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ABSTRACT 

 

A Multiscale Model for Coupled Heat Conduction and Deformations of Viscoelastic 

Composites. (May 2011) 

Kamran Ahmed Khan, B.E., NED University of Engineering and Technology, Karachi, 

Pakistan; M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Anastasia Muliana 

 
This study introduces a multiscale model for analyzing nonlinear thermo-viscoelastic 

responses of particulate composites. A simplified micromechanical model consisting of 

four sub-cells, i.e., one particle and  three matrix sub-cells is formulated to obtain the 

effective thermal and mechanical properties and time-dependent response of the 

composites. The particle and matrix constituents are made of isotropic homogeneous 

viscoelastic bodies undergoing small deformation gradients. Perfect bonds are assumed 

along the sub-cell’s interfaces. The coupling between the thermal and mechanical 

response is attributed to the dissipation of energy due to the viscoelastic deformation and 

temperature dependent material parameters in the viscoelastic constitutive model. The 

micromechanical relations are formulated in terms of incremental average field 

quantities, i.e., stress, strain, heat flux and temperature gradient, in the sub-cells. The 

effective mechanical properties and coefficient of thermal expansion are derived by 

satisfying displacement- and traction continuities at the interfaces during the thermo-

viscoelastic deformations. The effective thermal conductivity is formulated by imposing 

heat flux- and temperature continuities at the subcells’ interfaces. A time integration 



 iv

algorithm for simultaneously solving the equations that govern heat conduction and 

thermoviscoelastic deformations of isotropic materials is developed. The algorithm is 

then incorporated within each sub-cell of the micromechanical model together with the 

macroscopic energy equation to determine the effective coupled thermoviscoelastic 

response of the particulate composite. The numerical formulation is implemented within 

the ABAQUS, general purpose displacement based FE software, allowing for analyzing 

coupled heat conduction and deformations of composite structures. Experimental data on 

the effective thermal properties and time-dependent responses of particulate composites 

available in the literature are used to verify the micromechanical model formulation. The 

multiscale model capability is also examined by comparing the field variables, i.e., 

temperature, displacement, stresses and strains, obtained from heterogeneous and 

homogeneous composite structures, during the transient heat conduction and 

deformations. It is found that the multiscale framework can predicts the microscopic 

temperature and displacements fields with a reasonable accuracy. However, it is 

conclude that the multiscale framework is not suitable to represent accurately the 

discontinuities at the interfaces within the composite. Examples of coupled 

thermoviscoelastic analyses of particulate composites and functionally graded structures 

are also presented. The present micromechanical modeling approach is found to be 

computationally efficient and shows good agreement with experiments in predicting the 

effective thermo-mechanical response of particulate composites and functionally graded 

materials. Our analyses forecast a better design for creep resistant and less dissipative 

structures using particulate composites and functionally graded materials. 
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CHAPTER I 

INTRODUCTION 

Composite materials have been utilized in various engineering applications that 

involves temperature changes ranging from low to elevated temperatures such as thermal 

barrier coatings, turbine blades, etc. Different composite performances can be achieved 

by combining constituents with different thermal and mechanical properties. Metal, 

ceramic and polymer have been used for the matrix which is reinforced with various 

types of fiber and/or particles. Polymer matrix composites are used due to their light 

weight characteristics and low cost of manufacturing; however they exhibit significant 

time-dependent behaviors when subjected to elevated temperatures. For extremely high 

temperature applications like in gas turbines and diesel engines, metal and ceramic 

matrix composites are preferred as an alternate to polymeric composites. A resistance to 

high temperature and mechanical loadings is one of many attractive features of metal 

matrix composite. These composites also show creep behavior under extreme 

environmental conditions.    

During their life time composites are often exposed to coupled mechanical and non-

mechanical effects, such as diffusion of fluid, heat conduction, chemical reactions that 

affect the mechanical properties of the composites. To reduce complexity in  
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analyzing the response of materials and structures, the interactions of the field variables 

are often ignored and the governing equations of the different fields are solved 

independently. This approach can lead to sensible response predictions when the effect 

of field coupling on the overall performance of materials is insignificant. For example, 

viscoelastic materials are considered as dissipative materials and during the deformation 

significant heat could be generated affecting the temperature of the viscoelastic bodies. 

However, in extremely high temperature applications, the heat generation due to the 

dissipation effect of the viscoelastic bodies may be negligible compared to the ambient 

temperature of the bodies. In other applications, when an inertia effect is considerable, 

such as in dynamics and impact loadings, the thermo-mechanical coupling effects 

become significant. In addition to that when a quasi-static cyclic loading is applied to a 

viscoelastic body over a long period of time considerable amount of heat is generated; 

depending on the boundary conditions, the temperature increase in the body could be 

significant and could accelerate creep/relaxation in the body. To gain fundamental 

understanding on the effects of constituents’ properties and microstructural geometries 

on the overall response of composites, various micromechanical models have been 

formulated. Limited studies have been performed to analyze the coupled thermo-

viscoelastic responses of composites, mainly for fiber reinforced composite. In most of 

these studies, the temperature fields obtained from first solving the heat transfer 

equations are used to analyze the thermo-viscoelastic responses of composites. 

Micromechanical models capable of predicting the effective behavior of composite 
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subjected to concurrent mechanical and thermal stimuli and incorporating heat 

generation due to the dissipation effect are still lacking. 

The primary objective of this study is to develop a multiscale framework for 

analyzing coupled heat conduction and thermoviscoelastic deformation of a particulate 

composite. A micro-macro approach is adopted to determine the homogenized thermo-

viscoelastic response of composites and solve the equations that govern the heat 

conduction and deformation in the composite at multiple length scales. The effect of heat 

generation from the dissipation of energy during the viscoelastic deformation on the 

overall response of the composite is also considered. The framework is implemented in 

ABAQUS (FE code) to analyze the thermoviscoelastic behavior of composite structures 

and functionally graded materials (FGMs). The suitability to analyze FGMs using the 

proposed multi-scale computational framework will be assessed by comparing the 

results from the available experimental data or FE simulations. As a structural 

application, coupled heat conduction and viscoelastic deformation analyses of composite 

plates and beams are presented. 

This chapter presents a literature review of analytical, experimental and numerical 

studies on the thermo-viscoelastic response of composites. Various micromechanical and 

multiscale modeling approaches to analyze coupled heat conduction and deformation of 

viscoelastic composites with an emphasis given to particulate composites are discussed. 

The objectives of the present study are also given. 
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1.1 LITERATURE REVIEW 

Particulate composites have been extensively used in many high temperature 

applications. Experimental results show that the spatial distribution of the reinforced 

particles and composition of the constituents greatly influenced the mechanical behavior 

of the composites (Watt et. al., 1996 and Chawla et. al., 1998). Particulate composites 

having SiC particles and Aluminum alloy matrix show creep behavior at moderate 

temperatures, between 300-600 ˚C (Mishra and Pandey, 1990; Doncel and Sherby, 1993; 

Yong et.al., 1997) and at extremely high temperatures, above 1000 ˚C (Butt et al., 1996). 

Thermal barrier coatings (TBC) are used in many high temperature applications like 

diesel engine and turbine blades, to protect these components from high temperature 

gases and prevent corrosion and oxidation. A TBC system is composed of different 

layers. These layers can be made of functionally graded materials (FGMs) or composites 

with uniformly distributed particles. The TBC system shows creep at high temperatures, 

above 900 ˚C (Ali et. al., 2004, Oruganti and Ghosh, 2003) which can be detrimental to 

the performance of these coating systems and can cause failure of the structural 

components.  

In designing composite structures, it is necessary to determine the macroscopic 

effective properties of the composite and understand responses of the constituents when 

the composite are subjected to various external stimuli. Conducting experiments to 

obtain the effective response of composites under various loading histories and at 

different compositions and properties of the constituents is often costly and time 

consuming. In some cases it is challenging or impractical to perform experiments on 
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determining coupled thermoviscoelastic behavior of composite structures. Modeling 

response of composites that include detailed microstructural characteristics allows 

obtaining macroscopic response of the structural components and detailed response of 

the constituents. However, it is impossible to incorporate detailed characteristics of the 

constituents and microstructural geometries in designing and analyzing response of the 

composite structures. Thus, several homogenization techniques with simplified 

microstructural morphologies have been developed to predict the effective response of 

composites and their microstructural behaviors.  

1.1.1 MULTISCALE AND MICROMECHANICAL MODELS 

The overall behavior of composites depends strongly on the shape, size, properties 

and spatial distribution of the microstructural constituents. Bridging the micro-macro or 

global-local responses has been done through the multi-scale and micromechanical 

models. Depending on the complexity of the responses and microstructural geometries, 

approximate solutions are often used within the multiscale and micromechanical models. 

Within the framework of linearized elasticity, several analytical models have been 

proposed to predict the effective response of composites at the macroscopic level from 

the characteristics of microstructures. Based on the uniform strain and stress 

approximations, Voigt (1910) and Reuss (1929) introduced simple rule of mixtures to 

average elastic moduli of composites. This model gives a rough estimate of effective 

properties by considering only constituents properties and compositions.  Hill (1952) has 

shown that the Voigt and Reuss models yield to upper and lower bounds, respectively. 

Tighter bounds are given by Walpole (1966) and Hashin and Shtrikman (1963). A 
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refined model is given by Eshelby (1957), which is the pioneer work in micromechanics 

of composites. According to this solution, the strain and stress fields in the ellipsoid 

inclusion subjected to a remotely applied uniform strain or stress are uniform. Further 

development in micromechanics is done by various authors, e.g., composite spheres 

model, Hashin (1962); self consistent approach, Budiansky (1965) and Hill (1965); 

generalized self consistent scheme, Christensen and Lo (1979,1986); effective field 

theory, Mori-Tanaka (1973); probabilistic approach, Chen and Acrivos, (1978); 

differential Method, McLaughlin, (1977), Norris, (1985). Detailed discussion of various 

micromechanical models and bounds on the effective mechanical properties can be 

found in Aboudi (1991), Mura (1987), Nemat-Nasser and Hori (1999). 

The above analytical models are limited in predicting the effective properties of 

composites having simple microstructural geometries. The micromechanical models 

based on representative volume element (RVE) are widely used to predict the effective 

inelastic and nonlinear properties of composites having a complex geometry of 

microstructures. The RVE concept was originally introduced by Hill (1963). Two 

approaches have been considered in selecting RVEs. The first approach includes all 

possible microstructural characteristics (Zohdi and Wriggers 2001; Nogales and Bohm 

2008, Segurado and Llorca 2002; Lévesque et al. 2004, 2008). The second approach 

determines the smallest size of the microstructure as an RVE that can give reasonably 

accurate effective response of the composite (Mori-Tanaka 1973; Aboudi 1991; Muliana 

et al. 2007, 2009). Once the RVE has been selected, macroscopic boundary conditions 

are imposed on the RVE. Most of these models assume local periodicity. The 
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homogenized material properties are obtained by incorporating the results of detailed 

micromechanical relations of the RVE (typically performed by the finite element 

method) with the macroscopic constitutive equations. Examples of such work can be 

found in Aboudi (1991), Haj-ali and Pecknold (1996), Christman et. al. (1989), 

Tvergaard (1990), Brockenbrough et. al. (1991), Nakamura and Suresh (1993), McHugh 

et. al. (1993) and Smit et. al. (1999), which formulate the macroscopic constitutive 

relations based on a single RVE subjected to loading history and periodic boundary 

conditions. These methods are suitable for small deformation problems as discussed by 

McHugh et. al. (1993). The main drawback of this approach is that it assumes the 

periodic spatial distribution of the microstructures but the actual composite materials 

have non-periodic microstructures. But, for elastic response of materials, Suquet (1987) 

found that the use of periodic boundary conditions with the homogenization formulation 

gave the closest agreement with the experimental results. 

In the last few decades, there has been considerable advancement in the 

homogenization theory. A mathematical homogenization approach based on a two-scale 

asymptotic expansion of field variable (displacements, temperature, etc) was developed 

for composites with periodic or quasi periodic microstructures. Earlier work on this 

homogenization theory can be attributed to Babuska (1976), Keller (1977), Tartar 

(1990), Sanchez-Palencia (1974, 1980), Bensoussan et al. (1978), Lions (1978), 

Francfort and Suquet (1986), Bakhvalov and Panasenko (1989). The modeling by 

homogenization techniques is done by considering the RVE which represents the 

microstructure of the composite and solving the microscopic boundary value problem to 
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obtain the macroscopic constitutive properties. A microscale boundary value problem is 

formulated in a unit cell, which is defined within the basic period of the composite. A 

solution of the composites with periodic microstructures converges to the solution of the 

homogenized problem as the periodicity of the microstructure goes to zero. By 

considering higher order terms in expansion of field variables, the influence of 

microstructures on the macroscopic approximation, as well as both macroscopic 

constitutive equation and microscopic distribution of stress, strain in composites can be 

computed. The asymptotic expansion homogenization (AEH) method has been 

employed successfully to solve not only elastic but also elastoplastic problems. For 

example the method was applied to linear thermoelasticity (Ene, 1983; Francfort, 1983) 

and plasticity with internal variables (Suquet 1982, 1985, 1986, 1987).  

The FE method has been used in conjunction with the homogenization theory for the 

analysis of linear elastic response of composites by Toledana and Murakami (1987), 

Devries et al. (1989), Guedes and Kikuchi (1991), Michel et. al., 1999, Allen, 2001 and 

Duvaut, 1976, Drugan and Willis, 1996, Auriault, 1991. Moreover, the method has been 

used for analyzing elastoplastic constitutive properties of composites (Jansson, 1992), 

Hollister and Kikuchi (1992), Terada and Kikuchi (1995), Ghosh et al. (1995, 1996) and 

Fish et. al. (1998, 1999), further improved by Smit et. al. (1998), Miehe et al., (2002), 

Michel et al. (1999), Terada and Kikuchi (2001), Kouznetsova et al. (2001).  

Polymers which are often used as matrix in composites exhibit time-dependent 

responses in the form of creep and stress relaxation when subjected to a mechanical 
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loading. The time-dependent behaviors have also been observed in metal-matrix 

composites at high temperatures. The effective properties of composites exhibiting linear 

viscoelastic behavior can be solved using the correspondence principle*, e.g., Nguyen 

(1995). For problems involving complex geometries and boundary conditions, in 

addition to nonlinear responses, it is often impossible to obtain exact analytical 

solutions. It is due to this reason that approximate (numerical) solutions are sought.  

Several studies have been done on formulating micromechanical models for 

predicting effective linear viscoelastic responses of composites, e.g. Christensen (1969), 

Brinson and co-authors (1991, 1998), Rougier et al. (1993)  and Li and Weng (1997).  

Micromechanical models based on simplified microstructural geometries of composites 

for obtaining effective viscoelastic behaviors with stress/strain dependent constituents 

(nonlinear  viscoelasticity) have been proposed, mainly for fiber reinforced plastic (FRP) 

composites, e.g., Aboudi (1990, 2005), Haj-Ali and Muliana (2003 and 2004), Muliana 

and Sawant (2008). The AEH has been employed to formulate the macroscopic 

constitutive equation in viscoelasticity (Sanchez-Palencia, 1980; Francfort and Suquet, 

1986). Numerical procedures using a homogenization theory with a two-scale 

asymptotic expansion has been developed for linear viscoelasticity, e.g., Shibuya (1997); 

Yi et al. (1998); Noel and Suquet (2007), thermoviscoelasticity, e.g., Chung et. al. 

(2000) and Maghous and Creus (2003). Rigorous mathematical formulations (using  

 

 
* The solutions to boundary value problems in linear viscoelastic bodies can be obtained 
from the corresponding solutions of linear elastic bodies through the use of Laplace 
transform. 
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Nguetseng’s notion of two-scale convergence) are also developed for the 

homogenization of the nonlinear viscoelastic behavior of the composites with periodic 

microstructures by Augusto (2006 and 2008) and Wu and Ohno (1999), mostly for 

nonlinear Maxwell and Kelvin Voigt type models. Recently, Muliana and Kim (2007) 

formulated a micromechanical model for analyzing stress dependent viscoelastic 

response of solid spherical particle reinforced polymers. Their micromechanical 

formulation is suitable for small deformation gradient problems. The homogenization 

schemes are formulated in terms of average stress-strain relations of the particle and 

matrix constituents, which give approximated values of the effective properties.  

Micromechanical models have also been formulated to obtain effective coefficient of 

thermal expansion (CTE) and effective thermal conductivity (ETC) of composite. For 

composite with arbitrary phase geometries and composites with spherical inclusions, 

Turner (1946), Kerner (1956), Levin (1967), Schapery (1968), Fahmi and Ragai (1970) 

and Rosen and Hashin (1970) have derived equations for the effective CTEs. The 

effective CTEs are functions of the CTE and linear elastic modulus of each constituent. 

Tseng (2004) introduced a statistical micromechanics model to determine an effective 

CTE of particle reinforced composites. Volume averaging scheme was used to determine 

the effective CTE. Stress and strain concentrations tensors were introduced to relate the 

local average fields to the global (effective) fields. The interaction effects among the 

particles were considered by introducing an interaction tensor. Closed form solutions of 

the effective elastic moduli and effective CTE was derived in terms of the constituent’s 

properties and interaction tensor. Hsieh and Tuan (2006) proposed a modified unit cell 
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model composed of a continuous matrix phase and an elongated particle. Upper and 

lower bounds for the effective CTE have been obtained by solving boundary value 

problems of linear elastic composite bodies.  

