
Package ‘vegan’
March 31, 2011

Title Community Ecology Package

Version 1.17-9

Date March 31, 2011

Author Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre
Legendre, R. B. O'Hara, Gavin L. Simpson, Peter Solymos, M.
Henry H. Stevens, Helene Wagner

Maintainer Jari Oksanen <jari.oksanen@oulu.fi>

Suggests MASS, mgcv, lattice, cluster, scatterplot3d, rgl, tcltk

Description Ordination methods, diversity analysis and other functions
for community and vegetation ecologists.

License GPL-2

URL http://cran.r-project.org/, http://vegan.r-forge.r-project.org/

Repository CRAN

Date/Publication 2011-03-31 15:19:15

R topics documented:
vegan-package . 3
add1.cca . 5
adipart . 7
adonis . 10
anosim . 13
anova.cca . 15
as.mlm.cca . 18
BCI . 19
beals . 20
betadisper . 23
betadiver . 27
bgdispersal . 29

1

http://cran.r-project.org/,
http://vegan.r-forge.r-project.org/

2 R topics documented:

bioenv . 31
biplot.rda . 33
capscale . 35
cascadeKM . 38
cca . 41
cca.object . 45
CCorA . 48
contribdiv . 51
decorana . 53
decostand . 57
designdist . 59
deviance.cca . 61
dispindmorisita . 63
distconnected . 65
diversity . 66
dune . 69
dune.taxon . 70
eigenvals . 71
envfit . 72
fisherfit . 75
goodness.cca . 79
goodness.metaMDS . 81
humpfit . 83
indpower . 86
isomap . 87
kendall.global . 89
linestack . 92
make.cepnames . 93
mantel . 94
mantel.correlog . 96
metaMDS . 98
mite . 103
model.matrix.cca . 104
MOStest . 105
mrpp . 108
mso . 112
multipart . 114
nestedtemp . 117
oecosimu . 119
ordihull . 124
ordilabel . 127
ordiplot . 128
ordiplot3d . 130
ordipointlabel . 133
ordiresids . 134
ordistep . 136
ordisurf . 138
orditkplot . 142

vegan-package 3

orditorp . 145
ordixyplot . 146
pcnm . 148
permat . 150
permCheck . 155
permutations . 161
permuted.index2 . 163
permutest.betadisper . 167
plot.cca . 169
prc . 172
predict.cca . 174
procrustes . 177
pyrifos . 181
radfit . 182
rankindex . 185
read.cep . 187
renyi . 189
RsquareAdj . 191
scores . 192
screeplot.cca . 193
simulate.rda . 196
sipoo . 197
spantree . 198
specaccum . 200
specpool . 203
stepacross . 206
taxondive . 208
treedive . 211
tsallis . 213
varespec . 215
varpart . 216
vegandocs . 220
vegdist . 221
vegemite . 225
wascores . 227
wcmdscale . 228

Index 231

vegan-package Community Ecology Package: Ordination, Diversity and Dissimilari-
ties

Description

The vegan package provides tools for descriptive community ecology. It has most basic functions
of diversity analysis, community ordination and dissimilarity analysis. Most of its multivariate tools
can be used for other data types as well.

4 vegan-package

Details

The functions in the vegan package contain tools for diversity analysis (see vignette vegandocs("diversity")),
ordination and analysis of dissimilarities (see vignette vegandocs("intro")). Together
with the labdsv package, the vegan package provides most standard tools of descriptive community
analysis. Package ade4 provides an alternative comprehensive package, and several other packages
complement vegan and provide tools for deeper analysis in specific fields. Package BiodiversityR
provides a GUI for a large subset of vegan functionality.

The vegan package is developed at R-Forge (http://vegan.r-forge.r-project.org).
The R-Forge provides up-to-date information and mailing lists for help queries and bug reports.
Bug reports can also be emailed to the function authors or to the package maintainers.

The vegan documents can be read with vegandocs function. In addition to vignettes of basic
usage, you can read NEWS on the new features and bug fixes in the release version (vegandocs("NEWS")),
and more technical and fine grained ChangeLog (vegandocs("Change")). Several fre-
quently asked questions really are answered in the vegan FAQ (vegandocs("FAQ")). The
discussion on design decisions can be read with vegandocs("decision"). A tutorial of
the package at http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf
provides a more thorough introduction to the package.

To see the preferable citation of the package, type citation("vegan").

Author(s)

The vegan development team is Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Leg-
endre, R. B. O’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, Helene Wagner.
Many other people have contributed to individual functions: see credits in function help pages.

The maintainers at the R-Forge are Jari Oksanen <jari.oksanen@oulu.fi> and Gavin Simpson <gavin.simpson@ucl.ac.uk>.

Examples

Example 1: Unconstrained ordination
NMDS
data(varespec)
data(varechem)
ord <- metaMDS(varespec)
plot(ord, type = "t")
Fit environmental variables
ef <- envfit(ord, varechem)
ef
plot(ef, p.max = 0.05)
Example 2: Constrained ordination (RDA)
The example uses formula interface to define the model
data(dune)
data(dune.env)
No constraints: PCA
mod0 <- rda(dune ~ 1, dune.env)
mod0
plot(mod0)
All environmental variables: Full model
mod1 <- rda(dune ~ ., dune.env)
mod1

http://vegan.r-forge.r-project.org
http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf

add1.cca 5

plot(mod1)
Overall permutation test for all variables
anova(mod1)
Permutation test for terms added sequentially
anova(mod1, by = "term")
Automatic selection of variables by permutation P-values
mod <- ordistep(mod0, scope=formula(mod1))
mod
plot(mod)
Permutation test of "type III" effects, or significance when a term
is added to the model after all other terms
anova(mod, by = "margin")
Plot only sample plots, use different symbols and draw SD ellipses
for Managemenet classes
plot(mod, display = "sites", type = "n")
with(dune.env, points(mod, disp = "si", pch = as.numeric(Management)))
with(dune.env, legend("topleft", levels(Management), pch = 1:4,
title = "Management"))

with(dune.env, ordiellipse(mod, Management, label = TRUE))
add fitted surface of diversity to the model
ordisurf(mod, diversity(dune), add = TRUE)
Example 3: analysis of dissimilarites a.k.a. non-parametric
permutational anova
adonis(dune ~ ., dune.env)
adonis(dune ~ Management + Moisture, dune.env)

add1.cca Add or Drop Single Terms to a Constrained Ordination Model

Description

Compute all single terms that can be added or dropped from a constrained ordination model.

Usage

S3 method for class 'cca'
add1(object, scope, test = c("none", "permutation"),

pstep = 100, perm.max = 200, ...)
S3 method for class 'cca'
drop1(object, scope, test = c("none", "permutation"),

pstep = 100, perm.max = 200, ...)

Arguments

object A constrained ordination object from cca, rda or capscale.

scope A formula giving the terms to be considered for adding or dropping; see add1
for details.

test Should a permutation test added using anova.cca.

6 add1.cca

pstep Number of permutations in one step, passed as argument step to anova.cca.

perm.max Maximum number of permutation in anova.cca.

... Other arguments passed to add1.default, drop1.default, and anova.cca.

Details

With argument test = "none" the functions will only call add1.default or drop1.default.
With argument test = "permutation" the functions will add test results from anova.cca.
Function drop1.ccawill call anova.ccawith argument by = "margin". Function add1.cca
will implement a test for single term additions that is not directly available in anova.cca.

Functions are used implicitly in step and ordistep. The deviance.cca and deviance.rda
used in step have no firm basis, and setting argument test = "permutation" may help
in getting useful insight into validity of model building. Function ordistep calls alternately
drop1.cca and add1.cca with argument test = "permutation" and selects variables
by their permutation P -values. Meticulous use of add1.cca and drop1.cca will allow more
judicious model building.

The default perm.max is set to a low value, because permutation tests can take a long time. It
should be sufficient to give a impression on the significances of the terms, but higher values of
perm.max should be used if P values really are important.

Value

Returns a similar object as add1 and drop1.

Author(s)

Jari Oksanen

See Also

add1, drop1 and anova.cca for basic methods. You probably need these functions with step
and link{ordistep}. Functions deviance.cca and extractAIC.cca are used to pro-
duce the other arguments than test results in the output. Functions cca, rda and capscale
produce result objects for these functions.

Examples

data(dune)
data(dune.env)
Automatic model building based on AIC but with permutation tests
step(cca(dune ~ 1, dune.env), reformulate(names(dune.env)), test="perm")
The same, but based on permutation P-values
ordistep(cca(dune ~ 1, dune.env), reformulate(names(dune.env)), perm.max=200)
Manual model building
-- define the maximal model for scope
mbig <- rda(dune ~ ., dune.env)
-- define an empty model to start with
m0 <- rda(dune ~ 1, dune.env)
-- manual selection and updating

adipart 7

add1(m0, scope=formula(mbig), test="perm")
m0 <- update(m0, . ~ . + Management)
add1(m0, scope=formula(mbig), test="perm")
m0 <- update(m0, . ~ . + Moisture)
-- included variables still significant?
drop1(m0, test="perm")
add1(m0, scope=formula(mbig), test="perm")

adipart Additive Diversity Partitioning and Hierarchical Null Model Testing

Description

In additive diversity partitioning, mean values of alpha diversity at lower levels of a sampling hi-
erarchy are compared to the total diversity in the entire data set (gamma diversity). In hierarchical
null model testing, a statistic returned by a function is evaluated according to a nested hierarchical
sampling design (hiersimu).

Usage

adipart(formula, data, index=c("richness", "shannon", "simpson"),
weights=c("unif", "prop"), relative = FALSE, nsimul=99, ...)

hiersimu(formula, data, FUN, location = c("mean", "median"),
relative = FALSE, drop.highest = FALSE, nsimul=99, ...)

S3 method for class 'adipart'
print(x, ...)
S3 method for class 'hiersimu'
print(x, ...)

Arguments

formula A two sided model formula in the form y ~ x, where y is the community data
matrix with samples as rows and species as column. Right hand side (x) must
contain factors referring to levels of sampling hierarchy, terms from right to left
will be treated as nested (first column is the lowest, last is the highest level).
These variables must be factors in order to unambiguous handling. Interaction
terms are not allowed.

data A data frame where to look for variables defined in the right hand side of
formula. If missing, variables are looked in the global environment.

index Character, the diversity index to be calculated (see Details).

weights Character, "unif" for uniform weights, "prop" for weighting proportional
to sample abundances to use in weighted averaging of individual alpha values
within strata of a given level of the sampling hierarchy.

relative Logical, if TRUE then alpha and beta diversity values are given relative to the
value of gamma for function adipart.

8 adipart

nsimul Number of permutation to use if matr is not of class ’permat’. If nsimul =
0, only the FUN argument is evaluated. It is thus possible to reuse the statistic
values without using a null model.

FUN A function to be used by hiersimu. This must be fully specified, because
currently other arguments cannot be passed to this function via

location Character, identifies which function (mean or median) is to be used to calculate
location of the samples.

drop.highest Logical, to drop the highest level or not. When FUN evaluates only arrays with
at least 2 dimensions, highest level should be dropped, or not selected at all.

x An object to print.

... Other arguments passed to functions, e.g. base of logarithm for Shannon diver-
sity, or method, thin or burnin arguments for oecosimu.

Details

Additive diversity partitioning means that mean alpha and beta diversity adds up to gamma diversity,
thus beta diversity is measured in the same dimensions as alpha and gamma (Lande 1996). This
additive procedure is than extended across multiple scales in a hierarchical sampling design with
i = 1, 2, 3, . . . ,m levels of sampling (Crist et al. 2003). Samples in lower hierarchical levels are
nested within higher level units, thus from i = 1 to i = m grain size is increasing under constant
survey extent. At each level i, αi denotes average diversity found within samples.

At the highest sampling level, the diversity components are calculated as

βm = γ − αm

For each lower sampling level as
βi = αi+1 − αi

Then, the additive partition of diversity is

γ = α1 +
m∑
i=1

βi

Average alpha components can be weighted uniformly (weight="unif") to calculate it as simple
average, or proportionally to sample abundances (weight="prop") to calculate it as weighted
average as follows

αi =
ni∑
j=1

Dijwij

where Dij is the diversity index and wij is the weight calculated for the jth sample at the ith
sampling level.

The implementation of additive diversity partitioning in adipart follows Crist et al. 2003. It is
based on species richness (S, not S − 1), Shannon’s and Simpson’s diversity indices stated as the
index argument.

The expected diversity components are calculated nsimul times by individual based randomisa-
tion of the community data matrix. This is done by the "r2dtable" method in oecosimu by
default.

adipart 9

hiersimu works almost the same as adipart, but without comparing the actual statistic values
returned by FUN to the highest possible value (cf. gamma diversity). This is so, because in most of
the cases, it is difficult to ensure additive properties of the mean statistic values along the hierarchy.

Value

An object of class ’adipart’ or ’hiersimu’ with same structure as ’oecosimu’ objects.

Author(s)

Péter Sólymos, <solymos@ualberta.ca>

References

Crist, T.O., Veech, J.A., Gering, J.C. and Summerville, K.S. (2003). Partitioning species diversity
across landscapes and regions: a hierarchical analysis of α, β, and γ-diversity. Am. Nat., 162,
734–743.

Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple
communities. Oikos, 76, 5–13.

See Also

See oecosimu for permutation settings and calculating p-values.

Examples

data(mite)
data(mite.xy)
data(mite.env)
Function to get equal area partitions of the mite data
cutter <- function (x, cut = seq(0, 10, by = 2.5)) {

out <- rep(1, length(x))
for (i in 2:(length(cut) - 1))

out[which(x > cut[i] & x <= cut[(i + 1)])] <- i
return(as.factor(out))}

The hierarchy of sample aggregation
levsm <- data.frame(

l1=as.factor(1:nrow(mite)),
l2=cutter(mite.xy$y, cut = seq(0, 10, by = 2.5)),
l3=cutter(mite.xy$y, cut = seq(0, 10, by = 5)),
l4=cutter(mite.xy$y, cut = seq(0, 10, by = 10)))

Let's see in a map
par(mfrow=c(1,3))
plot(mite.xy, main="l1", col=as.numeric(levsm$l1)+1)
plot(mite.xy, main="l2", col=as.numeric(levsm$l2)+1)
plot(mite.xy, main="l3", col=as.numeric(levsm$l3)+1)
par(mfrow=c(1,1))
Additive diversity partitioning
adipart(mite ~., levsm, index="richness", nsimul=20)
Hierarchical null model testing
diversity analysis (similar to adipart)

10 adonis

hiersimu(mite ~., levsm, diversity, relative=TRUE, nsimul=25)
Hierarchical testing with the Morisita index
morfun <- function(x) dispindmorisita(x)$imst
hiersimu(mite ~., levsm, morfun, drop.highest=TRUE, nsimul=25)

adonis Permutational Multivariate Analysis of Variance Using Distance Ma-
trices

Description

Analysis of variance using distance matrices — for partitioning distance matrices among sources of
variation and fitting linear models (e.g., factors, polynomial regression) to distance matrices; uses a
permutation test with pseudo-F ratios.

Usage

adonis(formula, data, permutations = 999, method = "bray",
strata = NULL, contr.unordered = "contr.sum",
contr.ordered = "contr.poly", ...)

Arguments

formula a typical model formula such as Y ~ A + B*C, but where Y is either a dis-
similarity object (inheriting from class "dist") or data frame or a matrix; A,
B, and C may be factors or continuous variables. If a dissimilarity object is
supplied, no species coefficients can be calculated (see Value below).

data the data frame from which A, B, and C would be drawn.

permutations number of replicate permutations used for the hypothesis tests (F tests).

method the name of any method used in vegdist to calculate pairwise distances if the
left hand side of the formula was a data frame or a matrix.

strata groups (strata) within which to constrain permutations.
contr.unordered, contr.ordered

contrasts used for the design matrix (default in R is dummy or treatment con-
trasts for unordered factors).

... Other arguments passed to vegdist.

Details

adonis is a function for the analysis and partitioning sums of squares using semimetric and metric
distance matrices. Insofar as it partitions sums of squares of a multivariate data set, it is directly
analogous to MANOVA (multivariate analysis of variance). M.J. Anderson (McArdle and Anderson
2001, Anderson 2001) refers to the method as “permutational manova” (formerly “nonparametric
manova”). Further, as its inputs are linear predictors, and a response matrix of an arbitrary number
of columns (2 to millions), it is a robust alternative to both parametric MANOVA and to ordination

adonis 11

methods for describing how variation is attributed to different experimental treatments or uncon-
trolled covariates. It is also analogous to redundancy analysis (Legendre and Anderson 1999).

Typical uses of adonis include analysis of ecological community data (samples X species matri-
ces) or genetic data where we might have a limited number of samples of individuals and thousands
or millions of columns of gene expression data (e.g. Zapala and Schork 2006).

adonis is an alternative to AMOVA (nested analysis of molecular variance, Excoffier, Smouse,
and Quattro, 1992; amova in the ade4 package) for both crossed and nested factors.

If the experimental design has nestedness, then use strata to test hypotheses. For instance,
imagine we are testing the whether a plant community is influenced by nitrate amendments, and
we have two replicate plots at each of two levels of nitrate (0, 10 ppm). We have replicated the
experiment in three fields with (perhaps) different average productivity. In this design, we would
need to specify strata = field so that randomizations occur only within each field and not
across all fields . See example below.

Like AMOVA (Excoffier et al. 1992), adonis relies on a long-understood phenomenon that allows
one to partition sums of squared deviations from a centroid in two different ways (McArdle and
Anderson 2001). The most widely recognized method, used, e.g., for ANOVA and MANOVA, is to
first identify the relevant centroids and then to calculated the squared deviations from these points.
For a centered n× p response matrix Y , this method uses the p× p inner product matrix Y ′Y . The
less appreciated method is to use the n×n outer product matrix Y Y ′. Both AMOVA and adonis
use this latter method. This allows the use of any semimetric (e.g. Bray-Curtis, aka Steinhaus,
Czekanowski, and Sørensen) or metric (e.g. Euclidean) distance matrix (McArdle and Anderson
2001). Using Euclidean distances with the second method results in the same analysis as the first
method.

Significance tests are done using F -tests based on sequential sums of squares from permutations of
the raw data, and not permutations of residuals. Permutations of the raw data may have better small
sample characteristics. Further, the precise meaning of hypothesis tests will depend upon precisely
what is permuted. The strata argument keeps groups intact for a particular hypothesis test where
one does not want to permute the data among particular groups. For instance, strata = B causes
permutations among levels of A but retains data within levels of B (no permutation among levels of
B). See permutations for additional details on permutation tests in Vegan.

The default contrasts are different than in R in general. Specifically, they use “sum” contrasts,
sometimes known as “ANOVA” contrasts. See a useful text (e.g. Crawley, 2002) for a transparent
introduction to linear model contrasts. This choice of contrasts is simply a personal pedagogi-
cal preference. The particular contrasts can be set to any contrasts specified in R, including
Helmert and treatment contrasts.

Rules associated with formulae apply. See "An Introduction to R" for an overview of rules.

print.adonis shows the aov.tab component of the output.

Value

This function returns typical, but limited, output for analysis of variance (general linear models).

aov.tab Typical AOV table showing sources of variation, degrees of freedom, sequential
sums of squares, mean squares, F statistics, partial R-squared and P values,
based on N permutations.

12 adonis

coefficients matrix of coefficients of the linear model, with rows representing sources of
variation and columns representing species; each column represents a fit of a
species abundance to the linear model. These are what you get when you fit one
species to your predictors. These are NOT available if you supply the distance
matrix in the formula, rather than the site x species matrix

coef.sites matrix of coefficients of the linear model, with rows representing sources of
variation and columns representing sites; each column represents a fit of a sites
distances (from all other sites) to the linear model.These are what you get when
you fit distances of one site to your predictors.

f.perms an N by m matrix of the null F statistics for each source of variation based on
N permutations of the data.

model.matrix The model.matrix for the right hand side of the formula.

terms The terms component of the model.

Author(s)

Martin Henry H. Stevens <HStevens@muohio.edu>, adapted to vegan by Jari Oksanen.

References

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral
Ecology, 26: 32–46.

Crawley, M.J. 2002. Statistical Computing: An Introduction to Data Analysis Using S-PLUS

Excoffier, L., P.E. Smouse, and J.M. Quattro. 1992. Analysis of molecular variance inferred from
metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction
data. Genetics, 131:479–491.

Legendre, P. and M.J. Anderson. 1999. Distance-based redundancy analysis: Testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs, 69:1–24.

McArdle, B.H. and M.J. Anderson. 2001. Fitting multivariate models to community data: A com-
ment on distance-based redundancy analysis. Ecology, 82: 290–297.

Zapala, M.A. and N.J. Schork. 2006. Multivariate regression analysis of distance matrices for
testing associations between gene expression patterns and related variables. Proceedings of the
National Academy of Sciences, USA, 103:19430–19435.

See Also

mrpp, anosim, mantel, varpart.

Examples

data(dune)
data(dune.env)
adonis(dune ~ Management*A1, data=dune.env, permutations=99)

Example of use with strata, for nested (e.g., block) designs.

anosim 13

dat <- expand.grid(rep=gl(2,1), NO3=factor(c(0,10)),field=gl(3,1))
dat
Agropyron <- with(dat, as.numeric(field) + as.numeric(NO3)+2) +rnorm(12)/2
Schizachyrium <- with(dat, as.numeric(field) - as.numeric(NO3)+2) +rnorm(12)/2
total <- Agropyron + Schizachyrium
library(lattice)
dotplot(total ~ NO3, dat, jitter.x=TRUE, groups=field,

type=c('p','a'), xlab="NO3", auto.key=list(columns=3, lines=TRUE))

Y <- data.frame(Agropyron, Schizachyrium)
mod <- metaMDS(Y)
plot(mod)
Hulls show treatment
ordihull(mod, group=dat$NO3, show="0")
ordihull(mod, group=dat$NO3, show="10", col=3)
Spider shows fields
ordispider(mod, group=dat$field, lty=3, col="red")

Correct hypothesis test (with strata)
adonis(Y ~ NO3, data=dat, strata=dat$field, perm=1e3)

Incorrect (no strata)
adonis(Y ~ NO3, data=dat, perm=1e3)

anosim Analysis of Similarities

Description

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units.

Usage

anosim(dat, grouping, permutations = 999, distance = "bray", strata)

Arguments

dat Data matrix or data frame in which rows are samples and columns are response
variable(s), or a dissimilarity object or a symmetric square matrix of dissimilar-
ities.

grouping Factor for grouping observations.

permutations Number of permutation to assess the significance of the ANOSIM statistic.

distance Choice of distance metric that measures the dissimilarity between two observa-
tions . See vegdist for options. This will be used if dat was not a dissimi-
larity structure or a symmetric square matrix.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

14 anosim

Details

Analysis of similarities (ANOSIM) provides a way to test statistically whether there is a significant
difference between two or more groups of sampling units. Function anosim operates directly on a
dissimilarity matrix. A suitable dissimilarity matrix is produced by functions dist or vegdist.
The method is philosophically allied with NMDS ordination (isoMDS), in that it uses only the rank
order of dissimilarity values.

If two groups of sampling units are really different in their species composition, then compositional
dissimilarities between the groups ought to be greater than those within the groups. The anosim
statistic R is based on the difference of mean ranks between groups (rB) and within groups (rW):

R = (rB − rW)/(N(N − 1)/4)

The divisor is chosen so that R will be in the interval −1 . . . + 1, value 0 indicating completely
random grouping.

The statistical significance of observed R is assessed by permuting the grouping vector to obtain
the empirical distribution of R under null-model. See permutations for additional details on
permutation tests in Vegan.

The function has summary and plot methods. These both show valuable information to assess
the validity of the method: The function assumes that all ranked dissimilarities within groups have
about equal median and range. The plot method uses boxplot with options notch=TRUE and
varwidth=TRUE.

Value

The function returns a list of class "anosim" with following items:

call Function call.

statistic The value of ANOSIM statistic R

signif Significance from permutation.

perm Permutation values of R

class.vec Factor with value Between for dissimilarities between classes and class name
for corresponding dissimilarity within class.

dis.rank Rank of dissimilarity entry.
dissimilarity

The name of the dissimilarity index: the "method" entry of the dist object.

Note

I don’t quite trust this method. Somebody should study its performance carefully. The function
returns a lot of information to ease further scrutiny. Most anosim models could be analysed with
adonis which seems to be a more robust alternative.

Author(s)

Jari Oksanen, with a help from Peter R. Minchin.

anova.cca 15

References

Clarke, K. R. (1993). Non-parametric multivariate analysis of changes in community structure.
Australian Journal of Ecology 18, 117-143.

See Also

mrpp for a similar function using original dissimilarities instead of their ranks. dist and vegdist
for obtaining dissimilarities, and rank for ranking real values. For comparing dissimilarities
against continuous variables, see mantel. Function adonis is a more robust alternative that
should preferred.

Examples

data(dune)
data(dune.env)
dune.dist <- vegdist(dune)
attach(dune.env)
dune.ano <- anosim(dune.dist, Management)
summary(dune.ano)
plot(dune.ano)

anova.cca Permutation Test for Constrained Correspondence Analysis, Redun-
dancy Analysis and Constrained Analysis of Principal Coordinates

Description

The function performs an ANOVA like permutation test for Constrained Correspondence Analysis
(cca), Redundancy Analysis (rda) or Constrained Analysis of Principal Coordinates (capscale)
to assess the significance of constraints.

Usage

S3 method for class 'cca'
anova(object, alpha=0.05, beta=0.01, step=100, perm.max=9999,

by = NULL, ...)

permutest(x, ...)

S3 method for class 'cca'
permutest(x, permutations = 99,

model = c("reduced", "direct", "full"),
first = FALSE, strata, ...)

16 anova.cca

Arguments

object,x A result object from cca.

alpha Targeted Type I error rate.

beta Accepted Type II error rate.

step Number of permutations during one step.

perm.max Maximum number of permutations.

by Setting by = "axis" will assess significance for each constrained axis, and
setting by = "terms" will assess significance for each term (sequentially
from first to last), and setting by = "margin"will assess the marginal effects
of the terms (each marginal term analysed in a model with all other variables).

... Parameters passed to other functions. anova.cca passes all arguments to
permutest.cca. In anova with by = "axis" you can use argument
cutoff (defaults 1) which stops permutations after exceeding the given level.

permutations Number of permutations for assessing significance of constraints.

model Permutation model (partial match).

first Assess only the significance of the first constrained eigenvalue; will be passed
from anova.cca.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

Details

Functions anova.cca and permutest.cca implement an ANOVA like permutation test for the
joint effect of constraints in cca, rda or capscale. Functions anova.cca and permutest.cca
differ in printout style and in interface. Function permutest.cca is the proper workhorse, but
anova.cca passes all parameters to permutest.cca.

In anova.cca the number of permutations is controlled by targeted “critical” P value (alpha)
and accepted Type II or rejection error (beta). If the results of permutations differ from the targeted
alpha at risk level given by beta, the permutations are terminated. If the current estimate of
P does not differ significantly from alpha of the alternative hypothesis, the permutations are
continued with step new permutations (at the first step, the number of permutations is step -
1). However, with by = "terms" a fixed number of permutations will be used, and this is given
by argument permutations, or if this is missing, by step.

The function permutest.cca implements a permutation test for the “significance” of constraints
in cca, rda or capscale. Community data are permuted with choice model = "direct",
residuals after partial CCA/RDA/CAP with choice model = "reduced" (default), and residu-
als after CCA/RDA/CAP under choice model = "full". If there is no partial CCA/RDA/CAP
stage, model = "reduced" simply permutes the data and is equivalent to model = "direct".
The test statistic is “pseudo-F ”, which is the ratio of constrained and unconstrained total Inertia
(Chi-squares, variances or something similar), each divided by their respective ranks. If there are
no conditions (“partial” terms), the sum of all eigenvalues remains constant, so that pseudo-F and
eigenvalues would give equal results. In partial CCA/RDA/CAP, the effect of conditioning variables
(“covariables” is removed before permutation, and these residuals are added to the non-permuted
fitted values of partial CCA (fitted values of X ~ Z). Consequently, the total Chi-square is not

anova.cca 17

fixed, and test based on pseudo-F would differ from the test based on plain eigenvalues. CCA is a
weighted method, and environmental data are re-weighted at each permutation step using permuted
weights.

The default test is for the sum of all constrained eigenvalues. Setting first = TRUEwill perform
a test for the first constrained eigenvalue. Argument first can be set either in anova.cca or in
permutest.cca. It is also possible to perform significance tests for each axis or for each term
(constraining variable) using argument by in anova.cca. Setting by = "axis" will perform
separate significance tests for each constrained axis. All previous constrained axes will be used as
conditions (“partialled out”) and a test for the first constrained eigenvalues is performed. You can
stop permutation tests after exceeding a given significance level with argument cutoff to speed
up calculations in large models. Setting by = "terms" will perform separate significance test
for each term (constraining variable). The terms are assessed sequentially from first to last, and
the order of the terms will influence their significances. Setting by = "margin" will perform
separate significance test for each marginal term in a model with all other terms. The marginal
test also accepts a scope argument for the drop.scope which can be a character vector of term
labels that are analysed, or a fitted model of lower scope. The marginal effects are also known
as “Type III” effects, but the current function only evaluates marginal terms. It will, for instance,
ignore main effects that are included in interaction terms. In calculating pseudo-F , all terms are
compared to the same residual of the full model. Permutations for all axes or terms will start from
the same .Random.seed, and the seed will be advanced to the value after the longest permutation
at the exit from the function.

Value

Function permutest.cca returns an object of class "permutest.cca", which has its own
print method. The function anova.cca calls permutest.cca, fills an anova table and
uses print.anova for printing.

Note

Some cases of anova need access to the original data on constraints (at least by = "term" and
by = "margin"), and they may fail if data are unavailable.

The default permutation model changed from "direct" to "reduced" in vegan version 1.14-
11 (release version 1.15-0), and you must explicitly set model = "direct" for compatibility
with the old version.

Tests by = "terms" and by = "margin" are consistent only when model = "direct".

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (1998). Numerical Ecology. 2nd English ed. Elsevier.

18 as.mlm.cca

See Also

cca, rda, capscale to get something to analyse. Function drop1.cca calls anova.cca
with by = "margin", and add1.cca an analysis for single terms additions, which can be used
in automatic or semiautomatic model building (see deviance.cca).

Examples

data(varespec)
data(varechem)
vare.cca <- cca(varespec ~ Al + P + K, varechem)
overall test
anova(vare.cca)
Test for axes
anova(vare.cca, by="axis", perm.max=500)
Sequential test for terms
anova(vare.cca, by="terms", permu=200)
Marginal or Type III effects
anova(vare.cca, by="margin")
Marginal test knows 'scope'
anova(vare.cca, by = "m", scope="P")

as.mlm.cca Refit Constrained Ordination as a Multiple Response Linear Model

Description

Functions refit results of constrained ordination (cca, rda, capscale) as a multiple response
linear model (lm). This allows finding influence statistics (influence.measures). This also
allows deriving several other statistics, but most of these are biased and misleading, since refitting
ignores a major component of variation in constrained ordination.

Usage

as.mlm(x)

Arguments

x Constrained ordination result.

Details

Popular algorithm for constrained ordination is based on iteration with regression where weighted
averages of sites are used as dependent variables and constraints as independent variables. Statistics
of linear regression are a natural by-product in this algorithm. Constrained ordination in vegan uses
different algorithm, but to obtain linear regression statistics you can refit an ordination result as
a multiple response linear model (lm). This regression ignores residual unconstrained variation
in the data, and therefore estimates of standard error are strongly biased and much too low. You
can get statistics like t-values of coefficients, but you should not use these because of this bias.

BCI 19

Some useful information you can get with refitted models are statistics for detecting influential
observations (influence.measures including cooks.distance, hatvalues).

Value

Function returns an object of multiple response linear model of class "mlm" documented with lm.

Note

You can use these functions to find t-values of coefficients using summary.mlm, but you should
not do this because the method ignores unconstrained residual variation. You also can find several
other statistics for (multiple response) linear models with similar bias. This bias is not a unique
feature in vegan implementation, but also applies to implementations in other software.

Some statistics of linear models can be found without using these functions: coef.cca gives
the regression coefficients, spenvcor the species-environment correlation, intersetcor the
interset correlation, vif.cca the variance inflation factors.

Author(s)

Jari Oksanen

See Also

cca, rda, capscale, cca.object, lm, summary.mlm, influence.measures.

Examples

data(varespec)
data(varechem)
mod <- cca(varespec ~ Al + P + K, data=varechem)
lmod <- as.mlm(mod)
Coefficients
lmod
coef(mod)
Influential observations
influence.measures(lmod)
plot(mod, type = "n")
points(mod, cex = 10*hatvalues(lmod), pch=16, xpd = TRUE)
text(mod, display = "bp", col = "blue")

BCI Barro Colorado Island Tree Counts

Description

Tree counts in 1-hectare plots in the Barro Colorado Island.

20 beals

Usage

data(BCI)

Format

A data frame with 50 plots (rows) of 1 hectare with counts of trees on each plot with total of 225
species (columns). Full Latin names are used for tree species.

Details

Data give the numbers of trees at least 10 cm in diameter at breast height (1.3 m above the ground)
in each one hectare square of forest. Within each one hectare square, all individuals of all species
were tallied and are recorded in this table.

The data frame contains only the Barro Colorado Island subset of the original data.

The quadrats are located in a regular grid. Seeexamples for the coordinates.

Source

http://www.sciencemag.org/cgi/content/full/295/5555/666/DC1

References

Condit, R, Pitman, N, Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nuñez, P., Aguilar, S.,
Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. & Hubbell, S.P. (2002). Beta-diversity in
tropical forest trees. Science 295, 666–669.

See Also

BCI.env in BiodiversityR package for environmental data (coordinates are given below in the
examples).

Examples

data(BCI)
UTM Coordinates (in metres)
UTM.EW <- rep(seq(625754, 626654, by=100), each=5)
UTM.NS <- rep(seq(1011569, 1011969, by=100), len=50)

beals Beals Smoothing and Degree of Absence

Description

Beals smoothing replaces each entry in the community data with a probability of a target species
occurring in that particular site, based on the joint occurrences of the target species with the species
that actually occur in the site. Swan’s (1970) degree of absence applies Beals smoothing to zero
items so long that all zeros are replaced with smoothed values.

http://www.sciencemag.org/cgi/content/full/295/5555/666/DC1

beals 21

Usage

beals(x, species = NA, reference = x, type = 0, include = TRUE)
swan(x)

Arguments

x Community data frame or matrix.

species Column index used to compute Beals function for a single species. The default
(NA) indicates that the function will be computed for all species.

reference Community data frame or matrix to be used to compute joint occurrences. By
default, x is used as reference to compute the joint occurrences.

type Numeric. Specifies if and how abundance values have to be used in function
beals. See details for more explanation.

include This logical flag indicates whether the target species has to be included when
computing the mean of the conditioned probabilities. The original Beals (1984)
definition is equivalent to include=TRUE, while the formulation of Münzber-
gová and Herben is equal to include=FALSE.

Details

Beals smoothing is the estimated probability pij that species j occurs at site i. It is defined as pij =
1
Si

∑
k
NjkIik

Nk
, where Si is the number of species at site i, Njk is the number of joint occurrences

of species j and k, Nk is the number of occurrences of species k, and I is the incidence (0 or 1)
of species (this last term is usually omitted from the equation, but it is necessary). As Njk can be
interpreted as a mean of conditional probability, the beals function can be interpreted as a mean
of conditioned probabilities (De Cáceres & Legendre 2008). The present function is generalized to
abundance values (De Cáceres & Legendre 2008).

The type argument specifies if and how abundance values have to be used. type = 0 pres-
ence/absence mode. type = 1 abundances in reference (or x) are used to compute condi-
tioned probabilities. type = 2 abundances in x are used to compute weighted averages of con-
ditioned probabilities. type = 3 abundances are used to compute both conditioned probabilities
and weighted averages.

Beals smoothing was originally suggested as a method of data transformation to remove excessive
zeros (Beals 1984, McCune 1994). However, it is not a suitable method for this purpose since it
does not maintain the information on species presences: a species may have a higher probability of
occurrence at a site where it does not occur than at sites where it occurs. Moreover, it regularizes
data too strongly. The method may be useful in identifying species that belong to the species pool
(Ewald 2002) or to identify suitable unoccupied patches in metapopulation analysis (Münzbergová
& Herben 2004). In this case, the function should be called with include = FALSE for cross-
validation smoothing for species; argument species can be used if only one species is studied.

Swan (1970) suggested replacing zero values with degrees of absence of a species in a community
data matrix. Swan expressed the method in terms of a similarity matrix, but it is equivalent to
applying Beals smoothing to zero values, at each step shifting the smallest initially non-zero item to
value one, and repeating this so many times that there are no zeros left in the data. This is actually
very similar to extended dissimilarities (implemented in function stepacross), but very rarely
used.

22 beals

Value

The function returns a transformed data matrix or a vector if Beals smoothing is requested for a
single species.

Author(s)

Miquel De Cáceres and Jari Oksanen

References

Beals, E.W. 1984. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecolog-
ical data. Pp. 1–55 in: MacFadyen, A. & E.D. Ford [eds.] Advances in Ecological Research, 14.
Academic Press, London.

De Cáceres, M. & Legendre, P. 2008. Beals smoothing revisited. Oecologia 156: 657–669.

Ewald, J. 2002. A probabilistic approach to estimating species pools from large compositional
matrices. J. Veg. Sci. 13: 191–198.

McCune, B. 1994. Improving community ordination with the Beals smoothing function. Eco-
science 1: 82–86.

Münzbergová, Z. & Herben, T. 2004. Identification of suitable unoccupied habitats in metapopula-
tion studies using co-occurrence of species. Oikos 105: 408–414.

Swan, J.M.A. 1970. An examination of some ordination problems by use of simulated vegetational
data. Ecology 51: 89–102.

See Also

decostand for proper standardization methods, specpool for an attempt to assess the size of
species pool. Function indpower assesses the power of each species to estimate the probabilities
predicted by beals.

Examples

data(dune)
Default
x <- beals(dune)
Remove target species
x <- beals(dune, include = FALSE)
Smoothed values against presence or absence of species
pa <- decostand(dune, "pa")
boxplot(as.vector(x) ~ unlist(pa), xlab="Presence", ylab="Beals")
Remove the bias of tarbet species: Yields lower values.
beals(dune, type =3, include = FALSE)
Uses abundance information.
Vector with beals smoothing values corresponding to the first species
in dune.
beals(dune, species=1, include=TRUE)

betadisper 23

betadisper Multivariate homogeneity of groups dispersions (variances)

Description

Implements Marti Anderson’s PERMDISP2 procedure for the analysis of multivariate homogeneity
of group dispersions (variances). betadisper is a multivariate analogue of Levene’s test for ho-
mogeneity of variances. Non-euclidean distances between objects and group centroids are handled
by reducing the original distances to principal coordinates. This procedure has latterly been used as
a means of assessing beta diversity. There are anova, scores, plot and boxplot methods.

TukeyHSD.betadisper creates a set of confidence intervals on the differences between the
mean distance-to-centroid of the levels of the grouping factor with the specified family-wise prob-
ability of coverage. The intervals are based on the Studentized range statistic, Tukey’s ’Honest
Significant Difference’ method.

Usage

betadisper(d, group, type = c("median","centroid"))

S3 method for class 'betadisper'
anova(object, ...)

S3 method for class 'betadisper'
scores(x, display = c("sites", "centroids"),

choices = c(1,2), ...)

S3 method for class 'betadisper'
plot(x, axes = c(1,2), cex = 0.7, hull = TRUE,

ylab, xlab, main, sub, ...)

S3 method for class 'betadisper'
boxplot(x, ylab = "Distance to centroid", ...)

S3 method for class 'betadisper'
TukeyHSD(x, which = "group", ordered = FALSE,

conf.level = 0.95, ...)

Arguments

d a distance structure such as that returned by dist, betadiver or vegdist.

group vector describing the group structure, usually a factor or an object that can be
coerced to a factor using as.factor. Can consist of a factor with a single
level (i.e.~one group).

type the type of analysis to perform. Use the spatial median or the group centroid?
The spatial median is now the default.

display character; partial match to access scores for "sites" or "species".

24 betadisper

object, x an object of class "betadisper", the result of a call to betadisper.
choices, axes

the principal coordinate axes wanted.

hull logical; should the convex hull for each group be plotted?
cex, ylab, xlab, main, sub

graphical parameters. For details, see plot.default.

which A character vector listing terms in the fitted model for which the intervals should
be calculated. Defaults to the grouping factor.

ordered Logical; see TukeyHSD.

conf.level A numeric value between zero and one giving the family-wise confidence level
to use.

... arguments, including graphical parameters (for plot.betadisper and boxplot.betadisper),
passed to other methods.

Details

One measure of multivariate dispersion (variance) for a group of samples is to calculate the average
distance of group members to the group centroid or spatial median (both referred to as ’centroid’
from now on unless stated otherwise) in multivariate space. To test if the dispersions (variances) of
one or more groups are different, the distances of group members to the group centroid are subject
to ANOVA. This is a multivariate analogue of Levene’s test for homogeneity of variances if the
distances between group members and group centroids is the Euclidean distance.

However, better measures of distance than the Euclidean distance are available for ecological data.
These can be accommodated by reducing the distances produced using any dissimilarity coefficient
to principal coordinates, which embeds them within a Euclidean space. The analysis then proceeds
by calculating the Euclidean distances between group members and the group centroid on the basis
of the principal coordinate axes rather than the original distances.

Non-metric dissimilarity coefficients can produce principal coordinate axes that have negative Eigen-
values. These correspond to the imaginary, non-metric part of the distance between objects. If
negative Eigenvalues are produced, we must correct for these imaginary distances.

The distance to its centroid of a point is

zcij =
√

∆2(u+
ij , c

+
i)−∆2(u−ij , c

−
i),

where ∆2 is the squared Euclidean distance between uij , the principal coordinate for the jth point
in the ith group, and ci, the coordinate of the centroid for the ith group. The super-scripted + and
− indicate the real and imaginary parts respectively. This is equation (3) in Anderson (2006). If the
imaginary part is greater in magnitude than the real part, then we would be taking the square root
of a negative value, resulting in NaN. From vegan 1.12-12 betadisper takes the absolute value
of the real distance minus the imaginary distance, before computing the square root. This is in line
with the behaviour of Marti Anderson’s PERMDISP2 programme.

To test if one or more groups is more variable than the others, ANOVA of the distances to group
centroids can be performed and parametric theory used to interpret the significance of F. An al-
ternative is to use a permutation test. permutest.betadisper permutes model residuals to
generate a permutation distribution of F under the Null hypothesis of no difference in dispersion
between groups.

betadisper 25

Pairwise comparisons of group mean dispersions can also be performed using permutest.betadisper.
An alternative to the classical comparison of group dispersions, is to calculate Tukey’s Honest Sig-
nificant Differences between groups, via TukeyHSD.betadisper. This is a simple wrapper
to TukeyHSD.aov. The user is directed to read the help file for TukeyHSD before using this
function. In particular, note the statement about using the function with unbalanced designs.

The results of the analysis can be visualised using the plot and boxplot methods.

One additional use of these functions is in assessing beta diversity (Anderson et al 2006). Function
betadiver provides some popular dissimilarity measures for this purpose.

Value

The anova method returns an object of class "anova" inheriting from class "data.frame".

The scoresmethod returns a list with one or both of the components "sites" and "centroids".

The plot function invisibly returns an object of class "ordiplot", a plotting structure which can
be used by identify.ordiplot (to identify the points) or other functions in the ordiplot
family.

The boxplot function invisibly returns a list whose components are documented in boxplot.

TukeyHSD.betadisper returns a list. See TukeyHSD for further details.

betadisper returns a list of class "betadisper" with the following components:

eig numeric; the eigenvalues of the principal coordinates analysis.

vectors matrix; the eigenvectors of the principal coordinates analysis.

distances numeric; the Euclidean distances in principal coordinate space between the sam-
ples and their respective group centroid.

group factor; vector describing the group structure

centroids matrix; the locations of the group centroids on the principal coordinates.

call the matched function call.

Warning

Stewart Schultz noticed that the permutation test for type = "centroid" had the wrong type
I error and was anti-conservative. As such, the default for type has been changed to "median",
which uses the spatial median as the group centroid. Tests suggests that the permutation test for this
type of analysis gives the correct error rates.

Note

If group consists of a single level or group, then the anova and permutest methods are not
appropriate and if used on such data will stop with an error.

Missing values in either d or group will be removed prior to performing the analysis.

Author(s)

Gavin L. Simpson

26 betadisper

References

Anderson, M.J. (2006) Distance-based tests for homogeneity of multivariate dispersions. Biomet-
rics 62(1), 245–253.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9(6), 683–693.

See Also

permutest.betadisper, anova.lm, scores, boxplot, TukeyHSD. Further measure of
beta diversity can be found in betadiver.

Examples

data(varespec)

Bray-Curtis distances between samples
dis <- vegdist(varespec)

First 16 sites grazed, remaining 8 sites ungrazed
groups <- factor(c(rep(1,16), rep(2,8)), labels = c("grazed","ungrazed"))

Calculate multivariate dispersions
mod <- betadisper(dis, groups)
mod

Perform test
anova(mod)

Permutation test for F
permutest(mod, pairwise = TRUE)

Tukey's Honest Significant Differences
(mod.HSD <- TukeyHSD(mod))
plot(mod.HSD)

Plot the groups and distances to centroids on the
first two PCoA axes
plot(mod)

can also specify which axes to plot, ordering respected
plot(mod, axes = c(3,1))

Draw a boxplot of the distances to centroid for each group
boxplot(mod)

simulate missing values in 'd' and 'group'
groups[c(2,20)] <- NA
dis[c(2, 20)] <- NA
mod2 <- betadisper(dis, groups) ## warnings
mod2
permutest(mod2, control = permControl(nperm = 100))

betadiver 27

anova(mod2)
plot(mod2)
boxplot(mod2)
plot(TukeyHSD(mod2))

Using spatial median
mod3 <- betadisper(dis, groups, type = "median")
mod3
permutest(mod3, control = permControl(nperm = 100))
anova(mod3)
plot(mod3)
boxplot(mod3)
plot(TukeyHSD(mod3))

betadiver Indices of beta Diversity

Description

The function estimates any of the 24 indices of beta diversity reviewed by Koleff et al. (2003).
Alternatively, it finds the co-occurrence frequencies for triangular plots (Koleff et al. 2003).

Usage

betadiver(x, index = NA, order = FALSE, help = FALSE, ...)
S3 method for class 'betadiver'
plot(x, ...)
S3 method for class 'betadiver'
scores(x, triangular = TRUE, ...)

Arguments

x Community data matrix, or the betadiver result for plot and scores
functions.

index The index of beta diversity as defined in Koleff et al. (2003), Table 1. You can
use either the subscript of β or the number of the index. See argument help
below.

order Order sites by increasing number of species. This will influence the configura-
tion in the triangular plot and non-symmetric indices.

help Show the numbers, subscript names and the defining equations of the indices
and exit.

triangular Return scores suitable for triangular plotting of proportions. If FALSE, returns
a 3-column matrix of raw counts.

... Other arguments to functions.

28 betadiver

Details

The most commonly used index of beta diversity is βw = S/α − 1, where S is the total number
of species, and α is the average number of species per site (Whittaker 1960). A drawback of this
model is that S increases with sample size, but the expectation of α remains constant, and so the
beta diversity increases with sample size. A solution to this problem is to study the beta diversity
of pairs of sites. If we denote the number of species shared between two sites as a and the numbers
of unique species (not shared) as b and c, then S = a + b + c and α = (2a + b + c)/2 so
that βw = (b + c)/(2a + b + c). This is the Sørensen dissimilarity as defined in vegan function
vegdist with argument binary = TRUE. Many other indices are dissimilarity indices as well.

Function betadiver finds all indices reviewed by Koleff et al. (2003). All these indices could be
found with function designdist which uses different notation, but the current function provides
a conventional shortcut. The function only finds the indices. The proper analysis must be done with
functions such as betadisper, adonis or mantel.

The indices are directly taken from Table 1 of Koleff et al. (2003), and they can be selected either
by the index number or the subscript name used by Koleff et al. The numbers, names and defining
equations can be seen using betadiver(help = TRUE). In all cases where there are two alter-
native forms, the one with the term −1 is used. There are several duplicate indices, and the number
of distinct alternatives is much lower than 24 formally provided. The formulations used in functions
differ occasionally from those in Koleff et al. (2003), but they are still mathematically equivalent.
With index = NA, no index is calculated, but instead an object of class betadiver is returned.
This is a list of elements a, b and c. Function plot can be used to display the proportions of
these elements in triangular plot as suggested by Koleff et al. (2003), and scores extracts the
triangular coordinates or the raw scores. Function plot returns invisibly the triangular coordinates
as an "ordiplot" object.

Value

With index = NA, the function returns an object of class "betadisper" with elements a, b,
and c. If index is specified, the function returns a "dist" object which can be used in any func-
tion analysing dissimilarities. For beta diversity, particularly useful functions are betadisper to
study the betadiversity in groups, adonis for any model, and mantel to compare beta diversi-
ties to other dissimilarities or distances (including geographical distances). Although betadiver
returns a "dist" object, some indices are similarities and cannot be used as such in place of
dissimilarities, but that is a severe user error. Functions 10 ("j") and 11 ("sor") are two such
similarity indices.

Warning

Some indices return similarities instead of dissimilarities.

Author(s)

Jari Oksanen

References

Koleff, P., Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence-absence data.
Journal of Animal Ecology 72, 367–382.

bgdispersal 29

Whittaker, R.H. (1960) Vegetation of Siskiyou mountains, Oregon and California. Ecological
Monographs 30, 279–338.

See Also

designdist for an alternative to implement all these functions, vegdist for some canned
alternatives, and betadisper, adonis, mantel for analysing beta diversity objects.

Examples

Raw data and plotting
data(sipoo)
m <- betadiver(sipoo)
plot(m)
The indices
betadiver(help=TRUE)
The basic Whittaker index
d <- betadiver(sipoo, "w")
This should be equal to Sorensen index (binary Bray-Curtis in
vegan)
range(d - vegdist(sipoo, binary=TRUE))

bgdispersal Coefficients of Biogeographical Dispersal Direction

Description

This function computes coefficients of dispersal direction between geographically connected areas,
as defined by Legendre and Legendre (1984), and also described in Legendre and Legendre (1998,
section 13.3.4).

Usage

bgdispersal(mat, PAonly = FALSE, abc = FALSE)

Arguments

mat Data frame or matrix containing a community composition data table (species
presence-absence or abundance data).

PAonly FALSE if the four types of coefficients, DD1 to DD4, are requested; TRUE if
DD1 and DD2 only are sought (see Details).

abc If TRUE, return tables a, b and c used in DD1 and DD2.

30 bgdispersal

Details

The signs of the DD coefficients indicate the direction of dispersal, provided that the asymmetry is
significant. A positive sign indicates dispersal from the first (row in DD tables) to the second region
(column); a negative sign indicates the opposite. A McNemar test of asymmetry is computed from
the presence-absence data to test the hypothesis of a significant asymmetry between the two areas
under comparison.

In the input data table, the rows are sites or areas, the columns are taxa. Most often, the taxa
are species, but the coefficients can be computed from genera or families as well. DD1 and DD2
only are computed for presence-absence data. The four types of coefficients are computed for
quantitative data, which are converted to presence-absence for the computation of DD1 and DD2.
PAonly = FALSE indicates that the four types of coefficients are requested. PAonly = TRUE
if DD1 and DD2 only are sought.

Value

Function bgdispersal returns a list containing the following matrices:

DD1 DD1[j, k] = (a ∗ (b− c))/((a+ b+ c)2)

DD2 DD2[j, k] = (2 ∗ a ∗ (b− c))/((2 ∗ a+ b+ c) ∗ (a+ b+ c)) where a, b, and c
have the same meaning as in the computation of binary similarity coefficients.

DD3 DD3[j,k] = W ∗ (A−B)/((A+B −W)2)

DD4 DD4[j,k] = 2∗W∗(A−B)/((A+B)∗(A+B−W)) where W = sum(pmin(vector1,
vector2)), A = sum(vector1), B = sum(vector2)

McNemar McNemar chi-square statistic of asymmetry (Sokal and Rohlf 1995): 2 ∗ (b ∗
log(b) + c ∗ log(c)− (b+ c) ∗ log((b+ c)/2))/q where q = 1 + 1/(2 ∗ (b+ c))
(Williams correction for continuity)

prob.McNemar
probabilities associated with McNemar statistics, chi-square test. H0: no asym-
metry in (b− c).

Note

The function uses a more powerful alternative for the McNemar test than the classical formula. The
classical formula was constructed in the spirit of Pearson’s Chi-square, but the formula in this func-
tion was constructed in the spirit of Wilks Chi-square or the G statistic. Function mcnemar.test
uses the classical formula. The new formula was introduced in vegan version 1.10-11, and the older
implementations of bgdispersal used the classical formula.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal

References

Legendre, P. and V. Legendre. 1984. Postglacial dispersal of freshwater fishes in the Québec
peninsula. Can. J. Fish. Aquat. Sci. 41: 1781-1802.

bioenv 31

Legendre, P. and L. Legendre. 1998. Numerical ecology, 2nd English edition. Elsevier Science BV,
Amsterdam.

Sokal, R. R. and F. J. Rohlf. 1995. Biometry. The principles and practice of statistics in biological
research. 3rd edn. W. H. Freeman, New York.

Examples

mat <- matrix(c(32,15,14,10,70,30,100,4,10,30,25,0,18,0,40,
0,0,20,0,0,0,0,4,0,30,20,0,0,0,0,25,74,42,1,45,89,5,16,16,20),
4, 10, byrow=TRUE)

bgdispersal(mat)

bioenv Best Subset of Environmental Variables with Maximum (Rank) Corre-
lation with Community Dissimilarities

Description

Function finds the best subset of environmental variables, so that the Euclidean distances of scaled
environmental variables have the maximum (rank) correlation with community dissimilarities.

Usage

Default S3 method:
bioenv(comm, env, method = "spearman", index = "bray",

upto = ncol(env), trace = FALSE, partial = NULL, ...)
S3 method for class 'formula'
bioenv(formula, data, ...)

Arguments

comm Community data frame.

env Data frame of continuous environmental variables.

method The correlation method used in cor.

index The dissimilarity index used for community data in vegdist.

upto Maximum number of parameters in studied subsets.
formula, data

Model formula and data.

trace Trace the advance of calculations

partial Dissimilarities partialled out when inspecting variables in env.

... Other arguments passed to cor.

32 bioenv

Details

The function calculates a community dissimilarity matrix using vegdist. Then it selects all pos-
sible subsets of environmental variables, scales the variables, and calculates Euclidean distances
for this subset using dist. Then it finds the correlation between community dissimilarities and
environmental distances, and for each size of subsets, saves the best result. There are 2p−1 subsets
of p variables, and an exhaustive search may take a very, very, very long time (parameter upto
offers a partial relief).

The function can be called with a model formula where the LHS is the data matrix and RHS
lists the environmental variables. The formula interface is practical in selecting or transforming
environmental variables.

With argument partial you can perform “partial” analysis. The partializing item must be a
dissimilarity object of class dist. The partial item can be used with any correlation method,
but it is strictly correct only for Pearson.

Clarke & Ainsworth (1993) suggested this method to be used for selecting the best subset of en-
vironmental variables in interpreting results of nonmetric multidimensional scaling (NMDS). They
recommended a parallel display of NMDS of community dissimilarities and NMDS of Euclidean
distances from the best subset of scaled environmental variables. They warned against the use of
Procrustes analysis, but to me this looks like a good way of comparing these two ordinations.

Clarke & Ainsworth wrote a computer program BIO-ENV giving the name to the current function.
Presumably BIO-ENV was later incorporated in Clarke’s PRIMER software (available for Win-
dows). In addition, Clarke & Ainsworth suggested a novel method of rank correlation which is not
available in the current function.

Value

The function returns an object of class bioenv with a summary method.

Note

If you want to study the ‘significance’ of bioenv results, you can use function mantel or
mantel.partial which use the same definition of correlation. However, bioenv standard-
izes environmental variables to unit standard deviation using function scale and you must do
the same in mantel for comparable results. Further, bioenv selects variables to maximize the
Mantel correlation, and significance tests based on a priori selection of variables are biased.

Author(s)

Jari Oksanen

References

Clarke, K. R & Ainsworth, M. 1993. A method of linking multivariate community structure to
environmental variables. Marine Ecology Progress Series, 92, 205–219.

biplot.rda 33

See Also

vegdist, dist, cor for underlying routines, isoMDS for ordination, procrustes for Pro-
crustes analysis, protest for an alternative, and rankindex for studying alternatives to the
default Bray-Curtis index.

