
OPTIMAL CONTROL OF PERIMETER PATROL USING REINFORCEMENT

LEARNING

A Thesis

by

ZACHARY WILLIAM WALTON

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2011

Major Subject: Mechanical Engineering

OPTIMAL CONTROL OF PERIMETER PATROL USING REINFORCEMENT

LEARNING

A Thesis

by

ZACHARY WILLIAM WALTON

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Darbha Swaroop
Committee Members, Sivakumar Rathinam

Suman Chakravorty
Head of Department, Dennis O’Neal

May 2011

Major Subject: Mechanical Engineering

iii

ABSTRACT

Optimal Control of Perimeter Patrol Using Reinforcement Learning. (May 2011)

Zachary William Walton, B.S, Texas A&M University

Chair of Advisory Committee: Dr. Darbha Swaroop

Unmanned Aerial Vehicles (UAVs) are being used more frequently in surveillance

scenarios for both civilian and military applications. One such application addresses

a UAV patrolling a perimeter, where certain stations can receive alerts at random

intervals. Once the UAV arrives at an alert site it can take two actions:

1. Loiter and gain information about the site.

2. Move on around the perimeter.

The information that is gained is transmitted to an operator to allow him to classify

the alert. The information is a function of the amount of time the UAV is at the alert

site, also called the dwell time, and the maximum delay. The goal of the optimization

is to classify the alert so as to maximize the expected discounted information gained

by the UAV’s actions at a station about an alert. This optimization problem can

be readily solved using Dynamic Programming. Even though this approach gener-

ates feasible solutions, there are reasons to experiment with different approaches. A

complication for Dynamic Programming arises when the perimeter patrol problem is

expanded. This is that the number of states increases rapidly when one adds addi-

tional stations, nodes, or UAVs to the perimeter. This in effect greatly increases the

computation time making the determination of the solution intractable. The follow-

ing attempts to alleviate this problem by implementing a Reinforcement Learning

technique to obtain the optimal solution, more specifically Q-Learning. Reinforce-

ment Learning is a simulation-based version of Dynamic Programming and requires

iv

lesser information to compute sub-optimal solutions. The effectiveness of the policies

generated using Reinforcement Learning for the perimeter patrol problem have been

corroborated numerically in this thesis.

v

To My Family

vi

ACKNOWLEDGMENTS

Thank you to the Air Force Research Lab for providing the opportunity to do

this work. To Dr. Swaroop and Dr. Rathanam for always being there to answer any

questions I had, minor or great. To my family who although we have been through

our ups and downs we always love each other and find the good from our situations.

Last but not least to the great state of Texas and the proud traditions of Texas A&M

University.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Perimeter Patrol Problem 1

B. Dynamic Programming Solution and Limitations 3

C. Reinforcement Learning 3

II PERIMETER PATROL PROBLEM 5

A. Problem Set-Up . 6

1. States and Inputs . 6

2. Constraints . 7

3. Reward Structure . 8

B. Overall Goal . 10

III PROBLEM SOLUTION . 12

A. Perimeter Specifics . 12

B. Dynamic Programming . 13

1. Dynamic Programming Implementation 13

C. Q-learning . 14

1. Q-Learning Overview 14

2. Generalized Q-Learning Algorithm 15

IV ADAPTING Q-LEARNING TO THE PERIMETER PATROL

PROBLEM . 16

V RESULTS . 20

A. Varying Step Size Constant (A) 20

B. Varying Max Iteration (kmax) 23

VI CONCLUSION . 26

REFERENCES . 28

VITA . 29

viii

LIST OF TABLES

TABLE Page

I Operator Error Model Possibilities. 8

II Random Action Generation Example for UAV at a Station where

d(k) = 1. 17

ix

LIST OF FIGURES

FIGURE Page

1 Base Needing Protection . 1

2 Base Needing Protection with Imposed Perimeter 1

3 Information Gained vs. Number of Loiters 10

4 Example of a Working Policy . 11

5 Perimeter Diagram Showing 15 Discretized Nodes and Four Sta-

tions Located at x1−4 = 1, 4, 8, 12 . 12

6 Number of Sequential Loiters with Varying Step Size Constant 21

7 Maximum Delay per Simulation with Varying Step Size Constant . . 22

8 Maximum Delay per Simulation with Varying Step Size Constant-

Expanded . 23

9 Number of Sequential Loiters with Varying Max Iteration 24

10 Maximum Delay per Simulation with Varying Max Iteration 25

11 Maximum Delay per Simulation with Varying Max Iteration-Expanded 25

1

CHAPTER I

INTRODUCTION

A. Perimeter Patrol Problem

Figure 1 displays an example of a base that needs to be protected.

