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ABSTRACT

Optimal Distributed Beamforming for MISO Interference Channels. (May 2011)

Jiaming Qiu, B.S., Huazhong University of Science and Technology

Chair of Advisory Committee: Shuguang Cui

In this thesis, the problem of quantifying the Pareto optimal boundary of the

achievable rate region is considered over multiple-input single-output (MISO) interfer-

ence channels, where the problem boils down to solving a sequence of convex feasibility

problems after certain transformations. The feasibility problem is solved by two new

distributed optimal beamforming algorithms, where the first one is to parallelize the

computation based on the method of alternating projections, and the second one is

to localize the computation based on the method of cyclic projections. Convergence

proofs are established for both algorithms.
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CHAPTER I

INTRODUCTION

Wireless technology has experienced significant growth in the telecommunication in-

dustry over the past 20 years. Cellular systems have become an indispensable in-

gredient of our daily lives, and cell phones have completely replaced their land-line

counterparts in many modern households. In addition, wireless local area networks

(WLANs) have also been widely adopted in numerous homes, campuses, and public

infrastructure, where they play a vital role in improving overall productivity. Due to

the rapid pace of development in the field of wireless communications, many novel

applications and services are expected to accommodate the ever-increasing wireless

data transmission needs, which including mobile TV, real-time target tracking, and

teleconference.

Traditional wireless mobile systems are designed with cellular architecture, in

which neighboring base stations (BSs) in different cells try to manage communica-

tions for their intended mobile stations (MSs) over non-overlapping channels. The

resulting inter-cell interference is treated as additive background noise and minimized

by applying a predetermined frequency reuse pattern such that the same frequency

band is reused only by non-adjacent cells. Owing to the rapidly increasing demand for

high-rate multimedia wireless applications, conventional cellular networks have been

pushed towards their throughput limits. To improve the performance of traditional

systems, most beyond-3G wireless technologies such as WiMAX and 3GPP UMTS

Long Term Evolution (LTE) have relaxed the frequency reuse constraint such that the

whole frequency band becomes available for all cells. However, this factor-one policy

The journal model is IEEE Transactions on Automatic Control.
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renders the overall network performance limited by inter-cell interference, such that

more sophisticated interference management algorithms with multi-cell cooperation

becomes critical. A sketch of a general cellular wireless systems is provided in Fig. 1.

BS

BS BS

MS

MS

MS

Fig. 1.: A typical cellular wireless communications system

Joint signal processing is one effective method to cope with the inter-cell interfer-

ence in the cellular network across different BSs. In this thesis, we study a particular

type of multi-BS cooperation for downlink transmissions, where we assume a scenario

with each BS equipped with multiple antennas and each MS equipped with a single

antenna. Besides, only one MS is assumed to be active in each cell at any given

time (over a particular frequency band). Our problem setup can be modeled as a

multiple-input single-output (MISO) Gaussian interference channel (IC), termed as

MISO-IC.

From an information-theoretic viewpoint, the best achievable rate region to date

for an IC was established by Han and Kobayashi in [1], termed as the Han-Kobayashi

region, which utilizes rate splitting at transmitters, joint decoding at receivers, and
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time sharing among codebooks. The Han-Kobayashi region was simplified in [2]

and several computable subregions were also derived in [3] and [4]. Etkin, Tse, and

Wang [5] proved that Han-Kobayashi region is within 1-bit of the capacity region of

the Gaussian IC.

However, in cellular systems, practical constraints often limit MSs to only imple-

ment single-user detection (SUD) schemes, i.e., treating the interference from all other

unintended BSs as noise. Hence, in this work, we assume SUD at the MS receivers.

With SUD, it has been shown that transmit beamforming is optimal for MISO IC

in [6] and [7]. Due to the coupled signal structure, the achievable rate region for the

MISO-IC with SUD is general a non-convex set. For the two-user case, Jorswieck

et al. [8] proved that the Pareto-optimal beamforming vectors can be represented as

linear combinations of the zero-forcing (ZF) and maximum-ratio transmission (MRT)

beamformers. Previous studies [9] and [10] over MISO-IC beamforming usually as-

sumed a central processing unit with global knowledge of all the downlink channels,

which may not be feasible in practical systems. To make the result more imple-

mentable, our work focuses on multi-cell cooperative downlink beamforming, which

involves distributed computations based on the local channel knowledge at each B-

S. Such decentralized multi-cell cooperative beamforming problems were previously

studied in [11] based on the uplink-downlink duality to minimize the sum transmis-

sion power. Furthermore, a heuristic decentralized algorithm was developed in [6]

for multi-cell cooperative downlink beamforming based on the iterative updates of

certain interference-temperature constraints across different pairs of BSs.