Examples

The method is very slow for large number of possible subsets.
Therefore only 6 variables in this example.
data(varespec)
data(varechem)
sol <- bioenv(wisconsin(varespec) ~ log(N) + P + K + Ca + pH + Al, varechem)
sol
summary(sol)

biplot.rda PCA biplot

Description

Draws a PCA biplot with species scores indicated by biplot arrows

Usage

S3 method for class 'rda'
biplot(x, choices = c(1, 2), scaling = 2,

display = c("sites", "species"), type, xlim, ylim, col = c(1,2),
const, ...)

Arguments

x A rda result object.

choices Axes to show.

scaling Scaling for species and site scores. Either species (2) or site (1) scores are
scaled by eigenvalues, and the other set of scores is left unscaled, or with 3 both
are scaled symmetrically by square root of eigenvalues. With negative scaling
values in rda, species scores are divided by standard deviation of each species
and multiplied with an equalizing constant. Unscaled raw scores stored in the
result can be accessed with scaling = 0.

display Scores shown. These must some of the alternatives "species" for species
scores, and/or "sites" for site scores.

type Type of plot: partial match to text for text labels, points for points, and
none for setting frames only. If omitted, text is selected for smaller data
sets, and points for larger. Can be of length 2 (e.g. type = c("text",
"points")), in which case the first element describes how species scores are
handled, and the second how site scores are drawn.

34 biplot.rda

xlim, ylim the x and y limits (min, max) of the plot.

col Colours used for sites and species (in this order). If only one colour is given, it
is used for both.

const General scaling constant for scores.rda.

... Other parameters for plotting functions.

Details

Produces a plot or biplot of the results of a call to rda. It is common for the "species" scores in a
PCA to be drawn as biplot arrows that point in the direction of increasing values for that variable.
The biplot.rda function provides a wrapper to plot.cca to allow the easy production of such
a plot.

biplot.rda is only suitable for unconstrained models. If used on an ordination object with
constraints, an error is issued.

If species scores are drawn using "text", the arrows are drawn from the origin to 0.85 * species
score, whilst the labels are drawn at the species score. If the type used is "points", then no labels
are drawn and therefore the arrows are drawn from the origin to the actual species score.

Value

The plot function returns invisibly a plotting structure which can be used by identify.ordiplot
to identify the points or other functions in the ordiplot family.

Author(s)

Gavin Simpson, based on plot.cca by Jari Oksanen.

See Also

plot.cca, rda for something to plot, ordiplot for an alternative plotting routine and more
support functions, and text, points and arrows for the basic routines.

Examples

data(dune)
mod <- rda(dune, scale = TRUE)
biplot(mod, scaling = 3)

different type for species and site scores
biplot(mod, scaling = 3, type = c("text", "points"))

capscale 35

capscale [Partial] Constrained Analysis of Principal Coordinates or distance-
based RDA

Description

Constrained Analysis of Principal Coordinates (CAP) is an ordination method similar to Redun-
dancy Analysis (rda), but it allows non-Euclidean dissimilarity indices, such as Manhattan or
Bray–Curtis distance. Despite this non-Euclidean feature, the analysis is strictly linear and metric.
If called with Euclidean distance, the results are identical to rda, but capscale will be much
more inefficient. Function capscale is a constrained version of metric scaling, a.k.a. princi-
pal coordinates analysis, which is based on the Euclidean distance but can be used, and is more
useful, with other dissimilarity measures. The function can also perform unconstrained principal
coordinates analysis, optionally using extended dissimilarities.

Usage

capscale(formula, data, distance = "euclidean", sqrt.dist = FALSE,
comm = NULL, add = FALSE, dfun = vegdist, metaMDSdist = FALSE,
na.action = na.fail, subset = NULL, ...)

Arguments

formula Model formula. The function can be called only with the formula interface.
Most usual features of formula hold, especially as defined in cca and rda.
The LHS must be either a community data matrix or a dissimilarity matrix, e.g.,
from vegdist or dist. If the LHS is a data matrix, function vegdist will
be used to find the dissimilarities. The RHS defines the constraints. The con-
straints can be continuous variables or factors, they can be transformed within
the formula, and they can have interactions as in a typical formula. The RHS
can have a special term Condition that defines variables to be “partialled out”
before constraints, just like in rda or cca. This allows the use of partial CAP.

data Data frame containing the variables on the right hand side of the model formula.
distance The name of the dissimilarity (or distance) index if the LHS of the formula is

a data frame instead of dissimilarity matrix.
sqrt.dist Take square roots of dissimilarities. See section Notes below.
comm Community data frame which will be used for finding species scores when the

LHS of the formula was a dissimilarity matrix. This is not used if the LHS is
a data frame. If this is not supplied, the “species scores” are the axes of initial
metric scaling (cmdscale) and may be confusing.

add Logical indicating if an additive constant should be computed, and added to
the non-diagonal dissimilarities such that all eigenvalues are non-negative in the
underlying Principal Co-ordinates Analysis (see cmdscale for details). This
implements “correction method 2” of Legendre & Legendre (1998, p. 434).
The negative eigenvalues are caused by using semi-metric or non-metric dissim-
ilarities with basically metric cmdscale. They are harmless and ignored in
capscale, but you also can avoid warnings with this option.

36 capscale

dfun Distance or dissimilarity function used. Any function returning standard "dist"
and taking the index name as the first argument can be used.

metaMDSdist Use metaMDSdist similarly as in metaMDS. This means automatic data trans-
formation and using extended flexible shortest path dissimilarities (function stepacross)
when there are many dissimilarities based on no shared species.

na.action Handling of missing values in constraints or conditions. The default (na.fail)
is to stop with missing values. Choices na.omit and na.exclude delete
rows with missing values, but differ in representation of results. With na.omit
only non-missing site scores are shown, but na.exclude gives NA for scores
of missing observations. Unlike in rda, no WA scores are available for missing
constraints or conditions.

subset Subset of data rows. This can be a logical vector which is TRUE for kept ob-
servations, or a logical expression which can contain variables in the working
environment, data or species names of the community data (if given in the
formula or as comm argument).

... Other parameters passed to rda or to metaMDSdist.

Details

Canonical Analysis of Principal Coordinates (CAP) is simply a Redundancy Analysis of results of
Metric (Classical) Multidimensional Scaling (Anderson & Willis 2003). Function capscale uses two
steps: (1) it ordinates the dissimilarity matrix using cmdscale and (2) analyses these results using
rda. If the user supplied a community data frame instead of dissimilarities, the function will find
the needed dissimilarity matrix using vegdist with specified distance. However, the method
will accept dissimilarity matrices from vegdist, dist, or any other method producing similar
matrices. The constraining variables can be continuous or factors or both, they can have interaction
terms, or they can be transformed in the call. Moreover, there can be a special term Condition
just like in rda and cca so that “partial” CAP can be performed.

The current implementation differs from the method suggested by Anderson & Willis (2003) in
three major points which actually make it similar to distance-based redundancy analysis (Legendre
& Anderson 1999):

1. Anderson & Willis used the orthonormal solution of cmdscale, whereas capscale uses
axes weighted by corresponding eigenvalues, so that the ordination distances are the best
approximations of original dissimilarities. In the original method, later “noise” axes are just
as important as first major axes.

2. Anderson & Willis take only a subset of axes, whereas capscale uses all axes with positive
eigenvalues. The use of subset is necessary with orthonormal axes to chop off some “noise”,
but the use of all axes guarantees that the results are the best approximation of original dis-
similarities.

3. Function capscale adds species scores as weighted sums of (residual) community matrix (if
the matrix is available), whereas Anderson & Willis have no fixed method for adding species
scores.

With these definitions, function capscale with Euclidean distances will be identical to rda in
eigenvalues and in site, species and biplot scores (except for possible sign reversal). However, it
makes no sense to use capscale with Euclidean distances, since direct use of rda is much more
efficient. Even with non-Euclidean dissimilarities, the rest of the analysis will be metric and linear.

capscale 37

The function can be also used to perform ordinary metric scaling a.k.a. principal coordinates
analysis by using a formula with only a constant on the left hand side, or comm ~ 1. With
metaMDSdist = TRUE, the function can do automatic data standardization and use extended
dissimilarities using function stepacross similarly as in non-metric multidimensional scaling
with metaMDS.

Value

The function returns an object of class capscale which is identical to the result of rda. At the
moment, capscale does not have specific methods, but it uses cca and rdamethods plot.cca,
scores.rda etc. Moreover, you can use anova.cca for permutation tests of “significance” of
the results.

Note

The function produces negative eigenvalues with non-Euclidean dissimilarity indices. The non-
Euclidean component of inertia is given under the title Imaginary in the printed output. The
Total inertia is the sum of all eigenvalues, but the sum of all non-negative eigenvalues is given as
Real Total (which is higher than the Total). The ordination is based only on the real dimen-
sions with positive eigenvalues, and therefore the proportions of inertia components only apply to
the Real Total and ignore the Imaginary component. Permutation tests with anova.cca
use only the real solution of positive eigenvalues. Function adonis gives similar significance
tests, but it also handles the imaginary dimensions (negative eigenvalues) and therefore its results
may differ from permutation test results of capscale.

If the negative eigenvalues are disturbing, you can use argument add = TRUE passed to cmdscale,
or, preferably, a distance measure that does not cause these warnings. Alternatively, after square
root transformation of distances (argument sqrt.dist = TRUE) many indices do not produce
negative eigenvalues.

The inertia is named after the dissimilarity index as defined in the dissimilarity data, or as unknown
distance if such an information is missing. Function rda usually divides the ordination scores
by number of sites minus one. In this way, the inertia is variance instead of sum of squares, and
the eigenvalues sum up to variance. Many dissimilarity measures are in the range 0 to 1, so they
have already made a similar division. If the largest original dissimilarity is less than or equal to 4
(allowing for stepacross), this division is undone in capscale and original dissimilarities are
used. Keyword mean is added to the inertia in cases where division was made, e.g. in Euclidean
and Manhattan distances. Inertia is based on squared index, and keyword squared is added to the
name of distance, unless data were square root transformed (argument sqrt.dist = TRUE).
If an additive constant was used, keyword euclidified is added to the the name of inertia
(argument add = TRUE).

Author(s)

Jari Oksanen

References

Anderson, M.J. & Willis, T.J. (2003). Canonical analysis of principal coordinates: a useful method
of constrained ordination for ecology. Ecology 84, 511–525.

38 cascadeKM

Gower, J.C. (1985). Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra
and its Applications 67, 81–97.

Legendre, P. & Anderson, M. J. (1999). Distance-based redundancy analysis: testing multispecies
responses in multifactorial ecological experiments. Ecological Monographs 69, 1–24.

Legendre, P. & Legendre, L. (1998). Numerical Ecology. 2nd English Edition. Elsevier

See Also

rda, cca, plot.cca, anova.cca, vegdist, dist, cmdscale.

Examples

data(varespec)
data(varechem)
Basic Analysis
vare.cap <- capscale(varespec ~ N + P + K + Condition(Al), varechem,

dist="bray")
vare.cap
plot(vare.cap)
anova(vare.cap)
Avoid negative eigenvalues with additive constant
capscale(varespec ~ N + P + K + Condition(Al), varechem,

dist="bray", add =TRUE)
Avoid negative eigenvalues by taking square roots of dissimilarities
capscale(varespec ~ N + P + K + Condition(Al), varechem,

dist = "bray", sqrt.dist= TRUE)
Principal coordinates analysis with extended dissimilarities
capscale(varespec ~ 1, dist="bray", metaMDS = TRUE)

cascadeKM K-means partitioning using a range of values of K

Description

This function is a wrapper for the kmeans function. It creates several partitions forming a cascade
from a small to a large number of groups.

Usage

cascadeKM(data, inf.gr, sup.gr, iter = 100, criterion = "calinski")

cIndexKM(y, x, index = "all")

S3 method for class 'cascadeKM'
plot(x, min.g, max.g, grpmts.plot = TRUE,

sortg = FALSE, gridcol = NA, ...)

cascadeKM 39

Arguments

data The data matrix. The objects (samples) are the rows.

inf.gr The number of groups for the partition with the smallest number of groups of
the cascade (min).

sup.gr The number of groups for the partition with the largest number of groups of the
cascade (max).

iter The number of random starting configurations for each value of K.

criterion The criterion that will be used to select the best partition. The default value
is "calinski", which refers to the Calinski-Harabasz (1974) criterion. The
simple structure index ("ssi") is also available. Other indices are available
in function clustIndex (package cclust). In our experience, the two indices
that work best and are most likely to return their maximum value at or near the
optimal number of clusters are "calinski" and "ssi".

y Object of class "kmeans" returned by a clustering algorithm such as kmeans

x Data matrix where columns correspond to variables and rows to observations,
or the plotting object in plot

index The available indices are: "calinski" and "ssi". Type "all" to obtain
both indices. Abbreviations of these names are also accepted.

min.g, max.g The minimum and maximum numbers of groups to be displayed.

grpmts.plot Show the plot (TRUE or FALSE).

sortg Sort the objects as a function of their group membership to produce a more
easily interpretable graph. See Details. The original object names are kept; they
are used as labels in the output table x, although not in the graph. If there were
no row names, sequential row numbers are used to keep track of the original
order of the objects.

gridcol The colour of the grid lines in the plots. NA, which is the default value, removes
the grid lines.

... Other parameters to the functions (ignored).

Details

The function creates several partitions forming a cascade from a small to a large number of groups
formed by kmeans. Most of the work is performed by function cIndex which is based on the
clustIndex function (package cclust). Some of the criteria were removed from this version
because computation errors were generated when only one object was found in a group.

The default value is "calinski", which refers to the well-known Calinski-Harabasz (1974) cri-
terion. The other available index is the simple structure index "ssi" (Dolnicar et al. 1999). In
the case of groups of equal sizes, "calinski" is generally a good criterion to indicate the correct
number of groups. Users should not take its indications literally when the groups are not equal in
size. Type "all" to obtain both indices. The indices are defined as:

calinski: (SSB/(K − 1))/(SSW/(n −K)), where n is the number of data points and K is the
number of clusters. SSW is the sum of squares within the clusters while SSB is the sum of
squares among the clusters. This index is simply an F (ANOVA) statistic.

40 cascadeKM

ssi: the “Simple Structure Index” multiplicatively combines several elements which influence the
interpretability of a partitioning solution. The best partition is indicated by the highest SSI
value.

In a simulation study, Milligan and Cooper (1985) found that the Calinski-Harabasz criterion re-
covered the correct number of groups the most often. We recommend this criterion because, if
the groups are of equal sizes, the maximum value of "calinski" usually indicates the correct
number of groups. Another available index is the simple structure index "ssi". Users should not
take the indications of these indices literally when the groups are not equal in size and explore the
groups corresponding to other values of K.

Function cascadeKM has a plot method. Two plots are produced. The graph on the left has the
objects in abscissa and the number of groups in ordinate. The groups are represented by colours.
The graph on the right shows the values of the criterion ("calinski" or "ssi") for determining
the best partition. The highest value of the criterion is marked in red. Points marked in orange,
if any, indicate partitions producing an increase in the criterion value as the number of groups
increases; they may represent other interesting partitions.

If sortg=TRUE, the objects are reordered by the following procedure: (1) a simple matching
distance matrix is computed among the objects, based on the table of K-means assignments to
groups, from K = min.g to K = max.g. (2) A principal coordinate analysis (PCoA, Gower
1966) is computed on the centred distance matrix. (3) The first principal coordinate is used as the
new order of the objects in the graph. A simplified algorithm is used to compute the first principal
coordinate only, using the iterative algorithm described in Legendre & Legendre (1998, Table 9.10).
The full distance matrix among objects is never computed; this avoids the problem of storing it when
the number of objects is large. Distance values are computed as they are needed by the algorithm.

Value

Function cascadeKM returns an object of class cascadeKM with items:

partition Table with the partitions found for different numbers of groups K, from K =
inf.gr to K = sup.gr.

results Values of the criterion to select the best partition.

criterion The name of the criterion used.

size The number of objects found in each group, for all partitions (columns).

Function cIndex returns a vector with the index values. The maximum value of these indices is
supposed to indicate the best partition. These indices work best with groups of equal sizes. When
the groups are not of equal sizes, one should not put too much faith in the maximum of these indices,
and also explore the groups corresponding to other values of K.

Author(s)

Marie-Helene Ouellette <Marie-Helene.Ouellette@UMontreal.ca>, Sebastien Durand
<Sebastien.Durand@UMontreal.ca> and Pierre Legendre <Pierre.Legendre@UMontreal.ca>.
Edited for vegan by Jari Oksanen.

cca 41

References

Calinski, T. and J. Harabasz. 1974. A dendrite method for cluster analysis. Commun. Stat. 3: 1-27.

Dolnicar, S., K. Grabler and J. A. Mazanec. 1999. A tale of three cities: perceptual charting for
analyzing destination images. Pp. 39-62 in: Woodside, A. et al. [eds.] Consumer psychology of
tourism, hospitality and leisure. CAB International, New York.

Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53: 325-338.

Legendre, P. & L. Legendre. 1998. Numerical ecology, 2nd English edition. Elsevier Science BV,
Amsterdam.

Milligan, G. W. & M. C. Cooper. 1985. An examination of procedures for determining the number
of clusters in a data set. Psychometrika 50: 159-179.

Weingessel, A., Dimitriadou, A. and Dolnicar, S. An Examination Of Indexes For Determining The
Number Of Clusters In Binary Data Sets, http://www.wu-wien.ac.at/am/wp99.htm#
29

See Also

kmeans, clustIndex.

Examples

Partitioning a (10 x 10) data matrix of random numbers
mat <- matrix(runif(100),10,10)
res <- cascadeKM(mat, 2, 5, iter = 25, criterion = 'calinski')
toto <- plot(res)

Partitioning an autocorrelated time series
vec <- sort(matrix(runif(30),30,1))
res <- cascadeKM(vec, 2, 5, iter = 25, criterion = 'calinski')
toto <- plot(res)

Partitioning a large autocorrelated time series
Note that we remove the grid lines
vec <- sort(matrix(runif(1000),1000,1))
res <- cascadeKM(vec, 2, 7, iter = 10, criterion = 'calinski')
toto <- plot(res, gridcol=NA)

cca [Partial] [Constrained] Correspondence Analysis and Redundancy
Analysis

Description

Function cca performs correspondence analysis, or optionally constrained correspondence analysis
(a.k.a. canonical correspondence analysis), or optionally partial constrained correspondence anal-
ysis. Function rda performs redundancy analysis, or optionally principal components analysis.
These are all very popular ordination techniques in community ecology.

http://www.wu-wien.ac.at/am/wp99.htm#29
http://www.wu-wien.ac.at/am/wp99.htm#29

42 cca

Usage

S3 method for class 'formula'
cca(formula, data, na.action = na.fail, subset = NULL,

...)
Default S3 method:
cca(X, Y, Z, ...)
S3 method for class 'formula'
rda(formula, data, scale=FALSE, na.action = na.fail,

subset = NULL, ...)
Default S3 method:
rda(X, Y, Z, scale=FALSE, ...)

Arguments

formula Model formula, where the left hand side gives the community data matrix, right
hand side gives the constraining variables, and conditioning variables can be
given within a special function Condition.

data Data frame containing the variables on the right hand side of the model formula.

X Community data matrix.

Y Constraining matrix, typically of environmental variables. Can be missing.

Z Conditioning matrix, the effect of which is removed (‘partialled out’) before
next step. Can be missing.

scale Scale species to unit variance (like correlations).

na.action Handling of missing values in constraints or conditions. The default (na.fail)
is to stop with missing value. Choice na.omit removes all rows with missing
values. Choice na.exclude keeps all observations but gives NA for results
that cannot be calculated. The WA scores of rows may be found also for missing
values in constraints. Missing values are never allowed in dependent community
data.

subset Subset of data rows. This can be a logical vector which is TRUE for kept ob-
servations, or a logical expression which can contain variables in the working
environment, data or species names of the community data.

... Other arguments for print or plot functions (ignored in other functions).

Details

Since their introduction (ter Braak 1986), constrained, or canonical, correspondence analysis and
its spin-off, redundancy analysis, have been the most popular ordination methods in community
ecology. Functions cca and rda are similar to popular proprietary software Canoco, although the
implementation is completely different. The functions are based on Legendre & Legendre’s (1998)
algorithm: in cca Chi-square transformed data matrix is subjected to weighted linear regression on
constraining variables, and the fitted values are submitted to correspondence analysis performed via
singular value decomposition (svd). Function rda is similar, but uses ordinary, unweighted linear
regression and unweighted SVD.

cca 43

The functions can be called either with matrix-like entries for community data and constraints, or
with formula interface. In general, the formula interface is preferred, because it allows a better
control of the model and allows factor constraints.

In the following sections, X, Y and Z, although referred to as matrices, are more commonly data
frames.

In the matrix interface, the community data matrix X must be given, but the other data matrices
may be omitted, and the corresponding stage of analysis is skipped. If matrix Z is supplied, its
effects are removed from the community matrix, and the residual matrix is submitted to the next
stage. This is called ‘partial’ correspondence or redundancy analysis. If matrix Y is supplied, it
is used to constrain the ordination, resulting in constrained or canonical correspondence analysis,
or redundancy analysis. Finally, the residual is submitted to ordinary correspondence analysis (or
principal components analysis). If both matrices Z and Y are missing, the data matrix is analysed
by ordinary correspondence analysis (or principal components analysis).

Instead of separate matrices, the model can be defined using a model formula. The left hand side
must be the community data matrix (X). The right hand side defines the constraining model. The
constraints can contain ordered or unordered factors, interactions among variables and functions
of variables. The defined contrasts are honoured in factor variables. The constraints can
also be matrices (but not data frames). The formula can include a special term Condition for
conditioning variables (“covariables”) “partialled out” before analysis. So the following commands
are equivalent: cca(X, Y, Z), cca(X ~ Y + Condition(Z)), where Y and Z refer to
constraints and conditions matrices respectively.

Constrained correspondence analysis is indeed a constrained method: CCA does not try to display
all variation in the data, but only the part that can be explained by the used constraints. Conse-
quently, the results are strongly dependent on the set of constraints and their transformations or
interactions among the constraints. The shotgun method is to use all environmental variables as
constraints. However, such exploratory problems are better analysed with unconstrained methods
such as correspondence analysis (decorana, corresp) or non-metric multidimensional scaling
(isoMDS) and environmental interpretation after analysis (envfit, ordisurf). CCA is a good
choice if the user has clear and strong a priori hypotheses on constraints and is not interested in the
major structure in the data set.

CCA is able to correct the curve artefact commonly found in correspondence analysis by forcing
the configuration into linear constraints. However, the curve artefact can be avoided only with a
low number of constraints that do not have a curvilinear relation with each other. The curve can
reappear even with two badly chosen constraints or a single factor. Although the formula interface
makes easy to include polynomial or interaction terms, such terms often produce curved artefacts
(that are difficult to interpret), these should probably be avoided.

According to folklore, rda should be used with “short gradients” rather than cca. However, this
is not based on research which finds methods based on Euclidean metric as uniformly weaker than
those based on Chi-squared metric. However, standardized Euclidean distance may be an appropri-
ate measures (see Hellinger standardization in decostand in particular).

Partial CCA (pCCA; or alternatively partial RDA) can be used to remove the effect of some condi-
tioning or “background” or “random” variables or “covariables” before CCA proper. In fact, pCCA
compares models cca(X ~ Z) and cca(X ~ Y + Z) and attributes their difference to the ef-
fect of Y cleansed of the effect of Z. Some people have used the method for extracting “components
of variance” in CCA. However, if the effect of variables together is stronger than sum of both sep-
arately, this can increase total Chi-square after “partialling out” some variation, and give negative

44 cca

“components of variance”. In general, such components of “variance” are not to be trusted due to
interactions between two sets of variables.

The functions have summary and plotmethods which are documented separately (see plot.cca,
summary.cca).

Value

Function cca returns a huge object of class cca, which is described separately in cca.object.

Function rda returns an object of class rda which inherits from class cca and is described in
cca.object. The scaling used in rda scores is described in a separate vignette with this package.

Author(s)

The responsible author was Jari Oksanen, but the code borrows heavily from Dave Roberts (http:
//labdsv.nr.usu.edu/).

References

The original method was by ter Braak, but the current implementations follows Legendre and Leg-
endre.

Legendre, P. and Legendre, L. (1998) Numerical Ecology. 2nd English ed. Elsevier.

McCune, B. (1997) Influence of noisy environmental data on canonical correspondence analysis.
Ecology 78, 2617-2623.

Palmer, M. W. (1993) Putting things in even better order: The advantages of canonical correspon-
dence analysis. Ecology 74,2215-2230.

Ter Braak, C. J. F. (1986) Canonical Correspondence Analysis: a new eigenvector technique for
multivariate direct gradient analysis. Ecology 67, 1167-1179.

See Also

There is a special documentation for plot.cca and summary.cca functions with their helper
functions (text.cca, points.cca, scores.cca). Function anova.cca provides an ANOVA
like permutation test for the “significance” of constraints. Automatic model building (dangerous!)
is discussed in deviance.cca. Diagnostic tools, prediction and adding new points in ordination
are discussed in goodness.cca and predict.cca. Function cca (library ade4) provide al-
ternative implementations of CCA (these are internally quite different). Function capscale is a
non-Euclidean generalization of rda. The result object is described in cca.object. You can
use as.mlm to refit ordination result as a multiple response linear model to find some descriptive
statistics. Design decisions are explained in vignette ‘decision-vegan’ which also can be
accessed with vegandocs.

Examples

data(varespec)
data(varechem)
Common but bad way: use all variables you happen to have in your
environmental data matrix
vare.cca <- cca(varespec, varechem)

http://labdsv.nr.usu.edu/
http://labdsv.nr.usu.edu/

cca.object 45

vare.cca
plot(vare.cca)
Formula interface and a better model
vare.cca <- cca(varespec ~ Al + P*(K + Baresoil), data=varechem)
vare.cca
plot(vare.cca)
`Partialling out' and `negative components of variance'
cca(varespec ~ Ca, varechem)
cca(varespec ~ Ca + Condition(pH), varechem)
RDA
data(dune)
data(dune.env)
dune.Manure <- rda(dune ~ Manure, dune.env)
plot(dune.Manure)
For further documentation:
Not run:
vegandocs("decision")

End(Not run)

cca.object Result Object from Constrained Ordination with cca, rda or capscale

Description

Ordination methods cca, rda and capscale return similar result objects. Function capscale
inherits from rda and rda inherits from cca. This inheritance structure is due to historic rea-
sons: cca was the first of these implemented in vegan. Hence the nomenclature in cca.object
reflects cca. This help page describes the internal structure of the cca object for programmers.

Value

A cca object has the following elements:

call the function call.
colsum, rowsum, rowsum.excluded

Column and row sums in cca. In rda, item colsum contains standard devia-
tions of species and rowsum is NA. If some data were removed in na.action,
the row sums of excluded observations are in item rowsum.excluded in cca
(but not in rda). The rowsum.excluded add to the total (one) of rowsum.

grand.total Grand total of community data in cca and NA in rda.

inertia Text used as the name of inertia.

method Text used as the name of the ordination method.

terms The terms component of the formula. This is missing if the ordination was
not called with formula.

46 cca.object

terminfo Further information on terms with three subitems: terms which is like the
terms component above, but lists conditions and constraints similarly; xlev
which lists the factor levels, and ordered which is TRUE to ordered factors.
This is produced by vegan internal function ordiTerminfo, and it is needed
in predict.cca with newdata. This is missing if the ordination was not
called with formula.

tot.chi Total inertia or the sum of all eigenvalues.

na.action The result of na.action if missing values in constraints were handled by
na.omit or na.exclude (or NULL if there were no missing values). This is
a vector of indices of missing value rows in the original data and a class of the
action, usually either "omit" or "exclude".

pCCA, CCA, CA
Actual ordination results for conditioned (partial), constrained and unconstrained
components of the model. Any of these can be NULL if there is no correspond-
ing component. Items pCCA, CCA and CA have similar structure, and contain
following items:

alias The names of the aliased constraints or conditions. Function alias.cca
does not access this item directly, but it finds the aliased variables and their
defining equations from the QR item.

biplot Biplot scores of constraints. Only in CCA.
centroids (Weighted) centroids of factor levels of constraints. Only in CCA.

Missing if the ordination was not called with formula.
eig Eigenvalues of axes. In CCA and CA.
envcentre (Weighted) means of the original constraining or conditioning

variables. In pCCA and in CCA.
Fit The fitted values of standardized data matrix after fitting conditions. Only

in pCCA.
QR The QR decomposition of explanatory variables as produced by qr. The

constrained ordination algorithm is based on QR decomposition of con-
straints and conditions (environmental data). The environmental data are
first centred in rda or weighted and centred in cca. The QR decom-
position is used in many functions that access cca results, and it can be
used to find many items that are not directly stored in the object. For
examples, see coef.cca, coef.rda, vif.cca, permutest.cca,
predict.cca, predict.rda, calibrate.cca. For possible uses
of this component, see qr. In pCCA and CCA.

rank The rank of the ordination component.
qrank The rank of the constraints which is the difference of the ranks of QR

decompositions in pCCA and CCA components. Only in CCA.
tot.chi Total inertia or the sum of all eigenvalues of the component.
imaginary.chi, imaginary.rank The sum and rank (number) of nega-

tive eigenvalues in capscale. Only in CA and only if negative eigenval-
ues were found in capscale.

u (Weighted) orthonormal site scores. Please note that scaled scores are not
stored in the cca object, but they are made when the object is accessed with
functions like scores.cca, summary.cca or plot.cca, or their rda

cca.object 47

variants. Only in CCA and CA. In the CCA component these are the so-called
linear combination scores.

u.eig u scaled by eigenvalues. There is no guarantee that any .eig variants
of scores will be kept in the future releases.

v (Weighted) orthonormal species scores. If missing species were omitted from
the analysis, this will contain attribute na.action that lists the omitted
species. Only in CCA and CA.

v.eig v weighted by eigenvalues.
wa Site scores found as weighted averages (cca) or weighted sums (rda) of

v with weights Xbar, but the multiplying effect of eigenvalues removed.
These often are known as WA scores in cca. Only in CCA.

wa.eig The direct result of weighted averaging or weighted summation (ma-
trix multiplication) with the resulting eigenvalue inflation.

wa.excluded, u.excluded WA scores for rows removed by na.action
= na.exclude in CCA and CA components if these could be calculated.

Xbar The standardized data matrix after previous stages of analysis. In CCA
this is after possible pCCA or after partialling out the effects of conditions,
and in CA after both pCCA and CCA. In cca the standardization is Chi-
square, and in rda centring and optional scaling by species standard devi-
ations using function scale.

NA Action and Subset

If the constraints had missing values or subsets, and na.action was set to na.exclude or
na.omit, the result will have some extra items:

subset subset evaluated as a logical vector (TRUE for included cases).

na.action The object returned by na.action which is a named vector of indices of removed
items. The class of the vector is either "omit" or "exclude" as set by na.action. The
na.action is applied after subset so that the indices refer to the subset data.

residuals.zombie A zombie vector of the length of number of rows in the residual ordination.
Some standard R functions find the number of valid observations from this vector, and it is
provided for their use although this is useless in vegan.

rowsum.excluded Row sums of removed observations. Only in cca.

CCA$wa.excluded The WA scores for sites (found from community data) in constrained or-
dination if na.action was na.exclude and the scores could be calculated. The scores
cannot be found for capscale and in partial ordination.

CA$u.excluded Row scores for sites in unconstrained ordination with identical conditions as
above.

capscale

Function capscale may add some items depending on its arguments:

metaMDSdist The data set name if metaMDSdist = TRUE.

ac Additive constant used if add = TRUE.

adjust Adjustment of dissimilarities: see capscale, section “Notes”.

48 CCorA

Author(s)

Jari Oksanen

References

Legendre, P. and Legendre, L. (1998) Numerical Ecology. 2nd English ed. Elsevier.

See Also

The description here provides a hacker’s interface. For more user friendly access to the cca object
see alias.cca, coef.cca, deviance.cca, predict.cca, scores.cca, summary.cca,
vif.cca, weights.cca, spenvcor or rda variants of these functions. You can use as.mlm
to cast a cca.object into result of multiple response linear model (lm) in order to more easily
find some statistics (which in principle could be directly found from the cca.object as well).

Examples

Some species will be missing in the analysis, because only a subset
of sites is used below.
data(dune)
data(dune.env)
mod <- cca(dune[1:15,] ~ ., dune.env[1:15,])
Look at the names of missing species
attr(modCCAv, "na.action")
Look at the names of the aliased variables:
modCCAalias
Access directly constrained weighted orthonormal species and site
scores, constrained eigenvalues and margin sums.
spec <- modCCAv
sites <- modCCAu
eig <- modCCAeig
rsum <- mod$rowsum
csum <- mod$colsum

CCorA Canonical Correlation Analysis

Description

Canonical correlation analysis, following Brian McArdle’s unpublished graduate course notes, plus
improvements to allow the calculations in the case of very sparse and collinear matrices, and per-
mutation test of Pillai’s trace statistic.

Usage

CCorA(Y, X, stand.Y=FALSE, stand.X=FALSE, nperm = 0, ...)

S3 method for class 'CCorA'
biplot(x, plot.type="ov", xlabs, plot.axes = 1:2, int=0.5,

col.Y="red", col.X="blue", cex=c(0.7,0.9), ...)

CCorA 49

Arguments

Y Left matrix (object class: matrix or data.frame).
X Right matrix (object class: matrix or data.frame).
stand.Y Logical; should Y be standardized?
stand.X Logical; should X be standardized?
nperm Numeric; number of permutations to evaluate the significance of Pillai’s trace,

e.g. nperm=99 or nperm=999.
x CCoaR result object.
plot.type A character string indicating which of the following plots should be produced:

"objects", "variables", "ov" (separate graphs for objects and vari-
ables), or "biplots". Any unambiguous subset containing the first letters
of these names can be used instead of the full names.

xlabs Row labels. The default is to use row names, NULL uses row numbers instead,
and NA suppresses plotting row names completely.

plot.axes A vector with 2 values containing the order numbers of the canonical axes to be
plotted. Default: first two axes.

int Radius of the inner circles plotted as visual references in the plots of the vari-
ables. Default: int=0.5. With int=0, no inner circle is plotted.

col.Y Color used for objects and variables in the first data table (Y) plots. In biplots,
the objects are in black.

col.X Color used for objects and variables in the second data table (X) plots.
cex A vector with 2 values containing the size reduction factors for the object and

variable names, respectively, in the plots. Default values: cex=c(0.7,0.9).
... Other arguments passed to these functions. The function biplot.CCorA

passes graphical arguments to biplot and biplot.default. CCorA cur-
rently ignores extra arguments.

Details

Canonical correlation analysis (Hotelling 1936) seeks linear combinations of the variables of Y that
are maximally correlated to linear combinations of the variables of X. The analysis estimates the re-
lationships and displays them in graphs. Pillai’s trace statistic is computed and tested parametrically
(F-test); a permutation test is also available.

Algorithmic note – The blunt approach would be to read the two matrices, compute the covariance
matrices, then the matrix S12 %*% inv(S22) %*% t(S12) %*% inv(S11). Its trace is
Pillai’s trace statistic. This approach may fail, however, when there is heavy multicollinearity in
very sparse data matrices. The safe approach is to replace all data matrices by their PCA object
scores.

The function can produce different types of plots depending on the option chosen: "objects"
produces two plots of the objects, one in the space of Y, the second in the space of X; "variables"
produces two plots of the variables, one of the variables of Y in the space of Y, the second of the
variables of X in the space of X; "ov" produces four plots, two of the objects and two of the vari-
ables; "biplots" produces two biplots, one for the first matrix (Y) and one for second matrix (X)
solutions. For biplots, the function passes all arguments to biplot.default; consult its help
page for configuring biplots.

50 CCorA

Value

Function CCorA returns a list containing the following elements:

Pillai Pillai’s trace statistic = sum of the canonical eigenvalues.
Eigenvalues

Canonical eigenvalues. They are the squares of the canonical correlations.

CanCorr Canonical correlations.

Mat.ranks Ranks of matrices Y and X.
RDA.Rsquares

Bimultivariate redundancy coefficients (R-squares) of RDAs of Y|X and X|Y.
RDA.adj.Rsq

RDA.Rsquares adjusted for n and the number of explanatory variables.

nperm Number of permutations.

p.Pillai Parametric probability value associated with Pillai’s trace.

p.perm Permutational probability associated with Pillai’s trace.

Cy Object scores in Y biplot.

Cx Object scores in X biplot.

corr.Y.Cy Scores of Y variables in Y biplot, computed as cor(Y,Cy).

corr.X.Cx Scores of X variables in X biplot, computed as cor(X,Cx).

corr.Y.Cx cor(Y,Cy) available for plotting variables Y in space of X manually.

corr.X.Cy cor(X,Cx) available for plotting variables X in space of Y manually.

call Call to the CCorA function.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal. Implemented in
vegan with the help of Jari Oksanen.

References

Hotelling, H. 1936. Relations between two sets of variates. Biometrika 28: 321-377.

Legendre, P. 2005. Species associations: the Kendall coefficient of concordance revisited. Journal
of Agricultural, Biological, and Environmental Statistics 10: 226-245.

Examples

Example using two mite groups. The mite data are available in vegan
data(mite)
Two mite species associations (Legendre 2005, Fig. 4)
group.1 <- c(1,2,4:8,10:15,17,19:22,24,26:30)
group.2 <- c(3,9,16,18,23,25,31:35)
Separate Hellinger transformations of the two groups of species
mite.hel.1 <- decostand(mite[,group.1], "hel")
mite.hel.2 <- decostand(mite[,group.2], "hel")
rownames(mite.hel.1) = paste("S",1:nrow(mite),sep="")

contribdiv 51

rownames(mite.hel.2) = paste("S",1:nrow(mite),sep="")
out <- CCorA(mite.hel.1, mite.hel.2)
out
biplot(out, "ob") # Two plots of objects
biplot(out, "v", cex=c(0.7,0.6)) # Two plots of variables
biplot(out, "ov", cex=c(0.7,0.6)) # Four plots (2 for objects, 2 for variables)
biplot(out, "b", cex=c(0.7,0.6)) # Two biplots
biplot(out, xlabs = NA, plot.axes = c(3,5)) # Plot axes 3, 5. No object names
biplot(out, plot.type="biplots", xlabs = NULL) # Replace object names by numbers

Example using random numbers. No significant relationship is expected
mat1 <- matrix(rnorm(60),20,3)
mat2 <- matrix(rnorm(100),20,5)
out2 = CCorA(mat1, mat2, nperm=99)
out2
biplot(out2, "b")

contribdiv Contribution Diversity Approach

Description

The contribution diversity approach is based in the differentiation of within-unit and among-unit
diversity by using additive diversity partitioning and unit distinctiveness.

Usage

contribdiv(comm, index = c("richness", "simpson"),
relative = FALSE, scaled = TRUE, drop.zero = FALSE)

S3 method for class 'contribdiv'
plot(x, sub, xlab, ylab, ylim, col, ...)

Arguments

comm The community data matrix with samples as rows and species as column.

index Character, the diversity index to be calculated.

relative Logical, if TRUE then contribution diversity values are expressed as their signed
deviation from their mean. See details.

scaled Logical, if TRUE then relative contribution diversity values are scaled by the sum
of gamma values (if index = "richness") or by sum of gamma values
times the number of rows in comm (if index = "simpson"). See details.

drop.zero Logical, should empty rows dropped from the result? If empty rows are not
dropped, their corresponding results will be NAs.

x An object of class "contribdiv".
sub, xlab, ylab, ylim, col

Graphical arguments passed to plot.

... Other arguments passed to plot.

52 contribdiv

Details

This approach was proposed by Lu et al. (2007). Additive diversity partitioning (see adipart for
more references) deals with the relation of mean alpha and the total (gamma) diversity. Although
alpha diversity values often vary considerably. Thus, contributions of the sites to the total diversity
are uneven. This site specific contribution is measured by contribution diversity components. A
unit that has e.g. many unique species will contribute more to the higher level (gamma) diversity
than another unit with the same number of species, but all of which common.

Distinctiveness of species j can be defined as the number of sites where it occurs (nj), or the sum
of its relative frequencies (pj). Relative frequencies are computed sitewise and sumjpijs at site i
sum up to 1.

The contribution of site i to the total diversity is given by alphai = sumj(1/nij) when dealing
with richness and alphai = sum(pij ∗ (1− pij)) for the Simpson index.

The unit distinctiveness of site i is the average of the species distinctiveness, averaging only those
species which occur at site i. For species richness: alphai = mean(ni) (in the paper, the second
equation contains a typo, n is without index). For the Simpson index: alphai = mean(ni).

The Lu et al. (2007) gives an in-depth description of the different indices.

Value

An object of class "contribdiv" in heriting from data frame.

Returned values are alpha, beta and gamma components for each sites (rows) of the community
matrix. The "diff.coef" attribute gives the differentiation coefficient (see Examples).

Author(s)

Péter Sólymos, <solymos@ualberta.ca>

References

Lu, H. P., Wagner, H. H. and Chen, X. Y. 2007. A contribution diversity approach to evaluate
species diversity. Basic and Applied Ecology, 8, 1–12.

See Also

adipart, diversity

Examples

Artificial example given in
Table 2 in Lu et al. 2007
x <- matrix(c(
1/3,1/3,1/3,0,0,0,
0,0,1/3,1/3,1/3,0,
0,0,0,1/3,1/3,1/3),
3, 6, byrow = TRUE,
dimnames = list(LETTERS[1:3],letters[1:6]))
x
Compare results with Table 2

decorana 53

contribdiv(x, "richness")
contribdiv(x, "simpson")
Relative contribution (C values), compare with Table 2
(cd1 <- contribdiv(x, "richness", relative = TRUE, scaled = FALSE))
(cd2 <- contribdiv(x, "simpson", relative = TRUE, scaled = FALSE))
Differentiation coefficients
attr(cd1, "diff.coef") # D_ST
attr(cd2, "diff.coef") # D_DT
BCI data set
data(BCI)
opar <- par(mfrow=c(2,2))
plot(contribdiv(BCI, "richness"), main = "Absolute")
plot(contribdiv(BCI, "richness", relative = TRUE), main = "Relative")
plot(contribdiv(BCI, "simpson"))
plot(contribdiv(BCI, "simpson", relative = TRUE))
par(opar)

decorana Detrended Correspondence Analysis and Basic Reciprocal Averaging

Description

Performs detrended correspondence analysis and basic reciprocal averaging or orthogonal corre-
spondence analysis.

Usage

decorana(veg, iweigh=0, iresc=4, ira=0, mk=26, short=0,
before=NULL, after=NULL)

S3 method for class 'decorana'
plot(x, choices=c(1,2), origin=TRUE,

display=c("both","sites","species","none"),
cex = 0.8, cols = c(1,2), type, xlim, ylim, ...)

S3 method for class 'decorana'
text(x, display = c("sites", "species"), labels,

choices = 1:2, origin = TRUE, select, ...)

S3 method for class 'decorana'
points(x, display = c("sites", "species"),

choices=1:2, origin = TRUE, select, ...)

S3 method for class 'decorana'
summary(object, digits=3, origin=TRUE,

display=c("both", "species","sites","none"), ...)

S3 method for class 'summary.decorana'

54 decorana

print(x, head = NA, tail = head, ...)

downweight(veg, fraction = 5)

S3 method for class 'decorana'
scores(x, display=c("sites","species"), choices=1:4,

origin=TRUE, ...)

Arguments

veg Community data, a matrix-like object.

iweigh Downweighting of rare species (0: no).

iresc Number of rescaling cycles (0: no rescaling).

ira Type of analysis (0: detrended, 1: basic reciprocal averaging).

mk Number of segments in rescaling.

short Shortest gradient to be rescaled.

before Hill’s piecewise transformation: values before transformation.

after Hill’s piecewise transformation: values after transformation – these must corre-
spond to values in before.

x, object A decorana result object.

choices Axes shown.

origin Use true origin even in detrended correspondence analysis.

display Display only sites, only species, both or neither.

cex Plot character size.

cols Colours used for sites and species.

type Type of plots, partial match to "text", "points" or "none".

labels Optional text to be used instead of row names.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

xlim, ylim the x and y limits (min,max) of the plot.

digits Number of digits in summary output.

head, tail Number of rows printed from the head and tail of species and site scores. Default
NA prints all.

fraction Abundance fraction where downweighting begins.

... Other arguments for plot function.

Details

In late 1970s, correspondence analysis became the method of choice for ordination in vegetation
science, since it seemed better able to cope with non-linear species responses than principal compo-
nents analysis. However, even correspondence analysis can produce an arc-shaped configuration of
a single gradient. Mark Hill developed detrended correspondence analysis to correct two assumed

decorana 55

‘faults’ in correspondence analysis: curvature of straight gradients and packing of sites at the ends
of the gradient.

The curvature is removed by replacing the orthogonalization of axes with detrending. In orthog-
onalization successive axes are made non-correlated, but detrending should remove all systematic
dependence between axes. Detrending is performed using a five-segment smoothing window with
weights (1,2,3,2,1) on mk segments — which indeed is more robust than the suggested alternative
of detrending by polynomials. The packing of sites at the ends of the gradient is undone by rescal-
ing the axes after extraction. After rescaling, the axis is supposed to be scaled by ‘SD’ units, so
that the average width of Gaussian species responses is supposed to be one over whole axis. Other
innovations were the piecewise linear transformation of species abundances and downweighting of
rare species which were regarded to have an unduly high influence on ordination axes.

It seems that detrending actually works by twisting the ordination space, so that the results look non-
curved in two-dimensional projections (‘lolly paper effect’). As a result, the points usually have
an easily recognized triangular or diamond shaped pattern, obviously an artefact of detrending.
Rescaling works differently than commonly presented, too. decorana does not use, or even
evaluate, the widths of species responses. Instead, it tries to equalize the weighted variance of
species scores on axis segments (parameter mk has only a small effect, since decorana finds the
segment number from the current estimate of axis length). This equalizes response widths only
for the idealized species packing model, where all species initially have unit width responses and
equally spaced modes.

The summary method prints the ordination scores, possible prior weights used in downweighting,
and the marginal totals after applying these weights. The plotmethod plots species and site scores.
Classical decorana scaled the axes so that smallest site score was 0 (and smallest species score
was negative), but summary, plot and scores use the true origin, unless origin = FALSE.

In addition to proper eigenvalues, the function also reports ‘decorana values’ in detrended analysis.
These ‘decorana values’ are the values that the legacy code of decorana returns as ‘eigenvalues’.
They are estimated internally during iteration, and it seems that detrending interferes the estimation
so that these values are generally too low and have unclear interpretation. Moreover, ‘decorana
values’ are estimated before rescaling which will change the eigenvalues. The proper eigenvalues
are estimated after extraction of the axes and they are the ratio of biased weighted variances of site
and species scores even in detrended and rescaled solutions. The ‘decorana values’ are provided
only for the compatibility with legacy software, and they should not be used.

Value

decorana returns an object of class "decorana", which has print, summary and plot
methods.

Note

decorana uses the central numerical engine of the original Fortran code (which is in the public
domain), or about 1/3 of the original program. I have tried to implement the original behaviour,
although a great part of preparatory steps were written in R language, and may differ somewhat
from the original code. However, well-known bugs are corrected and strict criteria used (Oksanen
& Minchin 1997).

Please note that there really is no need for piecewise transformation or even downweighting within
decorana, since there are more powerful and extensive alternatives in R, but these options are

56 decorana

included for compliance with the original software. If a different fraction of abundance is needed in
downweighting, function downweightmust be applied before decorana. Function downweight
indeed can be applied prior to correspondence analysis, and so it can be used together with cca,
too.

The function finds only four axes: this is not easily changed.

Author(s)

Mark O. Hill wrote the original Fortran code, the R port was by Jari Oksanen.

References

Hill, M.O. and Gauch, H.G. (1980). Detrended correspondence analysis: an improved ordination
technique. Vegetatio 42, 47–58.

Oksanen, J. and Minchin, P.R. (1997). Instability of ordination results under changes in input data
order: explanations and remedies. Journal of Vegetation Science 8, 447–454.

See Also

For unconstrained ordination, non-metric multidimensional scaling in isoMDS may be more robust
(see also metaMDS). Constrained (or ‘canonical’) correspondence analysis can be made with cca.
Orthogonal correspondence analysis can be made with corresp, or with decorana or cca, but
the scaling of results vary (and the one in decorana corresponds to scaling = -1 in cca.).
See predict.decorana for adding new points to an ordination.

Examples

data(varespec)
vare.dca <- decorana(varespec)
vare.dca
summary(vare.dca)
plot(vare.dca)

the detrending rationale:
gaussresp <- function(x,u) exp(-(x-u)^2/2)
x <- seq(0,6,length=15) ## The gradient
u <- seq(-2,8,len=23) ## The optima
pack <- outer(x,u,gaussresp)
matplot(x, pack, type="l", main="Species packing")
opar <- par(mfrow=c(2,2))
plot(scores(prcomp(pack)), asp=1, type="b", main="PCA")
plot(scores(decorana(pack, ira=1)), asp=1, type="b", main="CA")
plot(scores(decorana(pack)), asp=1, type="b", main="DCA")
plot(scores(cca(pack ~ x), dis="sites"), asp=1, type="b", main="CCA")

Let's add some noise:
noisy <- (0.5 + runif(length(pack)))*pack
par(mfrow=c(2,1))
matplot(x, pack, type="l", main="Ideal model")
matplot(x, noisy, type="l", main="Noisy model")
par(mfrow=c(2,2))

decostand 57

plot(scores(prcomp(noisy)), type="b", main="PCA", asp=1)
plot(scores(decorana(noisy, ira=1)), type="b", main="CA", asp=1)
plot(scores(decorana(noisy)), type="b", main="DCA", asp=1)
plot(scores(cca(noisy ~ x), dis="sites"), asp=1, type="b", main="CCA")
par(opar)

decostand Standardization Methods for Community Ecology

Description

The function provides some popular (and effective) standardization methods for community ecolo-
gists.

Usage

decostand(x, method, MARGIN, range.global, logbase = 2, na.rm=FALSE, ...)

wisconsin(x)

Arguments

x Community data, a matrix-like object.

method Standardization method. See Details for available options.

MARGIN Margin, if default is not acceptable. 1 = rows, and 2 = columns of x.

range.global Matrix from which the range is found in method = "range". This allows
using same ranges across subsets of data. The dimensions of MARGIN must
match with x.

logbase The logarithm base used in method = "log".

na.rm Ignore missing values in row or column standardizations.

... Other arguments to the function (ignored).

Details

The function offers following standardization methods for community data:

• total: divide by margin total (default MARGIN = 1).

• max: divide by margin maximum (default MARGIN = 2).

• freq: divide by margin maximum and multiply by the number of non-zero items, so that the
average of non-zero entries is one (Oksanen 1983; default MARGIN = 2).

• normalize: make margin sum of squares equal to one (default MARGIN = 1).

• range: standardize values into range 0 . . . 1 (default MARGIN = 2). If all values are con-
stant, they will be transformed to 0.

• standardize: scale x to zero mean and unit variance (default MARGIN = 2).

58 decostand

• pa: scale x to presence/absence scale (0/1).

• chi.square: divide by row sums and square root of column sums, and adjust for square
root of matrix total (Legendre & Gallagher 2001). When used with the Euclidean distance,
the distances should be similar to the Chi-square distance used in correspondence analysis.
However, the results from cmdscale would still differ, since CA is a weighted ordination
method (default MARGIN = 1).

• hellinger: square root of method = "total" (Legendre & Gallagher 2001).

• log: logarithmic transformation as suggested by Anderson et al. (2006): logb(x) + 1 for x >
0, where b is the base of the logarithm; zeros are left as zeros. Higher bases give less weight to
quantities and more to presences, and logbase = Inf gives the presence/absence scaling.
Please note this is not log(x + 1). Anderson et al. (2006) suggested this for their (strongly)
modified Gower distance, but the standardization can be used independently of distance in-
dices.

Standardization, as contrasted to transformation, means that the entries are transformed relative to
other entries.

All methods have a default margin. MARGIN=1 means rows (sites in a normal data set) and
MARGIN=2 means columns (species in a normal data set).

Command wisconsin is a shortcut to common Wisconsin double standardization where species
(MARGIN=2) are first standardized by maxima (max) and then sites (MARGIN=1) by site totals
(tot).

Most standardization methods will give nonsense results with negative data entries that normally
should not occur in the community data. If there are empty sites or species (or constant with
method = "range"), many standardization will change these into NaN.

Value

Returns the standardized data frame, and adds an attribute "decostand" giving the name of
applied standardization "method".

Note

Common transformations can be made with standard R functions.

Author(s)

Jari Oksanen and Etienne Laliberté (method = "log").

References

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9, 683–693.

Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of
species data. Oecologia 129; 271–280.

Oksanen, J. (1983) Ordination of boreal heath-like vegetation with principal component analysis,
correspondence analysis and multidimensional scaling. Vegetatio 52; 181–189.

designdist 59

Examples

data(varespec)
sptrans <- decostand(varespec, "max")
apply(sptrans, 2, max)
sptrans <- wisconsin(varespec)

Chi-square: PCA similar but not identical to CA.
Use wcmdscale for weighted analysis and identical results.
sptrans <- decostand(varespec, "chi.square")
plot(procrustes(rda(sptrans), cca(varespec)))

designdist Design your own Dissimilarities

Description

You can define your own dissimilarities using terms for shared and total quantities, number of rows
and number of columns. The shared and total quantities can be binary, quadratic or minimum
terms. In binary terms, the shared component is number of shared species, and totals are numbers
of species on sites. The quadratic terms are cross-products and sums of squares, and minimum
terms are sums of parallel minima and row totals.

Usage

designdist(x, method = "(A+B-2*J)/(A+B)",
terms = c("binary", "quadratic", "minimum"),
abcd = FALSE, name)

Arguments

x Input data.

method Equation for your dissimilarities. This can use terms J for shared quantity, A and
B for totals, N for the number of rows (sites) and P for the number of columns
(species). The equation can also contain any R functions that accepts vector
arguments and returns vectors of the same length.

terms How shared and total components are found. For vectors x and y the "quadratic"
terms are J = sum(x*y), A = sum(x^2), B = sum(y^2), and "minimum"
terms are J = sum(pmin(x,y)), A = sum(x) and B = sum(y), and
"binary" terms are either of these after transforming data into binary form
(shared number of species, and number of species for each row).

abcd Use 2x2 contingency table notation for binary data: a is the number of shared
species, b and c are the numbers of species occurring only one of the sites but
not in both, and d is the number of species that occur on neither of the sites.

name The name you want to use for your index. The default is to combine the method
equation and terms argument.

60 designdist

Details

Most popular dissimilarity measures in ecology can be expressed with the help of terms J, A and B,
and some also involve matrix dimensions N and P. Some examples you can define in designdist
are:

A+B-2*J "quadratic" squared Euclidean
A+B-2*J "minimum" Manhattan
(A+B-2*J)/(A+B) "minimum" Bray-Curtis
(A+B-2*J)/(A+B) "binary" Sørensen
(A+B-2*J)/(A+B-J) "binary" Jaccard
(A+B-2*J)/(A+B-J) "minimum" Ružička
(A+B-2*J)/(A+B-J) "quadratic" (dis)similarity ratio
1-J/sqrt(A*B) "binary" Ochiai
1-J/sqrt(A*B) "quadratic" cosine complement
1-phyper(J-1, A, P-A, B) "binary" Raup-Crick

The function designdist can implement most dissimilarity indices in vegdist or elsewhere,
and it can also be used to implement many other indices, amongst them, most of those described
in Legendre & Legendre (1998). It can also be used to implement all indices of beta diversity
described in Koleff et al. (2003), but there also is a specific function betadiver for the purpose.

If you want to implement binary dissimilarities based on the 2x2 contingency table notation, you
can set abcd = TRUE. In this notation a = J, b = A-J, c = B-J, d = P-A-B+J. This
notation is often used instead of the more more tangible default notation for reasons that are opaque
to me.

Value

designdist returns an object of class dist.

Note

designdist does not use compiled code, and may be slow or use plenty of memory in large data
sets. It is very easy to make errors when defining a function by hand. If an index is available in a
function using compiled code, it is better to use the canned alternative.

Author(s)

Jari Oksanen

References

Koleff, P., Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence–absence data.
J. Animal Ecol. 72, 367–382.

Legendre, P. and Legendre, L. (1998) Numerical Ecology. 2nd English ed. Elsevier

See Also

vegdist, betadiver, dist.

deviance.cca 61

Examples

Arrhenius dissimilarity: the value of z in the species-area model
S = c*A^z when combining two sites of equal areas, where S is the
number of species, A is the area, and c and z are model parameters.
The A below is not the area (which cancels out), but number of
species in one of the sites, as defined in designdist().
data(BCI)
dis <- designdist(BCI, "(log(A+B-J)-log(A+B)+log(2))/log(2)")
This can be used in clustering or ordination...
ordiplot(cmdscale(dis))
... or in analysing beta diversity (without gradients)
summary(dis)

deviance.cca Statistics Resembling Deviance and AIC for Constrained Ordination

Description

The functions extract statistics that resemble deviance and AIC from the result of constrained cor-
respondence analysis cca or redundancy analysis rda. These functions are rarely needed directly,
but they are called by step in automatic model building. Actually, cca and rda do not have AIC
and these functions are certainly wrong.

