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ABSTRACT

Systems and Algorithms for Automated Collaborative Observation Using Networked

Robotic Cameras. (August 2011 )

Yiliang Xu, B.S., Zhejiang University; Ph.D., Nanyang Technological University

Chair of Advisory Committee: Dr. Dezhen Song

The development of telerobotic systems has evolved from Single Operator Single

Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The rela-

tionship between human operators and robots follows the master-slave control architecture

and the requests for controlling robot actuation are completely generated by human oper-

ators.

Recently, the fast evolving advances in network and computer technologies and de-

creasing size and cost of sensors and robots enable us to further extend the MOMR system

architecture to incorporate heterogeneous components such as humans, robots, sensors,

and automated agents. The requests for controlling robot actuation are generated by all

the participants. We term it as the MOMR++ system. However, to reach the best po-

tential and performance of the system, there are many technical challenges needing to be

addressed. In this dissertation, we address two major challenges in the MOMR++ system

development.

We first address the robot coordination and planning issue inthe application of an

autonomous crowd surveillance system. The system consistsof multiple robotic pan-tilt-

zoom (PTZ) cameras assisted with a fixed wide-angle camera. The wide-angle camera

provides an overview of the scene and detects moving objects, which are required for

close-up views using the PTZ cameras. When applied to the pedestrian surveillance ap-

plication and compared to a previous work, the system achieves increasing number of

observed objects by over 210% in heavy traffic scenarios. Thekey issue here is given



iv

the limited number (e.g.,p (p > 0)) of PTZ cameras and many more (e.g.,n (n ≫ p))

observation requests, how to coordinate the cameras to bestsatisfy all the requests. We

formulate this problem as a new camera resource allocation problem. Givenp cameras,

n observation requests, andǫ being approximation bound, we develop an approximation

algorithm running inO(n/ǫ3 + p2/ǫ6) time, and an exact algorithm, whenp = 2, running

in O(n3) time.

We then address the automatic object content analysis and recognition issue in the ap-

plication of an autonomous rare bird species detection system. We set up the system in the

forest near Brinkley, Arkansas. The camera monitors the sky, detects motions, and pre-

serves video data for only those targeted bird species. During the one-year search, the sys-

tem reduces the raw video data of 29.41TB to only 146.7MB (reduction rate 99.9995%).

The key issue here is to automatically recognize the flying bird species. We verify the bird

body axis dynamic information by an extended Kalman filter (EKF) and compare the bird

dynamic state with the prior knowledge of the targeted bird species. We quantify the un-

certainty in recognition due to the measurement uncertainty and develop a novel Probable

Observation Data Set (PODS)-based EKF method. In experiments with real video data,

the algorithm achieves 95% area under the receiver operating characteristic (ROC) curve.

Through the exploration of the two MOMR++ systems, we conclude that the new

MOMR++ system architecture enables much wider range of participants, enhances the

collaboration and interaction between participants so that information can be exchanged

in between, suppresses the chance of any individual bias or mistakes in the observation

process, and further frees humans from the control/observation process by providing auto-

matic control/observation. The new MOMR++ system architecture is a promising direc-

tion for future telerobtics advances.
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1

1. INTRODUCTION

A telerobot is a robot remotely controlled by a human operator for interacting with a

remote physical environment [1]. In most practice, the high-level robot planning or cogni-

tive decisions are by the human operator while the robot is responsible for the mechanical

implementation. The research on telerobotics has been an important aspect in the field of

robotics for a long history and it has found many applications such as space exploration [2],

health care [3], and natural observation [4].

In traditional telerobotic systems, a human operator and a robot communicate by

transmitting control commands and state feedback through adedicated communication

medium. According to the taxonomy proposed by Chonget al. [5], this class of systems

belongs to Single Operator Single Robot (SOSR) systems. Most existing telerobotic sys-

tems can be modeled by this master-slave architecture. In 1898, Nicola Tesla [6] first

demonstrated a radio-controlled vessel in the New York City. In 1950’s, Goertz [7] de-

veloped systems which are directly controlled by human to handle radioactive materials

behind shield walls. However, under this architecture, thecontrol commands and decisions

are made by individual human operator. Therefore, the quality of the control and operation

is significantly affected by the individual human operator,which limits its accessibility to

only trained specialists and experts.

The development of network technology allows a new communication medium be-

tween the local control site and the remote robot site and thus opens up new possibilities

in system architecture. In 1994, the telegarden [8] (Fig.1.1) became the first robot on web

that allows World Wide Web (WWW) users to control a remote robot in a garden filled

with living plants. Since the system queues the users to access the robot sequentially, it

essentially still belongs to SOSR category through it greatly extends system’s accessibility

to general public including both amateurs and experts through WWW.

This dissertation follows the style ofIEEE Transactions on Image Processing.
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Using computer network as the communication medium, Song [4] extended the sys-

tem architecture by including multiple human operators to access the robot simultaneously.

The control commands of the robot are generated by combiningthe the requests for con-

trol from multiple operators. In [9], even a human actor withcameras and microphones,

replace the role of robot and navigates and performs actionsin the remote environment,

collaboratively controlled by multiple online users. Thisclass of systems is categorized as

Multiple Operator Single Robot (MOSR) systems. MOSR architecture especially with net-

work as communication medium greatly extends system’s accessibility to general public.

Furthermore, since multiple human users share the control of the robot, it helps improve

the system’s reliability due to the collaboration between users. However, since there is

only one robot, the system’s capability especially in taskssuch as search, surveillance, and

exploration etc. is limited.

Recently, Multiple Operator Multiple Robot (MOMR) systemshave emerged [10,11].

It allows multiple human operators to control multiple (heterogeneous) robots. For ex-

ample, Liu and his colleagues [12], developed a competitiveMOMR system with two

robotic arms controlled by two human users respectively under a game setting. However,

since most existing systems still allow only one operator todirectly control one robot, it is

still the master-slave control. Also the robots control commands are still based on human

inputs.

1.1 MOMR++: Networked Automated and Collaborative Observation System

The limits of the existing systems motivate us to extend the system architecture. Re-

cently, the fast evolving advances in network and computer technologies and decreasing

size and cost of sensors and robots enable us to further extend the MOMR system archi-

tecture to incorporate heterogeneous participating components such as humans, robots,

sensors, and automated agents. It allows multiple human users, sensors, automated agents

to access multiple robots. The requests for controlling robot actuation are generated by all

the participants. We term it as MOMR++ system. The MOMR++ systems consist of:



3

Fig. 1.1. Telegarden [8] is the first robot on web that allows World Wide
Web (WWW) users to control a remote robot in a garden filled with living
plants.

• Participants: humans, sensors, and automated agents.

• Network communication medium

• Web server: a computer running a web server software.

• Robots.

Fig. 1.2 shows an example of MOMR++ system: networked automated and collabora-

tive observation system. The system allows multiple internet users to observe the remote

physical environment using multiple robotic cameras. Users designate regions of interest

by drawing rectangles in the display of the scene. Meanwhile, automatic agents may re-

quest to periodically check certain regions and the opticaland/or wireless sensors detect

motions and anomalies and may request the cameras to follow up. Therefore, control com-

mands of the robotic cameras are generated by combining all these observation requests

from heterogeneous participants instead of just human inputs. This class of systems has

many applications such as surveillance, nature observation, education, journalism, and

entertainment.
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Fig. 1.2. The networked automated and collaborative observation sys-
tem extends the traditional telerobotic system architecture to incorporate
heterogeneous participating components such as humans, robots, sensors,
and automated agents.

The new system enables much wider range of participants, such as a large group of stu-

dents or researchers, to access to valuable resources (e.g., expensive robotic cameras), so

that the utility of the these resources are improved. It alsoenhances the collaboration and

interaction between participants so that information can be exchanged in between, which

is very useful in learning and education domains. Since the cameras’ control are shared

with all participants, it suppresses the chance of any individual bias or mistakes in the

observation process. Since automatic agents and sensor cancontrol the robot and perform

the observation task without human inputs, it further freeshumans from the observation

process by providing automatic observation. It also reduces the human workload by re-

ducing the volume of data that requires human verification, since only interesting content

is preserved by automated agents and sensors.

However, by incorporating various heterogeneous components, the relationship be-

tween these components becomes more complicated. The conventional master-slave ar-
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chitecture no longer holds. For example, human users could compete for or collaboratively

share the control of robots; automated agents or even sensors may take over the control

of the robots and complementarily execute the observation tasks for humans. As a re-

sult, to reach the best potential and performance of the system, there are many technical

challenges need to be addressed. In this dissertation, we address two major challenges in

MOMR++ system development.

1.1.1 MOMR++: Autonomous Crowd Surveillance System

We first address the robot coordination and planning issue inthe application of an

autonomous crowd surveillance system. The system consistsof multiple robotic pan-tilt-

zoom (PTZ) cameras assisted with a fixed wide-angle camera. The wide-angle camera

provides an overview of the scene and detects moving objects, which are considered as

objects of interests. Based on the output of the wide angle camera, the system generates

spatiotemporal observation requests for each object, which are candidates for close-up

views using the PTZ cameras. The system computes the controlcommands for the PTZ

cameras to track and observe the objects of interest by computing the optimal PTZ cam-

eras’ frames that best satisfy these observation requests.We implement the system and

test it for pedestrian surveillance in a university campus environment. When compared to

a previous work, the system achieves increasing number of observed objects by over 210%

in heavy traffic scenarios.

The key issue in the autonomous crowd surveillance system isgiven limited number

(e.g.,p (p > 0)) of PTZ cameras and much more (e.g.,n (n ≫ p)) observation requests,

how to coordinate the cameras to best satisfy all the requests. we formulate the cam-

era planning problem as a new camera resource allocation problem. We propose a new

similarity metric to measure the degree of satisfaction foreach request. We focus on the

development of scalable fast algorithms to solve this problem. We develop an approxi-

mation algorithm with guaranteed approximation bound, which provides tradeoff between

the solution quality and speed. Givenp cameras,n observation requests, andǫ being ap-



6

proximation bound, the algorithm runs inO(n/ǫ3+ p2/ǫ6) time. We also develop an exact

algorithm whenp = 2, which runs inO(n3) time. This algorithm addresses the online

computation requirements and fits many real-life applications.

We report this autonomous crowd surveillance system and algorithm development in

Sections 2, 3, 4.

1.1.2 MOMR++: Rare Bird Species Detection System

We then address the automatic object content analysis and recognition issue in the

application of an autonomous rare bird species detection system. We set up the system

in the forest near Brinkley Arkansas for searching the thought-to-be-extinct ivory-billed

woodpeckers. The camera monitors the sky, detects motions,and preserves video data

for only those of targeted bird species. Without the human inputs, the system needs to

autonomously distinguish and recognize the targeted object (i.e, the bird species here)

from other moving objects and environmental noises and onlypreserves the interesting

information for human verification. The system runs continuously from October 2006

to October 2007. During the one-year search, the system reduces the raw video data of

29.41TB to only 146.7MB (reduction rate 99.9995%).

The key issue in the bird detection system it to automatically recognize the flying bird

species. We verify the bird body axis dynamic information byan extended Kalman filter

(EKF), and compare the bird dynamic state such as body axis length and flying speed with

the prior knowledge of the targeted bird species. However, due to significant measurement

data noise and insufficient measurement data volume, a regular EKF fails to converge. To

resolve this issue, we quantify the uncertainty in recognition due to the measurement un-

certainty and develop a novel Probable Observation Data Set(PODS)-based EKF method.

The new PODS-EKF algorithm searches the measurement error range for all probable

observation data that ensures the convergence of the corresponding EKF, which guaran-

tees to bound the true (noise-free) bird state. We then formulate the recognition problem

as an optimization problem which searches in the PODS for themost likely observation
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corresponding to the true (noise-free) bird state. In experiments with real video data, the

algorithm achieves 95% area under the receiver operating characteristic (ROC) curve.

We report this bird detection system and corresponding algorithm development in Sec-

tions 5 and 6.
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2. MOMR++ SYSTEM: AUTONOMOUS CROWD SURVEILLANCE SYSTEM

In this section, we report a example of the MOMR++ system: an autonomous crowd

surveillance system with multiple pan-tilt-zoom (PTZ) cameras assisted by a fixed wide-

angle camera. Consider a wide-angle camera is installed at an airport for human activity

surveillance or in a forest for wildlife observation. The wide-angle camera can provide

large, low resolution coverage of the scene. However, recognition and identification of

humans and animals usually require close-up views at high resolution which needs PTZ

cameras. The resulting autonomous observation system consists of a fixed wide-angle

camera with multiple PTZ cameras as illustrated in Fig. 2.1.The wide-angle camera mon-

itors the entire field to detect and track all moving objects.Each PTZ camera selectively

covers a subset of the objects.

However there are usually more moving objects than the number of PTZ cameras.

With these competing spatiotemporal observation requests, the major challenge is the con-

trol and scheduling of the PTZ cameras to maximize the “satisfaction” to the competing

requests. The system design emphasizes the “satisfaction”to the requests which takes into

account the 1) camera coverage over objects, 2) camera zoom level selection, and 3) cam-

era traveling time. We approach the control and scheduling problem in two steps. First, a

subset of the requests/objects is assigned to each PTZ camera. Second, each PTZ camera

selects its PTZ parameters to cover the assigned objects. Weformulate the problems in

both steps as frame selection problems. We propose an approximation algorithm as in Sec-

tion 3, and an exact algorithm as in Section 4 to solve them in real time. We implement the

system and validate it in simulations and physical experiments. The experimental results

show that our system outperforms an existing work by increasing the number of observed

objects by over 210% in heavy traffic scenarios.



9

Motions detection, 
tracking and 
prediction

Motions

Motions

Wide angle camera

PTZ camera 1

PTZ camera p

Observation 
request generation

Request 
assignment

PTZ camera 
parameter 
selection

PTZ camera 
parameter 
selection

Predicted 
object state

Observation 
reqeusts

Fig. 2.1. System architecture. The solid green rectangles representthe
moving objects and the dashed red rectangles indicate the selective cov-
erage of the PTZ cameras.

2.1 Related Work

The proposed autonomous observation system relates to the existing works on motion

detection and tracking, and multiple and active camera surveillance systems.

Our system critically relies on the motion detection and object tracking techniques in

computer vision. Motion detection involves in detecting the moving objects and segment-

ing them out of the background from a video sequence in the same scene. To address the

noise and changes in background, various background modelshave been proposed. Exam-

ples include temporal average [13], mean average deviation(MAD) [14], mixed Gaussian

model [15], adaptive Gaussian estimation [16, 17], non-parametric model [18], Kalman

filter compensation [19], and texture-based model [20]. A recent survey on motion de-

tection can be found in [21]. Motion tracking usually buildson the motion detection. It

predicts the trajectory of the objects by locating their position in every frame of the video

sequence. Based on the representation of the object, existing tracking technologies can

be categorized as point tracking [22], kernel tracking [23]and silhouette tracking [24]. A

variety of fundamental techniques have been proposed for tracking, such as support vec-

tor machine (SVM) [25], active contour evolution [26] and Hough transform [27] etc. A

comprehensive survey on object tracking can be found in [28]. Recently, due to its flexible
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field of view (FOV) and variable resolution, pan-tilt-zoom (PTZ) camera has been used

for tracking purpose. Unlike the work in [29], where each PTZcamera tracks only single

object, our diagram is able to use only single PTZ to cover themultiple moving objects

simultaneously.

In the recent decade, multiple camera surveillance systems, especially those with both

static and active cameras have attracted growing attentionof research. Most of the works

are master-slave camera configuration [30]. The master static camera(s) provide the gen-

eral information about the wide-angle scene while the slaveactive cameras acquire the

localized high-resolution imagery of the regions of interest. This is a relatively new re-

search area with many directions to explore. Early representative works include Stillman

et al. [31], which addresses the camera-object assignment problem and Greiffenhagenet

al. [32], which proposes a dual camera surveillance system consisting of a ceiling mounted

omnidirectional camera and a PTZ camera. Our work belongs tothis category.

Most works in this category schedule the active cameras based on straightforward

heuristic rules. Zhouet al. [30] choose the object closest to the current camera settingas

the next observation object. Hampapuret al. [33] adopt the simple round robin sampling.

Bodoret al. [34] and Fioreet al. [35] propose a dual-camera system with one wide-angle

static camera and a PTZ camera for pedestrian surveillance.Human activities (walking,

running, etc.) are prioritized based on the preliminary recognition by the wide-angle cam-

era. The PTZ camera focuses to the activity with the highest priority for further analysis.

Costelloet al. [36] are the first to formulate the single camera scheduling problem based

on network packet scheduling methods. The authors propose and compare several greedy

scheduling policies. With different assumptions towards the observation scene and objects,

various scheduling formulation and schemes are proposed. In Lim et al. [37], the schedul-

ing problem is formulated as a graph matching problem. In Bimbo and Pernici [38], the

continuous scheduling problem is truncated by a predefined observation deadline and each

truncated camera scheduling problem is formulated as an online dynamic vehicle routing

problem (DVRP). Qureshi and Terzopoulos [39] propose a virtual environment simula-
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tor to test various camera senor network frameworks. However these methods assign only

one object to one active camera. Our system assigns multipleobjects to individual cameras

by selecting PTZ camera parameters such that the camera coverage-resolution tradeoff is

achieved. This also enables group watching with scalability.

Very few work considers the selection of the zoom level of active cameras and assigns

multiple objects to individual cameras. Limet al. [40] construct the observation task

for each single object as a “task visibility interval” (TVI)based on its predicted states and

corresponding camera settings. When TVIs have non-empty intersection, they are grouped

to form a “multiple task visibility interval” (MTVI). Basedon the order of the starting time

of (M)TVIs, a directed acyclic graph (DAG) is constructed. The scheduling problem is

formulated as a maximal flow problem. A greedy algorithm and adynamic programming

scheme are proposed to solve it. Zhanget al. [41] construct a semantic saliency map

to indicate the observation requests. An exhaustive algorithm finds the optimal single

frame that minimizes the information loss. Sommerlade and Reid [42] use an information-

theoretic framework to study how to select a single active camera’s zoom level for tracking

a single object to balance the chances of loosing the trackedobject and that of loosing trace

of other objects. In contrast to these works, our approach dose not require accurate long-

term motion prediction. The assignment of multiple objectsto individual PTZ cameras is

carried out by selecting the camera parameters to achieve the tradeoff between coverage

and resolution.

Evaluations of these scheduling strategies are usually done by simulation. Qureshi

and Terzopoulos [43] propose a virtual environment simulator to test various camera senor

network frameworks. Other related works on active camera sensor network include [44,45]

which addresses the automatic calibration in the hybrid camera network. [46] address how

to determine active camera settings based on predicted object motion.

In contrast to the existing works in this category, we propose a framework that sup-

ports each PTZ camera to cover multiple objects simultaneously. We formulate the cam-

era scheduling problem as a sequence of frame selection problem so that the overall sat-
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isfaction to the observation requests is maximized over time. We don’t require accurate

long-term prediction of object motion and camera calibration. It will be shown that our

formulation of the problem is essentially the generalization of many existing works.

Our group focuses on developing intelligent vision systemsand algorithms using robotic

cameras for a variety of applications such as construction monitoring, distance learning,

panorama construction and natural observation [4]. In the context of using PTZ camera

for the collaborative observation, competing observationrequests need to be covered by

camera frame(s) to maximize the overall observation reward. This issue is formulated as

a single frame selection (SFS) problem [47]. A series of algorithms for the single frame

selection problem have been proposed [47, 48]. Songet al. [49] propose an autonomous

observation system in which a single PTZ camera is used to fulfill competing spatiotem-

poral observation requests. In this section, multiple PTZ cameras are used to increase the

observation coverage. We formulate the problem of coordinating thep camera frames as

thep-frame problem and propose an approximation algorithm and an exact algorithm in

the next two sections for solving it.

2.2 System Overview

Fig. 2.1 shows the architecture of the system. The system consists ofp (p ≥ 1) PTZ

cameras and a wide-angle camera. All cameras are calibrated. The wide-angle camera

detects and labels all moving objects in the scene. The states of the objects (e.g., size,

position and velocity) are tracked and predicted. Based on the prediction, the observation

request generation module generates the competing spatiotemporal observation requests

(shadowed rectangles) for all objects. Then the request assignment module groups requests

and assigns a subset of the objects/requests to each PTZ camera by computing thep-frame

settings that best satisfy the requests. Each PTZ camera tracks the objects assigned to it

by selecting the PTZ parameter settings that best satisfy these requests to capture high

resolution images/videos of the objects.
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Fig. 2.2. System timeline. An observation cycle starts att = t0. Within
each cycle timeT = δl + δr, all PTZ cameras first take no more thanδl
time to adjust the PTZ parameters so that each PTZ camera is assigned
with a subset of the objects. Then each PTZ camera micro-adjusts its
parameters within intervalτ to track the assigned subset of objects. This
tracking lastsδr time until a new observation cycle starts.

Fig. 2.2 shows the timeline of the system. An observation cycle starts at timet = t0.

The states of the objects at timet = t0 + δl are predicted, whereδl is termed as “lead

time.” Based on the predicted states, the system generates the observation request at time

t = t0 + δl for each object. A subset of these objects is then assigned toeach PTZ camera.