It has been discussed in [6] that quantifying the Pareto optimal points in the

achievable rate region over MISO IC may boil down to solving a sequence of convex

feasibility problems after certain transformations, where the feasibility problems can

be recast as second-order cone programming (SOCP) problems as shown in [12]. In
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this thesis, we propose two algorithms to solve the resulting feasibility problem in

parallel or in a distributive manner. In the first parallelized beamforming algorithm

based on alternating projections, we assume a computation-power limited centralized

processing unit such that part of the computation duties need to be conducted in

parallel in each individual BS. In the second beamforming algorithm, localized se-

quential optimizations across the BSs are performed iteratively, where the need for

a central processing unit is eliminated. Convergence in norm for both algorithms is

established. Besides, a set of feasibility decision rules is established to implement our

algorithms for practical engineering applications.

Before proceeding to the next chapters, we introduce the following notation.

• Bold face letters, e.g., x and X, denote vectors and matrices, respectively.

• I and 0 denote the identity matrix and the all-zero matrix, respectively, with

appropriate dimensions.

• diag(X1, . . . ,Xn) defines a block diagonal matrix in which the diagonal ele-

ments are X1, . . . ,Xn.

• (·)T and (·)H respectively denote the transpose and the Hermitian of a matrix

or a vector.

• Rm×n and Cm×n denote the space of m×n real matrices and the space of m×n

complex matrices respectively.

• ∥x∥ denotes the Euclidean norm of a complex vector x.

• E[·] denotes expectation.

• All the log (·) functions are with base 2 by default.
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• Re (·) and Im (·) denote the real part and imaginary part of a complex argument

respectively.

• [a1; . . . ;an] defines a vector that stacks a1 . . .an into one column.

• By default, all the vectors are column vectors.
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CHAPTER II

SYSTEM MODEL

A. Signal Model

We address downlink transmissions in a cellular network consisting of M cells, each

having a multi-antenna BS to transmit an independent message to one active single-

antenna MS. With the assumption that the same band is shared among all BSs

for downlink transmissions, the system could be modeled as a M -user MISO-IC.

Specifically, we assume that each BS is equipped with K transmitting antennas,

K ≥ 1. With the assumption of single-user detection at each receiver, it has been

shown in [6] and [7] that beamforming is optimal to maximize the rate region. Hence,

the discrete-time baseband received signal of the active MS in the ith cell is given by

yi = hH
iiωisi +

M∑
j=1,j ̸=i

hH
jiωjsj + zi, i = 1, . . . ,M, (2.1)

where ωi ∈ CK denotes the beamforming vector at the ith BS; hii ∈ CK denotes the

channel vector from the ith BS to its intended MS, while hji ∈ CK denotes the cross-

link channel from the jth BS to the MS in the ith cell, i ̸= j; si denotes the symbol

transmitted by the ith BS; and zi denotes the additive circular symmetric complex

Gaussian (CSCG) noise at the ith receiver. It is assumed that zi ∼ CN (0, σ2
i ) and

zi’s are independent. Such a MISO-IC model is plotted in Fig. 2.

We assume that the ith receiver only knows channel hii, and decodes its own mes-

sages by treating interferences from all other BSs as noise. With SUD, the achievable

rate for the ith MS is thus given as

Ri = log

(
1 +

∣∣hH
iiωi

∣∣2∑
i̸=j |hH

iiωj|
2
+ σ2

i

)
, (2.2)
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TX2
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Fig. 2.: MISO interference channels
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where the maximum transmission power is limited as

∥ωi∥2 ≤ Pi, i = 1, . . . ,M, (2.3)

where Pi is the power constraint at the ith BS.