Usage

S3 method for class 'cca'
deviance(object, ...)

S3 method for class 'cca'
extractAIC(fit, scale = 0, k = 2, ...)

Arguments

object the result of a constrained ordination (cca or rda).

fit fitted model from constrained ordination.

scale optional numeric specifying the scale parameter of the model, see scale in
step.

k numeric specifying the "weight" of the equivalent degrees of freedom (=:edf)
part in the AIC formula.

... further arguments.

62 deviance.cca

Details

The functions find statistics that resemble deviance and AIC in constrained ordination. Actually,
constrained ordination methods do not have a log-Likelihood, which means that they cannot have
AIC and deviance. Therefore you should not use these functions, and if you use them, you should
not trust them. If you use these functions, it remains as your responsibility to check the adequacy
of the result.

The deviance of cca is equal to the Chi-square of the residual data matrix after fitting the con-
straints. The deviance of rda is defined as the residual sum of squares. The deviance function of
rda is also used for capscale. Function extractAIC mimics extractAIC.lm in translat-
ing deviance to AIC.

There is little need to call these functions directly. However, they are called implicitly in step
function used in automatic selection of constraining variables. You should check the resulting model
with some other criteria, because the statistics used here are unfounded. In particular, the penalty
k is not properly defined, and the default k = 2 is not justified theoretically. If you have only
continuous covariates, the step function will base the model building on magnitude of eigenvalues,
and the value of k only influences the stopping point (but the variables with the highest eigenvalues
are not necessarily the most significant in permutation tests in anova.cca). If you also have multi-
class factors, the value of k will have a capricious effect in model building. The step function will
pass arguments to add1.cca and drop1.cca, and setting test = "permutation" will
provide permutation tests of each deletion and addition which can help in judging the validity of the
model building.

Value

The deviance functions return “deviance”, and extractAIC returns effective degrees of free-
dom and “AIC”.

Note

These functions are unfounded and untested and they should not be used directly or implicitly.
Moreover, usual caveats in using step are very valid.

Author(s)

Jari Oksanen

References

Godínez-Domínguez, E. & Freire, J. (2003) Information-theoretic approach for selection of spatial
and temporal models of community organization. Marine Ecology Progress Series 253, 17–24.

See Also

cca, rda, anova.cca, step, extractAIC, add1.cca, drop1.cca.

dispindmorisita 63

Examples

The deviance of correspondence analysis equals Chi-square
data(dune)
data(dune.env)
chisq.test(dune)
deviance(cca(dune))
Backward elimination from a complete model "dune ~ ."
ord <- cca(dune ~ ., dune.env)
ord
step(ord)
Stepwise selection (forward from an empty model "dune ~ 1")
step(cca(dune ~ 1, dune.env), scope = formula(ord))
ANOVA: added variable + the first left out
anova(cca(dune ~ Moisture + Management, dune.env), permut=200,

by = "terms")

dispindmorisita Morisita index of intraspecific aggregation

Description

Calculates the Morisita index of dispersion, standardized index values, and the so called clumped-
ness and uniform indices.

Usage

dispindmorisita(x, unique.rm = FALSE, crit = 0.05)

Arguments

x community data matrix, with sites (samples) as rows and species as columns.

unique.rm logical, if TRUE, unique species (occurring in only one sample) are removed
from the result.

crit two-sided p-value used to calculate critical Chi-squared values.

Details

The Morisita index of dispersion is defined as (Morisita 1959, 1962):

Imor = n * (sum(xi^2) - sum(xi)) / (sum(xi)^2 - sum(xi))

where xi is the count of individuals in sample i, and n is the number of samples (i = 1, 2, . . . , n).
Imor has values from 0 to n. In uniform (hyperdispersed) patterns its value falls between 0 and 1,
in clumped patterns it falls between 1 and n. For increasing sample sizes (i.e. joining neighbouring
quadrats), Imor goes to n as the quadrat size approaches clump size. For random patterns, Imor =
1 and counts in the samples follow Poisson frequency distribution.

The deviation from random expectation can be tested using critical values of the Chi-squared dis-
tribution with n − 1 degrees of freedom. Confidence interval around 1 can be calculated by the

64 dispindmorisita

clumped Mclu and uniform Muni indices (Hairston et al. 1971, Krebs 1999) (Chi2Lower and
Chi2Upper refers to e.g. 0.025 and 0.975 quantile values of the Chi-squared distribution with n− 1
degrees of freedom, respectively, for alpha = 0.05):

Mclu = (Chi2Lower - n + sum(xi)) / (sum(xi) - 1)

Muni = (Chi2Upper - n + sum(xi)) / (sum(xi) - 1)

Smith-Gill (1975) proposed scaling of Morisita index from [0, n] interval into [-1, 1], and setting
up -0.5 and 0.5 values as confidence limits around random distribution with rescaled value 0. To
rescale the Morisita index, one of the following four equations apply to calculate the standardized
index Imst:

(a) Imor >= Mclu > 1: Imst = 0.5 + 0.5 (Imor - Mclu) / (n - Mclu),

(b) Mclu > Imor >= 1: Imst = 0.5 (Imor - 1) / (Mclu - 1),

(c) 1 > Imor > Muni: Imst = -0.5 (Imor - 1) / (Muni - 1),

(d) 1 > Muni > Imor: Imst = -0.5 + 0.5 (Imor - Muni) / Muni.

Value

Returns a data frame with as many rows as the number of columns in the input data, and with four
columns. Columns are: imor unstandardized Morisita index, mclu the clumpedness index, muni
the uniform index, imst standardized Morisita index.

Note

A common error found in several papers is that when standardizing as in the case (b), the denomina-
tor is given as Muni - 1. This results in a hiatus in the [0, 0.5] interval of the standardized index.
The root of this typo is the book of Krebs (1999), see the Errata for the book (Page 217, http:
//www.zoology.ubc.ca/~krebs/downloads/errors_2nd_printing.pdf).

Author(s)

Péter Sólymos, <solymos@ualberta.ca>

References

Morisita, M. 1959. Measuring of the dispersion of individuals and analysis of the distributional
patterns. Mem. Fac. Sci. Kyushu Univ. Ser. E 2, 215–235.

Morisita, M. 1962. Id-index, a measure of dispersion of individuals. Res. Popul. Ecol. 4, 1–7.

Smith-Gill, S. J. 1975. Cytophysiological basis of disruptive pigmentary patterns in the leopard
frog, Rana pipiens. II. Wild type and mutant cell specific patterns. J. Morphol. 146, 35–54.

Hairston, N. G., Hill, R. and Ritte, U. 1971. The interpretation of aggregation patterns. In: Patil,
G. P., Pileou, E. C. and Waters, W. E. eds. Statistical Ecology 1: Spatial Patterns and Statistical
Distributions. Penn. State Univ. Press, University Park.

Krebs, C. J. 1999. Ecological Methodology. 2nd ed. Benjamin Cummings Publishers.

http://www.zoology.ubc.ca/~krebs/downloads/errors_2nd_printing.pdf
http://www.zoology.ubc.ca/~krebs/downloads/errors_2nd_printing.pdf

distconnected 65

Examples

data(dune)
x <- dispindmorisita(dune)
x
y <- dispindmorisita(dune, unique.rm = TRUE)
y
dim(x) ## with unique species
dim(y) ## unique species removed

distconnected Connectedness of Dissimilarities

Description

Function distconnected finds groups that are connected disregarding dissimilarities that are
at or above a threshold or NA. The function can be used to find groups that can be ordinated to-
gether or transformed by stepacross. Function no.shared returns a logical dissimilarity
object, where TRUE means that sites have no species in common. This is a minimal structure for
distconnected or can be used to set missing values to dissimilarities.

Usage

distconnected(dis, toolong = 1, trace = TRUE)

no.shared(x)

Arguments

dis Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist
are some functions producing suitable dissimilarity data.

toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that
dissimilarities close to the limit will be made NA, too. If toolong = 0 (or
negative), no dissimilarity is regarded as too long.

trace Summarize results of distconnected

x Community data.

Details

Data sets are disconnected if they have sample plots or groups of sample plots which share no
species with other sites or groups of sites. Such data sets cannot be sensibly ordinated by any
unconstrained method because these subsets cannot be related to each other. For instance, corre-
spondence analysis will polarize these subsets with eigenvalue 1. Neither can such dissimilarities be
transformed with stepacross, because there is no path between all points, and result will contain
NAs. Function distconnectedwill find such subsets in dissimilarity matrices. The function will
return a grouping vector that can be used for sub-setting the data. If data are connected, the result

66 diversity

vector will be all 1s. The connectedness between two points can be defined either by a threshold
toolong or using input dissimilarities with NAs.

Function no.shared returns a dist structure having value TRUE when two sites have nothing in
common, and value FALSE when they have at least one shared species. This is a minimal structure
that can be analysed with distconnected. The function can be used to select dissimilarities
with no shared species in indices which do not have a fixed upper limit.

Function distconnected uses depth-first search (Sedgewick 1990).

Value

Function distconnected returns a vector for observations using integers to identify connected
groups. If the data are connected, values will be all 1. Function no.shared returns an object of
class dist.

Author(s)

Jari Oksanen

References

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

See Also

vegdist or dist for getting dissimilarities, stepacross for a case where you may need
distconnected, and for connecting points spantree.

Examples

There are no disconnected data in vegan, and the following uses an
extremely low threshold limit for connectedness. This is for
illustration only, and not a recommended practice.
data(dune)
dis <- vegdist(dune)
gr <- distconnected(dis, toolong=0.4)
Make sites with no shared species as NA in Manhattan dissimilarities
dis <- vegdist(dune, "manhattan")
is.na(dis) <- no.shared(dune)

diversity Ecological Diversity Indices and Rarefaction Species Richness

Description

Shannon, Simpson, and Fisher diversity indices and rarefied species richness for community ecolo-
gists.

diversity 67

Usage

diversity(x, index = "shannon", MARGIN = 1, base = exp(1))
rarefy(x, sample, se = FALSE, MARGIN = 1)
rrarefy(x, sample)
drarefy(x, sample)
fisher.alpha(x, MARGIN = 1, se = FALSE, ...)
specnumber(x, MARGIN = 1)

Arguments

x Community data, a matrix-like object or a vector.

index Diversity index, one of "shannon", "simpson" or "invsimpson".

MARGIN Margin for which the index is computed.

base The logarithm base used in shannon.

sample Subsample size for rarefying community, either a single value or a vector.

se Estimate standard errors.

... Parameters passed to nlm

Details

Shannon or Shannon–Weaver (or Shannon–Wiener) index is defined as H ′ = −
∑
i pi logb pi,

where pi is the proportional abundance of species i and b is the base of the logarithm. It is most
popular to use natural logarithms, but some argue for base b = 2 (which makes sense, but no real
difference).

Both variants of Simpson’s index are based on D =
∑
p2
i . Choice simpson returns 1 − D and

invsimpson returns 1/D.

Function rarefy gives the expected species richness in random subsamples of size sample from
the community. The size of sample should be smaller than total community size, but the function
will silently work for larger sample as well and return non-rarefied species richness (and standard
error = 0). If sample is a vector, rarefaction of all observations is performed for each sample size
separately. Rarefaction can be performed only with genuine counts of individuals. The function
rarefy is based on Hurlbert’s (1971) formulation, and the standard errors on Heck et al. (1975).

Function rrarefy generates one randomly rarefied community data frame or vector of given
sample size. The sample can be a vector giving the sample sizes for each row, and its values
must be less or equal to observed number of individuals. The random rarefaction is made without
replacement so that the variance of rarefied communities is rather related to rarefaction proportion
than to to the size of the sample.

Function drarefy returns probabilities that species occur in a rarefied community of size sample.
The sample can be a vector giving the sample sizes for each row.

fisher.alpha estimates the α parameter of Fisher’s logarithmic series (see fisherfit). The
estimation is possible only for genuine counts of individuals. The function can optionally return
standard errors of α. These should be regarded only as rough indicators of the accuracy: the con-
fidence limits of α are strongly non-symmetric and the standard errors cannot be used in Normal
inference.

68 diversity

Function specnumber finds the number of species. With MARGIN = 2, it finds frequencies of
species. The function is extremely simple, and shortcuts are easy in plain R.

Better stories can be told about Simpson’s index than about Shannon’s index, and still grander
narratives about rarefaction (Hurlbert 1971). However, these indices are all very closely related
(Hill 1973), and there is no reason to despise one more than others (but if you are a graduate student,
don’t drag me in, but obey your Professor’s orders). In particular, the exponent of the Shannon index
is linearly related to inverse Simpson (Hill 1973) although the former may be more sensitive to rare
species. Moreover, inverse Simpson is asymptotically equal to rarefied species richness in sample
of two individuals, and Fisher’s α is very similar to inverse Simpson.

Value

A vector of diversity indices or rarefied species richness values. With a single sample and se
= TRUE, function rarefy returns a 2-row matrix with rarefied richness (S) and its standard er-
ror (se). If sample is a vector in rarefy, the function returns a matrix with a column for
each sample size, and if se = TRUE, rarefied richness and its standard error are on consecutive
lines. With option se = TRUE, function fisher.alpha returns a data frame with items for α
(alpha), its approximate standard errors (se), residual degrees of freedom (df.residual), and
the code returned by nlm on the success of estimation.

Author(s)

Jari Oksanen and Bob O’Hara <bob.ohara@helsinki.fi> (fisher.alpha).

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population. Journal of Animal Ecology
12, 42–58.

Heck, K.L., van Belle, G. & Simberloff, D. (1975). Explicit calculation of the rarefaction diversity
measurement and the determination of sufficient sample size. Ecology 56, 1459–1461.

Hurlbert, S.H. (1971). The nonconcept of species diversity: a critique and alternative parameters.
Ecology 52, 577–586.

See Also

Function renyi for generalized Rényi diversity and Hill numbers.

Examples

data(BCI)
H <- diversity(BCI)
simp <- diversity(BCI, "simpson")
invsimp <- diversity(BCI, "inv")
Unbiased Simpson of Hurlbert 1971 (eq. 5):
unbias.simp <- rarefy(BCI, 2) - 1
alpha <- fisher.alpha(BCI)
pairs(cbind(H, simp, invsimp, unbias.simp, alpha), pch="+", col="blue")
Species richness (S) and Pielou's evenness (J):

dune 69

S <- specnumber(BCI) ## rowSums(BCI > 0) does the same...
J <- H/log(S)

dune Vegetation and Environment in Dutch Dune Meadows.

Description

The dune meadow vegetation data, dune, has cover class values of 30 species on 20 sites. The
corresponding environmental data frame dune.env has following entries:

Usage

data(dune)
data(dune.env)

Format

For dune, a data frame of observations of 30 species at 20 sites.

For dune.env, a data frame of 20 observations on the following 5 variables:

A1: a numeric vector of thickness of soil A1 horizon.

Moisture: an ordered factor with levels: 1 < 2 < 4 < 5.

Management: a factor with levels: BF (Biological farming), HF (Hobby farming), NM (Nature
Conservation Management), and SF (Standard Farming).

Use: an ordered factor of land-use with levels: Hayfield < Haypastu < Pasture.

Manure: an ordered factor with levels: 0 < 1 < 2 < 3 < 4.

Source

Jongman, R.H.G, ter Braak, C.J.F & van Tongeren, O.F.R. (1987). Data Analysis in Community
and Landscape Ecology. Pudoc, Wageningen.

Examples

data(dune)

data(dune.env)

70 dune.taxon

dune.taxon Taxonomic Classification of Dune Meadow Species

Description

Classification table of the species in the dune data set.

Usage

data(dune.taxon)

Format

A data frame with 30 species (rows) classified into five taxonomic levels (columns).

Details

The classification of vascular plants is adapted from AGP (2003), and that of mosses from Hill et
al. (2006).

Note

The data set was made to demonstrate taxondive, and will probably be removed after a better
example is found.

References

AGP [Angiosperm Phylogeny Group] (2003) An update of the Angiosperm Phylogeny Group clas-
sification for the orders and families of flowering plants: AGP II. Bot. J. Linnean Soc. 141: 399–
436.

Hill, M.O et al. (2006) An annotated checklist of the mosses of Europe and Macaronesia. J.
Bryology 28: 198–267.

Examples

data(dune.taxon)

eigenvals 71

eigenvals Extract Eigenvalues from an Ordination Object

Description

Function extracts eigenvalues from an object that has them. Many multivariate methods return such
objects.

Usage

eigenvals(x, ...)
S3 method for class 'cca'
eigenvals(x, constrained = FALSE, ...)
S3 method for class 'eigenvals'
summary(object, ...)

Arguments

x An object from which to extract eigenvalues.

object An eigenvals result object.

constrained Return only constrained eigenvalues.

... Other arguments to the functions (usually ignored)

Details

This is a generic function that has methods for cca, wcmdscale, pcnm, prcomp, princomp,
dudi (of ade4), and pca and pco (of labdsv) result objects. The default method also extracts
eigenvalues if the result looks like being from eigen or svd. Functions prcomp and princomp
contain square roots of eigenvalues that all called standard deviations, but eigenvals function
returns their squares. Function svd contains singular values, but function eigenvals returns
their squares. For constrained ordination methods cca, rda and capscale the function re-
turns the both constrained and unconstrained eigenvalues concatenated in one vector, but the partial
component will be ignored. However, with argument constrained = TRUE only constrained
eigenvalues are returned.

The summary of eigenvals result returns eigenvalues, proportion explained and cumulative
proportion explained. The result object can have some negative eigenvalues (wcmdscale, capscale,
pcnm) which correspond to imaginary axes of Euclidean mapping of non-Euclidean distances
(Gower 1985). In these cases, the sum of absolute values of eigenvalues is used in calculating
the proportions explained, and real axes (corresponding to positive eigenvalues) will only explain a
part of total variation (Mardia et al. 1979, Gower 1985).

Value

An object of class "eigenvals" which is a vector of eigenvalues.

72 envfit

Author(s)

Jari Oksanen.

References

Gower, J. C. (1985). Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra
and its Applications 67, 81–97.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London:
Academic Press.

See Also

eigen, svd, prcomp, princomp, cca, rda, capscale, wcmdscale, cca.object.

Examples

data(varespec)
data(varechem)
mod <- cca(varespec ~ Al + P + K, varechem)
ev <- eigenvals(mod)
ev
summary(ev)

envfit Fits an Environmental Vector or Factor onto an Ordination

Description

The function fits environmental vectors or factors onto an ordination. The projections of points
onto vectors have maximum correlation with corresponding environmental variables, and the factors
show the averages of factor levels.

Usage

Default S3 method:
envfit(ord, env, permutations = 999, strata, choices=c(1,2),

display = "sites", w = weights(ord), na.rm = FALSE, ...)
S3 method for class 'formula'
envfit(formula, data, ...)
S3 method for class 'envfit'
plot(x, choices = c(1,2), arrow.mul, at = c(0,0), axis = FALSE,

p.max = NULL, col = "blue", add = TRUE, ...)
S3 method for class 'envfit'
scores(x, display, choices, ...)
vectorfit(X, P, permutations = 0, strata, w, ...)
factorfit(X, P, permutations = 0, strata, w, ...)

envfit 73

Arguments

ord An ordination object or other structure from which the ordination scores can
be extracted (including a data frame or matrix of scores).

env Data frame, matrix or vector of environmental variables. The variables can be
of mixed type (factors, continuous variables) in data frames.

X Matrix or data frame of ordination scores.

P Data frame, matrix or vector of environmental variable(s). These must be con-
tinuous for vectorfit and factors or characters for factorfit.

permutations Number of permutations for assessing significance of vectors or factors. Set to
0 to skip permutations.

formula, data
Model formula and data.

na.rm Remove points with missing values in ordination scores or environmental vari-
ables. The operation is casewise: the whole row of data is removed if there is a
missing value and na.rm = TRUE.

x A result object from envfit.

choices Axes to plotted.

arrow.mul Multiplier for vector lengths. The arrows are automatically scaled similarly as
in plot.cca if this is not given and add = TRUE.

at The origin of fitted arrows in the plot. If you plot arrows in other places then
origin, you probably have to specify arrrow.mul.

axis Plot axis showing the scaling of fitted arrows.

p.max Maximum estimated P value for displayed variables. You must calculate P
values with setting permutations to use this option.

col Colour in plotting.

add Results added to an existing ordination plot.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

display In fitting functions these are ordinary site scores or linear combination scores
("lc") in constrained ordination (cca, rda, capscale). In scores func-
tion they are either "vectors" or "factors" (with synonyms "bp" or
"cn", resp.).

w Weights used in fitting (concerns mainly cca and decorana results which
have nonconstant weights).

... Parameters passed to scores.

Details

Function envfit finds vectors or factor averages of environmental variables. Function plot.envfit
adds these in an ordination diagram. If X is a data.frame, envfit uses factorfit for
factor variables and vectorfit for other variables. If X is a matrix or a vector, envfit uses
only vectorfit. Alternatively, the model can be defined a simplified model formula, where
the left hand side must be an ordination result object or a matrix of ordination scores, and right

74 envfit

hand side lists the environmental variables. The formula interface can be used for easier selection
and/or transformation of environmental variables. Only the main effects will be analysed even if
interaction terms were defined in the formula.

Functions vectorfit and factorfit can be called directly. Function vectorfit finds di-
rections in the ordination space towards which the environmental vectors change most rapidly and
to which they have maximal correlations with the ordination configuration. Function factorfit
finds averages of ordination scores for factor levels. Function factorfit treats ordered and un-
ordered factors similarly.

If permutations> 0, the ‘significance’ of fitted vectors or factors is assessed using permutation
of environmental variables. The goodness of fit statistic is squared correlation coefficient (r2). For
factors this is defined as r2 = 1− ssw/sst, where ssw and sst are within-group and total sums of
squares. See permutations for additional details on permutation tests in Vegan.

User can supply a vector of prior weights w. If the ordination object has weights, these will be used.
In practise this means that the row totals are used as weights with cca or decorana results. If
you do not like this, but want to give equal weights to all sites, you should set w = NULL. The
weighted fitting gives similar results to biplot arrows and class centroids in cca. For complete sim-
ilarity between fitted vectors and biplot arrows, you should set display = "lc" (and possibly
scaling = 2).

The lengths of arrows for fitted vectors are automatically adjusted for the physical size of the plot,
and the arrow lengths cannot be compared across plots. For similar scaling of arrows, you must
explicitly set the arrow.mul argument in the plot command.

The results can be accessed with scores.envfit function which returns either the fitted vectors
scaled by correlation coefficient or the centroids of the fitted environmental variables.

Value

Functions vectorfit and factorfit return lists of classes vectorfit and factorfit
which have a print method. The result object have the following items:

arrows Arrow endpoints from vectorfit. The arrows are scaled to unit length.

centroids Class centroids from factorfit.

r Goodness of fit statistic: Squared correlation coefficient

permutations Number of permutations.

pvals Empirical P-values for each variable.

Function envfit returns a list of class envfit with results of vectorfit and envfit as
items.

Function plot.envfit scales the vectors by correlation.

Note

Fitted vectors have become the method of choice in displaying environmental variables in ordina-
tion. Indeed, they are the optimal way of presenting environmental variables in Constrained Corre-
spondence Analysis cca, since there they are the linear constraints. In unconstrained ordination the
relation between external variables and ordination configuration may be less linear, and therefore
other methods than arrows may be more useful. The simplest is to adjust the plotting symbol sizes

fisherfit 75

(cex, symbols) by environmental variables. Fancier methods involve smoothing and regression
methods that abound in R, and ordisurf provides a wrapper for some.

Author(s)

Jari Oksanen. The permutation test derives from the code suggested by Michael Scroggie.

See Also

A better alternative to vectors may be ordisurf.

Examples

data(varespec)
data(varechem)
library(MASS)
ord <- metaMDS(varespec)
(fit <- envfit(ord, varechem, perm = 999))
scores(fit, "vectors")
plot(ord)
plot(fit)
plot(fit, p.max = 0.05, col = "red")
Adding fitted arrows to CCA. We use "lc" scores, and hope
that arrows are scaled similarly in cca and envfit plots
ord <- cca(varespec ~ Al + P + K, varechem)
plot(ord, type="p")
fit <- envfit(ord, varechem, perm = 999, display = "lc")
plot(fit, p.max = 0.05, col = "red")
Class variables, formula interface, and displaying the
inter-class variability with `ordispider'
data(dune)
data(dune.env)
attach(dune.env)
ord <- cca(dune)
fit <- envfit(ord ~ Moisture + A1, dune.env)
plot(ord, type = "n")
ordispider(ord, Moisture, col="skyblue")
points(ord, display = "sites", col = as.numeric(Moisture), pch=16)
plot(fit, cex=1.2, axis=TRUE)

fisherfit Fit Fisher’s Logseries and Preston’s Lognormal Model to Abundance
Data

Description

Function fisherfit fits Fisher’s logseries to abundance data. Function prestonfit groups
species frequencies into doubling octave classes and fits Preston’s lognormal model, and function
prestondistr fits the truncated lognormal model without pooling the data into octaves.

76 fisherfit

Usage

fisherfit(x, ...)
S3 method for class 'fisherfit'
confint(object, parm, level = 0.95, ...)
S3 method for class 'fisherfit'
profile(fitted, alpha = 0.01, maxsteps = 20, del = zmax/5,

...)
prestonfit(x, tiesplit = TRUE, ...)
prestondistr(x, truncate = -1, ...)
S3 method for class 'prestonfit'
plot(x, xlab = "Frequency", ylab = "Species", bar.col = "skyblue",

line.col = "red", lwd = 2, ...)
S3 method for class 'prestonfit'
lines(x, line.col = "red", lwd = 2, ...)
veiledspec(x, ...)
as.fisher(x, ...)
as.preston(x, tiesplit = TRUE, ...)

Arguments

x Community data vector for fitting functions or their result object for plot func-
tions.

object, fitted
Fitted model.

parm Not used.

level The confidence level required.

alpha The extend of profiling as significance.

maxsteps Maximum number of steps in profiling.

del Step length.

tiesplit Split frequencies 1, 2, 4, 8 etc between adjacent octaves.

truncate Truncation point for log-Normal model, in log2 units. Default value −1 cor-
responds to the left border of zero Octave. The choice strongly influences the
fitting results.

xlab, ylab Labels for x and y axes.

bar.col Colour of data bars.

line.col Colour of fitted line.

lwd Width of fitted line.

... Other parameters passed to functions. Ignored in prestonfit and tiesplit
passed to as.preston in prestondistr.

Details

In Fisher’s logarithmic series the expected number of species f with n observed individuals is
fn = αxn/n (Fisher et al. 1943). The estimation follows Kempton & Taylor (1974) and uses
function nlm. The estimation is possible only for genuine counts of individuals. The parameter α

fisherfit 77

is used as a diversity index, and α and its standard error can be estimated with a separate function
fisher.alpha. The parameter x is taken as a nuisance parameter which is not estimated sep-
arately but taken to be n/(n + α). Helper function as.fisher transforms abundance data into
Fisher frequency table.

Function fisherfit estimates the standard error of α. However, the confidence limits cannot
be directly estimated from the standard errors, but you should use function confint based on
profile likelihood. Function confint uses function confint.glm of the MASS package, us-
ing profile.fisherfit for the profile likelihood. Function profile.fisherfit follows
profile.glm and finds the τ parameter or signed square root of two times log-Likelihood profile.
The profile can be inspected with a plot function which shows the τ and a dotted line correspond-
ing to the Normal assumption: if standard errors can be directly used in Normal inference these two
lines are similar.

Preston (1948) was not satisfied with Fisher’s model which seemed to imply infinite species rich-
ness, and postulated that rare species is a diminishing class and most species are in the middle of
frequency scale. This was achieved by collapsing higher frequency classes into wider and wider
“octaves” of doubling class limits: 1, 2, 3–4, 5–8, 9–16 etc. occurrences. It seems that Preston
regarded frequencies 1, 2, 4, etc.. as “tied” between octaves (Williamson & Gaston 2005). This
means that only half of the species with frequency 1 are shown in the lowest octave, and the rest
are transferred to the second octave. Half of the species from the second octave are transferred to
the higher one as well, but this is usually not as large a number of species. This practise makes data
look more lognormal by reducing the usually high lowest octaves. This can be achieved by setting
argument tiesplit = TRUE. With tiesplit = FALSE the frequencies are not split, but all
ones are in the lowest octave, all twos in the second, etc. Williamson & Gaston (2005) discuss
alternative definitions in detail, and they should be consulted for a critical review of log-Normal
model.

Any logseries data will look like lognormal when plotted in Preston’s way. The expected frequency
f at abundance octave o is defined by fo = S0 exp(−(log2(o) − µ)2/2/σ2), where µ is the lo-
cation of the mode and σ the width, both in log2 scale, and S0 is the expected number of species
at mode. The lognormal model is usually truncated on the left so that some rare species are not
observed. Function prestonfit fits the truncated lognormal model as a second degree log-
polynomial to the octave pooled data using Poisson (when tiesplit = FALSE) or quasi-Poisson
(when tiesplit = TRUE). error. Function prestondistr fits left-truncated Normal distri-
bution to log2 transformed non-pooled observations with direct maximization of log-likelihood.
Function prestondistr is modelled after function fitdistr which can be used for alterna-
tive distribution models.

The functions have common print, plot and lines methods. The lines function adds the
fitted curve to the octave range with line segments showing the location of the mode and the width
(sd) of the response. Function as.preston transforms abundance data to octaves. Argument
tiesplit will not influence the fit in prestondistr, but it will influence the barplot of the
octaves.

The total extrapolated richness from a fitted Preston model can be found with function veiledspec.
The function accepts results both from prestonfit and from prestondistr. If veiledspec
is called with a species count vector, it will internally use prestonfit. Function specpool
provides alternative ways of estimating the number of unseen species. In fact, Preston’s lognormal
model seems to be truncated at both ends, and this may be the main reason why its result differ from
lognormal models fitted in Rank–Abundance diagrams with functions rad.lognormal.

78 fisherfit

Value

The function prestonfit returns an object with fitted coefficients, and with observed
(freq) and fitted (fitted) frequencies, and a string describing the fitting method. Function
prestondistr omits the entry fitted. The function fisherfit returns the result of nlm,
where item estimate is α. The result object is amended with the following items:

df.residuals Residual degrees of freedom.

nuisance Parameter x.

fisher Observed data from as.fisher.

Author(s)

Bob O’Hara <bob.ohara@helsinki.fi> (fisherfit) and Jari Oksanen.

References

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943). The relation between the number of species
and the number of individuals in a random sample of animal population. Journal of Animal Ecology
12: 42–58.

Kempton, R.A. & Taylor, L.R. (1974). Log-series and log-normal parameters as diversity discrimi-
nators for Lepidoptera. Journal of Animal Ecology 43: 381–399.

Preston, F.W. (1948) The commonness and rarity of species. Ecology 29, 254–283.

Williamson, M. & Gaston, K.J. (2005). The lognormal distribution is not an appropriate null hy-
pothesis for the species–abundance distribution. Journal of Animal Ecology 74, 409–422.

See Also

diversity, fisher.alpha, radfit, specpool. Function fitdistr of MASS package
was used as the model for prestondistr. Function density can be used for smoothed “non-
parametric” estimation of responses, and qqplot is an alternative, traditional and more effective
way of studying concordance of observed abundances to any distribution model.

Examples

data(BCI)
mod <- fisherfit(BCI[5,])
mod
plot(profile(mod))
confint(mod)
prestonfit seems to need large samples
mod.oct <- prestonfit(colSums(BCI))
mod.ll <- prestondistr(colSums(BCI))
mod.oct
mod.ll
plot(mod.oct)
lines(mod.ll, line.col="blue3") # Different
Smoothed density
den <- density(log2(colSums(BCI)))
lines(den$x, ncol(BCI)*den$y, lwd=2) # Fairly similar to mod.oct

goodness.cca 79

Extrapolated richness
veiledspec(mod.oct)
veiledspec(mod.ll)

goodness.cca Diagnostic Tools for [Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Functions goodness and inertcomp can be used to assess the goodness of fit for individual
sites or species. Function vif.cca and alias.cca can be used to analyse linear dependencies
among constraints and conditions. In addition, there are some other diagnostic tools (see ’Details’).

Usage

S3 method for class 'cca'
goodness(object, display = c("species", "sites"), choices,

model = c("CCA", "CA"), statistic = c("explained", "distance"),
summarize = FALSE, ...)

inertcomp(object, display = c("species", "sites"),
statistic = c("explained", "distance"), proportional = FALSE)

spenvcor(object)
intersetcor(object)
vif.cca(object)
S3 method for class 'cca'
alias(object, names.only = FALSE, ...)

Arguments

object A result object from cca, rda, capscale or decorana.

display Display "species" or "sites".

choices Axes shown. Default is to show all axes of the "model".

model Show constrained ("CCA") or unconstrained ("CA") results.

statistic Statistic used: "explained" gives the cumulative percentage accounted for,
"distance" shows the residual distances. Distances are not available for sites
in constrained or partial analyses.

summarize Show only the accumulated total.

proportional Give the inertia components as proportional for the corresponding total.

names.only Return only names of aliased variable(s) instead of defining equations.

... Other parameters to the functions.

80 goodness.cca

Details

Function goodness gives the diagnostic statistics for species or sites. The alternative statistics
are the cumulative proportion of inertia accounted for by the axes, and the residual distance left
unaccounted for. The conditional (“partialled out”) constraints are always regarded as explained
and included in the statistics.

Function inertcomp decomposes the inertia into partial, constrained and unconstrained com-
ponents for each site or species. Instead of inertia, the function can give the total dispersion or
distances from the centroid for each component.

Function spenvcor finds the so-called “species – environment correlation” or (weighted) correla-
tion of weighted average scores and linear combination scores. This is a bad measure of goodness
of ordination, because it is sensitive to extreme scores (like correlations are), and very sensitive to
overfitting or using too many constraints. Better models often have poorer correlations. Function
ordispider can show the same graphically.

Function intersetcor finds the so-called “interset correlation” or (weighted) correlation of
weighted averages scores and constraints. The defined contrasts are used for factor variables. This
is a bad measure since it is a correlation. Further, it focuses on correlations between single contrasts
and single axes instead of looking at the multivariate relationship. Fitted vectors (envfit) provide
a better alternative. Biplot scores (see scores.cca) are a multivariate alternative for (weighted)
correlation between linear combination scores and constraints.

Function vif.cca gives the variance inflation factors for each constraint or contrast in factor
constraints. In partial ordination, conditioning variables are analysed together with constraints.
Variance inflation is a diagnostic tool to identify useless constraints. A common rule is that values
over 10 indicate redundant constraints. If later constraints are complete linear combinations of
conditions or previous constraints, they will be completely removed from the estimation, and no
biplot scores or centroids are calculated for these aliased constraints. A note will be printed with
default output if there are aliased constraints. Function alias will give the linear coefficients
defining the aliased constraints, or only their names with argument names.only = TRUE.

Value

The functions return matrices or vectors as is appropriate.

Note

It is a common practise to use goodness statistics to remove species from ordination plots, but
this may not be a good idea, as the total inertia is not a meaningful concept in cca, in particular for
rare species.

Function vif is defined as generic in package car (vif), but if you have not loaded that package
you must specify the call as vif.cca. Variance inflation factor is useful diagnostic tool for de-
tecting nearly collinear constraints, but these are not a problem with algorithm used in this package
to fit a constrained ordination.

Author(s)

Jari Oksanen. The vif.cca relies heavily on the code by W. N. Venables. alias.cca is a
simplified version of alias.lm.

goodness.metaMDS 81

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

Gross, J. (2003). Variance inflation factors. R News 3(1), 13–15.

See Also

cca, rda, capscale, decorana, vif.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Management + Condition(Moisture), data=dune.env)
goodness(mod)
goodness(mod, summ = TRUE)
Inertia components
inertcomp(mod, prop = TRUE)
inertcomp(mod, stat="d")
vif.cca
vif.cca(mod)
Aliased constraints
mod <- cca(dune ~ ., dune.env)
mod
vif.cca(mod)
alias(mod)
with(dune.env, table(Management, Manure))
The standard correlations (not recommended)
spenvcor(mod)
intersetcor(mod)

goodness.metaMDS Goodness of Fit and Shepard Plot for Nonmetric Multidimensional
Scaling

Description

Function goodness.metaMDS find goodness of fit measure for points in nonmetric multidimen-
sional scaling, and function stressplot makes a Shepard diagram.

Usage

S3 method for class 'metaMDS'
goodness(object, dis, ...)
stressplot(object, dis, pch, p.col = "blue", l.col = "red", lwd = 2,

...)

82 goodness.metaMDS

Arguments

object A result object from metaMDS or isoMDS.

dis Dissimilarities. Normally this should not used with metaMDS, but should be
always used with isoMDS.

pch Plotting character for points. Default is dependent on the number of points.

p.col, l.col Point and line colours.

lwd Line width.

... Other parameters to functions, e.g. graphical parameters.

Details

Function goodness.metaMDS finds a goodness of fit statistic for observations (points). This is
defined so that sum of squared values is equal to squared stress. Large values indicate poor fit.

Function stressplot is a wrapper to Shepard function in MASS package. It plots ordination
distances against original dissimilarities, and draws a step line of the nonlinear fit. In addition, it
adds to the graph two correlation-like statistics on the goodness of fit. The nonmetric fit is based
on stress S and defined as

√
1− S2. The “linear fit” is the correlation between fitted values and

ordination distances.

Both functions can be used both with metaMDS and with isoMDS. With metaMDS, the func-
tions try to reconstruct the dissimilarities using metaMDSredist, and dissimilarities should not
be given. With isoMDS the dissimilarities must be given. In either case, the functions inspect that
dissimilarities are consistent with current ordination, and refuse to analyse inconsistent dissimilari-
ties. Function goodness.metaMDS is generic in vegan, but you must spell its name completely
with isoMDS which has no class.

Value

Function goodness returns a vector of values. Function stressplot returns invisibly a Shepard
object.

Author(s)

Jari Oksanen.

See Also

metaMDS, isoMDS, Shepard.

Examples

data(varespec)
mod <- metaMDS(varespec)
stressplot(mod)
gof <- goodness(mod)
gof
plot(mod, display = "sites", type = "n")
points(mod, display = "sites", cex = gof/2)

humpfit 83

humpfit No-interaction Model for Hump-backed Species Richness vs. Biomass

Description

Function humpfit fits a no-interaction model for species richness vs. biomass data (Oksanen
1996). This is a null model that produces a hump-backed response as an artifact of plant size and
density.

Usage

humpfit(mass, spno, family = poisson, start)
S3 method for class 'humpfit'
summary(object, ...)
S3 method for class 'humpfit'
predict(object, newdata = NULL, ...)
S3 method for class 'humpfit'
plot(x, xlab = "Biomass", ylab = "Species Richness", lwd = 2,

l.col = "blue", p.col = 1, type = "b", ...)
S3 method for class 'humpfit'
points(x, ...)
S3 method for class 'humpfit'
lines(x, segments=101, ...)
S3 method for class 'humpfit'
profile(fitted, parm = 1:3, alpha = 0.01, maxsteps = 20, del = zmax/5, ...)

Arguments

mass Biomass.

spno Species richness.

start Vector of starting values for all three parameters.

family Family of error distribution. Any family can be used, but the link function is
always Fisher’s diversity model, and other link functions are silently ignored.

x, object, fitted
Result object of humpfit

newdata Values of mass used in predict. The original data values are used if missing.

xlab,ylab Axis labels in plot

lwd Line width

l.col, p.col Line and point colour in plot

type Type of plot: "p" for observed points, "l" for fitted lines, "b" for both, and
"n" for only setting axes.

segments Number of segments used for fitted lines.

parm Profiled parameters.

84 humpfit

alpha, maxsteps, del
Parameters for profiling range and density.

... Other parameters to functions.

Details

The no-interaction model assumes that the humped species richness pattern along biomass gradient
is an artifact of plant size and density (Oksanen 1996). For low-biomass sites, it assumes that
plants have a fixed size, and biomass increases with increasing number of plants. When the sites
becomes crowded, the number of plants and species richness reaches the maximum. Higher biomass
is reached by increasing the plant size, and then the number of plants and species richness will
decrease. At biomasses below the hump, plant number and biomass are linearly related, and above
the hump, plant number is proportional to inverse squared biomass. The number of plants is related
to the number of species by the relationship (link function) from Fisher’s log-series (Fisher et al.
1943).

The parameters of the model are:

1. hump: the location of the hump on the biomass gradient.
2. scale: an arbitrary multiplier to translate the biomass into virtual number of plants.
3. alpha: Fisher’s α to translate the virtual number of plants into number of species.

The parameters scale and alpha are intermingled and this function should not be used for es-
timating Fisher’s α. Probably the only meaningful and interesting parameter is the location of the
hump.

Function may be very difficult to fit and easily gets trapped into local solutions, or fails with non-
Poisson families, and function profile should be used to inspect the fitted models. If you have
loaded package MASS, you can use functions plot.profile, pairs.profile for graph-
ical inspection of the profiles, and confint.profile.glm for the profile based confidence
intervals.

The original model intended to show that there is no need to speculate about ‘competition’ and
‘stress’ (Al-Mufti et al. 1977), but humped response can be produced as an artifact of using fixed
plot size for varying plant sizes and densities.

Value

The function returns an object of class "humpfit" inheriting from class "glm". The result
object has specific summary, predict, plot, points and lines methods. In addition, it
can be accessed by the following methods for glm objects: AIC, extractAIC, deviance,
coef, residuals.glm (except type = "partial"), fitted, and perhaps some others. In
addition, function ellipse.glm (package ellipse) can be used to draw approximate confidence
ellipses for pairs of parameters, if the normal assumptions look appropriate.

Note

The function is a replacement for the original GLIM4 function at the archive of Journal of Ecol-
ogy. There the function was represented as a mixed glm with one non-linear parameter (hump)
and a special one-parameter link function from Fisher’s log-series. The current function directly
applies non-linear maximum likelihood fitting using function nlm. Some expected problems with
the current approach are:

humpfit 85

• The function is discontinuous at hump and may be difficult to optimize in some cases (the
lines will always join, but the derivative jumps).

• The function does not try very hard to find sensible starting values and can fail. The user may
supply starting values in argument start if fitting fails.

• The estimation is unconstrained, but both scale and alpha should always be positive. Per-
haps they should be fitted as logarithmic. Fitting Gamma family models might become
easier, too.

Author(s)

Jari Oksanen

References

Al-Mufti, M.M., Sykes, C.L, Furness, S.B., Grime, J.P & Band, S.R. (1977) A quantitative analysis
of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology 65,759–791.

Fisher, R.A., Corbet, A.S. & Williams, C.B. (1943) The relation between the number of species
and the number of individuals in a random sample of of an animal population. Journal of Animal
Ecology 12, 42–58.

Oksanen, J. (1996) Is the humped relationship between species richness and biomass an artefact
due to plot size? Journal of Ecology 84, 293–295.

See Also

fisherfit, profile.glm, confint.glm.

Examples

##
Data approximated from Al-Mufti et al. (1977)
##
mass <- c(140,230,310,310,400,510,610,670,860,900,1050,1160,1900,2480)
spno <- c(1, 4, 3, 9, 18, 30, 20, 14, 3, 2, 3, 2, 5, 2)
sol <- humpfit(mass, spno)
summary(sol) # Almost infinite alpha...
plot(sol)
confint is in MASS, and impicitly calls profile.humpfit.
Parameter 3 (alpha) is too extreme for profile and confint, and we
must use only "hump" and "scale".
library(MASS)
plot(profile(sol, parm=1:2))
confint(sol, parm=c(1,2))

86 indpower

indpower Indicator Power of Species

Description

Indicator power calculation of Halme et al. (2009) or the congruence between indicator and target
species.

Usage

indpower(x, type = 0)

Arguments

x Community data frame or matrix.

type The type of statistic to be returned. See Details for explanation.

Details

Halme et al. (2009) described an index of indicator power defined as IPI =
√
a× b, where a =

S/OI and b = 1 − (OT − S)/(N − OI). N is the number of sites, S is the number of shared
occurrences of the indicator (I) and the target (T) species. OI and OT are number of occurrences
of the indicator and target species. The type argument in the function call enables to choose
which statistic to return. type = 0 returns IPI , type = 1 returns a, type = 2 returns b.
Total indicator power (TIP) of an indicator species is the column mean (without its own value, see
examples). Halme et al. (2009) explain how to calculate confidence intervals for these statistics.

Value

A matrix with indicator species as rows and target species as columns (this is indicated by the first
letters of the row/column names).

Author(s)

Peter Solymos

References

Halme, P., Mönkkönen, M., Kotiaho, J. S, Ylisirniö, A-L. 2009. Quantifying the indicator power of
an indicator species. Conservation Biology 23: 1008–1016.

See Also

indval (package labdsv) for the indicator species analysis of Dufrêne & Legendre. Function
beals estimates individual cell probabilities of species occurrences.

isomap 87

Examples

data(dune)
IP values
ip <- indpower(dune)
and TIP values
diag(ip) <- NA
rowMeans(ip, na.rm=TRUE)

isomap Isometric Feature Mapping Ordination

Description

The function performs isometric feature mapping which consists of three simple steps: (1) retain
only some of the shortest dissimilarities among objects, (2) estimate all dissimilarities as shortest
path distances, and (3) perform metric scaling (Tenenbaum et al. 2000).

Usage

isomap(dist, ndim=10, ...)
isomapdist(dist, epsilon, k, path = "shortest", fragmentedOK =FALSE, ...)
S3 method for class 'isomap'
summary(object, axes = 4, ...)
S3 method for class 'isomap'
plot(x, net = TRUE, n.col = "gray", ...)
rgl.isomap(x, web = "white", ...)

Arguments

dist Dissimilarities.

ndim Number of axes in metric scaling (argument k in cmdscale).

epsilon Shortest dissimilarity retained.

k Number of shortest dissimilarities retained for a point. If both epsilon and k
are given, epsilon will be used.

path Method used in stepacross to estimate the shortest path, with alternatives
"shortest" and "extended".

fragmentedOK What to do if dissimilarity matrix is fragmented. If TRUE, analyse the largest
connected group, otherwise stop with error.

x, object An isomap result object.

axes Number of axes displayed.

net Draw the net of retained dissimilarities.

n.col Colour of drawn net segments.

web Colour of the web in rgl graphics.

... Other parameters passed to functions.

88 isomap

Details

The function isomap first calls function isomapdist for dissimilarity transformation, and then
performs metric scaling for the result. All arguments to isomap are passed to isomapdist. The
functions are separate so that the isompadist transformation could be easily used with other
functions than simple linear mapping of cmdscale.

Function isomapdist retains either dissimilarities equal or shorter to epsilon, or if epsilon
is not given, at least k shortest dissimilarities for a point. Then a complete dissimilarity matrix is
reconstructed using stepacross using either flexible shortest paths or extended dissimilarities
(for details, see stepacross).

De’ath (1999) actually published essentially the same method before Tenenbaum et al. (2000), and
De’ath’s function is available in xdiss in package mvpart. The differences are that isomap
introduced the k criterion, whereas De’ath only used epsilon criterion. In practice, De’ath also
retains higher proportion of dissimilarities than typical isomap.

In addition to the standard plot function, function rgl.isomap can make dynamic 3D plots that
can be rotated on the screen. The functions is based on ordirgl, but it adds the connecting lines.
The function passes extra arguments to scores and ordirgl functions so that you can select
axes, or define colours and sizes of points.

Value

Function isomapdist returns a dissimilarity object similar to dist. Function isomap returns
an object of class isomapwith plot and summarymethods. The plot function returns invisibly
an object of class ordiplot. Function scores can extract the ordination scores.

Note

Tenenbaum et al. (2000) justify isomap as a tool of unfolding a manifold (e.g. a ’Swiss Roll’).
Even with a manifold structure, the sampling must be even and dense so that dissimilarities along a
manifold are shorter than across the folds. If data do not have such a manifold structure, the results
are very sensitive to parameter values.

Author(s)

Jari Oksanen

References

De’ath, G. (1999) Extended dissimilarity: a method of robust estimation of ecological distances
from high beta diversity data. Plant Ecology 144, 191–199

Tenenbaum, J.B., de Silva, V. & Langford, J.C. (2000) A global network framework for nonlinear
dimensionality reduction. Science 290, 2319–2323.

See Also

The underlying functions that do the proper work are stepacross, distconnected and
cmdscale. Package mvpart provides a parallel (but a bit different) implementation (xdiss).
Moreover, vegan function metaMDS may trigger stepacross transformation, but usually only

kendall.global 89

for longest dissimilarities. The plotmethod of vegan minimum spanning tree function (spantree)
has even more extreme way of isomapping things.

Examples

The following examples also overlay minimum spanning tree to
the graphics in red.
op <- par(mar=c(4,4,1,1)+0.2, mfrow=c(2,2))
data(BCI)
dis <- vegdist(BCI)
tr <- spantree(dis)
pl <- ordiplot(cmdscale(dis), main="cmdscale")
lines(tr, pl, col="red")
ord <- isomap(dis, k=3)
ord
pl <- plot(ord, main="isomap k=3")
lines(tr, pl, col="red")
pl <- plot(isomap(dis, k=5), main="isomap k=5")
lines(tr, pl, col="red")
pl <- plot(isomap(dis, epsilon=0.45), main="isomap epsilon=0.45")
lines(tr, pl, col="red")
par(op)
The following command requires user interaction
Not run:
rgl.isomap(ord, size=4, color="hotpink")

End(Not run)

kendall.global Kendall coefficient of concordance

Description

Function kendall.global computes and tests the coefficient of concordance among several
judges (variables, species) through a permutation test.

Function kendall.post carries out a posteriori tests of the contributions of individual judges
(variables, species) to the overall concordance of their group through permutation tests.

If several groups of judges are identified in the data table, coefficients of concordance (kendall.global)
or a posteriori tests (kendall.post) will be computed for each group separately. Use in ecology:
to identify significant species associations.

Usage

kendall.global(Y, group, nperm = 999, mult = "holm")
kendall.post(Y, group, nperm = 999, mult = "holm")

90 kendall.global

Arguments

Y Data file (data frame or matrix) containing quantitative or semiquantitative data.
Rows are objects and columns are judges (variables). In community ecology,
that table is often a site-by-species table.

group A vector defining how judges should be divided into groups. See example below.
If groups are not explicitly defined, all judges in the data file will be considered
as forming a single group.

nperm Number of permutations to be performed. Default is 999.
mult Correct P-values for multiple testing using the alternatives described in p.adjust

and in addition "sidak" (see Details). The Bonferroni correction is overly
conservative; it is not recommended. It is included to allow comparisons with
the other methods.

Details

Y must contain quantitative data. They will be transformed to ranks within each column before
computation of the coefficient of concordance.

The search for species associations described in Legendre (2005) proceeds in 3 steps:

(1) Correlation analysis of the species. A possible method is to compute Ward’s agglomerative
clustering of a matrix of correlations among the species. In detail: (1.1) compute a Pearson or
Spearman correlation matrix (correl.matrix) among the species; (1.2) turn it into a distance
matrix: mat.D = as.dist(1-correl.matrix); (1.3) carry out Ward’s hierarchical clus-
tering of that matrix using hclust: clust.ward = hclust(mat.D, "ward"); (1.4) plot
the dendrogram: plot(clust.ward, hang=-1); (1.5) cut the dendrogram in two groups,
retrieve the vector of species membership: group.2 = cutree(clust.ward, k=2). (1.6)
After steps 2 and 3 below, you may have to come back and try divisions of the species into k = 3, 4,
5, . . . groups.

(2) Compute global tests of significance of the 2 (or more) groups using the function kendall.global
and the vector defining the groups. Groups that are not globally significant must be refined or aban-
doned.

(3) Compute a posteriori tests of the contribution of individual species to the concordance of their
group using the function kendall.post and the vector defining the groups. If some species
have negative values for "Spearman.mean", this means that these species clearly do not belong to
the group, hence that group is too inclusive. Go back to (1.5) and cut the dendrogram more finely.
The left and right groups can be cut separately, independently of the levels along the dendrogram;
write your own vector of group membership if cutree does not produce the desired groups.

The corrections used for multiple testing are applied to the list of P-values (P); they take into account
the number of tests (k) carried out simultaneously (number of groups in kendall.global, or
number of species in kendall.post). The corrections are performed using function p.adjust;
see that function for the description of the correction methods. In addition, there is Šidák correction
which defined as Pcorr = 1− (1− P)k.

Value

A table containing the following information in rows. The columns correspond to the groups of
"judges" defined in vector "group". When function Kendall.post is used, there are as many
tables as the number of predefined groups.

kendall.global 91

W Kendall’s coefficient of concordance, W.

F F statistic. F = W*(m-1)/(1-W) where m is the number of judges.

Prob.F Probability associated with the F statistic, computed from the F distribution with
nu1 = n-1-(2/m) and nu2 = nu1*(m-1); n is the number of objects.

Corrected prob.F
Probabilities associated with F, corrected using the method selected in parameter
mult. Shown only if there are more than one group.

Chi2 Friedman’s chi-square statistic (Friedman 1937) used in the permutation test of
W.

Prob.perm Permutational probabilities, uncorrected.
Corrected prob.perm

Permutational probabilities corrected using the method selected in parameter
mult. Shown only if there are more than one group.

Spearman.mean
Mean of the Spearman correlations between the judge under test and all the other
judges in the same group.

W.per.species
Contribution of the judge under test to the overall concordance statistic for that
group.

Author(s)

F. Guillaume Blanchet, University of Alberta, and Pierre Legendre, Université de Montréal

References

Friedman, M. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association 32: 675-701.

Kendall, M. G. and B. Babington Smith. 1939. The problem of m rankings. Annals of Mathematical
Statistics 10: 275-287.

Legendre, P. 2005. Species associations: the Kendall coefficient of concordance revisited. Journal
of Agricultural, Biological, and Environmental Statistics 10: 226-245.

Legendre, P. 2009. Coefficient of concordance. In: Encyclopedia of Research Design. SAGE
Publications (in press).

Siegel, S. and N. J. Castellan, Jr. 1988. Nonparametric statistics for the behavioral sciences. 2nd
edition. McGraw-Hill, New York.

See Also

cor, friedman.test, hclust, cutree, kmeans, cascadeKM, indval

Examples

data(mite)
mite.hel <- decostand(mite, "hel")

92 linestack

Reproduce the results shown in Table 2 of Legendre (2005), a single group
mite.small <- mite.hel[c(4,9,14,22,31,34,45,53,61,69),c(13:15,23)]
kendall.global(mite.small, nperm=99)
kendall.post(mite.small, mult="holm", nperm=99)

Reproduce the results shown in Tables 3 and 4 of Legendre (2005), 2 groups
group <-c(1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,2,1,1,1,1,1,2,2,2,2,2)
kendall.global(mite.hel, group=group, nperm=99)
kendall.post(mite.hel, group=group, mult="holm", nperm=99)

NOTE: 'nperm' argument usually needs to be larger than 99.
It was set to this low value for demonstration purposes.

linestack Plots One-dimensional Diagrams without Overwriting Labels

Description

Function linestack plots vertical one-dimensional plots for numeric vectors. The plots are
always labelled, but the labels are moved vertically to avoid overwriting.

Usage

linestack(x, labels, cex = 0.8, side = "right", hoff = 2, air = 1.1,
at = 0, add = FALSE, axis = FALSE, ...)

Arguments

x Numeric vector to be plotted.

labels Text labels used instead of default (names of x).

cex Size of the labels.

side Put labels to the "right" or "left" of the axis.

hoff Distance from the vertical axis to the label in units of the width of letter “m”.

air Multiplier to string height to leave empty space between labels.

at Position of plot in horizontal axis.

add Add to an existing plot.

axis Add axis to the plot.

... Other graphical parameters to labels.

Value

The function returns invisibly the shifted positions of labels in user coordinates.

Note

The function always draws labelled diagrams. If you want to have unlabelled diagrams, you can
use, e.g., plot, stripchart or rug.

make.cepnames 93

Author(s)

Jari Oksanen

Examples

First DCA axis
data(dune)
ord <- decorana(dune)
linestack(scores(ord, choices=1, display="sp"))
linestack(scores(ord, choices=1, display="si"), side="left", add=TRUE)
title(main="DCA axis 1")

make.cepnames Abbreviates a Botanical or Zoological Latin Name into an Eight-
character Name

Description

A standard CEP name has four first letters of the generic name and four first letters of the specific
epithet of a Latin name. The last epithet, that may be a subspecific name, is used in the current func-
tion. If the name has only one component, it is abbreviated to eight characters (see abbreviate).
The returned names are made unique with function make.unique which adds numbers to the end
of CEP names if needed.

Usage

make.cepnames(names)

Arguments

names The names to be formatted into CEP names.

Details

Cornell Ecology Programs (CEP) used eight-letter abbreviations for species and site names. In
species, the names were formed by taking four first letters of the generic name and four first letters
of the specific or subspecific epithet. The CEP names were originally used, because old FORTRAN
IV did not have CHARACTER data type, but text had to be stored in numerical variables, which in
popular computers could hold four characters. In modern times, there is no reason for this limitation,
but ecologists are used to these names, and they may be practical to avoid congestion in ordination
plots.