Referring to the above discussion, the effective CTE of composites depends on the 

mechanical properties and CTEs of the constituents in the composites. The mechanical 

and physical properties of materials change with field variables such as stress, 

deformation, and temperature, resulting in nonlinear response of materials.  This has 

been experimentally reported in several literatures.  Odegard and Kumosa (2000), 

Rupnowski et al. (2006), and Marias and Villoutreix (1998) have shown that the moduli 

of composites having polymer matrix and their constituents vary with temperatures.  Cho 

et al. (2006) showed the stress-dependent elastic modulus of particle composites, while 

Lai and Bakker (1995, 1996) and Muliana et al. (2006) are among researchers who 

experimentally show the stress-dependent viscoelastic responses of polymers and 

composites.  Available methods for predicting the effective CTE were formulated with 

constant constituent properties (independent of stress, strain, temperature etc.). 

Moreover, the effective CTE of composites having time-dependent constituent 

properties are not well understood. Although, it is possible to extend the available 

micromechanical models to incorporate non-constant (nonlinear) constituent properties 

and form a set of equations to determine the non-linear effective CTE, it is not always 

easy to obtain the closed form solutions. To the best knowledge of the author only 

Feltham and Martin (1982) have experimentally shown the variation of effective CTEs 

with temperature for a particle reinforced composite. 
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The averaging procedures developed for the effective linear elastic material 

constants have been modified to homogenize non-mechanical (thermal, electrical, 

magnetic) properties of composites. Many analytical and numerical models have been 

proposed to predict the effective thermal conductivity (ETC) of the composites. Maxwell 

(1954), Baschirow and Selenew (1976) and Verma (1991) derived ETC for two phase 

composites. The particles were randomly distributed in a homogeneous medium and 

there was no interaction among them which is suitable for predicting ETC of composites 

with relatively low particle contents. Benveniste (1987) formulated ETC for multiphase 

systems by determining the average flux in each constituent and the homogenization was 

then performed using the Mori Tanaka (1973) and generalized self consistent method. 

Several empirical studies have also been conducted to investigate the effect of shape and 

orientation of the dispersed particles on the overall ETC of the composites, e.g., Cheng 

and Vachon (1969) and Lewis and Nielsen (1970).  

It has been experimentally shown by Agri and Uno (1985, 1986) and recently by 

Zhang et. al. (2005) that at higher particle volume fractions and high ratios of the 

particle’s thermal conductivity to the one of the matrix, i.e., VF > 20% and Kp/Km*>100, 

there exists particle interactions in the form of a conductive chain mechanism. This 

mechanism accelerates the heat conduction process, which was shown by an increase in 

the overall ETC. Khan and Muliana (2009) modified the previously developed 

micromechanical model of stress dependent viscoelastic responses of solid spherical  

 
 
*Kp is the thermal conductivity of particle and Km is the thermal conductivity of matrix, 
assuming isotropic constituents. 
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particle reinforced polymers (Muliana and Kim, 2007) to include the temperature-

dependent material properties and to determine the effective CTE.  Furthermore, a new 

micromechanical formulation is also presented for the effective thermal conductivity of 

particle-reinforced composites. 

  
1.1.2 MULTISCALE ANALYSES OF COUPLED THERMO-MECHANICAL 

BEHAVIOR 

In a multiscale analysis macro-scale material response is obtained by solving the 

boundary value problem (BVP) defined on a RVE that represents the microstructure of a 

composite. Limited studies on multi-scale modeling are available for analyzing the 

coupled mechanical and non-mechanical response of composite, mostly for 

thermoelastic (Feng and Cui, 2004 and Daneshjo and Ramezani, 2004) and thermo-

mechanical with inelastic behavior by Williams and Aboudi, 1999 and Aboudi, 2008. 

Recently, Ozdemir (2008) employed a computational homogenization technique to 

analyze the thermo-mechanical elastic-plastic and damage behavior of heterogeneous 

solids. The interactions between the mechanical and thermal fields are incorporated 

through thermal stresses, temperature dependent material properties and influence of the 

geometrical changes on the thermal fields. However, the effects of energy dissipation 

from the mechanical work on the thermal field were not taken into account.    

There are limited multi-scale studies on analyzing quasi-static coupled 

thermoviscoelastic behavior of the particulate composites.  Yu and Fish (2002) 

employed an asymptotic homogenization method to develop a space-time 

homogenization procedure for a class of homogenized solids interacting at multiple 
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spatial and temporal scales during combined thermal and mechanical loadings. The 

homogenization framework was applied to analyze the coupled thermoviscoelastic 

response of fiber reinforced composites. The Kelvin-Voigt viscoelastic model was 

considered for each constituent. The coupling between the mechanical and thermal fields 

was taken into account through the dissipation of energy during the viscoelastic 

deformation of composite. Chung et al. (2000) used FE to analyze coupled 

thermoviscoelastic response of polymer matrix composite structures containing 

microscopic homogeneities. The homogenization of Kelvin-Voigt viscoelastic model 

was performed using the asymptotic homogenization scheme. At each time step, the heat 

generation due to dissipation of the mechanical work was calculated and supplied to the 

energy equation to perform heat transfer analysis. The temperature distribution obtained 

from the heat transfer analysis was then used as input into the equations that govern the 

thermoviscoelastic deformations.   

 
1.2 MOTIVATION AND RESEARCH OBJECTIVES 

Polymeric composite (reinforced with polymer, metal or ceramic particles) structural 

components such as plates, beam, rods, etc. when subjected to a cyclic deformation (or 

stress) for a longer period of time generate significant amount of heat due to the 

dissipation of the viscoelastic body. As a result the temperature of the body rises and the 

conduction cannot take place as fast as it requires to cool down the body due to a low 

thermal conductivity of polymers. Significant temperature changes can alter the 

mechanical and thermal properties of the composite structure. Available studies for 

analyzing the coupled thermoviscoelastic behaviors are mainly done for linear 
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viscoelastic solids, i.e., Kelvin-Voigt viscoelastic model and mainly for fiber reinforced 

composites. This study presents a simplified homogenization scheme to obtain the 

effective thermomechanical property and micro-macro field variables of coupled heat 

conduction and quasi-static thermoviscoelastic deformation of a particulate composite 

that takes into account the dissipation of energy from the viscoelastic constituents. The 

purpose is to use this micro-macro scale framework for analyzing response of 

viscoelastic composite structures subjected to a coupled mechanical and thermal effect 

and at the same time recognizing different nonlinear response of the constituents. This 

can lead to rigorous design of composite structures without the need of expensive 

computational costs. Schapery’s nonlinear thermo-viscoelastic constitutive model with 

stress and temperature dependent material properties is used for each constituent. A 

micromechanical model for predicting the effective nonlinear thermal and mechanical 

properties of viscoelastic composites reinforced with solid spherical particles is 

developed. The previously developed micromechanical model of stress dependent 

viscoelastic responses of solid spherical particle reinforced polymers (Muliana and Kim, 

2007) is modified to include the temperature-dependent material properties and to 

determine the effective thermal properties, i.e., CTE, ETC.  A unit-cell model with four 

particle and polymer subcells is generated. Simplified micromechanical relations are 

formulated in terms of incremental average field quantities, i.e., stress, strain, heat flux 

and temperature gradient, in the subcells of the micromodels.  Perfect bonds are assumed 

along the subcell’s interfaces. Linearized prediction and iterative schemes are 

incorporated to solve the nonlinear constitutive equations at the composite and 
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constituents’ levels in order to satisfy the micromechanical relations and the nonlinear 

constitutive equations. The effective thermo-mechanical response derived from the 

simplified micromechanical model is compatible with FE framework and used for 

structural analyses. Verifications of the proposed micromechanical model and 

comparisons with available analytical models, numerical solutions and experimental data 

are also shown.  

This study consists of the following major tasks: 

1. Formulate a time-integration algorithm to solve the governing equations of the 

thermoviscoelastic deformations and heat conduction for an isotropic material. 

Small deformation gradient problems are considered. The constitutive model for 

the viscoelastic material follows a single-integral function having stress and 

temperature dependent material parameters. The constitutive model for the heat 

flux follows the Fourier’s law with a temperature dependent thermal 

conductivity. The thermomechanical coupling is due to the dissipation of the 

energy during the viscoelastic deformation and temperature dependent material 

properties in the viscoelastic constitutive model.  

2. Develop a micromechanical model for predicting the effective thermal and 

mechanical responses of particulate composites. This task addresses the 

procedure to homogenize mechanical properties, coefficient of thermal 

expansion, thermal conductivity and specific heat, and formulate the macroscopic 

energy equation which involves the thermo-mechanical coupling effects. 
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3. Analyze the coupled thermo-elastic and thermo-viscoelastic behavior of 

particulate composites. Two models for particle reinforced composites that 

represent homogenized and heterogeneous composite media are generated using 

FE. The matrix region in the FE model of the heterogeneous composite medium 

incorporates the coupled thermoviscoelastic algorithm developed in task 1 while 

the particle follows the linear thermo-elastic response. The micromechanical 

model described in task 2 is used to determine the effective thermo-mechanical 

response of the homogenized composite medium. Both composite models are 

subjected to same boundary conditions. The effective responses and field 

variables determined using the two models are compared and discussed. 

4. Use the integrated micromechanical and FE framework to analyze coupled heat 

conduction and deformations of viscoelastic composite structures such as a 

composite plate with a hole and a composite beam under cyclic loadings and 

beams made of functionally graded materials (FGMs). 
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CHAPTER II 

A RECURSIVE-ITERATIVE ALGORITHM FOR COUPLED THERMO-

VISCOELASTIC DEFORMATION 

This chapter introduces a time integration algorithm for solving equations that 

govern heat conduction and thermoviscoelastic deformations in isotropic materials. This 

involves obtaining simultaneous solutions of time-dependent deformation and 

temperature fields. The constitutive model for the viscoelastic material, suitable for 

small deformation gradient problems, follows a single-integral function having 

temperature and stress dependent material parameters (nonlinear integrand). The 

constitutive model for the heat flux follows classical Fourier’s law with a temperature 

dependent thermal conductivity. The coupling between the thermal and mechanical 

response is attributed to the dissipation of energy due to the viscoelastic deformation and 

stress-temperature dependent material parameters in the viscoelastic constitutive model. 

A recursive-iterative method is employed to integrate the time-dependent dissipation 

function in the energy equation and the nonlinear thermoviscoelastic integral model of 

Schapery. This approach is similar to the work of Haj-Ali and Muliana (2004) and 

Muliana and Khan (2008) for uncoupled thermo-viscoelastic problems. The numerical 

formulation is implemented within the ABAQUS, general purpose displacement based 

FE software.  

Viscoelastic materials dissipate energy that is converted into heat; thus increasing the 

temperature of the materials. When a viscoelastic material undergoes a small 

deformation gradient with a relatively slow loading rate, which can be considered as a 
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quasi-static loading, and at a relatively short duration, the effect of temperature changes 

due to energy dissipation on the deformation of the material is usually negligible. Under 

high loading rates or cyclic loadings over a longer period of time, temperature increases 

can be significant even in small deformation gradient problems. Experimental evidences 

show that the thermomechanical dissipation can significantly increase the temperature of 

metals (Dillon, 1962, 1963) and polymers (Wolosewick and Gratch, 1965; Tauchert, 

1967 (a, b, c), 1968; Schapery and Cantey, 1966a; Huang and Lee, 1967; Schapery, 

1965, 1966b; and Cost, 1969b) during a cyclic loading under small strains and frequency 

ranges of 1-20 Hz. A temperature increase up to 80°F was observed after few hours of 

the cyclic loading.  

Within the framework of thermodynamics and continuum mechanics, several 

theories were proposed to describe the dissipation of energy during viscoelastic 

deformations. There are three approaches based on which the thermomechanical 

constitutive equations for coupled thermoviscoelastic responses were derived. These are 

classified as follows: the phenomenological approach by Staverman and Schwarzl 

(1952), the theory of irreversible thermodynamics by Biot (1958) and the rational 

mechanics (functional thermodynamics) approach by Coleman (1964). Although these 

approaches are different in concept but the results obtained from these constitutive 

equations and dissipation functions are practically the same as discussed by Cost (1969a, 

b,c). Several dissipation functions for viscoelastic materials have been proposed. 

Schapery (1964), Christensen and Naghdi (1967), and Huang (1968) used Biot’s 

approach and Cost (1969c) employed Coleman’s (1964) approach to express the 
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dissipation function for non-isothermal viscoelastic solids. Hunter (1961) and Parkus 

(1966) described that once the dissipation function for a viscoelastic material is 

determined the energy equation for such material can be obtained by simply adding the 

dissipation function to the energy equation in the classical thermo-elastic materials. 

Analytical solutions of the coupled viscoelastic deformations and dissipation of 

energy under a simple loading, like a uniaxial cyclic loading and torsional oscillations 

can be found in Schapery and Cantey (1966a) and Tauchert (1967a,b,c). Finite element 

(FE) has also been used for solving coupled thermoviscoelastic problems. Examples of 

using FE method to solve the problems of a quasi-static coupled thermoelasticity can be 

found in Kasti et al. (1991), Oden and Kauss (1968) and for a dynamic coupled 

thermoelasticity can be found in  Oden (1969) and Oden and Poe (1970). Holzapfel and 

Reiter (1995) proposed a 2D FE formulation for linear viscoelastic solids including the 

thermomechanical coupling effects. A four parameter model, the so-called Burgers 

model is used to describe the constitutive behavior of a viscoelastic fluid. Cost (1969b) 

presented a 2D FE formulation of the thermorheologically simple materials (TSMs) 

including the thermo-mechanical coupling effects for linear viscoelastic materials.  Oden 

and Armstrong (1971) developed 3D FE formulation for dynamic coupled linear 

thermoviscoelastic response for a class of TSMs. The constitutive equations and 

dissipation function proposed by Cost (1969c) were used. Several studies on the coupled 

viscoelastic deformations and dissipation of energy have been done for linear 

thermoviscoelastic materials and TSMs. Coupled thermoviscoelastic behaviors that 

include temperature and stress/strain dependent material properties (nonlinear responses) 
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are currently lacking. This chapter considers nonlinear coupled thermoviscoelastic 

behaviors for homogeneous isotropic materials undergoing small deformations. The 

nonlinear viscoelastic model proposed by Schapery (1969) is used and modified to 

incorporate the temperature dependent material properties. The nonlinear energy 

equation along with the dissipation function is also derived. It is also assumed that 

loadings are relatively slow such that the inertial effects on the deformation of a 

viscoelastic body can be ignored.  

 
2.1 LOCAL GOVERNING EQUATIONS OF COUPLED 

THERMOVISCOELASTIC SOLIDS 

For an isotropic homogeneous material, in the absences of body force, body couple 

and inertial effects, the conservation of mass and momenta lead to the following 

equations: 

0ρ =
                                    

(2.1) 

, 0ij jσ =                             (2.2) 

ij jiσ σ=                      (2.3) 

where, ρ  and ijσ  denote the mass density and the scalar components of the Cauchy 

stress tensor, respectively. Over dot denotes the derivative with respect to time. The 

infinitesimal symmetric Green strain tensor, ijε , is defined as: 

( ), ,
1
2ij i j j iu uε = +                    (2.4) 

where ,i ju is the displacement gradient. 
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The balance of energy states that the rate of change in the kinetic and internal energy 

of the portion of the body is a result of the rate at which the surface tractions and body 

forces do work on the portion of the body plus the rate at which the energy is transferred 

into it by heat conduction and internal heat generation. As a consequence of this 

postulate, the local form of the energy equation, in the absence of internal heat 

generation, can be written as; 

,i i i iqσ ε= −E                            (2.5) 

where E, i iσ ε , and iq denote the internal energy per unit volume, mechanical work rate, 

and the components of the heat flux, respectively. 

The second law of thermodynamics, which was introduced by Clausius (1862) deals 

with an entropy production.  Let η  be the entropy per unit volume, the local form of the 

entropy equation, also called as Clausius-Duhem inequality, is: 

, ,
2 0i i i iq qT

T T
η + − ≥                                         (2.6) 

 
,

, 0i i
i i

q T
T T q

T
γ η≡ + − ≥                               (2.7) 

where γ is the entropy production rate per unit volume and T is the temperature. 

Truesdell and Noll (1965) split the entropy production into internal entropy production 

( intγ ) and entropy production by a conduction ( condγ ). 

int condT T Tγ γ γ≡ +                                   (2.8) 
 

int , 0i iT T qγ η≡ + ≥             (2.9) 
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, 0i i
cond

q T
T

T
γ ≡ − ≥

          
(2.10) 

 
As a consequence of irreversible thermodynamics, the entropy production by 

conduction, condγ  at any material point is always positive. It is assumed that the 

constitutive equation for the heat flux can be defined by the classical Fourier’s law: 

,i ij jq k T= −            (2.11) 

where, kij denote the components of the thermal conductivity tensor. The thermal 

conductivity is temperature dependent. Substituting heat flux in Eq. (2.11) to the entropy 

production due to conduction in Eq. (2.10) yields, 

, , 0ij i jk T T ≥            (2.12) 

The thermal conductivity tensor ijk  must be symmetric to satisfy a positive definite 

quadratic form. The inequality given in Eq. (2.10) states that heat flows from the hotter 

part of the body to the colder part of the body. Thus, the inequality of entropy production 

become 

, ,
, 0ij i j

i i

k T T
T T q

T
γ η≡ + + ≥          (2.13) 

It is noted that the second law of thermodynamics imposed restriction on the 

constitutive models. During any deformation process, the thermoviscoelastic materials 

must satisfy the Clausius-Duhem inequality, i.e., Eq (2.6). The first law places no 

restriction on the constitutive models of thermoviscoelastic materials.  

