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ABSTRACT 

 

Modeling Plot-Level Biomass and Volume Using 

Airborne and Terrestrial Lidar Measurements. (May 2011) 

Ryan D. Sheridan, B.S., University of Idaho 

Chair of Advisory Committee: Dr. Sorin Popescu 

 

 The United States Forest Service (USFS) Forest Inventory and Analysis (FIA) 

program provides a diverse selection of data used to assess the status of the nation’s 

forested areas using sample locations dispersed throughout the country. Airborne, and 

more recently, terrestrial lidar (light detection and ranging) systems are capable of 

producing accurate measurements of individual tree dimensions and also possess the 

ability to characterize three-dimensional vertical forest structure. This study investigates 

the potential of airborne and terrestrial scanning lidar systems for modeling forest 

volume and aboveground biomass on FIA subplots in the Malheur National Forest, 

eastern Oregon. A methodology for the creation of five airborne lidar metric sets (four 

point cloud-based and one individual tree based) and four terrestrial lidar metric sets 

(three height-based and one distance-based) is presented.  

 Metrics were compared to estimates of subplot aboveground biomass and gross 

volume derived from FIA data using national and regional allometric equations 

respectively.  Simple linear regression models from the airborne lidar data accounted for 
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15% of the variability in subplot biomass and 14% of the variability in subplot volume, 

while multiple linear regression models increased these amounts to 29% and 25%, 

respectively. When subplot estimates of biophysical parameters were scaled to the plot-

level and compared with plot-level lidar metrics, simple linear regression models were 

able to account for 60 % of the variability in biomass and 71% of the variation in 

volume. Terrestrial lidar metrics produced moderate results with simple linear regression 

models accounting for 41 % of the variability in biomass and 46% of the variability in 

volume, with multiple linear regression models accounting for 71% and 84%, 

respectively. Results show that: (1) larger plot sizes help to mitigate errors and produce 

better models; and (2) a combination of height-based and distance-based terrestrial lidar 

metrics has the potential to estimate biomass and volume on FIA subplots. 
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NOMENCLATURE 

 

AGL Above ground level 

ALS Airborne laser scanning 

CHM  Canopy height model 

DBH Diameter at breast height 

DEM Digital elevation model 

DSM Digital surface model 

FIA Forest inventory and analysis 

FS Forest service 

GPS Global positioning system 

Lidar Light detection and ranging 

QTM Quick Terrain Modeler 

TLS Terrestrial laser scanning 

USDA United States Department of Agriculture 

UTM  Universal Transverse Mercator 

VIF Variance inflation factor 

WAAS   Wide area augmentation system 
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1 INTRODUCTION AND LITERATURE REVIEW 

 

 Light detection and ranging (lidar) is a laser-based, active remote sensing system, 

which collects ranging data utilizing the known speed of light and information about the 

flight time of a laser pulse (Lim et al., 2003). In this context, flight time refers to the 

time it takes for a given laser pulse to travel from a system, reflect off of an object, and 

return back to the system. A wide variety of lidar systems currently exist, and data has 

been successfully collected utilizing systems mounted to space-borne, aerial, and 

terrestrial (tripods or vehicle-based) platforms. 

 Over the past several decades the use of lidar remote sensing data in forestry has 

seen steady growth. The increased use of lidar systems to acquire data over forested 

areas can be attributed to their ability to cover extents of local or regional scales and 

accurately quantify the three-dimensional vertical structure of the forest. Previous 

studies have demonstrated the usefulness of lidar for: (1) Forest measurements (Nilsson, 

1996; Næsset, 1997a; Næsset, 1997b; Næsset and Bjerknes, 2001; Næsset and Okland, 

2002; Popescu et al., 2002; Holmgren et al., 2003); (2) habitat analysis  (Hyde et al., 

2006); (3) estimation of forest biophysical parameters  (Cannell, 1984; Nelson et al., 

1988; Lefsky et al., 1999;  Holmgren, 2004; Lim and Treitz, 2004; Patenaude et al., 

2004; Popescu, 2007); (4) change detection (yu et al., 2004); and (5) estimation of wild 

land fire parameters (Hall et al., 2005; Mutlu et al. 2008a; Mutlut et al., 2008b). 

____________ 
This thesis follows the style of Remote Sensing of Environment. 
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 It should be noted that the ability to acquire three-dimensional data is not unique 

to lidar remote sensing systems. This type of data can also be obtained by radar systems 

(another active remote sensing system) or through the use of photogrammetric 

techniques in conjunction with stereoscopic image pairs collected by aerial or satellite 

systems. A variety of studies have provided comparison of lidar and radar forest 

measurements. For example, Sexton et al. (2009) used linear regression to examine lidar 

canopy height measurements and radar canopy height measurements and concluded that 

lidar provided more precise results (R2 = 0.83). Hyde et al. (2007) used lidar, synthetic 

aperture radar (SAR), and interferometric synthetic aperture radar (InSAR) to 

individually and synergistically predict aboveground biomass for a southwestern 

ponderosa pine forest, and found, through individual comparison, that lidar predicted 

aboveground biomass best, accounting for almost 84% of the variability. 

 Airborne lidar systems, also known as airborne laser scanners (ALS) can be 

broadly grouped into two categories: discrete return and full waveform digitizers. These 

categories can be further specified by the type of system (profiling or scanning), laser 

footprint size, and the number of recorded returns for each laser pulse. Previous lidar 

studies have demonstrated that both large-footprint waveform and small-footprint 

discrete return lidar data, can be used to derive measurements such as tree height and 

crown dimensions at the stand level (Næsset and Bjerknes, 2001; Hall et al., 2005), plot 

level (Holmgren et al., 2003; Lim and Treitz, 2004; Popescu et al., 2004), or individual 

tree level (Coops et al., 2004; Yu et al., 2004; Holmgren and Persson, 2004; Roberts et 

al., 2005; Chen et al., 2006; Falkowski et al. 2006; Popescu, 2007). These direct lidar 
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measurements can then be used in conjunction with known allometric relationships or 

statistical analysis procedures to estimate parameters such as diameter at breast height 

(DBH), aboveground biomass, or volume. 

 Lidar research for forestry applications has largely focused on the development 

of methodologies to employ lidar data as a surrogate for various ground measurements. 

Airborne lidar data can be collected over larger areas with a reduced amount of effort 

when compared to traditional field measurements. However, the high level of 

complexity present within many forests (e.g. large number of species and variable 

canopy densities) can complicate the retrieval of such measurements. In Norway, 

researches have developed and implemented methods to produce measurements of 

interest for stand-based forest inventories, and were able to account for 84 to 89% of the 

variance when predicting stand volume (Næsset, 2007). Other stand-based variables of 

interest investigated by Scandinavian researchers include: mean tree height, dominant 

height, mean diameter, stem number, stand basal area, and stand volume (for a list of 

Scandinavian studies and a basic summary of their results, see Næsset, 2007).  

 Methods used to identify individual trees commonly begin using filters to detect 

local maxima, which are assumed to represent individual tree crown peaks, on a canopy 

height model (CHM). A CHM is a regular gridded surface representation of the forest 

canopy. This model is created by subtracting a digital elevation model (DEM), a gridded 

representation of the bare Earth’s surface created from last return lidar data, from the 

Digital Surface Model (DSM), a gridded surface created using all of the lidar point cloud 
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data. After locating the individual trees on the CHM, tree crown measurements can be 

produced for each identified tree.  

 A number of methods for identifying local maximum in CHMs exist. Currently, 

local maxima have been identified in CHMs using both variable (Popescu et al., 2002; 

Popescu et al., 2004) and fixed (McCombs et al., 2003) filter window sizes. Popescu et 

al. (2002) identified tree crown peaks using a variable search window, where the 

window size was based on a relationship between tree height and crown width 

established from field measurements. McCombs et al. (2003) used a focal search 

function, based on a fixed and predetermined neighborhood size, to identify individual 

tree crown peaks in a Loblolly pine plantation. Both studies mentioned above assumed 

that the pixel at the center of the neighborhood was a crown peak if it was higher than all 

pixels within the search neighborhood. The height of each tree is the height value of the 

identified maxima pixel corresponding to the tree.  

 After identifying individual trees in the CHM, crown measurements can be made. 

A variety of methods can be used to obtain these measurements (e.g. Hyyppä et al., 

2001; Popescu et al., 2003; Roberts et al., 2005; Falkowski et al., 2006; Qi et al., 2006). 

A Study by Hyyppä et al. (2001) used an image segmentation process where local 

maxima were defined as seed points, serving as inputs for an image-labeling algorithm 

along with a number of required user-defined variables set through trial and error 

procedures. Popescu et al. (2003) derived tree crown widths by calculating the mean of 

distances measured between two local minima identified on a forth degree polynomial 

fitted to two separate orthogonal canopy profiles of a tree. While Roberts et al. (2005) 
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estimated crown diameter by recording the distance from each identified tree crown peak 

to minima identified in 3.4 m linear search array in each cardinal direction from a tree 

crown peak, averaging the four radii measurements, and multiplying them by two. Qi et 

al. (2006) proposed a marker-controlled watershed segmentation method, where a 

CHM’s (or other similar model) height values are inverted and flooded from the bottom 

up as “dams” are automatically constructed to keep water from neighboring areas 

separate, effectively separating neighboring tree canopies. 

 As illustrated above, the individual tree approach is capable of directly 

measuring tree height and canopy dimensions. However, it must be mentioned that tree 

height is often underestimated by airborne lidar systems. This underestimation is 

commonly attributed to the low probability of an individual laser pulse striking the apex 

of a tree. High canopy densities can result in the occlusion of laser pulses, and reduce the 

ability to create accurate DEMs (Hirata et al., 2009). Additionally, individual tree 

detection methods also commonly commit errors of commission and omission, and have 

been shown to have lower accuracy when used in forests with complex and dense 

canopy conditions (Falkowski et al., 2008).  

 Since ALS systems collect data looking down on the forest, forest measurements 

other than tree height or crown dimensions (e.g. diameter at breast height, biomass) must 

be indirectly estimated. Popescu 2007, used regression analysis to estimate the DBH of 

individual trees, using the lidar-derived height and crown diameter measurements 

provided by TreeVaW (a individual tree detection software package) as independent 

variables in a regression analysis. Individual tree detection algorithms implemented in 



 6 

TreeVaW are described in Popescu and Wynne (2004). In traditional forestry, biomass 

estimations require destructive sampling, or the use of species-specific (Termikaelian 

and Korzukhin, 1997), regional, or national (Jenkins et al., 2003) allometric equations. 

Allometric equations can also be applied to lidar data, if the required information is 

available. Popescu (2007) outlines a method for obtaining individual tree biomass 

estimates using allometric equations and estimates of individual tree DBH from ALS 

data.  A number of other studies have also predicted biomass using lidar data (Lefsky et 

al., 1999; Patenaude et al., 2004; Hyde et al., 2007; Zhao et al., 2009). 

 Measurements from terrestrial laser scanners (TLS) have been used for a 

relatively short time, starting in late 1990s. TLS systems are mounted on a terrestrial-

based platform (e.g. tripod, motor vehicle) and in most cases require a portable computer 

and several large batteries or a portable generator to operate. Systems such as these are 

capable of acquiring and merging scans from multiple locations through the use of at 

least two stationary targets. This process requires more time scanning an area, but has 

the potential to provide a more complete picture of a study area.  

 A number of studies have provided methodologies for deriving forest 

measurements using data collected by TLS systems. Hopkinson et al. (2004) isolated 

individual trees for height and DBH measurement in merged lidar scans with two 

distinct forest types. Thies et al. (2004) merged lidar scenes, and produced detailed stem 

measurements of several large-diameter deciduous trees. A method for automatically 

identifying individual trees, measuring tree height, and tree DBH is presented in Maas et 

al. (2008). Henning and Radtke (2006) developed methods for identifying trees scanned 
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with a TLS system and measuring stem diameter. Their results showed the average error 

between the lidar-derived diameter estimates and caliper measurements, for sections 

below the base of live crown, to be less than 1 cm. Methods of deriving other forest 

measurements, such as aboveground biomass, have also been explored. Lefsky and 

McHale (2008) used high-density point cloud data for multiple urban trees with complex 

architecture in an attempt to develop allometric relationships for predicting species tree 

volume.  

 In the United States, the Forest Service (USFS) Forest Inventory and Analysis 

(FIA) program provides a diverse selection of data used to assess the status of the 

nation’s forested areas. In the past, the FIA program used a periodic inventory system, 

where measurements on non-national forests were collected on a state-by-state basis in 

predetermined zones, and lead to inventory cycles of ranging from six to eighteen years 

(Gillespie, 1999). In 1998 legislation was passed (see the Agricultural Research, 

Extension, and Education Reform Act of 1998) that mandated the entire FIA program 

implement an annual inventory. This inventory method requires that the collection, 

analysis, and reporting of data at a state-level be completed every five years, meaning 

that under ideal conditions, 20% of plots in each state would be measured each year 

(Gillespie, 1999). The annualized FIA program allows for the collection of a variety of 

parameters of interest and consists of three phases: (1) remote sensing to identify 

forested and non-forested areas; (2) field samples located at intervals of about 1 plot 

every 6,000 acres, where forested sample areas are visited by field crews to collect 

ground measurements and non-forested areas are visited to quantify the frequency of 
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variables such as land use change; and (3) consists of visiting a subset of the plots in 

phase 2 ( about 1 plot every 96,000 acres) to collect more detailed measurements (e.g. 

complete vegetation inventory, tree and crown condition, soil data) during the growing 

season (USFS, 2008).  