Then the system starts to adjust the PTZ cameras according tothe request assignment. The

camera traveling time is bounded below the “lead time”δl so that the cameras can intercept

the objects at timet = t0 + δl. After that, each PTZ camera tracks its object subset for

timeδr until the beginning of the next observation cycle.δr is termed as “recording time”

and is evenly divided intonr intervals with each of lengthτ . Based on the state prediction,

the PTZ camera parameter selection module computes each camera’s setting at the end of

each interval. Then each camera micro-adjusts its settingsfor up toτ time and prepares for

the next interval. By capturing images/videos forδr time, the request assignment module

re-initiates and the operations above repeat.T = δl + δr is called one observation cycle.



14

The stationary camera we use is a Arecont Vision AV3100 with aComputar lens whose

focal length ranges from 4.5mm to 12.5mm. The camera runs at 11 frames per second (fps)

with high resolution of1600 × 1200. The PTZ cameras we use are Panasonic HMC280.

The camera uses the MPEG4 compression and runs at up to 30 fps with resolution of

640× 480. It has a350◦ pan range and a120◦ tilt range. It can pan and tilt up to300◦ per

second and200◦ per second, respectively. It has21×motorized zoom with zoom-changing

speed up to 5 levels per second. The system is programmed using Microsoft Visual C++.

2.3 Camera Scheduling

Forp PTZ cameras, there are usually much more objects/requests.With the competing

spatiotemporal requests, we need to control and schedule the PTZ cameras to capture

sequences of images/videos that best satisfy the requests.

2.3.1 Observation Request Generation

The wide-angle camera detects moving objects and tracks them continuously. Each

object is represented by its minimal iso-oriented boundingrectangular region which is

determined by a 4-parameter vector,

[u, v, a, b]T , (2.1)

where(u, v) indicates the center of the rectangle in the image space;a andb denote the

width and height of the rectangle, respectively. Thus the state of the object at timet can

be represented by

x(t) = [u(t), v(t), a(t), b(t), u̇(t), v̇(t)]T , (2.2)

where(u̇(t), v̇(t)) indicates the velocity of the rectangle center in the image space at time

t.
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A non-parametric Gaussian background subtraction model [18] is used to detect and

label any moving objects. For tracking and predicting the object state, each labeled object

is assigned with a Kalman filter. A commonly used constant velocity model is adopted.

The Kalman filter is also able to handle short-term occlusionby predicting the object

motion. It is worth mentioning that a lot of other existing tracking algorithms [28] can be

applied here and the tracking itself is not the focus of our work.

Given the predicted state ofi-th object at timet is

x̂i(t) = [ûi(t), v̂i(t), âi(t), b̂i(t), ˆ̇ui(t), ˆ̇vi(t)]
T ,

we define the spatiotemporal observation request as,

ri(t) = [Ti(t), zi, ωi(t)]
T , (2.3)

whereTi(t) = [ûi(t), v̂i(t), âi(t), b̂i(t)] represents the rectangular request region deter-

mined byû(t), v̂(t), âi(t) andb̂i(t) in the same way asu, v, a andb in (2.1); zi indicates

the desirable resolution, which is in the range ofZ = [z, z]. We setzi as the resolution of

the minimal camera frame that containsTi(t). ωi(t) is the temporal weight, which indi-

cates the emergency/importance level of thei-th object at timet. ωi(t) plays an important

role in balancing the observation service across all the objects and will be discussed in

details later in Section 2.3.4. Given there aren objects, we generate a set ofn requests,

R(t) = {ri(t)|i = 1, 2, ..., n}.

2.3.2 Request Assignment

As shown in Fig. 2.2, at the beginning of each recording timeδr, we need to coordinate

p PTZ cameras so that each camera is assigned a subset of the objects. We choose thep-

frame settings that best satisfy all the requests at that time. We formulate the request
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assignment issue as an optimization problem, which maximizes the overall “satisfaction”

of the requests and we term this problem as ap-frame problem. The input of thep-frame

problem is the request setR(t) = {ri(t)|i = 1, 2, ..., n}. A solution to thep-frame problem

is a set ofp PTZ camera frames. Given a fixed aspect ratio (e.g. 4:3), a camera frame

can be defined asc = [x, y, z]T , where the pair(x, y) denotes the center point of the

rectangular frame andz ∈ Z specifies the resolution level of the camera frame. Here we

consider the coverage of the camera as a rectangle accordingto the camera configuration

space. Therefore, the width and height of the camera frame can be represented as4z

and3z respectively. We define any candidate solution to thep-frame problem asCp =

(c1, c2, ..., cp) ∈ Cp, whereci, i = 1, 2, ..., p, indicates thei-th camera frame in the solution.

The objective of thep-frame problem is to find the optimal solutionCp∗ = (c∗1, c
∗
2, ..., c

∗
p)

that best satisfies the requests:

Cp∗ = argmax
Cp

s(Cp), (2.4)

wheres(·) is the satisfaction metric which will be introduced in details in Section 3.

2.3.3 PTZ Camera Parameter Selection

After each camera is assigned a subset of objects by solving the p-frame problem,

the camera tries to track these objects for the recording time δr. This requires to select

the camera parameter setting such that the satisfaction is maximized for each recording

interval. Given each recording interval is represented as[t − τ, t) and thei-th camera is

assigned a subset of objects with predicted states at timet, X̂i(t) = {x̂1(t), x̂2(t), ...}. The

corresponding observation requests are generatedRi(t) = {r1(t), r2(t), ...}. The camera

setting at timet, c∗(t), is then determined by maximizing the satisfaction toRi(t),

c∗(t) = argmax
c

∑

ri(t)∈Ri(t)

s(c, ri(t)). (2.5)
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This problem can be solved using the approximation algorithm in [48] with running time

O(|X̂i|/ǫ3),where|X̂i| is the cardinality ofX̂i andǫ is the approximation bound. However,

(2.5) does not consider the fact that within timeτ , the PTZ camera can only micro-adjust

within a limited setting range. We assume the pan, tilt and zoom motion of the camera are

independent. The reachable ranges for pan, tilt and zoom settings within timeτ areα, β

andγ, respectively. Then we rewrite (2.5) as,

c∗(t) = arg max
c∈α×β×γ

∑

ri(t)∈Ri(t)

s(c, ri(t)). (2.6)

It is worth mentioning that most PTZ cameras’ pan and tilt motion is fast enough to

follow most objects in the scene. For example, recall the transition speed of the Panasonic

HCM 280 camera is300◦ per second for pan,200◦ per second for tilt and 5 levels per

second for zoom, respectively. Considering the camera has21× zoom levels and only

less than50◦ FOV, the time for changing pan and tilt settings is much less than the time

for changing the camera zoom. Changing the zoom level when the camera is moving

also creates significant motion blurring and often requiresmore than 1-2 seconds for re-

focusing. Therefore, in practice, we usually search for thepan and tilt settings inα × β

while maintain the same zoom level for each recording period.

2.3.4 Dynamic Weighting

If we keep the request weight in (2.3) unchanged, the system will create a “biased

frame selection” model that always prefers certain objectsinstead of balancing the camera

resource for all objects. We address this issue by carefullydesigning the temporal weight

ωi(t) based on two intuitions: 1) object exiting FOV sooner is of more importance and 2)

object less satisfied in history is of more importance. The first intuition is derived from

the earliest deadline first (EDF) policy [36]. The policy addresses the emergency of the
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requests. The second intuition addresses sharing the camera resource for all objects to

achieve balanced observation over time. We define,

ωi(t) = µi(t) · νi(t),

whereµi(t) andνi(t) address the first and second intuitions, respectively. One candidate

form of µi(t) is,

µi(t) = ρ(d̂i−t), (2.7)

where d̂i is the predicted deadline fori-th object to exit the FOV and0 < ρ < 1 is a

parameter that controls how quick the emergency increases.Because we only observe

objects in the FOV,t ≤ d̂i. Whent→ d̂i, µi(t)→ 1, as maximum.

To designνi(t), we need to first define the accumulative unweighted satisfaction (AUS)

ηi(t),

ηi(t) =

p∑

j=1

∑

tk<t

s(cj(tk), ri(tk))

ωi(tk)
, (2.8)

where the variabletk refers to the discrete times when cameras take frames. The AUS

essentially reflects how well an object is satisfied in history. We designνi(t) as,

νi(t) = max(1−
ηi(t)

ne

, 0), (2.9)

wherene is a parameter indicating the extent to which an object need to be observed.

Whenηi(t) ≥ ne, νi(t) is zero and we contend the object is fully satisfied and needs no

observation any longer. Bothµi(t) andνi(t) are bounded in range[0, 1], which keeps the

satisfaction metric in (4.2) a standardized metric.

2.4 Experiment

We have implemented the system using Microsoft Visual C++ 2005. The computer

used is a Windows XP desktop PC with 2.0 GB RAM, 300 GB hard diskspace and an
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Intel Pentium(R) Dual Core 3.2 GHz CPU. We carry out a simulation to compare the

camera scheduling of our system with an existing work based on the overall number of

objects being observed. Finally, a physical experiment forcrowd surveillance using real

video data is reported.

2.4.1 Evaluating System by Simulation

We carry out a simulation for evaluating the scheduling method of the system based

on random inputs. The results are compared with an existing scheduling algorithm.

Simulation setup

As shown in Fig. 2.3, a simulated80× 60 m2 scene is constructed. Each object enters

the scene through one side and maintains a constant velocity. Seven random numbers

are needed to characterize each object. First, a random integer number ranging from 1

to 4 is generated to indicate which side the object enters through. Then a random real

number in[0, 1] is generated to indicate the entering point along the side. After that, the

orientation of the object is determined by a random angle within the range[−40◦, 40◦] with

respect to the perpendicular of the side. The object speed isgenerated from a truncated

Gaussian with a mean of 1.5 m/s and a standard deviation of 0.5m/s, which is basically

the speed of a walking people. The width and height of the rectangle that represents the

object are randomly generated from a range[1.5, 2.5] m. Finally, the desirable resolution

of the object is generated from a range[1, 21] (level), which is also the Panasonic HCM280

camera zoom range. The cameras run in 10 fps, which meansτ = 0.1 s. Thenα = 30◦

andβ = 20◦. 5000 objects arrive in the scene following a Poisson processwith arrival rate

λ, which represents the congestion level of the scene. We set the lead timeδl = 4 seconds,

which guarantees that in the request assignment phase, camera adjustment is completed

before cameras intercept the objects. We setδr = 6 seconds, which is equivalent to
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Fig. 2.3.An illustration of the simulated scene. Each object is represented
as a rectangle and enters the scene from one of the four sides following a
Poisson process. The orientation is within[−40◦, 40◦] with respect to the
norm of the side. The object maintains constant velocity andits time to
exit is predicted.

nr = 60 frames. We set the parameterne = nr in (2.9) andρ = 0.5 in (2.7) andǫ = 0.25

in thep-frame approximation algorithm. Two PTZ cameras are used, i.e.,p = 2.

Metric and results

We compare our scheduling scheme with the earliest deadlinefirst (EDF) policy pro-

posed in [36]. EDF is a heuristic scheme where the camera always picks the object with

earliest deadline. With each congestion setting, 20 trialsare carried out for average perfor-

mance. We first compare the two schemes based on the ratio of number of objects that are

observed for at leastnr/2 times to the total number of objects pass through the scene. We

term this metric asMn. This metric essentially indicates how many objects the system can

capture and observe for a period of time. Fig. 2.4 shows the comparison result. It is shown

that when the Poisson arrival rateλ is small, i.e., there are few objects in the scene, both

scheduling schemes can reach almost best possible ratio (100%). Whenλ increases, i.e.,

the traffic in the scene becomes heavy, the performance of EDFdeteriorates significantly
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quicker than our method. In the heavy traffic scenario, our method outperforms the EDF

by over 210%.

We also compare our method with EDF based on the satisfactionto the objects since

it takes into account not only the times that an object is observed, but also the resolution

of the observation. As mentioned earlier, the AUS as defined in (2.8) indicates how well

an object is satisfied. We define the second metricMs as the ratio of average AUS to

the maximum possible satisfaction for each object (i.e.,ne). Fig. 2.5 summarizes the

comparison based onMs. It is shown that our method outperforms EDF asλ increases.

In the heavy traffic scenario, our method outperforms the EDFby 250 %. This is not

surprising since in heavy traffic situations, objects tendsto be close to each other, where

multi-object coverage has great advantage.

Close-up analysis reveals that our satisfaction formulation in (4.2) is actually a gen-

eralization of many existing scheduling schemes. For example, if we tune parameterρ

in (2.7) to approach to zero, then the change inµi(t) dominates the change in the overall

weight. That means we extremely care the emergency of the request and thus the schedul-

ing converges to the earliest deadline first (EDF) policy [36]. Also, if we set extremely

high requested resolution (i.e., extremely smallzi), it implies that we extremely care the

resolution of the image frame. As a result, the algorithm would tend to produce smaller

frames (higher resolution) to cover fewer requests at a price of (possibly) losing coverage

of other requests. In the extreme case, to obtain the best resolution, it would only assign

one request to one PTZ camera, which is exactly the scheduling scheme as in almost all

existing works.

2.4.2 Physical Experiment

We carry out a physical experiment to validate our system using real video data. Our

camera is mounted on the 6th floor of the Evans Library of TexasA&M University to

monitor the crowd entering and leaving the library. In the experiment, we sett0 = δl = 1.5

seconds,δr = 2 seconds andp = 3. The camera runs at 10 fps. In the submission, we
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Fig. 2.4.Comparison of scheduling policies based onMn.
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Fig. 2.5.Comparison of scheduling policies based onMs.

attach a video clip that records a representative observation operation which contains two

consecutive observation cycles at 17:25 on May 4th, 2009. The corresponding key frames

are presented in Fig. 2.6. It is shown that the request assignment module is capable of

partitioning the objects and assigning each PTZ camera witha subset of the objects. The

PTZ camera parameter selection module ensures the assignedobjects are covered for the

duration of the observation cycle. Between the observationcycles, the system also shows
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(a) Frame 0 (b) Frame 1 (c) Frame 15 (d) Frame 30

(e) Frame 50 (f) Frame 65 (g) Frame 85

Fig. 2.6. Key frames in a representative surveillance cycle. (a) At time
t = 0, there are 7 people. (b) The system starts to track the people, who
are represented by green rectangles. (c) At timet = t0, the states of the
people at timet = t0 + δl are predicted, which are represented by yellow
rectangles. (d) At timet = t0 + δl, each PTZ camera is assigned a subset
of the people. The optimal PTZ camera settings are represented by red
dashed rectangles. (e) At timet = t0 + T, one observation cycle finishes
and the system predicts the states of the people at timet = t0 + T + tl
for the next cycle. (f) At timet = t0 + T + tl, each PTZ camera is
again assigned a subset of the people. The better satisfied objects in the
previous cycle are deprioritized through the dynamic weighting. (g) At
time t = t0 + 2T, the second observation cycle finishes.

the ability to adjust the priority of the objects through thedynamic weighting so that every

moving object is evenly observed.
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2.5 Conclusions

We presented an autonomous vision system that consists of multiple robotic PTZ cam-

eras and a fixed wide-angle camera for observing multiple objets simultaneously. We

presented the system with observation request generation,request assignment and PTZ

camera parameter selection modules. We formulated the PTZ camera scheduling as a se-

quence of request assignment and camera parameter selection problems with objective of

maximizing the satisfaction to requests. We validated the system by both simulation and

physical experiments. The comparison with an existing workbased on simulation has

shown that our system significantly enhances the observation performance especially in

heavy traffic situations.

In the future, we will investigate how different frame selection formulation would im-

pact the system performance and how they fit human user need inpractice. Another in-

teresting extension is to consider the camera traveling time within the request assignment.

Intuitively, asynchronized observation by multiple PTZ cameras would further enhance

the system performance. The camera content delivery through internet would be another

interesting topic especially when number of camera increases.

In the next two sections, we will introduce an approximationalgorithm and an exact

algorithm, respectively, for thep-frame problem.
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3. MOMR++ ALGORITHM: APPROXIMATION ALGORITHM FOR CROWD

SURVEILLANCE SYSTEM

In Section 2, we introduce an autonomous crowd surveillancesystem. In the system

design, it assignsn observation requests top cameras by solving thep-frame problem.

In this section, we focus on formal formulation of thep-frame problem and propose an

approximation algorithm for solving the problem. Fig. 3.1 illustrates thep-frame problem:

how to identify optimalp frames that best satisfy then different polygonal requests.

5HTXHVWHG�UHJLRQV

2SWLPDO�IUDPHV

Fig. 3.1.An illustration of the least overlapping 3-frame problem.

We assume that thep frames have the least overlap (will be formally defined later) on

the coverage between the frames and a request is satisfied only if it is fully covered by

one of thep frames. Under the assumptions, we propose a Resolution Ratio with Non-

Partial Coverage (RRNPC) metric to quantify the satisfaction level for a given request

with respect to a set ofp candidate frames. Hence thep-frame problem is to find the

optimal set of (up top) frames that maximizes the overall satisfaction. Buildingon the

results in [48], we propose a lattice-based approximation algorithm. The algorithm builds

on an induction-like approach that finds the relationship between the solution to thep− 1

frame problem and the solution to thep-frame problem. For a given approximation bound

ǫ, the algorithm runs inO(n/ǫ3 + p2/ǫ6) time. We have implemented the algorithm and
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experiment results are consistent with our complexity analysis. We will begin with the

related work.

3.1 Related Work

The p-frame problem relates to networked robotics, the facilitylocation problem in

operations research, and the single frame selection problem.

The development of the Internet allows more users to access online resources. Thep

frames taken byp networked pan-tilt-zoom cameras can be viewed as a special case of

networked tele-operation, where each robotic camera has 3 Degrees of Freedom (DOF).

According to the taxonomy proposed by Chonget al. [5], this system belongs to Multiple

Operator Multiple Robot (MOMR) systems. The low cost robot and sensor network makes

the MOMR system a very popular research domain [10, 11, 50]. In [12, 51], Liu and

his colleagues developed a competitive MOMR system under a game setting. Our work

emphasizes on the geometric coverage attributes of the robotic camera and addresses the

MOMR problem in an optimization framework.

Thep-frame problem is structurally similar to thep-center facility location problem,

which has been proven to be NP-complete [52]. Givenn request points on a plane, the

task is to optimally allocatep points as service centers to minimize the maximum dis-

tance (called min-max version) between any request point and its corresponding service

center. In [53], anO(n log2 n) algorithm for a 2-center problem is proposed. As an ex-

tension, replacing service points by orthogonal boxes, Arkin et al. [54] propose a(1 + ǫ)-

approximation algorithm that runs inO(nmin(lg n, 1/ǫ) + (lg n)/ǫ2) for the 2-box cov-

ering problem. Altet al. [55] proposed a(1 + ǫ)-approximation algorithm that runs in

O(nO(m)), whereǫ = O(1/m), for the multiple disk covering problem. The requests in

these problems are all points instead of polygonal regions as those in ourp-frame problem

and the objective of thep-frame problem is to maximize the satisfaction, which is nota

distance metric.
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Thep-frame problem also relates to the art gallery problem [56].The art gallery prob-

lem is to minimize the number of security guards to guard an art gallery, which is usually

represented by a polygon withn vertices. Each guard has a certain range of vision. The

location of the guard can be represented by a point while the reachable region of the guard

can be represented by any geometrical shapes. Agarwalet al. [57] consider a variation

of the art gallery problem where the terrain is not planar andthere are only two guards

with minimal heights. They propose an exact algorithm that runs inO(n2 log4 n) time.

In [58], Eppsteinet al. propose the sculpture garden problem where each guard has only a

limited angle of visibility. They prove that the upper boundis n − 2 and the lower bound

is n/2 for the number of the guards needed. More results on the art gallery problem can

be found in [59]. Unlike the art gallery problem, thep-frame problem does not need to

cover all requests. However, the selection has to be made based on maximizing the level

of satisfaction of covered requests.

Our group has worked on camera frame selection problems since 2002. We have ad-

dressed the Single Frame Selection (SFS) problem and its variations such as approximate

solution with continuous zoom [60], approximate solution with fixed zoom [61], and ex-

act solution with continuous zoom and rectangular requestswith fixed aspect ratio [62]

or variable aspect ratio [47]. Extending the results for SFSto the p-frame problem is

non-trivial. Our work in this section is the first attempt to tackle the problem.

3.2 Problem Definition

In this section, we formulate thep-frame problem. We begin with the definition of the

inputs and outputs. Assumptions are then presented. We establish the request satisfaction

metric so that we can formulate the problem as a geometric optimization problem.
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3.2.1 Input and Output

The input of the problem is a set ofn requestsR = {ri|i = 1, 2, ..., n}. Each request

is defined asri = [Ti, zi], whereTi denotes the polygonal requested region andzi ∈

Z specifies the desired resolution level, which is in the rangeof Z = [z, z]. The only

requirement forTi is that its coverage area can be computed in constant time.

A solution to thep-frame problem is a set ofp camera frames. Given a fixed aspect

ratio (e.g. 4:3), a camera frame can be defined asc = [x, y, z], where pair(x, y) denotes

the center point of the rectangular frame andz ∈ Z specifies the resolution level of the

camera frame. Here we consider the coverage of the camera as rectangular according to

the camera configuration space. Therefore, the width and height of the camera frame can

be represented as4z and3z respectively. The coverage area of the frame is12z2. The four

corners of the frame are located at(x± 4z/2, y ± 3z/2).

