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ABSTRACT

Characterizing Shared Memory Multiprocessor Benchmarks for Future Chip
Multiprocessor Architectures Using Instruction Flow Analysis. (April 2011)

Philip James Jagielski
Department of Electrical and Computer Engineering

Texas A&M University

Research Advisor: Dr. Paul V. Gratz
Department of Electrical and Computer Engineering

For forty years, transistor counts on integrated circuits have doubled roughly every two

years, enabling computer architects to double the clock speed of processors. Recently, heat

dissipation and power consumption trends have forced chip designers to add larger caches

and more cores per chip, instead of increasing clock speed with the extra transistors. This

has provided challenges for programmers who wish to continue increasing application per-

formance as though the speed of a uniprocessor had continued doubling. In this character-

istic study, we examine the effect of the operating system on a set of parallel benchmarks

run on a simulated many-core processor. Past research has shown that the performance of

the OS code has a large impact on application performance; however, most studies ignore

the OS and focus on the application code. This work will characterize performance bottle-

necks and show possible areas that could be improved. We found that resource contention

in the kernel was limiting the efficiency of the benchmarks.
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CHAPTER I

INTRODUCTION, BACKGROUND AND RELATED WORK

This chapter first examines the historical context of microprocessor research and improve-

ments that led to the current state of the art. It goes on to analyze both software and

hardware innovations that have allowed the rapid increase in microprocessor performance

over the past half century.

Background

Almost forty five years ago, Gordon Moore postulated that transistor densities in integrated

circuits would double every two years [1]. Since then, Moore’s Law has held remarkably

true.

For forty years, doubling the transistor count of a processor enabled computer engineers to

roughly double it’s clock speed. However, in the past five years, heat dissipation and power

consumption have caused the clock frequency trend to level off. Moore’s Law continues,

but increasing transistor numbers now translate into increasing the number of cores per

chip as well as the size of the on-chip caches.

Unfortunately, adding cores and cache memory does not linearly scale computing power,

even in a perfectly parallelizable problem domain. Accesses to the same memory addresses

from different processes must be coordinated so they don’t conflict. Not coordinating mem-

ory accesses would result in inconsistent data and nondeterministic behavior.

The journal model is IEEE Computer Architecture Letters.
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The problem of efficiently adding cores that can use a shared memory space is a current

research problem. It is being attacked from many different angles, both on the hardware and

software side. Most current approaches to improving performance ignore the performance

of the operating system on the system as a whole. In this thesis I investigate the effect of the

operating system on a suite of benchmarks and present methods to increase the efficiency

of multithreaded programs. Figure 1 shows the primary motivation for this research: the

poor scaling of the SPLASH-2 FFT benchmark as the number of cores doubles from 1 to

32.
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Fig. 1.: FFT execution time

Literature survey

The array of processor technologies available in the early years was much more heteroge-

neous than today’s market. This led to an equally varying array of processor architectures.

Today’s market is dominated by two philosophies, x86 and ARM. But in the 1960’s dif-

ferent target markets led to different architectures. Lines of mainframes were considered

wildly successful if they sold a hundred units, so there were so many different companies

that no unified standard existed. For example, today you can count on either 32-bit or 64-

bit technology, but in the sixties 48-bit and 60-bit architectures also existed [2]. Different
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process technologies also allowed different properties in the architectures that used them.

The CRAY-1 used different gate level technology (ECL) and as a result it’s clock speed

was not exceeded by standard CMOS circuits for two decades [3]. Today the feature size

of transistors can be measured in the number of atoms, and processors contain over a bil-

lion transistors on a single chip. These facts, plus the economics of industry consolidation,

mean that only a few architectures survive today. A desktop computer is likely to run In-

tel’s x86 architecture, and a mobile phone or tablet is likely to use the ARM architecture.

However, advances in the field can be generalized to apply to these competing lines of

processors.