 The measurements collected by the FIA program can be scaled up to provide 

information about forest populations by aggregating plot statistics for specific 

populations. However, this is only possible if the population(s) of interest have been 

adequately sampled by the inventory.  Many regional to national scale biomass and 

carbon budgets for the United States are based largely on the forest information provided 

by the FIA program, regional-level volume and biomass equations, and national-level 

allometric equations (Heath et al. 2008). Heath et al. (2008) also notes that in recent 

years the requests to the FIA for biomass, carbon, and volume information have 

continually increased. 

1.1 Objectives 

 The overall objective of this study is to develop a methodology for modeling 

forest volume and aboveground biomass from ALS and TLS data by comparing subplot 

volume and aboveground biomass estimates derived from ground-based FIA 

measurements and allometric equations to metric sets created from spatially coincident 

lidar data. This will address the hypothesis that since lidar systems collect data that 

describe the three-dimensional vertical structure of the forest, the data can be used to 

estimate forest biophysical parameters of interest such as volume and aboveground 

biomass. Specific study objectives follow: 
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1. Develop a methodology to derive both area- and individual tree-based airborne 

lidar metrics related to forest biophysical parameters at the FIA subplot-level. 

2. Develop a methodology to derive area-based terrestrial lidar metrics related to 

forest biophysical parameters at the FIA subplot-level. 

3. Utilize simple linear and multiple linear regression analysis to help identify 

relationships between the lidar metric sets and FIA subplot estimates of forest 

volume and aboveground biomass calculated from FIA data. 

1.2 Thesis Organization 

 This thesis contains a total of four major sections. An overall introduction and 

literature review for the thesis are presented here. The contents of Section 2 and Section 

3 were created and organized to resemble individual manuscripts. Section 4 provides a 

summary of the conclusions presented in Sections 2 and 3. 
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2 COMPARISON OF AIRBORNE LIDAR METRICS AND GROUND-BASED 

ESTIMATES OF TOTAL ABOVEGROUND BIOMASS AND VOLUME 

 

2.1  Introduction 

 Light detection and ranging (lidar) is a laser-based, active remote sensing system, 

which collects ranging data utilizing the known speed of light and information about the 

flight time of a laser pulse (Lim et al., 2003). In this context, flight time refers to the 

time it takes for a given laser pulse to travel from a system, reflect off of an object, and 

return back to the system. A wide variety of lidar systems currently exist, and data has 

been successfully collected utilizing systems mounted to space-borne, aerial, and 

terrestrial (tripods or vehicle-based) platforms. 

 Over the past several decades the use of lidar remote sensing data in forestry has 

seen steady growth. The increased use of lidar systems to acquire data over forested 

areas can be attributed to their ability to cover extents of local or regional scales and 

accurately quantify the three-dimensional vertical structure of the forest. Previous 

studies have demonstrated the usefulness of lidar for: (1) Forest measurements (Nilsson, 

1996; Næsset, 1997a; Næsset, 1997b; Næsset and Bjerknes, 2001; Næsset and Okland, 

2002; Popescu et al., 2002; Holmgren et al., 2003); (2) habitat analysis  (Hyde et al., 

2006); (3) estimation of forest biophysical parameters  (Cannell, 1984; Nelson et al., 

1988; Lefsky et al., 1999;  Holmgren, 2004; Lim and Treitz, 2004; Patenaude et al., 

2004; Popescu, 2007); (4) change detection  (Yu et al., 2004); and (5) estimation of wild 

land fire parameters  (Hall et al., 2005; Mutlu et al., 2008a; Mutlu et al., 2008b).  
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 It should be noted that the ability to acquire three-dimensional data is not unique 

to lidar remote sensing systems. This type of data can also be obtained by radar systems 

(another active remote sensing system) or through the use of photogrammetric 

techniques in conjunction with stereoscopic image pairs collected by aerial or satellite 

systems. A variety of studies have provided comparisons of lidar and radar forest 

measurements to ground measurements. For example, Sexton et al. (2009) used linear 

regression to examine lidar canopy height measurements and radar canopy height 

measurements and concluded that lidar provided more precise results (R2 = 0.83). Hyde 

et al. (2007) used lidar, synthetic aperture radar (SAR), and interferometric synthetic 

aperture radar (InSAR) to individually and synergistically predict aboveground biomass 

for a southwestern ponderosa pine forest, and found, through individual comparison, that 

lidar predicted aboveground biomass best, accounting for almost 84% of the variability. 

 Airborne lidar systems, also known as airborne laser scanners (ALS) can be 

broadly grouped into two categories: discrete return and full waveform digitizers. These 

categories can be further specified by the type of system (profiling or scanning), laser 

footprint size, and the number of recorded returns for each laser pulse.  Previous lidar 

studies have demonstrated that both large-footprint waveform and small-footprint 

discrete return lidar data, can be used to derive measurements such as tree height and 

crown dimensions at the stand level (Næsset and Bjerknes, 2001; Hall et al., 2005), plot 

level (Holmgren et al., 2003; Lim and Treitz, 2004; Popescu et al., 2004), or individual 

tree level (Coops et al., 2004; Yu et al., 2004; Holmgren and Persson, 2004; Roberts et 

al., 2005; Chen et al., 2006; Falkowski et al. 2006; Popescu, 2007). These direct lidar 
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measurements can then be used in conjunction with known allometric relationships or 

statistical analysis procedures to estimate parameters such as diameter at breast height 

(DBH), aboveground biomass, or volume. 

 Lidar research for forestry applications has largely focused on the development 

of methodologies to employ lidar data as a surrogate for various ground measurements. 

Airborne lidar data can be collected over larger areas with a reduced amount of effort 

when compared to traditional field measurements. However, the high level of 

complexity present within many forests (e.g. large number of species and variable 

canopy densities) can complicate the retrieval of such measurements. In Norway, 

researches have developed and implemented methods to produce measurements of 

interest for stand-based forest inventories, and were able to account for 84 to 89% of the 

variance when predicting stand volume (Næsset, 2007). Other stand-based variables of 

interest investigated by Scandinavian researchers include: mean tree height, dominant 

height, mean diameter, stem number, stand basal area, and stand volume (for a list of 

Scandinavian studies and a basic summary of their results, see Næsset, 2007).  

 Methods used to identify individual trees commonly begin using filters to detect 

local maxima, which are assumed to represent individual tree crown peaks, on a canopy 

height model (CHM). A CHM is a regular gridded surface representation of the forest 

canopy. This model is created by subtracting a digital elevation model (DEM), a gridded 

representation of the bare Earth’s surface created from last return lidar data, from the 

Digital Surface Model (DSM), a gridded surface created using all of the lidar point cloud 
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data. After locating the individual trees on the CHM, tree crown measurements can be 

produced for each identified tree.  

 A number of methods for identifying local maximum in CHMs exist. Currently, 

local maxima have been identified in CHMs using both variable (Popescu et al., 2002; 

Popescu et al., 2004) and fixed (McCombs et al., 2003) filter window sizes. Popescu et 

al. (2002) identified tree crown peaks using a variable search window, where the 

window size was based on a relationship between tree height and crown width 

established from field measurements. McCombs et al. (2003) used a focal search 

function, based on a fixed and predetermined neighborhood size, to identify individual 

tree crown peaks in a Loblolly pine plantation. Both studies mentioned above assumed 

that the pixel at the center of the neighborhood was a crown peak if it was higher than all 

pixels within the search neighborhood. The height of each tree is the height value of the 

identified maxima pixel corresponding to the tree.  

 After identifying individual trees in the CHM, crown measurements can be made. 

A variety of methods can be used to obtain these measurements (e.g. Hyyppä et al., 

2001; Popescu et al., 2003; Roberts et al., 2005; Falkowski et al., 2006; Qi et al., 2006). 

A Study by Hyyppä et al. (2001) used an image segmentation process where local 

maxima were defined as seed points, serving as inputs for an image-labeling algorithm 

along with a number of required user-defined variables set through trial and error 

procedures. Popescu et al. (2003) derived tree crown widths by calculating the mean of 

distances measured between two local minima identified on a forth degree polynomial 

fitted to two separate orthogonal canopy profiles of a tree. While Roberts et al. (2005) 
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estimated crown diameter by recording the distance from each identified tree crown peak 

to minima identified in 3.4 m linear search array in each cardinal direction from a tree 

crown peak, averaging the four radii measurements, and multiplying them by two. Qi et 

al. (2006) proposed a marker-controlled watershed segmentation method, where a 

CHM’s (or other similar model) height values are inverted and flooded from the bottom 

up as “dams” are automatically constructed to keep water from neighboring areas 

separate, effectively separating neighboring tree canopies. 

 As illustrated above, the individual tree approach is capable of directly 

measuring tree height and canopy dimensions. However, it must be mentioned that tree 

height is often underestimated by airborne lidar systems. This underestimation is 

commonly attributed to the low probability of an individual laser pulse striking the apex 

of a tree. High canopy densities can result in the occlusion of laser pulses, and reduce the 

ability to create accurate DEMs (Hirata et al., 2009). Additionally, individual tree 

detection methods also commonly commit errors of commission and omission, and have 

been shown to have lower accuracy when used in forests with complex and dense 

canopy conditions (Falkowski et al., 2008).  

 Since ALS systems collect data looking down on the forest, forest measurements 

other than tree height or crown dimensions (e.g. diameter at breast height, biomass) must 

be indirectly estimated. Popescu 2007, used regression analysis to estimation the DBH 

of individual trees, using the lidar-derived height and crown diameter measurements 

provided by TreeVaW (a individual tree detection software package) as independent 

variables in a regression analysis. Individual tree detection algorithms implemented in 
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TreeVaW are described in Popescu and Wynne (2004). In traditional forestry, biomass 

estimations require destructive sampling, or the use of species-specific (Termikaelian 

and Korzukhin, 1997), regional, or national (Jenkins et al., 2003) allometric equations. 

Allometric equations can also be applied to lidar data, if the required information is 

available. Popescu (2007) outlines a method for obtaining individual tree biomass 

estimates using allometric equations and estimates of individual tree DBH from ALS 

data.  A number of other studies have also predicted biomass using lidar data (Lefsky et 

al., 1999; Patenaude et al., 2004; Hyde et al., 2007; Zhao et al., 2009). 

 The United States Forest Service (USFS) Forest Inventory and Analysis (FIA) 

program provides forest inventory measurements used to assess the status of the nation’s 

forested areas. Forest resource managers and researchers commonly use these 

measurements to estimate forest biophysical parameters such as, volume, aboveground 

biomass, or carbon at local, regional, and national scales. This direct link between data 

provider and end user makes the FIA program responsible for many of the volume 

estimates, biomass budgets, and carbon budgets created for the United States. 

 The collection of forest inventory data at a national level is an enormous and 

complex undertaking. Models relating airborne lidar data to FIA parameters hold great 

potential to contribute to this task, by: (1) supplementing aging ground-based FIA 

measurements or biophysical parameter estimates with estimates produced from recently 

collected lidar data; (2) providing an increased amount of data for areas of interest that 

contain only a small number of FIA sample locations; or (3) aiding data collection in 
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remote areas where challenging environmental or terrain conditions make ground-based 

measurements exceedingly dangerous and time consuming.  

 The overall objective of this study is to develop a methodology for modeling 

forest volume and aboveground biomass at the FIA subplot-level, using a combination of 

previously developed area-based point cloud metrics and individual tree measurements. 

Subplot biomass and volume estimates, calculated using ground-based FIA measurement 

data and allometric equations, are compared to the previously mentioned metrics. This 

will address the hypothesis that because the data collected by ALS systems are capable 

of describing the three dimensional vertical structure of the forest, they can be used to 

estimate forest biophysical parameters of interest such as volume and aboveground 

biomass. Specific study objectives follow: 

1. Develop a methodology to derive both area and individual tree-based airborne 

lidar metrics related to forest biophysical parameters at the FIA subplot-level. 

2. Identify relationships between the lidar metric sets and FIA subplot estimates of 

forest volume and aboveground biomass calculated using a combination of 

regional and national-scale equations.   

2.2  Materials and Methods 

2.2.1 Study Area 

 The study area for this project is in the Malheur National Forest located in 

eastern Oregon, and covers approximately 105,936 hectares (Figure 1). Elevation ranges 

from 1,236 to 2,593 m, and slope varies from 0 to ~ 86 degrees. The general location of 

the study area, as defined by the NE and SW corners of a rectangle, is Universal 
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Transverse Mercator (UTM) Zone 11N 383297.6E, 4905767.9N and UTM Zone 11N 

333344.5E, 4863102.6N. The site was selected because of access to FIA ground 

measurements, availability of recent airborne scanning LIDAR data, and the presence of 

a wide variety of forest conditions, such as slope and tree species. The forests located 

within the study area are composed of mostly Ponderosa pine (Pinus ponderosa), 

Douglas-fir (Pseudotsuga menziesii), western larch (Larix occidentalis), and grand fir 

(Abies grandis). 