B. Pareto Optimality

We define the achievable rate region for the MISO-IC to be the collection of rate-tuples

for all MSs that can be simultaneously achievable under a certain set of transmit-

power constraints:

R :=
∪

{ωi}:∥ωi∥2≤Pi,i=1,...M

 (r1, . . . , rM) :

0 ≤ ri ≤ Ri(ω1, . . . ,ωM), i = 1, . . . ,M

. (2.4)

The upper-right boundary of this region is called the Pareto boundary, since it

consists of rate-tuples at which it is impossible to increase some user’s rate without

simultaneously decreasing the rate of at least one other users. To be more precise,

the Pareto optimality of rate-tuple is defined as follows [8].

Definition 1 A rate-tuple (r1, . . . , rM) is Pareto optimal if there is no other rate-

tuple (r̂1, . . . , r̂M) with (r̂1, . . . , r̂M) ≥ (r1, . . . , rM) and (r̂1, . . . , r̂M) ̸= (r1, . . . , rM),

with the inequality being component-wise.

In this thesis, we are interested in searching the beamforming vectors for all BSs that

lead to Pareto optimal rate-tuples.
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C. Rate Profile Approach

The rate profile approach [13] is an effective way to characterize the Pareto boundary

of MISO-IC [6], where the key is that any rate tuple on the Pareto boundary can be

obtained by solving the following optimization problem given a specified rate-profile

vector, α = (α1, . . . , αM):

max
Rsum,{ωi}

Rsum

s.t. log

(
1 +

∣∣hH
iiωi

∣∣2∑
i̸=j

∣∣hH
jiωj

∣∣2 + σ2
i

)
≥ αiRsum, i = 1, . . . ,M,

∥ωj∥2 ≤ Pj, j = 1, . . . ,M, (2.5)

where α satisfies that αi ≥ 0, 1 ≤ i ≤ M , and
∑M

i=1 αi = 1. Denote the optimal

objective value of Problem (2.5) as R∗
sum. As an example, in Fig. 3, we show the

achievable rate region for a two-user MISO Gaussian IC with interference treated as

noise, which is observed to be non-convex. Then R∗
sum · α corresponds to a Pareto

optimal rate tuple, which can be geometrically interpreted as (e.g., point ‘A’, ‘B’, or

‘C’ shown in Fig. 3) the intersection between a ray in the direction of α and the

Pareto boundary of the rate region [6]. Hence, by exhausting all possible values for

α, solving Problem (2.5) yields the whole Pareto boundary.

Remark 1 We are interested in the achievable rate region before doing time sharing.

It is well known that the rate region would be convex after time sharing is applied.

In our scenario, the Pareto boundary does not need to be around a convex region, for

which the rate profile approach is a powerful tool to derive the whole boundary.



10

R1/bps/Hz0

A

B

C

 ! !

 !

R2/bps/Hz

Fig. 3.: Example of rate profile approach

D. The SOCP Feasibility Problem

Directly solving Problem (2.5) is usually difficult due to its non-convexity. However

given the fact that the objective function is a single variable, we could adopt the

bisection search algorithm to efficiently find R∗
sum as shown in [6]. Specifically, we

could solve a sequence of the following feasibility problems each for a given r0:

max
{ωi}

0

s.t. log

(
1 +

∣∣hH
iiωi

∣∣2∑
i̸=j

∣∣hH
jiωj

∣∣2 + σ2
i

)
≥ αir0, i = 1, . . . ,M,

∥ωj∥2 ≤ Pj, j = 1, . . . ,M. (2.6)

Therefore if the above problem is feasible for r0, it follows that R
∗
sum ≥ r0; otherwise,

R∗
sum < r0. Hence, a bisection search over Rsum can be done. However, Problem (2.6)

is still non-convex.
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As shown in [12], we can adjust the phase of ωi in (2.6) to make hH
iiωi real

and non-negative without affecting the value of
∣∣hH

iiωi

∣∣. Hence, by denoting βi =

eαir0 − 1, i = 1, 2, . . . ,M , Problem (2.6) can be recast as

max
{ωi}

0

s.t.
(
hH

iiωi

)2 ≥ βi

(∑
i ̸=j

∣∣hH
jiωj

∣∣2 + σ2
i

)
, i = 1, . . . ,M,

hH
iiωi ≥ 0, i = 1, . . . ,M,

∥ωj∥ ≤
√
Pj, j = 1, . . . ,M. (2.7)

