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ABSTRACT 

 

Propagation and Retention of Viscoelastic Surfactants in Carbonate Cores. (May 2011) 

Meng Yu, B.S., Sichuan University; M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Hisham A. Nasr-El-Din 

 

 Viscoelastic surfactants have found numerous applications in oil fields as 

fracturing and matrix acidizing fluid additives in recent years. They have the ability to 

form long, worm-like micelles with increasing pH and calcium concentration, which 

results in increasing the viscosity and elasticity of partially spent acids.  

On the one hand, the concentration of surfactant in the fluids has profound 

effects on their performance downhole. Additionally, there is continuous debate in the 

industry on whether the gel generated by these surfactants causes formation damage, 

especially in dry gas wells. Therefore, being able to analyze the concentration of these 

surfactants in both live and spent acids is of great importance for production engineers 

who apply surfactant-based fluids in the oil fields. In the present work, a two-phase 

titration method was optimized for quantitative analysis of a carboxybetaine viscoelastic 

surfactant, and surfactant retention in calcite cores was quantitatively determined by a 

two phase titration method and the benefits of using mutual solvents to break the 

surfactant gel formed inside the cores were assessed.  

On the other hand, high temperatures and low pH are usually involved in 

surfactant applications. Surfactants are subjected to hydrolysis under such conditions due 
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to the existence of a peptide bond (-CO-NH-) in their molecules, leading to changes in 

the rheological properties of the acid. The impact of hydrolysis at high temperatures on 

the apparent viscosity of carboxybetaine viscoelastic surfactant-based acids was 

evaluated in the present study, and the mechanism of viscosity changes was determined 

by molecular dynamics (MD) simulations. 

Our results indicate that, first, a significant amount of surfactant has been 

retained in the carbonate matrix after acidizing treatment and there is a need to use 

internal breakers when surfactant-based acids are used in dry gas wells or water injectors. 

Second, hydrolysis at high temperatures has great impact on surfactant-acid rheological 

properties. Short time viscosity build-up and effective gel break-down can be achieved if 

surfactant-acid treatments are carefully designed; otherwise, unexpected viscosity 

reduction and phase separation may occur, which will affect the outcome of acid 

treatments. 
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NOMENCLATURE 

 

Y
cA

∂
∂

   concentration gradient; 

A    cross-sectional area of the core; 

a   contact area of acid solution and the rock; 

b    equilibrium bond length; 

b0    actual bond length; 

DA    molecular diffusion coefficient 

E   total potential energy of the atom; 

f    force acting on the atom; 

Hb    bond stretching force constant; 

H�    bond bending force constant; 

Hϕ    torsional force constant;  

H�     bending constant; 

J   undamaged formation productivity; 

Js   productivity of the damaged well; 

k   permeability of the undamaged zone; 

kc    core permeability; 

km    mass transfer coefficient; 

ks    reduced permeability of the damaged zone ; 

L    characteristic length (given by L = 0.05 k0.5); 
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m    weight of sample used to prepare the sample solution; 

ma    atomic mass; 

N   number of atoms; 

q    flow rate; 

qi and qj   point charge; 

r     distance between two particles; 

r*     distance at which the potential reaches its minimum; 

ra   reaction rate; 

re   drainage radius; 

rij     separation distance; 

rs   radius of the damaged zone; 

rw   wellbore radius; 

r��    acceleration of the atom; 

S     phase factor (1 or –1 based on the dihedral angle); 

u    Darcy velocity (given by u = q/A); 

uA,Y    flux of component A; 

�     equilibrium bond angle;  

�0     actual bond angle; 

�     bending angle; 

ε     strength of the vdW potential; 

φ     core porosity; 

φa    torsional angle. 
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1. INTRODUCTION 

 

Matrix acidizing is an effective method of removing formation damage caused by 

drilling-mud invasion, clay migration, clay swelling and inorganic scaling. The aim of 

matrix acidizing is to reduce skin and improve production by creating new pathways 

within several inches to one foot or two around the wellbore. This is accomplished by 

pumping treatment fluid below the fracturing rate and pressure. Compared to high-

pressure fracturing treatment, matrix acidizing is a low-volume, low-budget operation. 

 

1.1. Carbonate Matrix Acidizing 

1.1.1. History  

Carbonate matrix acidizing can be dated back to the early days of oil well drilling. 

The earliest application of limestone acidizing treatment with hydrochloric acid (HCl) 

was done by the Ohio Oil Company in 1895. This technique was first recorded in 1896 

(Williams et al. 1979). Although the production of oil wells increased by three times, the 

well casing was severely corroded by the strong acid. Thus the popularity of this 

technique declined, and little application was reported in the following 30 years.  

In 1931, arsenic was discovered to have corrosion inhibition capability of HCl on 

metal by Dr. John Grebe of the Dow Chemical Company. One year later, 500 gallons of 

HCl was pumped down to a dead well in a limestone formation by the Michigan-based 

Pure Oil Company, using arsenic provided by the Dow Chemical Company as the 

____________ 
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corrosion inhibitor (Williams et al. 1979). The oil production of the well increased from 

zero to 16 bbl/day. Followed by the success, commercial acidizing services were 

established by different companies in several years. Carbonate acidizing has been 

dependent on the use of a wide range of acid additives to enhance the effectiveness of 

the treatments since the mid 1930’s (Chilingarian et al. 1989), including surfactants, 

corrosion inhibitors, pH buffers, fluid loss additives, friction reducers and so on.  

 

1.1.2. Theoretical Productivity Enhancement 

Matrix acid treatments are conducted primarily in wells with near-wellbore flow 

restriction, which are often called damaged wells. Fig. 1.1 illustrates a radial fluid 

production system, in which a damaged zone of reduced permeability, ks, extends from 

the wellbore radius, rw, to a damaged radius, rs. The carbonate formation has a constant 

permeability, k, from rs to the drainage radius, re.  

 

 

 

Fig. 1.1: Schematic of the damaged zone of a radial production system. 
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In this system, the fluid production compared to that of an undamaged system of 

uniform permeability k is given by Eq. 1.1 (Muskat 1949): 

( ) ( )
( ) ( ) ( )sesws

wess

rrkkrr
rrkk

J
J

/log//log
/log/

+
=       (1.1) 

where J is the undamaged formation productivity, and Js is the productivity of the 

damaged well. Fig. 1.2 gives the enhancement in productivity by increasing the 

permeability of damaged zone after matrix acidizing treatment. In this case, it is assumed 

that the wellbore radius rw = 0.33 ft, and the drainage radius re = 1000 ft.  
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Fig. 1.2: Production enhancement by increasing damaged permeability. 
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As an example, if the depth of the damaged zone (rs – rw) is 10 in. beyond the 

wellbore and the permeability ratio ks/k is 0.05, the productivity of the damaged well 

would be 0.25 of that of an undamaged well. After a matrix acidizing treatment that 

removes the damage around the wellbore, a 4-fold enhancement in production rate can 

be obtained.  

 

1.1.3. Chemistry of Carbonate Matrix Acidizing 

Acid-Carbonate Reaction Stoichiometry 

Carbonate rocks are formed in water environments by precipitation and/or grain 

transportation from chemical or biochemical processes. Originally formed sedimentary 

carbonate rocks may be nearly pure calcite (CaCO3) or dolomite (CaMg(CO3)2). 

However, the calcium in the calcite rock could be partially replaced by magnesium over 

time, and the rock thereby formed is a dolomitic limestone. Dolomite and calcite rocks 

may be interbedded in the reservoir (Wayne 2008). 

Carbonate acidizing is generally conducted with hydrochloric acid. In some cases 

where temperatures are very high and corrosion is an issue, less corrosive organic acids 

like acetic or formic acids are used.  

When stimulating a carbonate reservoir, carbonate rocks, comprising 

predominantly limestone and dolomite, rapidly dissolve in HCl by the following 

reactions (Eqs. 1.2 and 1.3): 

CaCO3 + 2 HCl � CaCl2 + CO2 + H2O     (1.2) 

CaMg(CO3)2 + 4 HCl � CaCl2 + MgCl2 + 2 CO2 + 2 H2O   (1.3) 
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For calcite, the rate of dissolution is limited mainly by the speed with which acid 

can be delivered to the rock surface. This results in rapid generation of irregularly 

shaped channels, called wormholes. The acid increases production by creating bypasses 

around the damage rather than directly removing it (Economides et al. 1994).  

 

Acid Types 

Hydrochloric acid, HCl, is by far the overwhelmingly employed acid in most 

acid treatments of carbonate formations. Usually, 15 wt% HCl solution in water is used, 

which is often called regular acid. With improved inhibitors, higher concentrations have 

become practical. The wide application of hydrochloric acid is a result of its cost-

effectiveness and soluble reaction products with carbonate rocks (calcium chloride, 

CaCl2, and magnesium chloride, MgCl2). However, hydrochloric acid is relatively 

corrosive on wellbore tubular and pumps, especially at temperatures above 250°F.  

Organic acids, including formic acid (CH3COOH) and acetic acid 

(CH3CH2COOH), are employed in carbonate matrix acidizing treatments because of 

their lower corrosivity and easier inhibition at elevated temperatures. Acetic acid is 

commonly available as a 10 wt% solution in water. The reaction products of 10 wt% 

acetic acid and carbonate rocks (calcium acetates, Ca(COOCH2CH3)2, and magnesium 

acetates, Mg(COOCH2CH3)2) are generally soluble in the spent acid. Acetic acid is often 

used as a perforating fluid or as a fluid of low corrosivity. However, it is more expensive 

than either hydrochloric acid or formic acid based on the cost per unit of dissolving 

power. Formic acid offers a cheaper option, although it is more corrosive than acetic 
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acid and more difficult to control in the presence of acid-sensitive metals such as 

aluminum or chromium. However, effective inhibitors are available for formic acid at 

temperatures as high as 400°F (Williams et al. 1979). 

Recently, dicarboxylic acids have found to be useful in acidizing subterranean 

formations, particularly at elevated temperatures up to 400°F (Huang et al. 2004; Crews 

and Huang 2007a). These acids or their mixtures are referred to as high temperature 

organic acids (HTO acids). Suitable dicarboxylic acids include, but not limited to, oxalic 

acid, malonic acid, pimelic acid, succinic acid, glutaric acid, adipic acid, and mixtures 

thereof. HTO acids can effectively generate wormholes in carbonate formations and 

remove carbonate scale at high temperatures, and cause very low corrosion to the tubing, 

casing and down hole equipment.  

 

Retarded Acid Systems 

This reduction in acid-rock reaction rate often can increase the depth of acid 

penetration and therefore enhance the effectiveness of carbonate acidizing treatments. 

Theoretically, the heterogeneous reaction between calcite and aqueous solutions of 

hydrochloric acid involves three main steps (Mumallah 1991): 

1. Transportation of acid molecules from the bulk fluid to the fluid-solid 

interface at the rock surface (a mass transfer step); 

2. Chemical reaction of the acid with the calcite at the surface (chemical 

reaction); 
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3. Transport of the reaction products (CO2 and CaCl2) from the solid-liquid 

interface to the bulk fluid (a mass transfer step). 

It is well known that during an acid fracturing operation, the overall reaction rate 

of hydrochloric acid with carbonate is mass transfer limited (Economides et al. 1991). 

Reducing the mass transfer rate of the reaction of HCl and carbonate can effectively 

reduce the overall reaction rate. According to Fick’s law (Eq. 1.4), 

Y
c

Du A
AYA ∂

∂−=,         (1.4) 

where uA,Y is the flux of component A, 
Y
cA

∂
∂

 is the concentration gradient, and DA is the 

molecular diffusion coefficient, which is proportional to the squared velocity of the 

diffusing particles (which depends on the temperature), the viscosity of the fluid, and the 

size of the particles according to the Stokes-Einstein relation. If the viscosity of the 

solution is increased, the mass transfer rate will be decreased, and thus the reaction rate 

will be retarded.  

Viscosifying the fracturing fluid has been prevalently used to retard the acid-

carbonate reaction rate. Polymers or cross-linked polymers have been applied to increase 

the solution viscosity. Viscoelastic surfactant (VES) has also proved to be successful to 

retard HCl-carbonate reaction rate (Nasr-El-Din et al. 2006b).  

Besides viscosifying the fluid, according to reaction rate expression (Eq. 1.5): 

caKr ma ∆=          (1.5) 

where ra is the reaction rate, a is the contact area of acid solution and the rock, Km is the 

mass transfer coefficient, and �c is the concentration difference, the reaction rate of HCl 
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and carbonate can also be retarded by decreasing the contacting area of the rock to the 

solution. This can be accomplished by applying chemicals that can form a layer of 

coating on the rock surface. 

Another method of retarding acid-carbonate reaction rate is using emulsified 

acids. Emulsified acids may contain the acid as either the internal or the external phase. 

The reaction rate, in this case, is governed by the Brownian motion of the acid in the 

micro-drops in the emulsion instead of the molecular diffusion of HCl molecules. This 

makes the reaction rate between the emulsified HCl and carbonate about one order of 

magnitude lower than that of the regular acid and carbonate (Williams et al. 1979).  

 

1.1.4. Diversion 

After injection, acid preferably enters the region with the highest permeability, 

leaving the damage zone untreated. Thus proper diversion is needed to direct the 

acidizing fluid into the damage zone to achieve maximum benefit of the matrix acidizing 

treatment.  

A variety of diversion techniques exist in oil field applications. By using 

drillpipes or coiled-tubing tools with mechanical packers, treatment fluid can be directed 

exclusively toward a low-permeability zone. Fluid flow into high permeability zone can 

also be blocked by injected ball sealers that seat at perforations with higher flow rates. In 

carbonates, filter cake can be created inside wormholes by bridging agents, such as 

benzoic acid particles or salts, so that acid can be directed elsewhere.  
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Stringent requirements exist on the selection of diverting agent. First, it must 

effectively divert acid. Second, it is supposed to have limited solubility in the carrying 

fluid or formation fluids. Finally, it must have high cleaned-up efficiency, leaving 

minimum damage to the near wellbore region after the treatment. Among available 

diversion techniques, however, ball sealers are lost by either dropping into the rathole or 

floating to the surface. Benzoic acid particles and oil-soluble resins could be consumed 

by contacting hydrocarbons.  

In practice, acid and diverting agents could be pumped continuously or in 

alternating stages. The number of stages depends on the length of zone being treated.  

 

1.2. Oil Field Applications of Viscoelastic Surfactant 

The rate of acid spending decreases as the viscosity of the acid increases; as a 

result, deeper acid penetration can be achieved (Deysarkar et al. 1984). Thus to achieve 

acid diversion and to reduce leakoff rate during acid injection into the fracture in many 

applications, high-viscosity fluids are needed during matrix acidizing and acid-fracturing 

treatments.  

Different chemicals have been developed as additives of the acid treatment fluid 

to enhance the viscosity of the injected acid, including polymers and viscoelastic 

surfactants. Acid-soluble polymers (Pabley et al. 1982; Crowe et al. 1989) or crosslinked 

polymers (Metcalf et al. 2000) have been used to increase the viscosity and to improve 

the performance of HCl, in which the latter were introduced in the mid 70’s and proven 

to be more effective than uncross-linked polymers (Yeager and Shuchart 1997).  
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The in-situ gelled acids, which consist of a polymer, a crosslinker, a buffer, a 

breaker, and other acid additives, have been reported to be able to forms a gel within a 

narrow pH range (Yeager and Shuchart 1997; Taylor and Nasr-El-Din 2003). Acid 

diversion can be achieved as a result of in-situ gel formation.  

