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ABSTRACT 

 

Rate Optimization for Polymer and CO2 Flooding  

Under Geologic Uncertainty. (August 2011) 

Mohan Sharma, B.S., Indian School of Mines, Dhanbad, India  

Co-Chairs of Advisory Committee: Dr. Akhil Datta-Gupta 

          Dr. Michael King 

 

With the depletion of the existing reservoirs and the decline in oil discoveries during the 

last few decades, enhanced oil recovery (EOR) methods have gained a lot of attention. 

Among the various improved recovery methods, waterflooding is by far the most widely 

used. However, the presence of reservoir heterogeneity such as high permeability streaks 

often leads to premature breakthrough and poor sweep resulting in reduced oil recovery. 

This underscores the need for prudent reservoir management, in terms of optimal 

production and injection rates, to maximize recovery. The increasing deployment of 

smart well completions and i-field has inspired many researchers to develop algorithms 

to optimize the production/injection rates along intervals of smart wells. However, the 

application of rate control for other EOR methods has been relatively few. 

This research aims to extend previous streamline-based rate optimization 

workflow to polymer flooding and CO2 flooding. The objective of the approach is to 

maximize sweep efficiency and minimize recycling of injected fluid (polymer/CO2) by 

delaying its breakthrough. This is achieved by equalizing the front arrival time at the 

producers using streamline time-of-flight. Arrival time is rescaled to allow for 

optimization after breakthrough of injected fluid. Additionally, we propose an 

accelerated production strategy to increase NPV over sweep efficiency maximization 

case. The optimization is performed under operational and facility constraints using a 

sequential quadratic programming approach. The geological uncertainty has been 
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accounted for via a stochastic optimization framework based on the combination of the 

expected value and variance of a performance measure from multiple realizations. 

Synthetic and field examples are used extensively to demonstrate the practical 

feasibility and robustness of our approach for application to EOR processes. 
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*
CHAPTER I 

 INTRODUCTION 

 

Since most of the current world oil production comes from mature fields, increasing 

ultimate oil recovery from these fields is critical to meet the growing energy demand in 

the coming years. Among the various improved recovery methods waterflooding is by 

far the most widely used (Lake et al. 1992; Craig 1993). Waterfloods are relatively 

inexpensive and easy to implement. However, the presence of reservoir heterogeneity 

such as high permeability streaks often leads to premature breakthrough and poor sweep, 

resulting in reduced oil recovery. This underscores the need for a prudent reservoir 

management in terms of optimal production and injection rates, to maximize recovery 

during waterflood. 

It is well recognized that field-scale rate optimization problems often involve 

highly complex reservoir model, production and facility related constraints and 

geological uncertainty. Deployment of smart well completions with inflow control 

valves (ICV) to control production/injection rates for various segments along the 

wellbore further compounds to the complexity of the optimization. All these make 

optimal reservoir management via rate control difficult without efficient optimization 

algorithms. Two main types of optimization algorithms have been developed to address 

the problem, namely gradient-based algorithms and stochastic algorithms (Brouwer and 

Jansen 2004; Tavakkolian et al. 2004). Both algorithms use reservoir simulators to 

evaluate the objective function. The gradient-based algorithms require an estimation of 

the gradient of the objective function with respect to the control variables. In contrast, 

the stochastic algorithms such as the genetic algorithm do not require estimation of the 

gradient but typically require multiple forward simulations for evaluations of the 

objective function or an appropriately defined fitness function. The advantage of 

                                                 

This dissertation follows the style of SPE Reservoir Evaluation & Engineering. 



 2 

stochastic optimization is the ability to search for a global solution while the gradient-

based optimizations typically search for a local solution. The disadvantage of the 

stochastic optimization is the extensive computational power requirement especially 

when the number of control variables is large. 

Alhuthali et al. (2007; 2008; 2010) proposed a streamline-based approach to 

maximize waterflood sweep efficiency, which focused on equalizing arrival time of the 

waterfront at all producers within selected sub-regions of a waterflood project. This 

resulted in delayed water breakthrough and reduced field water cut after water 

breakthrough. The optimization was performed under operational and facility constraints 

using a sequential quadratic programming approach. A major advantage of the 

streamline-based approach is the analytical computation of the sensitivities of the 

waterfront arrival times at the producers to well production/injection rates and the 

gradient and Hessian of the objective function. This makes it computationally efficient 

and suitable for large field cases. Alhuthali et al. (2008) accounted for geological 

uncertainty via a stochastic optimization framework based on the combination of the 

expected value and variance of a performance measure from multiple realizations. 

This approach however, has a drawback that it solely focuses on maximizing 

sweep efficiency, and not necessarily the NPV. To address this issue, the objective 

function was redefined by adding ‘norm’ penalty term to the objective function (Taware 

et al. 2010). Unlike the prior work of Alhuthali et al. (2010), the objective function now 

consists of two terms. The first term attempts to maximize the sweep efficiency while 

the second term attempts to accelerate the production. The trade-off between equalizing 

arrival time (maximizing sweep) and production acceleration (maximizing NPV) can be 

examined by adjusting the weight on the ‘norm’ penalty term. The optimal decision is a 

compromise between the two and can be arrived at by using a trade-off curve (Taware et 

al. 2010).  

It is well known that waterflooding often results in poor sweep efficiency as 

injected water preferentially flows through high permeability zones, resulting in 

bypassed oil. Water soluble polymers are thus used to control mobility, leading to a 
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more efficient sweep during waterflood, by attaining a close match of injectant viscosity 

to that of the in situ oil (Lake et al. 1992). However, the complexities and challenges 

associated with designing an optimal polymerflood need to be addressed for field-scale 

application. Similarly, carbon dioxide (CO2) has been successfully used as EOR agent 

for decades because of its favorable properties of swelling oil, reducing oil viscosity and 

reducing residual oil saturation (Holm and Josendal 1974; Stalkup 1983). However, 

despite its high local displacement efficiency, the process has poor sweep efficiency due 

to viscous fingering caused by unfavorable mobility ratio and gravity segregation caused 

by density difference between injected and displaced phases (Christie and Bond 1987).  

Issues long recognized for successful polymerflood like optimal selection of 

polymer type, concentration and slug size have been addressed by several authors 

(Kaminsky et al. 2007; Wang et al. 2008). Similarly, the design parameters influencing 

the sweep efficiency during CO2 flood have been discussed by several authors (Green 

and Willhite 1998; Jarrell et al. 2002). However, guidelines for selection of optimal well 

production/injection rates during polymerflood and CO2 flood still remain to be 

established and are addressed in this research. 

 

1.1 Rate Optimization for Waterflooding Under Geologic Uncertainty 

Streamline-based optimal reservoir management has shown great potential in 

maximizing sweep and reducing water recycling during waterflooding. It has been 

demonstrated by field application (Alhuthali et al. 2010) that sweep efficiency can be 

improved by appropriate allocation of production and injection rates. In this section we 

discuss the approach and mathematical formulation behind the existing streamline-based 

rate optimization workflow (Taware et al. 2010).   

 

1.1.1 Approach 

The primary objective of the approach is to obtain an optimal as well as accelerated 

production strategy for waterflooding based upon a trade-off between maximizing sweep 

efficiency and maximizing NPV. The approach is general and can be employed using 
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both finite-difference and streamline models. Following are the steps involved in our 

approach: 

 

• Flow Simulation and streamline tracing. The first step is to perform 

waterflood simulation for a time interval of interest for every geologic realization 

and compute the streamlines and time-of-flight from injectors to producers 

(Datta-Gupta and King 2007). 

 

• Computation of the objective function, analytical sensitivities and the 

Jacobian. The second step is to compute the objective function for optimization 

which consists of two terms. The first term is the waterfront arrival time residuals 

which quantify the misfit between the desired arrival time and the computed 

arrival time at each producer for every geologic realization. The second term is a 

penalty term that minimizes the ‘norm’ (magnitude) of the arrival time itself to 

accelerate fluid production. Using streamlines, we compute the analytical 

sensitivities, which are defined as the partial derivatives of arrival time with 

respect to well rates. It should be noted that only one simulation run is required 

per realization in our approach to compute the sensitivities. The sensitivities are 

then used to compute the Jacobian which is defined as the gradient of the 

residuals. 

 

• Computation of analytical gradient and Hessian. The next step is to compute 

the gradient and Hessian of the objective function using above computed 

residuals and the analytical Jacobian.  

 

• Minimization and optimal rate allocation. The objective function is then 

minimized using Sequential Quadratic Programming (SQP) technique (Nocedal 

and Wright 2006) to generate required changes in rates subject to appropriate 

field constraints. 
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The above-mentioned steps are repeated for the time interval of interest, until a 

pre-defined stopping criterion on the objective function or the rates is satisfied.  We then 

move to the next time interval for optimization. 

 

1.1.2 Mathematical Formulation 

In this section, we discuss the underlying formulation behind the optimization approach 

to derive optimal production/injection rates that attempt to maximize waterflood sweep 

efficiency as well as the NPV via production acceleration. 

