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ABSTRACT 

 

Using Niched Co-Evolution Strategies to Address Non-Uniqueness in Characterizing 

Sources of Contamination in a Water Distribution System. (August 2011) 

Kristen Leigh Drake, B.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Emily Zechman 
       Dr. James Kelly Brumbelow 

 

 Threat management of water distribution systems is essential for protecting 

consumers. In a contamination event, different strategies may be implemented to protect 

public health, including flushing the system through opening hydrants or isolating the 

contaminant by manipulating valves. To select the most effective options for responding 

to a contamination threat, the location and loading profile of the source of the 

contaminant should be considered.  These characteristics can be identified by utilizing 

water quality data from sensors that have been strategically placed in a water distribution 

system. A simulation-optimization approach is described here to solve the inverse 

problem of source characterization, by coupling an evolutionary computation-based 

search with a water distribution system model.  The solution of this problem may reveal, 

however, that a set of non-unique sources exists, where sources with significantly 

different locations and loading patterns produce similar concentration profiles at sensors. 

The problem of non-uniqueness should be addressed to prevent the misidentification of a 

contaminant source and improve response planning.  This paper aims to address the 

problem of non-uniqueness through the use of Niched Co-Evolution Strategies (NCES). 
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NCES is an evolutionary algorithm designed to identify a specified number of 

alternative solutions that are maximally different in their decision vectors, which are 

source characteristics for the water distribution problem. NCES is applied to determine 

the extent of non-uniqueness in source characterization for a virtual city, Mesopolis, 

with a population of approximately 150,000 residents. Results indicate that NCES 

successfully identifies non-uniqueness in source characterization and provides 

alternative sources of contamination.  The solutions found by NCES assist in making 

decisions about response actions.  Once alternative sources are identified, each source 

can be modeled to determine where the vulnerable areas of the system are, indicating the 

areas where response actions should be implemented.   
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1. INTRODUCTION 

 

Water Distribution Systems (WDS) are comprised of several components: pipes, 

storage tanks, pump stations, water treatment plants, and pipes.  Due to the wide range of 

access points, WDS are considered to be vulnerable to accidental outbreaks of bacteria 

and intentional injection of harmful contaminants.  A contaminant can enter the system 

through any one of the components if precautions have not been taken to ensure their 

security.   Since WDS provide communities with clean drinking water, it is essential to 

protect the public should a contamination event occur.  During a contamination event, 

decision makers, such as city or utility managers, should select effective mitigation 

strategies to protect public health.  Several measures can be taken to minimize 

consequences if a contaminant is introduced to the system: open fire hydrants to release 

water; close or open valves to isolate the contaminant; increase chlorine concentration in 

water; and notify consumers to stop or limit usage of water.  Knowledge about the 

location and timing of the source of contamination can provide the necessary insight to 

select the most effective decision for implementing response actions.  The source 

characterization can be performed using data from sensor networks placed in the WDS, 

which provide information about the contaminant as it moves through the system, 

including the observed contamination profile data.   

Data observed from a sensor network can be used to solve for the initial 

characteristics of a contamination event by posing source identification as an inverse  

____________ 
This thesis follows the style of Journal of Water Resources Planning and Management. 
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problem.  The inverse problem can be solved by coupling a simulation model with an 

optimization method; however, due to the ill-posed nature of inverse problems, a set of 

solutions may exist that match the observed data, while demonstrating significantly 

different source characteristics.  This issue, known as non-uniqueness, may occur due to 

lack of sufficient data or the presence of error in the data.  If not properly addressed, 

non-uniqueness in a source identification problem may lead to faulty identification of the 

location of the source, and response actions that are based on misidentifications may fail 

to protect public health.  While optimization methodologies have been developed to 

solve the source identification problem, the issue of non-uniqueness has been addressed 

to only a limited extent. The goal of this research is to develop a method that addresses 

non-uniqueness in source identification for water distribution contamination events 

through refinement and application of an evolutionary computation-based method, 

Niched Co-Evolution Strategies (NCES).  
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2. PROBLEM 

 

2.1 Water Distribution System Security 

 

Water systems are classified as critical infrastructure by the Department of 

Homeland Security (DHS).  Critical infrastructure is a sector that is vulnerable to attacks 

that can lead to a large amount of illnesses and casualties and/or disruptions in critical 

services to the public.  Because water systems are considered to be critical, there should 

be extensive planning and preparation on behalf of the government or managing entities 

to protect the public.  The Public Health Security and Bioterrorism Preparedness and 

Response Act of 2002 (Bioterrorism Act of 2002) outlines the requirements for preparing 

for water related terrorism.  Through this act, the United States Environment Protection 

Agency (EPA) is required “to conduct assessments of their vulnerabilities to terrorist 

attack or other intentional acts and to defend against adversarial actions that might 

substantially disrupt the ability of a system to provide a safe and reliable supply of 

drinking water” for water systems with 3,300 or more customers (Public Health Security 

2002). There are two main types of water security events: accidental and intentional.  