We further define x = [ω1;ω2; · · · ;ωM ; 0], ni = [0; 0; . . . ; 0; σi], Si =

[
· · · IK · · · 0

]
with Six = ωi, i = 1, 2, . . . ,M , and Ai = diag

(
hH

1i,h
H
2i, . . . ,h

H
Mi, 0

)
. For conve-

nience, we add a term βi

(
hH

iiωi

)2
to both sides of the first constraint in Problem

(2.7) as

(1 + βi)
(
hH

iiωi

)2 ≥ βi

(∑M

j=1

∣∣hH
jiωj

∣∣2 + σ2
i

)
, (2.8)

where i = 1, . . . ,M . Finally, with our newly defined variables and coefficients, we

recast Problem (2.7) as

max
x

0

s.t.
√
βi ∥Aix+ ni∥ ≤

√
1 + βi

(
hH

iiSix
)
, i = 1, . . . ,M,

pTx = 0,

∥Sjx∥ ≤
√
Pj, j = 1, . . . ,M, (2.9)

where vector p is of the same dimension as x with all zero elements except for the

last one being 1, such that the last element of x is guaranteed to be 0.

Consequently, Problem (2.9) is a SOCP problem, which can be efficiently solved
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by numerical tools [14]. However, directly solving Problem (2.9) requires a centralized

algorithm running at a control center, which may not be desired in certain engineering

applications. Accordingly, there are usually two motivations for seeking distributed

algorithms: one is to decompose the computations into multiple sub-programs such

that the requirement for the central processing power is reduced; and the other is to

localize computations such that no central control facility is required. In Chapter III,

we propose two algorithms based upon the above two motivations, respectively.
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CHAPTER III

PROPOSED DISTRIBUTED BEAMFORMING ALGORITHMS

In this chapter, we propose two novel algorithms to solve the resulting feasibility

problem in Chapter II in parallel vs. in a distributive manner. In the first parallelized

beamforming algorithm based on alternating projections, we assume a computation-

power limited centralized processing unit such that part of the computation duties

need to be conducted in parallel in each individual BS. In the second beamforming

algorithm, localized sequential optimizations across the BSs are performed iteratively,

where the need for a central processing unit is eliminated. We discuss the convergence

of both proposed algorithms: they can be successfully transformed into an alternating

projections problem and a cyclic projections problem. Finally, a set of feasibility

decision rules will be established to make our algorithms running in the experiments.

A. Alternating Projections Based Distributed Beamforming

In this section, in order to reduce the requirement on processing power at the control

center, we develop a downlink beamforming algorithm, termed as alternating projec-

tions based distributed beamforming (APB), to solve Problem (2.9) in parallel in M

sub-problems. With our algorithm, the only processing power needed at the central

unit is to calculate an average value over all the localized solutions from the M BSs.

The algorithm is iterative, where parallel optimizations across BSs are performed at

each round. The convergence issue of APB is also studied in this section.

1. APB Algorithm

At the initialization stage, the computation-limited centralized unit is assigned with

the values for M , K, and P1, . . . , PM . Then the central unit broadcasts the infor-
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mation to all BSs with an arbitrary initial point x̃0 ∈ CKM+1. It is assumed that

the ith BS has the perfect knowledge of the channels from all BSs to the ith MS,

i.e., all hij’s. Furthermore, all BSs operate according to the same protocol described

as follows. At the nth round, we denote the solution vector that the central unit

broadcasts as x̃n−1. Then at the ith BS, the corresponding problem is expressed as

min
x

∥x− x̃n−1∥

s.t.
√

βi∥Aix+ ni∥ ≤
√
1 + βi(h

H
iiSix),

pTx = 0,

∥Sjx∥ ≤
√
Pj, j = 1, . . . ,M, (3.1)

where x̃n−1 = 1
M

∑M
i=1 x

(i)
n−1, with x

(i)
n−1 denoting the optimal solution for Problem

(3.1) of the (n − 1)th round at the ith BS. A rough description of the algorithm is

depicted in Fig. 4.

