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ABSTRACT 
 

Cationic Shell Crosslinked Nanoparticles as Intracellular Delivery Vehicles for the 
Diagnosis and Treatment of Acute Lung Injury. (April 2011) 

  

Stephanie Florez 
Department of Chemistry 
Texas A&M University 

 

Research Advisor: Dr. Karen L. Wooley 
Departments of Chemistry and Chemical Engineering 

 
Nanomedicine is a growing field of medicine that seeks to take advantage of nanoscale 

materials in order to address current challenges such as the ability to cross the epithelial 

mucus of the lungs to deliver treatment. This thesis focuses on the development of 

polymer nanomaterials known as shell crosslinked knedel-like (SCK) nanoparticles to 

serve as intracellular carriers of genetic material and specifically target injured cells in 

the lung for the treatment of acute lung injury (ALI).  SCK nanoparticles are spherical in 

their morphology and their synthesis allows for them to possess tunable functionalities, 

size, and physical properties. The research presented in this work includes the synthesis 

of amphiphilic block copolymers that exhibit cationic character in their hydrophilic 

segment, in order to facilitate cell transfection in the body.  The block copolymer 

poly(acrylamidoethylamine)130-block-polysterene123 (PAEA-b-PS) underwent 

subsequent micellization in water and crosslinking across the hydrophilic chains. The 

resulting SCK nanoparticles were c.a 75 nm in diameter and possessed cationic 

character. Herein, we report the physical and chemical characteristics of the block-
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copolymers, micelles, and crosslinked nanoparticles. Current efforts for refining the 

synthetic methods in the production of SCK nanoparticles for the treatment of ALI are 

described.   
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NOMENCLATURE 

 

ALI Acute lung injury 

ARDS Acute respiratory distress syndrome 

ATRP Atomic transfer radical polymerization 

cnNOS Calcium-dependent nitric oxide synthase 

cSCK Cationic shell crosslinked (knedel-like) nanoparticle 

Dh Hydrodynamic diameter 

DIPEA N, N-Diisopropylethylamine 

DLS Dynamic light scattering 

DNA Deoxyribonucleic acid 

DMF N, N- Dimethylformamide 

GPC Gel permeation chromatography 

HOBT 1-Hydroxybenzotriazole 

iNOS Inducible nitric oxide synthase 

IR Infrared spectroscopy 

INF-γ Interferon- gamma 

LPS Lipopolysaccharide 

Mn Number average molecular weight 

MWCO Molecular weight cut-off 

NMR Nuclear magnetic resonance  

NO Nitric oxide 
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NOS Nitric oxide synthase 

PAA Poly(acrylic acid) 

PAEA Poly(acrylamidoethylamine) 

PDI Polydispersity index 

PEG Poly(ethylene glycol) 

PEI Polyethylenimine 

PLL Poly-L-lysine 

PMDETA N,N,N',N',N''-Pentamethyldiethylenetriamine 

PNA Peptide nucleic acid 

PS/PSt Polystyrene 

PtBA Poly(tert-butyl acrylate) 

SCK Shell crosslinked knedel-like nanoparticle 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

TNF Tumor necrosis factor 

ζ Zeta potential 
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CHAPTER I1 

INTRODUCTION 

 

The industrial revolution and the urbanization movement have had a major contribution 

to the advances in technology over the past two centuries.  However, this progress runs 

parallel with the deterioration of the health in the world population and the increase in 

mortality rates particularly due to respiratory diseases1.  Acute lung injury (ALI), stands 

as a major problem in industrialized countries such as the U.S, contributing to the 

mortality of up to 100,000 critically ill patients every year2.  Acute lung injury is a 

pathological progression characterized by high-protein fluid accumulation in the lungs 

(pulmonary edema) and severe oxygenation impairment, which can become lethal in its 

most severe form known as acute respiratory distress syndrome (ARDS)3.  ALI is caused 

by exposure to external agents that range from polluting gases to chemical waste, as well 

as many other clinical disorders.  Regardless of its initiating cause, ALI is characterized 

by a cascade of immune cell activation and synthesis of mediating factors such and α-

tumor necrosis factor (TNF), interferon- gamma (INF-γ), and nitric oxide (NO)4.  