Accidental events include biological/parasitic outbreaks, chemical spills, and natural 

disasters.  In 1993, the city of Milwaukee experienced a cryptosporidium outbreak in the 

water distribution system after heavy rains.  The contaminant caused over 400,000 

people to become ill and 104 deaths (Mac Kenzie et al. 2004).  Intentional attacks can be 
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in the form of biological/chemical contamination, damage to physical infrastructure, and 

computer system attack. 

Throughout history, various forms of biological and chemical attacks have been 

witnessed during times of war, such as poisoning water wells.  In Rome in 2002, a group 

of terrorists planned to introduce cyanide to the city’s WDS during a festival.  

Fortunately, the attack was foiled by security personnel before anyone was harmed.  

Damage to physical infrastructure, through, for example, bombing a water treatment 

plant, pump station, or water storage facility, would greatly impair a city’s ability to 

deliver safe drinking water for consumption and fire-fighting capabilities.  An attack on 

a computer system that controls the daily operations of a water utility is also considered 

to be a terrorist attack that could harm the public.  It is commonly known that the 

terrorist group Al Qaeda considers water as an option to cause terrorism (Kroll 2006).  

Anthrax and cholera are among many bacteria, viruses, and bio toxins that survive in 

water and have the potential to harm consumers (Clark and Deininger 2000).   

 

2.2 Source Identification 

 

Source identification is a problem that utilizes data, often from a sensor network, 

to solve for the source of contamination once an event has occurred.  Sensor data 

consists of the concentration profile (concentration over time) of a contaminant.  For the 

source identification problem, the solution is comprised of the location of the source, the 



 5 

start time of contamination, and the contaminant loading profile.  The optimization 

problem is defined in Equation (1) as: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
{𝑀,𝑛, 𝑡𝐼}

𝐸 = ���𝑐𝑖
𝑝𝑟𝑒𝑑(𝑡) − 𝑐𝑖𝑜𝑏𝑠(𝑡)�

2
𝑇

𝑡

𝑁

𝑖

 (1) 

 

where 𝐸 is the error, 𝑐𝑖
𝑝𝑟𝑒𝑑(𝑡) is the predicted contaminant concentration, and 𝑐𝑖𝑜𝑏𝑠(𝑡) is 

the observed contaminant concentration. The time step is 𝑡 and 𝑖 is the node index of a 

water quality sensor.  The specified number of time steps is T and the number of sensors 

in the network is N.  The difference between the predicted and observed contamination 

profile is calculated for all sensors in the system at each simulated time step.  The 

decision variables for this problem are the contaminant loading profile, M; the 

contaminant node location, n; and the start time of contamination, tI. 
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3. SOLUTION APPROACH 

 

3.1 Evolutionary Computation for Source Identification 

 

The problem of source identification can be approached as an inverse problem, 

where the output of a model is used to identify input parameters.  One approach to solve 

an inverse problem is to use a simulation-optimization approach (Fig. 1).   

 

 
Figure 1. Source Identification as an Inverse Problem. 

 

The problem of source identification has been addressed through both linear and 

non-linear programming, regression trees, logistic regression, and Evolutionary 

Computation (EC) methods.  Van Bloemen Waanders et al. (2003) approach the source 

identification problem using non-linear programming and gradient based methods.  They 

use a convection-diffusion approach to the source inversion problem and solve the 

problem using several different gradient based methods.  Laird et al. (2005) approach the 

