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ABSTRACT 

 

New Results in Stability, Control, and Estimation of  

Fractional Order Systems. (May 2011) 

Bong Su Koh, B.S., Korea Advanced Institute of Science and Technology; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. John L. Junkins 

 

 A review of recent literature and the research effort underlying this dissertation 

indicates that fractional order differential equations have significant potential to advance 

dynamical system methods broadly. Particular promise exists in the area of control and 

estimation, even for systems where fractional order models do not arise “naturally”. This 

dissertation is aimed at further building of the base methodology with a focus on robust 

feedback control and state estimation. 

By setting the mathematical foundation with the fractional derivative Caputo 

definition, we can expand the concept of the fractional order calculus in a way that 

enables us to build corresponding controllers and estimators in the state-space form. For 

the robust eigenstructure assignment, we first examine the conditioning problem of the 

closed-loop eigenvalues and stability robustnesss criteria for the fractional order system, 

and we find a unique application of an n-dimensional rotation algorithm developed by 

Mortari, to solve the robust eigenstructure assignment problem in a novel way. In 

contradistinction to the existing Fractional Kalman filter developed by using Gründwald-
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Letnikov definition, the new Fractional Kalman filter that we establish by utilizing 

Caputo definition and our algorithms provide us with powerful means for solving 

practical state estimation problems for fractional order systems. 
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CHAPTER I 

 INTRODUCTION AND BACKGROUND OF FRACTIONAL DIFFERENTIAL 

EQUATIONS 

 

A. INTRODUCTION 

A review of recent literature and the research effort underlying this dissertation 

indicates that fractional order differential equations have significant potential to advance 

dynamical system methods broadly. Particular promise exists in the area of control and 

estimation, even for systems where fractional order models do not arise “naturally”. This 

dissertation is aimed at further building of the base methodology with a focus on robust 

feedback control and state estimation. 

The concept of the fractional order derivative was introduced by L‟Hopital and 

Leibniz in 1695. While in-depth studies have expanded the concept mathematically, its 

application to engineering has begun only recently because of the complexity. One 

important mathematical study for the control engineering is given by Podlubny who 

opened up the possibility of applying fractional calculus to control engineering by 

establishing P      controller, a generalized version of the P.I.D. (Proportional Integral 

Derivative) controller[1][2]. 

The implication of Podlubny‟s study for the fractional order system is that we 

can expand the concept of the fractional order derivative in a way that enables us to  

build corresponding controllers and estimators in the state-space form. In order to do this, 
 
____________ 
This dissertation follows the style of Journal of Guidance, Control and Dynamics. 
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the most fundamental first step in setting the mathematical foundation is to choose 

among existing fractional derivative definitions such as Riemann-Liouville definition, 

Gründwald-Letnikov definition and Caputo‟s definition. Caputo‟s definition is our 

choice because it requires only integer-order initial conditions to obtain the solution of 

the fractional order differential equation[1]. This enables us to bypass the difficulty of 

defining the fractional-order initial conditions physically. In most engineering problems, 

a physical model does not give rise to non-integer derivatives, rather they arise in the 

quest for more general feedback control laws. In essence, using the fractional derivative 

concept, we have access to an infinite family of linear closed loop behaviors not 

available if we restrict feedback to integer order derivatives. Also, by utilizing the 

Caputo definition, we will build up the foundations of the needed mathematical 

properties and concepts such as the linearity, composition rules, etc, and in so doing we 

are able to achieve a more complete setting than using the Riemann-Liouville definition 

only. 

With these foundations, the robust eigenstructure assignment and the Kalman 

filter for fractional order systems are developed. Algorithms for robust eigenstructure 

assignment and the Kalman filter have already been widely and successfully used in the 

integer order cases[3][4]. For the fractional order case, however, they have not been 

completely developed heretofore. In our study, we examine new problem set-ups needed 

for applying the algorithms to the fractional order case. For the robust eigenstructure 

assignment, we first examine the conditioning problem of the closed-loop eigenvalues 

and stability robustnesss criteria for the fractional order system, and we find a unique 



 3 

application of an n-dimensional rotation algorithm developed by Mortari, to solve the 

robust eigenstructure assignment problem in a novel way[3][5][6]. In contradistinction to 

the existing Fractional Kalman filter developed by using Gründwald-Letnikov definition, 

the new Fractional Kalman filter that we establish by utilizing Caputo definition and our 

algorithms provide us with new and powerful means for solving practical state 

estimation problems for fractional order systems. 

 

B. BACKGROUND OF FRACTIONAL ORDER DERIVATIVES 

We first examine three kinds of definitions of fractional derivatives[1]. Among 

them, we choose the Caputo derivative in stating our problems because of the initial 

condition problem explained to be later.  

 

Definitions of Factional Derivatives 

 

Riemann-Liouville Definition 

Riemann-Liouville fractional derivative is defined by 

 
  

 
     )  

 

     )

  

   
∫

   )  

    )     

 

  

 (1.1) 

where         ,            . In other short expression,   ⌈ ⌉ 

denotes the next integer larger than  . Notice the apparent history dependence. The 

subscript    denotes the lower limit and t is the upper limit related to the operation of 

fractional differentiation. Ross called them terminals of fractional differentiation. If left 
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terminal    is fixed and the right terminal is variable, this is called the left fractional 

derivative of    ). Also, mathematically, we can define the right fractional derivative as 

 
   

 
    )  

 

     )
( 

 

  
*
 

∫
   )  

    )     

  

 

 (1.2) 

From the physical point of view, the current state    ) in the left fractional derivative 

depends on all past states    )       ) . On the other hand, the right fractional 

derivative depends on the future states which cannot be known in the causal physical 

world. This leads us to consider only the causal(left) fractional derivative.  

Riemann-Liouville fractional integral is defined by 

 
  
 

     )  
 

   )
∫

   )  

    )   
     

 

  

 (1.3) 

With this Riemann-Liouville integral, Riemann-Liouvile derivative can also be 

expressed as 

   
 

     )    
 

    
   

     )   ⌈ ⌉ (1.4) 

The Riemann-Liouville definition has played a big role in the pure mathematics 

literature underwriting the development of fractional derivative and integral concepts. 

However, it requires the fractional initial condition which frequently cannot be 

interpreted physically for solving the inhomogeneous fractional differential equations. 

This leads us to recommend, and adopt for this dissertation, the Caputo‟s definition 

which is discussed in the following. 

 

Caputo’s Definition 

Caputo‟s fractional derivative is defined by 
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    )  

 

     )
∫

   )  )  

    )     

 

  

 (1.5) 

where   ⌈ ⌉ and    )  )  
     )

   
. With this Riemann-Liouville integral, Caputo 

derivative can also be expressed as[7] 

   
 

  
    )    

   
    

 
     )   ⌈ ⌉ (1.6) 

To show the advantage of Caputo definition for dealing with the initial 

conditions for solving the fractional differential equations, we use the Laplace transform 

for both definitions. The Laplace transform of the Riemann-Liouville derivative is given 

by 

 
 {   

 
    )}  ∫     

 

 

{   
 

    )}        )  ∑   [   
     

    )]
   

   

   

 (1.7) 

where   ⌈ ⌉. And, the Laplace transform of the Caputo derivative is given by 

 
 {   

 
 
    )}  ∫     

 

 

{   
 

 
    )}        )  ∑          )  )

   

   

 (1.8) 

where   ⌈ ⌉. Obviously, the Caputo derivative requires only initial values with the 

integer-order derivatives which allow the physical interpretation. But, Riemann-

Liouville derivatives needs initial values with the fractional-order form. In order to 

approach the issue of non-constant initial value problem Bagley and Calico introduced a 

type of the initialization function, which is more fully developed in Lorenzo and Hartley 

[8] [9].   

The relationship between the Riemann-Liouville and the Caputo definitions can 

be given by 
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    )  ∑

     )
   

       )
   )   

 ) 

   

   

  ⌈ ⌉ (1.9a) 

 
  

 
  
    )    

 
  ([   )  ∑

     )
 

  
   )   

 )

   

   

]+    ⌈ ⌉ (1.9b) 

Both the Riemann-Liouville and Caputo derivatives becomes the conventional n-th 

derivative as fractional order   becomes integer n[1], so in that sense, both definition 

generalize classical integer order derivatives to the non-integer case. 

   
 

     )    
 

  
    )     )           (1.10) 

 

Gründwald -Letnikov Definition 

 Gründwald-Letnikov derivative is given by 

 
  
 

     )     
   

 

  
∑   ) (

 

 
)
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      )

    
   

 

  
∑

   )      )

     )       )
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      ) 

(1.11) 

where   ⌈ ⌉ and ( 
 
)  

     )       )

  
 is the binomial coefficient. This formula can be 

described by 

 
  
 

     )  ∑
   )   )     )

    

       )

 

   

 
 

        )
∫

     )  )  

    )   

 

  

 (
 

  
*
   

∫
     )  )  

    )   

 

  

   
 

     ) 

(1.12) 
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where            . Therefore, Gründwald-Letnikov derivative can be equal 

to the Riemann-Liouville derivative under the assumption of continuity and a sufficient 

number of continuous derivatives of x(t). Generally, Gründwald-Letnikov derivative has 

been widely used for obtaining the numerical solution of the fractional differential 

equations because of its implementation convenience. For the numerical approximation, 

the following formula can be used. 

 

  
 

     )  
 

  
∑

   )      )

     )       )

*
    
 

+

   

      ) (1.13) 

where [ ] means the integer part of p.  

 

 

Figure 1.1. A Family of Fractional Derivatives of sin(t) 
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By using the numerical approximation in Eq. (1.13), we can show one simple example, 

  
 

      ) in Fig. (1.1). 

 

Properties of Fractional Derivatives 

The following properties give us the insight into the application of fractional 

derivatives. 

 

Linearity 

We can do the following general linear operation with any fractional derivative 

definitions.  

   (    )      ))        )        ) (1.14) 

where   and   are constants. The proof can directly be established by using the 

definition. For Caputo fractional derivatives of order          ), we have 

  
 

  
 (    )      ))  

 

     )
∫

(    )      ))
  )

  

    )     

 

  

 
 

     )
∫

    )  )  

    )     

 

  

 
 

     )
∫

    )  )  

    )     

 

  

    
 

  
    )     

 
  
    ) 

(1.15) 

 

Leibniz Rule 

For integer-order derivatives, we have the following formula.  
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(   )   ))  ∑(

 
 
)    )  )

 

   

     )  ) (1.16) 

For fractional differentiation, we have the following analogous formula with the 

Gründwald-Letnikov and the Riemann-Liouville fractional derivatives[1]. 

 
  
 

  (   )   ))  ∑(
 

 
)    )  )   

   
  

 

   

   ) (1.17) 

It is useful for the product of the polynomial functions, but it is difficult to obtain for 

general functions. 

 

Interchange of the Differentiation Operators of Integer and Fractional Orders 

For the Caputo derivative,  

   
 

  
 (   

 
  
    ))    

 
  
 (   

 
  
    ))    

   
  
    ) (1.18) 

where m is an arbitrary integer greater than or equal to zero, and        . And 

the following condition should be satisfied[1].  

    )  )                (1.19) 

This means that there is no restriction from the definition on the values of    )  )   

          and therefore these initial conditions can be used to satisfy physical initial 

conditions. On the contrary, for the Riemann-Liouville derivative,   

   
 

  (   
 

     ))    
 

  (   
 

     ))    
   

     ) (1.20) 

where m is an arbitrary integer greater than or equal to zero, and        . And 

the following restricted condition should be satisfied[1]. 



 10 

    )  )              (1.21) 

This imposes a very constraining condition with regards to physical applications. For the 

mixed operator of Reimann-Liouville derivative and the fractional integral, we have 

following property[1]. 

 
  

 
  (   

 
     ))  {

  
   

     )    

  
   

     )    
 (1.22) 

 

Composition Rules 

 In the fractional integrals defined in Eq. (1.3), the following composition rules 

are valid[1][10]. 

   
 

  (   
 

     ))    
 

  (   
 

     ))    
   

     ) (1.23) 

In general case, the composition rules of Riemann-Liouville derivatives are not valid[1]. 

   
 

  (   
 

     ))    
   

     )    
 

  (   
 

     )) (1.24) 

where         and        . Note that this composition rule is valid only 

if   =    or    )   )                           )  In some literature, 

researchers ignore this property and its consequences[10].  

 

Theorem 1.1  

For the Caputo derivative, if m=n and    )  )     )  )    where     

    and        , the Caputo differential operator commutes. 

   
 

  
 (   

 
  
    ))    

 
  
 (   

 
  
    ))    

   
  
    ) (1.25) 
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Proof 

By Eq. (1.6), 

   
 

  
 (   

 
  
    ))    

   
    

 
  
 (   

 
  
    )) (1.26) 

By the interchange property given in Eq. (1.18), 

   
   

    
 

  
 (   

 
  
    ))    

   
    

   
  
    ) (1.27) 

To satisfy above equation, we need the following condition. 

    )  )                (1.28) 

By Eq. (1.6) again, 

   
   

    
   

  
    )    

   
    

   
    

   
  
    ) (1.29) 

By the composition rule of the fractional integral, 

   
   

    
   

    
   

  
    )    

       
    

   
  
    ) (1.30) 

By Eq. (1.6), 

   
       

    
   

  
    )    

   
  
    ) (1.31) 

We apply the above procedure for   
 

  
 (   

 
  
    )). Then, 

   
 

  
 (   

 
  
    ))    

   
    

 
  
 (   

 
  
    ))    

   
    

   
  
    ) (1.32) 

To satisfy the last equality of above equation, we need the following condition. 

    )  )                (1.33) 

And,  

   
   

    
   

  
    )    

   
    

   
    

   
  
    )    

       
    

   
  
    )

   
   

  
    ) 

(1.34) 
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If both conditions given in Eq. (1.28) and Eq. (1.33) are satisfied simultaneously, the 

composition rule is valid. Therefore, the Caputo differential operator commutes as long 

as m is equal to n with    )  )     )  )   . 

 

Derivative of a Constant C 

The Caputo derivative of a constant is 0. 

 
  
 

 
   

 

     )
∫

   )  

    )     

 

  

   (1.35) 

On the contrary, the Riemann-Liouville derivative of a constant is not 0. 

 
  

   
 

     )

 

  
∫

   

    ) 

 

  

 
      )

  

     )   (1.36) 

If    is   , the Riemann-Liouville fractional derivative of a constant C also has 0. Note 

that when we put        in both definitions, they come to have the same equation[1]. 

 
  
 

  
    )    

 
     )  

 

     )
∫

   )  )  

    )     

 

  

 (1.37) 

where        .  

 

Short Memory Principle 

Let us consider the Gründwald-Letnikov derivative because it helps us see more 

easily how past values of    ) work for the fractional derivative. From the Gründwald-

Letnikov derivative definition, if current time t is large, we need a lot of past values of 

   ) for calculating the fractional derivative. This property of fractional order derivatives 

is not attractable and useful for dealing with the practical engineering problem because 
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we have finite memory.  Fortunately, for large t, we have the short memory principle[1]. 

This is described by 

   
 

     )    
 

      )        (1.38) 

where L is the “memory length”. This means that the fractional derivative depends on 

mainly the “recent past” values of x(t). This approximation can attract many researchers 

to the fractional derivatives world. The estimated error associated with the 

approximation Eq. (1.38) has the following upper bound[1] 

 
   )  |   

 
     )    

 
      )|  

    

|     )|
          (1.39) 

where    )                 In the case of the Caputo derivative, the short memory 

principle is frequently useful. The truncation error E is given by[11] 

 
  |

 

     )
∫

 

    ) 
  

   

 

|  
 

     )
          )   (1.40) 

where      [   ]| 
  )  )|    and      . 

 

C. PROBLEM STATEMENT 

Let us consider the following linear time-invariant fractional order system. 

         )        )      )     ) (1.41) 

If   is 3/2, this equation is known as the Bagley-Torvik equation[7]. More generally,    

can be any fractional differential operator of order   among Riemann-Liouville 

definition, Caputo definition and Gründwald-Letnikov definition as explained 

previously. We choose the Caputo definition in order not to use the fractional order 

initial condition. 
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To interpret and examine the above fractional order system, the state-space 

representation can be used. For Caputo definition, Diethelm et al all showed the way to 

build up the state-space representation of the Bagley-Torvik equation. By applying his 

idea to the extension to the general fractional order case, the state-space representation 

algorithm can be done. Let us assume that   is 1/2. Now, we have the following form. 

    
 

 
   

   )      )      ) (1.42) 

where       ,        and state vector are described by 

 

  [

    
    
    

          

]    [

 
 
 

   

]           )  {

 
     
     
     

} (1.43) 

Input is given as the state feedback control form. 

    )      )     ) (1.44) 

where        is fixed. Now, the system has the following closed-loop form. 

    
 

 
   

   )       )   )      ) (1.45) 

To consider more general case, let us assume that we have the following closed-loop 

form. 

    
 

 
    )       )   )      ) (1.46) 

where       ,                   . As the integer order case, we introduce the 

robust eigenstructure assignment problem which look for choosing real gain matrix F in 

order to put the closed-loop eigenvalues(poles) of the fractional order system into 

desired specific places. All closed-loop poles should be in the following stable 

region[12]. 
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 | |  
 

 
       (        )) (1.47) 

where fractional order       and   represents the argument of each eigenvalues of 

matrix A+BF. Also, for robust eigenstrucure assignment, assigned poles should be as 

insensitive as possible to the perturbations in A+BF. 