Givenw andh are the camera pan-tilt ranges respectively, thenC = [0, w]× [0, h]×Z

defines the set of all candidate frames. Therefore,Cp indicates the solution space for

thep-frame problem. We define any candidate solution to thep-frame problem asCp =

(c1, c2, ..., cp) ∈ Cp, whereci, i = 1, 2, ..., p, indicates thei-th camera frame in the solution.

In the rest of the section, we use superscription∗ to indicate the optimal solution. The

objective of thep-frame problem is to find the optimal solutionCp∗ = (c∗1, c
∗
2, ..., c

∗
p) ∈ C

p

that best satisfies the requests.

3.2.2 Set Operators

We clarify the use of set operators such as “∩”, “⊆ ” and “6∈” to represent the relation-

ship between frames, frame sets, and requests in the rest of the section.

• When two operands are frames or requests (e.g.,ri ∈ R, cu, cv ∈ C), the set oper-

ators represent the 2-D regional relationship between them. For example,ri ⊆ cu

represents that the region ofri is fully contained in that of framecu while cu ∩ cv

represents the overlapping region of framescu andcv .
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• When the operands are one frame (e.g.,ci ∈ C) and one frame set (e.g.,Ck ∈

Ck, k < p), we treat the frame as an element of a frame set. For example,ci 6∈ Ck

represents thatci is not an element frame in the frame setCk.

• When the operands are two frame sets, we use set operators. For example,{c1} ⊂

Cp means frame set{c1} is a subset ofCp. Frame set{c1, c2} = {c1} ∪ {c2} is

different from c1 ∪ c2. The former is the frame set that consists of two element

frames and the later is the union area of the two frames.

3.2.3 Assumptions

We assume that thep-frames are either taken fromp cameras that share the same

workspace or taken from the same camera. Therefore, if a location can be covered by a

frame, other frames can cover that location, too.

We assume that the solutionCp∗ to thep-frame problem satisfies the following condi-

tion.

Definition 3.2.1 (Least Overlapping Condition (LOC)) ∀ri, i = 1, ...n, ∀cu ∈ Cp∗,

∀cv ∈ Cp∗, andcu 6= cv,

ri ∩ (cu ∩ cv) = φ. (3.1)

The LOC means that the overlap between frames is so small thatno request can be fully

covered by more than one frame simultaneously. The LOC forces the overall coverage

of a p-frame set∪pj=1cj to be close to the maximum. This is meaningful in applications

when the cameras need to search for unexpected events while best satisfying then existing

requests because the ability to search is usually proportional to the union of overall cov-

erage. Therefore, the LOC can increase the capability of searching for unexpected events.

The extreme case of the LOC is that there is no overlap betweencamera frames.
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Definition 3.2.2 (Non-Overlapping Condition (NOC)) Given ap-frame set

Cp = (c1, c2, ..., cp) ∈ Cp (p ≥ 2), Cp satisfies the NOC, if

∀u = 1, 2, ..., p, ∀v = 1, 2, ..., p, u 6= v, cu ∩ cv = φ .

It is not difficult to find that the NOC is a sufficient conditionto the LOC. The NOC yields

the maximum union coverage and is a favorable solution to applications where searching

ability is important.

3.2.4 Satisfaction Metric

To measure how well ap-frame set satisfies the requests, we need to define a satisfac-

tion metric. We extend the Coverage-Resolution Ratio (CRR)metric in [47] and propose

a new Resolution Ratio with Non-Partial Coverage (RRNPC).

Definition 3.2.3 (RRNPC metric) Given a requestri = [Ti, zi] and a camera framec =

[x, y, z], the satisfaction of requestri with respect toc is computed as

s(c, ri) = I(c, ri) ·min(
zi
z
, 1), (3.2)

whereI(c, ri) is an indicator function that describes the non-partial coverage condition,

I(c, ri) =





1 if ri ⊆ c,

0 otherwise.
(3.3)

Eq. (4.3) indicates that we do not accept partial coverage over the request. Only the

requests completely contained in a camera frame contributeto the overall satisfaction.

From (4.2) and (4.3), the satisfaction of theith request is a scalarsi ∈ [0, 1].
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Based on (4.2), the satisfaction ofri with respect to a candidate least overlappingp-

frame setCp = (c1, c2, ..., cp) ∈ Cp is,

s(Cp, ri) =

p∑

u=1

I(cu, ri) ·min(
zi
zu

, 1), (3.4)

wherezi, zu indicate the resolution values ofri and theu-th camera frame inCp respec-

tively. The LOC implies that although (3.4) is in the form of summation, at most one frame

contains the region of requestri and thus non-negatives(Cp, ri) has a maximum value of

1. Therefore, RRNPC is a standardized metric that takes boththe region coverage and the

resolution level into account.

To simplify the notation, we uses(c) =
∑n

i=1 s(c, ri) to represent the overall satisfac-

tion of a single framec. We also uses(Ck) =
∑k

j=1,cj∈Ck s(cj), to represent the overall

satisfaction of a partial candidatek-frame setCk, k < p.

3.2.5 Problem Formulation

Based on the assumption and the RRNPC metric definition above, the overall satis-

faction of ap-frame setCp = {c1, c2, ..., cp} ∈ Cp over n requests is the sum of the

satisfaction of each individual requestri, i = 1, 2, ..., n,

s(Cp) =

n∑

i=1

p∑

u=1

I(cu, ri) ·min(
zi
zu

, 1). (3.5)

Eq. (3.5) shows that the satisfaction of any candidateCp can be computed inO(pn)

time. Now we can formulate the least overlappingp-frame problem as a maximization

problem,

Cp∗ = arg max
Cp∈Cp

s(Cp). (3.6)
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3.3 Algorithm

Solving the optimization problem in (3.6) is nontrivial. Toenumerate all possible com-

binations of candidate solutions by brute force can easily take up toO(np) time. In this

section, we present a lattice-based approximation algorithm beginning with the construc-

tion of the lattice. To maintain the LOC in the lattice framework, we introduce the Virtual

Non-Overlapping Condition(VNOC). Based on the VNOC, we analyze the structure of the

approximate solution and derive the approximation bound with respect to the optimal so-

lution that satisfies the NOC . To summarize this, a lattice-based induction-like algorithm

is presented at the end of the section.

3.3.1 Construction of Lattice

We construct a regular 3-D lattice, which is inherited from [48] to discretize the so-

lution spaceCp. Let 2-D point setV = {(αd, βd)|αd ∈ [0, w], βd ∈ [0, h], α, β ∈ N )

discretize the 2-D reachable region and represent all candidate center points of rectan-

gular frames, whered is the spacing of the pan and tilt samples. Let 1-D point set

Z = {γdz|γdz ∈ [z, z + 2dz], γ ∈ N} discretize the feasible resolution range and repre-

sent all candidate resolution values for the camera, wheredz is the spacing of the zoom.

Therefore, we can construct the lattice as a set of 3-D points, L = V × Z.

Each pointc = (αd, βd, γdz) ∈ L represents the setting of a candidate camera frame.

There are totally(wh/d2)(g/dz) = |L| candidate points/frames inL, whereg = z − z.

We setdz = d/3 for cameras with an aspect ration of4 : 3 according to [48]. It is

worth noting that any candidate frame with center point close to the boundary of the 2-D

reachable region and a large zoom level may have its coverageout of the reachable region

and thus becomes an infeasible candidate frame. Therefore,the actual feasible solution

space is in a pyramid-like shape.

What is new is that the spacing of the latticed anddz also depends on the size of the

requested regions. For any requestri ∈ R, there exists an Iso-oriented Bounding Box
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(IBB) for eachri. Let us defineλ andµ as the smallest width and height across all IBBs,

respectively. We choosed such that

d < min(3λ/10, µ/3). (3.7)

This input-sensitive lattice setting can help us to establish the LOC on the lattice and

will be discussed later in Section 3.3.2. From here on, we usesymbol̃ to denote the

lattice-based notations. For example,C̃p denotes ap-frame set on latticeL.

Definition 3.3.1 For any camera framec ∈ C,

c̃′ = min c̃, s.t. c̃ ∈ L andc ⊆ c̃.

Hencec̃′ is the smallest frame on the lattice that fully enclosesc.

In the rest of the section, we use symbol′ to denote the corresponding smallest frame(s)

on the lattice. For any camera framec = [x, y, z] and its corresponding̃c′ = [x̃′, ỹ′, z̃′],

we define their bottom-left corners as(xl, yb) and(x̃′l, ỹ′b), and their top-right corners as

(xr, yt) and(x̃′r, ỹ′t), respectively.

From the results of [48], we have

xl − x̃′l ≤ 5d/3, x̃′r − xr ≤ 5d/3,

yb − ỹ′b ≤ 3d/2, ỹ′t − yt ≤ 3d/2.
(3.8)

3.3.2 Virtual Non-Overlapping Condition

The NOC defined in Definition 4.3.1 guarantees the LOC. However, due to the limita-

tion of lattice spacing, it is very difficult for candidate frames on the lattice to follow the

NOC. Actually, it is unnecessary (though sufficient) to follow the NOC to satisfy the LOC.

It is possible to allow a minimum overlap that is controlled by the lattice spacing and mean-
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while guarantee that the LOC is still satisfied, which yieldsthe Virtual Non-Overlapping

Condition (VNOC).

Definition 3.3.2 (Virtual Non-Overlapping Condition(VNOC )) Given anyj-frame set

Cj = (c1, c2, ..., cj) ∈ Cj , j = 2, 3, ..., p and any two framescu, cv ∈ Cj, thenCj satisfies

the VNOC, ifmin(xr
u − xl

v, x
r
v − xl

u) ≤ 10d/3 or min(ytu − ybv, y
t
v − ybu) ≤ 3d.

Corollary 1 Given any two framesc1, c2 ∈ C, if {c1, c2} satisfies the VNOC, then{c1, c2}

also satisfies the LOC.

Proof From the definition of VNOC and the settings ofλ andµ, we see that the size

of the overlapping regionc1 ∩ c2, on either the x-axis or y-axis, is less than the size of

the smallest request. This guarantees that no requested region is fully contained in the

overlapping region. Therefore, the LOC is satisfied.

Lemma 1 Given any two framesc1, c2 ∈ C such that{c1, c2} satisfies the VNOC, then

s({c1, c2}) = s(c1) + s(c2). (3.9)

Proof From Corollary 1,{c1, c2} satisfies the LOC. From the definition of the LOC and

the RRNPC satisfaction metric defined in (4.2), the conclusion follows.

3.3.3 Approximation Solution Bound

The construction of the lattice allows us to search for the best p frames on the lattice,

which yields an approximation solution. Furthermore, the VNOC and Lemma 1 assist us

in deriving the approximation bound.

Lemma 2 For any two framesc1, c2 ∈ C, if {c1, c2} satisfies the NOC, then{c̃′1, c̃
′
2} satis-

fies the VNOC.
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The proof of the lemma is trivial based on the definition of VNOC and the settings of

λ andµ.

Given the optimal solutionCp∗ = (c∗1, c
∗
2, ..., c

∗
p) for the optimization problem defined

in (3.6) that satisfies the NOC, there is a solution on the lattice C̃ ′p∗ = (c̃′∗1 , c̃
′∗
2 , ..., c̃

′∗
p )

whose element frames are the corresponding smallest frameson the lattice that contain

those ofCp∗. Lemma 2 implies that̃C ′p∗ exists and satisfies the VNOC. However, how

good is this solution in comparison to the optimal solution?We define the approximation

boundǫ which characterizes the comparative ratio of the approximation solution to the

optimal solution

s(C̃ ′p∗)/s(Cp∗) ≥ 1− ǫ. (3.10)

Based on Lemma 1 and Theorem 1 in [48], we have

s(C̃ ′p∗)/s(Cp∗) ≥ 1−
2dz

z + 2dz
. (3.11)

Let C̃p∗ denote the optimalp-frame set on the lattice. SincẽC ′p∗ is one of thep-frame

sets on the lattice, then we have

s(C̃p∗)

s(Cp∗)
≥

s(C̃ ′p∗)

s(Cp∗)
≥ 1−

2dz
z + 2dz

. (3.12)

Eq. (3.12) implies that we can use the solutionC̃p∗ as the approximate solution to the

optimal solution. Let the approximation bound be

ǫ =
2dz

z + 2dz
. (3.13)

Solving (3.13) and combining the upper bound value ofd as in (3.7), we have

d = 3dz = min(
3

2
(

ǫ

1− ǫ
)z,min(3λ/10, µ/3)). (3.14)
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Eq. (3.14) indicates that whenǫ→ 0,

d = 3dz =
3

2
(

ǫ

1− ǫ
)z. (3.15)

Eqs. (3.13) and (3.15) imply that we can control the quality of the approximate so-

lution by tuning the lattice spacingd. On the other hand, based on the lattice structure

and the definition of the approximation bound, we know that the number of all candidate

ponints/frames on the lattice is,

|L| = O(1/ǫ3). (3.16)

3.3.4 Lattice-based Algorithm

With the approximation bound established, the remaining task is to search̃Cp∗ onL.

We design an induction-like approach that builds on the relationship between the solution

to the (p − 1)-frame problem and the solution to thep-frame problem. The key elements

that establish the connection are Conditional Optimal Solution (COS) and Conditional

Optimal Residual Solution (CORS).

Definition 3.3.3 (Conditional Optimal Solution) ∀c̃ ∈ L, the COS,Ũj(c̃) = {C̃j∗|c̃ ∈

C̃j∗}, is defined as the optimalj-frame set,j = 1, 2, ..., p, for thej-frame problem that

must includẽc in the solution set. Also,̃Uj(c̃) satisfies the VNOC.

Therefore, we can obtain the optimal solution,C̃p∗, on the lattice by searching̃c over

L and its corresponding COS,

C̃p∗ = Ũp(c̃
∗), (3.17)

where c̃∗ = argmaxc̃∈L s(Ũp(c̃)).

Definition 3.3.4 (Conditional Optimal Residual Solution) Given any COS,̃Uj+1(c̃), j =

0, 1, ..., p− 1, we define thej-frame CORS with respect tõc as: Q̃j(c̃) = Ũj+1(c̃)− {c̃}.
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Corollary 2 Q̃j(c̃) is the optimalj-frame set that satisfies,

• c̃ /∈ Q̃j(c̃),

• {c̃} ∪ Q̃j(c̃) satisfies the VNOC.

What is interesting is that CORS allows us to establish the relationship betweeñQj

andQ̃j−1.

Lemma 3

Q̃j(c̃u) = Q̃j−1(c̃∗) ∪ {c̃∗}, (3.18)

wherec̃∗ = argmaxc̃∈L s(Q̃j−1(c̃) ∪ {c̃}), subject to the constraint that{c̃u, c̃} ∪ Q̃j−1(c̃)

satisfies the VNOC.

Proof We prove the lemma by contradiction. Notice that the right hand side of (3.18)

returns one of thej-frame sets that satisfy the two conditions in Corollary 2, while the left

hand side is defined to be the optimalj-frame set that satisfies the same two conditions.

Therefore, if we assume (3.18) does not hold, the only possibility is,

s(Q̃j(c̃u)) > s(Q̃j−1(c̃∗) ∪ {c̃∗}). (3.19)

Take an arbitrary framẽcv ∈ Q̃j(c̃u) out of Q̃j(c̃u), the result isQ̃j(c̃u) − {c̃v} and

according to Lemma 1, we have,

s(Q̃j(c̃u)− {c̃v}) = s(Q̃j(c̃u))− s(c̃v). (3.20)

Takec̃v out of Q̃j−1(c̃v) ∪ {c̃v}, the result isQ̃j−1(c̃v) and

s(Q̃j−1(c̃v)) = s(Q̃j−1(c̃v) ∪ {c̃v})− s(c̃v). (3.21)

Based on (3.19) and the fact that

s(Q̃j−1(c̃∗) ∪ {c̃∗}) ≥ s(Q̃j−1(c̃v) ∪ {c̃v}),
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we have,

s(Q̃j(c̃u)) > s(Q̃j−1(c̃v) ∪ {c̃v}). (3.22)

Takec̃v out of both sides and combine with (3.20) and (3.21) respectively, we have,

s(Q̃j(c̃u)− {c̃v}) > s(Q̃j−1(c̃v)). (3.23)

The frame set on the right hand side of (3.23),Q̃j−1(c̃v), is defined to be the optimal

(j − 1)-frame set that satisfies the two conditions in Corollary 2 while the frame set on

left hand side,Q̃j(c̃u) − {c̃v}, is only one of the(j − 1)-frame sets that satisfy the two

conditions. Contradiction occurs.

It is worth mentioning that it takesO(p) time to check if({c̃u, c̃} ∪ Q̃j(c̃)) satisfies the

VNOC. Because{c̃} ∪ Q̃j(c̃) = Ũj+1(c̃) satisfies the VNOC as defined in Definition 3.3.3

and thus we only need to check if{c̃u} ∪ Ũj+1(c̃) satisfies the VNOC, which takesO(p)

time.

Eq. (3.17) implies that we can obtain the approximation solution C̃p∗ from Ũp. Def-

inition 3.3.4 indicates that we can obtaiñUp from Q̃p−1. Now Lemma 3 implies that we

can construct̃Qj from Q̃j−1, j = 1, 2, ..., p − 1. Considering the fact that̃Q0 = φ, this

allows us to establish the algorithm using an induction-like approach. Algorithm 1 shows

the complete lattice-based algorithm. Considering any candidate framẽc ∈ L, we pre-

calculate the satisfaction values for all the|L| candidate frames and store the values in a

lookup table to avoid redundant calculation. Given any candidate framẽcu ∈ L as the in-

put, the lookup functionl returns the satisfaction value ofc̃u, l(c̃u) = s(c̃u). We implement

the lookup function using the array,l[u] = s(c̃u). From the pseudo code in Algorithm 1, it

is not difficult to know that,

Theorem 1 Algorithm 1 runs inO(n/ǫ3 + p2/ǫ6) time.
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Algorithm 1: Lattice-based Algorithm

1 begin
2 for j ← 1 to |L| do O(1/ǫ3)
3 l[j] = s(c̃j) O(n)

4 Q̃0(c̃j) = ∅; O(1)

5 s(Q̃0(c̃j)) = 0; O(1)

6 end
7 for k ← 1 to p do O(p)

8 C̃k∗ = ∅; O(1)

9 s(C̃k∗) = 0; O(1)

10 for u← 1 to |L| do update C̃k∗,O(1/ǫ3)

11 if s(C̃k∗) < s(Q̃k−1(c̃u)) + l[u] then
12 C̃k∗ = Q̃k−1(c̃u) ∪ {c̃u}; O(1)

13 s(C̃k∗) = s(Q̃k−1(c̃u)) + l[u]; O(1)

14 end
15 end
16 for u← 1 to |L| do update Q̃k(c̃u),O(1/ǫ3)

17 Q̃k(c̃u) = Q̃k−1(c̃u) ∪ ∅; O(1)

18 s(Q̃k(c̃u)) = s(Q̃k−1(c̃u)); O(1)
19 for v ← 1 to |L| do O(1/ǫ3)

20 if s(Q̃k(c̃u)) < s(Q̃k−1(c̃v)) + l[v] AND
21 {c̃u, c̃v} ∪ Q̃k−1(c̃v) satisfies the VNOC O(p) then
22 Q̃k(c̃u) = Q̃k−1(c̃v) ∪ {c̃v}; O(1)

23 s(Q̃k(c̃u)) = s(Q̃k−1(c̃v)) + l[v]; O(1)

24 end
25 end
26 end
27 end
28 return C̃p∗;
29 end

3.4 Experimental Results

We have implemented the algorithm using Java. The computer used is a desktop com-

puter with an Intel Core 2 Duo 2.13GHz CPU and 2GB RAM. The operating system is

Windows XP. In experiments, we test the algorithm speed withdifferent parameter settings

including the number of requestn, the number of camera framesp, and the approximation

boundǫ.
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In the experiments, both triangular and rectangular inputsare randomly generated.

First, sd points inV are uniformly generated across the reachable field of view. These

points indicate the locations of interest and are referred to as seeds. Each seed is associated

with a random radius of interest. To generate a request, we randomly assign it to one seed.

For a triangular request, three 2-D points are randomly generated within the radius of

the corresponding seed as the vertices of the triangle. For arectangular request, a 2-D

point is randomly generated as the center of the rectangularregion within the radius of

corresponding seed and then two random numbers are generated as the width and height

of the request. Finally, the resolution value of the requestis uniformly randomly generated

across the resolution range[z, z].
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(a) The computation time vs. the approxima-
tion boundǫ, (n=100,p=2). Note that the hor-
izontal axis is1/ǫ6.

(b) The computation time vs. the number of
framesp, (n=100,ǫ=0.25). Note the horizontal
axis isp2.

Fig. 3.2.Speed testing results.

Across the experiment, we setw=80,h=60,z=5, z=15 andsd=4. For each parameter

setting, 50 trials have been carried out for averaged performance. The simulation results

indicate the linear relationship between the computation time andn. Fig. 3.2 illustrates

the relationship between the computation time and the parametersp andǫ. The results are

consistent with our BigO notion complexity analysis. In Fig. 3.2(a), the computational

time is linear to1/ǫ6. In Fig. 3.2(b), it even shows a trend of sub-linear with respect top2.
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(a) p=1,s=4.21 (b) p=2,s=6.32

(c) p=3,s=8.11 (d) p=4,s=9.07

Fig. 3.3.Sample outputs whenp increases for a fixed input setn = 10.