Average

BS1

BS2

BSM

MS1

MS2

MSM

Fig. 4.: APB scheme

Remark 2 Note that if Problem (3.1) is infeasible at the kth BS (k ∈ {1, . . . ,M}),

we can directly claim that the associated Problem (2.9) is infeasible and quit APB. As
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such, from now on we only focus on the cases where Problem (3.1) is always feasible at

each individual BS, and run APB to check when the overall problem in (2.9) is feasible

and when it is not. With a feasible Problem (3.1), we need the optimal solution x
(i)
n

to satisfy all the transmitter power constraints and the ith receiver’s SNR demand.

The reason why we keep all M power constraints at each individual BS is for that

fast convergence, which can be observed from simulations. Since all the Pj values

are typically predetermined in cellular systems, no extra system overhead is needed.

In the second-order cone constraint of Problem (3.1), directly using the term hH
iiSix

implies that Im
(
hH

iiSix
)
= 0 and hH

iiSix ≥ 0.

2. Convergence Analysis

Since APB is iterative, the convergence is an important issue to address. The con-

vergence of APB is formally stated as follows.

Proposition 1 As n increases, the optimal solution x
(i)
n for Problem (3.1) con-

verges in norm to the limit x̃i when Problem (2.9) is either feasible or infeasible.

Furthermore, the averaged solution x̃n also converges in norm to x̂∗ satisfying that

1
M

∑M
i=1 x̃

i = x̂∗. In particular, if Problem (2.9) is feasible, all x̃i’s coincide in the

same point x̃ that lies in the feasible set of Problem (2.9) with x̃ = x̂∗. If Problem

(2.9) is infeasible, x̃i’s do not coincide in the same solution.

Proof: 1) For the case of Problem (2.9) being feasible, we have the following

proof.

We first introduce the concept of finding the closest point to some given point in

a closed convex set and alternating projections.

In mathematics, a Hilbert space H is defined with the inner product ⟨x,y⟩ and

the induced norm ∥x∥ =
√
⟨x,x⟩. If S is a nonempty closed convex set in H,
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Riesz [15] states that each x ∈ H has a unique best approximation (or nearest point)

PS(x) in S. That is, ∥x− PS(x)∥ < ∥x− y∥ , ∀y ∈ S\{PS(x)}. The mapping

PS : H → S is called the projection onto S, i.e., finding the closest point to x in

a closed nonempty convex set. In this paper, we use the general Euclidean inner

product definitions ⟨x,y⟩ = xHy in the complex space and ⟨x,y⟩ = xTy in the

real space. More details about projection onto convex sets (POCS) can be found in

Appendix A.

Definition 2 Suppose C1 and C2 are two closed nonempty convex sets in H with

corresponding projections P1 and P2. Let C = C1 ∩ C2 and fix a starting point

x0 ∈ H. Then the sequence of alternating projections is generated by

x1 = P1x0, x2 = P2x1, x3 = P1x2, . . . , xN = P2xN−1, xN+1 = P1xN , . . .

Examples for alternating projection for both intersecting and non-intersecting cases

are provided in Fig. 5 and Fig. 6.

Let Fi denote the feasible set of Problem (3.1) at the ith BS, Fi ̸= ∅, and

F =
∩M

i=1 Fi ̸= ∅; note that F is exactly the feasible set of Problem (2.9). Thus solving

Problem (3.1) at the ith BS can be viewed as finding the closest point to x̃n−1 in a non-

empty closed convex set Fi, i.e., the projection of x̃n−1 onto Fi. Next we transform

the variable defined over the complex Hilbert space to a double-dimensioned real

Hilbert space such that we can use some existed results in alternating projections. We

transform x ∈ CN ′
to x̄ ∈ R2N ′

by letting x̄ = [Re(x); Im(x)], where N ′ = KM + 1.

Similarly, we map the complex set Fi to a double-dimensioned real set F ′
i , and map

x̃n−1 to a double-dimensioned real vector x̂n−1 = [Re(x̃n−1); Im(x̃n−1)]. We rewrite
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T
Q

Fig. 5.: Example of alternating projections when T
∩

Q ̸= ∅

T Q

Fig. 6.: Example of alternating projections when T
∩

Q = ∅
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Problem (3.1) as

min
x̄∈R2N′

∥x̄− x̂n−1∥

s.t.
√
βi

∥∥Ā̄ĀAix̄+ n̄i

∥∥ ≤
√
1 + βi

(
h̄H

ii S̄ix̄
)
,

dH
i x̄ = 0,

p̄T x̄ = 0,∥∥S̄jx̄
∥∥ ≤

√
Pj, j = 1, . . . ,M, (3.2)

where

Āi =

 Re (Ai) −Im (Ai)

Im (Ai) Re (Ai)

 , h̄H
ii =

[
Re
(
hH

ii

)
−Im

(
hH

ii

) ]
,

S̄i =

[
Si Si

]
, dH

i =

[
Im
(
hH

ii

)
Re
(
hH

ii

) ] [
Si Si

]
,

n̄i = [ni;0] , p̄ = [p;p] .