After designing the gain matrix F, we need the estimator for the state. Hence, we 

propose the fractional Kalman filter defined by Caputo derivatives. The approach by 

Gründwald-Letnikov definition is already done by Sierociuk et al[13]. However, the 

Caputo derivative is more attractive to us for the reasons mentioned before, which leads 

us to derive the novel fractional Kalman filter defined by Caputo derivatives.  

 

D. OVERVIEW OF THE STUDY 

This section overviews the generalized steps that will be followed in this 

dissertation. In this chapter we discussed the basic knowledge regarding the existing 

ideas in fractional calculus and explored the various properties such as solution forms, 

linearity, and short memory principle, and so on of fractional differential equations that 

utilize Caputo derivatives.  

In chapter II we build formulations for state-space representation and linear 

system theory for the Caputo fractional order system. Also, we examine the stability, 

controllability and observability for fractional order systems 

Chapter III deals with issues about eigenvalue and eigenvector sensitivity under 

the perturbations in fractional order systems. For the fractional order linear state-space 

models, we examine the eigenvalue sensitivity due to system matrix perturbation[3]. The 
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condition number for the closed loop eigenvector matrix, for the integer order case, is a 

widely appreciated metric for measuring the robustness of stability. For the fractional 

order case, we develop the robust stability formulations analogous to the integer 

derivative case[6]. We find the relationship between the perturbation of the closed-loop 

system matrix and the condition number of the closed loop systems modal(eigenvector) 

matrix.       

In chapter IV we examine the robust eigenstructure assignment to obtain the real 

gain matrix F which places the closed-loop eigenvalues(poles) of the fractional order 

system into a priori prescribed locations. Also, we establish an algorithm to minimize 

the condition number of the modal matrix for the assigned poles to render them as 

insensitive as possible to the perturbations in closed-loop systems matrix. We compare 

our results with existing methods. 

In chapter V we derive the Kalman filter for fractional order systems. For the 

Gründwald-Letnikov derivative, the fractional Kalman filter has already been 

introduced[13]. But we introduce the fractional order system Kalman filter defined by 

Caputo derivative. We derive the discrete-time fractional Kalman filter and investigate 

the various properties of the discrete-time fractional Kalman filter. 
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CHAPTER II 

LINEAR CONTROL THEORY FOR FRACTIONAL ORDER SYSTEMS 

 

A. STATE-SPACE REPRESENTATION 

Let us consider the following linear time-invariant fractional order system 

defined by the Caputo derivative. 

     )  )      
 

 
    )      )     ) (2.1) 

As mentioned in the previous chapter, we use the Caputo definition because it has the 

following two great advantages: 

1) The Laplace transform of the Caputo derivative requires only the initial values of 

integer-order derivatives with known physical interpretations. 

2) The Caputo derivative of a constant is 0, while the Riemann-Liouville derivative 

of a constant is not 0.  

In this dissertation, we consider only the fractional order of      . Therefore, we 

can solve Eq. (2.1) with the following initial conditions 

    )         )    
  (2.2) 

How can we change Eq. (2.1) into state-space form? Diethelm and Ford suggest a 

good answer to the question of solving the Bagley-Torvik equation numerically using 

the Caputo definition[7].  For the Bagley-Torvik equation, they showed the state-space 

equations in the case of  =0.5 are as follows, 

    
 

 
       )      )    

 
 
       )      )    

 
 
       )      ) (2.3a) 
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       )            )       )     ))  (2.3b) 

For the matrix form, we can express it as 

 

   
 

 
   

[
 
 
 
    )

    )

    )

    )]
 
 
 

 [

    
    
    

            

]

[
 
 
 
    )

    )

    )

    )]
 
 
 

    [

 
 
 
 

]    ) (2.4) 

with initial conditions     )         )        )          )     We can extend 

this idea to the general case mentioned in [7][14].  

Let us consider the following n-term linear fractional order differential equation. 

     )  )       
     )  )       

   )  )        ) (2.5) 

where     )  )     
 

 

     )  and  
 
 

  

  
                       .  

 
  

   
    

 
, 

        and   
 
  

   
   for all i. This differential equation is subject to the 

following initial conditions. 

    )   )    
  )

         ⌈ 
 
⌉    (2.6) 

From the above equation, we want to find the state-space representation with the 

commensurate fractional order and the equivalent solution. To achieve this objective, we 

first need to know the following lemma shown in reference[7]. 

 

Lemma 2.1[14] 

Let    )    [   ] for some T>0 and some    , and let     such that 0<   

<k. Then, 

    
 

 
     )    (2.7) 
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Proof 

We rewrite Eq. (1.6). 

   
 

  
    )    

   
     )  )   ⌈ ⌉ (2.8) 

Since     and    )    ,   
 

     ) is a continuous function.  Thus, we can show that 

the right side in Eq. (2.8) becomes zero as t goes to zero by 

 
   
   

  
   

     )  )     
   

 

     )
∫     )        )  )

 

 

     (2.9) 

And, from Eq. (1.9) another important relationship is given by 

     
    )     

 
 
    ) (2.10) 

whenever      )   . 

Now, we are going to prove the state-space representation of Eq. (2.5). 

 

Theorem 2.1[14] 

Equation (2.5) is equivalent to the following system of equations  

    
 

 
     )      ) 

   
 

 
     )      ) 

   
 

 
     )      ) 

  

   
 

 
     )             )            )          )     ) 

(2.7) 

subject to 
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     )  2  

  )
                       ⌈ 

 
⌉      

          
 (2.8) 

where M is the least common multiple(LCM) of the denominators            ) , 

                ). Then the fractional order of the corresponding commensurate 

state-space representation and the dimension N can be obtained by 

 
  

 

 
        

 
 (2.9) 

Proof  

First, from Lemma 2.1, we have    
 

 
     )   . Then let     )     ) and let 

    ) have the following relationship. 

     )     
 

 
     ) (2.10) 

By using    
 

 
     )    and Eq. (2.10), the relationship between     ) and     ) is given 

by 

     )     
 

 
     )     

 
 
    

 
 
     )      

    
 

 
     ) (2.11) 

From the definition of the Caputo operator given in Eq. (1.6), we have 

     
    

 
 
     )      

   
   

     )  ) (2.12) 

By the property of the mixed operator of Riemann-Liouville derivative and the fractional 

integral given in Eq. (1.22), the right side of Eq. (2.12) becomes  

     
   

   
     )  )    

    
     )  )     

 
 
      ) (2.13) 

The last equality follows from Eq. (1.6). Therefore, we show     )     
 

 
      ). By 

applying the above procedure to     )        , we have the following equations. 
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     )     
 

 
     )     

 
 
    

 
 
      )      

    
 

 
      )

     
   

    
     )  )    

    
     )  )     

 
 
      ) 

  

      )     
 

 
     )     

 
 
    

 
 
    )     )      

    
 

 
    )     )

     
   

      ) 
    

  )  )      
   

 
    

  )  )    
  )  ) 

  

    )     
 

 
       )     

 
 
    

 
 
    )     )      

    
 

 
    )     )

     
   

⌈  ⌉       ) 
    

(⌈  ⌉  )
  )

   
⌈  ⌉       

    

(⌈  ⌉  )
  )    

⌈  ⌉       
    

(⌈  ⌉  )
  )

    
 

 

    
    ) 

   
 

 
     )     

 
 
    

 
 
    )     )      

    
 

 
    )     )

     
   

⌈  ⌉       ) 
    

(⌈  ⌉  )
  )

   
⌈  ⌉     

    

(⌈  ⌉  )
  )     

 
 

      ) 

(2.14) 

From the above relationships and Eq. (2.5), we finally obtain the following equation. 

    
 

 
     )             )            )          )        ) (2.15) 

Now, we can transform any fractional-order equations defined by the Caputo definition 

into the state-space representation. As you can expect, this seems to have the curse of 

dimensionality if we have a very small common fractional order. To avoid this problem, 

one can use the incommensurate order[15]. However, in this dissertation, we only 

consider the commensurate order case for convenience of the analysis. 



 22 

From Theorem 2.1, we have the corresponding matrix form by 

    
 

 
    )       )      ) (2.16) 

where the state vector can be given by   [       ]  and the matrices A and B 

are given by 

 

  

[
 
 
 
 

     
     
     
     

               ]
 
 
 
 

 

  [    ]  

(2.17) 

If we have a general linear output equation, it can be given by 

    )      )      ) (2.18) 

where       ,        and       . 

By using the Laplace transform with zero initial conditions, we can have the s-

domain representations given by 

      )      )      ) 

   )      )      ) 

(2.19a) 

(2.19b) 

where s is the Laplace variable. In order to obtain the input-output transfer function, we 

substitute    ) solved from Eq (2.19a) into Eq. (2.19b), which yields  

    )          )     )   ) (2.20) 

We call the determinant of       ) the characteristic equation because it determines 

the stability and behavior of the system. Also, the solution of the characteristic equation 

gives us the poles of the transfer function in the s-domain. Generally, it is difficult to 

find these poles in the s-domain for fractional order systems because of the    form. 
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Instead, we transform the s-domain into the w-domain by     . Then we call the 

solution of determinant of      )  poles for fractional order systems[16][17]. By 

examining these poles, we can check the stability of fractional order systems. We will 

examine the stability characteristics in a later section. 

 

B. EIGENVALUES AND EIGENVECTORS OF FRACTIONAL ORDER 

LINEAR SYSTEMS AND STABILITY ANALYSIS 

In this section, we want to investigate the stability of the linear fractional order 

system. Let us consider Eq. (2.16). We assume that the input u(t) is zero.  Then we have 

the following fractional order system 

    
 

 
    )       ) (2.21) 

This is the eigenvalue problem for the fractional order system. From now on, we will 

show that the eigenvalue matrix has the diagonal form of   and the corresponding 

eigenvector matrix is   for the above fractional order system. Assume that A can be 

diagonalizable, which means that A is a non-defective matrix. Hence, there exists the 

coordinate transformation which makes the matrix A diagonal form. We can introduce 

the modal vector   which has the following transformation. 

    )      ) (2.22) 

By our assumption, the coordinate transformation   has the following diagonalizing 

property. 

             {       } (2.23) 

With Eq. (2.22), Eq. (2.21) can be written as 
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    )       ) (2.24) 

By the pre-multiplication of     on both sides, we have 

    
 

 
    )          )      ) (2.25) 

Then each element     ) of    ) has the following uncoupled differential equation. 

    
 

 
     )        ) (2.26) 

And the solution is given by 

     )            )
 )     ) (2.27) 

Hence,    ) can be expressed in a state transition matrix form. 

    )        )    ) (2.28) 

where 

 

      )   [

          )
 )    

           )
 )   

    
             )

 )

] (2.29) 

Finally, the solution of the original fractional order system can be given by 

    )         ) 
       )        )     ) (2.30) 

where       )         ) 
   . To show that the eigenvalue matrix is   and the 

eigenvector matrix is   for the original fractional order system, we use the solution 

obtained in Eq. (2.30). By substituting this solution into Eq. (2.21), the left hand side of 

Eq. (2.21) can be given by 

    
 

 
    )     

 
 
       )    )      

 
 
       ) 

       )

         ) 
  

     ) 
(2.31) 

And the right hand side of Eq. (2.21) can be given by 



 25 

     )         )     )          ) 
       ) (2.32) 

Eq. (2.31) and Eq. (2.32) should be equal.  

         ) 
       )          ) 

  
     ) (2.33) 

Therefore, Eq. (2.24) yields 

       (2.34) 

Now, this can be expressed as the following eigenvalue-eigenvector pair form. 

          (2.35) 

Then,   [       ]. Therefore, eigenvalues of the fractional order system 

given by Eq. (2.20) are            )  The corresponding eigenvectors are      

     ) determined by Eq. (2.35). This means that the coordinate transformation matrix 

  given in Eq. (2.21) is the eigenvector matrix for the original fractional order equation 

and the diagonalized matrix   is the eigenvalue matrix. 

Also, we can find the poles(eigenvalues) by using the Laplace transform. With 

zero initial conditions, Eq. (2.20) can be described by 

       )   )    (2.36) 

For the s-domain, the characteristic equation is given by 

          )    (2.37) 

We can verify the stability if the poles are in the left half plane of complex s-domain. 

For some  , it is difficult to obtain the s values to satisfy the above equation. As such, 

we need a more convenient method to check the fractional order system. This can be 

done with another complex map given by the      transformation[16][17]. Then our 

characteristic equation is given by 
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         )    (2.38) 

   

 

 

 

 

 

 

 

 

 

Figure 2.1. Unstable Regions of s-domain and w-domain 

 

For checking the stability in the complex w-plane, we need to check the transformation 

of the stability boundary (     
 

 
         )  into the w-plane. This 

transformation equation can be given by 

          
 
 
   (2.39) 

This means that the imaginary axis in s-plane transforms to a wedge which consists of 

two lines with the corresponding arguments,    
 

 
 . And the right half plane in the s-

plane maps into the region with | |   

 
  in Fig. (2.1). Therefore, the stable region in the 

     

      ) 

    )     ) 

    )   
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complex w-plane can be checked if the arguments of poles are satisfied with the 

following inequality. 

 | |  
 

 
  (2.40) 

Also, this stability region has been examined with other researchers. The following 

theorem shows the stability of the fractional order system. 

 

Theorem 2.2[12][15][16][17][18]   

The fractional order system given in Eq. (2.21) is stable if and only if the 

following inequality is satisfied. 

 | |  
 

 
  (2.41) 

where       and      (     )).  

According to the argument   of eigenvalues and the fractional order of a system, 

the step responses can be summarized in Table 2.1[16][17].  

 

Table 2.1. Step Responses 

Argument   Stability and Time Response 

| |  
 

 
  Unstable and oscillatory 

 

 
  | |     Underdamped(Stable and oscillatory) 

| |     Overdamped(Stable ) 

   | |    Hyperdamped(Stable) 

| |    Ultradamped(or over-hyperdamped, Stable) 
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Example 2.1. Let us consider the following fractional system. 

    )  )    
 

 
      )     )     ) (2.42) 

By theorem 2.1, the state space representation of above system can be expressed as 

 
  

 
 
   [

    )

    )
]  *

  
   

+ [
    )

    )
]  *

 
 
+    ) (2.43) 

We assume that the initial conditions are given as     )     )  and     )   . To 

obtain the eigenvalues, we use the following characteristic equation. 

            )                   (2.44) 

Let       . Then we have the characteristic equation in terms of w. 

          (2.45) 

The solutions are obtained by      
  √  

 
. To check the stability of these poles, we 

examine if the arguments of the eigenvalues are satisfied with the stability 

inequality ((| 
   

|        )  (
 

 
        )* . Therefore, this fractional order 

system is stable. 

 

C. SOLUTION OF LINEAR FRACTIONAL ORDER SYSTEMS 

We want to find the solution of time-invariant linear fractional order systems 

with       given in Eq. (2.15). By the Laplace transform of Eq. (2,15), we have the 

following s-domain equation. 

    )        )               )      ) (2.46) 

By the inverse Laplace transform of Eq. (2.46), the solution of Eq. (2.15) in the time 

domain can be given by 
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   )           )

 )   ∫     )             ) )
 

  

      )  )   (2.47) 

where the Mittag-Leffler function, a generalization of the exponential function, is 

defined as 

 
    )   ∑

  

      )

 

   

         )   ) (2.48a) 

 
      )   ∑

  

      )

 

   

           )   ) (2.48b) 

We can see that     )        ) and     )        ). Also, we define the  -exponential 

function as 

  
        ∑  

    

       ))

 

   

            
 )      { }        )   ) (2.49) 

By using the  -exponential function, Eq. (2.47) can be described by 

 
   )           )

 )   ∫   
     )

 

  

    )   (2.50) 

Let us consider „  ‟ is equal to 0. In this case, Eq. (2.50) is expressed as 

 
   )       

 )   ∫   
     )

 

 

    )   (2.51) 

 

D. CONTROLLABILITY AND OBSERVABILITY 

Controllability 

From Eq. (2.48) and Eq. (2.49), we can express the  -exponential function given 

in Eq. (2.51) as 
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     )

     )   ∑
      ) ) 

      )

 

   

 ∑    )   
     ) ) 

      )
  

 

   

 (2.52) 

By Cayley-Hamilton Theorem[3],  n can be written as a linear combination of {I,  , …, 

 
n 1}. Also,  i  for i>n can be written as a linear combination of {I,  , …,  

n 1}. 

Therefore, the above equation can be expressed as[19] 

 
  
     )

 ∑      )  

   

   

 (2.53) 

where      )  is the sum of the coefficients related to the                   , 

respectively. Then the solution at   t  can be given as 

 
    )        

 )    )  ∫ ∑       )

   

   

  

 

      )   (2.54) 

By spreading the summation, we have 

 

  t )  E   t 
 ) (0 )  [B  B   

n 1
B] [

  
  
 

 n  

] (2.55) 

where    ∫       )
  
 

   )  .. From the above equation, we can state that the system 

inputs can drive any initial state  (0 ) to the arbitrary final state   t ) in finite time   

  t ) if      matrix [         ] has rank n. This means that the system is 

controllable if [         ] has rank n, which is the same as integer order 

systems. 
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Observability 

Observable canonical form can be described by 

    
 

 
     )         )       ) 

         )       ) 
(2.56) 

where the matrices         ,        ,         and         are given by 

 

   

[
 
 
 
 
       

       

       

     
         ]

 
 
 
 

 

   [    ] 

(2.57) 

If a general single-output system given by (A, B, H, D) can be transformed to the 

observer canonical form given in Eq. (2.56), it is “fully observable”[4]. By using a 

transformation of state, we can convert the state-space described by Eq. (2.16) to the 

observable canonical form. We can introduce the new vector which has the following 

transformation relationship. 