 

• Objective Function Formulation. The objective function consists of following 

two terms (Taware et al. 2010): 

 

   
2N

1m

mNprod,

1i

mi,

2N

1m

mNprod,

1i

mi,md,

groupgroup

)(t)(t-)(t)(p   
  

 qqqq  ……………..…….... (1.1) 

 

which can be expressed as: 

 

z
T
zz

T
z  )(p tteeq  ………………......………………………………..…...… (1.2) 

 

where the variable ti,m represents the calculated arrival time at well i, belonging 

to group m. The desired arrival time td,m for the well group m is given by the 

arithmetic average of ti,m, during each optimization iteration (Alhuthali et al. 

2010). The vector q contains the control variables and has a dimension of n, the 

number of well rates to be optimized. In the present formulation of the objective 

function, the first term is expressed as the square of the l2-norm of the arrival 

time residuals for a single geologic realization z. Minimization of this term 

ensures that the flood front arrives nearly at the same time for all producers in a 

given group of producers and injectors within the field. This results in 
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maximizing sweep efficiency (Sudaryanto and Yortsos 2001; Alhuthali et al. 

2007; 2008; 2010). The second term, which is the ‘norm’ penalty term, ensures 

that the magnitude of the arrival time is also reduced along with their variance. 

This reduction in arrival time leads to acceleration of production/injection and 

thus ensures that the optimization doesn’t penalize highly productive wells too 

much in an attempt to improve sweep. By adjusting the weight η on the penalty 

term, we can decide on the trade-off between equalizing arrival time and 

accelerating production/injection. The optimal norm weight can be decided based 

upon a trade-off curve where the cumulative NPV (normalized to unity) is 

plotted against the norm weight. This gives a well-defined inflection point 

beyond which, for higher norm weights, the incremental benefit in NPV is small 

(Taware et al. 2010). Because of the trade-off between sweep efficiency and 

NPV, the inflection point can be considered to be the best compromise between 

the two. The approach retains the advantages of our approach viz. the analytical 

computation of the gradient and Hessian of the objective function using 

streamline-derived sensitivities. The derivation of the analytic gradient and 

Hessian follows the steps outlined by Alhuthali et al. (2008). 

 

• Optimization after breakthrough. Since we have formulated our optimization 

in terms of arrival time of the water front at the producers, a natural question 

arises that what happens after water breakthrough. The optimization is carried 

out after water breakthrough at a well by incorporating the well water cut into the 

objective function so as to prevent allocating high production rates to wells with 

high water cut. To accomplish this, the arrival time to a well is modified to 

include the water cut at the well as: 

 

 mi, wmi,mi, f-1*)(t)(t qq   ………………………….……………….….…. (1.3) 
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In the above expression, the arrival time, ti,m, at well i belonging to group m has 

been altered to incorporate the well water cut, fw i,m. If the water cut is zero, the 

modified arrival time is the same as the original arrival time. When the water cut 

at the well is greater than zero, the original arrival time will be rescaled based on 

the level of water cut. The extent of reduction can be controlled by the exponent 

term α. As a consequence, the rate allocation to the well will be lowered in 

relation to the wells with less water cut. 

 

• Accounting for Geologic Uncertainty. To address geological uncertainty, Eq. 

1.2 needs to be generalized to handle multiple realizations. This is accomplished 

in terms of an expected value of the misfit in Eq. 1.2 for multiple realizations 

penalized by its standard deviation. 

 

   )(pr)(pE)(f qqq   ….….………………………………………………. (1.4) 

 

Eq. 1.4 can be derived within the decision analysis framework (Alhuthali et al. 

2010). The variable r is the risk coefficient that weights the trade-off between the 

expected value and the standard deviation. A positive r means that the decision 

maker is risk averse, while a negative r means that the decision maker is risk 

prone. 

 

• Objective Function Minimization. The optimal rate allocation to 

producer/injector now involves the minimization of the penalized misfit function 

in Eq. 1.4. For field applications, the minimization must be carried out such that 

the production and facility constraints are acknowledged. Mathematically, this 

problem can be posed as follows: 
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Subject to

                   0              

                   ( ) 0              

Where  :   and   :  

min 

n z n y

f

h g





   

q

q

h q

g q

    .............................................................… (1.5) 

 

The vector q contains the control variables and has a dimension of n, the number 

of well rates to be optimized. The expressions h(q) and g(q) represent the 

equality and inequality constraints. In our approach, Eq. 1.5 is minimized using 

the Sequential Quadratic Programming (SQP) algorithm for nonlinear 

constrained optimization (Nocedal and Wright 2006). The problem is formulated 

into a series of quadratic programming (QP) sub-problems which can be solved 

at each major iteration k. The QP sub-problem is mainly a quadratic 

approximation of the Lagrangian of Eq. 1.5 which is given in the following form: 

 

 ( , , ) ( ) ( )
L K

T T

L KL f  q λ λ q λ h q λ g q
 ……………………...….……………….. (1.6) 

 

The vectors λL and λK refer to the Lagrange multipliers corresponding to the 

equality constraints and the Karush-Kuhn-Tucker multipliers corresponding to 

the inequality constraints. After linearizing the constraints using a Taylor 

approximation, the QP sub-problem can be written as: 

 

     

   

21
 

2

Subject to

                   0              

                   ( ) ( ) 0     

min 
k T k k

q q

T
k k

q

k k T

q

f f L  







  

 

 

q q q q q q

q

h q h q q

g q g q q
…………………...…...………....… (1.7) 

 

Details on formulating the QP sub-problem can be found in the previous work 

(Alhuthali et al. 2007). In our application, we have used the SQP algorithm 
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(MATLAB
®

) to obtain optimal rates for the nonlinear constrained optimization 

problem. 

 

1.2 Objectives 

The main objective of this research is to identify the applicability of the streamline-based 

rate optimization workflow described earlier for EOR methods. Specifically, the 

approach would be extended to polymer flooding and CO2 flooding with modification 

for breakthrough at producers to improve sweep by equalizing flood front arrival time at 

multiple producers. We trace streamlines using the fluid fluxes derived from the finite-

difference flow simulation. The streamlines are then used to analytically compute the 

sensitivities and the gradient and Hessian of the objective function. The hierarchy of rate 

and pressure constraints is captured during optimization through comprehensive 

constraint matrices. The objective function is then minimized using SQP technique to 

generate required changes in rates subject to specified field constraints. Moreover, we 

account for geologic uncertainty using multiple realizations via a stochastic optimization 

framework. In brief, we discuss the following: 

 

• We will demonstrate that the approach provides optimal production/injection 

rates for polymer flooding and CO2 flooding, using 2D heterogeneous example 

and cross section respectively. 

• We will use field-scale cases to demonstrate the potential and practical viability 

of our approach for polymer flooding and CO2 flooding. 

• We will illustrate the robustness of our approach for polymer flooding and CO2 

flooding using multiple models to address geological uncertainty. 
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CHAPTER II 

OPTIMAL POLYMERFLOOD MANAGEMENT VIA RATE CONTROL
*
 

 

Waterflooding often results in poor sweep efficiency as injected water preferentially 

flows through high permeability zones resulting in bypassed oil. Water soluble polymers 

are thus used to control mobility, leading to a more efficient sweep during waterflood, 

by attaining a close match of injectant viscosity to that of the in situ oil (Lake et al. 

1992). 

The ongoing pilots and medium-scale polymerfloods presented by Moritis (2008) 

validate the EOR potential of this recovery process.  However, its field-scale application 

has not been widespread because of complexities and challenges associated with 

designing an optimal polymerflood. If polymerflood is found techno-economically 

suitable for a reservoir after the pilot studies, the field-wide implementation requires 

optimal selection of polymer type, polymer solution viscosity, polymer concentration, 

polymer slug size and injection rate.  Issues long recognized for successful polymerflood 

like optimal selection of polymer type, concentration and slug size have been addressed 

by several authors (Kaminsky et al. 2007; Wang et al. 2008). However, guidelines for 

selection of optimal well production/injection rates during polymerflood still remain to 

be established. 

In this chapter, we extend the role of rate optimization for polymerflooding to 

maximize sweep efficiency and minimize polymer recycling by delaying polymer 

breakthrough. First, we outline the details of polymerflood modeling considered for our 

work. Then, we discuss the modification made to the approach (Taware et al. 2010). 

                                                 

* Part of this chapter is reprinted with permission from “Optimizing Polymerflood via 

Rate Control” by Sharma, M., Taware, S. and Datta-Gupta, A. 2011. Paper SPE 144833 

presented at the 2011 SPE EOR Conference, Kuala Lumpur, Malaysia, 19-21 July. 

Copyright 2011 by the Society of Petroleum Engineers. 



 11 

Finally, we demonstrate the robustness and application of our approach using a 2D 

heterogeneous example and a field-scale application. 

 

2.1 Polymerflood Modeling 

Displacement of viscous oil with water during waterflooding often results in poor areal 

sweep and viscous fingering due to adverse mobility ratio. Polymer injection during 

waterflooding of oil reservoirs decreases the mobility of the injected water (Lake 1989; 

Green and Willhite 1998). The reduction in mobility is caused by an increase in the 

water viscosity and a decrease in the rock permeability to water. The permeability to oil, 

however, remains largely unaffected. Both effects combine to reduce the water mobility 

which results in a more favorable fractional flow curve for the injected water, leading to 

more efficient areal sweep and reduced viscous fingering. 