Fig. 1. Base Needing Protection

In order to do this a perimeter is placed around the base as shown in Figure 2.

Fig. 2. Base Needing Protection with Imposed Perimeter

The journal model is IEEE Transactions on Automatic Control.

2

The goal is to protect the assets inside the perimeter from possible incursions. These

incursions can be either a threat or a nuisance. A threat is something that wishes to

do harm to the assets inside the perimeter. A nuisance is something that means to do

no harm. Nuisances dominate the problem since most of the time the incursion will

be an animal or something harmless crossing the perimeter rather than a real threat.

Unattended Ground Sensors (UGS) are deployed on the perimeter. Meanwhile, a

collection of UAVs patrol the perimeter. If there is an incursion, an alert is generated

at that spot on the perimeter by a UGS. A UAV then proceeds to this spot on the

perimeter to service the alert. The UAV has surveillance equipment and streams

video from the alert site to a remotely located operator. The operator’s job is to

accurately classify if the incursion is a threat or a nuisance.

The operator is modeled as a non-ideal sensor or classifier. A sensor is charac-

terized usually by missed detections and false alarms. A missed detection is when

the operator classifies an incursion as a nuisance when it is actually a threat. A false

alarm is when the operator classifies an incursion as a threat when it is actually a

nuisance. Since nuisances dominate the problem it is hoped to reduce the false alarm

rate through the use of UAVs in the perimeter patrol system. To judge the effec-

tiveness of the operator as a classifier an operator error model is constructed. This

operator error model consists of two probabilities. The first is the probability that

the operator correctly classifies an incursion as a threat when it is actually a threat.

The second is the probability that the operator correctly classifies an incursion as

a nuisance when it actually is a nuisance. These probabilities are a function of the

amount of time the UAV has spent at the alert site streaming video.

Ideally, the UAV would want to stay at the alert site indefinitely thus increasing

the probability that the operator correctly classifies the incursion, thereby lowering

the false alarm rate. However, while the UAV is at the alert site streaming video there

3

could be alerts on the perimeter that have not yet been attended to. These incursions

must also be classified within an adequate amount of time for the information gathered

to be relevant. For this reason, a penalty associated with unattended alerts is put in

place. The goal is to decide whether a UAV must loiter at an alert site for the next

interval of time or traverse the perimeter to the next alert site. The decision should

give the operator enough information from the alert site to classify the incursion and

service unattended alerts in a reasonable amount of time. To simplify the problem we

assume that the incursions can only occur at certain areas on the perimeter (which

we also refer to as stations). The incursions will be modeled as a random process,

more specific a Poisson process, with known average time between incursions.

B. Dynamic Programming Solution and Limitations

The perimeter patrol problem was solved using a Stochastic Dynamic Programming

(SDP) methodology [1]. The result was an optimal policy for the UAV to take,

meaning the action a UAV should take depending on a current state and a stochastic

input. Though the SDP worked well, generated an optimal solution and passed a

flight test, the limitations of this methodology still lays reason to experiment with

other approaches. The most notable limitation is having to construct a mathematical

model.

C. Reinforcement Learning

Reinforcement Learning is a simulation-based version of Dynamic Programming [2].

Reinforcement Learning does not seem to require the probability (state transition)

matrix but instead computes them empirically. In this sense, it trades lack of knowl-

edge about the model with additional off-line computational effort. This method

4

also claims to make complex problems with larger state and action spaces tractable

by finding the expectation of random variables empirically rather than analytically.

Using the Dynamic Programming solution as a baseline, a Reinforcement Learning

technique can be implemented and compared. The hope is that generalizations can

be made to the perimeter patrol problem without having to construct a mathematical

model. The specific Reinforcement Learning technique that was used in this thesis is

Q-Learning.

