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ABSTRACT

Coherent Anti-Stokes Raman Scattering (CARS) Optimized

by Exploiting Optical Interference. (May 2011)

Xi Wang, B.S., Nanjing University;

M.S., Peking University

Chair of Advisory Committee: Alexei V. Sokolov

The purpose of this work is to study the interference between the coherent non-

resonant four-wave-mixing (FWM) background and the Raman-resonant signal in the

coherent anti-Stokes Raman spectroscopy (CARS). The nonresonant background is

usually considered as a detriment to CARS. We prove that the background can be

exploited in a controllable way, through the heterodyne detection due to the interfer-

ence, to amplify the signal and optimize the spectral shape of the detected Raman

signal, and hence enhance the measurement sensitivity.

Our work is based on an optimized CARS technique which combines instanta-

neous coherent excitation of multiple characteristic molecular vibrations with subse-

quent probing of these vibrations by an optimally shaped, time-delayed, narrowband

laser pulse. This pulse configuration mitigates the nonresonant background while

maximizing the resonant signal, and allows rapid and highly specific detection even

in the presence of multiple scattering.

We investigate the possibility of applying this CARS technique to non-invasive

monitoring of blood glucose levels. Under certain conditions we find that the measured

signal is linearly proportional to the glucose concentration due to optical interference

with the residual background light instead of a quadratic dependence, which allows

reliable detection of spectral signatures down to medically-relevant glucose levels.

With the goal of making the fullest use of the background, we study the inter-
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ference between an external local oscillator (nonresonant FWM field) and the CARS

signal field by controlling their relative phase and amplitude. Our experiment shows

that this control allows direct observation of the real and imaginary components of

the third-order nonlinear susceptibility (χ(3)) of the Raman sample. In addition, this

method can be used to amplify the signal significantly.

Furthermore, we develop an approach by femtosecond laser pulse shaping to

precisely control the interference between the Raman-resonant signal and its intrinsic

nonresonant background generated within the same sample volume. This technique

is similar to the heterodyne detection with the coherent background playing the role

of the local oscillator field. By making fine adjustments to the probe field shape, we

vary the relative phase between the resonant signal and the nonresonant background,

and observe the varying spectral interference pattern. These controlled variations of

the measured pattern reveal the phase information within the Raman spectrum, akin

to holographic detection revealing the phase structure of a source.
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CHAPTER I

INTRODUCTION

A. Introduction to Raman spectroscopy

The development of Raman spectroscopy has gone through spontaneous Raman scat-

tering (SpRS, 1928) [1], stimulated Raman scattering (SRS, 1961) [2], coherent anti-

Stokes (Stokes) Raman scattering (CARS or CSRS, 1964) [3, 4], and higher-order

process such as BioCARS (1995) [5], with the progress of high-intensity laser pulses

which makes possible the processes involving multiple photons, as shown in Fig. 1.

Considerable work has also been done to combine other techniques with Raman spec-

troscopy such as the delicate surface or tip enhanced Raman spectroscopy (SERS

or TERS) [6–10] associated with metal surface plasmons. The usual purpose of the

many variations of Raman spectroscopy is to enhance the sensitivity (e.g., SERS),

to improve the spatial resolution (Raman microscopy), or to acquire very specific

information (resonance Raman).

Since its discovery, CARS has attracted much attention due to its superiori-

ties including enhanced efficiency (by orders of magnitude) over spontaneous Raman

emission, frequency shift from incident photons over SRS, relatively large third-order

susceptibility over higher order processes, and also remain of the simplicity to be

experimentally carried out over SERS [11–17]. It may be said that beyond conven-

tional spontaneous Raman spectroscopy, CARS probably has the most general util-

ity. CARS technique has been widely used for combustion (plasma) diagnostics [14]

and species selective microscopy [16, 17], investigations of molecular dynamics [18],

species concentration measurement [19–21]. The applications and explorations of

The journal model is Optics Express.
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spontaneous 

Raman

stimulated

Raman

CARS BioCARS

Fig. 1. Energy level diagrams for the variations of Raman scattering. From left to

right: spontaneous Raman scattering, stimulated Raman scattering, coherent

anti-Stokes Raman scattering (CARS), and higher order process (BioCARS).

Solid arrows represent incident photons and dashed arrows represent generated

signal photons.

CARS technique saw its breakthrough with the impressive progress of femtosecond

lasers in the 1990s, which gives rise to new ideas and approaches to optimize CARS

generation and detection, such as time-resolved CARS [18,22–32], multiplex (broad-

band) CARS [33–39], pulse-shaping assisted CARS [40–42].

B. Comparison between CARS and spontaneous Raman spectroscopy

CARS is often compared to spontaneous Raman spectroscopy as both techniques

probe the same Raman active modes. Their essential difference is the coherence of

molecular vibration created by the additional two preparatory pulses: the pump and

Stokes in CARS, as shown in Fig. 2. Due to this coherence, the photons generated

in CARS within the coherence length propagate phase-coherently relative to the in-

cident fields and in a defined direction instead of with random phase and direction in
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Fig. 2. Diagrams to compare spontaneous (left) and coherent (right) Raman processes.

The Raman resonance frequency is ωR (only one is shown for simplification).

spontaneous Raman emission.

As one result of the coherence, CARS obtains significantly enhancement of the

conversion efficiency reported by up to six orders over spontaneous Raman [3, 4, 12],

as shown in Fig. 3. The absolute efficiency of the incident pulse could be around

10−3 over 10−8 from benzene. Generally the ratio of the number of photons generated

through coherent anti-Stokes (or Stokes) scattering to the number of spontaneously

scattered (Stokes) Raman photons, equal to [43, 44]

〈n〉CARS/CSRS

〈n〉SpRS

= λ2N

V

|ρbc|2
ρcc

∆L (1.1)

λpr is the wavelength of the probe pulse, ∆L is the length of the medium, and

N/V is the concentration of the target molecules; ρcc is the population of the molecular

ground state |c >; and ρbc is the coherence between the state |c > and excited Raman
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Process Raman coherence |cb Dipole coherence |ab

Fig. 3. Comparison of different Raman spectroscopic techniques [45].

active state |b >.

We have proven this efficiency enhancement through different experiments. For

the experiment with pyridine in a ∆L = 200 µm cell, a ratio of 105 is obtained [43];

while for another case with CaDPA sample ∆L ≈ 1 µm, the enhancement is around

500 [44]. However, in both cases, we have ρbc ≈ 10−3.

From the Eq.(1.1) and our experiments where the interacting length ∆L does

affect the conversion efficiency, we can see that it is the coherent addition of the CARS

signal from the molecules that yields a total signal much higher than the spontaneous
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pk
 

Sk
 

prk
 

CARSk
 

pump

Stokes

probeCARS CSRS

Fig. 4. Phase-matching conditions for CARS. The vector diagram (left) and general

BOXCARS∗ geometry for CARS and CSRS generation (right).
∗ “Crossed-beam phase-matched CARS generation” [46].

Raman. We should be aware that the spontaneous Raman signal for a single molecule

may exceed the CARS for a single molecule by more than two orders of magnitude,

since CARS is a third-order nonlinear process (χ(3)) while spontaneous Raman is a

linear process.

Another important advantage of CARS is the directionality of the generated

laser-like signal so that all of the signal can be easily collected, as shown in Fig. 4. In

the CARS process, the energy conservation leads to generation of photons at a new

frequency, determined by the pump(ωp), Stokes(ωS) and probe fields(ωpr),

ωCARS = ωp − ωS + ωpr. (1.2)

Similarly, momentum conversation requires (see Fig. 4)

~kCARS = ~kp − ~kS + ~kpr. (1.3)

And as another result of the vibrational coherence, the generated CARS field prop-

agates in this specific direction of ~kCARS. To fulfill this phase-matching condition,

proper spatial configuration of the three beams (angles between them) is needed to

minimize the loss of signal [47, 48]. The phase-mismatching, resulting from the dis-
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persion in the linear refractive index (n) of the matter,

∆k = kCARS − nCARSωCARS/c (1.4)

needs to be taken into account when we analyze CARS generation [21,49,50], where

nCARS is the refractive index of the medium at frequency ωCARS.

CARS is free from fluorescence background since the CARS signal is blue-shifted

while the fluorescence is red-shifted. This property offers CARS promising applica-

tions in chemical, biological and biomedical imaging [17, 40, 51]. However, CARS is

not background free. The presence of the inherent coherent nonresonant background

and the complexity involved in suppressing the background restrict the applications of

CARS, and sometimes are fatal so that people give up and seek other background-free

approaches such as stimulated Raman [52,53].

C. Coherent nonresonant FWM background in CARS

As it is stated above, CARS spectroscopy is a powerful technique for molecular de-

tection which combines high sensitivity with inherent chemical selectivity. CARS

occurs when molecules of interest, coherently excited by light pulses, scatter laser

light to produce spectral components shifted by the molecular oscillation frequencies.

It directly utilizes the vibrational response of the detected molecules themselves as a

contrast mechanism. Chemical selectivity is afforded by the species-specific molecu-

lar vibrational spectra, and sensitivity is enhanced due to the coherent nature of the

scattering process [43,44]. Briefly, CARS is a third order nonlinear process which in-

volves three laser beams: two preparatory pulses of pump and Stokes with respective

frequencies ωp and ωS to create coherent molecular vibration when the frequency dif-

ference ωp−ωS matches a vibrational transition of the sample, and a third probe pulse
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700 900 1100 1300 1500

Raman shift, cm-1
700 900 1100 1300 1500

Raman shift, cm-1

Fig. 5. Coherent background of CARS. Calculated CARS spectra with (left) and

without (right) the coherent background, with pump(λ ≈ 1290 nm, FWHM

≈ 50 nm), Stokes(λ ≈ 1510 nm, FWHM ≈ 70 nm), and probe(λ ≈ 806 nm,

top-hat spectral shape, FWHM ≈ 1.1 nm).

at ωpr to generate a blue-shifted fingerprint CARS signal at ωCARS = ωp − ωS + ωpr.

However, CARS from the molecules of interest is frequently masked by a broad-

band featureless nonresonant coherent four-wave mixing (FWM) background which

is independent of the Raman shift and often is much stronger [4, 12, 44]. Even when

CARS lines are clearly discernable, the interference with this coherent background

results in a strong distortion of the measured spectrum hence limits the detection

sensitivity. In particular, while the phase of the background is constant, the CARS

phase varies with frequency between 0 and π when tuning through the molecular line.

As a result, at some frequencies the interference between signal and background is

constructive or destructive, while at others the signal and background fields are in

quadrature, as seen in Fig. 5.

The nonresonant FWM contribution is inherently included in the third order

process χ(3) = χ
(3)
NR +χ

(3)
R [3,12] and thus unavoidable in CARS. It results from a few

virtual electronic transition processes, as shown in Fig. 6, involving remote Raman

modes, one- and two-photon absorptions. It always contributes to the signal field even
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Fig. 6. Energy level diagrams for the coherent FWM background.

far from resonances, and fluctuations in this signal due to laser-intensity fluctuations

seriously limit the sensitivity of most coherent Raman techniques. This limitation

was first predicted by Yajima in 1965 [54] and “is in fact a major stumbling block in

the present day application of four-wave mixing to Raman spectroscopy” [12,55].

The FWM background is usually considered as a detriment to CARS. When

this background is large, its inevitable random fluctuations obscure the CARS signal.

Many methods have been developed to suppress the nonresonant background, such as

the polarization sensitive detection [50,56–58], time-resolved CARS [18,22,24,26,28–

32], and pulse shaping [40,42,59–61]. Nonlinear interferometry is another approach to

suppress the nonresonant background, i.e., to extract the resonant field component of

the CARS signal by means of a phase-sensitive measurement [62–72]. This technique

can be made to detect the imaginary part of the nonlinear susceptibility Im[χ(3)] of

the CARS signal, which then can be directly compared to the spontaneous Raman

spectrum.
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D. Basic principles of CARS

The theory of CARS is well known. A detailed description of the theoretical back-

ground of CARS can be found in many books [12, 13]. Briefly, the analysis of the

amplitude, phase and polarization of the CARS signal involves the solution of Maxwell

equations for the field of the anti- Stokes wave and the calculation of the cubic polar-

ization of a nonlinear medium with either classical [12] or quantum mechanical [13]

model of the non-linear response.

Assuming that the CARS process involves plane and monochromatic waves, the

macroscopic polarization density amplitude can be generally expressed as

Pi(ωCARS) =
3

4
χ
(3)
ijkl(−ωCARS, ωp,−ωS, ωpr)Ej(ωp)E

∗

k(ωS)El(ωpr) Lsinc

(

∆kL

2

)

(1.5)

This expression includes three parts: the third-order nonlinear susceptibility tensor

χ
(3)
ijkl, the real incident fields Eα(ωβ) of frequency ωβ and polarization axis α, and the

phase-matching term Lsinc (∆kL/2), where ∆k can be calculated from Eq. (1.3).