Value

Function returns CEP names.

Note

The function is simpleminded and rigid. You must write a better one if you need.

94 mantel

Author(s)

Jari Oksanen

See Also

make.names, strsplit, substring, paste, abbreviate.

Examples

make.cepnames(c("Aa maderoi", "Poa sp.", "Cladina rangiferina",
"Cladonia cornuta", "Cladonia cornuta var. groenlandica",
"Cladonia rangiformis", "Bryoerythrophyllum"))
data(BCI)
colnames(BCI) <- make.cepnames(colnames(BCI))

mantel Mantel and Partial Mantel Tests for Dissimilarity Matrices

Description

Function mantel finds the Mantel statistic as a matrix correlation between two dissimilarity matri-
ces, and function mantel.partial finds the partial Mantel statistic as the partial matrix correla-
tion between three dissimilarity matrices. The significance of the statistic is evaluated by permuting
rows and columns of the first dissimilarity matrix.

Usage

mantel(xdis, ydis, method="pearson", permutations=999, strata)
mantel.partial(xdis, ydis, zdis, method = "pearson", permutations = 999,

strata)

Arguments

xdis, ydis, zdis
Dissimilarity matrices or a dist objects.

method Correlation method, as accepted by cor: "pearson", "spearman" or "kendall".

permutations Number of permutations in assessing significance.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

mantel 95

Details

Mantel statistic is simply a correlation between entries of two dissimilarity matrices (some use cross
products, but these are linearly related). However, the significance cannot be directly assessed,
because there are N(N − 1)/2 entries for just N observations. Mantel developed asymptotic test,
but here we use permutations ofN rows and columns of dissimilarity matrix. See permutations
for additional details on permutation tests in Vegan.

Partial Mantel statistic uses partial correlation conditioned on the third matrix. Only the first matrix
is permuted so that the correlation structure between second and first matrices is kept constant. Al-
though mantel.partial silently accepts other methods than "pearson", partial correlations
will probably be wrong with other methods.

The function uses cor, which should accept alternatives pearson for product moment correla-
tions and spearman or kendall for rank correlations.

Value

The function returns a list of class mantel with following components:

Call Function call.

method Correlation method used, as returned by cor.test.

statistic The Mantel statistic.

signif Empirical significance level from permutations.

perm A vector of permuted values.

permutations Number of permutations.

Note

Legendre & Legendre (1998) say that partial Mantel correlations often are difficult to interpret.

Author(s)

Jari Oksanen

References

The test is due to Mantel, of course, but the current implementation is based on Legendre and
Legendre.

Legendre, P. and Legendre, L. (1998) Numerical Ecology. 2nd English Edition. Elsevier.

See Also

cor for correlation coefficients, protest (“Procrustes test”) for an alternative with ordination
diagrams, anosim and mrpp for comparing dissimilarities against classification. For dissimilarity
matrices, see vegdist or dist. See bioenv for selecting environmental variables.

96 mantel.correlog

Examples

Is vegetation related to environment?
data(varespec)
data(varechem)
veg.dist <- vegdist(varespec) # Bray-Curtis
env.dist <- vegdist(scale(varechem), "euclid")
mantel(veg.dist, env.dist)
mantel(veg.dist, env.dist, method="spear")

mantel.correlog Mantel Correlogram

Description

Function mantel.correlog computes a multivariate Mantel correlogram. Proposed by Sokal
(1986) and Oden and Sokal (1986), the method is also described in Legendre and Legendre (1998,
pp. 736-738).

Usage

mantel.correlog(D.eco, D.geo=NULL, XY=NULL, n.class=0, break.pts=NULL,
cutoff=TRUE, r.type="pearson", nperm=999, mult="holm", progressive=TRUE)
S3 method for class 'mantel.correlog'
plot(x, alpha=0.05, ...)

Arguments

D.eco An ecological distance matrix, with class either dist or matrix.

D.geo A geographic distance matrix, with class either dist or matrix. Provide
either D.geo or XY. Default: D.geo=NULL.

XY A file of Cartesian geographic coordinates of the points. Default: XY=NULL.

n.class Number of classes. If n.class=0, the Sturges equation will be used unless
break points are provided.

break.pts Vector containing the break points of the distance distribution. Provide (n.class+1)
breakpoints, that is, a list with a beginning and an ending point. Default: break.pts=NULL.

cutoff For the second half of the distance classes, cutoff = TRUE limits the correl-
ogram to the distance classes that include all points. If cutoff = FALSE, the
correlogram includes all distance classes.

r.type Type of correlation in calculation of the Mantel statistic. Default: r.type="pearson".
Other choices are r.type="spearman" and r.type="kendall", as in
functions cor and mantel.

nperm Number of permutations for the tests of significance. Default: nperm=999.
For large data files, permutation tests are rather slow.

mantel.correlog 97

mult Correct P-values for multiple testing. The correction methods are "holm" (de-
fault), "hochberg", "sidak", and other methods available in the p.adjust
function: "bonferroni" (best known, but not recommended because it is
overly conservative), "hommel", "BH", "BY", "fdr", and "none".

progressive Default: progressive=TRUE for progressive correction of multiple-testing,
as described in Legendre and Legendre (1998, p. 721). Test of the first distance
class: no correction; second distance class: correct for 2 simultaneous tests;
distance class k: correct for k simultaneous tests. progressive=FALSE:
correct all tests for n.class simultaneous tests.

x Output of mantel.correlog.

alpha Significance level for the points drawn with black symbols in the correlogram.
Default: alpha=0.05.

... Other parameters passed from other functions.

Details

A correlogram is a graph in which spatial correlation values are plotted, on the ordinate, as a func-
tion of the geographic distance classes among the study sites along the abscissa. In a Mantel correl-
ogram, a Mantel correlation (Mantel 1967) is computed between a multivariate (e.g. multi-species)
distance matrix of the user’s choice and a design matrix representing each of the geographic dis-
tance classes in turn. The Mantel statistic is tested through a permutational Mantel test performed
by vegan’s mantel function.

When a correction for multiple testing is applied, more permutations are necessary than in the no-
correction case, to obtain significant p-values in the higher correlogram classes.

The print.mantel.correlog function prints out the correlogram. See examples.

Value

mantel.res A table with the distance classes as rows and the class indices, number of dis-
tances per class, Mantel statistics (computed using Pearson’s r, Spearman’s r, or
Kendall’s tau), and p-values as columns. A positive Mantel statistic indicates
positive spatial correlation. An additional column with p-values corrected for
multiple testing is added unless mult="none".

n.class The n umber of distance classes.

break.pts The break points provided by the user or computed by the program.

mult The name of the correction for multiple testing. No correction: mult="none".

progressive A logical (TRUE, FALSE) value indicating whether or not a progressive correc-
tion for multiple testing was requested.

n.tests The number of distance classes for which Mantel tests have been computed and
tested for significance.

call The function call.

Author(s)

Pierre Legendre, Université de Montréal

98 metaMDS

References

Legendre, P. and L. Legendre. 1998. Numerical ecology, 2nd English edition. Elsevier Science BV,
Amsterdam.

Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer
Res. 27: 209-220.

Oden, N. L. and R. R. Sokal. 1986. Directional autocorrelation: an extension of spatial correlo-
grams to two dimensions. Syst. Zool. 35: 608-617.

Sokal, R. R. 1986. Spatial data analysis and historical processes. 29-43 in: E. Diday et al. [eds.]
Data analysis and informatics, IV. North-Holland, Amsterdam.

Sturges, H. A. 1926. The choice of a class interval. Journal of the American Statistical Association
21: 65–66.

Examples

Mite data available in "vegan"
data(mite)
data(mite.xy)
mite.hel <- decostand(mite, "hellinger")

Detrend the species data by regression on the site coordinates
mite.hel.resid <- resid(lm(as.matrix(mite.hel) ~ ., data=mite.xy))

Compute the detrended species distance matrix
mite.hel.D = dist(mite.hel.resid)

Compute Mantel correlogram with cutoff, Pearson statistic
mite.correlog = mantel.correlog(mite.hel.D, XY=mite.xy, nperm=99)
summary(mite.correlog)
mite.correlog
or: print(mite.correlog)
or: print.mantel.correlog(mite.correlog)
plot(mite.correlog)

Compute Mantel correlogram without cutoff, Spearman statistic
mite.correlog2 = mantel.correlog(mite.hel.D, XY=mite.xy, cutoff=FALSE,
r.type="spearman", nperm=99)
summary(mite.correlog2)
mite.correlog2
plot(mite.correlog2)

metaMDS Nonmetric Multidimensional Scaling with Stable Solution from Ran-
dom Starts, Axis Scaling and Species Scores

metaMDS 99

Description

Function metaMDS uses isoMDS to perform Nonmetric Multidimensional Scaling (NMDS), but
tries to find a stable solution using several random starts (function initMDS). In addition, it
standardizes the scaling in the result, so that the configurations are easier to interpret (function
postMDS), and adds species scores to the site ordination (function wascores).

Usage

metaMDS(comm, distance = "bray", k = 2, trymax = 20, autotransform =TRUE,
noshare = 0.1, wascores = TRUE, expand = TRUE, trace = 1,
plot = FALSE, previous.best, old.wa = FALSE, ...)

S3 method for class 'metaMDS'
plot(x, display = c("sites", "species"), choices = c(1, 2),

type = "p", shrink = FALSE, ...)
S3 method for class 'metaMDS'
points(x, display = c("sites", "species"),

choices = c(1,2), shrink = FALSE, select, ...)
S3 method for class 'metaMDS'
text(x, display = c("sites", "species"), labels,

choices = c(1,2), shrink = FALSE, select, ...)
S3 method for class 'metaMDS'
scores(x, display = c("sites", "species"), shrink = FALSE,

choices, ...)
metaMDSdist(comm, distance = "bray", autotransform = TRUE, noshare = 0.1,

trace = 1, commname, zerodist = "fail", distfun = vegdist, ...)
metaMDSiter(dist, k = 2, trymax = 20, trace = 1, plot = FALSE, previous.best,

...)
initMDS(x, k=2)
postMDS(X, dist, pc=TRUE, center=TRUE, halfchange, threshold=0.8,

nthreshold=10, plot=FALSE, ...)
metaMDSredist(object, ...)
metaMDSrotate(object, vec, ...)

Arguments

comm Community data. Alternatively, dissimilarities either as a dist structure or as
a symmetric square matrix. In the latter case all other stages are skipped except
random starts and centring and pc rotation of axes.

distance Dissimilarity index used in vegdist.

k Number of dimensions in isoMDS.

trymax Maximum number of random starts in search of stable solution.
autotransform

Use simple heuristics for possible data transformation (see below).

noshare Proportion of site pairs with no shared species to trigger stepacross to find
flexible shortest paths among dissimilarities.

wascores Calculate species scores using function wascores.

expand Expand weighted averages of species in wascores.

100 metaMDS

trace Trace the function; trace = 2 or higher will be more voluminous.

plot Graphical tracing: plot interim results. You may want to set par(ask =
TRUE) with this option.

previous.best
Start searches from a previous solutions. Otherwise use isoMDS default for the
starting solution.

old.wa Use the old way of calculating WA scores for species: in vegan versions 1.12-5
and 1.11-2 WA scores were based on untransformed data even when data were
transformed in analysis, but since then the similar transformation will be used
in WA scores as in ordination.

x Dissimilarity matrix for isoMDS or plot object.

choices Axes shown.

type Plot type: "p" for points, "t" for text, and "n" for axes only.

display Display "sites" or "species".

shrink Shrink back species scores if they were expanded originally.

labels Optional test to be used instead of row names.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

X Configuration from multidimensional scaling.

commname The name of comm: should not be given if the function is called directly.

zerodist Handling of zero dissimilarities: either "fail" or "add" a small positive
value, or "ignore".

distfun Dissimilarity function. Any function returning a dist object and accepting
argument method can be used (but some extra arguments may cause name
conflicts).

dist Dissimilarity matrix used in multidimensional scaling.

pc Rotate to principal components.

center Centre the configuration.

halfchange Scale axes to half-change units. This defaults TRUE when dissimilarities were
evaluated within metaMDS and the dissimilarity index has an upper limit of 1.
If FALSE, the ordination dissimilarities are scaled to the same range as the input
dissimilarities.

threshold Largest dissimilarity used in half-change scaling.

nthreshold Minimum number of points in half-change scaling.

object A result object from metaMDS.

vec A continuous site variable (vector).

... Other parameters passed to functions.

metaMDS 101

Details

Non-metric Multidimensional Scaling (NMDS) is commonly regarded as the most robust uncon-
strained ordination method in community ecology (Minchin 1987). Functions initMDS and postMDS
together with some other functions are intended to help run NMDS wit isoMDS like recommended
by Minchin (1987). Function metaMDS combines all recommendations into one command for a
shotgun style analysis. The complete steps in metaMDS are:

1. Transformation: If the data values are larger than common class scales, the function performs a
Wisconsin double standardization using wisconsin. If the values look very large, the func-
tion also performs sqrt transformation. Both of these standardization are generally found to
improve the results. However, the limits are completely arbitrary (at present, data maximum
50 triggers sqrt and >9 triggers wisconsin). If you want to have a full control of the
analysis, you should set autotransform = FALSE and make explicit standardization in
the command.

2. Choice of dissimilarity: For a good result, you should use dissimilarity indices that have a
good rank order relation to ordering sites along gradients (Faith et al. 1987). The default is
Bray dissimilarity, because it often is the test winner. However, any other dissimilarity index
in vegdist can be used. Function rankindex can be used for finding the test winner for
you data and gradients.

3. Step-across dissimilarities: Ordination may be very difficult if a large proportion of sites have
no shared species. In this case, the results may be improved with stepacross dissimi-
larities, or flexible shortest paths among all sites. The stepacross is triggered by option
noshare. If you do not like manipulation of original distances, you should set noshare =
1.

4. NMDS with random starts: NMDS easily gets trapped into local optima, and you must start
NMDS several times from random start to be confident that you have found the global solution.
The default in isoMDS is to start from metric scaling (with cmdscale) which typically is
close to a local optimum. The strategy in metaMDS is to first run a default isoMDS, or use
the previous.best solution if supplied, and take its solution as the standard (Run 0).
Then metaMDS starts isoMDS from several random starts (maximum number is given by
trymax). If a solution is better (has a lower stress) than the previous standard, it is taken
as the new standard. If the solution is better or close to a standard, metaMDS compares two
solutions using Procrustes analysis using function procrustes with option symmetric
= TRUE. If the two solutions are very similar in their Procrustes rmse and the largest residual
is very small, the solutions are regarded as convergent and the best one is saved. Please note
that the conditions are stringent, and you may have found good and relatively stable solutions
although the function is not yet satisfied. Setting trace = TRUE will monitor the final
stresses, and plot = TRUE will display Procrustes overlay plots from each comparison.
This is the only step performed if input data (comm) were dissimilarities.

5. Scaling of the results: metaMDS will run postMDS for the final result. Function postMDS
provides the following ways of “fixing” the indeterminacy of scaling and orientation of axes
in NMDS: Centring moves the origin to the average of the axes. Principal components rotate
the configuration so that the variance of points is maximized on first dimension (with function
metaMDSrotate you can alternatively rotate the configuration so that the first axis is par-
allel to an environmental variable). Half-change scaling scales the configuration so that one
unit means halving of community similarity from replicate similarity. Half-change scaling is
based on closer dissimilarities where the relation between ordination distance and commu-
nity dissimilarity is rather linear; the limit is controlled by parameter threshold. If there

102 metaMDS

are enough points below this threshold (controlled by the parameter nthreshold), dissim-
ilarities are regressed on distances. The intercept of this regression is taken as the replicate
dissimilarity, and half-change is the distance where similarity halves according to linear re-
gression. Obviously the method is applicable only for dissimilarity indices scaled to 0 . . . 1,
such as Kulczynski, Bray-Curtis and Canberra indices. If half-change scaling is not used, the
ordination is scaled to the same range as the original dissimilarities.

6. Species scores: Function adds the species scores to the final solution as weighted averages us-
ing function wascores with given value of parameter expand. The expansion of weighted
averages can be undone with shrink = TRUE in plot or scores functions, and the cal-
culation of species scores can be suppressed with wascores = FALSE.

Value

Function metaMDS returns an object of class metaMDS. The final site ordination is stored in the
item points, and species ordination in the item species. The other items store the infor-
mation on the steps taken by the function. The object has print, plot, points and text
methods. Functions metaMDSdist and metaMDSredist return vegdist objects. Function
initMDS returns a random configuration which is intended to be used within isoMDS only. Func-
tions metaMDSiter and postMDS returns the result of isoMDS with updated configuration.

Warning

The calculation of wascores for species was changed in vegan version 1.12-6. They are now
based on the community data transformed similarly as in the ordination. Previously the species
scores always were based on the original data. You can re-establish the old behaviour with argument
old.wa = TRUE.

Note

Function metaMDS is a simple wrapper for isoMDS and some support functions. You can call
these support functions separately for better control of results. Data transformation, dissimilarities
and possible stepacross are made in function metaMDSdist which returns a dissimilarity re-
sult. Iterative search (with starting values from initMDS) is made in metaMDSiter. Processing
of result configuration is done in postMDS, and species scores added by wascores. If you want
to be more certain of reaching a global solution, you can compare results from several independent
runs. You can also continue analysis from previous results or from your own configuration. Func-
tion does not save the used dissimilarity matrix, but metaMDSredist tries to reconstruct the used
dissimilarities with original data transformation and possible stepacross.

The metaMDS function was designed to be used with community data. If you have other type of
data, you should probably set some arguments to non-default values: probably at least wascores,
autotransform and noshare should be FALSE. If you have negative data entries, metaMDS
will set the previous to FALSE with a warning.

Author(s)

Jari Oksanen

mite 103

References

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance. Vegetatio 69, 57–68.

Minchin, P.R. (1987) An evaluation of relative robustness of techniques for ecological ordinations.
Vegetatio 69, 89–107.

See Also

isoMDS, decostand, wisconsin, vegdist, rankindex, stepacross, procrustes,
wascores, ordiplot.

Examples

The recommended way of running NMDS (Minchin 1987)
##
data(dune)
library(MASS) ## isoMDS
NMDS
sol <- metaMDS(dune)
sol
plot(sol, type="t")

Start from previous best solution
sol2 <- metaMDS(dune, previous.best = sol)

mite Oribatid Mite Data with Explanatory Variables

Description

Oribatid mite data. 70 soil cores collected by Daniel Borcard in 1989. See Borcard et al. (1992,
1994) for details.

Usage

data(mite)
data(mite.env)
data(mite.pcnm)
data(mite.xy)

Format

There are three linked data sets: mite that contains the data on 35 species of Oribatid mites,
mite.env that contains environmental data in the same sampling sites, mite.xy that contains
geographic coordinates, and mite.pcnm that contains 22 PCNM base functions (columns) com-
puted from the geographic coordinates of the 70 sampling sites (Borcard & Legendre 2002). The
whole sampling area was 2.5 m x 10 m in size.

The fields in the environmental data are:

104 model.matrix.cca

SubsDens Substrate density (g/L)

WatrCont Water content of the substrate (g/L)

Substrate Substrate type, factor with levels Sphagn1, Sphagn2 Sphagn3 Sphagn Litter
Barepeat Interface

Shrub Shrub density, an ordered factor with levels 1 < 2 < 3

Topo Microtopograhy, a factor with levels Blanket and Hummock

Source

Pierre Legendre

References

Borcard, D., P. Legendre and P. Drapeau. 1992. Partialling out the spatial component of ecological
variation. Ecology 73: 1045-1055.

Borcard, D. and P. Legendre. 1994. Environmental control and spatial structure in ecological
communities: an example using Oribatid mites (Acari, Oribatei). Environmental and Ecological
Statistics 1: 37-61.

Borcard, D. and P. Legendre. 2002. All-scale spatial analysis of ecological data by means of
principal coordinates of neighbour matrices. Ecological Modelling 153: 51-68.

Examples

data(mite)

model.matrix.cca Reconstruct Model Frame and Model Matrices of Constrained Ordi-
nation

Description

Function model.frame.cca reconstructs a data.frame with the variables used in the con-
strained ordination method (cca, rda or capscale. Function model.matrix.cca creates a
list of design matrices used in constrained ordination. The items of the list are called Conditions
and Constraints. If either partial (Conditions) or constrained component was missing, a
single matrix is returned.

Usage

S3 method for class 'cca'
model.frame(formula, ...)
S3 method for class 'cca'
model.matrix(object, ...)

MOStest 105

Arguments

formula, object
A constrained ordination result object from which the needed information is
extracted.

... Other arguments passed to the default method of the function.

Details

The constrained ordination method objects do not save data on model frame or design matrix, and
the functions must reconstruct the information in the session. This will fail if the data sets and
variables of the original model are unavailable.

Value

Returns a data frame (model.frame) or an unnnamed matrix or a list of two matrices called
Constraints and Conditions (model.matrix).

Author(s)

Jari Oksanen

See Also

model.frame, model.matrix.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ poly(A1, 2) + Management + Use, dune.env)
model.frame(mod)
model.matrix(mod)

MOStest Mitchell-Olds & Shaw Test for the Location of Quadratic Extreme

Description

Mitchell-Olds & Shaw test concerns the location of the highest (hump) or lowest (pit) value of a
quadratic curve at given points. Typically, it is used to study whether the quadratic hump or pit
is located within a studied interval. The current test is generalized so that it applies generalized
linear models (glm) with link function instead of simple quadratic curve. The test was popularized
in ecology for the analysis of humped species richness patterns (Mittelbach et al. 2001), but it is
more general. With logarithmic link function, the quadratic response defines the Gaussian response
model of ecological gradients (ter Braak & Looman 1986), and the test can be used for inspecting
the location of Gaussian optimum within a given range of the gradient. It can also be used to replace
Tokeshi’s test of “bimodal” species frequency distribution.

106 MOStest

Usage

MOStest(x, y, interval, ...)
S3 method for class 'MOStest'
plot(x, which = c(1,2,3,6), ...)
fieller.MOStest(object, level = 0.95)
S3 method for class 'MOStest'
profile(fitted, alpha = 0.01, maxsteps = 10, del = zmax/5, ...)
S3 method for class 'MOStest'
confint(object, parm = 1, level = 0.95, ...)

Arguments

x The independent variable or plotting object in plot.

y The dependent variable.

interval The two points at which the test statistic is evaluated. If missing, the extremes
of x are used.

which Subset of plots produced. Values which=1 and 2 define plots specific to
MOStest (see Details), and larger values select graphs of plot.lm (minus
2).

object, fitted
A result object from MOStest.

level The confidence level required.

alpha Maximum significance level allowed.

maxsteps Maximum number of steps in the profile.

del A step length parameter for the profile (see code).

parm Ignored.

... Other variables passed to functions. Function MOStest passes these to glm so
that these can include family. The other functions pass these to underlying
graphical functions.

Details

The function fits a quadratic curve µ = b0 + b1x + b2x
2 with given family and link function. If

b2 < 0, this defines a unimodal curve with highest point at u = −b2/(2b3) (ter Braak & Looman
1986). If b2 > 0, the parabola has a minimum at u and the response is sometimes called “bimodal”.
The null hypothesis is that the extreme point u is located within the interval given by points p1 and
p2. If the extreme point u is exactly at p1, then b1 = 0 on shifted axis x − p1. In the test, origin
of x is shifted to the values p1 and p2, and the test statistic is based on the differences of deviances
between the original model and model where the origin is forced to the given location using the
standard anova.glm function (Oksanen et al. 2001). Mitchell-Olds & Shaw (1987) used the first
degree coefficient with its significance as estimated by the summary.glm function. This give
identical results with Normal error, but for other error distributions it is preferable to use the test
based on differences in deviances in fitted models.

The test is often presented as a general test for the location of the hump, but it really is dependent
on the quadratic fitted curve. If the hump is of different form than quadratic, the test may be
insignificant.

MOStest 107

Because of strong assumptions in the test, you should use the support functions to inspect the fit.
Function plot(..., which=1) displays the data points, fitted quadratic model, and its ap-
proximate 95% confidence intervals (2 times SE). Function plot with which = 2 displays the
approximate confidence interval of the polynomial coefficients, together with two lines indicating
the combinations of the coefficients that produce the evaluated points of x. Moreover, the cross-hair
shows the approximate confidence intervals for the polynomial coefficients ignoring their correla-
tions. Higher values of which produce corresponding graphs from plot.lm. That is, you must
add 2 to the value of which in plot.lm.

Function fieller.MOStest approximates the confidence limits of the location of the extreme
point (hump or pit) using Fieller’s theorem following ter Braak & Looman (1986). The test is
based on quasideviance except if the family is poisson or binomial. Function profile
evaluates the profile deviance of the fitted model, and confint finds the profile based confidence
limits following Oksanen et al. (2001).

The test is typically used in assessing the significance of diversity hump against productivity gradi-
ent (Mittelbach et al. 2001). It also can be used for the location of the pit (deepest points) instead
of the Tokeshi test. Further, it can be used to test the location of the the Gaussian optimum in
ecological gradient analysis (ter Braak & Looman 1986, Oksanen et al. 2001).

Value

The function is based on glm, and it returns the result of object of glm amended with the result of
the test. The new items in the MOStest are:

isHump TRUE if the response is a hump.

isBracketed TRUE if the hump or the pit is bracketed by the evaluated points.

hump Sorted vector of location of the hump or the pit and the points where the test was
evaluated.

coefficients Table of test statistics and their significances.

Note

Function fieller.MOStest is based on package optgrad in the Ecological Archives (http:
//www.esapubs.org/archive/ecol/E082/015/default.htm) accompanying Oksa-
nen et al. (2001). The Ecological Archive package optgrad also contains profile deviance method
for the location of the hump or pit, but the current implementation of profile and confint
rather follow the example of profile.glm and confint.glm in the MASS package.

Author(s)

Jari Oksanen

References

Mitchell-Olds, T. & Shaw, R.G. 1987. Regression analysis of natural selection: statistical inference
and biological interpretation. Evolution 41, 1149–1161.

Mittelbach, G.C. Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B., Willig,
R.M., Dodson, S.I. & Gough, L. 2001. What is the observed relationship between species richness
and productivity? Ecology 82, 2381–2396.

http://www.esapubs.org/archive/ecol/E082/015/default.htm
http://www.esapubs.org/archive/ecol/E082/015/default.htm

108 mrpp

Oksanen, J., Läärä, E., Tolonen, K. & Warner, B.G. 2001. Confidence intervals for the optimum in
the Gaussian response function. Ecology 82, 1191–1197.

ter Braak, C.J.F & Looman, C.W.N 1986. Weighted averaging, logistic regression and the Gaussian
response model. Vegetatio 65, 3–11.

See Also

The no-interaction model can be fitted with humpfit.

Examples

The Al-Mufti data analysed in humpfit():
mass <- c(140,230,310,310,400,510,610,670,860,900,1050,1160,1900,2480)
spno <- c(1, 4, 3, 9, 18, 30, 20, 14, 3, 2, 3, 2, 5, 2)
mod <- MOStest(mass, spno)
Insignificant
mod
... but inadequate shape of the curve
op <- par(mfrow=c(2,2), mar=c(4,4,1,1)+.1)
plot(mod)
Looks rather like log-link with Poisson error and logarithmic biomass
mod <- MOStest(log(mass), spno, family=quasipoisson)
mod
plot(mod)
par(op)
Confidence Limits
fieller.MOStest(mod)
confint(mod)
plot(profile(mod))

mrpp Multi Response Permutation Procedure and Mean Dissimilarity Ma-
trix

Description

Multiple Response Permutation Procedure (MRPP) provides a test of whether there is a significant
difference between two or more groups of sampling units. Function meandist finds the mean
within and between block dissimilarities.

Usage

mrpp(dat, grouping, permutations = 999, distance = "euclidean",
weight.type = 1, strata)

meandist(dist, grouping, ...)
S3 method for class 'meandist'
summary(object, ...)
S3 method for class 'meandist'
plot(x, kind = c("dendrogram", "histogram"), cluster = "average",

ylim, axes = TRUE, ...)

mrpp 109

Arguments

dat data matrix or data frame in which rows are samples and columns are response
variable(s), or a dissimilarity object or a symmetric square matrix of dissimilar-
ities.

grouping Factor or numeric index for grouping observations.

permutations Number of permutations to assess the significance of the MRPP statistic, delta.

distance Choice of distance metric that measures the dissimilarity between two observa-
tions . See vegdist for options. This will be used if dat was not a dissimi-
larity structure of a symmetric square matrix.

weight.type choice of group weights. See Details below for options.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

dist A dist object of dissimilarities, such as produced by functions dist, vegdist
or designdist..

object, x A meandist result object.

kind Draw a dendrogram or a histogram; see Details.

cluster A clustering method for the hclust function for kind = "dendrogram".
Any hclustmethod can be used, but perhaps only "average" and "single"
make sense.

ylim Limits for vertical axes (optional).

axes Draw scale for the vertical axis.

... Further arguments passed to functions.

Details

Multiple Response Permutation Procedure (MRPP) provides a test of whether there is a significant
difference between two or more groups of sampling units. This difference may be one of loca-
tion (differences in mean) or one of spread (differences in within-group distance). Function mrpp
operates on a data.frame matrix where rows are observations and responses data matrix. The
response(s) may be uni- or multivariate. The method is philosophically and mathematically allied
with analysis of variance, in that it compares dissimilarities within and among groups. If two groups
of sampling units are really different (e.g. in their species composition), then average of the within-
group compositional dissimilarities ought to be less than the average of the dissimilarities between
two random collection of sampling units drawn from the entire population.

The mrpp statistic δ is the overall weighted mean of within-group means of the pairwise dissimilar-
ities among sampling units. The choice of group weights is currently not clear. The mrpp function
offers three choices: (1) group size (n), (2) a degrees-of-freedom analogue (n−1), and (3) a weight
that is the number of unique distances calculated among n sampling units (n(n− 1)/2).

The mrpp algorithm first calculates all pairwise distances in the entire dataset, then calculates δ. It
then permutes the sampling units and their associated pairwise distances, and recalculates δ based on
the permuted data. It repeats the permutation step permutations times. The significance test is
the fraction of permuted deltas that are less than the observed delta, with a small sample correction.
The function also calculates the change-corrected within-group agreement A = 1− δ/E(δ), where
E(δ) is the expected δ assessed as the average of dissimilarities.

110 mrpp

If the first argument dat can be interpreted as dissimilarities, they will be used directly. In other
cases the function treats dat as observations, and uses vegdist to find the dissimilarities. The
default distance is Euclidean as in the traditional use of the method, but other dissimilarities in
vegdist also are available.

Function meandist calculates a matrix of mean within-cluster dissimilarities (diagonal) and between-
cluster dissimilarities (off-diagonal elements), and an attribute n of grouping counts. Function
summary finds the within-class, between-class and overall means of these dissimilarities, and the
MRPP statistics with all weight.type options and the Classification Strength, CS (Van Sickle
and Hughes, 2000). CS is defined for dissimiliraties as B̄−W̄ , where B̄ is the mean between cluster
dissimilarity and W̄ is the mean within cluster dissimilarity with weight.type = 1. The func-
tion does not perform significance tests for these statistics, but you must use mrpp with appropriate
weight.type. There is currently no significance test for CS, but mrpp with weight.type =
1 gives the correct test for W̄ and a good approximation for CS. Function plot draws a dendrogram
or a histogram of the result matrix based on the within-group and between group dissimilarities. The
dendrogram is found with the method given in the cluster argument using function hclust.
The terminal segments hang to within-cluster dissimilarity. If some of the clusters are more het-
erogeneous than the combined class, the leaf segment are reversed. The histograms are based on
dissimilarites, but ore otherwise similar to those of Van Sickle and Hughes (2000): horizontal line
is drawn at the level of mean between-cluster dissimilarity and vertical lines connect within-cluster
dissimilarities to this line.

Value

The function returns a list of class mrpp with following items:

call Function call.

delta The overall weighted mean of group mean distances.

E.delta expected delta, under the null hypothesis of no group structure. This is the mean
of original dissimilarities.

CS Classification strength (Van Sickle and Hughes, 2000). Currently not imple-
mented and always NA.

n Number of observations in each class.

classdelta Mean dissimilarities within classes. The overall δ is the weighted average of
these values with given weight.type

.

Pvalue Significance of the test.

A A chance-corrected estimate of the proportion of the distances explained by
group identity; a value analogous to a coefficient of determination in a linear
model.

distance Choice of distance metric used; the "method" entry of the dist object.

weight.type The choice of group weights used.

boot.deltas The vector of "permuted deltas," the deltas calculated from each of the permuted
datasets.

permutations The number of permutations used.

mrpp 111

Note

This difference may be one of location (differences in mean) or one of spread (differences in within-
group distance). That is, it may find a significant difference between two groups simply because
one of those groups has a greater dissimilarities among its sampling units. Most mrpp models can
be analysed with adonis which seems not suffer from the same problems as mrpp and is a more
robust alternative.

Author(s)

M. Henry H. Stevens <HStevens@muohio.edu> and Jari Oksanen.

References

B. McCune and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software Design,
Gleneden Beach, Oregon, USA.

P. W. Mielke and K. J. Berry. 2001. Permutation Methods: A Distance Function Approach. Springer
Series in Statistics. Springer.

J. Van Sickle and R. M. Hughes 2000. Classification strengths of ecoregions, catchments, and
geographic clusters of aquatic vertebrates in Oregon. J. N. Am. Benthol. Soc. 19:370–384.

See Also

anosim for a similar test based on ranks, and mantel for comparing dissimilarities against con-
tinuous variables, and vegdist for obtaining dissimilarities, adonis is a more robust alternative
in most cases.

Examples

data(dune)
data(dune.env)
dune.mrpp <- mrpp(dune, dune.env$Management)
dune.mrpp

Save and change plotting parameters
def.par <- par(no.readonly = TRUE)
layout(matrix(1:2,nr=1))

plot(dune.ord <- metaMDS(dune), type="text", display="sites")
ordihull(dune.ord, dune.env$Management)

with(dune.mrpp, {
fig.dist <- hist(boot.deltas, xlim=range(c(delta,boot.deltas)),

main="Test of Differences Among Groups")
abline(v=delta);
text(delta, 2*mean(fig.dist$counts), adj = -0.5,

expression(bold(delta)), cex=1.5) }
)
par(def.par)
meandist
dune.md <- with(dune.env, meandist(vegdist(dune), Management))

112 mso

dune.md
summary(dune.md)
plot(dune.md)
plot(dune.md, kind="histogram")

mso Functions for performing and displaying a spatial partitioning of cca
or rda results

Description

The function mso adds an attribute vario to an object of class "cca" that describes the spatial
partitioning of the cca object and performs an optional permutation test for the spatial indepen-
dence of residuals. The function plot.mso creates a diagnostic plot of the spatial partitioning of
the "cca" object.

Usage

mso(object.cca, object.xy, grain = 1, round.up = FALSE, permutations = FALSE)
msoplot(x, alpha = 0.05, explained = FALSE, ...)

Arguments

object.cca An object of class cca, created by the cca or rda function.

object.xy A vector, matrix or data frame with the spatial coordinates of the data repre-
sented by object.cca. Must have the same number of rows as object.ccaCAXbar
(see cca.object).

grain Interval size for distance classes.

round.up Determines the choice of breaks. If false, distances are rounded to the nearest
multiple of grain. If true, distances are rounded to the upper multiple of grain.

permutations If false, suppresses the permutation test. If an integer, determines the number of
permutations for the Mantel test of spatial independence of residual inertia.

x A result object of mso.

alpha Significance level for the two-sided permutation test of the Mantel statistic for
spatial independence of residual inertia and for the point-wise envelope of the
variogram of the total variance. A Bonferroni-type correction can be achieved
by dividing the overall significance value (e.g. 0.05) by the number of distance
classes.

explained If false, suppresses the plotting of the variogram of explained variance.

... Other arguments passed to functions.

mso 113

Details

The Mantel test is an adaptation of the function mantel of the vegan package to the parallel testing
of several distance classes. It compares the mean inertia in each distance class to the pooled mean
inertia of all other distance classes.

If there are explanatory variables (RDA, CCA, pRDA, pCCA) and a significance test for residual
autocorrelation was performed when running the function mso, the function plot.mso will print
an estimate of how much the autocorrelation (based on significant distance classes) causes the global
error variance of the regression analysis to be underestimated

Value

The function mso returns an amended cca or rda object with the additional attributes grain, H,
H.test and vario.

grain The grain attribute defines the interval size of the distance classes .

H H is an object of class ’dist’ and contains the geographic distances between
observations.

H.test H.test contains a set of dummy variables that describe which pairs of observa-
tions (rows = elements of object$H) fall in which distance class (columns).

vario The vario attribute is a data frame that contains some or all of the following
components for the rda case (cca case in brackets):

H Distance class as multiples of grain.
Dist Average distance of pairs of observations in distance class H.
n Number of unique pairs of observations in distance class H.
All Empirical (chi-square) variogram of total variance (inertia).
Sum Sum of empirical (chi-square) variograms of explained and residual vari-

ance (inertia).
CA Empirical (chi-square) variogram of residual variance (inertia).
CCA Empirical (chi-square) variogram of explained variance (inertia).
pCCA Empirical (chi-square) variogram of conditioned variance (inertia).
se Standard error of the empirical (chi-square) variogram of total variance (in-

ertia).
CA.signif P-value of permutation test for spatial independence of residual

variance (inertia).

Note

The function is based on the code published in the Ecological Archives E085-006 (http://www.
esapubs.org/archive/ecol/E085/006/default.htm).

Author(s)

The responsible author was Helene Wagner.

http://www.esapubs.org/archive/ecol/E085/006/default.htm
http://www.esapubs.org/archive/ecol/E085/006/default.htm

114 multipart

References

Wagner, H.H. 2004. Direct multi-scale ordination with canonical correspondence analysis. Ecology
85: 342–351.

See Also

Function cca and rda, cca.object.

Examples

Reconstruct worked example of Wagner (submitted):
X <- matrix(c(1, 2, 3, 2, 1, 0), 3, 2)
Y <- c(3, -1, -2)
tmat <- c(1:3)
Canonical correspondence analysis (cca):
Example.cca <- cca(X, Y)
Example.cca <- mso(Example.cca, tmat)
msoplot(Example.cca)
Example.cca$vario

Correspondence analysis (ca):
Example.ca <- mso(cca(X), tmat)
msoplot(Example.ca)

Unconstrained ordination with test for autocorrelation
using oribatid mite data set as in Wagner (2004)
data(mite)
data(mite.env)
data(mite.xy)

mite.cca <- cca(log(mite + 1))
mite.cca <- mso(mite.cca, mite.xy, grain = 1, permutations = 100)
msoplot(mite.cca)
mite.cca

Constrained ordination with test for residual autocorrelation
and scale-invariance of species-environment relationships
mite.cca <- cca(log(mite + 1) ~ SubsDens + WatrCont + Substrate + Shrub + Topo, mite.env)
mite.cca <- mso(mite.cca, mite.xy, permutations = 100)
msoplot(mite.cca)
mite.cca

multipart Multiplicative Diversity Partitioning

Description

In multiplicative diversity partitioning, mean values of alpha diversity at lower levels of a sampling
hierarchy are compared to the total diversity in the entire data set or the pooled samples (gamma
diversity).

multipart 115

Usage

multipart(formula, data, index=c("renyi", "tsallis"), scales = 1,
global = FALSE, relative = FALSE, nsimul=99, ...)

S3 method for class 'multipart'
print(x, ...)

Arguments

formula A two sided model formula in the form y ~ x, where y is the community data
matrix with samples as rows and species as column. Right hand side (x) must
contain factors referring to levels of sampling hierarchy, terms from right to left
will be treated as nested (first column is the lowest, last is the highest level).
These variables must be factors in order to unambiguous handling. Interaction
terms are not allowed.

data A data frame where to look for variables defined in the right hand side of
formula. If missing, variables are looked in the global environment.

index Character, the entropy index to be calculated (see Details).

relative Logical, if TRUE then beta diversity is standardized by its maximum (see De-
tails).

scales Numeric, of length 1, the order of the generalized diversity index to be used.

global Logical, indicates the calculation of beta diversity values, see Details.

nsimul Number of permutation to use if matr is not of class ’permat’. If nsimul =
0, only the FUN argument is evaluated. It is thus possible to reuse the statistic
values without using a null model.

x An object to print.

... Other arguments passed to oecosimu, i.e. method, thin or burnin.

Details

Multiplicative diversity partitioning is based on Whittaker’s (1972) ideas, that has recently been
generalised to one parametric diversity families (i.e. Rényi and Tsallis) by Jost (2006, 2007). Jost
recommends to use the numbers equivalents (Hill numbers), instead of pure diversities, and proofs,
that this satisfies the multiplicative partitioning requirements.

The current implementation of multipart calculates Hill numbers based on the functions renyi
and tsallis (provided as index argument). If values for more than one scales are desired, it
should be done in separate runs, because it adds extra dimensionality to the implementation, which
has not been resolved efficiently.

Alpha diversities are then the averages of these Hill numbers for each hierarchy levels, the global
gamma diversity is the alpha value calculated for the highest hierarchy level. When global =
TRUE, beta is calculated relative to the global gamma value:

βi = γ/αi

when global = FALSE, beta is calculated relative to local gamma values (local gamma means
the diversity calculated for a particular cluster based on the pooled abundance vector):

βij = α(i+1)j/mean(αij)

116 multipart

where j is a particular cluster at hierarchy level i. Then beta diversity value for level i is the mean
of the beta values of the clusters at that level, βi = mean(βij).

If relative = TRUE, the respective beta diversity values are standardized by their maximum
possible values (mean(βij)/βmax,ij) given as βmax,ij = nj (the number of lower level units in a
given cluster j).

The expected diversity components are calculated nsimul times by individual based randomisa-
tion of the community data matrix. This is done by the "r2dtable" method in oecosimu by
default.

Value

An object of class ’multipart’ with same structure as ’oecosimu’ objects.

Author(s)

Péter Sólymos, <solymos@ualberta.ca>

References

Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375.

Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88,
2427–2439.

Whittaker, R. (1972). Evolution and measurement of species diversity. Taxon, 21, 213–251.

See Also

See adipart for additive diversity partitioning, hiersimu for hierarchical null model testing
and oecosimu for permutation settings and calculating p-values.

Examples

data(mite)
data(mite.xy)
data(mite.env)
Function to get equal area partitions of the mite data
cutter <- function (x, cut = seq(0, 10, by = 2.5)) {

out <- rep(1, length(x))
for (i in 2:(length(cut) - 1))

out[which(x > cut[i] & x <= cut[(i + 1)])] <- i
return(as.factor(out))}

The hierarchy of sample aggregation
levsm <- data.frame(

l1=as.factor(1:nrow(mite)),
l2=cutter(mite.xy$y, cut = seq(0, 10, by = 2.5)),
l3=cutter(mite.xy$y, cut = seq(0, 10, by = 5)),
l4=cutter(mite.xy$y, cut = seq(0, 10, by = 10)))

Multiplicative diversity partitioning
multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=25)
multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=25, relative=TRUE)
multipart(mite ~ ., levsm, index="renyi", scales=1, nsimul=25, global=TRUE)

nestedtemp 117

nestedtemp Nestedness Indices for Communities of Islands or Patches

Description

Patches or local communities are regarded as nested if they all could be subsets of the same com-
munity. In general, species poor communities should be subsets of species rich communities, and
rare species should only occur in species rich communities.

Usage

nestedchecker(comm)
nestedn0(comm)
nesteddisc(comm)
nestedtemp(comm, ...)
nestednodf(comm, order = TRUE, weighted = FALSE)
S3 method for class 'nestedtemp'
plot(x, kind = c("temperature", "incidence"),

col=rev(heat.colors(100)), names = FALSE, ...)

Arguments

comm Community data.

x Result object for a plot.

col Colour scheme for matrix temperatures.

kind The kind of plot produced.

names Label columns and rows in the plot using names in comm. If it is a logical vector
of length 2, row and column labels are returned accordingly.

order Order rows and columns by frequencies.

weighted Use species abundances as weights of interactions.

... Other arguments to functions.

Details

The nestedness functions evaluate alternative indices of nestedness. The functions are intended to
be used together with Null model communities and used as an argument in oecosimu to analyse
the non-randomness of results.

Function nestedchecker gives the number of checkerboard units, or 2x2 submatrices where
both species occur once but on different sites (Stone & Roberts 1990).

Function nestedn0 implements nestedness measure N0 which is the number of absences from
the sites which are richer than the most pauperate site species occurs (Patterson & Atmar 1986).

Function nesteddisc implements discrepancy index which is the number of ones that should
be shifted to fill a row with ones in a table arranged by species frequencies (Brualdi & Sanderson

118 nestedtemp

1999). The original definition arranges species (columns) by their frequencies, but did not have any
method of handling tied frequencies.

The nesteddisc function tries to order tied columns to minimize the discrepancy statistic but this
is rather slow, and with a large number of tied columns there is no guarantee that the best ordering
was found. In that case a warning of tied columns will be issued.

Function nestedtemp finds the matrix temperature which is defined as the sum of “surprises” in
arranged matrix. In arranged unsurprising matrix all species within proportion given by matrix fill
are in the upper left corner of the matrix, and the surprise of the absence or presences is the diag-
onal distance from the fill line (Atmar & Patterson 1993). Function tries to pack species and sites
to a low temperature (Rodríguez-Gironés & Santamaria 2006), but this is an iterative procedure,
and the temperatures usually vary among runs. Function nestedtemp also has a plot method
which can display either incidences or temperatures of the surprises. Matrix temperature was rather
vaguely described (Atmar & Patterson 1993), but Rodríguez-Gironés & Santamaria (2006) are more
explicit and their description is used here. However, the results probably differ from other imple-
mentations, and users should be cautious in interpreting the results. The details of calculations are
explained in the vignette Design decisions and implementation that you can read using func-
tions vignette or vegandocs. Function nestedness in the bipartite package is a direct
port of the BINMATNEST programme of Rodríguez-Gironés & Santamaria (2006).

Function nestednodf implements a nestedness metric based on overlap and decreasing fill (Almeida-
Neto et al., 2008). Two basic properties are required for a matrix to have the maximum degree of
nestedness according to this metric: (1) complete overlap of 1’s from right to left columns and
from down to up rows, and (2) decreasing marginal totals between all pairs of columns and all pairs
of rows. The nestedness statistic is evaluated separately for columns (N columns) for rows (N
rows) and combined for the whole matrix (NODF). If you set order = FALSE, the statistic is
evaluated with the current matrix ordering allowing tests of other meaningful hypothesis of matrix
structure than default ordering by row and column totals (breaking ties by total abundances when
weighted = TRUE) (see Almeida-Neto et al. 2008). With weighted = TRUE, the function
finds the weighted version of the index (Almeida-Neto & Ulrich, 2011). However, this requires
quantitative null models for adequate testing.

Value

The result returned by a nestedness function contains an item called statistic, but the other
components differ among functions. The functions are constructed so that they can be handled by
oecosimu.

Author(s)

Jari Oksanen and Gustavo Carvalho (nestednodf).

References

Almeida-Neto, M., Gumarães, P., Gumarães, P.R., Loyola, R.D. & Ulrich, W. (2008). A consistent
metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos
117, 1227–1239.

Almeida-Neto, M. & Ulrich, W. (2011). A straightforward computational approach for measuring
nestedness using quantitative matrices. Env. Mod. Software 26, 173–178.

oecosimu 119

Atmar, W. & Patterson, B.D. (1993). The measurement of order and disorder in the distribution of
species in fragmented habitat. Oecologia 96, 373–382.

Brualdi, R.A. & Sanderson, J.G. (1999). Nested species subsets, gaps, and discrepancy. Oecologia
119, 256–264.

Patterson, B.D. & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas
and archipelagos. Biol. J. Linnean Soc. 28, 65–82.

Rodríguez-Gironés, M.A. & Santamaria, L. (2006). A new algorithm to calculate the nestedness
temperature of presence-absence matrices. J. Biogeogr. 33, 924–935.

Stone, L. & Roberts, A. (1990). The checkerboard score and species distributions. Oecologia 85,
74–79.

Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. (1998). A comparative
analysis of nested subset patterns of species composition. Oecologia 113, 1–20.

See Also

In general, the functions should be used with oecosimu which generates Null model communities
to assess the non-randomness of nestedness patterns.

Examples

data(sipoo)
Matrix temperature
out <- nestedtemp(sipoo)
out
plot(out)
plot(out, kind="incid")
Use oecosimu to assess the non-randomness of checker board units
nestedchecker(sipoo)
oecosimu(sipoo, nestedchecker, "quasiswap")
Another Null model and standardized checkerboard score
oecosimu(sipoo, nestedchecker, "r00", statistic = "C.score")

oecosimu Null Models for Biological Communities

Description

Null models generate random communities with different criteria to study the significance of nest-
edness or other community patterns. The function only simulates binary (presence/absence) models
with constraint for total number of presences, and optionally for numbers of species and/or species
frequencies.

120 oecosimu

Usage

oecosimu(comm, nestfun, method, nsimul = 99, burnin = 0, thin = 1,
statistic = "statistic", alternative = c("two.sided", "less", "greater"),
...)

commsimulator(x, method, thin=1)
S3 method for class 'oecosimu'
as.ts(x, ...)
S3 method for class 'oecosimu'
as.mcmc(x)
S3 method for class 'oecosimu'
density(x, ...)
S3 method for class 'oecosimu'
densityplot(x, data, xlab = "Simulated", ...)

Arguments

comm Community data.

x Community data for commsimulator, or an oecosimu result object for
as.ts, as.mcmc, density and densityplot.

nestfun Function to analyse nestedness. Some functions are provided in vegan, but
any function can be used if it accepts the community as the first argument, and
returns either a plain number or the result in list item with the name defined in
argument statistic. See Examples for defining your own functions.

method Null model method. See details.

nsimul Number of simulated null communities.

burnin Number of null communities discarded before proper analysis in sequential
methods "swap" and "tswap".

thin Number of discarded null communities between two evaluations of nestedness
statistic in sequential methods "swap" and "tswap".

statistic The name of the statistic returned by nestedfun

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less". You can specify just the initial letter.

data Ignored argument of the generic function.

xlab Label of the x-axis.

... Other arguments to functions.

Details

Function oecosimu is a wrapper that evaluates a nestedness statistic using function given by
nestfun, and then simulates a series of null models using commsimulator or other functions
(depending on method argument), and evaluates the statistic on these null models. The vegan
packages contains some nestedness functions that are described separately (nestedchecker,
nesteddisc, nestedn0, nestedtemp), but many other functions can be used as long as they
are meaningful with binary or quantitative community models. An applicable function must return
either the statistic as a plain number, or as a list element "statistic" (like chisq.test), or

oecosimu 121

in an item whose name is given in the argument statistic. The statistic can be a single number
(like typical for a nestedness index), or it can be a vector. The vector indices can be used to analyse
site (row) or species (column) properties, see treedive for an example.

Function commsimulator implements binary (presence/absence) null models for community
composition. The implemented models are r00 which maintains the number of presences but fills
these anywhere so that neither species (column) nor site (row) totals are preserved. Methods r0, r1
and r2 maintain the site (row) frequencies. Method r0 fills presences anywhere on the row with no
respect to species (column) frequencies, r1 uses column marginal frequencies as probabilities, and
r2 uses squared column sums. Methods r1 and r2 try to simulate original species frequencies, but
they are not strictly constrained. All these methods are reviewed by Wright et al. (1998). Method
c0 maintains species frequencies, but does not honour site (row) frequencies (Jonsson 2001).

The other methods maintain both row and column frequencies. Methods swap and tswap imple-
ment sequential methods, where the matrix is changed only little in one step, but the changed matrix
is used as an input if the next step. Methods swap and tswap inspect random 2x2 submatrices
and if they are checkerboard units, the order of columns is swapped. This changes the matrix struc-
ture, but does not influence marginal sums (Gotelli & Entsminger 2003). Method swap inspects
submatrices so long that a swap can be done. Miklós & Podani (2004) suggest that this may lead
into biased sequences, since some columns or rows may be more easily swapped, and they suggest
trying a fixed number of times and doing zero to many swaps at one step. This method is imple-
mented by method tswap or trial swap. Function commsimulator makes only one trial swap in
time (which probably does nothing), but oecosimu estimates how many submatrices are expected
before finding a swappable checkerboard, and uses that ratio to thin the results, so that on average
one swap will be found per step of tswap. However, the checkerboard frequency probably changes
during swaps, but this is not taken into account in estimating the thin. One swap still changes the
matrix only little, and it may be useful to thin the results so that the statistic is only evaluated after
burnin steps (and thinned).

Methods quasiswap and backtracking are not sequential, but each call produces a matrix
that is independent of previous matrices, and has the same marginal totals as the original data.
The recommended method is quasiswap which is much faster because it is implemented in C.
Method backtracking is provided for comparison, but it is so slow that it may be dropped
from future releases of vegan (or also implemented in C). Method quasiswap (Miklós & Podani
2004) implements a method where matrix is first filled honouring row and column totals, but with
integers that may be larger than one. Then the method inspects random 2x2 matrices and performs
a quasiswap on them. Quasiswap is similar to ordinary swap, but it also can reduce numbers above
one to ones maintaining marginal totals. Method backtracking implements a filling method
with constraints both for row and column frequencies (Gotelli & Entsminger 2001). The matrix is
first filled randomly using row and column frequencies as probabilities. Typically row and column
sums are reached before all incidences are filled in. After that begins “backtracking”, where some
of the points are removed, and then filling is started again, and this backtracking is done so may
times that all incidences will be filled into matrix. The quasiswap method is not sequential, but
it produces a random incidence matrix with given marginal totals.

Function as.ts transforms the simulated results of sequential methods into a time series or a ts
object. This allows using analytic tools for time series in studying the sequences (see examples).
Function as.mcmc transforms the simulated results of sequential methods into an mcmc object of
the coda package. The coda package provides functions for the analysis of stationarity, adequacy of
sample size, autocorrelation, need of burn-in and much more for sequential methods. Please consult
the documentation of coda package.

122 oecosimu

Function density provides an interface to the standard density function for the simulated val-
ues. Function densityplot is an interface to the densityplot function of the lattice pack-
age. The density can be used meaningfully only for single statistics and must be plotted sepa-
rately. The densityplot function can handle multiple statistics, and it plots the results directly.
In addition to the density, the densityplot also shows the observed value of the statistic (pro-
vided it is within the graph limits). The densityplot function is defined as a generic function
in the lattice package and you must either load the lattice library before calling densityplot,
or use the longer form densityplot.oecosimu when you first time call the function.

As a result of method = "r2dtable" in oecosimu, quantitative community null models are
used to evaluate the statistic. This setting uses the r2dtable function to generate random matrices
with fixed row and column totals (hypergeometric distribution). This null model is used in diversity
partitioning function (see adipart).

The method argument can be a function with first argument taking the community matrix, and
optionally with burnin and thin argument. The function must return a matrix-like object with
same dimensions. But be careful, blindly applying permuted matrices for null model testing can be
dangerous.

Value

Function oecosimu returns the result of nestfunwith one added component called oecosimu.
The oecosimu component contains the simulated values of the statistic (item simulated), the
name of the method, two-sided P value and z-value of the statistic based on simulation. The
commsimulator returns a null model matrix or a swap of the input matrix.

Note

Functions commsimulator and oecosimu do not have default nestfun nor default method,
because there is no clear natural choice. If you use these methods, you must be able to choose your
own strategy. The choice of nestedness index is difficult because the functions seem to imply very
different concepts of structure and randomness. The choice of swapping method is also problematic.
Method r00 has some heuristic value of being really random. However, it produces null models
which are different from observed communities in most respects, and a “significant” result may
simply mean that not all species are equally common (r0 is similar with this respect). It is also
difficult to find justification for r2. The methods maintaining both row and column totals only
study the community relations, but they can be very slow. Moreover, they regard marginal totals as
constraints instead of results of occurrence patterns. You should evaluate timings in small trials (one
cycle) before launching an extensive simulation. One swap is fast, but it changes data only little, and
you may need long burnin and strong thinning in large matrices. You should plot the simulated
values to see that they are more or less stationary and there is no trend. Method quasiswap is
implemented in C and it is much faster than backtrack. Method backtrack may be removed
from later releases of vegan because it is slow, but it is still included for comparison.

If you wonder about the name of oecosimu, look at journal names in the References (and more
in nestedtemp).

Author(s)

Jari Oksanen

oecosimu 123

References

Gotelli, N.J. & Entsminger, N.J. (2001). Swap and fill algorithms in null model analysis: rethinking
the knight’s tour. Oecologia 129, 281–291.

Gotelli, N.J. & Entsminger, N.J. (2003). Swap algorithms in null model analysis. Ecology 84,
532–535.

Jonsson, B.G. (2001) A null model for randomization tests of nestedness in species assemblages.
Oecologia 127, 309–313.

Miklós, I. & Podani, J. (2004). Randomization of presence-absence matrices: comments and new
algorithms. Ecology 85, 86–92.

