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ABSTRACT

Static, Cylindrical Symmetry in General Relativity and Vacuum Energy. (April 2011)

Cynthia Trendafilova
Department of Mathematics

Department of Physics
Texas A&M University

Research Advisor: Dr. Stephen Fulling
Department of Mathematics

In the first section of my research, in analogy with the standard derivation of the spher-

ically symmetric Schwarzschild solution of the Einstein field equations, I find all static,

cylindrically symmetric solutions of the Einstein equations for vacuum. These include not

only the well known cone solution, which is locally flat, but others in which the metric

coefficients are powers of the radial coordinate and the space-time is curved. These solu-

tions appear in the literature, but in different forms, corresponding to different definitions

of the radial coordinate. I find expressions for transforming between these different metric

forms and examine some special points of interest. I then examine some special cases of

non-vacuum solutions of the equations as well. Because all the vacuum solutions are sin-

gular on the axis, I match them to interior solutions with nonvanishing energy density and

pressure. In addition to the well known cosmic string solution joining on to the cone, we

find some numerical solutions that join on to the other exterior solutions. I then consider

only a static, flat, cylindrically symmetric space-time. I calculate the components of the

stress-energy tensor in terms of the cylinder kernel and its derivatives. The cylinder ker-

nel in cylindrical coordinates has been previously calculated and can be used to find the

energy density and pressure on various cylindrical boundaries; future work will include
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finding these quantities for various cylindrically symmetric geometries.
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CHAPTER I

INTRODUCTION

Gravity is one of the four fundamental forces which govern our universe. With Einstein’s

formulation of his general theory of relativity, we gained a deeper understanding of how

matter shapes our universe and interacts according to the gravitational force. The presence

of matter adds curvature to space-time, which can be described using the metric tensor.

The Einstein field equations, given by

Gµν +Λgµν = kTµν , (1.1)

describe how the presence of matter, described by the stress-energy-momentum tensor,

Tµν , is related to the Einstein tensor, Gµν , which is a quantity calculated through deriva-

tives of the metric tensor, gµν , describing the space-time of interest.

A particular case commonly studied in textbooks is that of spherical symmetry, in which

the metric is written as a general static, spherically symmetric expression, where the com-

ponents are functions of the radial coordinate only. The Einstein tensor can be calculated

from this, and one can solve the Einstein equations for vacuum, in which there are no

sources and the stress-energy-momentum tensor is zero everywhere, yielding the well-

known Schwarzschild solution which describes the region exterior to a star [1, p.262].

The Einstein equations for the spherically symmetric metric can also be solved exactly for

certain other cases of Tµν .

However, a far less studied case is that of cylindrical symmetry; it does not possess the

This thesis follows the style of the European Journal of Physics.
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same simplifications and is not encountered as often as the spherical case. For a cylindri-

cally symmetric metric, there is translational symmetry along an axis and also rotational

symmetry around said axis. In the case when one is also dealing with a static situation, the

metric can be written as

ds2 =−e2Φdt2 + e2Λdr2 + r2dφ
2 + e2Ψdz2, (1.2)

where Φ, Λ, and Ψ are functions of r only, similarly to the spherically symmetric case.

General solutions of the Einstein equations for vacuum have been found previously for this

case, including for some non-static situations and cases breaking translational invariance,

attributed originally to Weyl and Levi-Civita in the early 20th century [2, 3]. Analogous

solutions which broke the condition of a static metric have also been studied by Rosen and

Marder in the mid 20th century [4].

Furthermore, in the 1980s, attention was given to the study of cosmic strings, which are

thin cylinders, usually filled with a non-Abelian gauge field, surrounded by vacuum. The

space outside of such strings is described by a cone, which is regular Minkowski space-

time minus a wedge characterized by a deficit angle, and the corresponding space-time is

locally flat [5]. However, the static, cylindrically symmetric cases of the solutions discov-

ered previously are not all restricted to this type, and there are more general solutions than

just cones. It is possible that the other solutions correspond to some more general equa-

tion of state describing matter inside a string, or could be useful in some other physical

situation.

In this research, I derive these solutions, but expressed in a slightly different form from

what has been done previously, writing them instead using a convention which seems most

natural to me. By writing a general expression for a static, cylindrically symmetric metric
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and calculating the corresponding Einstein tensor, I verify by solving the system of dif-

ferential equations resulting from the vacuum Einstein equations that the previously found

solutions are indeed the most general static, cylindrically symmetric ones. It is expected

that all solutions involve metric coefficients which are powers of r; once the solutions are

found, I also examine some of their properties. Previous authors found solutions using

different conventions for writing the general form of a cylindrically symmetric metric. It

is possible to transform between these various forms by rescaling coordinates, and I find

and present the relationships for doing so.

Furthermore, I acquire some solutions of the Einstein equations for a cylindrically sym-

metric metric and some nonzero components of the stress-energy-momentum tensor. There

are some simple cases which allow for easily obtainable exact solutions from the differen-

tial equations, which I solve in agreement with previous work on cosmic string solutions by

Gott and others [6, 7]. For other cases I use Mathematica’s numerical solving algorithms

to calculate numerical solutions instead, after choosing appropriate boundary conditions.

I expect to find solutions for a string of finite radius which can then be connected at the

boundary to the already known vacuum solutions.

After studying the situation of cylindrical symmetry as related to general relativity, I also

examine its relationship to another area of physics, quantum field theory. The theory

of quantum mechanics states that certain physical quantities are quantized and can only

occur in discrete amounts, and it describes the behavior of matter at very small scales.