The outcome of in-situ gelled acids was generally positive; however, certain 

drawbacks were noted for these acids. These concerns include but not limited to: 

polymer retention and loss of permeability in tight carbonate cores (Taylor and Nasr-El-

Din 2002; 2003); precipitation of the crosslinker (Fe(III)) in tight carbonate cores at high 

temperatures (Lynn and Nasr-El-Din 2001); precipitation of the crosslinker (Fe(III)) in 

sour environments (Nasr-El-Din et al. 2002); and consumption of hydrogen sulfide (H2S) 

scavengers (aldehydes) by reacting with the polymer (Nasr-El-Din and Al-Humaidan 

2001). 

Surfactant-based acids were introduced during the last decade to overcome 

potential problems associated with polymer-based acids. Typical surfactant-based acids 

consisted of hydrochloric acid (HCl), a viscoelastic surfactant, and other acid additives 

as necessary. Commonly used viscoelastic surfactants include amineoxide surfactants 

and carboxybetaine surfactants (Fu and Chang 2005). During matrix acidizing treatment, 

as the acid spending process proceeds, the pH rises and the concentrations of calcium 

and magnesium ions increase (Eqs. 1.1 and 1.2). The presence of salts and the increase 

in pH will cause the surfactant molecules to form long worm-like micelles. These 

micelles further entangle and result in a 3D structure, which greatly increase the 

apparent viscosity of the solution (Chang et al. 1998; Card et al. 1999; Nasr-El-Din et al. 
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2003) (Fig. 1.3). The gelled acid could be broken down by converting the surfactant 

worm-like micelles to spherical micelles, which can be accomplished by reducing the 

concentration of salts and/or surfactant by the injection water in water injectors, or by 

mixing the spent acid with the native oil or condensate in oil and gas wells. Alternatively, 

by using a preflush that contains a mutual solvent (e.g., ethylenegylcol monobutyl ether), 

the surfactant gel can be broken in any well. Internal breakers can also be used to break 

the surfactant gel, if necessary. 

 

 

 
 
 

        
 
 

Fig. 1.3: A schematic illustration of entangled wormlike micelles network (Yu et al. 

2009).  

 

 

 

pH or [Ca2+] 
increase 
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1.2.1. Diversion in High Water-Cut Oil Wells 

The ability of viscoelastic surfactants to form viscous gels in aqueous solutions 

makes them suitable for applications in matrix acidizing treatments. Chang et al. (1998) 

and Card et al. (1999) first introduced this concept, which was later applied to stimulate 

high-water-cut oil wells. When injected into the formation, the viscoelastic surfactant gel 

that is formed in high oil saturation zones breaks, and the fluid that enters water-

producing zones would maintain its viscosity. This in turn ensures minimum subsequent 

fluid flow into the water-producing zone. As a result, any injected acid following the 

diverting stage would be directed into high oil saturation zones and away from water-

producing zones (Chang et al. 1998; Chang et al. 2001a). Positive field data was 

obtained showing enhanced oil production and decreased water-cut. 

 

1.2.2. Diversion in Matrix Stimulation  

When mixed with acid, some viscoelastic surfactants are capable of enhancing 

the viscosity of the acid when the acid is spent by carbonate (Chang et al. 1999; 2001a 

and Samuel 2001). An amphoteric-type viscoelastic surfactant was investigated by Al-

Ghamdi et al. (2004). In live acids, this surfactant is cationic (carries positive charges), 

while it becomes zwitterionic (i.e., carries both positive and negative charges) once the 

acid is spent by carbonate rocks and the pH increases to values higher than 2. Since both 

pH and divalent cation (Ca2+ and Mg2+) concentration are increased, the viscosity of 

surfactant-based acid can be greatly enhanced. Unlike spent polymer-based acids, spent 

surfactant-based acid can remain viscous even at high pH values (high than 4).  
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The first successful field application using surfactant-based acid was reported in 

Kuwait (Al-Mutawa et al. 2005). Similar successful applications were reported in 

Bahrain (Samuel 2003) and Egypt (Samuel and Sandhu 2004). 

 

1.2.3. Leak-Off Control in Acid Fracturing 

Since temperature accelerates the reaction rate between HCl and carbonate rocks, 

most acid would be completely consumed near the wellbore and thus would not result in 

deep penetration into the formation. This in turn adversely affects the outcome of the 

acid treatment. Conventionally, uncross-linked or cross-linked polymers were used to 

reduce the acid-carbonate reaction rate. However, severe polymer retention in the 

wormhole could result; in some cases, crosslinkers (especially Fe(III)) are precipitated in 

sour environment. 

Viscoelastic surfactant-based acids were used as retarded acids to acid fracture 

water injectors and deep gas wells in Saudi Arabia (Nasr-El-Din and Samuel 2007). The 

results obtained from treating more than 250 wells were positive, and significant 

improvements in oil and gas production were observed.  

 

1.2.4. Pad Fluid in Acid Fracturing 

For both hydraulic and acid-fracturing treatments, high-pH borate gels are 

conventionally used as a pad. High-pH borate gels provide viscosity at pH values greater 

than 9, and this high pH value must be maintained in order to keep the fluid crosslinked. 

The fluid viscosity and its leakoff characteristics can be significantly affected even with 
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a slight decrease in the pH value. In a typical acid-fracturing treatment, the pad stage is 

followed by a regular or emulsified acid, which can decrease the pH and adversely affect 

the effect of borate gel pad. 

Viscoelastic surfactant-based gel can be used to substitute the high-pH borate gel. 

Surfactant-based acid performs well at lower-to-neutral pH range, and thus is stable 

when the gel contacts acids. As a result, the volume of the pad can be effectively 

reduced with enhanced fluid efficiency. 

 

1.3. Statement of the Problem 

1.3.1. Viscoelastic Surfactant Retention in Carbonate Reservoirs 

One of the amphoteric surfactants, carboxybetaine, has been used for matrix 

acidizing treatments (Nasr-El-Din et al. 2006a; Nasr-El-Din and Samuel 2007). Lab and 

field studies showed that the concentration of surfactant-based fluids can greatly 

influence the characteristics of these fluids, and the outcome of matrix acid of the 

treatment fluids (Nasr-El-Din et al. 2008). In field treatments, surfactant-based fluids are 

injected into formations, and they are flowed back after the fracturing and/or acidizing 

job is done. The difference in the concentration of surfactant in live and spent acids 

corresponds to the amount of surfactant retained or trapped in the formation, and/or 

partition into the hydrocarbon phase (oil or condensate). As a result, being able to 

analyze the concentration of surfactant is of great importance for production engineers 

who use these surfactants as fracturing or acidizing fluids. However, to the best of the 
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author’s knowledge, no previous studies reported the quantitative analysis of viscoelastic 

surfactants in acidizing fluids.  

Successful acid treatments using viscoelastic surfactants have been reported by 

several authors (McCarthy et al. 2002; Mohammed et al. 2005; Arangath et al. 2008), 

and were considered as “non-damaging” by Al-Mutawa et al. 2005 and Kristopher 

(2009). Lungwitz et al. (2007) demonstrated that cleanup of retained surfactant in 

carbonate cores by 2 wt% KCl brine or 10 vol% mutual solvent could result in high 

permeability regain. A few treatments, however, produced results below expectations 

(Nasr-El-Din et al. 2006b). This was explained in terms of retention of surfactant gel in 

the formation and the inability of the cleaning fluids to remove the surfactant gel. Hence, 

based on field results, it is very important to understand retention of viscoelastic 

surfactants used for diversion in carbonate rocks. However, to the best of our knowledge, 

no systematic work has been reported about determining surfactant concentration in live 

and spent acids, or about viscoelastic surfactant retention in carbonate cores and its 

impact in field applications. 

 

1.3.2. Hydrolysis of Viscoelastic Surfactant at High Temperatures 

Worm-like micelles can be formed by individual surfactants with certain 

molecular structures (Yang 2002). One kind of amphoteric surfactants, amido-

carboxybetaine, has been used for matrix acidizing treatments (Nasr-El-Din et al. 

2006a,c; Nasr-El-Din and Samuel 2007). However, Fu and Chang (2005) observed that 

this type of surfactant-acid fluid experienced viscosity reduction when subjected to high 
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temperatures. For 4 wt% of surfactant-acid fluid incubated at 88°C for 90 min, viscosity 

was significantly decreased. Phase separation occurred in those samples with longer 

incubation time. These observations indicate that, on one hand, high temperatures may 

cause fluid viscosity reduction for surfactant-acids, and cause fluid phase separation. On 

the other hand, it helps breaking down the gel. In this case, no additional breaker is 

needed.  

Although the phenomenon of viscosity change of amido-carboxybetaine 

surfactant has been observed, to the best of our knowledge, no systematic study on the 

impact of hydrolysis at high temperatures on the viscosity changes of amido-

carboxybetaine surfactant fluid was reported. 

 

1.4. Research Objectives 

1.4.1. Viscoelastic Surfactant Retention in Carbonate Reservoirs 

The objectives regarding to the research about viscoelastic surfactant retention in 

carbonate reservoirs are to:  

1. Develop a quantitative analysis method for surfactant concentration, and 

evaluate the method as a means for measuring the concentration of carboxybetaine 

surfactant that is used in matrix acidizing treatments;  

2. Assess the effect of acid additives, reaction products, and contaminants 

(mainly Fe2+ and Fe3+) on the accuracy of this method;  

3. Conduct core flood experiments using calcite and dolomite cores using 

surfactant-based acids;  
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4. Study the effect of flow rate on amount of surfactant retained inside the core, 

and  

5. Assess the effectiveness of mutual solvent in removing surfactant gel from the 

treated cores.  

 

1.4.2. Hydrolysis of Viscoelastic Surfactant at High Temperatures 

The objectives of this section are to:  

1. Experimentally determine the viscosity changes of amido-carboxybetaine acid 

fluids by high temperatures, and  

2. Determine the mechanism for viscosity changes on molecular level by 

carrying out molecular dynamics (MD) simulations.  
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2. CHEMISTRY OF VISCOELASTIC SURFACTANT 

 

2.1. Introduction 

Viscoelastic surfactants have been successfully applied in the oilfield as 

fracturing fluids (Al-Muhareb et al. 2003, Artola et al. 2004; Bustos et al. 2007; Fontana 

et al. 2007; Bulat et al. 2008), fluid loss pill (Samuel et al. 2003) and matrix acidizing 

fluids (Nasr-El-Din et al. 2003; 2006b,c; Al-Mutawa et al. 2005; Zeiler et al. 2006; Liu 

et al. 2009; Nasr-El-Din et al. 2009a,b). As the pH increases above 2, surfactant 

molecules form wormlike micelles, which exhibit viscoelastic behavior (Samuel et al. 

1997) (Fig. 1.1).  

Wormlike micelles can be formed by individual surfactants with certain 

molecular structures (Yang 2002). A series of surfactants with various hydrophobic 

chain lengths and asymmetry, which can be either amphoteric, cationic, or nonionic 

surfactants, have been shown to form wormlike micelles. These micelles result in rapid 

viscosity buildup during acid spending process by entangling to form a very viscous gel. 

The highly viscous fluid significantly slows down the reaction of HCl acid with 

carbonate rocks (Nasr-El-Din et al. 2009a) and reduces acid loss into wormholes. After 

the treatment, highly viscous gel is broken down by contacting either the formation 

hydrocarbons or pre/post flush fluids (Chang et al. 2001b; Taylor and Nasr-El-Din 2003). 
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2.2. Carboxybetaines: Amphoteric Viscoelastic Surfactants 

Surfactants which include or have the potential to form both positive and 

negative functional groups under particular conditions belong to the family of 

amphoteric surfactants. Betaine is a naturally occurring material, which was first 

identified in the nineteenth century and has the chemical structure of trimethyl 

aminoacetate (Domingo 1996) (Fig. 2.1). This compound is an internal salt that has most 

of the characteristics of a totally un-ionized material in its natural form.  

 

 

 

Fig. 2.1: Molecular formula of trimethyl aminoacetate at a high pH value such that the 

carboxyl group is deprotonated. 

 

 

Betaine surfactants generally refer to the materials with one or more methyl 

groups replaced by a long alkyl chain, such as a fatty acid residue. Alkyl dimethyl 

betaines ((Fig. 2.2a) and alkyl amidopropyl betaines (Fig. 2.2b) are the most produced 

class of amphoteric in the 1990’s (Lomax 1996).  

Betaines show the characteristics of amphoteric surfactants in many ways, such 

as their solubility and electrical nature in alkaline solution. Betaines do not acquire any 

significant anionic character even at high pH, and maintain good water solubility even at 
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the isoelectric pH (the pH at which the surfactant molecule carries zero net electrical 

charge). Moreover, they are compatible with anionic surfactant at all pH's without 

problems of complex formation. It has been found that the carboxyl-containing betaines 

can form external salts in very strong acids (e.g, hydrochlorides in HCl). In general, this 

kind of surfactants usually performs well in hard water due to their insensitivity to the 

presence of electrolytes. The followings are the general properties of betaines (Porter 

1994): 

 

 

 

(a) 

 

 

(b) 

 

Fig. 2.2: Molecular formulae of: (a) alkyl dimethyl betaine and (b) alkyl amidopropyl 

betaine, where n = 6-16. pH value is high enough such that the carboxyl group is 

deprotonated. 
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Betaines are actually not amphoterics because they cannot donate H+ in alkaline 

solution and are never anionic. They are internal salts of quaternary ammonium 

compounds at pH at and above their isoelectric point (neutral and alkaline pH), but they 

behave like zwitterionic surfactant in this pH region.  

Betaines are soluble in water and insoluble in mineral oil and aromatic solvents. 

Different from other surfactant species, betaines show good solubility even near the 

isoelectric pH. Additionally, they are compatible with alkaline earth metals (Mg2+, Ca2+ 

etc.) and other metallic ions (Al3+, Cr3+, Cu2+, Ni2+ and Zn2+) in acidic and neutral 

aqueous solutions. They also show excellent compatibility with all surfactant species, 

except with anionic surfactants at low pH. In this case, precipitation of betaines/anionic 

appears because betaines act like cationic surfactants in acidic environments. The 

addition of salts, especially divalent cations, thickens betaines/anionics mixture. 

Chemically, betaine shows excellent stability in the presence of oxidization 

agents. Non-amido-type betaines, namely the betaines that have no peptide bond (-CO-

NH), are resistant to hydrolysis at high and low pH values. 

The Critical Micelle Concentration (CMC) of betaines is generally much lower 

than that of nonionic surfactant. The CMC values decrease with the increase in the 

length of the hydrophobic tail. For example, CMC of the C10 dimethyl betaine = 2.4 

mM, while that of the C16 dimethyl betaine = 0.02 mM. 

Betaines are good foaming agents. Compared to alkyl sulphates or ether 

sulphates, they are not as good in foaming ability but they show better solubility at 

alkaline pH and better compatibility with many metallic ions.  
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2.3. Hydrolysis of Amido Viscoelastic Surfactant at High Temperatures 

It is well known that in aqueous solutions, peptide bond (-CO-NH-) can be easily 

broken in acidic environments at high temperatures, which is referred to as acidic 

hydrolysis reaction (Long and Truscott 1968; Qian et al. 1993). Because of the existence 

of peptide bonds in amido-carboxybetaine surfactants, acid hydrolysis reaction occurs 

for this type of surfactant at high temperatures. Original betaine surfactant molecules are 

cleaved at the peptide bond by hydrolysis reaction at high temperatures, resulting in 

reduction of amido-carboxybetaine surfactant concentration. At the same time, another 

type of surfactant, fatty acid soap, is generated by hydrolysis reaction, and its 

concentration keeps increasing with time.  