 

 
Figure 1: Malheur National Forest study area in eastern Oregon. Hollow squares represent individual 
airborne lidar tiles. Red squares represent tiles containing an FIA plot location selected for this study. Red 
squares with a thick outline identify selected tiles where the FIA plot location was located on the border of 
two tiles. Grey squares signify tiles containing an FIA plot location. 
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2.2.2 Data 

 This section of the study used several types of data to describe forest conditions 

at FIA plot locations including: (1) FIA ground crew in situ measurements; and (2) 

Discrete return, small-footprint, airborne lidar (ALS). 

2.2.2.1  Forest Inventory and Analysis Data 

 The USFS provided FIA data for all FIA locations within the study area (91 

locations, 364 subplots, and about 2,477 trees). This study will focus on FIA subplots 

since they are utilized in every FIA region. Each FIA location contains four circular 

~0.016 hectare subplots (radius = 7.32 m). Subplot one is centered over the plot center 

for the entire FIA location. Subplots two, three, and four are located 36.58 m from the 

center of subplot at azimuths of 360°, 120°, and 240°, respectively (Figure 2). Individual 

trees are measured and recorded if they are located within the boundaries of subplot and 

have a DBH or diameter at root collar greater than 12.7 cm. Measurements collected for 

each of these trees include: DBH, height, tree condition (live/dead), crown class (open 

grown, dominant, codominant, intermediate, or overtopped), species, species group, 

azimuth to plot center, and distance to plot center. 
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Figure 2: The location and dimensions of subplots at an FIA plot location. 

 

 The FIA program has provided estimates of volume for the majority of the trees 

in the study area. Estimates were only omitted for trees with a status code that listed the 

tree as dead, or for trees where the status code was completely absent. The regional 

equations used to calculate tree volume estimates can be found in Zhou and Hemstrom 

(2010). Estimates of individual tree total aboveground biomass (dry kg) were to also be 

included with the FIA data. However, the current high workload of the FIA data steward, 

and the time constraints of this study did not make this a feasable option. The national-

scale total aboveground biomass equations, presented in Jenkins et al. (2003), were used 

to estimate the total aboveground biomass for individual trees in lieu of the estimates 

from regional FIA equations.  
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 The use of the national-scale total above ground biomass equations, will result in 

different estimates of tree biomass than regional biomass equations. While, national-

scale equations produce more generalized estimates, they are capable of providing 

standardized estimates for major species or species goups at large-spatial scales. The 

national-scale equations published by Jenkins et al. (2003), were created by reanalyzing 

reliable and raw tree measurement data collected throughout different regions and for 

different species by other scientists from previously published studies.  Alternativly, 

regional equations are capable of more precise estimates, but are only representative for 

trees in a specific region. The equations are developed using data collected small study 

sites, and are thus representative of the species found near the area where data were 

collected. Hansen (2002) examined differences between allometric equations for 

estimating biomass and volume, and found differences between estimates of volume and 

biomass produced using the same set of tree measurements with different regional 

equatuions.   

 Subplot-level estimates for total aboveground biomass and volume were 

calculated by summing the total aboveground biomass and volume estimates for all of 

the trees in each subplot. FIA plot-level estimates for total aboveground biomass and 

volume were calculated by averaging the aboveground biomass and volume estimates 

for each of the four subplots.  
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2.2.2.2 Airborne Lidar Data 

 Two airborne lidar data acquisition missions were flown for the study area, the 

first covering the western half and a second covering the eastern half (Figure 3). Data 

were acquired for the western half of the study area between November 19, 2008 and 

December 11, 2008, while data for the eastern half of the study area were acquired 

between July 1, 2009 and July 5, 2009. Both data collection missions made use of 

multiple lidar sensors, a Leica ALS50 Phase II and a Leica ALS60, mounted in a single 

engine fixed-wing survey aircraft. The complete system is capable of collecting greater 

than or equal to 105,000 pulses per second at 900 m above ground level, and can record 

up to 4 returns for each pulse. For the study area, the lidar sensors used a maximum scan 

angle of ± 14°.  A brief analysis of the lidar data for the study area shows an average 

pulse density of about 9 pulses m-2. A total of 456 flight lines were required to cover the 

entire study area, with a side-lap of ≥ 50% for each of the N-S oriented flight lines.  
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Figure 3: The extent of the western (light grey) and eastern (dark grey) airborne lidar acquisitions. 
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2.2.3 Processing Approach 

 The overall processing steps used in this study are illustrated in Figure 4. 

 

 
Figure 4: Flowchart of the airborne lidar data processing approach. 
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2.2.4 Point Cloud-Based Airborne Lidar Metrics 

 Three sets of point cloud-based ALS metrics were calculated for the 56 subplots 

at 16 FIA plot locations dispersed throughout the study area. Four of the FIA locations 

were chosen because TLS data had been collected for at least one subplot at a given 

location. The 12 other FIA locations were selected at random, without replacement, from 

the remaining 87 FIA plot locations in the study area. An initial review of the FIA data 

for the selected subplots identified five with no tree records. In this case, the subplots 

either contained only dead trees, or trees too small to meet the FIA measurement criteria 

mentioned in 2.2.2.1. The subplots from the selected FIA locations cover a range of 

slopes and other forest conditions present in the Malheur National Forest. Table 1 and 

Table 2 provide summaries of the data collection year for each subplot and the frequency 

of each tree species in each crown class. Descriptive statistics for FIA measured DBH 

and tree height, as well as FIA estimated total aboveground biomass and volume are 

presented in Table 3 through Table 5. 

 

Table 1: Subplot data collection years. 

  Sample year 

 
2001 2002 2003 2004 2005 2006 2007 2008 

Number of subplots 8 4 12 4 4 4 8 12 
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Table 2: Subplot tree species crown class frequencies. 

Species na 
Crown Class 
OGb Dc CDd Ie OTf 

Abies grandis 76 1 18 28 25 4 
Juniperus occidentalis 5 0 2 1 2 0 
Larix occidentalis 8 0 2 3 3 0 
Pinus contorta 43 0 12 24 7 0 
Pinus ponderosa 119 0 29 62 24 4 
Pseudotsuga menziesii 50 0 21 25 3 1 
Cerocarpus leditolins 11 0 0 2 9 0 
a Number of trees 
b Open grown crown class 
c Dominant crown class 
d Codominant crown class 
e Intermediate crown class 
f Overtopped crown class 
 
 
 
Table 3: Subplot tree species DBH descriptive statistics. 

Species 
  DBH (cm) 
na mean  min - max SDb CV(%)c 

Abies grandis 76 29.81 13.21 - 103.10 15.17 50.9 
Juniperus occidentalis 5 22.86 13.72 - 45.72 13.44 49.9 
Larix occidentalis 8 27.62 16.76 - 43.69 10.52 38.09 
Pinus contorta 43 20.63 13.72 - 32.51 5.17 25.08 
Pinus ponderosa 119 33.78 12.70 - 104.60 24.17 71.53 
Pseudotsuga menziesii 50 34.46 14.73 - 82.55 17.53 50.87 
Cerocarpus leditolins 11 26.92 13.72 - 120.60 12.29 115.98 

a Number of trees 
b Standard deviation 
c Coefficient of variation percentage 
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Table 4: Subplot tree species height descriptive statistics. 

Species 
  Height (m) 
na mean  min - max SDb CV(%)c 

Abies grandis 76 16.54 7.62 - 35.06 5.84 35.32 
Juniperus occidentalis 5 11.65 6.10 - 15.55 4.21 36.15 
Larix occidentalis 8 17.53 10.37 - 28.05 5.93 33.85 
Pinus contorta 43 15.46 9.15 - 21.34 3.09 20 
Pinus ponderosa 119 16.44 4.27 - 44.82 8.97 54.58 
Pseudotsuga menziesii 50 18.87 3.66 - 38.11 6.84 36.28 
Cerocarpus leditolins 11 6.125 4.27 - 8.54 1.15 18.82 

a Number of trees 
b Standard deviation 
c Coefficient of variation percentage 
 
 
 
Table 5: Subplot descriptive statistics for estimated biomass and volume. 

  na mean min - max SDb CV(%)c 

Biomass (dry kg) 56 3558.2 0 - 25143.9 4505.1 126.6 
Volume (m3) 56 5 0 - 45.6 7.3 146.6 

a Number of subplots 
b Standard deviation 
c Coefficient of variation percentage 
 
 

2.2.4.1 Extraction of Subplot Point Clouds 

 Coordinates for the center of each subplot were included in the data provided by 

the FIA program. These coordinates were collected during field measurements using a 

WAAS (wide area augmentation system) enabled Trimble global positioning system 

(GPS) unit, and then post-processed using base station data. Proprietary Trimble 

software was utilized to compute the average accuracy of the reported coordinates. The 

average accuracy values are computed to represent a 95th percentile three-dimensional 
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distance threshold around the subplot center location. The resulting point data were 

provided as a shapefile, to allow for visualization and manipulation in ArcMap.  

 The geolocation accuracy of the post-processed subplot center coordinates can be 

quantified by examining the average accuracies of the GPS-collected subplot center 

coordinates provided in the shapefile (Figure 5 and Table 6). These data show that when 

working with the 56 subplots selected for this study, the geolocation error ranged from 

0.50 to 3.78 m. It should be noted it is uncommon for FIA crews to utilize the survey-

grade GPS units and advanced processing methods used to collect subplot coordinate 

information within this study area. Instead, crews frequently rely on recreational-grade 

GPS units, which, under the best data collection conditions, commonly provide 

positional uncertainties of at least three meters.  

 

Table 6: Descriptive statistics for the average accuracies (m) of subplot center coordinates. 

na mean	
   min	
  -­‐	
  max	
   SDb CV(%)c	
  
56	
   1.36	
   0.50	
  -­‐	
  3.78	
   0.66	
   48.48	
  
a Number of subplots 
b Standard deviation 
c Coefficient of variation percentage 
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Figure 5: Histogram of average accuracies for subplot center coordinates. 

 

 The four subplots for each of the chosen FIA locations were selected and 

individually extracted from the provided shapefile. This process created a total of 56 

shapefiles, each containing a single point, which represented the plot center coordinates 

for the selected subplot. A circular buffer (r = 7.32 m) was then created around each 

subplot center. This process provided polygon shapefiles covering the extent of each 

selected subplot. 

 To create individual subplot point clouds, the points within each subplot were 

extracted from the corresponding lidar data tile using Quick Terrain Modeler (QTM). In 

all but two cases, each selected FIA plot location, and subplot buffers were contained 

entirely within one lidar data tile. The extraction procedure for these exceptions was 

5

10

15

20

C
ou

nt

0 0.5 1 1.5 2 2.5 3 3.5 4
Plot Center Coordinates Average Accuracy (m)



 29 

identical to the procedure described above, except for the need to import the two 

neighboring lidar data tiles. 

 

2.2.4.2  Calculation of Above Ground Level Elevations and Removal of Ground Points 

 All point cloud metrics in this study were calculated with above ground level 

(AGL) elevation values. QTM was used to compute AGL values for each subplot point 

cloud by subtracting the DEM values from the corresponding point elevations. The 

vendor hired to acquire the ALS data, Watershed Sciences, Inc., supplied a 1 m DEM of 

the study area, created from the raw point cloud data. In an operational context, the use 

of a vendor-provided DEM requires significantly less time than creating a DEM from the 

raw point cloud data. The methodology presented in this chapter made use of only the 

vendor-provided DEM. 

 Points under a predetermined height were excluded from the analysis. The 

exclusion of points in this manner helps remove possible effects of shrubs, large rocks, 

and other ground-related laser returns from lidar data. Mitigating these effects reduces 

the overall amount of data, but helps to insure that the majority of the remaining data 

represent the objects of interest, e.g. trees. A height cut off value of 0.5 m (AGL) was 

selected. All points with an elevation of less than this value were cropped from each 

subplot point cloud. 
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2.2.4.3  Height Percentiles 

 Height percentiles, calculated from ALS data have been previously used to relate 

ALS data to forest biophysical parameters (Holmgren, 2004; Lim and Treitz, 2004; and 

Patenaude et al. 2004). For this study, mean height, and the 25th, 50th, 75th, 90th, 95th, and 

100th height percentiles were calculated for each subplot point cloud. 

2.2.4.4  Variable Height Bins 

 Height bins were used to separate the vertical space within a subplot into five 

equaly-spaced intervals. The variable height bin approach calculates height bins by 

finding the distance between highest and lowest points in a plot, and dividing this 

distance by the number of desired bins (in this case five). The approach used to calculate 

bins size was similar to the method used by Næsset (2007) to determine bins intervals 

used when calculating canopy densities. This approach allowed a different height bin 

interval to be calculated for each subplot. After the height bin interval had been 

calculated for a given subplot point cloud, the height bin break points were set, and the 

number of points within each height bin was counted. The ratio of the number of points 

in a height bin to the total number of points in the subplot point was then calculated for 

each FIA subplot. 

2.2.4.5  Static Height Bins 

 Static height bins were also used to separate the vertical space within a subplot 

into intervals. This height bin method was selected to highlight differences between 

subplots, because it uses the same height bins regardless of the minimum and maximum 

subplot height values. While conceptually similar to the variable height bin approach 
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(section 2.2.3.2), this method used constant height bin intervals for all of the subplots, 

and contained a total of six bins. The static height bin break points selected were: (hb1) 

0.5 – 5 m; (hb2) 5 – 10 m; (hb3) 10 – 15 m; (hb4) 15 – 20 m; (hb5) 20 – 25 m; and (hb6) 

greater than or equal to 25 m. The total number of points within each height bin is 

counted, as well as the ratio of the number of points in a given height bin to the total 

number of points in the subplot. 