Although useful, the theory as developed in the 1920s lacked the scope to describe certain

phenomena such as relativistic situations and production and annihilation of particles; by

extending it to describe fields, rather than fixed numbers of particles, and taking the fields

as the basic physical objects instead, such issues could then be addressed [8, p.48].
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By applying quantum field theory, one discovers that vacuum itself usually has a nonzero

vacuum energy even where there is no matter present [8, p.96]. This vacuum energy can

be calculated for various geometries, and it has been done previously for the cases of flat

plates and spherical geometries [9]. However, there are still problems with the theory

which are not fully understood, such as those regarding the energy-balance equation,

∂E
∂h

=−
∫

S
ph, (1.3)

where h is a general parameter, ph is the pressure along h, and S is the area of interest.

In the cutoff theory used to calculate the energy, this equation is violated [9]; perhaps ex-

amining some properties of cylindrical geometry may provide additional insight into these

current paradoxes.

Schwartz-Perlov and Olum have calculated the components of the stress-energy tensor

previously for the case of a static, spherically symmetric system [10], and the pressure on

a boundary has been calculated previously for the spherical case as well [9]. This has also

been done for flat, perfectly reflecting boundaries, but it becomes more complicated when

the boundaries become curved, because the simple method of images no longer applies;

however, there are several methods that can be used [11].

I proceed to calculate the components of the stress-energy tensor of a quantized scalar

field for a static, cylindrically symmetric system, in the case of locally flat space rather

than the general cylindrically symmetric case, using a method analogous to the one utilized

by Schwartz-Perlov and Olum. They first calculate the components of the stress-energy

tensor on the x-axis and then generalize this result to radial and tangential pressures; a

similar procedure can be used for the case of cylindrical symmetry [10]. One can then
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take these components and express them in terms of the known cylinder kernel in order

to calculate the pressure on a cylindrical, perfectly reflecting boundary. Future work will

involve calculating the pressure and energy density for various situations. One can make

certain approximations with the free cylinder kernel; one can make a first-order optical

approximation by adding or subtracting a single term from the known free cylinder kernel,

or one can use the Multiple-Reflection Expansion and a formula developed by Liu to get a

better approximation [11]. A continuation of the work in this thesis will examine the prop-

erties that arise in these situations, in the hopes of shedding some insight into the apparent

paradoxes present in the theory.
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CHAPTER II

STATIC, CYLINDRICAL SYMMETRY IN GENERAL RELATIVITY

In this chapter, solutions of Einstein’s equations are presented for various static, cylindri-

cally symmetric cases.

Vacuum solution of Einstein equations

In writing a general expression for a metric exhibiting cylindrical symmetry, we require

that it must have axial symmetry and thus the metric components must be independent of

the angular coordinate, φ ; we also require translational symmetry along z, so the coeffi-

cients must be independent of z as well. In our case we are also examining only the static

situation, so the metric components must be independent of t, leaving any unknown func-

tions to be functions of the radial variable, r, only. In analogy to the standard treatment of

spherical symmetry [1], we define r so that the coefficient of dφ 2 is equal to r2. Later we

discuss alternative conventions, and also the question of whether any generality is lost by

this convention. Thus the metric can be written

ds2 =−e2Φdt2 + e2Λdr2 + r2dφ
2 + e2Ψdz2, (2.1)

where Φ, Λ, and Ψ are the unknown functions of r for which we would like to solve. By

writing our unknown functions in the form of exponentials, we guarantee that our coeffi-

cients will be positive as we would like them to be, and also mirror the standard textbook

treatment of the spherically symmetric metric. The form in which we have written the

metric does not restrict the range of φ to be from 0 to 2π; instead it runs from 0 to some

angle φ∗. As we shall show later, φ can be forced to fill an angle of 2π by rescaling φ

and bringing in an additional numerical factor multiplying the angular term, or by also
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rescaling r and bringing in a numerical factor multiplying the dr2 term.

The standard known expressions for the Christoffel symbols (Γγ

β µ
), Riemann curvature

tensor (Rα

β µν
), and Ricci tensor (Rαβ ) associated with a given metric are as follows [1]:

Γ
γ

β µ
=

1
2

gαγ(gαβ ,µ +gαµ,β −gβ µ,α), (2.2)

Rα
β µν = Γ

α

βν ,µ −Γ
α

β µ,ν +Γ
α
σ µΓ

σ

βν
−Γ

α
σνΓ

σ

β µ
, (2.3)

Rαβ = Rµ
αµβ , (2.4)

(where for our static, cylindrically symmetric metric, gtt = −e2Φ, grr = e2Λ, gφφ = r2,

gzz = e2Ψ, and all other metric components are zero). All of the components of these

objects can be calculated for this metric, and the results are presented below.

Nonzero Christoffel Symbols:

Γ
t
tr = Γ

t
rt = Φ

′

Γ
r
tt = Φ

′e2(Φ−Λ)

Γ
r
rr = Λ

′

Γ
r
φφ =−re−2Λ (2.5)

Γ
r
zz =−Ψ

′e2(Ψ−Λ)

Γ
φ

rφ
= Γ

φ

φr =
1
r

Γ
z
rz = Γ

z
zr = Ψ

′

Nonzero Riemann Curvature Tensor Components:

Rt
φφ t = rΦ

′e−2Λ

Rr
φφr =−rΛ

′e−2Λ

Rr
zzr = (Ψ′′+Ψ

′2−Ψ
′
Λ
′)e2(Ψ−Λ)
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Rr
ttr =−(Φ′′+Φ

′2−Φ
′
Λ
′)e2(Φ−Λ) (2.6)

Rz
ttz =−Ψ

′
Φ
′e2(Φ−Λ)

Rz
φφz = rΨ

′e−2Λ

Nonzero Ricci Tensor Components:

Rtt = (Φ′′+Φ
′2−Φ

′
Λ
′+

1
r

Φ
′+Ψ

′
Φ
′)e2(Φ−Λ)

Rrr =−Φ
′′−Φ

′2 +Φ
′
Λ
′+

1
r

Λ
′−Ψ

′′−Ψ
′2 +Λ

′
Ψ
′

Rφφ = r(Λ′−Φ
′−Ψ

′)e−2Λ (2.7)

Rzz =−(Ψ′′+Ψ
′2−Ψ

′
Λ
′+Ψ

′
Φ
′+

1
r

Ψ
′)e2(Ψ−Λ)

Primes correspond to differentiation with respect to r, e.g., Φ′ = dΦ

dr .