5

CHAPTER II

PERIMETER PATROL PROBLEM

Many surveillance scenarios for UAVs face the problem of how best to allocate the

UAVs’ resources. These problems can sometime be solved using a stochastic optimiza-

tion controller. A previous construction of a stochastic control optimization problem

is detailed for the COUNTER scenario [3]. In this scenario a team of UAVs, one

SAV and four MAVs, loiter over an urban area while streaming video is relayed to an

operator. Once objects of interest are chosen by the operator to view more closely,

the four MAVs are assigned a tour from a task assignment algorithm. The objects

of interest are then inspected by the MAVs to allow the operator a chance to see

any distinguishing features. Obviously the task of monitoring multiple MAV video

streams while trying to discern any useable information is too much for any human

operator to handle. Due to this a stochastic controller was created to choose when a

MAV should revisit in an attempt to gain more information [4, 5]. This approach in-

troduces an operator error model, also referred to as a confusion matrix. In sequence,

the MAVs view the objects [6]. An information gain analysis is performed by the

controller given the operator’s observations. This analysis gives an expected reward

for an MAV’s revisit, therefore attempting to maximize the expected information the

MAV can gain.

Stochastic control optimization has been greatly used in perimeter patrol prob-

lems [1]. Here a UAV and an Unattended Ground Sensor (UGS) are used. The

UGS will generate an alarm if a disturbance is detected while the UAV patrols the

perimeter. In the case of an alarm, the operator can then assign a UAV to assess

the area. The goal is to find out the number of times the UAV should loiter before

it can be reasonably assumed that a false alarm has occurred. One approach is to

6

have the UAV fly over each UGS at a regular interval. The goal is to minimize the

expected response time to an alarm by continuously being on patrol. An originally

abandoned method was to consider the max response time Quality of Service (QoS).

This idea was abandoned due to the intractability that arose when alert queues were

expanded. The final approach was to put a weight on the expected information gained

by a loitering UAV versus the expected wait time of the alerts in the queue. A key

component to the problem is the alert rate. Nuisance trips can dominate the problem

as they occur more often than actual incursions. Serving these nuisances quickly will

act to preserve resources.

A. Problem Set-Up

The Perimeter Patrol Problem is set up as follows [1]. The perimeter is uniformly

discretized into N segments. There are n number of UGS, or stations. These are

the places on the perimeter where incursions can happen. Time is also discretized as

t = [0, 1, . . . , k] with each discretization of time corresponding to F minutes. Alerts

arrive according to a Poisson process with a known average time between any two

incursions. There is a probability of one and a probability of zero incursions happening

in time interval F . All incursions in the interval F are lumped into one big incursion

so only one incursion can take place on the perimeter during a time step. The problem

will be modeled as a Markov Decision Process.

1. States and Inputs

The states are described next. The first is x(k) which is the position of the UAV

at a discrete time k. Si(k) is the binary status of an alert at a station where i =

[1, 2, . . . , n]. This state takes a value of 1 if an alert has yet to be serviced at the

7

ith station and 0 otherwise. The number of times the UAV has opted to loiter at an

alert site is denoted d(k). The delay time is simply d(k) ∗ F . The amount of time

in minutes an alert has been active at a station without being serviced is the delay

time, τi(k). The outcome state is the length of the queue. This is denoted q(k) and

is the sum of the binary status of alerts at the stations at a given time k.

There are two inputs to the problem. The first is the control input u(k). This is

a binary decision for the UAV to either patrol or loiter. If the UAV opts to patrol it

moves one time unit in its direction of travel and u(k) = 0. If loitering is chosen the

UAV stays at a station for one time unit to inspect an alert site and u(k) = 1. The

second input is the stochastic input Yi(k). This is the random variable that indicates

whether an alert has arrived at the ith station at the discrete time k.

The following are the state update equations.

x(k + 1) = (x(k) + (1− u(k)))modN, (2.1)

Si(k + 1) = (1− δ(x(k)− xi)u(k))max{Yi(k), Si(k)}, i = 1, 2, . . . , n, (2.2)

d(k + 1) = [d(k) + 1]u(k), (2.3)

τi(k + 1) = (τi(k) + F)Ski , i = 1, 2, . . . , n (2.4)

2. Constraints

To keep the problem tractable the following constraints are imposed. The first states

there is a maximum amount of loiters the UAV can opt to take at a station with an

alert:

d(k) ≤ dmax

8

The next constraint states that the decision to patrol or loiter is binary and u(k) can

only equal 1 when the UAV is at a station:

u(k) ≤
n∑
i=1

δ(x(k)− xi), u(k) ∈ 0, 1

The final constraint is a multiple part decision constraint:

u(k) ≤
n∑
i=1

δ(x(k)− xi)Si(k) + d(k)

This constraint first states that the UAV must patrol if it is not at a station. If

the UAV is at a station and its corresponding status is zero two things can happen.