This may be due to the fact that when p is larger and frames havehigher chance to violate

the virtual non-overlapping condition, it takes less time to check if the frames satisfy the

condition in lines 20 and 21 in Algorithm 1.
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Fig. 3.3 shows how the output of the algorithm for a fixed set ofinputs (n=10) changes

whenp increases from 1 to 4. It shows that our algorithm reasonablyallocates camera

frames in each case.

3.5 Conclusion

In this section, we have formulated the least overlappingp-frame problem with non-

partial coverage as an optimization problem. A lattice-based approximation algorithm was

proposed for solving the problem. Givenn requests andp camera frames, the algorithm

runs inO(n/ǫ3 + p2/ǫ6) time with the approximation boundǫ. We have implemented the

algorithm and tested it on random inputs. The experimental results are consistent with our

theoretical analysis.

In future work, we will explore the new geometric data structures to improve complex-

ity results. We will also develop algorithms for different variations of the problem such as

allowing camera frames to overlap with each others.

The proposed approximationp-frame algorithm has been applied to the crowd surveil-

lance system as in Section 2. However, the complexity of the algorithm is very sensitive to

the approximation boundǫ. Whenǫ becomes small, the computation time increases dra-

matically. This prohibits the system’s usefulness to applications where accurate solution

is required. In the next section, we introduce an efficient exact algorithm whenp = 2.
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4. MOMR++ ALGORITHM: EXACT 2-FRAME ALGORITHM FOR CROWD

SURVEILLANCE SYSTEM

4.1 Introduction

In Section 3, we introduce an approximationp-frame algorithm for the crowd surveil-

lance system in Section 2. However, the speed of the approximation algorithm is very

sensitive to the approximation boundǫ. On the other hand, in real applications, it is rare to

have many cameras due to various constraints such as cost, power supply, synchronization

between cameras, and maintenance. This encourages us to explore online algorithms when

p is small. In this section, we introduce an efficient exact algorithm whenp = 2. Fig. 4.1

illustrates a 2-frame problem instance.

We assume the frames have no overlap on their coverage. We propose a series of al-

gorithms to search for the solution that maximizes the overall request satisfaction. Our

algorithms solve the 2-frame problem inO(n2), O(n2m) andO(n3) times for fixed,m

discrete, and continuous resolution levels, respectively. We have implemented all the al-

gorithms and compared them with our previous work in the lastsection. The experimental

results are consistent with our complexity analysis. We begin with the related work.

4.2 Related Work

The2-frame problem relates to the2-center problem, networked robotics and multiple

camera surveillance.

Thep-frame problem is structurally similar to thep-center facility location problem.

Givenn request points inRd, (d = 1, 2, ...), the task is to optimally allocatep points as

service centers to minimize the maximum distance between points and their nearest service

centers. The distance metric are usually Euclidean(l2) or rectilinear(l∞). The Euclidean

p-center problem is NP-hard [63]. Eppstein [53] proposes anO(n log2 n) algorithm for

the Euclidean 2-center problem. Arkinet al. [54] replace the service points by orthogonal
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Optimal frames
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x

Fig. 4.1.An illustration of the non-overlapping 2-frame problem.

boxes inR3 and propose an approximation algorithm that runs inO(nmin(lg n, 1/ǫ) +

(lg n)/ǫ2) for the Euclidean 2-box covering problem. Altet al. [55] propose a(1 + ǫ)-

approximation algorithm that runs inO(nO(m)), whereǫ = O(1/m), for the multiple disk

covering problem. The rectilinearp-center problem is also NP-hard [63]. Bespamyatnikh

and Kirkpatrick [64] propose a linear time algorithm for therectilinear 2-center problem.

Ko et al. [65] propose a 2-approximation algorithm for solving the rectangularp-center

problem and prove that factor 2 is optimal. The requests in these problems are all points

instead of polygonal regions as those in thep-frame problem. The objective of thep-frame

problem is to maximize the satisfaction, which is not a distance metric.

The task ofp networked pan-tilt-zoom cameras takingp frames in the remote envi-

ronment can be viewed as a special case of networked tele-operation, where each robotic

camera has 3 Degrees of Freedom (DOF). Based on the taxonomy by Chonget al. [5],

these systems belong to Multiple Operator Multiple Robot (MOMR) systems [10,11]. Liu

et al., [12] develop a competitive MOMR system where two operatorscontrol two multi-

finger robotic hands, respectively, in a game setting. Huanget al., [66] propose a criterion

called degree of satisfaction (DOS) to evaluate the performance of competitive MOMR

systems. Wanget al., [67] propose an internet-based MOMR system that allows multiple

students to control two robot soccer teams for competition.Our work emphasizes on the

geometric coverage attributes of the robotic camera and addresses the MOMR problem in

an optimization framework.
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Table 4.1
Algorithm and system development forp-frame problems

Algorithm Resolution Complexity
p-frame approximate Continuous O(n/ǫ3 + p2/ǫ6)

2-frame exact (this section)fixed,m discrete, and continuousO(n2), O(n2m), andO(n3)

The p-frame problem can be applied to multiple camera surveillance systems, espe-

cially those with multiple active cameras. Fioreet al. [35] propose a dual-camera system

with a wide-angle static camera and a PTZ camera for pedestrian surveillance. The two

cameras share the same point of view. While the wide-angle static camera monitors the

scene and detects pre-defined individual human activities (e.g., loitering), the PTZ cam-

era takes high-resolution images of the human for close-up observation. Limet al. [40]

propose a multiple camera system, which consists of one wide-angle static camera and

multiple PTZ cameras. It constructs the observation task for each single object as a “task

visibility interval” (TVI) based on accurate predicted states of the objects during their

entire durations in the FOV. It solves the PTZ camera planning issue by modeling it as

a maximum flow problem. A recent live system in this category can be found in [68].

Different from these existing work, the solution to thep-frame problem can be applied to

optimally control PTZ camera parameters such that the camera coverage-resolution trade-

off is achieved by maximizing the satisfaction level of the observation to all objects. This

also enables group watching which is very meaningful in manyapplications.

Our group has been researching on developing intelligent vision systems and algo-

rithms using robotic cameras for a variety of applications [4]. In [69], we formulate the

p-frame problem and propose an approximation algorithm thatruns inO(n/ǫ3 + p2/ǫ6)

time. An autonomous observation system that adopts this algorithm with multiple PTZ

cameras has been introduced in [70]. However, the computation time of the algorithm is

very sensitive to the approximation boundǫ. It proves to be inviable for problems where

exact or accurate solutions are required. As in [70], it can only handle less than 50 observa-

tion requests withp = 2, ǫ = 0.27 in 0.5 second, which is equivalent to only 2 frames per
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second. In this section, we extend the single frame selection algorithm in [47] to the cases

wherep = 2 and propose a series of exact algorithms for solving the 2-frame problem with

different camera resolution configurations. Table 4.1 summarizes the current progress on

p-frame problem.

4.3 Problem Definition

We begin with the definition of the inputs and outputs. Necessary assumptions are

presented. Then we introduce the request satisfaction metric so that we can formulate the

problem as a geometric optimization problem.

4.3.1 Input and Output

As illustrated in Fig. 4.1, we assume all camera frames and requests are rectangu-

lar and each side of the rectangle is axis-parallel. Thei-th request is defined asri =

[xi, yi, xi, yi, zi], where(xi, yi) and (xi, yi) denote the bottom-left and top-right corners

of the rectangular requested region, respectively;zi ∈ Z specifies the desired resolution

level, which indicates that each pixel in image correspondsto a zi × zi square area in

the scene, andZ is the set of all possible resolution levels. Therefore, bigger z ∈ Z

indicates bigger camera frame coverage and thus can be interpreted as the reciprocal of

the conventional concept of resolution. When the PTZ cameras have a fixed resolution

level,Z = {z0}, wherez0 is a constant; When cameras havem discrete resolution lev-

els,Z = {z1, z2, ..., zm}; Cameras can also have continuous resolution rangeZ = [z, z],

wherez andz denote the lower and upper bounds of the resolution level, respectively. The

input of the 2-frame problem is a set ofn requestsR = {ri|i = 1, 2, ..., n}. We define the

request index set asP = {1, 2, ..., n}.

A solution to the 2-frame problem consists of two camera frames. Assuming a fixed

aspect ratio (e.g. 4:3), a camera frame can be defined asc = [x, y, z], where(x, y) denotes

the center point of the rectangular frame andz ∈ Z specifies the resolution level of the
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camera frame. Here we consider the coverage of the camera to be rectangular according to

the camera configuration space. Therefore the width and height of the camera frame can

be represented as4z and3z, respectively. The four corners of the frame are located at

(x±
4z

2
, y ±

3z

2
),

respectively.

Givenw andh are the camera pan and tilt ranges, respectively, thenC = [0, w] ×

[0, h]×Z defines the set of all candidate frames. Therefore,C2 indicates the solution space

for the 2-frame problem. Let us define any candidate solutionto the 2-frame problem

as (c1, c2) ∈ C2. The objective of the 2-frame problem is to find the optimal solution

(c∗1, c
∗
2) ∈ C

2 that best satisfies the requests.

4.3.2 Assumptions

We assume that the two frames are either taken from two cameras that share the same

workspace or taken from the same camera. Therefore, if a location can be covered by a

frame, the other frame can cover that location, too.

We assume any solution(c1, c2) to the 2-frame problem satisfies the Non-Overlapping

Condition.

Definition 4.3.1 (Non-Overlapping Condition (NOC)) Given a 2-frame set(c1, c2) ∈

C2, it satisfies the NOC, if

c1 ∩ c2 = φ (4.1)

where we abuse the set operator “∩” to represent the 2-D regional overlapping relationship

between frames as a convention in the rest of this section. For example, in (4.1),c1 ∩ c2

represents the overlapping region of framesc1 andc2.

The NOC increases the overall coverage of frames over requests since no request is

redundantly covered by both frames and thus is a favorable solution to applications where

searching ability is important.
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4.3.3 Satisfaction Metric

For completeness, we briefly review the formulation of the objective function as pro-

posed in [69]. We measure the “satisfaction” level of a request by comparing its requested

resolution with that of the camera frame, which fully contains the region of the request.

We define the Resolution Ratio with Non-Partial Coverage (RRNPC) metric. Given a re-

questri = [xi, yi, xi, yi, zi] and a camera framec = [x, y, z], the satisfaction of requestri

with respect toc is computed as

s(c, ri) = I(c, ri) ·min(
zi
z
, 1), (4.2)

whereI(c, ri) is an indicator function that describes the non-partial coverage condition,

I(c, ri) =





1 if ri ⊆ c,

0 otherwise,
(4.3)

where we abuse the set operator⊆ to represent the 2-D regional relationship between

frame(s) and request(s) in the rest of this section. In (4.3), ri ⊆ c represents that the region

of ri is fully contained in that ofc. Eq. (4.2) takes into account both camera coverage (first

term in (4.2)) and camera resolution (second term in (4.2)) so that a coverage-resolution

tradeoff is achieved.

From (4.2), the request satisfaction fulfilled by a framec is calculated as

s(c) =
n∑

i=1

I(c, ri) ·min (
zi
z
, 1), (4.4)

where we overload the functions(·) by taking a frame as the input. Eq. (4.4) shows that

evaluating a candidate frame takesO(n) time.
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4.3.4 Problem Formulation

With the NOC assumption, the overall satisfaction ofn requests(r1, r2, ..., rn) served

by a solution(c1, c2) ∈ C2 is,

s(c1, c2) =
n∑

i=1

2∑

j=1

I(cj , ri) ·min(
zi
zj
, 1)

= s(c1) + s(c2), (4.5)

where we overload the functions(·) by taking a 2-frame set as the input. Here we are

interested in cases such thats(c1) > 0 ands(c2) > 0. If eithers(c1) = 0 or s(c2) = 0, the

2-frame problem degenerates to a single frame problem.

Eq. (4.5) shows that the satisfaction of any candidate(c1, c2) can be computed inO(n)

time. Now we can formulate the non-overlapping 2-frame problem as a maximization

problem,

(c∗1, c
∗
2) = arg max

(c1,c2)∈R6
s(c1, c2).

4.4 Algorithms

4.4.1 Feasibility Condition

We start with analyzing the structural property of any feasible solution.

Definition 4.4.1 (Separation) For any interval[x1, x2], we define the 2-D point set

SX
e (x1, x2) = {(x, y) ∈ R

2|x1 ≤ x ≤ x2}

as anx-separation. Similarly, we define

SY
e (y1, y2) = {(x, y) ∈ R

2|y1 ≤ y ≤ y2}
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as ay-separation for interval[y1, y2].

For any feasible solution(c1, c2) = ([x1, y1, z1], [x2, y2, z2]), we define,

SX
e (c1, c2) =SX

e (x1 +
4z1
2

, x2 −
4z2
2

)

∪ SX
e (x2 +

4z2
2

, x1 −
4z1
2

), (4.6)

SY
e (c1, c2) =SY

e (y1 +
3z2
2

, y2 −
3z2
2

)

∪ SY
e (y2 +

3z1
2

, y1 −
3z1
2

), (4.7)

as illustrated in Fig. 4.2. Intuitively, (4.6) and (4.7) define the “gap” between frames.

Lemma 4 (Feasibility condition) Given any feasible solution(c1, c2), it must have at

least one non-empty separation as defined in (4.6) and (4.7),

SX
e (c1, c2) ∪ SY

e (c1, c2) 6= φ.

Lemma 4 is straightforward from the non-overlapping condition.

Given the optimal solution(c∗1, c
∗
2), if SX

e (c∗1, c
∗
2) 6= φ, we call the problem isx-

separable. Similarly, ifSY
e (c

∗
1, c

∗
2) 6= φ, we call the problem isy-separable. These two

cases are not mutually exclusive. Without loss of generality, we focus onx-separable

problem in the rest of this section.

As a convention from here on, we usec1 to represent the “left” frame of a solution, and

c2 to represent the “right” frame as shown in Fig. 4.2 for thex-separable problem. Hence,

(4.6) can be simplified as,

SX
e (c1, c2) = SX

e (x1 +
4z1
2

, x2 −
4z2
2

).
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Fig. 4.2. An illustration of the optimalx-separable solution. At least
one optimal solution(c∗1, c

∗
2) = (ci1, c

j
2) corresponds to a separation is a

minimal separation.rl is the closest request on the left hand side of line
x=xj . rh is the second closest request on the left hand side of linex=xj .
cl−1 can be incrementally computed by comparingcl1 andch−1 , as in (4.15).

4.4.2 Optimality Condition

Lemma 4 defines the necessary condition for any feasible solution. Unfortunately,

there are infinite number of separations. Next, we show how toreduce the problem to

finite candidate separations to assist the search for the optimal solution.

Given the optimal solution(c∗1, c
∗
2) as illustrated in Fig. 4.2, slightly slidingc∗1 to the

right does not change its satisfaction level until its left side overlaps with that ofrk (i.e.,

x∗
1− 4z∗1/2 = xk), because neither the camera resolution nor the camera-request coverage

relationship changes. However, if we slidec∗1 slightly to the left so that its right side is on

the left hand side of that ofri, i.e.,x∗
1+4z∗1/2 < xi, the satisfaction level decreases because

the frame loses the complete coverage over requestri. Similar arguments can apply toc∗2.

This tells us that at least one optimal solution is structurally defined by a separation, which

corresponds to a pair of request sides.
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Lemma 5 (Optimality condition) For anyx-separable problem, there must exist one op-

timal solution,(c′1, c
′
2) = ([x′

1, y
′
1, z

′
1], [x

′
2, y

′
2, z

′
2]) and a non-empty separationSX

e (xi, xj),

i, j ∈ P , such that

ri ⊆ c′1 andx′
1 +

4z′1
2

= xi;

rj ⊆ c′2 andx′
2 −

4z′j
2

= xj .

ThusSX
e (xi, xj) = SX

e (c′1, c
′
2) is the non-empty separation for this optimal solution.

Proof Given an optimal solution(c∗1, c
∗
2) as shown in Fig. 4.2, we have,

s(c∗2) =
n∑

k=1

I(c∗2, rk)min (
zk
z∗2
, 1). (4.8)

Let R∗
2 represent the set of requests which are fully enclosed byc∗2. Then (4.8) is

re-written as,

s(c∗2) =
∑

rk∈R
∗

2

I(c∗2, rk)min (
zk
z∗2
, 1)

=
∑

rk∈R
∗

2

min (
zk
z∗2
, 1). (4.9)

Let xj be the smallestx-coordinate ofR∗
2,

xj = min
rk∈R

∗

2

xk.

For c∗2 = [x∗
2, y

∗
2, z

∗
2 ], there exists a framec′2 = [x′

2, y
′
2, z

′
2], such thaty′2 = y∗2, z

′
2 = z∗2 and

x′
2 − 4z′2/2 = x′

2 − 4z∗2/2 = xj . Intuitively, c′2 is the frame similar toc∗2 except that its

left side overlaps with linex = xj . DefineR′
2 as the set of requests that are completely

enclosed byc′2, we have,
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s(c′2) =
∑

rk∈R
′

2

I(c′2, rk)min (
zk
z∗2
, 1)

=
∑

rk∈R
′

2

min (
zk
z∗2
, 1). (4.10)

Sincerj ∈ R∗
2, thereforerj ⊆ c∗2. We havex′

2 − 4z∗2/2 = xj ≥ x∗
2 − 4z∗2/2, and thus

x′
2 ≥ x∗

2. Therefore,x′
2 + 4z∗2/2 ≥ x∗

2 + 4z∗2/2. For anyrk = [xk, yk, xk, yk, zk] ∈ R∗
2, we

have,

xk ≥ xj = x′
2 − 4z′2/2,

xk ≤ x∗
2 + 4z∗2/2 ≤ x′

2 + 4z′2/2,

y
k
≥ y∗2 − 3z∗2/2 = y′2 − 3z′2/2,

yk ≤ y∗2 + 3z∗2/2 = y′2 + 3z′2/2.

Therefore,rk ⊆ c′2 andR∗
2 ⊆ R′

2.

Comparing (4.9) and (4.10), we haves(c∗2) ≤ s(c′2). However, ifs(c∗2) < s(c′2), we can

replacec∗2 with c′2 to obtain a better non-overlapping solution, which contradicts the fact

that(c∗1, c
∗
2) is optimal. Therefore,s(c∗2) = s(c′2) andc′2 is optimal. Similarly, we can find

a framec′1 with y′1 = y∗1, z
′
1 = z∗1 , andx′

1 + 4z′1/2 = xi for c∗1. Therefore,(c′1, c
′
2) is an

optimal solution.SX
e (xi, xj) = SX

e (c′1, c
′
2) is the corresponding separation for(c′1, c

′
2).

Lemma 5 defines the necessary condition for one optimal solution. Each non-empty

separationSX
e (xi, xj) corresponds to a candidate solution. This leads to the exhaustive

approach as follows.

4.4.3 Exhaustive Search

Based on Lemma 5, for each non-empty separationSX
e (xi, xj), we reduce the 2-frame

problem to two single frame problems, each finding the optimal frame that has its one side
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Algorithm 2: Exhaustive Search Algorithm forx-Separable Non-Overlapping 2-
Frame Problem (ES-XS-2)

Input : Request setR.
Output : (c∗1, c

∗
2)

1 begin
2 foreachSX

e (xi, xj) O(n2)

3 do
4 if xi ≤ xj then
5 Computeci1; T1

6 Computecj2; T1

7 end
8 end
9 return the best(ci1, c

j
2) pair; O(1)

10 end

overlapping with one boundary of the separation. We define these two constrained optimal

frames,

ci1 = arg max
c=(x,y,z)

s(c), s.t.ri ⊆ c andx+
4z

2
= xi, (4.11)

cj2 = arg max
c=(x,y,z)

s(c), s.t.rj ⊆ c andx−
4z

2
= xj . (4.12)

We can find one optimal solution by exhaustively enumeratingall O(n2) non-empty

separationsSX
e (xi, xj), i, j ∈ P. For eachSX

e (xi, xj), the corresponding candidate solu-

tion (ci1, c
j
2) can be obtained by solving the two single frame sub-problemsas in (4.11) and

(4.12), respectively. Algorithm 2 summarizes the exhaustive search approach.

It is noticed that in lines 5 and 6 of Algorithm 2, it requires the subroutines that solve

the two sub-problems as in (4.11) and (4.12), respectively.Both subroutines run inT1(n)

time. The implementation of the subroutines andT1(n) depend on different camera reso-

lution configurations, which will be discussed in details later. The exhaustive search as in

Algorithm 2 runs inO(n3) +O(n2) · T (n) time.
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4.4.4 Sweeping of Separation Boundaries

However, further observation reveals a more efficient approach. Instead of enumer-

ating allO(n2) separationsSX
e (xi, xj), i, j ∈ P, we only need to considerO(n) special

separations.

Given any non-empty separationSX
e (xi, xj) as shown in Fig. 4.2, we can always con-

tract it to a smaller, non-negative width by moving the left separation boundary to the

right, until the left boundary overlaps with a right requestside, which is the closest to the

right separation boundary (e.g.,xl in Fig. 4.2). We define this separation with smallest

non-negative width as the minimal separation.