In general, space-time is described by the Einstein field equations [1],

Gµν +Λgµν = kTµν . (2.8)

The presence of matter, described by the stress-energy-momentum tensor Tµν , affects the

curvature of space-time as described by the metric tensor, gµν , and its derivatives as con-

tained in the Einstein tensor, Gµν . The quantity Λ is the cosmological constant, which we

will take to be zero, and k is a constant which is equal to 8π , reducing the equations to

Gµν = 8πTµν . (2.9)

We would like to solve the Einstein field equations for the vacuum solution, when there

are no sources present and Tµν = 0; this corresponds to Gαβ = 0. It is easy to show, how-

ever, that it is sufficient to calculate the solutions for Rαβ = 0. We begin with the standard

definition of the Einstein tensor, Gαβ = Rαβ − 1
2Rgαβ [1]. From this we can calculate the
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trace of the Einstein tensor G := Gµ
µ = Rµ

µ − 1
2Rgµ

µ = R−2R =−R and thus obtain the

following relation between the Ricci and Einstein tensors: Rαβ = Gαβ − 1
2Ggαβ . Thus

we see that if Rαβ = 0 then Gαβ = 0, and conversely, if Gαβ = 0 then Rαβ = 0. Thus the

solutions to Rαβ = 0 are also the solutions to the vacuum Einstein field equations, Gαβ = 0.

By equating the nontrivial components of the Ricci tensor with zero, we obtain a set of

four ordinary differential equations for Φ, Λ, and Ψ. We further note that the exponential

function is never equal to zero, so the differential equations reduce to

(Φ′′+Φ
′2−Φ

′
Λ
′+

1
r

Φ
′+Ψ

′
Φ
′) = 0, (2.10)

−Φ
′′−Φ

′2 +Φ
′
Λ
′+

1
r

Λ
′−Ψ

′′−Ψ
′2 +Λ

′
Ψ
′ = 0, (2.11)

(Λ′−Φ
′−Ψ

′) = 0, (2.12)

−(Ψ′′+Ψ
′2−Ψ

′
Λ
′+Ψ

′
Φ
′+

1
r

Ψ
′) = 0. (2.13)

We see that (2.12) can be solved for Λ′ in terms of the other two unknown functions

(Λ′ = Φ′+Ψ′), which can then be substituted into (2.10), (2.11), and (2.13) to eliminate

Λ′. Thus this system can be reduced to

Λ
′ = Φ

′+Ψ
′, (2.14)

Φ
′′+

1
r

Φ
′ = 0, (2.15)

Ψ
′′+

1
r

Ψ
′ = 0, (2.16)

Φ
′
Ψ
′+

1
r

Φ
′+

1
r

Ψ
′ = 0. (2.17)

Now (2.14), (2.15), and (2.16) are linear second-order equations easily solved by sepa-

ration of variables. For example, let A = dΦ

dr ; then (2.19) becomes dA
dr = −1

r A or dA 1
A =

−1
r dr, which can be integrated to yield ln(A) = − ln(r)+ ln(a1). This yields A = dΦ

dr =

a1
1
r which integrates to Φ = ln(ra

1) + ln(a2). Similarly, Ψ = ln(rb1) + ln(b2) and Λ =
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ln(ra1+b1)+ ln(c). Also, substituting these solutions into (2.17) provides the additional

constraint that a1b1 +a1 +b1 = 0. Thus the static, cylindrically symmetric metric is

ds2 =−a2
2r2a1dt2 + c2r2(a1+b1)dr2 + r2dφ

2 +b2
2r2b1dz2 (2.18)

with 0≤ φ < φ∗. The multiplicative constants a2 and b2 can easily be absorbed by a linear

rescaling of t and z, resulting in

ds2 =−r2a1dt2 + c2r2(a1+b1)dr2 + r2dφ
2 + r2b1dz2; (2.19)

after each change of variables in what follows, we shall carry out this procedure again

without comment. Here we have shown that the coefficients must be powers of r as in

(2.19), with a1b1 +a1 +b1 = 0. Since we no longer have to worry about the constants a2

and b2, we now drop the subscripts on a1 and b1, and simply write the constraint as

ab+a+b = 0. (2.20)

The form of the metric derived here is in agreement with equation (3) of Marder [4], with

C = −b1, and the metric coefficients are powers of r as also found in previous work by

Weyl and Levi-Civita. The constant c can also be absorbed by rescaling r, which affects

the dφ 2 term by bringing out another constant in front, resulting in

ds2 =−r2adt2 + r2(a+b)dr2 +K2r2dφ
2 + r2bdz2. (2.21)

This leads to two natural conventions for the dφ 2 term. One can now rescale φ so that the

constant K2 is absorbed, thus redefining the range φ∗ of φ . One could instead rescale φ to

fix its range to be from 0 to 2π , in which case the constant remains, multiplying either dφ 2

as in (2.21) or dr2 as in (2.19). In the work that follows, we use the first convention,

ds2 =−r2adt2 + r2(a+b)dr2 + r2dφ
2 + r2bdz2, (2.22)
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where the arbitrary constant is hidden in the periodicity, φ∗.

Various forms for cylindrical metrics

We now examine in greater detail the relationship between a and b, which is given in (2.20)

and illustrated in Figure 1.

(a) (b)

Figure 1. (a) Plot of the relationship between a and b; (b) plot of the relationship between
a and a+b.

We note the existence of several special points on these graphs and examine their sig-

nificance in various different forms of writing the cylindrical metric. One such point is

a = b = 0, which reduces the metric of (2.22) to

ds2 =−dt2 +dr2 + r2dφ
2 +dz2. (2.23)
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This describes a cone; that is, flat space missing a wedge of deficit angle ∆φ = 2π −φ∗.