The framework for deriving constitutive models of materials can be established by 

choosing thermodynamics functions, such as the Helmholtz (1882) and Gibbs (1873) 
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free energy potentials. Using thermodynamics of irreversible processes, Schapery (1964) 

proposed a thermodynamic framework for deriving a general constitutive theory. These 

theories have been developed for the cases when strains and temperature are applied and 

the corresponding stresses are determined (Helmholtz free energy, Schapery 1966b) and 

when stresses and temperature are applied and the corresponding strains are obtained 

(Gibbs free energy, Schapery 1969). In this study we follow the Schapery (1997) Gibbs 

free energy in terms of stresses ( iσ ), internal state variables (ISVs) mζ and temperature 

T. The ISVs has been introduced to account for the viscoelastic effects. The first law of 

thermodynamics in terms of the Gibbs free energy can be written as: 

, 0i i i iG T T qη η ε σ+ + + + =
        

(2.14)
 

and the second law becomes 

, 0i i
i i

q T
T G T

T
γ η σ ε≡ − − − − ≥

                   
(2.15) 

The time derivative of the Gibbs free energy is  

i m
i m

G G G GT
t T

σ ζ
σ ζ

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂        (2.16) 

Substituting the above time derivative into the inequality in Eq. (2.15) and grouping 

terms to obtain 

, 0i i
i i m

i m

q TG G GT T
T T

γ ε σ η ζ
σ ζ

⎛ ⎞∂ ∂ ∂⎛ ⎞≡ − − + − − − − ≥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠     (2.17) 

The inequality must hold for arbitrary values of iσ  and T . Accordingly, the 

constitutive equation for the strain is 
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i
i

Gε
σ
∂

= −
∂

          (2.18) 

Similarly, the constitutive relation for the entropy is obtained as 

G
T

η ∂
= −

∂
          (2.19) 

Furthermore, the inequality (2.17) with Eqs. (2.18) and (2.19) yield the condition 

, 0i i
m

m

q TGT
T

γ ζ
ζ
∂

≡ − − ≥
∂         

(2.20) 

Using Eqs. (2.8)- (2.10), we can write the volumetric heat generation rate t
disw  as 

 
int 0t

dis m mw T fγ ζ≡ = ≥         (2.21) 
 
where m mf G ζ= −∂ ∂  is the thermodynamic force associated with each ISV. The first 

law of thermodynamics using Eq. (2.9) can be expressed as 

,
t

i i dis
GT T q w

t T
η ∂ ∂⎧ ⎫= − = − +⎨ ⎬∂ ∂⎩ ⎭         (2.22) 

Schapery (1997) introduces the following form of the Gibbs free energy (G) in terms 

of the second order of ISVs mζ as 

0
1
2m m mn m nG G A Bζ ζ ζ= − +          (2.23) 

where 0G , mA  and mnB  are the functions of iσ and T. Under isothermal conditions, the 

constitutive equation for a uniaxial strain using Eq. (2.18) and Eq. (2.23) can be 

determined and expressed as (see Schapery 1969, 1997 or appendix A for detail) 

( ) 2
0 0 1

0

( )
( ) ( ) ( )

t
t t t t t

d g
t g D g dD d

d

τ τ
τ

σ σ
ε ε σ σ σ ψ ψ τ

τ

⎡ ⎤⎣ ⎦≡ = + −∫  (2.24) 
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where D0 and dD  are the uniaxial instantaneous elastic and transient compliances, 

respectively, and go, g1 and g2 are the nonlinear parameters and defined as functions of 

the applied stress tσ . The superscript ‘t’ indicates a variable at time t. The parameter go 

is the nonlinear instantaneous elastic compliance and it measures the reduction or 

increase in the compliance as a function of stress and/or temperature.  The transient 

creep parameter g1 measures the nonlinearity effect in the transient compliance.  The 

parameter g2 accounts for the loading rate effect on the creep response. tψ  is the 

reduced-time given by 

( )
0

t
t dt

aξ
σ

ξψ ψ≡ = ∫  , ( )
0

d
a

τ
τ

ξ
σ

ξψ ψ τ≡ = ∫                              (2.25) 

 The function aσ is a stress-dependent that is used to define a time scale shift factor for 

stress dependent behaviors. The dissipation function int( )m mT fγ ζ=  for a uniaxial case, 

incorporating the stress and temperature dependent material parameters, can be found as 

(see appendix A for detail) 

( ) 2,
1

0

( , )
( , )

tt
t t t vis t t
dis m m

d g Tdw f g T dD d
dt d

τ τ
τ

σ σ
ζ σ σ ψ ψ τ

τ

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟= = −
⎜ ⎟
⎝ ⎠

∫   (2.26) 

where ,vis tσ is the viscous stress at time t and expressed as 

( ){ } 2,
2

10

( , )
( , ) 1 exp

tt N
vis t t t t t

m
m

d g T
g T d

d

τ τ
τ

σ σ
σ σ σ λ ψ ψ τ

τ=

⎡ ⎤⎣ ⎦⎡ ⎤= − − − −⎣ ⎦∑∫    (2.27) 

 The energy equation using Eq. (2.22) and Eq. (2.26) and neglecting the dissipation 

due to the transient components of thermal expansion and specific heat becomes (see 

appendix A for detail) 



 27

( )

0
0

2,
1

0

( , )( ) ( )( )

( , )
( , )

t tt t
t t t t t t t t t t tth

tt
t t t vis t t

C g TT TT T T T T T D
t T T T T

d g Tdq g T dD d
dt d

τ τ
τ

σα αα σ σ θ σ σ σ

σ σ
σ σ ψ ψ τ

τ

∂ ∂∂ ∂ ∂⎛ ⎞ + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟= − + −
⎜ ⎟
⎝ ⎠

∫

   

(2.28) 

 
where 0

t tT Tθ = − , T0 is the reference temperature. Where Cth, α , 0D , qt, ( )tdα ψ , 

( )tdC ψ  and ( )tdD ψ  are the pure thermal part of the thermoelastic Gibbs free energy, 

coefficient of linear thermal expansion, instantaneous elastic compliance, heat flux, the 

transient components of the thermal expansion, specific heat and mechanical creep 

compliances, respectively.  

In this study, the generalized three dimensional viscoelastic constitutive model of 

Schapery (1969) with stress and temperature dependent behavior for non-aging materials 

is formulated. For isotropic materials, the multiaxial (3D) constitutive relations can be 

separated into deviatoric and volumetric strain-stress relations and thermal strains as: 

( )0
1 -
3

t t t t t
ij ij kk ij ije T Tε ε δ α= + +                                                                               (2.29) 

, 1
3

M t t t
ij ij kk ijeε ε δ= +                (2.30) 

( ),
0-T t t t

ij ij T Tε α=
               

(2.31) 

( ) 2
0 0 1

0

( , )1 1( , ) ( , ) -
2 2

t
ijt t t t t t t

ij ij

d g T S
e g T J S g T dJ d

d

τ τ τ
τ

σ
σ σ ψ ψ τ

τ

⎡ ⎤⎣ ⎦= + ∫                    (2.32) 

( ) 2
0 0 1

0

( , )1 1( , ) ( , ) -
3 3

t
kkt t t t t t t

kk kk

d g T
g T B g T dB d

d

τ τ τ
τ

σ σ
ε σ σ σ ψ ψ τ

τ

⎡ ⎤⎣ ⎦= + ∫                 (2.33) 

 
where ,M t

ijε and ,εT t
ij are the total mechanical and thermal strains, respectively. The 

parameters Jo and Bo are the instantaneous elastic shear and bulk compliances, 

respectively. The terms dJ and dB are the time-dependent shear and bulk compliances, 
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respectively. The corresponding linear elastic Poisson’s ratio v  is assumed to be time-

independent, which allows expressing the shear and bulk compliances as: 

0 0 0 02(1 ) 3(1- 2 )

2(1 ) 3(1- 2 )
t t t t

J v D B v D

dJ v dD dB v dDψ ψ ψ ψ

= + =

= + =      
(2.34) 

Here D0 and dD  are the instantaneous elastic and transient compliances under a uniaxial 

(extensional) creep loading. The uniaxial transient compliance dD  is expressed in terms 

of Prony series as: 

( )
1

1- exp[- ]
t

N
t

n n
n

dD Dψ λ ψ
=

= ∑
         

(2.35) 

Here ( )t t
ij ij Tα α≡ are the components of coefficient of thermal expansion (CTE) tensor 

and can depend on temperatures. Knauss and Emri (1987) have suggested that the CTEs 

of polymers are also time-dependent. The parameter Tt is the current temperature. tψ  is 

the reduced-time (effective time) given by:   

( )
0

t
t

T

dt
a aξ ξ

σ

ξψ ψ≡ = ∫
            

( )
0

,
T

d
a a

τ
τ

ξ ξ
σ

ξψ ψ τ≡ = ∫                                                        (2.36) 

where the function aT
 is a temperature dependent that is used to define a time scale shift 

factor for TSMs. Where go, g1, g2 in Eq. (2.32) and aσ in Eq. (2.36) are the nonlinear 

parameters and defined as functions of current temperature tT and effective stress tσ . 

These non-linear material parameters or functions can be determined from a series of 

creep and recovery tests at different temperatures and stress levels. 
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For isotropic materials, neglecting the dissipation due to transient components of the 

thermal expansion and specific heat, the energy equation in Eq. (2.28) using the heat flux 

in Eq. (2.11) can be expressed as 

( ) ( )

0

,
, 1 2

0

( , )( ) ( )

( ) ( , ) ( , )

( )
tt t

t t t t t t t e t t
kk kk ijkl kl ij

t
t t t t t t t vis t t t

kk ii ij ijkl klT

g TT TT T T T D
T T T

d dT T k T g dD g T d
dt d

c T T

τ τ τ

σ
σα ασ θ σ σ σ

α σ σ σ ψ ψ σ σ τ
τ

ρ ∂∂ ∂
+ + +

∂ ∂ ∂
⎛ ⎞

+ = + −⎜ ⎟
⎝ ⎠

∫
   (2.37) 

where kt is a thermal conductivity and thC  is assumed such that it accounts for the 

temperature dependent specific heat at a constant stress. Where ,vis t
ijσ are the components 

of the viscous stress and can be expressed as 

( ){ } 2,
2

10

( , )
( , ) 1 exp

tt N
ijvis t t t t t

ij ij m
m

d g T
g T d

d

τ τ
τ

σ σ
σ σ σ λ ψ ψ τ

τ=

⎡ ⎤⎣ ⎦⎡ ⎤= − − − −⎣ ⎦∑∫    (2.38) 

 For nonlinear viscoelastic solids, considering temperature independent material 

properties, the energy equation (Eq. 2.37) becomes 

( ){ }

( ) ( )

,

2
1 2

10

2
0

( )
( ) ( ) 1 exp

( )

t t
kk ii

t N
ijt t t t

ij m
m

t
t

ijkl kl

c T T k T

d g
g g d

d

d ddD g d
dt d

σ

τ τ
τ

τ τ τ

ρ ασ

σ σ
σ σ σ λ ψ ψ τ

τ

ψ ψ σ σ τ
τ

=

+ =

⎧ ⎫⎡ ⎤⎪ ⎪⎣ ⎦⎡ ⎤+ − − − −⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

⎧ ⎫
−⎨ ⎬

⎩ ⎭

∑∫

∫

    (2.39) 

 

2.2 COUPLED THERMOMECHANICAL NUMERICAL INTEGRATION 

ALGORITHM 

A recursive iterative method developed by Muliana and Khan (2008) is used to solve 

the deviatoric and volumetric components of the mechanical strains in Eq. (2.30). The 



 30

formulation is derived with a constant incremental strain rate during each time 

increment, which is compatible with displacement based FE analyses. The incremental 

form of the deviatoric and volumetric strains, indicated by prefix d, at a current time is 

expressed as: 

- - -
1 1 ,

1

-
- - -

2 1 1-
1

-

1- - ( exp[- ] - ) -
2

1- exp[- ] 1- exp[- ]1 -
2 ij

t t t dt
ij ij ij

Nt t dtt t dt t t t dt t dt
ij ij n n ij n

n

t dt tN
t dt t dt t t dtn n

n t dt t
n n n

de e e

J S J S J g d g q

d dg J g g S
d d

λ ψ

λ ψ λ ψ
λ ψ λ ψ

−

−

=

=

=

=

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

∑

     (2.40) 

- - - -
1 1 ,

1

-
- - -

2 1 1-
1

-
1- - ( exp[- ] - ) -
3

1- exp[- ] 1- exp[- ]1 -
2

kk kk

kk

t t t dt
kk kk kk

Nt t dtt t dt t t t dt t dt
n n kk n

n

t dt tN
t dt t dt t t dtn n

n t dt t
n n n

d

B B B g d g q

d dg B g g
d d

ε ε ε

σ σ λ ψ

λ ψ λ ψ σ
λ ψ λ ψ

−

=

=

=

=

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

∑

                (2.41) 

 
where the parameters tJ  and tB are the effective shear and bulk compliances at the 

current time, respectively. For simplicity, the notation tgβ (β = 0, 1, 2) is used to 

represent the stress and temperature dependent material parameters at current time t. The 

parameters ,
t
ij nq  and ,

t
kk nq , n = 1…N are the hereditary integrals for every term in the 

Prony series in the form of deviatoric and volumetric strains, which are:    

( )- - -
, , 2 2

1- exp[- ]exp[- ] -
ij ij

t
t t t dt t t t dt t dt n
ij n n ij n t

n

dq d q g S g S
d
λ ψλ ψ

λ ψ
= +       (2.42) 

( )- - -
, , 2 2

1- exp[- ]exp[- ] -
kk

t
t t t dt t t t dt t dt n
kk n n kk n kk t

n

dq d q g g
d
λ ψλ ψ σ σ

λ ψ
= +

     

(2.43)

 

The parameters -
,

t dt
ij nq  and -

,
t dt
kk nq are the hereditary integral (history state variables) 

stored from the last converged step at time ( -t dt ). The incremental reduced time is 
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expressed as t t t dtdψ ψ ψ −≡ − . Eqs. (2.40)- (2.41) define complete solutions for the 

current incremental strain tensor. The nonlinear parameters in Eqs. (2.40)- (2.41) are 

expressed as functions of current temperature tT and effective stress  tσ , which at the 

current time (t), are not known.  Linearized trial stress tensors are used as starting points 

for solving the stress tensor using Eqs. (2.40)-(2.41). An iterative scheme is included in 

order to find the correct stress tensor for a given strain tensor and temperature. The 

current temperature is obtained from the solution of energy equation (2.37). The initial 

approximation (trial) stress tensor is determined using the following approximation of 

the nonlinear parameters:   

, - -

, - -

( , ), 0,1, 2

( , )

t tr t dt t dt

t tr t dt t dt

g g T

a a T
β β σ β

σ

= =

=
             (2.44) 

 
The superscript ‘tr’ means trial value of that variable. The gβ (β = 0, 1, 2) represent 

the nonlinear parameters go, g1 and g2, given in Eqs. (2.32)-(2.33). The trial current stress 

tensor is formed based on the given variables and history variables from the previous 

converged step: 

, - ,t tr t dt t tr
ij ij ijdσ σ σ= +                    (2.45) 

, , ,1
3

t tr t tr t tr
ij ij kk ijd dS dσ σ δ= +          (2.46) 

where the trial incremental deviatoric and volumetric stresses are given by: 

, , -
1 ,,

1

1 1 (exp[- ]-1)
2ij ij

N
t tr t t tr t t dt

n n ij nt tr
n

dS de g J d q
J

λ ψ
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑      (2.47) 

, , -
1 ,,

1

1 1 (exp[- ]-1)
3kk kk

N
t tr t t tr t t dt

n n kk nt tr
n

d d g B d q
B

σ ε λ ψ
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑      (2.48) 
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The correct stress tensor at current time is solved by minimizing a residual vector, 

which is defined in terms of incremental strains and expressed by: 

, 1 -
3

t t t M t
ij ij kk ij ijR de d dε δ ε= +            (2.49) 

where ,  A,  T, M t t t
ij ij ijd d dε ε ε= −  with A, t

ijdε is the total strain obtained from the 

displacement at a structural scale.  Finally, the consistent tangent stiffness matrix is 

defined by taking the inverse of the partial derivative of the incremental strain with 

respect to the incremental stress at the end of the current time step. The consistent 

tangent stiffness, t
ijklC , at the converged state, are: 

1

, ; 0
t t
ij ijt t

ijkl ijM t t
kl kl

d R
C R

d d
σ

ε σ

−
⎡ ⎤∂ ∂

≡ = →⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

       (2.50) 

Equation (2.50) defines material properties at current time t for each integration point 

in FE mesh. The components of the consistent tangent stiffness tensor vary with time, 

temperature, and stress. The total thermal strains at current time are expressed by: 

, , - ,T t T t dt T t
ij ij ijdε ε ε+=             (2.51) 

 
where for an isotropic material, the incremental thermal strains are: 

, ( )T t t t
ij ijd T dTε α δ=             (2.52) 

where dTt is the change in temperature at time t. The energy equation given in Eq. (2.37) 

is solved by integrating the dissipation function within the ABAQUS defined fully 

coupled thermomechanical analysis. For most coupled thermal-stress analyses, the 

unconditional stability of the backward difference operator (implicit method) is 

desirable, ABAQUS (2005). Therefore, at each incremental time-step, temperatures are 
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integrated using a backward-difference scheme, and the nonlinear coupled system is 

solved using Newton-Raphson method (Reddy, 2004).  The first term in the left-hand 

side of the energy equation, Eq. (2.39), is approximated by: 

( )( ) ( )( )
t t

t t t dt tc T c Tc T T T T dT
dt dt
σ σ

σ
ρ ρρ −≈ − =       (2.53) 

The temperature and temperature gradient ( t
iϕ ) at current time are expressed as: 

-t t dtT T dT+=            (2.54) 
 

- t, wheret t dt t
i i i i id d dT xϕ ϕ ϕ ϕ= + = ∂ ∂            (2.55) 

 
The solution for the heat flux is done incrementally and the total heat flux at current 

time is defined as: 

- t
i

t t dt
i i dq q q+=            (2.56) 

- t
ij

t t
i jddq k ϕ=              (2.57) 

In this case, t
ijk  is the component of the consistent tangent thermal conductivity 

matrix, which varies with temperature at current time t. The constitutive equation is 

solved iteratively to obtain correct solutions of the thermal constitutive relation. The heat 

flux with respect to temperature at the end of increments is: 

-
t
ij

t
ti
jt t

kdq d
T T

ϕ
∂∂

=
∂ ∂           (2.58) 

 
The recursive scheme is used to integrate Eq. (2.38) and the evolution of viscous 

stress can be written as: 

( ), - - -
, 2 2

1

1- exp[- ]exp[- ] -
ij ij

tN
vis t t t dt t t t dt t dt m
ij m ij m t

m m

dd P g g
d
λ ψσ λ ψ σ σ

λ ψ=

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑     (2.59) 
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The parameters -
,

t dt
ij mP  are history state variables stored from the last converged step at 

time ( -t dt ). The expression of history state variables at current time t, i.e., ,
t

ij mP is 

( )- - -
, , 2 2

1- exp[- ]exp[- ] -
ij ij

t
t t t dt t t t dt t dt m

ij m m ij m t
m

dP d P g g
d
λ ψλ ψ σ σ

λ ψ
= +

           
(2.60) 

 At the end of time increment dt the incremental heat generation is written as:  

, ,
1d t t vis t vis t

dis ij ijw g dσ ε=
          

(2.61) 

It should be noted that the rate of heat generation per unit volume, 

i.e., t t
dis disw dw dt= , is required, which is added to the energy equation in Eq. (2.22).  