From the constraints of Problem (3.2), we observe that the feasible set F ′
i is the

intersection of a collection of second-order cones, some subspaces, and some norm

balls, which is nonempty closed and bounded. Next we show how to transform our

algorithm into a problem of alternating projections. Let’s define two product sets:

T : F ′
1 × F ′

2 × · · ·F ′
M ,

and

U :
{
(a,a, . . . ,a) : a ∈ R2N ′

}
Meanwhile, we define two new variables xk,yk ∈ R2N ′M as

xk =
[
x̄
(1)
k ; x̄

(2)
k ; · · · ; x̄(M)

k

]
, yk = [x̂k; x̂k; · · · ; x̂k] . (3.3)
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Obviously, xk ∈ T, yk ∈ U . By the results of Pierra in [16], we have the following

two lemmas:

Lemma 1 Solving Problems (3.1) for i = 1, . . . ,M in parallel at the kth round is

equivalent to projecting vector yk−1 onto the closed convex set T and obtaining xk.

Lemma 2 Computing 1
M

M∑
i=1

x
(i)
k is equivalent to projecting xk onto U and getting yk.

Therefore, APB can be interpreted as alternating projections between T and U .

Note that the idea of Alternating Projections was first proposed by von Neumann

in [17], where only subspaces are assumed as the projection sets. Then many re-

searchers extended this technique to more general scenarios [18], [19]. For alternating

projections between two non-empty closed convex sets C1 and C2, Cheney [18] proved

that convergence in norm is always assured when either (a) one set is compact, or

(b) one set is of finite dimension. Since set T is bounded and our underlying Hilbert

space is of finite dimension, both conditions (a) and (b) are satisfied. Therefore, APB

always leads to strong convergence, i.e., convergence in norm, due to the facts that

the numbers of cells and antennas are always finite. As shown in [19], all x̃i’s will

coincide into the same point x̃ that lies in F .

2) For the case of Problem (2.9) being infeasible, we have the following proof.

With F = ∅, the convergence of APB is still equivalent to the convergence of

alternating projections between T and U , where Cheney’s results in [18] are applicable

in this case. Thus, the convergence in norm is still valid for infeasible cases. Besides,

it is easy to verify that 1
M

∑M
i=1 x̃

i = x̂∗. However, x̃i’s do not coincide into the same

point.

We now complete the proof for Proposition 1. �
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3. Practical Feasibility Decision Rules

With convergence in norm for APB established, we now need to establish some prac-

tical feasibility check rules to correctly terminate APB when it converges.

From Lemma 1 and Lemma 2, we know that the feasibility of Problem (2.9) is

totally determined by whether T and U intersect or not. By Proposition 1, if Problem

(2.9) is feasible, all convergent solutions x̃1, . . . , x̃M , x̂∗ coincide at a common point

x∗ which belongs to F . In this case, all optimal values of Problems (3.1) converge to

0. On the other hand, if any of the optimal values of Problems (3.1) do not converge

to 0, Problem (2.9) is infeasible. Based on the above discussions, we develop the

following APB terminating procedures:

Step 1: We set two threshold parameters ϵ and ξ. The selection of ϵ and ξ affects

the effectiveness of the algorithm.

Step 2: Initialization: Let vi, 1 ≤ i ≤ M, be the optimal value of Problem (3.1) at

the ith cell in the current computation round, v∗i , 1 ≤ i ≤ M, be the optimal value

Problem (3.1) at the ith cell in the previous computation round, and flag[i], 1 ≤ i ≤ M

be the flags for theM BSs. At the beginning, we set v1, . . . , vM and flag[1], . . . , flag[M ]

all zeros.