Hardware improvements

Smaller transistor size translates into a higher clock speed because the transistors can switch

on and off faster. This makes the processor linearly faster because it can do more work in

the same time. However, that is the domain of physicists and materials engineers, and thus

beyond the scope of this thesis. Given a fixed process technology to work with, computer

architects employ two techniques to increase the throughput of the processor. The first

is harvesting parallelism from a sequential instruction stream, or instruction level paral-

lelism (ILP). The second harvests parallelism from the applications running on the CPU

by adding more cores to the CPU and allowing it to process multiple instruction streams

simultaneously.

Instruction level parallelism

Besides hiding latency to cache, RAM, and disk, the pipeline depth of a processor affects

how much parallelism can be extracted from the instructions. Multiple issue processors
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examine the pipeline beyond the next element, and can issue multiple instructions to be

executed on the same cycle. This requires multiple copies of internal components such as

the ALU. There are two ways to implement multiple issue:

• Static Multiple Issue - the compiler packages instructions in such a way that the

processor knows which instructions it can safely execute at the same time.

• Dynamic Multiple Issue - the processor, called a superscalar, decides which instruc-

tions can be issued for each clock cycle.

Speculation can increase the parallelism of either approach. Speculation guesses about

properties of instructions or branches and issues instructions based on those guesses. If

the guess turns out to be wrong it must roll back the issued instruction as if it had never

executed [4]. Therefore, too much speculation can actually hinder performance.

Dataflow computing is an extreme form of ILP where the entire program is represented

as a dependency graph of instructions instead of a sequential, ordered stream. This is

very different from a standard sequential list of instructions, and programs written this way

require a dataflow architecture to run such as the MIT Tagged-Token Dataflow Architecture.

The MIT researchers designed a language, Id, that was built from the ground up to use a

dataflow representation of code. Their compiler compiles Id into a tagged-token graph,

where each token represents the dependencies of a particular instruction [5].

Although dataflow computing is a fruitful research topic, it has not appeared in mainstream

processor architectures. One reason is that debugging is harder on a dataflow architecture
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because there are no ordering constraints. Also, serial programming languages and in-

struction set architectures are thoroughly embedded in modern industry [6]. Despite these

setbacks, dataflow research serves as an inspiration for superscalar processors today.

Multithreaded hardware

The two broad categories of parallel machines that exist today are symmetric multiprocess-

ing (SMP), and message passing machines. SMP computers have multiple processors that

access a single shared memory space. Message passing involves clusters of machines that

have their own memory systems, but communicate to share data.

The fundamental difficulty in parallel computing is keeping a coherent and safe version of

data at all times. Safe parallelism in SMP systems is achieved in software by using atomic

instructions to lock or unlock resources or sections of code. Message passing machines

divide the memory into private spaces for every CPU so that concurrent data modification

can not happen.

Message Passing systems consist of nodes running independent programs or operating sys-

tems. Since each program is on a uniprocessor system, no cache coherence must be per-

formed, but data can only be passed between programs via explicit send() and receive()

calls [7]. Two problems prevented message passing machines from proliferating. First,

the overhead of sending and receiving messages is usually large (>1ms when the technol-

ogy was developed). Also, the message passing programming model severely limited what

types of applications could run on the machine [3].

However, computing clusters similar to message passing machines thrive in the modern

computing landscape, just in a different form. Large Internet companies, cloud computing
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platforms, and many other types of websites use clusters of computers to render web pages

and serve database results. Arguably, every computer connected to the Internet could be

considered a large message passing machine.

In SMP systems, each CPU has a local cache of the data in RAM, and a modification of

the data in single cache must be communicated to all caches in the system to prevent an-

other cache from serving stale data. To keep the memory system safe from concurrent

accesses by different processors, a cache coherence protocol must be implemented in hard-

ware. Early cache coherence protocols were based on snooping bus traffic to determine

when modifications happened [8]. Snooping does not scale well because it depends on

connecting every cache to every other cache in the memory system (an O(n) increase in

cache connections).

The Stanford Dash Multiprocessor [9] was the first attempt to build a scalable shared mem-

ory machine out of commodity processors. Their research showed it was possible to achieve

near linear performance up to 64 processors while using cheap individual processors and

existing programming languages. The authors implemented a distributed directory based

cache coherence scheme. In this scheme special nodes called directories hold the cache

state information so that each cache line request does not need to broadcast to all 64 caches.