Certainly it is important to fulfill the phase-matching conditions with ∆k = 0 or

proper coherent length so that ∆kL/2 = π/2 to optimize the CARS generation. Also

the electric fields Eα(ωβ) should be high enough to excite this third-order process so

high peak-power pulsed lasers are required. Nevertheless, of particular importance

is the term χ
(3)
ijkl, which contain resonant Raman contribution as well as nonresonant

FWM background contribution and can be expressed as

χ
(3)
ijkl = χ

(3)
NR + χ

(3)
R = χ

(3)
NR +

NαR

ωR − (ωp − ωS)− iΓR

dσ

dΩ
(1.6)

where αR, ωR, and ΓR are respectively the amplitude, frequency, and spectral half
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width (HWHM, not FWHM) of the resonance vibrational mode, N is the density

(concentration for mixture) of Raman active molecule, and dσ
dΩ

is the differential spon-

taneous Raman scattering cross section.

In the case of broadband excitation fields, multiple vibrational modes may be

excited. CARS signal generation is through the third-order polarization which can

be written as the sum of the background and resonant contributions [59, 60]:

P
(3)
CARS(ω) = P

(3)
B (ω) + P

(3)
R (ω)

=
∫

∞

0
dΩ

(

χ
(3)
B (Ω) +Nχ

(3)
R (Ω)

)

Epr(ω − Ω)R(Ω), (1.7)

R(Ω) =
∫

∞

0
Ep(ω

′)ES(ω
′ − Ω) dω′, (1.8)

where Epr(ω) is the probe field; S(Ω) is the convolution of the pump field Ep(ω)

and Stokes field ES(ω). Here the subscript “NR” is replaced by “B” which means

background for more general use since for some sample, especially aqueous solution,

the solvent may have a broadband resonant contribution instead purely nonresonant

contribution as usually treated. This is an important discovery from our experiment

[72] and it should be considered for low concentration measurement and biological

imaging. Most often although not always, χ
(3)
B corresponds to nonresonant response

and is purely real while the resonant susceptibility χ
(3)
R is complex and, for the case

of Lorentzian lineshape, can be written as:

χ
(3)
R (ω) =

∑

j

Aj

Ωj − ω − iΓj

dσ

dΩ
, (1.9)

where ω = ωpump − ωStokes; Aj ,Ωj and Γj are the amplitude, frequency and spectral

half width of the j-th vibrational mode, respectively. The total CARS signal is given
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by

SCARS(ω) =
∣

∣

∣P
(3)
B + P

(3)
R

∣

∣

∣

2
=
∣

∣

∣P
(3)
B

∣

∣

∣

2
+
∣

∣

∣P
(3)
R (ω)

∣

∣

∣

2
+ 2Re

[

P
(3)
B P

(3)∗
R (ω)

]

. (1.10)

The background component
∣

∣

∣P
(3)
B

∣

∣

∣

2
limits the sensitivity of CARS measurements. For

FWM nonresonant background and some broadband resonant background (e.g. from

water) P
(3)
B is insensitive to frequency, the interference term (the third one on the

right) actually is P
(3)
B ∗ Re

[

P
(3)∗
R (ω)

]

.

However, quite often the resonant signal
∣

∣

∣P
(3)
R (ω)

∣

∣

∣

2
is very weak; then a proper

residual of nonresonant background P
(3)
B can improve the detection by amplifying the

signal; this will be covered in Chapter III “Glucose concentration measured by hy-

brid CARS”. Also, we figure out ways to obtain the imaginary component of resonant

susceptibility Im
[

P
(3)∗
R (ω)

]

, by introducing an external nonresonant interfering field

in Chapter IV “Heterodyne CARS for spectral phase retrieval and signal amplifica-

tion”, or by controlling the interference between the resonant Raman signal and the

intrinsic nonresonant background in Chapter V “Pulse-shaper-enabled phase control

of nonresonant background for heterodyne detection of CARS signal”.

E. Isolating imaginary component of χ
(3)
R

Nonlinear interferometry [62–72] is a method to extract the imaginary component of

χ
(3)
R , and certainly avoiding the real component, without the effort to suppress the

nonresonant background but exploiting it. This idea comes from the fact that the

Im
[

χ
(3)
R

]

resembles the spontaneous Raman spectra [64, 66].

Im
[

χ
(3)
R (ω)

]

=
∑

j

AjΓj

(Ωj − ω)2 + Γ2
j

, (1.11)

It is the real component Re
[

χ
(3)
R

]

that distorts the CARS spectra, as shown in
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Fig. 7. Diagrams of the real and imaginary components of χ
(3)
R .

Fig. 7. This distortion shifts the peak frequency and changes the spectral shape,

which make spectral recognition difficult, especially for close Raman lines.

F. The principles of our optimized hybrid CARS experiment

Our optimized CARS scheme is a combination of multiplex CARS and time-resolved

CARS, where background suppression is accomplished by shaping and delaying the

probe laser pulse such that it has zero temporal overlap with the pump and Stokes

pulses [20,32,35,42,43,72]. Our work on hybrid CARS has been based on our earlier

experience with IR, visible, and UV coherent Raman spectroscopy [73]. It is an

extension of the precious work: FAST CARS “femtosecond adaptive spectroscopic

techniques for coherent anti-Stokes Raman spectroscopy” [21, 45, 73]. While FAST

CARS emphasizes clever pulse shaping for maximal coherence preparation, the hybrid

CARS stresses optimum shaping of the probe laser pulse.

For multiplex CARS [33–39, 66], e.g. frequency-resolved CARS, at least one of

the pump and Stokes pulses is required to be spectrally broadband to excite multiple

vibrational frequencies simultaneously, and the probe is required to be spectrally

narrowband. The employed hybrid technique can be best understood through its
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Fig. 8. Transition from time-resolved to hybrid CSRS. CSRS spectrograms for differ-

ent spectral bandwidths of the probe pulse: (a) 300 cm−1, (b) 100 cm−1, (c)

40 cm−1, (d) 15 cm−1. Two Raman lines of pyridine, 992 and 1031 cm−1,

are excited via a pair of ultrashort laser pulses. Pump: λp = 737 nm,

FWHM≈ 260 cm−1, 0.5 µJ/pulse. Stokes: λS = 801 nm, FWHM≈ 480 cm−1,

0.9 µJ/pulse. Probe: λpr = 577.9 nm, 0.15 µJ/pulse.

comparison with time-resolved CARS (CSRS). From Eqs. (1.7) and (1.9), we can

see that the CARS spectrum is the convolution of the probe field and the third

order susceptibility χ
(3)
R . The detected Raman linewidth is determined by the probe

bandwidth and the bandwidth of the vibrational mode, whichever is larger. Therefore,

to obtain the actual Raman spectrum, the probe bandwidth should be less than or

equal to the Raman linewidth.

Figure 8 illustrates the transition from the traditional time-resolved measurement

of free-induction decay in pyridine to the frequency-resolved one while the bandwidth

of the probe pulse is reduced from 300 cm−1 to 15 cm−1. The beating pattern between

two excited Raman modes, 992 and 1031 cm−1, gradually transforms into a couple
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tpump/Stokes probe

 

Fig. 9. Diagram of a conventional time-resolved CARS. Solid curves, incident pulses;

dashed curve, decay of coherent vibrations ;τ , the delay time between the

pump/Stokes and probe pulses.

of spectrally isolated streak lines. The smooth fourwave- mixing (FWM) profile due

to multiple offresonant vibrational modes and the instantaneous electronic response

stretches along the time axis (indicating the expected lengthening of the probe pulse)

and gain side-fringes due to the rectangularlike spectral amplitude transmission mask

we used. A cross section of the spectrograms for the narrowband probe at some fixed

positive delay gives a CSRS spectrum.

The idea of time-resolved CARS [18,22–32] is that a pair of pulses with a duration

shorter than the characteristic transverse relaxation time induces coherent molecular

vibrations, and the decay kinetics of these vibrations are analyzed with the use of

another, probe pulse, which is delayed in time with respect to the pump and Stokes

pulses, as shown in Fig. 9. The method of time-resolved CARS implies that the infor-

mation on the parameters of atomic or molecular systems is extracted from an impulse
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Fig. 10. Temporal profiles of the fields in the hybrid CARS experiment. The Gaussian

pump and Stokes fields are in orange and red, and delayed sinc-like probe field

is in green. The dashed curve shows the decay of molecular vibration e−γt.

The dotted curve shows the contribution of the probe to the resonant signal

at different time. Inset, energy level schematic diagram of CARS.

response of a coherently excited system rather than from the frequency dispersion of

non-linear susceptibilities, as it is done in frequency-domain spectroscopy.

The time-resolved CARS not only provides molecular vibration dynamics by

recording the Raman free induction decay information in the time domain [25–28],

but also is an alternative approach to separate the nonresonant contribution, which

is instantaneous, from the resonant contribution, which usually decays on a scale

of picoseconds [29–32]. This method has been shown to enhance the contrast ra-

tio considerably in CARS microscopy imaging [30]. However, as the background is

suppressed, the resonant signal is attenuated too.

Our CARS scheme can be described in the time domain in Fig. 10 and in the
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Fig. 11. Typical spectral profiles of the fields in the hybrid CARS experiment. In-

set, enlarged probe spectrum with top-hat shape. The pump and Stokes

spectra have a resolution of 1 nm from a near IR spectrometer (Stellar-

Net, EPP2000-InGaAs-1024); the probe spectrum has a resolution of around

0.048 nm from a spectrograph (Chromex Spectrograph 250is) attached with

a CCD (Princeton Instruments, Spec-10), which is used in the CARS mea-

surement.

frequency domain in Fig. 11. It is realized by taking advantage of the fact that the

nonresonant FWM is an instantaneous process so only the part of the probe pulse

overlapping with the preparatory pulses at t = 0 contributes, while the resonant

Raman signal is an accumulation process due to the vibrational coherence so all the

parts of the probe when t ≥ 0 (patterned in Fig. 10) contribute. In our experiment,

as shown schematically in Fig. 10, we choose the pump and Stokes fields (orange

and red shades) to be short and Gaussian, and the probe field (green shade) to be
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much longer and a sinc-like function in the time domain corresponding to the top-hat

spectrum as shown by the inset of Fig. 11. By placing the pump and Stokes pulses

at the first node of probe, the nonresonant FWM background can be suppressed.

In this configuration, the maximum of the instantaneous contribution from probe

to the resonant Raman signal, described by the dotted curve, happens after the

pump and Stokes with a fairly large time difference (at around half of the probe delay

here), as a result of long-lasting vibrational coherence (dashed) and this specific probe

shape. The collected resonant Raman field is an integration of the whole area under

the dotted curve. When we delay the probe pulse to make the pump and Stokes

pulses overlap with the node of the sinc function, the nonresonant background will

be greatly reduced while the resonant signal will remain. However, in practice the

background suppression is never perfect, and especially at low concentration of the

target molecules the residual background often interferes with the CARS signal.

The same method of short-pulse excitation and time-delayed narrowband probing

was developed as early as 1980 by Zinth and coworkers, with the aim of improving

the spectral resolution of CARS beyond the limit of the homogeneous linewidth [74].

Similar mixed time-frequency methods have recently been realized by other groups

[31].

G. Experimental setup

Figure 12 shows our typical experimental setup. This is just an example, i.e., inci-

dent beams are in a BOXCARS configuration and signal is collected in the forward

direction. The incident beams could be arranged in a collinear configuration, the

signal could be collected in other directions for scattering materials. We employ a

Ti:sapphire regenerative amplifier (Coherent, Legend, 1 kHz rep. rate, 1 mJ/pulse)
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Fig. 12. Schematics of a typical hybrid CARS setup. The incident beams are in a

BOXCARS configuration and signal is collected in the forward direction. BS:

beam splitter; G1/G2, grating; L1-L7: lens; DS1/DS2: delay stage; SPF:

short-pass filter.

with two evenly pumped optical parametric amplifiers (OPAs), (Coherent, OPerA-

VIS/UV and OPerA-SFG/UV). These two OPAs with attached frequency conversion

Extension Unit provide the pump and Stokes pulses with wavelengths vary from UV

to near infrared. The frequency difference between the pump and Stokes beams is

tuned to the vibrational levels, which optimizes the excitation of the Raman lines.

The probe pulse is obtained when the residual fundamental pulse from the second

OPA passes through a home-made 4-f pulse shaper consisting of a pair of gratings to

expand the spectrum in space and a slit to pick a narrow spectral band. The probe

beam then has a top-hat-like spectrum with width a few nm to match the linewidthes

of the vibrational modes. The probe width is chosen to be comparable with the spec-

tral width of the vibrational modes (e.g. around 20 cm−1 for glucose) for the purpose

of multiplex CARS detection as described in Ref. [35].
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Fig. 13. Etaloning from back-illuminated CCD. This is a FWM spectrum from wa-

ter collected with a back-illuminated CCD (Princeton Instruments, Spec-10,

2KBUV/LN). The fringes look like Raman lines but are not real. Here the

sharp slope at the longer wavelength side of the spectrum is due to the cutoff

by a short-pass filter.