MODEL OUTPUT
Sensor Data

Concentration amount and 
time

INPUT
Source 

Characteristics
Location, amount, and 

time
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inverse problem using an origin tracking method through non-linear programming.  The 

goal of this methodology is to decrease the complexity of the problem, while continuing 

to identify realistic sources of contamination.  Guan et al. (2006) describes an algorithm 

that utilizes simulation-optimization and a reduced gradient method (RGM) to solve the 

source identification problem.  Their use of RGM aims to reduce the computation time 

of the simulation-optimization process.  Guan et al. (2006) also examined the effect of 

error in sensor data on the algorithms ability to correctly identify a source.  They found 

that the algorithm could still correctly identify a source, but it was not able to accurately 

define the release history.  Preis and Ostfeld (2006) utilized tree based methods to solve 

the source identification problem.  Model trees are calibrated by using EPANET and 

linear trees are constructed to solve for source characteristics.  Linear programming is 

used on both trees to solve the inverse problem.  Liu et al. (2008) presents a new method 

to reduce the search space in solving the source identification problem.  Logistic 

regression is used to assign a probability of a given node being the source to each node 

in the system.  A local search is then performed around nodes with a high probability of 

being a source.   

The research presented in this thesis uses evolutionary computation (EC) within a 

simulation-optimization framework to solve the source identification problem.  EC is an 

optimization approach based on the theory of natural selection, where a population of 

individuals represents potential solutions to a problem and converges to nearly global 

optima over repeated iteration of genetic operators, including selection and mutation 

(Rechenberg 1973, Schwefel 1981, and Schwefel 1995).   Genes (the decision variables) 
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make up the individual (the solution).  Evolution Strategies (ES) and Genetic Algorithms 

(GA) are common forms of EC, where ES uses mutation as its primary operator and GA 

uses crossover and mutation as operators.  Preis and Ostfeld (2007) describe the use of a 

GA in the source identification simulation-optimization problem.  The use of a GA 

allows for more exploration of possible solutions as opposed to non-EC methods.  GAs 

are also better equipped to solve large network problems more efficiently.    

Zechman and Ranjithan (2009) describe an ES approach to characterize sources 

of contamination during a WDS event.  For the source identification problem, ES is the 

optimizer applied to minimize the difference between the simulated contaminant and the 

observed contaminant concentration by adjusting decision variables, which represent the 

location, loading profile, and timing of contaminant release.  For a small WDS, a 

significant amount of non-uniqueness was revealed in the identification of centrally-

located sources. 

 

3.2 Modeling-to-Generate Alternatives 

 

One approach to address non-uniqueness that is inherent in the source 

identification problem is the Modeling-to-Generate Alternatives (MGA) modeling 

methodology.  MGA was first developed as a method to assist human decision making 

through mathematical programming (Brill 1979).  Alternatives generation is beneficial to 

a problem containing non-uniqueness because other possible solutions are identified; 

therefore addressing the problem by providing multiple solutions.  Alternative solutions 
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should have similar objective values and be maximally different in their decisions.  An 

original optimization problem can be represented in Equations (2) and (3) as: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = 𝑓(𝑋) (2) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑋) ≥ 𝑏𝑖   𝑖 = 1, … ,𝑀 (3) 

 

where 𝑍 is the objective function and X is a vector representing the decision variables.  

Equation (3) represents a set of constraints on the problem.  Optimization of Equation 

(1) yields Z* as the best solution and X* as the corresponding decisions.  A set of 

alternatives is generated using the following model, represented as Equations (4), (5), 

and (6): 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐷 = 𝑑(𝑋,𝑋∗) (4) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓(𝑋) ≥ 𝑇(𝑍∗) (5) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑋) ≥ 𝑏𝑖   𝑖 = 1, … ,𝑀 (6) 

 

where 𝐷 represents the difference between decision vectors X and X*.  An allowable 

relaxation in the objective Z* is represented by the target T, which allows for exploration 

of different decisions.  Though this relaxation encourages inferior solutions, nearly 

optimal solutions may be considered as viable options in decision making.  For the 

problem of non-uniqueness, MGA will identify other good, but different solutions to a 

problem containing non-uniqueness.  The amount of difference among the alternatives 
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can indicate the level of non-uniqueness in the problem.  For example, a large amount of 

difference between alternatives may indicate a high degree of non-uniqueness; while a 

small difference indicates that the problem may be unique. 

 

3.3 Evolutionary Computation for Generating Alternatives 

 

One implementation of MGA was performed using genetic algorithms to 

generate alternatives and was presented by Harrell and Ranjithan (2003) for a detention 

pond design problem.  Rather than specifying a difference function to find alternatives, 

the problem objectives and constraints were adjusted for different scenarios to find 

alternative solutions.  Allowing components of the problem to be flexible, such as land 

use, different solutions were derived with lower costs.  Incorporating different 

approaches to a problem can lead to the identification of many different, but good, 

solutions. 