If the UAV has loitered at least one time it can choose to loiter or patrol. If the

UAV has not loitered at least once it must patrol. A constraint that must be relaxed

is to constrain the maximum delay time to alerts as this would make the problem

intractable.

3. Reward Structure

Previous work has introduced an operator error model to judge how effective the

operator is as a sensor/classifier [4, 5]. The operator error model can be classified by

the following four possibilities as shown in Table I.

Table I. Operator Error Model Possibilities.

Operator’s Classification Actual Incursion Type Description
Threat Threat Correct Classification
Threat Nuisance False Alarm

Nuisance Threat Missed Detection
Nuisance Nuisance Correct Classification

The model is a function of the number of loiters the UAV has taken and is

presented below:

PTR(d) = a+ b(1− e−µ1d), (2.5)

9

PFTR(d) = c+ g(1− e−µ2d) (2.6)

Here PTR, and PFTR represent the probability that an alert was correctly characterized

as a threat and a nuisance, respectively. d is the number of loiters the UAV has taken

and a, b, µ1, c, g and µ2 characterize the performance of the operator as a sensor.

In this formulation a = c = 0.5 corresponds to an operator who can not distinguish

between a threat or a nuisance without seeing video footage of the alert. This means

the operator is unbiased when he has not seen any streaming video from the UAV.

Also, b = g = 0.45 and µ1 = µ2 = 1.

Using the operator error model the information gained by an operator is a func-

tion of p and d(k). p is the a priori probability of target density and is set to p = 0.01.

This corresponds to a 1
100

probability of an incursion being an actual threat. Using

PTR, p and PFTR the information gained by an operator is as follows:

I = pPTRlog
PTR

pPTR + (1− p)(1− PFTR)
+

p(1− PTR)log
1− PTR

p(1− PTR) + (1− p)PFTR
+

(1− p)(1− PFTR)log
1− PFTR

pPTR + (1− p)(1− PFTR)
+

(1− p)PFTRlog
PFTR

p(1− PTR) + (1− p)PFTR
.

(2.7)

10

Fig. 3. Information Gained vs. Number of Loiters

The information gained as a function of number of loiters is shown in Figure 3.

Though the amount of information the UAV gains increases with the amount of loi-

ters the rate of increase in information gained decreases. This means that the amount

of future information eventually levels off with a large number of loiters. If the UAV

loiters a large number of times the probability that the operator will correctly clas-

sify the incursion will be very large thus reducing the false alarm rates. As stated

previously, a penalty associated with unattended alerts will also be enforced.

B. Overall Goal

The objective function is to maximize the expected discounted information gained by

the UAV’s actions at a station about an alert. The goal is to find an optimal policy

for the UAV to follow.

11

Fig. 4. Example of a Working Policy

Figure 4 shows the real time implementation structure of the policy. This example

is of a perimeter with four stations. It displays the decision the UAV should employ

depending on the stochastic input. Here the UAV is at the first station and has al-

ready completed three loiters. There are no alerts in the queue, meaning the values

for S1 − S4 are zero. If no alert comes in or an alert arrives at the first station the

UAV will choose u(k) = 1 and continue to loiter. If an alert arrives at stations two,

three or four the UAV will choose u(k) = 0 and patrol.

12

CHAPTER III

PROBLEM SOLUTION

A. Perimeter Specifics

To implement the Dynamic Programming methodology and Q-learning algorithm the

perimeter problem must first be characterized . The perimeter is discretized into 15

segments with 4 stations. These stations are located at x1−4 = [1, 4, 8, 12]. A layout

of the perimeter is shown in Figure 5.