These three pulses have parallel polarization and their time overlap is controlled

by two translation stages (DS1 and DS2 in Fig. 12). They overlap at their focuses ei-

ther in a crossing-beam configuration or in a collinear configuration. In our case, these

two configurations produce similar results and detection sensitivity. The generated

CARS signal is collected in a forward geometry and focused onto the entrance slit of

the spectrograph (Chromex Spectrograph 250is) with a liquid nitrogen cooled charge-

coupled device (CCD: Princeton Instruments, Spec-10) attached. Typical pulse en-

ergy is around a few hundred nanojoules to a few microjoules under different focusing

conditions. A CCD exposure time of a few hundred ms to a few tens of seconds is

used to adapt the signal intensity to the dynamic range of the CCD.



20

In Chapers IV and V, we used a UV-enhanced back-illuminated CCD (model:

2KBUV/LN). For the wavelength of the CARS signal at the range between 700 and

750 nm, because multiple reflections from the front and back of the active layer of the

CCD interfere, these surfaces effectively form an etalon which produces a modulation

in the recorded spectrum (etaloning), as shown by the CARS spectrum from water

in Fig. 13. We eliminate this modulation by recording a reference spectrum from the

broadband signal generated from a cell with water, and dividing the signal spectrum

by this reference. This procedure introduces additional noise. In Chapter V, we use

a Deep Depletion back-illuminated CCD (model: 400BR/LN) to solve this problem

and eliminate the fringes in near IR range.
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CHAPTER II

DETECTION OF BACTERIAL ENDOSPORES VIA A HYBRID OF

FREQUENCY AND TIME RESOLVED CARS∗

A. Introduction

The purpose of this chapter is to briefly show how hybrid CARS works to suppress

nonresonant FWM background for real-time detection of bacterial endospores.

In this chapter, we give a detailed description of a technique that we have re-

cently used, which combines a generalized multiplex CARS scheme with the back-

ground reduction by using an optimally-shaped time-delayed probe pulse [35]. Sim-

ilar schemes were also used by other groups for different purposes [31, 34]. This way

of background suppression is reminiscent of the time-resolved femtosecond CARS

technique [18, 22–32] (Fig. 14E). We diverge from the conventional multiplex CARS

scheme [33–39, 66] and deal with the probe and two preparation pulses, pump and

Stokes, separately (Figs. 14C,D). We demonstrate the efficacy of the ultrafast broad-

band excitation and time-variable narrowband probing (Fig. 14F). In particular, we

show that adjusting the probe delay, one can suppress the NR background, as in time-

resolved CARS, but keep the advantages of the multiplex CARS spectroscopy. We

refer to this hybrid of frequency and time-resolved coherent Raman spectroscopy as

hybrid CARS and demonstrate its utility by applying the technique to backscattered

CARS on sodium dipicolinate (Na2DPA) powder and bacterial spores. When we im-

∗Part of the data reported in this chapter is reprinted with permission from
“Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy” by D.
Pestov et al., 2007. Science, 316, 265-268. Copyright 2007 by American Association
for the Advancement of Science (AAAS).
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Fig. 14. Schematic layout of frequency-resolved and time-resolved techniques for

CARS. The presence of two Raman lines within the considered band is im-

plied: (A) “Single-frequency” CARS with two narrowband lasers, one of those

is tuned; (B) Multiplex CARS with a combination of narrowband and broad-

band laser sources; (C) Hybrid CARS at zero probe delay, which is equivalent

to non-degenerate multiplex CARS; (D) Hybrid CARS with the probe delayed.

The presence of two Raman lines within the excitation band is implied. The

nonresonant background suppression by proper timing of the probe pulse: (E)

Time-resolved CARS, which implies the use of ultrashort pulses with the vari-

able probe delay; (F) Hybrid CARS with the time-delayed probe, assuming it

has Gaussian profile; (G) Hybrid CARS with the time-delayed probe, which

has a rectangular-like spectrum and, therefore, sinc-shape.
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proved the setup by shifting the wavelengths of the pump, Stokes, and probe beams

into the near-IR domain, where the photo-damage threshold for the spores is higher

as compared to the visible-range wavelengths, we obtained clean and strong CARS

lines from endospores in the real time, i.e. fraction of a second. This result exhibits

its potential application in detection of biohazards, such as Bacillus anthracis.

B. Theory of hybrid CARS technique

From Eqs. (1.7), we can see that the convolution of the pump and Stokes spectra,

R(Ω), enters the two parts of the third-order polarization on equal grounds. It defines

a Raman frequency band covered by the preparation pulses and is maximized for

transform limited ones. The difference between the two contributions comes from the

susceptibility and can be enhanced by the use of a properly-shaped probe. One way

to proceed is to modify the spectral phase of the probe pulse, as it was demonstrated

by Oron et al. [60]. The other is to shape its spectral profile,|Epr(ω)|, as we do here.

If a narrowband probe is applied together with the broadband preparation pulses, the

nonresonant contribution would have the spectral width of R(Ω), ∆ωp−S, whereas the

resonant part would result in a set of narrow peaks, one for each excited vibrational

mode, whose width is determined either by the Raman line width or the probe spectral

width, ∆ωpr, whichever is greater.

The amplitude ratio between the resonant signal and the NR background at a

Raman shifted frequency is also affected by the spectral width of the probe pulse.

Under the simplest assumptions of Gaussian profiles of the three pulses with the

convolution function S(Ω) centered on a single Raman lineΩ0of the width2Γ, at the

zero probe delay, one can get
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√

∆ω2
3 +∆ω2

12, ∆ω3 is the FWHM of the probe spectrum, and

∆ω12 is the FWHM of |S(Ω)|2.

In the limit of a broadband probe,∆ω3 ∼ ∆ω12 >> Γ,
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For the narrowband probe, ∆ω3 << ∆ω12and Γ

IR(ω3 + Ω0)

INR(ω3 + Ω0)
=

1

Γ2

∣

∣

∣

∣

∣

A

χ
(3)
NR

∣

∣

∣

∣

∣

2

. (2.3)

When the probe spectral width is between the Raman line width and the width of the

pump-Stokes convolution profile, i.e. Γ << ∆ω3 << ∆ω12, as one has for multiplex

CARS, this ratio is inversely proportional to the square of the probe spectral

IR(ω3 + Ω0)

INR(ω3 + Ω0)
=

2πLn2

∆ω2
3

∣

∣

∣

∣

∣

A

χ
(3)
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∣

∣

∣

∣

∣

2

. (2.4)

This ratio saturates at the limits and one gets a superior but finite signal-to-background

ratio for the optimum probe width on the order of the Raman line width.

If the probe delay is adjustable, as it is in the scheme that we propose (see

Figs. 14C,D,F), further optimization is possible. It can be shown that in the plane

of two parameters (see Fig. 15A), the probe pulse duration and its delay, the reso-

nant response peaks for the two on the order of inverse Raman line width. On the

other hand, the NR background at the Raman shifted frequency is maximized for zero

probe delay and its duration matched to the time span of the pump-Stokes convolu-
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Fig. 15. CARS and background responses to the probe pulse duration and its

delay. (A) Nonresonant background at the expected CARS peak fre-

quency; (B) the resonant contribution at the expected CARS peak frequency

(ωCARS = ωRaman + ωprobe). The FWHM of the probe pulse is normalized

on HWHM of the Raman transition. The probe pulse is normalized on

its spectral width so that the same energy is delivered for different probe

FWHM. The pulses used here are transform limited ones. The parameters

used: the vibrational frequency Ωj = 1402 cm−1, the Raman line half-width

Γj = 5.3 cm−1; λpump = 1290 nm, λStokes = 1575 nm, λprobe = 806 nm and

FWHMpump = FWHMStokes = 50 fs; FWHMpump−Stokes convolution = 416 cm−1;

χ
(3)
NR = Aj.
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tion profile (see Fig. 15B). Obviously, one can eliminate the NR background by just

delaying the probe pulse, as it is done in time-resolved CARS, and get theoretically

unlimited signal-to-background ratio. Unfortunately, this approach does not properly

optimize the resonant contribution, and one might end up with no detectable signal

at all. We suggest the use of the two parameters (the probe pulse duration and its

delay) simultaneously to achieve close-to-optimal resonant response with reasonable

suppression of the NR background. The actual optimal values of the parameters de-

pend on the Raman line width, the sensitivity of a setup employed, and the relative

strength of the resonant and NR susceptibilities. Proper tailoring of the probe pulse

can help to reduce the contribution of the NR background for probe delays com-

parable to its length. For example, rectangular-like spectrum gives a sinc-squared

temporal profile,∼ [Sin(∆ωt/2)/(∆ωt/2)]2, of the probe pulse intensity. Putting the

preparation pulses in one of its nodes, as it is shown in Fig. 14G, would result in

effective suppression of the NR background.

From the preceding discussion it might be inferred that in order to optimize the

acquisition of the CARS signal, one has to compromise between the resolution, signal

strength, and the extent of the NR background suppression. On a single-pulse basis,

the spectral resolution is usually determined by the probe bandwidth. However, this

is not an intrinsic limit. Much better resolution can be achieved by recording the anti-

Stokes spectrum while varying the probe pulse delay, granted that the measurements

are not overwhelmed by the fluctuations.

C. Experimental implementation

Femtosecond pulses are a natural source of broadband laser radiation. For our ex-

periment we utilize a Ti:Sapphire regenerative amplifier with two evenly pumped
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optical parametric amplifiers (OPAs). The output of the first OPA (λ1 = 712-742

nm, tunable; FWHM∼12 nm) and a small fraction of the amplifier output (λ2 = 803

nm, FWHM∼32 nm) are used as pump and Stokes beams, respectively. The output

of the second OPA, the probe beam (λ3 = 578 nm), is sent through a home-made

pulseshaper with an adjustable slit (see Fig. 10) that cuts the bandwidth of the pulse.

As follows, the Stokes and probe pulses pass through delay stages (DS1, 2) and then

all the three beams are focused by a convex 2-inch lens (with the focal length f = 20

cm) on the rotated sample. The scattered light is collected with a 2-inch achromatic

lens (f = 10 cm) and focused onto the entrance slit of the spectrometer with CCD.

In the improved hybrid CARS setup, the three beams from the OPAs are shifted

into near-IR region (λpump = 1279 nm, λStokes = 1560 nm and λProbe = 806 nm)

and looser focused, while keeping the other things same. This improvement not only

obtains more power output of the OPAs, but also higher threshold for the spores as

compared to the visible-range wavelengths. The three beams are focused separately

(with the focal lengths for pump, Stokes and pump fpump=50 cm, fStokes=50 cm and

fprobe=20 cm respectively) to make them overlapped at the focuses.

D. Experimental results

1. Hybrid CARS on Na2DPA powder

Na2DPA powder is an easy-to-make substitute for CaDPA, a marker molecule for

bacterial spores accounting for 10% to 17% of their dry weight [45]. The spontaneous

Raman spectrum for Na2DPA [Fig. 16] exhibits a similar set of strong Raman lines

as CaDPA and differs from what one would find for dipicolinic acid (DPA) itself [75].

The CARS traces taken on Na2DPA powder for different pump wavelengths show

that the pump wavelength affects the NR background and resonant Raman lines in
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Fig. 16. Na2DPA spontaneous Raman spectrum excited by 532 nm light.
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Fig. 17. CARS spectra of Na2DPA. (A)The CARS trace taken on Na2DPA powder for

pump wavelength 732 nm; (B) the cross-section spectrum of the trace when

the probe is not delayed; (C) the cross-section spectrum of the trace when

the probe is delayed by 1.5 ps relative to the pump and Stokes pulses. The

other parameters are: pump - FWHM ∼ 12 nm, 2µ J/pulse; Stokes - 803 nm,

FWHM ∼ 32 nm, 3.9µ J/pulse; probe - 577.9 nm, FWHM ∼ 0.7 nm, 0.5µ

J/pulse; Integration time is 1 sec per probe delay step.
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different ways [see Ref. [35]]. Streak-like horizontal lines are the signature of excited

Na2DPA Raman transitions while the broadband pedestal is the NR background

[Fig. 17]. As expected, the tuning of the pump wavelength spectrally shifts the NR

background leaving the position of the resonant lines untouched. Note also that the

two contributions exhibit different dependence on the probe delay. The magnitude of

the NR background determined by the overlap of the three laser pulses and therefore

follows the probe pulse profile. Relatively long decay time of the Raman transitions

under consideration favors their long-lasting presence and makes them stand out when

the probe is delayed.