2.2.4.6  Density 

 Density metrics, similar to those calculated by Næsset (2007), were also 

calculated for each subplot.  The procedure used to calculate density metrics is closely 

related to the steps described for calculating height bins. Density metrics for this study 

were calculated using the same static height bin intervals mentioned in section 2.2.3.5 

(where Næsset [2007] used a procedure similar to variable height bins, section 2.2.3.4). 

The major difference between this method and height bins is that all points greater than 

or equal to a given bin breakpoint are counted, e.g. d1 contains the count of all points 

greater than or equal to 0.5 m, d2 contains the count of all points greater than or equal to 

5.0 m, etc. A ratio of the number of points in each count to the total number of points in 

the subplot was calculated. 

2.2.4.7 Plot-level point cloud metrics 

 Plot-level point cloud metrics were calculated in conjunction with subplot-level 

point cloud metrics because of the locational error present in the subplot center 

coordinates (described in section 2.2.4.1). Previous studies have shown that geolocation 
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error can increase variation in ALS metrics as well as biophysical parameters estimated 

from these metrics (Gobakken and Næsset 2008a; Gobakken and Næsset 2008b). Frazer 

et al. (2011) investigated how plot size and geolocation error impacted estimates of 

forest stand biomass, and found that plot size could amplify or condense the severity of 

geolocation error. The authors also conclude that plots with larger areas are more robust 

to geolocation error because they provide increased amounts of overlap between ground 

and ALS data, capture more variability from ground measurements, and reduce the 

perimeter of the plot with respect to the area within the plot. The conclusions presented 

from these studies provided support for the inclusion of plot-level point cloud metrics 

since the increased plot size could mitigate the effect of geolocation errors.  

 The methods described in sections 2.2.4.1 through 2.2.4.2 were used to extract 

and preprocess FIA plot-level point clouds. The only significant changes to the methods 

were: (1) buffering was only performed on the subplot center coordinates for subplot 

number one at each FIA location; and (2) the buffer size was increased from 7.32 m to 

56.42 m. These changes extracted all ALS returns within a one-hectare plot that included 

all FIA subplots and their immediate surrounding areas.   

 ALS point cloud metrics (height percentiles, variable height bins, static height 

bins, and densities) were calculated for each of the 14 FIA plot-level point clouds with 

the methods presented in sections 2.2.4.3 through 2.2.4.6.   

2.2.5 Individual Tree Metrics 

 Methods for detecting and measuring individual trees in ALS data are also found 

throughout the literature, and are discussed in Section 1. Several of the main differences 
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between individual tree identification and point-could metrics are: (1) the use of a CHM 

instead of raw point cloud data; and (2) the resulting estimates of individual tree 

variables (such as height and crown width). The individual tree detection software 

TreeVaW was employed to identify trees within each selected subplot, and provide 

information on tree height, crown width. 

2.2.5.1  Canopy Height Model Creation 

 TreeVaW cannot process raw point cloud data. Instead, this software required 

CHM. Lidar vendors do not typically provide CHMs to clients, so one must be created 

for the study area. In order to reduce the amount of time dedicated to generating a CHM, 

CHMs were only produced for the spatial extent of each lidar data tile containing one of 

the 16 selected FIA locations. CHMs were generated using subsets of the vendor-

provided DEM and user-created DSMs for each lidar data tile. The relatively high point 

density of the ALS data (~ 9 pts m-2) justified the creation of 0.5 m DSM. QTM was 

used to import the raw point data in a lidar tile as a 0.5 m gridded surface. This 

procedure assigns height values based on the maximum height of the points within each 

cell. Once imported, the DSM was saved, and the spatially coincident DEM subset was 

subtracted from the DSM to produce a CHM. Negative height values, caused by DSM 

cells with slightly lower values than the corresponding DEM cells, were set to zero, and 

the CHM was saved. This process was repeated for all lidar tiles containing a selected 

FIA location. 
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2.2.5.2  Calibration of TreeVaW 

 TreeVaW must be calibrated for different regions using a priori knowledge about 

the relationship between tree height and crown width. Differences between tree species 

morphology, and the heterogeneous forest species composition in the study area required 

the production of a general height to crown width relationship. This relationship was 

established by performing manual tree crown width measurements on trees identified by 

TreeVaW using its default settings. Crown widths and heights for a total of 100 trees (25 

per CHM) were measured on the CHMs of the lidar tiles containing FIA locations 5708, 

5992, 5993, and 6185 using image-processing software. Crown width measurements 

were recorded from North to South and East to West for each tree, and used to calculate 

an average crown width. A model representing the relationship between the average 

crown width and height of each measured tree was generated (R2 = 0.86, Figure 6) using 

simple linear regression analysis. The resulting equation (eq. 1) was used to calibrate 

TreeVaW for this study area. Other TreeVaW settings that were adjusted included: 

minimum tree height (3.5 m) and maximum crown width size (15.0 m).  
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Figure 6: TreeVaW calibration scatterplot, TreeVaW identified tree height vs. average of manually 
measured tree crown widths, and simple linear regression line. 

 
 

Y = 1.1396 + 0.2374 * x                                              (eq. 1) 
 

2.2.5.3  Calibrated TreeVaW Measurements 

 After calibrating TreeVaW, the software was run on each of the CHMs. 

TreeVaW provides text-based output of tree location, tree height, and crown radii. 

ArcMap was used to create a point shapefile of tree locations. The subplot polygon 

shapefiles, used to extract the subplot point clouds for the point cloud-based lidar 

metrics (section 2.2.3.1), were used to extract the TreeVaW-identified trees for each 

subplot. Attribute tables for the resulting point shapefiles were exported from ArcMap as 

354 10 15 20 25 30

11

1

2

3

4

5

6

7

8

9

10

Tree Height (m)

C
ro

w
n 

W
id

th
 (m

)

R2: 0.86
RMSE: 0.77
n: 100



 36 

CSV files. A list of all of the trees detected in each subplot as well as lists of trees for 

each individual subplot were created using Excel. 

2.2.5.4  Subplot-Level Individual Tree Metrics 

 Average tree height, average crown width, and total number of stems were 

calculated for each subplot, using the CSV files exported from ArcMap. TreeVaW 

produces crown radii estimates from the average of two perpendicular crown diameter 

estimates for each detected tree. This process utilizes a fourth degree polynomial, 

centered on the tree location, and attempts to identify and measure the distance between 

critical points in the fitted function (Popescu et al., 2003). In some cases, the 

measurement algorithm employed by TreeVaW cannot successfully produce estimates of 

tree crown diameters. Popescu et al., (2003) attributes this problem to the natural 

complexity found in forest canopies, e.g. interactions between adjoining tree crowns. A 

similar problem was encountered when using TreeVaW for this study. A total of 408 

trees were identified on the 56 selected subplots. TreeVaW was unable to produce crown 

radii estimates for 186 (approximately 46%) of the identified trees. The failure to 

estimate crown radii for such as large number of trees is believed to stem from the 

highly complex forest canopy structure present in the Malheur, such as: (1) tree crown 

overlap; (2) the variability of crown morphology between the species present; (3) 

differences between the crown morphology of species in the Malheur and the southern 

pine species to create TreeVaW; and (4) multi-story canopy conditions. In a similar 

study, Popescu et al., (2003) ignored trees with a reported crown radii of zero when 

calculating plot-level metrics such as average crown width. It should be noted that 
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percentage of total trees with zero values in Popescu et al., (2003) were much lower, 

4.49% for a site with mixed deciduous and pine trees, and 8.78% for a site dominated by 

large deciduous trees. To minimize the loss of tree measurements due to crown radii 

values of zero, the general calibration equation (eq. 1) presented in section 2.2.4.2, was 

used to estimate crown widths for all trees with TreeVaW-reported crown widths of 

zero. 

2.2.6 Regression Analysis 

 Simple linear regression models were used to examine the relationship between 

the lidar-derived metrics and the subplot-level estimates of total aboveground biomass 

and gross volume. The independent variables and methods used to calculate them were 

described in the previous sections. A summary of the independent and dependent 

variables used the regression analyses can be found in Table 7. Models were run for each 

independent variable. Information about the best model from each metric set, and the 

variable that produced the best model for each metric were provided. 

 Multiple regression analysis, using a stepwise selection method, was utilized to 

determine if models could be improved through the inclusion of additional variables 

within each metric set. A model created using stepwise selection and every independent 

variable was also created. 

  



 38 

Table 7: Selected regression variables. 

Metric sets of lidar-derived area-based 
independent variables 

Lidar-derived individual  
tree independent variables 

Predicted variables  
(FIA field measurements) 

Percentiles ave_ht Aboveground Biomass (kg) 
p25, p50, p75, p90, p95, p100, mean ave_cw Gross Volume (ft3) 

Variable Height Bins num_trees 
 vhb1, vhb2, vhb3, vhb4, vhb5 

  Static Height Bins 
  shb1, shb2, shb3, shb4, shb5, shb6 
  Density 
  d1, d2, d3, d4, d5, d6     

 
 

2.3 Results and Discussion 

2.3.1 Subplot-level Point Cloud-Based Airborne Lidar Metrics 

 Individual simple linear regression models were created for aboveground 

biomass and gross volume using each of the point cloud-based metrics. Examination of 

the resulting models showed that all lidar-derived predictor variables were poorly related 

to the ground-based estimates of subplot aboveground biomass and volume. The best 

predictor variables from each point cloud-based metric set were the 100th percentile 

(p100), variable height bin one (vhb1), static height bin four (shb4), and density four 

(d4, Table 8, Figure 7 to Figure 10 [top]). The best model used p100 as the predictor 

variable, and yielded R-square values of 0.16 for biomass and 0.14 for volume. 

 A common practice when outliers or points of inters are found, is to remove the 

points from the data set and rerun any analyses that were performed on the original 

dataset. A summary of the resulting regression analyses for the four best predictor 

variables can be found in Table 8. Metrics designated as “reduced” represent the data 

with the two points of interest removed. 
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Table 8: Simple linear regression analysis results for the four best point cloud predictor variables. 

        Parameters and p-values 
Point  
cloud-based  
metric 

Dependent 
variable R2 RMSE β0 P-value β1 P-value 

Height  
Percentiles        

p100 (all) Biomass 0.16 4172.11 -1606.41 0.3533 257.65 0.0024 
p100 (all) Volume 0.14 6.81 -2.95 0.2969 0.40 0.0040 
p100 (reduced) Biomass 0.30 2044.63 -951.37 0.2643 190.44 < 0.0001 
p100 (reduced) Volume 0.33 2.92 -2.00 0.1030 0.29 < 0.0001 

Variable  
Height Bins        

vhb1 (all) Biomass 0.10 4316.95 2025.42 0.0214 9869.66 0.0185 
vhb1 (all) Volume 0.09 7.03 2.64 0.0635 15.03 0.0270 
vhb1 (reduced) Biomass 0.00 2248.78 2870.94 < 0.0001 -266.21 0.9158 
vhb1 (reduced) Volume 0.00 3.57 3.94 < 0.0001 -1.03 0.7798 

Static  
Height Bins        

sbh4 (all) Biomass 0.02 4513.16 3018.25 0.0008 4581.63 0.3737 
sbh4 (all) Volume 0.01 7.31 4.18 0.0038 6.74 0.4187 
sbh4 (reduced) Biomass 0.12 2297.60 1999.10 < 0.0001 6963.61 0.0103 
sbh4 (reduced) Volume 0.11 3.36 2.61 0.0002 9.89 0.0127 

Density        
d4 (all) Biomass 0.02 4491.30 2964.10 0.0004 3109.28 0.2522 
d4 (all) Volume 0.03 4.97 3.95 0.0031 5.33 0.2248 
d4 (reduced) Biomass 0.16 2243.14 2005.68 < 0.0001 4257.99 0.0026 
d4 (reduced) Volume 0.20 3.19 2.45 < 0.0001 6.92 0.0007 
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Figure 7: (Top) Scatter plots of aboveground biomass and gross volume vs. the lidar-derived 100th height 
percentile metric. Filled circles indicate points of interest. (Bottom) scatter plots of aboveground biomass 
and gross volume with points of interest removed.  
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Figure 8: (Top) Scatter plots of aboveground biomass and gross volume vs. the lidar-derived variable 
height bin 1 metric. Filled circles indicate points of interest. (Bottom) scatter plots of aboveground 
biomass and gross volume with points of interest removed. 
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Figure 9: (Top) Scatter plots of aboveground biomass and gross volume vs. the lidar-derived static height 
bin 4 metric. Filled circles indicate points of interest. (Bottom) scatter plots of aboveground biomass and 
gross volume with points of interest removed. 