The proposed numerical algorithm of the nonlinear coupled thermoviscoelastic 

constitutive model is implemented at each material point (Gaussian integration point) 

within the 3D continuum elements. The material subroutines (UMAT) and UMATH of 

the ABAQUS FE code are used. At each integration point, the input variables are the 

total strain ( t
ijε ), increment of the total strain ( t

ijdε ), previous converged stress ( t dt
ijσ − ), 

temperature ( t dtT − ), increment of the temperature ( tdT ) and history variables. At the 

end of each increment, the output variables are the current stress components ( t
ijσ ), 

temperature ( tT ), volumetric heat generation rate ( t
disw ), and updated history variables. 
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In a typical thermo-mechanical problem, the incremental stress is a function of strain and 

temperature, which are given by 

t t
ij ijt t t

ij klt t
kl

d d dT
T

σ σ
σ ε

ε
∂ ∂

= +
∂ ∂            

(2.62) 

Similarly, the increment of the volumetric heat generation, which must be added into the 

thermal energy balance equation for a coupled thermo-mechanical problem, is 

t t
t t tdis dis
dis ijt t

ij

w wdw d dT
T

ε
ε

∂ ∂
= +

∂ ∂               
(2.63) 

In addition, it is necessary to define the Jacobians for mechanical load ( t t
ij klσ ε∂ ∂ ) 

and temperature ( t t
ij Tσ∂ ∂ ), variations of the volumetric heat generation with respect to 

the strain ( t t
dis ijw ε∂ ∂ ) and temperature ( t t

disw T∂ ∂ ). From elasticity the stress increment 

can be written as (Lim and McDowell, 2002; Bassiouny and Maugin, 1988) 

,
, , , ,

T t
t el t el t el t t vis t tkl
ij ijkl kl ijkl kl kl td C d C d d dT

T
εσ ε ε ε

⎛ ⎞∂
= = − −⎜ ⎟∂⎝ ⎠

       (2.64) 

 
where ,el t

ijklC is the elasticity stiffness tensor. For a thermo-viscoelastic problem, 

, , ,el t t vis t T t
ij ij ij ijε ε ε ε= − −    (2.65) 

where t
ijε , ,el t

ijε ,vis t
ijε and ,T t

ijε are the total, elastic, viscous and thermal strain tensors, 

respectively. In this study, it is assumed that the thermal strains are the function of 

temperature, i.e., 

( ), ,T t T t t
ij ij Tε ε≡

  
(2.66) 

The incremental stress can now be written as follows 
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,
, , , ,

T t
t el t t el t vis t el t tkl
ij ijkl kl ijkl kl ijkl td C d C d C dT

T
εσ ε ε ∂

= − −
∂        

(2.67) 

The variation in the viscoelastic strain can be written as: 

, ,
,

vis t vis t
ij ijvis t t t

ij klt t
kl

d d dT
T

ε ε
ε σ

σ
∂ ∂

= +
∂ ∂         

(2.68) 

Substituting ,vis t
ijdε  into Eq. (2.67) yields 

, , ,
, , ,

vis t vis t T t
t el t t el t t t el t tkl kl kl
ij ijkl kl ijkl mn ijklt t t

mn

d C d C d dT C dT
T T

ε ε εσ ε σ
σ

⎛ ⎞∂ ∂ ∂
= − + −⎜ ⎟∂ ∂ ∂⎝ ⎠     

(2.69) 

which can be further simplified as 

, ,
, ,

vis t T t
t t el t t t el t tkl kl
ij ijmn mnkl kl ijmn mnkl t td X C d X C dT

T T
ε εσ ε

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪= − +⎨ ⎬⎜ ⎟∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭      
(2.70) 

where ( ) 1t t
ijmn ijmnX Y

−
= and 

,
,

vis t
t el t kl

ijmn im jn ijkl t
mn

Y C εδ δ
σ

∂
= +

∂
                 (2.71) 

The incremental stress in Eq.( 2.70) can be written as 

 
t t t t t
ij ijkl kl ijd H d h dTσ ε= +          (2.72) 

where ,t t el t
ijkl ijmn mnklH X C=  and         (2.73) 

, ,
,

vis t T t
t t el t kl kl
ij ijmn mnkl t th X C

T T
ε ε⎛ ⎞∂ ∂

= − +⎜ ⎟∂ ∂⎝ ⎠         
(2.74) 

The rate of volumetric heat generation using Eq. (2.61) can be written as: 

, ,1
t

t vis t vis t
dis ij ij

gw d
dt

σ ε=            (2.75) 
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To obtain the variation of the volumetric heat generation per unit time with respect to 

strain and temperature, the variations of the quantities at current time in the t
disw  

expression are required. Using the product rule of differentiation Eq. (2.75) yields, 

, , , , , ,
1 1 1

1 1 1t t vis t vis t t vis t vis t t vis t vis t
dis ij ij ij ij ij ijdw dg d g d g d d

dt dt dt
ε σ ε σ ε σ= + ∂ +

   
(2.76) 

 
Substituting ,vis t

ijdε∂ from Eq. (2.68) gives 

, , ,
, ,

1 1

, , ,
, ,

1 1

1 1
t t

1 1
t t

vis t vis t vis t
ij ij ijt t vis t t vis t

dis kl ij kl ij
kl kl

vis t vis t vis t
ij ij ijt vis t t vis t

kl ij ij
kl

d
dw dg d dT g d

d T d

d
g d dT d g dT

d T d T

ε ε ε
σ σ σ σ

σ σ

ε ε ε
σ σ σ

σ

⎛ ⎞∂ ∂ ∂
= + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
+ + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

   
(2.77) 

, , ,
, , ,

1 1 1

, , ,
, , ,

1 1 1

1 1 1

1 1 1

vis t vis t vis t
ij ij ijt t vis t t vis t t vis t

dis kl ij kl ij kl ij
kl kl kl

vis t vis t vis t
ij ij ijt vis t t vis t t vis t

ij ij ij

d
dw dg d g d d g d

dt dt dt

d
dg dT g d dT g dT

dt T dt T dt T

ε ε ε
σ σ σ σ σ σ

σ σ σ

ε ε ε
σ σ σ

∂ ∂ ∂
= + +

∂ ∂ ∂

∂ ∂ ∂
+ + +

∂ ∂ ∂
 

(2.78) 

Using, Eq. (2.72), we can write Eq. (2.78) as: 
 

, , ,
, , ,

1 1 1

, , ,
, ,

1 1 1

1
t

1
t

vis t vis t vis t
ij ij ijt t vis t t vis t t vis t

dis klmn mn klmn mn klmn mn ij
kl kl kl

vis t vis t vis t
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kl ij kl ij kl ij
kl kl kl
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dw dg H g H d g H d
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d
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d

ε ε ε
σ σ σ ε

σ σ σ

ε ε ε
σ σ σ

σ σ σ
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= + +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

∂ ∂ ∂
+ + +

∂ ∂ ∂
,

, , ,
, , ,

1 1 1
1
t

vis t

vis t vis t vis t
ij ij ijt vis t t vis t t vis t

ij ij ij

dT

d
dg g d g dT

d T T T
ε ε ε

σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤∂ ∂ ∂

+ + +⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

   

(2.79) 

 
Differentiating Eq. (2.79) with respect to the strain and temperature increments, 

respectively, gives 

 
, , ,

, , ,
1 1 1

1 1 1
t t t

vis t vis t vis tt
ij ij ijt vis t t vis t t vis tdis

klmn mn klmn mn klmn mn
ij kl kl kl

ddw dg H g H d g H
d d d d

ε ε ε
σ σ σ

ε σ σ σ
∂ ∂ ∂∂

= + +
∂ ∂ ∂ ∂  

(2.80) 
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1 1 1
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dT d d d
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σ σ σ

σ σ σ

ε ε ε
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⎡ ⎤∂ ∂ ∂∂
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⎥⎦

 
(2.81) 

Next, a numerical algorithm for the nonlinear coupled thermoviscoelastic behavior of 

isotropic homogeneous materials under general mechanical and temperature loading 

histories is presented. The viscoelastic constitutive model with stress and temperature 

dependent behavior for non-aging materials is considered (Eqs. 2.32-2.34). The 

algorithm is derived based on implicit stress integration solutions within general 

displacement based FE structural analyses for small deformations and coupled thermo-

mechanical problems.  Linearized solutions of the nonlinear constitutive equations and 

iterative schemes are performed at the structural (global) and material (local) levels. At 

the structural level, the iterative correction alone is not sufficient to minimize errors at 

the material level. For nonlinear viscoelastic materials, Haj-Ali and Muliana (2004) 

showed that the linearized stress-update at material level leads to large residual strain, 

even with a small time increment. Therefore, an iterative scheme is added at the material 

level in order to minimize errors arising from the linearization; otherwise very small 

time increments are required which is computationally expensive. Furthermore, 

consistent tangent matrices are developed to accelerate convergence and avoid 

divergence at both structural and material levels. 

To simulate the coupled thermoviscoelastic response the numerical algorithm is 

integrated with ABAQUS/standard FE code. At each integration point in the FE mesh, 

the user subroutines UMATH and UMAT are called. Within UMAT, the numerical 
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algorithm for the nonlinear thermo-viscoelastic material model is defined, which is used 

to provide the total stresses, viscous stress, viscoelastic strain, consistent tangent 

stiffness matrix ,( )t k
ijklC , stress variation with respect to strain ( t t

ij Tσ∂ ∂ ), rate of heat 

generation ( t
disw ), variation of heat generation with respect to strain ( t t

dis ijw ε∂ ∂ ) and 

temperature ( t t
disw T∂ ∂ ). The thermal constitutive behavior is defined within UMATH 

which is used to define and update internal energy t,(k)E , variation of internal energy with 

respect to temperature ( )t,(k)d dTE  and temperature gradient ( )t,(k)d dgE , heat flux t,(k)
iq , 

heat flux variation with respect to temperature ( )t,(k)d dTiq and temperature 

gradient ( )t,(k)d dgiq . Where g is the temperature gradient vector. The numerical 

algorithm for the fully coupled thermoviscoelastic analyses of isotropic solids is 

summarized in Figure 2.1.  

Now, the numerical algorithm within the UMAT subroutine is described in detail. 

Let the superscript (k) denotes the global iteration counter within the current incremental 

time step. At each global iteration within the incremental time-step ( )kdt , trial 

incremental strain tensor ,( )t k
ijdε  and temperature ,( )t kdT  are obtained, as illustrated in 

Figure 2.1. The goal is to calculate current total stresses t
ijσ , t

ijklC , ( t t
ij Tσ∂ ∂ ), ( t

disw ), 

( t t
dis ijw ε∂ ∂ ) and ( t t

disw T∂ ∂ ) from given current variables and history variables stored 

from the previous converged solution at time ( )t dt− . The converged t
ijσ  and Jacobians 

(Eqs. 2.62-2.63) after K global iteration at the current time t will be used to provide 
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Figure 2.1 Numerical algorithm for the coupled thermo-viscoelastic behavior of isotropic 
homogeneous solids. 
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incremental trial strains for the next time step ( )t dt+ .  Due to the coupled thermo-

mechanical problems, the trial incremental temperature ,( )t kdT  is directly linked to the 

incremental time step.  However, for each global iteration, the temperature is obtained 

from solving the energy equation (2.37). The procedure given below is performed at 

every material (Gaussian) integration point within elements at each structural iteration to 

achieve structural and material convergence simultaneously.  Thus, an efficient and 

accurate numerical algorithm for solving the constitutive material model becomes 

necessary. For simplicity, the superscript (k) that indicates the global iteration counter 

will be ignored in the rest of this manuscript and the local iteration counter will be 

denoted by the superscript (m).   

The complete recursive iterative algorithm (within UMAT subroutine) at the material 

level is summarized in the following steps:   

 

th

,( ) ( ) ,( )

,
, ,

1. Input variables: (At the globaliteration)
, , ,

History : , , , ,

t t t k k t k
ij ij

t dt t dt vis t dt t dt t dt
ij ij ij n kk n

k
d dt dT

T q q

ε ε

σ σ

−∆

− − − − −

 

 

, ,

, , , , ,(0) ,

2. Initialapproximation variables:
( , ); 0,1, 2 ( , )

( , )

t tr t dt t dt t tr t dt t dt

t tr t tr t tr t tr t t dt t tr
ij ij ij kk ij ij ij

g g T a a T

d d dS d d
β β σ β σ

σ σ σ σ σ σ

− − − −

−

= = =

= = +  

 

,( ) ,( ) ,( ) ,( ) ,( ) ,( )

,( ) ,( )

3. Iterate for =0,1,2,3... (m=local iteration counter)
3.1 Compute nonlinear parameters:

( , ); 0,1,2 ( , )t m t m t k t m t m t k

t k t t t k

m

g g T a a T

where T T dT
β β σ β σ

−∆

= = =

= +  
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1,( )
,( 1) ,( ) ,( ) ,( 1) ,( 1)

3.2 Computecurrent stress:

;
t m
ijt m t m t m t m t t t m

ij ij kl ij ij ij
kl

R
d d R d

d
σ σ σ σ σ

σ

−

+ + −∆ +
⎡ ⎤∂

= + = +⎢ ⎥
∂⎢ ⎥⎣ ⎦  

,( 1) ,( 1) ,( 1) , ,( )

,( 1)

3.3 Evaluate residual tensor:
1
3

IF Tol THEN GOTO 4 and EXIT

ENDIF GOTO 3

t m t m t m M t k
ij ij ij kk ij

t m
ij

R de d d

R

δ ε ε+ + +

+

= + −

≤
 

,( 1) , ,( 1) , ,( 1) ,( 1)
, , , ,

4. Updatestress, consistent tangent stiffnesses, and history variables:
, , , ,t m t vis t m vis t t t m t t m t

ij ij ij ij ijkl ij n ij n kk n kk nC q q q qσ σ σ σ+ + + +→ → → →  
      

t
disw ,

t t
ij Tσ∂ ∂ ,

t t
dis ijw ε∂ ∂ ,

t t
disw T∂ ∂  

 

2.3 NUMERICAL VERIFICATION AND IMPLEMENTATION 

The proposed numerical algorithm can be used to simulate nonlinear coupled 

thermo-mechanical responses of viscoelastic bodies subjected to various loading 

histories. The numerical scheme is verified by comparing the results obtained from FE 

simulations to the ones obtained analytically. The responses are also compared to the 

analytical solution of Medri (1988) and Tauchert (1967c) and experimental data of 

Tauchert (1967a). The numerical algorithm is implemented at each integration point in 

the FE mesh. All FE simulations are performed using ABAQUS (2005). The efficiency 

and accuracy of the algorithm are also discussed. 