Particularly, nitric oxide aids in the antimicrobial response of macrophages; however it 

been has reported that excess of NO can induce oxidative stress and lead to a septic 

shock and complications leading to ARDS2.  Nitric oxide is synthesized by a family of 

NO synthases (NOS)5 which can be calcium-dependent (cnNOS)6 or cytokine-inducible 

(iNOS). cNOS is downregulated during ALI while iNOS expression is induced upon 
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inflammation caused by bacteria and bacterial products such as lipopolysaccharide 

(LPS)7.  Studies on iNOS show that selective inhibition of the expression of iNOS 

improves ALI prognosis by attenuating neutrophil accumulation into the lung4 and 

furthermore that nonselective inhibition of the NOS enzymes can interfere with 

metabolic pathways5, 8.  Therefore, selective antisense inhibition of iNOS has been a 

major focus in the treatment of ALI9, 10,  11, 12.  

 

In the search for a convenient antisense binding agent, properties such as stability, 

binding affinity to DNA and cell permeability must be taken into account13.  Peptide 

nucleic acids (PNAs) stand as excellent candidates for gene delivery since they are 

synthetic polynucleobases that hybridize to RNA strands with higher affinity than DNA, 

and are resistant to removal mechanisms such as enzymatic degradation14.  However, 

due to their poor cell permeability, PNAs require to be transported for cellular uptake 

through a carrier mechanism with higher transfection ability 15.  Although recombinant 

viruses make up 69% of ongoing clinical trials, their inherent mutability and poor cell-

specificity make them rather limited delivery mechanisms and their behavior is difficult 

to predict16.  With the rise of nanotechnology over the past twenty years, scientists have 

been inspired to mimic the “bottom up” approach of nature’s captivating way to form 

molecular complexes from the self assembly of monomeric structures, adding 

functionality with each layer of complexity17.  Synthetic vectors have been constructed 

through the assembly of smaller units that interact with each other through covalent, 

electrostatic, and other non-covalent interactions18.  



  3 

The most common gene delivery vectors are self assembled cationic lipids and polymers 

that surround DNA spontaneously and form polyplexes19 but their low colloidal stability 

and low reproducibility of results called for better chemical approaches to polymer 

materials and methods. With the advancement in polymerization techniques, block 

copolymers of tunable length and compositions can be produced.  Furthermore, 

amphiphilic block copolymers have drawn interest because of the ability to incorporate 

functionalities in different regions of the polymer and control in the morphology of the 

resulting nanostructures20.  Amphiphilic block copolymers self assemble into micelles 

that achieve different morphologies from discs21 to cylinders22 and various other 

shapes23.  To stabilize micellar structures, covalent and noncovalent crosslinkers are 

employed along the backbone to introduce a new class of material termed as shell 

crosslinked knedel-like (SCK) nanoparticles24.  The degree of crosslinking is tunable, 

and it has shown to effectively gate small molecules encapsulated in the core25, as well 

as provide rigidity, robustness and stability to the nanostructures against infinite 

dilution26. (Scheme 1)  

 

 

Scheme 1. General schematic representation of the construction of SCK nanoparticles 
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for gene delivery. Amphiphilic block copolymers self assemble into micelles, followed 

by crosslinking of the peripheral chains to produce well-defined SCK nanoparticles.  

