éD) [14], mixed Gaussian
model [15], adaptive Gaussian estimation [16, 17], noraqueatric model [18], Kalman
filter compensation [19], and texture-based model [20]. éerg survey on motion de-
tection can be found in [21]. Motion tracking usually builois the motion detection. It
predicts the trajectory of the objects by locating theiriposs in every frame of the video
sequence. Based on the representation of the object,rexiséicking technologies can
be categorized as point tracking [22], kernel tracking [@34l silhouette tracking [24]. A
variety of fundamental techniques have been proposeddokitrg, such as support vec-
tor machine (SVM) [25], active contour evolution [26] and U transform [27] etc. A

comprehensive survey on object tracking can be found in [28fently, due to its flexible
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field of view (FOV) and variable resolution, pan-tilt-zoofTZ) camera has been used
for tracking purpose. Unlike the work in [29], where each RCBfnera tracks only single
object, our diagram is able to use only single PTZ to covemtinétiple moving objects
simultaneously.

In the recent decade, multiple camera surveillance systespgcially those with both
static and active cameras have attracted growing atteaficesearch. Most of the works
are master-slave camera configuration [30]. The mastec stnera(s) provide the gen-
eral information about the wide-angle scene while the skteve cameras acquire the
localized high-resolution imagery of the regions of ingtreThis is a relatively new re-
search area with many directions to explore. Early reptesiga works include Stillman
et al.[31], which addresses the camera-object assignment pnodtel Greiffenhagest
al. [32], which proposes a dual camera surveillance systemstorgof a ceiling mounted
omnidirectional camera and a PTZ camera. Our work belonggsaategory.

Most works in this category schedule the active camerasdbasestraightforward
heuristic rules. Zhoet al. [30] choose the object closest to the current camera setting
the next observation object. Hampajial. [33] adopt the simple round robin sampling.
Bodoret al.[34] and Fioreet al.[35] propose a dual-camera system with one wide-angle
static camera and a PTZ camera for pedestrian surveillddoman activities (walking,
running, etc.) are prioritized based on the preliminarpgestion by the wide-angle cam-
era. The PTZ camera focuses to the activity with the highestity for further analysis.
Costelloet al.[36] are the first to formulate the single camera scheduliogplem based
on network packet scheduling methods. The authors propabeanpare several greedy
scheduling policies. With different assumptions towalssdbservation scene and objects,
various scheduling formulation and schemes are proposddm et al. [37], the schedul-
ing problem is formulated as a graph matching problem. Int®irand Pernici [38], the
continuous scheduling problem is truncated by a predefibedrwation deadline and each
truncated camera scheduling problem is formulated as aneodynamic vehicle routing

problem (DVRP). Qureshi and Terzopoulos [39] propose ai@irenvironment simula-
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tor to test various camera senor network frameworks. Hontese methods assign only
one object to one active camera. Our system assigns mutygets to individual cameras
by selecting PTZ camera parameters such that the camereageveesolution tradeoff is

achieved. This also enables group watching with scalgbilit

Very few work considers the selection of the zoom level oivaotameras and assigns
multiple objects to individual cameras. Liet al. [40] construct the observation task
for each single object as a “task visibility interval” (TMdased on its predicted states and
corresponding camera settings. When TVIs have non-emgaxsiection, they are grouped
to form a “multiple task visibility interval” (MTVI). Basedn the order of the starting time
of (M)TVIs, a directed acyclic graph (DAG) is constructedhelscheduling problem is
formulated as a maximal flow problem. A greedy algorithm anigrmamic programming
scheme are proposed to solve it. Zhasigal. [41] construct a semantic saliency map
to indicate the observation requests. An exhaustive dlgariinds the optimal single
frame that minimizes the information loss. Sommerlade agid R2] use an information-
theoretic framework to study how to select a single activeara’s zoom level for tracking
a single object to balance the chances of loosing the traajedt and that of loosing trace
of other objects. In contrast to these works, our approaske dot require accurate long-
term motion prediction. The assignment of multiple obje¢otgdividual PTZ cameras is
carried out by selecting the camera parameters to achieveateoff between coverage
and resolution.

Evaluations of these scheduling strategies are usuallg dgnsimulation. Qureshi
and Terzopoulos [43] propose a virtual environment sinaulit test various camera senor
network frameworks. Other related works on active camera@aetwork include [44,45]
which addresses the automatic calibration in the hybridezametwork. [46] address how
to determine active camera settings based on predictedtobgion.

In contrast to the existing works in this category, we pr@padramework that sup-
ports each PTZ camera to cover multiple objects simultasigoMVe formulate the cam-

era scheduling problem as a sequence of frame selectioteprao that the overall sat-
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isfaction to the observation requests is maximized oveetitWe don’t require accurate
long-term prediction of object motion and camera calilomati It will be shown that our
formulation of the problem is essentially the generalmatf many existing works.

Our group focuses on developing intelligent vision systantbalgorithms using robotic
cameras for a variety of applications such as constructionitoring, distance learning,
panorama construction and natural observation [4]. In threext of using PTZ camera
for the collaborative observation, competing observategquests need to be covered by
camera frame(s) to maximize the overall observation rewahds issue is formulated as
a single frame selection (SFS) problem [47]. A series of @tlgms for the single frame
selection problem have been proposed [47,48]. Sarad. [49] propose an autonomous
observation system in which a single PTZ camera is used fiti tdmpeting spatiotem-
poral observation requests. In this section, multiple Paeras are used to increase the
observation coverage. We formulate the problem of cootiigadhep camera frames as
the p-frame problem and propose an approximation algorithm anexact algorithm in

the next two sections for solving it.

2.2 System Overview

Fig. 2.1 shows the architecture of the system. The systemigsrofp (p > 1) PTZ
cameras and a wide-angle camera. All cameras are calibrateel wide-angle camera
detects and labels all moving objects in the scene. Thesstditthe objects (e.g., size,
position and velocity) are tracked and predicted. Basedemtediction, the observation
request generation module generates the competing spapotal observation requests
(shadowed rectangles) for all objects. Then the requesgframsent module groups requests
and assigns a subset of the objects/requests to each PTZadayr@mputing the-frame
settings that best satisfy the requests. Each PTZ camekstilae objects assigned to it
by selecting the PTZ parameter settings that best satisetihequests to capture high

resolution images/videos of the objects.
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|:| PTZ camera coverage

D Object of interest

Fig. 2.2. System timeline. An observation cycle starts at ¢,. Within
each cycle timd’ = ¢, + ¢,, all PTZ cameras first take no more than
time to adjust the PTZ parameters so that each PTZ cameraiged
with a subset of the objects. Then each PTZ camera micrcstsdits
parameters within interval to track the assigned subset of objects. This
tracking lasts), time until a new observation cycle starts.

Fig. 2.2 shows the timeline of the system. An observatiornecgtarts at time = ¢,.
The states of the objects at time= t, + 9, are predicted, wherg is termed as “lead
time.” Based on the predicted states, the system genehetedbservation request at time
t =ty + ¢, for each object. A subset of these objects is then assignesctoPTZ camera.
Then the system starts to adjust the PTZ cameras accordihg tequest assignment. The
camera traveling time is bounded below the “lead tideso that the cameras can intercept
the objects at time = ¢, + §;. After that, each PTZ camera tracks its object subset for
time ¢,. until the beginning of the next observation cycleis termed as “recording time”
and is evenly divided inte, intervals with each of length. Based on the state prediction,
the PTZ camera parameter selection module computes eadr@arsetting at the end of
each interval. Then each camera micro-adjusts its sefiomgs tor time and prepares for
the next interval. By capturing images/videos #ptime, the request assignment module

re-initiates and the operations above rep&at: §, + 9, is called one observation cycle.
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The stationary camera we use is a Arecont Vision AV3100 wiflomputar lens whose
focal length ranges from 4.5mmto 12.5mm. The camera runkfaaines per second (fps)
with high resolution ofl600 x 1200. The PTZ cameras we use are Panasonic HMC280.
The camera uses the MPEG4 compression and runs at up to 3Gtfpsesolution of
640 x 480. It has a350° pan range and 80° tilt range. It can pan and tilt up t&00° per
second and00° per second, respectively. It halksx motorized zoom with zoom-changing

speed up to 5 levels per second. The system is programmegiMgtrnosoft Visual C++.

2.3 Camera Scheduling

Forp PTZ cameras, there are usually much more objects/reqWeitsthe competing
spatiotemporal requests, we need to control and schedel®TZ cameras to capture

sequences of images/videos that best satisfy the requests.

2.3.1 Observation Request Generation

The wide-angle camera detects moving objects and tracks toatinuously. Each
object is represented by its minimal iso-oriented boundegangular region which is

determined by a 4-parameter vector,
[, v, a,b]", (2.1)

where(u, v) indicates the center of the rectangle in the image spaegdb denote the
width and height of the rectangle, respectively. Thus thgestf the object at timécan

be represented by

z(t) = [u(t), v(t), a(t), b(t), u(t), o(t)]", (2.2)

where(u(t), v(t)) indicates the velocity of the rectangle center in the imgges at time

t.
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A non-parametric Gaussian background subtraction mo@gliglused to detect and
label any moving objects. For tracking and predicting thecistate, each labeled object
is assigned with a Kalman filter. A commonly used constanaigl model is adopted.
The Kalman filter is also able to handle short-term occlusigrpredicting the object
motion. It is worth mentioning that a lot of other existingadking algorithms [28] can be
applied here and the tracking itself is not the focus of ourkwo

Given the predicted state 6th object at time is

we define the spatiotemporal observation request as,

whereT;(t) = [u;(t), :(t), a;(t), b;(t)] represents the rectangular request region deter-
mined bya(t), 9(t), a;(t) andb;(t) in the same way as, v, a andb in (2.1); z; indicates

the desirable resolution, which is in the rangeZof= [z, Z]. We setz; as the resolution of
the minimal camera frame that contaifigt). w;(¢) is the temporal weight, which indi-
cates the emergency/importance level ofttle object at time. w;(¢) plays an important
role in balancing the observation service across all theatbjand will be discussed in

details later in Section 2.3.4. Given there arebjects, we generate a setrofequests,

R(t) = {r(®)]i = 1,2, ...,n}.

2.3.2 Request Assignment

As shown in Fig. 2.2, at the beginning of each recording im&ve need to coordinate
p PTZ cameras so that each camera is assigned a subset of ¢ébesobje choose the

frame settings that best satisfy all the requests at that.tilve formulate the request
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assignment issue as an optimization problem, which maxisiize overall “satisfaction”
of the requests and we term this problem asfeame problem. The input of theframe
problem is the request s(t) = {r;(t)|i = 1,2, ...,n}. A solution to thep-frame problem
is a set ofp PTZ camera frames. Given a fixed aspect ratio (e.g. 4:3), @@irame
can be defined as = [z, v, 2|7, where the pailz,y) denotes the center point of the
rectangular frame and € Z specifies the resolution level of the camera frame. Here we
consider the coverage of the camera as a rectangle accaoding camera configuration
space. Therefore, the width and height of the camera framebearepresented ak
and 3z respectively. We define any candidate solution tojHfeame problem ag'”? =
(c1,¢2,...,¢p) € CP,Whereg;, i = 1,2, ..., p, indicates the-th camera frame in the solution.
The objective of the-frame problem is to find the optimal soluti@r?* = (cj, c3, ..., ¢;)

that best satisfies the requests:

CP* = arg max s(CP), (2.4)

wheres(-) is the satisfaction metric which will be introduced in détan Section 3.

2.3.3 PTZ Camera Parameter Selection

After each camera is assigned a subset of objects by solkmg-frame problem,
the camera tries to track these objects for the recording d&im This requires to select
the camera parameter setting such that the satisfactiomxsmzed for each recording
interval. Given each recording interval is representeft asr, ¢t) and thei-th camera is
assigned a subset of objects with predicted states atfiXigt) = {i1(t), &5(t),...}. The
corresponding observation requests are genetdted = {r(t), rs(¢),...}. The camera

setting at time, ¢*(t), is then determined by maximizing the satisfactiot¢t),

c*(t):argmcax Z s(e,ri(t)). (2.5)

ri(t)ER; (1)
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This problem can be solved using the approximation algaritin [48] with running time
O(|X;|/€%), where| X;| is the cardinality of{; ande is the approximation bound. However,
(2.5) does not consider the fact that within timehe PTZ camera can only micro-adjust
within a limited setting range. We assume the pan, tilt arahzenotion of the camera are
independent. The reachable ranges for pan, tilt and zodmgetvithin timer area,
and~, respectively. Then we rewrite (2.5) as,

c*(t) = arg max Z s(c,ri(t)). (2.6)

CEQX [BXy (DR (1)

It is worth mentioning that most PTZ cameras’ pan and tiltiomis fast enough to
follow most objects in the scene. For example, recall thesiteon speed of the Panasonic
HCM 280 camera i00° per second for parg00° per second for tilt and 5 levels per
second for zoom, respectively. Considering the camerahaszoom levels and only
less tharb0° FQV, the time for changing pan and tilt settings is much leéssitthe time
for changing the camera zoom. Changing the zoom level whercdimera is moving
also creates significant motion blurring and often requinese than 1-2 seconds for re-
focusing. Therefore, in practice, we usually search forpghe and tilt settings i x

while maintain the same zoom level for each recording period

2.3.4 Dynamic Weighting

If we keep the request weight in (2.3) unchanged, the systéhtnsate a “biased
frame selection” model that always prefers certain objecti®ad of balancing the camera
resource for all objects. We address this issue by caredigibygning the temporal weight
w;(t) based on two intuitions: 1) object exiting FOV sooner is ofrenimportance and 2)
object less satisfied in history is of more importance. That firtuition is derived from

the earliest deadline first (EDF) policy [36]. The policy aglsses the emergency of the
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requests. The second intuition addresses sharing the aaemwurce for all objects to

achieve balanced observation over time. We define,

wi(t) = pi(t) - vi(t),

wherey;(t) andy;(t) address the first and second intuitions, respectively. @nédidate
form of p;(¢) is,
(1) = p), (2.7)

whered; is the predicted deadline farth object to exit the FOV anfl < p < 1is a
parameter that controls how quick the emergency increaBesause we only observe
objects in the FOV; < d;. Whent — d;, p;(t) — 1, as maximum.

To designy;(t), we need to first define the accumulative unweighted satisfa¢AUS)

ni(t),

i) = 3 3 ), 2.8

=1t <t
where the variable, refers to the discrete times when cameras take frames. Ti®& AU
essentially reflects how well an object is satisfied in hist@ve design;(t) as,

ni(t)

Ne

,0), (2.9)

v;(t) = max(1l —

wheren, is a parameter indicating the extent to which an object nedoketobserved.
Whenn;(t) > n., v;(t) is zero and we contend the object is fully satisfied and needs n
observation any longer. Botly(¢) andy;(t) are bounded in range, 1], which keeps the

satisfaction metric in (4.2) a standardized metric.

2.4 Experiment

We have implemented the system using Microsoft Visual C+3520The computer
used is a Windows XP desktop PC with 2.0 GB RAM, 300 GB hard djgkce and an
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Intel Pentium(R) Dual Core 3.2 GHz CPU. We carry out a simoitato compare the
camera scheduling of our system with an existing work basethe overall number of
objects being observed. Finally, a physical experimentfowd surveillance using real

video data is reported.

2.4.1 Evaluating System by Simulation

We carry out a simulation for evaluating the scheduling rmétbf the system based

on random inputs. The results are compared with an existingduling algorithm.

Simulation setup

As shown in Fig. 2.3, a simulated) x 60 m* scene is constructed. Each object enters
the scene through one side and maintains a constant velddgyen random numbers
are needed to characterize each object. First, a randogemteimber ranging from 1
to 4 is generated to indicate which side the object enteugir. Then a random real
number in[0, 1] is generated to indicate the entering point along the sideer Ahat, the
orientation of the object is determined by a random angleiwithe rangg—40°, 40°] with
respect to the perpendicular of the side. The object spegénsrated from a truncated
Gaussian with a mean of 1.5 m/s and a standard deviation ah&5which is basically
the speed of a walking people. The width and height of theargge that represents the
object are randomly generated from a range, 2.5| m. Finally, the desirable resolution
of the object is generated from a rarigge21] (level), which is also the Panasonic HCM280
camera zoom range. The cameras run in 10 fps, which mean$.1 s. Thena = 30°
andS = 20°. 5000 objects arrive in the scene following a Poisson prosgbsarrival rate
A, which represents the congestion level of the scene. Wasétad time), = 4 seconds,
which guarantees that in the request assignment phaseraaijestment is completed

before cameras intercept the objects. Wedet= 6 seconds, which is equivalent to
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Fig. 2.3. Anillustration of the simulated scene. Each object is repnéed
as a rectangle and enters the scene from one of the four sitl®sihg a

Poisson process. The orientation is withint0°, 40°] with respect to the
norm of the side. The object maintains constant velocity ismtime to

exit is predicted.

n, = 60 frames. We set the parameter= n,. in (2.9) andp = 0.5 in (2.7) ande = 0.25

in the p-frame approximation algorithm. Two PTZ cameras are usedpi= 2.

Metric and results

We compare our scheduling scheme with the earliest deafilisgt¢dEDF) policy pro-
posed in [36]. EDF is a heuristic scheme where the camerayalpiaks the object with
earliest deadline. With each congestion setting, 20 taedscarried out for average perfor-
mance. We first compare the two schemes based on the rationferof objects that are
observed for at least, /2 times to the total number of objects pass through the scere. W
term this metric ag/,,. This metric essentially indicates how many objects théssgsan
capture and observe for a period of time. Fig. 2.4 shows thgeoison result. It is shown
that when the Poisson arrival ratds small, i.e., there are few objects in the scene, both
scheduling schemes can reach almost best possible rafi®oj1@Vhen\ increases, i.e.,

the traffic in the scene becomes heavy, the performance ofdeldfiorates significantly
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quicker than our method. In the heavy traffic scenario, ouhpaoutperforms the EDF
by over 210%.

We also compare our method with EDF based on the satisfaittitite objects since
it takes into account not only the times that an object is ofegk but also the resolution
of the observation. As mentioned earlier, the AUS as defing@.8) indicates how well
an object is satisfied. We define the second metficas the ratio of average AUS to
the maximum possible satisfaction for each object (i), Fig. 2.5 summarizes the
comparison based al/,. It is shown that our method outperforms EDF)aBicreases.
In the heavy traffic scenario, our method outperforms the BRPR50 %. This is not
surprising since in heavy traffic situations, objects tetodse close to each other, where
multi-object coverage has great advantage.