Fatty acid has not been found to exhibit viscoelastic properties at ambient or 

typical field application conditions (Kaibara et al. 1997), and has much lower solubility 

in aqueous solutions compared to amido-carboxybetaine surfactants (Pohle 1941; 

Graham and Sackman 1983). Thus, viscosity alteration and phase separation of amido-

carboxybetaine surfactants at high temperatures may be due to acid hydrolysis reaction. 

Crews et al. (2007) observed the effect of fatty acid soaps on enhancing or reducing the 

viscosity of viscoelastic surfactant gels. 

The hydrolysis reaction of amido-surfactants has the following mechanism (Fig. 

2.3): 
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Fig. 2.3: Mechanism of acid-hydrolysis reaction of amido-surfactants. 
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3. QUANTITATIVE ANALYSIS METHODS FOR  

AQUEOUS CONCENTRATION OF  

AMPHOTERIC VISCOELASTIC SURFACTANTS 

 

3.1. Introduction 

Different methods were developed to measure concentration of amphoteric 

surfactants. Chromatographical methods have been used for the determination of 

amphoteric surfactants. Betaine surfactant analysis by direct high performance liquid 

chromatography (HPLC) is difficult, and typically the refractive index detector (Parris 

1978) and UV detector (Kondoh and Takano 1986) are suitable. The latter requires pre-

relabeling of carboxyl group with a UV-absorbing compound such as 4-bromomethyl-7-

methoxycoumarin. Some amphoterics containing carboxylic groups, including N-

alkylaminopropylglyscines, can be readily analyzed by gas chromatography after the 

formation of methyl ester (Campeau et al. 1987). Additionally, proton NMR methods 

have been proposed to the assay of betaines (Gerhards 1996), with a betaine-specific 

signal at 3.3 ppm versus trimethylsilylpropionate internal standard. 

Amphoteric surfactants containing carboxylate groups can be successfully 

titrated at low pH with tetraphenylborate using a membrane electrode (Oei et al. 1991; 

Buschmann and Schulz 1992) or a coated-wire electrode (Vytras et al. 1985) for end-

point detection. Plantinga et al. (1993) claimed that the potentiometric titration method 

can be used to determine alkyldimethylbetaine and free amine. In addition, Gerhards et 

al. (1996) presented in their work that tetraphenylborate titration can be used to 
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determine carboxybetaines of alkyl chain length of C8 at concentrations higher than 0.2 

wt%.  

 

3.2. Chromatographic Methods 

3.2.1. High Performance Liquid Chromatography 

Theoretically, amphoteric surfactants can be well separated from each other and 

from other surfactant species by High Performance Liquid Chromatography (HPLC) 

columns; but because of difficulties encountered in the surfactant detection, only a few 

applications have been reported by direct HPLC analysis of amphoteric surfactants. 

Because they are internal salts, amphoteric surfactants cannot be easily labeled with UV-

absorbing ion-paring reagents to improve their detectability. In some cases, the refractive 

index detector (Parris 1978) and the low wavelength (~200 nm) UV detector (Kondoh 

and Takano 1986; Tegeler et al. 1995) are applicable. For reverse phase HPLC, 

evaporative light scattering detector (ELSD) can be used (Im et al. 2008).  

The detection difficulties can be overcome for specific types of carboxybetaines, 

such as 4-bromomethyl-7-methoxycoumarin, if the carboxyl group is labeled with a UV-

absorbing compound (Kondoh and Takano 1986).  

A rapid analysis for mixtures of amphoteric surfactants and soaps with the aid of 

reverse phase high performance liquid chromatography (HPLC) has been developed by 

Parris et al. (1978). An HPLC method with diode-array detection at 210 nm is described 

for the routine determination of various betaine amphoteric surfactants in cosmetic 

cleansing products by Tegeler et al. (1995). A simple and simultaneous analysis method 
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for four (anionic, amphoteric, nonionic, and cationic) classes of surfactants in shampoo 

and hair conditioner was recently developed by Im et al. (2008). Analysis of the 

surfactants was performed using a reversed-phase HPLC (RPLC) combined with ELSD 

without any pre-treatment. Table 3.1 lists the details of some HPLC analysis methods 

available for betaine surfactants. 

 

 

Table 3.1. HPLC analysis methods of amphoteric surfactants (Parris et al. 1978; Tegeler 

et al. 1995; Im et al. 2008). 

 

Compound 

separated 

Column 

 

Mobile phase 

 

Detector 

Amphoteric 

surfactants 

and soaps 

 

µ-Bondapak-C 18 

(guard column 

containing Co:Pell 

ODS) 

Methanol-water (85:15, 

v/v) with 0.2 vol% acetic 

acid (pH 4) 

 

Differential 

refractometer 

(Waters Assoc. 

Model R-401) 

Betaine 

surfactants, 

various 

 

Cation-exchange 

column, Nucleosil 100-

5 SA (5 µm, 250 × 4 

mm I.D.) 

Acetonitrile-(0.05 M 

lithium hydroxide in water) 

(70:30, v/v) with 

phosphoric acid (pH 1.6) 

Diodearray 

detector (wave 

length 210 nm) 

Mixture of 

nonionic 

and ionic 

surfactants 

Reverse phase column, 

YMC-J’sphere ODS-

H80 (150mm×4.6mm, 

4 mm) 

Mixture of acetonitrile 

(ACN), trifluoroacetic acid 

(TFA) containing water 

and tetrahydrofuran (THF) 

Evaporative 

light scattering 

detector (ELSD) 

(Alltech 500)  
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3.2.2. Gas Chromatography 

Because of the lack of volatility of the amphoteric surfactants, directly analysis 

of amphoteric surfactants by Gas Chromatography (GC) has not been reported 

extensively. Quaternary ammoniums with low molecular weights can be analyzed by 

several GC methods using different stationary phases; however, these analytes lack the 

hydrophobic tails and are too light to be surfactants. Thus, if they are chemically 

decomposed into lighter and more volatile compounds, quaternary ammonium 

amphoteric surfactants with higher molecular weight can be analyzed by direct GC. 

However, Campeau et al. (1987) showed that some amphoteric surfactants 

containing carboxyl functional groups can be readily analyzed by GC. In their work, a 

group of carboxy-quaternary ammonium surfactants, N-alkylaminopropylglyscines, was 

separated and respectively quantified by GC after the formation of methyl ester. 

 

3.2.3. Thin-Layer Chromatography 

Thin-layer chromatography (TLC) methods are most extensively applied in the 

qualitative and quantitative analysis of phosphatides. Some published methods for the 

analysis of amphoteric surfactants by TLC are listed in Table 3.2. 
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Table 3.2. TLC analysis of amphoteric surfactants (Koenig 1970, Read 1985). 

 

Compound separated Stationary phase Developer 

Amphoteric 

surfactants, various 

Silica gel G containing 

10% (NH4)2SO4 

80:19:1 chloroform/methanol/ 

(0.05 M sulfuric acid) 

Amphoteric 

surfactants, various 

 

Silica gel GF-254 

 

 

10:10:5:2 

npropanol/chloroform/methanlo/ 

(10 M ammonia) 

Betaine; separation 

of reaction mixture 

Iatroscan Chromarod SI 

and SII 

2:1 chloroform/ethanol 

 

 

 

3.3. Spectroscopic Methods 

3.3.1. Mass Spectrometry  

The application of mass Spectrometry (MS) on the routine analysis of amphoteric 

surfactants has not been successful. As an example, shown by Myers (1988), 

conventional GC-MS or direct electron impact MS is not suitable for direct analysis of 

the quaternary ammonium salts due to their low volatility.  

Amphoteric surfactant molecules are often cleaved before MS detection by either 

Electron Impact Ionization (EI) or Chemical Ionization (CI), so that only fragments and 

rearrangement products can be obtained after ionization by EI or CI. For instance, 

quaternary ammonium surfactants are normally decomposed into tertiary amines, which 

can be ionized or protonated for MS detection. In addition, MS method is especially 

difficult for surfactant samples with unknown composition and impurities. 
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3.4. Titration Methods 

3.4.1. Titration with Anionic and Cationic Surfactants  

Potentiometric Titration with Anionic and Cationic Surfactants  

Carboxyl groups are protonated at low pH and carry zero net charge, while 

quaternary amine groups are always cationic. Thus betaine surfactants are cationic at low 

pH values. As a result, many betaines can be titrated with sodium dodecyl sulfate (SDS) 

in an acidic medium. However, only a poor and approximate end point can be obtained 

using indicators (for instance methylene blue), and potentiometrical titrations are 

therefore preferable. 

By using a surfactant ion-selective electrode to detect the end point, betaines can 

be titrated potentiometrically with SDS. In this case, the pH of the solution should be 

lower than 1 because most amphoterics can be titrated with sodium dodecyl sulfate in an 

acidic medium.  

Alternatively, benzethonium chloride can be used as the titrant. Weakly basic 

amphoterics can be readily titrated in an alkaline medium, with an exception of betaines 

which are zwitterionic in alkaline media. Success of these measurements depends on the 

surfactants being sufficiently hydrophobic to form complexes with the titrant and/or the 

indicators (Lomax 1996). 

 

Two-Phase Titration of Mixtures of Anionics and Amphoterics 

Mixtures of anionics and some amphoterics can be analyzed by titration with 

benzethonium chloride at high and low pH by two-phase titration method. The lower and 
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upper phases of the two-phase system are chloroform and aqueous solution, respectively. 

Bromophenol blue, which is cationic, is used as the indicator. Titration is continued until 

the upper phase is colorless. The indicator blank is determined and subtracted from the 

measurements.  

At low pH, the amphoteric, being cationic in acidic environment, titrates part of 

the anionic. At high pH, it is converted to an anionic. Therefore the two titrations give 

the sum and the difference for both species (Lomax 1996). However, since betaines are 

zwitterionic at high pH, this method does not apply to surfactant mixtures containing 

betaines. 

 

3.4.2. Other Titration Methods  

Determination of Amphoterics by Acid-Base Titration 

The principles of acid/base titrations can be applied in the determination of 

amphoteric surfactant concentrations as well. The reason is that the amphoterics are able 

to absorb/lose a hydrogen atom (H+) or a hydroxide group (OH-) under different 

circumstances. Specifically, when the pH value of the solution changes, strong basic 

amphoterics such as betaines absorb/lose hydrogen atoms with a molar ratio of 1:1.  

In practice, ethanol or isopropanol is used to suppress hydrolysis reaction for 

amido-type amphoteric surfactants in high and low pH solutions. However, even with 

alcohol, the end point may not be sharp for this type of surfactant (Lomax 1996). 

Surfactant sample solutions are prepared in alcohol with an excess amount of 

HCl or NaOH added. Bromophenol blue is used as indicator if the titrant is base, and 
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phenolphthalein is used as indicator is the titrant is acid. Similar to regular acid/base 

titration, the end point appears at pH =3 for bromophenol blue and pH = 10 for 

phenolphthalein during the surfactant acid/base titration. The amount of amphoteric 

surfactant in the sample can be calculated by subtracting total amount of titrant by the 

excess amount of HCl/NaOH. Such titration can be accomplished without prior 

separation of surfactant species, as long as no other acids/bases are present (Plantinga et 

al. 1993). 

 

Titration with Sodium Tetraphenylborate 

Sodium tetraphenylborate titration can be used to measure the concentration of 

both betaines and amphoterics with weakly basic nitrogen, provided that there is no 

other basic component in the sample. This method takes advantage of the fact that these 

amphoterics act like cationics in acidic solutions.  

When the pH of the solution is lower than 1, surfactant with basic nitrogen can 

form insoluble salt with the titrant (sodium tetraphenylborate) and precipitate. The end 

point can be detected potentiometrically (Vytras et al. 1985), or the two-phase titration 

method can be used (Cross 1998). 

 

3.5. Other Methods 

3.5.1. Gravimetric Methods  

Compared with other methods, gravimetric techniques are generally more labor-

intensive. However, this kind of methods has two significant merits: cost-effectiveness 
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and high reproducibility. A number of ions have been used to precipitate quaternary 

ammonium. Quantitative determination can be done by weighing the precipitate, titrating 

the residual reagent, or titrating the isolated precipitate. Divalent and multivalent anions 

generally have lower solubility products with quaternaries than do monovalent ions 

(Koenig 1970). 

 

3.5.2. Alternative Analysis Method for Amidobetaines  

For amido-type amphoteric surfactants including amido-betaines, an alternative 

analysis method can be used. This method takes advantage of acid hydrolysis reaction of 

amido-surfactants in acidic conditions. A surfactant sample is weighted then mixed with 

acid, preferably hydrochloric acid (HCl), and heated in water bath above 90°C under 

reflux for more than 3 hours. The produced fatty acid can be extracted by petroleum 

ether, during which process the emulsion formed can be broken by adding ethanol. Fatty 

acid residue is dried by evaporating off the petroleum ether, and is weighted to calculate 

the number of moles of surfactant (Lomax 1996).  

The requirements for surfactant samples for this method are:  

1. Only a single type of amido-surfactant with a defined molecular structure is 

presented in the solution; 

2. The amido-surfactant being analyzed and the produced fatty acid have 

known molecular structure/molecular weight; 

3. The sample does not contain other sources of fatty acid or fatty alcohol. 
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The disadvantage of this method is that stable emulsions are easily formed for 

surfactant samples with relatively high concentrations, and adding alcohol as demulsifier 

makes the evaporation process difficult. 

 



 

 

34 

4. QUANTITATIVE ANALYSIS OF CARBOXYBETAINE 

VISCOELASTIC SURFACTANT IN ACIDIZING FLUIDS AND 

COREFLOOD EFFLUENT BY TWO PHASE TITRATION METHOD 

 

Surfactant concentration is a necessary parameter in carrying out material 

balance calculations to obtain surfactant retention in carbonate rocks after matrix 

acidizing treatments. As a result, the first research objective was to develop a 

quantitative analysis method for amphoteric surfactant concentration, and evaluate the 

method as a means for measuring the concentration of carboxybetaine surfactant that is 

used in matrix acidizing treatments. 

In this section, we further developed a two-phase titration quantitative analysis 

method for amphoteric surfactant concentration in typical matrix acidizing treatment 

fluids that was originally reported by Reid et al. (1967; 1968) and Rosen et al. (1987). 

The two-phase titration method was proven to be accurate and reliable, and was not 

interfered by typical impurities, such as acid additives, reaction products, and 

contaminants (mainly Fe2+ and Fe3+) (Yu et al. 2009). 

 

4.1. Two-Phase Titration Method 

The two-phase titration method developed for anionic surfactants (Reid et al. 

1967; 1968) has been extended to the analysis of betaine surfactants (Rosen et al. 1987). 