Fig. 5. Perimeter Diagram Showing 15 Discretized Nodes and Four Stations Located

at x1−4 = 1, 4, 8, 12

The UAV traverses the perimeter in a clockwise direction. The variable F is set to 2,

meaning each time-step is 2 minutes. The alert rate is α = 1
60

, corresponding to an

alert arriving every two perimeter orbits on average. All constraints presented earlier

are adhered to. The maximum number of times a UAV can opt for loitering is set to

five, dmax=5.

13

B. Dynamic Programming

The following is the objective function:

V (x(0), d(0), S(0)) = maxEY

[
∞∑
k

λk[∆I(x(k), d(k), u(k))

−
n∑
i=1

βi(x(k), d(k), u(k), Si(k))Si(k)]

] (3.1)

∆I(x(k), d(k), u(k)) is the information gained by taking action u(k). The penalty

associated with unattended alerts on the perimeter is βi(x(k), d(k), u(k), Si(k))Si(k),

where βi is a knob. Using a Poisson process Yi(k) is a stochastic input with a proba-

bility e−αF that a value of zero is taken and a probability (1− e−αF) that a non-zero

value is taken. The expectation is taken over Yi(k), k ≥ 0. The discount factor is

λ ∈ [0, 1), thus allowing for convergence.

1. Dynamic Programming Implementation

Using the steady state dynamic programming equation, the conditional value function

as a function of the initial state, X(0) = (x(0), d(0), S(0)) , can be computed.

V (X0|Y0) = max
u∈Uallowable

{∆I(X0, Y0, u) + λV (X1(X0, Y0, u))}, (3.2)

Here Uallowable(k) is the set of allowable control inputs u(k) that satisfy the constraints.

When u is chosen as the input at k = 0, X1(X0, Y0, u) is the state obtained at k = 1.

The initial condition for the state is X0 and Y0 is the random input.

The following shows how to calculate the value function V (X0):

V (X0) = e−αFV (X0|Y = 0) + (1− e−αF)
n∑
j=1

fjV (X0|Yj(0) = 1)] (3.3)

14

Here fj is the probability that an alert has come in at the jth station. The following

”value iterations” are used to solve for the value function V .

Vk(X0|Y0) = max
u∈Uallowable

{∆I(X0, Y0, u) + λVk(X1(X0, Y0, u))}, (3.4)

Vk+1(X0) = e−αFVk(X0|Y = 0) + (1− e−αF)
n∑
j=1

fjVk(X0|Yj(0) = 1)]. (3.5)

Once the value function is computed, the optimal decision can be computed as follows:

u∗ = argmaxu∈Uallowable
{∆I(X0, Y0, u) + λV (X1(X0, Y0, u))} (3.6)

u∗ is then broken up into a decision table for real time implementation in the form of

Figure 4. The Dynamic Programming method was performed in Matlab.

C. Q-learning

1. Q-Learning Overview

The specific Reinforcement Learning algorithm that will be implemented is Q-Learning.

This algorithm finds an optimal policy by keeping track of two variables, Q and W ,

while the problem is simulated. The simulation continues until a maximum iteration

limit is reached or the Q values converge. The Q value is the learned action-value

function meaning the effect an action has on a state in the long run. A state’s Q

values change each time an action is used in that state. There are m number of Q

values for each state, m being the number of actions. W is an incremental counter

that keeps track of how many times a particular state-action has been visited. This

variable along with the step size constant, A, is used to calculate the learning rate,

denoted αQ, which influences the rate of learning and allows for convergence. There

are also m number of W values for each state. The mathematics of the algorithm

15

will be discussed further in a later section. Discussed now will be the generalized

Q-learning algorithm.

2. Generalized Q-Learning Algorithm

We will classify the state space as S and the action space as A(l) = {0, 1}. The

following are the steps involved in the algorithm [7]:

1: For all (l, u) where l ∈ S and u ∈ A(l)→ Set Q(l, u) and W (l, u) to 0.
2: Initialize k and set kmax.
3: Set A, the step size constant, to a positive number less than 1.
4: Start the system simulation at any arbitrary state.
5: Let the current state be i and select action a with a probability of 1

|A(i)| .

6: Simulate action a and let the next state be j.
7: Let r(i, a, j) be the immediate reward, determined by the simulator, earned in

the transition to state j from i under the influence of action a.
8: Increment W (i, a) by 1.
9: increment k by 1.
10: Calculate αQ = A

W (i,a)
.