Wright, D.H., Patterson, B.D., Mikkelson, G.M., Cutler, A. & Atmar, W. (1998). A comparative
analysis of nested subset patterns of species composition. Oecologia 113, 1–20.

See Also

r2dtable generates table with given marginals but with entries above one. Functions permatfull
and permatswap generate Null models for count data. Function rndtaxa (labdsv package) ran-
domizes a community table. See also nestedtemp (that also discusses other nestedness functions)
and treedive for another application.

Examples

Use the first eigenvalue of correspondence analysis as an index
of structure: a model for making your own functions.
data(sipoo)
out <- oecosimu(sipoo, decorana, "swap", burnin=100, thin=10, statistic="evals")
out
Inspect the swap sequence as a time series object
plot(as.ts(out))
lag.plot(as.ts(out))
acf(as.ts(out))
Density plot: needs lattice
require(lattice)
densityplot(out, as.table = TRUE)
Use quantitative null models to compare
mean Bray-Curtis dissimilarities
data(dune)
meandist <- function(x) mean(vegdist(x, "bray"))
mbc1 <- oecosimu(dune, meandist, "r2dtable")
mbc1
Define a custom function that shuffles
cells in each rows
f <- function(x) {

apply(x, 2, function(z) sample(z, length(z)))
}
mbc2 <- oecosimu(as.matrix(dune), meandist, f)
mbc2

124 ordihull

ordihull Add Graphical Items to Ordination Diagrams

Description

Functions to add convex hulls, arrows, line segments, regular grids of points, ‘spider’ graphs, el-
lipses or cluster dendrogram to ordination diagrams. The ordination diagrams can be produced by
vegan plot.cca, plot.decorana or ordiplot.

Usage

ordihull(ord, groups, display = "sites", draw = c("lines","polygon", "none"),
show.groups, label = FALSE, ...)

ordiellipse(ord, groups, display="sites", kind = c("sd","se"), conf,
draw = c("lines","polygon", "none"), w = weights(ord, display),
col = NULL, show.groups, label = FALSE, ...)

ordispider(ord, groups, display="sites", w = weights(ord, display),
show.groups, label = FALSE, ...)

ordiarrows(ord, groups, levels, replicates, display = "sites",
show.groups, startmark, label = FALSE, ...)

ordisegments(ord, groups, levels, replicates, display = "sites",
show.groups, label = FALSE, ...)

ordigrid(ord, levels, replicates, display = "sites", lty = c(1,1),
col = c(1,1), lwd = c(1,1), ...)

ordicluster(ord, cluster, prune = 0, display = "sites",
w = weights(ord, display), ...)

Arguments

ord An ordination object or an ordiplot object.

groups Factor giving the groups for which the graphical item is drawn.
levels, replicates

Alternatively, regular groups can be defined with arguments levels and replicates,
where levels gives the number of groups, and replicates the number of
successive items at the same group.

display Item to displayed.

draw Use either lines or polygon to draw the line. Graphical parameters are
passed to both. The main difference is that polygons may be filled and non-
transparent. With none nothing is drawn, but the function returns the invisible
plotting data.

show.groups Show only given groups. This can be a vector, or TRUE if you want to show
items for which condition is TRUE. This argument makes it possible to use dif-
ferent colours and line types for groups. The default is to show all groups.

label Label the groups by their names. In ordiellipse, ordihull and ordispider
the the group name is in the centroid of the object, in ordiarrows in the

ordihull 125

start of the arrow, and in ordisegments at both ends. ordiellipse and
ordihull use standard text, and others use ordilabel.

startmark plotting character used to mark the first item. The default is to use no mark, and
for instance, startmark = 1 will draw a circle. For other plotting charac-
ters, see pch in points.

w Weights used to find the average within group. Weights are used automatically
for cca and decorana results, unless undone by the user. w=NULL sets equal
weights to all points.

kind Whether standard deviations of points (sd) or standard deviations of their (weighted)
averages (se) are used.

conf Confidence limit for ellipses, e.g. 0.95. If given, the corresponding sd or se is
multiplied with the corresponding value found from the Chi-squared distribution
with 2df.

cluster Result of hierarchic cluster analysis, such as hclust or agnes.

col Colour of ellipses or ellipse fills in ordiellipse or lines in ordigrid. For
other functions the effect depends on the underlining functions this argument is
passed to.

lty, lwd Line type, line width used for levels and replicates in ordigrid.

prune Number of upper level hierarchies removed from the dendrogram. If prune
> 0, dendrogram will be disconnected.

... Parameters passed to graphical functions such as lines, segments, arrows,
polygon or to scores to select axes and scaling etc.

Details

Function ordihull draws lines or polygons for the convex hulls found by function chull
encircling the items in the groups.

Function ordiellipse draws lines or polygons for dispersion ellipses using either standard
deviation of point scores or standard error of the (weighted) average of scores, and the (weighted)
correlation defines the direction of the principal axis of the ellipse. An ellipsoid hull can be drawn
with function ellipsoidhull of package cluster.

Functions ordihull and ordiellipse return the invisible plotting structure. In ordihull
this is a list of coordinates of the hulls (which can be extracted with scores), and in ordiellipse
a list of covariance matrices and scales used in drawing the ellipses. These result objects have a
summary method that returns the coordinates of the centres of the ellipses or hulls and their sur-
face areas in user units. The centres of the hulls may differ from the location of the label which
is the centre of the points instead of the centre of the polygon. With draw = "none" only the
result object is returned and nothing is drawn.

Function ordiarrows draws arrows and ordisegments draws line segments between
successive items in the groups. Function ordigrid draws line segments both within the groups
and for the corresponding items among the groups.

Function ordispider draws a ‘spider’ diagram where each point is connected to the group cen-
troid with segments. Weighted centroids are used in the correspondence analysis methods cca
and decorana or if the user gives the weights in the call. If ordispider is called with cca or

126 ordihull

rda result without groups argument, the function connects each ‘WA’ scores to the correspond-
ing ‘LC’ score. If the argument is a (invisible) ordihull object, the functin will connect the
points of the hull to their centroid.

Function ordicluster overlays a cluster dendrogram onto ordination. It needs the result from
a hierarchic clustering such as hclust or agnes, or other with a similar structure. Function
ordicluster connects cluster centroids to each other with line segments. Function uses cen-
troids of all points in the clusters, and is therefore similar to average linkage methods.

Note

These functions add graphical items to ordination graph: You must draw a graph first.

Author(s)

Jari Oksanen

See Also

The functions pass parameters to basic graphical functions, and you may wish to change the default
values in arrows, lines, segments and polygon. You can pass parameters to scores as
well. Underlying function for ordihull is chull.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ Management, dune.env)
attach(dune.env)
pass non-graphical arguments without warnings
plot(mod, type="n", scaling = 3)
Catch the invisible result of ordihull...
pl <- ordihull(mod, Management, scaling = 3, label = TRUE)
... and find centres and areas of the hulls
summary(pl)
use ordispider to label and mark the hull
plot(mod, type = "n")
pl <- ordihull(mod, Management, scaling = 3)
ordispider(pl, col="red", lty=3, label = TRUE)
ordispider to connect WA and LC scores
plot(mod, dis=c("wa","lc"), type="p")
ordispider(mod)
Other types of plots
plot(mod, type = "p", display="sites")
ordicluster(mod, hclust(vegdist(dune)), prune=3, col = "blue")
plot(mod, type="n", display = "sites")
text(mod, display="sites", labels = as.character(Management))
pl <- ordiellipse(mod, Management, kind="se", conf=0.95, lwd=2, col="blue")
summary(pl)

ordilabel 127

ordilabel Add Text on Non-transparent Label to an Ordination Plot.

Description

Function ordilabel is similar to text, but the text is on an opaque label. This can help in
crowded ordination plots: you still cannot see all text labels, but at least the uppermost are readable.
Argument priority helps to make the most important labels visible.

Usage

ordilabel(x, display, labels, choices = c(1, 2), priority, cex = 0.8,
fill = "white", border = NULL, col = NULL, xpd = TRUE, ...)

Arguments

x An ordination object an any object known to scores.

display Kind of scores displayed (passed to scores).

labels Optional text used in plots. If this is not given, the text is found from the ordi-
nation object.

choices Axes shown (passed to scores).

priority Vector of the same length as the number of labels. The items with high priority
will be plotted uppermost.

cex Character expansion for the text (passed to text).

fill Background colour of the labels (the col argument of polygon).

border The colour and visibility of the border of the label as defined in polygon).

col Text colour. Default NULL will give the value of border or par("fg") if
border is NULL.

xpd Draw labels also outside the plot region (see par).

... Other arguments (passed to text).

Details

The function may be useful with crowded ordination plots, in particular together with argument
priority. You will not see all text labels, but at least some are readable. Other alternatives to
crowded plots are identify.ordiplot, orditorp and orditkplot.

Author(s)

Jari Oksanen

See Also

scores, polygon, text. The function is modelled after s.label in ade4 package.

128 ordiplot

Examples

data(dune)
ord <- cca(dune)
plot(ord, type = "n")
ordilabel(ord, dis="sites", cex=1.2, font=3, fill="hotpink", col="blue")
You may prefer separate plots, but here species as well
ordilabel(ord, dis="sp", font=2, priority=colSums(dune))

ordiplot Alternative plot and identify Functions for Ordination

Description

Ordination plot function especially for congested plots. Function ordiplot always plots only
unlabelled points, but identify.ordiplot can be used to add labels to selected site, species or
constraint points. Function identify.ordiplot can be used to identify points from plot.cca,
plot.decorana, plot.procrustes and plot.rad as well.

Usage

ordiplot(ord, choices = c(1, 2), type="points", display, xlim, ylim, ...)
S3 method for class 'ordiplot'
identify(x, what, labels, ...)
S3 method for class 'ordiplot'
points(x, what, select, ...)
S3 method for class 'ordiplot'
text(x, what, labels, select, ...)

Arguments

ord A result from an ordination.
choices Axes shown.
type The type of graph which may be "points", "text" or "none" for any

ordination method.
display Display only "sites" or "species". The default for most methods is to display

both, but for cca, rda and capscale it is the same as in plot.cca.
xlim, ylim the x and y limits (min,max) of the plot.
... Other graphical parameters.
x A result object from ordiplot.
what Items identified in the ordination plot. The types depend on the kind of plot used.

Most methods know sites and species, functions cca and rda know in
addition constraints (for ‘LC’ scores), centroids and biplot, and
plot.procrustes ordination plot has heads and points.

labels Optional text used for labels. Row names will be used if this is missing.
select Items to be displayed. This can either be a logical vector which is TRUE for

displayed items or a vector of indices of displayed items.

ordiplot 129

Details

Function ordiplot draws an ordination diagram using black circles for sites and red crosses for
species. It returns invisibly an object of class ordiplotwhich can be used by identify.ordiplot
to label selected sites or species, or constraints in cca and rda.

The function can handle output from several alternative ordination methods. For cca, rda and
decorana it uses their plot method with option type = "points". In addition, the plot
functions of these methods return invisibly an ordiplot object which can be used by identify.ordiplot
to label points. For other ordinations it relies on scores to extract the scores.

For full user control of plots, it is best to call ordiplot with type = "none" and save the
result, and then add sites and species using points.ordiplot or text.ordiplot which
both pass all their arguments to the corresponding default graphical functions.

Value

Function ordiplot returns invisibly an object of class ordiplot with items sites, species
and constraints (if these are available in the ordination object). Function identify.ordiplot
uses this object to label the point.

Note

The purpose of these functions is to provide similar functionality as the plot, plotid and
specid methods in library labdsv. The functions are somewhat limited in parametrization,
but you can call directly the standard identify and plot functions for a better user control.

Author(s)

Jari Oksanen

See Also

identify for basic operations, plot.cca, plot.decorana, plot.procrustes which
also produce objects for identify.ordiplot and scores for extracting scores from non-
vegan ordinations.

Examples

Draw a cute NMDS plot from a non-vegan ordination (isoMDS).
Function metaMDS would be an easier alternative.
data(dune)
dune.dis <- vegdist(wisconsin(dune))
library(MASS)
dune.mds <- isoMDS(dune.dis)
dune.mds <- postMDS(dune.mds, dune.dis)
dune.mds$species <- wascores(dune.mds$points, dune, expand = TRUE)
fig <- ordiplot(dune.mds, type = "none")
points(fig, "sites", pch=21, col="red", bg="yellow")
text(fig, "species", col="blue", cex=0.9)
Default plot of the previous using identify to label selected points
Not run:
fig <- ordiplot(dune.mds)

130 ordiplot3d

identify(fig, "spec")
End(Not run)

ordiplot3d Three-Dimensional and Dynamic Ordination Graphics

Description

Function ordiplot3d displays three-dimensional ordination graphics using scatterplot3d.
Function ordirgl displays three-dimensional dynamic ordination graphs which can be rotated
and zoomed into using rgl package. Both work with all ordination results form vegan and all
ordination results known by scores function.

Usage

ordiplot3d(object, display = "sites", choices = 1:3, ax.col = 2,
arr.len = 0.1, arr.col = 4, envfit, xlab, ylab, zlab, ...)

ordirgl(object, display = "sites", choices = 1:3, type = "p",
ax.col = "red", arr.col = "yellow", text, envfit, ...)

orglpoints(object, display = "sites", choices = 1:3, ...)
orgltext(object, text, display = "sites", choices = 1:3, justify = "center",

adj = 0.5, ...)
orglsegments(object, groups, display = "sites", choices = 1:3, ...)
orglspider(object, groups, display = "sites", w = weights(object, display),

choices = 1:3, ...)

Arguments

object An ordination result or any object known by scores.

display Display "sites" or "species" or other ordination object recognized by
scores.

choices Selected three axes.

arr.len ’Length’ (width) of arrow head passed to arrows function.

arr.col Colour of biplot arrows and centroids of environmental variables.

type The type of plots: "p" for points or "t" for text labels.

ax.col Axis colour (concerns only the crossed axes through the origin).

text Text to override the default with type = "t".

envfit Fitted environmental variables from envfit displayed in the graph.
xlab, ylab, zlab

Axis labels passed to scatterplot3d. If missing, labels are taken from the
ordination result. Set to NA to suppress labels.

justify, adj Text justification passed to rgl.texts. One of these is used depending on the
version of rgl installed.

ordiplot3d 131

groups Factor giving the groups for which the graphical item is drawn.

w Weights used to find the average within group. Weights are used automatically
for cca and decorana results, unless undone by the user. w=NULL sets equal
weights to all points.

... Other parameters passed to graphical functions.

Details

Both function display three-dimensional ordination graphics. Function ordiplot3d plots static
scatter diagrams using scatterplot3d. Function ordirgl plots dynamic graphics using
OpenGL in rgl. Both functions use most default settings of underlying graphical functions, and
you must consult their help pages to change graphics to suit your taste (see scatterplot3d,
rgl, rgl.points,rgl.texts). Both functions will display only one selected set of scores,
typically either "sites" or "species", but for instance cca also has "lc" scores. In con-
strained ordination (cca, rda, capscale), biplot arrows and centroids are always displayed sim-
ilarly as in two-dimensional plotting function plot.cca. Alternatively, it is possible to display
fitted environmental vectors or class centroids from envfit in both graphs. These are displayed
similarly as the results of constrained ordination, and they can be shown only for non-constrained
ordination. The user must remember to specify at least three axes in envfit if the results are used
with these functions.

Function ordiplot3d plots only points. However, it returns invisibly an object inheriting from
ordiplot so that you can use identify.ordiplot to identify "points" or "arrows".
The underlying scatterplot3d function accepts type = "n" so that only the axes, biplot
arrows and centroids of environmental variables will be plotted, and the ordination scores can be
added with text.ordiplot or points.ordiplot. Further, you can use any functions from
the ordihull family with the invisible result of ordiplot3d, but you must remember to specify
the display as "points" or "arrows". To change the viewing angle, orientation etc. you
must see scatterplot3d.

Function ordigl makes a dynamic three-dimensional graph that can be rotated with mouse,
and zoomed into with mouse buttons or wheel (but Mac users with one-button mouse should see
rgl.viewpoint), or try ctrl-button. MacOS X users must start X11 before calling rgl com-
mands. Function ordirgl uses default settings, and you should consult the underlying func-
tions rgl.points, rgl.texts to see how to control the graphics. Function ordirgl always
cleans its graphic window before drawing. Functions orglpoints adds points and orgltext
adds text to existing ordirgl windows. In addition, function orglsegments combines points
within "groups" with line segments similarly as ordisegments. Function orglspider
works similarly as ordispider: it connects points to their weighted centroid within "groups",
and in constrained ordination it can connect "wa" or weighted averages scores to corresponding
"lc" or linear combination scores if "groups" is missing. In addition, basic rgl functions
rgl.points, rgl.texts, rgl.lines and many others can be used.

Value

Function ordiplot3d returns invisibly an object of class "ordiplot3d" inheriting from ordiplot.
The return object will contain the coordinates projected onto two dimensions for "points", and
possibly for the heads of "arrows" and "centroids" of environmental variables. Functions
like identify.ordiplot, points.ordiplot, text.ordiplot can use this result, as
well as ordihull and other functions documented with the latter. In addition, the result will

132 ordiplot3d

contain the object returned by scatterplot3d, including function xyz.converter which
projects three-dimensional coordinates onto the plane used in the current plot. Function ordirgl
returns nothing.

Warning

Function ordirgl uses OpenGL package rgl which may not be functional in all platforms, and
can crash R in some: use save.image before trying ordirgl. Mac users must start X11 (and
first install X11 and some other libraries) before being able to use rgl. It seems that rgl.texts
does not always position the text like supposed, and it may be safe to verify text location with
corresponding points.

Note

The user interface of rgl changed in version 0.65, but the ordirgl functions do not yet fully use
the new capabilities. However, they should work both in old and new versions of rgl.

Author(s)

Jari Oksanen

See Also

scatterplot3d, rgl, rgl.points, rgl.texts, rgl.viewpoint, ordiplot, identify.ordiplot,
text.ordiplot, points.ordiplot, ordihull, plot.cca, envfit.

Examples

Examples are not run, because they need non-standard packages
'scatterplot3d' and 'rgl' (and the latter needs user interaction).
#####
Default 'ordiplot3d'
Not run:
data(dune)
data(dune.env)
ord <- cca(dune ~ A1 + Moisture, dune.env)
ordiplot3d(ord)
A boxed 'pin' version
ordiplot3d(ord, type = "h")
More user control
pl <- ordiplot3d(ord, angle=15, type="n")
points(pl, "points", pch=16, col="red", cex = 0.7)
identify(pl, "arrows", col="blue") would put labels in better positions
text(pl, "arrows", col="blue", pos=3)
text(pl, "centroids", col="blue", pos=1, cex = 1.2)
ordirgl
ordirgl(ord, size=2)
ordirgl(ord, display = "species", type = "t")
rgl.quit()

End(Not run)

ordipointlabel 133

ordipointlabel Ordination Plots with Points and Optimized Locations for Text

Description

The function ordipointlabel produces ordination plots with points and text label to the points.
The points are in the exact location given by the ordination, but the function tries to optimize the
location of the text labels to minimize overplotting text. The function may be useful with moderately
crowded ordination plots.

Usage

ordipointlabel(x, display = c("sites", "species"), choices = c(1, 2),
col = c(1, 2), pch = c("o", "+"), font = c(1, 1),
cex = c(0.8, 0.8), add = FALSE, ...)

Arguments

x A result object from ordination.

display Scores displayed in the plot.

choices Axes shown.
col, pch, font, cex

Colours, point types, font style and character expansion for each kind of scores
displayed in the plot. These should be vectors of the same length as the number
of items in display.

add Add to an existing plot.

... Other arguments passed to points and text.

Details

The function uses simulated annealing (optim, method = "SANN") to optimize the location
of the text labels to the points. There are eight possible locations: up, down, sides and corners.
There is a weak preference to text right above the point, and a weak avoidance of corner positions.
The exact locations and the goodness of solution varies between runs, and there is no guarantee of
finding the global optimum. The optimization can take a long time in difficult cases with a high
number of potential overlaps. Several sets of scores can be displayed in one plot.

The function is modelled after pointLabel in maptools package (which has chained dependen-
cies of S4 packages).

Value

The function returns invisibly an object of class ordipointlabel with items xy for coordinates
of points, labels for coordinates of labels, items pch, cex and font for graphical parameters of
each point or label. In addition, it returns the result of optim as an attribute "optim". The unit of
overlap is the area of character "m", and with variable cex it is the smallest alternative. The result
object inherits from orditkplot result, and can be replotted with its plot command. It may be

134 ordiresids

possible to further edit the result object with orditkplot, but for good results it is necessary that
the points span the whole horizontal axis without empty margins.

Note

The function is designed for ordination graphics, and the optimization works properly with plots of
isometric aspect ratio.

Author(s)

Jari Oksanen

References

See pointLabel for references.

See Also

pointLabel for the model implementation, and optim for the optimization.

Examples

data(dune)
ord <- cca(dune)
ordipointlabel(ord)

ordiresids Plots of Residuals and Fitted Values for Constrained Ordination

Description

The function provides plot.lm style diagnostic plots for the results of constrained ordination
from cca, rda and capscale. Normally you do not need these plots, because ordination is
descriptive and does not make assumptions on the distribution of the residuals. However, if you
permute residuals in significance tests (anova.cca), you may be interested in inspecting that the
residuals really are exchangeable and independent of fitted values.

Usage

ordiresids(x, kind = c("residuals", "scale", "qqmath"),
residuals = "working", type = c("p", "smooth", "g"),
formula, ...)

ordiresids 135

Arguments

x Ordination result from cca, rda or capscale.

kind The type of plot: "residuals" plot residuals against fitted values, "scale"
the square root of absolute residuals against fitted values, and "qqmath" the
residuals against expected distribution (defaults qnorm), unless defined differ-
ently in the formula argument).

residuals The kind of residuals and fitted values. The argument is passed on to fitted.cca
with alternatives "working" and "response".

type The type of plot. The argument is passed on to lattice functions.

formula Formula to override the default plot. The formula can contain items Fitted,
Residuals, Species and Sites (provided that names of species and sites
are available in the ordination result).

... Other arguments passed to lattice functions.

Details

The default plots are similar as in plot.lm, but they use Lattice functions xyplot and
qqmath. The alternatives have default formulae but these can be replaced by the user. The el-
ements available in formula or in the groups argument are Fitted, Residuals, Species
and Sites.

Value

The function return a Lattice object that can displayed as plot.

Author(s)

Jari Oksanen

See Also

plot.lm, Lattice, xyplot, qqmath.

Examples

data(varespec)
data(varechem)
mod <- cca(varespec ~ Al + P + K, varechem)
ordiresids(mod)

136 ordistep

ordistep Choose a Model by Permutation Tests in Constrained Ordination

Description

Automatic stepwise model building for constrained ordination methods (cca, rda, capscale).
The function ordistep is modelled after step and can do forward, backward and stepwise model
selection using permutation tests. Function ordiR2step performs forward model choice solely
on adjusted R2 and P-value, for ordination objects created by rda or capscale.

Usage

ordistep(object, scope, direction = c("both", "backward", "forward"),
Pin = 0.05, Pout = 0.1, pstep = 100, perm.max = 1000, steps = 50,
trace = TRUE, ...)

ordiR2step(object, scope, direction = c("both", "forward"),
Pin = 0.05, pstep = 100, perm.max = 1000,
trace = TRUE, ...)

Arguments

object In ordistep, an ordination object inheriting from cca or rda. In ordiR2step,
the object must inherit from rda, that is, it must have been computed using rda
or capscale.

scope Defines the range of models examined in the stepwise search. This should be
either a single formula, or a list containing components upper and lower,
both formulae. See step for details. In ordiR2step, this defines the upper
scope; it can also be an ordination object from with the model is extracted.

direction The mode of stepwise search, can be one of "both", "backward", or "forward",
with a default of "both". If the scope argument is missing, the default for
direction is "backward".

Pin, Pout Limits of permutation P -values for adding (Pin) a term to the model, or drop-
ping (Pout) from the model. Term is added if P ≤ Pin, and removed if P >
Pout.

pstep Number of permutations in one step. See add1.cca.

perm.max Maximum number of permutation in anova.cca.

steps Maximum number of iteration steps of dropping and adding terms.

trace If positive, information is printed during the model building. Larger values may
give more information.

... Any additional arguments to add1.cca and drop1.cca.

ordistep 137

Details

The basic functions for model choice in constrained ordination are add1.cca and drop1.cca.
With these functions, ordination models can be chosen with standard R function step which bases
the term choice on AIC. AIC-like statistics for ordination are provided by functions deviance.cca
and extractAIC.cca (with similar functions for rda). Actually, constrained ordination meth-
ods do not have AIC, and therefore the step may not be trusted. This function provides an alter-
native using permutation P -values.

Function ordistep defines the model, scope of models considered, and direction of the
procedure similarly as step. The function alternates with drop and add steps and stops when the
model was not changed during one step. The - and + signs in the summary table indicate which
stage is performed. The number of permutations is selected adaptively with respect to the defined
decision limit. It is often sensible to have Pout> Pin in stepwise models to avoid cyclic adds and
drops of single terms.

Function ordiR2step builds model so that it maximizes adjusted R2 (function RsquareAdj)
at every step, and stopping when the adjusted R2 starts to decrease, or the adjusted R2 of the
scope is exceeded, or the selected permutation P -value is exceeded (Blanchet et al. 2008). The
direction has choices "forward" and "both", but it is very excepctional that a term is
dropped with the adjusted R2 criterion. Function uses adjusted R2 as the criterion, and it cannot be
used if the criterion cannot be calculated. Therefore it is unavailable for cca.

Functions ordistep (based on P values) and ordiR2step (based on adjustedR2 and hence on
eigenvalues) can select variables in different order.

Value

Functions return the selected model with one additional component, anova, which contains brief
information of steps taken. You can suppress voluminous output during model building by setting
trace = FALSE, and find the summary of model history in the anova item.

Author(s)

Jari Oksanen

References

Blanchet, F. G., Legendre, P. & Borcard, D. (2008) Forward selection of explanatory variables.
Ecology 89, 2623–2632.

See Also

The function handles constrained ordination methods cca, rda and capscale. The underlying
functions are add1.cca and drop1.cca, and the function is modelled after standard step
(which also can be used directly but uses AIC for model choice, see extractAIC.cca). Function
ordiR2step builds upon RsquareAdj.

Examples

See add1.cca for another example

138 ordisurf

Dune data
data(dune)
data(dune.env)
mod0 <- rda(dune ~ 1, dune.env) # Model with intercept only
mod1 <- rda(dune ~ ., dune.env) # Model with all explanatory variables

With scope present, the default direction is "both"
ordistep(mod0, scope = formula(mod1), perm.max = 200)
ordistep(rda(dune ~ 1, dune.env), scope = formula(mod1), perm.max = 200)

Example without scope. Default direction is "backward"
ordistep(mod1, perm.max = 200)

Example of ordistep, forward
ordistep(mod0, scope = formula(mod1), direction="forward", perm.max = 200)

Mite data
data(mite)
data(mite.env)
mite.hel = decostand(mite, "hel")
mod0 <- rda(mite.hel ~ 1, mite.env) # Model with intercept only
mod1 <- rda(mite.hel ~ ., mite.env) # Model with all explanatory variables

Example of ordiR2step with default direction = "both"
(This never goes "backward" but evaluates included terms.)
step.res <- ordiR2step(mod0, mod1, perm.max = 200)
step.res$anova # Summary table

Example of ordiR2step with direction = "forward"
step.res <- ordiR2step(mod0, scope = formula(mod1), direction="forward")
step.res <- ordiR2step(mod0, scope = formula(mod1), direction="forward", trace=0)
step.res$anova # Summary table

ordisurf Fit and Plot Smooth Surfaces of Variables on Ordination.

Description

Function ordisurf fits a smooth surface for given variable and plots the result on ordination
diagram.

Usage

Default S3 method:
ordisurf(x, y, choices=c(1, 2), knots=10, family="gaussian", col="red",

thinplate = TRUE, add = FALSE, display = "sites",
w = weights(x), main, nlevels = 10, levels, labcex = 0.6,
bubble = FALSE, cex = 1, select = FALSE, method = "GCV.Cp",
gamma = 1, plot = TRUE, ...)

ordisurf 139

S3 method for class 'formula'
ordisurf(formula, data, ...)

S3 method for class 'ordisurf'
calibrate(object, newdata, ...)

S3 method for class 'ordisurf'
plot(x, what = c("contour","persp","gam"),

add = FALSE, bubble = FALSE, col = "red", cex = 1,
nlevels = 10, levels, labcex = 0.6, ...)

Arguments

x For ordisurf an ordination configuration, either a matrix or a result known by
scores. For plot.ordisurf and object of class "ordisurf" as returned
by ordisurf.

y Variable to be plotted.
choices Ordination axes.
knots Number of initial knots in gam (one more than degrees of freedom). If knots

= 0 or knots = 1 the function will fit a linear trend surface, and if knots
= 2 the function will fit a quadratic trend surface instead of a smooth surface.

family Error distribution in gam.
col Colour of contours.
thinplate Use thinplate splines in gam.
add Add contours on an existing diagram or draw a new plot.
display Type of scores known by scores: typically "sites" for ordinary site scores or

"lc" for linear combination scores.
w Prior weights on the data. Concerns mainly cca and decorana results which

have nonconstant weights.
main The main title for the plot, or as default the name of plotted variable in a new

plot.
nlevels, levels

Either a vector of levels for which contours are drawn, or suggested number
of contours in nlevels if levels are not supplied.

labcex Label size in contours. Setting this zero will suppress labels.
bubble Use “bubble plot” for points, or vary the point diameter by the value of the

plotted variable. If bubble is numeric, its value is used for the maximum
symbol size (as in cex), or if bubble = TRUE, the value of cex gives the
maximum. The minimum size will always be cex = 0.4. The option only
has an effect if add = FALSE.

cex Character expansion of plotting symbols.
select Logical; specify gam argument "select". If this is TRUE then gam can add

an extra penalty to each term so that it can be penalized to zero. This means that
the smoothing parameter estimation that is part of fitting can completely remove
terms from the model. If the corresponding smoothing parameter is estimated
as zero then the extra penalty has no effect.

140 ordisurf

method character; the smoothing parameter estimation method. Options allowed are:
"GCV.Cp" uses GCV for models with unknown scale parameter and Mallows’
Cp/UBRE/AIC for models with known scale; "GACV.Cp" as for "GCV.Cp"
but uses GACV (Generalised Approximate CV) instead of GCV; "REML" and
"ML" use restricted maximum likelihood or maximum likelihood estimation
for both known and unknown scale; and "P-REML" and "P-ML" use REML
or ML estimation but use a Pearson estimate of the scale.

gamma Multiplier to inflate model degrees of freedom in GCV or UBRE/AIC score by.
This effectively places an extra penalty on complex models. An oft used value
if gamma = 1.4.

plot logical; should any plotting be done by ordisurf? Useful if all you want is
the fitted response surface model.

formula, data
Alternative definition of the fitted model as x ~ y, or left-hand side is the ordi-
nation x and right-hand side the single fitted continuous variable y. The variable
y must be in the working environment or in the data frame or environment given
by data. All other arguments of are passed to the default method.

object An ordisurf result object.

newdata Coordinates in two-dimensional ordination for new points.

what character; what type of plot to produce. "contour" produces a contour plot
of the response surface, see contour for details. "persp" produces a per-
spective plot of the same, see persp for details. "gam" plots the fitted GAM
model, an object that inherits from class "gam" returned by ordisurf, see
plot.gam.

... Other parameters passed to gam, or to the graphical functions. See Note below
for exceptions.

Details

Function ordisurf fits a smooth surface using thinplate splines in gam, and uses predict.gam
to find fitted values in a regular grid. The smooth surface can be fitted with an extra penalty that
allows the entire smoother to be penalized back to 0 degrees of freedom, effectively removing the
term from the model. The addition of this extra penalty is invoked by setting argument select to
TRUE. The function plots the fitted contours with convex hull of data points either over an existing
ordination diagram or draws a new plot. If select == TRUE and the smooth is effectively
penalised out of the model, no contours will be plotted.

gam determines the degree of smoothness for the fitted response surface during model fitting. Ar-
gument method controls how gam performs this smoothness selection. See gam for details of
the available options. Using "REML" or "ML" yields p-values for smooths with the best coverage
properties if such things matter to you.

The function uses scores to extract ordination scores, and x can be any result object known by
that function.

User can supply a vector of prior weights w. If the ordination object has weights, these will be used.
In practise this means that the row totals are used as weights with cca or decorana results. If
you do not like this, but want to give equal weights to all sites, you should set w = NULL. The

ordisurf 141

behaviour is consistent with envfit. For complete accordance with constrained cca, you should
set display = "lc" (and possibly scaling = 2).

Function calibrate returns the fitted values of the response variable. The newdata must be co-
ordinates of points for which the fitted values are desired. The function is based on predict.gam
and will pass extra arguments to that function.

Value

Function is usually called for its side effect of drawing the contour plot. The function returns the
result object of class "ordisurf" that inherits from gam used internally to fit the surface, but
adds an item grid that contains the data for the grid surface. The item grid has elements x and y
which are vectors of axis coordinates, and element z that is a matrix of fitted values for contour.
The values outside the convex hull of observed points are NA in z. The gam component of the result
can be used for further analysis like predicting new values (see predict.gam).

Note

The default is to use thinplate splines. These make sense in ordination as they have equal smoothing
in all directions and are rotation invariant.

Graphical arguments supplied to plot.ordisurf are passed on to the underlying plotting func-
tions, contour, persp, and plot.gam. The exception to this is that arguments col and cex
can not currently be passed to plot.gam because of a bug in the way that function evaluates
arguments when arranging the plot.

A work-around is to call plot.gam directly on the result of a call to ordisurf. See the Exam-
ples for an illustration of this.

Author(s)

Dave Roberts, Jari Oksanen and Gavin L. Simpson

See Also

For basic routines gam, and scores. Function envfit provides a more traditional and compact
alternative.

Examples

data(varespec)
data(varechem)
library(MASS)
vare.dist <- vegdist(varespec)
vare.mds <- isoMDS(vare.dist)
with(varechem, ordisurf(vare.mds, Baresoil, bubble = 5))

as above but with extra penalties on smooth terms:
with(varechem, ordisurf(vare.mds, Baresoil, bubble = 5, col = "blue",

add = TRUE, select = TRUE))

Cover of Cladina arbuscula
fit <- with(varespec, ordisurf(vare.mds, Cla.arb, family=quasipoisson))

142 orditkplot

Get fitted values
calibrate(fit)

Plot method
plot(fit, what = "contour")

Plotting the "gam" object
plot(fit, what = "gam") ## 'col' and 'cex' not passed on
or via plot.gam directly
plot.gam(fit, cex = 2, pch = 1, col = "blue")
'col' effects all objects drawn...

orditkplot Ordination Plot with Movable Labels

Description

Function orditkplot produces an editable ordination plot with points and labels. The labels can
be moved with mouse, and the edited plot can be saved as an encapsulated postscript file or exported
via R plot function to other graphical formats, or saved in the R session for further processing.

Usage

orditkplot(x, display = "species", choices = 1:2, width, xlim, ylim,
tcex = 0.8, tcol, pch = 1, pcol, pbg, pcex = 0.7, labels, ...)

S3 method for class 'orditkplot'
plot(x, ...)
S3 method for class 'orditkplot'
points(x, ...)
S3 method for class 'orditkplot'
text(x, ...)
S3 method for class 'orditkplot'
scores(x, display, ...)

Arguments

x An ordination result or any other object that scores can handle, or for the
plot function the object dumped from the interactive orditkplot session.

display Type of scores displayed. For ordination scores this typically is either "species"
or "sites", and for orditkplot result it is either "points" or "labels".

choices Axes displayed.

width Width of the plot in inches; defaults to the current width of the graphical device.

xlim, ylim x and y limits for plots: points outside these limits will be completely removed.

tcex Character expansion for text labels.

tcol Colour of text labels.

orditkplot 143

pch, pcol, pbg
Point type and outline and fill colours. Defaults pcol="black" and pbg="transparent".
Argument pbg has an effect only in filled plotting characters pch = 21 to 25.

pcex Expansion factor for point size.

labels Labels used instead of row names.

... Other arguments passed to the function. These can be graphical parameters (see
par) used in the plot, or extra arguments to scores. These arguments are
ignored in plot, but honoured in text and points.

Details

Function orditkplot uses tcltk package to draw Tcl/Tk based ordination graphics with points
and labels. The function opens an editable canvas with fixed points, but the labels can be dragged
with mouse to better positions or edited. In addition, it is possible to zoom to a part of the graph.

The function knows the following mouse operations:

• Left mouse button can be used to move labels to better positions. A line will connect a label
to the corresponding point.

• Double clicking left mouse button opens a window where the label can be edited. After
editing the label, hit the Return key.

• Right mouse button (or alternatively, Shift-Mouse button with one-button mouse) can be
used for zooming to a part of the graph. Keeping the mouse button down and dragging will
draw a box of the zoomed area, and after releasing the button, a new plot window will be
created (this is still preliminary: all arguments are not passed to the new plot).

In addition there are buttons for the following tasks: Copy to EPS copies the current plot to an
encapsulated postscript (eps) file using standard Tcl/Tk utilities. The faithfulness of this copy is
system dependent. Button Export plot uses plot.orditkplot function to redraw the plot into
graphical file formats. Depending on the system, the following graphical formats may be available:
eps, pdf, png, jpeg or bmp. The file type is deduced from the file suffix or the selection of the file
type in the dialogue box. Alternatively, the same dialogue can be used to save the plot to an editable
xfig file. Button Dump to R writes the edited coordinates of labels and points to the R session
for further processing, and the plot.orditkplot function can be used to display the results.
For faithful replication of the plot, the graph must have similar dimensions as the orditkplot
canvas had originally. The plot function cannot be configured, but it uses the same settings as the
original Tcl/Tk plot. However, points and text functions are fully configurable, and unaware
of the original Tcl/Tk plot settings (probably you must set cex at least to get a decent plot). Finally,
button Dismiss closes the window.

The produced plot will have equal aspect ratio. The width of the horizontal axis is fixed, but vertical
axes will be scaled to needed height, and you can use scrollbar to move vertically if the whole
canvas does not fit the window. If you use dumped labels in ordinary R plots, your plot must have
the same dimensions as the orditkplot canvas to have identical location of the labels.

The function only displays one set of scores. However, you can use ordipointlabel to produce
a result object that has different points and text types for several sets of scores and this can further
edited with orditkplot. For a good starting solution you need to scale the ordipointlabel
result so that the points span over the whole horizontal axis.

144 orditkplot

The plot is a Tcl/Tk canvas, but the function tries to replicate standard graphical device of the
platform, and it honours several graphical parameters (see par). Many of the graphical parameters
can be given on the command line, and they will be passed to the function without influencing other
graphical devices in R. At the moment, the following graphical parameters are honoured: pch bg,
cex, cex.axis, cex.lab, col (for labels), col.axis, col.lab, family (for font faces),
fg, font, font.axis, font.lab, lheight, lwd (for the box), mar, mex, mgp, ps, tcl.
These can be set with par, and they also will influence other plots similarly.

The tkcanvas text cannot be rotated, and therefore vertical axis is not labelled, and las parameter
will not be honoured in the Tcl/Tk plot, but it will be honoured in the exported R plots and in
plot.orditkplot.

Value

Function returns nothing useful directly, but you can save the edited graph to a file or dump the
edited positions to an R session for further processing and plotting.

Note

You need tcltk package and R must have been configured with capabilities for tcltk when
building the binary. Depending on your OS, you may need to start X11 and set the display before
loading tcltk and starting the function (for instance, with Sys.setenv("DISPLAY"=":0")).
See tcltk-package.

Author(s)

Jari Oksanen

See Also

Function ordipointlabel is an automatic procedure with similar goals of avoiding overplot-
ting. See ordiplot, plot.cca, ordirgl and orditorp for alternative ordination plots, and
scores for extracting ordination scores.

Examples

The example needs user interaction and is not executed directly.
It should work when pasted to the window.
Not run:
data(varespec)
ord <- cca(varespec)
Do something with the graph and end by clicking "Dismiss"
orditkplot(ord, mar = c(4,4,1,1)+.1, font=3)
Use ordipointlabel to produce a plot that has both species and site
scores in different colors and plotting symbols
pl <- ordipointlabel(ord)
orditkplot(pl)

End(Not run)

orditorp 145

orditorp Add Text or Points to Ordination Plots

Description

The function adds text or points to ordination plots. Text will be used if this can be done
without overwriting other text labels, and points will be used otherwise. The function can help in
reducing clutter in ordination graphics, but manual editing may still be necessary.

Usage

orditorp(x, display, labels, choices = c(1, 2), priority,
cex = 0.7, pcex, col = par("col"), pcol,
pch = par("pch"), air = 1, ...)

Arguments

x A result object from ordination or an ordiplot result.

display Items to be displayed in the plot. Only one alternative is allowed. Typically this
is "sites" or "species".

labels Optional text used for labels. Row names will be used if this is missing.

choices Axes shown.

priority Text will be used for items with higher priority if labels overlap. This should be
vector of the same length as the number of items plotted.

cex, pcex Text and point sizes, see plot.default..

col, pcol Text and point colours, see plot.default.

pch Plotting character, see points.

air Amount of empty space between text labels. Values <1 allow overlapping text.

... Other arguments to scores (and its various methods), text and points.

Details

Function orditorpwill add either text or points to an existing plot. The items with high priority
will be added first and textwill be used if this can be done without overwriting previous labels,and
pointswill be used otherwise. If priority is missing, labels will be added from the outskirts to
the centre. Function orditorp can be used with most ordination results, or plotting results from
ordiplot or ordination plot functions (plot.cca, plot.decorana, plot.metaMDS).

Arguments can be passed to the relevant scoresmethod for the ordination object (x) being drawn.
See the relevant scores help page for arguments that can be used.

Value

The function returns invisibly a logical vector where TRUE means that item was labelled with text
and FALSE means that it was marked with a point. The returned vector can be used as the select
argument in ordination text and points functions.

146 ordixyplot

Author(s)

Jari Oksanen

Examples

A cluttered ordination plot :
data(BCI)
mod <- cca(BCI)
plot(mod, dis="sp", type="t")
Now with orditorp and abbreviated species names
cnam <- make.cepnames(names(BCI))
plot(mod, dis="sp", type="n")
stems <- colSums(BCI)
orditorp(mod, "sp", label = cnam, priority=stems, pch="+", pcol="grey")

ordixyplot Trellis (Lattice) Plots for Ordination

Description

Functions ordicloud, ordisplom and ordixyplot provide an interface to plot ordination
results using Trellis functions cloud, splom and xyplot in package lattice.

Usage

ordixyplot(x, data = NULL, formula, display = "sites", choices = 1:3,
panel = "panel.ordi", aspect = "iso", envfit,
type = c("p", "biplot"), ...)

ordisplom(x, data=NULL, formula = NULL, display = "sites", choices = 1:3,
panel = "panel.ordi", type = "p", ...)

ordicloud(x, data = NULL, formula, display = "sites", choices = 1:3,
panel = "panel.ordi3d", prepanel = "prepanel.ordi3d", ...)

Arguments

x An ordination result that scores knows: any ordination result in vegan and
many others.

data Optional data to amend ordination results. The ordination results are found from
x, but you may give here data for other variables needed in plots. Typically these
are environmental data.

formula Formula to define the plots. A default formula will be used if this is omitted. The
ordination axes must be called by the same names as in the ordination results
(and these names vary among methods). In ordisplom, special character .
refers to the ordination result.

display The kind of scores: an argument passed to scores.

choices The axes selected: an argument passed to scores.

ordixyplot 147

panel, prepanel
The names of the panel and prepanel functions.

aspect The aspect of the plot (passed to the lattice function).

envfit Result of envfit function displayed in ordixyplot. Please note that this
needs same choices as ordixyplot.

type The type of plot. This knows the same alternatives as panel.xyplot. In
addition ordixyplot has alternatives "biplot" and "arrows". The first
displays fitted vectors and factor centroids of envfit, or in constrained ordina-
tion, the biplot arrows and factor centroids if envfit is not given. The second
(type = "arrows") is a trellis variant of ordiarrows and draws arrows
by groups. The line parameters are controlled by trellis.par.set for
superpose.line, and the user can set length, angle and ends param-
eters of panel.arrows.

... Arguments passed to scores methods or lattice functions.

Details

The functions provide an interface to the corresponding lattice functions. All graphical parameters
are passed to the lattice function so that these graphs are extremely configurable. See Lattice
and xyplot, splom and cloud for details, usage and possibilities.

The argument x must always be an ordination result. The scores are extracted with vegan function
scores so that these functions work with all vegan ordinations and many others.

The formula is used to define the models. All functions have simple default formulae which
are used if formula is missing. If formula is omitted in ordisplom it produces a pairs plot of
ordination axes and variables in data. If formula is given, ordination results must be referred
to as . and other variables by their names. In other functions, the formula must use the names of
ordination scores and names of data.

The ordination scores are found from x, and data is optional. The data should contain other
variables than ordination scores to be used in plots. Typically, they are environmental variables
(typically factors) to define panels or plot symbols.

The proper work is done by the panel function. The layout can be changed by defining own panel
functions. See panel.xyplot, panel.splom and panel.cloud for details and survey of
possibilities.

Ordination graphics should always be isometric: same scale should be used in all axes. This is
controlled (and can be changed) with argument aspect in ordixyplot. In ordicloud the
isometric scaling is defined in panel and prepanel functions. You must replace these func-
tions if you want to have non-isometric scaling of graphs. You cannot select isometric scaling in
ordisplom.

Value

The function return Lattice objects of class "trellis".

Author(s)

Jari Oksanen

148 pcnm

See Also

Lattice, xyplot, splom, cloud, panel.splom, panel.cloud

Examples

data(dune)
data(dune.env)
ord <- cca(dune)
Pairs plots
ordisplom(ord)
ordisplom(ord, data=dune.env, choices=1:2)
ordisplom(ord, data=dune.env, form = ~ . | Management, groups=Manure)
Scatter plot
ordixyplot(ord, data=dune.env, form = CA1 ~ CA2 | Management,
groups=Manure)

Choose a different scaling
ordixyplot(ord, scaling = 3)
... Slices of third axis
ordixyplot(ord, form = CA1 ~ CA2 | equal.count(CA3, 4), type = c("g","p"))
Display environemntal variables
ordixyplot(ord, envfit = envfit(ord ~ Management + A1, dune.env, choices=1:3))
3D Scatter plots
ordicloud(ord, form = CA2 ~ CA3*CA1, groups = Manure, data = dune.env)
ordicloud(ord, form = CA2 ~ CA3*CA1 | Management, groups = Manure,

data = dune.env, auto.key = TRUE, type = c("p","h"))

pcnm Principal Coordinates of Neighbourhood Matrix

Description

This function computed classical PCNM by the principal coordinate analysis of a truncated distance
matrix. These are commonly used to transform (spatial) distances to rectangular data that suitable
for constrained ordination or regression.

Usage

pcnm(dis, threshold, w, dist.ret = FALSE)

Arguments

dis A distance matrix.

threshold A threshold value or truncation distance. If missing, minimum distance giving
connected network will be used. This is found as the longest distance in the
minimum spanning tree of dis.

w Prior weights for rows.

dist.ret Return the distances used to calculate the PCNMs.

pcnm 149

Details

Principal Coordinates of Neighbourhood Matrix (PCNM) map distances between rows onto rectan-
gular matrix on rows using a truncation threshold for long distances (Borcard & Legendre 2002). If
original distances were Euclidean distances in two dimensions (like normal spatial distances), they
could be mapped onto two dimensions if there is no truncation of distances. Because of truncation,
there will be a higher number of principal coordinates. The selection of truncation distance has a
huge influence on the PCNM vectors. The default is to use the longest distance to keep data con-
nected. The distances above truncation threshold are given an arbitrary value of 4 times threshold.
For regular data, the first PCNM vectorsshow a wide scale variation and later PCNM vectors show
smaller scale variation (Borcard & Legendre 2002), but for irregular data the intepretation is not as
clear.

The PCNM functions are used to express distances in rectangular form that is similar to normal
explanatory variables used in, e.g., constrained ordination (rda, cca and capscale) or univariate
regression (lm) together with environmental variables (row weights should be supplied with cca;
see Examples). This is regarded as a more powerful method than forcing rectangular environmental
data into distances and using them in partial mantel analysis (mantel.partial) together with
geographic distances (Legendre et al. 2008, but see Tuomisto & Ruokolainen 2008).

The function is based on pcnm function in Dray’s unreleased spacemakeR package. The differ-
ences are that the current function usesr spantree as an internal support function. The current
function also can use prior weights for rows by using weighted metric scaling of wcmdscale.
The use of row weights allows finding orthonormal PCNMs also for correspondence analysis (e.g.,
cca).

Value

A list of the following elements:

values Eigenvalues obtained by the principal coordinates analysis.

vectors Eigenvectors obtained by the principal coordinates analysis. They are scaled to
unit norm. The vectors can be extracted with scores function. The default is
to return all PCNM vectors, but argument choices selects the given vectors.

threshold Truncation distance.

dist The distance matrix where values above threshold are replaced with arbi-
trary value of four times the threshold. String "pcnm" is added to the method
attribute, and new attribute threshold is added to the distances. This is re-
turned only when dist.ret = TRUE.

Author(s)

Jari Oksanen, based on the code of Stephane Dray.

References

Borcard D. and Legendre P. (2002) All-scale spatial analysis of ecological data by means of princi-
pal coordinates of neighbour matrices. Ecological Modelling 153, 51–68.

Legendre, P., Bordard, D and Peres-Neto, P. (2008) Analyzing or explaining beta diversity? Com-
ment. Ecology 89, 3238–3244.

150 permat

Tuomisto, H. & Ruokolainen, K. (2008) Analyzing or explaining beta diversity? A reply. Ecology
89, 3244–3256.

See Also

spantree.

Examples

Example from Borcard & Legendre (2002)
data(mite.xy)
pcnm1 <- pcnm(dist(mite.xy))
op <- par(mfrow=c(1,3))
Map of PCNMs in the sample plot
ordisurf(mite.xy, scores(pcnm1, choi=1), bubble = 4, main = "PCNM 1")
ordisurf(mite.xy, scores(pcnm1, choi=2), bubble = 4, main = "PCNM 2")
ordisurf(mite.xy, scores(pcnm1, choi=3), bubble = 4, main = "PCNM 3")
par(op)
Plot first PCNMs against each other
ordisplom(pcnm1, choices=1:4)
Weighted PCNM for CCA
data(mite)
rs <- rowSums(mite)/sum(mite)
pcnmw <- pcnm(dist(mite.xy), w = rs)
ord <- cca(mite ~ scores(pcnmw))
Multiscale ordination: residual variance should have no distance
trend
msoplot(mso(ord, mite.xy))

permat Matrix Permutation Algorithms for Presence-Absence and Count Data

Description

Individual (for count data) or incidence (for presence-absence data) based null models can be gener-
ated for community level simulations. Options for preserving characteristics of the original matrix
(rows/columns sums, matrix fill) and restricted permutations (based on strata) are discussed in the
Details section.

Usage

permatfull(m, fixedmar = "both", shuffle = "both", strata = NULL,
mtype = "count", times = 99)

permatswap(m, method = "quasiswap", fixedmar="both", shuffle = "both",
strata = NULL, mtype = "count", times = 99, burnin = 0, thin = 1)

S3 method for class 'permat'
print(x, digits = 3, ...)
S3 method for class 'permat'
summary(object, ...)

permat 151

S3 method for class 'summary.permat'
print(x, digits = 2, ...)
S3 method for class 'permat'
plot(x, type = "bray", ylab, xlab, col, lty,

lowess = TRUE, plot = TRUE, text = TRUE, ...)
S3 method for class 'permat'
lines(x, type = "bray", ...)
S3 method for class 'permat'
as.ts(x, type = "bray", ...)
S3 method for class 'permat'
as.mcmc(x)

Arguments

m A community data matrix with plots (samples) as rows and species (taxa) as
columns.

fixedmar character, stating which of the row/column sums should be preserved ("none",
"rows", "columns", "both").

strata Numeric vector or factor with length same as nrow(m) for grouping rows
within strata for restricted permutations. Unique values or levels are used.

mtype Matrix data type, either "count" for count data, or "prab" for presence-
absence type incidence data.

times Number of permuted matrices.

method Character for method used for the swap algorithm ("swap", "tswap", "quasiswap",
"backtrack") as described for function commsimulator. If mtype="count"
the "quasiswap", "swap", "swsh" and "abuswap" methods are avail-
able (see details).

shuffle Character, indicating whether individuals ("ind"), samples ("samp") or both
("both") should be shuffled, see details.

burnin Number of null communities discarded before proper analysis in sequential
("swap", "tswap") methods.

thin Number of discarded permuted matrices between two evaluations in sequential
("swap", "tswap") methods.

x, object Object of class "permat"

digits Number of digits used for rounding.
ylab, xlab, col, lty

graphical parameters for the plot method.

type Character, type of plot to be displayed: "bray" for Bray-Curtis dissimilarities,
"chisq" for Chi-squared values.

lowess, plot, text
Logical arguments for the plot method, whether a locally weighted regression
curve should be drawn, the plot should be drawn, and statistic values should be
printed on the plot.

... Other arguments passed to methods.

152 permat

Details

The function permatfull is useful when matrix fill is allowed to vary, and matrix type is count.
The fixedmar argument is used to set constraints for permutation. If none of the margins
are fixed, cells are randomised within the matrix. If rows or columns are fixed, cells within
rows or columns are randomised, respectively. If both margins are fixed, the r2dtable func-
tion is used that is based on Patefield’s (1981) algorithm. For presence absence data, matrix fill
should be necessarily fixed, and permatfull is a wrapper for the function commsimulator.
The r00, r0, c0, quasiswap algorithms of commsimulator are used for "none",
"rows", "columns", "both" values of the fixedmar argument, respectively

The shuffle argument only have effect if the mtype = "count" and permatfull function
is used with "none", "rows", "columns" values of fixedmar. All other cases for count
data are individual based randomisations. The "samp" and "both" options result fixed matrix
fill. The "both" option means that individuals are shuffled among non zero cells ensuring that
there are no cell with zeros as a result, then cell (zero and new valued cells) are shuffled.

The function permatswap is useful when with matrix fill (i.e. the proportion of empty cells) and
row/columns sums should be kept constant. permatswap uses different kinds of swap algorithms,
and row and columns sums are fixed in all cases. For presence-absence data, the swap and tswap
methods of commsimulator can be used. For count data, a special swap algorithm (’swapcount’)
is implemented that results in permuted matrices with fixed marginals and matrix fill at the same
time.

The ’quasiswapcount’ algorithm (method="quasiswap" and mtype="count") uses the same
trick as Carsten Dormann’s swap.web function in the package bipartite. First, a random matrix is
generated by the r2dtable function retaining row and column sums. Then the original matrix fill
is reconstructed by sequential steps to increase or decrease matrix fill in the random matrix. These
steps are based on swapping 2x2 submatrices (see ’swapcount’ algorithm for details) to maintain
row and column totals. This algorithm generates independent matrices in each step, so burnin
and thin arguments are not considered. This is the default method, because this is not sequential
(as swapcount is) so independence of subsequent matrices does not have to be checked.

The swapcount algorithm (method="swap" and mtype="count") tries to find 2x2 subma-
trices (identified by 2 random row and 2 random column indices), that can be swapped in order to
leave column and row totals and fill unchanged. First, the algorithm finds the largest value in the
submatrix that can be swapped (d) and whether in diagonal or antidiagonal way. Submatrices that
contain values larger than zero in either diagonal or antidiagonal position can be swapped. Swap
means that the values in diagonal or antidiagonal positions are decreased by d, while remaining
cells are increased by d. A swap is made only if fill doesn’t change. This algorithm is sequential,
subsequent matrices are not independent, because swaps modify little if the matrix is large. In these
cases many burnin steps and thinning is needed to get independent random matrices. Although
this algorithm is implemented in C, large burnin and thin values can slow it down considerably.
WARNING: according to simulations, this algorithm seems to be biased and non random, thus its
use should be avoided!

The algorithm "swsh" in the function permatswap is a hybrid algorithm. First, it makes binary
quasiswaps to keep row and column incidences constant, then non-zero values are modified accord-
ing to the shuffle argument (only "samp" and "both" are available in this case, because it is
applied only on non-zero values).

The algorithm "abuswap" produces two kinds of null models (based on fixedmar="columns"
or fixedmar="rows") as described in Hardy (2008; randomization scheme 2x and 3x, respec-

permat 153

tively). These preserve column and row occurrences, and column or row sums at the same time.

Constraints on row/column sums, matrix fill, total sum and sums within strata can be checked
by the summary method. plot method is for visually testing the randomness of the permuted
matrices, especially for the sequential swap algorithms. If there are any tendency in the graph,
higher burnin and thin values can help for sequential methods. New lines can be added to
existing plot with the lines method.