The commercial polymers can be broadly divided into two categories (Sorbie 

1991): polyacrylamides (synthetic polymers) and polysaccharides (biopolymers). 

Polyacrylamides are polymers whose monomeric unit is the acrylamide molecule. 

Partially hydrolyzed polyacrylamides (HPAM) are used for field applications. The 

hydrolysis causes negatively charged carboxyl groups (––COO–) to be scattered along 

the backbone chain, which accounts for its physical properties. However, 

polyacrylamides are sensitive to brine salinity and shear stress. On the other hand, 

polysaccharides are formed from the polymerization of saccharide molecules through a 

bacterial fermentation process. Polysaccharides are insensitive to brine salinity and can 

tolerate mechanical shearing effects. However, it is susceptible to bacterial attack after it 

has been introduced into the reservoir. 

In this study, we used a commercial simulator (ECLIPSE
©

) to model the physic-

chemical aspects of polymerflooding. The general properties of polymer solution used 

here, representative of an HPAM solution, are given below: 
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2.1.1 Polymer Viscosity 

The main property of interest during polymerflooding is the solution viscosity, which 

arises through molecular interactions among long polymer chains. The viscosity of a 

polymer solution is a function of polymer concentration and molecular weight. Fig. 2.1 

shows the variation in viscosity with polymer concentration used for our studies. The 

viscosity displayed here does not include shear thinning effect and is discussed later. 
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Fig. 2.1—Polymer solution viscosity (no shear thinning) vs. polymer concentration. 

 

2.1.2 Polymer Retention 

Polymer is retained by the porous media at the leading edge of the polymer slug which 

results in the formation of a stripped water bank ahead of the polymer front (Lake 1989; 

Sorbie 1991; Green and Willhite 1998). This water bank has mobility lower than the 

injected polymer solution and thus reduces the efficiency of polymerflood. 

The three main retention mechanisms involved during polymerflood are polymer 

adsorption, mechanical entrapment and hydrodynamic retention. Adsorption occurs 

because of the interactions between the long chain polymer molecules and the rock 

surface, as a result of which molecules bound physically to the rock surface. Retention 
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by mechanical entrapment occurs when some of the large molecules become lodged at 

the entrance to small pore throats. This retention mechanism is used as screening criteria 

for polymer selection and should be avoided. Hydrodynamic retention of polymer occurs 

when the fluid flow rate is adjusted to a new value resulting in changes in the steady 

state flow established earlier. This mechanism is reversible because almost the entire 

polymer is recovered by bringing rates to the original level. Moreover, hydrodynamic 

retention is not a very large contributor to the overall levels of polymer retention in field-

scale polymerfloods. We used an adsorption isotherm as shown in Fig. 2.2 for our 

studies.  
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Fig. 2.2—Polymer adsorption vs. polymer concentration. 

 

2.1.3 Permeability Reduction 

A further effect caused by the adsorption and mechanical entrapment is a reduction in 

the rock permeability to the aqueous phase. Permeability reduction depends on the type 

of polymer and is directly correlated to the polymer concentration. 

Permeability reduction is determined by first flooding a porous media with 

polymer solution and then completely displacing the polymer with brine. Residual 
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resistance factor (RRF) is used to describe permeability reduction, which is defined as 

the ratio of the brine mobility before contact with polymer to the brine mobility after all 

mobile polymer has been displaced. We considered RRF equal to 3 for our studies. 

 

2.1.4 Inaccessible Pore Volume 

Because of large polymer molecule size, a portion of total pore space within the 

reservoir is inaccessible. This causes the polymer solution to travel at a faster velocity 

and thus counters the delay caused by polymer retention. We considered 20% pore 

volume to be inaccessible for our studies. 

 

2.1.5 Non-Newtonian Rheology 

Polymer solution, unlike water, does not show the same viscosity at all flow rates. At 

low flow rates the viscosity of the solution is approximately constant and depends only 

on the concentration of polymer in the solution. With increase in the flow rates, the 

solution viscosity reduces in a reversible manner. However, at even higher rates the large 

polymer molecules begin to break up and the viscosity approaches a limiting value not 

much greater than water viscosity. The effects tend to be greatest in the vicinity of 

injection wells where the fluid velocity is greatest, and so is the shear rate. We modeled 

non-Newtonian rheology (Fig. 2.3) by specifying a factor by which the polymer solution 

viscosity reduces corresponding to increasing water phase flow velocity (ECLIPSE
©

). 

 

2.2 Polymerflood Rate Optimization 

The streamline-based rate optimization approach discussed earlier is used to obtain an 

optimal as well as accelerated production strategy for polymerflooding. We trace 

streamlines using the fluid fluxes derived from the finite-difference flow simulation 

(Jimenez et al. 2008). The primary objective during sweep efficiency maximization is to 

equalize arrival time of water and polymer fronts at all producers within selected sub-

regions of a polymerflood project. Additionally, accelerated production strategies were 
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obtained by using norm weight with an objective to increase NPV. The geologic 

uncertainty is accounted using a stochastic framework for multiple realizations. 
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Fig. 2.3—Shear thinning with flow at 500 ppm polymer concentration. 

 

2.2.1 Optimization After Polymer Breakthrough 

Since we have formulated our optimization in terms of arrival time of the water and 

polymer fronts at the producers, a natural question arises that what happens after water 

and polymer breakthrough. The optimization is carried out after water breakthrough at a 

well by incorporating the well water cut into the objective function as described earlier 

in Eq. 1.3. A similar modification is done to the arrival time after polymer breakthrough 

for produced polymer concentration at the well as follows: 

 

 mi,polmi,mi, f-1*)(t)(t qq  ……..…………..…………………......….……...…. (2.1) 

 

where 
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 (conc.) at well productionpolymer  allowableMax 

(conc.) at well producedPolymer 
f mi,pol 

…...………….…...….…… (2.2) 

 

Thus after polymer breakthrough, the arrival time is further rescaled based on 

fraction of produced polymer at the well w.r.t maximum allowable polymer production 

at that well (fpol i,m). As a consequence, the rate allocation to the well will be lowered in 

relation to the wells with less polymer production. The well is shut when the produced 

polymer concentration reaches the maximum limit. 

 

2.3 Illustration of the Approach 

In this section, we illustrate our approach for five-spot polymerflooding in a 2D 

heterogeneous example. We first illustrate the benefits of polymerflooding over 

waterflooding for the base case. Then we demonstrate the application of our approach 

for maximizing sweep efficiency and production acceleration during polymerflooding 

using incremental oil recovery and reduced polymer recycling. 

 

 

Fig. 2.4—2D heterogeneous example: Permeability distribution and well location. 
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The 2D example case (50x50 grid) has a fixed porosity of 0.23 and a spatially 

heterogeneous permeability (Fig. 2.4). We considered three base cases for injected 

polymer concentrations of 0 ppm, 500 ppm and 1000 ppm. The 0 ppm case corresponds 

to waterflooding. The field production and injection rate equals to 400 RB/D and the 

total production rate is equally divided among the producers in the base cases. 

The high permeability channel (Fig. 2.4) connects the injector I1 to the producer 

P2 leading to preferential fluid movement towards P2 and reduced sweep efficiency 

during waterflooding. Fig. 2.5 shows time-of-flight and water saturation maps after 2 

years for the three base cases. The water front moves almost as a shock front with the 

addition of polymer resulting in delayed water breakthrough and increased water 

movement towards low permeability regions. However, even during polymerflooding, 

the front follows the preferential flow path towards producers in high permeability 

regions (Fig. 2.5). This gives opportunity for improving sweep efficiency during 

polymerflooding through rate control. 
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Fig. 2.5—Time-of-flight and water saturation maps after 2 years for the three base cases 

corresponding to 0 ppm, 500 ppm and 1000 ppm polymer concentration. 
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We carried out rate optimization for norm weights of 0 and 100 for the three base 

cases mentioned earlier, in timestep of 6 months for a total duration of 10 years. A norm 

weight of 0 corresponds to maximization of sweep efficiency while a norm weight of 

100 results in accelerated production strategy. The constraints imposed during 

optimization are as follows: 

 

• Field production rate ≤ 500 RB/D 

• Well production rate ≤ 250 RB/D for each well 

• Production FBHP ≥ 1000 Psia 

• Injection FBHP ≤ 7000 Psia 

• Water cut limit: 90% 

• Max allowable polymer concentration at producers: 250 ppm 

 

Fig. 2.6 shows the water saturation maps at three different times for the base 

cases corresponding to 0 ppm and 1000 ppm polymer concentration in the first and 

second column respectively. The respective saturation maps for sweep efficiency 

maximization (norm weight–0) are shown in the third and fourth column. It is evident 

from the last two columns that optimization results in a better sweep for both the cases 

by diverting flood front towards wells in low permeability regions. 