11: Update Q(i, a) by the following,
Q(i, a)← (1− αQ)Q(i, a) + αQ[r(i, a, j) + λmax

b∈A(j)
Q(j, b)].

12: If k < kmax set i← j and go to Step 5. Otherwise go to Step 13.
13: For each l ∈ S, select

d(l) ∈ argmax
b∈A(l)

Q(l, b).

14: The policy generated by the algorithm is d̂. Stop.

Algorithm 1: Steps in Q-Learning

16

CHAPTER IV

ADAPTING Q-LEARNING TO THE PERIMETER PATROL PROBLEM

To illustrate how the Q-learning algorithm will be adapted to the perimeter patrol

problem one iteration of the algorithm will be discussed in detail. The simulator starts

at a random state and progresses from there. This is done by randomly generating an

ID number between one and the total number of states. For the characterized perime-

ter there are 400 states. A method is needed to find what state the corresponding ID

number refers to. The following equations with M(0) = 0 do this [1].

if d(k) = 0:

ID = (M(0)− 1)2n−1[2N + dmaxn] + (x(0)− 1)2n + dec2bin(Status(0)) + 1 (4.1)

otherwise:

ID = (M(0)−1)2n−1[2N+dmaxn]+N2n+(d−1)2n−1+dec2bin(Status(0))+1 (4.2)

The algorithm also requires an action to be taken at random. Sticking to the

algorithm, there are only two possible actions so the procedure would be to essentially

flip a coin and take the resulting action. Here heads is patrol and tails is loiter. This

leads to trouble however because Q-learning requires all of the states to be visited. If

the mentioned procedure is used the only way the algorithm would reach the states

where the UAV has loitered up to dmax times is if the action for loitering was randomly

chosen dmax times in a row. This event is very rare and poses a problem. The fix is to

allow the action to loiter, if this is the action generated, to be carried out for multiple

time steps in a row thus visiting these rare states. The new procedure would allow

the random action to be either to patrol or loiter up to dmax time steps. The resulting

action or sequence of actions are then performed in the simulator. This forces the

17

simulation to visit states that otherwise would have taken far more computation time

to reach. A check must however be performed to make sure the proposed random

action or sequence of actions do not violate any of the constraints. An example of

a possible scenario is displayed for clarity. The UAV is at a station and has already

loitered once. A random number is then generated from zero to one. Table II shows

what the action would be and for how many time steps it is to be carried out.

Table II. Random Action Generation Example for UAV at a Station where d(k) = 1.

Condition Action # Time-Steps
rand< 0.2 u(k) = 1 1

0.2 ≤ rand < 0.4 u(k) = 1 2
0.4 ≤ rand < 0.6 u(k) = 1 3
0.6 ≤ rand < 0.8 u(k) = 1 4

rand ≥ 0.8 u(k) = 0 N/A

From here the state and action is given to the simulator. The simulator is com-

prised of three parts. The first part is updating the state. This is done using Equations

2.1-2.3 and the generated u(k). The second part is to generate the stochastic input,

or the alerts coming in at each time step. This is done using a Poisson process with

a known average time between alerts of 1
60

as stated earlier. The final item in the

simulator is the reward function which is displayed below [1]:

R = ∆I− βq(k) (4.3)

Again ∆I is the information gained by the UAV loitering, q(k) is the queue length

and β is a knob used to give weight to the alerts not yet serviced.

Upon each subsequent state being visited through the chosen actions the cor-

responding Q and W values are updated accordingly. Since there are two control

inputs and five stochastic inputs there are ten Q values and ten W values for each

state. Once the actions have been simulated the resulting state is set to the current

18

state and the procedure continues at choosing a random action. The simulator is set

to run for thirty time steps, or two full orbits. At the end of the thirty time steps

one iteration of the algorithm has passed and the algorithm starts from generating

a random state. The process continues until kmax is reached. If by the end of the

algorithm there are states that have not been visited then some Q’s will have no

value. For these occurrences a random decision will be chosen.

The total number of time steps in the simulator will be denoted by NS and the

state of the system will be X(k). A step by step procedure for this implementation

is displayed below:

The algorithm was implemented in MATLAB.

19

1: Set A, kmax,λ,NS .

2: Initialize Perimeter Patrol Parameters

3: For all (l, u, y) where l ∈ S, u ∈ A(l) and y ∈ Y (l)→ Set Q(l, u, y) and W (l, u, y)

to 0.