    )       ) (2.58) 

By substituting Eq. (2.58) into Eq. (2.16), we have 

     
 

 
     )         )      ) (2.59) 

By pre-multiplication of the inverse of T on both sides, we have 

    
 

 
     )            )         ) (2.60) 

Now, the coordinate transformation   should be satisfied with the following property. 

          (2.61) 

By the pre-multiplication of T on both sides, we have  
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        (2.62) 

With   [       ], the above equation can be expressed by 

 

 [       ]  [       ]

[
 
 
 
 
       

       

       

     
         ]

 
 
 
 

 (2.63) 

Then we have some relationships as 

        

            

  

              

(2.64) 

By Eq. (2.58) and Eq. (2.18), 

    )      )        )        ) (2.65) 

From the above equation,     [       ]    . Then we have the following 

equation. 

       

      

  

      

(2.66) 

Substituting Eq. (2.64) into Eq. (2.66) yields 

 

   [

H

H 

 

H 
n 1

]

  

[

 
 
 
 

] (2.67) 
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If [H H  H 
n 1]  is nonsingular, there exists the state transformation to make 

the original system the observable canonical form. Therefore, we have to check if 

[H H  H 
n 1]  has rank n for observability.  

Now, we want to have the discrete time representation of Eq. (2.42). We will try 

two approaches and show the numerical simulations for both approaches. 

 

E. DISCRETE-TIME SYSTEMS 

Approach I 

From Eq. (2.51), the solution has the following form at t=      

 
      )          

 )    )  ∫   
        )

    

 

    )   (2.68) 

And, the solution at t=   has the following form. 

 
    )        

 )    )  ∫   
      )

  

 

    )   (2.69) 

where                               . We assume that the sampling interval is 

fixed. Subtracting Eq. (2.69) from Eq. (2.68) leads to 

       )      )  (        
 )        

 ))    )

 ∫   
      )

  

 

    )   ∫   
        )

    

 

    )   
(2.70) 

The last term on the right hand side can be divided into two terms as 

∫   
        )

    

 

    )   ∫   
        )

  

 

    )   ∫   
        )

    

  

    )   (2.71) 

With Eq. (2.70) and Eq. (2.71), we have the following equation. 
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      )      )  (        
 )        

 ))    )

 ∫    
        )    

      )
  

 

)    )   ∫   
        )

    

  

    )   
(2.72) 

Now assume that the control input is constant during a sampling interval,   . Then we 

want to find the analytical solution to ∫   
        )    

  
    )  . The following derivative 

equation is given in[1][20]. 

  

  
           

 )               
 ) (2.73) 

Letting       and substituting it into Eq. (2.73), we have 

  

  
           

 )             
 ) (2.74) 

We can see that the right hand side of Eq. (2.74) is equal to     . Integrating both sides in 

Eq. (2.74) with respect to z yields 

 
∫ (

 

  
           

 )+   
 

 

 ∫            
 )  

 

 

 

           
 )|

 

 
 ∫            

 )  
 

 

 ∫   
    

 

 

 

∫   
    

 

 

            
 )             

 ) 

(2.75) 

By the change of variables, Eq. (2.75) becomes 

∫   
        )

    

  

    )           )
                 )

 )     )

              
 )     ) 

(2.76) 

By applying the above result to Eq. (2.72), we can obtain the following relationship. 
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       )      )  (        
 )        

 ))    )

 ∑∫    
        )    

      )
)

    

  

  

   

   

     )

              
 )     ) 

(2.77) 

Finally, we obtain the discrete-time representation. 

 
      )      )           )   

 )  ∑                 )

   

   

    )

     )    ) 

(2.78) 

where 

          )          
 )        

 ) (2.79) 

                  )

 (        )
                 )

 )

           )
                   )

 ))

 (      )
               )

 )

         )
                 )

 ))   

(2.80) 

     )               
 )  (2.81) 

 

Approach II 

This approach aims at eliminating the presence of initial values,     ), in the 

final discrete-time representation. From Eq. (2.69), we obtain the following equation. 
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    )        

 )  .    )  ∫   
      )

  

 

    )  / (2.82) 

Substituting above equation into Eq. (2.70) leads to 

       )          
 )      

 )      )

         
 )      

 )  ∫   
      )

  

 

    )  

 ∫   
        )

    

 

    )   

(2.83) 

By splitting the last term and combining it with the second term on the right, we have 

      )          
 )      

 )      )

 ∫ (  
        )          

 )      
 )    

      )
)

  

 

    )  

 ∫   
        )

    

  

    )   

(2.84) 

Then we change the continuous integral to the discrete-time summation. 

      )          
 )      

 )      )

 ∑∫ (  
        )

    

  

   

   

         
 )      

 )    
      ))        )

              
 )     ) 

(2.85) 

Finally, we have the following discrete-time representation. 

      )           )    )  ∑                 )

   

   

    )      )    ) (2.86) 
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where 

          )          
 )      

 )   (2.87) 

                 )

 (        )
                 )

 )

           )
                   )

 ))

         
 )      

 )  (      )
               )

 )

         )
                 )

 ))   

(2.88) 

     )               
 )  (2.89) 

Equation (2.86) is equivalent to Eq. (2.78). From both equations, we can observe that the 

fractional derivative has a non-local property because of the second term on the right 

hand side. 

 

F. NUMERICAL SIMULATION 

In this section, we want to compare the numerical solutions done by analytic 

solution, PECE(Predict, Evaluate, Correct, Evaluate) algorithm, and two discrete-time 

approaches to verify our discrete-time models developed in the previous section. The 

example is given by the first order linear differential equation. 

     )

  
     )     ) (2.90) 

where x(0) is given. We can change the above integer order system to the following 

fractional order system. 
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       )      ) 

   
 

 
       )       )     ) 

(2.91) 

where     )     ) and     )   . Eq. (2.91) can be represented as the matrix form. 

 D0
C

t

0 5
  t)     t)  Bu t) (2.92) 

where  

   *
0 1

 1 0
+    B  *

0

1
+ (2.93) 

Let     )    . And the control input is chosen as a step input, u(t)=1 with t>0.  

 

Analytic Solution 

Let us find the analytic solution. By taking the Laplace transform of Eq. (2.91), 

we have  

         )          )      ) 

        )       )  
 

 
 

(2.94a) 

(2.94b) 

Substituting     ) in Eq. (2.94a) into Eq. (2.94b) leads to 

 
    )  

   )   

   
 

 

 
 (2.95) 

By Eq. (2.94a), 

 
    )  

(     ))

   
      (2.96) 

The inverse Laplace transform leads to 
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     )         

    )              ) 
(2.97) 

 

PECE(Predict, Evaluate, Correct, Evaluate) Algorithm  

This algorithm developed by Diethelm, Ford, and Freed is widely used for 

numerical simulation of fractional order differential equation defined by the Caputo 

derivative[21][22]. For the explanation of the general case, let us consider the following 

fractional differential equation. 

    
 

 
    )         )) (2.98) 

where    )   
  
  )

         ⌈ ⌉. Let the simulation time be T. And the simulation 

interval is [0,T]. The grid is given by  

        (2.99) 

where             and h is the time interval,   
 

 
  And then, we want to obtain x(t) 

at time T. Now, we explain the procedure. 

Step 1). Predict the   
   ) at t=   

 
  
   )  ∑

  

  
 
  
  )

⌊ ⌋

   

 
  

     )
∑            )

   

   

 (2.100) 

where 

          )        )  (2.101) 

Step 2). Evaluate  (    
 ). 

Step 3). Then, correct with 
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    )  ∑
  

  
 
  
  )

⌊ ⌋

   

 
  

     )
(∑            )      

   

   

  (    
 )) 

   )      )   (          )) 

(2.102) 

where 

     {
    )            )         

      )         )          )           
       

 (2.103) 

Step 4). Re-evaluate       ) and save it as        ).  

After finishing steps 1 to 4, we increase the simulation time T, then repeat above steps. 

 

Numerical Results 

From the following results(Figs. (2.2) to (2.5)), we can observe that the solution 

by the PECE algorithm and the discrete-time solutions(approach I and approach II 

developed in the previous section) give us a good approximation of the analytic solution. 

In this case, the discrete-time solutions were found to have smaller error than the PECE 

algorithm. 
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Figure 2.2. Time History of    

 

Figure 2.3. Time History of Error in    from Analytical Solution 
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Figure 2.4. Time History of    

 

Figure 2.5. Time History of Error in    from Analytical Solution 
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CHAPTER III  

STABILITY ROBUSTNESS CRITERIA 

 

A. SENSITIVITY AND CONDITIONING  

The existence of uncertainties or parameter variations can change the eigenvalues 

of the system affecting stability. This forces us to consider stability robustness.  For the 

conventional integer order system, large amounts of research about stability robustness 

have been done. However, in the fractional order system, very few studies are available. 

The reason is because we cannot apply the Lyapunov stability theory, the major analysis 

tool for this stability area, to fractional order systems even if some results of it exist in 

references[23][24]. This makes it difficult to interpret the stability of fractional order 

systems and leads us to try to find a way of interpreting it in complex-domain. 

In this chapter, we want to draw some useful results about stability from the 

analogy between the integer order system and the fractional order system. 

 

Eigenvalue and Eigenvector Sensitivities 

First, we examine the right and left eigenvalue problem for the given non-

defective integer order linear system. Similarly, we can derive the right and left 

eigenvalue problem for fractional order systems. Then the analytic expressions for the 

eigenvalue and eigenvector derivatives with respect to some arbitrary parameter can be 

used for both linear systems. 

Let us consider a non-defective linear autonomous system given by 
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   ̇  )       ) (3.1) 

where    )     and         .  From above equation, the right and left eigenvalue 

problems can be expressed as[3] 

                
                   (3.2) 

with the biorthogonality conditions 

   
           

                     (3.3) 

where     is the Kronecker delta and    presents the eigenvalue with the corresponding 

right and left eigenvectors    and   . Note that if the eigenvalue is complex, the 

transpose should be changed to the Hermitian conjugate. By using Eq. (3.2) and Eq. 

(3.3), the right and left eigenvectors have the following relationship. 

   
                       (3.4) 

Similarly, we want to find the eigenvalue-eigenvector pairs for the fractional 

order system. Let us consider an n-dimensional non-defective linear fractional order 

system. 

     
 

 
    )       ) (3.5) 

where    )     and         . Now, we want to know the right and left eigenvalue 

problems of the above fractional order system. The solution form of the above equation 

can be given by    )        
 ). Substituting this form into Eq. (3.5) yields 

     
 

 
        

 ))          
 ) (3.6) 

By    
 

 
       

 ))        
 )  the above equation can be described by 

         
 )          

 ) (3.7) 
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Therefore, the right eigenvector is shown by 

       )               (3.8) 

From the above equation and the definition of the left eigenvector, the left 

eigenvector can be obtained by 

   
       )              (3.9) 

By taking the transpose on both sides, we have 

       )                (3.10) 

From Eq. (3.8) and Eq. (3.10), we can construct the eigenvalue problems for fractional 

order systems as 

                
                   (3.11) 

with the biorthogonoality conditions 

   
           

                     (3.12) 

As a result, we obtain the same eigenvalue problems as for the integer order systems. 

From these observations, we can readily extend the eigenvalue and eigenvector 

sensitivities formula used for integer order systems to fractional order systems. 

 

Theorem 3.1[3]. Eigenvalue and eigenvector sensitivities 

Partial derivatives of eigenvalues and eigenvectors of systems described by Eq. 

(3.1) with respect to some arbitrary parameter, , are given by 

    
  

   
 (

  

  
   

  

  
*               (3.13) 
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(3.14) 

From the previous observations, we can also use these formulas to find the eigenvalue 

and eigenvector sensitivity for fractional order systems given in Eq. (3.5). By using this 

eigenvalue sensitivity, a new robust stability measure was introduced in Reference [25]. 

 

Conditioning of the Eigenvalue Problem 

In this section, we want to find the upper bound of the variation of eigenvalues 

due to the perturbation in the system matrix for fractional order systems. As we did in 

the previous section, we can extend the existent theorem for integer order systems to for 

fractional order systems. 
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Theorem 3.2[3][26] 

Let us consider the integer order system given in Eq. (3.1) or the fractional order 

systems given in Eq. (3.5) with A which has the following eigenvalue and eigenvector 

matrix. We assume that B=I in Eq. (3.1). 

       {       }      [       ] (3.15) 

And, consider a perturbative matrix E. The eigenvalue and the corresponding 

eigenvector of a perturbed system matrix A+E are given by   and   with the normalized 

condition, ‖ ‖   , respectively. Then, the following inequality is satisfied. 

    
 

|    |  ‖ ‖   )         (3.16) 

where    )  ‖ ‖‖   ‖   is called the condition number which is widely used to 

represent the quantitative measure of ill-conditioning of the system. For the fractional 

order case, the proof as shown in the integer order case can be used and there is no 

difference between them so that we can apply the theorem to the fractional order system 

case. 

Also, this theorem can be interpreted as 

    
 

|     |  ‖ ‖   )         (3.17) 

From this theorem, it is observed that the condition number plays a big role for the upper 

bound on the eigenvalue variations due to the perturbation. Norm of the perturbative 

matrix cannot be chosen, but the condition number can be an adjustable design 

parameter if we make the original system closed-loop form by putting the feedback 

controller. Therefore, the condition number is an important measure for the eigenvalue 
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sensitivity. By the definition of the spectral norm, the condition number has the 

alternative form as 

 
   )  

    )

    )
 (3.18) 

where    and    are the maximum and minimum singular values of the modal matrix  .  

 This condition number has the following inequality property[27]. 

      )    (3.19) 

If the eigenvector matrix is an orthogonal(unitary) matrix, the condition number has the 

lower limit. If the eigenvector matrix is any rank-deficient matrix of  , the condition 

number reaches the upper limit[3]. From these observations, when we design the 

feedback controller with multiple inputs, we can conclude that we should make the 

closed-loop eigenvector matrix close to an orthogonal(unitary) matrix for the closed-

loop eigenvalues to be insensitive to perturbations. In other words, the condition number 

should be treated as the cost function to be minimized if we want to design the feedback 

controller for stability robustness. 

 

Measure of Robustness 

There are many kinds of definitions to measure the robustness of the linear 

integer order system.  Let us have the right and left eigenvectors described in Eq. (3.2) 

with B=I. It is well known that the sensitivity of each eigenvalue    depends on the 

magnitude of the condition number   [6][27]. 
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‖  ‖ 
‖  ‖ 

|  
   |

           (3.20) 

where     can be interpreted as the cosine of the angle between the right and left 

eigenvectors for real   . Furthermore, this condition number    has the following 

inequallity[6] [27]. 

    
 

       )  ‖ ‖ ‖ 
  ‖

 
 (3.21) 

Since the condition number    is greater than or equal to 1 and is less than     ),    for 

all j has the minimum value if and only if the eigenvector matrix is orthogonal(unitary). 

From Eq. (3.21), we can introduce two measures of robustness. 

    ‖ ‖     
 

   (3.22) 

where    [          ]  And, 

        ) (3.23) 

Now, we assume that the normalized right eigenvectors ‖  ‖ 
 1 for all j. This 

assumption can make the measures of robustness be the most simple and convenient 

expressions as possible. The left eigenvector matrix can be given by 

    [       ]      (3.24) 

      , which gives us   
     .  Then, the condition number defined in Eq. (3.20) 

can be expressed only in terms of the norm of the left eigenvectors. 

 
   

‖  ‖ 
‖  ‖ 

|  
   |

 ‖  ‖ 
           (3.25) 

From our assumption of the right eigenvector‟s normalization, we have 
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‖ ‖  √∑ ‖  ‖ 

  
           (3.26) 

And, from Eq. (3.24) and Eq. (3.25), we have 

 
‖   ‖

 
 ‖  ‖  √∑ ‖  ‖ 

  
    √∑   

  
    ‖ ‖    (3.27) 

Then another measure can be introduced by[6] 

         ‖   ‖
 
      ‖ ‖     ‖ ‖ ‖ 

  ‖
 
        ) (3.28) 

Note that all measures from    to     have the minimal value if and only if all condition 

number     , that is, if the eigenvector matrix   is orthogonal(unitary).  