The rate allocation for producer P2 for 1000 ppm polymerflooding is shown in 

Fig. 2.7a. As mentioned earlier, a high permeability channel connects producer P2 to 

injector I1.This results in water breakthrough after two years of production in the base 

case and the well shuts down after seven years of production owing to produced polymer 

concentration exceeding the maximum allowable limit of 250 ppm (Fig. 2.7b). During 

sweep efficiency maximization only (norm weight–0), a very low rate is allocated to 

producer P2 from the beginning to equalize the arrival time at all the producers by 

delaying water breakthrough at producer P2. Including production acceleration (norm 

weight–100) results in relatively higher rate allocation to producer P2 to achieve faster 

sweep leading to early water breakthrough. 
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Fig. 2.6—Water saturation maps for base case and sweep efficiency maximization (norm weight–0) 

corresponding to 0 ppm and 1000 ppm polymer concentration at three different times. 
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Fig. 2.7—(a) Production rates for well P2 for base case, sweep efficiency maximization (norm 

weight–0) and production acceleration (norm weight–100) at 1000 ppm polymer concentration (b) 

Water cut for well P2 for respective cases. 
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The rate allocation for producer P3 for 1000 ppm polymerflooding is shown in 

Fig. 2.8a.  Because of presence of a barrier, the well has least connectivity to the 

injector. Water breakthrough occurs in producer P3 after six years of production in the 

base case as opposed to two years for producer P2 (Fig. 2.8b). During sweep efficiency 

maximization (norm weight–0), a very high rate is allocated to producer P3 from the 

beginning to equalize the arrival time at all the producers. Production acceleration (norm 

weight–100) results in relatively higher rate allocation to producer P3 to achieve faster 

sweep leading to early water breakthrough. 
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Fig. 2.8—(a) Production rates for well P3 for base case, sweep efficiency maximization (norm 

weight–0) and production acceleration (norm weight–100) at 1000 ppm polymer concentration (b) 

Water cut for well P3 for respective cases. 

 

The effect of rate optimization on field water cut is in accordance to the well 

performances discussed earlier. The optimal rates corresponding to sweep efficiency 

maximization (norm weight–0) result in delayed water breakthrough and reduced water 

recycling (Fig. 2.9a). However, the injection and production rates increase during 

acceleration (norm weight–100), resulting in early water breakthrough (Fig. 2.9b). Fig. 

2.10a shows the increase in oil recovery for the base case with increase in polymer 

concentration. Maximizing sweep efficiency (norm weight–0) results in further increase 

in oil recovery for the three cases for approximately the same amount of water injection 
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(Fig. 2.10b). Production acceleration (norm weight–100) results in further increase in oil 

recovery owing to increased cumulative water injection. 
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Fig. 2.9—(a) Field water cut for base case and sweep efficiency maximization (norm weight–0) 

corresponding to 0 ppm, 500 ppm and 1000 ppm polymer concentration (b) Effect of production 

acceleration (norm weight–100) on field water cut corresponding to 0 ppm, 500 ppm and 1000 ppm 

polymer concentration. 
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Fig. 2.10—(a) Oil recovery (w.r.t OOIP) after 10 years for base case, sweep efficiency maximization 

(norm weight–0) and production acceleration (norm weight–100) corresponding to 0 ppm, 500 ppm 

and 1000 ppm polymer concentration (b) Cumulative water injection for respective cases. 

 

It is interesting to express the above results in terms of field-wide utility factor 

which is defined as the amount of polymer required per incremental oil volume produced 

(Clemens et al. 2010). Utility factor gives an indication of incremental operating cost 

and serves as a key parameter to assess the viability of polymer injection project. Fig. 
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2.11 shows the utility factor for 500 ppm and 1000 ppm polymerflood for various cases. 

Maximizing sweep efficiency (norm weight–0) results in decrease in utility factor for 

both 500 ppm and 1000 ppm polymerflood. Production acceleration (norm weight–100) 

further decreases the utility factor owing to increased cumulative water injection. These 

results clearly demonstrate the practical viability of our approach. 
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Fig. 2.11—Utility factor for base case, sweep efficiency maximization (norm weight–0) and 

production acceleration (norm weight–100) corresponding to 500 ppm and 1000 ppm polymer 

concentration. 

 

2.4 Synthetic Field Example 

In this section we illustrate the practical feasibility of the rate optimization approach for 

polymerflooding using a field-scale example. 

The injection and production data used in this example correspond to the 

Goldsmith field (Jasek et al. 1998) which is located on eastern flank of the Central Basin 

Platform in the Permian basin. Two structural closures, ‘north dome’ and ‘south dome’, 

exist on the San Andres unit with the productive interval lying at an approximate depth 

of 4200 ft. The Goldsmith San Andres Unit (GSAU) consists of the south flank of the 

north dome and the entire south dome (Fig. 2.12). Waterflooding began in GSAU in 

1954 with peripheral injection below the producing oil-water contact. By 1995, majority 

of wells were plugged due to high water cut, when it was planned to carry out a pilot 
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study for CO2 miscible flooding. To our knowledge, no polymerflooding was carried out 

in this field. Nevertheless, the highly heterogeneous permeability distribution makes it a 

good candidate for illustrating our approach. We adjusted reservoir properties, 

specifically permeability, to allow for polymer injection. 

 

   
Fig. 2.12—GSAU top of San Andres formation structure map (Jasek et al. 1998). 

 

We applied our proposed approach to the CO2 pilot area in the GSAU, which 

consists of nine inverted five-spot patterns covering 320 acres. The study area was 

discretized into 58x53x10 mesh containing 11 water injectors and 31 producers. The 

base case considers the actual field production/injection history during the first 21 years 

of waterflooding (Fig. 2.13). Seven time-steps were considered to account for changing 

production/injection rates and well schedule.  

A 500 ppm polymerflood for the base case results in incremental oil recovery of 

4.7% OOIP over the waterflood. We demonstrate that the rate optimization approach 

suggest a production strategy resulting in better sweep during polymerflooding. Both 
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production and injection rates were optimized, while polymer injection concentration 

was kept constant at 500 ppm. The production wells were subdivided into groups based 

on sensitivity Sij which quantifies the changes in arrival time at producer i because of 

small changes in the rate of injector j. The group selection is dynamic and repeated for 

every time-step to account for changing production/injection rates, mobility effects and 

infill drilling.  

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12 14 16 18 20 22

V
o
id

a
g
e
 R

a
te

 ,
 R

B
/D

Time, years

Field Production

Field Injection

Optimization Constraint

 

Fig. 2.13—Field production/injection history. Maximum production/injection rate: 4000 RB/D (first 

8 years), 8000 RB/D (next 13 years). 

 

We obtained the optimal rates for maximizing sweep efficiency (norm weight–0) 

for 0 ppm and 500 ppm polymerflood. The 0 ppm polymerflood corresponds to 

waterflood. Additionally, an accelerated production strategy was obtained using a norm 

weight of 10000. The constraints imposed during optimization are as follows: 

 

• Field production rate ≤ 4000 RB/D (first 8 years), 8000 RB/D (next 13 years)  

• Well production rate ≤ 900 RB/D for each well 

• Well injection rate ≤ 1200 RB/D for each well 

• Production FBHP ≥ 1000 Psia 
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• Injection FBHP ≤ 4500 Psia 

• Water cut limit: 98% 

• Max allowable polymer concentration at producers: 450 ppm 

 

2.4.1 Polymerflood Optimization Using Single Geologic Model 

In this section, we discuss application of our approach for a single realization (Fig. 

2.14). The impact of geological uncertainty is not considered during this optimization 

and will be discussed in the next example. 

 

   
Fig. 2.14—Field permeability distribution and well location. 

 

Maximizing sweep efficiency (norm weight–0) result in delayed water 

breakthrough and reduced water recycling for both the base cases of 0 ppm and 500 ppm 

(Fig. 2.15a). During production acceleration (norm weight–10000), the injection and 

production rates increases resulting in early water breakthrough as expected (Fig. 2.15b). 

Fig. 2.16a shows the increase in oil recovery for the base case with polymer injection. 

The optimal rates corresponding to norm weight of 0 and 10000 result in further increase 
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in oil recovery for the two cases. It should be noted that cumulative water injected 

during sweep efficiency maximization is approximately same as that for the base case 

(Fig. 2.16b). The decrease in utility factor for sweep efficiency maximization (norm 

weight–0) during polymerflood (Fig. 2.17) demonstrates the practical feasibility of our 

approach. Production acceleration results in further decrease in the utility factor owing to 

increased cumulative water injection. 
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Fig. 2.15—(a) Field water cut for base case and sweep efficiency maximization (norm weight–0) 

corresponding to 0 ppm and 500 ppm polymer concentration (b) Effect of production acceleration 

(norm weight–10000) on field water cut corresponding to 0 ppm and 500 ppm polymer 

concentration. 
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Fig. 2.16—(a) Oil recovery (w.r.t OOIP) after 21 years for base case, sweep efficiency maximization 

(norm weight–0) and production acceleration (norm weight–10000) corresponding to 0 ppm and 500 

ppm polymer concentration (b) Cumulative water injection for respective cases. 
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Fig. 2.17—Utility factor after 21 years for base case, sweep efficiency maximization (norm weight–0) 

and production acceleration (norm weight–10000) corresponding to 500 ppm polymer 

concentration. 