 

For the past decade, shell crosslinked knedel-like (SCK) nanoparticles have been studied 

as transfection agents for gene delivery 27 and labeling markers28  due to their unique 

characteristics.  SCKs mimic the biological structure of proteins in that they are 

constructed from smaller building blocks, assembled and crosslinked into a three-

dimensional shape, and functionalized on their surface24. Parallel to advances on SCK 

synthesis, other groups are working on different approaches for gene delivery.  Poly-L-

lysine  (PLL) polymers were on of the first used in gene delivery29, but their low 

transfection efficiency place them as less attractive genetic carriers.  However, the 

synthesis of PLL polymers with PEG30, sugars29, folate31, and other conjugates with 

targeting moieties make up a large portion of current research in gene delivery, and 

promise to be more effective than PLL alone.  In contrast to PLL, polyethylenimine 

(PEI) stands as one of the most effective gene-delivery up to date. PEI contains primary, 

secondary and tertiary amines and it is 75% protonated under physiological conditions32.  

The efficiency of PEI is due to the buffering property that its different amines provides, 

allowing PEI to escape endosomal uptake33.  Despite its high efficacy for DNA delivery 

and interaction, PEI confers higher cytotoxicity hindering its applications in the medical 

field16.   
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Other classes of polymers have the capacity to disrupt endosomal membrane as they 

become hydrophobic upon protonation.  Recently, Stayton, Hoffman and co-workers 

synthesized pH responsive polymers with multiple functional groups that permit ligand 

conjugation34.  Some of the compositions in the polymers are acrylic acids, ethylacrylic 

acid, butylacrylic acid, and others, but their low colloidal stability and low 

reproducibility of results called for better chemical approaches to polymer materials and 

methods.  SCK nanoparticles can be engineered to disrupt endosomal membranes when 

their hydrophilic shell has similar composition as these polymers.  Taylor, Wooley and 

co-workers showed in 2009 the synthesis of a cationic SCK (cSCK) particle able to 

escape endosomal uptake and deliver peptide nucleic acids in HeLa cells.  The cationic 

character in the surface of the SCK was given by primary amines and showed essential 

for high transfection efficiency in cells as shown in comparing PLL and PEI polymers.  

Cationic SCKs with PEG functionalities promise have shown to decrease cytotoxicity27, 

and further studies have been conducted to find a primary to tertiary amine ratio in the 

SCK surface that achieves the highest transfection with the lowest cytotoxicity35.  More 

promising is the ability of these constructs to degrade naturally inside the cell, 

minimizing their cytotoxicity and waste accumulation in the spleen and liver.  By 

introducing degradable shell, core, and crosslinkers, SCKs would be naturally 

metabolized in the body, reducing potential drug side-effects to its minimum36 (Figure 

1).  
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Figure 1. Functionalized cationic shell-crosslinked nanoparticle design for gene delivery 

and therapeutic applications 

 
 
The research undertaken in this dissertation focuses on the design and construction of 

cSCKs for therapeutic applications in the treatment and diagnosis of ALI.  Chapter II 

describes the methods for the synthesis block copolymer PAEA-b-PS, its micellization 

and its crosslinking to yield cationic SCK nanoparticles.  In Chapter III, the experimental 

results are discussed along with the characterization data, to give an in-depth analysis of 

the physical and chemical characteristics of the structures produced.  Finally, Chapter IV 

discusses the applications and future functionalization of the reported cSCKs, as well as 

current efforts to improve the synthetic methods utilized for the production of SCK 

nanoparticles. In summary, a strategy for fabricating cationic shell-crosslinked 

nanoparticles, with and without PEG functionalities is described. Furthermore, cSCKs 

are currently being utilized in biological assays that will measure the cell transfection 

efficiency of these nanomaterials; the results of these efforts will be mark a step towards 

the incorporation of nanotechnology in the field of medicine. 
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CHAPTER II 

METHODS 

 

Materials and measurements 

Materials  

All solvents and chemicals were purchased from Sigma-Aldrich and used without further 

purification, unless otherwise indicated.  Homopolymer of tert-butyl acrylate (PtBA)130  

was previously synthesized by co-workers using methods previously described37.  

Styrene was filtered through an alumina plug to remove inhibitors.  PEG2kDa was 

purchased from Rapp Polymere, Germany.  