Close-up analysis reveals that our satisfaction formutatn (4.2) is actually a gen-
eralization of many existing scheduling schemes. For eXanipwe tune parametes
in (2.7) to approach to zero, then the changg,ift) dominates the change in the overall
weight. That means we extremely care the emergency of theesé@nd thus the schedul-
ing converges to the earliest deadline first (EDF) policy][3&lso, if we set extremely
high requested resolution (i.e., extremely smgl| it implies that we extremely care the
resolution of the image frame. As a result, the algorithm y@end to produce smaller
frames (higher resolution) to cover fewer requests at a&mi¢possibly) losing coverage
of other requests. In the extreme case, to obtain the besdtties, it would only assign
one request to one PTZ camera, which is exactly the schedstineme as in almost all

existing works.

2.4.2 Physical Experiment

We carry out a physical experiment to validate our systemgusal video data. Our
camera is mounted on the 6th floor of the Evans Library of Teéx&®M University to
monitor the crowd entering and leaving the library. In thpexment, we sety = 5, = 1.5

secondsy, = 2 seconds ang = 3. The camera runs at 10 fps. In the submission, we
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attach a video clip that records a representative observaperation which contains two
consecutive observation cycles at 17:25 on May 4th, 2008.cbinresponding key frames
are presented in Fig. 2.6. It is shown that the request assighmodule is capable of
partitioning the objects and assigning each PTZ cameraanibset of the objects. The
PTZ camera parameter selection module ensures the assibjestis are covered for the

duration of the observation cycle. Between the observatyates, the system also shows
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Fig. 2.6. Key frames in a representative surveillance cycle. (a) ieti

t = 0, there are 7 people. (b) The system starts to track the pespte
are represented by green rectangles. (c) At timet,, the states of the
people at time = ¢, + J; are predicted, which are represented by yellow
rectangles. (d) Attime = ¢, + J;, each PTZ camera is assigned a subset
of the people. The optimal PTZ camera settings are repreddmnt red
dashed rectangles. (e) At time= t, + 7', one observation cycle finishes
and the system predicts the states of the people atttime, + 17" + ¢,

for the next cycle. (f) Attimet = ¢, + T + t;, each PTZ camera is
again assigned a subset of the people. The better satisfiectom the
previous cycle are deprioritized through the dynamic wiigh (g) At
timet =ty + 27, the second observation cycle finishes.

the ability to adjust the priority of the objects through thgamic weighting so that every

moving object is evenly observed.



24

2.5 Conclusions

We presented an autonomous vision system that consistsltyl@wobotic PTZ cam-
eras and a fixed wide-angle camera for observing multipletslgimultaneously. We
presented the system with observation request genera&qoest assignment and PTZ
camera parameter selection modules. We formulated the Bifi#ém@a scheduling as a se-
guence of request assignment and camera parameter sel@citdems with objective of
maximizing the satisfaction to requests. We validated yts¢esn by both simulation and
physical experiments. The comparison with an existing wmaked on simulation has
shown that our system significantly enhances the obsenvpgdformance especially in
heavy traffic situations.

In the future, we will investigate how different frame selen formulation would im-
pact the system performance and how they fit human user nga@dtice. Another in-
teresting extension is to consider the camera traveling tuthin the request assignment.
Intuitively, asynchronized observation by multiple PTZrexas would further enhance
the system performance. The camera content delivery througrnet would be another
interesting topic especially when number of camera ine@®as

In the next two sections, we will introduce an approximatabgorithm and an exact

algorithm, respectively, for the-frame problem.
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3. MOMR++ ALGORITHM: APPROXIMATION ALGORITHM FOR CROWD
SURVEILLANCE SYSTEM

In Section 2, we introduce an autonomous crowd surveillaysgem. In the system
design, it assigns observation requests focameras by solving thg-frame problem.
In this section, we focus on formal formulation of thédrame problem and propose an
approximation algorithm for solving the problem. Fig. 3lastrates the-frame problem:

how to identify optimalp frames that best satisfy thedifferent polygonal requests.

Requested regions

Optimal frames

Fig. 3.1. An illustration of the least overlapping 3-frame problem.

We assume that theframes have the least overlap (will be formally defined aber
the coverage between the frames and a request is satisfiedf dnk fully covered by
one of thep frames. Under the assumptions, we propose a Resolution Réh Non-
Partial Coverage (RRNPC) metric to quantify the satistactevel for a given request
with respect to a set gf candidate frames. Hence thperame problem is to find the
optimal set of (up te) frames that maximizes the overall satisfaction. Buildarmgthe
results in [48], we propose a lattice-based approximatigardhm. The algorithm builds
on an induction-like approach that finds the relationshigvben the solution to the — 1
frame problem and the solution to thérame problem. For a given approximation bound

¢, the algorithm runs iD(n/e* + p*/€°%) time. We have implemented the algorithm and
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experiment results are consistent with our complexity ysial We will begin with the

related work.

3.1 Related Work

The p-frame problem relates to networked robotics, the facllityation problem in
operations research, and the single frame selection proble

The development of the Internet allows more users to acadsgeaesources. Theg
frames taken by networked pan-tilt-zoom cameras can be viewed as a speseal af
networked tele-operation, where each robotic camera hasgsees of Freedom (DOF).
According to the taxonomy proposed by Chatal. [5], this system belongs to Multiple
Operator Multiple Robot (MOMR) systems. The low cost robwd aensor network makes
the MOMR system a very popular research domain [10, 11, 56][12, 51], Liu and
his colleagues developed a competitive MOMR system undemaegsetting. Our work
emphasizes on the geometric coverage attributes of theicataonmera and addresses the
MOMR problem in an optimization framework.

The p-frame problem is structurally similar to thecenter facility location problem,
which has been proven to be NP-complete [52]. Giverequest points on a plane, the
task is to optimally allocate points as service centers to minimize the maximum dis-
tance (called min-max version) between any request pouhttarcorresponding service
center. In [53], arO(n log® n) algorithm for a 2-center problem is proposed. As an ex-
tension, replacing service points by orthogonal boxesirAekal.[54] propose d1 + ¢)-
approximation algorithm that runs @(n min(lgn, 1/¢) + (Ign)/€*) for the 2-box cov-
ering problem. Altet al. [55] proposed &1 + ¢)-approximation algorithm that runs in
O(n°™)), wheree = O(1/m), for the multiple disk covering problem. The requests in
these problems are all points instead of polygonal regisris@se in oup-frame problem
and the objective of the-frame problem is to maximize the satisfaction, which is aot

distance metric.
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Thep-frame problem also relates to the art gallery problem [36f art gallery prob-
lem is to minimize the number of security guards to guard agaltery, which is usually
represented by a polygon withvertices. Each guard has a certain range of vision. The
location of the guard can be represented by a point whilegaelrable region of the guard
can be represented by any geometrical shapes. Aga&tvwall [57] consider a variation
of the art gallery problem where the terrain is not planar #ate are only two guards
with minimal heights. They propose an exact algorithm thasrin O(n?log* n) time.

In [58], Eppsteiret al. propose the sculpture garden problem where each guard lyas on
limited angle of visibility. They prove that the upper bousd: — 2 and the lower bound
is n/2 for the number of the guards needed. More results on the bBergaroblem can
be found in [59]. Unlike the art gallery problem, thframe problem does not need to
cover all requests. However, the selection has to be madsl lmsmaximizing the level
of satisfaction of covered requests.

Our group has worked on camera frame selection problems 20@2. We have ad-
dressed the Single Frame Selection (SFS) problem and itgieais such as approximate
solution with continuous zoom [60], approximate solutiothviixed zoom [61], and ex-
act solution with continuous zoom and rectangular requegtsfixed aspect ratio [62]
or variable aspect ratio [47]. Extending the results for $&$he p-frame problem is

non-trivial. Our work in this section is the first attempt &zkle the problem.

3.2 Problem Definition

In this section, we formulate theframe problem. We begin with the definition of the
inputs and outputs. Assumptions are then presented. Welisbtthe request satisfaction

metric so that we can formulate the problem as a geometrimattion problem.
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3.2.1 Input and Output

The input of the problem is a set efrequests? = {r;|i = 1,2,...,n}. Each request
is defined as; = [7}, z;], whereT; denotes the polygonal requested region and:

7 specifies the desired resolution level, which is in the raoig€ = [z,Z]. The only
requirement foff; is that its coverage area can be computed in constant time.

A solution to thep-frame problem is a set gf camera frames. Given a fixed aspect
ratio (e.g. 4:3), a camera frame can be defined as|z, y, z|, where pair(x, y) denotes
the center point of the rectangular frame and Z specifies the resolution level of the
camera frame. Here we consider the coverage of the cameegtasgular according to
the camera configuration space. Therefore, the width arghhef the camera frame can
be represented dg and3z respectively. The coverage area of the frameig. The four
corners of the frame are located(at+ 42 /2,y £+ 3z/2).

Givenw andh are the camera pan-tilt ranges respectively, then[0, w] x [0, h] x Z
defines the set of all candidate frames. Theref@fejndicates the solution space for
the p-frame problem. We define any candidate solution tozifime problem ag? =
(¢1,¢2,...,¢p) € CP,Whereg;, i = 1,2, ..., p, indicates theé-th camera frame in the solution.
In the rest of the section, we use superscriptido indicate the optimal solution. The
objective of thep-frame problem is to find the optimal solutié* = (c7, c3, ..., ¢;) € C?

that best satisfies the requests.

3.2.2 Set Operators

We clarify the use of set operators such @§,* C ” and “¢” to represent the relation-

ship between frames, frame sets, and requests in the rést séttion.

e When two operands are frames or requests (e,g=, R, c,, ¢, € C), the set oper-
ators represent the 2-D regional relationship between themn exampler; C ¢,
represents that the region afis fully contained in that of frame, while ¢, N ¢,

represents the overlapping region of framgsindc, .
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e When the operands are one frame (e«g.£ C) and one frame set (e.gi* €
CF k < p), we treat the frame as an element of a frame set. For exampie(*

represents that is not an element frame in the frame sét

e When the operands are two frame sets, we use set operatomsxdrople{c;} C
C? means frame sefic; } is a subset of®”?. Frame sef{ci,co} = {c1} U {c2} is
different frome; U ¢;. The former is the frame set that consists of two element

frames and the later is the union area of the two frames.

3.2.3 Assumptions

We assume that the-frames are either taken from cameras that share the same
workspace or taken from the same camera. Therefore, if didmcean be covered by a
frame, other frames can cover that location, too.

We assume that the solutiar?* to thep-frame problem satisfies the following condi-

tion.

Definition 3.2.1 (Least Overlapping Condition (LOC)) Vr;, i« = 1,...n, Ve, € CP*,
Ve, € CP*, andc, # ¢,

ri N (e, Ney) = . (3.1)

The LOC means that the overlap between frames is so smakthagquest can be fully
covered by more than one frame simultaneously. The LOC $otice overall coverage
of ap-frame setJ”_, ¢; to be close to the maximum. This is meaningful in application
when the cameras need to search for unexpected events whilsdtisfying the existing
requests because the ability to search is usually propaitio the union of overall cov-
erage. Therefore, the LOC can increase the capability o€y for unexpected events.

The extreme case of the LOC is that there is no overlap betea®era frames.
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Definition 3.2.2 (Non-Overlapping Condition (NOC)) Given ap-frame set
C? = (c1,¢a, ..., ¢p) € CP (p > 2), C? satisfies the NOC, if

Yu=1,2,...p,Yo=1,2, ...p,u#v,c,Nc, = .

It is not difficult to find that the NOC is a sufficient condititmthe LOC. The NOC yields
the maximum union coverage and is a favorable solution tdiGgimns where searching

ability is important.

3.2.4 Satisfaction Metric

To measure how well a-frame set satisfies the requests, we need to define a satisfac
tion metric. We extend the Coverage-Resolution Ratio (CRRBIyic in [47] and propose

a new Resolution Ratio with Non-Partial Coverage (RRNPC).

Definition 3.2.3 (RRNPC metric) Given a request; = [T}, z;] and a camera frame =
[z, y, z], the satisfaction of request with respect ta: is computed as

s(e,rs) = I(e,r;) - min(2, 1), (3.2)

z

wherel (¢, r;) is an indicator function that describes the non-partial emge condition,

1 if r; Ce,
I(e,ry) = (3.3)
0 otherwise
Eq. (4.3) indicates that we do not accept partial coverage the request. Only the
requests completely contained in a camera frame contrifoutee overall satisfaction.

From (4.2) and (4.3), the satisfaction of tile request is a scalaf € [0, 1].
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Based on (4.2), the satisfaction gfwith respect to a candidate least overlapping
frame seC? = (¢, ca, ..., ¢,) € CP IS,

p

s(CPr) = I, i) min(j—i, 1), (3.4)

wherez;, z, indicate the resolution values ef and theu-th camera frame il&'? respec-
tively. The LOC implies that although (3.4) is in the form ahsmation, at most one frame
contains the region of requestand thus non-negativ&C?, r;) has a maximum value of
1. Therefore, RRNPC is a standardized metric that takesthettegion coverage and the
resolution level into account.
To simplify the notation, we us€(c) = Y | s(c,r;) to represent the overall satisfac-
k

tion of a single frame. We also use(C*) = > i—1.;ecn 5(¢;), to represent the overall

satisfaction of a partial candidateframe setC*, k < p.

3.2.5 Problem Formulation

Based on the assumption and the RRNPC metric definition albgeoverall satis-
faction of ap-frame setC? = {¢;,cs,...,c,} € CP overn requests is the sum of the

satisfaction of each individual requesti = 1,2, ..., n,

s(CP) = Z Z I(cy,mi) - min(;, 1). (3.5)
i=1 u=1 v

Eg. (3.5) shows that the satisfaction of any candiddtecan be computed i (pn)
time. Now we can formulate the least overlapppframe problem as a maximization

problem,

P = arg Inax s(CP). (3.6)
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3.3 Algorithm

Solving the optimization problem in (3.6) is nontrivial. @umerate all possible com-
binations of candidate solutions by brute force can eaaltg up toO(n?) time. In this
section, we present a lattice-based approximation algariieginning with the construc-
tion of the lattice. To maintain the LOC in the lattice franwew, we introduce the Virtual
Non-Overlapping Condition(VNOC). Based on the VNOC, welgrathe structure of the
approximate solution and derive the approximation bourttl véispect to the optimal so-
lution that satisfies the NOC . To summarize this, a lattiasdal induction-like algorithm

is presented at the end of the section.

3.3.1 Construction of Lattice

We construct a regular 3-D lattice, which is inherited frof8][to discretize the so-
lution spaceC?. Let 2-D point setV’ = {(ad, fd)|ad € [0,w], fd € [0,h],a, 8 € N)
discretize the 2-D reachable region and represent all datelicenter points of rectan-
gular frames, wheréel is the spacing of the pan and tilt samples. Let 1-D point set
Z = {vyd,|vd. € [z,Z + 2d.],v € N} discretize the feasible resolution range and repre-
sent all candidate resolution values for the camera, wiere the spacing of the zoom.
Therefore, we can construct the lattice as a set of 3-D paints V' x Z.

Each pointt = (ad, 8d,vd,) € L represents the setting of a candidate camera frame.
There are totallfwh/d?*)(g/d.) = |L| candidate points/frames ib, whereg = z — 2.

We setd, = d/3 for cameras with an aspect ration ©f: 3 according to [48]. It is
worth noting that any candidate frame with center pointelwsthe boundary of the 2-D
reachable region and a large zoom level may have its coversgd the reachable region
and thus becomes an infeasible candidate frame. Thereéf@meactual feasible solution
space is in a pyramid-like shape.

What is new is that the spacing of the latti¢@andd, also depends on the size of the

requested regions. For any requeste R, there exists an Iso-oriented Bounding Box
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(IBB) for eachr;. Let us define\ andy as the smallest width and height across all IBBs,

respectively. We choosésuch that
d < min(3\/10, 11/3). (3.7)

This input-sensitive lattice setting can help us to essaitine LOC on the lattice and
will be discussed later in Section 3.3.2. From here on, wesysebol  to denote the

lattice-based notations. For exampl®, denotes a-frame set on latticé.

Definition 3.3.1 For any camera frame € C,
¢ =mingc, s.t.c € Landc C ¢.

Henced is the smallest frame on the lattice that fully encloses

In the rest of the section, we use symhbiol denote the corresponding smallest frame(s)
on the lattice. For any camera frame= [z, y, z| and its corresponding = [7/, ¢/, Z'],
we define their bottom-left corners &8, y*) and (7", 7°), and their top-right corners as
(", y") and(z", "), respectively.
From the results of [48], we have
o' — 3" < 5d/3, ¥ —x" < 5d/3,

(3.8)
g’ — " < 3d/2, ¥ -y < 3d/2.

3.3.2 Virtual Non-Overlapping Condition

The NOC defined in Definition 4.3.1 guarantees the LOC. Howeltee to the limita-
tion of lattice spacing, it is very difficult for candidateames on the lattice to follow the
NOC. Actually, itis unnecessary (though sufficient) todallthe NOC to satisfy the LOC.

Itis possible to allow a minimum overlap that is controllgdbe lattice spacing and mean-
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while guarantee that the LOC is still satisfied, which yiedas Virtual Non-Overlapping
Condition (VNOC).

Definition 3.3.2 (Virtual Non-Overlapping Condition(VNOC)) Given anyj-frame set
C7 = (e1,¢9,...,¢j) € CI, 5 =2,3,...,pand any two frames,, ¢, € C7, then(’ satisfies

the VNOC, ifmin(2” — 2!, 2" — 2) < 10d/3 or min(y’, — %, v — 4°) < 3d.

v v

Corollary 1 Given any two frames, ¢, € C, if {c1, co} satisfies the VNOC, theay, 5}

also satisfies the LOC.

Proof From the definition of VNOC and the settings bfand i1, we see that the size
of the overlapping region; N ¢, on either the x-axis or y-axis, is less than the size of
the smallest request. This guarantees that no requestexh iegfully contained in the

overlapping region. Therefore, the LOC is satisfied. [ |

Lemma 1 Given any two frames,, ¢, € C such that{c;, ¢} satisfies the VNOC, then

s({er, e2}) = s(er) + s(c2). (3.9)

Proof From Corollary 1{c;, co} satisfies the LOC. From the definition of the LOC and
the RRNPC satisfaction metric defined in (4.2), the conolu$ollows. [ ]

3.3.3 Approximation Solution Bound

The construction of the lattice allows us to search for the&t bérames on the lattice,
which yields an approximation solution. Furthermore, ti¢QC and Lemma 1 assist us

in deriving the approximation bound.