If φ∗ > 2π , a wedge is added. Ordinary Minkowski space arises as the very special case

φ∗ = 2π . It is also useful to note the symmetry between the t and z coordinates, along with

the Lorentz symmetry under boosts in the z direction.

Another point of interest is b =−1, in which case a→ ∞. The significance of this (appar-

ently singular) case can be better demonstrated if we rescale r, t, and z of equation (2.20)

(with the rescaling for r given explicitly later in this chapter) to write the metric in the

form [4]:

ds2 =−r−2bdt2 + r2(1+b)dφ
2 +A2r2b(1+b)(dr2 +dz2) (2.24)

with A := c(1+ b). If we now treat A as the arbitrary constant instead of b, the met-

ric remains nonsingular when b = −1 in the other terms. After rescaling r with r̄ =

A1/[b(1+b)−1)]r to absorb A, one gets

ds2 =−r̄−2bdt̄2 +A(2(1+b))/(−b(1+b)−1)r̄2(1+b)dφ
2 + r̄2b(1+b)dr̄2 + r̄2b(1+b)dz̄2. (2.25)

We must now rescale φ as well in order to absorb the final constant in front of the dφ 2

term; this changes the range φ∗. The metric becomes

ds2 =−r̄−2bdt̄2 + r̄2(1+b)dφ̄
2 + r̄2b(1+b)dr̄2 + r̄2b(1+b)dz̄2, (2.26)

and at the point where b =−1 it reduces to

ds2 =−r̄2dt̄2 +dφ̄
2 +dr̄2 +dz̄2. (2.27)

Under the transformation T = r̄ sinh t̄ and R = r̄ cosh t̄ we see that (2.27) is locally equiva-

lent to flat space,

ds2 =−dT 2 +dφ̄
2 +dR2 +dz̄2 (2.28)
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with φ̄ a periodic coordinate.

We also note that the general relationship in (2.20) is symmetric when a and b are switched,

corresponding to switching z and t. This observation suggests that the case a =−1, b→∞

is parallel to the foregoing one. To see its physical significance, we can write the metric of

(2.19) in the form [4]

ds2 = L−2br2a2+2a(−dt2 +dr2)+L2(1+b)r2+2adφ
2 +L−2(1+b)r−2adz2 (2.29)

with L := ((1+b)/K)(1+b)−2
. At the point where a =−1 and b→ ∞, this reduces to

ds2 =−dt2 +dr2 +dφ
2 + r2dz2. (2.30)

Under the transformation Z = r sinz and R = r cosz we get

ds2 =−dt2 +dφ
2 +dR2 +dZ2, (2.31)

and this once again looks like flat space locally, but with φ still a periodic coordinate.

We note that these locally flat solutions are not included in the general solution found

previously because there we fixed the coefficient of dφ 2 to be r2, whereas in (2.28) and

(2.31) that coefficient is a constant.

Transforming between metric conventions

We now examine how transforming from (2.19) to the other metric forms affects the ra-

dial coordinate r. To go from (2.19) to (2.24), which corresponds to the convention used

by Weyl and Levi-Civita in solving for a general cylindrical metric in 1917 [2], we must

use r̄ = (c/(a+1))ra+1. We see that in this case, the exponent of r is negative whenever

a < −1 or, equivalently, b < −1. Under this condition, r = 0 in our gauge choice cor-

responds to r̄ = ∞ in Weyl’s gauge choice. To go from our form of the metric to that of
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(2.29), attributed to Rosen [4], we require r̄ = (c/(b+1))rb+1. Once again, the exponent

of r is negative whenever b < −1 (a < −1), and in that case r = 0 corresponds to r̄ = ∞

and vice versa.

Another possible choice for writing the metric is used by Garfinkle [12], written in the

form

ds2 =−Adt2 +Bdφ
2 +dr2 +Cdz2, (2.32)

where A, B, and C are once again functions of r only. In this case, to transform from

our gauge to (2.32) we require r̄ = (c/(a+b+1))ra+b+1. Under this transformation, the

metric becomes

ds2 =−(Dr̄)(2a/(a+b+1))dt2 +dr̄2 +(Dr̄)(2/(a+b+1))dφ
2 +(Dr̄)(2b/(a+b+1))dz2 (2.33)

with D := (a+ b+ 1)/c. The exponent of r in our definition of r̄ is negative whenever

a+ b < −1, which occurs whenever b < −1 (a < −1). Thus in all three alternate metric

forms discussed here, r = 0 in our gauge corresponds to r̄ = ∞ in the new gauge whenever

a < −1 and b < −1 (hence a+ b ≤ −4 from Figure 1 (b)). The other possibilities have

a+b≥ 0 and r and r̄ running in the same direction.

It is also interesting to calculate W ≡ Rαβ µνRαβ µν for the vacuum solution, because this

is the simplest nonzero curvature invariant; since 1
2Rgαβ = Rαβ −Gαβ implies that the

Ricci scalar R = 0. After raising and lowering indices on the Riemann tensor compo-

nents as necessary, and using the identities that Rαβ µν = −Rβαµν = −Rαβνµ = Rµναβ

and Rαβ µν +Rανβ µ +Rαµνβ = 0, we sum over the necessary indices and get the result

that

W = Rαβ µνRαβ µν = 4Cr−4(a+b+1) (2.34)
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where C = 3a2 + 3b2 + 3a2b2 + 2ab+ 2a2b+ 2ab2. We see that the exponent is negative

whenever a+ b > −1, and in that case, W → 0 as r→ ∞. In the other case, when the

exponent is negative instead, W →∞ as r→∞ but W → 0 as r̄→∞, and in that case there

is some ambiguity as to which of these limits is the “outside” and which is the “inside”.