 

Measurements  
1H NMR and 13C NMR spectra were recorded on Inova 300 MHz or Mercury 300 MHz 

spectrometer interfaced to a UNIX computer using VnmrJ software.  Chemical shifts 

were referred to the solvent resonance signals.  N, N- Dimethyl formamide-based Gel 

Permeation Chromatography (DMF GPC) was conducted on a system equipped with a 

Waters Chromatography, Inc. (Milford, MA) model 1515 isocratic pump and a model 

2414 differential refractometer with a three-column set of Polymer Laboratories, Inc. 

(Amherst, MA) Styragel columns (PLgel 5µm Mixed C, 500 Å, and 104 Å, 300 x 7.5 mm 

columns) and a guard column (PLgel 5µm, 50 x 7.5 mm).  The system was equilibrated at 

40 °C in tetrahydrofuran (THF), which served as the polymer solvent and eluent (flow 

rate set to 1.00 mL/min).  The differential refractometer was calibrated with Polymer 
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Laboratories, Inc. polystyrene standards (300 to 467,000 Da).  Polymer solutions were 

prepared at concentration ca. 3 mg/mL with 0.05% vol toluene as flow rate marker and 

an injection volume of 200 µL was used.  Data was analyzed using Empower Pro 

software from Waters Chromatography Inc.  IR spectra were recorded on an IR Prestige 

21 system (Shimadzu Corp., Japan) and analyzed using IRsolution software.  Dynamic 

light scattering (DLS) measurements were conducted using Delsa Nano C from 

Beckman Coulter, Inc. (Fullerton, CA) equipped with a laser diode operating at 658 nm.  

Size measurements were made in water (n = 1.3329, h = 0.890 cP at 25 ± 1 °C; n = 

1.3293, h = 0.547 cP at 50 ± 1 °C; n = 1.3255, h = 0.404 cP at 70 ± 1 °C).  Scattered 

light was detected at 15° angle and analyzed using a log correlator over 70 

accumulations for a 0.5 mL of sample in a glass size cell (0.9 mL capacity).  The 

photomultiplier aperture and the attenuator were automatically adjusted to obtain a 

photon counting rate of ca. 10 kcps.  The calculation of the particle size distribution and 

distribution averages was performed using CONTIN particle size distribution analysis 

routines.  Prior to analysis, the samples were filtered through a 0.45 µM Whatman Nylon 

membrane filter (Whatman Inc.).  The samples in the glass size cell were equilibrated at 

the desired temperature for 60 minutes before measurements were made.  The peak 

average of histograms from intensity, volume or number distributions out of 70 

accumulations was reported as the average diameter of the particles.  
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Methods 

Poly(t-butyl acrylate)-block-polystyrene (PtBA130-b-PS123) 

Poly(tert-butyl acrylate) PtBA (2.0 g, 0.12 mmol) was added to a flame- dried 50 mL 

Schlenk flask equipped with a magnetic stir bar.  Styrene (1.85 g, 17.8 mmol), CuBr (34 

mg, 0.24 mmol), and anisole were added and stirred for homogenous mixing and the 

flask was sealed with a rubber septum.  After 10 min, the reaction flask was freeze-

pump-thawed 3 times, after which the flask was allowed to return to room temperature.  

PMDETA (4.0 mg, 37 µmol) was added and the reaction mixture was degassed by 

another freeze-pump-thaw cycle.  The flask was then immersed into a pre-heated oil bath 

at 82 °C to start the polymerization. The polymerization was monitored by analyzing 

aliquots collected at pre-determined times by 1H NMR spectroscopy.  The expected 

monomer conversion was reached after 2 h, and the reaction was quenched by 

immersion in liquid nitrogen.  The reaction was precipitated in 2 L of cold methanol 

twice.  The precipitants were collected, dissolved in CH2Cl2 and dried with magnesium 

sulfate.  Then reaction was rotorvapped to obtain a white polymer. Mn
NMR= 29.7 kDa; 

Mn
GPC= 40.4 kDa. IR (cm-1): 3001, 2924, 1728, 1450, 1365, 1150. 1H NMR (300 MHz , 

CDCl3): δ 1.36 (m, CH3CH2–), 1.85 (br, –CHCH2– of the polymer backbone, alkyl chain 

of initiator, and HOOCC(CH3)2–), 1.97 (br, CH3C), 2.13–2.38 (br, –CHCH2– of the 

polymer backbone), 6.32–7.21 (br, Ar–H) ppm.  