4: for k = 1 to kmax do

5: Generate random ID

6: Use equation 4.1-4.2 to obtain X(k) from ID.

7: for i = 1 to NS do

8: Generate random number from 0 to 1.

9: Determine sequence of actions, AS.

10: if Sequence of actions violate constraints then

11: Go to Step 8.

12: end if

13: for j = 1 to length(AS) do

14: Determine Yi(k)

15: Obatain X(k + 1) using equations 2.1-2.3.

16: Obtain reward for progressing to X(k + 1) using 4.3.

17: Increment W (X(k), u(k), Y (k)) by 1

18: Calculate αQ = A
W (X(k),u(k),Y (k))

19: Update Q(X(k), u(k), Y (k)) by the following,

Q(X(k), u(k), Y (k)) ← (1 − αQ)Q(X(k), u(k), Y (k)) +

αQ[r(X(k), u(k), X(k + 1)) + λmax
u∈A(j)

Q(X(k + 1), u(k), Y (k))].

20: Set X(k) = X(k + 1).

21: end for

22: end for

23: end for

24: For each l ∈ S, select

d(l) ∈ argmax
u∈A(l)

Q(l, u, y).

25: The policy generated by the algorithm is d̂. Stop.

Algorithm 2: Adapted Q-Learning Algorithm for Perimeter Patrol Problem

20

CHAPTER V

RESULTS

Once the policy was solved for using Q-Learning it was tested against the policy ob-

tained by Dynamic Programming. This was done by generating multiple policies in

Q-Learning and simulating them alongside the policy from Dynamic Programming.

This way the polices will have the same alerts coming in and create an ideal compar-

ison. The simulator was run 1000 times. The discount factor for both Q-Learning

and Dynamic Programming was set to λ = 0.9. The number of sequential loiters the

UAV opted to take along with the maximum delays for each simulator iteration were

then plotted in a histogram fashion. This will give a metric to how fast the UAV was

able to service the alerts as well as how much information was gained.

A. Varying Step Size Constant (A)

The first set of policies were generated with different step size constants. The variable

kmax was set to 150000. The variable A was set to four different values 0.1, 0.3, 0.6

and 0.9.

21

Fig. 6. Number of Sequential Loiters with Varying Step Size Constant

Figure 6 shows that as the step size constant increases the UAV dwells more thus

gaining more information. Since the alert rate is set to one every thirty time steps it is

a rare occurrence for more than one alert to be generated per simulation. This means

that loitering five times should happen the majority of the time. The policy given by

Dynamic Programming shows this trend. For the policies generated by Q-Learning

as the step size constant was increased the amount of sequential loiters started to

match that of the Dynnamic Programming policy’s. This makes sense since the step

size rate effects the learning rate and the higher the learning rate the more weight

the optimization gives to the new reward from the simulation thus increasing the

learning. From now on the step size constant will be set to 0.9.

22

Fig. 7. Maximum Delay per Simulation with Varying Step Size Constant

Figure 7 shows the maximum delays for these policies. The majority of max delays

present during the simulation are 30 minutes and below and all policies have gener-

ally the same amount. None of the policies have a maximum delay of greater than 45

minutes. The majority of alerts were serviced relatively quickly. This again is due to

only one or no alert being generated for the majority of the simulations. However, in

some instances more than one alert is generated increasing the max delays.

Figure 8 shows the area of Figure 7 where these multiple alerts per simulation take

place. The policy generated by Dynamic Programming has the most of these max-

imum delay occurrences. The policy generated with a step size constant of 0.9 has

the fewest.

23

Fig. 8. Maximum Delay per Simulation with Varying Step Size Constant-Expanded

B. Varying Max Iteration (kmax)

The next set of policies were generated with different kmax values. This value was set

to 50, 000, 150, 000, 250, 000 and 500, 000.

Figure 9 shows as kmax is increased the number of sequential loiters opted by the

UAV starts to match up with the results from the Dynamic Programming policy.

This is until around 100000 iterations. Once this threshold is reached there is min-

imal improvement to matching the Dynamic Programming policy. Next is the plot

for maximum delays.