Lemma 2 For any two frames;, c; € C, if {c;, co} satisfies the NOC, thef¥), &, } satis-
fies the VNOC.
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The proof of the lemma is trivial based on the definition of VBl@nd the settings of
A andp.

Given the optimal solutio@”* = (cj, c3, ..., ;) for the optimization problem defined
in (3.6) that satisfies the NOC, there is a solution on théckatt’»* = (&, &, )
whose element frames are the corresponding smallest framé#se lattice that contain
those ofC?*. Lemma 2 implies thaf’?* exists and satisfies the VNOC. However, how
good is this solution in comparison to the optimal soluti®®@ define the approximation
bounde which characterizes the comparative ratio of the approtionasolution to the
optimal solution

s(C'P*)/s(CP*) > 1 — . (3.10)
Based on Lemma 1 and Theorem 1 in [48], we have

2d,

) A1
z+2d, (3.11)

s(C'P*)/s(CP*) > 1 —

Let C?* denote the optimal-frame set on the lattice. Sin¢&¥* is one of they-frame
sets on the lattice, then we have

s(C™) | 2d.

o 2N T (3.12)

Eq. (3.12) implies that we can use the solut{@#t as the approximate solution to the

optimal solution. Let the approximation bound be

2d,

. 1
z+2d, (3.13)

€ =

Solving (3.13) and combining the upper bound valu€ a& in (3.7), we have

d=3d, = min(g(l - )z, min(3)/10, 1/3). (3.14)
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Eq. (3.14) indicates that when— 0,

)z. (3.15)

Egs. (3.13) and (3.15) imply that we can control the qualityghe approximate so-
lution by tuning the lattice spacing On the other hand, based on the lattice structure
and the definition of the approximation bound, we know thatrthmber of all candidate
ponints/frames on the lattice is,

L] = O(1/€é%). (3.16)

3.3.4 Lattice-based Algorithm

With the approximation bound established, the remainisg s to searctC?* on L.
We design an induction-like approach that builds on thetieiahip between the solution
to the p — 1)-frame problem and the solution to thdrame problem. The key elements
that establish the connection are Conditional Optimal Gwiu(COS) and Conditional
Optimal Residual Solution (CORS).

Definition 3.3.3 (Conditional Optimal Solution) V¢ € L, the COS[J;(é) = {C7*|¢ €
Cj*}, is defined as the optimgtrame set; = 1,2, ..., p, for the j-frame problem that

must include® in the solution set. Alsd/;(¢) satisfies the VNOC.

Therefore, we can obtain the optimal solutiéi:, on the lattice by searchingover
L and its corresponding COS,
CP* = U, (&), (3.17)

where & = arg maxzc, s(U,(€)).

Definition 3.3.4 (Conditional Optimal Residual Solution) Given any COS]/;,,(¢), j =
0,1,...,p — 1, we define thg-frame CORS with respect &as: Q;(¢) = U, 1(¢) — {é}.
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Corollary 2 Qj(é) is the optimalj-frame set that satisfies,
o &¢Q;(9),
e {¢} UQ,(¢) satisfies the VNOC.

What is interesting is that CORS allows us to establish thegiomship betweer@j
andQ; ;.

Lemma 3

Q;(¢) = Qj-1(c) U {c*}, (3.18)

wherec* = arg maxzer, s(Q;_1(¢) U {¢}), subject to the constraint thd€,, ¢} U Q;_(¢)
satisfies the VNOC.

Proof We prove the lemma by contradiction. Notice that the rightchaide of (3.18)
returns one of thg-frame sets that satisfy the two conditions in Corollary Bjlevithe left
hand side is defined to be the optimalrame set that satisfies the same two conditions.

Therefore, if we assume (3.18) does not hold, the only posgiis,

$(Q5(e)) > s(@51(¢) U {e)). (3.19)

Take an arbitrary framé, € Q,(é,) out of Q;(¢,), the result isQ;(é,) — {¢,} and

according to Lemma 1, we have,

s(Q(e) — {&}) = s(Q;(e) — s(&). (3.20)

Takeé, out of Q;_1(&,) U {¢,}, the resultigQ;_,(¢,) and

$(Qj-1(6)) = s(Qj-1(é,) U{E}) — s(é,). (3.21)

Based on (3.19) and the fact that

s(Qj—1 () U{e}) 2 s(Qj-1(&) U {a}),
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we have,

$(Q5(@)) > s(Q5-1(G) U (@), (3.22)

Takec, out of both sides and combine with (3.20) and (3.21) respelgtiwe have,

S(Q]<éu) - {EU}) > S(Qj—l(év))' (323)

The frame set on the right hand side of (3.2(3)@(5@), is defined to be the optimal
(7 — 1)-frame set that satisfies the two conditions in Corollary 2levthe frame set on
left hand side;(¢,) — {&,}, is only one of the(j — 1)-frame sets that satisfy the two
conditions. Contradiction occurs.

It is worth mentioning that it take® (p) time to check if({¢,, &} U Q,(¢)) satisfies the
VNOC. Becaus€é} UQ;(é) = Uj,,(¢) satisfies the VNOC as defined in Definition 3.3.3
and thus we only need to check{i,} U U; ., (¢) satisfies the VNOC, which take3(p)
time.

Eq. (3.17) implies that we can obtain the approximation smuC?* from Up. Def-
inition 3.3.4 indicates that we can obtdily from Q,_;. Now Lemma 3 implies that we
can construct); from Q;_,, j = 1,2,...,p — 1. Considering the fact tha, = ¢, this
allows us to establish the algorithm using an inductioe-kpproach. Algorithm 1 shows
the complete lattice-based algorithm. Considering anylickate frame: € L, we pre-
calculate the satisfaction values for all tHe candidate frames and store the values in a
lookup table to avoid redundant calculation. Given any aiaté framec, € L as the in-
put, the lookup functiohreturns the satisfaction value&f, ((¢,) = s(¢,). We implement
the lookup function using the arrayu| = s(¢,). From the pseudo code in Algorithm 1, it

is not difficult to know that,

Theorem 1 Algorithm 1 runs inO(n/e* + p?/€%) time.
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Algorithm 1: Lattice-based Algorithm

1 begin

2 | forj+« 1to]|L|do O(1/e)
3 1] = s(¢;) O(n)
s Qolé) = @ 0(1)
. $(Qo(E)) = o(1)
6 end

7 for k < 1topdo O(p)
8 Ch* =, 0(1)
9 s(CF) = 0; o(1)
10 for u < 1to |L| do updat e C**, O(1/€%)
11 if s(C*) < S(Qk 1(¢4)) + u] then

12 CF* = Qp_1(¢,) U{é,}; 0(1)
13 s(CF) = s(Qr—1(Cu)) + I[u]; o(1)
14 end

15 end

16 for u « 1to |L| do updat e Qi(é,), O(1/€®)
17 Qr(Cu) = Qr—1(E) U Y; O(1)
18 s(Qn(E)) = 5(Qr-1(@)); o(1)
19 for v < 1to|L| do O(1/e?)
20 if s(Qr(¢u)) < 5(Qr_1(&,)) + 1[v] AND

21 {E4, ¢} UQp_1(¢,) satisfies the VNOC O(p) then
22 Qu(u) = Qr—1(&) U{E); o(1)
23 S(Qu(E)) = 5(Qr1()) + 1[0} o)
24 end

25 end

26 end

27 end

28 | return CP*;

29 end

3.4 Experimental Results

We have implemented the algorithm using Java. The compaetst is a desktop com-
puter with an Intel Core 2 Duo 2.13GHz CPU and 2GB RAM. The apeg system is
Windows XP. In experiments, we test the algorithm speed eiffarent parameter settings
including the number of request the number of camera framgsand the approximation

bounde.



40

In the experiments, both triangular and rectangular inpuésrandomly generated.
First, s points inV" are uniformly generated across the reachable field of viehes&
points indicate the locations of interest and are refemetseeds. Each seed is associated
with a random radius of interest. To generate a request, mgoraly assign it to one seed.
For a triangular request, three 2-D points are randomly geee within the radius of
the corresponding seed as the vertices of the triangle. Fectangular request, a 2-D
point is randomly generated as the center of the rectangedaon within the radius of
corresponding seed and then two random numbers are gaehasatee width and height
of the request. Finally, the resolution value of the reqigashiformly randomly generated

across the resolution range z|.
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Fig. 3.2. Speed testing results.

Across the experiment, we set80, h=60, z=5, Z=15 ands,=4. For each parameter
setting, 50 trials have been carried out for averaged peadoce. The simulation results
indicate the linear relationship between the computatiome tandn. Fig. 3.2 illustrates
the relationship between the computation time and the petensp ande. The results are
consistent with our Big) notion complexity analysis. In Fig. 3.2(a), the computadio

time is linear tol /5. In Fig. 3.2(b), it even shows a trend of sub-linear with respep?.
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Fig. 3.3. Sample outputs whemincreases for a fixed input set= 10.

This may be due to the fact that when p is larger and framesthigher chance to violate
the virtual non-overlapping condition, it takes less timeheck if the frames satisfy the

condition in lines 20 and 21 in Algorithm 1.
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Fig. 3.3 shows how the output of the algorithm for a fixed senpfits (=10) changes
whenp increases from 1 to 4. It shows that our algorithm reasonalibcates camera

frames in each case.

3.5 Conclusion

In this section, we have formulated the least overlapphiigame problem with non-
partial coverage as an optimization problem. A latticeelolespproximation algorithm was
proposed for solving the problem. Giverrequests ang camera frames, the algorithm
runs inO(n/e* + p?/€%) time with the approximation bound We have implemented the
algorithm and tested it on random inputs. The experimengallts are consistent with our
theoretical analysis.

In future work, we will explore the new geometric data stanes to improve complex-
ity results. We will also develop algorithms for differergnations of the problem such as
allowing camera frames to overlap with each others.

The proposed approximatignaframe algorithm has been applied to the crowd surveil-
lance system as in Section 2. However, the complexity of ligparghm is very sensitive to
the approximation bound Whene becomes small, the computation time increases dra-
matically. This prohibits the system’s usefulness to aggtions where accurate solution

is required. In the next section, we introduce an efficiemaicéalgorithm whemp = 2.
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4. MOMR++ ALGORITHM: EXACT 2-FRAME ALGORITHM FOR CROWD
SURVEILLANCE SYSTEM

4.1 Introduction

In Section 3, we introduce an approximatigframe algorithm for the crowd surveil-
lance system in Section 2. However, the speed of the appatiximalgorithm is very
sensitive to the approximation bouadOn the other hand, in real applications, it is rare to
have many cameras due to various constraints such as cost; papply, synchronization
between cameras, and maintenance. This encourages usdeexgine algorithms when
p is small. In this section, we introduce an efficient exacoathm whenp = 2. Fig. 4.1
illustrates a 2-frame problem instance.

We assume the frames have no overlap on their coverage. Wesa@ series of al-
gorithms to search for the solution that maximizes the dvesgquest satisfaction. Our
algorithms solve the 2-frame problem @n(n?), O(n?m) andO(n?) times for fixed,m
discrete, and continuous resolution levels, respectivdly have implemented all the al-
gorithms and compared them with our previous work in thedastion. The experimental

results are consistent with our complexity analysis. Warbedgth the related work.

4.2 Related Work

The2-frame problem relates to tl2ecenter problem, networked robotics and multiple
camera surveillance.

The p-frame problem is structurally similar to thecenter facility location problem.
Givenn request points ifR?, (d = 1,2,...), the task is to optimally allocate points as
service centers to minimize the maximum distance betweengand their nearest service
centers. The distance metric are usually Euclidé&nor rectilinear(>°). The Euclidean
p-center problem is NP-hard [63]. Eppstein [53] propose®anlog? n) algorithm for

the Euclidean 2-center problem. Arki al. [54] replace the service points by orthogonal
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Fig. 4.1. An illustration of the non-overlapping 2-frame problem.

boxes inR* and propose an approximation algorithm that run®im min(lgn, 1/¢) +
(Ign)/€*) for the Euclidean 2-box covering problem. Adt al. [55] propose &1 + ¢)-
approximation algorithm that runs (n°™)), wheree = O(1/m), for the multiple disk
covering problem. The rectilinearcenter problem is also NP-hard [63]. Bespamyatnikh
and Kirkpatrick [64] propose a linear time algorithm for tteetilinear 2-center problem.
Ko et al. [65] propose a 2-approximation algorithm for solving thetamgularp-center
problem and prove that factor 2 is optimal. The requestsesdlproblems are all points
instead of polygonal regions as those in phieame problem. The objective of theframe
problem is to maximize the satisfaction, which is not a diseametric.

The task ofp networked pan-tilt-zoom cameras takipgrames in the remote envi-
ronment can be viewed as a special case of networked teletape where each robotic
camera has 3 Degrees of Freedom (DOF). Based on the taxonpi@idnget al. [5],
these systems belong to Multiple Operator Multiple RoboOMR) systems [10,11]. Liu
et al, [12] develop a competitive MOMR system where two operatorgrol two multi-
finger robotic hands, respectively, in a game setting. Hiad), [66] propose a criterion
called degree of satisfaction (DOS) to evaluate the perdoca of competitive MOMR
systems. Wanet al,, [67] propose an internet-based MOMR system that allowgipiel
students to control two robot soccer teams for competit@uar work emphasizes on the
geometric coverage attributes of the robotic camera anceades the MOMR problem in

an optimization framework.
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Table 4.1
Algorithm and system development fpifframe problems
Algorithm Resolution Complexity
p-frame approximate Continuous O(n/e3 + p*/e%)

2-frame exact (this sectior]) fixed, m discrete, and continuousO(n?), O(n*m), andO(n?)

The p-frame problem can be applied to multiple camera surveaitasystems, espe-
cially those with multiple active cameras. Figtal.[35] propose a dual-camera system
with a wide-angle static camera and a PTZ camera for pedasttirveillance. The two
cameras share the same point of view. While the wide-angte stamera monitors the
scene and detects pre-defined individual human activiéigg, (loitering), the PTZ cam-
era takes high-resolution images of the human for closebgemation. Limet al. [40]
propose a multiple camera system, which consists of one-angge static camera and
multiple PTZ cameras. It constructs the observation task&sh single object as a “task
visibility interval” (TVI) based on accurate predicted t&ts of the objects during their
entire durations in the FOV. It solves the PTZ camera plagpissue by modeling it as
a maximum flow problem. A recent live system in this categag be found in [68].
Different from these existing work, the solution to thdrame problem can be applied to
optimally control PTZ camera parameters such that the cGaowrerage-resolution trade-
off is achieved by maximizing the satisfaction level of theservation to all objects. This
also enables group watching which is very meaningful in megplications.

Our group has been researching on developing intelligesibvisystems and algo-
rithms using robotic cameras for a variety of applicatiofis [n [69], we formulate the
p-frame problem and propose an approximation algorithminas in O (n /e + p?/€®)
time. An autonomous observation system that adopts tharitign with multiple PTZ
cameras has been introduced in [70]. However, the compattitne of the algorithm is
very sensitive to the approximation bouadt proves to be inviable for problems where
exact or accurate solutions are required. Asin [70], it aalg bandle less than 50 observa-

tion requests withh = 2, ¢ = 0.27 in 0.5 second, which is equivalent to only 2 frames per
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second. In this section, we extend the single frame seleatgorithm in [47] to the cases
wherep = 2 and propose a series of exact algorithms for solving tha@wrproblem with
different camera resolution configurations. Table 4.1 sanwes the current progress on

p-frame problem.

4.3 Problem Definition

We begin with the definition of the inputs and outputs. Neagsassumptions are
presented. Then we introduce the request satisfactionasetthat we can formulate the

problem as a geometric optimization problem.

4.3.1 Input and Output

As illustrated in Fig. 4.1, we assume all camera frames agde®ts are rectangu-
lar and each side of the rectangle is axis-parallel. #Fherequest is defined as =

[z

z;, Y, Ti, Y;, z), where(z;, y.) and (z;,7;) denote the bottom-left and top-right corners
of the rectangular requested region, respectivelys 7 specifies the desired resolution
level, which indicates that each pixel in image correspaida z; x z; square area in
the scene, and is the set of all possible resolution levels. Thereforegbrg: € Z
indicates bigger camera frame coverage and thus can bernetted as the reciprocal of
the conventional concept of resolution. When the PTZ cambeae a fixed resolution
level, Z = {z°}, wherez" is a constant; When cameras haxediscrete resolution lev-
els,Z = {z', 2%, ..., 2™}; Cameras can also have continuous resolution rahge|z, 7|,
wherez andz denote the lower and upper bounds of the resolution levagbaaively. The
input of the 2-frame problem is a setwfequestsk = {r;|i = 1,2, ...,n}. We define the
requestindex setad = {1,2,...,n}.

A solution to the 2-frame problem consists of two camera &amAssuming a fixed
aspect ratio (e.g. 4:3), a camera frame can be defined-ds;, y, z|, where(z, y) denotes

the center point of the rectangular frame and Z specifies the resolution level of the
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camera frame. Here we consider the coverage of the cameea¢etangular according to

the camera configuration space. Therefore the width andhtefghe camera frame can

be represented as and3z, respectively. The four corners of the frame are located at
4z 3z

+ = =
(x 5 Y 2),

respectively.

Givenw and h are the camera pan and tilt ranges, respectively, thea [0, w] x
0, k] x Z defines the set of all candidate frames. Thereféténdicates the solution space
for the 2-frame problem. Let us define any candidate soluiothe 2-frame problem
as(cy,c;) € C2. The objective of the 2-frame problem is to find the optimdlison

(ct, ch) € C? that best satisfies the requests.

4.3.2 Assumptions

We assume that the two frames are either taken from two carnttesishare the same
workspace or taken from the same camera. Therefore, if didmcean be covered by a
frame, the other frame can cover that location, too.

We assume any solutign, , ¢;) to the 2-frame problem satisfies the Non-Overlapping

Condition.

Definition 4.3.1 (Non-Overlapping Condition (NOC)) Given a 2-frame setc;, ;) €
C?, it satisfies the NOC, if
(6] N Co = (b (41)

where we abuse the set operatof to represent the 2-D regional overlapping relationship
between frames as a convention in the rest of this sectionexample, in (4.1)¢; N ¢,
represents the overlapping region of frameandc,.