 

2.4.2 Polymerflood Optimization Using Multiple Geologic Models 

In this section we discuss application of our approach using multiple realizations to 

address geological uncertainty. Multiple distributions of porosity were generated using 

Sequential Gaussian Simulation, conditioned to well data and secondary seismic 

attributes. The permeability distributions were generated via cloud transform based on 

porosity-permeability relationship. 

The realization from the previous case was considered as the reference 

realization. We carried out optimization using 10 realizations (including reference 

realization) using the expected value formulation as discussed before, under risk neutral 

conditions (r–0). To illustrate the variability amongst the geologic realizations, we have 

shown the permeability distribution in the top layer for each of the 10 realizations in Fig. 

2.18. The optimized rates thus obtained were applied to a blind realization which was 

not included in the optimization process. To illustrate the robustness of our approach, we 

applied to the same blind realization the optimal rates obtained from the single 

realization optimization as discussed in the previous section. For comparison purposes, 

the top layer permeability for the blind realization used to test the optimization methods 

is shown in Fig. 2.19.  
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Fig. 2.20 compares the performance of the blind realization in terms of field 

water cut and oil recovery under two scenarios. The first scenario uses the rate derived 

from optimization of single realization (SR), whereas the second scenario accounts for 

geologic uncertainty based on the expected value of arrival time residuals from multiple 

realizations (MR). We used norm weight of 0 for both the scenarios. The optimal rates 

corresponding to MR optimization resulted in higher oil recovery and lower utility factor 

(Fig. 2.21) over SR optimization, when applied to the blind realization. Since, the 

realizations have been generated using a single variogram (including blind realization), 

MR optimization doesn’t result in significant reduction in utility factor over SR 

optimization. 

 

 

Fig. 2.18—Permeability (layer 1) for 10 realizations used in stochastic optimization. 

 

    

Fig. 2.19—Permeability (layer 1) for blind realization. 
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Fig. 2.20—(a) Field water cut for base case and sweep efficiency maximization (norm weight–0) 

corresponding to 500 ppm polymer concentration for single realization (SR) and multiple 

realizations (MR) (b) Oil recovery (w.r.t OOIP) after 21 years for respective cases. 
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Fig. 2.21—Utility factor after 21 years for base case and sweep efficiency maximization (norm 

weight–0) corresponding to 500 ppm polymer concentration for single realization (SR) and multiple 

realizations (MR). 

 

Finally, in Fig. 2.22 we show the oil saturation after 21 years for base case and 

reduction in oil saturation with sweep efficiency maximization (norm weight–0) 

corresponding to 500 ppm polymer concentration for rates derived from single 

realization and multiple realizations optimization. This clearly demonstrates the 

robustness of the approach to account for geologic uncertainty and is consistent with the 

improvement in oil recovery. 
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Fig. 2.22—Oil saturation after 21 years for base case and reduction in oil saturation with sweep 

efficiency maximization (norm weight–0) corresponding to 500 ppm polymer concentration for 

single realization (SR) and multiple realizations (MR). 

 

2.5 Summary 

In this chapter, we demonstrated an efficient approach for optimizing polymerflood via 

rate control. The approach relies on making an optimal decision based on a compromise 

between maximizing sweep efficiency and accelerating production. Because of 

analytical computation of the sensitivities and the gradient and Hessian of the objective 

function, the approach is computationally efficient and suitable for large field cases. The 

hierarchy of rate and pressure constraints is captured during optimization through 

comprehensive constraint matrices. Moreover, the approach can account for geologic 

uncertainty using multiple realizations via a stochastic optimization framework. 

We show that the approach yields robust rates using a 3D field-scale example. 

Significant improvement in oil recovery and reduction in polymer recycling was 

achieved over the base case with the application of rate optimization. Geologic 

uncertainty was addressed using 10 history matched realizations for optimization and 

applying the rates derived from optimization to a blind realization. 
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CHAPTER III 

OPTIMAL CO2 FLOOD MANAGEMENT VIA RATE CONTROL 

 

Carbon dioxide has been successfully used as EOR agent for decades because of its 

favorable properties of swelling oil, reducing oil viscosity and reducing residual oil 

saturation (Holm and Josendal 1974; Stalkup 1983). However, despite its high local 

displacement efficiency, the process has poor sweep efficiency due to viscous fingering 

caused by unfavorable mobility ratio and gravity segregation caused by density 

difference between injected and displaced phases (Christie and Bond 1987). Caudle and 

Dyes (1958) proposed the control of this fingering and poor conformance by injecting 

water along with gas to reduce gas mobility. Strategies like water-alternating-gas 

(WAG) injection have been thus applied in field to mitigate this problem. 

The sweep efficiency during gasflood depends upon mobility ratio (Habermann 

1960), viscous-to-gravity ratio (Craig et al. 1957; Spivak 1974) and reservoir 

heterogeneity (Koval 1963; Fayers et al. 1992). The design parameters influencing the 

sweep efficiency during CO2 flood have been discussed by several authors (Green and 

Willhite 1998; Jarrell et al. 2002). Moreover, modification to uniform coinjection of 

water and gas (Stone 1982; Jenkins 1984) have been suggested by Rossen et al. (2010) 

to maximize the distance to the point of segregation of injected gas/water mixture. 

However, guidelines for selection of optimal well production/injection rates during CO2 

flood still remain to be established.  

In this chapter, we extend the role of rate optimization for CO2 flooding to 

maximize sweep efficiency and minimize CO2 recycling by delaying CO2 breakthrough. 

First, we outline the details of CO2 flood modeling considered for our work. Then, we 

discuss the modification made to the approach (Taware et al. 2010). Finally, we 

demonstrate the robustness and application of our approach using a 2D heterogeneous 

cross section and a synthetic field application for CO2 flood and WAG. 
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3.1 CO2 Flood Modeling 

Depending upon the properties of the fluids at reservoir condition, the displacement of 

the oil by CO2 can be classified as immiscible and miscible (Holm and Josendal 1974). 

The immiscible displacement occurs at pressures below minimum miscibility pressure 

(MMP) during which incremental oil is recovered because of oil swelling, reduced oil 

viscosity and lower interfacial tension between CO2 and oil. However, the interfacial 

tension is not zero resulting in some residual oil saturation. On the other hand, miscible 

displacement occurs at pressures above MMP, in which over 95% of oil contacted can be 

displaced because of zero interfacial tension, in addition to factors mentioned earlier. 

We used a three-component modified black oil model (ECLIPSE
©

) consisting of 

reservoir oil, injection gas (solvent) and water to describe miscible displacement of oil 

by CO2 as suggested by Todd and Longstaff (1972). The Todd-Longstaff empirical 

model account for physical dispersion by using mixing parameter ω, the value of which 

lies between 0 and 1, to represent the size of the dispersed zone in each grid cell. The 

solvent and reservoir oil components are assumed to be miscible in all proportions and 

consequently only one hydrocarbon phase exists in the reservoir. The model then 

computes effective viscosity and density for oil-solvent system based on ω. 

We considered ω = 0.67 for our studies with a corresponding residual oil 

saturation of 12%. Field pressure during CO2 flood was maintained above MMP for all 

cases studied to maintain miscibility. 

 

3.2 CO2 Flood Rate Optimization 

The streamline-based rate optimization approach discussed earlier is used to obtain an 

optimal as well as accelerated production strategy for CO2 flooding. We trace 

streamlines using the fluid fluxes derived from the finite-difference flow simulation 

(Jimenez et al. 2008). Our approach relies on equalizing arrival time of the flood front at 

all producers to maximize the areal sweep efficiency and an additional ‘norm’ constraint 

on the arrival times to achieve high viscous-to-gravity ratio (VGR) to minimize gravity 
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segregation. VGR as defined by Fayers and Muggeridge (1990) and written by Tchelepi 

and Orr (1994) for a cross section of thickness h and length L is: 

 

























L

h

gk

v
VGR

v


2

……..…..……………………………………………..……...… (3.1) 

 

where v  is the average Darcy velocity,   is viscosity difference between oil and CO2, 

  is density difference between oil and CO2 and vk  is the geometric mean of 

permeability. The ‘optimal’ rate strategy is decided based upon a compromise between 

maximizing sweep efficiency and production acceleration. The geologic uncertainty is 

accounted using a stochastic framework for multiple realizations. 

 

3.2.1 Optimization After CO2 Breakthrough 

Since we have formulated our optimization in terms of arrival time of the CO2 front at 

the producers, a natural question arises that what happens after CO2 breakthrough. The 

optimization is carried out after CO2 breakthrough at a well by incorporating the well 

gas-oil ratio (GOR) into the objective function as follows: 

 

 mi, gasmi,mi, f-1*)(t)(t qq  ……..…………..…………………...….....….……...…. (3.2) 

 

where  

 

  GOR  wellallowableMax 

 GOR Well
f mi,gas 

…………………………..………….……….…… (3.3) 

 

In the above expression, the arrival time, ti,m, at well i belonging to group m has 

been altered to incorporate the well GOR, fGOR i,m. The modified arrival time is the same 

as the original arrival time if GOR is zero. When the well GOR is greater than zero, the 

original arrival time will be rescaled based on the GOR level w.r.t the maximum 
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allowable limit. The extent of reduction can be controlled by the exponent term, α. As a 

consequence, the rate allocation to the well will be lowered in relation to the wells with 

less GOR. The well is shut when the GOR reaches the maximum limit. 