Solutions of the Einstein equations with sources

We would like to find some cylindrical space-times that are not singular along the central

axis. This requires solving the Einstein equations in cases where T has nonzero com-

ponents. In order to proceed with this, we first require a few more basic quantities and

tensors encountered in general relativity. We present here the results for the Ricci scalar,

R = gµνRµν , the Einstein tensor, Gµν = Rµν − 1
2gµνR [1], and the stress-energy tensor,

Tµν , for the cylindrically symmetric metric given in (2.1). The components of the stress-

energy tensor for a perfect fluid are given by Tαβ = (ρ + p)UαUβ + pgαβ , where ρ is the

matter density, p is the pressure, and Uα is the four-velocity of the matter; since we will

be looking at static matter with no motion, all components of the four-velocity are zero

except Ut =−eΦ [1]. The results for these calculations are presented below.

Ricci Scalar:

R = e−2Λ(−2Φ
′′−2Φ

′2 +2Φ
′
Λ −2Ψ

′′−2Ψ
′2 +2Ψ

′
Λ
′−2Ψ

′
Φ
′+

2
r

Λ
′− 2

r
Φ
′− 2

r
Ψ
′) (2.35)

Nonzero Einstein Tensor Components:

Gtt = e2(Φ−Λ)(−Ψ
′′−Ψ

′2 +Ψ
′
Λ
′+

1
r

Λ
′− 1

r
Ψ
′)

Grr = Ψ
′
Φ
′+

1
r

Φ
′+

1
r

Ψ
′

Gφφ = r2e−2Λ(Φ′′+Φ
′2−Φ

′
Λ
′+Ψ

′′+Ψ
′2−Ψ

′
Λ
′+Ψ

′
Φ
′) (2.36)

Gzz = e2(Ψ−Λ)(Φ′′+Φ
′2−Φ

′
Λ
′− 1

r
Λ
′+

1
r

Φ
′)
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Nonzero Stress Tensor Components:

Ttt = ρe2Φ

Trr = pre2Λ

Tφφ = pφ r2 (2.37)

Tzz = pze2Ψ

From the Einstein field equations, Gµν = 8πTµν , and the conservation laws, T αβ
;β = 0,

we get the following five differential equations:

0 =
∂ pr

∂ r
+ pr(Φ

′+Ψ
′+

1
r
)+ρΦ

′− pzΨ
′− 1

r
pφ , (2.38)

4π(ρ + pr + pφ + pz)e2Λ = Φ
′′+Φ

′2−Φ
′
Λ
′+Ψ

′
Φ
′+

1
r

Φ
′, (2.39)

4π(ρ + pr− pφ − pz)e2Λ =

−Φ
′′−Φ

′2 +Φ
′
Λ
′+

1
r

Λ
′−Ψ

′′−Ψ
′2 +Λ

′
Ψ
′, (2.40)

4π(ρ− pr + pφ − pz)e2Λ =
1
r
(Λ′−Φ

′−Ψ
′), (2.41)

4π(ρ− pr− pφ + pz)e2Λ =−Ψ
′′−Ψ

′2 +Ψ
′
Λ
′−Ψ

′
Φ
′− 1

r
Ψ
′. (2.42)

We can simplify these by summing (2.39) and (2.40) and subtracting (2.42). This yields

4π(ρ +3pr + pφ − pz)e2Λ = 2Ψ
′
Φ
′+

1
r

Φ
′+

1
r

Ψ
′+

1
r

Λ
′. (2.43)

We now add and subtract equation (2.41) from (2.43), resulting in

4π(2ρ +2pr +2pφ −2pz)e2Λ = 2Ψ
′
Φ
′+

2
r

Λ
′ (2.44)

4π(4pr)e2Λ = 2Ψ
′
Φ
′+

2
r
(Φ′+Ψ

′). (2.45)

We now have a system of differential equations where equations (2.38), (2.39), (2.41), and

(2.42) can be solved for pr, pφ , pz, Φ, Ψ, and Λ (given ρ and an equation of state relating
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ρ and the various pressures), and (2.45), which contains only lower-order derivatives of

the unknown functions, provides an additional constraint. The system of all five equations

is second-order in Φ and Ψ and first-order in Λ and pr.

Differentiating equation (2.45) with respect to r and using equations (2.38), (2.39), (2.42),

and (2.44) to substitute for p′r, Λ′, Φ′′, and Ψ′′ yields an expression which reduces to 0= 0;

thus equation (2.45) must hold for all r if it holds at any r.

Solving these equations for arbitrary ρ , pr, pφ , and pz is rather difficult, however, so a

simpler case one can look at is when ρ =−pz and the other pressure components are zero.

In this case, the differential equations reduce to

0 = ρ(Φ′+Ψ
′), (2.46)

0 = Φ
′′+Φ

′2−Φ
′
Λ
′+Ψ

′
Φ
′+

1
r

Φ
′, (2.47)

4π(2ρ)e2Λ =
1
r
(Λ′−Φ

′−Ψ
′), (2.48)

0 =−Ψ
′′−Ψ

′2 +Ψ
′
Λ
′−Ψ

′
Φ
′− 1

r
Ψ
′, (2.49)

0 = 2Φ
′
Ψ
′+

2
r
(Φ′+Ψ

′). (2.50)

From equation (2.46) we can see that Φ′+Ψ′ = 0, allowing us to solve equation (2.48) for

Λ′ = 8πρre2Λ, which can easily be solved using integration by parts to get Λ for a given

ρ . From (2.50) and the fact that Φ′+Ψ′ = 0, we also see that Φ′Ψ′ = 0. Thus we can

conclude that Φ′ = Ψ′ = 0, yielding Φ = a1 and Ψ = a2 (where a1 and a2 are constants).