The NOC increases the overall coverage of frames over rexjggge no request is
redundantly covered by both frames and thus is a favoralléi@o to applications where

searching ability is important.
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4.3.3 Satisfaction Metric

For completeness, we briefly review the formulation of thgotve function as pro-
posed in [69]. We measure the “satisfaction” level of a restjbg comparing its requested
resolution with that of the camera frame, which fully contathe region of the request.
We define the Resolution Ratio with Non-Partial CoverageNRR) metric. Given a re-
questr; = [z;, Y. T Ui z;] and a camera frame= [z, y, 2], the satisfaction of request
with respect ta: is computed as

s(e,ry) =1(c,r;) - min(ﬁ, 1), (4.2)

z

wherel(c,r;) is an indicator function that describes the non-partiakcage condition,

1 if r, Ce,
I(c,m;) = (4.3)

0 otherwise
where we abuse the set operaforto represent the 2-D regional relationship between
frame(s) and request(s) in the rest of this section. In (4;3) c represents that the region
of r; is fully contained in that of. Eg. (4.2) takes into account both camera coverage (first
term in (4.2)) and camera resolution (second term in (4@Yhat a coverage-resolution
tradeoff is achieved.

From (4.2), the request satisfaction fulfilled by a frame calculated as
n 2
= I(¢,r;) -min (2, 1), 4.4
s(c) ;:1 (¢,7i) - min (—, 1) (4.4)

where we overload the functioft-) by taking a frame as the input. Eq. (4.4) shows that

evaluating a candidate frame tak@gn) time.
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4.3.4 Problem Formulation

With the NOC assumption, the overall satisfactiomatquestsry, rs, ..., 7,) served

by a solution(c;, c;) € C? is,

s(cy,c9) = ' Zl(cj,ri) -min(ﬁ,l)

= S(Cl) + S(Cg), (45)

where we overload the functios(-) by taking a 2-frame set as the input. Here we are
interested in cases such tat,) > 0 ands(cy) > 0. If either s(c;) = 0 or s(ce) = 0, the
2-frame problem degenerates to a single frame problem.

Eq. (4.5) shows that the satisfaction of any candidate;) can be computed i®(n)
time. Now we can formulate the non-overlapping 2-frame f[@wbas a maximization
problem,

(c1,¢3) = arg (cﬁlz%?R"' s(ci, ¢2).

4.4 Algorithms
4.4.1 Feasibility Condition

We start with analyzing the structural property of any fekssolution.

Definition 4.4.1 (Separation) For any interval[z;, z5], we define the 2-D point set
S (w1, 22) = {(z,y) € R*21 <& < a0}
as anx-separation. Similarly, we define

SY (y1,y2) = {(7,y) € R*|yy <y < o}
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as ay-separation for intervaly,, ys|.

For any feasible solutiof, ¢3) = ([z1, y1, 21], [22, Yo, 22]), We define,

SX(c1,c0) =SX (21 + 451,@ — %)

s B, 0o
SY (e, ¢2) =S (11 + 35273/2 %)

USY (ot Sty - 2, @7

as illustrated in Fig. 4.2. Intuitively, (4.6) and (4.7) dedithe “gap” between frames.

Lemma 4 (Feasibility condition) Given any feasible solutiofry, ¢;), it must have at

least one non-empty separation as defined in (4.6) and (4.7),

SX (e, e2) U S (e1,¢0) # ¢

Lemma 4 is straightforward from the non-overlapping candit

Given the optimal solutioric}, ¢}), if SX(ct,c5) # ¢, we call the problem isc-
separable. Similarly, i6Y (ct, c3) # ¢, we call the problem ig-separable. These two
cases are not mutually exclusive. Without loss of gengrale focus onz-separable
problem in the rest of this section.

As a convention from here on, we useto represent the “left” frame of a solution, and
¢, to represent the “right” frame as shown in Fig. 4.2 for thgeparable problem. Hence,

(4.6) can be simplified as,

4 4
Sg((Cl,CQ) = SGX(.Tl + %,1’2 — %)
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one optimal solutioric}, c5) = (¢!, }) corresponds to a separation is a
minimal separationr; is the closest request on the left hand side of line
x=z;. ry, Is the second closest request on the left hand side of:kne.

¢\~ can be incrementally computed by compariigndc’~, as in (4.15).

Fig. 4.2. An illustration of the optimalz-separable solution. At least

4.4.2 Optimality Condition

Lemma 4 defines the necessary condition for any feasibldisolu Unfortunately,
there are infinite number of separations. Next, we show horedoce the problem to
finite candidate separations to assist the search for thmalpgolution.

Given the optimal solutiotic, c3) as illustrated in Fig. 4.2, slightly sliding to the
right does not change its satisfaction level until its lédtesoverlaps with that of, (i.e.,

x; — 427 /2 = z;,), because neither the camera resolution nor the camerastazperage
relationship changes. However, if we slideslightly to the left so that its right side is on
the left hand side of that of, i.e.,z}+427 /2 < T;, the satisfaction level decreases because
the frame loses the complete coverage over requeStmilar arguments can apply t¢.

This tells us that at least one optimal solution is strudlycefined by a separation, which

corresponds to a pair of request sides.
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Lemma 5 (Optimality condition) For anyz-separable problem, there must exist one op-

timal solution, (¢}, ¢5) = ([}, 41, z1], [#%, ¥4, z5]) and @ non-empty separatid)* (z;, z;),

i,j € P, such that

421

r; C Cll andx’l —|—71 = T;;
, , 4z

r; € ¢y andx —5 =L

ThusSX (7, z;) = S (¢}, &) is the non-empty separation for this optimal solution.

Proof Given an optimal solutiok;, ¢5) as shown in Fig. 4.2, we have,

s(cy) = Zl(cz,m)min(z—g,l). (4.8)
k=1

Let R} represent the set of requests which are fully enclosed;byThen (4.8) is

re-written as,

=3 (%) (4.9)

riERS 2

Let z; be the smallest-coordinate offz;,

T, = min x,.
) reR; =k

Forcy = [25, 3, 23], there exists a framé&, = [z}, v, 25], such thaty, = v3, 25, = 25 and
ry — 42y /2 = x4 — 425 /2 = z;. Intuitively, ¢, is the frame similar ta; except that its
left side overlaps with line: = z,. Define i, as the set of requests that are completely

enclosed by, we have,
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s(dy) = Z ](c’z,rk)min(%,l)

TkGR,Q 2
= Z min(z—i,l). (4.10)
/ <2
TkGRQ
Sincer; € R, thereforer; C c5. We haver, — 4z3/2 = x; > x; — 423/2, and thus
xy > x3. Thereforeps + 4z35/2 > x5 + 425 /2. For anyry, = [,y , T, Uy, 2] € R3, we

have,

x> x, = —42,/2,
Ty < x5+ 425 /2 < afy + 425 /2,
Y, 2 Y5 —323/2 =y — 32/2,

U < s +325/2 =y + 32,/2.

Thereforey;, C ¢, andR; C R),.

Comparing (4.9) and (4.10), we have?) < s(c,). However, ifs(c}) < s(c,), we can
replacec; with ¢, to obtain a better non-overlapping solution, which coritriscthe fact
that (¢}, ¢&) is optimal. Therefores(c) = s(c,) andd, is optimal. Similarly, we can find
a framec| with 7, = 77, 21 = 2z}, andz) + 42]/2 = T, for ¢;. Therefore,(c},c,) is an
optimal solution.S.X (z;, z;) = SX (¢}, ¢,) is the corresponding separation fef, ¢,). =

Lemma 5 defines the necessary condition for one optimalisaluEach non-empty

separationS;* (T;, z;) corresponds to a candidate solution. This leads to the etiiau

approach as follows.

4.4.3 Exhaustive Search

Based on Lemma 5, for each non-empty separaijd(i;, z;), we reduce the 2-frame

problem to two single frame problems, each finding the ogdtfraae that has its one side
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Algorithm 2: Exhaustive Search Algorithm for-Separable Non-Overlapping 2-
Frame Problem (ES-XS-2)

Input: Request sekR.

Output: (¢}, c3)

1 begin

2 | foreach SX(z;,z;) O(n?)
3 do

4 if 7; < z; then

5 Computeci; Ty
6 Computec; T
7 end

8 end

o | return the besic;, ¢}) pair; O(1)
10 end

overlapping with one boundary of the separation. We defiasdltwo constrained optimal

frames,
. 4z
¢ = arg r{lax )s(c), s.t.r; C candx + 5 = i (4.11)
c=(T,Y,z
; 4z
¢y = arg r{lax )s(c), s.t.r; C candzx — 5 =L (4.12)
c=(T,Y,z

We can find one optimal solution by exhaustively enumeradith@ (n?) non-empty
separationss* (z;, z;), i,j € P. For eachS}* (z;, z;), the corresponding candidate solu-
tion (¢}, ¢}) can be obtained by solving the two single frame sub-probkess (4.11) and
(4.12), respectively. Algorithm 2 summarizes the exhaastearch approach.

It is noticed that in lines 5 and 6 of Algorithm 2, it requirégtsubroutines that solve
the two sub-problems as in (4.11) and (4.12), respectiBgdyh subroutines run ifi; (n)
time. The implementation of the subroutines &a¢n) depend on different camera reso-
lution configurations, which will be discussed in detailelaThe exhaustive search as in

Algorithm 2 runs inO(n?) + O(n?) - T'(n) time.
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4.4.4 Sweeping of Separation Boundaries

However, further observation reveals a more efficient aggho Instead of enumer-
ating allO(n?) separationssf(fi,gj), i,7 € P, we only need to considep(n) special
separations.

Given any non-empty separatisi (z;, x;) as shown in Fig. 4.2, we can always con-
tract it to a smaller, non-negative width by moving the lefparation boundary to the
right, until the left boundary overlaps with a right requsiste, which is the closest to the
right separation boundary (e.@, in Fig. 4.2). We define this separation with smallest

non-negative width as the minimal separation.

Definition 4.4.2 (Minimal separation) Given any non-empty separatiof) (z;, z;), de-
fined by requests andr;, [, j € P, we define it as the minimal separation with respect to

r; if r, is the closest request to line= x; among those on the left hand sidewof z,

[ =argmin (z, — Tr) StL7T, < x..
&her (z; ¢) b=

Given the optimal solutiofr}, ¢5) = (¢}, ¢3) and its corresponding separati (z;, ;)
as in Fig. 4.2, the corresponding minimal separatioﬁjs‘m,gj) as illustrated by the
striped area. It is obvious that = ¢! is the optimal frame which is on the left hand side
of both S} (7;, z;) and SX (7, z;). We define the optimal frame on the left hand side of
a separation as follows. Given any left separation boundary= 7;, [ € P, we define
framec.~ as the optimal frame that is on the left hand side of the lgfasation boundary,

™ = arg max s(cb), s.t.ah + % <7. (4.13)
ck, keP 2

Therefore, we can find an optimal solution by enumeratingéh) minimal sepa-
rations. For each minimal separatisﬁf(fl,gj), we compute the correspondimb‘ and
a.
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The remaining question is how to efficiently compdtefor each minimal separation.
Direct computation based on (4.13) requires to compl(te) constrained optimal single
frames as in (4.11) and compare all of them. Given the minﬂephratiorﬂf(fl,gj), let

7, be the second closest request left to line z;, as illustrated in Fig. 4.2,

h = arg r]fg} (z; —Ty), st7, <7 <y (4.14)

Then the computations af ~ and ¢~ based on (4.13) only differ in computingc}).

Therefore, we have,

c}f_ if s(c}f_) > s(cll),

dm= (4.15)

¢, otherwise

Egs. (4.14) and (4.15) suggest an incremental approachi¢ala® ¢~ | € P.
We search for all candidate left separation boundaries;iwduiie defined by right request
sides{z;, | € P}, from left (z = —o0) to right (z = oo) and incrementally compute each
¢, 1€ P asin (4.15).

To search for all minimal separations, we sort all vertieguest sides and sweep a
separation, which is defined by the vertical request sides) feft to right as illustrated
in Fig. 4.3. In each sweeping step, we either contract tharaéipn by moving its left

boundary toward right or expand the separation by movinggtd boundary toward right.

¢ If the separation is not a minimal separation, we contraestparation by moving
the left boundary to its next candidate position. The optiinragane on the left hand
side of the new separation is computed as in (4.15). Theacidn from Fig. 4.3(f)

to Fig. 4.3(qg) illustrates these operations.

e If the separation is a minimal separation. We compute thengptirame on the
right hand side of the separation as in (4.12). Since thergtirame on the left
hand side of the separation is maintained as described abon#ining the two

frames forms a candidate solution. After that, we expandgéparation by moving
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(a)

(®)

(©)

(®)

(h)

. Minimal separation Separation

Fig. 4.3. Anillustration of the sweeping of separation boundariestiy
sweeping from left to right, if the separation is not a miniseparation,
we contract the separation by moving its left boundary tanést can-
didate position and the optimal frame on its left hand sidecisputed
as in (4.15). If the separation is a minimal separation,igitrframe is
computed as in (4.12), and forms a candidate solution wighotptimal
left frame maintained earlier.

the right boundary to its next candidate position and a negeping step starts. The
expansion from Fig. 4.3(d) to Fig. 4.3(e) illustrates thegerations.

We summarize the sweeping search algorithm for solvisgparable 2-frame problem
in Algorithm 3. Since both the separation need to be corgthahd expanded(n) times,

respectively, the sweeping search as in Algorithm 3 rurgg(im) 77 (n) time.

4.4.5 Algorithm Complexity with Different Camera ResotrtiConfigurations

We turn to the implementations of the subroutines for sguime sub-problems as

in (4.11) and (4.12), under different camera resolutionfigomations. Without loss of
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Algorithm 3: Sweeping Search Algorithm far-Separable 2-Frame Problem (SS-
XS-2)

Input: Request sekR;

Output: (¢}, c);

1 begin

2 Sort left sides of? : B = [b[1], ..., b[n]]; O(nlogn)
3 Sort right sides of? : B = [b[1], ..., b[n]]; O(nlogn)
4 Sort top sides oR; O(nlogn)
5 Sort bottom sides aR; O(nlogn)
6 Sort requested resolutions Bf O(nlogn)
7| o =g =¢i¢ = ¢ o(1)
8 u=0; v=1; O(1)
9 while v < n O(n)
10 do

11 if blu + 1] > b[v] #M ni mal separation
12 then

13 Find b[v] belongs ta;; O(1)
14 Computec), as in (4.12) Ty (n)
15 if s(ct) + s(ch) < s(c]) + s(c}) then

16 | () = (1. ) o)
17 end

18 v=uv+1; O(1)
19 end

20 else

21 u=u-+1; O(1)
22 Find b[u] belongs ta-; O(1)
23 Computec! asin (4.11); T1(n)
24 if s(c”™) < s(c}) then

25 | o =d; O(1)
26 end

27 end

28 end

29 return (ci, ch) O(1)
30 end

generality, we only discuss the subroutine that calculdite®ptimal single frame on the

right hand side of the separatiaé, asin (4.12).
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A fixed camera resolution

We first consider the case in which the cameras have a fixetutesoz = z,. Given
the right separation boundary at= z; as shown in Fig. 4.4. RecaHQ satisfieSrg —
42 /2 = x;andr; C c. Since the camera frame has a fixed size (resolution), weligan a
the left side of a candidate framg with line x = z; and slidec, along the liner = z;
while maintainingr; C c, to search for all candidate frames. Based on the RRNPC
metric in (4.2), we know that(c,) changes only at the moments when one horizontal
side of ¢, overlaps with that of a request. Therefore, there are totalln) candidate
frames. Evaluating all of the candidate frames takés?) time. However since we have
sorted horizontal request sides, based on the RRNPC me{dcd), each change #ic,)
during the sliding can be determined@n(1) time. Therefore, we can simply calculate
the satisfaction of an initial candidate frame (e.g., tleerfe withy, + 32,/2 = ;) and
updates(c) by slidingc, upward along the line = z; while maintainingr; C c,. We
summarize the subroutine in Algorithm 4.

The subroutine presented in Algorithm 4 rungiifn). This means when the cameras

have a fixed resolutior;; = O(n) and Algorithm 3 runs irO(n?) time.

Algorithm 4: Subroutine solving (4.12) with a fixed resolution
Input: Right separation boundary at= z;;

Output: cJ;

1 begin

2 Create candidate frams; O(1)

3 Setzy —420/2 =, y2 + 322/2 = T3 O(1)

4 Calculates(ca); O(n)

5 while yo — 325/2 < Y; O(n)

6 do

7 Slidecz upward along liner = z; until one of its horizontal sides aligns with that
of a request; O(1)

8 Updates(ca); O(1)

9 end

10 return the bests; O(1)

11 end
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Fig. 4.4. An illustration of findingc), as in (4.12) with fixed resolution.
Slide the candidate frame along linez=z; from an initial position.

Whenever a horizontal frame side aligns with that of a rejties change
in s(ce) can be computed i@ (1) time.

Discrete camera resolutions

Now we consider the cameras hauadiscrete resolution levels. In this case, for each
right separation boundary, we just run the subroutine iroAtgm 4m times, each time for
one resolution level, respectively. Therefore, when theeras haven discrete resolution

levels, Algorithm 3 runs irQ(n?*m) time.

Continuous camera resolutions

Finally, we consider the cameras have continuous resoluéingez, z|. We already
know the left side of, satisfies) — 423/2 = z;. As shown in Fig. 4.4, the extended
line of a horizontal request side = ¥, intersects with liner = z; at vertex(z;, 7).
(z;,7) is defined as Base Vertex (BV) in [47]. According to the opfitgecondition
in Lemma 2 of [47], one optimal frame, must have one corner coincident with a BV.
Songet al. [47] propose a Base Vertex Incremental Computing with Diedy&Gweeping

(BV-IC-DS) algorithm to find an optimal frame. The basic ide# expand the candidate
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frame along its extended diagonal by increasing the resolutThe satisfaction of the
frame changes only & (n) number of critical resolution values and the changes betwee
consecutive critical values can be determined in constiauat tWe apply a modified BV-
IC-DS here. We skip the details and readers can refer to ptfjdtails.

BV-IC-DS runs inO(n) for each BV and we havé(n) BVs for each separation
boundary. This means when cameras have continuous resolatiels,7; (n) = O(n?)

and Algorithm 3 runs irO(n?) time.

Theorem 2 When cameras have a fixed,discrete and continuous zoom level(s), Algo-

rithm 3 runs inO(n?), O(n*m) andO(n?) times, respectively.

Table 4.2 summarizes the complexities for all algorithmatans.

Table 4.2
Summary of algorithm complexity

Zoom Fixed | m discrete| Continuous
Exhaustive searchO(n?) | O(n’m) O(n?)
Sweeping search O(n?) | O(n*m) O(n?)

It is worth mentioning that though we focus on rectangulguests here, our algorithm
can also apply to problems with any polygonal requests. asethe RRNC metric, a
frame fully contains a polygonal request region if and ofilhe frame encloses its iso-
oriented minimal bounding rectangle (MBR). We can redueepttoblem with polygonal
requests to the one with rectangular requests by replabm@alygonal request regions
with their MBRs.