 

0.50 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

30,000

0

5000

10,000

15,000

20,000

25,000

Static Height Bin 4

Bi
om

as
s 

(d
ry

 k
g)

R2: 0.02
RMSE: 4513.16
n: 56

0.50 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

50

0

5

10

15

20

25

30

35

40

45

Static Height Bin 4

G
ro

ss
 V

ol
um

e 
(m

3 )

R2: 0.01
RMSE: 7.31
n: 56

0.50 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

9000

0

1000

2000

3000

4000

5000

6000

7000

8000

Static Height Bin 4

Bi
om

as
s 

(d
ry

 k
g)

R2: 0.12
RMSE: 2297.60
n:54

0.50 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

13

0

1

2

3

4

5

6

7

8

9

10

11

12

Static Height Bin 4

G
ro

ss
 V

ol
um

e 
(m

3 )

R2: 0.11
RMSE: 3.36
n: 54



 43 

 
Figure 10: (Top) Scatter plots of aboveground biomass and gross volume vs. the lidar-derived density 4 
metric. Filled circles indicate points of interest. (Bottom) scatter plots of aboveground biomass and gross 
volume with points of interest removed. 
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the methods of Lim and Treitz (2004) to the methodology used for this study, there are 

several notable differences. One major difference was the use of a natural log 

transformation for both the predictor and response variables by Lim and Treitz (2004). 

This transformation is common when estimating forest biophysical parameters using 

lidar data (see Næsset and Bjerknes, 2001; Næsset and Okland, 2002; Næsset , 2007). 

However, when the natural log transformation was applied to our point cloud-based 

metrics and the ground-based estimates of subplot biomass and volume, only a slight 

improvement in the ability to estimate biomass or volume was seen. For example, simple 

linear regression models for biomass and volume, using the p100 predictor variable, 

provided R-square values of 0.28 and 0.31, respectively. It should be noted that five of 

the subplots had values of zero for biomass and volume, because no trees meeting FIA 

measurements criteria were located on the plot. Plots with zero values were removed 

from the dataset prior to the natural log transformation.  

 Examination of the scatter plots for all of the predictor variables identified two 

points of interest, both of which had values of aboveground biomass and gross volume 

that were much larger than the other subplots in the sample, identified in Figure 7 - 

Figure 10 as filled circles.  These two data points were investigated further with a scatter 

plot of the FIA estimates of biomass and volume demonstrated a strong positive linear 

trend (Figure 11). Because this trend between the biophysical parameters is expected and 

clear, it is unlikely that errors were made when calculating individual tree or subplot-

level biomass. 
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 The resulting scatter plots and the best-fit regression lines are displayed in the 

bottom halves of Figures 6 through 9. The removal of the points of interest from the 

dataset provided moderate, if any, improvement in the R-square values of the models 

(Table 8).  

 

 
Figure 11: Ground measurement estimated biomass vs. ground measurement estimated gross volume. 
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four of the six trees had DBH values of greater than or equal to 70 cm, and also had 

large height measurements (Table 10). The high frequency of trees with DBH values 

greater than or equal to 70 cm does not occur in any of the other selected subplots. A 

distribution of the measured values of DBH for all live trees meeting FIA measurement 

criteria in the selected subplots showed a positively skewed distribution (Figure 12). 

When the nine trees with DBH found on the two subplots mentioned above (DBH 

greater than or equal to 70 cm) were selected, it is easy to identify that they are in the top 

8 to 10% of the trees contained in the entire subplot sample. Furthermore, a similar 

distribution, using all live trees meeting the FIA measurement criteria in all of the 

subplots within the study area demonstrates a similar positively skewed pattern, and 

shows trees with large DBH values are not as common in the study area (Figure 13). 

 The relatively small number of subplots selected for this study, makes it difficult 

to say if other subplots with similar conditions (e.g. a high frequency of large diameter 

trees in a single plot) are a common occurrence within this study area, or if the plots are 

anomalies. The existence and frequency of plot conditions such as these could be 

investigated further by increasing the number of subplot observations in the sample.  
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Figure 12: Distribution of FIA subplot tree DBH measurements for the selected subplots. Dark areas 
indicate the location of trees with recorded DBH values of greater than or equal to 70 cm at FIA locations 
5992 subplot 1 and 6218 subplot 1. 
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Figure 13: Distribution of the FIA subplot tree DBH measurements for the entire study area.  
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Table 10: Tree summary FIA location 6281, subplot 1. 

TREE SPECIES DIA (cm) HT (m) JTAGB (kg) VOLGRS (ft3) 
100 Pinus ponderosa 15.24 4.65 60.15 1.29 
101 Pseudotsuga menziesii 19.56 5.96 153.71 4.53 
104 Pseudotsuga menziesii 75.44 22.99 4161.42 168.70 
105 Pinus ponderosa 84.84 25.86 3932.81 242.36 
123 Abies grandis 103.12 31.43 7825.96 358.05 
124 Pseudotsuga menziesii 81.53 24.85 5031.60 216.72 
n = 6     21165.65 991.65 

  
 

 The stepwise selection method was used to identify prediction variables to be 

included in multiple linear regression models for each of the point cloud-based lidar 

metric groups. A probability threshold of 0.10 was used for a variable to enter the model 

as well as the to stay in the model. If more than one predictor variable was included in 

the final model, variance inflation factors (VIFs) were calculated to check for the 

presence of multicollinearity. Predictor variables with VIFs greater than five were 

considered an indicator of multicollinearity in the model.  

 The stepwise selection method described above, produced only two models, one 

for biomass and one for volume. The only predictor variables selected using this 

methodology were the 100th height percentile, and the 75th percentile. Both models were 

based on all 56 subplots. The resulting R-square values for the model of biomass and the 

model of volume were low, accounting for only 29% and 25% of the variance, 

respectively (Table 11). VIFs were calculated for each model to check for 

multicollinearity. An initial plot containing scatter plots for all of the height percentile 

predictor variables identified linear relationships between the variables. However, the 

resulting VIFs of 3.61 for both predictor variables in both models suggested that 
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multicollinearity between the selected predictor variables did not contribute to the 

increased R-square values of the multiple regression models.  

 

Table 11: Point cloud-based multiple linear regression analysis results. 

  Dependent variable 

  Biomass (p75, p100) Volume (p75, p100) 
R2 0.29 0.25 
Adj-R2 0.27 0.22 
RMSE 3854.46 6.43 
β0 -2108.72 -3.67 
P-value 0.1912 0.1728 
β1 (p75) -554.59 -0.80 
P-value 0.0023 0.0080 
VIF 3.61 3.61 
β2 (p100) 644.42 0.95 
P-value <.0001 0.0002 
VIF 3.61 3.61 

 
 
 

2.3.2 Plot-level Point Cloud-Based Airborne Lidar Metrics 

 Individual simple linear regression models were created for the plot-level 

aboveground biomass and gross volume estimates using each of the point cloud-based 

metrics. The best predictor variables from each point cloud-based metric set were the 

95th percentile (p95), variable height bin two (vhb2), static height bin six (shb6), and 

density six (d6, Table 12 and Figure 14 to Figure 17). Examination of the best resulting 

model from each point cloud metric set, showed three models with R square values 

between 0.56 and 0.71. This is a large increase in R square values from the subplot-level 

point cloud metrics (section 2.3.1). The four best models were also produced using 
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different predictor variables than those used for the best models for the subplot-level 

point cloud metrics. All of the best models are significant at the α = 0.1 level, except for 

the model using variable height bin two, which had R-square values of 0.10 for plot-

level biomass and 0.09 for plot-level volume.  

 

Table 12: Simple linear regression analysis results for the four best plot-level point cloud predictor 
variables. 

        Parameters and p-values 
Point  
cloud-based 
metric 

Dependent 
variable 
(plot-level) 

R2 RMSE β0 P-value β1 P-value 

Height  
Percentiles        

p95 Biomass 0.56 1967.88 -10603.54 0.0132 655.77 0.0020 
p95 Volume 0.67 2.71 -19.46 0.0022 1.13 0.0004 

Variable  
Height Bins        

vhb2 Biomass 0.10 2815.28 -317.69 0.9268 11249.17 0.2631 
vhb2 Volume 0.09 4.49 -0.76 0.8908 16.62 0.2977 

Static  
Height Bins        

shb6 Biomass 0.60 1876.92 1455.60 0.0610 86476.42 0.0011 
shb6 Volume 0.71 2.52 1.35 0.1793 149.07 0.0001 

Density        
d6 Biomass 0.60 1876.99 1459.08 0.0603 86409.69 0.0011 
d6 Volume 0.71 2.52 1.35 0.1772 148.96 0.0001 
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Figure 14: Scatter plots of plot-level aboveground biomass and gross volume vs. lidar-derived 95th height 
percentile metric. 

 
 

 

Figure 15: Scatter plots of plot-level aboveground biomass and gross volume vs. lidar-derived variable 
height bin 2 metric. 
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Figure 16: Scatter plots of plot-level aboveground biomass and gross volume vs. the lidar-derived static 
height bin 6 metric. 

 
 

 

Figure 17: Scatter plots of plot-level aboveground biomass and gross volume vs. the lidar derived density 
6 metric. 
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where only a portion of ALS returns were utilized for trees with stems located at the 

edge of a subplot. 

 The stepwise selection method was used to identify prediction variables to be 

included in multiple linear regression models for each of the plot-level point cloud-based 

lidar metric groups. A probability threshold of 0.10 was used for a variable to enter the 

model as well as the to stay in the model. If more than one predictor variable was 

included in the final model, variance inflation factors (VIFs) were calculated to check 

for the presence of multicollinearity. Predictor variables with VIFs greater than five were 

considered an indicator of multicollinearity in the model. This selection method 

produced no models containing more than one predictor variable when plot-level point 

cloud-base lidar metrics were used.  

2.3.3 Subplot-Level Individual Tree Metrics 

 Simple linear regression models using the predictor variables of average tree 

height, average crown width, and number of trees also produced poor results. When all 

56 subplots were included in the model, the best predictor variable identified was 

number of trees. Models created using this predictor variable yielded extremely low R-

square values (R2 = 0.06 for biomass and R2 = 0.06 for volume). With the two points of 

interest removed from the data set, the R-square values of all models increased, and the 

best predictor variable became average height (R2 = 0.14 for biomass and R2 = 0.17 for 

volume, Table 13).  
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Table 13: Subplot-level individual tree simple linear regression results for best predictor variables. 

        Parameters and p-values 
Individual tree 
metric 

Dependent 
variable R2 RMSE β0 P-value β1 P-value 

num_trees Biomass 0.06 4416.76 1712.20 0.1545 253.37 0.0782 
num_trees Volume 0.03 7.23 2.63 0.1806 0.32 0.1700 
ave_ht (reduced) Biomass 0.14 2275.15 768.24 0.3307 183.19 0.0059 
ave_ht (reduced) Volume 0.17 3.25 0.43 0.7010 0.30 0.0019 

 
 
 
 Stepwise multiple regression analysis was also performed, using the same 

procedure that was utilized in section 2.3.1. The stepwise selection method only selected 

one predictor variable (number of trees), so no multiple linear regression models were 

generated from the subplot-level individual tree metrics.  

2.4 Conclusions 

 This study represents an initial attempt to model biophysical parameters of 

interest to the FIA program utilizing the standard FIA plot design, data from FIA ground 

crews, and ALS data. As previously mentioned, other studies have successfully modeled 

similar forest parameters with ALS data, but have done so under conditions different 

than those present in the Malheur National Forest. Issues such as the presence of a large 

number of tree species, complex terrain, dense forest conditions, and multi-story forest 

canopies, increased the difficult of modeling forest biophysical parameters in this study.  

 The area-based subplot-level point cloud and individual tree ALS metrics used in 

this study were shown to have a poor relationship to subplot estimates of biomass and 

volume estimated from FIA measurements. While the larger plot-level point cloud 

metrics exhibited a stronger relationship with the estimates of biomass and volume 
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produced using FIA measurements, resulting in models that could account for 

approximately 71% of the variation present in the data.  Even though the R-square 

values for models using the plot-level predictor variables are lower those reported by 

previous studies, e.g. Lim and Treitz 2004, they represent a large improvement from the 

models developed using subplot-level point cloud and individual tree ALS metrics.  

 The poor results produced from the subplot-level and individual tree ALS metrics 

helped identify several sources of error that should be taken into account in future 

research, such as: (1) geolocation error for subplot center coordinates; (2) edge effect. 

Other possible sources of error, such as FIA measurement date and the large variety of 

tree species, could have negatively affected study results. For example, 44 of the 

subplots used in this study were measured by FIA crews at least two years before the 

lidar data were collected. Future research should utilize larger plots to reduce errors 

caused by geolocation and plot edge effect, as well as regional species-specific growth 

and yield models to mitigate error caused by out-of-date tree measurements.  

 The overlap of tree crowns within the complex multi-story forest canopy, 

coupled with the large number of tree species with crown morphologies differing from 

the southern pine species used to create TreeVaW most likely reduced the software’s 

effectiveness. This problem was apparent when TreeVaW was unable to produce crown 

radii estimates for approximately 46% of the trees it identified. Future attempts to use 

TreeVaW to model forest biophysical parameters could possibly reduce these problems 

by manually matching TreeVaW identified trees, rather than averaging heights and 
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crown widths for trees identified within a subplot. Methods such as this could follow a 

methodology similar to Popescu (2007).   
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3 COMPARISON OF TERRESTRIAL LIDAR METRICS AND GROUND-

BASED ESTIMATES OF TOTAL ABOVEGROUND BIOMASS AND 

VOLUME 

 

3.1  Introduction 

 Light detection and ranging (lidar) is a laser-based, active remote sensing system, 

which collects ranging data utilizing the known speed of light and information about the 

flight time of a laser pulse (Lim et al., 2003). In this context, flight time refers to the 

time it takes for a given laser pulse to travel from a system, reflect off of an object, and 

return back to the system. A wide variety of lidar systems currently exist, and data has 

been successfully collected utilizing systems mounted to space-borne, aerial, and 

terrestrial (tripods or vehicle-based) platforms. Over the past several decades the use of 

lidar remote sensing data in forestry has seen steady growth. The increased use of lidar 

systems to acquire data over forested areas can be attributed to their ability to cover 

extents of local or regional scales and accurately quantify the three-dimensional vertical 

structure of the forest. 