The metric of the solution can be written as

ds2 =−dt2 + e2Λdr2 + r2dφ
2 +dz2. (2.51)
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This case has been solved previously by Gott [6], with ρ = 1/(8πr2
0) (where r0 is a con-

stant). Using this value of ρ , our solutions yield

ds2 =−dt2 +(r2
0/(c− r2))dr2 + r2dφ

2 +dz2, (2.52)

which agrees with Gott’s solution after making the substitution r = sin(θ) and then rescal-

ing coordinates as necessary. This metric is Lorentz-invariant under boosts in the (z,t)

plane, and thus ρ and pz are independent of frame. If we did not have the condition that

ρ =−pz, the solution would not be Lorentz invariant in this way and ρ and pz would not

be frame-independent. Indeed, generically one would expect the density of the matter in a

string source to be affected by Lorentz contraction when one moves out of the rest frame.

But a Gott string, like cosmological dark energy (where all components of p equal −ρ),

has no preferred rest frame.

We now present some numerical solutions (calculated with Mathematica) for the case

where we take ρ to be constant out to a radius R and zero outside of this radius, and the

pressure is isotropic in all directions, pr = pφ = pz ≡ p. This is analogous to isotropic

pressure in the spherically symmetric case, even if considering it in the cylindrically sym-

metric case is not astrophysically realistic. Since our differential equations involve factors

of 1/r, they present problems when trying to solve the system numerically starting from

r = 0. In order to deal with this, we first make power series expansions of p, Φ, Ψ, and

Λ around r = 0. We keep terms up to order r in the p and Λ expansions (since our dif-

ferential equations involve first-order derivatives of these functions) and keep terms up to

order r2 in the Φ and Ψ expansions (since the differential equations involve second-order

derivatives of these functions), resulting in

p = p0 + p1r, (2.53)
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Λ = Λ0 +Λ1r, (2.54)

Φ = Φ0 +Φ1r+Φ2r2, (2.55)

Ψ = Ψ0 +Ψ1r+Ψ2r2. (2.56)

We also take the initial conditions Ψ=Φ=Λ= 0 at r = 0 so that the corresponding metric

coefficients are equal to 1 at that point, and choose Ψ′ = Φ′ = 0 to get smooth solutions at

the axis. Equations (2.53)–(2.56) should satisfy our differential equations near r = 0, so we

substitute them into (2.38), (2.39), (2.41), (2.42), and (2.45) (taking pr = pφ = pz = p).

Using our chosen initial conditions and looking at the lowest-order terms in the expan-

sion of each equation, we obtain the relationships p1 = 0, Λ1 = 0, Φ2 = π(ρ +3p0), and

Ψ2 =−π(ρ− p0). After choosing values for ρ and p0 = p(0), we can determine the val-

ues of p, Φ, Ψ, and Λ at some small r away from 0; we take r = 0.01. We use these as our

initial conditions for the numerical calculations and obtain solutions for various values of

ρ and p0; several examples of such solutions are provided. For the case of ρ = 1, p0 = 0.1,

the results are given in Figure 2. When ρ = 10, p0 = 1, the results are given in Figure 3.

For ρ = 1, p0 = 0.2, the results are in Figure 4, and when ρ = 10, p0 = 3, the results are

shown in Figure 5.
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(a) (b)

Figure 2. For ρ = 1 and p0 = 0.1 (interior): (a) plot of Λ(r) (thick), Ψ(r) (normal), and
Φ(r) (dashed); (b) plot of p(r).

(a) (b)

Figure 3. For ρ = 10 and p0 = 1 (interior): (a) plot of Λ(r) (thick), Ψ(r) (normal), and
Φ(r) (dashed); (b) plot of p(r).
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(a) (b)

Figure 4. For ρ = 1 and p0 = 0.2 (interior): (a) plot of Λ(r) (thick), Ψ(r) (normal), and
Φ(r) (dashed); (b) plot of p(r).

(a) (b)

Figure 5. For ρ = 10 and p0 = 3 (interior): (a) plot of Λ(r) (thick), Ψ(r) (normal), and
Φ(r) (dashed); (b) plot of p(r).

After finding interior solutions numerically for pr = pφ = pz = p, we can then connect

them to the exterior vacuum solution found previously. We take R to be the point where

p(r) = 0, and use the values of Φ(R), Φ′(R), Ψ(R), Ψ′(R), and Λ(R) from the numerical

solutions as conditions to determine the unknown coefficients (a1, a2, b1, b2, and c) of

Φ, Ψ, and Λ from the vacuum case. We must match our interior solution with the most
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general vacuum solution which includes all the arbitrary constants (Φ = ln(ra
1)+ ln(a2),

Ψ = ln(rb1)+ ln(b2), and Λ = ln(ra1+b1)+ ln(c)), since we chose our initial conditions so

that the interior metric coefficients are all 1 at r = 0. Because of this, we are not free to

scale away a2, b2, and c, and we must keep them in the metric in order to match our two

sets of solutions.

The results for the sample cases given above are presented in the figures. When ρ = 1,

p0 = 0.1, we get that R = 0.1486, and the resulting exterior solutions are plotted in Figure

6. For the case of ρ = 10, p0 = 1, we get R = 0.04791, and the exterior solutions are plot-

ted in Figure 7. The other two cases are given in Figures 8 and 9. Numerical constants for

all of these solutions are given in table I. Also, after rescaling coordinates appropriately

in order to put the metric in the form of equation (2.22), the range of φ changes as well;

it had to be 2π for the inner solution to guarantee smoothness at the origin, and thus the

outer solution initially has range 2π when matched with the inner solution. The new value

of φ∗ is given by φ∗ = (2π)c−1/(a1+b1+1). The values of φ∗ for the two solutions described

above are also given in the table.

Figure 6. For ρ = 1 and p0 = 0.1 (exterior): plot of Λ(r) (thick), Ψ(r) (normal), and Φ(r)

(dashed).
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Figure 7. For ρ = 10 and p0 = 1 (exterior): plot of Λ(r) (thick), Ψ(r) (normal), and Φ(r)

(dashed).

Figure 8. For ρ = 1 and p0 = 0.2 (exterior): plot of Λ(r) (thick), Ψ(r) (normal), and Φ(r)

(dashed).