Definition 4.4.2 (Minimal separation) Given any non-empty separationSX
e (xl, xj), de-

fined by requestsrl andrj , l, j ∈ P, we define it as the minimal separation with respect to

rj if rl is the closest request to linex = xj among those on the left hand side ofx = xj ,

l = argmin
k∈P

(xj − xk) s.t.xk ≤ xj.

Given the optimal solution(c∗1, c
∗
2) = (ci1, c

j
2) and its corresponding separationSX

e (xi, xj)

as in Fig. 4.2, the corresponding minimal separation isSX
e (xl, xj) as illustrated by the

striped area. It is obvious thatc∗1 = ci1 is the optimal frame which is on the left hand side

of bothSX
e (xi, xj) andSX

e (xl, xj). We define the optimal frame on the left hand side of

a separation as follows. Given any left separation boundaryat x = xl, l ∈ P, we define

framecl−1 as the optimal frame that is on the left hand side of the left separation boundary,

cl−1 = arg max
ck1 , k∈P

s(ck1), s.t.xk
1 +

4zk1
2
≤ xl. (4.13)

Therefore, we can find an optimal solution by enumerating allO(n) minimal sepa-

rations. For each minimal separationSX
e (xl, xj), we compute the correspondingcl−1 and

cj2.
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The remaining question is how to efficiently computecl−1 for each minimal separation.

Direct computation based on (4.13) requires to computeO(n) constrained optimal single

frames as in (4.11) and compare all of them. Given the minimalseparationSX
e (xl, xj), let

rh be the second closest request left to linex = xj , as illustrated in Fig. 4.2,

h = argmin
k∈P

(xj − xk), s.t.xk ≤ xl ≤ xj. (4.14)

Then the computations ofch−1 and cl−1 based on (4.13) only differ in computings(cl1).

Therefore, we have,

cl−1 =





ch−1 if s(ch−1 ) > s(cl1),

cl1 otherwise.
(4.15)

Eqs. (4.14) and (4.15) suggest an incremental approach to calculate cl−1 , l ∈ P.

We search for all candidate left separation boundaries, which are defined by right request

sides{xl, l ∈ P}, from left (x = −∞) to right (x =∞) and incrementally compute each

cl−1 , l ∈ P, as in (4.15).

To search for all minimal separations, we sort all vertical request sides and sweep a

separation, which is defined by the vertical request sides, from left to right as illustrated

in Fig. 4.3. In each sweeping step, we either contract the separation by moving its left

boundary toward right or expand the separation by moving itsright boundary toward right.

• If the separation is not a minimal separation, we contract the separation by moving

the left boundary to its next candidate position. The optimal frame on the left hand

side of the new separation is computed as in (4.15). The contraction from Fig. 4.3(f)

to Fig. 4.3(g) illustrates these operations.

• If the separation is a minimal separation. We compute the optimal frame on the

right hand side of the separation as in (4.12). Since the optimal frame on the left

hand side of the separation is maintained as described above, combining the two

frames forms a candidate solution. After that, we expand theseparation by moving
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Fig. 4.3.An illustration of the sweeping of separation boundaries. During
sweeping from left to right, if the separation is not a minimal separation,
we contract the separation by moving its left boundary to itsnext can-
didate position and the optimal frame on its left hand side iscomputed
as in (4.15). If the separation is a minimal separation, its right frame is
computed as in (4.12), and forms a candidate solution with the optimal
left frame maintained earlier.

the right boundary to its next candidate position and a new sweeping step starts. The

expansion from Fig. 4.3(d) to Fig. 4.3(e) illustrates theseoperations.

We summarize the sweeping search algorithm for solvingx-separable 2-frame problem

in Algorithm 3. Since both the separation need to be contracted and expandedO(n) times,

respectively, the sweeping search as in Algorithm 3 runs inO(n)T1(n) time.

4.4.5 Algorithm Complexity with Different Camera Resolution Configurations

We turn to the implementations of the subroutines for solving the sub-problems as

in (4.11) and (4.12), under different camera resolution configurations. Without loss of
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Algorithm 3: Sweeping Search Algorithm forx-Separable 2-Frame Problem (SS-
XS-2)

Input : Request setR;
Output : (c∗1, c

∗
2);

1 begin
2 Sort left sides ofR : B = [b[1], ..., b[n]]; O(n log n)

3 Sort right sides ofR : B = [b[1], ..., b[n]]; O(n log n)
4 Sort top sides ofR; O(n log n)
5 Sort bottom sides ofR; O(n log n)
6 Sort requested resolutions ofR; O(n log n)
7 c−1 = φ; c∗1 = φ; c∗2 = φ; O(1)
8 u = 0; v = 1; O(1)
9 while v < n O(n)

10 do
11 if b[u+ 1] > b[v] #Minimal separation
12 then
13 Find b[v] belongs torj ; O(1)

14 Computecj2 as in (4.12) T1(n)

15 if s(c∗1) + s(c∗2) < s(c−1 ) + s(cj2) then
16 (c∗1, c

∗
2) = (c−1 , c

j
2) O(1)

17 end
18 v = v + 1; O(1)

19 end
20 else
21 u = u+ 1; O(1)

22 Find b[u] belongs torl; O(1)

23 Computecl1 as in (4.11); T1(n)

24 if s(c−) < s(cl1) then
25 c−1 = cl1; O(1)
26 end
27 end
28 end
29 return (c∗1, c

∗
2) O(1)

30 end

generality, we only discuss the subroutine that calculatesthe optimal single frame on the

right hand side of the separation,cj2, as in (4.12).
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A fixed camera resolution

We first consider the case in which the cameras have a fixed resolution z = z0. Given

the right separation boundary atx = xj as shown in Fig. 4.4. Recallcj2 satisfiesxj
2 −

4zj2/2 = xj andrj ⊆ cj2. Since the camera frame has a fixed size (resolution), we can align

the left side of a candidate framec2 with line x = xj and slidec2 along the linex = xj

while maintainingrj ⊆ c2 to search for all candidate frames. Based on the RRNPC

metric in (4.2), we know thats(c2) changes only at the moments when one horizontal

side of c2 overlaps with that of a request. Therefore, there are totally O(n) candidate

frames. Evaluating all of the candidate frames takesO(n2) time. However since we have

sorted horizontal request sides, based on the RRNPC metric in (4.2), each change ins(c2)

during the sliding can be determined inO(1) time. Therefore, we can simply calculate

the satisfaction of an initial candidate frame (e.g., the frame withy2 + 3z2/2 = yj) and

updates(c2) by slidingc2 upward along the linex = xj while maintainingrj ⊆ c2. We

summarize the subroutine in Algorithm 4.

The subroutine presented in Algorithm 4 runs inO(n). This means when the cameras

have a fixed resolution,T1 = O(n) and Algorithm 3 runs inO(n2) time.

Algorithm 4: Subroutine solving (4.12) with a fixed resolution
Input : Right separation boundary atx = xj;

Output : cj2;
1 begin
2 Create candidate framec2; O(1)
3 Setx2 − 4z2/2 = xj, y2 + 3z2/2 = yj ; O(1)

4 Calculates(c2); O(n)
5 while y2 − 3z2/2 < y

j
O(n)

6 do
7 Slidec2 upward along linex = xj until one of its horizontal sides aligns with that

of a request; O(1)
8 Updates(c2); O(1)

9 end
10 return the bestc2; O(1)

11 end
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Fig. 4.4. An illustration of findingcj2 as in (4.12) with fixed resolution.
Slide the candidate framec2 along linex=xj from an initial position.
Whenever a horizontal frame side aligns with that of a request, the change
in s(c2) can be computed inO(1) time.

Discrete camera resolutions

Now we consider the cameras havem discrete resolution levels. In this case, for each

right separation boundary, we just run the subroutine in Algorithm 4m times, each time for

one resolution level, respectively. Therefore, when the cameras havem discrete resolution

levels, Algorithm 3 runs inO(n2m) time.

Continuous camera resolutions

Finally, we consider the cameras have continuous resolution range[z, z]. We already

know the left side ofcj2 satisfiesxj
2 − 4zj2/2 = xj . As shown in Fig. 4.4, the extended

line of a horizontal request sidey = yk intersects with linex = xj at vertex(xj, yk).

(xj , yk) is defined as Base Vertex (BV) in [47]. According to the optimality condition

in Lemma 2 of [47], one optimal framecj2 must have one corner coincident with a BV.

Songet al. [47] propose a Base Vertex Incremental Computing with Diagonal Sweeping

(BV-IC-DS) algorithm to find an optimal frame. The basic ideais to expand the candidate
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frame along its extended diagonal by increasing the resolution. The satisfaction of the

frame changes only atO(n) number of critical resolution values and the changes between

consecutive critical values can be determined in constant time. We apply a modified BV-

IC-DS here. We skip the details and readers can refer to [47] for details.

BV-IC-DS runs inO(n) for each BV and we haveO(n) BVs for each separation

boundary. This means when cameras have continuous resolution levels,T1(n) = O(n2)

and Algorithm 3 runs inO(n3) time.

Theorem 2 When cameras have a fixed,m discrete and continuous zoom level(s), Algo-

rithm 3 runs inO(n2), O(n2m) andO(n3) times, respectively.

Table 4.2 summarizes the complexities for all algorithm variations.

Table 4.2
Summary of algorithm complexity

Zoom Fixed m discrete Continuous
Exhaustive searchO(n3) O(n3m) O(n4)
Sweeping search O(n2) O(n2m) O(n3)

It is worth mentioning that though we focus on rectangular requests here, our algorithm

can also apply to problems with any polygonal requests. Based on the RRNC metric, a

frame fully contains a polygonal request region if and only if the frame encloses its iso-

oriented minimal bounding rectangle (MBR). We can reduce the problem with polygonal

requests to the one with rectangular requests by replacing the polygonal request regions

with their MBRs.

4.5 Experiments

We have implemented all the algorithms using Microsoft Visual C++ 2005. We test

the algorithms on a desktop PC with a 3.2GHz Pentium(R) D CPU,2 GB RAM, and a

hard disk of 320 GB. We test the speed of the algorithms with different settings ofn.
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Fig. 4.5. Computation speed of algorithms with a fixed and continuous
zoom level(s), respectively, and the comparison with the approximation
algorithm in [69] with approximation boundǫ = 0.35, 0.30 and 0.25,
respectively.

We use random input for testing. First,sd 2-D points are uniformly generated across

[0, w]× [0, h]. Each point indicates a location of interest and is designated as “seed”. Each

seed is associated with a random radius of interest. To generate a request, we first randomly

assign it to a seed. Then within the radius of the seed, a 2-D point is randomly generated

as the center of the rectangular request region and two random numbers are generated as

the width and height of the request. Finally, the resolutionvalue of the request is randomly

generated across the resolution range[z, z].

Across the experiments, we setw = 80, h = 60, z = 5, z = 15 andsd = 5. We

set the fixed camera resolution asz0 = 8. For each setting ofn, 100 trials are carried out

for averaged performance. Fig. 4.5 illustrates the relationship between computation time

andn for proposed algorithm with a fixed and continuous zoom level(s), respectively.

It is shown that the proposed algorithm with fixed zoom is veryfast. It takes only 10

ms with n = 200, which is usually very large for most surveillance systems. Though

the computation time of the algorithm with continuous zoom increases much faster asn

increases, it takes only less than 900 ms withn = 200. Both curves are consistent with our

complexity analysis.
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We also compare the proposed algorithm with the approximation algorithm in [69],

which run inO(n/ǫ3 + p2/ǫ6) time, whereǫ is the approximation bound. We test the

approximation algorithm withǫ = 0.35, 0.30 and 0.25, respectively. It is shown that

the approximation algorithm’s speed performance deteriorates very quickly asǫ increases.

With n ≤ 200, the approximation algorithm takes almost 2 seconds even if the approx-

imation bound is considerably large asǫ = 0.25. When ǫ becomes even worse as 0.30

and 0.35, the approximation algorithm will eventually outspeed the proposed algorithm at

n =160 and 100, respectively. It is also worth mentioning that the computation time of

the approximation algorithm is proportional to the size of the problem space[0, w]× [0, h]

while the speed of the proposed algorithm is independent ofw andh.

These tell us that for applications wheren is not very large but the problem space

[0, w]×[0, h] is large, and the accuracy of the solution is a significant concern, the proposed

algorithm outperforms the approximation algorithms in both speed and solution quality. If

n is very large but the problem space[0, w] × [0, h] is small, and rough solution (e.g.,

ǫ ≥ 0.25) is acceptable, then the approximation algorithm is a faster alternative. In fact,

most visual object detection/tracking/surveillaince systems [21, 28] can handle much less

than 100 objects at the same time while accurate object tracking/observation is required,

which qualify the proposed algorithm as a viable solution for these applications.

Fig. 4.6 shows two sample outputs of the algorithm with continuous zoom levels and

n = 100. It is shown that in both cases, our algorithm reasonably locates 2 frames to cover

most of the requests.

4.6 Conclusions

In this section, we formulate the non-overlapping 2-frame problem with non-partial

coverage as an optimization problem. We propose a series of algorithms for solving the

problem under different camera resolution configurations.For cameras with fixed,m

discrete and continuous resolution level(s), we propose algorithms to solve the 2-frame
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(a) (b)

Fig. 4.6. Sample simulation results for random input. Dashed-line rect-
angles denote requests and grey rectangles are optimal frames. n =
100, sd = 5.

problem inO(n2), O(n2m) andO(n3) time, respectively. We have implemented all the

algorithms and experimental results are consistent with our complexity analysis.

In future work, we will explore new algorithms for solvingp-frame problems with

p ≥ 3. It is shown in Fig. 4.6(b) that some left area of the left frameand some right area

of the right frame are wasted. It is due to the non-overlapping condition. We will relax the

assumptions to allow camera frames to overlap in the future.We plan to apply the proposed

algorithms to collaborative outdoor observation and surveillance in filed experiments.

In the last three sections, we have studied an example of the MOMR++ system: the

autonomous crowd surveillance system and its corresponding frame selection algorithms.

In the next section, we introduce a different MOMR++ system:the bird species detection

system.
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5. MOMR++ SYSTEM: RARE BIRD DETECTION SYSTEM

5.1 Introduction

In this section, we report another example of the MOMR++ system: the rare bird

detection system, which is initially motivated for assisting the search for the though-to-be-

extinct Ivory-Billed Woodpecker.

(a) (b)

Fig. 5.1.Our autonomous observatory system installed along Bayou De-
View, a bottomland forest near Brinkley, Arkansas. (a) The installation
site. (b) A high resolution video frame of a red-tailed hawk captured by
the system on Dec. 13, 2006. The red-tailed hawk has a body length of
55 cm, close in length to the IBWO.

The Ivory-Billed Woodpecker (IBWO) is a magnificent creature that is of great inter-

est to birdwatchers, ornithologists, and conservationists. The last confirmed U.S. sighting

was in the early 1940s but a photo was taken in Cuba in 1948. In Feb. 2004, a credible

eyewitness sighting was reported along Bayou DeView in eastern Arkansas, prompting

a comprehensive and systematic search led by researchers atCornell University and the

Nature Conservancy. In Fall 2005, we joined the search effort by developing a high reso-

lution robotic video system to observe the sky over an extended time period. Detailed high

resolution video images are required to distinguish an IBWOfrom its cousin, the common

Pileated Woodpecker.
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Our goal is to develop a robust autonomous system that detects when birds fly into the

field of view, keeping only the associated video segments forfurther species recognition.

As illustrated in Fig. 5.1, the system has been installed in aclearing along Bayou DeView.

This project is part of our larger effort to develop autonomous and networked systems for

collaborative observation of natural environments [49].

We began with the following four design goals:

a) Sensitivity: the ability to detect and record video sequences of sufficiently high

resolution to clearly distinguish between the IBWO, the Pileated Woodpecker, and

other species with a low false negative rate (< 20%),

b) Data reduction: the system records 198GB of high resolution video data per day.

Due to greatly reduced networking bandwidth in the wilderness, we want to discard

at least 99% of this while maintaining criterion a),

c) Accuracy: the system should maintain a low false negativerate, which means the

system should not miss an IBWO flying by the camera. However, it is acceptable if

the system has a relatively high false positive rate as long as criterion (b) is satisfied,

and

d) Robustness: the ability to operate autonomously in harshconditions over long peri-

ods (i.e. mean time between maintenance> 6 months.)

In this section, we report our system and preliminary algorithm development progress

including hardware design, software architecture, and a bird filter that combines size fil-

tering, nonparametric motion filtering, and temporal difference filtering. Our system has

been deployed in two locations: Texas A&M campus from May - Aug 2006 and Bayou

DeView, a swampy bottomland forest near Brinkley, Arkansasfrom Oct. 2006 to Oct.

2007. Initial results suggest that the system we describe has met these design criteria.

Fig. 5.1 shows the system as deployed in Arkansas and a captured high resolution image

of a red-tailed hawk.
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5.2 Related Work

The IBWO is the third-largest woodpecker in the world. It hasa distinctive ivory

colored bill, white feathers under a black wing, and male birds have a red crest. A pair of

birds may need 25km2 or more of forest to feed. The loss of habitats due to the increasing

human population and logging activities has greatly impacted the IBWO population in the

past century. The last confirmed U.S. photos of IBWOs were taken by James Tanner in

Louisiana in 1938. John Dennis took the last photos of this species in Cuba in April 1948.

Despite lack of conclusive evidence, the search for the legendary bird has never ceased.

In 2005, the Cornell Laboratory of Ornithology and their colleagues reported the discovery

of an IBWO in the Big Woods area of Arkansas [71] based primarily on a low-resolution

video segment [72], so there is great interest in a high-resolution autonomous system.

Remote nature camera systems have been around since 1950s. Gysel and Davis [73]

built an early video camera based on remote wildlife observation system to study rodents.

Biologists use remote photography systems to observe nest predation, feeding behavior,

species presence, and population parameters [74–79]. Commercial remote camera systems

such as Trialmaster [74] and DeerCam have been developed since 1986 and have been

widely used in wildlife observation. The Internet enables webcam systems that allow

the general public to access remote nature cameras. Thousands of webcams have been

installed around the world, for example, to observe elephants1, tigers2, bugs3 and so on.

However, most of cameras perform simple time sampled recordings, and it is difficult or

impossible for human experts to reliably review the tens of thousands of images recorded.

Song and Goldberg have developed systems and algorithms fornetworked cameras for

a variety of applications such as construction monitoring [80], distance learning [9], and

panorama construction [81].

Motion detection segments the moving objects from a video sequence. Existing mo-

tion detection techniques can be classified into three categories: background subtrac-

1http://www.zulucam.org/
2http://www.tigerhomes.org/animal/web-cams.cfm
3http://bugscope.beckman.uiuc.edu/
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tion [18, 82], temporal differencing [83], and optical flow [84, 85]. Background subtrac-

tion calculates the pixel-wise intensity difference between an input frame with a back-

ground reference model. To address the background noise, researchers propose many

statistics-based background models such as temporal average [13], median absolute de-

viation (MAD) [14], adaptive Gaussian estimation [86], mixed Gaussian model, parame-

ter estimation [87], non-parameter estimation [18], and Kalman filter compensation [19].

Temporal differencing calculates the pixel-wise intensity difference between two or three

consecutive frames. Optical flow calculates the displacement flow vectors from a video

sequence. A nature environment is noisy and unstructured. No single methodology can

directly satisfy the four criteria in the IBWO search. During our system and software

development, we carefully fine-tune the parameters to combine the strenghts of nonpara-

metric estimation, temporal differencing, and connectivity checking.

5.3 Hardware

Our system design was based on input from the Cornell ornithologists and the condi-

tions of the installation site. As illustrated in Figs. 5.1 and 5.2, the system is installed in a

clearing in the swampy forest that is flooded by Bayou DeView in Arkansas. The clearing

is a narrow corridor that is about 900 meters long and 50 meters wide. It was formed when

the forest was cut to allow a high voltage line to run through it. The system is installed

on an electric pole in this power line cut. A bird flying acrossthe power line cut is clearly

exposed to the sky, which makes this an ideal location for installing the system. The site

was carefully selected by the Cornell ornithologists.

To provide good coverage of the region, we chose a two-camerasystem design with

each camera facing upward in opposite directions along the corridor. We chose a camera

lens with a 20◦ horizontal field of view and a15◦ vertical field of view. Knowing that the

bird often flies at tree-top height, which is about 10 meters above the tree, we setup the

camera orientation to maximize coverage as illustrated.
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Fig. 5.2. Schematic of the system installation site and camera coverage.
The camera has a20◦ horizontal field of view and a15◦ vertical field of
view. (a) top view of system coverage; (b) side view of systemcoverage.

The Cornell ornithologists advised us that to serve as conclusive evidence, a bird image

should be at least25 × 25 pixels. We chose Arecont Vision 3100 3Mega-pixel high res-

olution networked video cameras as the imaging device. As illustrated in Fig. 5.3, other

major components of the system include a MiniITX computer with 1.4 GHz CPU and

1GB RAM, a LinkSys wireless access point, an AW900 long rangewireless adaptor with

a 900Mhz directional Yagi antenna, an external timer, an external USB hard disk, and a

digital I/O box with a set of relays and an LED array. To deal with the harsh swampy

environment, the whole system is protected by weatherproofand thermal-controlled en-

closures.