 

 
 
 
 



  10 

Poly(acrylic acid)-block-polystyrene (PAA130-b-PS123) 
 
 To a flame-dried 100 mL round bottom flask equipped with a stir bar, PtBA130-b-PS123 

(4.8 g, 0.30 mmol) was dissolved in 10mL CH2Cl2.  15 mL of TFA were added to the 

solution and the reaction mixture was stirred overnight, after which the solvent was 

removed under vacuum.  The crude product was dissolved in THF and transferred to a 

presoaked dialysis tubing (MWCO ca. 6000–8000 Da), and dialyzed against nanopure 

H2O for 4 days, yielding polymer PAA130-b-PS123.  Mn
NMR= 22.2 kDa.  IR (cm-1):  3000-

2500 broad, 3032, 2916, 1705, 1450, 1242, 1172. 1H NMR (500 MHz, (CD3)2SO): δ 

0.85 (m, CH3CH2–), 1.21–1.87 (br, –CHCH2– of the polymer backbone, alkyl chain of 

initiator, and HOOCC(CH3)2–), 2.10–2.41 (br, –CHCH2– of the polymer backbone), 

6.31–7.27 (br, Ar–H) ppm.  

 

Poly(acrylamidoethylamine)(Boc)130-block-polystyrene123 (PAEA(Boc)130-b-PS123) 

PAA130-b-PS123 (150 mg, 6.75 µmol, 0.877 mmol carboxylic acid groups) was dissolved 

in DMF (5.0 mL) and stirred for 1 h.  After dissolving the reaction mixture, a 2.0 mL 

DMF solution containing HOBT (155 mg, 1.14 mmol) and HBTU (433 mg, 1.14 mmol) 

was added. After 30 min, N-Boc-ethylenediamine (211 mg, 1.31 mmol) and 

diisopropylethylamine (DIPEA)  (198 µL, 1.14 mmol) were added. The reaction mixture 

stirred overnight, was diluted in 10 mL of DMF, transferred to pre-soaked dialysis 

tubing (MWCO ca. 6000–8000 Da), and was dialyzed against 150 mm NaCl solution for 

2 days, followed by dialysis in nanopure water (18.0 MΩ cm) for 5 days. Precipitation 

occurred shortly after the dialysis began. After the dialysis period, the polymer was 
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lyophilized yielding polymer PAEA(Boc)130-b-PS123. Mn
NMR= 32.1 kDa; Mn

GPC= 8.5 

kDa. IR (cm−1): 3456-3224, 2977, 2916, 1689, 1658, 1549, 1450, 1365, 1257, 1165. 1H 

NMR (500 MHz, (CD3)2SO): 1.05–2.52 (br, Boc protons and polymer backbone 

protons), 2.85–3.65 (br, NHCH2CH2NH2), 5.60–6.33 (br, NH), 6.35–6.80 and 6.88–7.40 

(br, ArH) ppm. 13C NMR (75 MHz, CD2Cl2): 27.6 (br), 38.8–40.0 (multiple overlapping 

br), 77.6 (br), 126.2 (br), 128.4 (br), 145.9 (br), 157.1 (br), 176.4 (br) ppm.  

 

Poly(acrylamidoethylamine)130-block-polystyrene123 (PAEA130-b-PS123)  

PAEA(Boc)130-b-PS123 (100 mg, 4.47 µmol)  was dissolved in TFA (4 mL) and stirred 

for 2 h. The solution was then rotorvapped and transferred to a presoaked dialysis tubing 

(MWCO ca. 6000–8000 Da), and dialyzed against nanopure H2O for 4 days, to remove 

all of the impurities. The solution was lyophilized to yield polymer PAEA130-b-PS123. 