This method involves using an acid-mixed indicator solution, along with an anionic 

surfactant to titrate the betaine surfactant in a two-phase system (organic and aqueous 
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phases). According to Rosen et al. (1987), the mixed-indicator solution composed of 

disulphine blue V (also called acid blue, whose molecular formula is shown in Fig. 4.1) 

and dimidium bromide (molecular formula shown in Fig. 4.2a). In the present study, a 

cost effective substitute for dimidium bromide, ethidium bromide (Fig. 4.2b), was used 

(Buschmann 1995; Cross 1998). The mechanism of this method is given in Eqs. 4.1 to 

4.3: 

Aqueous phase:  
[Betaine]+–  +  H+  +  [Disulphine Blue V]–  �  [Betaine�H]+

�[Disulphine Blue V]–  
(Blue, to the organic phase)         (4.1) 

 
Organic phase:  
[Betaine�H]+

�[Disulphine Blue V]–  +  [Dodecanesulfonate]–  (from the aqueous 
phase)  �  [Betaine�H]+

�[Dodecanesulfonate]–  (colorless)  +   [Disulphine Blue V]–  (to 
the aqueous phase)          (4.2) 

 
At the end point: 
[Ethidium Bromide] (Aqueous phase)  + [Dodecanesulfonate]–  (aqueous phase)  �  

[Ethidium Dodecanesulfonate]–   (light purple, to the organic phase) + Br –  (4.3) 
 

 

 

Fig. 4.1: Molecular formula of disulphine blue V (acid blue). 
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(a) 

 

 

(b) 

 

Fig. 4.2: Molecular formulae of: (a) dimidium bromide and (b) ethidium bromide. 
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In a two-phase system of an organic phase (chloroform, CHCl3) and an aqueous 

phase, betaine surfactant complexes with disulphine blue V in the aqueous phase and 

displaces into the organic phase, which shows a blue color in the organic phase. After 

the addition of the titrant (sodium dodecanesulfonate, Fig. 4.3) to this two-phase system, 

titrant replaces disulphine blue V and forms complex with betaine, so that disulphine 

blue V returns to aqueous phase and the blue color of the organic phase starts to fade. 

When the end point is reached, titrant complexes with ethidium bromide in the aqueous 

phase and the produced complex partitions into the organic phase, and therefore the 

color of the organic phase becomes purple.  

 

 

 

Fig. 4.3: Molecular formula of sodium dodecanesulfonate. 

 

 

Emulsions can form during titrations, and ethanol was used to prevent it. 

However, Rosen et al. (1987) noted that the end point of titration depends on ethanol 

concentration. If end point is advanced, amount of ethanol should be increased. 

Conversely, ethanol concentration must be decreased if end point is delayed. The 

addition of ethanol to the two-phase system increases polarity of organic phase, and 
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therefore increases the solubility of betaine and [Betaine�H]+
�[Disulphine Blue V]– 

complex in it. As a result, the increase of ethanol in the system increases the percent 

assay of the measurements. However, once the optimal amount of ethanol is determined, 

this method is accurate to ±1%. 

The advantages of this method are: 

1. It is established for the analysis of betaine surfactants.  

2. It does not require expensive instruments or especial electrodes. 

3. It has a small error of ±1%. 

These advantages make this method amenable in the determination of betaine 

surfactants in lab and field samples. The main disadvantage of this method is that the 

amount of ethanol has some influence on the end point detection and therefore, 

calibration of ethanol volume is needed for each new surfactant. In addition, this method 

uses a small volume of chloroform; therefore, all measurements should be conducted in 

a fume hood or a well ventilated place. 

 

4.2. Experimental Studies 

4.2.1. Materials 

The original sample, whose active ingredient is carboxybetaine surfactant, was 

supplied by Rhodia Inc. Winder, Georgia. It contained nearly 37.5 wt% active 

ingredient. Fig. 4.4 shows the general molecular formula of this carboxybetaine 

surfactant. The titrant (sodium dodecanesulfonate, > 99%) and two main components of 

indicator solution (ethidium bromide, 95% HPLC and acid blue, Patent Blue V C.I.) 
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were obtained from Sigma-Aldrich Inc. Other materials included ethanol (CH3CH2OH, 

ACS/USP grade, obtained from Pharmco Products Inc.), concentrated sulfuric acid 

(H2SO4, 98 wt%, Sigma Aldrich Inc.), 1 mol/l sulfuric acid (Fisher Chemical Inc.) and 

chloroform (CHCl3, 100 wt%, Mallinckrodt Baker Inc.).  

 

 

 

Fig. 4.4: General formula of carboxybetaine surfactant, in which R may contain 14 to 26 

carbon atoms, and may be straight chain or branched alkyl, aromatic, aliphatic or 

olefinic groups. n is from 2 to 4 and p is from 1 to 5. pH value is high enough such that 

the carboxyl group is deprotonated. 

 

 

Interferences of acids, common metal ions in spent acids and common additives 

on surfactant concentration measurements were studied, including hydrochloric acid 

(HCl, 36.8 wt%, Mallinckrodt Backer Inc.), 10 wt% HTO acid (organic acid mixture, 

services company), corrosion inhibitor (services company), calcium chloride 

(CaCl2.2H2O, ACS reagent grade, > 99.0%, Sigma Aldrich Inc.), magnesium chloride 

(MgCl2, anhydrous, 99.99%, Sigma Aldrich Inc.), iron (II) chloride (FeCl2, anhydrous, 

99.99%, Sigma Aldrich Inc.), iron (III) chloride (FeCl3, anhydrous, 99.99%, Sigma 



 

 

40 

Aldrich Inc.), methanol (CH3OH, GR ACS grade, > 99.8%, EMD Chemicals Inc.) and 

10 vol% mutual solvent (ethylene glycol monobutyl ether, obtained from a services 

company). To the best of our knowledge, HTO acid is the only organic acid system that 

has been used in diverting fluids for acid treatments (Huang and Crews 2008). All 

solutions were prepared using de-ionized water with a resistivity of 18.2 m�-cm at 25ºC. 

 

4.2.2.  Procedure 

Acid-mixed indicator solution was prepared by the following procedure: Weigh 

0.050 g dimidium bromide into a 50 ml beaker and dissolve it in 10 ml hot 1:9 

EtOH/H2O solution. Weigh 0.050 g disulphine blue V into a second 50 ml beaker and 

dissolve it in 10 ml 1:9 EtOH/H2O solution. Add the contents of the second beaker to 

that of the first one and then add another 5 ml hot 1:9 EtOH/H2O solution. Stir the 

solution and transfer it to a brown bottle; add 100 ml deionized water, 25 ml 1 mol/l 

H2SO4 solution and then 100 ml de-ionized water to the bottle. 

An aqueous sample solution, approximately 1×10-3 mol/l, was prepared by 

dissolving m g of surfactant sample with 10.00 ml ethanol and diluting to 50.00 ml with 

deionized water. Next, 10.00 ml sample solution was pipetted to an Erlenmeyer flask, 

followed by 10 ml acid-mixed indicator solution, 0.235 ml concentrated H2SO4, 15 ml 

chloroform and 2.40 ml ethanol. The mixture was titrated with 1.003×10-3 mol/l titrant 

solution. Note that the two-phase mixture was shaken vigorously after each addition of 

titrant. At the end point, the color of the organic phase turned from blue to light purple. 

Fig. 4.5 shows the color of the organic phase during titration.  
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     (a) During titration     (b) At the end point 

Fig. 4.5: The color of the organic phase changes during the titration. (a) blue before the 

end point and (b) purple at the end point. The organic phase is the lower phase and the 

aqueous phase is the upper phase. 

 

 

The concentration (wt%) of surfactant sample was calculated using Eq. 4.4. 

%100
375.0 

ml 50.00
ml 10.00

  

)surfactant of weight (molecular   titrant)of (volume   titrant)of(molarity 
 (wt%)ion Concentrat Surfactant

×
××

××
=

m
  (4.4) 

where m = weight of sample used to prepare the sample solution, g. The molarity of 

titrant is in mol/l, the volume of titrant is in liters and the molecular weight of surfactant 

is in g/mol. 

 

 

Organic phase 

Aqueous phase 
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4.3. Results and Discussion 

4.3.1. Measurement of Surfactant Concentration in Aqueous Solutions 

Preliminary studies were conducted to determine the amount of ethanol required 

for titration. Ethanol is needed to prevent the formation of emulsions during mixing the 

two phases, as shown in Fig. 4.6. The beaker on the left shows emulsion in the system 

without ethanol, while the beaker on the right shows the system with ethanol, in which 

no emulsion is noted. The picture was taken after the same amount of titrant was added 

(6.0 ml) to both samples, and setting them still for 2 minutes after vigorous mixing. 

For the measurement on 10.00 ml sample solution as described previously, 

different volumes of ethanol, from 2.00 to 2.50 ml with an increment of 0.10 ml, were 

used to determine the effect of ethanol on the end point. The results are listed in Table 

4.1. Percent assay increased as the volume of ethanol was increased, and 100% percent 

assay was obtained when the ethanol volume was 2.40 ml.  

In addition, methanol was tested as a substitute for ethanol for the two-phase 

system. It was found that methanol functions in a way similar to ethanol. However, the 

color change at the end point with methanol was not as sharp as that with ethanol. 

Moreover, methanol is toxic and thus is more difficult to handle. Therefore, ethanol was 

used as demulsifier in the present study.  
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       (a)           (b) 

Fig. 4.6: The two-phase systems (a) with no ethanol added, in which emulsion was noted 

and (b) with 2.4 ml ethanol added and no emulsion was present. Both systems contained 

6.0 ml titrant, and were set still for 2 minutes after vigorous mixing. 

 

 

Table 4.1. Effect of ethanol on surfactant concentration measurements. a 

 

Volume of Ethanol, ml Measured Value/Actual Value, % 

2.50 101.37 

2.40 100.21 

2.30 98.46 

2.20 97.97 

2.10 97.02 

2.00 95.80 

a. Volume of ethanol is based on 10 ml surfactant sample solution. 

Emulsion Clear  
Interface 
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In the subsequent experiments, stock solutions containing 2, 4, 6, 8, and 10 wt% 

surfactant were prepared from the as received surfactant solution using deionized water. 

Diluted solutions with surfactant concentration of approximately 1×10-3 mol/l were 

prepared from these stock solutions, which were titrated with 1.003 ×10-3 mol/l sodium 

dodecanesulfonate. For each stock solution, three diluted solutions were made, and each 

diluted solution was titrated three times. Surfactant concentration was calculated by 

averaging the results of these measurements (Table 4.2). 

Fig. 4.7 shows the measured surfactant concentration as a function of actual 

surfactant concentration for all stock solutions, and the errors are listed in Table 4.3. All 

surfactant solutions were titrated with errors within ±1.1%. This error range is slightly 

higher than that obtained by Rosen et al. (1987). This may be due to the fact that the 

analyte in the present study, carboxybetaine, is not a single betaine, whereas a relatively 

better-defined betaine (Monateric LMAB, RCONH-C3H6N+(CH3)2CH2COO–, where 

RCO = “cocoyl”) was used by Rosen et al. (1987). 
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Table 4.2. Example of surfactant concentration calculation for one sample. 

 

Stock 

Solution 

 

 

ma,  

g  

 

 

Trial 

 

 

  

Vtitrant,  

L 

 

 

Average 

Vtitrant,  

L 

 

Measured 

Surfactant 

Concentration, 

wt% 

Average 

Measured 

Concentration, 

wt%  

Actual 

Surfactant 

Concentration, 

wt% 

Error, % 

 

 

    1 0.00952           

1 1.0024 2 0.0095 0.00953 6.11       

    3 0.00956           

    1 0.00979           

2 1.0315 2 0.00977 0.00979 6.1 6.11 6.05 0.99 

    3 0.0098           

    1 0.00949           

3 0.9956 2 0.00947 0.00947 6.12       

    3 0.00946           

a. m = weight of sample used to prepare the solution, g. 
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Fig. 4.7: Measured versus actual surfactant concentration. 

 

 

 

Table 4.3. Measurement of surfactant concentration in various aqueous solutions. 

 

Number 

  

Actual Surfactant,  

wt% 

Measured Surfactant, 

wt% 

Error,  

% 

1 2.02 2.04 + 0.99 

2 4.03 4.01 - 0.69 

3 6.05 5.99 - 0.99 

4 8.06 7.97 - 1.11 

5 10.08 10.17 + 0.89 
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4.3.2. Impact of Acid Additives on Surfactant Measurements 

During acidizing treatments, surfactant solutions are pumped into the well with 

acids and various additives. Live acid can be contaminated by Fe3+ that is dissolved from 

rust by live acids. Chloride salts will be present in the spent acids. Therefore, it is 

important to examine the effect of these components on the accuracy of the two-phase 

titration method.  

In the present work, effect of various additives on the analysis of aqueous 

solutions that contained 6 wt% surfactant was determined, including HCl, HTO acid, 

CaCl2, MgCl2, FeCl2, FeCl3, corrosion inhibitor, methanol, and mutual solvent. The 

components and their composition in different stock solutions are listed in Table 4.4. All 

of the stock solutions were prepared such that the final concentration of the surfactant 

was 6 wt%. Three diluted solutions were made from each stock solution and each of 

them was titrated in triplicates. The results are listed in Table 4.4. 

Similar to the results obtained for surfactant solutions prepared in de-ionized 

water, the titration errors were within ±1.33%. This is good indication that the effects of 

these additives on the analysis of surfactant were not significant. As a result, acid-mixed 

indicator two-phase titration method can be used to measure carboxybetaine 

concentration in typical acid treatment fluids in both live and spent acids. 
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Table 4.4. Impact of typical acid additives, reaction products and contaminants on the 

accuracy of the two-phase titration method. All solutions contained 6 wt% surfactant. 

 

Solution  

Actual Surfactant, 

wt% 

Measured Surfactant, 

wt% Error, % 

20 wt% HCl,  6.00 6.07 1.14 

20 wt% HCl, 1 wt% 

Corrosion Inhibitor 6.03 6.11 1.33 

15 wt% CaCl2 6.02 6.04 0.27 

7.5 wt% CaCl2, 6.4 

wt% MgCl2 6.01 6.06 0.83 

5 wt% FeCl2 5.97 6.02 –0.84 

5 wt% FeCl3 6.10 6.05 0.82 

10 wt% HTO acid 6.04 5.94 –1.16 

10 wt% Methanol 6.05 6.04 –0.23 

10 wt% Mutual 

Solvent 6.05 5.97 –1.32 

5 wt% Mutual 

Solvent 6.06 6.10 0.59 
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4.4. Summary 

The two-phase titration method for amphoteric surfactant that was first reported 

by Rosen et al. (1987) is further developed in this research to analyze the concentration 

of carboxybetaine viscoelastic surfactant in typical acidizing fluids. The optimized two-

phase titration method was used to measure surfactant concentration, and the impact of 

acid additives, reaction products, and contaminants was examined on these 

measurements.  

Based on results obtained, surfactant concentration in both live and spent acid 

with various acid additives can be measured by the two-phase titration method. The 

accuracy of this method was ±1.33%. The interference of typical impurities, including 

acid additives, reaction products, contaminants and HCl and HTO acid did not interfere 

with the measurements. 
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5. PROPAGATION AND RETENTION OF VISCOELASTIC SURFACTANTS 

FOLLOWING MATRIX ACIDIZING TREATMENTS IN CARBONATE CORES 

 

Carboxybetaine surfactants were extensively examined in various labs, and 

applied in several carbonate fields. To the best of our knowledge, the concentration of 

these surfactants in live or spent acids was never measured. By conducting core flood 

experiments on both calcite and dolomite cores, we report the first complete set of 

measurements where the concentration of carboxybetaine surfactant was analyzed in 

both live acid with various additives, and in spent acids with high levels of calcium, 

magnesium, iron(II) and iron(III) ions. These extensive measurements allowed us to 

perform material balance calculation to determine the amount of surfactant retained 

inside the core (Yu et al. 2010)  

 

5.1. Experimental Studies 

5.1.1. Materials 

The original surfactant sample, whose active ingredient is carboxybetaine 

surfactant, was supplied by Rhodia Inc., Georgia. As received, it contained nearly 37.5 

wt% active ingredient. Fig. 4.4 shows the general molecular formula of this 

carboxybetaine surfactant. The titrant (sodium dodecanesulfonate, > 99%) and two main 

components of the indicator solution (ethidium bromide, 95% HPLC; and acid blue, 

Patent Blue V C.I.) were obtained from Sigma-Aldrich Inc. Other materials included 

ethanol (CH3CH2OH, ACS/USP grade, obtained from Pharmco Products Inc.), 
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concentrated sulfuric acid (H2SO4, 98 wt%, Sigma Aldrich Inc.), 1 mol/l sulfuric acid 

(Fisher Chemical Inc.), chloroform (CHCl3, 100 wt%, Mallinckrodt Baker Inc.) and 

mutual solvent (ethylene glycol monobutyl ether, obtained from a services company). 