The cross-sections of the spectrograms at two different probe delays are given in

Figs. 17B, C. One can see that when the three pulses are overlapped, the resonant

contribution is severely distorted by the interference with the NR background. Delay-

ing the probe by 1.5 ps, which is close to the node of the probe pulse as in Fig. 14D,

improves the signal-to-background ratio by at least an order of magnitude. We infer

that the limitation is imposed by multiple scattering. Comparison with the data from

spontaneous Raman measurements shows a remarkably good match.

2. Hybrid CARS on B. subtilis spores

Extracted CARS contributions from our first measurements on Bacillus subtilis spores

(a surrogate for anthrax) were taken from the same configuration as that for the

Na2DPA measurement [see Ref. [35]]. However it took minutes to get a strong Ra-

man lines standing out from the background, which is too long for real-time detec-

tion. Our recent improvement on the setup by near IR pulses shortens the detection

to the order of milliseconds. The longer wavelengths far from the electric transition

reduce the possibility of multiplex scattering from organic materials, so make the

vibrational Raman signal stand out. Fig. 18A1, shows the CARS trace from the
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Fig. 18. CARS spectra of B. subtilis spores. (A1)The CARS trace taken on B. subtilis

spores from the near-IR setup; (A2-4) the cross-section spectra of the trace

A1 when the probe is not delayed (A2), the probe is delayed by 1.5 ps (A3),

and the probe is delayed by 2.1 ps at the node of the probe temporal profile

(A4) relative to the pump and Stokes pulses. (B1-4) are similar to (A1-4) on

glass sample. The cross-section spectra of glass are rescaled to the spectra

of spores at the same probe delay. The other parameters are: pump - 1279

nm, FWHM ∼ 12 nm, 10 µJ/pulse; Stokes - 1560 nm, FWHM ∼ 24 nm,

10µJ/pulse; probe - 806 nm, FWHM ∼ 1.0 nm, 1.4µJ/pulse; Integration

time is 0.2 sec per probe delay step.
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sample of Bacillus subtilis. The spectrum is recorded in 0.2 s per probe step. From

Fig. 18A2-4, the cross-section spectra at 0 probe delay (A2), 1.5 ps probe delay (A3)

and 2.1 ps probe delay (A4, at the node of the probe temporal profile), one can see

the sharp Raman lines at 1398 cm−1 and 1445 cm−1. The delay of probe improves

the signal-to-background ratio of the spores spectra but cannot remove the nonres-

onant background completely due to the stronger multiplex scattering from organic

molecule (Fig. 18A3 and A4). As comparison to confirm this method really works, we

also measure the spectra from the glass powder. Fig. 18B1-4 shows only the smooth

nonresonant FWM. Near the probe node, the FWM of glass can be suppressed almost

completely compared to that of spores.

E. Conclusion

We have demonstrated a hybrid CARS technique that optimizes the probing and

acquisition of the generated CARS signal. We reduce the NR background contribution

by using a delayed optimally-shaped probe pulse. Furthermore, we employ multi-

channel detection and record the full CARS spectrum on a single pulse basis, thereby

alleviating the problem of background suppression.

Hybrid CARS measurements on dry Na2DPA powder demonstrate the utility of

the technique. An order of magnitude improvement in signal-to-background ratio, as

compared to non-degenerate multiplex CARS arrangement, is readily achieved even in

the presence of multiple scattering. The absolute frequencies of the Raman transitions

observed in the CARS experiment match to those from spontaneous Raman.

The technique is well suited for detection applications. We show that CARS

can be used for bacterial spore detection in the backscattering configuration. From

our improved Near-IR experimental setup, strong major Raman lines of B. subtilis
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in the fingerprint region can be obtained in the order of millisecond, which makes

the real-time detection possible. Although these measurements have been done with

abundance of spores, further improvements of the detection characteristics are ex-

pected.

We note that the present implementation of hybrid CARS is highly versatile.

It allows for a compromise between frequency- and time-resolved CARS by simply

changing the width of the pulseshaper slit. The use of a single femtosecond system

with two OPAs obviates the need for synchronization, common to two-laser systems.

We have to sacrifice pulse energy in order to obtain a narrowband probe but this

sacrifice has a remedy. The use of thicker nonlinear crystals in the OPAs for the

frequency conversion process that produces the probe pulse would result in a narrower

probe spectrum to start with and therefore higher throughput for the pulseshaper.
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CHAPTER III

GLUCOSE CONCENTRATION MEASURED BY HYBRID CARS∗

A. Introduction

Glucose, usually called blood sugar, is the primary source of energy for the body’s

cells. Normally, the blood glucose level in human body is maintained below 5.6 mM

and higher level causes diabetes disease. Nowadays diabetes is a rapidly growing

disease related to failure of blood sugar (glucose) regulation. However the current

medical glucose measurement process requires painful fingerpricks and therefore can-

not be performed more than a few times a day. Therefore noninvasive glucose diag-

nosis has received considerable attention. various techniques such as electrochemical

assays [76], optical methods including scattering [77], notably near-infrared absorp-

tion [78] and Raman spectroscopy [79], have shown substantial promise. CARS, as a

superior technique to conventional Raman spectroscopy, has the capability of selective

imaging of glucose with an enhanced signal efficiency and therefore has attract much

interested in biological and biomedical applications, including glucose diagnosis [80].

Our goal is to develop an optical technology for the accurate, non-invasive (painless)

and continuous monitoring of blood glucose concentration.

Inelastic scattering of photons by vibrating molecules constitutes the Raman ef-

fect, which has become an indispensable tool for analyzing the composition of liquids,

gases, and solids [12,81]. Both ordinary Raman spectroscopy and CARS spectroscopy

∗Reprinted with permission from “Glucose concentration measured by the hy-
brid coherent anti-Stokes Raman-scattering technique” by Xi Wang, Aihua Zhang,
Miaochan Zhi, Alexei V. Sokolov, and George R. Welch, 2010. Phys. Rev. A, vol.
81, pp. 013813, Copyright [2010] by The American Physical Society.



35

find widespread use in medical diagnostics [17, 82]. While the probability of spon-

taneous Raman scattering depends on the molecular concentration linearly, for its

coherent counterpart - CARS - the signal is known to scale quadratically with the

concentration of scatterers due to constructive interference of the resultant coherent

photons [12, 81]. In recent work, Dogariu et al. have measured a clear quadratic

dependence of the CARS signal in a variety of samples, including highly scattering

powders such as dipicolinic acid, calcite, and gypsum [83].

Even though CARS may be far superior to spontaneous Raman when the number

of scattering molecules is large, at low concentrations the quadratic dependence of

CARS is considered to be a disadvantage. In this chapter we show that under certain

conditions the CARS signal can scale linearly with concentration. Motivated by the

possibility of non-invasive monitoring of blood glucose levels, we study aqueous glu-

cose solutions and solutions of glucose dissolved in blood. We use a recently developed

variant of CARS, termed hybrid CARS [35], which combines broadband pulsed prepa-

ration of molecular coherence with frequency-resolved detection via a time-delayed

probe, thereby combining the advantages of frequency- and time-resolved spectro-

scopic techniques [32, 35, 83, 84]. In the way hybrid CARS mitigates the four-wave-

mixing background, it shows potential for spectroscopy of highly-scattering media

such as human tissue.

Although it is known that a resonant signal interfering with a nonresonant back-

ground can produce a linear scaling with concentration [4,11], we believe this is the

first time this effect has been seen with the “hybrid CARS” setup described above.

This is important because not only does the setup provide background discrimination,

but also signal amplification, and it does so in a way that provides robust detection

of several vibrational modes simultaneously. Furthermore, even though numerous

background suppression techniques exist, to the best of our knowledge, in the past
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the ability to precisely adjust the amplitude and phase of coherent nonresonant back-

ground was not used for signal manipulation and amplification. This chapter shows

how this can be done in a system of current practical interest.

B. Raman cross-section of glucose

High laser powers and long acquisition times are required due to the inherently small

normal Raman scattering cross section of glucose, 5.6× 10−30 cm2molecule−1sr−1 for

the 518 cm−1 line according to McCreery and co-workers. As comparison, benzene,

a strong Raman scatterer, has a cross section of 2.8 × 10−29 cm2molecule−1sr−1 for

the 992 cm−1 line and water, a weakRaman scatterer, has a cross section of 1.1 ×

10−31 cm2molecule−1sr−1. The reported Raman cross section for glucose is only five

times smaller than that of benzene and 50 times larger than that of water. However,

their peak Raman cross sections are quite different: 6× 10−32 cm3molecule−1sr−1 for

the glucose 518 cm−1 line and 1×10−29 cm3molecule−1sr−1 for the benzene 992 cm−1

line. The detected signal of benzene as the square of susceptibility will be around five

orders stronger than the glucose signal [85, 86].

C. Experimental setup

Figure 12 shows our experimental setup. The pump and Stokes pulses are from the

two OPAs and have wavelengths 1290 nm (FWMH 50 nm) and 1510 nm (FWHM

70 nm) respectively. The frequency difference between the pump and Stokes beams

is approximately 1100 cm−1, which optimizes the excitation of the strong Raman

lines in the glucose solution (see Fig. 19). The probe beam then has a top-hat-like

spectrum at 806 nm with width approximately 1.2 nm (15 cm−1). The probe width

is chosen to be comparable with the spectral width of the vibrational modes (around
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20 cm−1 for glucose) for the purpose of multiplex CARS detection as described in

Ref. [35].
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Fig. 19. Spontaneous Raman spectra of D-glucose. (a) is for powder and (b) is for

aqueous solutions. Data were taken with a 532 nm laser and different exper-

imental parameters.
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Fig. 20. Fused silica cell for the forward CARS (Starna Cells, 21-I-2).

These three pulses have parallel polarization and their time overlap is controlled

by two translation stages (DS1 and DS2 in Fig. 12). D-Glucose solution samples

are held in a 2 mm thick fused silica cell (Fig. 20, Starna Cells, 21-I-2). For the

blood samples we use a thinner cell with thickness 1 mm for better transmission.

The generated CARS signal is collected in a forward geometry and focused onto the

CCD. Typical pulse energy is around a few hundred nanojoules to a few microjoules

under different focusing conditions. A CCD exposure time of a few hundred ms to a

few tens of seconds is used to adapt the signal intensity to the dynamic range of the

CCD.

D. Results and discussion

1. Raman spectra

D-glucose was obtained from Sigma-Aldrich with purity greater than 99.5%. It was

dissolved in distilled water, producing solutions with concentrations varying from

0.02 mM to 2680 mM (which is slightly below saturation). The D-glucose solutions
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were prepared a few days before the measurements, in order to reach the anomeric

equilibrium. Fig. 19 shows Raman spectra from glucose powder and solutions. Due

to changes of the anomeric effect and the intramolecular hydrogen bonds [87], the

Raman spectra of the D-glucose aqueous solution in Fig. 19(b) are different from that

of glucose powder in Fig. 19(a). The D-glucose solution shows two strong and broad

Raman lines near 1100 cm−1 with spectral FWHM around 20 cm−1, while the other

Raman lines at around 850 cm−1 and 1350cm−1 are suppressed. We also observe

the Raman peaks from water [88]: a narrow line at 1630 cm−1, a strong line below

200 cm−1 and a broad line at 500 cm−1, all of which are comparable with those from

glucose. This leads us to choose a frequency difference (pump-Stokes) for our CARS

measurements of approximately 1100 cm−1 to coherently excite the stronger Raman

lines of glucose while avoiding the background from water.

2. Probe bandwidth

Figure 21 shows how our setup works for the glucose aqueous solution with a con-

centration of 2680 mM . Figure 21(a) demonstrates the effect of probe bandwidth at

zero probe delay - that is, when the pump and Stokes pulses overlap the peak of the

probe pulse. When the probe bandwidth is narrower than that of the glucose modes

(around 20 cm−1), we can see the fine features of multiple Raman peaks. This is seen

in the dashed and solid (black and red in the color version online) curves for probe
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Fig. 21. CARS spectra of D-glucose solution at 2680 mM . (a) Spectra at 0 probe

delay with different probe bandwidths and the same power; (b) background

suppression when probe is delayed to the node; note that the background level

is still around 9000 units. Here the integration time is 0.2 second.
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band-width of 8 and 15 cm−1 respectively. The resolutions of the Raman lines in

these two curves are almost the same. If the probe spectrum is broader, the details of

the peaks are obscured, as seen in the dotted and dash-dotted (green and blue) curves

with probe bandwidth of 40 and 200 cm−1 respectively. In Fig. 21(b), when the probe

is delayed so that its first node overlaps the Stokes and pump pulses, multiple Raman

lines stand out against a weak background, in contrast to the solid (red) curve in

Fig. 21(a) where the background dominates. However the background suppression is

only partial. Even for the strongest peaks in Fig. 21b, the background is still greater

than the signal. The CCD integration time for these spectra is 0.2 s, and the recorded

spectral range was approximately 1000 cm−1.