Niching algorithms have also been used for generating alternatives.  Traditional 

niching methods encourage solutions to be found with similar objective values but 

different decisions compared with an optimal solution.  Three popular niching methods 

include clearing, crowding, and sharing.  In these traditional niching methods, several 

parameters must be defined to guide the search (Mahfoud 1995; Singh and Deb 2006).  

To avoid setting parameters, other methods can be adopted to generate alternatives.  A 

Genetic Algorithm for Modeling-to-Generate Alternatives (GAMGA) was explored by 
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Loughlin et al. (2001).  GAMGA used a genetic algorithm with the maximal difference 

function to generate alternatives. 

Zechman and Ranjithan (2004) presented the Evolutionary Algorithm to 

Generate Alternatives (EAGA) to explore complex engineering problems.  EAGA uses 

multiple subpopulations to solve for good solutions with maximally different decisions, 

where each subpopulation converges to one alternative solution.  EAGA operators 

primarily include binary tournament selection, mutation, and crossover, which are 

executed separately within each subpopulation.  Zechman and Ranjithan (2007) applied 

EAGA for a water resources problem to generate alternative designs. 

 

3.4 Niched Co-Evolution Strategies 

 

Zechman et al. (2006) extended EAGA to an ES-based implementation, Niched 

Co-Evolution Strategies (NCES), and applied the algorithm for source identification in 

groundwater pollution.  NCES utilizes ES optimization and the MGA modeling 

approach to generate alternatives.  NCES uses a set of subpopulations, where the first 

subpopulation searches for the best solution to the original optimization problem, and 

secondary subpopulations search for maximally different alternatives.  The relaxation 

used for deriving alternative solutions is based on the fitness of the best solution in the 

first subpopulation.  Secondary subpopulations are guided to different areas of the 

decision space by a selection mechanism that encourages solutions based on a difference 
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function and satisfaction of the objective function target.  NCES uses the same 

evolutionary operators for all subpopulations in the search for alternatives.   

 

3.4.1 Difference Calculation 

 

The difference function is based on the location of each subpopulation and how 

close one subpopulation is to all subpopulations.  The difference function for each 

individual is calculated as the minimum Euclidean distance to the centroids of all other 

subpopulations.    The difference function (𝐷𝑘,𝑝) represents the centroid calculation and 

is defined in Equations (7) and (8) as: 

 

𝐷𝑘,𝑝 = 𝑀𝑖𝑛 �
∑ 𝑑�𝑋𝑘,𝑝,𝑋𝑗,𝑞�𝐾
𝑗=1

𝐾
; 𝑞 = 1, … ,𝑃, 𝑞 ≠ 𝑝� (7) 

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  �(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (8) 

 

where 𝑑�𝑋𝑘,𝑝,𝑋𝑗,𝑞� is the Euclidian distance between the centroids of two 

subpopulations 𝑋𝑘,𝑝 and 𝑋𝑗,𝑞, 𝐾 is the number of individuals in a subpopulation, and 𝑃 

is the number of subpopulations (Zechman et al. 2006).  The Euclidean distance in 

Equation (8) is defined as the distance between two points, (x1,y1) and (x2,y2). 
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3.4.2 Search Operators 

 

NCES utilizes two main search operators: mutation and selection.  These 

operators search the decision space for different solutions that meet the constraints of the 

optimization problem.  The mutation operator makes changes in the decisions variables 

based on probability and produces λ new individuals in each subpopulation.  The 

mutation is performed on the genes by randomly sampling from a normal distribution 

based on the current values of the genes, where the mean is the current value.  The 

standard deviation is determined for all subpopulations and is set as the mutation 

parameter.  For NCES, the mutation operator is adaptive.  In adaptive mutation, the 

standard deviation is determined while the search is occurring and is adjusted using a 

separate normal distribution to mutate the mutation parameter. 