Mn
NMR: 25.1 kDa. IR (cm−1): 3700–2600, 1681, 1556, 1434, 1204, 1180, 1134, 844. 1H 

NMR (500 MHz, (CD3)2SO): 0.95–2.24 (br, polymer backbone protons), 3.00–3.47 (br, 

NHCH2CH2NH2), 6.20–6.80 and 6.81–7.33 (br, ArH), 7.82–8.49 (br, NH) ppm.  13C 

NMR (75 MHz, DMSO-d6): 31.3, 32.5–45.0 (multiple overlapping br), 125.7 (br), 127.4 

(br), 128.0 (br), 145.7 (br), 175.0 (br) ppm.  

 

Synthesis of crosslinker, 14-oxo-7,10-dioxa-4,13-diazaheptadecane-1,17-dioic acid 
 
1, 2-Bis(2-aminoethoxy)ethane (100 mg, 0.675 mmol) was dissolved in DMF (1 mL), to 

which a DMF solution (1.35 mL) containing succinic anhydride (135 mg, 1.35 mmol) 

and DIPEA (235 µL, 1.35 mmol) was added slowly. The reaction mixture was stirred 
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overnight and then the product was precipitated into pure diethyl ether (4×), and 

collected by centrifugation and decanting of the supernatant, and was dried in vacuo 

overnight (yield: 132 mg, 76%). IR (cm−1): 3600–2300, 2928, 1716, 1651, 1557, 1418, 

1201, 1134. 1H NMR (300 MHz, DMSO-d6): 2.35 (t, J = 6 Hz, 4H, CH2CH2CONH), 

2.41 (t, J = 6 Hz, 4H, CH2CH2CONH), 3.20 (t, J = 5.4 Hz, 4H, NHCH2CH2O), 3.40 (t, J 

= 5.4 Hz, 4H, NHCH2CH2O), 3.52 (s, 4H, OCH2CH2O) ppm. 13C NMR (75 MHz, 

DMSO-d6): 29.8, 30.5, 39.3, 70.1, 70.5, 171.9, 174.8 ppm.  

 

Micellization of block copolymers  

PAEA130-b-PS123 (21 mg, 0.82 µmol) was dissolved in 20 mL dimethylsulfoxide 

(DMSO) and stirred for 2 h. The solution was then transferred to a pre-soaked dialysis 

tube (8000 Da MWCO) and dialyzed against nanopure water (18.0 MΩ cm) to remove 

organic solvent. After 4 days of dialysis, a clear solution (59 mL) containing the micelle 

precursors for the cSCKs was obtained. DLS: (Dh)int = 153 ± 55 nm, (Dh)vol = 96 ± 37 

nm, (Dh)num = 75 ± 20 nm.  ζ potential: 40 ± 3 mV.  

 

Crosslinking of micelles to afford cationic SCKs 

The diacid crosslinker (0.46 mg, 1.3 µmol) was activated by mixing with 2.2 equiv. of 

HOBt/HBTU (0.39 mg/1.10 mg, 1:1, mol:mol) in DMF (410 µL) and allowed to stir for 

1 h. The micelle solution pH was adjusted to 8.0, using 1.0 m aqueous sodium carbonate, 

and submerged in an ice bath at 0 °C. The stirred solution with activated crosslinker was 
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added dropwise with stirring to the micelle solution. The reaction mixture was allowed 

to stir overnight. 
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CHAPTER III 

RESULTS 

 

Block copolymers composed of segments of PAEA and PS were chosen to be the 

building blocks in the preparation of well-defined functionalized cationic shell 

crosslinked nanoparticles for the treatment of acute lung injury.  The synthetic avenue 

chosen to achieve the final block copolymers started with the chain extension of 

previously synthesized homopolymer of PtBA by sequential atomic transfer radical 

polymerization (ATRP) (Scheme 2).  Using PMDETA/CuBr as a catalyst, the reaction 

underwent completion after two hours.  The oxidation of Cu(I) to Cu(II) can decrease the 

reaction efficiency, therefore PtBA and CuBr were added to the flask and put under a 

nitrogen atmosphere prior to PMDETA addition.  The reaction was monitored by 1H 

NMR, where the presence of the aromatic hydrogen atoms in the product served to 

quantify the number of styrene units (123 u.) present in the resulting block copolymer.  