4.5 Experiments

We have implemented all the algorithms using Microsoft ¥isG++ 2005. We test
the algorithms on a desktop PC with a 3.2GHz Pentium(R) D CPGB RAM, and a
hard disk of 320 GB. We test the speed of the algorithms wiflerdint settings of..
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Fig. 4.5. Computation speed of algorithms with a fixed and continuous
zoom level(s), respectively, and the comparison with thgr@damation
algorithm in [69] with approximation bound = 0.35, 0.30 and 0.25,
respectively.

We use random input for testing. First, 2-D points are uniformly generated across
[0, w] x [0, h]. Each pointindicates a location of interest and is deseghas “seed”. Each
seed is associated with a random radius of interest. To gene@request, we first randomly
assign it to a seed. Then within the radius of the seed, a 2@} gorandomly generated
as the center of the rectangular request region and two namdimnbers are generated as
the width and height of the request. Finally, the resoluti@ine of the request is randomly
generated across the resolution rafge].

Across the experiments, we set= 80, h = 60, z = 5, Z = 15 ands; = 5. We
set the fixed camera resolution d@s= 8. For each setting of, 100 trials are carried out
for averaged performance. Fig. 4.5 illustrates the refstiip between computation time
andn for proposed algorithm with a fixed and continuous zoom Ig)elrespectively.

It is shown that the proposed algorithm with fixed zoom is viast. It takes only 10
ms withn = 200, which is usually very large for most surveillance system&ough
the computation time of the algorithm with continuous zoartréases much faster as
increases, it takes only less than 900 ms with 200. Both curves are consistent with our

complexity analysis.
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We also compare the proposed algorithm with the approxanaigorithm in [69],
which run inO(n/e* + p? /%) time, wheree is the approximation bound. We test the
approximation algorithm witke = 0.35, 0.30 and 0.25, respectively. It is shown that
the approximation algorithm'’s speed performance detaesrvery quickly asincreases.
With n < 200, the approximation algorithm takes almost 2 seconds evdreifipprox-
imation bound is considerably large as= 0.25. Whene becomes even worse as 0.30
and 0.35, the approximation algorithm will eventually g#ed the proposed algorithm at
n =160 and 100, respectively. It is also worth mentioning thatcomputation time of
the approximation algorithm is proportional to the sizelwf problem spac@, w| x [0, A
while the speed of the proposed algorithm is independentarfidh.

These tell us that for applications whetels not very large but the problem space
[0, w] %[0, k] is large, and the accuracy of the solution is a significanteom the proposed
algorithm outperforms the approximation algorithms infbgppeed and solution quality. If
n is very large but the problem spafe w| x [0, k] is small, and rough solution (e.g.,
e > 0.25) is acceptable, then the approximation algorithm is a fagternative. In fact,
most visual object detection/tracking/surveillainceteyss [21, 28] can handle much less
than 100 objects at the same time while accurate objectitrgddbservation is required,
which qualify the proposed algorithm as a viable solutiartifiese applications.

Fig. 4.6 shows two sample outputs of the algorithm with comdus zoom levels and
n = 100. It is shown that in both cases, our algorithm reasonablytésca frames to cover

most of the requests.

4.6 Conclusions

In this section, we formulate the non-overlapping 2-framebfem with non-partial
coverage as an optimization problem. We propose a seridgafitams for solving the
problem under different camera resolution configuratioR®r cameras with fixedin

discrete and continuous resolution level(s), we propogerihms to solve the 2-frame
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(a) (b)

Fig. 4.6. Sample simulation results for random input. Dashed-lirog-re
angles denote requests and grey rectangles are optimatdram =
100, Sq = 5.

problem inO(n?), O(n?*m) andO(n?) time, respectively. We have implemented all the
algorithms and experimental results are consistent wittcomplexity analysis.

In future work, we will explore new algorithms for solvingframe problems with
p > 3. Itis shown in Fig. 4.6(b) that some left area of the left fraamel some right area
of the right frame are wasted. It is due to the non-overlagppondition. We will relax the
assumptions to allow camera frames to overlap in the fuitvieeplan to apply the proposed
algorithms to collaborative outdoor observation and silarece in filed experiments.

In the last three sections, we have studied an example of dMRH+ system: the
autonomous crowd surveillance system and its correspgrichme selection algorithms.
In the next section, we introduce a different MOMR++ systéne: bird species detection

system.
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5. MOMR++ SYSTEM: RARE BIRD DETECTION SYSTEM

5.1 Introduction

In this section, we report another example of the MOMR++ @yst the rare bird
detection system, which is initially motivated for assigtthe search for the though-to-be-

extinct lvory-Billed Woodpecker.

@) (b)

Fig. 5.1. Our autonomous observatory system installed along Bayeu De
View, a bottomland forest near Brinkley, Arkansas. (a) Tingallation
site. (b) A high resolution video frame of a red-tailed havelptured by
the system on Dec. 13, 2006. The red-tailed hawk has a bodyheri

55 cm, close in length to the IBWO.

The Ivory-Billed Woodpecker (IBWO) is a magnificent cre&ttinat is of great inter-
est to birdwatchers, ornithologists, and conservatisnibhe last confirmed U.S. sighting
was in the early 1940s but a photo was taken in Cuba in 1948eln E004, a credible
eyewitness sighting was reported along Bayou DeView ineeasArkansas, prompting
a comprehensive and systematic search led by research@wsrall University and the
Nature Conservancy. In Fall 2005, we joined the searchtdffpdeveloping a high reso-
lution robotic video system to observe the sky over an exadritne period. Detailed high
resolution video images are required to distinguish an IBW@ its cousin, the common

Pileated Woodpecker.
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Our goal is to develop a robust autonomous system that detdxetn birds fly into the
field of view, keeping only the associated video segmentfuither species recognition.
As illustrated in Fig. 5.1, the system has been installeddlearing along Bayou DeView.
This project is part of our larger effort to develop autonarmand networked systems for
collaborative observation of natural environments [49].

We began with the following four design goals:

a) Sensitivity: the ability to detect and record video sempes of sufficiently high
resolution to clearly distinguish between the IBWO, thee&iéd Woodpecker, and

other species with a low false negative rate20%),

b) Data reduction: the system records 198GB of high resmiutideo data per day.
Due to greatly reduced networking bandwidth in the wildemeve want to discard

at least 99% of this while maintaining criterion a),

c) Accuracy: the system should maintain a low false negatite, which means the
system should not miss an IBWO flying by the camera. Howevix acceptable if
the system has a relatively high false positive rate as Isragiterion (b) is satisfied,

and

d) Robustness: the ability to operate autonomously in hawslditions over long peri-

ods (i.e. mean time between maintenancé months.)

In this section, we report our system and preliminary athamidevelopment progress
including hardware design, software architecture, anddfbier that combines size fil-
tering, nonparametric motion filtering, and temporal difece filtering. Our system has
been deployed in two locations: Texas A&M campus from May gA0D06 and Bayou
DeView, a swampy bottomland forest near Brinkley, Arkanfsasn Oct. 2006 to Oct.
2007. Initial results suggest that the system we descrieniet these design criteria.
Fig. 5.1 shows the system as deployed in Arkansas and a edgdtigh resolution image

of a red-tailed hawk.
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5.2 Related Work

The IBWO is the third-largest woodpecker in the world. It fsslistinctive ivory
colored bill, white feathers under a black wing, and mald$ave a red crest. A pair of
birds may need 25kfor more of forest to feed. The loss of habitats due to the asing
human population and logging activities has greatly impathe IBWO population in the
past century. The last confirmed U.S. photos of IBWOs werertdly James Tanner in
Louisiana in 1938. John Dennis took the last photos of thesigs in Cuba in April 1948.

Despite lack of conclusive evidence, the search for thenlégey bird has never ceased.
In 2005, the Cornell Laboratory of Ornithology and theirleabues reported the discovery
of an IBWO in the Big Woods area of Arkansas [71] based prilpam a low-resolution
video segment [72], so there is great interest in a highluéso autonomous system.

Remote nature camera systems have been around since 195#4.a6d Davis [73]
built an early video camera based on remote wildlife obgdemaystem to study rodents.
Biologists use remote photography systems to observe negafon, feeding behavior,
species presence, and population parameters [74—79]. €aiatremote camera systems
such as Trialmaster [74] and DeerCam have been developeel $886 and have been
widely used in wildlife observation. The Internet enablesbeam systems that allow
the general public to access remote nature cameras. Thimisénvebcams have been
installed around the world, for example, to observe elefshatigers, bugs and so on.
However, most of cameras perform simple time sampled raagsdand it is difficult or
impossible for human experts to reliably review the ten$iotisands of images recorded.

Song and Goldberg have developed systems and algorithmetieorked cameras for
a variety of applications such as construction monitor8@j,[ distance learning [9], and
panorama construction [81].

Motion detection segments the moving objects from a videmeerce. Existing mo-

tion detection techniques can be classified into three oatey background subtrac-

thttp://www.zulucam.org/
2http://lwww.tigerhomes.org/animal/web-cams.cfm
Shttp://bugscope.beckman.uiuc.edu/
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tion [18, 82], temporal differencing [83], and optical flo®&4], 85]. Background subtrac-
tion calculates the pixel-wise intensity difference begwen input frame with a back-
ground reference model. To address the background noiseanghers propose many
statistics-based background models such as temporalgevgtd], median absolute de-
viation (MAD) [14], adaptive Gaussian estimation [86], mtkGaussian model, parame-
ter estimation [87], non-parameter estimation [18], antimém filter compensation [19].
Temporal differencing calculates the pixel-wise intendifference between two or three
consecutive frames. Optical flow calculates the displacerfiew vectors from a video
sequence. A nature environment is noisy and unstructuredsimgyle methodology can
directly satisfy the four criteria in the IBWO search. Duiour system and software
development, we carefully fine-tune the parameters to coenthie strenghts of nonpara-

metric estimation, temporal differencing, and connettighecking.

5.3 Hardware

Our system design was based on input from the Cornell orloigfists and the condi-
tions of the installation site. As illustrated in Figs. 5rideb.2, the system is installed in a
clearing in the swampy forest that is flooded by Bayou DeViewikansas. The clearing
is a narrow corridor that is about 900 meters long and 50 metete. It was formed when
the forest was cut to allow a high voltage line to run throughlhe system is installed
on an electric pole in this power line cut. A bird flying acrdise power line cut is clearly
exposed to the sky, which makes this an ideal location fdalilwsg the system. The site
was carefully selected by the Cornell ornithologists.

To provide good coverage of the region, we chose a two-casystam design with
each camera facing upward in opposite directions alongdh@&dor. We chose a camera
lens with a 20 horizontal field of view and a5° vertical field of view. Knowing that the
bird often flies at tree-top height, which is about 10 metésva the tree, we setup the

camera orientation to maximize coverage as illustrated.
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(b)

Fig. 5.2. Schematic of the system installation site and camera cgeera
The camera has 20° horizontal field of view and a5° vertical field of
view. (a) top view of system coverage; (b) side view of systewerage.

The Cornell ornithologists advised us that to serve as cena evidence, a bird image
should be at least5 x 25 pixels. We chose Arecont Vision 3100 3Mega-pixel high res-
olution networked video cameras as the imaging device. |Astiated in Fig. 5.3, other
major components of the system include a MinilTX computethvili.4 GHz CPU and
1GB RAM, a LinkSys wireless access point, an AW900 long ranigeless adaptor with
a 900Mhz directional Yagi antenna, an external timer, aered USB hard disk, and a
digital 1/0 box with a set of relays and an LED array. To dealhwthe harsh swampy
environment, the whole system is protected by weatherprodfthermal-controlled en-
closures.

There are two separate networks in the system. The inteataionk is managed by
the LinkSys access point that is both a wireless router ammidort wired switch that
allows the MinilTX computer to talk to the two cameras via & local ethernet. The
local 2.4Ghz wireless service is used to facilitatesitu system debugging. The external
network bridges the computer to the Internet by the AW90@ laange wireless adaptor.
Running at 1.5Mbps and 900Mhz carrier frequency, the AW8d@ range wireless adap-
tor can reach a maximum distance of 40 miles if equipped witbdBi Yagi directional

antenna. Since there is no interesting activity at nigtd,dkternal timer powers off the
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Digital I/0 Box MinilTX Computer

(b)

Fig. 5.3. System hardware configuration: (a) the MinilTX computeg, th
external timer, and the digital I/O box are protected in a tivegoroof
box; (b) the AW 900 long range outdoor wireless adaptor an8adBi
AW15 Yagi Antenna.

system each night. The external timer provides additioeebverability when the com-

puter accidently crashes. Image data is stored in an extd8B hard disk. Prior to the

installation of the long range wireless network, one of uagved the external hard disk
every few weeks.

The customized digital I/0 box has an LED array that disptagspercentage of stor-
age space left in the USB hard disk. The digital I/0O box alsttiais a set of digital relays
which can selectively power on or off individual camerasisTgroves to be an important
design choice because the camera firmware can crash andtodsrpower-cycled from
time to time. The digital /0 box is also equipped with a redlptutton that can power
off the MinilTX, which has no keyboard or monitor. The sinf@d hardware interface

makes it easy for non-experts to operate and maintain.

5.4 Software

To facilitate image acquisition, the MinilTX computer hasastomized Microsoft
Windows XP operating system. Due to the speed requirementpbbft Visual C++ has
been chosen as the programming language in the developAiilustrated in Fig. 5.4,

system software contains four main components: Bird FBé&f), System Configuration
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Fig. 5.4. System software diagram

Module (SCM), Service Module (SM), and Background Bione{BB) filter. We will

detail BF in the next section. The SCM is a configuration roaithat allows us to adjust
system parameters such as camera parameters, motionatefgtameters, and on/off
time on the field. The SM is a background process that monit@svhole system to
detect if there is a software or hardware failure. The BBIfiktestill under development, it
will be run offline to detect bird species automatically lthea the biological information

provided by the ornithologists.

5.5 Bird Filter

Based on what is known about the IBWO, the Bird Filter (BF)izes the information
about the IBWO provided by the Cornell ornithologists:

Assumption 1
1. An adult IBWO has a body length of 48cm.

2. An IBWO can fly at30 ~ 60km/hr.
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3. It takes a minimum size @b x 25 pixels to clearly distinguish the IBWO from the

common pileated woodpecker.

5.5.1 Input and Output

The BF is a multi-threaded process that performs filteringheracquired image in real
time. The process decides whether to keep the video on thledisde or to delete it. The
filter makes the decision by filtering out images without maontand images with noisy
motions. The noisy motions include the motions caused byatitns of tree branches,
moving clouds, sun positions, water reflections, droppieg teaves, flying insects, and
any moving objects smaller thad x 25 pixels in the image. As illustrated in Fig. 5.4,
the BF acquires frames using the frame grabber thread. &heef are stored in a video
buffer. Therefore, the input to the BF are image frames c¢agdtby the cameras and the
output of the BF are image frames that contain fast-movinjgatb that are larger than

25 x 25 pixels.

5.5.2 Parameters

When the BF starts, it loads the configuration parametetls ascamera parameters,
regions of interest, and object size to initialize eachvaié module. Camera parameters
refer to camera auto iris gain that enables the camera ta édalb to different lighting
conditions in the outdoor environment. The image resofigset tol 600 x 1200 pixels to
ensure a good balance between frame rate and resolutiohisAesolution, the Arecont
vision camera runs at 11 frames per second (fps). Two carpevaile a total of 22fps to
the system. To ensure the imaging of a fast-moving objeetcéimera exposure time is set
to be less than 1/100 of a second. The regions of interesttefghere we perform bird
detection on the image. It is stored as a binary map that caletieed at the installation

site to facilitate the quick installation of the system.
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5.5.3 Spatiotemporal Downsampling

Since the two cameras combined provide 22 fps at a resolafid600 x 1200 pixels
each, it is impractical and unnecessary to analyze evergernrareal time. Therefore, we
downsample video frame sequence spatiotemporally. Wéiparthe continuous video
sequence into sequential 7-frame video sequences. DEftnde a frame, théth video
sequence defined is,

Fy ={Fqu, Fa, ..., Fij, ..., Fir}. (5.1)

For each segment, we process its 4th frahe: = 1, ..., oo, at a resolution of00 x
300 with motion detection. In the downsampled image, we arerésted in capturing
motion objects that are bigger thénx 6 pixels, which is equivalent to th#gh x 25 pixels
in the original size. There is a possibility that a bird migktmissed due to the temporal
downsampling. It takes a bird about 1 second to fly cross theepbne cut, which should
be sufficient time for the camera to capture 11 frames. Howyévere is a small chance
that a bird might not appear on the 4th frame of the video sszpieand we could miss
the bird completely. However, this is the natural limit inged by the computation power
and camera field of view. The downsampling operation canaedwisy motions and

increases computation speed.

5.5.4 Nonparametric Motion Filtering

To eliminate periodical noisy motions caused by vibratieg toranches and their shad-
ows, we adopt the nonparametric background subtractiarigign proposed by Elgam-
mal et.al [18].

For every pixel at time, Elgammal’s algorithm updates a Gaussian madéd, >°)
from its intensity values from the corresponding pixelsievyious frames4, i = 1, ..., t,
whereX = diag{o?, 0,07} is the variance-covariance matrix for three color channels
The Gaussian distribution updates itself as a new sampleesom Therefore, for a

periodic noise, the Gaussian model can characterize thedpeintensity change in its



74

variance if the algorithm has enough samples. The algorttien predicts if a pixel is
a foreground pixel based on probability thresholding. A#gtensive tests, we set the
thresholding point to be thesth percentile.

This method has been proven to be robust in dealing with gierimoise. In our field
test conducted on the Texas A&M campus, this method suadbssitered out the noisy
background motions introduced by a rotating radio anteiiha.output of nonparametric
motions filtering is a binary map with white pixels as motidrgbs, which is defined as

B4 for frameFj,.

5.5.5 Connectivity Check

Unfortunately, the nonparametric filter cannot effecyéter out non-periodical noises
such as moving clouds or dropping leaves. Further filtesngegeded. We first perform a
connectivity check to determine the size of the region thggérs the motion. Recall the
required size in Assumption 1, we only keep the images wighmoving objects. Recall
that B;, is a downsampled image. A size®k 6 pixels is equivalent to thg5 x 25 pixels
in the original image. If aB;, contains a moving object that is bigger thax 6 pixels,

we proceed to the next step. Otherwise, we discard the egiyment;.