The main selection operators are ranking selection and Elitist Graduated Over-

Selection (EGOS) (Fernandez and Evett 1997).  Ranking involves sorting the solutions 

from best to worst based on their fitness values.  The ranking process in NCES is 

different depending on the subpopulation.  In the first subpopulation, selection is based 

solely on fitness values.  Individuals are ranked from best fitness to worst fitness and the 

best μ individuals are selected to survive for the next generation.  In subsequent 

populations, selection depends on feasibility.  Feasible individuals meet the target value 

set by the first subpopulation.  The feasible individuals are first ranked from maximally 

different to least different.  Infeasible individuals are ranked from most different to least 
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different and are ranked below all feasible individuals.  The best μ individuals survive to 

the next generation (Schwefel 1995).   

EGOS is used to increase the chance that highly fit solutions are selected in each 

subpopulation.  The step size (upper quantile) is set by the user at the beginning of the 

search.  After individuals are ranked, a set of individuals are placed into a pool of 

candidates.  The size of the pool is specified as the upper quantile. Each individual in 

this pool has an equal probability to be selected, and one individual is randomly selected 

to survive to the next generation.  The solution that is selected is placed back into the 

pool, and the size of the pool is increased by adding the next individual from the ranked 

list.  Individuals are selected from the increasing pool of candidates until the population 

for next generation has been developed.  This increases the selection pressure because 

highly ranked individuals have more opportunities to be selected than poorly ranked 

individuals, and duplicates of highly fit solutions are likely to be copied into the next 

generation. 

 

3.4.3 Algorithmic Steps 

 

The algorithmic steps as defined by Zechman et al. (2006) are listed below: 

 

 Step 1. Initialize a population with P subpopulations, each of size μ, where P is the 

number of alternatives the algorithm is searching for and μ is the number of individuals 

in each subpopulation.  Each subpopulation is represented by the index SPp (p=1,…,P).  
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SP1, the first subpopulation, searches for the best solution with respect to the objective 

function. SPp≠1, the subsequent subpopulations, search for alternative solutions.   

 

Step 2. Apply adaptive mutation to all subpopulations, yielding λ new individuals in 

each subpopulation. 

 

Step 3. Evaluate the fitness of each individual in μ + λ in the first subpopulation and 

select the best individual with respect to fitness using Equation (2).  The fitness of the 

best individual is relaxed by the target T for the generation of alternatives in the 

subsequent subpopulations using Equation (5). 

 

Step 4. In the subsequent subpopulations (SPp≠1), evaluate the fitness of each individual 

in μ + λ.  The fitness of each individual is designated as feasible if it meets the target 

constraint in Equation (5).  Individuals not meeting the target constraint are designated 

as infeasible. 

 

Step 5. Calculate the difference Dk,p for all individuals in the subsequent populations 

(SPp≠1) using Equation (7).   

 

Step 6. Apply the ranking and EGOS selection to all subpopulations.   
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Step 7. Check termination criteria (e.g. number of generations).  If met, stop.  Otherwise 

go to Step 2 for the next generation. 
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4. CASE STUDY: MESOPOLIS 

 

4.1 Virtual City of Mesopolis 

 

 The virtual city of Mesopolis was designed by Brumbelow et al. (2007) to model 

realistic events in WDS without compromising the water security of actual cities.  

Mesopolis is a city of approximately 150,000 residents and includes a naval base, 

university, urban and suburban housing throughout the system, an industrial area, an 

airport, and commercial areas.  Sources of contamination were chosen based on a 

vulnerability analysis by Zechman et al. (2011).  An original source is required to 

acquire the sensor data needed to use NCES for the identification of sources.  Fig. 2 

shows the locations of the sources of contamination tested for NCES.  A conservative 

contaminant was placed in the system at hour seven with a load of 60 mg/min for three 

hours, as shown in the loading profile in Fig. 2. The total simulation time for these 

contamination events was 72 hours; however, only the first 24 hours of data is shown 

(remaining data provides no important information).  All simulations were performed 

using EPANET, a modeling package provided by the EPA to simulation events in a 

WDS (Rossman 2000).   
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Figure 2. (a) Source Locations in Mesopolis with (b) Contaminant Loading Profile. 

 

4.2 Sensor Network Design 

 

 Several different water quality sensor networks were designed for Mesopolis.  

The number of sensors varied from three to ten and sensors were strategically placed in 

the system.  For the three sensor network (Fig. 3a), the sensors were placed along water 

mains, tanks, and pump stations.  These high flow areas were selected because of their 

ability to provide large amounts of water to populated areas of Mesopolis.  Other sensors 

were added to the initial network to provide additional coverage of vulnerable areas.  