 Measurements from terrestrial laser scanners (TLS) have been used for a 

relatively short time, starting in late 1990s. TLS systems are mounted on a terrestrial-

based platform (e.g. tripod, motor vehicle) and in most cases require a portable computer 

and several large batteries or a portable generator to operate. Systems such as these are 

capable of acquiring and merging scans from multiple locations through the use of at 
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least two stationary targets. This process requires more time scanning an area, but has 

the potential to provide a more complete picture of a study area.  

 A number of studies have provided methodologies for deriving forest 

measurements using data collected by TLS systems. Hopkinson et al. (2004) isolated 

individual trees for height and DBH measurement in merged lidar scans with two 

distinct forest types. Thies et al. (2004) merged lidar scenes, and produced detailed stem 

measurements of several large-diameter deciduous trees. A method for automatically 

identifying individual trees, measuring tree height, and tree DBH is presented in Maas et 

al. (2008). Henning and Radtke (2006) developed methods for identifying trees scanned 

with a TLS system and measuring stem diameter. Their results showed the average error 

between the lidar-derived diameter estimates and caliper measurements, for sections 

below the base of live crown, to be less than 1 cm. Methods of deriving other forest 

measurements, such as aboveground biomass, have also been explored. Lefsky and 

McHale (2008) used high-density point cloud data for multiple urban trees with complex 

architecture in an attempt to develop allometric relationships for predicting species tree 

volume.  

 In the United States, the Forest Service (USFS) Forest Inventory and Analysis 

(FIA) program provides a diverse selection of data used to assess the status of the 

nation’s forested areas. In the past, the FIA program used a periodic inventory system, 

where measurements on non-national forests were collected on a state-by-state basis in 

predetermined zones, and lead to inventory cycles of ranging from six to eighteen years 

(Gillespie, 1999). In 1998 legislation was passed (see the Agricultural Research, 
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Extension, and Education Reform Act of 1998) that mandated the entire FIA program 

implement an annual inventory. This inventory method requires that the collection, 

analysis, and reporting of data at a state-level be completed every five years, meaning 

that under ideal conditions, 20% of plots in each state would be measured each year 

(Gillespie, 1999). The annualized FIA program allows for the collection of a variety of 

parameters of interest and consists of three phases: (1) remote sensing to identify 

forested and non-forested areas; (2) field samples located at intervals of about 1 plot 

every 6,000 acres, where forested sample areas are visited by field crews to collect 

ground measurements and non-forested areas are visited to quantify the frequency of 

variables such as land use change; and (3) consists of visiting a subset of the plots in 

phase 2 ( about 1 plot every 96,000 acres) to collect more detailed measurements (e.g. 

complete vegetation inventory, tree and crown condition, soil data) during the growing 

season (USFS, 2008).  

 The measurements collected by the FIA program can be scaled up to provide 

information about forest populations by aggregating plot statistics for specific 

populations. However, this is only possible if the population(s) of interest have been 

adequately sampled by the inventory.  Many regional to national scale biomass and 

carbon budgets for the United States are based largely on the forest information provided 

by the FIA program, regional-level volume and biomass equations, and national-level 

allometric equations (Heath et al. 2008). Heath et al. (2008) also notes that in recent 

years the FIA program has seen a continual increase in requests, from forest resource 

managers and researchers, for biomass, carbon, and volume information. The direct link 
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between data provider and end user makes the FIA program responsible for many of the 

volume estimates, biomass budgets, and carbon budgets created for the United States.  

 This overall objective of this study is to provide a novel approach for estimating 

aboveground biomass and gross volume at the FIA subplot-level, using height and 

distance-based TLS point cloud metrics. Subplot biomass and volume estimates derived 

from ground-based FIA measurements and allometric equations will be compared to a 

number of subplot TLS point cloud metrics. This will address the hypothesis that 

because data collected by a TLS system are capable of describing the three dimensional 

vertical structure of the forest, they can be used to estimate forest biophysical parameters 

of interest such as volume and aboveground biomass. The specific objectives of this 

study include: 

 
1. Development of a methodology to derive height and distance-based terrestrial 

lidar metrics related to forest biophysical parameters at the FIA subplot-level. 

 
2. Utilize simple linear and multiple linear regression analysis to help identify 

relationships between the lidar metric sets and FIA subplot estimates of forest 

biomass and volume calculated from FIA data.  

3.2  Materials and Methods 

3.2.1  Study Area 

 The study area for this project is in the Malheur National Forest located in 

eastern Oregon, and covers roughly 105,936 hectares (Figure 18). Elevation ranges from 

1,236 to 2,593 m, and slope varies from 0 to ~ 86 degrees. The general location of the 
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study area, as defined by the NE and SW corners of a rectangle, is Universal Transverse 

Mercator (UTM) Zone 11N 383297.6E, 4905767.9N and UTM Zone 11N 333344.5E, 

4863102.6N. The site was selected because of access to FIA ground measurements and 

plot locations, and the presence of a wide variety of forest conditions, such as slope and 

tree species. The forests located within the study area are composed of mostly pine 

species, including: Ponderosa pine (Pinus ponderosa), Douglas-fir (pseudotsuga 

menziesii), western larch (Larix occidentalis), and grand fir (Abies grandis). 

 

 
Figure 18: Malheur National Forest study area in eastern Oregon. Hollow squares represent individual 
airborne lidar tiles. Blue squares represent tiles containing an FIA plot location where at least one subplot 
was scanned with the terrestrial lidar scanner. Grey squares signify tiles containing an FIA plot location. 
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3.2.2  Data 

 This section of the study used several types of data to describe forest conditions 

at FIA plot locations in the study area including: (1) FIA ground crew in situ 

measurements; and (2) single return, small footprint, terrestrial laser scanners (TLS). 

3.2.2.1  Forest Inventory and Analysis Data 

 The USFS provided FIA data for all FIA locations within the study area (91 

locations, 364 subplots, and about 2,477 trees). This study will focus on FIA subplots 

since they are utilized in every FIA region. Each FIA location contains four circular 

~0.04 acre subplots (radius = 7.32 m). Subplot one is centered over the plot center for 

the entire FIA location. Subplots two, three, and four are located 36.58 m from the center 

of subplot at azimuths of 360°, 120°, and 240°, respectively (Figure 2.2, section 2.2.2.1). 

Individual trees are measured and recorded if they are located within the boundaries of 

subplot and have a DBH or diameter at root collar greater than 12.7 cm. Measurements 

collected for each of these trees include: DBH, height, tree condition (live/dead), crown 

class (open grown, dominant, codominant, intermediate, or overtopped), species, species 

group, azimuth to plot center, and distance to plot center.  

 The FIA program provided estimates of volume for the majority of the trees in 

the study area. Estimates were only omitted for trees with a status code that listed the 

tree as dead, or for trees where the status code was completely absent. The regional 

equations used to calculate tree volume estimates can be found in Zhou and Hemstrom 

(2010). Estimates of individual tree total aboveground biomass were to also be included 

with the FIA data. However, the current high workload of the FIA data steward, and the 
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time constraints of this study did not make this a feasable option. The national-scale total 

aboveground biomass equations, presented in Jenkins et al. (2003), were used to estimate 

the total aboveground biomass for individual trees in lieu of the estimates from regional 

FIA equations. Plot-level estimates for total aboveground biomass and volume were 

calculated by summing the total aboveground biomass and volume estimates for all of 

the trees in each subplot. 

3.2.2.2  Terrestrial Lidar Data 

 Terrestrial lidar data were collected for nine FIA subplots at four FIA plot 

locations (Table 14 through Table 19). Data were not collected on seven of the 16 

subplots. Several issues were encountered that required the collection of data from only 

a subset of the available subplots, including: (1) finite amount of power available for 

operating the scanner; (2) major obstruction of the TLS field of view (FOV), by 

vegetation near or on subplot center (Figure 19 and Figure 20); or (3) inability to locate a 

FIA subplot center monument. Data were collected using a Leica ScanStation 2 (Figure 

21). This system is capable of recording 50,000 pulses per second, has a maximum range 

of 300 m, a minimum point spacing of 1 mm apart (horizontally and vertically), and can 

collect data 360° horizontally and 270° vertically.  For this study the scanner was placed 

directly over the center of an FIA subplot (marked by a permanent monument), and 

performed a full 360° by 270° scan, horizontally and vertically, (from here on referred to 

as a 360° scan) with a point density of 10 cm by 10 cm at a distance of 50 m. 
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Table 14: Data collection years for selected subplots. 

  Sample year 

 
2003 2005 2006 2008 

Number of subplots 2 1 3 3 
 

 

Table 15: Selected subplot crown class frequencies. 

Species na 
Crown Class 
OGb Dc CDd Ie OTf 

Abies grandis 33	
   1	
   10	
   8	
   11	
   3	
  
Pinus contorta 11	
   0	
   4	
   5	
   2	
   0	
  
Pinus ponderosa 38	
   0	
   7	
   25	
   4	
   2	
  
Pseudotsuga menziesii 1	
   0	
   0	
   1	
   0	
   0	
  
Cerocarpus leditolins 8	
   0	
   0	
   1	
   7	
   0	
  

a Number of trees 
b Open grown crown class 
c Dominant crown class 
d Codominant crown class 
e Intermediate crown class 
f Overtopped crown class 
 
 

 
Table 16: Descriptive statistics for tree DBH. 

Species 
  Diameter at breast height (cm) 
na mean  min - max SDb CV(%)c 

Abies grandis 33	
   30.08 13.21 - 70.36 15.46 51.41 
Pinus contorta 11	
   21.17 16.51- 29.97 3.97 18.73 
Pinus ponderosa 38	
   27.41 12.70 - 101.30 21.99 80.24 
Pseudotsuga 
menziesii 1	
   14.73 NA NA NA 

Cerocarpus leditolins 8	
   16.95 13.72 - 22.35 3.17 18.71 
a Number of trees 
b Standard deviation 
c Coefficient of variation percentage 
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Table 17: Descriptive statistics for tree height. 

Species 
  Height (m) 
na mean  min - max SDb CV(%)c 

Abies grandis 33	
   17.64 7.62 - 27.44 6.06 35.38 
Pinus contorta 11	
   14.77 13.11 - 18.90 1.94 13.13 
Pinus ponderosa 38	
   14.51 7.62 - 38.72 7.62 52.52 
Pseudotsuga 
menziesii 1	
   14.02 NA NA NA 

Cerocarpus leditolins 8	
   6.17 4.27 - 8.54 1.35 21.89 
a Number of trees 
b Standard deviation 
c Coefficient of variation percentage 
 
 
 
Table 18: Descriptive statistics for estimated subplot biomass and volume. 

  na mean min - max SDb CV(%)c 
Biomass (dry kg) 9 3884.77 1141.28 - 7089.45 1888.1 48.6 
Volume (m3) 9 5.55 1.27 - 9.36 2.92 52.6 

a Number of plot 
b Standard deviation 
c Coefficient of variation percentage 
 
 
 
Table 19: Terrestrial lidar scanning summary. 

FIA location 5992         
Subplot #: 1 2 3 4 
TLS Scan: No Yes No Yes 

FIA location 5993 
    Subplot #: 1 2 3 4 

TLS Scan: Yes No No No 
FIA location 5708 

    Subplot #: 1 2 3 4 
TLS Scan: Yes No Yes Yes 

FIA location 6185 
    Subplot #: 1 2 3 4 

TLS Scan: No Yes Yes Yes 
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Figure 19: Example of a subplot not selected for scanning because of high levels of obstruction close to 
the center of the plot when facing North or South from subplot center. 

 
 

 
Figure 20: Example of selected subplot with area near subplot center clear of obstructions. 
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Figure 21: Leica ScanStation 2 terrestrial lidar scanner, located over the center of an FIA subplot, 
collecting data with a 360° scan. 
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3.2.3  Point Cloud-based Terrestrial Lidar Metrics 

3.2.3.1  Visual Summary of Data Processing 

 A flowchart of the data processing steps used in this study is shown in Figure 22. 

 

 
Figure 22: Flowchart of the terrestrial lidar data processing approach. 
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3.2.3.2  Registration of Terrestrial Lidar Data 

 An initial inspection of the TLS scans established that the points in each subplot 

were not correctly georeferenced. Instead, each point was assigned coordinates relative 

to the scanner location of (0.0, 0.0, 0.0). In the Leica software package Cyclone, a point 

cloud can be easily registered if the x, y, and z coordinates for one point are known, and 

an azimuth to a second point is also known. This information was available for each scan 

because the coordinates for the scanner location (FIA subplot center) and the azimuth 

from the scanner to a reference target were recorded at each scan location. However, 

there is no point in the point cloud, which represents the scanner. A “scanner point” had 

to be manually added at (0.0, 0.0, 0.0) before the registration could take place. A third 

piece of information, critical to the registration process, was the height of the scanner 

above the ground. Without this information, a systematic error in the height values of 

each point would be present after registration. At the time of data collection, scanner 

height measurements were recorded for all but one subplot. These values were added to 

their corresponding scanner location elevation (z value). The eight subplots with 

sufficient reference information were registered successfully.   