There are two separate networks in the system. The internal network is managed by

the LinkSys access point that is both a wireless router and a four-port wired switch that

allows the MiniITX computer to talk to the two cameras via theT3 local ethernet. The

local 2.4Ghz wireless service is used to facilitatein-situ system debugging. The external

network bridges the computer to the Internet by the AW900 long range wireless adaptor.

Running at 1.5Mbps and 900Mhz carrier frequency, the AW900 long range wireless adap-

tor can reach a maximum distance of 40 miles if equipped with a15dBi Yagi directional

antenna. Since there is no interesting activity at night, the external timer powers off the
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Fig. 5.3. System hardware configuration: (a) the MiniITX computer, the
external timer, and the digital I/O box are protected in a weatherproof
box; (b) the AW 900 long range outdoor wireless adaptor and a 15dBi
AW15 Yagi Antenna.

system each night. The external timer provides additional recoverability when the com-

puter accidently crashes. Image data is stored in an external USB hard disk. Prior to the

installation of the long range wireless network, one of us swapped the external hard disk

every few weeks.

The customized digital I/O box has an LED array that displaysthe percentage of stor-

age space left in the USB hard disk. The digital I/O box also controls a set of digital relays

which can selectively power on or off individual cameras. This proves to be an important

design choice because the camera firmware can crash and needsto be power-cycled from

time to time. The digital I/O box is also equipped with a red push button that can power

off the MiniITX, which has no keyboard or monitor. The simplified hardware interface

makes it easy for non-experts to operate and maintain.

5.4 Software

To facilitate image acquisition, the MiniITX computer has acustomized Microsoft

Windows XP operating system. Due to the speed requirement, Microsoft Visual C++ has

been chosen as the programming language in the development.As illustrated in Fig. 5.4,

system software contains four main components: Bird Filter(BF), System Configuration
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Fig. 5.4.System software diagram

Module (SCM), Service Module (SM), and Background Biometric (BB) filter. We will

detail BF in the next section. The SCM is a configuration routine that allows us to adjust

system parameters such as camera parameters, motion detection parameters, and on/off

time on the field. The SM is a background process that monitorsthe whole system to

detect if there is a software or hardware failure. The BB filter is still under development, it

will be run offline to detect bird species automatically based on the biological information

provided by the ornithologists.

5.5 Bird Filter

Based on what is known about the IBWO, the Bird Filter (BF) utilizes the information

about the IBWO provided by the Cornell ornithologists:

Assumption 1

1. An adult IBWO has a body length of 48cm.

2. An IBWO can fly at30 ∼ 60km/hr.
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3. It takes a minimum size of25× 25 pixels to clearly distinguish the IBWO from the

common pileated woodpecker.

5.5.1 Input and Output

The BF is a multi-threaded process that performs filtering onthe acquired image in real

time. The process decides whether to keep the video on the hard disk or to delete it. The

filter makes the decision by filtering out images without motion and images with noisy

motions. The noisy motions include the motions caused by vibrations of tree branches,

moving clouds, sun positions, water reflections, dropping tree leaves, flying insects, and

any moving objects smaller than25 × 25 pixels in the image. As illustrated in Fig. 5.4,

the BF acquires frames using the frame grabber thread. The frames are stored in a video

buffer. Therefore, the input to the BF are image frames captured by the cameras and the

output of the BF are image frames that contain fast-moving objects that are larger than

25× 25 pixels.

5.5.2 Parameters

When the BF starts, it loads the configuration parameters such as camera parameters,

regions of interest, and object size to initialize each relevant module. Camera parameters

refer to camera auto iris gain that enables the camera to adapt itself to different lighting

conditions in the outdoor environment. The image resolution is set to1600×1200 pixels to

ensure a good balance between frame rate and resolution. At this resolution, the Arecont

vision camera runs at 11 frames per second (fps). Two camerasprovide a total of 22fps to

the system. To ensure the imaging of a fast-moving object, the camera exposure time is set

to be less than 1/100 of a second. The regions of interest refer to where we perform bird

detection on the image. It is stored as a binary map that can bedefined at the installation

site to facilitate the quick installation of the system.
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5.5.3 Spatiotemporal Downsampling

Since the two cameras combined provide 22 fps at a resolutionof 1600 × 1200 pixels

each, it is impractical and unnecessary to analyze every image in real time. Therefore, we

downsample video frame sequence spatiotemporally. We partition the continuous video

sequence into sequential 7-frame video sequences. DefineF to be a frame, theith video

sequence defined is,

Fi = {Fi1, Fi2, ..., Fij , ..., Fi7}. (5.1)

For each segment, we process its 4th frameFi4, i = 1, ...,∞, at a resolution of400 ×

300 with motion detection. In the downsampled image, we are interested in capturing

motion objects that are bigger than6 × 6 pixels, which is equivalent to the25× 25 pixels

in the original size. There is a possibility that a bird mightbe missed due to the temporal

downsampling. It takes a bird about 1 second to fly cross the power line cut, which should

be sufficient time for the camera to capture 11 frames. However, there is a small chance

that a bird might not appear on the 4th frame of the video sequence, and we could miss

the bird completely. However, this is the natural limit imposed by the computation power

and camera field of view. The downsampling operation can reduce noisy motions and

increases computation speed.

5.5.4 Nonparametric Motion Filtering

To eliminate periodical noisy motions caused by vibrating tree branches and their shad-

ows, we adopt the nonparametric background subtraction algorithm proposed by Elgam-

mal et.al [18].

For every pixel at timet, Elgammal’s algorithm updates a Gaussian modelN(0,Σ)

from its intensity values from the corresponding pixels in previous framesFi4, i = 1, ..., t,

whereΣ = diag{σ2
r , σ

2
b , σ

2
g} is the variance-covariance matrix for three color channels.

The Gaussian distribution updates itself as a new sample comes in. Therefore, for a

periodic noise, the Gaussian model can characterize the periodic intensity change in its
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variance if the algorithm has enough samples. The algorithmthen predicts if a pixel is

a foreground pixel based on probability thresholding. After extensive tests, we set the

thresholding point to be the98th percentile.

This method has been proven to be robust in dealing with periodic noise. In our field

test conducted on the Texas A&M campus, this method successfully filtered out the noisy

background motions introduced by a rotating radio antenna.The output of nonparametric

motions filtering is a binary map with white pixels as motion pixels, which is defined as

Bi4 for frameFi4.

5.5.5 Connectivity Check

Unfortunately, the nonparametric filter cannot effectively filter out non-periodical noises

such as moving clouds or dropping leaves. Further filtering is needed. We first perform a

connectivity check to determine the size of the region that triggers the motion. Recall the

required size in Assumption 1, we only keep the images with big moving objects. Recall

thatBi4 is a downsampled image. A size of6× 6 pixels is equivalent to the25× 25 pixels

in the original image. If aBi4 contains a moving object that is bigger than6 × 6 pixels,

we proceed to the next step. Otherwise, we discard the entiresegmentFi.

5.5.6 Temporal Differencing

Since a moving cloud can take on any shape or size, the downsampling and the non-

parametric motion tracking cannot get rid of the false alarms triggered by moving clouds.

On a cloudy day, the system might accumulate huge amounts of video data containing

only moving clouds.

Observing the data, we notice that the velocity of a moving cloud is still relatively slow

if compared with that of a flying bird. In adjacent frames, thedisplacement of a moving

cloud is negligible if compared with the displacement of a flying bird. Therefore, for each

motion frameFi4 detected by the nonparametric motion detector, we combine the motion
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frame with two immediate adjacent framesFi2 andFi3 to judge the velocity difference.

We know that motion on frameFi4 is detected using the previous framesFi−1,4, Fi−2,4,

Fi−3,4, ... F1,4. For a slow moving object such as a cloud, although there exists an intensity

difference|Fi4 − Fi−1,4| for the motion to be detected, the intensity difference between

adjacent frames|Fi4 − Fi3| and |Fi5 − Fi4| should be much smaller than those of a fast

moving object. Therefore the sum of|Fi4 − Fi3| and |Fi5 − Fi4| is a good thresholding

function to judge if the moving speed of the object is fast enough. In our experiment, the

threshold point is 30. We name it 3-frame temporal differencing. It is capable of filtering

out objects that are significantly slower than the IBWO.

5.6 Experiments and Results

Two field tests have been conducted for the autonomous observation system. The

system had been installed on the Texas A&M campus from May 2006 to October 2006 for

the initial test. After 5 month-testing and tuning, the system was installed in Brinkley, AR

to assist in the search for the IBWO from October 2006 to October 2007.

5.6.1 Sensitivity

Fig. 5.5 illustrates four species of birds imaged by our system in Arkansas. Among

the samples, Fig. 5.5(a) is the closest cousin of the IBWO. Although the image is blurred,

Cornell and U. Arkansas at Little Rock ornithologists were able to verify that it is a Pileated

Woodpecker. A Pileated Woodpecker has a body length of 40 cm,which is just slightly

smaller than that of the IBWO. The Northern Flicker in Fig. 5.5(b) is a smaller kind of

woodpecker that has a size of 28-31 cm and a wingspan of 42-51 cm. Fig. 5.5(c) shows

a flock of Canada Geese caught by the system. Fig. 5.5(d) is a Great Blue Heron with a

wingspan of close to 2 m. Birds caught by the system can be either bigger or smaller than

the IBWO and fly either faster or slower than the IBWO. This suggests that our system is

capable of capturing conclusive images of an IBWO.



76

(a) (b)

(c) (d)

Fig. 5.5. Sample birds imaged by the system. (a) A Pileated Wood-
pecker (02/16/2007). (b) A Northern Flicker Woodpecker (02/27/2007).
(c) A flock of Canada Geese (10/28/2006). (d) A Great Blue Heron
(04/28/2007).

5.6.2 Data Reduction

As of September 4, 2007, the system has collected over 25 GB ofimages. A total

of 113,836 images have been captured by the BF. Considering that there were a total of

245,520,000 images captured by the two cameras during the 310 days, the BF reduced the

data by 99.9953%.

5.6.3 Accuracy

We consider both false negative and false positive rates. A false negative means that

the system fails to detect when a bird flies by. Again, we tested the system using the data

from both the Texas A&M campus and Brinkley, AR.

To test the false negative rate, we turn on the recording modeof the camera and sample

every frame. Then we manually count the number of images containing a flying bird that
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is bigger than25× 25 pixels. Comparing those with the algorithm output, we then get the

false negative rate. A total of 80,000 image frames were collected over a 2-hour period

on campus. There were three birds flying across the camera field of view in this 2-hour

period and all have been detected by the BF. As mentioned earlier, the only reason a bird

is missed by the system is the fact that it does not appear inFi4, which is possible if the

bird’s flying trajectory is very close to the boundary of the camera field of view. The false

negative test is actually the test of how many birds do not fly close to the center of the

camera field of view. In the test data set, none of the birds fly close to the boundary of

camera field view. We believe it could be less than perfect in the long run. Since the

boundary of camera field of view is much smaller in comparisonto overall field of view,

the false negative rate should be a small value(< 20%). We are testing the false negative

rate using the data from AR and will report the result in Section 6.

The false positive rate indicates the percentage of the images stored that are not trig-

gered by bird motions. Since we perform motion detection computations on only the 4th

frame of every 7-frame video segment, we collect the statistics only on the frame in which

motion detection is performed. For the 1205 captured motionimage files from the Texas

A&M campus over a 6-day test period, the false positive rate is 32.9%. The false positive

rate is 96% for the nine months of data collected in AR. The high false positive rate in

AR is expected because we are more conservative in parametersettings. For example,

our probability threshold in nonparametric motion filter is99.9% for the experiment on

the Texas A&M campus and is98% for the experiment in AR. We purposefully lower the

probability threshold to increase sensitivity. Also thereare large numbers of insects in the

forest that can trigger false alarms when they fly close to thelens. As long as the size of

the files is not too big to be transferred, this false positiverate is acceptable.

5.6.4 Robustness

After one year in the Arkansas wilderness, the system has runcontinuously except

for occasional power outages. The system has survived very large temperature variations
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from winter to summer, severe weather changes, and has worked under high humidity

conditions.

5.7 Conclusion and Future Work

This section reports our system and preliminary algorithm development for an au-

tonomous observatory to assist the search for the IBWO. Datacollected thus far suggests

that the system achieves four design criteria: sensitivity, data reduction, accuracy, and

robustness.

In Section 6, we will improve the filter efficiency by developing a more powerful filter

that combine bird specific biological information such as size and velocity, and flying

pattern.
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6. MOMR++ ALGORITHM: PROBABLE OBSERVATION DATA SET-BASED

EXTENDED KALMAN FILTER FOR BIRD SPECIES DETECTION

6.1 Introduction

In Section 5, we introduce a system to assist ornithologiststo search for rare birds.

The bird filtering algorithm in Section 5 is basically based on motion detection filtering.

In this section, we further introduce a more powerful filtering algorithm that verifies the

targeted bird biological information such as body size and velocity to further reduce the

data volume for human without compromising the low false negative.

For the the rare bird searching task, three critical conditions must be met. First, a

rare bird only appears in front of the fixed camera with very low occurrence (e.g., less

than ten times per year) for very short durations (e.g., lessthan a fraction of a second),

our algorithm must have a very low false negative (FN) rate. Second, since the final

verification has to be performed by human experts, it is necessary to reduce the huge data

volume to a manageable size, which also means that the filter can tolerate a less ideal false

positive (FP) rate. Third, the system must be easy to be set upin the forest. Due to power

and communication constraints, a single camera is preferred because it does not require

the precise calibration and synchronization as dislocatedstereo rigs would for distant fast-

flying birds.

Fig. 6.1 shows the input of the problem is a short segmented motion sequence of an

object. The output of the problem is to determine whether themotion sequence is caused

by a targeted bird species. We verify the bird body axis information with the known bird

flying dynamics. Since a regular extended Kalman filter (EKF)cannot converge due to the

high measurement error and the limited observation data dueto the high flying speed of

the bird (e.g., the sample bird sequence in Fig. 6.1 only contains seven data points), we de-

velop a probable observation data set (PODS)-based EKF and an approximate computation

scheme. The new PODS-EKF searches the measurement error range for all probable ob-

servation data that ensure the convergence of the corresponding EKF outputs. The filtering
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Fig. 6.1.An example of a video sequence of a flying bird that is captured
in Bayou DeView in eastern Arkansas. The camera runs at 11 frames per
second and the sequence is generated by superimposing the segmented
bird images from consecutive video frames on the top of a background
frame.

is based on whether the subset of PODS that guarantees EKF convergence is non-empty

and the corresponding speed is within the known bird flying velocity profile. We show that

the PODS-EKF filter theoretically ensures a zero FN rate.

We have evaluated the filtering algorithm using both the simulated data and field test

data. Our algorithm has been applied for the search of IBWOs in eastern Arkansas. The

physical experiment results show that the algorithm can reduce the video data for identi-

fication by over 99.9995% with close to zero FN. The rest of thesection is organized as

follows. Section 6.2 reviews the related works. The definition of the bird filtering problem

is presented in Section 6.3. Sections 6.4 and 6.5 model the bird filtering problem and pro-

pose the PODS-EKF method followed by an algorithm in Section6.6. The experimental

results are presented in Section 6.7 before we conclude in Section 6.8.

6.2 Related Work

Detection of a flying bird relates to vision-based motion detection, image processing

for animal detection and recognition, 3D structure inference with monocular vision, visual

tracking, and especially Kalman filter-based visual tracking.



81

Recent development in vision-based motion detection has greatly advanced its robust-

ness in noisy environments. Motion detection segments moving objects from their back-

ground using a video sequence. To address the background noises, researchers propose

many statistics-based background models such as temporal average [13], median absolute

deviation (MAD) [14], adaptive Gaussian estimation [86], mixed Gaussian models, param-

eter estimation [87], nonparametric estimation [18], and Kalman filter compensation [19].

Our work builds on the robust nonparametric background subtraction algorithm proposed

in [18] to segment the moving foreground objects. Moreover,our algorithm advances the

mere motion-detection to bird species detection by using bird flying dynamics.

Periodic motion detection [88, 89] assumes objects with periodic motion patterns and

applies time-frequency analysis [88, 90] or image sequencealignment [91] to capture the

periodicity. Applications of periodic motion detection have been found to vehicles, hu-

mans and even canines. However, recognizing birds is different because a bird flying pat-

tern combines both gliding and wing-flapping and the periodic motion assumption does

not apply.

Animal detection and recognition using video images has been an active research di-

rection. Most of the existing approaches build appearance models of animals by fea-

ture points [92], silhouettes [93], contours [94], 2D kinematic chains of rectangular seg-

ments [95], and motion symmetry [96]. A known set of animal images are used to train

and test the model using learning techniques such as neural networks [97], K-means [98],

clustering [95], template matching [93] etc. A review of theimage processing techniques

for bird recognition can be found in [97]. However, these techniques require a large learn-

ing data set to train the model, which is not available in our applications.

Recently, the 3D structure inference using monocular vision has drawn increasing re-

search attention. Ribnicket al. [99] propose an algorithm for estimating 3D parabolic

trajectories of projectiles in monocular views. Saxenaet al.[100] propose a learning algo-

rithm that estimates 3D structures of a static scene based ona single still image. The work

models the scene with sets of planes using Markov Random Field (MRF) and trains the
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model based on depth cues such as texture variations and gradients, color, haze, and defo-

cus etc. Hoiemet al. [101] propose a similar approach that models the static scene with

“surface layout.” Different from these works, our approachdeals with a highly dynamic

object (i.e., the bird) and its trajectory is not necessarily parabolic.

Visual tracking estimates trajectories of objects in 2D image space. State estimators

such as Bayesian filters [102], particle filters [103, 104], sparse (extended) information

filters [105] or (extended) Kalman filters [106] are often employed. When observation

uncertainty presents, data association techniques such asmultiple hypotheses based track-

ing [107] are usually used. A recent survey can be found in [28]. One key novelty of this

work is that the existing works focus on the data associationand state estimation problem

from a large observation data set while our work focus on the state range estimation using

minimal or even insufficient observation data set with relatively large noises.

The fundamental technique used in the bird detection is the extended Kalman filer.

Kalman filter, extended Kalman filter, and their variations verify the detected motion in-

formation from video frames with the prior known dynamics. Since the methods utilize

the information across consecutive video frames, their robustness to errors makes them

ideal methods for poor illumination conditions and outdoorenvironments [108]. Hence,

Kalman-filters have seen a wide range of applications such assimultaneous localization

and mapping in robotics [109] and object recognition and tracking of vehicles [110],

pedestrians [111], and even human eyes [112]. Most existingworks assume rigid ob-

jects and ignore the convergence of Kalman filter because an ample amount of observation

data are available. Unfortunately, these conditions do nothold for a high-speed flying bird.

Our group has developed systems and algorithms [4, 47, 48] for networked robotic

cameras for a variety of applications such as construction monitoring [80], distance learn-

ing [9], panorama construction [81], and nature observation [49]. Our previous work [113]

details how to build an autonomous nature observation system using motion detection. We

learn that mere motion detection cannot save the biologistsfrom the herculean task of

image sorting, which inspires this work.
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Fig. 6.2. An illustration of bird detection. When a bird flies across the
camera FOV, the corresponding motion sequence can be used toextract a
set of moving line segments that correspond to the body axis of the bird.
The line segments are then verified using an EKF based on the known
profile from the targeted species. The segmentation error ofthe end of
body axis are uniformed distributed in theu-v image plane and can be
represented as an inverse pyramid when the error range is back-projected
from the camera center to the FOV volume.

6.3 Problem Description

Our system is a monocular vision system with a narrow field of view (FOV). The

position of objects with respect to the camera is based on a 3DCartesian camera coordinate

system (CCS) with its origin at the camera center as shown in Fig. 6.2. Thex-axis and

y-axis of the CCS are parallel to theu-axis and thev-axis of the image coordinate system

(ICS), respectively.

From the knowledge provided by ornithologists, we know thata flying bird is usually

an adult bird. A bird does not change its size once reaching its adulthood. Birds of the

same species share a similar size and flying speed range. Thisbiological information

allows us to distinguish the targeted species from other moving objects.
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6.3.1 Assumptions

To establish the bird detection problem, we also have the following assumptions,

• A fixed and pre-calibrated camera is used. With a calibrated camera and without

loss of generality, we can always transform camera intrinsic parameter matrixKc to

diag(f, f, 1), wheref is the focal length of the camera in units of pixel side length.

ICS must have its origin located on the principal axis (z axis) of CCS. Hence we

have perspective project matrixPc = [Kc|03×1].

• There is only one bird in the image sequence. If there are multiple flying birds in the

scene, we assume each individual bird sequence has been isolated out using multiple

object tracking techniques [28].

• The bird is flying along a straight line with a constant speed when captured by the

camera. This assumption usually holds considering a fast flying bird can only stay

in the FOV for less than a second.

6.3.2 Inputs and Output

The input of the problem is a sequence ofn images which contain a moving object of

any type. Each frame is time-stamped. Based on the information from ornithologists, we

know the body lengthlb and the flying speed rangeV = [vmin, vmax] of the targeted bird

species. The output is to determine if the motion sequence iscaused by the targeted bird

species or not.