We want to find the inequalities among all measures. The vector norm inequality 

is given by[28] 

 ‖ ‖  ‖ ‖  √ ‖ ‖  (3.29) 

where     . Then, we have ‖ ‖  ‖ ‖  √ ‖ ‖ , which gives us  

    √    √    (3.30) 

Pre-multiplication of √  leads us to 

 √            (3.31) 

And the matrix norm is given by[28] 

 ‖ ‖  ‖ ‖  √ ‖ ‖  

‖   ‖
 
 ‖   ‖

 
 √ ‖   ‖

 
 

(3.32) 

where        . Then we have ‖ ‖ ‖ 
  ‖

 
 ‖ ‖ ‖ 

  ‖
 
  ‖ ‖ ‖ 

  ‖
 
, which 

gives us 
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            (3.33) 

From Eq. (3.30), Eq. (3.31) and Eq. (3.33), we have 

                (3.34) 

 

Geometrical Stability Measures 

As mentioned previously, we can have the minimum condition number when the 

eigenvector matrix is orthogonal or unitary. From this fact, we can set up the desired 

unitary eigenvector matrix. Because our eigenvector matrix has some admissible space 

considered as the constraint, we try to make our eigenvector matrix lie as close as 

possible to the prescribed unitary eigenvector matrix. 

Suppose that we choose a desired unitary eigenvector matrix  ̂ and we have the 

achieved eigenvector matrix  . In order to obtain the distance between  ̂ and  , we can 

measure the angles between two eigenvectors selected individually from both 

eigenvector matrices. 

 
‖ ̂ 

   ‖  √  (     )
 
                (3.35) 

where    is the angle between    and  ̂ . Then we define the new measure as[6] 

 

        (∑(     )
 

 

   

)

 
 

        (3.36) 

When   is the unitary,    has the lower limit.  

We also introduce a new measure, where the sum of angles between eigenvectors 

should be as large as possible to be close to the unitary matrix. In other words, the sum 
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of the dot product between eigenvectors should be zero in case of the orthogonal or 

unitary matrix. Therefore, the new measure is given by 

 
   ∑ ∑ ‖  

   ‖

 

     

   

   

 (3.37) 

If we choose    as the cost function, the minimum value of it is zero when the 

eigenvector matrix is orthogonal or unitary. 

 

 

Figure 3.1. Distance between Poles and the Stability Lines 

 

Weighted Robust Stability Measures 

We still assume that the normalized right eigenvectors ‖  ‖ 
 1 for all j. There 

are two weighted measures of conditioning obtained by using     in Eq. (3.28) and    in 

Eq. (3.36)[6]. 
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     )  ‖    ‖
 
 ‖ ‖  (3.38) 

 

    )  (∑  
 (     )

 
 

   

)

 
 

(∑  
 

 

   

)

 
 

⁄  (3.39) 

where       {          } is a real diagonal weight matrix with               . The 

imaginary axis is the boundary line for the stability of integer order systems. Hence, if 

possible, the real part of the eigenvalue should be a large negative number for 

maximizing the stability margin. To weigh this property, we can choose   
     (   ) 

for the integer order system. However, for the fractional order system, the imaginary 

axis is not the boundary line for stability any more. We can put weights   
     in Fig 

(3.1) for the fractional order system. Let us examine how to obtain  . Assume that two 

complex conjugate eigenvalues are given by     )       )  and the fractional order of 

a system is given by  . Depending on the location of eigenvalues, we have two different 

  formulas.  

First case is when the eigenvalue is located in Region A or Region C in Fig (3.1). 

Let us assume that eigenvalues are given in Point a and Point b in Fig (3.1).  The 

stability lines can be described by 

         )      (3.40) 

where   
 

 
 . x and y are variables which represent     )  and     )  of the w-

complex domain, respectively. Now, we want to find the closest distance   between the 

location of the eigenvalue and the stability line. The closest distance between a 

point    ) and a line(         ) is well-known by 
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|       |

√     
 (3.41) 

Therefore,   can be obtained by 

 
  

|(   
 
  )    )      )|

√(   
 
  )

 

  

 (3.42) 

By      )         ) , we obtain the closest distance as 

   |(   
 

 
 )    )  (   

 

 
 )     )| (3.43) 

Now, we consider the second case which has the eigenvalues in Region B. So we 

assume that the eigenvalues are given in Point b and Point c. The closest distance   

between the location of the eigenvalue and zero point can be obtained by 

   √    )      )  (3.44) 

In summary,  

  {
|(   

 

 
 )    )  (   

 

 
 )     )|                           

√    )      )               
 (3.45) 

 

B. STABILITY ROBUSTNESS CRITERIA 

Problem Formulation 

Let us consider the following equation. 

     )

  
     )         )) (3.46) 

where        is a time-invariant stable matrix and  (     ))  is a time-varying 

nonlinear vector function with      )    for   . We can consider  (     ))  as the 
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perturbation in the system. Even if we don‟t know it exactly, it might be possible to have 

an estimate of some bound on the perturbation. Therefore, we want to investigate this 

bound on the perturbation to make the system still stable. For the integer order system, 

the following theorem shows it. This bound is conservative, meaning that there are many 

methods showing better results. But the following theorem can be a good starting point 

to examine the bound on perturbation for fractional order systems. 

 

Theorem 3.3[29] 

The system described in Eq. (3.46) is stable if the matrix A is diagonalizable and 

 ‖     )  )‖

‖   )‖
    

 

   )
 (3.47) 

where      (  (   )))       (   )) represents the real part of eigenvalues of A. 

   )  ‖ ‖ ‖ 
  ‖   is the condition number where   is the similarity transformation 

matrix which diagonalizes matrix A. 

This theorem can be proved by using the Lyapunov method or transition matrix 

approach. From this theorem, we can extract the bound of linear perturbation to 

guarantee the stability of the following system. 

     )

  
     )     )   ) (3.48) 

 

Corollary 3.1[3][29] 

The above system is stable if  
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‖   )‖  

   [   {    )}]

   )
         (3.49) 

Now, we want to know if we have a similar result for the fractional order system.  

 

Fractional Order System 

To show the stability robustness criteria for the fractional order system, we will 

use the transition matrix approach as shown in reference[29] because it is difficult to 

find the Lyapunov approach for the fractional order system. To achieve this objective, 

we have to investigate the Mittag-Leffler function which plays an important role in the 

solution of fractional order systems. In the exponential function, a special case of the 

Mittage-Leffler function, we have 

 ‖     )‖  ‖     )‖  (3.50) 

where       {          }  all            has the negative real part    {  }  

           , and      [  {  }]               But, the Mittag-Leffler 

function does not hold this property. We consider three cases to study the norm of the 

multivariable Mittag-Leffler function numerically. Assume that       {          } 

and       for the parameter of Mittag-Leffler function. 

1) Real parts of the Mittag-Leffler function remain the same: We choose   

    {                         }. So,   {       )}            . 

2) Norms of the Mittag-Leffler function are same: We choose          

          
  

  
  

 

 
        . So, |  |           . 
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3) Case 2 with two different scales: We choose                  )   

                   
  

  
  

 

 
        .                  and    

                 . 

 

 

Figure 3.2. Norm of Mittag-Leffler Function, Case I 
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Figure 3.3. Norm of Mittag-Leffler Function, Case II 

 

Figure 3.4. Norm of Mittag-Leffler Function, Case III 
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From Fig. (3.2), we can verify that the Mittag-Leffler function does not have the same 

norm even if the real parts of              are the same. As the norm of the imaginary 

part of    increases, the norm of the Mittag-Leffler function tends to decrease. From Fig. 

(3.3), the Mittag-Leffler function does not have the same norm in a transition time even 

if |  |           remain the same. After a transition time, their norms seem to converge 

to the same value. From Fig. (3.4), the norm of the Mittag-Leffler function tends to have 

the small value when the norm of    has the smaller value. But this is not always true. 

From these observations, we cannot have the following equation except for the special 

case. 

 ‖      )‖ 
 ‖      )‖ 

 (3.51) 

where       {          }  all            and   is one of            to make 

‖      )‖ 
 maximum. So we need a useful relation about the norm of Mittag-Leffler 

function. 

 

Theorem 3.4[1] 

If    ,   is an arbitrary real number,   is such that   
 

      {    } and   

is a real constant, then 

 
|      )|  

 

  | |
    |     )|   )  | |    (3.52) 

From the above theorem, we can introduce the following corollary. 
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Corollary 3.2 

If    ,   is an arbitrary real number,        is the diagonal matrix,   is such 

that   
 

      {    }, then 

 
‖      )‖ 

 
    

   
    |      )|   )           (3.53) 

where       {          } and      [|   |]. And         [  ] where    can be 

given by 

 
‖       )‖ 

 
  

  |   |
         (3.54) 

Proof 

Since   is the diagonal matrix, we have 

 ‖      )‖ 
 ‖    {       )        )          )}‖ 

     ,‖       )‖ 
 ‖       )‖ 

   ‖       )‖ 
- 

(3.55) 

By using Theorem 3.4, the norm of each Mittag-Leffler function has the inequality 

described in Eq. (3.54). Thus, if we take the      [|   |] and         [  ], we 

have 

 
‖      )‖ 

 
    

   
 (3.56) 

 

Theorem 3.5 

We consider the system described by the following fractional differential 

equations 
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    )      )         )) (3.57) 

where       and   is a time-invariant stable matrix and  (     )) is a time-varying 

nonlinear vector function with      )    for   . The system is stable if the matrix A is 

diagonalizable and  

 ‖     )  )‖

‖   )‖
      

  

   )    
 (3.58) 

where A=       ,       {          } ,      [|   |] ,    )  ‖ ‖ ‖ 
  ‖  and 

        [  ].    satisfies  

‖            )
 )‖

 
 

  

  |   |     ) 
                     (3.59) 

Proof 

Reference [30] gives us an important idea to have the above theorem. By using 

the Laplace transform of Eq. (3.37) and taking the inverse Laplace transform of it, the 

solution is given by 

   )           )
 )    

 )  ∫     )             ) )
 

  

     )  )   (3.60) 

Taking the Euclidean norms of both sides, we obtain 

 ‖   )‖  ‖         )
 )‖ ‖    

 )‖

 ∫ ‖    )             ) )‖
 

 

  

‖     )  )‖   
(3.61) 

Since we have ‖     )  )‖   ‖   )‖ from the assumption,  
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 ‖   )‖  ‖         )
 )‖ ‖    

 )‖

 ∫ ‖    )             ) )‖
 

 

  

 ‖   )‖   
(3.62) 

There is an inequality relationship between      
 ) and        

 ). By the definition of 

Mittag-Leffler function, each function can be expressed as 

 
     

 )  ∑
    ) 

      )

 

   

          
 )  ∑

    ) 

      )

 

   

 (3.63) 

where    )  is the gamma function,   { }    for convergence. The relationship 

between the beta function and the gamma function is given by 

 
     )  

   )   )

     )
 (3.64) 

where   { }          { }   . Then we can obtain the following inequality[31] 

       )

      )
 

          )

     )
 

       )

     )
    ) (3.65) 

Taking Eq. (3.63) and Eq. (3.65) into account gives 

      
 )     )       

 ) (3.66) 

Thus, Eq. (3.62) can be given by 

 ‖   )‖     )‖           )
 )‖

 
‖    

 )‖

 ∫ ‖    )             ) )‖
 

 

  

 ‖   )‖   
(3.67) 

Since A is diagonalizable from the assumption, we have 

            )
 )              )

 )    (3.68) 
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where         and                  )  Taking the norm of both sides of Eq. 

(3.68) gives us 

 ‖           )
 )‖

 
 ‖ ‖ ‖ 

  ‖ ‖           )
 )‖

 

    )‖           )
 )‖

 
 

(3.69) 

By using Corollary 3.2, Eq. (3.69) can be given by 

 
‖           )

 )‖
 
    )

    

        ) 
 (3.70) 

Combination of Eq. (3.70) and Eq. (3.67) yields 

 
‖   )‖  

   )   )    

        ) 
‖    

 )‖

    )∫     )   
    

       ) 
 ‖   )‖  

 

  

 

(3.71) 

 

Mahmudov and Musaev’s Inequality[32][33]  

Let x(t), p(t) and q(t) be nonnegative continuous functions defined on  . w(t,s) be 

a continuous and nonnegative function on the rectangle  :         and 

nondecreasing in t for each    . If  

 
   )     )     )∫      )   )  

 

 

     (3.72) 

then 

 
   )     )     )∫      )   )   .∫      )   )  

 

 

/  
 

 

     (3.73) 
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To apply the above inequality to Eq. (3.71), let    )  ‖   )‖ ,    )   ,     )  

   )   )    

        ) 
‖    

 )‖,           )     )     
    )   

       ) 
. Then, 

‖   )‖

 
   )   )    

        ) 
‖    

 )‖

 ∫
    )   

        ) )

 

         ) )
   .∫    )     

    )   

       ) 
  

 

 

/  
 

  

 

(3.74) 

where      )      
    )‖    

 )‖. Integrating the inside of the exponential function 

in Eq. (3.74) yields 

  
∫    )     

    )   

       ) 
  

 

 

 
   )     

  
           ) ) (3.75) 

 

 

By using Eq. (3.74) and Eq. (3.75), we have 

 
‖   )‖  

   )   )    

        ) 
‖    

 )‖

 ∫
    )   

.        ) )
  

      
  /

 

         ) )
  

 

  

 
(3.76) 

We can apply the same integral technique in reference [30] to integrate Eq. (3.76). 

 
∫

    )   

.        ) )
  

   )     
  /

 

         ) )
  

 

  

 
 

 
 ∫

    )   

.        ) )
  

   )     
  /

 

         ) )
  

 
 
     )

  

 (3.77) 
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    )   

.        ) )
  

   )     
  /

 

         ) )
  

 

 
 
     )

 
 

Now, we assume  

    )     

  
   (3.78) 

Note that this assumption is going to be an important inequality condition explained 

later. 

Since     and     )       )  for      
 

 
     )  with the above 

assumption, the first integral on the right hand side of Eq. (3.77) becomes 

 
∫

    )   

.        ) )
  

   )     
  /

 

         ) )
  

 
 
     )

  

 ∫
     )

   

.         ) )
  

   )     
  /

 

         ) )
  

 
 
     )

  

 

(3.79) 

Substituting        into Eq. (3.79), the right integral term in Eq. (3.79) becomes 

 
∫

    

.      )
  

   )     
  /

 

      )
  

 
 
     )

 

 ∫
      

.      )
  

   )     
  /

  

 
 
     )

 

 

(3.80) 

Similarly, since     and     )       ) for  
 
     )      with the inequality 

in Eq. (3.78), we obtain 
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∫

    )   

.        ) )
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.        ) )
  

   )     
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(3.81) 

Thus, Eq. (3.76) becomes 

 
‖   )‖  

   )   )    

        ) 
‖    
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Then, 
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Integral of the second term on the right hand side of Eq. (3.83) is given by 

∫
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Substituting Eq. (3.84) and K into Eq. (3.83) yields 
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 (3.85) 
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The first function on the right hand side is monotonously decreasing function to zero. 

And, the sum of the second and third functions is greater than or equal to zero when 

    , but it increases monotonously to the finite value,      )      
    )‖ (  

 )‖ 

       )     )
 as t 

increases. This means that the upper bound of ‖   )‖ is not the infinite value in       

 , which implies that the system is stable. Therefore, this fractional order system is 

stable if our assumption described in Eq. (3.78) is valid. This implies that the fractional 

order system is stable if the norm of the perturbation is less than the upper bound given 

by 

 
   

 
 

  

   )    
 (3.86) 

 

Corollary 3.3 

Let us consider the linear perturbations of        )) . Then we can write the 

fractional order system given in Eq. (3.57) as 

   
 

  
    )      )     )   ) (3.87) 

The above system is stable if the following condition is satisfied.  

 ‖   )‖   
 
 (3.88) 

Proof 

By using the norm inequality[29],  



 68 

‖   )   )‖  ‖   )‖ ‖   )‖  ‖   )‖‖   )‖  (√∑|     )|
 

 

     

,‖   )‖ (3.89) 

where      ) is the     )   element of    ). From Theorem 3.5, we obtain directly 

 ‖   )‖  ‖   )‖   
 

   |     )|  
 
 

 
 (3.90) 

 

Example 3.1. Let us consider that the fractional order   is 0.5 and the matrix A in Eq. 

(3.87) is given by 

   *
  
   

+ (3.91) 

From Corollary 3.3, the upper bound  
 
 is given by 

 
 
 
 

    

   )    
 (3.92) 

By the following procedure, we can obtain the variables in Eq. (3.92). 

1) By the similarity transformation, A=     , the eigenvalue and the eigenvector 

matrices can be obtained. 

 
  [

            
                            

] (3.93a) 

 
  [

            
            

] (3.93b) 

2) By the definition of the condition number, 

    )  ‖ ‖‖   ‖         (3.94) 

3) By the definition of   described in Theorem 3.5,  

     {|            | |            |}   . 
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4) By trial and error numerically, we obtain          from Fig. (3.5) and the 

following Eq. (3.95). 

 
‖                     )    )‖

 
 

   

      
 (3.95) 

Therefore, from Eq. (3.92), we have  
 
       . From Corollary 3.3, the linear 

perturbations have the following upper bounds.  

 ‖   )‖   
 
        and |     )|  

  

 
         (3.96) 

By Fig. (3.6), the above result is verified because all eigenvalues do not cross the 

stability lines.  

 

 

Figure. 3.5. Norms of                      )    ) and    

      
 

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

Time(s)

N
o
rm

 

 

E
0.5,0.5

((0.50.8660j)t0.5)

2.4/(1+t0.5)



 70 

 

Figure 3.6. Locations of Eigenvalues and the Stability Lines 

 

Bilinear Systems 

Reference [29] showed the stability region of bilinear systems for integer order 

systems, which gives us the useful application of obtaining the stability region of the 

satellite dynamics. Similarly, we will consider bilinear systems governed by the 

fractional order derivative. Then the stability region of it will be achieved. Let us 

consider the following bilinear system. 