Experimentally we find that the measurement is optimized when the probe band-

width is comparable to the spectral width of the vibrational modes. Under these

conditions, the first node of probe pulse shape (for 15 cm−1 bandwidth) is at 2 ps,

while the decay time of glucose modes derived from the spontaneous spectrum in

Fig. 19(b) is around 1 ps.

3. Concentration dependence

We have measured CARS signal as a function of glucose concentration in aqueous

solution in Fig. 22. In these measurements, we delay the probe pulse until its first

temporal node overlaps the pump and Stokes pulses. We calculate the intensity of

a CARS peak by area integration. In Fig. 23(a), Raman lines at 1143 cm−1 and

1076 cm−1 both show a linear dependence of the signal intensity on the glucose

concentration below 1000 mM , with a slope around 1.02 in the log-log scale. In

Fig. 23(b) at another probe delay (1.83 ps) the linear fits with slope 0.98 and 0.95

confirm the linear dependence. This dependence is in sharp contrast to the quadratic

dependence obtained by other groups [5].
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Fig. 22. CARS spectra of D-glucose solution with different concentrations. (a) is at

2.00 ps and (b) is at 1.87 ps probe delay.
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Fig. 23. Nearly linear dependence of CARS signal intensity on D-glucose concentra-

tion. (a) is at 2.00 ps probe delay; (b) at is 1.87 ps probe delay. Square

and round dots are experimental data of the Raman lines at 1143 cm−1 and

1076 cm−1 respectively. In (a), the solid curves are second-order polynomial

fits, and the dotted line has a slope 1. In (b), the best power-law fits have

slopes of 0.98 (±0.03) and 0.95 (±0.03) for the square and round dots respec-

tively.
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As we can see from Eqs.( 1.7 and 1.10), when the background is suppressed with

P
(3)
B = 0 , then we have ICARS(ω) ∝

∣

∣

∣P
(3)
R (ω)

∣

∣

∣

2 ∝ N2 . The linear dependence on N

observed here thus indicates incomplete suppression of the background. If the residual

background is comparable to or larger than the signal of interest (P
(3)
B ≥ P

(3)
R ),

then a heterodyne-like product ICARS(ω) ∝ 2Re
(

P
(3)
B P

(3)
R (ω)

)

∝ N dominates the

weaker resonant signal from glucose. (In our case, this background may be due

to a far-detuned CARS signal from water. This is supported by noting that the

spontaneous Raman spectrum of glucose solutions in Fig. 19 show that the wing of

the broad Raman line from water at 500 cm−1 crosses the spectral region studied

here around 1100 cm−1.) To be more precise, when both contributions are taken

into account, we can use a second-order polynomial function ICARS = 2EBER(N =

1 mM)N + (ER(N = 1 mM)N)2 to fit the experimental data, where EB is the

background electric field magnitude, ER(N = 1 mM) is the Raman-resonant electric

field contribution per 1 mM of glucose, and N is the glucose concentration measured

in mM. For the two curves (corresponding to the two Raman lines at 1143 cm−1 and

1076 cm−1) the fitting parameter EB is taken to be the same, thus constricting the fit.

For the two fitting curves, the ratio of the two best-fitting parameters ER(N = 1mM)

is found to be equal to 1.36, which is consistent with the observed spectra (Fig. 21(b)).

We can see that the two curves deviate from the dotted line with a slope of 1 at

high glucose concentrations (above 1000 mM). Here we would like to mention that

in a different experiment with an all-collinear beam configuration, using the same

sample cell and the same set of wavelengths, we also obtain a linear dependence of

the CARS signal on glucose concentration. We conclude that it is the heterodyne

effect mentioned above that gives rise to the linear concentration dependence of the

measured signal, and not some sort of loss of optical field coherence. This effect may

be beneficial for detection of species at low concentration.
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Quite remarkably, when we reduce the probe pulse delay such that the back-

ground is somewhat increased (and CARS is stronger too), we obtain an overall better

performance and are able to reliably detect glucose at lower concentrations. This is

demonstrated in Fig. 23(b), which shows the CARS signal from the 1067 cm−1 and

1143 cm−1 lines (similar to those seen in Fig. 23(a)) for a somewhat optimized probe

pulse delay and a lower range of concentration. These data show that the hybrid

CARS technique is useful for optimizing (and not only maximizing) the signal-to-

background ratio, and allows us to take full advantage of the aforementioned hetero-

dyne amplification. Although increasing the background even more would introduce

extra noise, we can detect glucose signals down to 5 mM concentration, which is

medically relevant and demonstrates the power of this technique.

4. Glucose measurement in blood

We have also measured CARS signals from glucose dissolved in pig blood. Fig. 24

shows several spectra in the region of interest for different concentrations of glucose.

It is apparent that the strong glucose lines seen in aqueous solution are still present,

but that other features are also present that were not seen in aqueous solution. For

the data shown in Fig. 24, the samples of pig blood were prepared by adding different

volumes of highly concentrated glucose solution into a fixed volume of pig blood. In

Fig. 24(a), the signal intensity at 1015 cm−1 decreases as more glucose solution is

added, while the glucose lines previously observed increase. Furthermore, this line

disappears in a pure glucose solution. This shows that the constituent corresponding

to the Raman line at 1015 cm−1 is diluted more when more glucose solution is added,

and the linear decrease of the intensity of this Raman line on the volume of glucose

solution (see Fig. 24(b)) shows that this constituent corresponds to a component in

blood, not water or glucose. This allows us to use this Raman line as a reference.
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Fig. 24. CARS spectra of pig blood. (a) The mixtures were obtained by adding dif-

ferent volumes of glucose solution into blood with fixed volume. In each case,

the ordinate scale is from 0.8 to 1.2. (b) Linear decrease of the reference signal

at 1015 cm−1 on the glucose volumes added into blood in (a).
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1143 cm−1. We observe an approximately linear dependence with concen-

tration. The noise at low concentration is due to laser intensity fluctuation.

(b) Ratio of glucose CARS signal at 1143 cm−1 to reference line from blood

for the boxed area in (a).
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That is, we can measure the ratio of the height of a glucose line to this peak, in

order to help eliminate distortion arising from laser intensity fluctuations. Further-

more, we note that we can see the reference signal and the weak CARS signals from

glucose even in pure blood.

Figure 25 shows the CARS signal from 1143 cm−1 glucose line in blood. In

Fig. 25(a), the intensity is nearly linearly dependent on the glucose concentration,

but fluctuations are seen at low concentration. Fig. 25(b) shows the ratio of this

glucose peak to the reference peak. This ratio increases along a smooth curve (nearly

a line) when the glucose concentration goes up. We can clearly distinguish the glucose

concentrations over 10 mM . The flattening of this curve at low concentration may

be due to the naturally occurring glucose in the pig blood that was used. Thus with

the aid from the reference signal, the measurement sensitivity is highly enhanced.

Although better sensitivity is still needed for practical applications, our method shows

promise for low concentration detection.

5. Phase changes in CARS signals

We have observed an interesting phenomenon: the phase of the generated CARS field

changes when we delay the probe pulse, as shown in Fig. 26. Figure 26(a) shows the

temporal profile of the probe pulse, as measured through four-wave mixing (FWM) in

water with pump and Stokes pulses. For these data, the first node occurs 2.0 ps after

the peak of the probe pulse. When this node coincides with the arrival of the pump

and Stokes pulses, the resultant anti-Stokes spectrum is dominated by the Raman

lines of glucose and is nearly background-free (for high glucose concentrations), as

shown in Fig. 21(b). When the first node of the probe pulse comes before the pump

and Stokes pulses, the spectrum shows Raman lines with dip structures, as seen in

the dotted (blue in color) curve in Fig. 26(b). When the delay is greater than 2.0 ps,
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Fig. 26. Phase dependence of the glucose CARS spectra on probe delay. (a) Temporal

profile of the probe beam, as measured through FWM in water with pump

and Stokes pulses; (b) CARS spectra of 500 mM glucose solution at 1.83 ps

and 2.17 ps probe delays.

peaks are seen, as in the solid (red) curve in Fig. 26(b). We attribute this phase

change to fact that the probe field changes phase as it goes through a node, similar to

the Gouy phase shift of an electro-magnetic field propagating through a focus. Real

world applications based on this type of delayed pulse scheme will have to accurately

account for this effect in order to model the CARS lineshapes.

we need to mention that for the pure glucose solution measurement, the three

incident laser beams overlap at their focuses in a crossing-beam configuration (for

Figs. 21-23, and 26) as in Fig. 12; while for the blood measurement, the beams overlap
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in a collinear configuration (for Figs. 24-25). In our case, these two configurations

produce similar results and detection sensitivity.

E. Conclusion

In this chapter, we demonstrate the application of a hybrid CARS technique to highly-

precise, non-invasive glucose detection. We obtained CARS spectra from both pure

glucose solutions and from blood samples. We find a linear dependence of the CARS

signal on the glucose concentrations due to interference between the resonant signal

and the broad off-resonant background from water. Our method is reliably capable

of measuring glucose samples with concentration as low as 5 mM . Furthermore, our

method is also optimized for multiplex CARS and thus allows chemical specifications.

We have demonstrated how interference between signal and background gives rise to

a linear dependence of signal on concentration, and we have shown how the phase of

the probe field affects this. In our experiment the background amplitude was adjusted

by variable probe pulse delay and the background phase is varied due to the Gouy-

like phase change around the temporal node of the probe field. Even though in this

experiment the amplitude and phase were not varied independently, in principle their

independent control is possible, though slightly more elaborate probe pulse shaping.

Therefore, this work shows how essentially the full range of heterodyne CARS capa-

bilities can be achieved in a simple configuration (not involving an interferometer)

where the fully-controllable local oscillator (background) field is obtained from the

same sample.
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CHAPTER IV

HETERODYNE CARS FOR SPECTRAL PHASE RETRIEVAL AND SIGNAL

AMPLIFICATION∗

A. Introduction to interferometric CARS

In this chapter we describe an experiment which allows us to investigate interference

in CARS with most flexibility. We have built a simple and effective CARS interfer-

ometer reminiscent of previous heterodyne schemes [63–65,69,70], where the relative

phase of the signal and local oscillator fields is adjusted to achieve constructive inter-

ference with either the real (in-phase) or imaginary (out of phase) part of the sample’s

response. We can therefore directly observe the real and imaginary components of the

third-order nonlinear susceptibility (χ(3)) of the sample. Unlike previous heterodyne

schemes, we use broad-band femtosecond preparatory pulses and a narrow-band probe

pulse to coherently excite multiple Raman lines simultaneously [35]. In addition, we

demonstrate that this heterodyne method can be used to amplify the signal. We

also show that the combination of the spectral interferometry and phase scan reveals

how the background resonance affects the detected susceptibility χ(3)(ω) in aqueous

methanol solution. Our work has important applications to Raman microscopy and

spectroscopy. It also connects with the field of multidimensional spectroscopy in the

infrared and visible where heterodyne detected four wave mixing and phase cycling

are heavily used [89,90].

∗Reprinted with permission from “Heterodyne coherent anti-Stokes Raman scat-
tering for spectral phase retrieval and signal amplification” by Xi Wang, Aihua Zhang,
Miaochan Zhi, Alexei V. Sokolov, George R. Welch, and Marlan O. Scully, 2006. Opt.
Lett., vol. 35, pp. 721, Copyright [2010] by The Optical Society of America.