 

3.3 Illustration of the Approach 

In this section, we illustrate our approach for CO2 flooding using a 2D heterogeneous 

cross section (Fig. 3.1). The cross section (200x1x180 grid) has a fixed porosity of 0.10 

and spatially heterogeneous permeability. A producer and an injector with 45 ICVs each 

have been completed on either sides of the cross section. Following constraints were 

imposed during rate optimization: 

 

• Well production/injection rate ≤ 9000 RB/D 

• ICV production/injection rate ≤ 450 RB/D 

• Production FBHP ≥ 2000 psia 

• Injection FBHP ≤ 6000 psia  

• ICV GOR limit: 100 Mscf/STB 

 

The base case considers reactive control where production/injection ICV rate 

equals to 150 RB/D. The production ICVs are shut when their GOR exceeds 100 

Mscf/STB. The combined effects of heterogeneity, viscous fingering and gravity 

segregation lead to preferential CO2 movement towards the top production ICVs in the 

base case (Fig. 3.2a).  This results in early CO2 breakthrough and reduced sweep 

efficiency. Fig. 3.2b shows the time-of-flight map after 2 years for the base case, which 

suggest that there is sufficient scope for improving sweep and delaying CO2 

breakthrough by equalizing CO2 front arrival time at production ICVs through rate 

control.  
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Fig. 3.1—2D cross section: Permeability distribution and well location. 

 

    

Fig. 3.2—(a) Gas saturation after 2 years of CO2 injection for the base case. (b) Corresponding time-

of-flight map in days for the base case. 

 

We obtained optimal rates for norm weights of 0, 10, 100 and 1000 for 20 years 

in timestep of 6 month for the base case mentioned above. A norm weight of 0 

corresponds to maximizing sweep efficiency while norm weights of 10, 100 and 1000 

result in accelerated production strategy. 

Fig. 3.3 shows the gas saturation maps at four different times for base case, 

sweep efficiency maximization (norm weight–0) and acceleration (norm weight–1000). 

The sweep is dominated by gravity segregation for base case. For norm weight of 0, the 

displacement rate is sufficiently low so that the gravity tongue still exists. However, 

optimal rates corresponding to norm weight of 0 results in improved injection efficiency, 

as explained later. The transition zone between oil and gas is relatively thin compared to 

reservoir thickness as mentioned by Fayers and Muggeridge (1990). It has been shown 

in Fig. 2.6 that equalizing front arrival time maximizes areal sweep for waterflood and 
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polymerflood. However, we don’t see those effects for this case which is being limited 

to a cross-section. As the norm weight increases, the production rates and CO2 injection 

rates approach the upper limit for ICVs and well. This increases VGR as shown in Fig. 

3.4 and, the gravity tongue loses strength and becomes smaller. The VGR has been 

obtained by using geometric mean of permeability for the heterogeneous cross section. 

Because of low displacement rate, optimization corresponding to norm weight of 0 

results in low VGR. 
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Fig. 3.3—Gas saturation maps for base case, sweep efficiency maximization (norm weight–0) and 

production acceleration (norm weight–1000) at four different times. 

 

The cumulative voidage production for ICV-1 of producer is shown in Fig. 3.5a 

for base case, sweep efficiency maximization (norm weight–0) and acceleration (norm 

weight–1000). ICV-1 gets shut when its GOR exceeds 100 Mscf/STB during base case 

and sweep efficiency maximization. Increasing the norm weight reduces gravity 

segregation, thus allowing ICV-1 to produce for a longer duration without CO2 
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breakthrough. Fig. 3.5b shows cumulative voidage production for ICV-45 of producer 

for respective cases. In order to divert CO2 towards lower ICVs, their production rate 

approaches the maximum limit for norm weight of 0. This results in high cumulative 

production for sweep efficiency maximization as compared to base case. However, 

increasing norm weight reduces gravity segregation and lower rates are allocated to 

producer’s lower ICVs. 
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Fig. 3.4—VGR for base case, sweep efficiency maximization (norm weight–0) and production 

acceleration (norm weight–1000) at different times. 
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Fig. 3.5—(a) Cumulative voidage production for ICV-1 (PROD1) for base case, sweep efficiency 

maximization (norm weight–0) and production acceleration (norm weight–1000). (b) Cumulative 

voidage production for ICV-45 (PROD1) for respective cases. 
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Fig. 3.6—(a) Cumulative voidage injection for ICV-1 (INJ1) for base case, sweep efficiency 

maximization (norm weight–0) and production acceleration (norm weight–1000). (b) Cumulative 

voidage injection for ICV-45 (INJ1) for respective cases. 

 

Fig. 3.6a shows that the cumulative voidage injection for ICV-1 of injector for 

sweep efficiency maximization (norm weight–0) is less than that for base case. The 

cumulative voidage injection for ICV-45 of injector for respective cases is shown in Fig. 

3.6b. ICV-45 gets shut when its injection FBHP exceeds 6000 psia during base case and 

acceleration. In order to divert CO2 towards lower ICVs, the injection rate from lower 

ICVs approaches the maximum limit for maximizing sweep efficiency. 

The effect of rate optimization on field GOR is in accordance to the ICV 

performance discussed earlier. The optimal rates corresponding to sweep efficiency 

maximization (norm weight–0) result in delayed CO2 breakthrough (Fig. 3.7a). 

However, the injection and production rates increase during acceleration (norm weight–

1000), resulting in early CO2 breakthrough and more CO2 recycling (Fig. 3.7b). 

The increase in oil recovery with maximizing sweep efficiency (norm weight–0) 

is shown in Fig. 3.8a. It should be noted that cumulative CO2 injected for maximizing 

sweep efficiency is significantly less compared to that for base case (Fig. 3.8b). 

Acceleration (norm weight–10, 100 and 1000) results in increase in oil recovery owing 

to improved VGR caused by higher CO2 injection rates. 

It is interesting to express the results for rate optimization in terms of field-wide 

injection efficiency which is defined as ratio of cumulative oil produced to cumulative 

CO2 injected at reservoir conditions (Datta-Gupta and King 2007). Injection efficiency 
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thus indicates how efficiently injected CO2 is used, a lower value of which corresponds 

to large CO2 recycling. Fig. 3.9 illustrates the injection efficiency for various norm 

weights. The optimal rates corresponding to norm weight of 0 increase injection 

efficiency significantly over base case. The results clearly demonstrate the trade-off 

between improving recovery by accelerating production and improving injection 

efficiency by reducing CO2 recycling.  
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Fig. 3.7—(a) Field GOR for base case, sweep efficiency maximization (norm weight–0) and 

production acceleration (norm weight–1000). (b) Cumulative field gas production for respective 

cases. 

 

52.5
54.3

60.0

64.4

75.0

40

45

50

55

60

65

70

75

80

Base Norm Wt.-0 Norm Wt.-10 Norm Wt.-100 Norm Wt.-1000

O
il 

R
e
c
o

v
e
ry

, 
%

 O
II

P

Case
  

54

29

60

69

96

0

20

40

60

80

100

120

Base Norm Wt.-0 Norm Wt.-10 Norm Wt.-100 Norm Wt.-1000

C
u
m

u
la

ti
v
e
 G

a
s
 I

n
je

c
te

d
, 

B
c
f

Case
 

Fig. 3.8—(a) Oil recovery (w.r.t OOIP) after 20 years of CO2 flood for base case, sweep efficiency 

maximization (norm weight–0) and production acceleration (norm weight–10, 100 and 1000). (b) 

Cumulative gas injection for respective cases. 
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Fig. 3.9—Injection efficiency for base case, sweep efficiency maximization (norm weight–0) and 

production acceleration (norm weight–10, 100 and 1000). 

 

3.4 Synthetic Field Example 

In this section, we illustrate the application of the rate optimization approach for CO2 

and WAG flooding using a 3D synthetic field case, the Brugge field. This field case was 

set up as part of an SPE Applied Technology Workshop (ATW) to test the use of history 

matching and flood optimization methods (Peters et al. 2010). 

The structure of the Brugge field consists of an E-W elongated half-dome with a 

large boundary fault at its north edge, and one internal fault with a modest throw at an 

angle of around 20 degrees to the north boundary fault. The field properties are based on 

a North Sea Brent-type field. A set of 104 realizations were generated based on the 

reservoir properties and well log attributes extracted from a high-resolution geologic 

model. The simulation model consists of 60000 grid cells with 9 layers. It has 20 vertical 

producers completed mainly in the top 8 layers and 10 peripheral injectors completed in 

all 9 layers (Fig. 3.10).  