     )

  
     )  ∑  

 

   

     )      ) (3.97) 

where   )  [    )     )       )]     . If we design the controller by using the 

state feedback form as    )      ), the above system can be given by 
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     )

  
      )   )  ∑  

 

   

(  
    ))    ) (3.98) 

where   [    )     )       )]      .  

 

Corollary 3.4[29] 

The stability region of the above system near the origin is given by 

 ‖   )‖  
 

 ∑ ‖  ‖ 
  

   )
 
 

 (3.99) 

where   is defined in Eq. (3.47) with        and    ∑      
  

    denoting the     

row of     by    
 . 

 

Let us consider the fractional order state feedback given by    )       )  

    
 

  
    ). For the simplicity, we choose      . Letting    )    

   
  
    ) and using 

the technique to make the state-space representation for fractional order system in 

previous chapter, the state-space representation can be expressed by 

 
  

   
  
 [

   )

   )
]  [

  
        

] [
   )

   )
]

 ∑[   ]

 

   

.[
   

   
]
 

[
   )

   )
]/ [

   )

   )
] 

(3.100) 
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where     presents the     row of             . Assuming that   [
  

        
] is 

asymptotically stable, we consider the region of stability around the stationary point 

   )  [
   )

   )
]   . Then, we rewrite Eq. (3.100) as 

   
   

  
    )      )   (   )) (3.101) 

where 

 

 (   ))  
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 (3.102) 

denoting the     row of     by    
 . Therefore, 

‖ (   ))‖
 
 ∑|     |
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+ ‖   )‖  (3.103) 

Then we obtain 

 
‖ (   ))‖

‖   )‖
 (∑‖  ‖ 

 

 

   

+

 
 

‖   )‖ (3.104) 

From Theorem 3.5, we can obtain the sufficient condition for stability as 

 

(∑‖  ‖ 
 

 

   

+

 
 

‖   )‖   
 
 (3.105) 

 

Corollary 3.5 

The stability region of the above system near the origin is given by 
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 (3.106) 

 

 Spacecraft Dynamics 

Euler‟s rotational equations of motion for a cylindrical spacecraft are given by 

choosing the body coordinate system to coincide with the principal axes of the spacecraft 

as[4][29] 

    

  
 

      )

  
     

  

  
 (3.107a) 

    

  
 

      )

  
     

  

  
 (3.107b) 

    

  
 

  

  
 (3.107c) 

where            is the angular velocity and            is the applied torque and 

           is the moment of inertia with respect to     principal axis. 

 

Corollary 3.6 

 By using the negative state feedback form,     )         )     ) , the 

stability region of Eq. (3.91) is given by[29]  

 
   

    
    

 )
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 (3.108) 

Let us consider the fractional order feedback. 

    )        )      
   

  
    ) (3.109) 
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where    )  [      ]  and    )  [      ]
 . By letting     )  

  
   

  
     )        , we obtain the closed-loop dynamics as 
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where 

    )  [            ]  (3.111) 
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Then we can obtain the characteristic equations to obtain the eigenvalues of A. 

 
   

   

  
  

   

  
           (3.115) 

Thus, we obtain six eigenvalues 
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 (3.116) 

All eigenvalues of matrix A should satisfy the stability condition. 
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           (3.117) 

 

Corollary 3.7 

The stability region of Eq. (3.110) around the origin is given by 
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CHAPTER IV 

ROBUST EIGENSTRUCTURE ASSIGNMENT FOR THE FRACTIONAL 

ORDER SYSTEM 

 

A. PROBLEM STATEMENT 

Let us consider the following fractional order system. 

    
 

 
    )      )      ) (4.1) 

where        and        are the time-invariant matrices with full rank. Input is 

given as the state feedback control form 

    )      )     ) (4.2) 

where        is a constant gain matrix. Now, the system has the following closed-

loop form. 

    
 

 
    )       )   )      ) (4.3) 

In this form, our objective is as follows. 

1) Pole Assignment: Gain matrix F should consist of only real numbers and should 

be chosen to put the closed-loop eigenvalues of the fractional order system into 

the desired specific places. 

2) Robustness: Assigned poles are as insensitive as possible to the perturbations in 

A+BF. 

To achieve the robustness, we use some robust stability measures to represent the 

eigenvalue sensitivity such as the condition number of the closed loop eigenvector 

matrix mentioned previously, and try to minimize it. Although we have a fractional order 
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system, we can still use the following important facts obtained from previous research 

for the integer order system: 

1) A gain solution F exists if and only if the A, B pair is completely 

controllable[6][34]. If the A, B pair is not completely controllable, a solution F 

exists if and only if the closed-loop eigenvalues contains the eigenvalue set of all 

uncontrollable modes of (A,B)[6]. 

2) F can be chosen to be a real matrix if complex eigenvalues are complex-

conjugate pairs and the corresponding eigenvectors are also complex-conjugate 

pairs[34]. 

3) If A+BF is non-defective, it can be diagonalized. This means that it has n linearly 

independent eigenvectors. 

4) According to the dimension of the control input, a solution F can be divided into 

three cases[6]: 

a) Single input    ) : a solution F is unique, if it exists. The condition 

number cannot be adjusted. 

b) Multiple inputs      ) : multiple solutions may exist and a specific 

solution can be obtained when we have enough additional specific conditions 

imposed. 

c) Multiple inputs    ): A, B pair is always completely controllable so that 

solution F always exists. We can find the orthogonal(unitary) eigenvectors set 

which has the lower limit of the condition number.  

From these observations, we consider the case of multiple inputs.  
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Now, let us consider the closed loop eigenvalue problem from Eq. (4.3). 

      )     (4.4) 

where        {          } are the assigned eigenvalues. First, we want to find the 

explicit form of the feedback gain matrix F and the admissible space of a nonsingular 

eigenvector matrix   satisfying the above equation. Then, we will try to minimize the 

robust stability measure defined by the condition number. The following theorem and 

corollary will give us the explicit form of the gain matrix F and an admissible 

eigenvector matrix  . 

 

Theorem 4.1[6] 

Let us assume that   and   are given as in Eq. (4.4). Then there exists a 

feedback gain matrix F if and only if 

   
       )    (4.5) 

where 

   [    ] *
 
 
+ (4.6) 

with   [    ] orthogonal and Z nonsingular. Then, matrix F is explicitly given by 

        
         ) (4.7) 

Proof 

From Eq. (4.4), we have 

            (4.8) 

From the assumption of full rank of a matrix B, B can be decomposed into Eq. (4.6). 

Factorization of matrix B can be obtained by singular value decomposition(SVD) or QR 
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decomposition[3][6]. By the pre-multiplication by    on both sides, we obtain two 

equations 

      
         ) (4.9a) 

     
         ) (4.9b) 

Since Z is invertible, we can obtain Eq. (4.7) from Eq. (4.9a). Therefore, if we have the 

desired eigenvalue set and the corresponding eigenvector matrix  , we can easily obtain 

the feedback gain matrix F. Now, we need to know how to find the eigenvector matrix 

 . The following corollary will give us the corresponding admissible space of each 

eigenvector, which allows us to parameterize the eigenvector matrix  . 

 

Corollary 4.1[6] 

From Eq. (4.9b), the eigenvector    of A+BF corresponding to    must belong to 

the following null space of   
 (     ). 

        (  
 (     ))            (4.10) 

Proof 

From Eq. (4.9b), we can directly obtain the following equation. 

   
 (     )        (4.11) 

This means that    is the null space of   
 (     ). If it is completely controllable, the 

dimension of    is m. This equation tells us what form eigenvector    should take. Null 

space of   
 (     ) can be obtained by singular value decomposition(SVD) or QR 
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decomposition[3][6]. Either decomposition gives us the orthonormal vectors which span 

the null space of   
 (     )  Hence, each eigenvector    can be described by 

         (4.12) 

where  

    [     ]              )                ) (4.13) 

 
   [

  

 
  

]              ) (4.14) 

Each            represents one of orthonormal basis vectors which span the null 

space of   
 (     ) in Eq. (4.11) and    describes the coordinate matrix with arbitrary 

numbers,           . If the eigenvalue    is complex(or real), the eigenvector is also 

complex(or real),        (          ) . Hence, the corresponding orthonormal 

basis vectors and the coordinate matrix also differ depending on whether the eigenvalue 

is real or complex. With this parameterization, eigenvector matrix   can be described by 

   [       ]     (4.15) 

where 

   [       ] (4.16) 

 

  [

     
     
    
     

] (4.17) 

Now,   can be parameterized with              as 

    (            ) (4.18) 
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Then, the cost function for the robust stability measure can be expressed in terms of 

             .  

    
 

  ( (            )) (4.19) 

By using this parameterization and the above cost function, R. Byers and S. G. Nash 

found a numerical solution[34]. However, they mentioned that this parameterization has 

some problems. The condition number has the property of     )       ) for any 

       . This means that this optimization problem does not have a unique 

solution, which makes the Hessian of    
   )  singular at minimum, reducing the 

performance of the optimization algorithms[34]. Therefore, Byers and Nash propose the 

following ways to eliminate this property: 

1) ‖ ‖   : This is a nonlinear constraint making it difficult to handle 

computationally. 

2) Alternative objective function: 

 
    )  ‖ ‖ ‖ 

  ‖  
 

 
 ‖ ‖ 

  ‖   ‖ 
 ) (4.20) 

When the cost function in Eq. (4.20) is optimal, a solution   minimizes both 

cost functions.  

To solve this scaling ambiguity, we use a normalized eigenvector by using ‖  ‖ 
 

                   . In Reference[6], it is shown that by the assumption of  

normalizing the right eigenvectors, it is convenient to derive the measures of robustness 

as shown in the previous chapter.  
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In summary, if we use the normalized right eigenvectors, we can avoid the 

scaling ambiguity and obtain the convenient measures of robustness as a cost function. 

However, we are led to a problem with the nonlinear constraints. How can we 

accomplish our goals without an eigenvector norm nonlinear constraint? To answer this 

question, we propose the angle parameterization. To use an angle parameterization, we 

need to understand the concept of n-dimensional rigid rotation method developed by 

Mortari[5]. 

 

B. ROTATION METHOD 

N-dimensional Rigid Rotation 

We know that the rotation in 3-dimensional space is performed about an axis, 1-

dimensional subspace. If we extend this concept to n-dimensions, the rigid rotation in the 

n-dimensional space is performed about an (n-2)-dimensional subspace. And the rotation 

is performed on the plane of rotation which has a dimension of 2. The rotation matrix in 

the n-dimensional space can be expressed as[5] 

      )            )        
      (4.21) 

where   [    ]       is the plane of rotation described by two orthonormal 

vectors. These vectors are on the plane of rotation with the rotation angle,   .    

*
   
  

+ is the symplectic matrix. And the rotation matrix is orthogonal. 

      )      )       )     )     (4.22) 

This orthogonal property is easily proved by substitution of Eq. (4.21). 
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Theorem 4.2[5] 

 The rotation matrix defined in Eq. (4.21) performs a rigid rotation in the n-

dimensional space. 

Proof   

 See Reference [5]. 

 

Let us examine the n-dimensional rotation more. We assume that   is an     

proper orthogonal matrix. 

   [       ] (4.23) 

Then we can perform any rotation on the plane defined as 

   [ ̂  ̂ ]  [    ]                   (4.24) 

Also, this rotation is performed about an     ) dimension subspace defined as 

   [         ]

 [                       ] 
(4.25) 

where i and j are defined in Eq. (4.24) and A        ) is the matrix which removed the 

   and    columns from C matrix. Then we can define the rotation matrix R by using Eq. 

(4.21). From the proof of Theorem 4.2 with Eq. (4.22) to Eq. (4.24), we have the 

following equations[5]. 

   
     

      )              ) (4.26a) 

            )      )      (4.26b) 
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where              are arbitrary vectors. First equation explains the rotation and the 

second one tells about the rigidity. From Eq. (4.26a) and Eq. (4.26b), we can have the 

following propositions. 

 

Proposition 4.1 

 If an arbitrary vector   is defined in the subspace of matrix P in Eq. (4.24),   still 

does not have any column components defined in matrix A after performing the rotation 

defined by      ).  

Proof 

 An arbitrary vector   can be expressed as 

     ̂    ̂  (4.27) 

where   and   are arbitrary real numbers. Since   
  ̂    

  ̂       defined in Eq. 

(4.25), we have 

   
     

    ̂    ̂ )                ) (4.28) 

After performing the rotation with      ), we have 

   
      )    

      )   ̂    ̂ )             ) (4.29) 

From Eq. (4.26a), Eq. (4.28) and Eq. (4.29) should be the same. Therefore, Eq. (4.29) 

should be zero. This means that   still does not have any column vectors defined in 

matrix A after performing the rotation. 
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Proposition 4.2 

The rotation matrix defined in Eq. (4.21) preserves the length of any vector   

during the rotation. 

Proof 

 An arbitrary vector is chosen as       . This is the special case     in Eq. 

(4.26b). After the rotation in Eq. (4.21), the vector        can be given by 

        )  (4.30) 

By the definition of the norm and the property in Eq. (4.22), 

 ‖ ‖             )      )  ‖ ‖ (4.31) 

 

Theorem 4.3 

 Assume that we have an n-dimensional real Euclidean space. The column space 

of an orthogonal matrix C given by Eq. (4.23) can be described by 

           {          } (4.32) 

Then, a typical vector in Col C can be written by either way  

 
  ∑     

 

   

 (4.33) 

 
   ∏       )

   

   

   (4.34) 

where           )is an arbitrary real coefficient and   is an arbitrary real coefficient. 

The rotation matrix        ) is given by Eq. (4.21).    is the rotation angle and    is the 

plane of rotation which is defined by 
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    [    ] (4.35a) 

    [       )     ] (4.35b) 

  

 
   [∏       )  

   

   

     ] (4.35c) 

Proof 

 Let us consider the orthogonal matrix C given in Eq. (4.23). Then we can express 

an arbitrary vector in Col C formed by the linear combination of the columns of C, 

which leads us to have Eq. (4.33). Alternatively, we can use a rotation concept. First, we 

choose the first two columns from the matrix C. Then the plane of rotation    can be 

given in Eq. (4.35a). If we have the rotation angle    with respect to   , the rotation 

matrix        )  can be given by Eq. (4.21). Thus, this rotation expression can be given 

by 

           )   (4.36) 

By Propositions 4.1 and 4.2, Eq. (4.36) does not have any components in         

       ) and the length of   is unity. Therefore, if we put a scaling real number   on 

the right side of Eq. (4.36), the vector   can be an arbitrary vector in the whole space 

spanned by    and   . Now, we can choose the second plane of rotation as Eq. (4.35b) 

since       . The rotation angle    is given with respect to  . The rotation matrix 

       )  can be given by Eq. (4.21). Thus, this second rotation expression can be 

described by 
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         )  ∏       )  

 

   

 (4.37) 

By Propositions 4.1 and 4.2,   does not have any components in              ) 

and the length of   has unity. Therefore, if we put a scaling real number   on the right 

side of Eq. (4.37), the vector   can be an arbitrary vector in the whole space spanned by 

  ,    and   . From these observations, we can extend this procedure to the (n-1) step. 

Then we obtain the plane of rotation as Eq. (4.35c) for an arbitrary k and a typical vector 

in Col C can be written by Eq. (4.33).  

 If the matrix is not square but rectangular, the following corollary can be used. 

 

Corollary 4.2 

 In an n-dimensional real Euclidean space, the column space of an        ) 

matrix C can be described by 

           {          } (4.38) 

where each            is an orthonormal vector. Then a typical vector in Col C can 

be written by either way  

 
  ∑     

 

   

 (4.39) 

 
   ∏        )

   

   

   (4.40) 

We use the same variables shown in Theorem 4.3. Equation (4.39) is completed in the 

similar manner of Theorem 4.3. To perform an n-dimensional rotation, we need n 
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orthonormal vectors, but we have only m orthonormal vectors. But we can add deficient 

(n-m) orthonormal vectors to       by using the null space of    to make     

orthogonal matrix which columns are used for the rotation axes because total n 

dimensional axes are required to perform an n-dimensional rotation about (n-2) axes 

with the plane of rotation. Although this is required theoretically, the actual computation 

to obtain the null space of    is not needed because we can perform the rotation if we 

choose any two axes in       for the plane of rotation in Eq. (4.21). Note that two 

orthonormal axes for the plane of rotation should be selected only from      .  

Therefore, we need only (m-1) rotations to express a typical vector in       described in 

Eq. (4.38). The proof is almost the same with one in Theorem 4.3. 

With Theorem 4.3 and Corollary 4.2, we can find the angle parameterization for 

expressing the normalized eigenvector    in the admissible eigenvector space given by 

Eq. (4.10). 