First, the analytical solution for the creep response of a linear viscoelastic material 

subjected to a single step shear creep stress is used to verify the proposed numerical 

algorithm. The analytical solution for one-dimensional strain and temperature increase is 
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obtained analytically using linearized form of Eq. (2.24) and Eq. (2.37). The analytical 

solution can be found in appendix B. To describe the linear viscoelastic solid behavior 

the mechanical analog model also called the Zener solid model (three parameter solid 

model) is equivalent to a linearized form of Eq. (2.24). The proposed model is also 

validated with an analytical solution of temperature and strain obtained from Zener solid 

model obtained using the Laplace transform (appendix B). Under a simple shear loading, 

the Zener solid model yields the following governing differential equation (Flugge 1975, 

Wineman and Rajagopal 2001, Reddy 2008): 

12 1 12 0 12 1 12p q qσ σ ε ε+ = +
             

(2.82)
 

where p1, q0, q1 are the material constants and 12 122γ ε= . The energy equation, assuming 

an adiabatic process and no internal heating source, for an isotropic viscoelastic material 

can be expressed as: 

t
disc T wσρ =            (2.83) 

The schematic of the Zener solid model and material constants for the above 

differential equation are shown in Figure 2.2(b). The shear creep compliance under a 

constant shear stress can be represented as: 

0 01

1 1 0 1

1( ) exp[ ] 1 exp[ ]q qpJ t t t
q q q q

⎛ ⎞
= − + + −⎜ ⎟

⎝ ⎠           
(2.84)

 

For the above creep compliance function the equivalent Prony series coefficients are 

characterized using Eqs. (2.34)- (2.35). Table 2.1 shows the material constants, thermal 

properties (taken from Medri 1988) and Prony series coefficients, respectively that are 

used in the FE simulations. The constitutive model given in Eq. (2.82) was used to 
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obtain the analytical solution for a viscoelastic material subjected to a constant stress 

(see Appendix B).  

 

 

    

Figure 2.2 Dissipative heating under creep loading. (a) geometry, applied loading and 
shear strain, 12γ . (b) material parameter and increase of temperature, T.  
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Table 2.1 Prony series coefficients, mechanical and thermal properties for polymer.   

n -1(sec )nλ  6 -110 (MPa )nD −×  

1 0.0145 0.00096 
Young modulus, ( )E  (MPa)= 578.2 
Poisson ratio, ( )v =0.35 
Coefficient of Thermal Expansion, ( )α 10-6, 1/˚K =101.0 
Thermal Conductivity, ( )k , W/m/˚K = 1.0 
Specific heat, ( )c , J/Kg. ˚K= 2180.0 
Density, ( )ρ , Kg/m3= 902.0 

 

 
The problem is discretized with one eight node linear brick element (ABAQUS 

generic name, C3D8T). The mechanical boundary conditions are shown in Figure 2.2(a) 

while for thermal boundary conditions all boundaries of the specimen are assumed to be 

insulated, i.e, no heat loss across the boundary.  

Figures 2.2(a) and 2.2(b) show the comparison of shear strain and temperature rise, 

respectively, during the application of shear stress of magnitude 1 10 MPaτ = . The 

results obtained from FE simulations (proposed model) are found in good agreement 

with both analytical solutions.  

In the next example, the shear strain and temperature rise is obtained under a 

sinusoidal loading. The sinusoidal shear stress 12
tσ  with 4ω π=  and amplitude of 

10MPa is applied, as shown in Figure 2.3. The same values of material constants and 

Prony series parameters that were used in previous problem are considered. The 

numerical simulation is performed using one eight node linear brick element, with  
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Figure 2.3 Dissipative heating under cyclic loading with geometry, applied sinusoidal 
loading and increase of temperature, T.  
 

thermally insulated boundary conditions. The mechanical boundary conditions are 

shown in Figure 2.3. The solution for the temperature is in good agreement with both 

analytical solutions (see appendix B). 

Tauchert (1967c) studied a cyclic torsional loading of a thin wall tube and used the 

Zener solid model to describe the viscoelastic behavior of the studied material. For a 

sinusoidal shear strain loading, Tauchert (1967c) obtained the analytical solution of 

stress and temperature increase using Fourier series expansion and Laplace transform 

methods. Under a pure torsional loading, the Zener solid model yields the following 

governing differential equation: 

23 1 23 0 23 1 23p q qσ σ ε ε+ = +
             

(2.85)
 

where p1, q0, q1 are the material constants. Table 2.2 shows the material constants, 

thermal properties (taken from Tauchert (1967c)) and Prony series coefficients, 
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respectively that are used in the FE simulations. Temperature history resulting from the 

cyclic strain amplitude of 0.35% and with frequency of 200 cps is shown in Figure 2.4. 

The time increment of 0.002 sec was used. It is found that the proposed model agrees 

with the analytical solution.  

   
  Table 2.2 Prony series coefficients, mechanical and thermal properties for pure 
aluminum at temperature 680˚F. 
 

n 1(sec )nλ −  6 110 ( )nD Psi− −×  

1 0.677 0.0318 

Young modulus, ( )E  = 2.08x106 Psi 
Poisson ratio, ( )v = 0.35 
Thermal Conductivity, ( )k  = 0.002681 Btu/in.sec.˚F 
Specific heat, ( )c  = 205. Btu/lb.F  
Density, ( )ρ  = 1. lb/in3 

 
 
 

 
Figure 2.4 Comparison of analytical and FE results under torsional strain oscillations at 
constant frequency of 200 cps and angle of twist of θ0=10˚. (Adiabatic solution) 
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Medri (1988) obtained an analytical solution for a viscoelastic solid under a simple 

tension at a constant stress rate of 2.246 MPa/sec. The Zener solid model (standard 

linear solid model) was used to describe the viscoelastic behavior of the solid. Under a 

uni-axial stress, the Zener solid model yields the following governing differential 

equation: 

11 1 11 0 11 1 11p q qσ σ ε ε+ = +
             

(2.86)
 

where p1, q0, q1 are the material constants. The material constants and Prony series 

coefficients, respectively that are used in the FE simulation are given in Table 2.1. For 

an isotropic thermo-viscoelastic material the energy equation, assuming an adiabatic 

process, no internal heating source, and considering temperature independent material 

properties, can be expressed as: 

( )2
0 09 t

kk disc KT T T wερ α α σ+ + =        (2.87) 

where K is the elastic bulk modulus and cε is the specific heat at a constant strain. The 

uniaxial creep compliance D(t) under a constant stress can be represented as: 

0 01

1 1 0 1

1( ) exp[ ] 1 exp[ ]q qpD t t t
q q q q

⎛ ⎞
= − + + −⎜ ⎟

⎝ ⎠        
(2.88)

 

The energy equation was derived for the Zener model and expression for the 

temperature change at a constant stress rate was then determined analytically. Figure 2.5 

shows the comparison of the temperature change obtained analytically, numerically from 

the proposed model and analytical solution obtained by Medri (1988). Good agreements 

are observed. 
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Figure 2.5 Temperature increase under tension at constant stress rate loading. 

 
Tauchert (1967a) performed experiments to study the heat generation in 

polyethylene rods undergoing torsional oscillations. The twisting of each specimen was 

done at a constant frequency and at strain amplitude which were within the linear 

viscoelastic range. It was experimentally shown that the material behaved linearly up to 

3.3% shear strain. The recorded temperature during the oscillation tests under various 

frequencies are predicted using the proposed numerical algorithm. Table 2.3 shows the 

Prony series parameters used in the simulation which are characterized using the 

experimental creep data of 60 seconds reported by Tauchert (1967a) under a fixed 

torsional load of 6 lb-in. By extending the experimental data of the creep curve on log-

log scale the Prony series coefficients are characterized up to 3000 seconds. 
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Table 2.3 Prony series coefficients, mechanical and thermal properties for polyethylene. 

n -1(sec )nλ  6 -110 (Psi )nD −×  

1 1.0 3.7 

2 1x10-1 3.7 

3 1x10-2 7.41 

4 1x10-3 6.85 

5 1x10-4 14.8 
Young modulus, ( )E  = 58006.0 Psi 
Poisson ratio, ( )v = 0.45 
Thermal Conductivity, ( )k  = 0.0125 Btu/in.sec.˚F 
Specific heat, ( )c  = 180. Btu/lb.F  
Density, ( )ρ  = 1. lb/in3 

 

Temperature histories obtained from the experiments and FE simulations 

corresponding to frequencies of 0.3833 and 1.33 cycles per second and shear strain 

amplitude of 3.3% are shown in Figure 2.6. Tauchert (1967a) explained that there is an 

interval of time in every experiment when the adiabatic condition exists. Heat loss to 

surroundings is prevented by the insulation and heat conduction is negligible due to a 

relatively low thermal conductivity of the polyethylene for certain time interval. The 

simulations performed in this study assumed adiabatic heating while during an 

experiment there exists a balance between the rate at which the heat is transferred by 

conduction out of an element and  the rate at which heat is dissipated in the element that 

resulted in steady state temperature distribution ( 0T t∂ ∂ = ), as shown in Figure 2.6. The 

results obtained from FE simulations assuming adiabatic condition and temperature 

independent material properties over predict the experimental data. This deviation might 

be due to ignoring the effect of temperature dependence on the material properties. The 
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mechanical properties of polymers are very sensitive to temperature changes and with 

the increase of temperature the polymer relaxes faster and consequently results in 

reduction of heat generation rate. Therefore, the effect of temperature dependence on the 

material properties must be taken into account when there is a significant temperature 

change due to torsional oscillations. For a linear viscoelastic behavior, the effect of 

temperature on the relaxation behavior is carried through the shift factor (aT). Such 

materials are called as thermorheologically simple materials (Schwarzl and Staverman, 

1952). Since the properties of the polyethylene at different temperatures are not available 

in Tauchert (1967a), the following form of shift factor as function of the temperature is 

considered to simulate the effect of temperature dependent material properties on heat 

generation. 

0

0

exp 40
tT T Ta

T
⎡ ⎤−

= −⎢ ⎥
⎣ ⎦

 (2.89) 

where T0 is a reference temperature which is taken as 303˚K. Figure 2.6(b) shows that 

the temperature generation decreases when the above shift factor is considered, which 

implies that the polymer relaxes faster as temperature increases. Although the results are  
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Figure 2.6 Comparison of experimental and finite element results under torsional 
oscillations at different constant frequencies and angle of twist of θ0=30˚a) Adiabatic 
solution with temperature independent material properties, b) Adiabatic solution with an 
assumption of TSM behavior. 
  
not in agreement with the experimental data but it shows that the steady state 

temperature distributions can be reached if the temperature dependent properties are 

considered. In addition to the shift factor there are some other parameters that can also 

affect the heat generation rate, such as heat transfer due to convection, stress and 

temperature dependent material properties. Later, the effect of temperature as well as 
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stress dependent parameters will be shown on the heat generation in the rod undergoing 

torsional oscillations.  

Until now, the coupled behavior was studied for materials exhibiting linear 

viscoelastic behaviors. The numerical algorithm shows promising outcome under 

various types of loading conditions and agree to some extent with the available 

experimental data and analytical solution. Next, the simulation will be performed to 

study the effect of nonlinear stress and temperature dependent parameters on the 

temperature generation. The analyses are carried out for a short time period to 

demonstrate the need of performing the nonlinear analyses in predicting the long term 

coupled thermoviscoelastic responses of materials.   

In this study a FM73 adhesive polymer is considered. FM73 adhesive is commonly 

used as adhesive to bond polymeric based composite and to strengthen the structure 

locally. The yield stress of FM73 under tension, compression and shear is 42MPa, 

60MPa and 38MPa, respectively. The nonlinear stress and temperature dependent 

parameters for FM73 adhesive characterized by Peretz and Weitsman (1982, 1983) are 

used in this study to carry out simulations under various types of loadings. The Prony 

series coefficients, mechanical and thermal properties are given in Table 2.4. The 

nonlinear stress and temperature dependent parameters are shown in Figure 2.7(a)-(b).  

In the first simulation, the temperature increase due to creep at different stress levels and 

stress relaxation due to an instantaneous applied strain is reported. Different magnitude 

of shear stresses ranging from 20-30MPa at isothermal temperature 303˚K are applied. 

The instantaneous strains obtained from these creep analyses are used as input for 
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Table 2.4 Prony series coefficients, mechanical and thermal properties for FM73 
adhesive polymer. 
 

n -1(sec )nλ  6 -110 (MPa )nD −×  

1 1.0 21.00 

2 1x10-1 21.60 

3 1x10-2 11.84 

4 1x10-3 15.88 

5 1x10-4 21.58 

6 1x10-5 20.05 
Young modulus, ( )E = 2710 MPa 
Poisson ratio, ( )v =0.35 
Thermal Conductivity, ( )k  = 0.2 W/m ˚K 
Specific heat, ( )c  =1300. J/kg ˚K  
Density, ( )ρ  = 980 Kg/m3 
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Figure 2.7 Nonlinear material parameters for FM73 adhesive a) stress dependent and b) 
temperature dependent. (Peretz and Weitsman, 1982, 1983) 

 

the stress relaxation simulations. The simulations performed in this study assumed an 

adiabatic heating due to the viscoelastic deformation. Both linear and nonlinear 

viscoelastic behaviors of the material are considered. Figure 2.8 (a) shows temperature 
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changes during creep at various stress levels. The nonlinear parameters tend to increase 

the compliance or decrease the modulus more rapidly and causing high level of stresses 

as compares to the linear viscoelastic materials. This phenomenon is observed at all the 

stress levels studied and yield more temperature rise as compare to the linear case. Note 

that the temperature changes are very small and no temperature boundary conditions are 

applied, therefore, for a given loading history the contribution from temperature 

dependent material parameters in heat generation is negligible. Figure 2.8 (b) shows 

temperature changes during the relaxation at various strain levels. More temperature is  
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Figure 2.8 Comparison of linear and nonlinear viscoelastic material behaviors on heat 
generation subjected to a) creep at different stress and b) relaxation at different strain 
levels. 
 
generated during relaxation of a nonlinear viscoelastic behavior than the linear ones. 

However, the temperature increases during the relaxation are less for both linear and 

nonlinear viscoelastic materials as compare to the ones that rises during the creep. 

Next the effects of stress and temperature dependent parameters are determined on 

the viscoelastic material subjected to cyclic shear stress and strain loading. First, the 

cyclic stress with amplitude of 20MPa and 4ω π=  is applied and the maximum strain 
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attained during the linear viscoelastic analysis is used as strain amplitude for the cyclic 

strain loading for both linear and nonlinear viscoelastic behaviors. For the cyclic stress 

loading, similar trends are observed as were noticed in the previous analyses and the 

temperature generation is higher with stress and temperature dependent parameters as 

shown in Figure 2.9 (b). However, for the cyclic strain loading, stress and temperature 

dependent parameters do not affect much on the temperature generation and less value of 

temperature increase was observed as compare to the linear behavior shown in Figure 

2.9 (a). With temperature dependent material parameters, the temperature rise in both 

loading types is less than the ones obtained for linear viscoelastic responses. Polymer 

relaxes faster as temperature increases and therefore in the analyses with temperature 

dependent material parameters always less temperature change is obtained as compare to 

the analyses with stress dependent material parameters. Figure 2.9(c) shows the 

comparison of linear and nonlinear viscoelastic behaviors of materials subjected to 

sinusoidal stress and strain loadings. It is observed that for both linear and nonlinear 

viscoelastic cases the cyclic stress loading generates more heat as compare to the cyclic 

strain loading. Under cyclic stress, more heat is generated per cycle for non-linear 

viscoelastic behavior due to the presence of nonlinear parameters as compare to the 

linear viscoelastic case, as shown in Figure 2.9 (d). 
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Figure 2.9 Comparison of linear and nonlinear viscoelastic material behaviors on heat 
generation subjected to cyclic a) strain and b) stress loading. c) comparison of heat 
generation in cyclic strain and stress loading d) comparison of stress-strain plot for 
cyclic stress and strain loading.   
 

Tauchert (1967a) showed that enormous amount of heat generated when a polymer 

was subjected to torsional oscillations. Therefore, the effect of temperature dependent 

properties on the generation of temperature of a viscoelastic material can be analyzed 

using cyclic torsion analyses. The twisting of the specimen shown in Figure 2.10(a) is 

done at constant frequencies of 0.3833 and 1.33 cycles per second (cps) and shear strain 

amplitude of 1.0%. The simulations performed in this study assumed adiabatic heating 

due to viscoelastic deformation. Both Linear and non linear viscoelastic responses are 
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considered. The comparison of temperature histories obtained from FE simulations 

corresponding to frequencies of 0.3833 and 1.33 cycles per second are shown in Figure 

2.10(a).  
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Figure 2.10 Comparison of heat generation of solid cylinder subjected to torsional 
oscillations with maximum angle of twist of θ0=3˚ at a) different constant frequencies 
with linear and nonlinear viscoelastic material behaviors and b) frequency of 0.383cps 
with linear, nonlinear, TSM, stress and temperature dependent viscoelastic material 
behaviors. 

 

For a linear material, there is a linear temperature increase observed for both 

frequencies because of the constant rate of heat generation. For a given nonlinear 

material, the heat generation rate is affected by the nonlinear stress and temperature 

dependent material parameters and gradually decreases to produce less temperature 

change as compare to a linear viscoelastic material. Next, the effects of stress and 

temperature dependent parameters are examined for twisting of a specimen with a 

constant frequency of 0.3833 cycles per second (cps) and shear strain amplitude of 1.0%, 

as shown in Figure 2.10(b). It has been found that the given stress dependent material 

parameters decrease the rate of heat generation but still constant temperature rise per 
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cycle is produced. However, the temperature dependent material parameters for a given 

material reduce the rate of heat generation as time progresses and consequently the rate 

of change of the temperature rise per cycle also decreases for the nonlinear viscoelastic 

material having stress and temperature dependent material properties. 

Next, the significance of a conduction phenomenon during the non-uniform stress 

generation in a structure is presented. Both viscous dissipation and conduction is 

considered. The cyclic bending of a beam under a uniformly distributed load is 

presented. A cyclic load with amplitude of 1kN/m and 4ω π=  is applied for duration 

of 2400 seconds (40 minutes). The schematic of a geometry of the beam and boundary 

conditions are given in Figure 2.11. 
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Figure 2.11 Geometry of the simply supported beam, loading, boundary conditions and 
locations at which the temperatures are measured. 
 