All solutions were prepared using de-ionized water with a resistivity 18.2 m�-cm at 

25ºC. All cores used in the present study were cut from large blocks of Pink Desert 

limestone. 

The preparation of acid mixed indicator solution of the two-phase titration 

experiment and details of the procedure used to measure the surfactant concentration in 

live and spent acids were given in Section 4. 

 

5.1.2. Core Flood Experiment 

Core flood tests were performed using Pink Desert cores with 1.5 in. diameter 

and 20 in. length. Core flood apparatus is shown schematically in Fig. 5.1. Cores were 

saturated with fresh water (total dissolved solids, TDS, of 500 ppm), and their initial 

permeability was measured by injecting fresh water at a constant rate of 15 cm3/min. 

Core flood data are listed in Table 5.1. After measuring core permeability, a surfactant-

based acid, which contained 15 wt% HCl, 7 vol% surfactant and 0.3 vol% corrosion 

inhibitor, was injected at a constant flow rate (1.5 to 40 cm3/min). The formula used to 

prepare the surfactant-based acid is given in Table 5.2.  
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Fig. 5.1: Core flood set-up. 

 

High p Isco- 
pump 

1.5 in. × 20 in. core 

Low p 
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Table 5.1. Core flood data for calcite. 

 

Experiment Pore 

volume,  

cm3 

Porosity,  

volume 

fraction 

Permeability,  

md 

Injection 

flow rate, 

cm3/min 

Shear 

rate,  

s-1 

1 106.9 0.195 75.0 3 533 

2 101.1 0.185 73.5 5 921 

3 130.0 0.220 130.0 10 1,165 

4 148.2 0.256 85.5 15 2,258 

5 121.0 0.214 90.0 20 2,879 

6 97.8 0.167 70.0 15 3,082 

7 124.5 0.227 90.0 40 5,429 

8 a 130.0 0.237 54.0 1.5 251 

  a. In experiment #8, 10 vol% mutual solvent solution was injected after acid 

breakthrough noted at 1.80 PV. 

 

 

 

Table 5.2. Composition of surfactant-based acid.a 

 

Component Concentration, vol% 

De-ionized water 51.7 

31.5 wt% HCl 41.0 

Surfactant 7.0 

Corrosion inhibitor 0.3 

a. Acid concentration was 14.7 wt%, and surfactant concentration was 6.44 wt%. 
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Viscoelastic surfactant-based acids are non-Newtonian fluids (Nasr-El-Din et al. 

2008). The apparent viscosity of partially spent acid (pH 4.5) was measured using a 

HP/HT rheometer and the results are shown in Fig. 5.2. The viscosity decreased with 

increasing shear rate highlighting the shear thinning behavior of these fluids.  
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Fig. 5.2: Viscosity of partially spent (pH 4.5) surfactant-based acid as a function of shear 

rate. The composition of surfactant based acid is given in Table 6.2, and the viscosity 

measurement was conducted at ambient conditions.  
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In all core flood tests, fresh water was injected immediately after acid 

breakthrough. Surfactant concentration was analyzed quantitatively in the injected acid 

and core effluent using the two-phase titration method.  

 

5.2. Results and Discussion 

5.2.1. Propagation of Surfactant-Based Acids in Calcite Cores 

Photos of the inlet and outlet faces of the core after acid injection for Test #1 of 

calcite core flood experiment are shown in Fig. 5.3, and those of the coreflood effluent 

samples are shown in Fig. 5.4. Similar sets of photos were obtained with other calcite 

core flood tests.  

 

 

 

 

             
     (a)              (b) 

* Dwh denotes wormhole diameter. 

Fig. 5.3: Core inlet (a) and outlet (b) after acid injection for calcite core flood test #1. 

Test was conducted at 15 cm3/min and room temperature.  

Wormhole 

Dwh
* = 5.1 mm Dwh

* = 3.3 mm 



 

 

56 

 

     (a)        (b)       (c)    (d) 

 

Fig. 5.4: (a) Surfactant-based acid used (b) coreflood effluent before acid breakthrough; 

(c) coreflood effluent after acid breakthrough and, (d) coreflood effluent after the 

injection of fresh water. 

 

 

Figs. 5.5 and 5.6 illustrate the pressure drop across the core as a function of the 

cumulative injected volume at flow rates of 10 and 40 cm3/min, respectively. At 10 

cm3/min, Fig. 5.5, the pressure drop across the core initially increased from 75 to 95 psi, 

then decreased linearly with the cumulative volume injected until acid breakthrough 

where the presser drop was almost zero.  The initial increase in pressure drop is partially 

due to the release of CO2 (Shaughnessy and Kunze, 1981) and partially due to the 

formation of surfactant gel. At 40 cm3/min, Fig. 5.6, the pressure drop decreased almost 

50 psi after the injection of 0.5 PV of acid, and then significantly decreased until acid 

breakthrough after the injection of 1.45 PV. 
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Fig. 5.5: Pressure drop across the core. Flow rate = 10 cm3/min. 



 

 

58 

0

100

200

300

400

500

600

0.0 0.5 1.0 1.5 2.0 2.5

P
re

ss
ur

e 
D

ro
p 

A
cr

os
s 

th
e 

C
or

e,
 p

si

Cumulative Volume Injected, PV

Surfactant-
based acid

Acid Breakthrough

 

Fig. 5.6: Pressure drop across the core. Flow rate = 40 cm3/min. 

 

 

The volume of the acid needed to breakthrough varied with the acid injection rate 

(Table 5.3). Fig. 5.7a illustrates the pore volume of surfactant-based acid injected before 

acid breakthrough as a function of the acid injection flow rate. At lower flow rates, the 

volume of acid required to create wormhole was relatively high. As the flow rate was 

increased, the pore volume decreased, until it reached a minimum at 10 cm3/min. As the 

flow rate was further increased, the volume increased until the flow rate reached 20 

cm3/min. This was followed by a plateau, where fewer changes in the volume were 

observed. The optimum flow rate was 10 cm3/min. The existence of optimal flow rate 
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was consistent with the results of Hoefner et al. (1987) and Wang et al. (1993) for 

regular acids and Lungwitz et al. (2006) for surfactant-based acids.  The latter authors 

noted a minimum at 1 cm3/min. This value is different of the value noted in our work, 

most likely because of difference in test conditions (temperature, initial core 

permeability, core length, and acid additives). 

 

 

Table 5.3. Surfactant retained and pore volume of surfactant-based acid at breakthrough. 

 

Experiment 

 

 

Injection  

flow rate,  

cm3/min 

Shear 

rate,  

s-1 

Pore volume 

injected at 

breakthrough 

Retained 

surfactant,  

wt% 

1 3 532 1.64 90.5 

2 5 921 1.35 84.2 

3 10 1,165 1.05 79.5 

4 15 2,258 1.15 75.5 

5 20 2,879 1.22 79.2 

6 15 3,082 1.38 80.4 

7 40 5,429 1.45 82.8 

8  1.5 251 1.80 78.8 
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(a) 

 

 
(b) 

 
Fig. 5.7: Pore volume of injected surfactant-based acid before acid breakthrough as a 

function of (a) injection flow rate and (b) shear rate. 
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Note that two core flood tests were conducted with the same injection flow rate 

(15 cm3/min); however, the volumes before breakthrough were different. This is due to 

the difference in the initial permeability and porosity of the two cores (Table 5.1).   

Surfactant-based acids are non-Newtonian fluids. Unlike regular acids, which are 

Newtonian fluids, the optimum flow rate in the case of surfactant-based acids is better 

obtained by plotting the volume to breakthrough as a function of the shear rate. This is 

not needed for regular acids because the viscosity of Newtonian fluids is independent of 

the shear rate. 

Several formulas are given in the literature to predict shear rate in porous media, 

including: Patruyo et al. (2002; González et al. (2005); and Rojas et al. (2008). Eq. 5.1, 

which was proposed by the latter authors, was used in the present study for its simplicity 

and to highlight our point. 

L
u

φ
γ =�             (5.1) 

where φ  is porosity, L (m) is characteristic length, and is given by L = 0.05 kc
0.5 in which 

kc (md) denotes core permeability. u (m/s) is Darcy velocity given by u = q/A, where q 

(m3/s) is flow rate, and A (m2) is cross-sectional area of the core. Table 5.1 lists the shear 

rates of the different core flood experiments calculated based on the injection rates and 

the core properties.  

Compared to Fig 5.7a, Fig. 5.7b shows a better trend between the pore volume to 

breakthrough and shear rate. It appears from these results that it is better to plot these 

data against shear rate instead of flow rate. It should be noted that prediction of shear 
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rate during acid injection is a very difficult task. The generation and propagation of 

wormholes in the core will change shear rate.  For simplicity, the shear rate based on the 

initial core permeability and porosity was used.  

 

5.2.2. Surfactant Retention as a Function of Acid Injection Rate in Calcite Cores 

Surfactant and calcium concentrations in the core flood effluent are plotted in 

Figs. 5.8 and 5.9 as a function of cumulative volume of injected fluids at flow rates of 

10 and 40 cm3/min, respectively. A typical surfactant concentration profile had two 

regions. The first region occurred before acid breakthrough, where the surfactant 

concentration in the core effluent was zero. This is because the core effluent was simply 

the fresh water that was present in the core before acid injection. The second region 

began following acid breakthrough. The injection fluid was fresh water and the injection 

rate was 10 cm3/min (Fig. 5.8), and the surfactant concentration significantly increased 

from zero to 6.2 wt%. The surfactant concentration stayed at 6.3 wt% for almost 0.3 PV. 

It appears that this surfactant was present with the acid in the wormhole. The surfactant 

concentration significantly decreased with the continuous injection of fresh water.  
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Fig. 5.8: Surfactant and calcium ion concentrations in the core effluent as a function of 

the cumulative pore volume injected. Flow rate = 10 cm3/min. 
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Fig. 5.9: Surfactant and calcium concentrations in the core effluent as a function of the 

cumulative pore volume injected. Flow rate = 40 cm3/min. 
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Calcium concentration in the core effluent was analyzed by atomic adsorption 

(AA). The calcium concentration profile in the core effluent was similar to that noted 

with the surfactant and the two profiles almost coincided with each other. Visual 

observations of the collected samples indicated that these samples that contained both 

calcium and surfactant were viscous. No gel, however, was noted in these samples. It 

appears from these results that the surfactant produced in the core effluent did not form a 

gel in the core.  The main source of this surfactant was the fluids present in the 

wormhole.  

Fig. 5.9 shows the concentrations of surfactant and calcium in the core effluent at 

40 cm3/min.  Similar to the results obtained at 10 cm3/min, both profiles were close, and 

the calcium concentration profile exhibited tailing during the last fresh water injected 

into the core. 

The retained surfactant was determined from material balance calculations as the 

percentage of the total injected surfactant (Table 5.3), and is plotted in Fig. 5.10 as a 

function of the acid flow rate. The retained surfactant in the core was high ranging from 

75 to 90 wt% of the total surfactant injected into the core.  The retain surfactant was high 

at both low and high flow rates. This behavior is similar that noted with the volume of 

acid required to break through the core, Fig. 5.7a. A much smoother trend was noted 

when the percentage of the surfactant retained was plotted against shear rate, Fig. 5.10b. 
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(a) 

 
(b) 

 
Fig. 5.10: Retained surfactant (%) in the core as a function of (a) injection flow rate and 

(b) shear rate. 
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The most important conclusion that can be inferred from Fig. 5.10 is that the 

amount of surfactant retained in the core following acid treatment was significant.  This 

means that there is a need to use external (mutual solvent) or internal breakers (Crews 

2005; Crews and Huang 2007b), to reduce surfactant retention, especially if a surfactant-

based acid is used in power water injector or a dry gas well. 

 

5.2.3. Effect of Mutual Solvent on Surfactant Retention in Calcite Cores 

A core flood experiment (experiment #8 in Table 5.1) was conducted to 

determine the effect of mutual solvent on the amount of surfactant retained in the core. A 

Pink Desert limestone core with 20 in. length and 1.5 in. diameter was saturated with 

fresh water. The initial permeability was measured by injecting fresh water at a constant 

injection rate of 15 cm3/min. This was followed by the injection of surfactant-based acid 

(Table 5.2) at a constant injection rate of 1.5 cm3/min. Acid break through the core after 

the injection of 1.80 PV. This was followed by the injection of 2 PV of 10 vol% mutual 

solvent solution at 1.5 cm3/min. A low flow was used in this experiment to give mutual 

solvent enough time to remove the surfactant retained inside the core.  

The surfactant concentration in the core effluent is shown in Fig. 5.11. As mutual 

solvent propagated in the wormhole, it displaced the surfactant-based acid that was 

occupying the wormhole space, and dissolved part of retained surfactant in the matrix 

surrounding the wormhole. Therefore, the surfactant concentration increased almost 4 

wt% after the injection of the mutual solvent and then decreased to nearly zero after 2.8 

PV. 
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Fig. 5.11: Surfactant and calcium concentrations in the core effluent in the case of using 

mutual solvent. Flow rate = 1.5 cm3/min during the whole experiment. 

 

 

The surfactant concentration in the core effluent shown in Fig. 5.11 is different 

from those noted at 10 or 40 cm3/min. First, the maximum surfactant concentration 

reached in Fig. 5.11 was 4 wt%, which is much lower than 6.2 wt% noted when the 

injection rate was 10 cm3/min. Also, it took almost 1 PV for the surfactant concentration 

to reach zero. A third observation is that the calcium profile was ahead of that of the 

surfactant.  On other words, the surfactant pulse was produced after that of calcium. 

Finally, calcium profile exhibited significant tailing that lasted to the end of the 

experiment. 
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Based on material balance calculation, the total injected surfactant was 15.85 g, 

and the recovered surfactant by mutual solvent was 3.36 g. Hence, the surfactant 

recovered by mutual solvent was 21.2%. Surfactant retention inside the core was 78.8% 

compared to 100% before the injection of the mutual solvent solution. Mutual solvent 

recovered some of the surfactant, but it did not remove all out of the core.  These results 

mean that in a typical field treatment in water injectors, it will take longer period of time 

to remove the surfactant from the treated wells.  This is exactly what Mohamed et al. 

(2002) noted in the field. Another solution is to use internal breakers to remove the 

surfactant (Crews 2005; Crews and Huang 2007b). 

 

5.2.4. Propagation and Retention of Surfactant-Based Acids in Dolomite Cores 

Another core flood test was performed using a dolomite core, which had a 

diameter of 1.5 in. and a length of 6 in. The dolomite core was saturated with fresh 

water. Initial permeability was measured by injecting fresh water at a constant rate of 1 

cm3/min. Core flood data are listed in Table 5.4.  

Surfactant-based acid, Table 5.2, was injected at a constant injection rate of 1 

cm3/min. Temperature of acid injection was 200°F. It should be noted that we could not 

run this experiment at room temperature. This is mainly because of the reaction between 

HCl and dolomite is reaction rate is very slow at low temperatures (Lund et al. 1973; 

1975). Acid breakthrough occurred after the injection of 1.44 PV of the surfactant-based 

acid. Injection fluid was switched to fresh water at 1.73 PV. Details of different injection 
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stages are given in Table 5.5. Photos of the inlet and outlet faces of the dolomite core 

after acid injection for are shown in Fig. 5.12. 