 

Angle Representation of Eigenvector 

As the previous rotation matrix in Eq. (4.21) has shown, it contains only real 

numbers. As mentioned previously, if the eigenvalue is a complex number, the 

corresponding eigenvector has complex numbers. Thus, we have to consider how the 

rotation matrix can be defined in the complex space, which leads us to consider the real 

eigenvector space and the complex eigenvector space differently. First, let us examine 

the real eigenvector space. 
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Angle Representation in the Real Space 

From Corollary 4.1, each eigenvector can be expressed by Eq. (4.12) and it 

becomes one column of the eigenvector matrix. This means that each eigenvector is a 

normalized vector in the column space of    [ ̂   ̂ ]       given in Eq. 

(4.12). From Corollary 4.2, we have two methods to express each eigenvector. Equation 

(4.39) explains the concept of the previous parameterization given in Eq. (4.12), while 

Eq. (4.40) with a scaling coefficient     gives us the fundamental idea of our proposed 

angle parameterization. 

 

Figure 4.1. Equality between Two Parameterizations 
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Let us consider a 3-dimensional case to explain our concept of the angle 

representation easily. In order to express each eigenvector, previous parameterization in 

Eq. (4.12) requires three coordinates with three given orthonormal vectors. Since we 

need a normalized eigenvector, the summation of coordinates‟ squares should be one. So 

we can express each normalized eigenvector by using previous parameterization 

described in Eq. (4.12) as follows 

       ̂     ̂     ̂  (4.41) 

with 

 √   )     )     )    (4.42) 

This nonlinear constraint makes the numerical optimization to minimize the measure of 

robustness more difficult. However, the angle representation of eigenvector can avoid 

this undesired constraint. By using Eq. (4.34), the eigenvector can be given by 

 
          )       ) ̂  (4.43) 

where  

    [ ̂  ̂ ] (4.44a) 

    [  
   ̂ ]   

         ) ̂  (4.44b) 

So it needs only two parameters(two angles) for a 3-dimensional real space case. Figure 

(4.1) explains this procedure well. If we consider an n-dimensional real space case, we 

need (n-1) angle parameters. On the other hand, the previous parameterization needs n 

parameters with one length constraint.  

As shown in Eq. (4.44b), the plane of rotation    has a vector   
  which depends 

on the first rotation matrix        ) . This means that the plane of rotation can be 
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variable, which complicates the parameterization. In order to make the plane of rotation 

invariant and simple, we want to find an alternative way to define the plane of rotation. 

In the following section, we will explore this idea. 

 

 

Figure 4.2. Rotation with the First Planes of Rotation 

 

 

Figure 4.3. Rotation with the Alternative Planes of Rotation 
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How to Choose a Plane of Rotation? 

From the orthonormal vector set which is a spanning set for the admissible space 

of eigenvector given in Eq. (4.10), we construct the plane of rotation by choosing any 

two of them. If the dimension of matrix B in Eq. (4.1) is m, we need (m-1) planes of 

rotation and (m-1) angles to represent a typical vector in the whole admissible space 

from Corollary 4.2. For example, let us consider a 3-dimensional space in Fig. (4.2). In 

this case, we have the eigenvector expression defined in Eq. (4.39). The second plane of 

rotation in an eigenvector expression includes the first rotation vector(   
 ), which 

complicates the parameterization. Thus, we want a more simple expression, which leads 

us to consider the following corollary. 

  

Corollary 4.3 

 From Theorem 4.3 and Corollary 4.2, we can have the alternative planes of 

rotation as follows. 

    [ ̂  ̂ ]  [    ] (4.45a) 

    [ ̂  ̂ ]  [     ] (4.45b) 

  

    [ ̂  ̂   ]  [       ] (4.45c) 

Then, a typical vector in Col C can still be written by Eq. (4.40). 

Proof  

First rotation is the same with that of Theorem 4.3. Thus, this rotation expression 

can be given by Eq. (4.36). The vector   can be an arbitrary vector in the whole space 
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spanned by    and   . Now, we can choose the second plane of rotation as Eq. (4.45b). 

And we can project the vector onto  ̂  axis and  ̂  axis, which gives us two vectors as 

    
       ̂ 

  
  

 
(4.46a) 

    
       ̂ 

  
  (4.46b) 

where        is the projection of   onto   and is given by 

 
       

   

| | 
  (4.47) 

The rotation angle    is given with respect to  . The rotation matrix        ) can be 

given by Eq. (4.21). Thus, this second rotation expression can be described by 

   
         )  

  ∏       )  

 

   

 (4.48) 

Geometrically, the second rotation can be given by 

   
     

         )   
  (4.49) 

This means that   can be a typical vector in the whole space spanned by   ,    and    

by putting a scaling real number   in the both sides of Eq. (4.49). Equation (4.48) is 

mathematically the same with Eq. (4.49). For a 3-dimensional real space case, Fig. (4.3) 

explains this procedure well.  From these observations, we can extend this procedure to 

the (n-1) step. Therefore, a typical vector in Col C can be written by Eq. (4.34) with the 

following planes of rotation. 

    [ ̂  ̂ ] ,    [ ̂  ̂ ], … ,      [ ̂    ̂ ] (4.50) 

Each plane of rotation has the following rotation matrix. 

        )             )    
        

                 (4.51) 

Finally, we have the angle representation as 
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   ∏        )

   

   

 ̂  (4.52) 

With this angle parameterization, eigenvector matrix   can be described by 

   [       ] (4.53) 

where 

 
   ∏  (         )

   

   

 ̂    (4.54) 

Now,   can be parameterized with                ) as 

    (                   )) (4.55) 

From these parameters, our cost function can be expressed in terms of angles and we 

will find the angel set which minimizes the condition number.  

    
 

  (   (                   ))) (4.56) 

 

Angle Representation in the Complex Space 

In the real space, we can easily set up the angle parameterization, but we need to 

modify it for the complex space. 

 

Approach I 

From Reference [5], a rotation in n-dimensional complex spaces is given by 

      )            )        
      (4.57) 

The difference between Eq. (4.21) and Eq. (4.57) is the change of the transpose of matrix 

P to the complex conjugate. This angle of rotation should be real. However, when we 
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choose two arbitrary complex vectors in complex Euclidean space, there can also be the 

imaginary part of angles between both of them. This means that the inner product of two 

arbitrary complex vectors can be complex. Therefore, a vector cannot reach the whole 

admissible space by using the above rotation equation. However, if we want to restrict a 

rotation angle as the real angle, this rotation transformation matrix can work. Also, we 

use the same procedure with the real space case, which simplifies the implementation of 

the numerical simulation. If we want to consider no restrictions on the complex values of 

angles between two complex vectors, we need another approach. We propose the second 

approach in the next section.   

 

Theorem 4.4 

 Let us consider an n-dimensional complex Euclidean space and its complex 

conjugate space. Then we have two        ) matrice as 

   [          ]       [  
    

      
 ] (4.58) 

where each          
          are orthonormal vectors. Each column space can be 

described by 

           {          }               {  
    

      
 } (4.59) 

Then typical vectors in Col C and        can be written by  

 
   ∏        )

   

   

         ∏     
    )

   

   

  
  (4.60) 

where the complex rotation R can be performed by using Eq. (4.57), and the planes of 

rotation are given as follows. 
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      [ ̂    ̂   ]  [    ] (4.61a) 

      [ ̂    ̂   ]  [     ] (4.61b) 

  

      [ ̂    ̂     ]  [       ] (4.61c) 

If vector   wants to be the complex conjugate of a vector  , the rotation angle 

relationship should be the same. 

                  (4.62) 

Proof 

 By taking the complex conjugate of   in Eq. (4.60),    should be r in Eq. (4.60). 

 

  
     ∏       )

 

   

   

  
    ∏     

    )

   

   

  
  (4.63) 

By examining        )
 , we have 

 

  

       )
  (          )    

        
     )

 

           )  
    

 )    
      

 )     

     
    ) 

(4.64) 

Substitution Eq. (4.64) into Eq. (4.63) yields   

      
    )      

    ) (4.65) 

Finally, we have Eq. (4.62). 

To have the real gain matrix F in Eq. (4.2), the corresponding eigenvectors(   

and   
 ) which have the complex conjugate pair eigenvalues(   and   

 ) should also be 

the complex conjugate pair. Theorem 4.4 tells how to choose the plane of rotation and 
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the rotation angle for the conjugate pair, which results in reducing the number of angle 

parameters. 

 

Approach II 

Here, we transform the complex space into the real space. Then we apply the 

rotation method developed previously to the transformed real space. Finally, we 

transform them back to the original complex space. 

 

Theorem 4.5 

Let us consider an n-dimensional complex Euclidean space,        spanned 

by a normalized complex vector q. Then a typical vector in   can be described by 

       (4.66) 

where        is the complex coordinate and        is the complex vector. Assume 

that   and   are given by 

                

                

(4.67a) 

(4.67b) 

Then we can express it by real numbers as 

 
{

                      
                           

    *
 
 +   *

  
 

+  *
   
  + *

 
 
+ (4.68) 

Proof 

By using the assumption, a vector   can be given by 

        )     )        )        )  (4.69) 
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This implies that       ) can express any real part of   and       ) can describe 

any imaginary part of  . Therefore, if we have the form given in Eq. (4.68), it can 

express the same vector in Eq. (4.69).  

As a result, if we want to have a complex space spanned by an n-dimensional 

complex vector,      real vectors in real space are needed from Theorem 4.5. 

             )           ,*
 
 +  *

  
 

+- (4.70) 

 

Proposition 4.3 

  An     unitary complex matrix A transforms into       orthogonal matrix 

B by Theorem 4.5. 

Proof 

Let a matrix A be given by 

                 (4.71) 

Since the matrix A is unitary, we have 

       (4.72) 

By substituting Eq. (4.71) into Eq. (4.72), we have 

      )      )       )      )

                  )    
(4.73) 

From Eq. (4.72), we have 

                        (4.74) 

By using Theorem 4.5, the matrix B can be given by 
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   *
   
  

+ (4.75) 

To show that the matrix B is orthogonal, we obtain     as  

 
    *

   
  

+
 

*
   
  

+  [     

     ] *
   
  

+

 [                
               

] 

(4.76) 

By using Eq. (4.72), we have      . 

 From this proposition, the orthogonal matrix which represents the rotation axes 

becomes the orthogonal matrix after the transformation. 

 

Theorem 4.6 

 Let us consider an n-dimensional complex Euclidean spaces and its complex 

conjugate space. Then, we have two        ) matrice as 

   [          ]       [  
    

      
 ] (4.77) 

where each          
          are orthonormal vectors. Let the matrix C be given by 

                     (4.78) 

By Proposition 4.3, matrix C and matrix    can be transformed into    and   
 , 

respectively. 

 
   [

     

    
]      

  [
    

     
] (4.79) 

Each column space can be described by 

 
           {[

  {  }

  {  }
]  [

   {  }

  {  }
]    [

  {  }

  {  }
]  [

   {  }

  {  }
]} (4.80a) 
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      {[
  {  }

   {  }
]  [

  {  }

  {  }
]    [

  {  }

   {  }
]  [

  {  }

  {  }
]} (4.80b) 

Then typical vectors in Col    and       
  can be written by  

 
   ∏  (       )

    

   

[
  {  }

  {  }
]       ∏  (       )

    

   

[
  {  }

   {  }
] (4.81) 

where the complex rotation R can be performed by using Eq. (4.57) and the planes of 

rotation can be defined as follows. 

 
     [ ̂    ̂   ]  [

  {  }    {  }

  {  }   {  }
] (4.82a) 

 
     [ ̂    ̂   ]  [

   {  }   {  }

  {  }   {  }
] (4.82b) 

  

 
        [ ̂       ̂      ]  [

  {  }    {  }

  {  }   {  }
] (4.82c) 

And, 

 
     [ ̂    ̂   ]  [

  {  }   {  }

   {  }   {  }
] (4.83a) 

 
     [ ̂    ̂   ]  [

  {  }   {  }

  {  }    {  }
] (4.83b) 

  

 
        [ ̂       ̂      ]  [

  {  }   {  }

   {  }   {  }
] (4.83c) 

If a vector   wants to be the complex conjugate of a vector  , the rotation angle 

relationship should be the same. 

                    (4.84) 
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Proof 

From the plane of rotation given in Eq. (4.82a) and (4.82b), the real space 

expression of the plane of rotation can be divided by 

1) Case I:                

 
     [

  {  }    {  }

  {  }   {  }
]        (4.85) 

2) Case II:                

 
     [

   {  }   {    }

  {  }   {    }
]        (4.86) 

For the simplicity, let     {  },     {  },     {    } and     {    }. 

Now, let us prove the first case in Eq. (4.85). Rotation matrix can be given by Eq. 

(4.21).  

 
 (       )  [

      

      
] (4.87) 

where  

                      )        )

         )       
(4.88a) 

                  )        )           )       (4.88b) 

Because 

 
        

  *
   
  + 0

    

     1  0
              

               1 (4.89a) 
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  *
   
  + *

   
  

+ 0
    

     1

 0
               

              1 

(4.89b) 

Let the rotation matrix about      be given by Eq. (4.21). 

 
 (       )  [

      

      
] (4.90) 

where  

                      )        )

          )       
(4.91a) 

                   )        )           )       (4.91b) 

Because 

 
        

  *
  
   + 0

     

    1  0
               

              1 (4.92a) 

 
          

  *
  
   + *

   
  

+ 0
     

    1

 0
                

               1 

(4.92b) 

From Eq. (4.81), we denote them as 

 
  [

  

  
]      *

  
  
+ (4.93) 

Now, we want to have the vector   is the complex conjugate of the vector   so that we 

have 

                (4.94) 

For k=1, with Eq. (4.81) and Eq. (4.87), we have 
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  [

  

  
]  [

      

      
] [

  {  }

  {  }
]  [

     {  }       {  }

     {  }       {  }
] (4.95a) 

 
  *

  
  
+  [

      

      
] [

  {  }

   {  }
]  [

     {  }       {  }

     {  }       {  }
] (4.95b) 

By using Eq. (4.94), 

      {  }       {  }       {  }       {  } (4.96a) 

      {  }       {  }        {  }       {  } (4.96b) 

Substitution of Eq. (4.88) and Eq. (4.91) into Eq. (4.96) gives us  

                               (4.97) 

Therefore, we have the following angle relationship. 

        (4.98) 

Now, let us prove the second case in Eq. (4.86). Rotation matrix can be given by 

Eq. (4.21).  

 
 (       )  [

      

      
] (4.99) 

where  

                  )        )           )       

                 )        )          )       

(4.100a) 

(4.100b) 

             )        )          )       

            )        )           )       

(4.100c) 

(4.100d) 

Because 

        
  *

   
  

+ [
     

    
]  0

              

              1 (4.101a) 



 104 

          
  *

   
  

+ *
   
  

+ [
     

    
]

 0
               

               1 

(4.101b) 

Let the rotation matrix about      be given by Eq. (4.21). 

 
 (       )  [

      

      
] (4.102) 

where  

                  )        )          )       

                 )        )           )       

(4.103a) 

(4.103b) 

              )        )          )       

            )        )           )       

(4.103c) 

(4.103d) 

Because 

 
        

  *
  
   

+ [
    

     
]  0

               

              1 (4.104a) 

 
          

  *
  
   

+ *
   
  

+ [
    

     
]

 0
              

                1 

(4.104b) 

For k=2, with Eq. (4.93), Eq. (4.94), Eq. (4.81) and Eq. (4.87), we have 

 
  [

  

  
]  [

      

      
] [

  { }

  { }
]  [

     { }       { }

     { }       { }
] (4.105a) 

 
  *

  
  
+  [

      

      
] [

  { }

   { }
]  [

     { }       { }

     { }       { }
] (4.105b) 

where   is the vector after the first rotation with      and   . By using Eq. (4.94), 
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      { }       { }       { }       { } (4.106a) 

      { }       { }        { }       { } (4.106b) 

Substitution of Eq. (4.100) and Eq. (4.103) into Eq. (4.105) gives us  

                               (4.107) 

Therefore, we have the following angle relationship. 

        (4.108) 

By using these angle relationships, we can express the eigenvector complex conjugate 

pair easily, which results in reducing the number of angle parameters. 

Finally, if we want to have the expression in the complex space, we use the 

following transformation matrix. 

      [         ] (4.109) 

By using this transformation matrix, we can get the complex vector. 

 
       ∏        )

    

   

 ̂  (4.110) 

With this angle parameterization, eigenvector matrix   can be described by 

   [       ] (4.111) 

where 

 
       ∏  (         )

    

   

 ̂    (4.112) 

Now,   can be parameterized with                 ) as 

    (                    )) (4.113) 
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Properties of the Optimized Condition Number 

Minimization of the condition number has the following good properties which 

also minimize the upper bounds of the gain matrix F and the transient response of the 

fractional order system. 

 

Theorem 4.7[6] 

  The gain matrix F obtained in Eq. (4.7) satisfy the inequalities 

 
‖ ‖  .‖ ‖     

 
{|  |}     )/      { } (4.114) 

where       ) is the smallest singular value of B.   

Proof 

It can easily be shown by taking the norms on Eq. (4.7). 

 

Theorem 4.8 

The norm of the transient response    ) of the closed-loop continuous fractional 

order system has the following inequality equation. 

 
‖   )‖      )

    

     
‖  ‖  (4.115) 

where    )     and    . 

Proof 

The transient response    ) of the fractional order system is given by 

    )    (     )  )         
 )      (4.116) 
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By taking the norms on the above equation and using Corollary 3.2, we can obtain the 

following inequality condition. 