24

Fig. 9. Number of Sequential Loiters with Varying Max Iteration

Figure 10 shows similar happenings to that of Figure 7 with low maximum delays

for the majority of simulation runs. The few times where multiple alerts were gen-

erated creating a large maximum delay are shown in more detail in the following plot.

Figure 11 shows that when Figure 10 is expanded to show the region with large

maximum delays the policy given by Dynamic Programming has the most occur-

rences. There is little discrepancy between the policies generated by Q-Learning in

this region.

25

Fig. 10. Maximum Delay per Simulation with Varying Max Iteration

Fig. 11. Maximum Delay per Simulation with Varying Max Iteration-Expanded

26

CHAPTER VI

CONCLUSION

Upon completing the Q-Learning algorithm many things came to light. The first

was that the Q-learning policies that were generated never fully matched that of the

Dynamic Programming construction. One reason could be the way the algorithm

was implemented. When choosing the random action the method used was to choose

not just whether to patrol or loiter but how many times to loiter as well. During

these forced loiters, information when a stochastic input is generated could be lost.

This method does however have the advantage of trying to reach rare states. It is

because of this that the forced loiter method was chosen. Another source of error

from the Dynamic Programming policy could result from a rare state being visited

when the policies are tested. If this state was not visited in the algorithm and a

decision was randomly chosen as stated in the implementation the decision might not

be the optimal one. A final discrepancy arises from whether to have the simulator in

the algorithm as a finite or infinite horizon. The simulator was designed to run for

thirty time steps but to strictly adhere to the Q-Learning algorithm the simulator

would have no limit on it and run indefinitely. The problem that arises is again rare

states would only get visited if the algorithm was run for a very long time. To make

the implementation feasible the finite horizon method was used. This could lead to

some sources of error.

It was found that the step size constant that yielded results similar to the Dy-

namic Programming implementation was A=0.9. This is because the step size con-

stant is directly related to the learning rate which determines how important new

information is. The number of implementations for the algorithm to run was found

to be kmax > 100000 to start resembling the results generated by the Dynamic Pro-

27

gramming implementation. In order for these two methods to match perfectly a very

large amount of iterations would need to be taken.

Overall the decision of which implementation strategy performed the best comes

down to computation time. The computation time for Q-Learning was on order of

three times more than that of Dynamic Programming for A=0.09 and kmax = 150000,

increasing when kmax increases. The reason is during the simulation stage of the Q-

Learning algorithm the state must be kept tract of. The initial random state must

also be found. This takes a tremendous amount of computation time.

28

REFERENCES

[1] AIAA Guidance, Navigation and Control Conference, Optimal Perimeter Patrol

Alert Servicing with Poisson Arrival Rate, Chicago, IL, August 2009.

[2] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT Press,

Cambridge, MA, 1998.

[3] D. Gross, S. Rasmussen, P. R. Chandler, and G. Feitshans, “Cooperative oper-

ations in urban terrain (counter),” 2006 SPIE Defense & Security Symposium,

April 2006.

[4] M. Pachter, P. Chandler, and S. Darbha, “Optimal mav operations in an uncertain

environment,” International Journal of Robust and Nonlinear Control, vol. 18,

pp. 248–262, 2008.

[5] M. Pachter, P. R. Chandler, and S. Darbha, “Optimal control of an atr mod-

ule equipped mav-human operator team,” in Lecture notes in Economics and

Mathematical Systems, vol. 588. Springer:Berlin, 2007.

[6] C. Derman, G. J. Lieberman, and S. M. Ross, “A sequential stochastic assignment

problem,” Management Science, vol. 18, no. 7, pp. 348–355, 1972.

[7] A. Gosavi, Simulation-Based Optimization: Parametric Optimization Techniques

and Reinforcement Learning, Kluwer Academic, Norwell, MA, 2003.

29

VITA

Zachary William Walton received his Bachelor’s degree in Mechanical Engineer-

ing from Texas A&M University in the summer of 2008. He went on to work for

Caterpillar Inc. before returning to Texas A&M University for graduate school in

2009. During the summer he was a Graduate Intern at the Air Force Research Lab

in Dayton, OH. He was also a Teaching Assistant under Dr. Dara Childs for one

semester in Dynamics and Vibrations.

Zach may be reached by writing to Zach Walton; Texas A&M University—

Mechanical Engineering; Mail Stop 3123; College Station TX 77845.