Step 3: Repeat: For i = 1, . . . ,M , the ith BS solves Problem (3.1) and compares

vi against v∗i . If |vi − v∗i | ≥ ϵ, we refresh vi : vi = v∗i and proceed to Step 4; if

|vi − v∗i | < ϵ, we compare v∗i with ξ: If v∗i > ξ, we claim that Problem (2.9) is

infeasible and stop; otherwise, we mark this cell as flag[i] = 1 and proceed to Step 4.

Step 4: If flag[i] = 1 for all i = 1, . . . ,M , we claim that the Problem (2.9) is feasible,

then stop. Otherwise, return to Step 3.

Remark 3 Note that here we applied several approximations in making the decisions.

First, we claim that Problem (3.1) at the ith BS converges when |vi − v∗i | < ϵ. Thus,
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v∗i is considered as the limit of ith BS’s optimal solution. Second, we set ξ as the

threshold dividing zero and non-zero values: If v∗i > ξ, we consider the limit non-

zero, and vice versa. In simulations, we usually set both ϵ and ξ small with ξ ≫ ϵ.

For example, ϵ = 0.002 and ξ = 0.1 are chosen for the simulation results in Section

IV.

B. Cyclic Projections Based Distributed Beamforming

In this section, to localize computations such that no central control unit is required,

we propose a decentralized algorithm that practically implements the multi-cell co-

operative downlink beamforming. It is still assumed that the ith BS in the cellular

network has the perfect knowledge of the channels from all BSs to the ith MS. Simi-

lar to APB, we decompose Problem (2.9) to M sub-problems and compute them at

M BSs individually. In particular, the M problems are solved sequentially at each

round, and the algorithm proceeds iteratively, which is termed as Cyclic Projections

Based Distributed Beamforming (CPB).

1. CPB Algorithm

A certain cyclic update order among the M BSs needs to be determined at the

initialization stage, where the 1st BS sends its solution to the 2nd, . . ., the (M −1)th

BS sends its solution to the Mth BS, and the Mth BS sends its solution to the 1st,

in a cyclic fashion. At the beginning, the M BSs should obtain the values for M , K,

and P1, . . . , PM . The algorithm starts from the 1st BS, after choosing an arbitrary
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initial point x0, it solves the following problem

min
x∈CKM+1

∥x− x0∥

s.t.
√

β1∥A1x+ n1∥ ≤
√

1 + β1(h
H
11S1x),

pTx = 0,

∥Sjx∥ ≤
√

Pj, j = 1, . . . ,M, (3.4)

where the optimal solution for the above problem is labelled as x
(1)
1 and sent to the

2nd BS. Then the other BSs begin to solve their own problems sequentially according

to the predefined order. In particular, at the nth round the ith BS (i ≥ 2) solves the

following problem

min
x∈CKM+1

∥∥x− x(i−1)
n

∥∥
s.t.

√
βi∥Aix+ ni∥ ≤

√
1 + βi(h

H
iiSix),

pTx = 0,

∥Sjx∥ ≤
√
Pj, j = 1, . . . ,M, (3.5)

where x
(i−1)
n is the solution sent over by the preceding BS, and x

(i)
n is used to denote

the newly solved optimal solution. For simplicity, we refer the problem in (3.5) as a

cyclic subproblem. Such a scheme is illustrated in Fig. 7.

Remark 4 Obviously, the constraints in Problem (3.5) and Problem (3.1) are the

same. Therefore, we have the similar discussions as in Remark 2: We assume that

all the cyclic subproblems are feasible when CPB is executed; otherwise, we directly

claim that Problem (2.9) is infeasible.

2. Convergence Analysis

We first introduce the concept of cyclic projections.
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Fig. 7.: CPB scheme

Definition 3 Suppose C1, C2, . . . , Cr are closed convex sets in the Hilbert space H

with C = ∩r
1Ci, and let Pi be the projection for Ci, i = 1, 2, . . . , r. The operation of

cyclic projections is an iterative process that can be described as follows. Start with

any point x ∈ H, and define the sequence (xn) (n = 1, 2, . . .) by

x0 = x, x1 = P1(x0), . . . , and xn = Pn mod r (xn−1) , . . . (3.6)

where Pk(.) is the projection operator to Ck.

An example of cyclic projections is provided in Fig. 8, where the iterates fall into the

intersection of F1, F2, and F3 after three steps.