 
‖   )‖  ‖ ‖‖   ‖‖     

 )‖‖  ‖      )
    

     
‖  ‖  (4.117) 

where       {          } and      [|   |]. And         [  ] where    can be 

given by 

 
‖        

 )‖
 
 

  

  |   |  
         (4.118) 

 

C. NUMERICAL SIMULATION 

 For robustness, we use our cost function as the weighted condition number 

mentioned in Eq. (3.38). For the convenience of calculating the derivative of a cost 

function, we use the squared form of the weighted robust stability measure. 

       )  ‖    ‖
 

 
 ‖ ‖ 

  (4.119) 

where   is the eigenvector matrix and       {          }.        where   can be 

obtained by using Eq. (3.45) for the fractional order system. To minimize the above cost 

function numerically, we need the gradient and the Hessian with respect to angles. Let 

      for the convenience. And the derivative of the inverse matrix can be done by 

   

   
   

  

   
  (4.120) 

 

Gradient 

The gradient can be obtained by  
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 ‖    ‖ 

 

   
   (.

  

   
/

 

          .
  

   
/)

    (. 
  

   
 /

 

           
  

   
 + 

(4.121) 

For the real eigenvector matrix or the first case of the complex eigenvector matrix, the 

eigenvector matrix is given by Eq. (4.51) and its derivative is given by 

   

   
 0   

   

   
   1    ⌈

 

   
⌉ (4.122) 

where 

    

   
  (             )   

  (             )
  (         )

   
 (             )

    (         ) ̂    

(4.123a) 

   (         )

   
                 

            
                 (4.123b) 

with               )            and             ) . Because      

denotes the     angle of     column eigenvector, we have the following index 

relationship. 

       )    )    (4.124) 

From Eq. (4.120), the derivative of the eigenvector matrix has the only     column 

eigenvector.  
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For the second case of the complex eigenvector matrix, the eigenvector matrix is 

given by Eq. (4.111) and its derivative is given by 

   

   
 0   

   

   
   1    ⌈

 

    
⌉ (4.125) 

where 

    

   
      (             )   

  (             )
  (         )

   
 (             )

    (         ) ̂    

(4.126a) 

   (         )

   
                 

            
                 (4.126b) 

with        )     )   ,           and              ) . Because      

denotes the     angle of     column eigenvector, we have the following index 

relationship. 

       )     )    (4.127) 

  

Hessian 

The Hessian can be obtained by  

 
  ‖ ‖ 

 

      
  

 

   
(  (. 

  

   
 /

 

           
  

   
 +)  
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    ((

  

   
*
 

.
  

   
/

 

         .
   

      
/

 

      

   .
  

   
/

 

(
  

   
*
 

     . 
  

   
 /

 

   
  

   

 (
  

   
*
 

    
  

   
       

  

   

  

   
 

       
   

      
        

  

   

  

   
+ 

(4.128) 

For the real eigenvector matrix or the first case of the complex eigenvector matrix, we 

have 

   

      
 

{
 
 

 
      ⌈

 

   
⌉  ⌈

 

   
⌉

0   
    

      
   1    ⌈

 

   
⌉  ⌈

 

   
⌉
 (4.129) 

where i     )    )    and 

     

      
  (             )   

  (             )
  (         )

   
 (             )

  

  (             )
  (         )

   
 (             )

    (         ) ̂    

(4.130a) 

   (         )

   
                 

            
                 (4.130b) 
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    (         )

    
                 

            
             (4.130c) 

For the second case of the complex eigenvector matrix, we have 

   

      
 

{
 
 

 
      ⌈

 

    
⌉  ⌈

 

    
⌉

0   
    

      
   1    ⌈

 

    
⌉  ⌈

 

    
⌉
 (4.131) 

where i     )     )    and 

    

      
      (             )   

  (             )
  (         )

   
 (             )   

  (             )
  (         )

   
 (             )   

  (         ) ̂    

(4.132a) 

   (         )

   
                 

            
                 (4.132b) 

    (         )

    
                 

            
             (4.132c) 

Note that the gradient and the Hessian for the complex conjugate eigenvectors 

should be considered differently by using the angle relationships given in Theorem 4.4 

and Theorem 4.5.  

By using the gradient and Hessian of our cost function, we can obtain the 

numerical results. For our numerical simulation, we use the BFGS(Broyden-Fletcher-

Goldfarb-Shanno) algorithm considered as a quasi-Newton and conjugate gradient 
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method[35][36]. For one dimensional line search, the search with a fixed step size is 

used to bracket the minimum point and the golden section method is used to find the 

optimum point[35]. 

 

Numerical Tests 

 The following examples are chosen to test our rotation method. These examples 

are all integer order cases, which allows us to compare our results with the existing 

results. Initial angles are given by  
 
. For the complex conjugate pair, the corresponding 

angles are given by  
 
 and   

 
 because of Theorem 4.5.  

In each example, a) presents eigenvector matrix resulted from optimization 

process and b) shows the gain matrix and its norm obtained from the same process. From 

the observation of following results, we can see that all gain matrices contain all real 

numbers, which also shows that our angle relationships for the complex conjugate pair 

of the eigenvectors are valid numerically. c) shows the rotation angles in the each 

admissible space of each eigenvector. d) gives us the condition numbers in the final 

iteration. e) shows the optimization process with the figure. From these figures, we can 

see that the local optimal solution can be converged in a few iterations in the most cases. 

If the initial values are near singular, this might not be true. 
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Figure 4.4. Optimization History of Condition Numbers for Example 4.1 

 

Example 4.1. Chemical reactor, n=4, m=2 
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c) Rotation angles:   [                          ] 

d) Condition numbers:     )            )                 

e) Optimization process is given in Fig. (4.4). 

 

Example 4.2. Distillation column, n=5, m=2. 
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Approach I 

a) Eigenvector matrix 
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b) Gain matrix and its norm 

      *
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c) Rotation angles:   [                               ] 

d) Condition numbers:     )             )                   

e) Optimization process is given in Fig. (4.5). 
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Figure 4.5. Optimization History of Condition Numbers for Example 4.2, Approach I 
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d) Condition numbers:     )             )                   

e) Optimization process is given in Fig. (4.6). 

 

 

Figure 4.6. Optimization History of Condition Numbers for Example 4.2, Approach II 

 

Example 4.3. Nuclear rocket engine, n=4, m=2. 
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b) Gain matrix and its norm 

  *
                           
                            

+ ‖ ‖          

c) Rotation angles:   [                         ] 

d) Condition numbers:     )             )                   

e) Optimization process is given in Fig. (4.7). 

 

 

Figure 4.7. Optimization History of Condition Numbers for Example 4.3 

 

Example 4.4. Multiple-input multiple-output system, n=4, m=2. 
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a) Eigenvector matrix 

  [
                    
                    
                  

] 

b) Gain matrix and its norm 

  *
                   
                     

+ ‖ ‖         

c) Rotation angles:   [                  ] 

d) Condition numbers:     )             )                  

e) Optimization process is given in Fig. (4.8). 

 

 

Figure 4.8. Optimization History of Condition Numbers for Example 4.4 
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Figure 4.9. Optimization History of Condition Numbers for Example 4.5, Approach I 

 

Example 4.5. Random problem, n=4, m=2. 
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b) Gain matrix and its norm 

  *
                          
                            

+ ‖ ‖          

c) Rotation angles:   [                         ] 

d) Condition numbers:     )            )                 

e) Optimization process is given in Fig. (4.9). 

 

 

Figure 4.10. Optimization History of Condition Numbers for Example 4.5, Approach II 
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b) Gain matrix and its norm 

  *
                          
                              

+ ‖ ‖          

c) Rotation angles  

      [             ]          [
             
             
             

] 

d) Condition numbers:     )            )                 

e) Optimization process is given in Fig. (4.10). 

 

Example 4.6. Random problem, n=8, m=3. 
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Approach I 

a) Eigenvector matrix 
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b) Gain matrix and its norm 

     [
                                                        
                                                  
                                                        

] 

‖ ‖           

c) Rotation angles 

  *
                                                  
                                                

+ 

d) Condition numbers:     )             )                  

e) Optimization process is given in Fig. (4.11). 

 

 

Figure 4.11. Optimization History of Condition Numbers for Example 4.6, Approach I 
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Figure 4.12. Optimization History of Condition Numbers for Example 4.6, Approach II 
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b) Gain matrix and its norm 
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[
 
 
 
 
                                       
                                       
                                       
                                       
                                       ]

 
 
 
 

 

d) Condition numbers:     )            )                  

e) Optimization process is given in Fig. (4.12). 

 

Example 4.7. Aircraft control example I, n=4, m=3. 

  [
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                  ) 

a) Eigenvector matrix 

  [

                            
                         
                            
                          

] 

b) Gain matrix and its norm 

  [
                           
                             
                         

] ‖ ‖          

c) Rotation angles:   *
                         
                         

+ 

d) Condition numbers:     )            )                 

e) Optimization process is given in Fig. (4.13). 
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Figure 4.13. Optimization History of Condition Numbers for Example 4.7 
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  *
                            

                                  
+ ‖ ‖           

c) Rotation angles:   [                        ] 

d) Condition numbers:     )             )                   

e) Optimization process is given in Fig. (4.14). 

 

 

Figure 4.14. Optimization History of Condition Numbers for Example 4.8 
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Table 4.1. Comparisons between Various Methods 

Ex. Cond. 
No. 

Rotation 
Method 

(Real case or 
Approach I) 

Rotation 
Method  

(Approach 
II) 

Beyers 
and 

Nash 

J.Kautsky et al. 

Method
0 

Method 
1 

Method 
2/3 

1 
    ) 3.2332  3.35 1.82 3.32 4.54 
    ) 6.4660  6.40    
‖ ‖  1.3860  1.46 1.47 1.40 1.17 

2 
    ) 47.5828 45.9794 33.07  39.4 66.1 
    ) 62.3486 60.8576 39.11    
‖ ‖  333.4916 148.1282 354.85  311.5 283.1 

3 
    ) 35.7006  33.85    
    ) 45.7106  41.23    
‖ ‖  71.5150  77.15    

4 
    ) 10.7738  10.77    
    ) 13.4211  11.87    
‖ ‖  9.4441  9.44    

5 
    ) 3.8827 3.6473 3.55    
    ) 6.2410 5.9347 5.84    
‖ ‖  17.9154 19.5904 23.00    

6 
    ) 17.4947 4.3664 4.74    
    ) 34.7828 11.5549 11.91    
‖ ‖  255.0325 287.8762 305.50    

7 
    ) 3.7576  3.61    
    ) 6.2246  5.89    
‖ ‖  29.7926  28.25    

8 
    ) 18.7281  18.59    
    ) 23.8973  21.24    
‖ ‖  900.9102  807.57    

 

Graphic Visualization of the Cost Function 

Each angle parameter in the rotation method has the finite angle space[    ]. 

With the angle space being finite, we can now visualize our cost function by sweeping 

each angle parameter from the obtained local minimum. This means that one angle 

parameter is sweeping from –   to   while the other angle parameters are fixed with the 
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corresponding local minimum values, which leads us to see if our local minimum is the 

good solution and another good local minimum candidate can be found. This is also one 

of advantages of our angle parameterization. 

 Figures (4.15) to (4.18) give us the visualization of our cost function by sweeping 

one angle parameter for each case. Because rotating the vector with   changes only the 

sign of it, figures show us the symmetry characteristics with   . 

 

 

Figure 4.15.  Angle Sweep        ) of First Rotation Angle in Example 4.1 
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Figure 4.16.  Angle Sweep        ) of Second Rotation Angle in Example 4.1 

 

 

Figure 4.17.  Angle Sweep        ) of Third Rotation Angle in Example 4.1 
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Figure 4.18.  Angle Sweep        ) of Fourth Rotation Angle in Example 4.1 

 

Weighted Cost Function 
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(3.45). 

 

Approach I 

f) Eigenvector matrix 
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      *
                                 
                                 

+ ‖ ‖           

h) Rotation angles:   [                              ] 

i) Condition numbers:     )         

j) Optimization process is given in Fig. (4.19). 

 

 

Figure 4.19. Optimization Process for Example with Weighted Cost Function, Approach 
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g) Gain matrix and its norm 

  *
                                    
                                      

+ ‖ ‖           

h) Rotation angles 

      [                  ]          [
             
             
             

] 

i) Condition numbers:     )         

j) Optimization process is given in Fig. (4.20). 

 

 

Figure 4.20. Optimization Process for Example with Weighted Cost Function, Approach 
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CHAPTER V  

KALMAN FILTER FOR FRACTIONAL ORDER SYSTEMS 

 

 In this chapter, we derive the discrete-time Kalman filter for fractional order 

systems. In order to implement it, we first derive a discrete-time model for fractional 

order systems. Then we obtain the propagation equation and “update” equation. Because 

the solution to the fractional order differential equation has the history-dependent terms, 

the propagation equation of the error covariance matrix is not simple and contains all of 

the history-dependent terms. By using the derived Kalman filter, we show the numerical 

examples and investigate some important properties of this filter.  

 

A. KALMAN FILTER DEVIATION 

 Let us consider a continuous fractional order system as 

    
 

 
    )      )   )     )   )     )   ) (5.1) 

where    )      ,    )       and    )      . Assuming that    )    )        ) 

are constant and the input    ) and the system noise    ) are constant during a sample 

interval   , we can derive the discrete-time model of the above continuous fractional 

order system by using the second approach shown in the Chapter II. Then we want to 

formulate the discrete-time Kalman filter for the discrete-time model of the fractional 

order system. By using Eq. (2.86), we can obtain the following discrete-time model with 

the initial time     . 
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      )           )    )  ∑                 )(     )       ))

   

   

     )(     )       )) 

(5.2) 

where          )                  ) and     ) are given in Eqs. (2.87) to (2.89). For 

the simplicity and the convenience in later use, we express it with the simple notations. 

Then the “truth” discrete-time model can be described as 

 
                    ∑(               )

   

   

 (5.3) 

where        ) ,             ) ,       ) ,                       ) ,    

    ) and        ). Note that even if system matrices A and B are time-invariant, 

   is a time-variant function. Summation terms in Eq. (5.3) characterize the difference 

between the integer order systems and the fractional order systems by showing the 

memory property of the fractional order systems. The measurement model is given by 

  ̃          (5.4) 

where    is the measurement noise. The system noise and the measurement noise are 

considered to be zero-mean Gaussian white-noise processes. The properties of them are 

given by 

  {    
 }             {    

 }        (5.5) 

where     is the Kronecker delta.    and    present the corresponding covariance matrix 

of each noise. And we assume that both noises are uncorrelated to each other. 
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Now, we can obtain the propagation of the estimated state by taking the 

expectation of the true dynamic model. Then the propagation equation of the estimated 

state can be described by     

 
 ̂   
     ̂ 

       ∑        

   

   

 (5.6) 

“+” and “-” notation means the times after and before the measurement, respectively. 

Also, once we have the measurement, we can update our state estimate. Therefore, we 

can think that “+” and “-” notation presents the times after and before the update, 

respectively. In order to obtain an error covariance matrix, we need the error dynamics 

of the state. By subtracting Eq. (5.6) from Eq. (5.3), the estimated state error can be 

obtained as 

 
 ̃   
   ̂   

          ̃ 
       ∑        

   

   

 (5.7) 

Then the propagation equation of the error covariance matrix can be defined by 

     
   { ̃   

  ̃   
  }

    { ̃ 
  ̃ 

  }  
  ∑    { ̃ 

   
 }      

 

   

   

    {    
 }     ∑       {   ̃ 

  }  
 

   

   

 ∑       {    
 }      

 

   

   

 

(5.8) 

By substituting   
   { ̃ 

  ̃ 
  },     {    

 } into Eq. (5.8), we have 



 136 

 
    

      
   

        
    ∑              

 

   

   

 ∑    { ̃ 
   

 }      
 

   

   

 ∑       {   ̃ 
  }  

 

   

   

 

(5.9) 

Now, we need to examine  { ̃ 
   

 } and  {   ̃ 
  }. Taking the transpose of the former 

becomes the latter. So we only need one of them. To obtain  {   ̃ 
  }, we have to 

know the state updated form. This “update” equation can be given as[4][37]. 

  ̂ 
   ̂ 

      ̃     ̂ 
 ) (5.10) 

where    is the Kalman gain. We will obtain it later. The state error can be defined as 

the difference between the estimated state and the truth state. By using the above 

equation, the updated state error can be obtained as 

  ̃ 
   ̂ 

      ̂ 
         ̃      ̂ 

    )      )

  ̃ 
           ̃ 

 )         ) ̃ 
       

(5.11) 

where  ̃ 
   ̂ 

    . By using Eq. (5.11) and Eq. (5.7), we can obtain  

 
 ̃ 
         )(     ̃   

         ∑          

   

   

)       (5.12) 

Then  { ̃ 
   

 } and  {   ̃ 
  } can be expressed as 

  { ̃ 
   

 }         )     { ̃   
   

 }         )   {      
 }

        )∑        {    
 }

   

   

 
(5.13) 
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Because of the property of  {   ̃ 
  }    { ̃ 

   
 }) , we only need one calculation 

between both of them.  