Unrestricted and restricted permutations: if strata is NULL, functions perform unrestricted per-
mutations. Otherwise, it is used for restricted permutations. Each strata should contain at least 2
rows in order to perform randomization (in case of low row numbers, swap algorithms can be rather
slow). If the design is not well balanced (i.e. same number of observations within each stratum),
permuted matrices may be biased because same constraints are forced on submatrices of different
dimensions. This often means, that the number of potential permutations will decrease with their
dimensions. So the more constraints we put, the less randomness can be expected.

The plot method is useful for graphically testing for trend and independence of permuted ma-
trices. This is especially important when using sequential algorithms ("swap", "tswap",
"abuswap").

The as.ts method can be used to extract Bray-Curtis dissimilarities or Chi-squared values as time
series. This can further used in testing independence (see Examples). The method as.mcmc is
useful for accessing diagnostic tools available in the coda package.

Value

Functions permatfull and permatswap return an object of class "permat" containing the
the function call (call), the original data matrix used for permutations (orig) and a list of per-
muted matrices with length times (perm).

The summarymethod returns various statistics as a list (including mean Bray-Curtis dissimilarities
calculated pairwise among original and permuted matrices, Chi-square statistics, and check results
of the constraints; see Examples). Note that when strata is used in the original call, summary
calculation may take longer.

The plot creates a plot as a side effect.

The as.ts method returns an object of class "ts".

Author(s)

Péter Sólymos, <solymos@ualberta.ca> and Jari Oksanen

References

Original references for presence-absence algorithms are given on help page of commsimulator.

Hardy, O. J. (2008) Testing the spatial phylogenetic structure of local communities: statistical per-
formances of different null models and test statistics on a locally neutral community. Journal of
Ecology 96, 914–926.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals. Applied Statistics 30, 91–97.

154 permat

See Also

For other functions to permute matrices: commsimulator, r2dtable, sample, swap.web.

For the use of these permutation algorithms: oecosimu, adipart, hiersimu.

For time-series diagnostics: Box.test, lag.plot, tsdiag, ar, arima

Examples

A simple artificial community data matrix.
m <- matrix(c(

1,3,2,0,3,1,
0,2,1,0,2,1,
0,0,1,2,0,3,
0,0,0,1,4,3
), 4, 6, byrow=TRUE)

Using the quasiswap algorithm to create a
list of permuted matrices, where
row/columns sums and matrix fill are preserved:
x1 <- permatswap(m, "quasiswap")
summary(x1)
Unrestricted permutation retaining
row/columns sums but not matrix fill:
x2 <- permatfull(m)
summary(x2)
Unrestricted permutation of presence-absence type
not retaining row/columns sums:
x3 <- permatfull(m, "none", mtype="prab")
x3$orig ## note: original matrix is binarized!
summary(x3)
Restricted permutation,
check sums within strata:
x4 <- permatfull(m, strata=c(1,1,2,2))
summary(x4)
Not sequential algorithm
data(BCI)
a <- permatswap(BCI, "quasiswap")
Sequential algorithm
b <- permatswap(BCI, "abuswap", fixedmar="col",

burnin=0, thin=100, times=50)
opar <- par(mfrow=c(2,2))
plot(a, main="Not sequential")
plot(b, main="Sequential")
plot(a, "chisq")
plot(b, "chisq")
par(opar)
Extract Bray-Curtis dissimilarities
as time series
bc <- as.ts(b)
Lag plot
lag.plot(bc)
First order autoregressive model
mar <- arima(bc, c(1,0,0))

permCheck 155

mar
Ljung-Box test of residuals
Box.test(mar$residuals)
Graphical diagnostics
tsdiag(mar)

permCheck Utility functions for permutation schemes

Description

permCheck provides checking of permutation schemes for validity. numPerms calculates the
maximum number of permutations possible under the current permutation scheme. allPerms
enumerates all possible permutations for the given scheme. getNumObs is a utility function to
return the number of observations for a range of R and ordination objects. permuplot produces
a graphical representation of the selected permutation design.

Usage

permCheck(object, control = permControl(), make.all = TRUE)

S3 method for class 'permCheck'
summary(object, ...)

numPerms(object, control = permControl())

allPerms(n, control = permControl(), max = 9999,
observed = FALSE)

S3 method for class 'allPerms'
summary(object, ...)

getNumObs(object, ...)

Default S3 method:
getNumObs(object, ...)

S3 method for class 'numeric'
getNumObs(object, ...)

S3 method for class 'integer'
getNumObs(object, ...)

permuplot(n, control = permControl(), col = par("col"),
hcol = "red", shade = "lightgrey", xlim = NULL, ylim = NULL,
inset = 0.1, main = NULL, sub = NULL, ann = par("ann"),
cex = par("cex"), ...)

156 permCheck

Arguments

object an R object. Specifically, for getNumObs any object handled by scores,
data frames, matrices, and numeric and integer vectors. See Details for a com-
plete description, especially for numPerms. For summary.permCheck an
object of class "permCheck". For summary.allPerms an object of class
"allPerms".

control a list of control values describing properties of the permutation design, as re-
turned by a call to permControl.

make.all logical; should permCheck generate all possible permutations? Useful if want
to check permutation design but not produce the matrix of all permutations.

n the number of observations or an ’object’ from which the number of observa-
tions can be determined via getNumObs.

max the maximum number of permutations, below which complete enumeration will
be attempted. See Details.

observed logical, should the observed ordering of samples be returned as part of the com-
plete enumeration? Default is FALSE to facilitate usage in higher level func-
tions.

col, xlim, ylim, main, sub, ann, cex
Graphical parameters.

hcol Colour to use for highlighting observations and the border colour of the poly-
gons drawn when type = "strata".

shade The polygon shading colour (passed to argument col of function polygon)
when type = "strata".

inset Proportion of range of x and y coordinates to add to the plot x and y limits. Used
to create a bit of extra space around the margin of each plot.

... arguments to other methods. For permuplot graphical parameters can be
passed to plotting functions, though note that not all parameters will be accepted
gracefully at the moment.

Details

permCheck, allPerms, numPerms and permuplot are utility functions for working with the
new permutation schemes available in permuted.index2.

permCheck is used to check the current permutation schemes against the object to which it will be
applied. It calculates the maximum number of possible permutations for the number of observations
in object and the permutation scheme described by control. The returned object contains
component control, an object of class "permControl" suitably modified if permCheck
identifies a problem.

The main problem is requesting more permutations than possible with the number of observations
and the permutation design. In such cases, nperm is reduced to equal the number of possible
permutations, and complete enumeration of all permutations is turned on (control$complete
is set to TRUE).

Alternatively, if the number of possible permutations is low, and less than control$minperm, it
is better to enumerate all possible permutations, and as such complete enumeration of all permuta-
tions is turned on (control$complete is set to TRUE).

permCheck 157

Function numPerms returns the number of permutations for the passed object and the selected
permutation scheme. object can be one of a data frame, matrix, an object for which a scores
method exists, or a numeric or integer vector. In the case of a numeric or integer vector, a vector of
length 1 can be used and it will be expanded to a vector of length object (i.e., 1:object) before
computing the number of permutations. As such, object can be the number of observations not
just the object containing the observations.

Function allPerms enumerates all possible permutations for the number of observations and
the selected permutation scheme. It has print and summary methods. allPerms returns a
matrix containing all possible permutations, possibly containing the observed ordering (if argument
observed is TRUE). The rows of this matrix are the various permutations and the columns reflect
the number of samples.

With free permutation designs, and restricted permutation schemes with large numbers of obser-
vations, there are a potentially huge number of possible permutations of the samples. It would be
inefficient, not to mention incredibly time consuming, to enumerate them all. Storing all possible
permutations would also become problematic in such cases. To control this and guard against trying
to evaluate too large a number of permutations, if the number of possible permutations is larger than
max, allPerms exits with an error.

Function getNumObs is a simple generic function to return the number of observations in a range
of R objects. The default method will work for any object for which a scores method exists. This
includes matrices and data frames, as well as specific methods for numeric or integer vectors.

permuplot is a graphical utility function, which produces a graphical representation of a permu-
tation design. It takes the number of observations and an object returned by permControl as
arguments and produces a plot on the currently active device. If strata are present in the design, the
plotting region is split into sufficient plotting regions (one for each stratum), and the design in each
stratum plotted.

Free permutation designs are represented by plotting the observation number at random x and y
coordinates. Series designs (time series or line transects) are represented by plotting the observation
numbers comprising the series in a circle and the start of the permuted series is highlighted using
colour hcol. Grid designs are drawn on a regular grid and the top left observation in the original
grid is highlighted using colour hcol. Note the ordering used is R’s standard ordering for matrices
- columns are filled first.

Value

For permCheck a list containing the maximum number of permutations possible and an object of
class "permControl".

For allPerms, and object of class "allPerms", a matrix whose rows are the set of all possi-
ble permutations for the supplies number of observations and permutation scheme selected. The
matrix has two additional attributes control and observed. Attribute control contains the
argument control (possibly updated via permCheck). Attribute observed contains argument
observed.

For numPerms, the (numeric) number of possible permutations.

For getNumObs, the (numeric) number of observations in object.

For permuplot, a plot on the currently active device.

158 permCheck

Note

In general, mirroring "series" or "grid" designs doubles or quadruples, respectively,the num-
ber of permutations without mirroring (within levels of strata if present). This is not true in two
special cases:

1. In "grid" designs where the number of columns is equal to 2, and

2. In "series" designs where the number of observations in a series is equal to 2.

For example, with 2 observations there are 2 permutations for "series" designs:

1. 1-2, and

2. 2-1.

If these two permutations were mirrored, we would have:

1. 2-1, and

2. 1-2.

It is immediately clear that this is the same set of permutations without mirroring (if one reorders
the rows). A similar situation arises in "grid" designs where the number of columns per grid is
equal to 2. Note that the number of rows per grid is not an issue here.

Author(s)

Gavin Simpson

See Also

permuted.index2 and permControl.

Examples

use example data from ?pyrifos
example(pyrifos)

Demonstrate the maximum number of permutations for the pyrifos data
under a series of permutation schemes

no restrictions - lots of perms
(check1 <- permCheck(pyrifos, control = permControl(type = "free")))
summary(check1)

no strata but data are series with no mirroring, so 132 permutations
permCheck(pyrifos, control = permControl(type = "series",

mirror = FALSE))

no strata but data are series with mirroring, so 264 permutations
permCheck(pyrifos, control = permControl(type = "series",

mirror = TRUE))

unrestricted within strata

permCheck 159

permCheck(pyrifos, control = permControl(strata = ditch,
type = "free"))

time series within strata, no mirroring
permCheck(pyrifos, control = permControl(strata = ditch,

type = "series", mirror = FALSE))

time series within strata, with mirroring
permCheck(pyrifos, control = permControl(strata = ditch,

type = "series", mirror = TRUE))

time series within strata, no mirroring, same permutation within strata
permCheck(pyrifos, control = permControl(strata = ditch,

type = "series", constant = TRUE))

time series within strata, with mirroring, same permutation within strata
permCheck(pyrifos, control = permControl(strata = ditch,

type = "series", mirror = TRUE, constant = TRUE))

permute strata
permCheck(pyrifos, permControl(strata = ditch, type = "free",

permute.strata = TRUE))

this should also also for arbitrary vectors
vec1 <- permCheck(1:100)
vec2 <- permCheck(1:100, permControl())
all.equal(vec1, vec2)
vec3 <- permCheck(1:100, permControl(type = "series"))
all.equal(100, vec3$n)
vec4 <- permCheck(1:100, permControl(type = "series", mirror = TRUE))
all.equal(vec4$n, 200)

enumerate all possible permutations
fac <- gl(2,6)
ctrl <- permControl(type = "grid", mirror = FALSE, strata = fac,

constant = TRUE, nrow = 3, ncol = 2)
numPerms(1:12, control = ctrl)
(tmp <- allPerms(12, control = ctrl, observed = TRUE))
(tmp2 <- allPerms(12, control = ctrl))
turn on mirroring
ctrl$mirror <- TRUE
numPerms(1:12, control = ctrl)
(tmp3 <- allPerms(12, control = ctrl, observed = TRUE))
(tmp4 <- allPerms(12, control = ctrl))
prints out details of the permutation scheme as
well as the matrix of permutations
summary(tmp)
summary(tmp2)

different numbers of observations per level of strata
fac <- factor(rep(1:3, times = c(3,2,2)))
free permutations in levels of strata
numPerms(7, permControl(type = "free", strata = fac))

160 permCheck

allPerms(7, permControl(type = "free", strata = fac))
series permutations in levels of strata
numPerms(7, permControl(type = "series", strata = fac))
allPerms(7, permControl(type = "series", strata = fac))

allPerms can work with a vector
vec <- c(3,4,5)
allPerms(vec)

Tests for permuplot
n <- 25
standard permutation designs
permuplot(n, permControl(type = "free"))
permuplot(n, permControl(type = "series"))
permuplot(n, permControl(type = "grid", nrow = 5, ncol = 5))

restricted perms with mirroring
permuplot(n, permControl(type = "series", mirror = TRUE))
permuplot(n, permControl(type = "grid", nrow = 5, ncol = 5,

mirror = TRUE))

perms within strata
fac <- gl(6, 20)
control <- permControl(type = "free", strata = fac)
permuplot(120, control = control, cex = 0.8)
control <- permControl(type = "series", strata = fac)
permuplot(120, control = control, cex = 0.8)
fac <- gl(6, 25)
control <- permControl(type = "grid", strata = fac,

nrow = 5, ncol = 5)
permuplot(150, control = control, cex = 0.8)

perms within strata with mirroring
fac <- gl(6, 20)
control <- permControl(type = "series", strata = fac,

mirror = TRUE)
permuplot(120, control = control, cex = 0.8)
fac <- gl(6, 25)
control <- permControl(type = "grid", strata = fac,

nrow = 5, ncol = 5, mirror = TRUE)
permuplot(150, control = control, cex = 0.8)

same perms within strata
fac <- gl(6, 20)
control <- permControl(type = "free", strata = fac,

constant = TRUE)
permuplot(120, control = control, cex = 0.8)
control <- permControl(type = "series", strata = fac,

constant = TRUE)
permuplot(120, control = control, cex = 0.8)
fac <- gl(6, 25)
control <- permControl(type = "grid", strata = fac,

nrow = 5, ncol = 5, constant = TRUE)

permutations 161

permuplot(150, control = control, cex = 0.8)

same perms within strata with mirroring
fac <- gl(6, 20)
control <- permControl(type = "series", strata = fac,

mirror = TRUE, constant = TRUE)
permuplot(120, control = control, cex = 0.8)
fac <- gl(6, 25)
control <- permControl(type = "grid", strata = fac,

nrow = 5, ncol = 5, mirror = TRUE,
constant = TRUE)

permuplot(150, control = control, cex = 0.8)

permutations Permutation tests in Vegan

Description

Unless stated otherwise, vegan currently provides for two types of permutation test:

1. Free permutation of DATA, also known as randomisation, and

2. Free permutation of DATA within the levels of a factor variable.

We use DATA to mean either the observed data themselves or some function of the data, for example
the residuals of an ordination model in the presence of covariables.

The second type of permutation test above is available if the function providing the test accepts an
argument strata or passes additional arguments (via ...) to permuted.index.

The Null hypothesis for these two types of permutation test assumes free exchangeability of DATA
(within the levels of strata if specified). Dependence between observations, such as that which
arises due to spatial or temporal autocorrelation, or more-complicated experimental designs, such
as split-plot designs, violates this fundamental assumption of the test and requires restricted per-
mutation test designs. The next major version of Vegan will include infrastructure to handle these
more complicated permutation designs.

Again, unless otherwise stated in the help pages for specific functions, permutation tests in Vegan
all follow the same format/structure:

1. An appropriate test statistic is chosen. Which statistic is chosen should be described on the
help pages for individual functions.

2. The value of the test statistic is evaluate for the observed data and analysis/model and recorded.
Denote this value x0.

3. The DATA are randomly permuted according to one of the above two schemes, and the value
of the test statistic for this permutation is evaluated and recorded.

4. Step 3 is repeated a total of n times, where n is the number of permutations requested. Denote
these values as xi, where i = 1, ..., n

162 permutations

5. The values of the test statistic for the n permutations of the DATA are added to the value of
the test statistic for the observed data. These n + 1 values represent the Null or randomisation
distribution of the test statistic. The observed value for the test statistic is included in the Null
distribution because under the Null hypothesis being tested, the observed value is just a typical
value of the test statistic, inherently no different from the values obtained via permutation of
DATA.

6. The number of times that a value of the test statistic in the Null distribution is equal to or
greater than the value of the test statistic for the observed data is recorded. Note the point
mentioned in step 5 above; the Null distribution includes the observed value of the test statis-
tic. Denote this count as N .

7. The permutation p-value is computed as

p =
N

n+ 1

The above description illustrates why the default number of permutations specified in Vegan func-
tions takes values of 199 or 999 for example. Once the observed value of the test statistic is added to
this number of random permutations of DATA, pretty p-values are achievable because n+1 becomes
200 or 1000, for example.

The minimum achievable p-value is

pmin =
1

n+ 1

A more common definition, in ecological circles, for N would be the number of xi greater than or
equal to x0. The permutation p-value would then be defined as

p =
N + 1
n+ 1

The + 1 in the numerator of the above equation represents the observed statistic x0. The minimum
p-value would then be defined as

pmin =
0 + 1
n+ 1

However this definition discriminates between the observed statistic and the other xi. Under the
Null hypothesis there is no such distinction, hence we prefer the definintion used in the numbered
steps above.

One cannot simply increase the number of permutations (n) to achieve a potentially lower p-value
unless the number of observations available permits such a number of permutations. This is unlikely
to be a problem for all but the smallest data sets when free permutation (randomisation) is valid, but
in designs where strata is specified and there are a low number of observations within each level
of strata, there may not be as many actual permutations of the data as you might want.

It is currently the responsibility of the user to determine the total number of possible permutations
for their DATA. No checks are made within Vegan functions to ensure a sensible number of permu-
tations is chosen.

Limits on the total number of permutations of DATA are more severe in temporally or spatially
ordered data or experimental designs with low replication. For example, a time series of n = 100
observations has just 100 possible permutations including the observed ordering.

permuted.index2 163

In situations where only a low number of permutations is possible due to the nature of DATA or the
experimental design, enumeration of all permutations becomes important and achievable computa-
tionally. Currently, Vegan does not include functions to perform complete enumeration of the set of
possible permutations. The next major release of Vegan will include such functionality, however.

Author(s)

Gavin Simpson

See Also

permutest, permuted.index

permuted.index2 Unrestricted and restricted permutations

Description

Unrestricted and restricted permutation designs for time series, line transects, spatial grids and
blocking factors.

Usage

permuted.index2(n, control = permControl())

permControl(strata = NULL, nperm = 199, complete = FALSE,
type = c("free", "series", "grid"),
permute.strata = FALSE,
maxperm = 9999, minperm = 99,
mirror = FALSE, constant = FALSE,
ncol = NULL, nrow = NULL,
all.perms = NULL)

permute(i, n, control)

Arguments

n numeric; the length of the returned vector of permuted values. Usually the num-
ber of observations under consideration.

control a list of control values describing properties of the permutation design, as re-
turned by a call to permControl.

strata An integer vector or factor specifying the strata for permutation. If supplied,
observations are permuted only within the specified strata.

nperm the number of permutations.

complete logical; should complete enumeration of all permutations be performed?

164 permuted.index2

type the type of permutations required. One of "free", "series", or "grid".
See Details.

permute.strata
logical; should strata be permuted? See Details.

maxperm the maximum number of permutations to perform. Currently unused.

minperm the lower limit to the number of possible permutations at which complete enu-
meration is performed. See argument complete and Details, below.

mirror logical; should mirroring of sequences be allowed?

constant logical; should the same permutation be used within each level of strata? If
FALSE a separate, possibly restricted, permutation is produced for each level of
strata.

ncol, nrow numeric; the number of columns and rows of samples in the spatial grid respec-
tively.

all.perms an object of class allPerms, the result of a call to allPerms.

i integer; row of control$all.perms to return.

Details

permuted.index2 can generate permutations for a wide range of restricted permutation schemes.
A small selection of the available combinations of options is provided in the Examples section be-
low.

Argument mirror determines whether grid or series permutations can be mirrored. Consider the
sequence 1,2,3,4. The relationship between consecutive observations is preserved if we reverse
the sequence to 4,3,2,1. If there is no inherent direction in your experimental design, mirrored
permutations can be considered part of the Null model, and as such increase the number of possible
permutations. The default is to not use mirroring so you must explicitly turn this on using mirror
= TRUE in permControl.

To permute strata rather than the observations within the levels of strata, use permute.strata
= TRUE. However, note that the number of observations within each level of strata must be equal!

For some experiments, such as BACI designs, one might wish to use the same permutation within
each level of strata. This is controlled by argument constant. If constant = TRUE then
the same permutation will be generated for each level of strata. The default is constant =
FALSE.

permute is a higher level utility function for use in a loop within a function implementing a per-
mutation test. The main purpose of permute is to return the correct permutation in each iteration
of the loop, either a random permutation from the current design or the next permutation from
control$all.perms if it is not NULL and control$complete is TRUE.

Value

For permuted.index2 a vector of length n containing a permutation of the observations 1, . . . ,
n using the permutation scheme described by argument control.

For permControl a list with components for each of the possible arguments.

permuted.index2 165

Note

permuted.index2 is currently used in one Vegan function; permutest.betadisper. Over
time, the other functions that currently use the older permuted.index will be updated to use
permuted.index2.

Author(s)

Gavin Simpson

See Also

permCheck, a utility function for checking permutation scheme described by permControl.

Examples

set.seed(1234)

unrestricted permutations
permuted.index2(20)

observations represent a time series of line transect
permuted.index2(20, control = permControl(type = "series"))

observations represent a time series of line transect
but with mirroring allowed
permuted.index2(20, control = permControl(type = "series", mirror = TRUE))

observations represent a spatial grid
perms <- permuted.index2(20, permControl(type = "grid",

ncol = 4, nrow = 5))
view the permutation as a grid
matrix(matrix(1:20, nrow = 5, ncol = 4)[perms], ncol = 4, nrow = 5)

random permutations in presence of strata
block <- gl(4, 5)
permuted.index2(20, permControl(strata = block, type = "free"))
as above but same random permutation within strata
permuted.index2(20, permControl(strata = block, type = "free",

constant = TRUE))

time series within each level of block
permuted.index2(20, permControl(strata = block, type = "series"))
as above, but with same permutation for each level
permuted.index2(20, permControl(strata = block, type = "series",

constant = TRUE))

spatial grids within each level of block
permuted.index2(100, permControl(strata = block, type = "grid",

ncol = 5, nrow = 5))
as above, but with same permutation for each level
permuted.index2(100, permControl(strata = block, type = "grid",

ncol = 5, nrow = 5, constant = TRUE))

166 permuted.index2

permuting levels of block instead of observations
permuted.index2(20, permControl(strata = block, type = "free",

permute.strata = TRUE))

Simple function using permute() to assess significance
of a t.test
pt.test <- function(x, group, control) {

function to calculate t
t.statistic <- function(x, y) {

m <- length(x)
n <- length(y)
means and variances, but for speed
xbar <- .Internal(mean(x))
ybar <- .Internal(mean(y))
xvar <- .Internal(cov(x, NULL, 1, FALSE))
yvar <- .Internal(cov(y, NULL, 1, FALSE))
pooled <- sqrt(((m-1)*xvar + (n-1)*yvar) / (m+n-2))
(xbar - ybar) / (pooled * sqrt(1/m + 1/n))

}
check the control object
control <- permCheck(x, control)$control
number of observations
nobs <- getNumObs(x)
group names
lev <- names(table(group))
vector to hold results, +1 because of observed t
t.permu <- numeric(length = control$nperm) + 1
calculate observed t
t.permu[1] <- t.statistic(x[group == lev[1]], x[group == lev[2]])
generate randomisation distribution of t
for(i in seq_along(t.permu)) {

return a permutation
want <- permute(i, nobs, control)
calculate permuted t
t.permu[i+1] <- t.statistic(x[want][group == lev[1]],

x[want][group == lev[2]])
}
pval from permutation test
pval <- sum(abs(t.permu) >= abs(t.permu[1])) / (control$nperm + 1)
return value
return(list(t.stat = t.permu[1], pval = pval))

}

generate some data with slightly different means
set.seed(1234)
gr1 <- rnorm(20, mean = 9)
gr2 <- rnorm(20, mean = 10)
dat <- c(gr1, gr2)
grouping variable
grp <- gl(2, 20, labels = paste("Group", 1:2))
create the permutation design
control <- permControl(type = "free", nperm = 999)

permutest.betadisper 167

perform permutation t test
perm.val <- pt.test(dat, grp, control)
perm.val

compare perm.val with the p-value from t.test()
t.test(dat ~ grp, var.equal = TRUE)

permutest.betadisper
Permutation test of multivariate homogeneity of groups dispersions
(variances)

Description

Implements a permutation-based test of multivariate homogeneity of group dispersions (variances)
for the results of a call to betadisper.

Usage

S3 method for class 'betadisper'
permutest(x, pairwise = FALSE,

control = permControl(nperm = 999), ...)

Arguments

x an object of class "betadisper", the result of a call to betadisper.

pairwise logical; perform pairwise comparisons of group means?

control a list of control values for the permutations to replace the default values returned
by the function permControl

... Arguments passed to other methods.

Details

To test if one or more groups is more variable than the others, ANOVA of the distances to group
centroids can be performed and parametric theory used to interpret the significance of F. An al-
ternative is to use a permutation test. permutest.betadisper permutes model residuals to
generate a permutation distribution of F under the Null hypothesis of no difference in dispersion
between groups.

Pairwise comparisons of group mean dispersions can be performed by setting argument pairwise
to TRUE. A classical t test is performed on the pairwise group dispersions. This is combined with a
permutation test based on the t statistic calculated on pairwise group dispersions. An alternative to
the classical comparison of group dispersions, is to calculate Tukey’s Honest Significant Differences
between groups, via TukeyHSD.betadisper.

168 permutest.betadisper

Value

permutest.betadisper returns a list of class "permutest.betadisper" with the fol-
lowing components:

tab the ANOVA table which is an object inheriting from class "data.frame".
pairwise a list with components observed and permuted containing the observed

and permuted p-values for pairwise comparisons of group mean distances (dis-
persions or variances).

groups character; the levels of the grouping factor.
control a list, the result of a call to permControl.

Author(s)

Gavin L. Simpson

References

Anderson, M.J. (2006) Distance-based tests for homogeneity of multivariate dispersions. Biomet-
rics 62(1), 245–253.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9(6), 683–693.

See Also

For the main fitting function see betadisper. For an alternative approach to determining which
groups are more variable, see TukeyHSD.betadisper.

Examples

data(varespec)

Bray-Curtis distances between samples
dis <- vegdist(varespec)

First 16 sites grazed, remaining 8 sites ungrazed
groups <- factor(c(rep(1,16), rep(2,8)), labels = c("grazed","ungrazed"))

Calculate multivariate dispersions
mod <- betadisper(dis, groups)
mod

Perform test
anova(mod)

Permutation test for F
permutest(mod, pairwise = TRUE)

Tukey's Honest Significant Differences
(mod.HSD <- TukeyHSD(mod))
plot(mod.HSD)

plot.cca 169

plot.cca Plot or Extract Results of Constrained Correspondence Analysis or
Redundancy Analysis

Description

Functions to plot or extract results of constrained correspondence analysis (cca), redundancy anal-
ysis (rda) or constrained analysis of principal coordinates (capscale).

Usage

S3 method for class 'cca'
plot(x, choices = c(1, 2), display = c("sp", "wa", "cn"),

scaling = 2, type, xlim, ylim, const, ...)
S3 method for class 'cca'
text(x, display = "sites", labels, choices = c(1, 2), scaling = 2,

arrow.mul, head.arrow = 0.05, select, const, ...)
S3 method for class 'cca'
points(x, display = "sites", choices = c(1, 2), scaling = 2,

arrow.mul, head.arrow = 0.05, select, const, ...)
S3 method for class 'cca'
scores(x, choices=c(1,2), display=c("sp","wa","cn"), scaling=2, ...)
S3 method for class 'rda'
scores(x, choices=c(1,2), display=c("sp","wa","cn"), scaling=2,

const, ...)
S3 method for class 'cca'
summary(object, scaling = 2, axes = 6, display = c("sp", "wa",

"lc", "bp", "cn"), digits = max(3, getOption("digits") - 3), ...)
S3 method for class 'summary.cca'
print(x, digits = x$digits, head = NA, tail = head, ...)
S3 method for class 'summary.cca'
head(x, n = 6, tail = 0, ...)
S3 method for class 'summary.cca'
tail(x, n = 6, head = 0, ...)

Arguments

x, object A cca result object.

choices Axes shown.

display Scores shown. These must include some of the alternatives species or sp for
species scores, sites or wa for site scores, lc for linear constraints or “LC
scores”, or bp for biplot arrows or cn for centroids of factor constraints instead
of an arrow.

scaling Scaling for species and site scores. Either species (2) or site (1) scores are
scaled by eigenvalues, and the other set of scores is left unscaled, or with 3 both
are scaled symmetrically by square root of eigenvalues. Corresponding negative

170 plot.cca

values can be used in cca to additionally multiply results with
√

(1/(1 − λ)).
This scaling is know as Hill scaling (although it has nothing to do with Hill’s
rescaling of decorana). With corresponding negative values inrda, species
scores are divided by standard deviation of each species and multiplied with an
equalizing constant. Unscaled raw scores stored in the result can be accessed
with scaling = 0.

type Type of plot: partial match to text for text labels, points for points, and
none for setting frames only. If omitted, text is selected for smaller data sets,
and points for larger.

xlim, ylim the x and y limits (min,max) of the plot.

labels Optional text to be used instead of row names.

arrow.mul Factor to expand arrows in the graph. Arrows will be scaled automatically to fit
the graph if this is missing.

head.arrow Default length of arrow heads.

select Items to be displayed. This can either be a logical vector which is TRUE for
displayed items or a vector of indices of displayed items.

const General scaling constant to rda scores. The default is to use a constant that
gives biplot scores, that is, scores that approximate original data (see vignette
‘decision-vegan.pdf’ with vegandocs for details and discussion). If
const is a vector of two items, the first is used for species, and the second item
for site scores.

axes Number of axes in summaries.

digits Number of digits in output.
n, head, tail

Number of rows printed from the head and tail of species and site scores. Default
NA prints all.

... Parameters passed to other functions.

Details

Same plot function will be used for cca and rda. This produces a quick, standard plot with
current scaling.

The plot function sets colours (col), plotting characters (pch) and character sizes (cex) to cer-
tain standard values. For a fuller control of produced plot, it is best to call plotwith type="none"
first, and then add each plotting item separately using text.cca or points.cca functions.
These use the default settings of standard text and points functions and accept all their param-
eters, allowing a full user control of produced plots.

Environmental variables receive a special treatment. With display="bp", arrows will be drawn.
These are labelled with text and unlabelled with points. The basic plot function uses a
simple (but not very clever) heuristics for adjusting arrow lengths to plots, but the user can give
the expansion factor in mul.arrow. With display="cn" the centroids of levels of factor
variables are displayed (these are available only if there were factors and a formula interface was
used in cca or rda). With this option continuous variables still are presented as arrows and ordered
factors as arrows and centroids.

plot.cca 171

If you want to have still a better control of plots, it is better to produce them using primitive
plot commands. Function scores helps in extracting the needed components with the selected
scaling.

Function summary lists all scores and the output can be very long. You can suppress scores by
setting axes = 0 or display = NA or display = NULL. You can display some first or last
(or both) rows of scores by using head or tail or explicit print command for the summary.

Palmer (1993) suggested using linear constraints (“LC scores”) in ordination diagrams, because
these gave better results in simulations and site scores (“WA scores”) are a step from constrained
to unconstrained analysis. However, McCune (1997) showed that noisy environmental variables
(and all environmental measurements are noisy) destroy “LC scores” whereas “WA scores” were
little affected. Therefore the plot function uses site scores (“WA scores”) as the default. This is
consistent with the usage in statistics and other functions in R (lda, cancor).

Value

The plot function returns invisibly a plotting structure which can be used by function identify.ordiplot
to identify the points or other functions in the ordiplot family.

Note

Package ade4 has function cca which returns constrained correspondence analysis of the same
class as the vegan function. If you have results of ade4 in your working environment, vegan
functions may try to handle them and fail with cryptic error messages. However, there is a simple
utility function ade2vegancca which tries to translate ade4 cca results to vegan cca results so
that some vegan functions may work partially with ade4 objects (with a warning).

Author(s)

Jari Oksanen

See Also

cca, rda and capscale for getting something to plot, ordiplot for an alternative plotting
routine and more support functions, and text, points and arrows for the basic routines.

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Moisture + Management, dune.env)
plot(mod, type="n")
text(mod, dis="cn")
points(mod, pch=21, col="red", bg="yellow", cex=1.2)
text(mod, "species", col="blue", cex=0.8)
Limited output of 'summary'
head(summary(mod), tail=2)
Read description of scaling in RDA in vegan:
Not run: vegandocs("decision")

172 prc

prc Principal Response Curves for Treatments with Repeated Observa-
tions

Description

Principal Response Curves (PRC) are a special case of Redundancy Analysis (rda) for multivariate
responses in repeated observation design. They were originally suggested for ecological commu-
nities. They should be easier to interpret than traditional constrained ordination. They can also be
used to study how the effects of a factor A depend on the levels of a factor B, that is A + A:B, in a
multivariate response experiment.

Usage

prc(response, treatment, time, ...)
S3 method for class 'prc'
summary(object, axis = 1, scaling = 3, digits = 4, ...)
S3 method for class 'prc'
plot(x, species = TRUE, select, scaling = 3, axis = 1, type = "l",

xlab, ylab, ylim, lty = 1:5, col = 1:6, pch, legpos, cex = 0.8,
...)

Arguments

response Multivariate response data. Typically these are community (species) data. If the
data are counts, they probably should be log transformed prior to the analysis.

treatment A factor for treatments.
time An unordered factor defining the observations times in the repeated design.
object, x An prc result object.
axis Axis shown (only one axis can be selected).
scaling Scaling of species scores, identical to the scaling in scores.rda.
digits Number of significant digits displayed.
species Display species scores.
select Vector to select displayed species. This can be a vector of indices or a logical

vector which is TRUE for the selected species
type Type of plot: "l" for lines, "p" for points or "b" for both.
xlab, ylab Text to replace default axis labels.
ylim Limits for the vertical axis.
lty, col, pch

Line type, colour and plotting characters (defaults supplied).
legpos The position of the legend. A guess is made if this is not supplied, and NA

will suppress legend.
cex Character expansion for symbols and species labels.
... Other parameters passed to functions.

prc 173

Details

PRC is a special case of rda with a single factor for treatment and a single factor for time
points in repeated observations. In vegan, the corresponding rdamodel is defined as rda(response
~ treatment * time + Condition(time)). Since the time appears twice in the model
formula, its main effects will be aliased, and only the main effect of treatment and interaction terms
are available, and will be used in PRC. Instead of usual multivariate ordination diagrams, PRC uses
canonical (regression) coefficients and species scores for a single axis. All that the current functions
do is to provide a special summary and plot methods that display the rda results in the PRC
fashion. The current version only works with default contrasts (contr.treatment) in which
the coefficients are contrasts against the first level, and the levels must be arranged so that the first
level is the control (or a baseline). If necessary, you must change the baseline level with function
relevel.

Function summary prints the species scores and the coefficients. Function plot plots coefficients
against time using matplot, and has similar defaults. The graph (and PRC) is meaningful only
if the first treatment level is the control, as the results are contrasts to the first level when
unordered factors are used. The plot also displays species scores on the right vertical axis using
function linestack. Typically the number of species is so high that not all can be displayed
with the default settings, but users can reduce character size or padding (air) in linestack, or
select only a subset of the species. A legend will be displayed unless suppressed with legpos
= NA, and the functions tries to guess where to put the legend if legpos is not supplied.

Value

The function is a special case of rda and returns its result object (see cca.object). However, a
special summary and plot methods display returns differently than in rda.

Warning

The first level of treatment must be the control: use function relevel to guarantee the correct
refence level. The current version will ignore user setting of contrasts and always use treatment
contrasts (contr.treatment). The time must be an unordered factor.

Author(s)

Jari Oksanen and Cajo ter Braak

References

van den Brink, P.J. & ter Braak, C.J.F. (1999). Principal response curves: Analysis of time-
dependent multivariate responses of biological community to stress. Environmental Toxicology
and Chemistry, 18, 138–148.

See Also

rda, anova.cca.

174 predict.cca

Examples

Chlorpyrifos experiment and experimental design
data(pyrifos)
week <- gl(11, 12, labels=c(-4, -1, 0.1, 1, 2, 4, 8, 12, 15, 19, 24))
dose <- factor(rep(c(0.1, 0, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))
PRC
mod <- prc(pyrifos, dose, week)
mod # RDA
summary(mod) # PRC
logabu <- colSums(pyrifos)
plot(mod, select = logabu > 100)
Permutations should be done only within one week, and we only
are interested on the first axis
anova(mod, strata = week, first=TRUE, perm.max = 100)

predict.cca Prediction Tools for [Constrained] Ordination (CCA, RDA, DCA, CA,
PCA)

Description

Function predict can be used to find site and species scores or estimates of the response data with
new data sets, Function calibrate estimates values of constraints with new data set. Functions
fitted and residuals return estimates of response data.

Usage

S3 method for class 'cca'
fitted(object, model = c("CCA", "CA"),

type = c("response", "working"), ...)
S3 method for class 'capscale'
fitted(object, model = c("CCA", "CA", "Imaginary"),

type = c("response", "working"), ...)
S3 method for class 'cca'
residuals(object, ...)
S3 method for class 'cca'
predict(object, newdata, type = c("response", "wa", "sp", "lc", "working"),

rank = "full", model = c("CCA", "CA"), scaling = FALSE, ...)
S3 method for class 'cca'
calibrate(object, newdata, rank = "full", ...)
S3 method for class 'cca'
coef(object, ...)
S3 method for class 'decorana'
predict(object, newdata, type = c("response", "sites", "species"),

rank = 4, ...)

predict.cca 175

Arguments

object A result object from cca, rda, capscale or decorana.

model Show constrained ("CCA") or unconstrained ("CA") results. For capscale
this can also be "Imaginary" for imaginary components with negative eigen-
values.

newdata New data frame to be used in prediction or in calibration. Usually this a new
community data frame, but for predict.cca type = "lc" and for con-
strained component with type "response" and "working" it must be an
environment data frame, If the original model had row or column names, then
new data must contain rows or columns with the same names (row names for
species scores, column names for "wa" scores and constraint names of "lc"
scores). In other cases the rows or columns must match directly.

type The type of prediction, fitted values or residuals: "response" scales results so
that the same ordination gives the same results, and "working" gives the val-
ues used internally, that is after Chi-square standardization in cca and scaling
and centring in rda. In capscale the "response" gives the dissimilarities,
and "working" the scaled scores that produce the dissimilarities as Euclidean
distances. Alternative "wa" gives the site scores as weighted averages of the
community data, "lc" the site scores as linear combinations of environmental
data, and "sp" the species scores. In predict.decorana the alternatives
are scores for "sites" or "species".

rank The rank or the number of axes used in the approximation. The default is to use
all axes (full rank) of the "model" or all available four axes in predict.decorana.

scaling Scaling or predicted scores with the same meaning as in cca, rda and capscale.

... Other parameters to the functions.

Details

Function fitted gives the approximation of the original data matrix or dissimilarities from the
ordination result either in the scale of the response or as scaled internally by the function. Function
residuals gives the approximation of the original data from the unconstrained ordination. With
argument type = "response" the fitted.cca and residuals.cca function both give
the same marginal totals as the original data matrix, and their entries do not add up to the origi-
nal data. Functions fitted.capscale and residuals.capscale give the dissimilarities
with type = "response", but these are not additive, but the "working" scores are addi-
tive. All variants of fitted and residuals are defined so that for model mod <- cca(y ~
x), cca(fitted(mod)) is equal to constrained ordination, and cca(residuals(mod)) is
equal to unconstrained part of the ordination.

Function predict can find the estimate of the original data matrix or dissimilarities (type =
"response") with any rank. With rank = "full" it is identical to fitted. In addition,
the function can find the species scores or site scores from the community data matrix for cca
or rda. The function can be used with new data, and it can be used to add new species or site
scores to existing ordinations. The function returns (weighted) orthonormal scores by default, and
you must specify explicit scaling to add those scores to ordination diagrams. With type =
"wa" the function finds the site scores from species scores. In that case, the new data can contain
new sites, but species must match in the original and new data. With type = "sp" the function

176 predict.cca

finds species scores from site constraints (linear combination scores). In that case the new data can
contain new species, but sites must match in the original and new data. With type = "lc" the
function finds the linear combination scores for sites from environmental data. In that case the new
data frame must contain all constraining and conditioning environmental variables of the model
formula. With type = "response" or type = "working" the new data must contain en-
vinronmental variables if constrained component is desired, and community data matrix if residual
or unconstrained component is desired. With these types, the function uses newdata to find new
"lc" (constrained) or "wa" scores (unconstrained) and then finding the response or working data
from these new row scores and species scores.

If a completely new data frame is created, extreme care is needed defining variables similarly as
in the original model, in particular with (ordered) factors. If ordination was performed with the
formula interface, the newdata also can be a data frame or matrix, but extreme care is needed that
the columns match in the original and newdata.

Function calibrate.cca finds estimates of constraints from community ordination or "wa"
scores from cca, rda and capscale. This is often known as calibration, bioindication or en-
vironmental reconstruction. Basically, the method is similar to projecting site scores onto biplot
arrows, but it uses regression coefficients. The function can be called with newdata so that cross-
validation is possible. The newdata may contain new sites, but species must match in the original
and new data The function does not work with ‘partial’ models with Condition term, and it
cannot be used with newdata for capscale results. The results may only be interpretable for
continuous variables.

Function coef will give the regression coefficients from centred environmental variables (con-
straints and conditions) to linear combination scores. The coefficients are for unstandardized envi-
ronmental variables. The coefficients will be NA for aliased effects.

Function predict.decorana is similar to predict.cca. However, type = "species"
is not available in detrended correspondence analysis (DCA), because detrending destroys the mu-
tual reciprocal averaging (except for the first axis when rescaling is not used). Detrended CA does
not attempt to approximate the original data matrix, so type = "response" has no meaning in
detrended analysis (except with rank = 1).

Value

The functions return matrices, vectors or dissimilarities as is appropriate.

Author(s)

Jari Oksanen.

References

Greenacre, M. J. (1984). Theory and applications of correspondence analysis. Academic Press,
London.

See Also

cca, rda, capscale, decorana, vif, goodness.cca.

procrustes 177

Examples

data(dune)
data(dune.env)
mod <- cca(dune ~ A1 + Management + Condition(Moisture), data=dune.env)
Definition of the concepts 'fitted' and 'residuals'
mod
cca(fitted(mod))
cca(residuals(mod))
Remove rare species (freq==1) from 'cca' and find their scores
'passively'.
freq <- specnumber(dune, MARGIN=2)
freq
mod <- cca(dune[, freq>1] ~ A1 + Management + Condition(Moisture), dune.env)
predict(mod, type="sp", newdata=dune[, freq==1], scaling=2)
New sites
predict(mod, type="lc", new=data.frame(A1 = 3, Management="NM", Moisture="2"), scal=2)
Calibration and residual plot
mod <- cca(dune ~ A1 + Moisture, dune.env)
pred <- calibrate(mod)
pred
with(dune.env, plot(A1, pred[,"A1"] - A1, ylab="Prediction Error"))
abline(h=0)

procrustes Procrustes Rotation of Two Configurations and PROTEST

Description

Function procrustes rotates a configuration to maximum similarity with another configuration.
Function protest tests the non-randomness (‘significance’) between two configurations.

Usage

procrustes(X, Y, scale = TRUE, symmetric = FALSE, scores = "sites", ...)
S3 method for class 'procrustes'
summary(object, digits = getOption("digits"), ...)
S3 method for class 'procrustes'
plot(x, kind=1, choices=c(1,2), to.target = TRUE,

type = "p", xlab, ylab, main, ar.col = "blue", len=0.05,
cex = 0.7, ...)

S3 method for class 'procrustes'
points(x, display = c("target", "rotated"), ...)
S3 method for class 'procrustes'
text(x, display = c("target", "rotated"), labels, ...)
S3 method for class 'procrustes'
lines(x, type = c("segments", "arrows"), choices = c(1, 2), ...)
S3 method for class 'procrustes'
residuals(object, ...)

178 procrustes

S3 method for class 'procrustes'
fitted(object, truemean = TRUE, ...)
S3 method for class 'procrustes'
predict(object, newdata, truemean = TRUE, ...)
protest(X, Y, scores = "sites", permutations = 999, strata, ...)

Arguments

X Target matrix
Y Matrix to be rotated.
scale Allow scaling of axes of Y.
symmetric Use symmetric Procrustes statistic (the rotation will still be non-symmetric).
scores Kind of scores used. This is the display argument used with the correspond-

ing scores function: see scores, scores.cca and scores.cca for al-
ternatives.

x, object An object of class procrustes.
digits Number of digits in the output.
kind For plot function, the kind of plot produced: kind = 1 plots shifts in two

configurations, kind = 0 draws a corresponding empty plot, and kind = 2
plots an impulse diagram of residuals.

choices Axes (dimensions) plotted.
xlab, ylab Axis labels, if defaults unacceptable.
main Plot title, if default unacceptable.
display Show only the "target" or "rotated" matrix as points.
to.target Draw arrows to point to target.
type The type of plot drawn. In plot, the type can be "points" or "text"

to select the marker for the tail of the arrow, or "none" for drawing an empty
plot. In lines the type selects either arrows or line segments to connect
target and rotated configuration.

truemean Use the original range of target matrix instead of centring the fitted values. Func-
tion plot.procrustes needs truemean = FALSE.

newdata Matrix of coordinates to be rotated and translated to the target.
permutations Number of permutation to assess the significance of the symmetric Procrustes

statistic.
strata An integer vector or factor specifying the strata for permutation. If supplied,

observations are permuted only within the specified strata.
ar.col Arrow colour.
len Width of the arrow head.
labels Character vector of text labels. Rownames of the result object are used as de-

fault.
cex Character expansion for points or text.
... Other parameters passed to functions. In procrustes and protest parame-

ters are passed to scores, in graphical functions to underlying graphical func-
tions.

procrustes 179

Details

Procrustes rotation rotates a matrix to maximum similarity with a target matrix minimizing sum of
squared differences. Procrustes rotation is typically used in comparison of ordination results. It is
particularly useful in comparing alternative solutions in multidimensional scaling. If scale=FALSE,
the function only rotates matrix Y. If scale=TRUE, it scales linearly configuration Y for maximum
similarity. Since Y is scaled to fit X, the scaling is non-symmetric. However, with symmetric=TRUE,
the configurations are scaled to equal dispersions and a symmetric version of the Procrustes statistic
is computed.

Instead of matrix, X and Y can be results from an ordination from which scores can extract results.
Function procrustes passes extra arguments to scores, scores.cca etc. so that you can
specify arguments such as scaling.

Function plot plots a procrustes object and returns invisibly an ordiplot object so that
function identify.ordiplot can be used for identifying points. The items in the ordiplot
object are called heads and pointswith kind=1 (ordination diagram) and siteswith kind=2
(residuals). In ordination diagrams, the arrow heads point to the target configuration if to.target
= TRUE, and to rotated configuration if to.target = FALSE. Target and original rotated axes
are shown as cross hairs in two-dimensional Procrustes analysis, and with a higher number of di-
mensions, the rotated axes are projected onto plot with their scaled and centred range. Function
plot passes parameters to underlying plotting functions. For full control of plots, you can draw
the axes using plot with kind = 0, and then add items with points or lines. These func-
tions pass all parameters to the underlying functions so that you can select the plotting characters,
their size, colours etc., or you can select the width, colour and type of line segments or arrows,
or you can select the orientation and head width of arrows.

Function residuals returns the pointwise residuals, and fitted the fitted values, either cen-
tred to zero mean (if truemean=FALSE) or with the original scale (these hardly make sense if
symmetric = TRUE). In addition, there are summary and print methods.

If matrix X has a lower number of columns than matrix Y, then matrix X will be filled with zero
columns to match dimensions. This means that the function can be used to rotate an ordination con-
figuration to an environmental variable (most practically extracting the result with the fitted
function). Function predict can be used to add new rotated coordinates to the target. The
predict function will always translate coordinates to the original non-centred matrix. The func-
tion canot be used with newdata for symmetric analysis.

Function protest calls procrustes(..., symmetric = TRUE) repeatedly to estimate
the ‘significance’ of the Procrustes statistic. Function protest uses a correlation-like statistic
derived from the symmetric Procrustes sum of squares ss as r =

√
(1− ss), and sometimes called

m12. Function protest has own print method, but otherwise uses procrustes methods.
Thus plot with a protest object yields a “Procrustean superimposition plot.”

Value

Function procrustes returns an object of class procrustes with items. Function protest
inherits from procrustes, but amends that with some new items:

Yrot Rotated matrix Y.

X Target matrix.

ss Sum of squared differences between X and Yrot.

180 procrustes

rotation Orthogonal rotation matrix.
translation Translation of the origin.
scale Scaling factor.
xmean The centroid of the target.
symmetric Type of ss statistic.
call Function call.
t0 This and the following items are only in class protest: Procrustes correlation

from non-permuted solution.
t Procrustes correlations from permutations.
signif ‘Significance’ of t
permutations Number of permutations.
strata The name of the stratifying variable.
stratum.values

Values of the stratifying variable.

Note

The function protest follows Peres-Neto & Jackson (2001), but the implementation is still after
Mardia et al. (1979).

Author(s)

Jari Oksanen

References

Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate Analysis. Academic Press.

Peres-Neto, P.R. and Jackson, D.A. (2001). How well do multivariate data sets match? The advan-
tages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169-178.

See Also

isoMDS, initMDS for obtaining objects for procrustes, and mantel for an alternative to
protest without need of dimension reduction.

Examples

data(varespec)
vare.dist <- vegdist(wisconsin(varespec))
library(MASS) ## isoMDS
mds.null <- isoMDS(vare.dist, tol=1e-7)
mds.alt <- isoMDS(vare.dist, initMDS(vare.dist), maxit=200, tol=1e-7)
vare.proc <- procrustes(mds.alt, mds.null)
vare.proc
summary(vare.proc)
plot(vare.proc)
plot(vare.proc, kind=2)
residuals(vare.proc)

pyrifos 181

pyrifos Response of Aquatic Invertebrates to Insecticide Treatment

Description

The data are log transformed abundances of aquatic invertebrate in twelve ditches studied in eleven
times before and after an insecticide treatment.

Usage

data(pyrifos)

Format

A data frame with 132 observations on the log-transformed abundances of 178 species. There are
only twelve sites (ditches, mesocosms), but these were studied repeatedly in eleven occasions. The
treatment levels, treatment times, or ditch ID’s are not in the data frame, but the data are very
regular, and the example below shows how to obtain these external variables.

Details

This data set was obtained from an experiment in outdoor experimental ditches. Twelve mesocosms
were allocated at random to treatments; four served as controls, and the remaining eight were treated
once with the insecticide chlorpyrifos, with nominal dose levels of 0.1, 0.9, 6, and 44 µg/ L in two
mesocosms each. The example data set invertebrates. Sampling was done 11 times, from week -4
pre-treatment through week 24 post-treatment, giving a total of 132 samples (12 mesocosms times
11 sampling dates), see van den Brink & ter Braak (1999) for details. The data set contains only the
species data, but the example below shows how to obtain the treatment, time and ditch ID variables.

Source

CANOCO 4 example data, with the permission of Cajo J. F. ter Braak.

References

van den Brink, P.J. & ter Braak, C.J.F. (1999). Principal response curves: Analysis of time-
dependent multivariate responses of biological community to stress. Environmental Toxicology
and Chemistry, 18, 138–148.

Examples

data(pyrifos)
ditch <- gl(12, 1, length=132)
week <- gl(11, 12, labels=c(-4, -1, 0.1, 1, 2, 4, 8, 12, 15, 19, 24))
dose <- factor(rep(c(0.1, 0, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))

182 radfit

radfit Rank - Abundance or Dominance / Diversity Models

Description

Functions construct rank – abundance or dominance / diversity or Whittaker plots and fit broken-
stick, pre-emption, log-Normal, Zipf and Zipf-Mandelbrot models of species abundance.

Usage

S3 method for class 'data.frame'
radfit(df, ...)
S3 method for class 'radfit.frame'
plot(x, order.by, BIC = FALSE, model, legend = TRUE,

as.table = TRUE, ...)
Default S3 method:
radfit(x, ...)
S3 method for class 'radfit'
plot(x, BIC = FALSE, legend = TRUE, ...)
radlattice(x, BIC = FALSE, ...)
rad.null(x, family=poisson, ...)
rad.preempt(x, family = poisson, ...)
rad.lognormal(x, family = poisson, ...)
rad.zipf(x, family = poisson, ...)
rad.zipfbrot(x, family = poisson, ...)
S3 method for class 'radline'
plot(x, xlab = "Rank", ylab = "Abundance", type = "b", ...)
S3 method for class 'radline'
lines(x, ...)
S3 method for class 'radline'
points(x, ...)
as.rad(x)
S3 method for class 'rad'
plot(x, xlab = "Rank", ylab = "Abundance", log = "y", ...)

Arguments

df Data frame where sites are rows and species are columns.

x A vector giving species abundances in a site, or an object to be plotted.

order.by A vector used for ordering sites in plots.

BIC Use Bayesian Information Criterion, BIC, instead of Akaike’s AIC. The penalty
for a parameter is k = log(S) where S is the number of species, whereas AIC
uses k = 2.

model Show only the specified model. If missing, AIC is used to select the model.
The model names (which can be abbreviated) are Preemption, Lognormal,
Veiled.LN, Zipf, Mandelbrot.

radfit 183

legend Add legend of line colours.
as.table Arrange panels starting from upper left corner (passed to xyplot).
family Error distribution (passed to glm). All alternatives accepting link = "log"

in family can be used, although not all make sense.
xlab,ylab Labels for x and y axes.
type Type of the plot, "b" for plotting both observed points and fitted lines, "p" for

only points, "l" for only fitted lines, and "n" for only setting the frame.
log Use logarithmic scale for given axis. The default log =" y" gives the tra-

ditional plot in community ecology where the pre-emption model is a straight
line, and with log = "xy" Zipf model is a straight line. With log = ""
both axes are in the original arithmetic scale.

... Other parameters to functions.

Details

Rank – Abundance Dominance (RAD) or Dominance/Diversity plots (Whittaker 1965) display log-
arithmic species abundances against species rank order. These plots are supposed to be effective in
analysing types of abundance distributions in communities. These functions fit some of the most
popular models mainly following Wilson (1991). Function as.rad constructs observed RAD data.
Functions rad.XXXX (where XXXX is a name) fit the individual models, and function radfit fits
all models. The argument of the function radfit can be either a vector for a single community
or a data frame where each row represents a distinct community. All these functions have their
own plot functions. When the argument is a data frame, plot uses Lattice graphics, and
other plot functions use ordinary graphics. The ordinary graphics functions return invisibly an
ordiplot object for observed points, and function identify.ordiplot can be used to label
selected species. The most complete control of graphics can be achieved with rad.XXXX methods
which have points and lines functions to add observed values and fitted models into existing
graphs. Alternatively, radlattice uses Lattice graphics to display each radfit model in a
separate panel together with their AIC or BIC values.

Function rad.null fits a brokenstick model where the expected abundance of species at rank r is
ar = (J/S)

∑S
x=r(1/x) (Pielou 1975), where J is the total number of individuals (site total) and

S is the total number of species in the community. This gives a Null model where the individuals
are randomly distributed among observed species, and there are no fitted parameters. Function
rad.preempt fits the niche preemption model, a.k.a. geometric series or Motomura model,
where the expected abundance a of species at rank r is ar = Jα(1 − α)r−1. The only estimated
parameter is the preemption coefficient α which gives the decay rate of abundance per rank. The
niche preemption model is a straight line in a RAD plot. Function rad.lognormal fits a log-
Normal model which assumes that the logarithmic abundances are distributed Normally, or ar =
exp(logµ + log σN), where N is a Normal deviate. Function rad.zipf fits the Zipf model
ar = Jp1r

γ where p1 is the fitted proportion of the most abundant species, and γ is a decay
coefficient. The Zipf – Mandelbrot model (rad.zipfbrot) adds one parameter: ar = Jc(r+β)γ

after which p1 of the Zipf model changes into a meaningless scaling constant c. There are grand
narratives about ecological mechanisms behind each model (Wilson 1991), but several alternative
and contrasting mechanisms can produce similar models and a good fit does not imply a specific
mechanism.