6.4 Modeling a Flying Bird

To develop a bird filter, the key is to extract the bird flying information from the seg-

mented bird motion sequence and associate the information with the known flying models
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and the prior information regarding the targeted species. Let us first observe the motion

sequence of the flying bird to investigate how to extract the bird flying information.

6.4.1 Bird Body Axis Filter

As detailed in [113], we segment the moving object from its background and obtain a

set of motion sequences. Fig. 6.3(a) illustrates differentflying poses of a pigeon. At first

glance, it is unclear how to utilize this information because bird poses are not a simple

discrete set of states. The wing configurations of the bird vary dramatically from frame to

frame. The shape of the bird changes significantly as well.

(a)

O

y

x

Flying trajectory

Maximum body axis

Body axis end

Body axis length index (l)

(b)

Fig. 6.3. (a) Segmented bird flying poses. The white pixels in the bi-
nary map indicate the segmented salient motion zone. Bird body axes are
overlaid on top of the segment image. (b) An illustration of the search for
body axis length.

As we scrutinize the collected flying pose data, we find that a bird does not bend or

extend its body during the flight as illustrated in Fig. 6.3(a). Hence, we have,

Observation 6.4.1 (Invariant Body Length) A flying bird maintains a constant body length

during flight.

This observation has been confirmed by ornithologists and our image data collected

(341 bird images from 61 motion sequences) from physical experiments. Except landing
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and taking off, a bird extends its body straight to minimize the wind resistance during a

normal flight. This is an important finding because it provides an entry point to attack the

bird detection problem. The ornithologists also use the bird body length as an important

index to classify birds because adult birds from the same species share the same body

length with little variance. Hence the problem becomes how to extract the body axis

orientation and length of a flying bird from the segmented motion sequence.

It is nontrivial to extract the bird body axis and length fromthe isolated poses in

Fig. 6.3(a) because a bird is a non-rigid and deformable object. However, if we superim-

pose the segmented bird flying pose data to the background image as illustrated in Fig. 6.1,

a new finding appears:

Observation 6.4.2 (Body Axis Orientation) The orientation of the body axis of a flying

bird is always close to the tangent line of its flying trajectory.

To validate our observation, we analyze 61 bird motion sequences with a total of 341

segmented birds that we have collected in past years. The result confirms the observation.

The mean orientation difference is0.8◦ and the standard deviation isσb = 8.3◦. This

observation inspires us to develop a bird body axis filter (BBAF) to extract bird body axes

from the segmented motion zone.

Let us define the bird body line segment in the image frame as

z = [uh, vh, ut, vt]T , (6.1)

where(uh, vh) is the head position and(ut, vt) is the tail position. Fromz, we can compute

the body axis orientation

θ = atan2(vh − vt, uh − ut),

and the body axis length

l =
√

(uh − ut)2 + (vh − vt)2.
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Note thatl is different fromlb. l is the projection oflb on the image plane and is in units

of pixels.

We know that the slope of the tangent line of the trajectory can be extracted easily

based on the position of the salient motion zone on the background image. The red line

in Fig. 6.1 is the approximate trajectory generated by linking the geometric center of each

motion zone. The tangent line of the approximate trajectorycan serve as an initial solution

for the bird body axis orientation. However, since the standard deviationσb 6= 0, further

refinements are required.

DefineB as the boundary pixel set of the motion zone (e.g., the boundary pixel set

of the white pixels in each block in Fig. 6.3(a)). As illustrated in Fig. 6.3(b), any two

points inB, as the body axis ends, form a candidate body axis with lengthl. Defineθ̄ as

the orientation of the corresponding tangent line of the flying trajectory. We find the bird

body axis in imagez by searching for its orientation in the range [θ̄ − 2σb, θ̄ + 2σb] and

the corresponding body axis ends inB to maximizel :

z = arg max
(uh, vh) ∈ B

(ut, vt) ∈ B

l, subject to:θ ∈ [θ̄ − 2σb, θ̄ + 2σb]. (6.2)

6.4.2 Bird Flying Dynamics

To determine whether the motion information is caused by thetargeted species, we

need to establish a bird flying model in the image frame. Letp = [x, y, z]T denote the

head position of the bird body axis andv = [ẋ, ẏ, ż]T denote its velocity in the CCS. Since

the bird flies along a straight line with a constant velocity,we have

ẋ =


 ṗ

v̇


 = [ẋ, ẏ, ż, 0, 0, 0]T =


 v

0


 , (6.3)
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where the state variablex =



 p

v



 ∈ R6 describes the position and velocity of the bird

head. Definingxtail = [xt, yt, zt]T as the position of the bird tail, and we have

xtail =




x− ẋlb/‖v‖

y − ẏlb/‖v‖

z − żlb/‖v‖


 . (6.4)

As illustrated in Fig. 6.2, the relationship between the measurement dataz defined in

(6.1) and the corresponding statex can be described using the pin-hole camera model.

SinceKc = diag(f, f, 1), we have

z =




fx/z

fy/z

fxt/zt

fyt/zt



=




fx/z

fy/z

f x‖v‖−lbẋ

z‖v‖−lbż

f y‖v‖−lbẏ

z‖v‖−lbż



+w := h(x) +w, (6.5)

whereh(·) is usually called the measurement function andw represents the measurement

noise.

6.5 Probable Observation Data Set-based EKF Method

6.5.1 Extended Kalman Filter

Eq. (6.2) provides the bird flying information extracted from images. Eq. (6.5) captures

the prior known information regarding the targeted species. If the motion is caused by the

targeted species, then the bird body axis information provided by (6.2) should follow the

nonlinear dynamic system described by (6.5), which can be validated using an EKF.
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Eqs. (6.3) and (6.5) can be re-written in a discrete-time form,

x(k + 1) = A(k + 1)x(k) + q(k), (6.6a)

z(k) = h(x(k)) +w(k), (6.6b)

whereq(k) ∈ R6 andw(k) ∈ R4 represent the white Gaussian transition and measurement

noises at timek with covariance matrixQ(k) ∈ R6×6 andW (k) ∈ R4×4, respectively,

q(k) ∼ N (0, Q(k)), w(k) ∼ N (0,W (k)),

andA(k + 1) is the state transition matrix at timek + 1,

A(k + 1) =


 I3×3 ∆T (k + 1|k)I3×3

03×3 I3×3


 ,

where∆T (k + 1|k) is the time interval between timek and timek + 1.

We defineP ∈ R
6×6 as the covariance matrix for the state variablex. The EKF for the

system in (6.6) can be implemented as a state prediction stepx̂(k|k − 1), P̂ (k|k − 1) and

measurement correction stepx̂(k|k), P̂ (k|k) recursively as follows,

x̂(k|k − 1) = A(k)x̂(k − 1|k − 1), (6.7a)

P̂ (k|k − 1) = A(k)P̂ (k − 1|k − 1)AT (k) +Q(k), (6.7b)

K(k) =
P̂ (k|k − 1)HT (k)

H(k)P̂ (k|k − 1)HT (k) +W (k)
, (6.7c)

x̂(k|k) = x̂(k|k − 1) +K(k)(z(k)− h(x̂(k|k − 1))), (6.7d)

P̂ (k|k) = (I6×6 −K(k)H(k))P̂ (k|k − 1), (6.7e)

whereK(k) ∈ R6×4 is the “Kalman gain” at timek andH(k) ∈ R4×6 is the Jacobian

matrix of the functionh(·) in (6.5) with respect tox.
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Recall that̂x(k|k) =



 p̂(k|k)

v̂(k|k)



. For then-image motion sequence, the predicted

x̂(n|n) contains the bird velocitŷv(n|n). The decision of accepting or rejecting the mov-

ing object as a member of the targeted species is defined as thefollowing indicator func-

tion,

I(Z1:n) =





1 (accept) if ‖v̂(n|n)‖ ∈ V and EKF converges,

0 (reject) otherwise,
(6.8)

whereZ1:n = {z(1), z(2), ..., z(n)} is the set of body axes acrossn frames.Z1:n is also

referred to as the observed data. Eq. (6.8) basically statesthat the moving object is a

member of the targeted species if the EKF converges to the desired absolute velocity range

V.

6.5.2 Determining EKF Convergence

As indicated in (6.8), automatically determining whether the EKF converges or not is

necessary. Define the estimated state set asX1:n = {x̂(1|1), x̂(2|2), ..., x̂(n|n)}. Since ve-

locity convergence implies position convergence andv̂(k|k) convergence means‖v̂(k|k)−

v̂(k − 1|k − 1)‖ → 0, we determine the convergence of the EKF by inspecting

ε(X1:n) =
n∑

k=2

ω(k)‖v̂(k|k)− v̂(k − 1|k − 1)‖,

whereω(k) > 0 is the weighting factor at timek. ω(k) is a monotonically-increasing

function ofk, which gives more weight to later states.ω(k) is usually pre-generated using

simulated random inputs across the entire possible parameter range without measurement

error (i.e.W (k) = 04×4). SettingW (k) = 04×4 is to ensure EKF convergency, which will

be explained later in the section. Denote‖v̂‖ as the speed of the bird known in each trial
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of simulation. We repeat the EKF with randomized inputs for over 106 times to observe

the quantity of
‖v̂‖

‖v̂(k|k)− v̂(k − 1|k − 1)‖
,

which is the inverse of the relative speed change at timek. We choose the weighting factor

as

ω(k) = E

(
‖v̂‖

‖v̂(k|k)− v̂(k − 1|k − 1)‖

)
,

where functionE(·) computes the expected value over all simulation trials for the targeted

species. When the EKF converges,‖v̂(k|k) − v̂(k − 1|k − 1)‖ appears as a decreasing

function of k after a few initial steps. Correspondingly,ω(k) is an increasing function

of k. If ‖v̂(k|k) − v̂(k − 1|k − 1)‖ → 0, thenε(X1:n) is smaller than that of the case

‖v̂(k|k)−v̂(k−1|k−1)‖9 0. Therefore, to determine the EKF convergence, we employ

a thresholdδ onε(X1:n) and introduce a new indicator variable,

IEKF(X
1:n) =





1 (converge) if ε(X1:n) < δ,

0 otherwise.
(6.9)

Note that the thresholdδ should be sufficiently small to ensure the convergence of EKF.

The actual value ofδ can be pre-determined in simulation. Then the decision-making in

(6.8) is re-written as,

I(Z1:n) =





1 (accept) if ‖v̂(n|n)‖ ∈ V andIEKF(X

1:n) = 1,

0 (reject) otherwise.
(6.10)

The underlying condition for (6.10) to be an effective bird detection mechanism is

that if observationZ1:n is caused by the targeted bird species then the convergence of the

EKF has to be guaranteed. Unfortunately, this condition usually does not hold due to two

reasons:n is small and the measurement noisew(k) is too big.n is the number of images

that contain the moving object. Due to its fast flying speed, the bird can only stay in the

camera FOV for less than 1 second for most of the time. Actually, n < 11 for most cases in
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our experiments. The measurement noise covariance matrixW (k) is directly determined

by the image segmentation error. Even at 1 pixel level, its relative range is4% for a bird

body length of 25 pixels. For the nonlinear deterministic discrete time system in (6.6), the

largeW (k) means the EKF either fails to converge or converges very slowly according

to [114]. The bird detection mechanism would have a close to 100% FN rate if the simple

EKF implementation is used, which makes it useless.

6.5.3 Probable Observation Data Set-based EKF Method

Since simply applying EKF cannot address the bird detectionproblem, a new approach

is required. Let us assume there is no measurement noise (i.e. W (k) = 04×4) and no

state transition noiseQ(k) = 06×6. At each timek, the EKF in (6.7) is a system of

equations with four inputs, which is the dimensionality ofz, and six outputs, which is the

dimensionality ofx. We also know that matrixA introduces two constraints: the constant

speed and the linear trajectory. Therefore, the equation system can be solved within one

step. The convergence of the EKF is not a problem when there isno noise provided that

the bird does not fly in a degenerated trajectory (i.e. flying along the principal axis of the

camera).

AlthoughQ(k) 6= 06×6 for most cases, the state transition noiseq(k) is often very

small, which leads to the following lemma,

Lemma 6 The EKF described in (6.7) converges whenW (k) = 04×4.

Proof We skip the proof because our system in (6.6) is a linear time-invariant discrete

time system with a nonlinear observer. The convergence of its EKF can be proved by

directly applying the results in [114].

This is also confirmed in our experiments in which the EKF converges nicely under 7

periods (i.e.n ≤ 7).

At first glance, this result is useless because we cannot get rid of the measurement

noise. However, this result opens the door to a new approach.Define the observation data
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without measurement error asZ1:n∗ = [z∗(1), z∗(2), ..., z∗(n)]T . Although we do not have

Z1:n∗, we know it is within the segmentation error range ofZ1:n. For thek-th image, the

measurement data is

z(k) = [uh(k), vh(k), ut(k), vt(k)]T .

Define the error-free measurement data at timek as

z∗(k) = [uh∗(k), vh∗(k), ut∗(k), vt∗(k)]T .

Given the segmentation error is withinτ pixels, define

S1(k) = [uh(k)± τ ], S2(k) = [vh(k)± τ ],

S3(k) = [ut(k)± τ ], S4(k) = [vt(k)± τ ],

and the segmentation error range at timek asS(k). Hence,

z∗(k) ∈ S1(k)× S2(k)× S3(k)× S4(k) = S(k). (6.11)

We partition the entire segmentation error range set{S(k), k = 1, 2, ..., n} according

to the convergence of the EKF using (6.9).

Definition 6.5.1 Define the probable observation data set (PODS)Z
1:n as the set of ob-

servation dataZ1:n that satisfies the condition for the EKF convergence,

Z
1:n = {Z1:n|z(k) ∈ S(k), k = 1, ..., n, andε(X1:n) ≤ δ}. (6.12)

HenceZ1:n∗ ∈ Z1:n. EachZ1:n in the PODS is likely to beZ1:n∗ and hence it is named as

the probable observation data. For a given PODSZ1:n, there is a corresponding estimated

state setX1:n, which contains a set of all possible estimated velocities at timen, which is

defined asV,

V = {‖v̂(n|n)‖ such thatX1:n ∈ X
1:n}.
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Then the decision making for our PODS-based EKF (PODS-EKF) method can be written

as,

I(Z1:n) =





1 (accept) if V ∩ V 6= ∅ andZ1:n 6= ∅,

0 (reject) otherwise.
(6.13)

Hence we have the following lemma,

Lemma 7 If the non-degenerated observation dataZ1:n is triggered by a bird of the tar-

geted species and the thresholdδ for determining the convergence of EKF is sufficiently

small, thenI(Z1:n) = 1.

Proof SinceZ1:n is triggered by the targeted species, its correspondingZ1:n∗ ensures the

convergence of the EKF according to Lemma 6.

DefineX1:n∗ as the corresponding estimated states forZ1:n∗. Hence

ε(X1:n∗) < δ → Z
1:n 6= ∅,

becauseZ1:n∗ ∈ Z1:n.

Following our naming convention,̂v∗(n|n) is the velocity component of̂x∗(n|n) ∈

X1:n∗. Since the observation data is not degenerated,‖v̂∗(n|n)‖ ∈ V. We also know

‖v̂∗(n|n)‖ ∈ V by definition,V ∩ V 6= ∅ holds. Since both conditions are satisfied,

I(Z1:n) = 1.

Lemma 7 ensures that the PODS-EKF method theoretically has azero FN rate in the

bird detection, which is a very desirable property.

6.5.4 Approximate Computation for PODS-EKF

Computing the PODSZ1:n is nontrivial. It is possible to use conventional searching

methods such as a binary search. However, this would be very time consuming. Note

that we actually do not needZ1:n because all we need to know is whether the conditions
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V ∩ V 6= ∅ andZ1:n 6= ∅ hold or not. This allows an approximation method. For a given

observationZ1:n, we define the following optimization problem,

Z̃1:n = arg min
z(k)∈S(k);k=1,...,n

ε(X1:n), (6.14)

whereZ̃1:n is the optimal solution to the minimization problem above. Actually, (6.14) is

a typical nonlinear optimization problem with the error range z(k) ∈ S(k); k = 1, ..., n

and the EKF in (6.7) as constraints. There are many numericalmethods from nonlinear

programming that can be used here [115]. We apply a sequential quadratic programming

(SQP) method [116]. DefinẽX1:n = {x̃(1|1), x̃(2|2), ..., x̃(n|n)} as the estimated states

corresponding tõZ1:n. We have the following lemma,

Lemma 8 ε(X̃1:n) > δ ⇐⇒ Z1:n = ∅.

Proof Since (6.14) is a minimization problem,̃X1:n yields the minimalε(X1:n), namely,

ε(X̃1:n) > δ ⇐⇒ ε(X1:n) > δ, ∀X1:n ∈ X
1:n (6.15)

⇐⇒ Z
1:n = ∅. (6.16)

It is worth mentioning that this method is an approximation in computation because the

nonlinear programming solver often falls in a local minimuminstead of a global minimum

(see Remark 1).

Now we want to determine whetherV ∩ V 6= ∅. If we view the EKF output̂v(n|n)

as a function ofZ1:n, it is continuous and differentiable with respect to each entry in Z1:n.

SinceZ1:n is actually very small, the variance of the velocity in the set V is very small.

Instead of comparingV to V, we select a value inV to check if it is inV. Defineṽ(n|n)
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as the velocity component of̃x(n|n) ∈ X̃1:n. The chosen value is the‖ṽ(n|n)‖ because it

is readily available. Therefore, the approximation is

‖ṽ(n|n)‖ ∈ V ⇐⇒ V ∩ V 6= ∅.

Remark 1 Due to the approximation, the zero FN rate cannot be guaranteed. However,

the FN rate is still very low (less than 5%) under the approximation as shown later in the

physical experiment results. We conjecture that this is dueto the fact that the nonlinearity

of the problem is not very strong. For most of time, the SQP solver actually finds the global

optimal. Therefore, the impact on the application is negligible. In practice, we can initiate

the solver at different random starting points and run the solver multiple times, which can

significantly increase the chance that the global optimal value can be found.

6.5.5 Estimation of Initial States

The convergency and the performance of the EKF greatly depend on the accuracy of

the initial state. Here we detail how to estimate the initialstate of the flying bird,

x̂(0|0) = [p̂(0|0)T , v̂(0|0)T ]T (6.17)

for each input, wherêp(0|0)T = [x(0|0), y(0|0), z(0|0)]andv̂(0|0)T = [ˆ̇x(0|0), ˆ̇y(0|0), ˆ̇z(0|0)].

We assume the bird speed is uniformly distributed across therangeV = [vmin, vmax].

We set the initial speed of the bird as the mean speed:‖v̂(0|0)‖ = V = (vmin +

vmax)/2. As shown in Fig. 6.4, given the image of the bird at the first observationz(1) =

[uh(1), vh(1), ut(1), vt(1)]T , the body axis in image and the optical camera center form a

plane. The 3D bird flying trajectory must be in this plane. Letus define the 3D coordinates

of the bird head positions at discrete timek, (k = 0, 1, ...), as

p̂(k|k) = p̂(0|0) + v̂(0|0)k∆T. (6.18)
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Fig. 6.4.An illustration of the initial state estimation for EKF.

Given the body axis lengthlb andV, the position of the bird tail at timek is,

p̂(k|k)− v̂(k|k)
lb
V

= p̂(0|0) + v̂(0|0)(k∆T −
lb
V
). (6.19)

Based on the pin-hole camera model, the bird head and tail positions project to the image

at(uh(k), vh(k)) and(ut(k), vt(k)), respectively (see Fig. 6.4). Recall the perspective pro-

jection matrixPc = [Kc|03×1]. Based on (6.18) and (6.19), this projection is represented

in homogeneous coordinate system as,




uh(k)

vh(k)

1


 =

1

ẑ(k|k)
Pc


 p̂(k|k)

1




=
Pc

ẑ(0|0) + ˆ̇z(0|0)k∆T



 p̂(0|0) + v̂(0|0)k∆T

1



 , (6.20)
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and




ut(k)

vt(k)

1


 =

Pc

ẑ(k|k)− ˆ̇z(k|k) lb
V


 p̂(k|k)− v̂(k|k) lb

V

1




=
Pc

ẑ(0|0) + ˆ̇z(0|0)k′


 p̂(0|0) + v̂(0|0)k′)

1


 , (6.21)

wherek′ = k∆T − lb/V .

We have 6 unknowns as in (6.17). Each image data point has one bird head and one

bird tail. Each body axis endpoint contributes two linear equations as shown in (6.20) and

(6.21), respectively. Therefore, we only need the first 2 image data points (bird images) to

form a system of 8 linear equations:

M8×6x̂(0|0) = 0. (6.22)

Obviously, (6.22) has non-zero solution. Actually, rank(M8×6) = 5 and the solution to

(6.22) is the null space ofM8×6, which can be represented as{αx0}, wherex0 is any

non-zero solution to (6.22) andα is a scalar. This set of solutions correspond to an infinity

number of parallel trajectories as shown in Fig. 6.4. Both trajectories 1 and 2 project back

to the same points on the image. With a further constraint‖v̂(0|0)‖ = (vmin + vmax)/2,

we obtain a unique initial state estimationx̂(0|0).

6.6 Algorithm

We summarize our PODS-EKF based bird detection algorithm below in Algorithm 5.