The first 10 years of the production history of the field was provided for history 

matching purposes (Peters et al. 2010). The production history was based on a ‘true 

model’ response with added noise. The closed loop control approach consisted of two 

steps: (i) Model updating using the field production history for the first 10 years and (ii) 

Production optimization over the next 20 years. In this study, we focus on the rate 
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optimization part for the Brugge field. The details of the history matching have been 

discussed in a previous paper (Alhuthali et al. 2010). We carry out the optimization for 

20 years under following three scenarios: 

 

• Rate optimization for CO2 flooding using a single history matched model 

(reference realization). 

• Rate optimization for CO2 flooding using 10 history matched models (including 

reference realization) and application of the optimized rates on a blind 

realization. 

• Rate optimization for WAG flooding using reference realization. 

 

Group 1

Group 2

 

Fig. 3.10—Brugge field: Permeability distribution and well location. 

 

The wells were divided into two groups based on the location of the internal fault 

(Fig. 3.10) to calculate analytical sensitivities of the CO2 front arrival times with respect 

to production/injection rates. The wells in the Brugge field are equipped with three 

inflow control valves (ICVs), with the first ICV completed in layers 1 and 2; the second 

ICV completed in layers 3, 4 and 5; and the third ICV completed in layers 6, 7, 8 and 9. 

The optimization is implemented by controlling the rates of the ICVs. Optimization was 

carried out in timestep of 6 months using norm weights of 0 and 10000. 
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The three different levels of constraints have been illustrated in Fig. 3.11. The 

Brugge field has 53 production ICVs and 30 injection ICVs. Comprehensive constraint 

matrices were set up for the field-scale optimization under following operational and 

facility constraints: 

 

• Field production/injection rate ≤ 40000 RB/D 

• Well and ICV production rate ≤ 3000 RB/D 

• Well and ICV injection rate ≤ 4000 RB/D 

• Production FBHP ≥ 740 Psia 

• Injection FBHP ≤ 2626 Psia 

• Water cut limit: 90% 

• GOR limit: 100 Mscf/STB 

 

The constraint matrices were updated dynamically to ensure that the above-

mentioned constraints are satisfied at each hierarchical level during all time intervals. 
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Robust modeling of operational limitations and facilities constraints 
at all the levels of the production hierarchy in SQP framework

Multilevel 
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Fig. 3.11—Hierarchical production and facility related constraints considered for rate optimization. 
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3.4.1 CO2 Flood Optimization Using Single Geologic Model 

In this section we limit our optimization to a single geologic model. The impact of 

geological uncertainty will be discussed in the next example. 

The base case considers reactive control where production/injection ICVs are 

operated at equal rates subject to constraints mentioned earlier. The production ICVs are 

shut as their water-cut exceeds 90% or GOR exceeds 100 Mscf/STB. We carried out rate 

optimization using norm weights of 0 and 10000 for the base case mentioned above. As 

shown in Fig. 3.12a, for injector ‘BR-I6’, ICVs–1, 2 and 3 operate at equal rates until 

injection FBHP for ICV–2 reaches the constraint specified. The cumulative CO2 

injection is thus similar for the three ICVs for base case (Fig. 3.12b). Sweep efficiency 

maximization (norm weight–0) allocates lower rates to ICV–2 and higher rates to ICV–3 

(Figs. 3.13a and 3.13b), to improve areal sweep. As shown in Figs. 3.14a and 3.14b, 

the injection through ICV–3 increases further with acceleration. Fig. 3.15 shows the 

permeability distribution from layers one to nine for index I–72 with well locations for 

‘BR-I6’ and ‘BR-P16’.  
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Fig. 3.12—(a) Voidage injection rate for ICVs–1, 2 and 3 of injector ‘BR-I6’ for base case (b) 

Cumulative voidage injection for respective ICVs. 
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Fig. 3.13—(a) Voidage injection rate for ICVs–1, 2 and 3 of injector ‘BR-I6’ for sweep efficiency 

maximization (norm weight–0) (b) Cumulative voidage injection for respective ICVs. 
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Fig. 3.14—(a) Voidage injection rate for ICVs–1, 2 and 3 of injector ‘BR-I6’ for production 

acceleration (norm weight–10000) (b) Cumulative voidage injection for respective ICVs. 
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Fig. 3.15—Permeability distribution (layers 1 to 9) for index I–72. 
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Fig. 3.16—Gas saturation along index I–72 after 5, 10 and 20 years of CO2 flood for base case, sweep 

efficiency maximization (norm weight–0) and production acceleration (norm weight–10000). 

 

The first row of Fig. 3.16 shows the gas saturation along index I–72 for base 

case, which shows gravity segregation at different times. The CO2 front lags behind for 

layers 3, 4 and 5 corresponding to ICV–2 owing to lower permeability and constrained 

injection at later times. The optimal rates corresponding to norm weight–0 result in 

higher gas saturation in layers 2 to 6 and better sweep of low permeability layers for I–

72. Acceleration reduces gravity segregation and improves sweep further. The second 

row in Fig. 3.17 shows the residual oil saturation for layer 2, 4 and 8 at the end of 20 

years of CO2 flood. As shown by third row of Fig. 3.17, the optimal rates corresponding 

to norm weight of 0 result in reduction of residual oil saturation at the end of CO2 flood, 

owing to better sweep in all of the layers. The last row of Fig. 3.17 shows further 

reduction in oil saturation with production acceleration. 
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Fig. 3.17—Oil saturation after 20 years of CO2 flood for base case, sweep efficiency maximization 

(norm weight–0) and production acceleration (norm weight–10000). 
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Fig. 3.18—(a) Incremental oil recovery (w.r.t OOIP) for 20 years of CO2 flood for base case, sweep 

efficiency maximization (norm weight–0) and production acceleration (norm weight–10000). (b) 

Cumulative gas injection for respective cases. 
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Fig. 3.19—Injection efficiency for base case, sweep efficiency maximization (norm weight–0) and 

production acceleration (norm weight–10000). 

 

Fig. 3.18a shows the increase in ‘incremental oil recovery’ with rate optimization 

for norm weights of 0 and 10000. The recovery shown in the figure corresponds to 

production during later 20 years w.r.t. OIIP. It should be noted that cumulative CO2 

injected for sweep efficiency maximization (norm weight–0) is less compared to that for 

the base case (Fig. 3.18b). Acceleration (norm weight–10000) results in increase in oil 

recovery owing to improved VGR caused by higher CO2 injection rates. The increase in 

injection efficiency with sweep efficiency maximization, as shown in Fig. 3.19, 

demonstrates the practical viability of our approach. Production acceleration, however, 

results in higher recovery at the expense of injection efficiency. 

 

3.4.2 CO2 Flood Optimization Using Multiple Models 

In this section we incorporate geologic uncertainty into the optimization using multiple 

geologic realizations. A set of 104 realizations were generated based on the reservoir 

properties and well log attributes extracted from a high-resolution geologic model. 

History matching was implemented for 30 realizations by changing the permeability 

field using streamline-based generalized-travel-time inversion (Alhuthali et al. 2010). 

The realization from the previous case was considered as reference realization. 

We considered 10 history matched realizations (including reference realization) of the 
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Brugge field for rate optimization. The optimization was carried out using the expected 

value formulation as discussed before, under risk neutral conditions (r–0). Fig. 3.20 

shows the permeability distribution in the top layer for each of the 10 realizations to 

illustrate variability amongst the realizations. The optimized rates thus obtained were 

applied to a blind realization which was not included in the optimization process. To 

illustrate the robustness of our approach, we applied to the same blind realization the 

optimal rates obtained from the single realization optimization as discussed in the 

previous section. For comparison purposes, the top layer permeability for the blind 

realization used to test the optimization methods is shown in Fig. 3.21.  

Fig. 3.22 compares the performance of the blind realization in terms of field 

GOR and oil recovery under two scenarios. The first scenario uses the rate derived from 

optimization of single realization (SR), whereas the second scenario accounts for 

geologic uncertainty based on the expected value of arrival time residuals from multiple 

realizations (MR). We used norm weight of 0 for both the scenarios. 

 

 

Fig. 3.20—Permeability (layer 1) for 10 history matched realizations used in stochastic optimization. 
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Fig. 3.21—Permeability (layer 1) for blind realization. 
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Fig. 3.22—(a) Field GOR for base case and sweep efficiency maximization (norm weight–0) for rate 

optimization of single realization (SR) and multiple realizations (MR) (b) Incremental oil recovery 

(w.r.t OOIP) for 20 years of CO2 flood for respective cases. 

 

The optimal rates corresponding to MR optimization resulted in higher oil 

recovery and higher injection efficiency (Fig. 3.23) over SR optimization, when applied 

to the blind realization. The results clearly demonstrate the ability of our approach to 

address geologic uncertainty during field-scale flood optimization. 
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Fig. 3.23—Injection efficiency for base case and sweep efficiency maximization (norm weight–0) for 

rate optimization of single realization (SR) and multiple realizations (MR). 

 

3.4.3 WAG Flood Optimization Using Single Geologic Model 

In this section we illustrate the application of our approach for WAG flooding using the 

reference realization.  