 

 

Table 5.4. Core flood data for dolomite. 

 

Parameter Dolomite core flood test 

Core pore volume, cm3 46.9 

Core porosity, volume fraction 0.270 

Core permeability, md 100 

Injection flow rate, cm3/min 1 

Back pressure, psi 1,000 

Overburden (confining) pressure, psi 2,000 

Temperature, °F 200 

 

 

Table 5.5. Sequence of dolomite core flood tests. 

 

Stage Fluid type Cumulative PV Injected Injection pressure, psi 

1 Fresh water 2.09 1,110 

2 Surfactant-based acid 1.73 1,500 

3 Fresh water 0.72 1,110 
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(a)      (b) 

Fig. 5.12: Dolomite core inlet (a) and outlet (b) after acid injection. Test was conducted 

at 1 cm3/min and 200°F.  

 

 

Fig. 5.13 shows the pressure drop across the core as a function of the cumulative 

volume injected. The volume of surfactant-based acid injected before breakthrough was 

1.44 PV, and the core permeability increased from 100 to 550 md after acid 

breakthrough.  It is important to mention that the increase in the pressure drop across the 

core, and the swings in the pressure drop were also observed by Lungwitz et al. (2007).  
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Fig. 5.13: Pressure drop across the dolomite core. Test was conducted at 1 cm3/min and 

200°F. 

 

 

Fig. 5.14 shows the concentration of surfactant in the core effluent. The 

concentration of surfactant in the injected acid was 6.5 wt%. The surfactant 

concentration profile has 4 regions. In the first region (PV < 0.4), surfactant 

concentration was nearly zero because the effluent was the fresh water present in the 

core before acid injection. This was followed by the second region (0.4 < PV < 1.4), in 

which surfactant concentration was 0.6 to 0.7 wt%. In the third region (1.4 < PV < 2.0), 

surfactant concentration significantly increased to 3.53 wt%. Surfactant concentration 

decreased to below 0.5 wt% in the final region (PV > 2.0). According to Lund et al. 
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(1973; 1975), the reaction rate between dolomite and HCl is much slower than that 

between calcite and HCl. Apparently, the acid breakthrough in the dolomite core 

occurred after surfactant breakthrough. Surfactant retention in the core was determined 

from material balance calculations and was found to be 92 wt%. This was due to lower 

flow rate between dolomite matrix and the surfactant-based acid. 
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Fig. 5.14: Surfactant concentration in the dolomite coreflood effluent. This core flood 

experiment was conducted at 1 cm3/min and 200°F. 
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5.3. Summary 

Propagation and retention of a carboxybetaine surfactant in carbonate reservoirs 

during matrix acidizing treatments has been studied by conducting core flood 

experiments and measuring the surfactant concentration in acidizing fluid and core flood 

effluent.  

Based on the results obtained, propagation of viscoelastic surfactants in linear 

calcite cores was found to be a function of the flow rate, or more accurately, the shear 

rate. The volume of acid needed to break through the core and the amount of surfactant 

retained varied with acid injection rate, and exhibited a minimum at 10 cm3/min. 

Significant amount of surfactant was retained in the cores. The effect of injecting 2 pore 

volumes of 10 vol% mutual solvent removed only 20% of the surfactant injected. 
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6. MOLECULAR DYNAMICS SIMULATION AND ITS ROLE IN STUDYING 

SURFACTANT SELF ASSEMBLY 

 

6.1. Surfactant Self-Assembly  

Surfactant molecules self-assemble into micellar aggregation structures when its 

aqueous concentration exceeds the critical micelle concentration (CMC). CMC is a 

function of surfactant structure, temperature, pressure, and the ionic strength. Once the 

surfactant concentration reaches CMC and surfactant molecules self-assemble into 

micellar structures, the concentration of free surfactant monomers in the solution is 

nearly independent on the total surfactant concentration (Rosen 2004). The hydrophobic 

tails of surfactant molecules are shielded from bulk water in the interior of the 

aggregates, and the hydrophilic heads are exposed to water at the surface of the 

aggregates. Van der Waals interactions, hydrogen-bonding and electrostatic interactions 

have certain contribution to the self-assembly process of surfactant molecules in aqueous 

solutions, whereas the driving force is primarily the hydrophobic interactions (Holmberg 

et al. 2003). 

Micelles exist as different forms, including spherical or globular micelles at 

relatively low surfactant concentrations, and worm-like or planar disk-like micelles at 

high surfactant concentrations. For ionic surfactants (cationic, anionic and zwitterionic 

surfactants), addition of counterions is able to reduce the electrostatic repulsion between 

surfactant head groups and lead to a phase transition between spherical micelles and 

worm-like/disk-like micelles (Holmberg et al. 2003). 
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Surfactant self-assembly is of tremendous interest for many natural and industrial 

applications. For example, self-assembly of surfactant molecules at liquid-liquid or 

liquid-gas interfaces is essential in the preparation and stabilization of emulsions and 

foams. Another example is the viscoelastic surfactant self-assembly in aqueous solutions 

to form worm-like micelles, which significantly enhances the elasticity and viscosity of 

the fluid. The importance of these surfactant self-assembly processes is reflected through 

their wide applications in the petroleum, chemical, food, cosmetic, pharmaceutical, and 

coating industries (Tadros 2005).  

Although the fundamentals of surfactant micelles and their phase transitions are 

extensively explored, the dynamics and mechanism of surfactant self-assembly 

processes are not well understood. One of the challenges remained is to reveal and 

reproduce the surfactant self-assembly processes. Molecular dynamics (MD) simulations 

is therefore employed to overcome this challenge by studying surfactant self-assembly 

on the molecular level. 

 

6.2. Introduction to Molecular Dynamics Simulation 

Molecular dynamics (MD) simulation is carried out to understand the structures 

and interactions of molecular assemblies. It acts as a complement to conventional 

experimental approaches and enables us observe the self-assemble processes 

microscopically. 

MD simulations of molecular systems serve as a linkage between microscopic 

and macroscopic scales of time and length (Fig. 6.1). Predictions on the bulk properties 
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can be provided by simulating molecular interactions and behaviors, which is subjected 

to limitations in computational power. MD simulations also serve as a linkage between 

theoretical hypothesis and experimental results. The proposed model can be proven by 

conducting computer simulations, while the accuracy of the simulations can be tested by 

carrying out experimental studies. MD simulation is a useful tool when the required 

experimental conditions are difficult or even impossible to achieve in the laboratory; for 

example, extremely high/low temperatures and pressures.  

 

 

 

Fig. 6.1: Time and length scales of simulation and experimental systems. The red circle 

highlights the time and length scale for atomic and coarse-grained molecular dynamics 

simulations. 
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6.2.1. Forcefields – Molecular Interactions 

MD simulation consists of solving the numerical, time-dependent Newtonian 

equations of motion for an ensemble of particles. For a molecular system, the equations 

of motion are (Eq. 6.1) (Allen 2004) 

E
r

ffrm
i

iiiia ∂
∂−==��,       (6.1) 

where ma is the atomic mass, r��  is the acceleration, f is the force acting on the atom and 

E is the total potential energy of the atom. The subscript i denotes the ith atom. In order 

to calculate the forces fi acting on the atoms, potential energies E(rN) should be obtained 

for all N atoms, where rN = (r1, r2, … rN) for a complete set of 3N atomic coordinates. 

Molecular interactions can be written in two parts, namely intermolecular and 

intramolecular interactions (Eq. 6.2).  
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Intermolecular interaction is the sum of effect of all atomic movements, 

including bond stretching, angle bending, torsional angles and out-of-plane movements. 

Intramolecular interaction involves two parts, van der Waals interactions and Coulombic 

electrostatic interactions.  

Various kinds of forcefields are available for MD simulations, in which different 

expressions for the potential energies terms are developed for the applications on 

different molecular systems. For example, the consistent-valence forcefield (cvff) is 

suitable for handling peptides, proteins and various organic systems (Hagler et al. 1974). 
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It has been extensively used for many years, and is primarily intended for organic 

crystals, aqueous solutions and gas phase systems. The Condensed-phase Optimized 

Molecular Potentials for Atomistic Simulation Studies (COMPASS) is a forcefield that 

enables accurate prediction of gas-phase and condensed phase properties, such as 

structure, conformation, equation of state and cohesive energies etc. (Sun et al. 1998). It 

is also applicable for a wide range of organic/inorganic and polymer systems. 

 

6.2.2. Periodic Boundary Conditions 

Periodic boundary conditions (PBC) are useful to handle large simulation 

systems by simulating small repetitive units (��il� 1992). Most commonly, the shape of 

the repetitive simulation units is a cube, which is surrounded by replicas of itself on two 

or three dimensions. Minimum image convention in which each atom can interact with 

the nearest atom or image in the periodic array can be adopted, as long as the potential 

range does not exceed the smallest box length. During an MD simulation, if one 

atom/particle leaves the unit simulation box, it is considered as being replaced by an 

incoming particle image from the opposite side (Fig. 6.2). Both real and image 

neighbors are included when calculating particle interactions within the cutoff range. 

 

6.3. Studying Surfactant Self Assembly by MD Simulations 

Surfactants have been extensively studied using various kinds of theoretical 

techniques, including Monte Carlo simulations (Floriano and Caponetti 1999; 

Rodríguez-Guadarrama et al. 1999) and molecular dynamics (MD) simulations 
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(Watanabe et al. 1988, Shelley et al 1990, MacKerell 1995, Shelley and Shelley 2000). 

The physical properties of micelles have been therefore interpreted from the perspective 

of the structures of organized assemblies.  

 

 

 

Fig. 6.2: Periodic boundary conditions. When a particle moves out of the unit simulation 

box, it is replaced by an image particle that moves in from the opposite side. 

 

 

MD simulations have been increasingly employed in studying surfactant micelle 

structures with the development of computing powers (Tieleman et al 2000, Bogusz et al 

2000; 2001). MD simulation is a very useful tool to study the behavior of surfactants in 
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solutions, which allows us not only to observe the microscopic aggregation process of 

surfactants but also analyze the formed aggregation structures at atomic level (Maillet et 

al. 1999; Stevens et al. 2003; Klein and Shinoda 2008; Lane et al. 2008; Shinoda et al. 

2008). Surfactant categories investigated by MD simulations include nonionic, cationic, 

anionic and zwitterionic surfactants.  

 

6.3.1. Nonionic Surfactants 

To date, there has not been a significant number of simulations on this category 

of surfactants. However, based on current computational power, comparatively larger 

simulation systems and longer simulation time is manageable for nonionic surfactants.  

Bogusz et al. (2000) performed MD simulations of over 4 nanosecond on 

micelles composed of 1 to 75 nonionic octyl glucoside surfactant molecules, and found 

that those micelles consisting of more than 10 surfactant molecules were stable. Ryjkina 

et al. (2002) studied nonionic surfactant (dodecyldimethylamine oxide) phase structures 

by MD simulations, and reproduced the aggregation behavior of micellar, hexagonal and 

lamella surfactant mesostructures. Srinivas et al. (2006) studied adsorption of nonionic 

surfactants, alkylpoly(ethylene oxide) (H(CH2)m(OCH2CH2)nOH, shorted for CmEn), 

onto a granite surface by the means of coarse-grained (CG) MD simulation. Due to the 

simplified nature of CG molecules, relatively large systems consisting of 400 CG 

surfactant molecules and 14,400 CG water sites were investigated in their simulations. 

Klein and Shinoda (2008) conducted large-scale MD simulation on alkylpoly(ethylene 

oxide) (C12E6) surfactant systems containing over 62,000 CG C12E6 molecules and more 
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than 500,000 CG water particles, corresponding to atomic systems of ~5 million atoms. 

A transition from hexagonal to lamellar phases was observed at 500 nanosecond.  

 

6.3.2. Anionic Surfactants 

Compared with nonionic surfactants, many MD simulations have been performed 

on cationic and anionic surfactant systems over the past 20 years. However, the systems 

were relatively small in general, and were not studied over very long time scales. Much 

of the prior work consisted of MD simulations that included around 50 surfactant 

molecules and were hundreds of picoseconds to several nanoseconds in simulation 

duration. In fact, the reason for the lack of larger and longer simulations is the 

computational effort required for handling long range electrostatic interactions.  

Early investigations of anionic surfactant systems by MD simulations can be 

dated back to 1990s. Shelley et al. (1990) reported a 182-picosecond MD simulation of a 

micelle consisting of 42 sodium dodecyl sulfate (SDS) surfactant molecules; in 1995, 

MacKerrell conducted similar MD simulations of 120 picoseconds on a micelle 

consisting of 60 SDS surfactant molecules. In both studies, sodium ions were added to 

the systems as surfactant counterions, and stable micellar structures over simulation time 

were observed.  

Bruce et al. (2002) focused on the structures of SDS micelles in water and the 

distribution of counterions. Their system consisted of 60 SDS molecules and ~7,500 

water molecules, MD simulations trajectories were as long as 5 nanoseconds. Long 

equilibration time was required for the distribution of counterions. The counterions 
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formed two layers of shells outside the SDS micelles. 

Kaznessis et al. (2002) carried out MD simulations on the aggregation behavior 

of anionic surfactant dipalmitoylphosphatidylglycerol (DPPG) and zwitterionic 

surfactant dipalmitoylphosphatidylcholine (DPPC) at water-air interface, which can 

greatly facilitate the investigation of phospholipid monolayer properties. Their 

simulation systems included 40 surfactant molecules and ~2,800 water molecules, and 

the simulation time was over 1 nanosecond for all systems.  

The influence of calcium ions on foam stability of three common surfactants 

(linear alkylbenzene sulfonate (LAS), SDS, and C12E7) was examined by Yang and 

Yang (2010) by simulating film rupture during which critical thickness was measured. It 

was found that Ca2+ significantly reduced the foam stability of SDS, while it has little-to-

no effect on the foam stability of LAS and C12E7. 

 

6.3.3. Cationic Surfactants 

MD simulation of the dynamics of self-assembly processes of two kinds of 

cationic surfactants (n-nonyltrimethylammonium chloride (C9TAC) and erucyl-bis[2-

hydroxyethyl]methylammonium chloride (EMAC)) was carried out by Maillet et al. 

(1999). Among the two cationic surfactants, EMAC has the capability of forming worm-

like micelles. Around 50 surfactant molecules and ~3000 surfactant molecules were 

included in each system, and the simulation time was over 1 nanosecond. Worm-like 

micelle structure was observed for EMAC surfactant systems that started from a random 

initial surfactant distribution. 
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A mixed surfactant system of anionic/cationic surfactants was studied by MD 

simulation by Yakovlev and Boek (2007). A wide range of surfactant ratios were 

included in this study. Different surfactant worm-like aggregation structures were 

obtained for systems with different surfactant ratios, including symmetric worm-like 

micelles (34/66 cationic/anionic) and flattened worms (50/50 cationic/anionic). It was 

found that adding a small amount of anionic surfactant with short tail (C8) to the cationic 

surfactant is helpful in forming more stable worm-like micelles. 

The impact of dicationic alkylammonium bromide gemini surfactants on DPPC 

lipid membranes was examined by Almeida et al. (2010) by both experimental and MD 

simulation studies. Experimentally, a disrupting effect upon the overall order of the lipid 

bilayer was observed for short-tail dicationic gemini surfactants (C12), while the 

formation of more ordered structures can be resulted from the addition of long-tail 

dicationic gemini surfactants (C16 and C18). MD simulation further supported this 

experimental observation by providing insights into the mechanism of the surfactant-

lipid interactions. 