 
 ∑    { ̃ 

   
 }      

 

   

   

  ∑          )     { ̃   
   

 }      
 

   

   

 ∑          )   {      
 }      

 

   

   

 ∑          )∑        {    
 }

   

   

      
 

   

   

 

(5.14) 

By using Eq. (5.5), the second and third terms on the right hand side of Eq. (5.14) can be 

changed to 

 
∑          )   {      

 }      
 

   

   

          )       
       

  

(5.15a) 

 
∑          )∑        {    

 }

   

   

      
 

   

   

          ) ∑                
 

   

   

 

(5.15b) 

By the induction of  { ̃   
   

 }, we can finally obtain  
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   ∑    { ̃ 

   
 }      

 

   

   

 ∑       {   ̃ 
  }  

 

   

   

         
    

  

(5.16) 

where 

            )       
       

 

          )               )       
       

   

          )               )   

          )     
     

  

(5.17a) 

            ) ∑                
 

   

   

          )               )

 ∑                
 

   

   

            )       

(5.17b) 

          )        
     

  

Therefore, the propagation equation of the error covariance matrix is finally given by 

 
    

      
   

       
    ∑              

 

   

   

   (5.18) 

where   is given in Eq. (5.16).  

The “update” equation of the error covariance matrix can be described as 
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   { ̃ 

  ̃ 
  }

        ) { ̃ 
  ̃ 

  }       )
     {    

 }  
 

        )  
        )

        
  

(5.19) 

In order to find the gain     we use the minimum variance measure of optimality by 

defining our cost function as the trace of the updated error covariance matrix,     )  

     
 )   Using the trace identities in Reference [1], we can obtain  

   

   
            )  

   
        (5.20) 

From this equation, we can obtain the gain   . 

      
   

 (    
   

    )
  

 (5.21) 

Note that this solution is the same with that of the conventional Kalman filter because 

we assume the “update” equation is given in Eq. (5.10) which is the same “update” 

solution in the conventional Kalman filter. Substituting Eq. (5.21) into Eq. (5.19) gives 

us  

   
         )  

  (5.22) 

Therefore, we obtain the all propagation and “update” equations for the discrete-time 

Kalman filter for fractional order systems. Table 5.1 shows the summary of it. 
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Table 5.1. Discrete-time Linear Kalman Filter for Fractional Order Systems 

Model 
                    ∑(               )

   

   

 

 ̃          

Initialize 
 ̂   )   ̂  

    { ̃   ) ̃   )
 } 

Gain      
   

 (    
   

    )
  

 

Update 
 ̂ 
   ̂ 

      ̃     ̂ 
 ) 

  
         )  

  

Propagation 

 ̂   
     ̂ 

       ∑        

   

   

 

    
      

   
         

    ∑           
     

 

   

   

   

 

Moving Window 

 The solution for the fractional order differential equation has the short memory 

principle introduced in Chapter I, which allows us to have an approximate solution 

because the solution depends on mainly the “recent past” values. So it is attractable and 

useful for dealing with the practical engineering problem because we have finite 

memory. By using this short memory principle, an approximate truth model can be 

changed into 
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                    ∑ (               )

   

       

 (5.23) 

where   is a fixed length of the moving window. Then the propagation equation of the 

estimated state can be expressed as 

 
 ̂   
     ̂ 

       ∑        

   

       

 (5.24) 

By using this equation, the propagation equation of the error covariance matrix in Eq. 

(5.18) can also be changed with fewer terms. 

 
    

      
   

         
    ∑           

     
 

   

       

   (5.25) 

where 

 
   ∑    { ̃ 

   
 }      

 

   

       

 ∑       {   ̃ 
  }  

 

   

       

         
    

  

(5.26) 

with 

            )       
       

 

          )               )       
       

   

          )               )   

                )         
         

  

(5.27a) 
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            ) ∑                
 

   

       

          )               )

 ∑                
 

   

       

            )    

                  ) ∑                  
 

     

       

 

(5.27b) 

Therefore, this property of the fractional order system leads to the reduction of the 

memory for storing the previous data. But note that this is an approximate solution, 

which gives us larger errors. We will compare this approximate solution with exact 

solution in numerical examples. 

 

B. Numerical Example 

 Let us assume that we have the following fractional order system with the 

fractional order,      . 

   *
  

        
+    *

 
 
+      [  ] (5.28) 

The noise parameters are given by         [  ]  and       . And, the initial 

error covariance matrix is set to        {      }. The design parameters for the 

Kalman filter are chosen as            {        } and       . The input is 

given by    )       
  

 
 ). For examining the property of the filter, we run 100 numerical 

simulations. For each simulation, the total time is set to be 3.9sec with          . 
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 Figures 5.1 to 5.4 show only one simulation result among the 100 numerical 

simulations. In this example, the moving window of the filter with     gives us the 

appropriate result. If we increase the length of the moving window, we can expect a 

more precise result. Therefore, for some examples, it is required to check what length 

can be a numerically appropriate candidate for the filter. From Fig. (5.4), we can see that 

the state estimates are in    bound. 

Figure 5.5 shows that the 100 ensembles of the estimation errors and    bounds 

obtained from   
  in the last simulation and from the statistical analysis. Most ensembles 

are within in    bound. And,    bounds almost coincide each other. This means that the 

error covariance matrix obtained in Eq.  (5.19) predicts the real error covariance fairly 

accurately. 

 

Figure 5.1. Estimate of the State  ̂  ) 
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Figure 5.2. Estimate of the State  ̂  ) 

 

Figure 5.3. Measured Output and Outputs with Estimated States 
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Figure 5.4. Estimation Errors and    Bounds 

  

Figure 5.5. Ensembles of the Estimation Errors and    Bounds 
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Study of the Error Covariance Matrix 

 From Eq. (5.18), the error covariance matrix has many previous data information, 

which leads us to have a very large computational cost and a memory problem. We want 

to rearrange and regroup the terms of                in order to know the effect 

of each term of    on     
 . The following propagation equation of the error covariance 

shows this rearrangement.  

     
      

   
       

        
      

    (5.29) 

where 

     
              

       
           )       

       
 

                   )
   

  

(5.30a) 

     
              

       
 

          )               )

        
       

             

            )
     

        )
   

 

          )              
       

 

             
         

        )
   

  

(5.30b) 

If the effect of the       
 ,       

      
  terms is negligible, we only have to account 

for a finite number of   
               . This enables us to calculate the 

propagation equation of the error covariance matrix with finite memory.  
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Figure 5.6. Effect of      erms 
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 { ̃ 
  ̃ 

  }. In other words, we want to know how long the initial errors “dominate” the 

time-varying estimation errors by checking to see if  { ̃ 
  ̃ 

  } is going to be zero for a 

sufficiently large k. By using Eq. (5.12) we can obtain the relationship between 

 { ̃ 
  ̃ 

  } and  { ̃ 
  ̃ 

  }. Equation (5.31) and (5.32) show it. 

 { ̃ 
  ̃ 

  }   {(       ) (     ̃   
         ∑          

   

   

)

     ,  ̃ 
  }         )     { ̃   

  ̃ 
  } 

(5.31) 

By substituting  ̃ 
 until j is 0 into Eq. (5.31), we can finally obtain the following 

equation. 

  { ̃ 
  ̃ 

  }         )               )      

        )   { ̃ 
  ̃ 

  } 
(5.32) 

By checking the        )               )              )   term in Eq. 

(5.32), we can examine the influence of the initial error. Also, for the previous numerical 

example, we can obtain  { ̃ 
  ̃ 

  } numericallly. Figure 5.7 shows that if    , the 

norm of  { ̃ 
  ̃ 

  } is quite small. 
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Figure 5.7. Norm History of Components of  { ̃ 
  ̃ 

  } 

 

Unbiased Estimator 

It is important to check to see if this filter is an unbiased estimator. By checking 
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  { ̃   
 }      { ̃ 

 } (5.33) 

Substitution of Eq. (5.11) into Eq. (5.33) gives us  

  { ̃   
 }            ) { ̃ 

 } (5.34) 

By repeating the same procedure, we finally have 

  { ̃   
 }            )                )  { ̃ 

 } (5.35) 
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This equation means that the estimate error at time k is not biased if the initial error is 

not biased. For the previous numerical example, we can obtain  { ̃ 
 }  numerically. 

Figure 5.8 shows that the filter is the “unbiased” estimator. 

 

 

Figure 5.8. Norm History of  { ̃ 
 } 

 

Orthogonality Property 

 The standard Kalman filter for the integer order system has the orthogonality of 
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This means that the state estimate is not correlated with its error. Now, let us examine 

the Kalman filter for the fractional order system. First, we will show theoretically that 

the Kalman filter for the fractional order system does not have the orthogonality 

property, but we expect  { ̂ 
  ̃ 

  } has very small values although we cannot show it 

theoretically. This will be shown by the numerical result for the previous numerical 

example. Therefore, by checking  { ̂ 
  ̃ 

  }  numerically from the Monte Carlo 

simulation, we can verify that  { ̂ 
  ̃ 

  } has very small values. 

Let us assume that the initial estimate and its error are uncorrelated. 

  { ̂ 
  ̃ 

  }    (5.37) 

In order to examine the “orthogonality” property, we obtain  { ̂ 
  ̃ 

  } directly. At first, 

we obtain  ̂ 
  by substituting Eq. (5.3), Eq. (5.4) and Eq. (5.6) into Eq. (5.9). 
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(5.38) 

And,  ̃ 
  can be obtained from Eq. (5.12). Then,       { ̂   

     
 }   {     ̃   

  }  

 ,  { ̂ 
  ̃ 

  } can be given by 
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To know if this filter has the orthogonality principle, we check Eq. (5.39) from the time 

step k=1. By substitution of k=1, we can obtain 
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(5.40) 

By using Eq. (5.18), we can obtain the following relationship 

   
       

        
   

  (5.41) 

Replacing      
        

   
  with     yields 

  { ̂ 
  ̃ 

  }         
        )

        
  (5.42) 

By using Eq. (5.22),           )
  can be replaced with    . 
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  { ̂ 
  ̃ 

  }         
        

  (5.43) 

From Eq. (5.21), the gain can be given by 

      
   

   
   (5.44) 

By the substitution of Eq. (5.43) into Eq. (5.44), we finally obtain  { ̂ 
  ̃ 

  }   . 

Now, we check the orthogonality at k=2. From Eq. (5.39),  
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(5.45) 

By  ̂ 
  and  ̃ 

  obtained in Eq. (5.38) and Eq. (5.14) respectively, we can obtain the 

following equations. 
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Substituting Eq. (5.46) into Eq. (5.45) yields 
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By using Eq. (5.18), we can obtain the relationship 
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Then, 
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Since       
        )

        
   , we finally have 
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  }              
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  (5.50) 

Therefore, the filter does not have the orthogonality property between the state estimate 

and its error. However, we can check its correlation numerically. Figure 5.9 shows that 

 { ̂ 
  ̃ 

  } is very small after k is greater than 5. 

 

Figure 5.9. Norm History of Components of  { ̂ 
  ̃ 
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Stability of the Discrete-Time Fractional Kalman Filter 

The stability of the Kalman filter for the fractional order system can be checked 

by the Lyapunov‟s direct method[4]. We want to examine if the state error is stable. Let 

us have the following Lyapunov function. 

    ̃)   ̃ 
   

   ̃  (5.51) 

This Lyapunov function should be positive, which means that    and       should be 

positive definite. The Lyapunov‟s direct method tells that if the increment of the 

Lyapunov function is negative, the state error is stable. The increment of the Lyapunov 

function is given by 

     ̃)           ̃   
     

   ̃     ̃ 
   

   ̃  (5.52) 

Let  ̃     ̃   
       ̃   ̃ 

 . Then the substitution of Eq. (5.10) into Eq. (5.7) gives us 

the following equation. 
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 (5.53) 

Now, we only consider the homogeneous part,           ) ̃ , of Eq. (5.52). The 

increment of the Lyapunov function can be given by 
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(5.54) 

This increment should be negative for a stable solution. So we have 

        )
   

     
           )    

     (5.55) 

By pre-multiplying   
         )

   and post-multiplying        )
    

  , we have 
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     (5.56) 

Then the premultiplication of      gives us  
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     (5.57) 

By the substitution of Eq. (5.19) into Eq. (5.33), we have 

               )         )
   

          
   

 

      
        

      
    

(5.58) 

Substitution of Eq. (5.58) into Eq. (5.57) gives 
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Then we have 

  (        
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(5.60) 

Since   
         )

    
         )

    
   is positive definite, the following 

condition should be satisfied. 

 (        
   

       
        

      
   )    (5.61) 

Although    and    is positive definite, we still need each   
            is 

positive semi-definite in order to guarantee the stability of the filter. Or the either 

following conditions should be satisfied. 
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Also,    must remain positive definite. Now, we want to show if    is positive 

definite     is also positive definite. By substitution of Eq. (5.22) into Eq. (5.51), we 

have 

           
            

       
        

      
      (5.63) 

By using Eq. (5.62a), we can have 

       
            

          
   

    (5.64) 

And, if   
            is positive semi-definite or Eq. (5.62b) is satisfied, we have 

       
            

    (5.65) 

Then, 

           (5.66) 

By substituting Eq. (5.21) into Eq. (5.66), we have 

        
 (      

    )
  

     (5.67) 

By pre-multiplying    and post-multiplying   
 , we can have 

       
        

 (      
    )

  
      

  (5.68) 

From the above equation, we can obtain 

       
           

  (5.69) 

Since    is positive definite, this condition is satisfied. Note that this condition is 

satisfied only if   
            or Eq. (5.62b) is valid. Otherwise, we have to 

check if Eq. (5.62a) and Eq. (5.65) is satisfied for the stability of the filter.  Therefore, if 

  
            is positive definite or Eq. (5.62b) is satisfied, the stability of the 

filter is guaranteed. 
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CHAPTER VI  

CONCLUSIONS 

 

In this dissertation, we built the base methodology with a focus on robust 

feedback control and state estimation for fractional order systems described by Caputo‟s 

definition. This includes systems where fractional order models do not arise “naturally” 

but can be an option in the quest for more general feedback control laws. As mentioned 

before, Caputo definition was chosen because it requires only integer-order initial 

conditions to obtain the solution of the fractional order differential equation and it 

enables us to define the fractional-order initial conditions physically. 

To achieve this objective, we first built up the foundations of the needed 

mathematical properties and concepts such as the linearity, composition rules, Leibniz 

rules and short memory principle and so on for Caputo‟s fractional derivatives. 

With these foundations, we could transform any fractional-order differential 

equations described by Caputo definition into the state-space representation. If we have a 

very small common fractional order, we have to worry about the curse of dimensionality. 

In order to avoid this problem, one needs to use an incommensurate order, but, for the 

convenience of analysis we examined only a commensurate order case, opening up 

possibilities for further research into an incommensurate order.  

From the state-space representation, we showed how to obtain the eigenvalue and 

eigenvector of the Caputo fractional order system and check the stability by using the 

argument of eigenvalues. And we constructed the linear system theory for the Caputo 
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fractional order system. In doing so, we examined the controllability and the 

observability for fractional order systems. Two kinds of discrete-time approximate 

solutions were also developed by utilizing the general solution forms of the fractional 

differential equation. They gave us the good numerical results when compared to the 

existing method and an analytical solution. All these works become the useful 

mathematical tools for the robust eigenstructure assignment and the Kalman filter for 

fractional order systems. 

We draw some useful results about the eigenvalue and eigenvector sensitivity 

under the perturbations in fractional order systems from the analogy between the integer 

order system and the fractional order system about. Condition number used in integer 

order case for measuring the robust stability still plays an important role in the fractional 

order case analogous to the integer derivative case. Also we found the weighted robust 

stability measure in order to weigh the factor to maximize the stability margin by 

calculating the inverse of the distance between the locations of the eigenvalues and the 

stability lines. We found the relationship between the perturbation to the closed-loop 

system matrix and the condition number of the closed loop systems modal(eigenvector) 

matrix. And we found the upper bound of perturbation to make the fractional order 

system stay stable. For the applications, it can be used for the controller parameter and it 

also gave us the stability region of the bilinear systems. 

With the robust stability measures obtained previously, we addressed the robust 

eigenstructure assignment problem for the fractional order system which has already 

been widely and successfully used in the integer order cases. We developed the new 
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algorithm based on the n-dimensitional rotation for the robust eigenstructure assignment 

problem in a novel way. This algorithm can be applied to the integer order system as 

well as the fractional order system. When compared to the existing methods numerically, 

our new algorithm also gave us good results. Our algorithm was made even more 

effective when we used weighted robust stability since we could yield a numerical result 

that the algorithm developed in Reference [34] could not provide.  

For the state estimation of the fractional order system defined by Caputo 

definition, we derived the discrete-time fractional Kalman filter. In contradistinction to 

the Fractional Kalman filter developed by using Gründwald-Letnikov definition, the new 

Fractional Kalman filter that we established by utilizing Caputo definition provides us 

with new and powerful means for solving practical state estimation problems for 

fractional order systems. Also, we investigated the properties of the filter such as the 

influence of the initial error, the “unbiased” property, the “near” orthogonality property 

and the stability of the discrete-time fractional Kalman filter. All these properties were 

examined numerically by a Monte Carlo simulation. For the continuous fractional 

Kalman filter, it is difficult to derive the propagation equation of the error covariance 

matrix. If we want to obtain it approximately, we can use the discrete-time approximate 

model for the propagation equation. Further research into a continuous fractional 

Kalman filter is required. 
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