The base case considers alternate injection of water and CO2 for 4 months and 2 

months respectively under reactive control described earlier. This results in WAG ratio 

(volume water/volume CO2 at reservoir condition) of 2:1 during each cycle (Fig. 3.24a). 

The optimal production/injection rates for maximizing sweep efficiency were 

obtained using norm weight of 0. The average WAG ratio for 20 years of production for 

sweep efficiency maximization is close to that for the base case. However, as shown in 

Fig. 3.24b, the WAG ratio for each cycle varies from 1.2 RB/RB to 3.9 RB/RB. 

Acceleration corresponding to norm weight of 10000 causes the injection rate, for both 

water and CO2, to approach the upper limit. This results in WAG ratio of 2:1 for most of 

the WAG cycles during acceleration. The effects of rate optimization on field water cut 

and GOR are shown in Figs. 3.25a and 3.25b. The optimal rates for maximizing sweep 

efficiency result in delayed CO2 breakthrough and reduced water and CO2 recycling. 

However, the production/injection rates increase with acceleration resulting in higher 

field water cut and GOR. 
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Fig. 3.24—(a) Average WAG ratio for 20 years of WAG flood for base case, sweep efficiency 

maximization (norm weight–0) and production acceleration (norm weight–10000). (b) WAG ratio 

for 6 months cycle for respective cases. 
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Fig. 3.25—(a) Field water cut during WAG flood for base case, sweep efficiency maximization 

(norm weight–0) and production acceleration (norm weight–10000). (b) Field GOR for respective 

cases. 

 

Fig. 3.26 shows the increase in ‘incremental oil recovery’ with rate optimization 

for norm weights of 0 and 10000. The cumulative water and CO2 injected for 

maximizing sweep efficiency is less compared to that for the base case (Figs. 3.27a and 

3.27b). Acceleration results in increase in oil recovery owing to improved VGR caused 

by higher water and CO2 injection rates. Finally, from Fig. 3.28 we can see that sweep 

efficiency maximization improves injection efficiency, which further decreases with 

increase in norm weight. The results clearly demonstrate the potential and practical 

viability of our approach. 
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Fig. 3.26—Incremental oil recovery (w.r.t OOIP) for 20 years of WAG flood for base case, sweep 

efficiency maximization (norm weight–0) and production acceleration (norm weight–10000). 
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Fig. 3.27—(a) Cumulative water injected during WAG flood for base case, sweep efficiency 

maximization (norm weight–0) and production acceleration (norm weight–10000). (b) Cumulative 

gas injection for respective cases. 
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Fig. 3.28—Injection efficiency during WAG flood for base case, sweep efficiency maximization 

(norm weight–0) and production acceleration (norm weight–10000). 
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3.5 Summary 

In this chapter, we demonstrated an efficient approach for optimizing CO2 flood via rate 

control. The approach relies on making an optimal decision based on a compromise 

between maximizing sweep efficiency and accelerating production. Because of 

analytical computation of the sensitivities and the gradient and Hessian of the objective 

function, the approach is computationally efficient and suitable for large field cases. The 

hierarchy of rate and pressure constraints is captured during optimization through 

comprehensive constraint matrices. Moreover, the approach can account for geologic 

uncertainty using multiple realizations via a stochastic optimization framework. 

The applicability and robustness of the approach has been demonstrated using 3D 

synthetic example, the Brugge field. Significant improvement in oil recovery and 

reduction in CO2 recycling was achieved over base case with rate optimization. Geologic 

uncertainty was addressed using 10 history matched realizations for optimization and 

applying the rates derived from optimization to a blind realization. Results showed that 

the optimal rates significantly improve sweep efficiency and oil recovery over base case. 

Finally, the approach was used to improve sweep during WAG flood which resulted in 

significant improvement in oil recovery and reduction in water and CO2 recycling. 
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CHAPTER IV 

CONCLUSIONS  

 

The presence of reservoir heterogeneity, geological uncertainty and complex 

displacement mechanisms involved in EOR processes like polymerflood, CO2 flood etc. 

underscores the need for a prudent reservoir management with an objective to maximize 

sweep. This can be achieved by optimal selection of production/injection rates under 

field production and facility related constraints. The increasing deployment of smart well 

completions and i-field has inspired many researchers to develop algorithms to optimize 

the production/injection rates along intervals of smart wells. These algorithms have been 

successfully tested and applied to field-scale problems for waterflooding. However, the 

application of rate control for other EOR methods has been relatively few and far 

between. 

The primary objective of our approach is to improve sweep during polymerflood 

and CO2 flood by equalizing flood front arrival time at multiple producers. We trace 

streamlines using the fluid fluxes derived from the finite-difference flow simulation. The 

streamlines are then used to analytically compute the sensitivities and the gradient and 

Hessian of the objective function. The hierarchy of rate and pressure constraints is 

captured during optimization through comprehensive constraint matrices. The objective 

function is then minimized using Sequential Quadratic Programming technique to 

generate required changes in rates subject to specified field constraints. Moreover, the 

approach can account for geologic uncertainty using multiple realizations via a 

stochastic optimization framework. Following conclusions can be made based on this 

study: 

 

• Streamline time-of-flight can be effectively used to optimize EOR processes 

like polymerflood, CO2 flood etc. through equalizing the front arrival time at 
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the producers. This results in increased cumulative oil production improved 

injection efficiency. 

• The effect of polymer/CO2 breakthrough is incorporated into the objective 

function by rescaling the original arrival time, to allocate lower rate to wells 

recycling polymer/CO2 as compared to other wells. This allows for 

optimization after breakthrough at a well and reduction in recycling of injected 

phase. 

• An accelerated production strategy with higher NPV can be obtained by 

optimal selection of norm weight. Increase in norm weight results in high VGR 

and thereby reduced gravity segregation during CO2 flood.   

• Optimal production/injection rates can be obtained to improve sweep and 

increase oil recovery for water-alternate-CO2 flood. 

• Because of analytical computation of the sensitivities and the gradient and 

Hessian of the objective function, the approach is computationally efficient as 

it requires only one simulation per iteration per realization. This makes it 

suitable for large field cases. 

• The hierarchy of rate and pressure constraints is captured during optimization 

through comprehensive constraint matrices. These constraint matrices are 

updated dynamically to ensure that the specified constraints are honored at 

each hierarchical level during all time intervals. This makes it applicable to real 

field scenarios. 

• Geological uncertainty is addressed in terms of a stochastic form of objective 

function which includes the expected value and the standard deviation 

combined with a risk coefficient, making the approach robust. 

• We show that the approach yields robust rates for polymerflooding using a 

field-scale example from Goldsmith San Andres Unit (GSAU). Significant 

improvement in oil recovery and reduction in polymer recycling was achieved 

over the base case with the application of rate optimization. Geologic 

uncertainty was addressed using 10 history matched realizations for 
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optimization and applying the rates derived from optimization to a blind 

realization. The applicability and robustness of the approach for CO2 flooding 

has been demonstrated using 3D synthetic example, the Brugge field. 

Significant improvement in oil recovery and reduction in CO2 recycling was 

achieved over base case with rate optimization. Geologic uncertainty was 

addressed using 10 history matched realizations for optimization and applying 

the rates derived from optimization to a blind realization. Results showed that 

the optimal rates significantly improve sweep efficiency and oil recovery over 

base case. Finally, the approach was used to improve sweep during WAG flood 

which resulted in significant improvement in oil recovery and reduction in 

water and CO2 recycling. 
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NOMENCLATURE 

 

e Arrival time residual vector, t, day(s) 

E Expected value 

fgas Ratio of produced GOR to maximum allowable GOR limit, dimensionless, frac. 

fpol Ratio of polymer produced to maximum allowable production limit, 

dimensionless, frac. 

fw Water cut, dimensionless, frac. 

f(q) Scalar objective function, t
2
, sq day(s)  

g(q) Inequality constraints, L
3
/t, B/D [m

3
/d] 

h(q) Equality constraints, L
3
/t, B/D [m

3
/d] 

g Acceleration due to gravity, L/t
2
, ft/s

2
 [m/s

2
]   

i, j Well index 

kv Geometric mean of permeability, L
2
, md 

m Group index 

Nprod,m Number of production well(s) in group m 

Ngroup Number of group(s) 

p(q) Scalar objective function, t
2
, sq day 

q Total fluid rate vector, L
3
/t, B/D [m

3
/d] 

r Risk coefficient, dimensionless  

Sij Sensitivities coefficient, t
2
/L

3
, sq D/B [s

2
/m

3
]  

t Arrival time vector, t, day(s) 

ti,m Arrival time at producer i which belongs to group m, t, day(s) 

td,m Desired arrival time for group m, t, day(s) 

z Geologic realization index 

v  Average Darcy velocity, L/t, ft/day [m/d] 

α Exponent term, dimensionless 

  Viscosity difference between oil and CO2, m/Lt, cp [Pa.s] 
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  Density difference between oil and CO2, m/L
3
, lbm/ft

3
 [kg/m

3
] 

η Norm weight, dimensionless 

λK Karush-Kuhn-Tucker multipliers for inequality constraints 

λL Lagrange multipliers for equality constraints 

σ Standard deviation 
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