Fig. 3b shows the five sensor network designed for Mesopolis. 
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Figure 3. Sensor Networks in Mesopolis. (a) Three Sensors and (b) Five Sensors. 

 

4.3 Results and Discussion 

 

NCES was tested for three source and sensor network ensembles: source 1 and 

sensor network ABC, source 1 and sensor network ABCDE, and source 2 and sensor 

network ABC.  The performance of the algorithm and the results of each ensemble tested 

will be discussed in the following sections. 
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4.3.1 Algorithm Performance 

 

 The algorithmic parameters used when testing NCES for Mesopolis are shown in 

Table 1.  These values were selected after many trials using different values.  The 

population size is fairly large due to the large amount of potential solutions in 

Mesopolis.  Terminal nodes within the WDS were not considered; only intermediate 

nodes were considered in the search for sources of contamination.  For Mesopolis, 

NCES searched for three alternatives and therefore used three subpopulations.  Fig. 4 

shows three graphs representing the convergence of the objective function (error value) 

while NCES was operating.  The convergence shows that the first alternative (the 

optimal solution) experienced small changes as it converged to the best solution, which 

is to be expected by using the adaptive mutation.  The subsequent alternatives also 

followed typical ES convergence.  The movements of the average objective, shown in 

red in Fig 4., exist due to changes in feasibility cause strong mutations.  Once the 

majority of the subpopulation becomes feasible (they meet the target value), the 

mutation operator changes the individuals to maximize the distance between the other 

subpopulations.  The convergence graphs show that NCES is co-evolving by making 

small changes based on the performance of each of the alternatives. 
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Table 1. NCES Parameters for Mesopolis 
Algorithmic Parameter Value 

Number of Subpopulations 3 

Number of Generations 300 

Population Size μ 400 

Mutated Individuals λ 400 

Step Size (Upper Quantile) 80 

Target T 1.5 
 
 
 

 
 

  
Figure 4. Objective Function Convergence for Source 2 and Sensor Network ABC. 
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Figure 4 continued.  

 

 NCES uses a Java framework coupled with the WDS modeling package, 

EPANET.  The parameters shown in Table 1 and the computation time of approximately 

83 days on an average desktop computer reflect the need to have a large number of 

individuals generated to search Mesopolis.  To reduce the computation time, NCES was 

executed on a computer cluster containing eleven nodes with two 2.2 GHz processors, 

four GB RAM, and 80 GB HD per node (Mahinthakumar et al. 2006).  Using 

parallelized versions of the Java framework and EPANET, the computation time for one 

optimization trial using the settings in Table 1 was reduced to approximately seven 

hours. 

 Table 2 shows a summary of the results found by NCES for three different 

source and sensor network combinations in Mesopolis.  Each scenario was executed for 

20 trials.  The algorithm found results that yielded low error values for all combinations.  

Good alternatives are identified as solutions with non-zero readings at the sensor that 
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0.1
1

10
100

1000
10000

0 50 100 150 200 250 300

E
rr

or
 (m

g2 /l
2 )

Generation

Objective of Alternative 3

Average Objective Best Objective Target



 23 

concentration profiles do not exactly match the observations; good solutions can be 

further ranked based on the value of the error function.  The error value must be 

evaluated while looking at the different between the concentration profiles to determine 

if the error value is good or not.  In general, good sets of solutions matched 

concentration profiles relatively well.  In comparing the scenarios with Source 1 and 

sensor networks ABC and ABCDE, there is little difference in the error value and the 

number of trials that identified good alternatives.  Even though two sensors were added 

to network ABC, these new sensors did not provide any new information and therefore 

did not improve the search for good alternatives.  In comparing Source 1 and Source 2 

with the same sensor network ABC, there is a difference in the error value and the 

number of trials that identified good alternatives.  Source 2 error values were lower on 

average and more good alternatives were identified.  This is most likely due to Source 

2’s proximity to Sensor C, the only sensor that received non-zero concentration values 

for Source 2.  The distance among the alternatives, however, is smaller than the distance 

among the alternatives found for Source 1.  The following sub-sections further 

investigate the results of the three scenarios.   