5.5.6 Temporal Differencing

Since a moving cloud can take on any shape or size, the dovphisgnand the non-
parametric motion tracking cannot get rid of the false akatnggered by moving clouds.
On a cloudy day, the system might accumulate huge amountgled \data containing
only moving clouds.

Observing the data, we notice that the velocity of a moviogdlis still relatively slow
if compared with that of a flying bird. In adjacent frames, theplacement of a moving
cloud is negligible if compared with the displacement of anfiybird. Therefore, for each

motion frameF;, detected by the nonparametric motion detector, we comhmention



75

frame with two immediate adjacent framés and Fj; to judge the velocity difference.
We know that motion on framé;, is detected using the previous frames 4, F;_o 4,
F,_s4, ... F1 4. For a slow moving object such as a cloud, although theréseaisintensity
difference|F,, — F;_, 4| for the motion to be detected, the intensity difference leetw
adjacent frames$l;y — Fi3| and|F;s — Fj4| should be much smaller than those of a fast
moving object. Therefore the sum [f;, — Fi3| and|F;5 — F4| is a good thresholding
function to judge if the moving speed of the object is fastuggto In our experiment, the
threshold point is 30. We name it 3-frame temporal diffenegclt is capable of filtering

out objects that are significantly slower than the IBWO.

5.6 Experiments and Results

Two field tests have been conducted for the autonomous digarsystem. The
system had been installed on the Texas A&M campus from Mag 29October 2006 for
the initial test. After 5 month-testing and tuning, the systwas installed in Brinkley, AR
to assist in the search for the IBWO from October 2006 to Cet@007.

5.6.1 Sensitivity

Fig. 5.5 illustrates four species of birds imaged by oureysin Arkansas. Among
the samples, Fig. 5.5(a) is the closest cousin of the IBW@high the image is blurred,
Cornell and U. Arkansas at Little Rock ornithologists webéedo verify thatit is a Pileated
Woodpecker. A Pileated Woodpecker has a body length of 40adrich is just slightly
smaller than that of the IBWO. The Northern Flicker in Figo(®) is a smaller kind of
woodpecker that has a size of 28-31 cm and a wingspan of 42/51q. 5.5(c) shows
a flock of Canada Geese caught by the system. Fig. 5.5(d) ieat Btue Heron with a
wingspan of close to 2 m. Birds caught by the system can berdiigger or smaller than
the IBWO and fly either faster or slower than the IBWO. Thisgegjs that our system is

capable of capturing conclusive images of an IBWO.



76

Fig. 5.5. Sample birds imaged by the system. (a) A Pileated Wood-
pecker (02/16/2007). (b) A Northern Flicker Woodpecker/2022007).

(c) A flock of Canada Geese (10/28/2006). (d) A Great Blue Hero
(04/28/2007).

5.6.2 Data Reduction

As of September 4, 2007, the system has collected over 25 GiBages. A total
of 113,836 images have been captured by the BF. Considdratghere were a total of
245,520,000 images captured by the two cameras during thhd&js, the BF reduced the
data by 99.9953%.

5.6.3 Accuracy

We consider both false negative and false positive ratesal#e fnegative means that
the system fails to detect when a bird flies by. Again, we tete system using the data
from both the Texas A&M campus and Brinkley, AR.

To test the false negative rate, we turn on the recording rabthee camera and sample

every frame. Then we manually count the number of imagesagang a flying bird that
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is bigger thar25 x 25 pixels. Comparing those with the algorithm output, we thettge
false negative rate. A total of 80,000 image frames wereectdld over a 2-hour period
on campus. There were three birds flying across the camedaodfieliew in this 2-hour
period and all have been detected by the BF. As mentioneigedhle only reason a bird
is missed by the system is the fact that it does not appea&y,jrwhich is possible if the
bird’s flying trajectory is very close to the boundary of tteerera field of view. The false
negative test is actually the test of how many birds do notlfhge to the center of the
camera field of view. In the test data set, none of the birdslflgecto the boundary of
camera field view. We believe it could be less than perfechenlong run. Since the
boundary of camera field of view is much smaller in comparisoaverall field of view,
the false negative rate should be a small vdkae20%). We are testing the false negative
rate using the data from AR and will report the result in Set8.

The false positive rate indicates the percentage of theesatpred that are not trig-
gered by bird motions. Since we perform motion detection matations on only the 4th
frame of every 7-frame video segment, we collect the stesisinly on the frame in which
motion detection is performed. For the 1205 captured matiage files from the Texas
A&M campus over a 6-day test period, the false positive rat&2.9%. The false positive
rate is 96% for the nine months of data collected in AR. Théntigdse positive rate in
AR is expected because we are more conservative in parasedtargs. For example,
our probability threshold in nonparametric motion filter9i& 9% for the experiment on
the Texas A&M campus and #8% for the experiment in AR. We purposefully lower the
probability threshold to increase sensitivity. Also thare large numbers of insects in the
forest that can trigger false alarms when they fly close tdehe. As long as the size of

the files is not too big to be transferred, this false positate is acceptable.

5.6.4 Robustness

After one year in the Arkansas wilderness, the system hasouatinuously except

for occasional power outages. The system has survived aegg temperature variations
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from winter to summer, severe weather changes, and has dvarkger high humidity

conditions.

5.7 Conclusion and Future Work

This section reports our system and preliminary algoritrewetbpment for an au-
tonomous observatory to assist the search for the IBWO. &alected thus far suggests
that the system achieves four design criteria: sensifidaga reduction, accuracy, and
robustness.

In Section 6, we will improve the filter efficiency by develagia more powerful filter
that combine bird specific biological information such azesand velocity, and flying

pattern.
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6. MOMR++ ALGORITHM: PROBABLE OBSERVATION DATA SET-BASED
EXTENDED KALMAN FILTER FOR BIRD SPECIES DETECTION

6.1 Introduction

In Section 5, we introduce a system to assist ornithologestsearch for rare birds.
The bird filtering algorithm in Section 5 is basically basedmotion detection filtering.
In this section, we further introduce a more powerful filbgrialgorithm that verifies the
targeted bird biological information such as body size aeldaity to further reduce the
data volume for human without compromising the low falseatieg.

For the the rare bird searching task, three critical cood#gimust be met. First, a
rare bird only appears in front of the fixed camera with very lmccurrence (e.g., less
than ten times per year) for very short durations (e.g., fleas a fraction of a second),
our algorithm must have a very low false negative (FN) ratecdoBd, since the final
verification has to be performed by human experts, it is resorggo reduce the huge data
volume to a manageable size, which also means that the fitetoterate a less ideal false
positive (FP) rate. Third, the system must be easy to be settine forest. Due to power
and communication constraints, a single camera is prefdregause it does not require
the precise calibration and synchronization as dislocstier@o rigs would for distant fast-
flying birds.

Fig. 6.1 shows the input of the problem is a short segmentetbmeequence of an
object. The output of the problem is to determine whethemntb&on sequence is caused
by a targeted bird species. We verify the bird body axis imfation with the known bird
flying dynamics. Since a regular extended Kalman filter (E&&f)not converge due to the
high measurement error and the limited observation dataaltlee high flying speed of
the bird (e.g., the sample bird sequence in Fig. 6.1 onlyainsatseven data points), we de-
velop a probable observation data set (PODS)-based EKFeaygjasioximate computation
scheme. The new PODS-EKF searches the measurement egerfaarall probable ob-

servation data that ensure the convergence of the corrésplBKF outputs. The filtering
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Fig. 6.1. An example of a video sequence of a flying bird that is captured
in Bayou DeView in eastern Arkansas. The camera runs at hiesger
second and the sequence is generated by superimposinggtnersed
bird images from consecutive video frames on the top of a drackd
frame.

is based on whether the subset of PODS that guarantees EKErgence is non-empty
and the corresponding speed is within the known bird flyirigaigy profile. We show that
the PODS-EKEF filter theoretically ensures a zero FN rate.

We have evaluated the filtering algorithm using both the sated data and field test
data. Our algorithm has been applied for the search of IBWiG@=mstern Arkansas. The
physical experiment results show that the algorithm cancedhe video data for identi-
fication by over 99.9995% with close to zero FN. The rest ofsbetion is organized as
follows. Section 6.2 reviews the related works. The debnitf the bird filtering problem
is presented in Section 6.3. Sections 6.4 and 6.5 model tidilbering problem and pro-
pose the PODS-EKF method followed by an algorithm in Sedién The experimental

results are presented in Section 6.7 before we concludecitin8e5.8.

6.2 Related Work

Detection of a flying bird relates to vision-based motioned&bn, image processing
for animal detection and recognition, 3D structure infeeewith monocular vision, visual

tracking, and especially Kalman filter-based visual tragki
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Recent development in vision-based motion detection hestlgradvanced its robust-
ness in noisy environments. Motion detection segments mgoobjects from their back-
ground using a video sequence. To address the backgrousesnoesearchers propose
many statistics-based background models such as temperalge [13], median absolute
deviation (MAD) [14], adaptive Gaussian estimation [86ixed Gaussian models, param-
eter estimation [87], nonparametric estimation [18], amadhian filter compensation [19].
Our work builds on the robust nonparametric backgroundraatibn algorithm proposed
in [18] to segment the moving foreground objects. Moreowar,algorithm advances the
mere motion-detection to bird species detection by usimdyfbying dynamics.

Periodic motion detection [88, 89] assumes objects witlodér motion patterns and
applies time-frequency analysis [88, 90] or image sequaligament [91] to capture the
periodicity. Applications of periodic motion detectionveabeen found to vehicles, hu-
mans and even canines. However, recognizing birds is diftdyecause a bird flying pat-
tern combines both gliding and wing-flapping and the pedadotion assumption does
not apply.

Animal detection and recognition using video images has lageactive research di-
rection. Most of the existing approaches build appearancdets of animals by fea-
ture points [92], silhouettes [93], contours [94], 2D kirei chains of rectangular seg-
ments [95], and motion symmetry [96]. A known set of animahgas are used to train
and test the model using learning techniques such as neatvabrks [97], K-means [98],
clustering [95], template matching [93] etc. A review of theage processing techniques
for bird recognition can be found in [97]. However, thesénteques require a large learn-
ing data set to train the model, which is not available in qpligations.

Recently, the 3D structure inference using monocular risias drawn increasing re-
search attention. Ribnic&t al. [99] propose an algorithm for estimating 3D parabolic
trajectories of projectiles in monocular views. Saxenhal.[100] propose a learning algo-
rithm that estimates 3D structures of a static scene basadmgle stillimage. The work

models the scene with sets of planes using Markov Randord fV8RF) and trains the
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model based on depth cues such as texture variations anémpsgadolor, haze, and defo-
cus etc. Hoienet al.[101] propose a similar approach that models the staticesagthn
“surface layout.” Different from these works, our approalgals with a highly dynamic
object (i.e., the bird) and its trajectory is not necesggudrabolic.

Visual tracking estimates trajectories of objects in 2Dgmapace. State estimators
such as Bayesian filters [102], particle filters [103, 10pjarse (extended) information
filters [105] or (extended) Kalman filters [106] are often déoyed. When observation
uncertainty presents, data association techniques sunhléple hypotheses based track-
ing [107] are usually used. A recent survey can be found ih [@®e key novelty of this
work is that the existing works focus on the data associatiahstate estimation problem
from a large observation data set while our work focus on taie sange estimation using
minimal or even insufficient observation data set with reddy large noises.

The fundamental technique used in the bird detection is xtended Kalman filer.
Kalman filter, extended Kalman filter, and their variatiomsify the detected motion in-
formation from video frames with the prior known dynamicsncg the methods utilize
the information across consecutive video frames, theiusbiess to errors makes them
ideal methods for poor illumination conditions and outdenvironments [108]. Hence,
Kalman-filters have seen a wide range of applications sudinasgitaneous localization
and mapping in robotics [109] and object recognition andkirag of vehicles [110],
pedestrians [111], and even human eyes [112]. Most existioiks assume rigid ob-
jects and ignore the convergence of Kalman filter becausengieaamount of observation
data are available. Unfortunately, these conditions ddalat for a high-speed flying bird.

Our group has developed systems and algorithms [4, 47, 4&dtworked robotic
cameras for a variety of applications such as constructionitoring [80], distance learn-
ing [9], panorama construction [81], and nature obserud#d]. Our previous work [113]
details how to build an autonomous nature observationgysging motion detection. We
learn that mere motion detection cannot save the bioloffisis the herculean task of

image sorting, which inspires this work.
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image plane

Fig. 6.2. An illustration of bird detection. When a bird flies across th
camera FOV, the corresponding motion sequence can be usgttdot a
set of moving line segments that correspond to the body dtisedoird.
The line segments are then verified using an EKF based on th&rkn
profile from the targeted species. The segmentation errtimeoénd of
body axis are uniformed distributed in thev image plane and can be
represented as an inverse pyramid when the error rangeksoajected
from the camera center to the FOV volume.

6.3 Problem Description

Our system is a monocular vision system with a narrow field iefw(FOV). The
position of objects with respect to the camera is based on@a8&@sian camera coordinate
system (CCS) with its origin at the camera center as showngn&2. Thez-axis and
y-axis of the CCS are parallel to theaxis and the-axis of the image coordinate system
(ICS), respectively.

From the knowledge provided by ornithologists, we know thélying bird is usually
an adult bird. A bird does not change its size once reachggdtlthood. Birds of the
same species share a similar size and flying speed range. bibhagjical information

allows us to distinguish the targeted species from otherimgosbjects.
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6.3.1 Assumptions

To establish the bird detection problem, we also have theviilahg assumptions,

e A fixed and pre-calibrated camera is used. With a calibratedera and without
loss of generality, we can always transform camera inttiparameter matriX_, to
diag f, f, 1), wheref is the focal length of the camera in units of pixel side length
ICS must have its origin located on the principal axisakis) of CCS. Hence we

have perspective project matri = [K.|03x1].

e Thereis only one bird in the image sequence. If there areipeiftying birds in the
scene, we assume each individual bird sequence has bestedsout using multiple

object tracking techniques [28].

e The bird is flying along a straight line with a constant speégrmvcaptured by the
camera. This assumption usually holds considering a fasgflyird can only stay

in the FOV for less than a second.

6.3.2 Inputs and Output

The input of the problem is a sequencenafnages which contain a moving object of
any type. Each frame is time-stamped. Based on the infoom&tbm ornithologists, we
know the body lengtlh, and the flying speed range = [v,in, Vma.] Of the targeted bird
species. The output is to determine if the motion sequencaused by the targeted bird

species or not.

6.4 Modeling a Flying Bird

To develop a bird filter, the key is to extract the bird flyindormation from the seg-

mented bird motion sequence and associate the informattaritve known flying models
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and the prior information regarding the targeted species.uk first observe the motion

sequence of the flying bird to investigate how to extract ting ftying information.

6.4.1 Bird Body Axis Filter

As detailed in [113], we segment the moving object from itskgmound and obtain a
set of motion sequences. Fig. 6.3(a) illustrates diffefigiig poses of a pigeon. At first
glance, it is unclear how to utilize this information becadsrd poses are not a simple
discrete set of states. The wing configurations of the birg deamatically from frame to

frame. The shape of the bird changes significantly as well.

>t |>
T~
i

(b)

=1 =
.« B

¥

@————e Maximum body axis

Fig. 6.3. (a) Segmented bird flying poses. The white pixels in the bi-
nary map indicate the segmented salient motion zone. Bidgl bges are
overlaid on top of the segment image. (b) An illustrationta search for
body axis length.

As we scrutinize the collected flying pose data, we find thairé does not bend or

extend its body during the flight as illustrated in Fig. 6)3fdence, we have,

Observation 6.4.1 (Invariant Body Length) A flying bird maintains a constant body length
during flight.

This observation has been confirmed by ornithologists amdmage data collected

(341 bird images from 61 motion sequences) from physicatexpents. Except landing



86

and taking off, a bird extends its body straight to minimize tvind resistance during a
normal flight. This is an important finding because it progide entry point to attack the
bird detection problem. The ornithologists also use thd body length as an important
index to classify birds because adult birds from the sameispeshare the same body
length with little variance. Hence the problem becomes hovextract the body axis
orientation and length of a flying bird from the segmentediamo$equence.

It is nontrivial to extract the bird body axis and length frdahe isolated poses in
Fig. 6.3(a) because a bird is a non-rigid and deformablecbbidowever, if we superim-
pose the segmented bird flying pose data to the backgrourgkiasaillustrated in Fig. 6.1,

a new finding appears:

Observation 6.4.2 (Body Axis Orientation) The orientation of the body axis of a flying

bird is always close to the tangent line of its flying trajegto

To validate our observation, we analyze 61 bird motion segeg with a total of 341
segmented birds that we have collected in past years. Thk cesfirms the observation.
The mean orientation difference s8° and the standard deviation 4§ = 8.3°. This
observation inspires us to develop a bird body axis filterABBto extract bird body axes
from the segmented motion zone.

Let us define the bird body line segment in the image frame as
Z= [uhvvhautavt]Ta (61)

where(u", v") is the head position an@’, ') is the tail position. Frona, we can compute
the body axis orientation

0 = atanZv" — o', u" — uh),

and the body axis length

| = \/(uh —ut)? + (vh — vt)2.
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Note thatl is different froml,. [ is the projection of, on the image plane and is in units
of pixels.

We know that the slope of the tangent line of the trajectony lba extracted easily
based on the position of the salient motion zone on the baadkgrimage. The red line
in Fig. 6.1 is the approximate trajectory generated by hgkhe geometric center of each
motion zone. The tangent line of the approximate trajeataryserve as an initial solution
for the bird body axis orientation. However, since the staddleviatiorv;, # 0, further
refinements are required.

Define B as the boundary pixel set of the motion zone (e.g., the baynulzel set
of the white pixels in each block in Fig. 6.3(a)). As illuged in Fig. 6.3(b), any two
points in B, as the body axis ends, form a candidate body axis with lehddefined as
the orientation of the corresponding tangent line of thenfjytrajectory. We find the bird
body axis in image: by searching for its orientation in the rangef 20, + 20,] and

the corresponding body axis endsinto maximizel :

z=arg max [, subjecttod € [0 — 20,0 + 203). (6.2)
(uh,vh') € B
(ut,vt) € B

6.4.2 Bird Flying Dynamics

To determine whether the motion information is caused bytdingeted species, we
need to establish a bird flying model in the image frame. phet [z,vy, z]T denote the
head position of the bird body axis amd= [, ¢, 2] denote its velocity in the CCS. Since

the bird flies along a straight line with a constant veloacitg, have

X = [p] = [#,9,2,0,0,0]" = {V} (6.3)
v 0
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where the state variable = p € R describes the position and velocity of the bird

A"
head. Definingc,.;; = [2¢, 5, 2!]T as the position of the bird tail, and we have

x— il /|| v]
Xtail = | y —yly/|| V] | - (6.4)
z = zl/||v|]

As illustrated in Fig. 6.2, the relationship between the saeament data defined in
(6.1) and the corresponding statecan be described using the pin-hole camera model.