GPC showed a decrease in the retention time, allowing us to confirm that a chain 

lengthening process occurred (Figure 2).  The polydispersities of PtBA130 and PtBA130-

b-PS123 were narrow being 1.05 and 1.09 respectively, characteristic of ATRP 

polymerization. 

 

Cleavage of the tert-butyl ester groups was then performed via reaction with anhydrous 

TFA after dissolving the polymer in dichloromethane at room temperature, affording 

amphiphilic block copolymer PAA130-b-PS123.  Deprotection was confirmed by 1H NMR 
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with the disappearance of the Boc protons at 1.3 ppm that indicated presence of tert-

butyl functionalities.  Furthermore, IR spectra showed a broad peak in the 3000-2500 

cm-1 region, indicating the characteristic stretch of a carboxylic acid O-H (Figure 3).  

 

Figure 2. Composite of GPC data for polymers PAEA(Boc)-b-PS (a), PtBA-b-PS (b), 

and PtBA (c). This graph illustrates the growth of the polymer chain as the retention 

time in the column decreases 

 

Scheme 2. Synthetic route for the formation of cationic block copolymer PAEA-b-PS 
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Previous studies in cell transfection and gene delivery have shown that cationic charges 

on delivery vectors promote cell uptake and endosomal release by the proton-sponge 

effect 38, 39. To achieve a cationic charge, the carboxylic acid functionalities were 

allowed to react with mono-Boc-protected ethylenediamine via amidation chemistry. 

Conversion into the Boc-protected amine polymer was confirmed by 13C NMR  where 

the Boc-carbamate and the polymer amide carbons were seen at 176.4 and 157.1 

respectively. GPC showed an increase in molecular weight compared to PtBA130-b-PS123 

as expected (figure 2), and a moderate polydispersity of 1.25.  After subsequent 

deprotection using TFA, the resulting polymer PAEA130-b-PS123 was analyzed by 1H 

NMR where the loss of the Boc protons confirmed deprotection.  Both the amidation 

reaction and deprotection were further analyzed by IR, where the mono-Boc-protected 

secondary amine showed a weak band in in the 3300-3000 cm-1 region, compared to the 

deprotected primary amine that had two characteristic bands between 3400-3100 cm-1  as 

well as NH bend at 1550 cm-1 unique to primary amines. 

 

PAEA130-b-PS123 was then dissolved in DMSO and underwent micellization by direct 

dialysis in nanopure water.  The micelle concentration was measured to be 0.70 mg/mL 

and gave a clear solution with no signs of precipitation.  Micelles were analyzed by DLS 

which showed a hydrodynamic diameter by number average of 75 ± 20 nm and a zeta-

potential of 40 ± 3 mV, confirming their cationic character.  The final crosslinking step 

required first the preparation of the diacid crosslinker 14-oxo-7,10-dioxa-4,13-

diazaheptadecane-1,17-dioic acid, which was chosen for its effective reactivity with 
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primary amines when activated.  Activation of the crosslinker was performed with 2.2 

eq. of HOBT/HBTU (1:1 mol) in DMF, to achieve crosslinking of 5% of the peripheral 

amines of the micelles. 

 

 

Figure 3. Infrared spectroscopy data shows the transformation of the functional groups 

in the hydrophilic domain during pre-assembly modifications of the block copolymer 
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The crosslinker was added dropwise to the micelle solution with gentle stirring.  