 To accurately register the subplot with the missing scanner height record, a 

scanner height estimate needed to be produced. An old unpaved forest service road 

within the scan provided a easily identifiable bare Earth surface that could be used in 

conjunction with a spatial coincident 1m ALS-derived DEM to estimate scanner height. 

In order to compare the two datasets, the TLS data was registered without any scanner 

height correction and overlayed on the ALS DEM. An estimate of the systematic error 
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was generated from measurements of the difference between the DEM and TLS points 

for 14 locations, at one-meter intervals, along a 15 m height profile transect created in 

Quick Terrain Modeler (QTM).  An average of the 14 measurements was taken and 

provided a mean height correction of 2.25 m with a standard deviation of 0.04 m. The 

scanner height estimate was applied to the subplot data, and a correctly registered point 

cloud was created (Figure 23). 

 

 

 
Figure 23: QTM generated transect height profile. The blue line represents the 1m ALS-derived DEM, and 
the red line represents the registered TLS data missing scanner height correction. 

 

3.2.3.3  Extraction of Subplot Point Clouds 

 Coordinates for the center of each subplot were included in the data provided by 

the FIA program. These coordinates were collected during field measurements using a 

WAAS (wide area augmentation system) enabled Trimble GPS unit, and then post-

processed using base station data. Proprietary Trimble software was utilized to compute 

the average accuracy of the reported coordinates. The average accuracy values are 

computed to represent a 95th percentile three-dimensional distance threshold around the 
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true subplot center location. The resulting point data were provided as a shapefile, to 

allow for visualization and manipulation in ArcMap.  

 The TLS-scanned subplots from each of FIA location were selected and 

individually extracted from the provided shapefile. This process created a total of nine 

shapefiles, each containing a single point, which represented the subplot center 

coordinates for the selected subplot. A circular buffer (r = 7.32 m) was created around 

each subplot center. This process provided polygon shapefiles covering the spatial extent 

of each subplot. To create individual subplot point clouds, the points within each subplot 

were extracted from the corresponding subplot scan.  

3.2.3.4  Calculation of Above Ground Level Elevations and Removal of Ground 

 All point cloud metrics were calculated with above ground level (AGL) elevation 

values. QTM was used to compute AGL values for each subplot point cloud by 

subtracting the DEM values from the corresponding point elevations.  

 When considering TLS systems from an operational standpoint, locations where 

data are collected may not always have spatially coincident ALS data, and as such, users 

may not have access to a high resolution DEM. This hypothetical situation establishes 

the need to generate a DEM from the data collected by a TLS system. Several 

characteristics of TLS systems lend support to the idea of creating a DEM from TLS 

data, such as: (1) current TLS systems have the potential to collect data with much 

higher resolutions than ALS systems; and (2) TLS systems collect data from underneath 

a forest canopy, which allows the system to collect a larger number of ground returns for 

the area directly surrounding the scanner than an ALS system.  
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 As previously mentioned, several characteristics of TLS systems provide a 

substantial increase in the amount of ground points collected by the system. The 

increased amount of available data can be both beneficial and detrimental. For instance, 

the high resolution of the scan provides the ability to create higher resolution DEMs, 

capable of capturing minute variations in the terrain, commonly generalized by the 

courser resolution DEMs generated from ALS data. Conversely, the high resolution of 

the terrestrial scans, often means that points close to the ground are collected for grasses, 

forbs, course woody debris, or other non-ground materials within the subplot. While 

information such as this could be useful for some studies, it has the potential to cause 

spurious results when generating a DEM.  

 For this study, the AGL Analyst tool in the Quick Terrain Modeler software 

package will be used to derive an estimated DEM for each subplot point cloud. Several 

limitations, stemming from the software and the mechanics of the TLS system itself 

were recognized during this process. The most restricting limitation of QTM’s AGL 

Analyst tool was the 1m-resolution threshold for DEM creation. Since a finer resolution, 

better suited for the high resolution TLS data, is not allowed in QTM only a generalized 

DEM was produced. A positive aspect of this generalization was the previously 

mentioned effect of returns from non-ground materials was reduced. The limitation 

imposed by the TLS system stems from its limited vertical FOV (Figure 24), which 

produced a small circular section in each scan where no data are collected (Figure 25). 

Areas of no data can be detrimental to DEM creation, since the surface of the Earth must 

be interpolated from the available data surrounding the area. In some cases, overhang 
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from tree crowns caused large spikes in the DEM. These spikes were rectified using the 

Smooth Area tool, which used information from surrounding cells, selected by a user-

defined polygon, to remove the anomalous spikes. The final TLS-derived DEMs for 

each subplot were subtracted from the corresponding subplot point cloud data to obtain 

AGL height values. 

 

 
Figure 24: Conceptual illustration of the limited vertical field of view (270°) of the ScanStation 2. 

 

 
Figure 25: Visualization of area of no data collection as a result of the limited vertical field of view. 
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 A search of the literature reveals that when using point cloud metrics, points 

under a specified height are often excluded from an analysis. The exclusion of points in 

this manner helps remove possible effects of shrubs, large rocks, and other ground-

related laser returns from lidar data. Mitigating these effects reduces the overall amount 

of data, but helps to insure that the majority of the remaining data represent the objects 

of interest, e.g. trees. Since the TLS system is capable of collecting a large amount of 

returns from the ground and vegetation other than trees, the removal of ground points is 

of even greater importance. A height cut off value of 0.5 m (AGL) was selected. All 

points with an elevation of less than this value were cropped from each AGL subplot 

point cloud. 

3.2.3.5  Height Percentiles 

 Height percentiles were calculated for each subplot. A similar approach has been 

used with ALS data to relate it to forest biophysical parameters (Holmgren, 2004; Lim 

and Treitz, 2004; and Patenaude et al. 2004). For this study, mean height, and the 25th, 

50th, 75th, 90th, 95th, and 100th height percentiles were calculated for each subplot point 

cloud. 

3.2.3.6  Variable Height Bins 

 Height bins were used to separate the vertical space within a subplot into five 

equal-spaced intervals. The variable height bin approach calculates height bins by 

finding the distance between highest and lowest points in a plot, and dividing this 

distance by the number of desired bins (in this case five). The approach used to calculate 
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bins size was similar to the method used by Næsset (2007) to determine bins intervals 

used when calculating canopy densities from ALS data. An attractive element of this 

approach is it permitted a different height bin interval to be calculated for each subplot. 

After the height bin interval had been calculated, height bin break points were set, and 

the number of points within each height bin was counted. The ratio of the number of 

points in a height bin to the total number of points in the subplot point cloud was then 

calculated. This normalization procedure enables direct comparisons between the same 

height bin values from other subplots. 

3.2.3.7  Static Height Bins 

 Static height bins were also used to separate the vertical space within a subplot 

into intervals. This height bin method was selected to emphasize differences between 

subplots, since it uses the same height bins regardless of the minimum and maximum 

subplot height values. While conceptually similar to the variable height bin approach 

(section 3.2.3.7), this method used constant height bin intervals for all of the subplots, 

which divided the vertical space into a total of six bins. The static height bin break points 

selected were: (shb1) 0.5 – 5 m; (shb2) 5 – 10 m; (shb3) 10 – 15 m; (shb4) 15 – 20 m; 

(shb5) 20 – 25 m; and (shb6) greater than or equal to 25 m. The total number of points 

within each height bin is counted. The counts were also normalized by dividing each 

count by the total number of points in the subplot. 
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3.2.3.8  Radial Distance Bins 

 Radial distance bins were created in an effort to calculate a TLS metric not 

related to height. This metric takes advantage of the unique data collection 

characteristics of a TLS system, e.g. the stationary system location, and the predefined 

scanning resolution. The method disregards the height information for each point in the 

subplot point cloud, transforming a three-dimensional point cloud to a two-dimensional 

data set. Linear distance of each point from the subplot center (scanner location) is 

calculated using the distance formula (Eq. 2).  The two-dimensional subplot area (r = 

7.32 m) is then separated into 8 radial bins. Bin break points were set at 1 m intervals, 

resulting in following radial bins: (rdb1) 0 – 1 m; (rdb2) 1 – 2 m; (rdb3) 2 – 3 m; (rdb4) 

3 – 4 m; (rdb5) 4 – 5 m; (rdb6) 5 – 6 m; (rdb7) 6 – 7; and (rdb8) greater than or equal to 

7 m (Figure 26). The total number of points within each of the radial distance bins was 

counted.  

 Unlike the previously mentioned height-based metrics, the counts for each radial 

distance bin were not normalized. The use of raw point counts is justified because of the 

previously described TLS system characteristics. The stationary system location during 

the scan, and the predefined scan resolution (set by the user), mean the total number of 

pulses emitted by the system at each location should be theoretically identical, and allow 

for direct comparisons between scans so long as scan settings remain constant.  

Furthermore, AGL point elevations and the removal of all points below 0.5 m ensure 

most ground related returns are removed from the point cloud, leaving only vegetation 

returns. With only vegetation returns remaining, point counts directly relate to the 
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amount of vegetation within the subplot, and thus can be related to biophysical 

parameters.   

 The point counts present in each of the radial distance bins are functionally 

related to the number a size of stems. The set resolution used for each TLS scan causes 

objects that are closer to the scanner to be scanned at a higher resolution than objects 

that are further away. Extending this principle, larger objects that are closer to the 

scanner will have higher point densities than smaller objects at the same distance. In 

some instances, lower portions of tree canopies can also be scanned with higher point 

densities, but since the canopy is composed of branches and foliage, numerous gaps are 

present. This porosity inherent in the canopy structure means that when a section of the 

canopy and a tree stem are equidistant from the scanner, a lower point density will be 

returned for the canopy than the tree stem.  

 Several similarities exist between the concept of TLS radial distance bins and 

metrics derived from hemispherical photography using programs such as HemiView. 

The analysis of hemispherical photography uses angles to project a hemispherical photo 

onto a plane. Angles are used because in the photographs the radial component of 

distance is related to the zenith angle (HEMIVIEW MANUAL). A similar task is 

performed when radial distance bins calculate distance without regard for point height, 

which essentially transforms the three dimensional lidar data to a two dimensional plane. 

A second similarity deals with how HemiView and radial distance bins separate the 

space within a hemispherical photo or plot. For example, when HemiView is used to 

calculate gap fraction for a skymap, the space is divided into radial bins as well as wedge 
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shaped sections defined by zenith and azimuth angle ranges, respectively. Radial 

distance bins perform a similar task, resulting in only radial bins based on horizontal 

distance.   

 

! =    (!! −   !!)! + (!! −   !!)!                               (Eq. 2) 
 
 

 

 
Figure 26: Conceptual example of a FIA subplot separated into radial distance bins. 
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3.2.3.9  Regression Analysis 

 Simple linear regression models were used to examine the relationship between 

the lidar-derived metrics and the subplot-level estimates of total aboveground biomass 

and gross volume. The predictor variables and methods used to calculate them were 

described in the previous sections. A summary of the predictor and response variables 

used the regression analyses can be found in Table 20. Models were run for each set of 

predictor variables. Information about the best model from each metric set, and the 

variable that produced the overall best model were provided. 

 Multiple regression analysis, with a mixed stepwise selection method was used to 

identify predictor variables to be included in multiple linear regression models for each 

of the point cloud-based lidar metric groups. The same analysis was used to identify 

predictor variables using the distance-based metric set and each of the height-based 

metrics sets individually (e.g. radial distance bins with height percentiles, radial distance 

bins with variable height bins, and radial distance bins with static height bins). A 

probability threshold of 0.1 was used as the probability of a variable to enter the model, 

as well as the probability of a variable to stay in the model. If more than one predictor 

variable was included on in the final model, variance inflation factors (VIFs) were 

calculated to check for the presence of multicollinearity. Predictor variables with VIFs 

greater than five were considered an indicator of multicollinearity in the model. 
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Table 20: Regression variables. 

Sets of lidar-derived area-based 
predictor variables 

Response variables  
(FIA field measurements) 

Height Percentiles Aboveground Biomass (kg) 
p25, p50, p75, p90, p95, p100, mean Gross Volume (ft3) 

Variable Height Bins 
 vhb1, vhb2, vhb3, vhb4, vhb5 
 Static Height Bins 
 shb1, shb2, shb3, shb4, shb5, shb6 
 Radial Distance Bins 
 rdb1, rdb2, rdb3, rdb4, rdb5, rdb6, rdb7, rdb8   

 

3.3  Results and Discussion 

3.3.1  Point Cloud-Based Terrestrial Lidar Metrics 

 Individual simple linear regression models were created for aboveground 

biomass and gross volume using each of the point cloud-based metrics. Examination of 

the resulting models showed that most lidar-derived predictor variables were poorly 

related to the ground-based estimates of subplot biomass and volume. The best predictor 

variables from each point cloud-based metric set were the 100th percentile (p100), 

variable height bin one (vhb1), static height bin one (shb1), and radial distance bin four 

(rdb4, Table 21, Figure 27 through Figure 30). The best model used rdb4 as the predictor 

variable, and yielded R-square values of 0.40 for biomass and 0.46 for volume. It should 

be noted that the intercepts and slopes for the selected height percentile and variable 

height bin models, were not significant at the 0.1 level, providing evidence to fail to 

reject the null hypothesis (coefficients are equal to zero). The slopes of the selected 

radial height bin models were found to be significant at the 0.1 level, while p-values for 

the intercepts of both models did not provided enough evidence to reject the null 
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hypothesis the intercepts were equal to zero. The intercepts and slopes for the selected 

static height bin models were significant at the 0.1 level. 