Figure 9. For ρ = 10 and p0 = 3 (exterior): plot of Λ(r) (thick), Ψ(r) (normal), and Φ(r)

(dashed).
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Table I. Numerical constants for exterior solution when ρ = 1 and p0 = 0.1 (second col-
umn), ρ = 10 and p0 = 1 (third column), ρ = 1 and p0 = 0.2 (fourth column), and
ρ = 10 and p0 = 3 (fifth column).

R 0.1486 0.04791 0.1815 0.06298

R2ρ 0.02208 0.02296 0.03294 0.03966

a1 0.2052 0.2136 0.4165 0.6480

b1 −0.1703 −0.1761 −0.2941 −0.3933

a2 1.627 2.114 2.444 7.846

b2 0.6722 0.5435 0.5429 0.2969

c 1.279 1.342 1.7159 3.2192

φ∗ 4.954 4.732 3.884 2.475

In the spherically symmetric case, the Buchdahl theorem requires that R > 9
4M for any

stellar model, where M = 4
3πρR3 [1]. This implies that R2ρ < 1

10 , where R2ρ is a dimen-

sionless quantity. Although this inequality need not hold in the cylindrically symmetric

case, it is interesting to note that in the examples studied above, it does in fact hold.
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CHAPTER III

STATIC, CYLINDRICAL SYMMETRY IN VACUUM ENERGY

In order to calculate the pressure on cylindrical boundaries, one first needs expressions for

the components of the stress-energy tensor, Tµν , in terms of the known cylinder kernel, T̄ .

The cylinder kernel is given by ∂ T̄
∂ t = T , where x = (r,θ ,z) and x′ = (r′,θ ′,z′) are two dif-

ferent points in space. T is defined by ∂ 2T
∂ t2 =−∇2T with appropriate boundary conditions,

the initial condition T (0,x,x′) = δ (x− x′) = ∂ T̄
∂ t (0,x,x

′), and a requirement that T (t,x,x′)

is bounded as t→+∞ [13].

To calculate the components of the stress-energy tensor in a static, flat, cylindrically sym-

metric spacetime, we utilize the same method used by Schwartz-Perlov and Olum to cal-

culate the stress-energy tensor in a spherically symmetric spacetime [10]. We begin by

taking the r, θ , and z unit vectors along the x, y, and z axes; due to the cylindrical sym-

metry of the situation, this is valid regardless of how we rotate in the x-y plane. We define

the “⊥” coordinate to be along the θ direction, but with units of length, like the y coor-

dinate, so that we may take straightforward derivatives of the form ∂⊥ = ∂

∂⊥ . Also, in

the calculations that follow, “0” is used to refer to components and derivatives in the time

coordinate. With this setup, and using the metric η00 =−1, ηrr = η⊥⊥= ηzz = 1 (all other

components equal to zero), we can make use of the stress-energy tensor formula given in

Schwartz-Perlov and Olum’s paper

Tµν = ∂µφ∂νφ − 1
2

ηµν∂
λ

φ∂λ φ +ξ [ηµν∂λ ∂
λ (φ 2)−∂µ∂ν(φ

2)], (3.1)

where φ is a massless real scalar field [10]. We can now plug in to find T00, Trr, T⊥⊥, and

Tzz in terms of the scalar field φ , raising and lowering indices as necessary. We also take
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ξ = β + 1
4 (ξ is the curvature coupling) and let φ̇ = ∂0φ . This results in

T00 =
1
2
[φ̇ 2−φ∂

2
r φ −φ∂

2
⊥φ −φ∂

2
z φ ]

−2β [(∂rφ)
2 +φ∂

2
r φ +(∂⊥φ)2 +φ∂

2
⊥φ +(∂zφ)

2 +φ∂
2
z φ ] (3.2)

Trr =
1
2
[−φφ̈ +(∂rφ)

2 +φ∂
2
⊥φ +φ∂

2
z φ ]

+2β [(∂⊥φ)2 +φ∂
2
⊥φ +(∂zφ)

2 +φ∂
2
z φ − φ̇

2−φφ̈ ] (3.3)

T⊥⊥ =
1
2
[−φφ̈ +(∂⊥φ)2 +φ∂

2
r φ +φ∂

2
z φ ]

+2β [−φ̇
2−φφ̈ +(∂rφ)

2 +φ∂
2
r φ +(∂zφ)

2 +φ∂
2
z φ (3.4)

Tzz =
1
2
[−φφ̈ +(∂zφ)

2 +φ∂
2
r φ +φ∂

2
⊥φ ]

+2β [−φ̇
2−φφ̈ +(∂rφ)

2 +φ∂
2
r φ +(∂⊥φ)2 +φ∂

2
⊥φ . (3.5)

Now from the wave equation which the field φ must satisfy,

0 =−φ̈ +∇
2
φ , (3.6)

we can get several expressions which allow us to further simplify equations 3.2-3.5. This

yields

T00 =
1
2
[φ̇ 2−φφ̈ ]−2β [∂r(φ∂rφ)+∂⊥(φ∂⊥φ)+∂z(φ∂zφ)] (3.7)

Trr =
1
2
[(∂rφ)

2−φ∂
2
r φ ]+2β [∂⊥(φ∂⊥φ)+∂z(φ∂zφ)− (φ̇ 2 +φφ̈)] (3.8)

T⊥⊥ =
1
2
[(∂⊥φ)2−φ∂

2
⊥φ ]+2β [−(φ̇ 2 +φφ̈)+∂r(φ∂zφ)+∂z(φ∂zφ)] (3.9)

Tzz =
1
2
[(∂zφ)

2−φ∂
2
z φ ]+2β [−(φ̇ 2 +φφ̈)+∂r(φ∂rφ)+∂⊥(φ∂⊥φ)]. (3.10)