SinceK. = diag(f, f, 1), we have

[ gefe || e
z = fu/= = fy/i | +wi=h(x) +w, (6.5)
pee | 7| s
R IR ETE

whereh(-) is usually called the measurement function andepresents the measurement

noise.

6.5 Probable Observation Data Set-based EKF Method

6.5.1 Extended Kalman Filter

Eq. (6.2) provides the bird flying information extractedfranages. Eq. (6.5) captures
the prior known information regarding the targeted spedfgbe motion is caused by the
targeted species, then the bird body axis information pieiby (6.2) should follow the

nonlinear dynamic system described by (6.5), which can beatad using an EKF.
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Egs. (6.3) and (6.5) can be re-written in a discrete-timmfor

x(k+1) = A(k+ 1)x(k) + q(k), (6.6a)
z(k) = h(x(k)) + w(k), (6.6b)

whereq(k) € R% andw (k) € R* represent the white Gaussian transition and measurement

noises at timé with covariance matrix) (k) € R%<6 and (k) € R*4, respectively,
q(k) ~ N(0,Q(k)), w(k)~N(0,W(k)),
andA(k + 1) is the state transition matrix at time+ 1,

I AT (k+1|k)I
A(/{:+1) _ 3x3 ( | ) 3x3 ’
033 I3xs
whereAT'(k + 1|k) is the time interval between tinfeand timek + 1.
We defineP € R~ as the covariance matrix for the state variabl@'he EKF for the
system in (6.6) can be implemented as a state predictiork$tep — 1), P(k|k — 1) and

measurement correction stepk|k), P(k|k) recursively as follows,

f(klk —1) = A(k)%(k — 1]k — 1), (6.7a)
P(klk —1) = A(k)P(k — 1|k — DAT (k) + Q(k), (6.7b)

A

P(k|k — 1)HT (k)

(k) = - : (6.7¢)
H(k)P(klk — ) HT (k) + W (k)

x(k|k) = %(k|k — 1) + K (k)(z(k) — h(x(k|k — 1)), (6.7d)

P(k|k) = (Tsxe — K (k)H (k)P (k|k — 1), (6.7€)

where K (k) € R%** is the “Kalman gain” at time: and H (k) € R**¢ is the Jacobian

matrix of the functiom(-) in (6.5) with respect te.
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p(k|k
Recall thatx(k|k) = B(KI) . For then-image motion sequence, the predicted

Y (k[K)
%x(n|n) contains the bird velocity (n|n). The decision of accepting or rejecting the mov-

ing object as a member of the targeted species is defined &sllthwing indicator func-

tion,

1 (accept) if ||[¥(n|n)|| € V and EKF converges
I(Z"™) = (6.8)
0 (reject) otherwise

whereZ'" = {z(1),z(2), ...,z(n)} is the set of body axes acrosdrames.Z"" is also
referred to as the observed data. EQ. (6.8) basically statdsthe moving object is a
member of the targeted species if the EKF converges to theedexbsolute velocity range
V.

6.5.2 Determining EKF Convergence

As indicated in (6.8), automatically determining whether EKF converges or not is
necessary. Define the estimated state s&t'ds= {%(1]1), %(2|2), ..., %(n|n)}. Since ve-
locity convergence implies position convergence a(id k) convergence meati$ (k| k)—

Vv(k — 1|k — 1)|| — 0, we determine the convergence of the EKF by inspecting

(X1 =Y w(R)[(k[K) =¥ (k = 1]k = D),
k=2
wherew(k) > 0 is the weighting factor at timé. w(k) is a monotonically-increasing
function ofk, which gives more weight to later states(k) is usually pre-generated using
simulated random inputs across the entire possible paeamagtge without measurement
error (i.e.W (k) = 04x4). SettinglV (k) = 0444 is to ensure EKF convergency, which will

be explained later in the section. Dendtg| as the speed of the bird known in each trial
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of simulation. We repeat the EKF with randomized inputs feera 0° times to observe

the quantity of
¥
¥ (k|k) =¥ (k = 1]k = DI

which is the inverse of the relative speed change at tim&e choose the weighting factor

as

) Ikl
(k) =E (||‘7(k‘|k) —\A/(k:—1|k—1)||)’

where function® () computes the expected value over all simulation trialsHertargeted
species. When the EKF convergds,(k|k) — v(k — 1|k — 1)|| appears as a decreasing
function of k& after a few initial steps. Correspondingly(k) is an increasing function

of k. If ||[¥(k|k) — ¥(k — 1]k — 1)|| — 0, thene(X'™) is smaller than that of the case
|1V (k|k)—¥(k—1|k—1)|| - 0. Therefore, to determine the EKF convergence, we employ

a threshold one(X'™) and introduce a new indicator variable,

. 1 (converge) if e(X'™) < 6,
IEKF(thn) = (6.9)
0 otherwise
Note that the threshold should be sufficiently small to ensure the convergence of. EKF
The actual value of can be pre-determined in simulation. Then the decisionimggaik

(6.8) is re-written as,

1zt - 1 (accept) if ||[¥(n|n)|| € V and g (X"") = 1, 6.10)
0 (reject) otherwise
The underlying condition for (6.10) to be an effective birgtettion mechanism is
that if observatiorZ'™ is caused by the targeted bird species then the convergétive o
EKF has to be guaranteed. Unfortunately, this conditiorallguloes not hold due to two
reasonsn is small and the measurement noigé:) is too big.n is the number of images
that contain the moving object. Due to its fast flying spebd,tird can only stay in the

camera FOV for less than 1 second for most of the time. Agtualk 11 for most cases in
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our experiments. The measurement noise covariance mé&tky is directly determined
by the image segmentation error. Even at 1 pixel level, ittive range ist% for a bird
body length of 25 pixels. For the nonlinear deterministgcdete time system in (6.6), the
large W (k) means the EKF either fails to converge or converges verylglaacording
to [114]. The bird detection mechanism would have a clos®@%d FN rate if the simple

EKF implementation is used, which makes it useless.

6.5.3 Probable Observation Data Set-based EKF Method

Since simply applying EKF cannot address the bird detegioblem, a new approach
is required. Let us assume there is no measurement noiséXi(é) = 04.4) and no
state transition nois€(k) = 0Ogxs. At each timek, the EKF in (6.7) is a system of
equations with four inputs, which is the dimensionalityzpfind six outputs, which is the
dimensionality ofx. We also know that matriX introduces two constraints: the constant
speed and the linear trajectory. Therefore, the equatistesycan be solved within one
step. The convergence of the EKF is not a problem when there ®ise provided that
the bird does not fly in a degenerated trajectory (i.e. flyilogathe principal axis of the
camera).

Although Q(k) # 0gxe for most cases, the state transition naigé) is often very

small, which leads to the following lemma,

Lemma 6 The EKF described in (6.7) converges Wh&k) = 04y4.

Proof We skip the proof because our system in (6.6) is a linear trmarant discrete
time system with a nonlinear observer. The convergencesdtitF can be proved by

directly applying the results in [114]. [ ]

This is also confirmed in our experiments in which the EKF &vges nicely under 7
periods (i.en < 7).
At first glance, this result is useless because we cannotidjeff the measurement

noise. However, this result opens the door to a new apprd2eimne the observation data
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without measurement error @8 = [z*(1),z*(2), ..., z*(n)]”. Although we do not have
Z'™, we know it is within the segmentation error rangeZof®. For thek-th image, the

measurement data is

Define the error-free measurement data at tinas
2" (k) = [u" (k), 0" (k), u" (k), v" (K)]".
Given the segmentation error is withirpixels, define

Si(k) = [u" (k) £ 7], Sa(k) = [v" (k) £ 7],
Ss(k) = [u'(k) £ 7], Sa(k) = [v' (k) £ 7],

and the segmentation error range at timesS(k). Hence,
z" (k) € S1(k) x Sa(k) x S3(k) x S4(k) = S(k). (6.11)
We partition the entire segmentation error range{§ét), k = 1,2, ...,n} according
to the convergence of the EKF using (6.9).
Definition 6.5.1 Define the probable observation data set (POZSY as the set of ob-
servation datd!" that satisfies the condition for the EKF convergence,

7 = {2 |a(k) € S(k), k = 1, ...,n, ande(X1") < §}. (6.12)

HenceZ!'™* ¢ Z'". EachZ!" in the PODS is likely to b&'™* and hence it is named as
the probable observation data. For a given PQI¥S, there is a corresponding estimated
state seK!™, which contains a set of all possible estimated velocittaésyee n, which is
defined asV,

V = {||¥(n|n)| such thatX*™ ¢ X*"}.
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Then the decision making for our PODS-based EKF (PODS-EKéihod can be written

as,

1 (accept) if VNV # () andZ'™ £ 0,
[(Z'm) = (6.13)
0 (reject) otherwise

Hence we have the following lemma,

Lemma 7 If the non-degenerated observation d&&” is triggered by a bird of the tar-
geted species and the thresheldor determining the convergence of EKF is sufficiently
small, then/ (Z'") = 1.

Proof SinceZ'" is triggered by the targeted species, its correspondifig ensures the
convergence of the EKF according to Lemma 6.

DefineX!"* as the corresponding estimated state<Zfot*. Hence
E(Xlzn*) <= Zl:n 7& @7

becaus& ™ € Z'".

Following our naming conventiori;*(n|n) is the velocity component at*(n|n) €
X!+ Since the observation data is not degeneratéd(n|n)|| € V. We also know
|1V*(n|n)|| € V by definition,V NV # ( holds. Since both conditions are satisfied,
I(Z'™) = 1. |

Lemma 7 ensures that the PODS-EKF method theoretically zascaFN rate in the
bird detection, which is a very desirable property.
6.5.4 Approximate Computation for PODS-EKF

Computing the PODZ.'" is nontrivial. It is possible to use conventional searching
methods such as a binary search. However, this would be wragydonsuming. Note

that we actually do not neefl’” because all we need to know is whether the conditions
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VNV #(andZ*™ £ () hold or not. This allows an approximation method. For a given

observatiorZ!', we define the following optimization problem,
Zl:n _ : Xl:n 14

M8 et S (614
whereZ!" is the optimal solution to the minimization problem abovetually, (6.14) is
a typical nonlinear optimization problem with the errorgam(k) € S(k);k = 1,...,n
and the EKF in (6.7) as constraints. There are many numerietthods from nonlinear
programming that can be used here [115]. We apply a sequgoadratic programming
(SQP) method [116]. DefinX '™ = {X(1[1),%(2]2), ...,X(n|n)} as the estimated states

corresponding t&'. We have the following lemma,

Lemma 8 ¢(X¥") > § «— Z' = ).

Proof Since (6.14) is a minimization problerﬁ,“‘ yields the minimak(X*"), namely,

(X1 > § = g(X1") > 6, VX" e X (6.15)
— 7' =. (6.16)
[ |

It is worth mentioning that this method is an approximatiorcomputation because the
nonlinear programming solver often falls in a local minimimstead of a global minimum
(see Remark 1).

Now we want to determine wheth& NV # (. If we view the EKF output (n|n)
as a function ofZ'", it is continuous and differentiable with respect to eacinyein Z*".
SinceZ!' is actually very small, the variance of the velocity in thé €ds very small.

Instead of compariny to V, we select a value i¥ to check if it is in). Definev(n|n)
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as the velocity component &f{n|n) € X'. The chosen value is tHg7(n|n)| because it

is readily available. Therefore, the approximation is
[V(nn)|| €V <= VNV £0.

Remark 1 Due to the approximation, the zero FN rate cannot be guarthtéHowever,

the FN rate is still very low (less than 5%) under the appradion as shown later in the
physical experiment results. We conjecture that this istduke fact that the nonlinearity
of the problem is not very strong. For most of time, the SQfes@lctually finds the global
optimal. Therefore, the impact on the application is negleg In practice, we can initiate
the solver at different random starting points and run thizeomultiple times, which can

significantly increase the chance that the global optiméllgaan be found.

6.5.5 Estimation of Initial States

The convergency and the performance of the EKF greatly departhe accuracy of

the initial state. Here we detail how to estimate the ingiake of the flying bird,
%(0]0) = [p(0]0)", ¥ (0]0)"]" (6.17)

for each input, wherg(0]0)” = [2(0]0), (0]0), 2(0|0)] and¥(0[0)” = [:(0|0), 5(0]0), 2(0]0)].
We assume the bird speed is uniformly distributed acrossath@e) = [Viin, UVmaz)-

We set the initial speed of the bird as the mean spegd0(0)|| = V = (vpin +

Umaz)/2. AS sShown in Fig. 6.4, given the image of the bird at the firsteotationz(1) =

[u"(1),0"(1),u!(1),v!(1)]T, the body axis in image and the optical camera center form a

plane. The 3D bird flying trajectory must be in this plane. ietefine the 3D coordinates

of the bird head positions at discrete time(k = 0,1, ...), as

p(k|k) = p(0]0) + v(0[0)kAT. (6.18)
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Fig. 6.4. An illustration of the initial state estimation for EKF.

Given the body axis length) andV, the position of the bird tail at timg is,

b(k[k) — v(k\k)%’ — 5(0[0) + (0]0) (kAT — %). (6.19)

Based on the pin-hole camera model, the bird head and tatlggasproject to the image
at(ul(k),v"(k)) and(ut(k), v*(k)), respectively (see Fig. 6.4). Recall the perspective pro-
jection matrixP. = [K.|03x:|. Based on (6.18) and (6.19), this projection is represented

in homogeneous coordinate system as,

v [ pklk)
1 p
N R
1 -
___»n BOI) + ¥(O)RAT | 6.20)
2(0[0) + 2(0[0)kAT ]
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and

2 (k[k) — A(k|k) |

v

ut (k) A o
P, { B(k[k) — v (k[ ]

(6.21)

_ L p(0]0) + ¥(0[0)%")
2(0/0) + £(0/0) &’ ) )

wherek’ = kAT — 1,/V.

We have 6 unknowns as in (6.17). Each image data point hasimhbdad and one
bird tail. Each body axis endpoint contributes two lineanagpns as shown in (6.20) and
(6.21), respectively. Therefore, we only need the first 2gendata points (bird images) to

form a system of 8 linear equations:
Ms,6%(0]0) = 0. (6.22)

Obviously, (6.22) has non-zero solution. Actually, rahk,s) = 5 and the solution to
(6.22) is the null space af/s.¢, Which can be represented ésx,}, wherex, is any
non-zero solution to (6.22) andis a scalar. This set of solutions correspond to an infinity
number of parallel trajectories as shown in Fig. 6.4. Batfettories 1 and 2 project back
to the same points on the image. With a further consti&it0(0)|| = (Vmin + Vmaz)/2,

we obtain a unique initial state estimati®(0|0).

6.6 Algorithm

We summarize our PODS-EKF based bird detection algorithiowbm Algorithm 5.
Note that the approximate computation of the PODS-EKF isl ingze.
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Algorithm 5: PODS-EKF based Bird Detection Algorithm

1 for the segmented motion blockikth framedo
2 \ calculate the geometric center pofrit of the bird;
3 end
4 ConnectC;, i = 1,2, ...,n to generate a piecewise linear trajectory;
5 Obtaind from the trajectory;
6 for the segmented motion block:ith framedo
7 | Obtainz(i) using the BBAF in (6.2);
8 end

9 Initialize the EKF using (6.20) and (6.21);

10 Solve the constrained nonlinear optimization problem ia4{

11 if |¥(n|n)|| € V¥ AND (X" < § then

12 | return TRUE;

13 else

14 | return FALSE;

15 end

6.7 Experiments

We have implemented the PODS-EKF algorithm and tested guwitim on both the
simulated data and the real data from field experiments. ©hgpater used in the test
is a desktop PC with an Intel Core 2 Duo 2.13GHz CPU and 2GB RAM: PC runs
Microsoft Windows XP. The BBAF has been implemented usingrbBoft Visual C++.
The PODS-EKEF filter has been implemented using Matlab v7.8.cidbose Arecont Vi-
sion 3100 high resolution networked video cameras as ingadgwices. The camera runs
at 11 frames per second with a resolution of 3 mega pixelsrpend. The lens for the
camera is a Tamron auto-iris vari-focus lens with a focagjterrange of 10-40mm. We

have adjusted the lens to ensure a R0rizontal FOV.

6.7.1 Bird Body Axis Filter Test

We first verify whether the BBAF is capable of extracting the lbody axis from the
noisy data. We have used two data sets in testing. The firatsgdthas been collected

from our campus and contains 61 bird motion sequences wittiah df 341 segmented
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birds which are mostly rock pigeons and American crows. Huosd data set has been
collected from our test site in Arkansas and has a total ofn@&ges with 11 different
species at 8 images per species. We compare the output of BBAFhe corresponding
ground truth which is a human’s choice in bird body axes. Tifference between the
BBAF output and the ground truth has means of 0.80d 0.63, and the same standard
deviation of 3.7 for the first and the second data sets, respectively. Thestudtest
shows that the output of BBAF and human choices come fromaheedistribution for

both data sets with statistic significance, which is saigfy

6.7.2 Simulation

The second step is to test the performance of our PODS-EKig tise simulated in-
puts. The simulated inputs allow us to test the bird filtepegformance under a full range
of possible changes in the parameter settings, which ara@lyswnavailable in physical

experiments.

Random trajectory generation

Z'" needs to be generated from a random trajectory. First, fmgtam numbers are
generated as the coordinates of two points in the image plEme two points determine
a line in the image. The line and the camera center determmetn plane in which
the motion sequence will be generated. We know that the @R@Y is a pyramid with
its top vertex at the camera center. The plane intersectstwit faces of the pyramid.
The fifth random binary number is generated to choose oneedinh faces as the initial
face through which the bird enters the camera FOV. The chfasenintersects with the
motion plane and yields a line segment. We generate a poittiistine segment using
the sixth random number. The point is used as the initialtpesof the bird. This line
segment’s extension line divides the motion plane into talvds. We are interested in

the half motion plane that intersects with the pyramid. Téeesth random number in
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Table 6.1
Species used in the experiments. The data sources areitigtezicorre-
sponding reference.