 

Table 21: TLS simple linear regression models for the best predictor variable from each metric set. 

        Parameters and p-values 
Individual tree 
metric 

Dependent 
variable R2 RMSE β0 P-value β1 P-value 

Heght 
Percentiles 

       p100 Biomass 0.11 1901.92 1714.76 0.4969 97.35 0.3784 
p100 Volume 0.28 2.66 0.29 0.9344 0.24 0.1464 

Variable 
Height Bins 

       vhb1 Biomass 0.23 1768.24 1873.96 0.2520 3718.06 0.1886 
vhb1 Volume 0.28 2.64 2.11 0.3775 6.36 0.1395 

Static Height 
Bins 

       sbh2 Biomass 0.41 1548.03 6793.95 0.0019 -11192.02 0.0624 
sbh2 Volume 0.37 2.47 9.84 0.0033 -16.51 0.0799 

Radial 
Distance Bins 

       rdb4 Biomass 0.40 1557.48 1385.96 0.3070 0.07 0.0655 
rdb4 Volume 0.46 2.29 1.42 0.4687 0.00 0.0436 
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Figure 27: Scatter plots of aboveground biomass and gross volume vs. the lidar-derived 100th height 
percentile. 

 
Figure 28: Scatter plots of aboveground biomass and gross volume vs. the lidar-derived variable height bin 
one. 
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Figure 29: Scatter plots of aboveground biomass and gross volume vs. the lidar-derived static height bin 
two. 

 

 
Figure 30: Scatter plots of aboveground biomass and gross volume vs. the lidar-derived radial distance bin 
four. 
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variable to enter the model as well as and stay in the model. No variables were selected 

from the height percentile metrics or variable height bin metrics. Static height bin two 

and radial distance bin four were selected from the static height bin and radial distance 

bin metric sets respectively.  

 When the stepwise selection method was utilized to select predictor variables 

using the distance-based metric set and each of the height-based metrics sets 

individually, a total of three models were created. In two out of the three selections 

(radial distance bins with percentiles and radial distance bins with variable height bins) 

one distance-based bin and one height-based bin were selected as predictor variables for 

each model. However, when the stepwise selection method was used on the radial height 

bin metrics and the static height bin metrics, a total of four predictor variables were 

selected.  Diagnostic plots and VIFs for each parameter in the models were examined to 

determine the most suitable model for predicting biomass and volume. The selected 

multiple regression models for predicting biomass and volume used radial distance bin 

four and variable height bin one, and provided R-square values of 0.71 and 0.84 

respectively (Table 22 and Figure 31). VIFs for both predictor variables were only 1.01 

indicating that multicollinearity was not a concern. It should be noted that the residual 

vs. fitted plot for the volume model (Figure 31[bottom left]) does show possible 

heteroscedasticity. However, the small sample size (n = 9) used in this study makes it 

difficult to verify assumptions used in multiple regression analysis. 

 The frequent selection of a radial distance bin by the stepwise selection method 

can be explained when the distances of trees to plot center and DBHs of trees are 
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analyzed. Over the nine subplots, the average distance of a tree to subplot center was 

approximately 4.64 m. the selected radial distance bin was radial distance bin four, 

which included points between three and four meters from plot center. FIA measurement 

protocol requires that this distance be measured from the pith (or center) of each tree to 

plot center. The average DBH all FIA trees in the nine subplots was 20.75 cm, which 

means that the average distance to the outside of the tree stems is shorter than the 

reported average distance and moving the distance closer to those included in radial 

distance bin four. Ground measurement errors for the distance between trees and the 

subplot center can also affect the measured distance. 

 
 

Table 22: Selected multiple regression models from mixed stepwise selection procedure. 

  Dependent variable 

  Biomass (rdb4, vhb1) Volume (rdb4, vhb1) 
R2 0.71 0.84 
Adj-R2 0.62 0.79 
RMSE 1164.09 1.35 
β0 -1198.30 -2.99 
P-value 0.4188 0.1123 
β1 (p75) 0.07 0.00 
P-value 0.0189 0.0039 
VIF 1.01 1.01 
β2 (p100) 4322.03 7.36 
P-value 0.0432 0.0096 
VIF 1.01 1.01 
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Figure 31: Diagnostic plots for selected multiple regression models for biomass (top) and volume 
(bottom). 
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 Many of the metrics used have produced good results when applied to ALS data 

(Lim and Trietz, 2004; Næsset and Bjerknes, 2001; Næsset and Okland, 2002; Næsset , 

2007). It is clear that more research on the development of TLS metrics is needed. For 

instance, one of the major differences between ALS and TLS systems is system 

perspective. While ALS systems collect data looking down on the forest canopy, TLS 

systems collect data from underneath or within the forest canopy. In this case, the TLS 

system is also fixed at one location. The data collection differences between ALS and 

TLS systems, suggest that common ALS point cloud metrics do not provide enough 

information to successfully estimate plot-level biomass or volume. The main problem 

with using height in TLS metrics is that in many cases the real height of trees cannot be 

identified in the TLS data. This is because branches or other obstructions often occlude 

laser pulses from reaching the top of the tree. The results from this study suggest that 

combinations of horizontal distance-based and height-based metrics provided more 

information about the density of the vegetation within a plot, and lead to better 

prediction of biomass and volume.  

 It also may be the case that the high resolution subplots scans would be better 

utilized by some sort of individual tree measurement method, where individual tree 

measurements could be scaled-up to the plot level after their collection. Currently, 

options for automatically obtaining measurements such as number of stems, DBH, 

crown width, etc. are very limited. This means time consuming manual measurements, 

based on point cloud data, would be required to collect forest measurements from TLS 

data. However, the use of TLS technology is still in the early stages of development, and 
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future advances leading to the automated measurements of individual trees in point 

cloud data could one day become a possibility.  

3.4  Conclusions 

 This study represents the first attempt to model biophysical parameters of interest 

to the FIA program utilizing elements of the standard FIA plot design, data from FIA 

ground crews, and TLS data. It is one of the first known attempts to apply commonly 

used ALS point cloud metrics to TLS data in order to model forest biomass and volume. 

Radial distance bin metrics, while similar to some hemispherical photography analysis 

metrics, were developed and helped account for the location and size of tree stems 

within TLS scans.  

 A TLS lidar system used to collect a single 360° scan was proven to be able to 

provide high-resolution data for small FIA subplots. This permanent record of the 

subplot conditions could be beneficial for a number of different uses. The utilization of 

commonly used ALS metrics, e.g. height percentiles, variable height bins, static height 

bins, to predict aboveground biomass or volume was not successful. It is hypothesized 

that metrics such as these support specific data collection characteristics of ALS systems 

better than TLS systems when trying to identify relationships between TLS data and 

plot-level biomass or volume. A combination of horizontal distance-based and height-

based metrics better supports the data collection characteristics of TLS systems, and 

improved the ability to predict biomass and volume. Further investigations should focus 

on other lidar metrics designed to complement the data collection characteristics of the 

TLS systems and possible methods for combining spatially coincident ALS and TLS 
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data in an effort to provide a more complete view of the three-dimensional structure of 

the forest. The ability of a TLS system to predict biomass or volume should be 

subsequently addressed after this process using an increased sample size.  

 One possible source of error not addressed by this study were the FIA data 

collection dates. The FIA data for six of the nine subplots used to produce estimates of 

biomass and volume for this study were last collected at least two years before the lidar 

data were collected. Since TLS systems have the ability to collect information about tree 

stems, outdated DBH measurements could also negatively affect results. The use of 

regional species-specific growth and yield charts could help correct this deficiency for 

future studies.  

 Another future study could potentially investigate various alternatives to isolating 

the point cloud for subplots, by using a weighted distance method to include the 

influence of laser points hitting branches of trees with stems located within the subplot 

boundary, but with branches extending outside of it. It is also possible that branches 

from trees located outside the subplot boundary extend into the vertical space above the 

plot footprint and would therefore provide laser returns located in the subplot point 

cloud. A situation like this may compensate for missing branch returns of trees within 

the plot, but may also introduce unwanted variance from very large trees within the 

vicinity of the plot.  
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4 CONCLUSIONS 

 
 This study represents an initial attempt to model biophysical parameters of 

interest to the FIA program utilizing the standard FIA plot design, data from FIA ground 

crews, and ALS data. As previously mentioned, other studies have successfully modeled 

similar forest parameters with ALS data, but have done so under conditions different 

than those present in the Malheur National Forest. Issues such as the presence of a large 

number of tree species, complex terrain, dense forest conditions, and multi-story forest 

canopies, increased the difficult of modeling forest biophysical parameters in this study.  

 The area-based subplot-level point cloud and individual tree ALS metrics used in 

this study were shown to have a poor relationship to subplot estimates of biomass and 

volume estimated from FIA measurements. While the larger plot-level point cloud 

metrics exhibited a stronger relationship with the estimates of biomass and volume 

produced using FIA measurements, resulting in models that could account for 

approximately 71% of the variation present in the data.  Even though the R-square 

values for models using the plot-level predictor variables are lower those reported by 

previous studies, e.g. Lim and Treitz 2004, they represent a large improvement from the 

models developed using subplot-level point cloud and individual tree ALS metrics.  

 The poor results produced from the subplot-level and individual tree ALS metrics 

helped identify several sources of error that should be taken into account in future 

research, such as: (1) geolocation error for subplot center coordinates; (2) edge effect. 

Other possible sources of error, such as FIA measurement date and the large variety of 

tree species, could have negatively affected study results. For example, 44 of the 
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subplots used in this study were measured by FIA crews at least two years before the 

lidar data were collected. Future research should utilize larger plots to reduce errors 

caused by geolocation and plot edge effect, as well as regional species-specific growth 

and yield models to mitigate error caused by out-of-date tree measurements.  

 The overlap of tree crowns within the complex multi-story forest canopy, 

coupled with the large number of tree species with crown morphologies differing from 

the southern pine species used to create TreeVaW most likely reduced the software’s 

effectiveness. This problem was apparent when TreeVaW was unable to produce crown 

radii estimates for approximately 46% of the trees it identified. Future attempts to use 

TreeVaW to model forest biophysical parameters could possibly reduce these problems 

by manually matching TreeVaW identified trees, rather than averaging heights and 

crown widths for trees identified within a subplot. Methods such as this could follow a 

methodology similar to Popescu (2007).   

 This study represents the first attempt to model biophysical parameters of interest 

to the FIA program utilizing elements of the standard FIA plot design, data from FIA 

ground crews, and TLS data. It is one of the first known attempts to apply commonly 

used ALS point cloud metrics to TLS data in order to model forest biomass and volume. 

Radial distance bin metrics, while similar to some hemispherical photography analysis 

metrics, were developed and helped account for the location and size of tree stems 

within TLS scans.  

 A TLS lidar system used to collect a single 360° scan was proven to be able to 

provide high-resolution data for small FIA subplots. This permanent record of the 
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subplot conditions could be beneficial for a number of different uses. The utilization of 

commonly used ALS metrics, e.g. height percentiles, variable height bins, static height 

bins, to predict aboveground biomass or volume was not successful. It is hypothesized 

that metrics such as these support specific data collection characteristics of ALS systems 

better than TLS systems when trying to identify relationships between TLS data and 

plot-level biomass or volume. A combination of horizontal distance-based and height-

based metrics better supports the data collection characteristics of TLS systems, and 

improved the ability to predict biomass and volume. Further investigations should focus 

on other lidar metrics designed to complement the data collection characteristics of the 

TLS systems and possible methods for combining spatially coincident ALS and TLS 

data in an effort to provide a more complete view of the three-dimensional structure of 

the forest. The ability of a TLS system to predict biomass or volume should be 

subsequently addressed after this process using an increased sample size.  

 One possible source of error not addressed by this study were the FIA data 

collection dates. The FIA data for six of the nine subplots used to produce estimates of 

biomass and volume for this study were last collected at least two years before the lidar 

data were collected. Since TLS systems have the ability to collect information about tree 

stems, outdated DBH measurements could also negatively affect results. The use of 

regional species-specific growth and yield charts could help correct this deficiency for 

future studies.  

 Another future study could potentially investigate various alternatives to isolating 

the point cloud for subplots, by using a weighted distance method to include the 



 94 

influence of laser points hitting branches of trees with stems located within the subplot 

boundary, but with branches extending outside of it. It is also possible that branches 

from trees located outside the subplot boundary extend into the vertical space above the 

plot footprint and would therefore provide laser returns located in the subplot point 

cloud. A situation like this may compensate for missing branch returns of trees within 

the plot, but may also introduce unwanted variance from very large trees within the 

vicinity of the plot.  
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