52

Recently, spectral interferometry [63–65, 69, 70] has been proposed where the

CARS field is mixed with an external nonresonant reference field we refer to as the

local oscillator (LO). The cases where the nonresonant background is present have

also been discussed [63–65, 69, 70]. Following Eqs. 1.7 and 1.10, more generally,

without assuming that the background is purely nonresonant, the signal would be

expressed as

S(ω) ∝
∣

∣

∣P
(3)
CARS + eiφP

(3)
LO

∣

∣

∣

2

∝
∣

∣

∣P
(3)
LO

∣

∣

∣

2
+
∣

∣

∣P
(3)
CARS

∣

∣

∣

2
+ 2Re

[

eiφP
(3)
LO(ω)P

(3)∗
CARS(ω)

]

(4.1)

Since

P
(3)
CARS = P

(3)
B (ω) + P

(3)
R (ω)

= Re
(

P
(3)
B

)

+ Re
(

P
(3)
R

)

+ i
[

Im
(

P
(3)
B

)

+ Im
(

P
(3)
R

)]

,

(4.2)

the heterodyne term becomes

2Re
[

eiφP
(3)
LOP

(3)∗
CARS

]

= 2P
(3)
LORe

[

eiφP
(3)∗
CARS

]

= 2P
(3)
LORe

{

(cosφ+ isinφ)
[

Re(P
(3)
B ) + Re(P

(3)
R )− i

(

Im(P
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R )

)]}

= 2P
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[(

Re(P
(3)
B ) + Re(P

(3)
R )

)

cosφ+
(

Im(P
(3)
B ) + Im(P
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R )

)

sinφ
]

(4.3)

and the interference is then:
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(3)
R (ω)

)
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(

P
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(3)
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)
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,

(4.4)
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When the probe linewidth is not greater than the Raman linewidth, we can write

P
(3)
B ∝ χ

(3)
B EpESEpr ∝ χ

(3)
B EEX and P

(3)
R ∝ χ

(3)
R EEX . Eq. (4.4) can be written as

S(ω) ∝
∣

∣

∣P
(3)
LO

∣

∣

∣

2
+
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∣

∣P
(3)
CARS

∣
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∣

2

+ 2P
(3)
LO(ω)EEX

[

Re
(

χ
(3)
B (ω) + χ

(3)
R (ω)

)

cosφ+ Im
(

χ
(3)
B (ω) + χ

(3)
R (ω)

)

sinφ
]

,

(4.5)

where φ is the phase difference between the LO and CARS fields. The first two terms

are the homodyne intensities and can be subtracted from the signal. The third term

is the heterodyne signal which is sensitive to φ. Since the background level is often

nearly constant, choosing φ = ±π/2 allows the extraction of the imaginary part of

the Raman susceptibility, which can be directly compared with spontaneous Raman

spectra. Clearly, the heterodyne signal depends on the concentration linearly and the

imaginary part can be amplified significantly by the LO field.

B. Experimental setup

The experimental setup is shown in Fig. 27. The pump, Stokes and probe are fem-

tosecond pulses from two optical parametric amplifiers pumped at 1 kHz repetition

rate. The pump beam is at 1250 nm (FWHM 50 nm) and the Stokes is at 1435 nm

(FWHM 70 nm). For the purpose of multiplex CARS detection, the probe is narrow-

band with a top-hat spectrum at 798 nm (width 2 nm) as in [35]. With all-parallel

polarization and overlap in time, the three beams are collinearly combined and sent

into the interferometer. The beams in both the signal and LO branches are focused

with 10 cm lenses and collected with 5 cm focusing lenses. The LO sample is a 100 µm

thick glass slide, which provides a clean and broad nonresonant spectrum in the range

of interest. A 50% by volume methanol solution is held in a 2 mm thick fused silica
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Fig. 27. Schematic of the CARS spectral interferometer. BS, beam splitter; L1-5,

lenses; NF, neutral density filter; SPF, shortwave-pass filter; Spec, grating

spectrometer. Inset, the spectral ranges and profiles of the pump, Stokes and

probe beams in the experiment.

cell. Typical pulse energy in each pulse is a few hundred micro-joules. The generated

CARS and LO fields are collinearly sent to a spectrometer with a charge-coupled

device (CCD) detector. A piezo stage with 20 nm resolution is employed in the signal

branch to change the time-delay and phase difference between the LO and CARS

signal. A CCD exposure time of 200 ms is used for all spectra.
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C. Interferometric FWM spectra from glass
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Fig. 28. Interference spectra at different time delays τ between the local oscillator and

the signal fields. Both fields are FWM generated through glass slides.
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Fig. 29. Interference spectra of nonresonant signals with different phases. Continued

from Fig. 28. (a) Interference spectra at τ = 0.64 ps. The interference fringes

shift when the relative phase φ between the LO and signal fields changes.

(b) Constructive ( φ = 0 ps, magenta) and destructive (φ = 0.52 ps, cyan)

interference at τ = 0 ps.
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First we would like to demonstrate how the interferometer works through the inter-

ference spectra while both of the LO and signal fields are generated from 100 µm

thick glass slides. The glass provides a clean and broad nonresonant spectrum in the

range of interest(700 − 2000 cm−2). In Fig. 28, we record the interference spectra

at different time delay τ between the LO and signal fields, which are actually two

pulses. Here the pump and Stokes wavelengths are around 1240 nm and 1490 nm,

respectively. When the two pulses are getting closer in time domain, the interference

fringes in spectral domain become sparer and we can estimate the time difference τ

from the fringe period. When τ = 0, the fringes merge into one broad spectrum (the

top figure).

By adjusting the piezo stage, we can control the precise phase difference φ be-

tween the LO and signal fields and obtain the spectra in Fig. 29. In Fig. 29(a), the LO

and signal fields are apart, the fringes shift when φ changes from 0 (magenta) to 1.15π

(cyan). Note that we only measure relative phase, and here we just roughly define

the origin of the phase scale. In Fig. 29(b), constructive (magenta) and destructive

(cyan) interference happens when φ changes from 0 (magenta) to 1.01π (cyan). In

both cases, the maximum intensity is almost 20 times the minimum one (33000 vs.

1700) and 4 times the LO or signal. These results are close to expectation, which

proves the phase adjustment in this interferometer is fairly precise. Please also note

that the spectra shown in Figs. 28, 29 are original signals from CCD. The irregular

fringes are due to etaloning generated by the CCD itself (see [20]). The spectra in

the following parts have been processed to remove the etaloning.

To achieve heterodyne amplification, we choose the LO field to be much stronger

than the CARS field from the signal arm within our CCD saturation limit, with

intensities of 40000 and 1000 counts, respectively. Figures. 30a and 30b show the

measured and calculated interferometric spectra for the methanol solution. In the
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Fig. 30. Interferometric spectra of aqueous methanol solution at different phases φ

between the LO and signal arms. (a) is experimental and (b) is calculated in-

terferometric spectra. In (c), spectra are rescaled as S(ω)/SLO(ω); the values

at left sides correspond to the dotted horizontal lines in each case.
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calculation, we use Eq.(4.4) and assume a (complex) Lorentzian lineshape for χ
(3)
R and,

for the sake of our argument below, we take Im(χ
(3)
B ) = 0. The broad structure results

from the broad linewidth of the pump and Stokes pulses, and the narrow feature

results from the narrowband probe beam. Although we excite a single vibrational

mode in methanol, this technique allows multiplex CARS detection in an FWHM

range over 400 cm−1.

D. Interferometric CARS spectra from methanol

1. Phase change in the CARS spectra

In Fig. 30c, the interferometric spectra recorded as S(ω)/SLO(ω) show how the Raman

line of methanol at 1038 cm−1 depends on the phase φ. Since water does not produce

any narrow features in this part of the Raman spectrum [88, 91], χ
(3)
B is insensitive

to frequency. Therefore here the background from water will not affect the Raman

line shape of methanol even if we assume water has an imaginary component of

susceptibility in this range. When φ is nominally equal to 0.5π(measured as φ =

0.43π, within the uncertainty of the piezo stage), the symmetric peak represents an

example of extracted Im(χ
(3)
B (ω)). At φ = 1.5π (measured as φ = 1.58π), the Raman

line is reversed into a dip structure, which is as expected from the theory. At other

phase differences such as φ = 0.15π and φ = 1.29π, Re(χ
(3)
R (ω)) makes a substantial

contribution and results in distorted line shapes. At φ = 1.0π and φ = 2.0π(measured

as φ = 1.87π) where Im(χ
(3)
B (ω) + χ

(3)
R (ω)) disappears, we could isolate Re(χ

(3)
R (ω)).

These data are consistent and repeatable during our measurements. Note that we

only measure relative phase, and the origin of our phase scale has been properly

adjusted.

At the positions which are far from the resonant line of methanol, such as
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900.6 and 1200.8 cm−1 (roughly the half-maximum points of SLO(ω)), the effect of

P
(3)
R (ω) in Eq.(4.4) can be neglected. The dependence of the signal on the phase

φ is then expected insensitive to frequency. As we show in Fig. 31(a), there is

no phase difference between the two dependences of RI(ω) on φ at Raman shifts

900.6 (red square dots) and 1200.8 cm−1 (green round dots). Using a sine fitting

[y0 + Asin(x + xc)] on the data at 900.6 cm−1 (blue curve), we find xc = 0.16π

instead of π/2 for a pure real background polarization P
(3)
B (ω). In our experiment,

the definition of φ = 1.50π is limited by the resolution of the piezo stage. This

definition can be derived within an error 0.14π, since the lineshapes at φ = 1.36π

and 1.64π are easily distinguished from the one at φ = 1.50π. Therefore, we obtain

Im(P
(3)
B (ω))/Re(P

(3)
B (ω)) = cos(0.16π)/sin(0.16π) = 1.8 and in a range between 0.7

and 15.9. Here we confirm that constant (broadband) CARS background from water

in the spectral region from 700 to 1400 cm−1 (the chemical fingerprint region) is not

purely real. We attribute the existence of the imaginary part Im(P
(3)
B (ω)) from water

to the fact that water has some broad Raman lines crossing through the interested

region [88,91]. Compared with that P
(3)
B (ω) would be expected a purely non-resonant

background, it should be written here P
(3)
B (ω) = |P (3)

B (ω)|e0.34π and Raman back-

ground due to water is almost purely imaginary.

Meanwhile, as shown in Fig. 31(b), there are very distinct phase differences

between the dependences of the RI(ω) on φ at the positions within the resonant

line, such as 1042.6, 1025.6 and 1059.6 cm−1, which are roughly the resonant line’s

center frequency and half-maximum frequencies, respectively. In Fig. 31(b), we use

a relative intensity 2 × RI(ω)/[RI(900.6) + RI(1200.8)] as signal since the absolute

resonant contribution is easily overwhelmed by the fluctuation of the much stronger

LO. The sine fitting (solid curves) to these three sets of experimental data (dots)

gives xc = 0.21π, 0.09π and −0.22π at 1025.6, 1042.6 and 1059.6 cm−1 (from top
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Fig. 31. Dependence of the interferometric spectra at fixed frequencies on the rel-

ative phase φ between the LO and signal fields. (a) Relative intensi-

ties RI(ω) = S(ω)/SLO(ω) at nonresonant Raman shifts 900.6 cm−1 and

1200.8 cm−1. (b) Rescaled as 2 × RI(ω)/[RI(900.6) + RI(1200.8)] at reso-

nant Raman shifts of methanol 1025.6, 1042.6, and 1059.6 cm−1, with offset

0.3, 0.15 and 0, respectively. Dots are experimental data and solid curves are

sine fitting.
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to bottom), respectively. Since Re(P
(3)
R (ω)) ≈ 0 at the center frequency of Raman

line, Im(P
(3)
R (ω))/Im(P

(3)
B (ω)) is estimated to be 1.6 at 1042.6 cm−1. Here we can see

that water has a comparable contribution on the CARS signal with methanol. The

contribution from water may result in incomplete background suppression, especially

when the interested Raman signal is weak, as we discussed in Chapter III about

glucose detection [20].

2. Extracting the real and imaginary components of χ
(3)
R

Equation(4.4) shows that we can obtain the real or imaginary part of the susceptibility

by subtracting the signal at two opposite phases:

S(ω)φ=π

2
− S(ω)φ= 3π

2

P
(3)
LO(ω)

= 4Im
(

P
(3)
B (ω) + P

(3)
R (ω)

)

= 4EEX

[

Im
(

χ
(3)
B (ω)

)

+ Im
(

χ
(3)
R (ω)

)]

, (4.6)

where EEX denotes the excitation field. Similarly

S(ω)φ=0 − S(ω)φ=π

P
(3)
LO(ω)

= 4EEX

[

Re
(

χ
(3)
B (ω)

)

+ Re
(

χ
(3)
R (ω)

)]

. (4.7)

These are shown in Fig. 32a. The base of the real curve is offset from zero, which is

consistent with the fact that in Figs. 30a and 30b the interferometric signals taken

nominally at φ = 0 and φ = π have opposite offsets from the LO signal, even for

Raman shifts outside the narrow Raman resonance of methanol. This is expected

from the background contribution χ
(3)
NR.

We also note that the imaginary curve in Fig. 32a is offset from zero. Our

calculation (the dotted curve in Fig. 32a) shows that the base of the imaginary curve

would be zero if the background was nonresonant, such that Im(χ
(3)
B (ω)) = 0. However

our measurement shows that the constant (broadband) CARS background from water
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dyne signal including only the imaginary part of CARS field; inset: CARS

field from the signal arm.
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in the spectral region from 700 to 1400 cm−1 (the chemical fingerprint region) is not

purely real (as would be expected from a purely non-resonant background). From

Fig. 32a, the measured ratio between the imaginary and real background components

is 0.6.