Note that the approximate computation of the PODS-EKF is used here.
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Algorithm 5: PODS-EKF based Bird Detection Algorithm

1 for the segmented motion block ini-th framedo
2 calculate the geometric center pointCi of the bird;
3 end
4 ConnectCi, i = 1, 2, ..., n to generate a piecewise linear trajectory;
5 Obtainθ̄ from the trajectory;
6 for the segmented motion block ini-th framedo
7 Obtainz(i) using the BBAF in (6.2);
8 end
9 Initialize the EKF using (6.20) and (6.21);

10 Solve the constrained nonlinear optimization problem in (6.14);

11 if ‖ṽ(n|n)‖ ∈ V AND ε(X̃1:n) < δ then
12 return TRUE;
13 else
14 return FALSE;
15 end

6.7 Experiments

We have implemented the PODS-EKF algorithm and tested the algorithm on both the

simulated data and the real data from field experiments. The computer used in the test

is a desktop PC with an Intel Core 2 Duo 2.13GHz CPU and 2GB RAM.The PC runs

Microsoft Windows XP. The BBAF has been implemented using Microsoft Visual C++.

The PODS-EKF filter has been implemented using Matlab v7.0. We choose Arecont Vi-

sion 3100 high resolution networked video cameras as imaging devices. The camera runs

at 11 frames per second with a resolution of 3 mega pixels per frame. The lens for the

camera is a Tamron auto-iris vari-focus lens with a focal length range of 10-40mm. We

have adjusted the lens to ensure a 20◦ horizontal FOV.

6.7.1 Bird Body Axis Filter Test

We first verify whether the BBAF is capable of extracting the bird body axis from the

noisy data. We have used two data sets in testing. The first data set has been collected

from our campus and contains 61 bird motion sequences with a total of 341 segmented
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birds which are mostly rock pigeons and American crows. The second data set has been

collected from our test site in Arkansas and has a total of 88 images with 11 different

species at 8 images per species. We compare the output of BBAFwith the corresponding

ground truth which is a human’s choice in bird body axes. The difference between the

BBAF output and the ground truth has means of 0.30◦ and 0.63◦, and the same standard

deviation of 3.7◦ for the first and the second data sets, respectively. The student t−test

shows that the output of BBAF and human choices come from the same distribution for

both data sets with statistic significance, which is satisfying.

6.7.2 Simulation

The second step is to test the performance of our PODS-EKF using the simulated in-

puts. The simulated inputs allow us to test the bird filteringperformance under a full range

of possible changes in the parameter settings, which are usually unavailable in physical

experiments.

Random trajectory generation

Z1:n needs to be generated from a random trajectory. First, four random numbers are

generated as the coordinates of two points in the image plane. The two points determine

a line in the image. The line and the camera center determine amotion plane in which

the motion sequence will be generated. We know that the camera FOV is a pyramid with

its top vertex at the camera center. The plane intersects with two faces of the pyramid.

The fifth random binary number is generated to choose one of the two faces as the initial

face through which the bird enters the camera FOV. The chosenface intersects with the

motion plane and yields a line segment. We generate a point onthis line segment using

the sixth random number. The point is used as the initial position of the bird. This line

segment’s extension line divides the motion plane into two halves. We are interested in

the half motion plane that intersects with the pyramid. The seventh random number in
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Table 6.1
Species used in the experiments. The data sources are listedin the corre-
sponding reference.

Species lb (cm) V (km/h)

House Sparrow 15 1 [29, 40]2

Rock pigeon 33 3 [24, 56]4

Ivory-billed woodpecker 48 5 [32, 64]6

Red-tailed hawk 56 7 [32, 64]8

the range of[0, π) is generated as the pitch angle of the bird heading on the halfmotion

plane. Finally, the eighth random number is used to generatethe speed of the bird. Hence,

8 random numbers determine a complete trajectory of a flying bird. By projecting the

trajectory back to the image plane with a preset bird body length, we obtainZ1:n.

EKF convergence

An immediate step in the simulation is to verify if a regular EKF converges without

measurement noise. Although Lemma 6 ensures the convergence in theory, it is unclear

how many steps it would take. We simulate three types of birdsin the test: house sparrows,

rock pigeons, and IBWOs. House sparrows and rock pigeons arecommon birds in Texas

and the IBWO is the rare bird which our system is used to searchfor in Arkansas. The

three species represent small, medium, and large birds, respectively (see Table 6.1).

For each species, we generate106 different sets of random inputs to test the regular

EKF. Fig. 6.5(a) shows the EKF convergence for rock pigeons under different configura-

1http://en.wikipedia.org/wiki/HouseSparrow.
2http://www.garden-birds.co.uk/information/flight.htm
3http://www.allaboutbirds.org/guide/RockPigeon/lifehistory
4http://www.ct.gov/DEP/cwp/view.asp?A=2723&Q=326076
5http://animals.nationalgeographic.com/animals/birds/ivory-billed-woodpecker.html
6http://news.mongabay.com/2007/0217-ibw.html
7http://www.nysite.com/nature/fauna/redhawk.htm
8http://www.nysite.com/nature/fauna/redhawk.htm
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tions by tracking errors in speed‖v̂(k|k) − v̂‖, wherev̂ is the true bird velocity known

in simulation. It is shown that without image noise, the regular EKF nicely converges (the

blue curve) as Lemma 6 predicts. With the image noise (τ = 1 pixel), the regular EKF

cannot converge and yields a big error variance (indicated as the green curve and vertical

green line segments, respectively). We also show the outputof our PODS-EKF (the red

curve). Although not required, it is desirably close to the noise-free case.
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Fig. 6.5. (a) Convergence for different EKF configurations based on sim-
ulated rock pigeon data. (b) FP and FN rates with respect toδ in both
simulation and physical experiments.

Performance of PODS-EKF under simulated inputs

Now we are ready to analyze the performance of PODS-EKF. We generate a set of

random inputs to mimic three birds as in Table 6.1. We set a speed range from 15 to 85

km/h with an incremental step of 5 km/h and a bird size range from 10 to 60 cm with an

incremental step of 2 cm. We set the segmentation error rangeτ = 1 pixel. For each

setting of the input data, 20 trials are carried out. The average computation time for each

trial is 5.6 seconds. Fig. 6.5(b) demonstrates how the ratesof FP and FN change according

to δ. After δ > 1.0×106, the FN rates can be reasonably controlled to be less than 10%,4%

and 1%, for house sparrows, rock pigeons and IBWOs, respectively. This confirms that the

approximation computation is reasonable. The reason PODS-EKF works worst for house
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sparrows is that with the same FOV in the simulation, the smallest house sparrows lead to

the highest noise-signal ratio, indicated asE(τ/l) in Fig. 6.5(b). Our PODS-EKF is not

biased for a particular bird. To cope with small birds, we canincrease the focal length to

reduceE(τ/l). This test also tells us how to choose a proper lens for a targeted species in

applications to ensure the best performance. The FP rates ofthe PODS-EKF are 23%, 45%

and 38%, respectively, which are a little high. However, considering that we are comparing

the targeted bird with birds similar in size and speed, this result is not surprising. In fact,

the algorithm should behave better in real tests where noises from the moving objects

have much larger range in both size and speed. Furthermore, the monocular system has

difficulty in detecting objects with their trajectories close to the optical axis, which also

contributes to the high FP rate.

6.7.3 Physical Experiments

We have conducted two field experiments: detecting flying rock pigeons, and assisting

the search of the legendary IBWOs.

Data sets and ground truth

Since there is no existing data set or benchmark for the evaluation of bird detection. We

have to use our data collected from both our campus and the experiment site in Arkansas

for testing. The input data sets of our PODS-EKF filter are segmented motion sequences

using a pre-filtering method detailed in [113], which is solely a salient motion detection

method built on [18] by performing a connectivity check to eliminate small moving ob-

jects and periodic noises such as tree vibrations. The method pre-filters out small moving

objects (less than5 × 5 pixels) because they are too small for a human to positively iden-

tify a bird species at the end. The pre-filtering reduces noises when maintaining a zero FN

rate. We have collected a total 1205 motion sequences after the pre-filtering.
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The motion sequences used to test the PODS-EKF filter is the motion sequences con-

taining more than 8 frames, which result in 119 out of the 1205motion sequences. The

reason we need at least 8 frames is due to the fact that even a noise-free EKF would need

7 steps to converge as shown in simulation (see Fig. 6.5(a)).The PODS-EKF filter works

only if the corresponding noise-free EKF can converge. The ratio of 119/1205 is low be-

cause our camera frame rate is slow (11 fps) due to its high resolution. Better cameras

would certainly improve that ratio and it is not a concern forour algorithm.

The surviving 119 motion sequences are the testing data set.Among them, 29 se-

quences are caused by rock pigeons, 21 sequences are caused by 10 difference species

of birds including great blue herons, northern flickers, great egrets, America crows, red-

tailed hawks, chimney swifts, Mississippi kites, purple Martins, pileated woodpeckers,

belted kingfishers, and some un-identifiable birds. The remaining 69 motion sequences

caused by noises such as moving clouds, falling leaves, flying insects, etc.

The ground truth is obtained by using human inputs on the samemotion sequence that

the PODS-EKF filter is tested.

Detecting a flying pigeon

Here the targeted species is rock pigeons since they are the dominating species in our

data set.

Fig. 6.6 compares the potential outputs of regular EKFs and the output of the PODS-

EKF using a sample rock pigeon sequence. The targeted species flying speed range is also

overlaid on the figure. It is shown that the chance that the regular EKF would converge to

the proper value is very small, which confirms the simulationresults in Fig. 6.5(a). On the

other hand, the PODS-EKF finds the optimal observation that ensures the EKF converges

to the bird speed range.

Fig. 6.7(a) shows how the FN and FP rates of the PODS-EKF change according toδ.

The convergence threshold is set asδ = 1.35 × 106. The outcome of the algorithm is

summarized in Table 6.2.
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Fig. 6.6.Predicted bird speeds by a regular EKF with 200 possible obser-
vations in PODS and that by the PODS-EKF in detecting a rock pigeon.

Table 6.2 indicates that our filtering algorithm can achieveextremely low FN rate

(0/29 = 0%). This is very important for the purpose of finding rare birdsspecies. The

FP rate is9/90 = 10%, which is better than that of the simulation results. This is due

to the fact that it is much easier for the algorithm to distinguish the targeted species from

noises such as flying insects and falling leaves in physical experiments rather than from

other birds with similar body size and speed as in the simulation. Since the monocular

vision system cannot provide depth information, the algorithm cannot achieve zero FP.

Fortunately, this is allowable for our applications. The expectation of the algorithm is to

reduce the video data for identification without compromising the FN rate.

Table 6.2
Experimental results from the rock pigeon filtering experiment.

Pigeon Not pigeon
Predicted pigeon 29 9
Predicted not pigeon 0 81

Fig. 6.7(b) illustrates the receiver operating characteristic (ROC) curves for both the

simulation and physical experiments for rock pigeons. The convergence threshold ranges

are [4.6 × 103, 1.5 × 106] and [1.8 × 104, 3.3 × 106] for the simulation and the physical
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experiments, respectively. The areas under the ROC curve are 91.5% and 95.0% for sim-

ulation and the physical experiments, respectively, whichagain show that the algorithm

performs much better in the physical experiments.

Here the targeted species is

rock pigeons since they are the dominating species in our data
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Fig. 6.7. Physical experiment results for detecting a rock pigeon: (a) FN
and FP rates w.r.t.δ and (b) The ROC curves for both the simulation and
the physical experiments.

Assisting the search of the legendary IBWO in Arkansas

Since October 2006, our team have begun to assist the search for the thought-to-be-

extinct IBWOs. The IBWO is the largest woodpecker in North America and was last seen

over 60 years ago. Sporadic sightings have been reported in past decades but no definite

evidence such as a clear picture of the bird is available. In October 2006, we installed a

camera system in Bayou DeView wildlife refuge in Arkansas, where sightings of the bird

were reported in 2004. Due to the low FN rate, our PODS-EKF algorithm is very desirable

for this type of applications. Fig. 6.1 is taken from the camera. The system monitored the

sky from Oct. 2006 to Oct. 2007. After initial motion detection filtering as in [113],

we reduce the total 29.41TB video data to 27.42GB, which is still prohibitively huge for
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human experts. After applying the PODS-EKF, we eventually reduce the data volume to

146.7MB (about 960 images), which is a reasonable amount of workload for a human

expert to review to make the final identification. The overallreduction rate is 99.9995%.

Unfortunately, no IBWO image has been captured yet.

However, our algorithm can also detect other birds such as red-tailed hawks in the

region where our camera is installed. As shown in Table 6.1, ared-tailed hawk is a bigger

bird than an IBWO but flies at about the same speed as IBWOs. Thealgorithm is able

to successfully detect red-tailed hawks. Considering thatour algorithm has successfully

detected birds that are either bigger than IBWOs (red-tailed hawks) or smaller than IBWOs

(rock pigeons), we are confident that if an IBWO flies cross thefield of view of our camera,

our system is able to capture the bird. Although no IBWO is detected, our system and

algorithm design is successful.

6.8 Conclusions

We reported our development of a bird filtering algorithm to assist the search for rare

bird species. We showed that a regular EKF cannot be directlyapplied because the EKF

would not converge due to the high measurement error and the limited observation data

due to the high flying speed of the bird. Instead, we developeda novel PODS-EKF method

based on whether there exists a probable measurement in PODSwith the corresponding

speed in the flying speed range of the targeted species. The algorithm was extensively

tested using both simulated inputs and physical experiments. The results were satisfying

and the PODS-EKF bird filter reduced the video data by 99.9995% with a close to zero

FN rate and95.0% area under the ROC curve in physical experiments.

In the future, an immediate extension is to consider the casewithout the linear flying

trajectory and/or the constant velocity. We will consider the simultaneous filtering of a

flock of birds using a single camera or multiple cameras. It isalso interesting to employ

a robotic camera to combine tracking with filtering. A pan-tilt-zoom robotic camera can

give a closer view of a flying bird, which reduces the measurement error at a price of
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increasing the state transition error and the nonlinearityof the system. We will investigate

how to achieve the best tradeoff.
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7. CONCLUSION AND FUTURE WORK

In this dissertation, we extended the traditional telerobotic system architecture by in-

cluding heterogenous components such as humans, robots, sensors, and automated agents.

We term it as MOMR++ system. Since the relationship between various heterogeneous

components are much more complicated than that in traditional systems, to reach the best

potential and performance of the system, many technical challenges need to be addressed.

We addressed two major challenges in the MOMR++ system by twoautomated collabo-

rative observation systems, respectively.

7.1 Autonomous Crowd Surveillance System

7.1.1 System Development

We have developed an autonomous crowd surveillance system.It consists ofp (p > 0)

robotic pan-tilt-zoom (PTZ) cameras assisted with a fixed wide-angle camera. The wide-

angle camera provides an overview of the scene and detectsn moving objects, which are

considered as objects of interests. Based on the output of the wide angle camera, the

system generates spatiotemporal observation requests foreach object, which are candi-

dates for close-up views using the PTZ cameras. The system controls the PTZ cameras to

track and observe the moving objects by satisfying these observation requests. We have

implemented the system and tested it for pedestrian surveillance in a university campus

environment. Our system outperforms an existing work by increasing the number of ob-

served objects by 210%.

7.1.2 Algorithmic Development

Since there are usually much more observation requests thanthe number of cameras,

i.e.,p ≪ n, coordinating and planing the cameras to best satisfy these requests is a chal-
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lenge problem. I formulate the camera planning and control problem as an optimization

problem: thep-frame problem which maximizes the overall satisfaction toobservation

requests by computing the optimal control command for thep frames. We use the satisfac-

tion as the metric for measuring the control commands with participants’ input requests.

Each request is an iso-oriented rectangle with desirable resolution. The output arep rect-

angular frames as the camera control commands.

We have applied computational geometry and optimization theory to solve thep-frame

problem. We have developed an approximation algorithm which runs inO(n/ǫ3 + p2/ǫ6)

for n requests,p frames, and the approximation boundǫ. I also developed an exact 2-frame

algorithm which runs inO(n3).

7.2 Bird Species Detection System

7.2.1 System Development

We have developed an autonomous rare bird species detectionsystem. We have set

up the system in the forest near Brinkley Arkansas and it runscontinuously for a year for

searching the thought-to-be-extinct ivory-billed woodpecker. The cameras monitor the sky

and detect any motion. The system autonomously distinguishthe motion caused by the

targeted species from other motion noises and only preservethe video data for the targeted

species. During the one-year search, the system reduces theraw video data of 29.41TB to

only 146.7MB (reduction rate 99.9995%).

7.2.2 Algorithmic Development

To recognize the targeted bird, I formulated the flying bird dynamics with a dynamic

linear model. An EKF has been used to track the bird head and body axis length. The

species decision is made by comparing the tracked bird statewith prior profile of the par-

ticular bird species. It is showed that a regular EKF cannot be directly applied because the
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EKF would not converge due to the high measurement error and the limited observation

data due to the high flying speed of the bird. To tackle this issue, We quantified the uncer-

tainty in the bird species recognition due to the uncertainty in the observation uncertainty.

We developed a novel Probable Observation Data Set (PODS)-based EKF method. The

new PODS-EKF algorithm searches the measurement error range for all probable obser-

vation data that ensures the convergence of the corresponding EKF, which guarantees to

bound the true (noise-free) bird state. We then formulate the recognition problem as an

optimization problem which searches in the PODS for the mostlikely observation cor-

responding to the true (noise-free) bird state. In experiments with real video data, the

algorithm achieves 95% area under the ROC curve.

7.3 Future Work

The research on the MOMR++ system is still in its infancy. It can be viewed as a

generalization of the MOMR systems by extending the range ofcontrol decision makers

beyond just humans. Future research will further explore the relationship between the

heterogeneous participants, such as competition and collaboration. Coordination of these

heterogeneous participants will be one of the keys for a successful MOMR++ system.

Another future direction is to further enhance the decision-making capability for the non-

human components so that the system can be more autonomous.

7.3.1 Coordination of System Components: Extension of Frame Selection Problem

Overlapping frame selection

We have proposed thep-frame problem for coordinating the various system compo-

nents with limited sensing resources. An immediate extension of the frame selection prob-

lem is to think of relaxing the assumptions to allow camera frames to overlap in the future.

Allowing the frames to overlap requires a new satisfaction metric to measure the frames
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with consideration of the possible redundant coverage overrequests. It is interesting to in-

vestigate how different frame selection formulation wouldimpact the system performance

and how they fit human user need in practice.

Frame selection with traveling time

Another interesting extension is to consider the camera traveling time within the re-

quest assignment. We proposed a synchronized architecturein Section 2. Intuitively,

asynchronized observation by multiple PTZ cameras would further enhance the system

performance since it reduces the cameras’ waiting time. A new metric that incorporates

the camera traveling time into the satisfaction is needed. New algorithms such as fast

incremental algorithm applied on the results of thep-frame algorithm may worth research.

7.3.2 Object Recognition: Extension of Bird Species Detection

Modeling bird dynamics

In MOMR++ system, sensors and automated agents are able to recognize and analyze

the content of objects in remote environment. We developed the bird species recognition

system. An immediate extension is to consider the case without the assumption of bird

linear flying trajectory and/or the constant velocity. It requires to model the bird flying

motion by a nonlinear dynamic model. It also requires to build a new belief estimator that

captures the nonlinearity of the bird motion. Considering the image segmentation error

remains significant, the recognition uncertainty caused bythe measurement uncertainty

under this nonlinear model needs to be formulated. Then the convergence issue of the new

estimator and the corresponding recognition decision making will be another interesting

issue.
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Recognition of flock of birds

It is also interesting to consider the simultaneous detection and recognition of a flock of

birds. Multiple object tracking approach is needed. Instead of looking into each individual

bird, more interesting extension is to examine the group behavior pattern, such as the

formation and the correlation between individual bird trajectory. We can use the group

behavior pattern as the signature feature for bird species recognition. It also provides a lot

more insights to understanding the behavior of particular bird species.

Signature features

It is also interesting to examine other signature features than the dynamics information

for the bird species recognition. One promising feature is bird’s wing flapping frequency.

Preliminary study extracts bird’s extreme point and trackschanges in the bird image. By

comparing its frequency domain response with prior bird wing flapping frequency pat-

tern, the bird species can be recognized. This approach is independent of the bird flying

trajectory and requires least camera calibration.

Active bird detection

In Section 6, we use a static camera for detecting flying birds. It is natural to think

of using active cameras, such as PTZ cameras to actively search for, track, and recognize

the bird. By doing so, we gain more accurate observation withhigh-resolution images

and longer observation duration, at the price of increased bird state transition uncertainty

due to the uncertainty in the camera movements. It is interesting to look into the tradeoff

between these two effects. An immediate challenge is to to track and segment the bird

out of the background. A preliminary study suggests a panoramic background subtraction

technique since it is robust to outdoor lighting conditions.
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7.3.3 Scene Structure Understanding Panoramic BackgroundModel

To support the active bird detection above, we are exploringto construct a panoramic

background model using a PTZ camera for bird segmentation. Each pixel in the panoramic

model captures its temporal color distributions. Using a single PTZ camera to construct

the panoramic model, it requires to address the image alignment and registration under

different scale or zoom.

A feature map is also required and maintained for each cameraframe registering into

the panorama. It will be interesting to research on the feature map storage and update

approach with different scales, which supports efficient query without compromising the

feature resolution.
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