As more processors or nodes are added to a parallel system, the memory latencies rise to

handle synchronization [10]. Hardware multithreading allows software threads to share

the functional units of a processor core when a thread blocks for a memory access. Fine-

grained multithreading changes threads every instruction if necessary, while coarse-grained

multithreading switches only when a thread performs a blocking operation. The first allows

maximum instruction throughput, and the latter is optimized for the time to execute a single
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thread [3].

As all applications have sections that must be computed serially, single-thread performance

can outweigh increased parallelism [11]. Also, switching threads rapidly can actually im-

pede performance by reducing memory temporality. If the different threads use data from

disparate addresses, the cache churn will increase the memory latencies that multithread-

ing tries to avoid. Multithreading is compatible with multiple issue processors, and the two

concepts are often combined.

SMP systems have historically been the domain of scientific and industrial computing, but

they have steadily taken over the consumer space over the last five years. This has happened

because, as is explained in the introduction, all the transistors that Moore’s law provides

can not be used to linearly scale a single processor’s performance.

Software improvements

One way to improve the speed of software is to improve the quality of the algorithm. How-

ever, this is beyond the scope of this thesis. Instead I focus on the interaction between the

algorithm and the operating system. Computer architects often use the average instruc-

tions that a processor can execute per cycle to calculate its efficiency. Most research papers

discount the effects of the operating system when performing experiments. Architectural

decisions play a large role in the efficiency of an OS, for example, system calls and inter-

rupts can interfere with useful data in the cache because they jump to memory locations

not used frequently. This causes system code to have 50-85% higher cycles per instruction

(CPI) than user level code [12].

OS parameters such as page mapping can also affect the cache miss rates and TLB usage,
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which directly affects the speed of the system. Lo et al. found that improving the operating

system mapping policy could reduce the cache miss rates for a symmetric multithreaded su-

perscalar processor to the same level as a superscalar uniprocessor [13]. Virtual-to-physical

page mapping and the per-process offset affected how the critical set fit into the cache and

how badly interference affected the cache.

Since SMT processors share scarce resources among threads, the operating system can

choose to run threads that share the available CPU resources efficiently as opposed to

threads that compete inefficiently for the same hardware resources. Thread sensitive schedul-

ing can potentially boost system performance by 15% [14].
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CHAPTER II

METHODOLOGY

Cycle level simulation of an entire processor architecture is the primary method to deter-

mine the efficacy of modern processor designs. One can simulate how a program runs on

similar processor architectures in a design space to determine the optimum configuration

of processor elements and/or cache levels [15]. In this study we used the open source

M5 Simulator [16] to gather instruction stream from executing a subset of the SPLASH-2

benchmarks. SPLASH-2 is a suite of twelve parallel benchmarks specifically designed for

the academic study of multiprocessor architectures [17].

The M5 simulator

M5 is a discrete-event, general-purpose architectural simulator released under an open

source license. Although it is highly extensible, in this thesis we used the basic CPU and

memory models built into M5. They key reasons why M5 was chosen are its free license

and its ability to run in full system mode. Full system mode boots a simulated Linux ker-

nel, instead of just emulating syscalls. This allows us to include the effect of the operating

system in our performance analysis.

We used revision 7026 of M5 from the mercurial repository. Few deviations were made

from M5’s default full system settings. Since we were investigated future systems that

have not been made yet, no effort was made to use novel architecture techniques; the

AtomicSimpleCPU model is realistic enough to capture general performance trends. The

other system options were based on an average computer, with a 2GHz CPU frequency,

two levels of cache, and M5’s default idealized snoop cache coherence algorithm.
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The SPLASH-2 benchmarks

The SPLASH-2 benchmark suite was released in 1992 and patched in 1995 as a tool to

study shared address-space multiprocessor systems. It consists of 4 kernels, scientific and

engineering parallel computations, and 8 applications, complete programs more realistic

than the kernels. Because SPLASH-2 uses homogeneous parallelization, we can use sim-

pler timing models when simulating its execution [18]. The SPLASH-2 benchmarks focus

more on pure computation than processing large amounts of data like more modern bench-

mark suites such as PARSEC [19].