 

6.3.4. Zwitterionic Surfactants 

MD simulation on zwitterionic surfactant can be dated back to 1989, when 

Wendoloski et al conducted a 100 picosecond simulation of a phospholipid micelle of 

lysophosphatidylethanolamine (LPE). Tieleman et al. (2000) studied micelle formation 

from the dodecylphosphocholine (DPC) zwitterionic surfactant by MD simulations of at 

least 500 picoseconds. Differences in micellar shapes, accessible surface areas, and 
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monomer packing was analyzed for simulation systems consisting of 40, 54, and 65 

surfactant monomers. DPC surfactant micelle formation has been the subject of MD 

simulation studies conducted by Marrink et al. (2000) as well. Xu et al. (2007) reported 

CG MD simulation of spontaneous micelles formation of zwitterionic surfactant 3-(N,N-

dimethyldodecylammonio)-2-hydroxy-propanesulfonate (DSB) in NaCl aqueous 

solution. Stable bipolar micellar structures were observed in their study. Adsorption of 

zwitterionic surfactant dodecyl sulfobetaine (DBS) on a silica/solution interface in the 

presence of Ca2+, Mg2+ divalent cations in aqueous solution was explored by Hu et al. 

(2010) by atomic MD simulations. All of these studies have significantly advanced the 

understanding of the structure and dynamics on the molecular-level for categories of 

surfactants. 
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7. IMPACT OF HYDROLYSIS AT HIGH TEMPERATURES ON THE  

APPARENT VISCOSITY OF CARBOXYBETAINE VISCOELASTIC 

SURFACTANT-BASED ACID:  

EXPERIMENTAL AND MOLECULAR DYNAMICS SIMULATION STUDIES 

 

It is well known that in aqueous solutions, peptide bond (-CO-NH-) can be easily 

broken in acidic environments at high temperatures, which is referred to as acidic 

hydrolysis reaction (Long and Truscott 1968; Qian et al. 1993). Because of the existence 

of peptide bonds in amido-carboxybetaine viscoelastic surfactants, acid hydrolysis 

reaction occurs for this type of surfactant at high temperatures. Hydrolysis reaction of 

amido-type viscoelastic surfactant at high temperature may lead to changes in fluid 

apparent viscosity. If fully taken into consideration, hydrolysis of surfactant at high 

temperature helps breaking down the gel, and no additional breaker or mutual solvent is 

needed for gel cleanup; otherwise, it would adversely affect the outcome of the treatment 

by altering the fluid apparent viscosity. 

The objectives of the research are to (Yu et al. 2011) 

(1). experimentally determine the viscosity alteration of amido-carboxybetaine 

acid fluids by high temperatures; and  

(2). determine the mechanism for viscosity changes on molecular level by 

carrying out molecular dynamics (MD) simulations. 
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7.1. Experimental Studies 

7.1.1. Materials 

The original surfactant sample, whose active ingredient is oleamidopropyl 

dimethyl betaine (ODB), was supplied by Rhodia Inc. Winder, Georgia. It contained 

nearly 30 wt% active ingredient. Fig. 7.1(a) shows the molecular formula of ODB 

surfactant. Other materials used in the experimental studies included hydrochloric acid 

(HCl, 36.8 wt%, Mallinckrodt Backer Inc.) and calcium carbonate (CaCO3, ACS reagent 

grade, > 99.0%, Sigma Aldrich Inc.). All solutions were prepared using deionized water 

with a resistivity of 18.2 m�-cm at 25°C. 

 

 

 

         (a) 

 

 

      (b)         (c) 

 

Fig. 7.1: High temperature hydrolysis reaction of (a) oleamidopropyl dimethyl betaine 

(ODB), into (b) oleic acid (OA) and (c) aminopropyl dimethyl betaine. 

H+ 
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7.1.2. Method 

Surfactant-acid solutions were prepared such that HCl concentration was 15 wt%, 

and ODB surfactant concentrations were 4, 6 and 8 wt%, respectively. The components 

of these solutions are shown in Table 7.1. Immediately after the solutions were prepared, 

they were placed in water baths to be hydrolyzed under reflux (Fig. 7.2). Hydrolysis 

temperature was 190°F, and hydrolysis times included 1, 2, 3 and 6 hours. Samples were 

cooled to room temperature after hydrolysis, and partially spent by CaCO3 until the pH 

value of the sample was 4.5. After centrifuging at 3000 rpm for 40 minutes, foam and 

excessive CaCO3 solid in the partially spent samples could be removed. The control 

experiments were conducted on samples with the same composition and preparation 

procedure, but not subjected to hydrolysis at 190°F. 

 

 

Table 7.1. Composition of ODB sample solutions. 

 

Component  Concentration  

 4 wt% ODB 6 wt% ODB 8 wt% ODB 

ODB sample as received 13 wt% 20 wt% 27 wt% 

36.8 wt% HCl 41 wt% 41 wt% 41 wt% 

DI water 46 wt% 39 wt% 32 wt% 
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Fig. 7.2: Experimental setup for surfactant-acid hydrolysis reaction. 
 

 

After sample preparation, the apparent viscosity vs. shear rate was measured on a 

rheometer at 25°C, 1 atm, with shear rates from 0.1-900 s-1. For samples with phase 

separation, the apparent viscosity of only the aqueous phase was measured. For each 

sample, the results were averaged from 3 parallel trials. 

 

7.1.3. Results and Discussion 

Photos of 4, 6 and 8 wt% ODB surfactant samples with or without hydrolysis are 

shown in Figs. 7.3 to 7.5. Compared to the colorless and transparent samples without 

hydrolysis, samples subjected to 1 hour hydrolysis at 190°F had a yellow color and 
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became cloudy. Judging from samples after 1, 2 and 3 hours of hydrolysis, this 

phenomenon was increasingly intensified with time. Phase separation took place for the 

8 wt% ODB sample hydrolyzed for 3 hours at 190°F, as 2 immiscible liquids with 

different colors were presented (Fig. 7.5(e)). After 6 hours of hydrolysis at 190°F, all 

samples showed phase separation. The upper layer of the sample was a viscous organic 

phase with brown color, and consisted of the hydrolyzed reaction product, oleic acid 

(OA, Fig. 7.1(b)). The amount of the organic phase increased with the initial surfactant 

concentration. The lower layer was an aqueous phase, which was colorless and 

transparent. 

 

 

 

Fig. 7.3: 4 wt% surfactant samples that were hydrolyzed at 190°F for (a) 0 hour (no 

hydrolysis); (b) 1 hour; (c) 2 hours; (d) 3 hours; (e) 6 hours. Samples were partially spent 

after hydrolysis (pH 4.5). 

 (a)                      (b)                    (c)                      (d)                      (e) 
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Fig. 7.4: 6 wt% surfactant samples that were hydrolyzed at 190°F for (a) 0 hour (no 

hydrolysis); (b) 1 hour; (c) 2 hours; (d) 3 hours; (e) 6 hours. Samples were partially spent 

after hydrolysis (pH 4.5). 
 

 

 

 

Fig. 7.5: 8 wt% surfactant samples that were hydrolyzed at 190°F for (a) 0 hour (no 

hydrolysis); (b) 1 hour; (c) 2 hours; (d) 3 hours; (e) 6 hours. Samples were partially spent 

after hydrolysis (pH 4.5). 

 (a)                      (b)                       (c)                      (d)                     (e) 

   (a)                      (b)                     (c)                      (d)                      (e) 
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Viscosity at different shear rates for all samples is listed in Tables 7.2 to 7.4. Fig. 

7.6 is the sample apparent viscosity profile at 300 s-1 as a function of hydrolysis time at 

190°F. For three samples with different initial surfactant concentrations, maximum 

apparent viscosity appeared after 1 hour of hydrolysis. Clearly, apparent viscosity of 

ODB samples without hydrolysis was relatively lower compared to that of the samples 

with short time (1-2 hours) hydrolysis. Sample viscosity significantly decreased to less 

than 10 cP after 3 hours of hydrolysis. Generally speaking, at any hydrolysis time, 

sample with higher initial surfactant concentration possessed higher apparent viscosity. 

In summary, when subjected to hydrolysis at 190°F, ODB surfactant-acid fluid 

experienced early enhancement and then reduction in the apparent viscosity. The 

maximum apparent viscosity appeared when surfactant-acid fluid was hydrolyzed for 1 

hour at 190°F. Since hydrolysis reaction involves breaking of ODB molecules and 

generation of OA molecules, intuitively, it can be assumed that the mix of ODB and OA 

molecules within a certain ratio range is capable of enhancing the apparent viscosity of 

the surfactant fluid. In other words, the addition of OA molecules to ODB solution helps 

forming stronger and more stable worm-like micelles. To confirm this hypothesis, MD 

simulations were carried out on ODB and OA systems and are discussed in the next 

section. 
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Table 7.2. Apparent viscosity of 4 wt% ODB samples hydrolyzed at 190°F for different 

times. Samples were partially spent by CaCO3 (pH 4.5), and their apparent viscosity was 

measured under ambient conditions. 

 

Shear Rate Apparent viscosity (cP) 

(s-1) 0 hour 1 hour 2 hours 3 hours 6 hours 

0.1 1371.5 23334.4 8406.2 543.6 82.1 

1 1119.6 3933.8 1643.5 54.0 47.2 

10 636.9 617.6 313.0 12.7 7.2 

50 276.2 269.9 212.1 7.1 3.8 

100 178.4 323.7 232.0 6.5 3.2 

300 87.5 159.3 117.4 6.6 3.2 

500 63.7 112.0 78.0 6.7 3.4 

700 52.3 88.0 60.8 6.9 3.6 

900 45.8 72.5 51.4 7.1 3.7 

 

 

 

 

Table 7.3. Apparent viscosity of 6 wt% ODB samples hydrolyzed at 190°F for different 

times. Samples were partially spent by CaCO3 (pH 4.5), and their apparent viscosity was 

measured under ambient conditions. 

 

Shear Rate Apparent viscosity (cP) 

(s-1) 0 hour 1 hour 2 hours 3 hours 6 hours 

0.1 1317.0 125107.0 5851.7 100.0 377.9 

1 1775.2 13208.9 1339.3 10.0 62.7 

10 1099.3 2653.5 313.6 1.0 11.0 

50 478.9 856.2 231.6 5.4 5.7 
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Table 7.3. continued 

Shear Rate Apparent viscosity (cP) 

(s-1) 0 hour 0 hour 0 hour 0 hour 0 hour 

100 306.7 583.9 234.2 6.7 3.5 

300 144.3 276.2 132.1 7.9 3.4 

500 102.2 190.8 94.1 8.4 3.7 

700 82.2 150.8 76.1 8.7 4 

900 70.5 127.9 65.6 8.9 5 

 

 

 

 

Table 7.4. Apparent viscosity of 8 wt% ODB samples hydrolyzed at 190°F for different 

times. Samples were partially spent by CaCO3 (pH 4.5), and their apparent viscosity was 

measured under ambient conditions. 

 

Shear Rate Apparent viscosity (cP) 

(s-1) 0 hour 1 hour 2 hours 3 hours 6 hours 

0.1 450.1 171894.3 49540.1 100.0 43.6 

1 819.0 28027.3 5569.9 4.4 8.3 

10 748.0 3528.6 814.6 11.5 5.1 

50 479.5 972.6 404.5 10.6 4.0 

100 349.7 698.0 337.1 10.4 3.7 

300 189.0 404.1 211.1 10.2 3.7 

500 138.7 292.9 146.2 10.4 3.9 

700 113.5 233.8 124.6 10.5 4.7 

900 98.3 195.4 108.0 10.6 5.4 
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Fig. 7.6: Effect of hydrolysis time on the apparent viscosity of surfactant solutions 

containing 4, 6, and 8 wt% ODB surfactant, respectively. Shear rate = 300 s-1. 

Measurements were carried out at ambient conditions.  

 

 

7.2. Molecular Dynamics Simulation Studies 

The aggregation behaviors of an amido-carboxybetaine surfactant and the 

corresponding fatty acid soap under different conditions were studied by MD 

simulations. Two typical aggregation structures were observed in our simulations, 

including infinite worm-like micelle and finite micelle. It was found that there exists an 

optimal molar ratio between amido-carboxybetaine and fatty acid soap at which the 
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worm-like micelle structure can be formed. The simulation results are qualitatively in 

agreement with the experimental results. 

 

7.2.1. System Setup 

Aggregation behavior of ODB and OA surfactant molecules in aqueous solution 

was studied with MD simulations in this paper. Each simulation system was constructed 

with 48 surfactant molecules and 3053 water molecules, which were placed into a cubic 

box with three-dimensional periodic boundary conditions (boundary conditions that are 

used to handle a large system by simulating small repetitive unit cells) (Fig. 7.7). The 

ODB/OA molar ratios considered in the current study were 1:0, 3:1, 1:1 and 1:3, 

respectively. 

Water molecules are represented by the Jorgensen TIP3P (transferable 

intermolecular potential 3P) model (Jorgensen et al. 1983). In all cases, divalent 

electrolyte (CaCl2) was added to the solution, and the number of Ca2+ cations was 100. 

The corresponding numbers of ions in each system are listed Table 7.5. The initial 

density of all constructed systems was 1.0 g/cm3. The initial sizes of the systems and the 

numbers of molecules of different species contained in each system are listed in Table 

7.5. In all initial system configurations, these surfactant molecules were randomly 

distributed in the simulation box. 
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Fig. 7.7: A typical simulation system with 48 ODB molecules constructed in the current 

study. For clarity, only surfactant molecules are shown. In this figure and all subsequent 

simulation snapshots, carbon atoms are depicted in grey, oxygen atoms in red, nitrogen 

atoms in blue and hydrogen atoms in white. The grey dashed lines represent the 

simulation box. 
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Table 7.5. Setup of the simulation systems. 

 

Initial box side 

length,  

Å 

# ODB 

 

 

# OA 

 

 

# TIP3P 

water 

 

# Ca2+ 

 

 

# Cl– 

 

 

ODB 

concentration*, 

wt% 

52.4 48 0 3053 100 200 25.0 

51.9 36 12 3053 100 188 18.8 

51.5 24 24 3053 100 176 12.5 

51.0 12 36 3053 100 164 6.4 

* ODB concentrations are based on live acids. 

 

 

7.2.2. Simulation Details 

MD simulations were carried out using Materials Studio 5.0 software (2009). The 

consistent-valence forcefield (cvff) was employed in the current study (Hagler et al. 

1974). All atoms are included explicitly in this forcefield. The total potential energy of 

the system is expressed by Eq. 7.1: 
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where  

Hb  =  bond stretching force constant; 

b  =  equilibrium bond length; 
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b0  =  actual bond length; 

H�  =  bond bending force constant; 

�  =  equilibrium bond angle;  

�0  =  actual bond angle; 

Hϕ  =  torsional force constant;  

S  =  phase factor (1 or –1 based on the dihedral angle); 

φ a  =  torsional angle; 

H�  =  bending constant; 

�  =  bending angle; 

ε  =  strength of the vdW potential; 

r*  =  distance at which the potential reaches its minimum; 

r  =  distance between two particles; 

qi and qj = point charge; 

rij  =  separation distance. 