Also, due to the symmetry of the situation, the expectation value of φ 2 does not depend

on time or the z coordinate, so ∂ 2
0 〈φ 2〉 = ∂ 2

z 〈φ 2〉 = 0. We can rewrite the derivatives in

the “⊥” direction using the relations ∂ 2
⊥φ = 1

r ∂rφ + 1
r2 ∂ 2

θ
φ and 2〈(∂⊥φ)2〉+ 2〈φ∂ 2

⊥φ〉 =



27

∂ 2
⊥〈φ 2〉= 1

r ∂r(φ
2) = 2

r φ∂rφ . These simplifications yield

T00 =
1
2
[φ̇ 2−φφ̈ ]−2β [∂r(φ∂rφ)+

1
r

φ∂rφ ] (3.11)

Trr =
1
2
[(∂rφ)

2−φ∂
2
r φ ]+2β [

1
r

φ∂rφ ] (3.12)

T⊥⊥ =− 1
2r

φ∂rφ +
1
r2 (∂θ φ)2− 1

2r2 ∂
2
θ (φ

2)+2β [∂r(φ∂rφ)] (3.13)

Tzz =
1
2
[(∂zφ)

2−φ∂
2
z φ ]+2β [∂r(φ∂rφ)+

1
r

φ∂rφ ]. (3.14)

Now we can rewrite the components of Tµν in terms of the cylinder kernel, T̄ , rather than

φ . Since 〈0|φ(x)φ(x′)|0〉 = −1
2 T̄ (x,x′), we can easily calculate all necessary derivatives

of φ in terms of derivatives of T̄ . For example,

∂rT̄ =−2〈0|φ(x′)∂rφ(x)|0〉 (3.15)

∂
2
r T̄ =−2〈0|φ(x′)∂ 2

r φ(x)|0〉 (3.16)

∂r′∂rT̄ =−2〈0|∂rφ(x)∂r′φ(x
′)|0〉 (3.17)

(3.18)

yield the relations

〈φ∂rφ〉=−
1
2

∂rT̄ (3.19)

〈φ∂
2
r φ〉=−1

2
∂

2
r T̄ (3.20)

〈(∂rφ)
2〉=−1

2
∂r′∂rT̄ (3.21)

after taking x = x′. The derivatives for the other coordinates are computed similarly. The

components of Tµν finally become

T00 =−
1
2

∂
2
0 T̄ +β [∂r∂r′T̄ +∂

2
r T̄ +

1
r

∂rT̄ ] (3.22)

Trr =−
1
4
[∂r∂r′T̄ −∂

2
r T̄ ]− 1

r
β∂rT̄ (3.23)
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T⊥⊥ =
1
4r

∂rT̄ +
1

2r2 ∂
2
θ T̄ −β [∂r∂r′T̄ +∂rT̄ ] (3.24)

Tzz =−
1
4
[∂z∂z′T̄ −∂

2
z T̄ ]−β [∂r∂r′T̄ +∂

2
r T̄ +

1
r

∂rT̄ ]. (3.25)

The cylinder kernel for 4-dimensional spacetime in cylindrical coordinates has been found

previously by Smith [14] and has also been calculated by Mai Truong [15], yielding

T̄ (t,r,θ ,z,r′,θ ′,z′) =− 1
2πθ1rr′ sinh(u)

sinh(2π

θ1
u)

cosh(2π

θ1
u)− cos(2π

θ1
(θ −θ ′))

, (3.26)

with u given by coshu= r2+r′2+z2+t2

2rr′ . From this expression, we can calculate all derivatives

of T̄ which are needed for the components of Tµν . For example,

∂ T̄
∂ t

= (2πθ1rr′ sinhu)−2(2πθ1rr′ coshu
∂u
∂ t

)
sinh(2π

θ1
u)

cosh(2π

θ1
u)− cos(2π(θ−θ ′)

θ1
)

+
−1

2πθ1rr′ sinhu
[

cosh(2π

θ1
u)(2π

θ1
∂u
∂ t )

cosh(2π

θ1
)− cos(2π

θ1
(θ −θ ′))

−sinh(
2π

θ1
u)(cosh(

2π

θ1
u)− cos(

2π

θ1
(θ −θ

′))−2(sinh(
2π

θ1
u)

∂u
∂ t

)]. (3.27)

Now that we have the components of Tµν in this form, they can be used to find the energy

density and pressure for various cylindrically symmetric configurations, and future work

will be done to calculate these quantities. The procedure outlined above can also be used

for the general static, cylindrically symmetric metric, given in equation (2.1), to find the

components of Tµν . This allows us to examine a wider variety of cylindrically symmetric

situations and calculate the pressure and energy in those cases as well.
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CHAPTER IV

CONCLUSION

Through my work in this thesis, I have examined the presence of cylindrical symmetry in

various physical situations. The main portion of my work focused on solving Einstein’s

field equations of gravitation for various cases of Tµν . Although the vacuum solutions

have been found previously and known for some time, I focused on a different metric

convention from what most studies have usually used. I derived expressions for trans-

forming between these different metric conventions and examined their relationships to

certain “special points” of the general vacuum cylindrically symmetric solutions. Along

with the vacuum solutions, I also examined several cases of solving the Einstein equations

with sources. I was able to solve the equations with ρ =−pz and pr = pφ = 0 and extract

Gott’s solution for ρ = 1/(8πr2
0), which is applicable to the study of cosmic strings. I

did not succeed in solving them for arbirtrary pressure components, so the final portion

of my work with Einstein’s equations involved solving them for the simplified case of

isotropic pressures and constant ρ . With the use of Mathematica, I succeeded in finding a

way of solving them numerically, since I was unable to solve them analytically in this case.

Finally, in order to study cylindrical symmetry in vacuum energy, I calculated the compo-

nents of the stress-energy tensor in the case of static, locally flat space. These can be used

to calculate pressure and energy density in various arrangements, and this work will be

continued next year to find these quantities. With this, hopefully I can provide some new

information to help study paradoxes that currently exist in the theory.
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