We examine three of the kernels in this thesis, FFT, Radix, and LU. The FFT benchmark

performs a complex 1-D FFT transform. It uses the radix-
√

n six-step FFT algorithm,

which is optimized to minimize interprocessor communication [20]. Communication hap-

pens three times during matrix transpose steps, yielding low overall throughput require-

ments, but a very bursty communication profile.

The Radix benchmark performs an iterative integer radix sort. Each iteration, every pro-

cessor calculates a local histogram with its assigned keys, then communicates to obtain a

global histogram each iteration. It then uses the global histogram to permute its keys; this

step requires all-to-all communication [21].

The LU benchmark factors a dense matrix into the product of an upper and lower triangular

matrix. The matrix is divided into blocks, which are assigned to processors using 2-D

scatter decomposition to reduce communication. Each block is allocated locally on the

processor that owns it.
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How to compile SPLASH-2 for full system simulation in M5

The first step in investigating the performance of the benchmarks is getting the programs

to compile. Since the SPLASH-2 Suite was released in 1995 it does not compile in modern

compilers in its released form. We used the Modified SPLASH-2 patches [22] to modernize

the code and hand modified the code in several benchmarks to get the suite to compile.

Another constraint is the Instruction Set Architectures (ISAs) that M5 supports. To get the

most realistic data from the simulator possible it needs to be run in full system mode where

the simulator actually boots a copy of Linux and runs the piece of code being investigated

inside Linux. Currently the Alpha ISA is the only ISA supported by M5’s full system

mode, so one must cross-compile the benchmarks to run on M5.

To build SPLASH-2 for M5, first download M5 and it’s necessary files and build it. Most

of the default full system files don’t work well with SPLASH-2; download the Parsec in

M5 [23] files to replace them. Note that tsb_osfpal from the obsolete full system files is

required to run more than 8 processors.

hg clone http://repo.m5sim.org/m5-stable
scons build/ALPHA_FS/m5.opt
wget http://www.m5sim.org/dist/current/m5_system_2.0b3.tar.bz2
wget http://www.cs.utexas.edu/˜parsec_m5/vmlinux_2.6.27-gcc_4.3.4
wget http://www.cs.utexas.edu/˜parsec_m5/linux-parsec-2-1-m5.img.bz2
wget http://www.m5sim.org/dist/current/tsb_osfpal

Keep the directory structure of the system files from m5sim.org, but move the parsec disk

image in to the disks directory and modify ./configs/common/Benchmarks.py line 53

to return env.get(’LINUX_IMAGE’, disk(’linux-parsec-2-1-m5.img’)) instead of

linux-latest.img. Do the same to line 67 of ./configs/common/FSConfig.py. Move
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vmlinux_2.6.27-gcc_4.3.4 into the binaries directory, but change its name to just

vmlinux.

To allow support for more than four processors move tsb_osfpal into the binaries di-

rectory and modify ./configs/common/FSConfig.py by changing the line self.pal =

binary(’ts_osfpal’) from ts_osfpal to tsb_osfpal.

The console file is the only original file that you will use from the m5 system files pro-

vided by m5sim.org. It may be necessary to chmod +x the other files in binaries. To

tell M5 where the disk images are, export M5_PATH as an environment variable or edit

./configs/common/SysPaths.py line 53. Run the regression tests to ensure that all vari-

ables are correctly set.

SPLASH-2 is no longer maintained, so one must download the source code from an internet

archival resource. Note that when the file is untarred it may say unexpected end of file,

but the files are still usable. Because of their age, the SPLASH-2 benchmarks will not com-

pile with modern compilers. The Modified SPLASH-2 patches [22] attempt to modernize

the code.

wget http://web.archive.org/web/20080528165352/http://www-flash.stanfo
rd.edu/apps/SPLASH/splash2.tar.gz
tar -xzvf splash2.tar.gz
cd splash2
wget http://www.capsl.udel.edu/splash/splash2-modified.patch.gz
gzip -d splash2-modified.patch.gz
patch -p1 < splash2-modified.patch

In codes/Makefile.export change the BASEDIR, and on line 9 change the macros to

c.m4.null.POSIX to support parallelism. The following commands will compile the FFT

benchmark and test it.