The temperature generation at two different locations (see Figure 2.11) is shown 

in Figure 2.12. It is observed that the heat generation at point 2 is not affected by the 

conduction for the first few minutes of the analysis. However, due to the non-uniform 

stress generation (with alternating max./min. at top/bottom surface) the conduction  
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Figure 2.12 Temperature generations at point 1 and 2 during fully coupled 
thermoviscoelastic analysis of a homogeneous beam with conduction. 
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Figure 2.13 Temperature generation at the center of beam (i.e., x1=L1, -10≤x2≤10) during 
fully coupled thermoviscoelastic analysis of a homogeneous beam with adiabatic 
solution and heat conduction. 



 61

started to take place towards the centroidal axis of the beam and the temperature at point 

2 increases. Figure 2.13 shows that if the conduction is neglected then the top/bottom 

surface temperature increases by a large number as compared to when a conduction is 

accounted for. This analysis shows the necessity of taking the conduction during coupled 

thermoviscoelastic response to realistically predict the temperature distribution within 

the structure.  

Now the contribution of the thermoelastic coupling to the temperature generation is 

examined during cyclic loading at various stress amplitudes. The problem is discretized 

with one eight node linear brick element (ABAQUS generic name, C3D8T). The 

mechanical boundary conditions are shown in Figure 2.5 while for thermal boundary 

conditions all boundaries of the specimen are assumed to be insulated, i.e, no heat loss 

across the boundary. An axial cyclic load with 4ω π=  is applied for duration of 2400 

seconds (40 minutes). Figure 2.14 shows the temperature generation with and without 

taking into account the thermoelastic coupling. It has been observed that with the 

increase of stress amplitudes the thermoelastic coupling contribution increases. 

However, for the time period considered, the temperature increase with thermoelastic 

coupling is still insignificant as compare to the overall temperature increase when only 

viscous dissipation is considered. Therefore, for a given material, one can neglect the 

thermoelastic coupling while analyzing the fully-coupled thermoviscoelastic response of 

materials under a cyclic loading. 
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Figure 2.14 Temperature generations during the fully coupled thermoviscoelastic 
analysis of a homogeneous material with and without thermoelastic coupling effect. 

 

2.4 CONVERGENCE BEHAVIOR OF COUPLED THERMOVISCOELASTIC 

RECURSIVE-ITERATIVE ALGORITHM 

The proposed numerical scheme is implemented within a displacement-based FE 

code. The material subroutines (UMAT and UMATH) of the ABAQUS (2005) FE code 

are used for this purpose. The 3D nonlinear coupled thermo-viscoelastic response is 

generated at each material point (Gaussian integration point). For nonlinear response at a 

material level the recursive iterative algorithm with Newton-Raphson (NR) scheme is 

used. At the FE structural level, the default ABAQUS FE code (2005) iterative solver is 

used for the nonlinear analyses. Two criteria are checked in the ABAQUS iterative 

linear solver, which are force (flux) residual and displacement (temperature) corrections. 

 For nonlinear coupled thermoviscoelastic problems, an iterative scheme is generally 

employed to minimize the mechanical, U
iR , and thermal, T

iR , residual vectors  
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simultaneously, which can be expressed as: 

,( ) ,( ),( ) ,( )
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    (2.90) 

In a nonlinear problem, the residual vectors { },u T
i iRR will only be approximating to 

zero and certain convergence criteria are set for residuals to achieve converged solutions. 

In addition to the residual vectors (thermal or mechanical), incremental displacement, 

t
jdu and temperature, t

jdT  correction criterion are also checked by the ABAQUS 

iterative solver. The displacement and temperature correction criteria are: 

t

t
t du

du
Rδ

δ
= , t

t

tT
dT

dT
R δ

=        (2.91) 

where tduδ , tdTδ  and tdu , tdT  are the last displacement correction vector, last 

temperature correction, incremental displacement vectors and incremental temperature at 

current time t, respectively. Both convergence checks must be satisfied at the structural 

level before a solution is said to have converged for that time increment. 

For nonlinear thermoviscoelastic behavior the convergence behaviors at the 

structural (element) and constituent (material) levels are examined. The convergence 

behavior is tested for various loading conditions. For both force and heat flux, the 

convergence criteria used at the element level follow the default criteria of the ABAQUS 

FE code (2005). The residual tolerance for force and flux is set to be 5x10-3Q, where Q 

is the average force or flux over time t. The default tolerance for the displacement and 

temperature corrections is 10-2. The convergence criterion at the material level is 

described in Eq. (2.49) with tolerance of 10-6. The following convergence studies are 
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performed for FM73 polymer. The Prony series coefficients, mechanical and thermal 

properties for FM73 adhesive polymer are already given in Table 2.4. The stress and 

temperature dependent parameters are expressed in Figure 2.7 (a)-(b). 

 
2.4.1 PARAMETRIC STUDIES 
 

In first parametric study the effect of an initial time increment on the structural and 

material response is determined. The Heaviside step function is simulated using different 

initial time ranging from 10-6 to 1 second with varying stress levels. Fully coupled 

thermo-viscoelastic material model is used. The instantaneous uni-axial strain values are 

reported for different time-increments and are compared with the analytical solution for 

load levels ranging from 10-40 MPa, as shown in Figure 2.15. The accuracy of the 

results strongly depends on the initial time increment size. A larger initial time 

increment and high stress values may lead to a diverged solution. From Figure 2.15 it is 

concluded that the initial time increment can be chosen in the range 10−6 to 10−3 seconds 

to better capture the instantaneous response for this material. 

In the second parametric study the residual norms at structural and material level are 

monitored during the iterations process of a given time increment. The instantaneous 

load is applied with a time increment of 10−4. Figures 2.16 (a)-(c) show the  
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Figure 2.15 Effect of the time-increment size in the instantaneous static analysis for 
FM73 polymer. 
 

convergence response under two applied stresses of 10 MPa and 40 MPa. The 

convergence at the structural level can be accelerated by incorporating an efficient 

iterative algorithm at the material level. The proposed iterative scheme shows quadratic 

convergence behavior at both stress level as shown Figure 2.16(c). It is noted that the 

convergence behavior at the material level are reported during the last iteration in the 

structural level. The residual behavior shows that a predictor-corrector scheme must be 

required at all levels to minimize the residuals. Table 2.5 shows the residual behavior at 

both element and material levels during the instantaneous loading step at various applied 

loads. 
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Figure 2.16 Residuals during iteration process for thermo-viscoelastic analyses under 
instantaneous mechanical load. (a) heat flux (b) force and (c) strain. 
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Table 2.5  Iteration process at element and material levels for coupled thermoviscoelastic recursive 
iterative numerical schemes during instantaneous “static” creep step loading (∆t0=10-4). 

 
Load 

(MPa) 
Time step 

(sec) 
Element Level Residual Material Level Residual 

Iteration Heat Flux(**) Force(**) # iteration Strain(*) 

10 10- 4 
1 
2 
3 

4.91 x10-2 
2.38 x10-3 
1.13 x10-4 

2.40 x10-1 
1.32 x10-2 
7.45 x10-4 

1 
2 
3 

1.31 x10-4 
1.51 x10-6 
3.57 x10-8 

20 10- 4 
1 
2 
3 

3.15 x10-2 
5.78 x10-3 
9.12 x10-4 

4.63 x10-1 
4.69 x10-2 
4.99 x10-3 

1 
2 
3 

5.54 x10-4 
1.34 x10-5 
5.45 x10-7 

30 10- 4 

1 
2 
3 
4 

5.27 x10-2 
1.73 x10-2 
3.16 x10-3 
5.08 x10-4 

6.73 x10-1 
9.47 x10-2 
1.42 x10-2 
2.17 x10-3 

1 
2 
3 
4 

1.32 x10-3 
4.94 x10-5 
2.64 x10-6 
1.08 x10-7 

40 10- 4 

1 
2 
3 
4 
5 

9.79 x10-2 
3.09 x10-2 
6.65 x10-3 
1.32 x10-3 
2.59 x10-4 

8.71 x10-1 
1.52 x10-1 
2.88 x10-2 
5.58 x10-3 
1.08 x10-3 

1 
2 
3 
4 

2.48 x10-3 
1.27 x10-4 
7.92 x10-6 
4.61 x10-7 

* Strain residual at converged step in the material level. Convergence at material level set to be ||R||<10-6. 
** Convergence at element level for both heat flux and force set to be ||R|| < 5x10-3. 

 

The convergence behavior is now examined during the coupled thermo-viscoelastic 

creep analysis. Loading is simulated in two steps. In the first step the instantaneous load 

of 40 MPa is applied with an initial time increment size of 10−4. The second step 

simulated the viscoelastic analysis in which the constant load is held for 30 seconds with 

an initial time increment of 1.0 second. Two cases are studied. For the first one the 

mechanical load is applied in applied with no temperature boundary condition while in 

the second case a temperature of 313˚K is applied at one face of the cube during the 

second (viscoelastic) step to allow a conduction to take place in addition to the heat 

generation due to creep load. The geometry of the model and applied loading condition 

are shown in Figure 2.17. 
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Figure 2.17 Three dimensional one element FE model for FM73 polymer. 
 
 
The models were subjected to the following boundary conditions:  

1 2 3 1 2 3

2 3 2 3

1 3 1 3
1 3

2 2

1 2 1 2
1 2

3 3

( , , ,0) 300 ; 0 10,0 10, 0 10
(10, , , ) 313 ; 0 10, 0 10, 0

( ,0, , ) ( ,10, , ) 0.0; 0 10, 0 10, 0

( , ,0, ) ( , ,10, ) 0.0; 0 10, 0 10, 0

T x x x K x x x
T x x t K x x t

T x x t T x x t x x t
x x

T x x t T x x t x x t
x x

= ≤ ≤ ≤ ≤ ≤ ≤
= ≤ ≤ ≤ ≤ ≥

∂ ∂
= = ≤ ≤ ≤ ≤ ≥

∂ ∂

∂ ∂
= = ≤ ≤ ≤ ≤ ≥

∂ ∂

     (2.92) 

1 2 3 2 3

2 1 3 1 3

3 1 2 1 2

1 2 3 2 3

2 1 3 1 3

3 1 2 1

(0, , , ) 0.0; 0 10, 0 10
( ,0, , ) 0.0; 0 10, 0 10
( , ,0, ) 0.0; 0 10, 0 10

(10, , , ) 40.0MPa; 0 10, 0 10
( ,10, , ) 0.0MPa; 0 10, 0 10
( , ,10, ) 0.0 MPa; 0

u x x t x x
u x x t x x
u x x t x x
t x x t x x
t x x t x x
t x x t x

= ≤ ≤ ≤ ≤
= ≤ ≤ ≤ ≤
= ≤ ≤ ≤ ≤

= ≤ ≤ ≤ ≤
= ≤ ≤ ≤ ≤
= ≤ 210, 0 10x≤ ≤ ≤

                    (2.93) 

where ui and ti (i=1,2,3) are the components of the displacements and the surface 

tractions, respectively. 
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The creep strains for both cases are shown in Figure 2.18(a). For the second case 

higher creep strains are observed due to the presence of temperature dependent material 

properties and thermal strain. The temperature increase is monitored at face ACGE. It is 

observed that when the temperature is specified on one face during the viscoelastic step 

then the temperature increase is due to two factors. The first one is from a conduction 

taking place between the two faces and the second factor is due to the heat generation 

during creep deformation. However, the rate of heat generation is relatively small during 

creep but it still affects the temperature change rate during the analysis.   

Table 2.6 shows the force and heat flux residuals during the viscoelastic analysis 

when only stress is applied. The heat flux residuals are met for all stresses since very less 

temperature gradient is generated during the viscoelastic analysis. For force residuals the 

accelerated convergence rate in the proposed numerical method decreases the residual at 

the element level, especially in the case of highly nonlinear viscoelastic response. Table 

2.7 is the same as Table 2.6 but with residuals for the viscoelastic analysis with specified 

temperature and mechanical loading. As expected, more iteration is required for these 

cases but the efficiency of the algorithm can be realized by examining the convergence 

of the first step in 40MPa loading. The efficiency of the algorithm is showed for other 

stresses in Table 2.7 by examining the number of iterations required for convergence 

with their decreasing residuals. 
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Figure 2.18 Thermo-viscoelastic creep analyses. (a) strain and (b) temperature increase 
during an applied stress of 40 MPa. 
 
In the end the convergence behavior using the proposed algorithm is monitored at the 

structural and material level during a linear ramp loading. Three cases are studied.  (1) A 

linear stress ramp is applied, (2) A linear temperature is applied and (3) Linear stress and 

temperature are applied. Figure 2.19 showed the geometry of the model and boundary 

conditions. Figure 2.19(a) illustrates the nonlinear creep strain for all three cases. 
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Table 2.6 Iteration process at element and material levels for coupled thermoviscoelastic 
recursive iterative numerical schemes during creep analysis (mechanical loading) at different 
times. 
 

Load 
(MPa) 

Time 
step 
(sec) 

Element Level  
Residual 

Material Level 
Residual 

Material Level Residual 
(Last converged time 

step) 

Iter. 
Heat 
Flux(**) 

Force(**) # Iter. Strain(*) Iter. Strain(*) 

10 
1.0 

1 
2 

7.58x10-7 
7.18 x10-8 

5.95x10-3 
2.54 x10-4 

1 
1 

2.02 x10-7 
1.99 x10-7 

1 1.99 x10-7 

30. 1 5.23x10-10 3.89 x10-7 1 1.15 x10-10 1 1.15 x10-10 

20 
1.0 

1 
2 

2.45 x10-7

3.25 x10-9 
2.23 x10-2 
1.78 x10-3 

2 
2 

1.29 x10-7 
4.01 x10-8 

1 
2 

1.43 x10-6 
4.01 x10-8 

25.0 1 1.20 x10-9 2.83 x10-7 1 9.12 x10-10 1 9.12x10-10 

30 
1.0 

1 
2 
3 

6.80 x10-6

2.00 x10-6 
4.20 x10-7 

1.05 x10-1

7.88 x10-3 
1.42 x10-3 

3 
2 
2 

3.05 x10-7 
1.02 x10-7 
5.05 x10-7 

1 
2 

1.02 x10-5 
5.05 x10-7 

20.0 1 6.88 x10-10 1.04 x10-6 1 9.71 x10-9 1 9.71x10-10 

40 
1.0 

1 
2 
3 
4 

3.08 x10-5

1.70 x10-5 
6.04 x10-6 

1.94 x10-6 

2.66 x10-1

5.04 x10-2 
1.11 x10-2 

3.23 x10-3 

4 
3 
3 
3 

4.47 x10-7 
8.18 x10-7 
5.02 x10-7 
8.88 x10-7 

1 
2 
3 

4.68 x10-5 
3.76 x10-6 
8.88 x10-7 

3.0 
1 
2 

3.97 x10-7 
8.04 x10-8 

7.13 x10-3 
1.04 x10-4 

2 
2 

2.39 x10-7 
1.01 x10-7 

1 
2 

1.23x10-6 
1.01x10-7 

* Strain residual at converged step in the material level. Convergence at material level set to be ||R||<10-6. 
** Convergence at element level for both heat flux and force set to be ||R|| < 5x10-3. 

 
 

Negligible creep strain is observed for linear thermal loading while for case 3 maximum 

creep strains are obtained. The temperature rises during all three cases are also shown 

in Figure 2.14(b). In absence of the mechanical load (case 2) the heat transfer equation is 

solved separately while for the cases 2 and 3 the fully coupled thermoviscoelastic model 

yields temperature rise by solving the heat conduction and deformation equations 

simultaneously. Thus, lower temperature is generated for the case 3 than the case 1  
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Table 2.7 Iteration process at element and material levels for coupled thermoviscoelastic recursive 
iterative numerical schemes during creep analysis (mechanical and temperature loading) at different times. 
 

Load 
(MP) 

Time 
step 
(sec) 

Element Level  
Residual 

Material Level 
Residual 

Material Level Residual 
(Last converged time 

step) 

 
Iter. 