In the literature, Bregman [20] showed that the above sequence generated by

cyclic projections always converges weakly to some point WC (x) ∈ C provided that

C ̸= ∅, and Gubin [21] et al. provided a systematic study over general cyclic pro-

jections including the case of C = ∅. Based on these results, we have the following
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Fig. 8.: Example of cyclic projections
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proposition.

Proposition 2 As n increases, the optimal solution x
(i)
n of the ith BS’s cyclic sub-

problem converges in norm to a limit xi that lies in Fi. Moreover, if Problem (2.9)

is feasible, all xi’s coincide in a common point x∗ that lies in F . If Problem (2.9) is

infeasible, xi’s do not coincide in the same solution.

Proof : It is obvious that the optimal solutions for cyclic subproblems in (3.5)

form a sequence of cyclic projections. Since weak convergence is always guaranteed

[20], by the equivalence of weak convergence and convergence in norm in a finite

dimensional space, we obtain Proposition 2. �

Remark 5 Note that the convergence proof of CPB is more general than that of APB

since alternating projections is actually a special case of cyclic projections where the

number of projection sets is two.

3. Practical Feasibility Decision Rules

For CPB, the algorithm termination rules are similar to that of APB, which is skipped

here.
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CHAPTER IV

NUMERICAL RESULTS

The performance of APB is simulated first. In the simulations, we set M = 3 and

K = 4. In addition, we set the power constraints as 15, 18, and 21, respectively, for

the three BSs. In Fig. 9, we demonstrate the convergence behavior as described in

Proposition 1. The three curves correspond to the required SNR βi’s as 5, 10, and

20, respectively. We observe that their asymptotic behaviors are similar. In Fig. 10,

with a feasible choice of βi = 10, i = 1, 2, 3, we show how the achieved SNR values

approach the target values over iterations. If Problem (2.9) is infeasible, for example,

when setting the target SNR as [50 40 60], the SNR evolution curves are given in Fig.

11, where we see that none of the target SNRs is satisfied.
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Fig. 10.: APB: Achievable SNR tuple increases, on setting [10 10 10]

For the performance of CPB, the simulation setup is exactly the same as that

for APB. In Fig. 12, with a feasible choice of βi = 10, i = 1, 2, 3, we see how the

achieved SNR values approach the target values with less iterations needed compared

with Fig. 10.

In Fig. 13, a complete comparison of APB and CPB for both feasible and

infeasible cases is given. As we may see, the convergence rate of CPB is generally

much higher than that of APB, while both algorithms perform better in feasible cases

than in infeasible cases.
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CHAPTER V

CONCLUSIONS

In this thesis, based on alternating projections and cyclic projections, we have devel-

oped two optimal distributed beamforming schemes to cooperatively solve the SOCP

feasibility problem that is the key for quantifying the Pareto optimal points in the

achievable rate region of MISO interference channels. The convergence in norm for

both algorithms was established, which was further verified by numerical simulations.
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APPENDIX A

PROJECTION ONTO CONVEX SETS (POCS)

x

C

y

PC(x)

Supporting Plane

Fig. 14.: Example of POCS

We use the notation PC(x) to denote the orthogonal projection of a vector x onto

the convex set C equipped with the underlying Hilbert space H. In our case, we only

consider the Euclidean norm. Thus, PC(x) is defined by

PC(x) = argmin
z∈C

||z − x||2. (A.1)

The following results [22] ensure that PC(x) is well defined and also provide some

useful properties of the projection.
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Proposition 3 1. For every x ∈ Rn, there exists a unique z ∈ C that minimizes

||z − x||2 over all z ∈ C, and is denoted by PC(x).

2. Given some x ∈ Rn, a vector z ∈ C is equal to PC(x) if and only if (y−z)T (x−

z) ≤ 0 for all y ∈ C.

3. The operator PC(.) is continuous and nonexpansive, i.e., ||PC(x) − PC(y)||2 ≤

||x− y||2 for all x, y ∈ Rn.

As we may see in Fig. 14, by Proposition 3, the existence of PC(x) is unique, and

the projection defines a supporting plane for set C, i.e., (y−PC(x))
T (x−PC(x)) ≤ 0

is satisfied for all y ∈ C. The proof of Proposition 3 can be found in [22].
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