13

cd kernels/fft
make
./FFT -t

To cross-compile the benchmarks to run in M5 first download the Alpha cross-compiler.

wget www.m5sim.org/dist/current/alphaev67-unknown-linux-gnu.tar.bz2
tar -xjvf alphaev67-unknown-linux-gnu.tar.bz2

Next, change Makefile.export to use the crosscompiler by modifying CC, CFLAGS, and

LDFLAGS. Also force make to compile statically since the disk image does not have the

correct library versions for dynamic linking.

CC := /path/to/alphaev67-unknown-linux-gnu/bin/alphaev67-unknown-linux-
gnu-gcc
CFLAGS := $(CFLAGS) -I/path/to/alphaev67-unknown-linux-gnu/alphaev67-un
known-linux-gnu/sys-root/usr/include
LDFLAGS := $(LDFLAGS) -L/path/to/alphaev67-unknown-linux-gnu/alphaev67-
unknown-linux-gnu/lib/

After compiling FFT for the Alpha ISA, the executable can be loaded onto the disk image

and run inside M5. To copy the executable onto the disk image run the following:

mount -o loop,offset=32256 linux-parsec-2-1-m5.img /mnt/m5_disk
mkdir -p /mnt/m5_disk/benchmarks/
cp FFT /mnt/m5_disk/benchmarks/
umount /mnt/m5_disk/

Add the fft benchmark to configs/common/Benchmarks.py by adding the line ’fft’: [

SysConfig(’fft.rcS’, ’512MB’)], to the Benchmarks data structure. Then make the

rcS script which will run the benchmark inside M5 in ./configs/boot with this text:

#!/bin/sh
cd benchmarks
echo "Running FFT now..."
./FFT -t -p1
#Gracefully exit M5
/sbin/m5 exit
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All the SPLASH-2 kernels compile without modifications. To compile the applications

refer to the following.

• raytrace - runs without modifications, but the program to verify output does not

work.

• ocean - runs without modification and the output matches correct.out within rounding

tolerances.

• radiosity - runs without modification, but there are significant differences between

correct.out and M5’s output.

• water-* - runs without modification, but no known correct output is given to verify

the results.

• fmm - Rename the _Complex type and use __DBL_DIG__ and __DBL_MAX__ to com-

pile. The output does not match correct.out.

• barnes - runs without modification, but no known correct output is given to verify

the results.

• raytrace - Use libtiff from volrend to compile rltotiff. Comment out the

BYTESWAP macro in tiff_rgba_io.c.

• volrend - This application depends on libtiff, which needs several modifications to

compile. First remove the -ansi flag in the Makefile. In tiffcompat.h comment

out lines 173-187 and leave the #include <malloc.h> statement. To build the li-

brary for alpha, add include ../../../Makefile.config. However, the makefile

actually builds a C program and runs it to generate some source code for libtiff. To
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ensure that this program is compiled for the local machine and not Alpha, change the

${CC} under the target g3state.h to gcc or another default compiler.

Data collection from M5

To obtain the dynamic instruction stream we modified the traceInst function in src/exe/

exetrace.cc to output data about every instruction as it executes. The function printed

the disassembled instruction and its operands, the program counter (PC), and the CPU the

instruction executed on. Only instructions during the execution of the benchmark under test

were printed; booting the Linux kernel was ignored. This was accomplished by running M5

twice. The first time a checkpoint was taken right before the benchmark was executed, and

the second time the --trace-flags=ExecNoTicks and --checkpoint-restore=1 flags

were passed to M5 to print the instruction stream only while the benchmark was running.