3. Heterodyne amplification

Fig. 32b and its inset show the heterodyne amplification. The original CARS signal

is around 1000 counts, of which the resonant contribution |P (3)
R (ω)|2 is estimated to

be around 170 counts from Eq.(1.10). The net amplified resonant signal is around

8000 counts in Fig. 32b. An amplification factor around 50 is achieved, close to the

calculated value of 70 in Fig. 30b. However, the contrast ratio is not significantly

enhanced due to the imaginary contribution from water, while an infinite contrast

ratio is expected in the ideal case (the dotted curve in Fig. 32a). In Fig. 32b, the

measured Raman line of methanol has a FWHM of 35 cm−1, which is the bandwidth

of the probe beam and is slightly larger than the line width of methanol (FWHM

27 cm−1). This is consistent with our expectation since the detected CARS signal is

the convolution of the susceptibility and the applied fields.

E. Conclusion

In conclusion, we have demonstrated a heterodyne CARS method which combines

broadband excitation with narrowband probing, and applied it to methanol solution

to isolate the real and imaginary components of the molecular resonant susceptibility

χ
(3)
R . Since our scheme is optimized for multiplex CARS, we can readily obtain spectra

resembling spontaneous Raman spectra over a sufficiently broad vibrational band,

through the extraction of Im(χ
(3)
R (ω)). Heterodyne signal amplification factor of 50 is
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achieved, which shows the potential for increased detection sensitivity. In addition,

we show the utility of the heterodyne method to determine the phase of a broadband

background, and find that the Raman background due to water is almost purely

imaginary.
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CHAPTER V

PULSE-SHAPER-ENABLED PHASE CONTROL OF NONRESONANT

BACKGROUND FOR HETERODYNE DETECTION OF CARS SIGNAL

A. Introduction

1. Development of interferometric CARS

As shown in Chapter IV, nonlinear interferometry is promising approach to suppress

the nonresonant background in CARS, i.e. to extract the resonant field component

of the CARS signal by means of a phase-sensitive measurement [62–65, 68–71]. This

technique can be made to detect the imaginary part of the nonlinear susceptibility

Imχ(3) of the CARS signal, which then can be directly compared to the spontaneous

Raman spectrum. Among these methods, the interferometer design, which introduces

an external nonresonant reference field as the local oscillator (LO), relies on the

stability of the interferometer itself; this approach was proposed 30 years ago [62]

and widely applied, e.g. in our precious work [72], by Xie’s group [63,64], and other

groups [65, 68]. Single-pulse heterodyne detection scheme was then proposed (by

Motzkus’s group), where the “blue” part of the laser spectrum acts as a LO [69].

Furthermore, Leone et al. have demonstrated a scheme to enhance the resonant signal

intensity using the nonresonant signal as a LO, by a phase- and polarization-controlled

pulse shaping technique [70,71].

2. Intrinsic nonresonant FWM background as the LO

In this chapter, we present here a simple and effective heterodyne CARS scheme

that uses the intrinsic nonresonant FWM background as the LO instead of applying

an external one. Our approach is based on our hybrid CARS [20, 35, 72]. It is



67

implemented by controlling spectral properties of the probe pulse and its temporal

overlap with the pump and Stokes pulses, and relies on the fact that the FWM is an

instantaneous process and hence is directly related to the instantaneous probe field,

while the resonant Raman signal is an accumulation process due to the vibrational

coherence and hence is somewhat insensitive to the probe delay [12,92], as illuminated

in Fig. 10. In our previous work, we tried to eliminate the FWM background [35]

by introducing a top-hat probe spectrum. Here, on the contrary, we show that an

asymmetry of the top-hat probe spectrum results in an imaginary contribution of the

probe field in the time domain at the node of its real part. Consequently, the probe

field gradually changes its phase by π when crossing the node, creating a temporal

“Gouy phase” [93]. We also show that more asymmetry of the probe spectrum

produces stronger probe field at the node, by comparing the experimental results

from two different probe spectra. Therefore, we have the flexibility to control both

the relative phase (by adjusting the probe delay) and the relative amplitude (by

choosing desired probe spectrum) between the resonant Raman and FWM fields. As

a result, we can for example directly extract the imaginary part of the third order

susceptibility χ(3) in aqueous methanol solution when the relative phase φ = π/2 and

the resonant signal can also be amplified by the heterodyne-like interference with the

coherent background field.

The present experimental configuration shows additional advantages, compared

to our previous work [20, 35]. One is that the resonant background from aqueous

solution can be removed due to its faster decay versus the probe delay. CARS with

collinear beams, similar to the single-beam CARS [40, 58, 60], improves the spatial

overlap compared to traditional cross-beam geometry. Meanwhile, the separate pump

and Stokes frequency bands preserve the capacity to detect different Raman-shift

regions.
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The total CARS signal is proportional to the square of the polarization as in

Eq.(1.10). In the current work, we create a complex FWM background P
(3)
B (ω, τ)

instead of a purely real one. In this case, we define φ as the phase of the background

and Eq.(1.10) can be written as

SCARS =
∣

∣

∣P
(3)
B

∣

∣

∣

2
+
∣

∣

∣P
(3)
R

∣

∣

∣

2
+ 2Re

[

eiφ|P (3)
B (ω, τ)|P (3)∗

R (ω, τ)
]

. (5.1)

As an example, since the background level is often nearly constant, choosing φ = ±π/2

allows the extraction of the imaginary part of the Raman susceptibility, which can

be directly compared with spontaneous Raman spectra. Clearly, the heterodyne

signal depends on the concentration linearly and the imaginary part can be amplified

significantly by the LO field.

B. Spectral asymmetry induced temporal phase shift in probe field

For an ideal sinc probe, its phase will jump by π through the node and it is what

we would avoid for the heterodyne effect. Once the probe spectrum is slightly asym-

metric (Fig. 33(a)), it is straightforward that the probe field in the time domain has

a non-zero imaginary part (Fig. 33(d)) at the node of the real function (Fig. 33(c)).

In Fig. 33, we show an example (black) that a top-hat probe spectrum with a Gaus-

sian shoulder e−(ω+1)2 on low-frequency side and hyper-Gaussian shoulder e−(ω−1)4

on high-frequency side. However exact shapes are not so important, for example,

simple Gaussian shoulders of different widths on the two sides of the spectrum also

work, since asymmetry is essential during the Fourier transformation. The tempo-

ral functions in black in Fig. 33(b) to (f) correspond to the spectrum in black in

Fig. 33(a). As comparison, we also show the spectrum with inverse shoulders and the

corresponding temporal functions in magenta and dashed. Their absolute value and
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Fig. 33. Probe pulse in frequency and time domains. (a) A slightly asymmetric top-hat

probe field Ep(ω) (black) and its inverse one (magenta and dashed), with

Gaussian and hyper-Gaussian functions on the shoulders. The corresponding

time-domain functions (black, magenta and dashed for the inverse one): (b)

the absolute value Abs[Epr(t)], (c) the real part Re[Epr(t)], (d) the imaginary

part Im[Epr(t)], and (e) the argument Arg[Epr(t)] of the probe field in (a). In

(e) and (f), the black solid curves are for the probe beam and the green dotted

curves are for a Gaussian beam q(z) = −1.80977∗(z−1.668332)+0.101261∗I.
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Fig. 34. Phase change of the nonresonant FWM (φ) through the probe node. (a)

shows the absolute phase, and (b) shows the relative phase (ϕ) between the

resonant signal and FWM. The arrows denote the change from less to larger

probe delay. In (a), the black and magenta curves correspond to the spectra

in black and magenta in Fig. 33(a), respectively.

real part are same in Fig. 33(b), (c) and (f), however the their imaginary parts are

opposite in Fig. 33(d). As a result of the asymmetry, the argument of the complex

probe field (black in Fig. 33(e)) will gradually shift from 0 to π crossing the node, and

for the inverse one (magenta and dashed), from 0 to −π. Furthermore, we also have

the flexibility to modify the asymmetry to change the proportion of the imaginary to

the real components of the probe field. Thus we can control both the relative phase

(Fig. 34) and relative amplitude between the FWM and resonant signal and therefore

the FWM itself acts as the LO.

The study of the probe asymmetry is of practical interest, not only due to the self-

implemented heterodyne effect discussed above. We have succeeded in eliminating

the FWM background in our previous work [35]. However, properly introducing

background benefits the detection sensitivity [20]. Moreover, it is impractical to
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produce an perfect symmetric spectrum in the laboratory. This study will provide

us a deeper understanding of CARS, especially for samples with low concentration

where a small amount of FWM may contribute dominantly.

C. “Temporal Gouy phase”

Fig. 35. Beam radius and Gouy phase shift along the propagation direction. This

is a example for a beam in air with 1064 nm wavelength and 100 µm ra-

dius at the waist. The positions at plus and minus the Rayleigh length

are marked. From “Encyclopedia for Photonics and Laser Technology”

http : //www.rp− photonics.com.

The asymmetry also leads to an interesting phenomenon - a “temporal” Gouy

phase. (Spatial) Gouy phase, a phase shift by π, happens when a Gaussian beam

evolves from −∞ to +∞ through a point focus, as shown in Fig. 35. When the

real part of a function crosses zero, and the imaginary part is non-zero, the func-

tion can be approximated by the formula for Gaussian beam propagation which

is described by a complex q(z) = z + izR [93]. The important difference is that

we have a function of time, and Gaussian beam propagates in space, so we will

observe an analogous ”Gouy phase”. As an example, we show in Fig. 33(e) and

(f) (black) the argument Arg[Epr(t)] and absolute value Abs[Epr(t)] for the spec-
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trum in Fig. 33(a) match those of the Gaussian beam propagation parameter q(z)=-

1.80977*(z-1.668332)+0.101261*I (green, dotted), where z is replaced by t.

D. Experimental setup

sampleL L

ωPump Spec

/CCD
BS

ωprobe

ωStokes

BS

(a)

(b) knife

edge

G Gf f f f

slit

Fig. 36. Collinear hybrid CARS setup. (a) Experimantal schematic; inset, the spectral

ranges and profiles of the pump, Stokes and probe beams. (b) 4-f pulse shaper

used to produce a top-hat-like probe spectrum; a knife edge can be placed in

front of the focal plane to make the spectrum (more) asymmetric. BS, beam

splitter; L, lens; Spec, spectrograph; G, grating.

The experimental setup is shown in Fig. 36. While still working in the hybrid scheme,

we have the pump (1295 nm, FWHM 50 nm), Stokes (1500 nm, FWHM 70 nm)

beams and probe beam ( 800 nm, width around 1 nm). The beams are focused with

10 cm lenses and the signal is collected with 5 cm focusing lenses then sent to a
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spectrograph with a charge-coupled device (CCD) detector (Princeton Instrument,

Spec-10:400BR/LN). We use a CCD exposure time of 200 ms for all spectra. The

methanol aqueous solution of around 10% by volume is held in a 2 mm thick fused

silica cell. Typical pulse energy in each pulse is a few hundred micro-joules. The

asymmetry of the probe spectrum can be obtained by placing a knife edge off the

focal plane of the 4-f system, e.g., in front of the slit which is on the focal plane

(Fig. 36(b)).

E. Experimental results

1. Asymmetric probe spectra

In Fig. 37(a), we specially choose two probe pulses with opposite asymmetric spectra

to verify the opposite phase changes in Fig. 33(e). The pulse without knife edge (blue,

dotted curve) weighs less at shorter wavelength, which can be picked up by moving

the slit to the ramp of the original broad probe spectrum. The pulse with knife edge

(green, solid curve) weighs less at longer wavelength and has more asymmetry, which

can be obtained by placing a knife edge in front of the slit.

Figure 37(b) shows the temporal profiles of the probe pulses, as measured through

FWM on a thin glass slide with pump and Stokes pulses. These two curves are

normalized to the same value at zero probe delay. There are non-zero nodes in

both pulses. In particular, the spectrum with more asymmetry presents a explicitly

stronger field at the nodes. The first node positions are 2.02 ps and 2.08 ps with and

without knife-edge, respectively, which barely shift compared with the quite difference

of the two spectra.
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Fig. 37. Spectral (a) and temporal (b) shapes of the probe beam. Blue dotted and

green solid curves are measured results without and with knife-edge in Fig.

36(b), respectively. The spectra are measured with a spectrometer, while the

temporal shapes are obtained by recording the FWM of the pump, Stokes and

probe beams during changing the probe delay.

2. Phase shift near the first probe node

Figure 38 shows the measured CARS spectra of methanol aqueous solution near the

first probe nodes with (left column) and without knife-edge (right column). In order

to highlight the feature of the Raman line, the spectra in Fig. 38 (a)-(d) are rescaled

as ICARS(ω)/IB(ω), where IB(ω) is obtained through fitting to the FWM background.

Fig. 38 (c) and (g) are the contour graphs without rescaling. In Fig. 38 (a) and (b),

we expressly point out that there is a distinct phase change by π between the two

spectra (insets) slightly after the first probe node (indicated by the arrows, at 2.08



75

 

 
without knife-edge

1.00 2.00 3.00

0.1

1

(a)

 

in
te

ns
ity

 (a
.u

.)

probe delay (ps)

 

 

 

 

800 900 1000 1100 1200 1300

1.68 ps

2.56 ps

2.48 ps

2.40 ps

2.32 ps

2.24 ps

2.16 ps

2.08 ps

2.00 ps

1.92 ps

1.84 ps

1.76 ps

(c)

Raman shift (cm-1)

in
te

ns
ity

 (a
.u

.)