Initially, a clear solution was observed however a small amount of precipitation was 

seen after 10 minutes of stirring.  The experiment was repeated several times where 

factors such as solvent, type of base and pH were adjusted one at a time, yet the micelles 

did not undergo crosslinking and precipitated after each attempt.  We hypothesize that 

after the first deprotection reaction that cleaved the tert-butyl from PtBA was 

incomplete, leaving behind tert-butyl groups that did not undergo amidation, and after 

the second deprotection converted them into carboxylic acids.  During crosslinking, 

carboxylic acids and amines might have undergone intramolecular crosslinking 

processes that caused micelle disruption and macroscopic precipitation.  Therefore, it is 

key to ensure that the first deprotection step is carried through completely in order to 

ensure efficient crosslinking and SCK assembly. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

In this work, we have used controlled radical polymerization to construct a block 

copolymer with amphiphilic characteristics and controlled chain length.  Modifications 

to the hydrophilic segment by amidation chemistry yielded block copolymer PAEA-b-

PS.  These block copolymers underwent micellization under aqueous conditions, and 

further crosslinking to give cationic shell crosslinked nanoparticles.  Physico-chemical 

analysis of the structures and intermediates confirmed the cationic charge, spherical 

structure and diameter of the nanoconstructs.  Although crosslinking of the micelles did 

not go to completion, it allowed us to define the most important steps in the synthetic 

process.  Complete cleveage of the tert-butyl groups in PtBA is a key step in the 

synthesis of the final block-copolymer.  Allowing the deprotection reaction run for a 

longer time, and monitoring with NMR until all tert-butyl protons are removed will be 

part of future protocols. 

 

Well-defined cationic SCKs can serve as potential gene delivery vehicles to cells with 

overexpressed iNOS during ALI.  We expect that the cationic charge in the nanoparticles 

will give them higher transfection efficiency through the proton-sponge effect.  This 

phenomenom occurs when the nanoparticles are endocytosed in vesicles inside the cell 

and engulfed by lysosomes.  The primary amines of the SCKs will sequester the protons 

inside the lysosome’s acidic environment, causing the swelling of the lysosome and 
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subsequent rupture.  This allows for the nanoparticles to be dispersed in the cytoplasm 

and efficiently transfect cells40.  Furthermore, the size of the nanoparticles is small 

enough to cross the epithelial and mucosal barrier41.  By conjugating cSCKs to nucleic 

bases complementary to iNOS, antisense binding can be achieved in order to prevent 

further iNOS translation as well as down-regulation of the transcription of these genes.  

Overall, it is expected that the inhibition due to the SCK-mRNA complex will decrease 

the toxic levels of nitric oxide, reduce inflammation, and alleviate the symptoms of acute 

lung injury.  

 

Currently, studies regarding the re-dispersion of the SCKs upon exposure to different 

media are being studied, in order to understand the behavior of the nanoparticles in a 

variety of conditions.  Moreover, the incorporation of biodegradable segments in the 

core, periphery, and crosslinking moieties would allow the SCK to have minimal 

toxicity inside the body, breaking down the nanospheres into small monomeric units that 

the body can recycle or metabolize.  This is a promising stepping-stone in the 

incorporation of cSCKs as treatments in acute lung injury, and a variety of other 

conditions that require selective toxicity. Beyond their applicational purpose, studies 

using SCKs as transfection agents, will give insight into the natural events inside the cell 

that are essential to understand for the refinement of these technologies; mechanisms 

such as the proton-sponge effect, as well as the inflammatory processes that occur inside 

the lung are among the list. 
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As this thesis suggests, the field of nanomedicine is rapidly growing and becoming a 

potentially important tool in drug delivery.  As technology pushes forward the 

construction of nanomaterials with a broad range of applications, so does our 

understanding in the behavior of the molecular world around us. Therefore, nanoscience 

and nanomedicine not only promises a revolutionary approach to solve current 

challenges, but it mediates further understanding and incites the creation of new ideas 

that can be undertaken by future generations. 
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