All the plots presented in this document except the timing plot showw in the figure on page

18 were parsed from the instruction streams explained above. The data for the total execu-

tion time plot was taken directly from the statistics output by M5 after each simulation.

We used the address of each instruction to classify it into either PAL code, kernel code,

the SPLASH-2 benchmark, or the launcher process that started the benchmark. The PAL

code occupies addresses 0x4000 to 0x7000. The benchmark instruction’s PC starts at

0x2000000, and the BASH launcher process starts at 0x200000000. The kernel code oc-

cupies the high end of the address range, anything above 0xFFFF00000000000. Similarly,

counting the number of memory barriers, as shown in the figure on page 23, was done by a

simple grep command searching for mb or wmb instructions.

Counting the number and types of different locks was done by matching the dynamic in-
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struction stream with specific lock implementations found in the Linux kernel for the Alpha

architecture. Locks in Alpha are implemented by load-locked/store-conditional pairs [24].

Load-locked loads the current value of a location in memory and sets a special flag. The

next store-conditional on that address stores a new value only if no changes have been

stored since the load-locked. Atomic operations such as locking and unlocking can be im-

plemented using these instructions. For example, a raw spin lock that succeeds executes

the following instructions in order: ldl_l bne lda stl_c. We implemented a finite-state

machine in Python that kept track of the instruction stream for each CPU and incremented

appropriate counters for every ldl_l/stl_c instruction pairing it found.
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CHAPTER III

RESULTS AND ANALYSIS

In this chapter we present a detailed explanation of the data parsed from M5. In addition

to plots, tables with the instruction counts are presented in Appendix A so the reader can

precisely view the results.

Ideal multithreaded application performance

Amdahl’s law is used to predict the maximum speedup of a program when only part of the

program is sped up. In parallel computing, Amdahl’s law is applied to define how much

a program can be improved by adding more cores. For example, if a program consists of

50% sequential code, and 50% parallelizable code, the maximum speedup is 2x because

the sequential 50% will always need to execute. Amdahl’s law is often stated as:

speedup =
1

(1−P)+ P
N

where P is the proportion of the program that can be made parallel, and N is the number of

processors. Applications are said to be ”embarrassingly parallel” if P is near 1 because it is

trivial to parallelize the entire problem. The SPLASH-2 benchmarks are not embarrassingly

parallel because the programs all have small sequential bottlenecks where communication

is required. Amdahl’s law neglects more complex factors such as memory bottlenecks, but

it indicates that adding more cores should always offer some benefit, even if it is minor. If

adding cores does not benefit, there is a problem that needs to be investigated. Figure 1 on

page 2 of the introduction illustrates the problem we saw in the FFT benchmark.
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SPLASH-2 performance

Figure 2 shows the execution time of three benchmarks, normalized against 1 core.
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Fig. 2.: Normalized execution times of three SPLASH-2 benchmarks
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FFT shows the worst performance since it actually takes more time to run the program with

16 and 32 cores than with a single core. Radix scales the best of the three benchmarks,

disregarding the extremely modest gain from single to dual core configuration. At this

time, the author does not know what causes such an inconsequential performance gain.

The Radix execution time almost halves every time the number of cores are doubled, but

after 8 cores the decrease is less than half.

We see a strong decrease in execution time for the first 2 core doublings, but the perfor-

mance flatlines above 4 cores. The execution time actually increases slightly at 8 cores and

at 32. This indicates that the LU algorithm is sensitive to the architectural parameters of

the system, and even possibly unstable.

The performance of all three benchmarks could be improved. In an ideal system the exe-

cution time of a program running on 32 cores would be 0.03125 times the time it takes the

same program to run on a single processor. Radix comes closest to this goal with the 32

core program taking only 10% of the time of the single core program.

To study why the performance degrades so badly we counted the number of instructions

and plotted their increase in Figure 3.
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(c) LU instruction growth

Fig. 3.: Normalized instruction count, grouped by address, of three SPLASH-2 benchmarks
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These plots show the number of instructions executed, divided in categories. We found

four different types of instructions: PAL code, BASH, the benchmark itself, and kernel

code. These are essentially 4 different processes that interact with each other. PAL code, or

Privileged Architecture Library code, provides a hardware abstraction layer to the kernel.