 

Table 2. Summary of NCES Results as Demonstrated for Mesopolis 

Ensembles/Parameters 
Source 1 and 

Sensor Network 
ABC 

Source 1 and 
Sensor Network 

ABCDE 

Source 2 and 
Sensor Network 

ABC 
Average Error (mg2/L2) 1.2 1.5 0.5 
Number of Trials that 

Identified Good Alternatives 9 9 13 

Average Distance Between 
Alternatives in Best Trial (feet) 5,175 13,478 4,471 
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4.3.2 Source 1 and Sensor Network ABC 

 

 Source 1 was placed on the western side of Mesopolis along a high flow water 

main.  Nine trials, of the 20 tested, identified three good alternatives.  A good alternative 

is defined as a non-zero reading at a minimum of one of the sensors in the network.  This 

means that the alternative sources identified did contain a loading profile that yielded 

sensor data.  The average error for all 20 trials was 1.2 mg2/L2.  Figs. 5 and 6 show the 

location and loading profile, with ensuing sensor data, for each alternative in the best 

trial of the 20 trials.  Sensor A is the only sensor that received data and is therefore the 

only concentration profile shown; sensors B and C had zero concentration values.  The 

average Euclidian distance between the alternatives is 5,175 feet.  The error values are 

0.0, 1.7, and 0.8 mg2/L2 for alternatives 1, 2, and 3, respectively. 

For this representative solution, the first alternative correctly identified Source 1 

as the true source of contamination.  Two other alternatives were successfully generated 

with similar error values and different locations.  The loading profiles in Fig. 6 show 

minimal difference in the start time and duration and a large difference in the amount of 

contaminant entering the system.  The concentration profiles at Sensor A show the 

observed sensor data in black marks and the predicted sensor data in solid, colored lines.  

The sensor data matches exactly for the first alternative, while the sensor data closely 

matches for the subsequent alternatives.  The differences in the decision variables 

(location and amount of loading) that yield similar objective values indicate that good 

alternatives were generated for this ensemble, showing non-uniqueness in Mesopolis. 
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Figure 5. Location of Alternatives Found for Source 1 and Sensor Network ABC. 

 

4.3.3 Source 1 and Sensor Network ABCDE 

 

 Similar to the first ensemble, NCES was executed for 20 trials and nine trials 

identified three good alternatives.  The average error was 1.5 mg2/L2 and the only sensor 

that received data was Sensor A.  Therefore, the addition of Sensors D and E did not 

provide any new information to assist in minimizing the error in the concentration 

profiles.  The average Euclidian distance between the alternatives is 13,478 feet.  Figs. 7 

and 8 show the location, loading profile, and sensor data for each alternative in the best 

trial of the 20 trials.  The error values for the best trial shown are 0.3, 0.4, and 0.4 mg2/L2 

for alternatives 1, 2, and 3, respectively.   
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Figure 6. Loading Profiles and Sensor Concentration Profiles for Alternatives Found for 

Source 1 and Sensor Network ABC. 
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Figure 7. Location of Alternatives Found for Source 1 and Sensor Network ABCDE. 

 

The third alternative identified the true source of contamination, Source 1, while 

the first and second alternatives identified different sources in their location and loading 

profile.  The loading profiles vary among the three alternatives, with the third alternative 

being different from the loading profile of the true source.  This difference contributes to 

the error value, due to a variation in the sensor data.  Identical to the first ensemble, the 

concentration profiles at Sensor A show the observed sensor data in black marks and the 

predicted sensor data in solid, colored lines.  The sensor data closely matches the 

observed sensor data for all alternatives generated, yielding low error values.  Again 

similar to the first ensemble, good alternatives were generated as indicated by the large 

difference in the decision variables with low error values, suggesting non-uniqueness 

was present in the system. 
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Figure 8. Loading Profiles and Sensor Concentration Profiles for Alternatives Found for 

Source 1 and Sensor Network ABCDE. 
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trials identified three good alternatives, where “good” means the alternative source 

yielded non-zero readings at a sensor.  The average error was 0.5 mg2/L2 and the only 

sensor that received data was Sensor C.  Sensors A and B did not receive sensor data.  

The average Euclidian distance between the alternatives is 4,471 feet.  Figs. 9 and 10 

show the location, loading profile, and sensor data for each alternative in the best trial of 

the 20 trials.  For the best trial the error values are 0.0, 1.2, and 0.5 mg2/L2 for 

alternatives 1, 2, and 3, respectively.   