Log-Normal and Zipf models are generalized linear models (glm) with logarithmic link function.
Zipf-Mandelbrot adds one nonlinear parameter to the Zipf model, and is fitted using nlm for the

184 radfit

nonlinear parameter and estimating other parameters and log-Likelihood with glm. Pre-emption
model is fitted as purely nonlinear model. There are no estimated parameters in the Null model.
The default family is poisson which is appropriate only for genuine counts (integers), but
other families that accept link = "log" can be used. Family Gamma may be appropriate for
abundance data, such as cover. The “best” model is selected by AIC. Therefore “quasi” families
such as quasipoisson cannot be used: they do not have AIC nor log-Likelihood needed in
non-linear models.

Value

Function rad.XXXX will return an object of class radline, which is constructed to resemble re-
sults of glm and has many (but not all) of its components, even when only nlm was used in fitting.
At least the following glm methods can be applied to the result: fitted, residuals.glm
with alternatives "deviance" (default), "pearson", "response", function coef, AIC,
extractAIC, and deviance. Function radfit applied to a vector will return an object of class
radfit with item y for the constructed RAD, item family for the error distribution, and item
models containing each radline object as an item. In addition, there are special AIC, coef and
fitted implementations for radfit results. When applied to a data frame radfit will return
an object of class radfit.frame which is a list of radfit objects; function summary can be
used to display the results for individual radfit objects. The functions are still preliminary, and
the items in the radline objects may change.

Note

The RAD models are usually fitted for proportions instead of original abundances. However, noth-
ing in these models seems to require division of abundances by site totals, and original observations
are used in these functions. If you wish to use proportions, you must standardize your data by site
totals, e.g. with decostand and use appropriate family such as Gamma.

The lognormal model is fitted in a standard way, but I do think this is not quite correct – at least it is
not equivalent to fitting Normal density to log abundances like originally suggested (Preston 1948).

Some models may fail. In particular, estimation of the Zipf-Mandelbrot model is difficult. If the
fitting fails, NA is returned.

Wilson (1991) defined preemption model as ar = Jp1(1− α)r−1, where p1 is the fitted proportion
of the first species. However, parameter p1 is completely defined by α since the fitted proportions
must add to one, and therefore I handle preemption as a one-parameter model.

Veiled log-Normal model was included in earlier releases of this function, but it was removed
because it was flawed: an implicit veil line also appears in the ordinary log-Normal. The latest
release version with rad.veil was 1.6-10.

Author(s)

Jari Oksanen

References

Pielou, E.C. (1975) Ecological Diversity. Wiley & Sons.

Preston, F.W. (1948) The commonness and rarity of species. Ecology 29, 254–283.

rankindex 185

Whittaker, R. H. (1965) Dominance and diversity in plant communities. Science 147, 250–260.

Wilson, J. B. (1991) Methods for fitting dominance/diversity curves. Journal of Vegetation Science
2, 35–46.

See Also

fisherfit and prestonfit. An alternative approach is to use qqnorm or qqplot with any
distribution. For controlling graphics: Lattice, xyplot, lset.

Examples

data(BCI)
mod <- rad.lognormal(BCI[1,])
mod
plot(mod)
mod <- radfit(BCI[1,])
Standard plot overlaid for all models
Pre-emption model is a line
plot(mod)
log for both axes: Zipf model is a line
plot(mod, log = "xy")
Lattice graphics separately for each model
radlattice(mod)
Take a subset of BCI to save time and nerves
mod <- radfit(BCI[2:5,])
mod
plot(mod, pch=".")

rankindex Compares Dissimilarity Indices for Gradient Detection

Description

Rank correlations between dissimilarity indices and gradient separation.

Usage

rankindex(grad, veg, indices = c("euc", "man", "gow", "bra", "kul"),
stepacross = FALSE, method = "spearman", ...)

Arguments

grad The gradient variable or matrix.

veg The community data matrix.

indices Dissimilarity indices compared, partial matches to alternatives in vegdist.
Alternatively, it can be a (named) list of functions returning objects of class
’dist’.

186 rankindex

stepacross Use stepacross to find a shorter path dissimilarity. The dissimilarities for
site pairs with no shared species are set NA using no.shared so that indices
with no fixed upper limit can also be analysed.

method Correlation method used.

... Other parameters to stepacross.

Details

A good dissimilarity index for multidimensional scaling should have a high rank-order similarity
with gradient separation. The function compares most indices in vegdist against gradient sep-
aration using rank correlation coefficients in cor.test. The gradient separation between each
point is assessed as Euclidean distance for continuous variables, and as Gower metric for mixed
data using function daisy when grad has factors.

The indices argument can accept any dissimilarity indices besides the ones calculated by the
vegdist function. For this, the argument value should be a (possibly named) list of functions.
Each function must return a valid ’dist’ object with dissimilarities, similarities are not accepted and
should be converted into dissimilarities beforehand.

Value

Returns a named vector of rank correlations.

Note

There are several problems in using rank correlation coefficients. Typically there are very many ties
when n(n − 1)/2 gradient separation values are derived from just n observations. Due to floating
point arithmetics, many tied values differ by machine epsilon and are arbitrarily ranked differently
by rank used in cor.test. Two indices which are identical with certain transformation or stan-
dardization may differ slightly (magnitude 10−15) and this may lead into third or fourth decimal
instability in rank correlations. Small differences in rank correlations should not be taken too se-
riously. Probably this method should be replaced with a sounder method, but I do not yet know
which. . . You may experiment with mantel, anosim or even protest.

Earlier version of this function used method = "kendall", but that is far too slow in large data
sets.

The functions returning dissimilarity objects should be self contained, because the ... argument
passes additional parameters to stepacross and not to the functions supplied via the indices
argument.

Author(s)

Jari Oksanen, with additions from Peter Solymos

References

Faith, F.P., Minchin, P.R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure of
ecological distance. Vegetatio 69, 57-68.

read.cep 187

See Also

vegdist, stepacross, no.shared, isoMDS, cor, Machine, and for alternatives anosim,
mantel and protest.

Examples

data(varespec)
data(varechem)
The next scales all environmental variables to unit variance.
Some would use PCA transformation.
rankindex(scale(varechem), varespec)
rankindex(scale(varechem), wisconsin(varespec))
Using non vegdist indices as functions
funs <- list(Manhattan=function(x) dist(x, "manhattan"),

Gower=function(x) cluster:::daisy(x, "gower"),
Ochiai=function(x) designdist(x, "1-J/sqrt(A*B)"))

rankindex(scale(varechem), varespec, funs)

read.cep Reads a CEP (Canoco) data file

Description

read.cep reads a file formatted by relaxed strict CEP format used by Canoco software, among
others.

Usage

read.cep(file, maxdata=10000, positive=TRUE, trace=FALSE, force=FALSE)

Arguments

file File name (character variable).
maxdata Maximum number of non-zero entries.
positive Only positive entries, like in community data.
trace Work verbosely.
force Run function, even if R refuses first.

Details

Cornell Ecology Programs (CEP) introduced several data formats designed for punched cards. One
of these was the ‘condensed strict’ format which was adopted by popular software DECORANA and
TWINSPAN. Later, Cajo ter Braak wrote Canoco based on DECORANA, where he adopted the
format, but relaxed it somewhat (that’s why I call it a ‘relaxed strict’ format). Further, he introduced
a more ordinary ‘free’ format, and allowed the use of classical Fortran style ‘open’ format with
fixed field widths. This function should be able to deal with all these Canoco formats, whereas it
cannot read many of the traditional CEP alternatives.

All variants of CEP formats have:

188 read.cep

• Two or three title cards, most importantly specifying the format (or word FREE) and the
number of items per record (number of species and sites for FREE format).

• Data in one of three accepted formats:
1. Condensed format: First number on the line is the site identifier, and it is followed by

pairs (‘couplets’) of numbers identifying the species and its abundance (an integer and a
floating point number).

2. Open Fortran format, where the first number on the line must be the site number, followed
by abundance values in fields of fixed widths. Empty fields are interpreted as zeros.

3. ‘Free’ format, where the numbers are interpreted as abundance values. These numbers
must be separated by blank space, and zeros must be written as zeros.

• Species and site names, given in Fortran format (10A8): Ten names per line, eight columns
for each.

With option positive = TRUE the function removes all lines and columns with zero or negative
marginal sums. In community data with only positive entries, this removes empty sites and species.
If data entries can be negative, this ruins data, and such data sets should be read in with option
positive = FALSE.

Value

Returns a data frame, where columns are species and rows are sites. Column and row names are
taken from the CEP file, and changed into unique R names by make.names after stripping the
blanks.

Note

The function relies on smooth linking of Fortran file IO in R session. This is not guaranteed to work,
and therefore the function may not work in your system, but it can crash the R session. Therefore
the default is that the function does not run. If you still want to try:

1. Save your session
2. Run read.cep() with switch force=TRUE

If you transfer files between operating systems or platforms, you should always check that your file
is formatted to your current platform. For instance, if you transfer files from Windows to Linux,
you should change the files to unix format, or your session may crash when Fortran program tries
to read the invisible characters that Windows uses at the end of each line.

If you compiled vegan using gfortran, the input is probably corrupted. You either should
compile vegan with other FORTRAN compilers or not to use read.cep. The problems still
persist in gfortran 4.01.

Author(s)

Jari Oksanen

References

Ter Braak, C.J.F. (1984–): CANOCO – a FORTRAN program for canonical community ordination
by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and re-
dundancy analysis. TNO Inst. of Applied Computer Sci., Stat. Dept. Wageningen, The Netherlands.

renyi 189

Examples

Provided that you have the file `dune.spe'
Not run:
theclassic <- read.cep("dune.spe", force=T)
End(Not run)

renyi Renyi and Hill Diversities and Corresponding Accumulation Curves

Description

Function renyi find Rényi diversities with any scale or the corresponding Hill number (Hill 1973).
Function renyiaccum finds these statistics with accumulating sites.

Usage

renyi(x, scales = c(0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, Inf), hill = FALSE)
S3 method for class 'renyi'
plot(x, ...)
renyiaccum(x, scales = c(0, 0.5, 1, 2, 4, Inf), permutations = 100,

raw = FALSE, ...)
S3 method for class 'renyiaccum'
plot(x, what = c("mean", "Qnt 0.025", "Qnt 0.975"), type = "l",

...)
S3 method for class 'renyiaccum'
persp(x, theta = 220, col = heat.colors(100), zlim, ...)

rgl.renyiaccum(x, rgl.height = 0.2, ...)

Arguments

x Community data matrix or plotting object.

scales Scales of Rényi diversity.

hill Calculate Hill numbers.

permutations Number of random permutations in accumulating sites.

raw if FALSE then return summary statistics of permutations, and if TRUE then
returns the individual permutations.

what Items to be plotted.

type Type of plot, where type = "l" means lines.

theta Angle defining the viewing direction (azimuthal) in persp.

col Colours used for surface. Single colour will be passed on, and vector colours
will be selected by the midpoint of a rectangle in persp.

zlim Limits of vertical axis.

rgl.height Scaling of vertical axis.

... Other arguments which are passed to renyi and to graphical functions.

190 renyi

Details

Common diversity indices are special cases of Rényi diversity

Ha =
1

1− a
log
∑

pai

where a is a scale parameter, and Hill (1975) suggested to use so-called “Hill numbers” defined
as Na = exp(Ha). Some Hill numbers are the number of species with a = 0, exp(H ′) or the
exponent of Shannon diversity with a = 1, inverse Simpson with a = 2 and 1/max(pi) with
a = ∞. According to the theory of diversity ordering, one community can be regarded as more
diverse than another only if its Rényi diversities are all higher (Tóthmérész 1995).

The plot method for renyi uses lattice graphics, and displays the diversity values against each
scale in separate panel for each site together with minimum, maximum and median values in the
complete data.

Function renyiaccum is similar to specaccum but finds Rényi or Hill diversities at given
scales for random permutations of accumulated sites. Its plot function uses lattice function
xyplot to display the accumulation curves for each value of scales in a separate panel. In ad-
dition, it has a persp method to plot the diversity surface against scale and number and sites. Dy-
namic graphics with rgl.renyiaccum use rgl package, and produces similar surface as persp
with a mesh showing the empirical confidence levels.

Value

Function renyi returns a data frame of selected indices. Function renyiaccum with argument
raw = FALSE returns a three-dimensional array, where the first dimension are the accumulated
sites, second dimension are the diversity scales, and third dimension are the summary statistics
mean, stdev, min, max, Qnt 0.025 and Qnt 0.975. With argument raw = TRUE the
statistics on the third dimension are replaced with individual permutation results.

Author(s)

Roeland Kindt <r.kindt@cgiar.org> and Jari Oksanen

References

http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.
asp

Hill, M.O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology 54,
427–473.

Kindt R, Van Damme P, Simons AJ. 2006. Tree diversity in western Kenya: using profiles to
characterise richness and evenness. Biodiversity and Conservation 15: 1253-1270.

Tóthmérész, B. (1995). Comparison of different methods for diversity ordering. Journal of Vegeta-
tion Science 6, 283–290.

See Also

diversity for diversity indices, and specaccum for ordinary species accumulation curves, and
xyplot, persp and rgl for controlling graphics.

http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp
http://www.worldagroforestry.org/treesandmarkets/tree_diversity_analysis.asp

RsquareAdj 191

Examples

data(BCI)
i <- sample(nrow(BCI), 12)
mod <- renyi(BCI[i,])
plot(mod)
mod <- renyiaccum(BCI[i,])
plot(mod, as.table=TRUE, col = c(1, 2, 2))
persp(mod)

RsquareAdj Adjusted R-square

Description

The functions finds the adjusted R-square.

Usage

Default S3 method:
RsquareAdj(x, n, m, ...)
S3 method for class 'rda'
RsquareAdj(x, ...)

Arguments

x Unadjusted R-squared or an object from which the terms for evaluation or ad-
justed R-squared can be found.

n, m Number of observations and number of degrees of freedom in the fitted model.

... Other arguments (ignored).

Details

The default method finds the adjusted R-squared from the unadjusted R-squared, number of ob-
servations, and number of degrees of freedom in the fitted model. The specific methods find this
information from the fitted result object. There are specific methods for rda, cca, lm and glm.
Adjusted, or even unadjusted, R-squared may not be available in some cases, and then the functions
will return NA. There is no adjusted R-squared in cca, in partial rda, and R-squared values are
available only for gaussian models in glm.

Value

The functions return a list of items r.squared and adj.r.squared.

References

Peres-Neto, P., P. Legendre, S. Dray and D. Borcard. 2006. Variation partitioning of species data
matrices: estimation and comparison of fractions. Ecology 87: 2614-2625.

192 scores

See Also

varpart uses RsquareAdj.

Examples

data(mite)
data(mite.env)
rda
m <- rda(decostand(mite, "hell") ~ ., mite.env)
RsquareAdj(m)
default method
RsquareAdj(0.8, 20, 5)

scores Get Species or Site Scores from an Ordination

Description

Function to access either species or site scores for specified axes in some ordination methods.

Usage

Default S3 method:
scores(x, choices, display=c("sites", "species"), ...)

Arguments

x An ordination result.

choices Ordination axes. If missing, default method returns all axes.

display Partial match to access scores for sites or species.

... Other parameters (unused).

Details

Function scores is a generic method in vegan. Several vegan functions have their own scores
methods with their own defaults and with some new arguments. This help page describes only the
default method. For other methods, see, e.g., scores.cca, scores.rda, scores.decorana.

All vegan ordination functions should have a scores method which should be used to extract the
scores instead of directly accessing them. Scaling and transformation of scores should also happen
in the scores function. If the scores function is available, the results can be plotted using
ordiplot, ordixyplot etc., and the ordination results can be compared in procrustes
analysis.

The scores.default function is used to extract scores from non-vegan ordination results. Most
standard ordination methods of libraries mva, multiv and MASS do not have a specific class, and
no specific method can be written for them. However, scores.default guesses where some
commonly used functions keep their site scores and possible species scores.

screeplot.cca 193

If x is a matrix, scores.default returns the chosen columns of that matrix, ignoring whether
species or sites were requested (do not regard this as a bug but as a feature, please). Currently the
function seems to work at least for isoMDS, prcomp, princomp and some ade4 objects. It may
work in other cases or fail mysteriously.

Value

The function returns a matrix of scores.

Author(s)

Jari Oksanen

See Also

scores.cca, scores.decorana. These have somewhat different interface – scores.cca
in particular – but all work with keywords display="sites" and return a matrix. However,
they may also return a list of matrices, and some other scores methods will have quite different
arguments.

Examples

data(varespec)
vare.pca <- prcomp(varespec)
scores(vare.pca, choices=c(1,2))

screeplot.cca Screeplots for Ordination Results and Broken Stick Distributions

Description

Screeplot methods for plotting variances of ordination axes/components and overlaying broken stick
distributions. Also, provides alternative screeplot methods for princomp and prcomp.

Usage

S3 method for class 'cca'
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),

npcs = min(10, if (is.null(x$CCA)) x$CA$rank else x$CCA$rank),
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)), legend = bstick,
...)

S3 method for class 'decorana'
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),

npcs = 4,
ptype = "o", bst.col = "red", bst.lty = "solid",

194 screeplot.cca

xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)),
...)

S3 method for class 'prcomp'
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),

npcs = min(10, length(x$sdev)),
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)), legend = bstick,
...)

S3 method for class 'princomp'
screeplot(x, bstick = FALSE, type = c("barplot", "lines"),

npcs = min(10, length(x$sdev)),
ptype = "o", bst.col = "red", bst.lty = "solid",
xlab = "Component", ylab = "Inertia",
main = deparse(substitute(x)), legend = bstick,
...)

bstick(n, ...)

Default S3 method:
bstick(n, tot.var = 1, ...)

S3 method for class 'cca'
bstick(n, ...)

S3 method for class 'prcomp'
bstick(n, ...)

S3 method for class 'princomp'
bstick(n, ...)

S3 method for class 'decorana'
bstick(n, ...)

Arguments

x an object from which the component variances can be determined.

bstick logical; should the broken stick distribution be drawn?

npcs the number of components to be plotted.

type the type of plot.

ptype if type == "lines" or bstick = TRUE, a character indicating the type
of plotting used for the lines; actually any of the types as in plot.default.

bst.col, bst.lty
the colour and line type used to draw the broken stick distribution.

screeplot.cca 195

xlab, ylab, main
graphics parameters.

legend logical; draw a legend?

n an object from which the variances can be extracted or the number of variances
(components) in the case of bstick.default.

tot.var the total variance to be split.

... arguments passed to other methods.

Details

The functions provide screeplots for most ordination methods in vegan and enhanced versions with
broken stick for prcomp and princomp.

Function bstick gives the brokenstick values which are ordered random proportions, defined as
pi = (tot/n)

∑n
x=i(1/x) (Legendre & Legendre 1998), where tot is the total and n is the number

of brokenstick components (cf. radfit). Broken stick has been recommended as a stopping rule
in principal component analysis (Jackson 1993): principal components should be retained as long
as observed eigenvalues are higher than corresponding random broken stick components.

The bstick function is generic. The default needs the number of components and the total,
and specific methods extract this information from ordination results. There also is a bstick
method for cca. However, the broken stick model is not strictly valid for correspondence analysis
(CA), because eigenvalues of CA are defined to be ≤ 1, whereas brokenstick components have
no such restrictions. The brokenstick components are not available for decorana where the sum
of eigenvalues (total inertia) is unknown, and the eigenvalues of single axes are not additive in
detrended analysis.

Value

Function screeplot draws a plot on the currently active device, and returns invisibly the xy.coords
of the points or bars for the eigenvalues.

Function bstick returns a numeric vector of broken stick components.

Note

Function screeplot is generic from R version 2.5.0. In these versions you can use plain screeplot
command without suffices cca, prcomp etc.

Author(s)

Gavin L. Simpson

References

Jackson, D. A. (1993). Stopping rules in principal components analysis: a comparison of heuristical
and statistical approaches. Ecology 74, 2204–2214.

Legendre, P. and Legendre, L. (1998) Numerical Ecology. 2nd English ed. Elsevier.

196 simulate.rda

See Also

cca, decorana, princomp and prcomp for the ordination functions, and screeplot for the
stock version.

Examples

data(varespec)
vare.pca <- rda(varespec, scale = TRUE)
bstick(vare.pca)
screeplot(vare.pca, bstick = TRUE, type = "lines")

simulate.rda Simulate Responses with Gaussian Error or Permuted Residuals for
Constrained Ordination

Description

Function simulates a response data frame so that it adds Gaussian error to the fitted responses
of Redundancy Analysis (rda), Constrained Correspondence Analysis (cca) or distance-based
RDA (capscale). The function is a special case of generic simulate, and works similarly as
simulate.lm.

Usage

S3 method for class 'rda'
simulate(object, nsim = 1, seed = NULL, indx = NULL, rank = "full", ...)

Arguments

object an object representing a fitted rda model.

nsim number of response vectors to simulate. (Not yet used, and values above 1 will
give an error).

seed an object specifying if and how the random number generator should be initial-
ized (‘seeded’). See simulate for details.

indx Index of residuals added to the fitted values, such as produced by permuted.index,
permuted.index2 or sample. The index can have duplicate entries so that
bootstrapping is allowed. If null, parametric simulation is used and Gaussian
error is added to the fitted values.

rank The rank of the constrained component: passed to predict.rda or predict.cca.

... additional optional arguments (ignored).

sipoo 197

Details

The implementation follows "lm" method of simulate, and adds Gaussian (Normal) error to
the fitted values (fitted.rda) using function rnorm. The standard deviations are estimated in-
dependently for each species (column) from the residuals after fitting the constraints. Alternatively,
the function can take a permutation index that is used to add permuted residuals (unconstrained
component) to the fitted values. Raw data are used in rda. Internal Chi-square transformed data
in cca within the function, but the returned data frame is similar to the original input data. The
simulation is performed on internal metric scaling data in capscale, but the function returns the
Euclidean distances calculated from the simulated data. The simulation uses only the real compo-
nents, and the imaginary dimensions are ignored.

Value

Returns a data frame with similar additional arguments on random number seed as simulate.

Author(s)

Jari Oksanen

See Also

simulate for the generic case and for lm objects. Functions fitted.rda and fitted.cca
return fitted values without the error component.

Examples

data(dune)
data(dune.env)
mod <- rda(dune ~ Moisture + Management, dune.env)
One simulation
update(mod, simulate(mod) ~ .)
An impression of confidence regions of site scores
plot(mod, display="sites")
for (i in 1:5) lines(procrustes(mod, update(mod, simulate(mod) ~ .)), col="blue")

sipoo Birds in the Archipelago of Sipoo (Sibbo)

Description

Land birds on islands covered by coniferous forest in the Sipoo archipelago, southern Finland (land-
bridge/ oceanic distinction unclear from source).

Usage

data(sipoo)

198 spantree

Format

A data frame with 18 sites and 50 species (Simberloff & Martin, 1991, Appendix 3). The species
are referred by 4+4 letter abbreviation of their Latin names (but using five letters in two species
names to make these unique). The example gives the areas of the studies islands in hectares.

Source

http://www.aics-research.com/nested/

References

Simberloff, D. & Martin, J.-L. (1991). Nestedness of insular avifaunas: simple summary statistics
masking complex species patterns. Ornis Fennica 68:178–192.

Examples

data(sipoo)
Areas of the islands in hectares
sipoo.area <- c(1.1, 2.1, 2.2, 3.1, 3.5, 5.8, 6, 6.1, 6.5, 11.4, 13,
14.5, 16.1 ,17.5, 28.7, 40.5, 104.5, 233)

spantree Minimum Spanning Tree

Description

Function spantree finds a minimum spanning tree connecting all points, but disregarding dis-
similarities that are at or above the threshold or NA.

Usage

spantree(d, toolong = 0)
S3 method for class 'spantree'
cophenetic(x)
spandepth(x)
S3 method for class 'spantree'
plot(x, ord, cex = 0.7, type = "p", labels, dlim,

FUN = sammon, ...)
S3 method for class 'spantree'
lines(x, ord, display="sites", ...)

Arguments

d Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist
are some functions producing suitable dissimilarity data.

http://www.aics-research.com/nested/

spantree 199

toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that
dissimilarities close to the limit will be made NA, too. If toolong = 0 (or
negative), no dissimilarity is regarded as too long.

x A spantree result object.

ord An ordination configuration, or an ordination result known by scores.

cex Character expansion factor.

type Observations are plotted as points with type="p" or type="b", or as text
label with type="t". The tree (lines) will always be plotted.

labels Text used with type="t" or node names if this is missing.

dlim A ceiling value used to highest cophenetic dissimilarity.

FUN Ordination function to find the configuration from cophenetic dissimilarities.

display Type of scores used for ord.

... Other parameters passed to functions.

Details

Function spantree finds a minimum spanning tree for dissimilarities (there may be several min-
imum spanning trees, but the function finds only one). Dissimilarities at or above the threshold
toolong and NAs are disregarded, and the spanning tree is found through other dissimilarities. If
the data are disconnected, the function will return a disconnected tree (or a forest), and the corre-
sponding link is NA. Connected subtrees can be identified using distconnected.

Function cophenetic finds distances between all points along the tree segments. Function
spandepth returns the depth of each node. The nodes of a tree are either leaves (with one link)
or internal nodes (more than one link). The leaves are recursively removed from the tree, and the
depth is the layer at with the leaf was removed. In disconnected spantree object (in a forest)
each tree is analysed separately and disconnected nodes not in any tree have depth zero.

Function plot displays the tree over a supplied ordination configuration, and lines adds a span-
ning tree to an ordination graph. If configuration is not supplied for plot, the function ordinates
the cophenetic dissimilarities of the spanning tree and overlays the tree on this result. The default
ordination function is sammon (package MASS), because Sammon scaling emphasizes structure
in the neighbourhood of nodes and may be able to beautifully represent the tree (you may need to
set dlim, and sometimes the results will remain twisted). These ordination methods do not work
with disconnected trees, but you must supply the ordination configuration. Function lines will
overlay the tree in an existing plot.

Function spantree uses Prim’s method implemented as priority-first search for dense graphs
(Sedgewick 1990). Function cophenetic uses function stepacross with option path =
"extended". The spantree is very fast, but cophenetic is slow in very large data sets.

Value

Function spantree returns an object of class spantree which is a list with two vectors, each
of length n − 1. The number of links in a tree is one less the number of observations, and the first
item is omitted. The items are

kid The child node of the parent, starting from parent number two. If there is no link
from the parent, value will be NA and tree is disconnected at the node.

200 specaccum

dist Corresponding distance. If kid = NA, then dist = 0.

labels Names of nodes as found from the input dissimilarities.

call The function call.

Note

In principle, minimum spanning tree is equivalent to single linkage clustering that can be performed
using hclust or agnes. However, these functions combine clusters to each other and the infor-
mation of the actually connected points (the “single link”) cannot be recovered from the result. The
graphical output of a single linkage clustering plotted with ordicluster will look very different
from an equivalent spanning tree plotted with lines.spantree.

Author(s)

Jari Oksanen

References

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

See Also

vegdist or dist for getting dissimilarities, and hclust or agnes for single linkage clustering.

Examples

data(dune)
dis <- vegdist(dune)
tr <- spantree(dis)
Add tree to a metric scaling
plot(tr, cmdscale(dis), type = "t")
Find a configuration to display the tree neatly
plot(tr, type = "t")
Depths of nodes
depths <- spandepth(tr)
plot(tr, type = "t", label = depths)

specaccum Species Accumulation Curves

Description

Function specaccum finds species accumulation curves or the number of species for a certain
number of sampled sites or individuals.

specaccum 201

Usage

specaccum(comm, method = "exact", permutations = 100,
conditioned =TRUE, gamma = "jack1", ...)

S3 method for class 'specaccum'
plot(x, add = FALSE, ci = 2, ci.type = c("bar", "line", "polygon"),

col = par("fg"), ci.col = col, ci.lty = 1, xlab,
ylab = x$method, ylim, xvar = c("sites", "individuals"), ...)

S3 method for class 'specaccum'
boxplot(x, add = FALSE, ...)

Arguments

comm Community data set.

method Species accumulation method (partial match). Method "collector" adds
sites in the order they happen to be in the data, "random" adds sites in random
order, "exact" finds the expected (mean) species richness, "coleman" finds
the expected richness following Coleman et al. 1982, and "rarefaction"
finds the mean when accumulating individuals instead of sites.

permutations Number of permutations with method = "random".

conditioned Estimation of standard deviation is conditional on the empirical dataset for the
exact SAC

gamma Method for estimating the total extrapolated number of species in the survey
area by function specpool

x A specaccum result object

add Add to an existing graph.

ci Multiplier used to get confidence intervals from standard deviation (standard
error of the estimate). Value ci = 0 suppresses drawing confidence intervals.

ci.type Type of confidence intervals in the graph: "bar" draws vertical bars, "line"
draws lines, and "polygon" draws a shaded area.

col Colour for drawing lines.

ci.col Colour for drawing lines or filling the "polygon".

ci.lty Line type for confidence intervals or border of the "polygon".

xlab,ylab Labels for x (defaults xvar) and y axis.

ylim the y limits of the plot.

xvar Variable used for the horizontal axis: "individuals" can be used only with
method = "rarefaction".

... Other parameters to functions.

Details

Species accumulation curves (SAC) are used to compare diversity properties of community data
sets using different accumulator functions. The classic method is "random" which finds the mean
SAC and its standard deviation from random permutations of the data, or subsampling without
replacement (Gotelli & Colwell 2001). The "exact" method finds the expected SAC using the

202 specaccum

method that was independently developed by Ugland et al. (2003), Colwell et al. (2004) and Kindt
et al. (2006). The unconditional standard deviation for the exact SAC represents a moment-based
estimation that is not conditioned on the empirical data set (sd for all samples > 0), unlike the
conditional standard deviation that was developed by Jari Oksanen (not published, sd=0 for all
samples). The unconditional standard deviation is based on an estimation of the total extrapolated
number of species in the survey area (a.k.a. gamma diversity), as estimated by function specpool.
Method "coleman" finds the expected SAC and its standard deviation following Coleman et
al. (1982). All these methods are based on sampling sites without replacement. In contrast, the
method = "rarefaction" finds the expected species richness and its standard deviation by
sampling individuals instead of sites. It achieves this by applying function rarefy with number
of individuals corresponding to average number of individuals per site.

The function has a plotmethod. In addition, method = "random" has summary and boxplot
methods.

Value

The function returns an object of class "specaccum" with items:

call Function call.

method Accumulator method.

sites Number of sites. For method = "rarefaction" this is the number of sites
corresponding to a certain number of individuals and generally not an integer,
and the average number of individuals is also returned in item individuals.

richness The number of species corresponding to number of sites. With method =
"collector" this is the observed richness, for other methods the average or
expected richness.

sd The standard deviation of SAC (or its standard error). This is NULL in method
= "collector", and it is estimated from permutations in method = "random",
and from analytic equations in other methods.

perm Permutation results with method = "random" and NULL in other cases.
Each column in perm holds one permutation.

Note

The SAC with method = "exact" was developed by Roeland Kindt, and its standard deviation
by Jari Oksanen (both are unpublished). The method = "coleman" underestimates the SAC
because it does not handle properly sampling without replacement. Further, its standard deviation
does not take into account species correlations, and is generally too low.

Author(s)

Roeland Kindt <r.kindt@cgiar.org> and Jari Oksanen.

References

Coleman, B.D, Mares, M.A., Willis, M.R. & Hsieh, Y. (1982). Randomness, area and species
richness. Ecology 63: 1121–1133.

specpool 203

Colwell, R.K., Mao, C.X. & Chang, J. (2004). Interpolating, extrapolating, and comparing incidence-
based species accumulation curves. Ecology 85: 2717–2727.

Gotellli, N.J. & Colwell, R.K. (2001). Quantifying biodiversity: procedures and pitfalls in mea-
surement and comparison of species richness. Ecol. Lett. 4, 379–391.

Kindt, R. (2003). Exact species richness for sample-based accumulation curves. Manuscript.

Kindt R., Van Damme, P. & Simons, A.J. (2006) Patterns of species richness at varying scales in
western Kenya: planning for agroecosystem diversification. Biodiversity and Conservation, online
first: DOI 10.1007/s10531-005-0311-9

Ugland, K.I., Gray, J.S. & Ellingsen, K.E. (2003). The species-accumulation curve and estimation
of species richness. Journal of Animal Ecology 72: 888–897.

See Also

rarefy and rrarefy are related individual based models. Other accumulation models are
poolaccum for extrapolated richness, and renyiaccum and tsallisaccum for diversity in-
dices. Underlying graphical functions are boxplot, matlines, segments and polygon.

Examples

data(BCI)
sp1 <- specaccum(BCI)
sp2 <- specaccum(BCI, "random")
sp2
summary(sp2)
plot(sp1, ci.type="poly", col="blue", lwd=2, ci.lty=0, ci.col="lightblue")
boxplot(sp2, col="yellow", add=TRUE, pch="+")

specpool Extrapolated Species Richness in a Species Pool

Description

The functions estimate the extrapolated species richness in a species pool, or the number of un-
observed species. Function specpool is based on incidences in sample sites, and gives a single
estimate for a collection of sample sites (matrix). Function estimateR is based on abundances
(counts) on single sample site.

Usage

specpool(x, pool)
estimateR(x, ...)
specpool2vect(X, index = c("jack1","jack2", "chao", "boot","Species"))
poolaccum(x, permutations = 100, minsize = 3)
estaccumR(x, permutations = 100)
S3 method for class 'poolaccum'
summary(object, display, alpha = 0.05, ...)
S3 method for class 'poolaccum'
plot(x, alpha = 0.05, type = c("l","g"), ...)

204 specpool

Arguments

x Data frame or matrix with species data or the analysis result for plot function.

pool A vector giving a classification for pooling the sites in the species data. If miss-
ing, all sites are pooled together.

X, object A specpool result object.

index The selected index of extrapolated richness.

permutations Number of permutations of sampling order of sites.

minsize Smallest number of sampling units reported.

display Indices to be displayed.

alpha Level of quantiles shown. This proportion will be left outside symmetric limits.

type Type of graph produced in xyplot.

... Other parameters (not used).

Details

Many species will always remain unseen or undetected in a collection of sample plots. The function
uses some popular ways of estimating the number of these unseen species and adding them to the
observed species richness (Palmer 1990, Colwell & Coddington 1994).

The incidence-based estimates in specpool use the frequencies of species in a collection of sites.
In the following, SP is the extrapolated richness in a pool, S0 is the observed number of species
in the collection, a1 and a2 are the number of species occurring only in one or only in two sites in
the collection, pi is the frequency of species i, and N is the number of sites in the collection. The
variants of extrapolated richness in specpool are:

Chao SP = S0 + a12/(2 ∗ a2)
First order jackknife SP = S0 + a1

N−1
N

Second order jackknife SP = S0 + a1
2N−3
N − a2

(N−2)2

N(N−1)

Bootstrap SP = S0 +
∑S0
i=1(1− pi)N

The abundance-based estimates in estimateR use counts (frequencies) of species in a single site.
If called for a matrix or data frame, the function will give separate estimates for each site. The two
variants of extrapolated richness in estimateR are Chao (unbiased variant) and ACE. In the Chao
estimate ai refers to number of species with abundance i instead of incidence:

Chao SP = S0 + a1(a1−1)
2(a2+1)

ACE SP = Sabund + Srare

Cace
+ a1

Cace
γ2
ace

where Cace = 1− a1
Nrare

γ2
ace = max

[
Srare

∑10

i=1
i(i−1)ai

CaceNrare(Nrare−1) − 1, 0
]

Here ai refers to number of species with abundance i and Srare is the number of rare species,
Sabund is the number of abundant species, with an arbitrary threshold of abundance 10 for rare
species, and Nrare is the number of individuals in rare species.

specpool 205

Functions estimate the standard errors of the estimates. These only concern the number of added
species, and assume that there is no variance in the observed richness. The equations of standard
errors are too complicated to be reproduced in this help page, but they can be studied in the R
source code of the function. The standard error are based on the following sources: Chao (1987)
for the Chao estimate and Smith and van Belle (1984) for the first-order Jackknife and the bootstrap
(second-order jackknife is still missing). The variance estimator of Sace was developed by Bob
O’Hara (unpublished).

Functions poolaccum and estaccumR are similar to specaccum, but estimate extrapolated
richness indices of specpool or estimateR in addition to number of species for random order-
ing of sampling units. Function specpool uses presence data and estaccumR count data. The
functions share summary and plot methods. The summary returns quantile envelopes of per-
mutations corresponding the given level of alpha and standard deviation of permutations for each
sample size. The plot function shows the mean and envelope of permutations with given alpha
for models. The selection of models can be restricted and order changes using the display argu-
ment in summary or plot. For configuration of plot command, see xyplot

Value

Function specpool returns a data frame with entries for observed richness and each of the indices
for each class in pool vector. The utility function specpool2vect maps the pooled values into
a vector giving the value of selected index for each original site. Function estimateR returns
the estimates and their standard errors for each site. Functions poolaccum and estimateR
return matrices of permutation results for each richness estimator, the vector of sample sizes and a
table of means of permutations for each estimator.

Note

The functions are based on assumption that there is a species pool: The community is closed so that
there is a fixed pool size SP . Such cases may exist, although I have not seen them yet. All indices
are biased for open communities.

See http://viceroy.eeb.uconn.edu/EstimateS for a more complete (and positive)
discussion and alternative software for some platforms.

Author(s)

Bob O’Hara (estimateR) and Jari Oksanen.

References

Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchabil-
ity. Biometrics 43, 783–791.

Colwell, R.K. & Coddington, J.A. (1994). Estimating terrestrial biodiversity through extrapolation.
Phil. Trans. Roy. Soc. London B 345, 101–118.

Palmer, M.W. (1990). The estimation of species richness by extrapolation. Ecology 71, 1195–1198.

Smith, E.P & van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics 40,
119–129.

http://viceroy.eeb.uconn.edu/EstimateS

206 stepacross

See Also

veiledspec, diversity, beals, specaccum.

Examples

data(dune)
data(dune.env)
attach(dune.env)
pool <- specpool(dune, Management)
pool
op <- par(mfrow=c(1,2))
boxplot(specnumber(dune) ~ Management, col="hotpink", border="cyan3",
notch=TRUE)

boxplot(specnumber(dune)/specpool2vect(pool) ~ Management, col="hotpink",
border="cyan3", notch=TRUE)

par(op)
data(BCI)
Accumulation model
pool <- poolaccum(BCI)
summary(pool, display = "chao")
plot(pool)
Quantitative model
estimateR(BCI[1:5,])

stepacross Stepacross as Flexible Shortest Paths or Extended Dissimilarities

Description

Function stepacross tries to replace dissimilarities with shortest paths stepping across interme-
diate sites while regarding dissimilarities above a threshold as missing data (NA). With path =
"shortest" this is the flexible shortest path (Williamson 1978, Bradfield & Kenkel 1987), and
with path = "extended" an approximation known as extended dissimilarities (De’ath 1999).
The use of stepacross should improve the ordination with high beta diversity, when there are
many sites with no species in common.

Usage

stepacross(dis, path = "shortest", toolong = 1, trace = TRUE, ...)

Arguments

dis Dissimilarity data inheriting from class dist or a an object, such as a matrix,
that can be converted to a dissimilarity matrix. Functions vegdist and dist
are some functions producing suitable dissimilarity data.

path The method of stepping across (partial match) Alternative "shortest" finds
the shortest paths, and "extended" their approximation known as extended
dissimilarities.

stepacross 207

toolong Shortest dissimilarity regarded as NA. The function uses a fuzz factor, so that
dissimilarities close to the limit will be made NA, too.

trace Trace the calculations.

... Other parameters (ignored).

Details

Williamson (1978) suggested using flexible shortest paths to estimate dissimilarities between sites
which have nothing in common, or no shared species. With path = "shortest" function
stepacross replaces dissimilarities that are toolong or longer with NA, and tries to find short-
est paths between all sites using remaining dissimilarities. Several dissimilarity indices are semi-
metric which means that they do not obey the triangle inequality dij ≤ dik + dkj , and shortest path
algorithm can replace these dissimilarities as well, even when they are shorter than toolong.

De’ath (1999) suggested a simplified method known as extended dissimilarities, which are calcu-
lated with path = "extended". In this method, dissimilarities that are toolong or longer
are first made NA, and then the function tries to replace these NA dissimilarities with a path through
single stepping stone points. If not all NA could be replaced with one pass, the function will make
new passes with updated dissimilarities as long as all NA are replaced with extended dissimilarities.
This mean that in the second and further passes, the remaining NA dissimilarities are allowed to have
more than one stepping stone site, but previously replaced dissimilarities are not updated. Further,
the function does not consider dissimilarities shorter than toolong, although some of these could
be replaced with a shorter path in semi-metric indices, and used as a part of other paths. In optimal
cases, the extended dissimilarities are equal to shortest paths, but they may be longer.

As an alternative to defining too long dissimilarities with parameter toolong, the input dissimi-
larities can contain NAs. If toolong is zero or negative, the function does not make any dissimi-
larities into NA. If there are no NAs in the input and toolong = 0, path = "shortest" will
find shorter paths for semi-metric indices, and path = "extended" will do nothing. Function
no.shared can be used to set dissimilarities to NA.

If the data are disconnected or there is no path between all points, the result will contain NAs and
a warning is issued. Several methods cannot handle NA dissimilarities, and this warning should be
taken seriously. Function distconnected can be used to find connected groups and remove rare
outlier observations or groups of observations.

Alternative path = "shortest" uses Dijkstra’s method for finding flexible shortest paths,
implemented as priority-first search for dense graphs (Sedgewick 1990). Alternative path =
"extended" follows De’ath (1999), but implementation is simpler than in his code.

Value

Function returns an object of class dist with extended dissimilarities (see functions vegdist
and dist). The value of path is appended to the method attribute.

Note

The function changes the original dissimilarities, and not all like this. It may be best to use the
function only when you really must: extremely high beta diversity where a large proportion of
dissimilarities are at their upper limit (no species in common).

208 taxondive

Semi-metric indices vary in their degree of violating the triangle inequality. Morisita and Horn–
Morisita indices of vegdist may be very strongly semi-metric, and shortest paths can change
these indices very much. Mountford index violates basic rules of dissimilarities: non-identical sites
have zero dissimilarity if species composition of the poorer site is a subset of the richer. With
Mountford index, you can find three sites i, j, k so that dik = 0 and djk = 0, but dij > 0. The
results of stepacross on Mountford index can be very weird. If stepacross is needed, it is
best to try to use it with more metric indices only.

Author(s)

Jari Oksanen

References

Bradfield, G.E. & Kenkel, N.C. (1987). Nonlinear ordination using flexible shortest path adjustment
of ecological distances. Ecology 68, 750–753.

De’ath, G. (1999). Extended dissimilarity: a method of robust estimation of ecological distances
from high beta diversity data. Plant Ecol. 144, 191–199.

Sedgewick, R. (1990). Algorithms in C. Addison Wesley.

Williamson, M.H. (1978). The ordination of incidence data. J. Ecol. 66, 911-920.

See Also

Function distconnected can find connected groups in disconnected data, and function no.shared
can be used to set dissimilarities as NA. See swan for an alternative approach. Function stepacross
is an essential component in isomap and cophenetic.spantree.

Examples

There are no data sets with high beta diversity in vegan, but this
should give an idea.
data(dune)
dis <- vegdist(dune)
edis <- stepacross(dis)
plot(edis, dis, xlab = "Shortest path", ylab = "Original")
Manhattan distance have no fixed upper limit.
dis <- vegdist(dune, "manhattan")
is.na(dis) <- no.shared(dune)
dis <- stepacross(dis, toolong=0)

taxondive Indices of Taxonomic Diversity and Distinctness

Description

Function finds indices of taxonomic diversity and distinctness, which are averaged taxonomic dis-
tances among species or individuals in the community (Clarke & Warwick 1998, 2001)

taxondive 209

Usage

taxondive(comm, dis, match.force = FALSE)
taxa2dist(x, varstep = FALSE, check = TRUE, labels)

Arguments

comm Community data.

dis Taxonomic distances among taxa in comm. This should be a dist object or a
symmetric square matrix.

match.force Force matching of column names in comm and labels in dis. If FALSE, match-
ing only happens when dimensions differ, and in that case the species must be
in identical order in both.

x Classification table with a row for each species or other basic taxon, and columns
for identifiers of its classification at higher levels.

varstep Vary step lengths between successive levels relative to proportional loss of the
number of distinct classes.

check If TRUE, remove all redundant levels which are different for all rows or constant
for all rows and regard each row as a different basal taxon (species). If FALSE
all levels are retained and basal taxa (species) also must be coded as variables
(columns). You will get a warning if species are not coded, but you can ignore
this if that was your intention.

labels The labels attribute of taxonomic distances. Row names will be used if this
is not given. Species will be matched by these labels in comm and dis in
taxondive if these have different dimensions.

Details

Clarke & Warwick (1998, 2001) suggested several alternative indices of taxonomic diversity or
distinctness. Two basic indices are called taxonomic diversity (∆) and distinctness (∆∗):

∆ = (
∑∑

i<j ωijxixj)/(n(n− 1)/2)
∆∗ = (

∑∑
i<j ωijxixj)/(

∑∑
i<j xixj)

The equations give the index value for a single site, and summation goes over species i and j. Here
ω are taxonomic distances among taxa, and x are species abundances, and n is the total abundance
for a site. With presence/absence data both indices reduce to the same index ∆+, and for this index
Clarke & Warwick (1998) also have an estimate of its standard deviation. Clarke & Warwick (2001)
presented two new indices: s∆+ is the product of species richness and ∆+, and index of variation
in taxonomic distinctness (Λ+) defined as

Λ+ = (
∑∑

i<j ω
2
ij)/(n(n− 1)/2)− (∆+)2

The dis argument must be species dissimilarities. These must be similar to dissimilarities pro-
duced by dist. It is customary to have integer steps of taxonomic hierarchies, but other kind of
dissimilarities can be used, such as those from phylogenetic trees or genetic differences. Further,
the dis need not be taxonomic, but other species classifications can be used.

210 taxondive

Function taxa2dist can produce a suitable dist object from a classification table. Each species
(or basic taxon) corresponds to a row of the classification table, and columns give the classification
at different levels. With varstep = FALSE the successive levels will be separated by equal
steps, and with varstep = TRUE the step length is relative to the proportional decrease in the
number of classes (Clarke & Warwick 1999). With check = TRUE, the function removes classes
which are distinct for all species or which combine all species into one class, and assumes that each
row presents a distinct basic taxon. The function scales the distances so that longest path length
between taxa is 100 (not necessarily when check = FALSE).

Function plot.taxondive plots ∆+ against Number of species, together with expectation and
its approximate 2*sd limits. Function summary.taxondive finds the z values and their signifi-
cances from Normal distribution for ∆+.

Value

Function returns an object of class taxondive with following items:

Species Number of species for each site.
D, Dstar, Dplus, SDplus, Lambda

∆, ∆∗, ∆+, s∆+ and Λ+ for each site.

sd.Dplus Standard deviation of ∆+.
ED, EDstar, EDplus

Expected values of corresponding statistics.

Function taxa2dist returns an object of class "dist", with an attribute "steps" for the step
lengths between successive levels.

Note

The function is still preliminary and may change. The scaling of taxonomic dissimilarities influ-
ences the results. If you multiply taxonomic distances (or step lengths) by a constant, the values
of all Deltas will be multiplied with the same constant, and the value of Λ+ by the square of the
constant.

Author(s)

Jari Oksanen

References

Clarke, K.R & Warwick, R.M. (1998) A taxonomic distinctness index and its statistical properties.
Journal of Applied Ecology 35, 523–531.

Clarke, K.R. & Warwick, R.M. (1999) The taxonomic distinctness measure of biodiversity: weight-
ing of step lengths between hierarchical levels. Marine Ecology Progress Series 184: 21–29.

Clarke, K.R. & Warwick, R.M. (2001) A further biodiversity index applicable to species lists: vari-
ation in taxonomic distinctness. Marine Ecology Progress Series 216, 265–278.

See Also

diversity.

treedive 211

Examples

Preliminary: needs better data and some support functions
data(dune)
data(dune.taxon)
Taxonomic distances from a classification table with variable step lengths.
taxdis <- taxa2dist(dune.taxon, varstep=TRUE)
plot(hclust(taxdis), hang = -1)
Indices
mod <- taxondive(dune, taxdis)
mod
summary(mod)
plot(mod)

treedive Functional Diversity estimated from a Species Dendrogram

Description

Functional diversity is defined as the total branch length in a trait dendrogram connecting all species,
but excluding the unnecessary root segments of the tree (Petchey and Gaston 2006).

Usage

treedive(comm, tree, match.force = FALSE)
treeheight(tree)
treedist(x, tree, relative = TRUE, ...)

Arguments

comm, x Community data frame or matrix.

tree A dendrogram which for treedive must be for species (columns).

match.force Force matching of column names in comm and labels in tree. If FALSE,
matching only happens when dimensions differ, and in that case the species
must be in identical order in both.

relative Use distances relative to the height of combined tree.

... Other arguments passed to functions (ignored).

Details

Function treeheight finds the sum of lengths of connecting segments in a dendrogram produced
by hclust, or other dendrogram that can be coerced to a correct type using as.hclust. When
applied to a clustering of species traits, this is a measure of functional diversity (Petchey and Gaston
2002, 2006).

Function treedive finds the treeheight for each site (row) of a community matrix. The
function uses a subset of dendrogram for those species that occur in each site, and excludes the
tree root if that is not needed to connect the species (Petchey and Gaston 2006). The subset of the

212 treedive

dendrogram is found by first calculating cophenetic distances from the input dendrogram, then
reconstructing the dendrogram for the subset of the cophenetic distance matrix for species occurring
in each site. Diversity is 0 for one spcies, and NA for empty communities.

Function treedist finds the dissimilarities among trees. Pairwise dissimilarity of two trees is
found by combining species in a common tree and seeing how much of the tree height is shared and
how much is unique. With relative = FALSE the dissimilarity is defined as 2(A∪B)−A−B,
where A and B are heights of component trees and A ∪B is the height of the combined tree. With
relative = TRUE the dissimilarity is (2(A ∪ B) − A − B)/(A ∪ B). Although the latter
formula is similar to Jaccard dissimilarity (see vegdist, designdist), it is not in the range
0 . . . 1, since combined tree can add a new root. When two zero-height trees are combined into a
tree of above zero height, the relative index attains its maximum value 2. The dissimilarity is zero
from a combined zero-height tree.

The functions need a dendrogram of species traits as an input. If species traits contain factor
or ordered factor variables, it is recommended to use Gower distances for mixed data (function
daisy in package cluster), and usually the recommended clustering method is UPGMA (method
= "average" in function hclust) (Podani and Schmera 2006).

It is possible to analyse the non-randomness of functional diversity using oecosimu. This needs
specifying an adequate Null model, and the results will change with this choice.

Value

A vector of diversity values or a single tree height, or a dissimilarity structure that inherits from
dist and can be used similarly.

Author(s)

Jari Oksanen

References

Lozupone, C. and Knight, R. 2005. UniFrac: a new phylogenetic method for comparing microbial
communities. Applied and Environmental Microbiology 71, 8228–8235.

Petchey, O.L. and Gaston, K.J. 2002. Functional diversity (FD), species richness and community
composition. Ecology Letters 5, 402–411.

Petchey, O.L. and Gaston, K.J. 2006. Functional diversity: back to basics and looking forward.
Ecology Letters 9, 741–758.

Podani J. and Schmera, D. 2006. On dendrogram-based methods of functional diversity. Oikos 115,
179–185.

See Also

taxondive is something very similar from another world.

Examples

There is no data set on species properties yet, and therefore
the example uses taxonomy
data(dune)

tsallis 213

data(dune.taxon)
d <- taxa2dist(dune.taxon, varstep=TRUE)
cl <- hclust(d, "aver")
treedive(dune, cl)
Significance test using Null model communities.
The current choice fixes only site totals.
oecosimu(dune, treedive, "r0", tree = cl)
Clustering of tree distances
dtree <- treedist(dune, cl)
plot(hclust(dtree, "aver"))

tsallis Tsallis Diversity and Corresponding Accumulation Curves

Description

Function tsallis find Tsallis diversities with any scale or the corresponding evenness measures.
Function tsallisaccum finds these statistics with accumulating sites.

Usage

tsallis(x, scales = seq(0, 2, 0.2), norm = FALSE, hill = FALSE)
tsallisaccum(x, scales = seq(0, 2, 0.2), permutations = 100, raw = FALSE, ...)
S3 method for class 'tsallisaccum'
persp(x, theta = 220, phi = 15, col = heat.colors(100), zlim, ...)

Arguments

x Community data matrix or plotting object.

scales Scales of Tsallis diversity.

norm Logical, if TRUE diversity values are normalized by their maximum (diversity
value at equiprobability conditions).

hill Calculate Hill numbers.

permutations Number of random permutations in accumulating sites.

raw If FALSE then return summary statistics of permutations, and if TRUE then
returns the individual permutations.

theta, phi angles defining the viewing direction. theta gives the azimuthal direction and
phi the colatitude.

col Colours used for surface.

zlim Limits of vertical axis.

... Other arguments which are passed to tsallis and to graphical functions.

214 tsallis

Details

The Tsallis diversity (also equivalent to Patil and Taillie diversity) is a one-parametric generalised
entropy function, defined as:

Hq =
1

q − 1
(1−

S∑
i=1

pqi)

where q is a scale parameter, S the number of species in the sample (Tsallis 1988, Tothmeresz
1995). This diversity is concave for all q > 0, but non-additive (Keylock 2005). For q = 0 it gives
the number of species minus one, as q tends to 1 this gives Shannon diversity, for q = 2 this gives
the Simpson index (see function diversity).

If norm = TRUE, tsallis gives values normalized by the maximum:

Hq(max) =
S1−q − 1

1− q

where S is the number of species. As q tends to 1, maximum is defined as ln(S).

If hill = TRUE, tsallis gives Hill numbers (numbers equivalents, see Jost 2007):

Dq = (1− (q − 1)H)1/(1−q)

Details on plotting methods and accumulating values can be found on the help pages of the functions
renyi and renyiaccum.

Value

Function tsallis returns a data frame of selected indices. Function tsallisaccum with argu-
ment raw = FALSE returns a three-dimensional array, where the first dimension are the accumu-
lated sites, second dimension are the diversity scales, and third dimension are the summary statis-
tics mean, stdev, min, max, Qnt 0.025 and Qnt 0.975. With argument raw = TRUE the
statistics on the third dimension are replaced with individual permutation results.

Author(s)

Péter Sólymos, <solymos@ualberta.ca>, based on the code of Roeland Kindt and Jari Ok-
sanen written for renyi

References

Tsallis, C. (1988) Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phis. 52, 479–487.

Tothmeresz, B. (1995) Comparison of different methods for diversity ordering. Journal of Vegeta-
tion Science 6, 283–290.

Patil, G. P. and Taillie, C. (1982) Diversity as a concept and its measurement. J. Am. Stat. Ass. 77,
548–567.

Keylock, C. J. (2005) Simpson diversity and the Shannon-Wiener index as special cases of a gener-
alized entropy. Oikos 109, 203–207.

Jost, L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88,
2427–2439.

varespec 215

See Also

Plotting methods and accumulation routines are based on functions renyi and renyiaccum.
An object of class ’tsallisaccum’ can be used with function rgl.renyiaccum as well. See also
settings for persp.

Examples

data(BCI)
i <- sample(nrow(BCI), 12)
x1 <- tsallis(BCI[i,])
x1
diversity(BCI[i,],"simpson") == x1[["2"]]
plot(x1)
x2 <- tsallis(BCI[i,],norm=TRUE)
x2
plot(x2)
mod1 <- tsallisaccum(BCI[i,])
plot(mod1, as.table=TRUE, col = c(1, 2, 2))
persp(mod1)
mod2 <- tsallisaccum(BCI[i,], norm=TRUE)
persp(mod2,theta=100,phi=30)

varespec Vegetation and environment in lichen pastures

Description

The varespec data frame has 24 rows and 44 columns. Columns are estimated cover values of
44 species. The variable names are formed from the scientific names, and are self explanatory for
anybody familiar with the vegetation type. The varechem data frame has 24 rows and 14 columns,
giving the soil characteristics of the very same sites as in the varespec data frame. The chemical
measurements have obvious names. Baresoil gives the estimated cover of bare soil, Humdepth
the thickness of the humus layer.

Usage

data(varechem)
data(varespec)

References

Väre, H., Ohtonen, R. and Oksanen, J. (1995) Effects of reindeer grazing on understorey vegetation
in dry Pinus sylvestris forests. Journal of Vegetation Science 6, 523–530.

Examples

data(varespec)
data(varechem)

216 varpart

varpart Partition the Variation of Community Matrix by 2, 3, or 4 Explanatory
Matrices

Description

The function partitions the variation of response table Y with respect to two, three, or four explana-
tory tables, using redundancy analysis ordination (RDA). If Y contains a single vector, partitioning
is by partial regression. Collinear variables in the explanatory tables do NOT have to be removed
prior to partitioning.

Usage

varpart(Y, X, ..., data, transfo, scale = FALSE)
showvarparts(parts, labels, ...)
S3 method for class 'varpart234'
plot(x, cutoff = 0, digits = 1, ...)