It provides cache management, interrupt and exception handling, as well as other firmware

related tasks [25].

The BASH code is the launcher script that spawns the benchmark process. The bench-

mark code, labelled in the figures with the name of the benchmark, is the multithreaded

SPLASH-2 benchmark being tested. Finally, the kernel code is the Alpha version of Linux

kernel 2.6.

Ideally, the total number of instructions should have stayed roughly the same because the

program is solving the exact same problem. If the number of instructions increases, it

means the processor is doing unnecessary work that is not directly contributing to the so-

lution. By comparing the growth rates of the categories of instructions in Figure 3 we can

determine which process is the bottleneck.

For FFT, the kernel code is clearly the largest increase. For Radix and LU the exponential

increase is still there, it is just amortized better by the large instruction count of the actual

benchmark. For all three benchmarks the application code increases slightly, while the

kernel code increases exponentially as the number of cores doubles from 1 to 32. This

means the program can be sped up if the processor spent less time executing instructions

for the kernel. We hypothesized that contention for locks inside the kernel was driving the

increase. To verify the hypothesis we analyzed the dynamic instruction stream to look for

locks.
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Analyzing the dynamic instruction stream

Figure 4 shows the different types of locks as the number of cores increases. This only

measures locking functions inside the kernel that use the ldl_l and stl_c instructions.
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Fig. 4.: Growth of different locking functions



23

Spinlocks dominate the types of locks we detected. The exchange category consists of

functions that atomically swap a variable with a new value. The unlock function unlocks a

lock that is not implemented using spinning. The long spin category is comprised of spin

locks that spun for more than one loop. Functions that had only a few hundred invocations

and unidentified assembly streams are assigned the other category.

One must note that Figure 4 is a measure only of load-lock/store-conditional pairs, not all

synchronization functionality within the kernel. Locks are generally locked using those two

instructions, and then freed using a memory barrier. For example, the raw_spin_unlock

function is implemented in two instructions with the code mb(); lock=0; in the kernel.

Figure 5 shows the increase in memory barrier instructions. We counted both regular bar-

riers (mb) and write memory barriers (wmb) for this plot.
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Looking at Figures 4 and 5 one can see that the number of locks stays fairly flat until 4 or

8 cores, at which point it begins a near exponentially increasing pattern. This correlates

with the good performance in Figure 2 up to the same point, confirming our hypothesis

that resource contention in the kernel is reducing the performance gains of the applications

when we add more cores.

It is also important to note that the ”Spinlock” category only represents spinlocks that suc-

ceeded on the first try. Locks that had many repeated instructions between the load-lock

instruction and the store-conditional instruction are put into the ”Long Spin” category. Fig-

ure 6 shows total number of cycles these spinlocks had to spin before they were available,

and Figure 7 shows the average number of cycles spent in each spinlock that looped more

than once.
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The number of long spinlocks and the number of cycles spent in spinlocks both increase

drastically as the number of cores reaches 32. This indicates that there is heavy contention

for resources in the kernel.

Note the anomalous increase in cycles for the LU benchmark on 4 cores in Figure 7. This

corresponds to the slight rising of execution time in Figure 2c, showing that more time

spent in locking constructs corresponds to a higher execution time.

From Figures 6 and 7 it may seem that radix has the worst performance of the three bench-

marks because it spends the longest time looping in spinlocks. However, if you consider

the total number of locks executed, the Radix benchmark has less than LU and FFT per

total instructions executed.

From these results, it is clear that locking and synchronization mechanisms in the kernel

are hindering how well these benchmarks scale. To increase the performance of these
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benchmarks with many core processors we must reduce the synchronization overhead in

the kernel.
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CHAPTER IV

CONCLUSIONS AND FUTURE WORK

In this thesis we examined the reason why the FFT benchmark scales poorly in the M5

Simulator. By examining the dynamic instruction stream we found that the instruction

count of the kernel code was increasing exponentially as the number of cores increased.