Heat 
Flux(**) 

Force(**) # Iter. Strain(*)   Iter. Strain(*) 

10 
1.0 

1 
2 
3 

1.77 x10-1

8.04 x10-3 
3.62 x10-4 

2.00 x10-2

6.24 x10-4 
2.77 x10-5 

2 
2 
2 

2.99 x10-8 
3.03 x10-8 
3.04 x10-8 

1 
2 

2.95 x10-6 
3.04 x10-8 

3.0 
1 
2 

2.41 x10-2

9.67 x10-4 
7.04 x10-4

9.38 x10-6 
2 
2 

2.62 x10-8 
2.67 x10-8 

1 
2 

2.61 x10-6 
2.67 x10-8 

20 
1.0 

1 
2 

1.62 x10-1

4.64 x10-3 
4.82 x10-2

3.63 x10-3 
2 
2 

3.01 x10-9 
1.82 x10-7 

1 
2 

7.21 x10-6 
1.82 x10-7 

7.0 
1 
2 

6.03 x10-3

2.52 x10-4 
1.63 x10-4

3.79 x10-6 
2 
2 

1.46 x10-7 
1.48 x10-7 

1 
2 

5.61 x10-6 
1.48 x10-7 

30 
1.0 

1 
2 
3 
4 
5 

4.28 x10-1

1.58 x10-1 
3.35 x10-2 

6.19 x10-3 

1.13 x10-3 

1.28 x10-1

1.53 x10-2 
2.80 x10-3 

4.87 x10-4 

8.97 x10-5 

3 
2 
2 
3 
3 

2.57 x10-7 
5.01 x10-7 
9.31 x10-7 
1.48 x10-7 
1.51 x10-7 

1 
2 
3 

2.11 x10-5 
1.02 x10-6 
1.51 x10-7 

5.0 
1 
2 

1.19 x10-2

6.32 x10-4 
1.78 x10-4

1.60 x10-5 
2 
2 

4.85 x10-8 
5.04 x10-8 

1 
2 

1.03 x10-5 
5.04 x10-7 

40 

1.0 

1 
2 
3 
4 
5 
6 
7 

2.91 x100

1.45 x100 
5.19 x10-1 
1.66 x10-1 
5.09 x10-2 

1.53 x10-2 

4.55 x10-3 

2.68 x10-1

4.47 x10-2 
1.56 x10-2 
4.39 x10-3 
1.30 x10-3 

3.85 x10-4 

1.14 x10-4 

4 
3 
3 
4 
4 
4 
4 

4.44 x10-7 
7.32 x10-7 
6.41 x10-7 
1.06 x10-7 
1.18 x10-7 
1.22 x10-7 
1.24 x10-7 

1 
2 
3 
4 

6.45 x10-5 
5.20 x10-6 
1.22 x10-6 
1.24 x10-7 

3.0 
1 
2 
3 

5.97 x10-2

5.44 x10-3 
2.35 x10-4 

9.55 x10-4

1.78 x10-4 
3.51 x10-6 

3 
3 
3 

3.31 x10-7 
4.33 x10-7 
4.42 x10-7 

1 
2 
3 

2.22 x10-5 
1.78 x10-6 
4.42 x10-7 

* Strain residual at converged step in the material level. Convergence at material level set to be ||R||<10-6. 
** Convergence at element level for both heat flux and force set to be ||R|| < 5x10-3. 
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Figure 2.19 Thermo-viscoelastic analyses under linear stress and temperature ramp 
loadings. (a) strain and (b) temperature increase. 

 

because the temperature generation due to the mechanical load lowers the temperature 

gradient and thus, the heat conduction takes place slowly. 

The convergence behavior at the element and material levels for the case 3 is 

shown in Figure 2.20. The residuals behavior during iteration process at initial time 
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Figure 2.20 Residuals during iteration process for thermo-viscoelastic analyses under 
linear stress and temperature ramp loadings. (a) heat flux (b) force and (c) strain. 
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increment size of t=1sec. and at final step time of t=40 sec. are plotted. The fast 

convergence rate is observed at both levels. The nonlinear parameters, especially 

( )1
tg σ near 40MPa stress, increase drastically and therefore more iterations are required 

for convergence at the material level. Figure 2.20 (c) shows that the number of iterations 

can be reduced for the same time increment if ( )1
tg σ is considered to be equal to 1. 

In summary, the numerical algorithm is developed to predict the fully coupled 

nonlinear thermoviscoelastic response of isotropic homogeneous materials. For linear 

viscoelastic materials, the proposed algorithm has been successfully verified with 

analytical solutions. The study of the convergence behavior for different types of 

loadings demonstrated the efficiency of the algorithm in predicting the coupled heat 

conduction and deformation of nonlinear isotropic homogeneous viscoelastic materials. 

The fully coupled thermoviscoelastic response is important for cases when structures 

made of polymers are subjected to cyclic loadings over a long period. The nonlinear 

stress and temperature dependent material parameters should be account for when 

analyzing response of polymeric materials under cyclic loadings at moderate amplitudes 

and frequencies over a relatively long period. Moreover, the conduction plays a 

considerable role in predicting the factual temperature fields within structures having a 

non-uniform heat generation under a cyclic loading; these temperature fields can 

significantly alter the properties of polymer structures, affecting their overall response. 
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CHAPTER III 

A MICROMECHANICAL MODEL FOR PARTICULATE COMPOSITE* 

This chapter presents a micromechanical model for predicting effective thermal 

properties (linear coefficient of thermal expansion and thermal conductivity) and 

mechanical properties of viscoelastic composites having solid spherical particle 

reinforcements. A representative volume element (RVE) of the composites is modeled 

by a single particle embedded in a cubic matrix. The micromechanical model consists of 

four particle and matrix subcells. The micromechanical relations are formulated in terms 

of incremental average field quantities, i.e., stress, strain, heat flux and temperature 

gradient, in the subcells. Stress and temperature dependent viscoelastic constitutive 

models are used for the isotropic constituents in the micromechanical model. The 

thermal properties of the particle and matrix constituents are temperature dependent. The 

effective mechanical properties and coefficient of thermal expansion are derived by 

satisfying displacement- and traction continuities at the interfaces during thermo-

viscoelastic deformations. This formulation leads to an effective time-temperature-

stress-dependent coefficient of thermal expansion of the particulate composite. The 

effective thermal conductivity is formulated by imposing heat flux- and temperature  

continuities at the subcells’ interfaces. When a nonlinear and time-dependent response is 

 
 
 
 
*Reprinted with permission from “Effective thermal properties of viscoelastic 
composites having field-dependent constituent properties” by Khan, K.A., Muliana, 
A.H., 2010. Acta Mech., 209(1-2), 153-178, DOI: 10.1007/s00707-009-0171-6, 
Copyright 2010 by Springer-Verlag. 
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considered, an incremental formulation consisting of a linearized prediction and an 

iterative scheme is derived to obtain the effective material properties and field variables 

of the composite. The effective thermal properties obtained from the micromechanical 

model are compared with the analytical solutions and experimental data available in the 

literature.  

 
3.1 EFFECTIVE THERMAL AND MECHANICAL PROPERTIES OF A 

PARTICULATE COMPOSITE 

A simplified micromechanical model is formulated to determine the effective thermal 

and mechanical properties of homogenized composites by incorporating microscopic 

characteristics. Muliana and Kim (2007) developed a simplified micromechanical model 

for determining the effective viscoelastic responses of a particle reinforced polymer 

composite. In this study, the above-mentioned micromechanical model is modified to 

determine the effective thermal properties and thermo-viscoelastic response of particle 

reinforced composites. Figure 3.1 illustrates the simplified micromechanical model for 

the composite with randomly distributed solid spherical particles in a homogeneous 

matrix. The solid spherical particulate composites are idealized with uniformly 

distributed arrays of cubic particles. The gradient of the volume contents of the particles 

is assumed zero. A representative volume element (RVE) is defined as a cubic particle  
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Figure 3.1 Representative unit-cell model for the particle reinforced composites. 

 
embedded in the center of the matrix with cubic domain. Periodic boundary conditions 

are imposed to the RVE. A one eight unit-cell consisting of four subcells is modeled due 

to three-plane symmetry.  The first subcell is a particle constituent, while the subcells 2, 

3, and 4 represent the matrix constituents. The micromechanical relations provide 

equivalent homogeneous material responses from the heterogeneous microstructures and 

simultaneously recognize nonlinear behaviors of the individual constituents due to 

prescribed boundary conditions. The micromechanical formulations are designed to be 

compatible with general finite element structural analyses, i.e., ABAQUS in which the 
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effective responses from the micromechanical are implemented at each material point 

(Gaussian integration point) within the finite elements.  

A percolation effect is primarily associated with the random or disordered media 

Stauffer (1985). In other words, this notion is more important in the modeling of the 

composite in which the dispersion of the inclusion is random in nature. Moreover, this 

issue is more important to examine whenever the distribution of the inclusion is describe 

using some probability distribution function. In the proposed micromechanical model, a 

statistically homogeneous distribution of inclusions is assumed. The micromechanical 

model is formulated by assuming all particles are fully surrounded by matrix and 

periodic boundary conditions are imposed to the selected unit-cell model. In reality, 

there often exists contact between particles. As the particle content in the composites 

increases contacts among particles become more pronounced and in some composites 

interpenetrating between the constituents (sometimes refer to as percolation) are also 

observed, making it difficult to distinguish the inclusion and matrix constituents. 

Interpenetrating between constituents and percolation can significantly alter the effective 

properties of composites (Torquato, 2002).  Torquato (2002) has also discussed that a 

constituent/phase inversion in composites is another crucial microstructural feature in 

estimating the overall performance of composites. Thus, the present micromechanical 

model, which requires defining inclusion and matrix constituents, is not suitable to 

predict overall composite responses when the effect of percolation on the overall 

response of composite is significant. 
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3.1.1 FORMULATION OF THE EFFECTIVE COEFFICIENT OF THERMAL 

EXPANSION 

The micromechanical relation for the effective CTE of the studied composite is 

derived in terms of the nonlinear time-stress-dependent moduli and temperature 

dependent CTE of each constituent. Each unit-cell is divided into a number of subcells 

and the spatial variation of the displacement field in each subcell is assumed such that 

the stresses and deformations are spatially uniform. The macroscopic effective properties 

of a heterogeneous medium are approximated using volume average of the properties of 

the individual constituents.  

For the thermo-elastic problems, the scalar components of the effective stress ( ijσ ) 

and strain ( ijε ) of the composites are related by the following constitutive equations: 

( )[ ]0ij ijkl kl klC T Tσ ε α= − −        or  (3.1) 

( )0ij ijkl kl ij

M T
ij ijS T Tε σ α ε ε= + − = +                               (3.2) 

where ijklC  and ijklS  are the components of the effective elastic stiffness and compliance 

tensors, respectively; and klα  are the components of the effective CTE. Variables M
ijε and 

T
ijε are the components of effective total mechanical and thermal strains, respectively. 

The parameters T  and 0T  are the effective current and reference temperatures, 

respectively. The elastic constants and CTEs of the particle and matrix are stress-

temperature dependent, resulting in stress-temperature-dependent effective thermo-

mechanical properties. The goal of the micromechanical model formulation is to obtain 
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ijklC  or ijklS  based on the constitutive relations in each constituents and microstructural 

geometry, i.e. RVE. The constitutive relations for a linear thermo-elastic problem in 

each constituent (m) are expressed by: 

( )[ ]0

( ) ( ) ( ) ( ) ( )m m m m m
ij ijkl kl klC T Tσ ε α= − −  or                 (3.3) 

( )0

( ) ( ) ( ) ( ) ( ) ,( ) ,( )m m m m m
ij ijkl kl ij

M m T m
ij ijS T Tε σ α ε ε= −+ = +        (3.4) 

Due to the assumption that the RVE’s length scale (micro-scale) is much smaller 

than the structural (macro) scale, the steady state condition within each unit-cell 

(material point of a composite) of the RVE is reached in a very short time period as 

compare to the overall time response. Therefore, the transient heat transfer analysis 

within a unit-cell can be ignored and temperatures are assumed to vary at the 

macroscopic (material) points. This assumption leads to the representation of the 

incremental and total temperature within each unit-cell of the RVE and their sub-cells at 

the steady state condition as: 

,( )t m tdT dT=             (3.5) 

,( ) ,( ) ,( )t m t dt m t mT T dT−= +            (3.6) 

A volume averaging method is used to evaluate the effective response of a unit-cell 

(micromechanical model).  The traction continuity at the interface between each sub-

cells is satisfied in an average sense, which allows expressing the average stresses and 

strains by: 
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( )

( ) ( ) ( ) ( ) ( )

1 1

1 1( )
m

N N
m m m m m

ij ij k ij
m mV

x dV V
V V

σ σ σ
= =

= ≈∑ ∑∫          (3.7) 

( )

( ) ( ) ( ) ( ) ( )

1 1

1 1( )
m

N N
m m m m m

ij ij k ij
m mV

x dV V
V V

ε ε ε
= =

= ≈∑ ∑∫          (3.8) 

An overbar indicates effective field variables.  The superscript ( m ) denotes the subcell’s 

number and N is the number of subcells.  The stress ( )m
ijσ and strain ( )m

ijε are the average 

stress and strain in each subcell.  The unit-cell volume V is:  

( )

1

N
m

m

V V
=

= ∑ , N = 4               (3.9) 

The volume of the unit-cell is taken as one.  The volume of the subcell 1 represents 

the volume content of the particle which is model as a cube of edge length b. Thus, the 

magnitude of b is always less than one.  The volumes of the four subcells are then 

expressed as: 

(1) 3 (2) 2 (3) (4), (1 ), (1 ), (1 )V b V b b V b b V b= = − = − = −                                       (3.10) 

In this study, the elastic properties and CTE of the constituents are allowed to change 

with time, stress, and temperatures, which result in nonlinear stress-strain relations. To 

solve the nonlinear equations, linearized predictor and corrector schemes are formulated 

and Eqs. (3.1)-(3.4) are then satisfied in incremental relations. Within the FE analyses, 

the total stress, mechanical and thermal strains at current time t are defined by: 
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-

, , - ,

, , - ,

( ), ( ), - ( ),

( ), ( ), - ( ),

( ), ( ), - ( ),

t t dt t
ij ij ij

M t M t dt M t
ij ij ij

T t T t dt T t
ij ij ij

m t m t dt m t
ij ij ij

M m t M m t dt M m t
ij ij ij

T m t T m t dt T m t
ij ij ij

d

d

d

d

d

d

ε

ε

σ σ σ

ε ε ε

ε ε ε

σ σ σ

ε ε

ε ε

+

+

+

+

+

+

=

=

=
=

=

=

         (3.11) 

The superscript  - dt t  indicates quantities at the previous converged time and prefix d 

denotes an incremental quantity at the current time increment. Due to the time-dependent 

and nonlinear response of the matrix sub-cells, the linearized micromechanical relations 

violate the constitutive relations. An iteration scheme is added to minimize the residuals 

aroused from the linearization. The converged solution satisfies both micromechanical 

relations and non-linear time-dependent constitutive equations. 

In this study, the micromechanical model is designed to be compatible with 

displacement based FE structural analyses in which the effective mechanical strains 

( ,d M t
klε ) are the independent variables. Following Hill (1965) method, the average 

stresses and strains in each subcell can be expressed in terms of the effective stress and 

strain by defining a concentration tensor. This study defines a strain interaction tensor 

( ( ),m tB ), which relates the incremental average mechanical strains in each 

subcell, ( ),
ij

M m tdε , to the effective incremental  strain, ,d M t
klε :  

,( ), ( ), ,M m t m t M t
ij ijkl kld B dε ε=            (3.12) 

Using the incremental strain in Eq. (3.12), the incremental stress in the subcell (m) 

can be written as: 
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( ), ( ), ( ), ,  m t m t m t
ij ijkl klrs

M t
rsd C B dσ ε=              (3.13) 

Substituting Eq. (3.12) into the incremental form of Eq. (3.7) gives the effective 

incremental stresses: 

( )

1

( ), ( ), ,1   
N

m

m

t m t m t M t
ij rsijkl klrsV

V
d C B dεσ

=

= ∑              (3.14) 

The unit-cell effective tangent stiffness matrix t
ijrsC   is then determined by: 

 ( ) ( ), ( ),

1
  1t

ijrs

N
m m t m t

ijkl klrs
m

C V C BV =
= ∑                         (3.15) 

The ( ),m t
ijklB

 
is the fourth order tensor, which can be obtained by satisfying the 

micromechanical relations and the constitutive equations. Detailed formulation of ( ),m t
ijklB  

can be found in Muliana and Kim (2007). 

The micromechanical relations within the four subcells are derived by assuming 

perfect bonds along the interfaces of the subcells. The homogenized incremental strain 

relations after imposing the displacement compatibility at the subcells’ interfaces are 

given as: 

(1) (1), ( 2 ) ( 2 ),

(1) (1), ( 2 ) ( 2 ),

( 3 ), (3 ), ( 4 ), ( 4 ),

, ,
(1) (2)

(1) (2)

; , 1, 2, 3

1

1

M t M t

ij ij

T t T t

ij ij

M t T t M t T t

ij ij ij ij

M t T t
ij ijd d V d V d

V d V d

d d d d for i j i j

V V

V V

ε ε ε ε

ε ε

ε ε ε ε

= +

+

= = = =

+ ⎡ ⎤⎣ ⎦+

+ ⎡ ⎤⎣ ⎦+
+ +

(3.16) 

(1) (1), (2) (2), (3) (3), (4) (4),t t t t t
ij ij ij ij ijd V d V d V d V d for i jγ γ γ γ γ= + + + ≠    (3.17) 
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The homogenized stresses after imposing the traction continuity at the subcells’ 

interface can be expressed as: 

( ) ( ), (3) (3), (4) (4),

( ), (1), (2),

t A A t t t
ij ij ij ij

A t t t
ij ij ij

d V d V d V d for i j

d d d

σ σ σ σ

σ σ σ=

= + + =

=
     (3.18) 

(1), (2), (3), (4),t
ij

t t t t
ij ij ij ijd d d d d for i jσ σ σ σ σ= = == ≠      (3.19) 

where the total volume of the subcells 1 and 2 in Eq. (3.18) is V(A) = V(1) + V(2) 

Using the micromechanical relations in Eq. (3.18) and thermo-elastic constitutive 

relations for the particle and matrix subcells, the incremental form of the effective stress-

strain relations for the particle reinforced composite are:  

( ), (3) (3), ( 4) ( 4),

( ), ( ), (3) (3), (3), ( 4) ( 4), ( 4),

( )

( )

1
-

, , , 1, 2,3

tt A t t t
klij ijkl ijkl ijkl

A t A t t t t t
ijkl kl ijkl kl ijkl kl

A

A

C V C V C d
V

dT
C V C V C

V
for i j and k l i j k l

d V

V

ε

α α α

σ + +

+ +

= = =

⎡ ⎤= ⎣ ⎦

⎡ ⎤⎣ ⎦      (3.20) 

Eq. (3.20) can be rewritten as: 

( ), ( ), (3) (3), (3), ( 4) ( 4), ( 4),( )-

-

t t t A t A t t t t t
klij ijkl ijkl kl ijkl kl ijkl kl

t t
ijkl kl

A

t
kl

dT
d C V C V C

V

d

d C V

C dT

ε α α ασ

ε α

= + +

=

⎡ ⎤⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

   (3.21) 

The effective consistent tangent CTE in Eq. (3.21), for the isotropic nonlinear 

response, is then expressed as: 

( ), ( ), (3) (3), (3), ( 4 ) ( 4 ), ( 4 ),

1,
( )tt A t A t t t t t

ij ij ijkl kl ijkl kl ijkl kl

t
ijkl A C V C V C
V

C Vα δ α α αα
−

= = + +⎡ ⎤⎣ ⎦   (3.22) 
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where ( ),A t
ijα and ( ),A t

ijklC  in Eq. (3.21) are the effective thermal expansion and stiffness 

expressions for the subcells 1 and 2. The scalar components of ( ),A t
ijα  and ( ),A t

ijklC  can be 

expressed in the following equations: 

( ), ( ), (1) (1), ( 2) ( 2),1A t A t t t
ij ij ij ijA

V V
V

α α δ α α= = +⎡ ⎤⎣ ⎦ , and               (3.23) 

( ), -1,A t
ijkl

t
ijklC X=

                                    (3.24) 

where 
(1) (1) -1, (2) (2) 1,1t t t

ijkl ijkl ijklAX V C V C
V

−= ⎡ ⎤+⎣ ⎦ .           (3.25) 

It is seen that the effective tangent CTE in Eq. (3.22) within an incremental time step 

depends on the time-dependent moduli and CTE of each constituent. Thus, for the stress, 

temperature and time-dependent constituent mechanical and thermal properties, the 

effective CTE also varies with stress, temperature and time.  