1.70 1.90 2.10 2.30 2.50
1000

1020

1040

1060

1080

1100

1120 (e)

probe delay (ps)

R
am

an
 s

hi
ft 

(c
m

-1
)

1900 2.001E+04
1900     2E4

 

 
with knife-edge

1.00 2.00 3.00

0.1

1

(b)

 

in
te

ns
ity

 (a
.u

.)

probe delay (ps)

 

 

 

 

800 900 1000 1100 1200 1300

(d) 1.68 ps

2.56 ps

2.48 ps

2.40 ps

2.32 ps

2.24 ps

2.16 ps

2.08 ps

2.00 ps

1.92 ps

1.84 ps

1.76 ps

Raman shift (cm-1)

in
te

ns
ity

 (a
.u

.)

1.70 1.90 2.10 2.30 2.50
1000

1020

1040

1060

1080

1100

1120 (f)

probe delay (ps)

R
am

an
 s

hi
ft 

(c
m

-1
)

3000 1.501E+043000      1.5E4

Fig. 38. Experimental CARS spectra of the methanol aqueous solution without and

with a knife-edge. Insets of (a) and (b), at the nodes; (c) and (d), at different

delays whose positions are marked as the black dots on the temporal shapes of

the probe beam in (a) and (b), respectively; (e) and (f), the contour graphs.

In (a)-(d), the spectra are rescaled as SCARS(ω)/SB(ω) and SB(ω) is obtained

through fitting.
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ps and 2.16 ps, respectively). The sine-like Raman line is the result of interference

with FWM background, contrast to the Lorentz shape in absence of background.

The gradual changes of the phases are shown in Fig. 38 (c) and (d) when crossing

through the first probe node. The numbers in the graphs are the probe delays, marked

as the black dots on the probe temporal shapes in Fig. 38 (a) and (b). Obvious phase

changes occur in both cases. However, it is not quite straightforward to estimate the

phase change in Fig. 38 (c) where the resonant contribution |PR(ω)|2 is also significant

since |PR(ω)|2 itself has complicated spectral shapes after the first node (see [92]). On

the contrary, the phase change is more apparent in Fig. 38 where there is more FWM

background. For example, the phase changes approximately by π from τ = 1.68 ps

to τ = 2.16 ps and a transition phase appears at τ = 2.08 ps (the node).

When we compare Fig. 38 (c) and (d), we find that the spectra are fairly similar

far from the nodes and quite different near the nodes, e.g. those shown in Fig. 38

(a) and (b). This result confirm the expectation from Fig. 33 (e) that the phases

difference from opposite spectral asymmetry reaches maximum (π) at the node and

getting less further from the node. As a result, we can take advantage of this effect

to control the phase of a signal just by moving the probe delay.

3. Extraction of the real and imaginary components of χR(ω)

In case of weak resonant signal so that |PB(ω)| ≫ |PR(ω)|, the normalized CARS

signal can be written as

SCARS(ω, φ)/SB(ω, φ) ≈ 1 + 2
Re

(

eiφP ∗

R(ω, φ)
)

|PB(ω, φ)|
, (5.2)

where φ is the phase of the FWM background defined in Fig. 34, which is a function

of the probe delay τ . This condition, |PB(ω)| ≫ |PR(ω)|, is not satisfied well here.
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Fig. 39. CARS spectra to show the real and imaginary parts of χ
(3)
R (ω). The real part

(black) happens at 1.68 ps and the imaginary part (magenta) happens at 2.08

ps. They are from Fig. 38 but enlarged.

However, it is easily satisfied in many other cases, especially for the materials with

small Raman cross sections and in low concentrations as we showed in our previous

work [20].

When we change the probe delay, φ changes from 0 to π (or −π). Consequently

we have

SCARS(ω, 0)/SB(ω, 0) ≈ 1 + 2
Re (P ∗

R(ω, 0))

|PB(ω, 0)|
, (5.3)

SCARS(ω, π)/SB(ω, π) ≈ 1− 2
Re (P ∗

R(ω, π))

|PB(ω, π)|
. (5.4)

Since PB is broadband and insensitive to frequency, SCARS(ω, 0)/SBG(ω, 0) or

SCARS(ω, π)/SBG(ω, π) reflects the real part of χR(ω). Similarly, the imaginary part
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can be obtain through the following expression once we can find the probe delay

corresponding to φ = π/2

SCARS(ω, π/2)/SB(ω, π/2) ≈ 1 + 2
Im (P ∗

R(ω, π/2))

|PB(ω, π/2)|
. (5.5)

The Experimental CARS spectra with knife-edge in Fig. 39 approximately reveal the

real part (black, τ = 1.68 ps) and imaginary part (magenta, τ = 2.08 ps) of χ
(3)
R (ω).

The imaginary part represented by the magenta curve can be confirmed by the line

shape and the peak position. However, in our case, the imaginary part does not look a

perfect symmetric Lorentz shape since |PR(ω, τ)|2 / |PB(ω, π/2)|2 cannot be neglected

and distort the spectral shape. This can be improved by using a delay line with higher

resolution (1µm in our setup) to find the exact probe delay for φ = π/2. Isolation of

Im(χ
(3)
R (ω)) permits a direct comparison with spontaneous Raman spectra.

4. Controllable FWM amplitude

As we stated above that more asymmetry of the probe spectrum results in a stronger

field at the node, we have the opportunity to control the relative intensity between

the resonant Raman field and the FWM field. This is a based on the fact that

appropriate introduction of background benefits detection sensitivity [20]. In Fig. 40,

we show the CARS spectra without (black) and with (magenta) knife-edge at their

nodes (2.02 and 2.08 ps, respectively), and as comparison, with knife-edge at 2.02

ps. The intensities of the Raman line with knife-edge, both at 2.02 ps(green, dashed)

and 2.08 ps(magenta), is weaker than that without knife-edge due to the energy drop

when the probe spectrum is cut; nevertheless, the intensities of the FWM background

are stronger. The contrast ratios of the resonant signal to FWM are 0.71 (without

knife-edge at 2.02 ps), 0.65 and 0.39 (with knife-edge at 2.02 and 2.08 ps, respectively).
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Fig. 40. CARS spectra at the first probe node without and with a knife-edge. The

background level increases with the knife-edge (in both cases: magenta curve

at the node 2.08 ps, green dashed curve at 2.02 ps), compared with that

without the knife-edge(black curve at the node 2.02 ps). The probe node is

defined to have the lowest background.

5. Asymmetry induced phase shift for CARS spectra with multiple Raman lines

Finally, we show how the spectral asymmetry of the probe affects the CARS spectra

with multiple Raman lines in Fig. 41. The sample is 500 mM glucose aqueous solution

and the experiment is carried out in a crossed-beam configuration. The experimental

details are described in [20]. The right graph is the temporal shape of the probe,

which has a non-zero first node. In the right graph, the Raman lines reverse when

crossing the nodes, both the first and second ones. As a result, at the Raman shifts
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2w 1w

Fig. 41. Phase changes of the CARS signal from 500 mM glucose aqueous solu-

tion (left) near the probe nodes (right). The spectra are rescaled as

SCARS(ω)/SB(ω) and offset. The intensity ratios [S(ω1)− S(ω2)] /S(ω2) are

−0.6/0.78, 2.14/0.72, 0.33/0.47,−0.21/0.76, and 0.18/0.67 at probe delays

1.83, 2.0, 2.17, 3.73, and 4.23 ps, respectively. Note that the frequencies of

the peaks (dips) off the node do shift relative to the one at the node but not

observable in this scale.

marked by dashed vertical lines, we observe deep dips before the nodes (first and

fourth curves from bottom) while sharp peaks after the nodes. For this case where

the resonant signal is very strong, the CARS spectrum at the first node (second curve

from bottom, red) resembles the spontaneous Raman spectrum. Therefore, it will be

more precise to analyze the dips instead of peaks if we choose the spectra before the

nodes, and vice versa.
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F. Conclusion

In conclusion, we demonstrate a self-implemented heterodyne CARS by using its

intrinsic FWM background as the local oscillator in a CARS configuration with two

broadband Gaussian preparatory pulses and a time-delayed narrowband probe pulse.

We introduce an imaginary component to the probe field in the time domain by

inserting a knife-edge before the focal plane of a 4f pulse shaper which breaks the

symmetry of the top-hat-like spectrum. Since the FWM instantaneously responds to

the temporal overlap of the preparatory and the probe pulses, it undergoes a gradual

phase shift by π when the preparatory pulses cross the node of the real part of the

probe field. Due to vibratioal coherence, the resonant Raman signal is insensitive

to the overlapping position near the node. We observe the shape changes of the

Raman line from aqueous methanol solution, furthermore, we can directly observe

the imaginary part of χ
(3)
R when the phase of the FWM equals to π. We also show

that more asymmetry of probe spectrum produces stronger probe field (and thus

FWM) at the node by comparing the experimental results from two different probe

spectra. Therefore, we have the flexibility to control both the relative phase between

the resonant Raman and FWM fields by adjusting the probe delay and the relative

amplitude by modifying the probe spectrum.
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CHAPTER VI

CONCLUSIONS

We briefly conclude here our work on optimizing CARS by exploiting optical inter-

ference. This work is based on our time- and frequency-resolved multiplex CARS

configuration, which combines instantaneous coherent excitation of multiple char-

acteristic molecular vibrations by broadband femtosecond pump and Stokes pulses,

with subsequent probing of these vibrations by an spectrally optimally shaped, time-

delayed, narrowband and thus longer laser pulse in picosecond scale. The probe pulse

is obtained through a home-made 4f pulse shaper with a mechanical slit to choose a

desired narrow spectral band. This hybrid technique is developed to suppress the co-

herent FWM background which most often overwhelms the resonant Raman signal in

CARS and causes distortion of the measured spectra due to the interference between

them.

The hybrid technique has been proven to suppress the coherent background sig-

nificantly and has been successfully applied to real-time spore detection (Chapter II)

and glucose/blood detection(Chapter III). During our experiments, we find out that

appropriate introduction of background benefits detection sensitivity since the signal

may be amplified by the background. During the glucose measurement, We find a

linear dependence of the CARS signal on the glucose concentrations due to inter-

ference between the resonant signal and the broad background from water. While

the quadratic dependence of CARS signal on concentration makes efficient measure-

ment for high concentrations, the linear dependence becomes an advantage for low

concentrations. Our method is reliably capable of measuring glucose samples with

concentration as low as 5 mM.

To make the fullest use of the background, we study the heterodyne CARS which,
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by a phase-sensitive measurement, can extract the imaginary component of the third

order susceptibility χ(3) to eliminate the spectral distortion, and amplify the signal.

We have carried out different experiments, where the interference either is controlled

by introducing an external nonresonant field such as a FWM field from a glass slide

(Chapter IV) or by controlling the phase of the intrinsic background (Chapter V).

The interferometric scheme we built in Chapter IV is simple and effective, pro-

viding most flexibility, where the relative amplitude and phase between the signal

and local oscillator (LO) fields could be adjusted arbitrarily within the experimental

limits. We have obtained am amplification factor around 50 or 70 depending on the

intensity of the LO. We can also directly observe the real and imaginary components

of the third-order nonlinear susceptibility χ(3) of the sample.

However, the interferometric scheme is subject to the complexity of the setup and

the stability of the interferometer itself, and thus can not be practical. In Chapter

V, we then propose an improved heterodyne CARS scheme which uses the intrinsic

nonresonant FWM background as the LO instead of applying an external one. The

idea is to exploit time resolution to provide different effective phase for the nonreso-

nant background and the Raman-resonant susceptibility which allows to adjust CARS

spectra in a way to resemble Raman spectra. For this purpose the narrowband probe

pulse is further spectrally tailored and temporarily shifted. In our experiment, we

break the symmetry of the top-hat-like probe spectrum by inserting a knife-edge be-

fore the focal plane of the 4f pulse shaper and thus introduce an imaginary component

to the probe field in the time domain. Since the FWM instantaneously responds to

the temporal overlap of the preparatory and the probe pulses, it undergoes a gradual

phase shift by π when the preparatory pulses cross the node of the real part of the

probe field. Due to vibrational coherence, the resonant Raman signal is somewhat

insensitive to the overlapping position near the node. We can directly observe the
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imaginary part of χ(3) from aqueous methanol solution when the phase of the FWM

equals to π/2. In this scheme, we have the flexibility, just like the interferometric

one although not arbitrarily, to control both the relative phase between the resonant

Raman and FWM fields by adjusting the probe delay and the relative amplitude by

modifying the probe spectrum.
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