Further analysis showed that both the number of locks and the average number of cycles

spent inside a spinlock increased rapidly after the number of cores exceeded eight.

Conclusions

In conclusion, load balancing is a big problem facing modern shared-memory, chip multi-

processor designers. Resource contention causes too many lock and unlock calls, which

slow down the code by preventing the actual application code from running. The first step

to increasing the performance of these benchmarks is to utilize each core to its fullest.

Potential changes that could benefit include changing the granularity at which the code

communicates. This could reduce the synchronization overhead because the code could

run longer in between communicating. Since critical structures are a source of locks during

communication, this would lead to less locks overall.

Another possible remedy is to use a different memory consistency model. Alpha has the

weakest memory consistency model, so memory barriers are commonly used to ensure

valid results. Using a stronger model like x86’s model could lower the synchronization

penalty, with the potential downside that the processor would have to work harder to en-

force the memory model.
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Future work

More work is necessary to understand exactly what causes the number of locks to explode

as the core count increases. To understand where the locks are coming from, we could take

into account the address of each instruction and compare it to disassembled binaries of the

Linux kernel and the SPLASH-2 application. This would allow us to analyze the sources

of the most expensive locks.

Higher fidelity simulations would also benefit this topic because they were yield more

realistic results. Using the most realistic CPU model in M5, as well as a realistic cache

coherence scheme for many cores, would give better results. This could lead to experiments

tweaking architectural parameters to reduce the operating system overhead.
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APPENDIX

TABLES OF DATA

Table I.: Instruction growth of the FFT benchmark

Cores PAL Code BASH FFT Kernel

1 244454 178726 1250556 2351064

2 244065 177235 1263858 2441599

4 265146 178564 1294561 2696372

8 281163 178564 1361343 2984038

16 350852 178991 1529432 3971110

32 566413 178991 1978882 7411790
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Table II.: Instruction growth of the Radix benchmark

Cores PAL Code BASH Radix Kernel

1 7197206 179564 157079855 4036759

2 7214189 178073 157453158 4305760

4 7237617 179402 158287076 4628311

8 7289889 179402 160103272 5640328

16 7435617 179815 163977971 8683744

32 7842547 179815 172181621 18015925

Table III.: Instruction growth of the LU benchmark

Cores PAL Code BASH LU Kernel

1 538093 179572 1457205541 4357391

2 628014 177998 1458173393 4724298

4 782206 179327 1463962946 5848504

8 1204206 179327 1463962946 9986505

16 1740988 178570 1471687943 19268020

32 3137760 178570 1487130971 48808270
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Table IV.: Memory barrier instructions executed

Cores FFT Radix LU

1 32559 37929 45772

2 32205 38311 48195

4 34518 40937 54570

8 36199 47327 76226

16 44152 71378 112395

32 67282 128941 195076

Table V.: Lock types for the FFT benchmark

Cores Spinlock Exchange Unlock Long Spin Other Cycles on Long

1 6320 848 557 837 2418 205106

2 6675 954 607 492 2470 124449

4 7066 1111 722 493 2903 125271

8 7219 1404 887 437 3651 104148

16 8472 2119 1227 457 3651 112566

32 11962 4083 1996 664 9116 552920
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Table VI.: Lock types for the Radix benchmark

Cores Spinlock Exchange Unlock Long Spin Other Cycles on Long

1 6991 1866 1067 658 3963 160589

2 7146 2029 1102 504 4095 121216

4 7227 2310 1230 546 4682 143368

8 7898 2922 1430 774 5744 230288

16 10881 4242 1834 863 7985 438838

32 19071 7129 2663 1148 13318 1296710

Table VII.: Lock types for the LU benchmark

Cores Spinlock Exchange Unlock Long Spin Other Cycles on Long

1 10888 1455 806 769 3261 187380

2 11090 1894 901 522 3950 133241

4 12359 2756 1093 514 5608 143368

8 18525 4320 1291 1119 8668 288939

16 28028 8015 1995 901 15259 389398

32 55053 15152 3148 1316 28385 1087661
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