Species Iy (cm) [ V (km/h)
House Sparrow 151 | [29, 40]?
Rock pigeon 333 | [24,56]*
Ivory-billed woodpeckert 48° | [32, 64]°
Red-tailed hawk 567 | [32, 64F

the range of0, 7) is generated as the pitch angle of the bird heading on thentatibn
plane. Finally, the eighth random number is used to genératspeed of the bird. Hence,
8 random numbers determine a complete trajectory of a flyirdy By projecting the

trajectory back to the image plane with a preset bird bodgtlerwe obtairZ .

EKF convergence

An immediate step in the simulation is to verify if a reguld{fEconverges without
measurement noise. Although Lemma 6 ensures the convergreticeory, it is unclear
how many steps it would take. We simulate three types of lurtise test: house sparrows,
rock pigeons, and IBWOs. House sparrows and rock pigeonscanenon birds in Texas
and the IBWO is the rare bird which our system is used to sefarcim Arkansas. The
three species represent small, medium, and large birgectreely (see Table 6.1).

For each species, we generaté different sets of random inputs to test the regular

EKF. Fig. 6.5(a) shows the EKF convergence for rock pigeardeudifferent configura-

Ihttp://en.wikipedia.org/wiki/Hous8parrow.
2http://lwww.garden-birds.co.uk/information/flight.ntm
Shttp://www.allaboutbirds.org/guide/Rodkgeon/lifehistory
4http://lwww.ct.gov/DEP/cwp/view.asp?A=2723&Q=326076
Shttp://animals.nationalgeographic.com/animals/iivdsy-billed-woodpecker.html
Shttp://news.mongabay.com/2007/0217-ibw.htm|
"http://lwww.nysite.com/nature/fauna/redhawk.htm
8http://www.nysite.com/nature/fauna/redhawk.htm
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tions by tracking errors in speéfdr(k|k) — ¥||, where¥ is the true bird velocity known
in simulation. It is shown that without image noise, the lag&KF nicely converges (the
blue curve) as Lemma 6 predicts. With the image notse-(1 pixel), the regular EKF
cannot converge and yields a big error variance (indicasatiegreen curve and vertical
green line segments, respectively). We also show the oofputr PODS-EKF (the red

curve). Although not required, it is desirably close to tloése-free case.

500

——EKF with noise
400 — EKF without noise
——PODS-EKF 0.8

—+—FP: House s|

PAITOW s /1y = 11.24%
A FN: House sparrow

—&—FP: Rock pigeon

o FN: Rock pigeon
o 0.6 ——FP:IBWO
g 200 TTTTTT g o FniBWO

100 L

0 N O A ey

3000 T YE(r/ 1) = 3.65%

YE(r/ 1) = 2.42%

1005 5k0 100

(@) (b)

Fig. 6.5.(a) Convergence for different EKF configurations based om si
ulated rock pigeon data. (b) FP and FN rates with respedétitoboth
simulation and physical experiments.

Performance of PODS-EKF under simulated inputs

Now we are ready to analyze the performance of PODS-EKF. Wergee a set of
random inputs to mimic three birds as in Table 6.1. We set acgspange from 15 to 85
km/h with an incremental step of 5 km/h and a bird size rangmft0 to 60 cm with an
incremental step of 2 cm. We set the segmentation error rangel pixel. For each
setting of the input data, 20 trials are carried out. Theayeicomputation time for each
trial is 5.6 seconds. Fig. 6.5(b) demonstrates how the cdteB and FN change according
to . After § > 1.0x10°, the FN rates can be reasonably controlled to be less than4%%,
and 1%, for house sparrows, rock pigeons and IBWOs, respéctirhis confirms that the

approximation computation is reasonable. The reason PEX¥FSworks worst for house
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sparrows is that with the same FOV in the simulation, the Esghouse sparrows lead to
the highest noise-signal ratio, indicated/a& /1) in Fig. 6.5(b). Our PODS-EKF is not
biased for a particular bird. To cope with small birds, we camease the focal length to
reduceFE (7 /). This test also tells us how to choose a proper lens for a edggiecies in

applications to ensure the best performance. The FP rates BODS-EKF are 23%, 45%
and 38%, respectively, which are a little high. However,stdering that we are comparing
the targeted bird with birds similar in size and speed, tbsult is not surprising. In fact,

the algorithm should behave better in real tests where sidieen the moving objects

have much larger range in both size and speed. Furtherni@enonocular system has
difficulty in detecting objects with their trajectories sito the optical axis, which also

contributes to the high FP rate.

6.7.3 Physical Experiments

We have conducted two field experiments: detecting flying ppgeons, and assisting

the search of the legendary IBWOs.

Data sets and ground truth

Since there is no existing data set or benchmark for the atiahuof bird detection. We
have to use our data collected from both our campus and trexiengnt site in Arkansas
for testing. The input data sets of our PODS-EKF filter arevsmgted motion sequences
using a pre-filtering method detailed in [113], which is $pl@ salient motion detection
method built on [18] by performing a connectivity check tox@hate small moving ob-
jects and periodic noises such as tree vibrations. The mdgtresfilters out small moving
objects (less thah x 5 pixels) because they are too small for a human to positiz4
tify a bird species at the end. The pre-filtering reducesasomhen maintaining a zero FN

rate. We have collected a total 1205 motion sequences héare-filtering.
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The motion sequences used to test the PODS-EKF filter is thi®@m&equences con-
taining more than 8 frames, which result in 119 out of the 12@&ion sequences. The
reason we need at least 8 frames is due to the fact that evaeeafree EKF would need
7 steps to converge as shown in simulation (see Fig. 6.5[ap.PODS-EKF filter works
only if the corresponding noise-free EKF can converge. Htie of 119/1205 is low be-
cause our camera frame rate is slow (11 fps) due to its higilutsn. Better cameras
would certainly improve that ratio and it is not a concerndar algorithm.

The surviving 119 motion sequences are the testing datafsabng them, 29 se-
guences are caused by rock pigeons, 21 sequences are cgubedlifference species
of birds including great blue herons, northern flickers atjegrets, America crows, red-
tailed hawks, chimney swifts, Mississippi kites, purplerkites, pileated woodpeckers,
belted kingfishers, and some un-identifiable birds. The neimg 69 motion sequences
caused by noises such as moving clouds, falling leavesgflpsects, etc.

The ground truth is obtained by using human inputs on the saat®n sequence that

the PODS-EKF filter is tested.

Detecting a flying pigeon

Here the targeted species is rock pigeons since they arethmdting species in our
data set.

Fig. 6.6 compares the potential outputs of regular EKFs hadttput of the PODS-
EKF using a sample rock pigeon sequence. The targeted sglytig speed range is also
overlaid on the figure. It is shown that the chance that theleedcKF would converge to
the proper value is very small, which confirms the simulat@sults in Fig. 6.5(a). On the
other hand, the PODS-EKF finds the optimal observation thetires the EKF converges
to the bird speed range.

Fig. 6.7(a) shows how the FN and FP rates of the PODS-EKF ehacgprding to.
The convergence threshold is setdas= 1.35 x 10°. The outcome of the algorithm is

summarized in Table 6.2.
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Fig. 6.6.Predicted bird speeds by a regular EKF with 200 possiblerebse
vations in PODS and that by the PODS-EKF in detecting a rog&qm.

Table 6.2 indicates that our filtering algorithm can achiexéremely low FN rate
(0/29 = 0%). This is very important for the purpose of finding rare bisgeecies. The
FP rate is9/90 = 10%, which is better than that of the simulation results. Thisus d
to the fact that it is much easier for the algorithm to distiisty the targeted species from
noises such as flying insects and falling leaves in physixa¢@ments rather than from
other birds with similar body size and speed as in the sinwratSince the monocular
vision system cannot provide depth information, the atbami cannot achieve zero FP.
Fortunately, this is allowable for our applications. Th@estation of the algorithm is to

reduce the video data for identification without comprongsine FN rate.

Table 6.2
Experimental results from the rock pigeon filtering expesir

Pigeon| Not pigeon
Predicted pigeon 29 9
Predicted not pigeon 0 81

Fig. 6.7(b) illustrates the receiver operating charastieriROC) curves for both the
simulation and physical experiments for rock pigeons. Tdrevergence threshold ranges

are[4.6 x 10* 1.5 x 10° and[1.8 x 10%,3.3 x 10] for the simulation and the physical
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experiments, respectively. The areas under the ROC cuev@1a5% and 95.0% for sim-

ulation and the physical experiments, respectively, wiaighin show that the algorithm
performs much better in the physical experiments.

\ —y—e
0.75+ 1t . ="
Fal st at
' se postive rate 0.75
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1 =
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'. ‘n 0.5F4
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Fig. 6.7. Physical experiment results for detecting a rock pigeonF

and FP rates w.r.tt and (b) The ROC curves for both the simulation and
the physical experiments.

Assisting the search of the legendary IBWO in Arkansas

Since October 2006, our team have begun to assist the seartirefthought-to-be-
extinct IBWOs. The IBWO is the largest woodpecker in Northéna and was last seen
over 60 years ago. Sporadic sightings have been reporteskirdecades but no definite
evidence such as a clear picture of the bird is available. dioler 2006, we installed a
camera system in Bayou DeView wildlife refuge in Arkansakere sightings of the bird
were reported in 2004. Due to the low FN rate, our PODS-EKBrélgn is very desirable
for this type of applications. Fig. 6.1 is taken from the caand he system monitored the
sky from Oct. 2006 to Oct. 2007. After initial motion detexstifiltering as in [113],

we reduce the total 29.41TB video data to 27.42GB, whichilispsohibitively huge for
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human experts. After applying the PODS-EKF, we eventua@tuce the data volume to
146.7MB (about 960 images), which is a reasonable amountooklead for a human
expert to review to make the final identification. The overatluction rate is 99.9995%.
Unfortunately, no IBWO image has been captured yet.

However, our algorithm can also detect other birds such a@daiked hawks in the
region where our camera is installed. As shown in Table 6rédaailed hawk is a bigger
bird than an IBWO but flies at about the same speed as IBWOs.aljugithm is able
to successfully detect red-tailed hawks. Considering diatalgorithm has successfully
detected birds that are either bigger than IBWOs (redddabevks) or smaller than IBWOs
(rock pigeons), we are confident that if an IBWO flies crosditid of view of our camera,
our system is able to capture the bird. Although no IBWO isdetd, our system and

algorithm design is successful.

6.8 Conclusions

We reported our development of a bird filtering algorithm g¢sist the search for rare
bird species. We showed that a regular EKF cannot be dirapijied because the EKF
would not converge due to the high measurement error andntited observation data
due to the high flying speed of the bird. Instead, we develagaalel PODS-EKF method
based on whether there exists a probable measurement in R@D&e corresponding
speed in the flying speed range of the targeted species. fbdathim was extensively
tested using both simulated inputs and physical experisnéie results were satisfying
and the PODS-EKEF bird filter reduced the video data by 99.9989kth a close to zero
FN rate and5.0% area under the ROC curve in physical experiments.

In the future, an immediate extension is to consider the waid®ut the linear flying
trajectory and/or the constant velocity. We will considee simultaneous filtering of a
flock of birds using a single camera or multiple cameras. #l$® interesting to employ
a robotic camera to combine tracking with filtering. A paitzbom robotic camera can

give a closer view of a flying bird, which reduces the measernerror at a price of
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increasing the state transition error and the nonlineafitiie system. We will investigate

how to achieve the best tradeoff.
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7. CONCLUSION AND FUTURE WORK

In this dissertation, we extended the traditional teletmb®ystem architecture by in-
cluding heterogenous components such as humans, robwgsyseand automated agents.
We term it as MOMR++ system. Since the relationship betweetous heterogeneous
components are much more complicated than that in tradit&ystems, to reach the best
potential and performance of the system, many technicdlectyges need to be addressed.
We addressed two major challenges in the MOMR++ system byatwwomated collabo-

rative observation systems, respectively.

7.1 Autonomous Crowd Surveillance System
7.1.1 System Development

We have developed an autonomous crowd surveillance syfiteansists of (p > 0)
robotic pan-tilt-zoom (PTZ) cameras assisted with a fixedeaangle camera. The wide-
angle camera provides an overview of the scene and deteuts/ing objects, which are
considered as objects of interests. Based on the outputeoivithe angle camera, the
system generates spatiotemporal observation requeseadbr object, which are candi-
dates for close-up views using the PTZ cameras. The systetrotothe PTZ cameras to
track and observe the moving objects by satisfying theserghgon requests. We have
implemented the system and tested it for pedestrian slameé in a university campus
environment. Our system outperforms an existing work byeasing the number of ob-

served objects by 210%.

7.1.2 Algorithmic Development

Since there are usually much more observation requestshiammber of cameras,

i.e.,p < n, coordinating and planing the cameras to best satisfy tlezpeests is a chal-
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lenge problem. | formulate the camera planning and cont@blem as an optimization
problem: thep-frame problem which maximizes the overall satisfactiorobservation
requests by computing the optimal control command foptirames. We use the satisfac-
tion as the metric for measuring the control commands wittigdpants’ input requests.
Each request is an iso-oriented rectangle with desirast@ugon. The output are rect-
angular frames as the camera control commands.

We have applied computational geometry and optimizatienipto solve the-frame
problem. We have developed an approximation algorithm vhios inO(n/e® + p? /%)
for n requestsp frames, and the approximation bound also developed an exact 2-frame

algorithm which runs irO(n?).

7.2 Bird Species Detection System
7.2.1 System Development

We have developed an autonomous rare bird species detegstem. We have set
up the system in the forest near Brinkley Arkansas and it camsinuously for a year for
searching the thought-to-be-extinct ivory-billed woodger. The cameras monitor the sky
and detect any motion. The system autonomously distinghistmotion caused by the
targeted species from other motion noises and only presieewadeo data for the targeted
species. During the one-year search, the system reducesnhedeo data of 29.41TB to
only 146.7MB (reduction rate 99.9995%).

7.2.2 Algorithmic Development

To recognize the targeted bird, | formulated the flying biysh@mics with a dynamic
linear model. An EKF has been used to track the bird head adg axis length. The
species decision is made by comparing the tracked bird wittigorior profile of the par-

ticular bird species. It is showed that a regular EKF canedibectly applied because the
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EKF would not converge due to the high measurement errorlatirhited observation

data due to the high flying speed of the bird. To tackle thigas8Ve quantified the uncer-
tainty in the bird species recognition due to the uncernyaimthe observation uncertainty.
We developed a novel Probable Observation Data Set (POBSdbEKF method. The
new PODS-EKF algorithm searches the measurement erroe fangll probable obser-
vation data that ensures the convergence of the corresppiddF, which guarantees to
bound the true (noise-free) bird state. We then formulagerdcognition problem as an
optimization problem which searches in the PODS for the rksly observation cor-

responding to the true (noise-free) bird state. In expans&ith real video data, the

algorithm achieves 95% area under the ROC curve.

7.3 Future Work

The research on the MOMR++ system is still in its infancy. dhde viewed as a
generalization of the MOMR systems by extending the rangmofrol decision makers
beyond just humans. Future research will further exploeerélationship between the
heterogeneous participants, such as competition andocoiion. Coordination of these
heterogeneous participants will be one of the keys for aessfal MOMR++ system.
Another future direction is to further enhance the decisitaking capability for the non-

human components so that the system can be more autonomous.

7.3.1 Coordination of System Components: Extension of Er&election Problem

Overlapping frame selection

We have proposed theframe problem for coordinating the various system compo-
nents with limited sensing resources. An immediate extensi the frame selection prob-
lem is to think of relaxing the assumptions to allow cameaates to overlap in the future.

Allowing the frames to overlap requires a new satisfactiatrio to measure the frames
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with consideration of the possible redundant coverage i@egrests. It is interesting to in-
vestigate how different frame selection formulation woinhghact the system performance

and how they fit human user need in practice.

Frame selection with traveling time

Another interesting extension is to consider the cameseelireg time within the re-
guest assignment. We proposed a synchronized architectiBection 2. Intuitively,
asynchronized observation by multiple PTZ cameras woutthén enhance the system
performance since it reduces the cameras’ waiting time. v metric that incorporates
the camera traveling time into the satisfaction is neededw MIgorithms such as fast

incremental algorithm applied on the results of phigame algorithm may worth research.

7.3.2 Object Recognition: Extension of Bird Species Dabact
Modeling bird dynamics

In MOMR++ system, sensors and automated agents are abledgiee and analyze
the content of objects in remote environment. We developedird species recognition
system. An immediate extension is to consider the case ufitthe assumption of bird
linear flying trajectory and/or the constant velocity. lquéres to model the bird flying
motion by a nonlinear dynamic model. It also requires tocaihew belief estimator that
captures the nonlinearity of the bird motion. Considering image segmentation error
remains significant, the recognition uncertainty causedhleymeasurement uncertainty
under this nonlinear model needs to be formulated. Thendhestgence issue of the new
estimator and the corresponding recognition decision ngawiill be another interesting

issue.
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Recognition of flock of birds

Itis also interesting to consider the simultaneous deia@nd recognition of a flock of
birds. Multiple object tracking approach is needed. Indt&dooking into each individual
bird, more interesting extension is to examine the groupabien pattern, such as the
formation and the correlation between individual birdepry. We can use the group
behavior pattern as the signature feature for bird speemsgnition. It also provides a lot

more insights to understanding the behavior of particula ¢pecies.

Signature features

It is also interesting to examine other signature featuras the dynamics information
for the bird species recognition. One promising featurarigswing flapping frequency.
Preliminary study extracts bird’s extreme point and tradkanges in the bird image. By
comparing its frequency domain response with prior birdgMiapping frequency pat-
tern, the bird species can be recognized. This approaclkiépendent of the bird flying

trajectory and requires least camera calibration.

Active bird detection

In Section 6, we use a static camera for detecting flying bittdss natural to think
of using active cameras, such as PTZ cameras to activelgrséar track, and recognize
the bird. By doing so, we gain more accurate observation iigih-resolution images
and longer observation duration, at the price of increasedsate transition uncertainty
due to the uncertainty in the camera movements. It is iniege look into the tradeoff
between these two effects. An immediate challenge is toaitktand segment the bird
out of the background. A preliminary study suggests a panimrhackground subtraction

technique since it is robust to outdoor lighting conditions
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7.3.3 Scene Structure Understanding Panoramic Backgridiaie|

To support the active bird detection above, we are expldongpnstruct a panoramic
background model using a PTZ camera for bird segmentatiach Rixel in the panoramic
model captures its temporal color distributions. Usingregke PTZ camera to construct
the panoramic model, it requires to address the image aghiend registration under
different scale or zoom.

A feature map is also required and maintained for each cafraaree registering into
the panorama. It will be interesting to research on the featoap storage and update
approach with different scales, which supports efficiergrgwithout compromising the

feature resolution.
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