Arguments

Y Data frame or matrix containing the response data table. In community ecology,
that table is often a site-by-species table.

X Two to four explanatory models, variables or tables. These can be defined in
three alternative ways: (1) one-sided model formulae beginning with ~ and then
defining the model, (2) name of a single numeric variable, or (3) name of data
frame or matrix with numeric variables. The model formulae can have factors,
interaction terms and transformations of variables. The names of the variables
in the model formula are found in data frame given in data argument, and if
not found there, in the user environment. Single numeric variables, data frames
or matrices are found in the user environment. All entries till the next argument
(data or transfo) are interpreted as explanatory models, and the names of
these arguments cannot be abbreviated nor omitted.

data The data frame with the variables used in the formulae in X.
transfo Transformation for Y (community data) using decostand. All alternatives

in decostand can be used, and those preserving Euclidean metric include
"hellinger", "chi.square", "total", "norm".

scale Should the columns of Y be standardized to unit variance
parts Number of explanatory tables (circles) displayed.
labels Labels used for displayed fractions. Default is to use the same letters as in the

printed output.
x The varpart result.
cutoff The values below cutoff will not be displayed.
digits The number of significant digits; the number of decimal places is at least one

higher.
... Other parameters passed to functions.

varpart 217

Details

The functions partition the variation in Y into components accounted for by two to four explanatory
tables and their combined effects. If Y is a multicolumn data frame or matrix, the partitioning is
based on redundancy analysis (RDA, see rda), and if Y is a single variable, the partitioning is
based on linear regression. A simplified, fast version of RDA is used (function simpleRDA2).
The actual calculations are done in functions varpart2 to varpart4, but these are not intended
to be called directly by the user.

The function primarily uses adjusted R squares to assess the partitions explained by the explanatory
tables and their combinations, because this is the only unbiased method (Peres-Neto et al., 2006).
The raw R squares for basic fractions are also displayed, but these are biased estimates of variation
explained by the explanatory table.

The identifiable fractions are designated by lower case alphabets. The meaning of the symbols can
be found in the separate document "partitioning.pdf" (which can be read using vegandocs), or
can be displayed graphically using function showvarparts.

A fraction is testable if it can be directly expressed as an RDA model. In these cases the printed
output also displays the corresponding RDA model using notation where explanatory tables after
| are conditions (partialled out; see rda for details). Although single fractions can be testable,
this does not mean that all fractions simultaneously can be tested, since there number of testable
fractions is higher than the number of estimated models.

An abridged explanation of the alphabetic symbols for the individual fractions follows, but com-
putational details should be checked in "partitioning.pdf" (readable with vegandocs) or in the
source code.

With two explanatory tables, the fractions explained uniquely by each of the two tables are [a] and
[c], and their joint effect is [b] following Borcard et al. (1992).

With three explanatory tables, the fractions explained uniquely by each of the three tables are [a]
to [c], joint fractions between two tables are [d] to [f], and the joint fraction between all three
tables is [g].

With four explanatory tables, the fractions explained uniquely by each of the four tables are [a] to
[d], joint fractions between two tables are [e] to [j], joint fractions between three variables are
[k] to [n], and the joint fraction between all four tables is [o].

There is a plot function that displays the Venn diagram and labels each intersection (individual
fraction) with the adjusted R squared if this is higher than cutoff. A helper function showvarpart
displays the fraction labels.

Value

Function varpart returns an object of class "varpart" with items scale and transfo
(can be missing) which hold information on standardizations, tables which contains names of
explanatory tables, and call with the function call. The function varpart calls function
varpart2, varpart3 or varpart4 which return an object of class "varpart234" and
saves its result in the item part. The items in this object are:

SS.Y Sum of squares of matrix Y.

n Number of observations (rows).

nsets Number of explanatory tables

218 varpart

bigwarning Warnings on collinearity.

fract Basic fractions from all estimated constrained models.

indfract Individual fractions or all possible subsections in the Venn diagram (see showvarparts).

contr1 Fractions that can be found after conditioning on single explanatory table in
models with three or four explanatory tables.

contr2 Fractions that can be found after conditioning on two explanatory tables in mod-
els with four explanatory tables.

Fraction Data Frames

Items fract, indfract, contr1 and contr2 are all data frames with items:

• DfDegrees of freedom of numerator of the F -statistic for the fraction.

• R.squareRaw R-squared. This is calculated only for fract and this is NA in other items.

• Adj.R.squareAdjusted R-squared.

• TestableIf the fraction can be expressed as a (partial) RDA model, it is directly Testable,
and this field is TRUE. In that case the fraction label also gives the specification of the testable
RDA model.

Note

You can use command vegandocs to display document "partitioning.pdf" which presents Venn
diagrams showing the fraction names in partitioning the variation of Y with respect to 2, 3, and 4
tables of explanatory variables, as well as the equations used in variation partitioning.

The functions frequently give negative estimates of variation. Adjusted R-squares can be negative
for any fraction; unadjusted R squares of testable fractions always will be non-negative. Non-
testable fractions cannot be found directly, but by subtracting different models, and these subtraction
results can be negative. The fractions are orthogonal, or linearly independent, but more complicated
or nonlinear dependencies can cause negative non-testable fractions.

The current function will only use RDA in multivariate partitioning. It is much more complicated
to estimate the adjusted R-squares for CCA, and unbiased analysis of CCA is not currently imple-
mented.

Author(s)

Pierre Legendre, Departement de Sciences Biologiques, Universite de Montreal, Canada. Adapted
to vegan by Jari Oksanen.

References

(a) References on variation partitioning

Borcard, D., P. Legendre & P. Drapeau. 1992. Partialling out the spatial component of ecological
variation. Ecology 73: 1045–1055.

Legendre, P. & L. Legendre. 1998. Numerical ecology, 2nd English edition. Elsevier Science BV,
Amsterdam.

(b) Reference on transformations for species data

varpart 219

Legendre, P. and E. D. Gallagher. 2001. Ecologically meaningful transformations for ordination of
species data. Oecologia 129: 271–280.

(c) Reference on adjustment of the bimultivariate redundancy statistic

Peres-Neto, P., P. Legendre, S. Dray and D. Borcard. 2006. Variation partitioning of species data
matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

See Also

For analysing testable fractions, see rda and anova.cca. For data transformation, see decostand.
Function inertcomp gives (unadjusted) components of variation for each species or site sepa-
rately.

Examples

data(mite)
data(mite.env)
data(mite.pcnm)

See detailed documentation:
Not run:
vegandocs("partition")

End(Not run)

Two explanatory matrices -- Hellinger-transform Y
Formula shortcut "~ ." means: use all variables in 'data'.
mod <- varpart(mite, ~ ., mite.pcnm, data=mite.env, transfo="hel")
mod
showvarparts(2)
plot(mod)
Alternative way of to conduct this partitioning
Change the data frame with factors into numeric model matrix
mm <- model.matrix(~ SubsDens + WatrCont + Substrate + Shrub + Topo, mite.env)[,-1]
mod <- varpart(decostand(mite, "hel"), mm, mite.pcnm)
Test fraction [a] using RDA:
rda.result <- rda(decostand(mite, "hell"), mm, mite.pcnm)
anova(rda.result, step=200, perm.max=200)

Three explanatory matrices
mod <- varpart(mite, ~ SubsDens + WatrCont, ~ Substrate + Shrub + Topo,

mite.pcnm, data=mite.env, transfo="hel")
mod
showvarparts(3)
plot(mod)
An alternative formulation of the previous model using
matrices mm1 amd mm2 and Hellinger transformed species data
mm1 <- model.matrix(~ SubsDens + WatrCont, mite.env)[,-1]
mm2 <- model.matrix(~ Substrate + Shrub + Topo, mite.env)[, -1]
mite.hel <- decostand(mite, "hel")
mod <- varpart(mite.hel, mm1, mm2, mite.pcnm)
Use RDA to test fraction [a]

220 vegandocs

Matrix can be an argument in formula
rda.result <- rda(mite.hel ~ mm1 + Condition(mm2) +

Condition(as.matrix(mite.pcnm)))
anova(rda.result, step=200, perm.max=200)

Four explanatory tables
mod <- varpart(mite, ~ SubsDens + WatrCont, ~Substrate + Shrub + Topo,
mite.pcnm[,1:11], mite.pcnm[,12:22], data=mite.env, transfo="hel")

mod
plot(mod)
Show values for all partitions by putting 'cutoff' low enough:
plot(mod, cutoff = -Inf, cex = 0.7)

vegandocs Display Package Documentation

Description

Display package documentation using pager or pdfviewer defined in options.

Usage

vegandocs(doc = c("NEWS", "ChangeLog", "FAQ-vegan.pdf",
"intro-vegan.pdf", "diversity-vegan.pdf", "decision-vegan.pdf",
"partitioning.pdf"))

Arguments

doc The name of the document (partial match, case sensitive).

Note

The function is a kluge, since R does not have this facility (I hope it will come there). Function
vignette only works with vignettes.

Author(s)

Jari Oksanen

See Also

vignette.

Examples

Not run:
vegandocs("Change")

End(Not run)

vegdist 221

vegdist Dissimilarity Indices for Community Ecologists

Description

The function computes dissimilarity indices that are useful for or popular with community ecolo-
gists. All indices use quantitative data, although they would be named by the corresponding binary
index, but you can calculate the binary index using an appropriate argument. If you do not find
your favourite index here, you can see if it can be implemented using designdist. Gower,
Bray–Curtis, Jaccard and Kulczynski indices are good in detecting underlying ecological gradients
(Faith et al. 1987). Morisita, Horn–Morisita, Binomial and Chao indices should be able to handle
different sample sizes (Wolda 1981, Krebs 1999, Anderson & Millar 2004), and Mountford (1962)
and Raup-Crick indices for presence–absence data should be able to handle unknown (and variable)
sample sizes.

Usage

vegdist(x, method="bray", binary=FALSE, diag=FALSE, upper=FALSE,
na.rm = FALSE, ...)

Arguments

x Community data matrix.

method Dissimilarity index, partial match to "manhattan", "euclidean", "canberra",
"bray", "kulczynski", "jaccard", "gower", "altGower", "morisita",
"horn", "mountford", "raup" , "binomial" or "chao".

binary Perform presence/absence standardization before analysis using decostand.

diag Compute diagonals.

upper Return only the upper diagonal.

na.rm Pairwise deletion of missing observations when computing dissimilarities.

... Other parameters. These are ignored, except in method ="gower" which
accepts range.global parameter of decostand. .

Details

Jaccard ("jaccard"), Mountford ("mountford"), Raup–Crick ("raup"), Binomial and Chao
indices are discussed later in this section. The function also finds indices for presence/ absence data
by setting binary = TRUE. The following overview gives first the quantitative version, where
xij xik refer to the quantity on species (column) i and sites (rows) j and k. In binary versionsA and
B are the numbers of species on compared sites, and J is the number of species that occur on both
compared sites similarly as in designdist (many indices produce identical binary versions):

euclidean djk =
√∑

i(xij − xik)2

binary:
√
A+B − 2J

manhattan djk =
∑
i |xij − xik|

222 vegdist

binary: A+B − 2J
gower djk = (1/M)

∑
i
|xij−xik|

max xi−min xi

binary: (A+B − 2J)/M ,
where M is the number of columns (excluding missing values)

altGower djk = (1/NZ)
∑
i |xij − xik|

where NZ is the number of non-zero columns excluding double-zeros (Anderson et al. 2006).
binary: A+B−2J

A+B−J
canberra djk = 1

NZ

∑
i
|xij−xik|
xij+xik

where NZ is the number of non-zero entries.
binary: A+B−2J

A+B−J

bray djk =
∑

i
|xij−xik|∑

i
(xij+xik)

binary: A+B−2J
A+B

kulczynski djk = 1− 0.5(
∑

i
min(xij ,xik)∑

i
xij

+
∑

i
min(xij ,xik)∑

i
xik

)

binary: 1− (J/A+ J/B)/2

morisita djk = 1−
2
∑

i
xijxik

(λj+λk)
∑

i
xij

∑
i
xik

, where

λj =
∑

i
xij(xij−1)∑

i
xij

∑
i
(xij−1)

binary: cannot be calculated
horn Like morisita, but λj =

∑
i x

2
ij/(

∑
i xij)

2

binary: A+B−2J
A+B

binomial djk =
∑
i[xij log(xij

ni
) + xik log(xik

ni
)− ni log(1

2)]/ni,
where ni = xij + xik
binary: log(2)× (A+B − 2J)

Jaccard index is computed as 2B/(1 +B), where B is Bray–Curtis dissimilarity.

Binomial index is derived from Binomial deviance under null hypothesis that the two compared
communities are equal. It should be able to handle variable sample sizes. The index does not have
a fixed upper limit, but can vary among sites with no shared species. For further discussion, see
Anderson & Millar (2004).

Mountford index is defined as M = 1/α where α is the parameter of Fisher’s logseries assum-
ing that the compared communities are samples from the same community (cf. fisherfit,
fisher.alpha). The index M is found as the positive root of equation exp(aM) + exp(bM) =
1 + exp[(a + b − j)M], where j is the number of species occurring in both communities, and a
and b are the number of species in each separate community (so the index uses presence–absence
information). Mountford index is usually misrepresented in the literature: indeed Mountford (1962)
suggested an approximation to be used as starting value in iterations, but the proper index is defined
as the root of the equation above. The function vegdist solves M with the Newton method.
Please note that if either a or b are equal to j, one of the communities could be a subset of other, and
the dissimilarity is 0 meaning that non-identical objects may be regarded as similar and the index is
non-metric. The Mountford index is in the range 0 . . . log(2), but the dissimilarities are divided by
log(2) so that the results will be in the conventional range 0 . . . 1.

Raup–Crick dissimilarity (method = "raup") is a probabilistic index based on presence/absence
data. It is defined as 1 − prob(j), or based on the probability of observing at least j species in
shared in compared communities. Legendre & Legendre (1998) suggest using simulations to as-

vegdist 223

sess the probability, but the current function uses analytic result from hypergeometric distribution
(phyper) instead. This probability (and the index) is dependent on the number of species missing
in both sites, and adding all-zero species to the data or removing missing species from the data
will influence the index. The probability (and the index) may be almost zero or almost one for a
wide range of parameter values. The index is nonmetric: two communities with no shared species
may have a dissimilarity slightly below one, and two identical communities may have dissimilarity
slightly above zero.

Chao index tries to take into account the number of unseen species pairs, similarly as in method
= "chao" in specpool. Function vegdist implements a Jaccard type index defined as djk =
1 − UjUk/(Uj + Uk − UjUk), where Uj = Cj/Nj + (Nk − 1)/Nk × a1/(2a2) × Sj/Nj , and
similarly for Uk. Here Cj is the total number of individuals in the species of site j that are shared
with site k, Nj is the total number of individuals at site j, a1 (and a2) are the number of species
occurring in site j that have only one (or two) individuals in site k, and Sj is the total number of
individuals in the species present at site j that occur with only one individual in site k (Chao et al.
2005).

Morisita index can be used with genuine count data (integers) only. Its Horn–Morisita variant is
able to handle any abundance data.

Euclidean and Manhattan dissimilarities are not good in gradient separation without proper stan-
dardization but are still included for comparison and special needs.

Bray–Curtis and Jaccard indices are rank-order similar, and some other indices become identical or
rank-order similar after some standardizations, especially with presence/absence transformation of
equalizing site totals with decostand. Jaccard index is metric, and probably should be preferred
instead of the default Bray-Curtis which is semimetric.

The naming conventions vary. The one adopted here is traditional rather than truthful to priority.
The function finds either quantitative or binary variants of the indices under the same name, which
correctly may refer only to one of these alternatives For instance, the Bray index is known also as
Steinhaus, Czekanowski and Sørensen index. The quantitative version of Jaccard should probably
called Ružička index. The abbreviation "horn" for the Horn–Morisita index is misleading, since
there is a separate Horn index. The abbreviation will be changed if that index is implemented in
vegan.

Value

Should provide a drop-in replacement for dist and return a distance object of the same type.

Note

The function is an alternative to dist adding some ecologically meaningful indices. Both methods
should produce similar types of objects which can be interchanged in any method accepting either.
Manhattan and Euclidean dissimilarities should be identical in both methods. Canberra index is
divided by the number of variables in vegdist, but not in dist. So these differ by a constant
multiplier, and the alternative in vegdist is in range (0,1). Function daisy (package cluster)
provides alternative implementation of Gower index that also can handle mixed data of numeric and
class variables. There are two versions of Gower distance ("gower", "altGower") which differ
in scaling: "gower" divides all distances by the number of observations (rows) and scales each
column to unit range, but "altGower" omits double-zeros and divides by the number of pairs
with at least one above-zero value, and does not scale columns (Anderson et al. 2006). You can

224 vegdist

use decostand to add range standardization to "altGower" (see Examples). Gower (1971)
suggested omitting double zeros for presences, but it is often taken as the general feature of the
Gower distances. See Examples for implementing the Anderson et al. (2006) variant of the Gower
index.

Most dissimilarity indices in vegdist are designed for community data, and they will give mis-
leading values if there are negative data entries. The results may also be misleading or NA or NaN if
there are empty sites. In principle, you cannot study species composition without species and you
should remove empty sites from community data.

Author(s)

Jari Oksanen, with contributions from Tyler Smith (Gower index) and Michael Bedward (Raup–
Crick index).

References

Anderson, M.J. and Millar, R.B. (2004). Spatial variation and effects of habitat on temperate reef
fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and Ecol-
ogy 305, 191–221.

Anderson, M.J., Ellingsen, K.E. & McArdle, B.H. (2006) Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9, 683–693.

Chao, A., Chazdon, R. L., Colwell, R. K. and Shen, T. (2005). A new statistical approach for
assessing similarity of species composition with incidence and abundance data. Ecology Letters 8,
148–159.

Faith, D. P, Minchin, P. R. and Belbin, L. (1987). Compositional dissimilarity as a robust measure
of ecological distance. Vegetatio 69, 57–68.

Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics 27,
623–637.

Krebs, C. J. (1999). Ecological Methodology. Addison Wesley Longman.

Legendre, P, & Legendre, L. (1998) Numerical Ecology. 2nd English Edition. Elsevier.

Mountford, M. D. (1962). An index of similarity and its application to classification problems. In:
P.W.Murphy (ed.), Progress in Soil Zoology, 43–50. Butterworths.

Wolda, H. (1981). Similarity indices, sample size and diversity. Oecologia 50, 296–302.

See Also

Function designdist can be used for defining your own dissimilarity index. Alternative dissimi-
larity functions include dist in base R, daisy (package cluster), and dsvdis (package labdsv).
Function betadiver provides indices intended for the analysis of beta diversity.

Examples

data(varespec)
vare.dist <- vegdist(varespec)
Orlóci's Chord distance: range 0 .. sqrt(2)
vare.dist <- vegdist(decostand(varespec, "norm"), "euclidean")
Anderson et al. (2006) version of Gower

vegemite 225

vare.dist <- vegdist(decostand(varespec, "log"), "altGower")
Range standardization with "altGower" (that excludes double-zeros)
vare.dist <- vegdist(decostand(varespec, "range"), "altGower")

vegemite Prints a Compact, Ordered Vegetation Table

Description

The function prints a compact vegetation table, where species are rows, and each site takes only one
column without spaces. The vegetation table can be ordered by explicit indexing, by environmental
variables or results from an ordination or cluster analysis.

Usage

vegemite(x, use, scale, sp.ind, site.ind, zero=".", select ,...)
coverscale(x, scale=c("Braun.Blanquet", "Domin", "Hult", "Hill", "fix","log"),

maxabund)

Arguments

x Vegetation data.

use Either a vector, or an object from cca, decorana etc. or hclust or a
dendrogram for ordering sites and species.

sp.ind Species indices.

site.ind Site indices.

zero Character used for zeros.

select Select a subset of sites. This can be a logical vector (TRUE for selected sites),
or a vector of indices of selected sites. The order of indices does not influence
results, but you must specify use or site.ind to reorder sites.

scale Cover scale used (can be abbreviated).

maxabund Maximum abundance used with scale = "log". Data maximum in the
selected subset will be used if this is missing.

... Arguments passed to coverscale (i.e., maxabund).

Details

The function prints a traditional vegetation table. Unlike in ordinary data matrices, species are used
as rows and sites as columns. The table is printed in compact form: only one character can be used
for abundance, and there are no spaces between columns. Species with no occurrences are dropped
from the table.

The parameter use can be a vector or an object from hclust, a dendrogram or any ordination
result recognized by scores (all ordination methods in vegan and some of those not in vegan).
If use is a vector, it is used for ordering sites. If use is an object from ordination, both sites and
species are arranged by the first axis. When use is an object from hclust or a dendrogram,

226 vegemite

the sites are ordered similarly as in the cluster dendrogram. If ordination methods provide species
scores, these are used for ordering species. In all cases where species scores are missing, species
are ordered by their weighted averages (wascores) on site scores. There is no natural, unique
ordering in hierarchic clustering, but in some cases species are still nicely ordered (please note that
you can reorder.dendrogram to have such a natural order). Alternatively, species and sites
can be ordered explicitly giving their indices or names in parameters sp.ind and site.ind. If
these are given, they take precedence over use. A subset of sites can be displayed using argument
select, but this cannot be used to order sites, but you still must give use or site.ind.

If scale is given, vegemite calls coverscale to transform percent cover scale or some other
scales into traditional class scales used in vegetation science (coverscale can be called directly,
too). Braun-Blanquet and Domin scales are actually not strict cover scales, and the limits used
for codes r and + are arbitrary. Scale Hill may be inappropriately named, since Mark O. Hill
probably never intended this as a cover scale. However, it is used as default ’cut levels’ in his
TWINSPAN, and surprisingly many users stick to this default, and this is a de facto standard in
publications. All traditional scales assume that values are cover percentages with maximum 100.
However, non-traditional alternative log can be used with any scale range. Its class limits are
integer powers of 1/2 of the maximum (argument maxabund), with + used for non-zero entries
less than 1/512 of the maximum (log stands alternatively for logarithmic or logical). Scale fix
is intended for ‘fixing’ 10-point scales: it truncates scale values to integers, and replaces 10 with X
and positive values below 1 with +.

Value

The function is used mainly to print a table, but it returns (invisibly) a list with items:

species Ordered species indices

sites Ordered site indices

These items can be used as arguments sp.ind and site.ind to reproduce the table. In addition
to the proper table, the function prints the numbers of species and sites and the name of the used
cover scale at the end.

Note

This function was called vegetab in older versions of vegan. The new name was chosen because
the output is so compact (and to avoid confusion with the vegtab function in the labdsv package).

Author(s)

Jari Oksanen

References

The cover scales are presented in many textbooks of vegetation science; I used:

Shimwell, D.W. (1971) The Description and Classification of Vegetation. Sidgwick & Jackson.

See Also

cut and approx for making your own ‘cover scales’, wascores for weighted averages.

wascores 227

Examples

data(varespec)
Print only more common species
freq <- apply(varespec > 0, 2, sum)
vegemite(varespec, scale="Hult", sp.ind = freq > 10)
Order by correspondence analysis, use Hill scaling and layout:
dca <- decorana(varespec)
vegemite(varespec, dca, "Hill", zero="-")
Show one class from cluster analysis, but retain the ordering above
clus <- hclust(vegdist(varespec))
cl <- cutree(clus, 3)
sel <- vegemite(varespec, use=dca, select = cl == 3, scale="Br")
Re-create previous
vegemite(varespec, sp=sel$sp, site=sel$site, scale="Hult")

wascores Weighted Averages Scores for Species

Description

Computes Weighted Averages scores of species for ordination configuration or for environmental
variables.

Usage

wascores(x, w, expand=FALSE)
eigengrad(x, w)

Arguments

x Environmental variables or ordination scores.

w Weights: species abundances.

expand Expand weighted averages so that they have the same weighted variance as the
corresponding environmental variables.

Details

Function wascores computes weighted averages. Weighted averages ‘shrink’: they cannot be
more extreme than values used for calculating the averages. With expand = TRUE, the function
‘dehsrinks’ the weighted averages by making their biased weighted variance equal to the biased
weighted variance of the corresponding environmental variable. Function eigengrad returns the
inverses of squared expansion factors or the attribute shrinkage of the wascores result for
each environmental gradient. This is equal to the constrained eigenvalue of cca when only this one
gradient was used as a constraint, and describes the strength of the gradient.

228 wcmdscale

Value

Function wascores returns a matrix where species define rows and ordination axes or environ-
mental variables define columns. If expand = TRUE, attribute shrinkage has the inverses of
squared expansion factors or cca eigenvalues for the variable. Function eigengrad returns only
the shrinkage attribute.

Author(s)

Jari Oksanen

See Also

isoMDS, cca.

Examples

data(varespec)
data(varechem)
library(MASS) ## isoMDS
vare.dist <- vegdist(wisconsin(varespec))
vare.mds <- isoMDS(vare.dist)
vare.points <- postMDS(vare.mds$points, vare.dist)
vare.wa <- wascores(vare.points, varespec)
plot(scores(vare.points), pch="+", asp=1)
text(vare.wa, rownames(vare.wa), cex=0.8, col="blue")
Omit rare species (frequency <= 4)
freq <- apply(varespec>0, 2, sum)
plot(scores(vare.points), pch="+", asp=1)
text(vare.wa[freq > 4,], rownames(vare.wa)[freq > 4],cex=0.8,col="blue")
Works for environmental variables, too.
wascores(varechem, varespec)
And the strengths of these variables are:
eigengrad(varechem, varespec)

wcmdscale Weighted Classical (Metric) Multidimensional Scaling

Description

Weighted classical multidimensional scaling, also known as weighted principal coordinates analy-
sis.

Usage

wcmdscale(d, k, eig = FALSE, add = FALSE, x.ret = FALSE, w)

wcmdscale 229

Arguments

d a distance structure such as that returned by dist or a full symmetric matrix
containing the dissimilarities.

k the dimension of the space which the data are to be represented in; must be in
{1, 2, . . . , n− 1}. If missing, all dimensions with above zero eigenvalue.

eig indicates whether eigenvalues should be returned.
add logical indicating if an additive constant c∗ should be computed, and added to

the non-diagonal dissimilarities such that all n−1 eigenvalues are non-negative.
Not implemented.

x.ret indicates whether the doubly centred symmetric distance matrix should be re-
turned.

w Weights of points.

Details

Function wcmdscale is based on function cmdscale (package stats of base R), but it uses point
weights. Points with high weights will have a stronger influence on the result than those with low
weights. Setting equal weights w = 1 will give ordinary multidimensional scaling.

Value

If eig = FALSE and x.ret = FALSE (default), a matrix with k columns whose rows give
the coordinates of the points chosen to represent the dissimilarities. Otherwise, an object of class
wcmdscale containing the components that are mostly similar as in cmdscale:

points a matrix with k columns whose rows give the coordinates of the points chosen
to represent the dissimilarities.

eig the n− 1 eigenvalues computed during the scaling process if eig is true.
x the doubly centred and weighted distance matrix if x.ret is true.
GOF Goodness of fit statistics for k axes. The first value is based on the sum of

absolute values of all eigenvalues, and the second value is based on the sum of
positive eigenvalues

weights Weights.
negaxes A matrix of scores for axes with negative eigenvalues scaled by the absolute

eigenvalues similarly as points. This is NULL if there are no negative eigen-
values or k was specified, and would not include negative eigenvalues.

References

Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53, 325–328.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London:
Academic Press.

See Also

cmdscale. Also isoMDS and sammon in package MASS.

230 wcmdscale

Examples

Correspondence analysis as a weighted principal coordinates
analysis of Euclidean distances of Chi-square transformed data
data(dune)
rs <- rowSums(dune)/sum(dune)
d <- dist(decostand(dune, "chi"))
ord <- wcmdscale(d, w = rs, eig = TRUE)
Ordinary CA
ca <- cca(dune)
Eigevalues are numerically similar
caCAeig - ord$eig
Configurations are similar when site scores are scaled by
eigenvalues in CA
procrustes(ord, ca, choices=1:19, scaling = 1)
plot(procrustes(ord, ca, choices=1:2, scaling=1))
Reconstruction of non-Euclidean distances with negative eigenvalues
d <- vegdist(dune)
ord <- wcmdscale(d, eig = TRUE)
Only positive eigenvalues:
cor(d, dist(ord$points))
Correction with negative eigenvalues:
cor(d, sqrt(dist(ord$points)^2 - dist(ord$negaxes)^2))

Index

∗Topic IO
read.cep, 187

∗Topic aplot
envfit, 72
linestack, 92
ordihull, 124
ordilabel, 127
ordiplot, 128
ordipointlabel, 133
ordisurf, 138
orditorp, 145
plot.cca, 169

∗Topic character
make.cepnames, 93

∗Topic cluster
cascadeKM, 38

∗Topic datagen
oecosimu, 119
permat, 150
permCheck, 155
permuted.index2, 163
simulate.rda, 196

∗Topic datasets
BCI, 19
dune, 69
dune.taxon, 70
mite, 103
pyrifos, 181
sipoo, 197
varespec, 215

∗Topic design
permCheck, 155
permuted.index2, 163

∗Topic distribution
fisherfit, 75
radfit, 182

∗Topic documentation
vegandocs, 220

∗Topic dynamic

ordiplot3d, 130
orditkplot, 142

∗Topic file
read.cep, 187

∗Topic hplot
betadisper, 23
biplot.rda, 33
linestack, 92
ordiplot, 128
ordiplot3d, 130
ordipointlabel, 133
ordiresids, 134
orditorp, 145
ordixyplot, 146
plot.cca, 169

∗Topic htest
anosim, 13
anova.cca, 15
envfit, 72
mantel, 94
mrpp, 108
permuted.index2, 163
procrustes, 177
vegan-package, 3

∗Topic iplot
ordiplot, 128
orditkplot, 142

∗Topic manip
beals, 20
decostand, 57
vegemite, 225

∗Topic methods
betadisper, 23
permCheck, 155
permutest.betadisper, 167

∗Topic models
add1.cca, 5
as.mlm.cca, 18
cca.object, 45

231

232 INDEX

deviance.cca, 61
humpfit, 83
model.matrix.cca, 104
MOStest, 105
ordistep, 136
simulate.rda, 196
vegan-package, 3

∗Topic multivariate
add1.cca, 5
adipart, 7
adonis, 10
anosim, 13
anova.cca, 15
as.mlm.cca, 18
betadisper, 23
betadiver, 27
bgdispersal, 29
bioenv, 31
capscale, 35
cca, 41
cca.object, 45
CCorA, 48
contribdiv, 51
decorana, 53
decostand, 57
designdist, 59
deviance.cca, 61
dispindmorisita, 63
distconnected, 65
eigenvals, 71
envfit, 72
goodness.cca, 79
goodness.metaMDS, 81
indpower, 86
isomap, 87
kendall.global, 89
mantel, 94
mantel.correlog, 96
metaMDS, 98
model.matrix.cca, 104
mrpp, 108
mso, 112
multipart, 114
oecosimu, 119
ordistep, 136
ordisurf, 138
pcnm, 148
permat, 150

permutations, 161
permutest.betadisper, 167
prc, 172
predict.cca, 174
procrustes, 177
rankindex, 185
RsquareAdj, 191
scores, 192
screeplot.cca, 193
simulate.rda, 196
spantree, 198
stepacross, 206
tsallis, 213
varpart, 216
vegan-package, 3
vegdist, 221
wascores, 227
wcmdscale, 228

∗Topic nonlinear
humpfit, 83

∗Topic nonparametric
adonis, 10
anosim, 13
bgdispersal, 29
kendall.global, 89
mrpp, 108
vegan-package, 3

∗Topic package
vegan-package, 3

∗Topic print
vegemite, 225

∗Topic regression
humpfit, 83
MOStest, 105
vegan-package, 3

∗Topic smooth
beals, 20

∗Topic spatial
dispindmorisita, 63
mso, 112
pcnm, 148
vegan-package, 3

∗Topic univar
diversity, 66
fisherfit, 75
nestedtemp, 117
radfit, 182
renyi, 189

INDEX 233

RsquareAdj, 191
specaccum, 200
specpool, 203
taxondive, 208
treedive, 211
vegan-package, 3
wascores, 227

∗Topic utilities
permCheck, 155
vegandocs, 220

.Random.seed, 17

abbreviate, 93, 94
add1, 5, 6
add1.cca, 5, 18, 62, 136, 137
add1.default, 6
ade2vegancca (plot.cca), 169
adipart, 7, 52, 116, 122, 154
adonis, 10, 14, 15, 28, 29, 37, 111
agnes, 125, 126, 200
AIC, 61, 62, 84, 184
AIC.radfit (radfit), 182
alias.cca, 46, 48
alias.cca (goodness.cca), 79
alias.lm, 80
allPerms, 164
allPerms (permCheck), 155
amova, 11
anosim, 12, 13, 95, 111, 186, 187
anova, 17
anova.betadisper (betadisper), 23
anova.cca, 5, 6, 15, 37, 38, 44, 62, 134,

136, 173, 219
anova.ccabyaxis (anova.cca), 15
anova.ccabymargin (anova.cca), 15
anova.ccabyterm (anova.cca), 15
anova.ccanull (anova.cca), 15
anova.glm, 106
anova.lm, 26
approx, 226
ar, 154
arima, 154
arrows, 34, 125, 126, 130, 171, 178, 179
as.factor, 23
as.fisher (fisherfit), 75
as.hclust, 211
as.mcmc.oecosimu (oecosimu), 119
as.mcmc.permat (permat), 150
as.mlm, 44, 48

as.mlm (as.mlm.cca), 18
as.mlm.cca, 18
as.preston (fisherfit), 75
as.rad (radfit), 182
as.ts.oecosimu (oecosimu), 119
as.ts.permat (permat), 150

BCI, 19
BCI.env, 20
beals, 20, 86, 206
betadisper, 23, 28, 29, 167, 168
betadiver, 23, 25, 26, 27, 60, 224
bgdispersal, 29
bioenv, 31, 95
biplot, 49
biplot.CCorA (CCorA), 48
biplot.default, 49
biplot.rda, 33, 34
Box.test, 154
boxplot, 14, 25, 26, 203
boxplot.betadisper (betadisper),

23
boxplot.specaccum (specaccum), 200
bstick (screeplot.cca), 193

calibrate (predict.cca), 174
calibrate.cca, 46
calibrate.ordisurf (ordisurf), 138
call, 217
cancor, 171
capabilities, 144
capscale, 5, 6, 15, 16, 18, 19, 35, 44–47,

62, 71–73, 79, 81, 104, 128, 131,
134–137, 149, 169, 171, 175, 176,
196, 197

cascadeKM, 38, 91
cca, 5, 6, 15, 16, 18, 19, 35–38, 41, 44, 45,

47, 56, 61, 62, 71–74, 79, 81, 104,
112, 114, 125, 128, 129, 131,
134–137, 139–141, 149, 169–171,
175, 176, 191, 195–197, 227, 228

cca.object, 19, 44, 45, 72, 112, 114, 173
CCorA, 48
chisq.test, 120
chull, 125, 126
cIndexKM (cascadeKM), 38
cloud, 146–148
clustIndex, 39, 41
cmdscale, 35–38, 58, 87, 88, 101, 229

234 INDEX

coef, 84, 184
coef.cca, 19, 46, 48
coef.cca (predict.cca), 174
coef.radfit (radfit), 182
coef.rda, 46
coef.rda (predict.cca), 174
commsimulator, 151–154
commsimulator (oecosimu), 119
confint.fisherfit (fisherfit), 75
confint.glm, 77, 85, 107
confint.MOStest (MOStest), 105
confint.profile.glm, 84
contour, 140, 141
contr.treatment, 173
contrasts, 11, 43, 173
contribdiv, 51
cooks.distance, 19
cophenetic, 212
cophenetic.spantree, 208
cophenetic.spantree (spantree),

198
cor, 31, 33, 91, 94–96, 187
cor.test, 95, 186
corresp, 43, 56
coverscale (vegemite), 225
cut, 226
cutree, 91

daisy, 186, 212, 223, 224
data.frame, 73, 104
decorana, 43, 53, 73, 74, 79, 81, 125, 129,

131, 139, 140, 170, 175, 176, 195,
196

decostand, 22, 43, 57, 103, 184, 216, 219,
221, 223, 224

dendrogram, 225
density, 78, 122
density.oecosimu (oecosimu), 119
densityplot, 122
densityplot.oecosimu (oecosimu),

119
designdist, 28, 29, 59, 109, 212, 221, 224
deviance, 62, 84, 184
deviance.capscale (deviance.cca),

61
deviance.cca, 6, 18, 44, 48, 61, 137
deviance.rda, 6
deviance.rda (deviance.cca), 61
dispindmorisita, 63

dist, 14, 15, 23, 32, 33, 35, 36, 38, 60, 65,
66, 95, 99, 109, 198, 200, 206, 207,
209, 212, 223, 224

distconnected, 65, 88, 199, 207, 208
diversity, 52, 66, 78, 190, 206, 210, 214
downweight (decorana), 53
drarefy (diversity), 66
drop.scope, 17
drop1, 6
drop1.cca, 18, 62, 136, 137
drop1.cca (add1.cca), 5
drop1.default, 6
dsvdis, 224
dudi, 71
dune, 69, 70
dune.taxon, 70

eigen, 71, 72
eigengrad (wascores), 227
eigenvals, 71
ellipse.glm, 84
ellipsoidhull, 125
envfit, 43, 72, 80, 130–132, 141, 147
estaccumR (specpool), 203
estimateR (specpool), 203
extractAIC, 62, 84, 184
extractAIC.cca, 6, 137
extractAIC.cca (deviance.cca), 61

factor, 43, 73, 170, 212
factorfit (envfit), 72
family, 83, 85, 106, 107, 183, 184
fieller.MOStest (MOStest), 105
fisher.alpha, 77, 78, 222
fisher.alpha (diversity), 66
fisherfit, 67, 75, 85, 185, 222
fitdistr, 77, 78
fitted, 84, 184
fitted.capscale (predict.cca), 174
fitted.cca, 135, 197
fitted.cca (predict.cca), 174
fitted.procrustes (procrustes),

177
fitted.radfit (radfit), 182
fitted.rda, 197
fitted.rda (predict.cca), 174
formula, 31, 32, 35, 43, 45, 73
friedman.test, 91

INDEX 235

gam, 139–141
Gamma, 85, 184
gaussian, 191
getNumObs (permCheck), 155
glm, 84, 105–107, 183, 184, 191
goodness (goodness.cca), 79
goodness.cca, 44, 79, 176
goodness.metaMDS, 81

hatvalues, 19
hclust, 91, 109, 110, 125, 126, 200, 211,

212, 225
head.summary.cca (plot.cca), 169
hiersimu, 116, 154
hiersimu (adipart), 7
humpfit, 83, 108

identify, 129
identify.ordiplot, 25, 34, 127, 131,

132, 171, 179, 183
identify.ordiplot (ordiplot), 128
indpower, 22, 86
indval, 86, 91
inertcomp, 219
inertcomp (goodness.cca), 79
influence.measures, 18, 19
inherits, 45
initMDS, 180
initMDS (metaMDS), 98
intersetcor, 19
intersetcor (goodness.cca), 79
invisible, 124, 125
isomap, 87, 208
isomapdist (isomap), 87
isoMDS, 14, 33, 43, 56, 82, 99–103, 180, 187,

193, 228, 229

kendall.global, 89
kendall.post (kendall.global), 89
kmeans, 39, 41, 91

lag.plot, 154
Lattice, 135, 147, 148, 183, 185
lda, 171
legend, 172
lines, 124–126
lines.humpfit (humpfit), 83
lines.permat (permat), 150
lines.prestonfit (fisherfit), 75

lines.procrustes (procrustes), 177
lines.radline (radfit), 182
lines.spantree (spantree), 198
linestack, 92, 173
lm, 18, 19, 48, 149, 191, 197
lset, 185

Machine, 187
make.cepnames, 93
make.names, 94, 188
make.unique, 93
mantel, 12, 15, 28, 29, 32, 94, 96, 97, 111,

113, 180, 186, 187
mantel.correlog, 96
mantel.partial, 32, 149
matlines, 203
matplot, 173
mcmc, 121
mcnemar.test, 30
meandist (mrpp), 108
metaMDS, 36, 37, 56, 82, 88, 98
metaMDSdist, 36
metaMDSdist (metaMDS), 98
metaMDSiter (metaMDS), 98
metaMDSredist, 82
metaMDSredist (metaMDS), 98
metaMDSrotate (metaMDS), 98
mite, 103
model.frame, 105
model.frame.cca

(model.matrix.cca), 104
model.matrix, 12, 105
model.matrix.cca, 104
MOStest, 105
mrpp, 12, 15, 95, 108
mso, 112
msoplot (mso), 112
multipart, 114

na.action, 45–47
na.exclude, 36, 42, 46, 47
na.fail, 36, 42
na.omit, 36, 42, 46, 47
nestedchecker, 120
nestedchecker (nestedtemp), 117
nesteddisc, 120
nesteddisc (nestedtemp), 117
nestedn0, 120
nestedn0 (nestedtemp), 117

236 INDEX

nestedness, 118
nestednodf (nestedtemp), 117
nestedtemp, 117, 120, 122, 123
nlm, 67, 68, 76, 78, 84, 183, 184
no.shared, 186, 187, 207, 208
no.shared (distconnected), 65
numPerms (permCheck), 155

oecosimu, 8, 9, 115–118, 119, 119, 154, 212
optim, 133, 134
options, 220
ordered, 212
orderingKM (cascadeKM), 38
ordiarrows, 147
ordiarrows (ordihull), 124
ordicloud (ordixyplot), 146
ordicluster, 200
ordicluster (ordihull), 124
ordiellipse (ordihull), 124
ordigrid (ordihull), 124
ordihull, 124, 131, 132
ordilabel, 125, 127
ordilattice.getEnvfit

(ordixyplot), 146
ordimedian (betadisper), 23
ordiplot, 25, 28, 34, 88, 103, 124, 128,

131, 132, 144, 145, 171, 183, 192
ordiplot3d, 130, 131
ordipointlabel, 133, 143, 144
ordiR2step (ordistep), 136
ordiresids, 134
ordirgl, 88, 144
ordirgl (ordiplot3d), 130
ordisegments, 131
ordisegments (ordihull), 124
ordispider, 80, 131
ordispider (ordihull), 124
ordisplom (ordixyplot), 146
ordistep, 6, 136
ordisurf, 43, 75, 138
ordiTerminfo, 46
orditkplot, 127, 133, 134, 142
orditorp, 127, 144, 145
ordixyplot, 146, 192
orglpoints (ordiplot3d), 130
orglsegments (ordiplot3d), 130
orglspider (ordiplot3d), 130
orgltext (ordiplot3d), 130

p.adjust, 90, 97
pairs.profile, 84
panel.arrows, 147
panel.cloud, 147, 148
panel.ordi (ordixyplot), 146
panel.ordi3d (ordixyplot), 146
panel.ordiarrows (ordixyplot), 146
panel.splom, 147, 148
panel.xyplot, 147
par, 127, 143, 144
paste, 94
pca, 71
pcnm, 71, 148
pco, 71
permat, 150
permatfull, 123
permatfull (permat), 150
permatswap, 123
permatswap (permat), 150
permCheck, 155, 165
permControl, 156–158, 165, 167, 168
permControl (permuted.index2), 163
permuplot (permCheck), 155
permutations, 11, 14, 74, 95, 161
permute (permuted.index2), 163
permuted.index, 161, 163, 165, 196
permuted.index2, 156, 158, 163, 196
permutest, 163
permutest (anova.cca), 15
permutest.betadisper, 24–26, 165,

167
permutest.cca, 46
persp, 140, 189, 190, 215
persp.renyiaccum (renyi), 189
persp.tsallisaccum (tsallis), 213
phyper, 223
plot, 92, 129
plot.anosim (anosim), 13
plot.betadisper (betadisper), 23
plot.betadiver (betadiver), 27
plot.cascadeKM (cascadeKM), 38
plot.cca, 34, 37, 38, 44, 46, 73, 124, 128,

129, 131, 132, 144, 145, 169
plot.contribdiv (contribdiv), 51
plot.decorana, 124, 128, 129, 145
plot.decorana (decorana), 53
plot.default, 24, 145, 194
plot.envfit (envfit), 72

INDEX 237

plot.fisherfit (fisherfit), 75
plot.gam, 140, 141
plot.humpfit (humpfit), 83
plot.isomap (isomap), 87
plot.lm, 106, 107, 134, 135
plot.mantel.correlog

(mantel.correlog), 96
plot.meandist (mrpp), 108
plot.metaMDS, 145
plot.metaMDS (metaMDS), 98
plot.MOStest (MOStest), 105
plot.nestedtemp (nestedtemp), 117
plot.ordisurf (ordisurf), 138
plot.orditkplot (orditkplot), 142
plot.permat (permat), 150
plot.poolaccum (specpool), 203
plot.prc (prc), 172
plot.prestonfit (fisherfit), 75
plot.procrustes, 128, 129
plot.procrustes (procrustes), 177
plot.profile, 84
plot.profile.fisherfit

(fisherfit), 75
plot.rad, 128
plot.rad (radfit), 182
plot.radfit (radfit), 182
plot.radline (radfit), 182
plot.renyi (renyi), 189
plot.renyiaccum (renyi), 189
plot.spantree (spantree), 198
plot.specaccum (specaccum), 200
plot.taxondive (taxondive), 208
plot.varpart (varpart), 216
plot.varpart234 (varpart), 216
pointLabel, 133, 134
points, 34, 125, 133, 145, 170, 171
points.cca, 44
points.cca (plot.cca), 169
points.decorana (decorana), 53
points.humpfit (humpfit), 83
points.metaMDS (metaMDS), 98
points.ordiplot, 131, 132
points.ordiplot (ordiplot), 128
points.orditkplot (orditkplot),

142
points.procrustes (procrustes),

177
points.radline (radfit), 182

polygon, 124–127, 156, 203
poolaccum, 203
poolaccum (specpool), 203
postMDS (metaMDS), 98
prc, 172
prcomp, 71, 72, 193, 195, 196
predict.cca, 44, 46, 48, 174, 196
predict.decorana, 56
predict.decorana (predict.cca),

174
predict.gam, 140, 141
predict.humpfit (humpfit), 83
predict.procrustes (procrustes),

177
predict.rda, 46, 196
predict.rda (predict.cca), 174
pregraphKM (cascadeKM), 38
prepanel.ordi3d (ordixyplot), 146
prestondistr (fisherfit), 75
prestonfit, 185
prestonfit (fisherfit), 75
princomp, 71, 72, 193, 195, 196
print, 157
print.adipart (adipart), 7
print.adonis (adonis), 10
print.allPerms (permCheck), 155
print.anosim (anosim), 13
print.anova, 17
print.betadisper (betadisper), 23
print.bioenv (bioenv), 31
print.capscale (capscale), 35
print.cca (cca), 41
print.CCorA (CCorA), 48
print.decorana (decorana), 53
print.eigenvals (eigenvals), 71
print.envfit (envfit), 72
print.factorfit (envfit), 72
print.fisherfit (fisherfit), 75
print.hiersimu (adipart), 7
print.humpfit (humpfit), 83
print.isomap (isomap), 87
print.mantel (mantel), 94
print.mantel.correlog

(mantel.correlog), 96
print.metaMDS (metaMDS), 98
print.MOStest (MOStest), 105
print.mrpp (mrpp), 108
print.mso (mso), 112

238 INDEX

print.multipart (multipart), 114
print.nestedchecker (nestedtemp),

117
print.nesteddisc (nestedtemp), 117
print.nestedn0 (nestedtemp), 117
print.nestednodf (nestedtemp), 117
print.nestedtemp (nestedtemp), 117
print.oecosimu (oecosimu), 119
print.permat (permat), 150
print.permCheck (permCheck), 155
print.permControl

(permuted.index2), 163
print.permutest.betadisper

(permutest.betadisper), 167
print.permutest.cca (anova.cca),

15
print.poolaccum (specpool), 203
print.prestonfit (fisherfit), 75
print.procrustes (procrustes), 177
print.protest (procrustes), 177
print.radfit (radfit), 182
print.radline (radfit), 182
print.specaccum (specaccum), 200
print.summary.allPerms

(permCheck), 155
print.summary.bioenv (bioenv), 31
print.summary.cca (plot.cca), 169
print.summary.decorana

(decorana), 53
print.summary.humpfit (humpfit),

83
print.summary.isomap (isomap), 87
print.summary.meandist (mrpp), 108
print.summary.permat (permat), 150
print.summary.permCheck

(permCheck), 155
print.summary.prc (prc), 172
print.summary.procrustes

(procrustes), 177
print.summary.taxondive

(taxondive), 208
print.taxondive (taxondive), 208
print.varpart (varpart), 216
print.varpart234 (varpart), 216
print.vectorfit (envfit), 72
procrustes, 33, 101, 103, 177, 192
profile.fisherfit (fisherfit), 75
profile.glm, 77, 85, 107

profile.humpfit (humpfit), 83
profile.MOStest (MOStest), 105
protest, 33, 95, 186, 187
protest (procrustes), 177
pyrifos, 181

qnorm, 135
qqmath, 135
qqnorm, 185
qqplot, 78, 185
qr, 46
quasipoisson, 184

r2dtable, 122, 123, 152, 154
rad.lognormal, 77
rad.lognormal (radfit), 182
rad.null (radfit), 182
rad.preempt (radfit), 182
rad.zipf (radfit), 182
rad.zipfbrot (radfit), 182
radfit, 78, 182, 195
radlattice (radfit), 182
rank, 15, 186
rankindex, 33, 101, 103, 185
rarefy, 202, 203
rarefy (diversity), 66
rda, 5, 6, 15, 16, 18, 19, 33–38, 45, 47, 61,

62, 71–73, 79, 81, 104, 112, 114,
126, 128, 129, 131, 134–137, 149,
169–173, 175, 176, 191, 196, 197,
217, 219

rda (cca), 41
read.cep, 187
relevel, 173
renyi, 115, 189, 214, 215
renyiaccum, 203, 214, 215
renyiaccum (renyi), 189
reorder.dendrogram, 226
residuals.cca (predict.cca), 174
residuals.glm, 84, 184
residuals.procrustes

(procrustes), 177
residuals.rda (predict.cca), 174
rgl, 130–132, 190
rgl.isomap (isomap), 87
rgl.lines, 131
rgl.points, 131, 132
rgl.renyiaccum, 215
rgl.renyiaccum (renyi), 189

INDEX 239

rgl.texts, 130–132
rgl.viewpoint, 131, 132
rndtaxa, 123
rnorm, 197
rrarefy, 203
rrarefy (diversity), 66
RsquareAdj, 137, 191
rug, 92

s.label, 127
sammon, 199, 229
sample, 154, 196
save.image, 132
scale, 32, 47
scatterplot3d, 130–132
scores, 26, 73, 88, 125–127, 129–131,

139–147, 156, 157, 178, 179, 192,
199, 225

scores.betadisper (betadisper), 23
scores.betadiver (betadiver), 27
scores.cca, 44, 46, 48, 80, 178, 179, 192,

193
scores.cca (plot.cca), 169
scores.decorana, 192, 193
scores.decorana (decorana), 53
scores.envfit (envfit), 72
scores.metaMDS (metaMDS), 98
scores.ordihull (ordihull), 124
scores.ordiplot (ordiplot), 128
scores.orditkplot (orditkplot),

142
scores.pcnm (pcnm), 148
scores.rda, 34, 37, 172, 192
scores.rda (plot.cca), 169
screeplot, 196
screeplot.cca, 193
screeplot.decorana

(screeplot.cca), 193
screeplot.prcomp (screeplot.cca),

193
screeplot.princomp

(screeplot.cca), 193
segments, 125, 126, 178, 179, 203
Shepard, 81, 82
showvarparts (varpart), 216
simpleRDA2 (varpart), 216
simulate, 196, 197
simulate.capscale (simulate.rda),

196

simulate.cca (simulate.rda), 196
simulate.rda, 196
sipoo, 197
spandepth (spantree), 198
spantree, 66, 89, 149, 150, 198
specaccum, 190, 200, 205, 206
specnumber (diversity), 66
specpool, 22, 77, 78, 201, 202, 203, 223
specpool2vect (specpool), 203
spenvcor, 19, 48
spenvcor (goodness.cca), 79
splom, 146–148
sqrt, 101
step, 6, 61, 62, 136, 137
stepacross, 21, 36, 37, 65, 66, 87, 88, 99,

101–103, 186, 187, 199, 206
stressplot (goodness.metaMDS), 81
stripchart, 92
strsplit, 94
substring, 94
summary, 157
summary.allPerms, 156
summary.allPerms (permCheck), 155
summary.anosim (anosim), 13
summary.bioenv (bioenv), 31
summary.cca, 44, 46, 48
summary.cca (plot.cca), 169
summary.decorana (decorana), 53
summary.eigenvals (eigenvals), 71
summary.glm, 106
summary.humpfit (humpfit), 83
summary.isomap (isomap), 87
summary.meandist (mrpp), 108
summary.mlm, 19
summary.ordiellipse (ordihull),

124
summary.ordihull (ordihull), 124
summary.permat (permat), 150
summary.permCheck, 156
summary.permCheck (permCheck), 155
summary.poolaccum (specpool), 203
summary.prc (prc), 172
summary.procrustes (procrustes),

177
summary.radfit.frame (radfit), 182
summary.specaccum (specaccum), 200
summary.taxondive (taxondive), 208
svd, 42, 71, 72

240 INDEX

swan, 208
swan (beals), 20
swap.web, 152, 154
symbols, 75

tail.summary.cca (plot.cca), 169
taxa2dist (taxondive), 208
taxondive, 70, 208, 212
tcltk-package, 144
terms, 12, 45
text, 34, 125, 127, 133, 145, 170, 171
text.cca, 44
text.cca (plot.cca), 169
text.decorana (decorana), 53
text.metaMDS (metaMDS), 98
text.ordiplot, 131, 132
text.ordiplot (ordiplot), 128
text.orditkplot (orditkplot), 142
text.procrustes (procrustes), 177
tkcanvas, 144
treedist (treedive), 211
treedive, 121, 123, 211
treeheight (treedive), 211
trellis.par.set, 147
ts, 121
tsallis, 115, 213
tsallisaccum, 203
tsallisaccum (tsallis), 213
tsdiag, 154
TukeyHSD, 24–26
TukeyHSD.aov, 25
TukeyHSD.betadisper, 167, 168
TukeyHSD.betadisper (betadisper),

23

varechem (varespec), 215
varespec, 215
varpart, 12, 192, 216
varpart2 (varpart), 216
varpart3 (varpart), 216
varpart4 (varpart), 216
vectorfit (envfit), 72
vegan (vegan-package), 3
vegan-package, 3
vegandocs, 4, 44, 118, 170, 217, 218, 220
vegdist, 10, 13–15, 23, 28, 29, 31–33, 35,

36, 38, 60, 65, 66, 95, 99, 101–103,
109–111, 185–187, 198, 200,
206–208, 212, 221

vegemite, 225
veiledspec, 206
veiledspec (fisherfit), 75
vif, 80, 81, 176
vif.cca, 19, 46, 48
vif.cca (goodness.cca), 79
vignette, 4, 44, 118, 170, 220

wascores, 99, 102, 103, 226, 227
wcmdscale, 71, 72, 149, 228
weights.cca, 48
weights.cca (ordihull), 124
weights.decorana (ordihull), 124
weights.rda (ordihull), 124
wisconsin, 101, 103
wisconsin (decostand), 57

xdiss, 88
xfig, 143
xy.coords, 195
xyplot, 135, 146–148, 183, 185, 190, 204,

205

	vegan-package
	add1.cca
	adipart
	adonis
	anosim
	anova.cca
	as.mlm.cca
	BCI
	beals
	betadisper
	betadiver
	bgdispersal
	bioenv
	biplot.rda
	capscale
	cascadeKM
	cca
	cca.object
	CCorA
	contribdiv
	decorana
	decostand
	designdist
	deviance.cca
	dispindmorisita
	distconnected
	diversity
	dune
	dune.taxon
	eigenvals
	envfit
	fisherfit
	goodness.cca
	goodness.metaMDS
	humpfit
	indpower
	isomap
	kendall.global
	linestack
	make.cepnames
	mantel
	mantel.correlog
	metaMDS
	mite
	model.matrix.cca
	MOStest
	mrpp
	mso
	multipart
	nestedtemp
	oecosimu
	ordihull
	ordilabel
	ordiplot
	ordiplot3d
	ordipointlabel
	ordiresids
	ordistep
	ordisurf
	orditkplot
	orditorp
	ordixyplot
	pcnm
	permat
	permCheck
	permutations
	permuted.index2
	permutest.betadisper
	plot.cca
	prc
	predict.cca
	procrustes
	pyrifos
	radfit
	rankindex
	read.cep
	renyi
	RsquareAdj
	scores
	screeplot.cca
	simulate.rda
	sipoo
	spantree
	specaccum
	specpool
	stepacross
	taxondive
	treedive
	tsallis
	varespec
	varpart
	vegandocs
	vegdist
	vegemite
	wascores
	wcmdscale
	Index