 

After the systems were constructed, energy minimization was carried out to 

eliminate energetically unfavorable configurations. This in turn generated a starting 

point with reasonably low potential energy for MD simulations. All MD simulations 

were performed under NPT ensemble (in which the number of particle, pressure and 

temperature were fixed). The pressure was set to 1 atm and the temperature was fixed at 

300K, and these parameters were chosen to simulate the condition at which the apparent 

viscosity of surfactant sample was measured. In the current study, temperature and 
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pressure were controlled using the Nosé algorithm (Nosé and Klein 1983; Nosé 1984a, b) 

and Berendsen algorithm (Berendsen et al. 1984), respectively. At the beginning of MD 

simulation, each atom in the system was assigned a random velocity based on 

Maxwellian distribution at 300K. A time step of 1 fs (1×10-15 s) was used to integrate 

Newtonian equations of motion for all atoms. The particle mesh Ewald method (Ewald 

1921) was employed to handle the long-range Coulombic interactions, and the atom-

based method was used to calculate the van der Waals interactions. A cut-off radius of 

9.5Å was used for the calculations of the van der Waals interactions. For most MD 

trajectories, the total simulation time was more than 1 ns (1×10-9 s). 

 

7.2.3. Results and Discussion 

Structure and Dynamics of ODB Surfactant Systems 

48-ODB systems with the addition of electrolyte (CaCl2) were studied first. It 

took 140 ps for the total energies to reach stable values (Fig. 7.8(a)). Fig. 7.9 shows the 

snapshots of evolution process of a 48-ODB system at 0, 200, 400, 600, 800 ps and 1 ns. 

For clarity, only surfactant backbone atoms, namely C, O and N atoms, are displayed in 

Fig. 7.9 and all subsequent snapshots. Water molecules and Ca2+/Cl– ions are omitted. 

Amorphous aggregation, which is composed of randomly packed surfactant molecules, 

emerged at 200 ps. After 600 ps, relatively organized structures appeared. These 

aggregates were sheet-like structures composed of 3 to 5 parallelly aligned surfactant 

molecules. 
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Fig. 7.8: Energy profiles as a function of simulation time for (a) 48-ODB system; (b) 36-ODB/12-OA system; (c) 24-ODB/24-

OA system and (d) 12-ODB/36-OA system. 
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Fig. 7.9: Snapshots from the simulation trajectory of 48-ODB system at 0, 200, 400, 600, 800 ps and 1 ns. Only surfactant 

backbones are displayed. Water molecules and Ca2+/Cl– ions are omitted. 



 

 

103 

Fig. 7.10 is the system configuration after 1 ns of MD simulation viewed along 

the y-direction, and the simulation box was repeated on the x and z directions due to 

periodic boundary conditions. Fig. 7.10 demonstrates that an ellipsoid-shape aggregate 

was finally formed, whose long axis is along the z-direction. The hydrophilic heads of 

the surfactant molecules extended towards the bulk water that occupied the blank space. 

There was a tendency of the formation of an organized structure, but no worm-like 

structure was observed in this case. 

 

 

 

Fig. 7.10: Aggregation structures of the 48-ODB system at 1 ns. The ellipsoid-shape 

aggregate is highlighted by the red dash line. Only surfactant backbones are displayed. 

Water molecules and Ca2+/Cl– ions are omitted. 
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Structure and Dynamics of ODB/OA Mixed Surfactant Systems 

Three types of ODB/OA mixed surfactant systems were studied in this paper. 

The total number of surfactant molecules was 48 for all mixed surfactant systems, and 

the ODB/OA molar ratios were 3:1, 1:1 and 1:3, respectively. Electrolyte (CaCl2) was 

added to each mixed surfactant system. The time required for system total energies to 

equilibrate was nearly 140 ps for all systems (Fig. 7.8(b) (c) (d)). 

Fig. 7.11 shows snapshots taken from a typical 36-ODB/12-OA simulation 

trajectory at 0, 200, 400, 600, 800 ps and 1 ns. Relatively ordered surfactant aggregates 

started to appear after 200 ps. At 400 ps, small sheet-like structures were formed. They 

further self-organized into two large aggregation structures at 600 ps. These 

aggregations can be regarded as stacks of sheet-like structures. Viewed along the z-

direction towards the xy-plane, two distinct “surfaces” existed for these structures: a 

hydrophilic surface on which most surfactant head groups are exposed, and a 

hydrophobic surface where the surfactant tails are aligned together. If the simulation box 

was repeated in the x- and y-directions, it can be seen that these two aggregation 

structures faced each other with the hydrophobic surfaces. At 800 ps, they further 

merged into one large aggregate. Finally, at 1000 ps, a micelle-like structure was formed, 

in which all hydrophilic heads of surfactants exposed to water molecules and 

hydrophobic tails were buried in the central area of this aggregate. From Fig. 7.12, it can 

be seen that the micelle-like structure is infinitely extended along the z-direction to form 

a worm-like micelle due to periodic boundary conditions, and all surfactant molecules 

were included in the micelle-like structure. 
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Fig. 7.11: Snapshots from the simulation trajectory of 36-ODB/12-OA system at 0, 200, 400, 600, 800 ps and 1 ns. Only 

surfactant backbones are displayed. Water molecules and Ca2+/Cl– ions are omitted. 
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Fig. 7.12: Aggregation structure of the 36-ODB/12-OA system at 1 ns. A complete 

worm-like micelle is shown in section b. Due to the periodic boundary condition in x-

direction, sections a and c belong to two other complete worm-like micelles. Only 

surfactant backbones are displayed. Water molecules and Ca2+/Cl– ions are omitted. 

 

 

 

 

a 

b 

c 
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To demonstrate the aggregation structures in solutions, we calculated the radial 

distribution function (RDF) g(r) for 36-ODB/12-OA system. RDF is a physical quantity 

that describes the variation of atomic density as a function of the distance from one 

particular atom. Fig. 7.13 shows the RDF curves between carboxyl oxygen atoms and 

respectively, calcium ions, chlorine ions and oxygen atoms of water molecules. Fig. 7.14 

shows the RDF curves between olefinic carbon atoms and respectively, calcium ions, 

chlorine ions and oxygen atoms of water molecules. All data were computed over the 

last 200 ps of trajectory. As shown in Figs. 7.13 and 7.14, the first peak of O-water RDF 

curve is much higher than that of C-water RDF curve, and the O-water distance is closer 

than the C-water distance. This indicates that the hydrophilic heads of surfactants were 

exposed to water solutions and the hydrophobic tails were basically buried inside the 

aggregation structure. Moreover, the relatively higher peaks of C-Ca and C-Cl RDF 

curves suggest that compared to water molecules, calcium and chlorine ions were in 

closer vicinity to the surfactant hydrophobic tails. 
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Fig. 7.13: Radial distribution function for 36-ODB/12-OA system between carboxyl 

oxygen atoms/calcium ions ( ), carboxyl oxygen atoms/chlorine ions ( ) and 

carboxyl oxygen atoms/water oxygen atoms ( ). Data were obtained by averaging 

over the last 200 ps of trajectory. 
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Fig. 7.14: Radial distribution function for 36-ODB/12-OA system between olefinic 

carbon atoms/calcium ions ( ), olefinic carbon atoms /chlorine ions ( ) and 

olefinic carbon atoms /water oxygen atoms ( ). Data were obtained by averaging over 

the last 200 ps of trajectory. 
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Figs. 7.15 and 7.16 are the snapshots at 0, 200, 400, 600, 800 ps and 1 ns from 

an 24-ODB/24-OA system and an 12-ODB/36-OA system, respectively. In both cases, 

amorphous aggregates appeared at 200 ps, and gradually self-organized into small sheet-

like structures at 400 ps. Subsequently, these small sheet-like structures have grown into 

large aggregation structures by attracting free surfactant molecules. For the 24-ODB/24-

OA system, two large sheet-like structures were formed at the end of simulation (1 ns), 

containing 20 and 28 surfactant molecules, respectively (Fig. 7.17). For the 12-ODB/36-

OA system, a large sheet-like structure formed by 34 surfactant molecules and an 

amorphous aggregate consisting of 14 surfactants were obtained (Fig. 7.18). Similar to 

the case of the 48-ODB system, no worm-like structure was observed in these two 

systems, although some finite aggregation structures were obtained. 

In summary, worm-like micelle was quickly formed in mixed surfactant systems 

with an ODB/OA molar ratio of 3:1. For systems with ODB/OA molar ratios of 1:0, 1:1 

and 1:3, only finite aggregates were formed, whose contribution to the system apparent 

viscosity was significantly less than that of the worm-like micelles.  
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Fig. 7.15: Snapshots from the simulation trajectory of 24-ODB/24-OA system at 0, 200, 400, 600, 800 ps and 1 ns. Only 

surfactant backbones are displayed. Water molecules and Ca2+/Cl– ions are omitted. 
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Fig. 7.16: Snapshots from the system simulation trajectory of 12-ODB/36-OA at 0, 200, 400, 600, 800 ps and 1 ns. Only 

surfactant backbones are displayed. Water molecules and Ca2+/Cl– ions are omitted. 
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Fig. 7.17: Aggregation structures of the 24-ODB/24-OA system at 1 ns. Only surfactant 

backbones are displayed. Water molecules and Ca2+/Cl– ions are omitted. 
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Fig. 7.18: Aggregation structures of the 12-ODB/36-OA system at 1 ns. Only surfactant 

backbones are displayed. Water molecules and Ca2+/Cl– ions are omitted. 
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The sterical hindrance inside worm-like micelle structures is relatively larger for 

pure ODB surfactants due to their long tails. By substituting certain amount of ODB 

molecules with shorter OA molecules, the sterical-hindrance effect can be significantly 

lowered, resulting in the formation of stable worm-like micelle structures composed of 

both ODB and OA surfactants. However, if too many ODB molecules are substituted by 

OA molecules, since OA is not capable of forming worm-like micelles at ambient 

conditions, worm-like micelles are destabilized, and finite surfactant micelles are 

preferred.  

As a result, the formation of worm-like micelles in mixed surfactant systems is 

more structurally favorable only with certain surfactant molar ratios. Based on current 

simulation results, the optimum ODB/OA molar ratio was nearly 3:1. The results in the 

current study are in accordance with previous work, in which the mixture of zwitterionic 

and anionic surfactants was found to form worm-like micelles synergistically (Saul et al. 

1974; Hoffmann et al. 1992; 1994). 

 

Compare Experimental and MD Simulation Results 

The MD simulation results are qualitatively in agreement with our experimental 

results. In the ODB hydrolysis experiments, the value of ODB/OA molar ratio 

continuously decreased with hydrolysis time. Unhydrolyzed surfactant samples exhibited 

low apparent viscosity at ambient conditions. This corresponds to the MD simulation 

systems which show the formation or relatively ordered aggregates but no worm-like 

micelle. After short-time hydrolysis, when the optimum ODB/OA molar ratios (nearly 
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3:1) were achieved, stable worm-like micelles were formed quickly, resulting in much 

higher apparent viscosity of the solution. This can be proved by the existence of 

maximum apparent viscosity in Fig. 7.6. If hydrolysis reaction continued, as ODB/OA 

molar ratio became lower, the already-formed worm-like micelle structures were no 

longer stable and decomposed into finite micelles, which inevitably causes the loss of 

large viscosity of solution. This is reflected by the significant decrease in the fluid 

apparent viscosity as shown in Fig. 7.6. 

 

7.3. Summary 

Both experimental studies and theoretical studies (MD simulations) were carried 

out to study the impact of hydrolysis at high temperature on the apparent viscosity of 

amido-carboxybetaine surfactant-based acid. The following observations are noted: 

Samples (15 wt% HCl and 4, 6, 8 wt% surfactant) were hydrolyzed at 190°F and 

partially spent (pH 4.5). After 1 hour hydrolysis, the apparent viscosity reached the 

maximum, while a significant viscosity reduction occurred after 3 hours hydrolysis. In 

addition, phase separation occurred after 3 hours of hydrolysis. 

MD Simulation results revealed the formation of different micelle structures in 

surfactant systems with different amido-carboxybetaine/fatty acid soap molar ratios. The 

optimal surfactant molar ratio (ODB:OA) was nearly 3:1, at which the worm-like 

micelle structure was formed in a short time (less than 1 ns). Other surfactant molar 

ratios, including 1:0, 1:1 and 1:3, only resulted in the formations of finite surfactant 

aggregates. 
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8. CONCLUSIONS AND RECOMMENDATIONS 

 

In regarding to its applications in matrix acidizing treatments, two properties of 

viscoelastic surfactant have been investigated, including: 

1. Propagation and retention of viscoelastic surfactant in carbonate reservoirs 

following matrix acidizing treatments; and 

2. Impact of acid hydrolysis reaction at high temperatures on the apparent 

viscosity of viscoelastic surfactant fluids. 

First, the optimized two-phase titration method was used to measure surfactant 

concentration, and examined the impact of acid additives, reaction products, and 

contaminants on these measurements. Based on results obtained, the following 

conclusions can be drawn:  

1. The two-phase titration method was optimized and successfully applied to 

measure surfactant concentration in solutions of live and spent HCl acid. The 

accuracy of the method was found to be ±1.33%. 

2. Typical acid additives (corrosion inhibitor, mutual solvent, and methanol); 

reaction products (CaCl2, MgCl2 and FeCl2), contaminants (mainly Fe3+); 

HCl and HTO acid (high temperature organic acid) did not interfere with 

measurement of the surfactant. 

With the surfactant concentration analysis method well developed, extensive 

laboratory work was conducted to study retention of a carboxy-betaine surfactant that is 

commonly used in acid diversion in carbonate reservoirs. Long carbonate cores of 20 in. 
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length were used in the present study. Based on the results obtained, the following 

conclusions can be drawn: 

1. Propagation of viscoelastic surfactants in linear calcite cores was found to be 

a function of flow rate. Surfactant lagged calcium in the core effluent samples. 

2. The volume of acid needed to break through the core and the amount of 

surfactant retained varied with acid injection rate, and exhibited a minimum 

at 10 cm3/min. 

3. A significant amount of surfactant was retained in the cores. 

4. Injection of 2 pore volumes of 10 vol% mutual solvent removed only 20% of 

the surfactant injected. 

Based on these results, there is a need to use internal breakers when surfactant-

based acids are used in dry gas wells or water injectors. 

On the other hand, the impact of hydrolysis at high temperature on the apparent 

viscosity of amido-carboxybetaine surfactant-based acid was studied both 

experimentally and theoretically by MD simulations. The following conclusions can be 

drawn based on the results obtained: 

1. For all samples with 15 wt% HCl and 4, 6, 8 wt% surfactant that were 

hydrolyzed at 190°F and partially spent (pH 4.5), the maximum apparent 

viscosity was obtained after 1 hour hydrolysis. A significant viscosity 

reduction occurred after 3 hours hydrolysis. 

2. Phase separation occurred for samples that were hydrolyzed at 190°F for 

more than 3 hours and partially spent (pH 4.5). 
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3. Simulation results show that different micelle structures can be observed in 

surfactant systems with different amido-carboxybetaine/fatty acid soap molar 

ratios. The optimal surfactant molar ratio was nearly 3:1, at which the worm-

like micelle structure was formed in a short time (less than 1 ns). 

As a result, high temperature hydrolysis reaction should be taken into 

consideration when amido-type viscoelastic surfactants are applied in carbonate matrix 

acid treatments. The following are recommended: 

1. At 190°F, treatments should be completed within 3 hours to avoid significant 

viscosity reduction and phase separation of the amido-surfactant gel. 

2. Short-time viscosity enhancement of the amido-surfactant gel can be 

achieved within 1-2 hours of treatments at 190°F. 

3. Amido-surfactant fluid viscosity can be effectively reduced after 3 hours of 

acid treatments at 190°F. In this case, no additional breaker is needed to 

break down the surfactant gel. 
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