 

 
Figure 9. Location of Alternatives Found for Source 2 and Sensor Network ABC. 
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Figure 10. Loading Profiles and Sensor Concentration Profiles for Alternatives Found 

for Source 2 and Sensor Network ABC. 
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sensor data in black marks and the predicted sensor data in solid, colored lines.  There 

was no difference between the predicted and observed sensor data for alternative one and 

there was minimal difference for the subsequent alternatives.  The large difference 

among decision variables with similar objective values indicates that non-uniqueness is 

present in the system due to a good generation of alternatives. 
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5. SUMMARY AND CONCLUSIONS 

 

Niched Co-Evolution Strategies is a method that combines the optimization of 

Evolution Strategies with a modeling approach to generate alternatives to address the 

problem of non-uniqueness in source identification.  NCES was executed for three 

source and sensor network ensembles in the virtual city of Mesopolis.  All three 

ensembles indicated that non-uniqueness was present in the system by identifying 

alternatives that were different in their loading profiles but produced sensor data that 

closely, and in some cases exactly, matched the observed sensor data.  One metric that 

can be used to determine the amount of non-uniqueness in the system is the distance 

calculation.  In general, a greater distance between alternatives indicates that there is 

strong non-uniqueness present in the system.  This conclusion is supported by the results 

shown in the previous sectiom.  From a management and WDS security standpoint, the 

presence of non-uniqueness suggests that more data should be collected to confidently 

identify the true source of contamination.  If more data cannot be acquired in a timely 

manner, NCES provides alternative source locations where response actions should be 

implemented to protect consumers.  NCES is a helpful tool for emergency managers and 

others responsible for WDS security.  Aside from addressing the problem of non-

uniqueness in source identification, NCES can be coupled with other modeling and 

optimization approaches to address a wide range of problems including adaptive source 

identification, sensor placement, and source identification using diverse sources of 

information.   
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While NCES can be extended to different algorithms for future studies, the 

algorithm can be improved to make the results more accurate and reduce the 

computational time.  Since computer technology is constantly updated, improvements 

for NCES may come in the form of algorithmic and hydraulic system changes.  Using a 

regular centroid calculation, as opposed to the weighted centroid calculation mentioned 

previously, may improve the identification of sources that are geographically distant. 

Sensor placement algorithms can be executed for Mesopolis to improve the value of the 

data that is collected. One hydraulic system adjustment that could be made to improve 

NCES’s ability to perform in a more practical situation is to include more realistic 

sensors that better reflect current technology.  For this research, it was assumed that all 

sensors were perfect and provided accurate data.  Realistically, sensors occasionally 

provide false readings or incomplete readings.  There is research in the area of using 

imperfect sensor data for source identification that could be incorporated for future work 

with NCES (Preis and Ostfeld 2008).   

Since Mesopolis is such a large system with many possible nodes, it could be of 

benefit to use a method to decrease the search space for NCES.  The search space cannot 

be reduced too much, though, because the goal of NCES is to search different areas of 

the decision space to find alternative solutions.  Liu et al. (2008) explores the use of a 

local search to decrease the search space for the source identification problem, and this 

type of algorithm can be integrated as an initial step in NCES.  

NCES follows a long line of tools developed to aid in the decision making 

process.  Liebman (1976) defined the role of optimization in public sector decision 
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making as a tool to assist in the decision making process, rather than a single solution 

identifier.  Optimization and model methods should provide insight to a problem as 

opposed to delivering an answer.  Most problems in the public sector are classified as 

“wicked” and are difficult to solve using traditional methods.  Brill’s development of 

MGA (1979) was a significant step in the direction of providing insight to a problem 

instead of simply solving the problem.   NCES is the next step in coupling the modeling 

approach of MGA with optimization methods to provide information about a problem.  

For example, in the source identification problem, NCES indicates if non-uniqueness is 

present in a problem and the amount of non-uniqueness in the problem.  Though NCES 

provides solutions in the form of alternatives, these alternatives are not the final answer.  

They merely show that there are several possible areas of contamination and suggest that 

more data is needed to identify the true source or a different respond strategy is needed 

to protect the public from any of the possible sources.   

At this time, NCES has been applied to the technical model of the hydraulic 

system, while ignoring the dynamic interactions of consumers and utility operators that 

could change the propagation of the contaminant plume.  Another area of future work for 

NCES is incorporating the social aspects of a contamination event with the technical 

system through a socio-technical system analysis approach.  Research is already 

underway in this field (Zechman 2011).  Using NCES to generate alternatives instead of 

finding one outcome can provide an immense amount of insight for socio-technical 

problems.   
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