In order to formulate the strain interaction matrix ( ( ),m tB ) introduced in Eq. (3.12), 

the micromechanical relations and constitutive equations are imposed. The 

micromechanical model consists of four subcells with six components of strains need to 

be determined for every subcell.  This requires forming 24 equations.  The first sets of 

equations are determined from the strain compatibility equations which are given as: 

{ }

(1)

(2)

1 1(3)
(6x1)(12x1) (12x24) (12x6)

(4)

(24x1)

{ }M M
ε

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤ ⎡ ⎤= −⎨ ⎬⎣ ⎦ ⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭

R A D

ε
ε
ε
ε

ε               (3.25) 
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where Rε is the residual vector arising from imposing the strain compatibility relations.  

In the case of linear elastic response is exhibited for all subcells, the vector Rε is zero.  

The second sets of equations are formed based on the traction continuity relations. The 

equations based on the traction continuity relations within subcells: 

{ } [ ]

(1)

(2)
,

2 (3)
(6x1)(12x1) (12x6)(12x24)

(4)

(24x1)

{ }M t
σ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤= −⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭

R A

ε
ε

Ο ε
ε
ε

          (3.26) 

The residual vector Rσ results from satisfying the traction continuity relations.  For linear 

elastic constituents, the components of Rσ are zero.  The matrix O is the zero matrix and 

the components of matrix 1
MA , ,

2
M tA and 1

MD  are given as follows: 

(1) ( 2)

( ) ( )

(1) (2)

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
1

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) (

3x3 3x3 3x3 3x3 3x3 3x33x3 3x3

3x33x3 3x3 3x3 3x3 3x3 3x3 3x3

3x33x3 3x3 3x3 3x3 3x3 3x3 3x3

3x3 3x33x3 3x3 3x

A A
V V
V V

M

V V

=

I 0 I 0 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 0 I 0

0 I 0 I 0

A

(3) (4)

( ) ( )) ( )3x3 3x33 3x3
V V

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I 0 I

    (3.27) 

(1) (2)
ax ax( ) ( ) ( ) ( ) ( ) ( )( ) ( )

(1) (1)
sh sh( ) ( ) ( ) ( ) ( ) ( )( ) ( ),

2 (1) (3)
sh sh( ) ( ) ( ) ( ) ( ) ( )( ) ( )
(1)
sh( ) (

3x3 3x3 3x3 3x3 3x3 3x33x3 3x3

3x3 3x3 3x3 3x3 3x3 3x33x3 3x3

3x3 3x3 3x3 3x3 3x3 3x33x3 3x3

3x3 3x

-

- -

-

-

M t =

C 0 C 0 0 0 0 0

0 C 0 C 0 0 0 0

0 C 0 0 0 C 0 0

0 C

A

(4)
sh( ) ( ) ( ) ( ) ( )) ( )3x3 3x3 3x3 3x3 3x33 3x3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0 0 0 C

   (3.28) 

where:  
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1111 1122 1133

2211 2222 2233

3311 3322 3333

ax

C C C
C C C
C C C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C  , 1212

1212

1212

sh

C 0 0
0 C 0
0 0 C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C        (3.29) 

M

1

(3x3) (3x3)

(3x3) (3x3)

(3x3) (3x3)

(3x3)(3x3)

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D

I 0

I 0

I 0

0 I

           (3.30) 

The ( ),m tB matrices in Eq. (3.12) are then formed using Eqs. (3.25) and (3.26), which in 

linearized relations are: 

 

[ ]
1

1 1

,
2(24x6)

(24x6)(24x24)

( ),
M M

M t

m t
−

=
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

A D
B

A O
          (3.31) 

 
Once the ( ),m tB matrices are determined, the effective homogenized stresses and stiffness 

matrix can be solved using Eqs. (3.14) and (3.15), respectively. 

 
3.1.2 FORMULATION OF THE EFFECTIVE THERMAL CONDUCTIVITY 

A volume averaging method based on a spatial variation of the temperature 

gradient in each subcell is adopted to determine the effective thermal conductivity of the 

particle reinforced composites. The average heat flux and temperature gradient are: 

( )

( ) ( ) ( ) ( ) ( )

1 1

1 1( )
m

N N
m m m m m

i k ii
m mV

q q x dV V q
V V= =

= ≈∑ ∑∫          (3.32) 

( )

( ) ( ) ( ) ( ) ( )

1 1

1 1( )
m

N N
m m m m m

i i k i
m mV

x dV V
V V

ϕ ϕ ϕ
= =

= ≈∑ ∑∫              (3.33) 
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The average heat flux equation for a homogeneous composite medium is expressed 

by the Fourier law of heat conduction as: 

 - t t
ij j

t
iq K ϕ=   

t

j

t
j

dT
dx

where ϕ =           (3.34) 

It is noted that the components of the conductivity tensor,
t

ijK , varies with temperature as 

the thermal conductivity for each constituent is allowed to vary with temperature. The 

heat flux at the current time within a FE scheme is solved numerically as: 

  -  
 

t t dt t
i i iq q d q+=                (3.35) 

In uncoupled thermo-mechanical problems in which the dissipation of energy is 

neglected, the temperature field can be solved without the knowledge of the stress-strain 

fields. However, for fully coupled thermo-mechanical problems the temperature field 

must be obtained by taking into account the heat generation due to the dissipation of 

energy in viscoelastic bodies. The incremental heat flux can be written as 

- t
ij

t t
ji dd q K ϕ=                          (3.36) 

The homogenized temperature gradient and heat flux relations are summarized as 

follows: 

(1) (1), (2) (2),
( )

(3), (4),1t t t
i i iA

t t
i id V d V d d d

V
ϕ ϕ ϕ ϕ ϕ⎡ ⎤+ = =⎣ ⎦=                           (3.37) 

( ) ( ), (3) (3), (4) (4),1t

i
A A t t t

i i idq d d dV q V q V q
V

⎡ ⎤⎣ ⎦+ +=                                    (3.38) 

( ), (1), (2),A t t t
i i idq q dqd ==               (3.39) 

where the total volume of the subcells 1 and 2 in Eqs. (3.37) and (3.38) is  
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V (A) =V (1) +V (2).  

We introduce a concentration tensor that relates the average temperature gradient of 

each subcell with the overall temperature gradient across the unit cell. Let ( ),m tM be the 

concentration tensor of the temperature gradient. The temperature gradient in each 

subcell is given by 

( ),( ), tm t
jij

m t
i dMd ϕϕ =                                                              (3.40) 

and the incremental form of the heat flux in each subcell is expressed as: 

( ),( ), ( ),- t

k
m t

jk
m t m t

i ij ddq K M ϕ=                                             (3.41) 

The average heat flux in the unit-cell model is approximated as: 

4
( ) ( ),

1

1t m m t
ii

m

dq V dq
V =

= ∑  (3.42) 

Substituting Eq. (3.41) into (3.42) gives:  

4
( ) ( ),

1

( ),1 -
t tm m t

jk ki
m

m t
ijd V d

V
q K M ϕ

=

= ∑                        (3.43) 

Comparing the above equation with Eq. (3.36) gives the tangent effective thermal 

conductivity matrix of the composite, which is: 

4
( ) ( ),

1

( ),1- t
ik

m m t
jk

m

m t
ijV

V
K K M

=
= ∑                   (3.44) 

To formulate the ( ),m tM  matrix that relates the average subcells temperature gradient 

with the overall temperature gradient across the unit cell, the micromechanical relations 

and the constitutive equations are imposed. The present micromechanical model consists 

of four (4) subcells with three (3) components of heat flux need to be determined for 
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every subcell.  This requires forming twelve (12) equations.  The first sets of equations 

are determined from the temperature continuity at the interface of each subcell in Eq. 

(3.37), which leads to the following equation: 

(1),

(2),

1 1(3),

(4),

(3x1)(9 x 12) (9x3)

(12x1)

{ }ti

t
i

t
i

t
i

t
i

d

d
d

d

d

ϕ

ϕ

ϕ

ϕ

ϕ

⎧ ⎫
⎪ ⎪
⎪ ⎪

⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦
⎪ ⎪
⎪ ⎪
⎩ ⎭

=A D                        (3.45) 

The second sets of equations are formed based on heat flux continuity relations, Eq. 

(3.38) which can be expressed as: 

[ ]2

(1),

(2),

(3),

(4),

(3x1)(3x3)(3x12)

(12x1)

{ }t

t
i

t
ti
it

i

t
i

d

d
d

d

d

ϕ

ϕ
ϕ

ϕ

ϕ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤ =⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪
⎩ ⎭

A O                           (3.46) 

By substituting Eq. (3.40) to Eqs. (3.45) and (3.46), the ( ),m tM matrix can be 

determined, which is: 

1

1 1

2(12x3)
(12x3)(12x12)

( ),
t

m t
−

=
⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

A D
M

A O
            (3.47) 

 The matrix O is the zero matrix and the components of matrix 1A , 2
tA and 1D are 

given as follows: 
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(3x3) (3x3)
(3x3) (3x3)

1 (3x3)(3x3) (3x3) (3x3)

(3x3)(3x3) (3x3) (3x3)

(1) (2)

(A) (A)
V V
V V

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I I 0 0

0 0 I 0

0 0 0 I

A                          (3.48) 

(1), (2),
2 (3x3) (3x3) (3x3) (3x3)
= -t tt K K⎡ ⎤

⎢ ⎥⎣ ⎦
I I 0 0A                   (3.49) 

(3x3)

1 (3x3)

(3x3)

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I

D I

I

          (3.50) 

 
3.1.3 FORMULATION OF THE EFFECTIVE ENERGY EQUATION 

In this section, the effective coupled energy equation for the thermoviscoelastic 

composite materials is presented. The expression for the effective heat flux, temperature 

gradient and thermal conductivity were already obtained in section 3.1.2 through the 

micromechanical modeling approach. The effective heat capacity is defined by volume 

average of the constituents.  

The energy equation for an isotropic homogeneous material was derived in Chapter 

II, which can be written as follows: 

,
,

E t t
dis ii disc T w kT wσρ + = +         (3.51) 

where ,E t
disw and t

disw are the thermo-elastic and viscous energy dissipation, respectively, 

and expressed as 
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( ) ( )

, 0

,
1 2

0

( , )( ) ( ) ( )

( , ) ( , )

E t e
dis kk kk kk ijkl ij kl

t t t vis t t
dis ij ij

g TT Tw TT T T T T D
T T T

d dw g T dD g T d
dt d

ψ
τ τ τ

σα ασ θσ α σ σ σ

σ σ ψ ψ σ σ τ
τ

∂∂ ∂
= + + +

∂ ∂ ∂

= −∫
  (3.52) 

Taking the volume average of Eq. (3.51) over the volume V of the unit cell, the 

following energy equation results 

,
,

E t t
dis ii disc T w kT wσρ + = +         (3.53) 

The effective density and specific heat at a constant stress can be expressed as 

( ) ( )

1

1 N
m m

m
V

V
ρ ρ

=

≈ ∑          (3.54) 

( ) ( )

1

1 N
m m

m
c V c

Vσ σ
=

≈ ∑          (3.55) 

The two effective heat generations terms can be expressed in a similar way as 

, ( ) , ( )

1

1 N
E t m E t m
dis dis

m
w V w

V =

≈ ∑
         

(3.56)
 

( ) ( )

1

1 N
t m t m
dis dis

m
w V w

V =

≈ ∑
         

(3.57) 

In addition to these effective field variables we also need to find out the effective 

Jacobians, i.e., t
ijklC , t t

ij Tσ∂ ∂ , t t
dis ijw ε∂ ∂ , t t

disw T∂ ∂  etc. The effective stiffness matrix 

t
ijklC  is given in Eq. (3.15) while the other effective Jacobians are simply the volume 

averages of the subcell’s Jacobians. 

The numerical algorithm for the nonlinear coupled thermoviscoelastic behavior of 

the particulate composite under general mechanical and temperature loading histories is 
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presented. The algorithm is implemented in displacement based FE structural analyses.  

Linearized solutions of the nonlinear constitutive equations and iterative schemes are 

performed at the macro (structural), micro and constituent levels. At the structural level, 

the default, the default ABAQUS (2005) iterative solver is used for the solution of 

nonlinear equations. At the micro level the micromechanical relations along with the 

nonlinear thermoviscoelastic constitutive equations at each subcells must be satisfied 

simultaneously. Therefore, an iterative scheme is added at the micro and material levels 

to minimize errors arising from the linearization of nonlinear response and/or time-

dependent constituent at the subcells. The linearized micromechanical relations are 

satisfied only when all subcells exhibit linear elastic response. The numerical algorithm 

for fully coupled thermoviscoelastic analyses of particulate composite is summarized in 

Figure. 3.2. 

The numerical algorithm to analyze coupled thermoviscoelastic response is 

integrated with the ABAQUS/standard FE code. At each integration point in the FE 

mesh, the user subroutines UMATH and UMAT are called. Within UMAT, the 

numerical algorithm to obtain the effective nonlinear thermo-viscoelastic response of the 

particulate composite is defined, which is used to provide the effective stresses, 

consistent tangent stiffness matrix ,( )t k
ijklC , stress variation with respect to strain 

( t t
ij Tσ∂ ∂ ), heat generated rate ( t

disw ), variation of heat generation with respect to strain 

( t t
dis ijw ε∂ ∂ ) and temperature ( t t

disw T∂ ∂ ). The effective thermal constitutive behavior is 

defined within UMATH which is used to define and update the effective internal 
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energy t,(k)E , variation of internal energy with respect to temperature ( )t,(k)d dTE  and 

temperature gradient ( )t,(k)d dgE , heat flux t,(k)
iq , heat flux variation with respect to 

temperature ( )t,(k)d dTiq and temperature gradient ( )t,(k)d dgiq .  

Now, the numerical algorithm within the UMAT subroutine is described in detail. 

Let the superscript (k) denotes the global iteration counter within the current incremental 

time step. At each global iteration within the incremental time-step ( )kdt , trial 

incremental effective strain tensor ,( )t k
ijdε  and temperature ,( )t kdT  are obtained, as 

illustrated in Figure 3.1. The goal is to calculate the effective stresses and Jacobians 

from given current variables and history variables stored from the previous converged 

solution at time ( )t dt− . The converged t
ijσ  and effective Jacobians after K global 

iteration at the current time t will be used to provide incremental trial strains for the next 

time step ( )t dt+ .  Due to the coupled thermo-mechanical problems, the trial incremental 

temperature ,( )t kdT  is directly linked to the incremental time step.  However, for each 

global iteration, the temperature is obtained from solving the effective energy equation 

(3.53).  

In this study the solution for the thermal and deformation fields are done 

incrementally due to the nonlinear and time-dependent constitutive response in the  
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Figure 3.2 Numerical algorithm for the coupled thermo-viscoelastic behavior of 
particulate composite. 
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constituents. At the beginning of time increment using the backward Euler method, the 

linearized micromechanical relations are used to define the trial stresses and strains for 

each sub-cell. Due to the nonlinear and viscoelastic response in the matrix subcells, the 

linearized micromechanical relations result in non-zero residual vectors when the 

traction continuity and displacement compatibility at the subcells inter-faces are 

imposed. The strain-stress correction algorithm is needed to minimize the residual 

vectors. Since the stress and strain in each sub-cell are related through the constitutive 

relations, the correction is performed only for 24 independent variables. To minimize the 

residual the Newton–Raphson (NR) typed iterative method is used. In this study, the 

corrections are done for the strain and therefore the components of total strains in each 

sub-cell ( ), ( ), ( ),t t t t
ij ij ijdα α αε ε ε−∆= +  are chosen as independent variables, which are 

{ }(1), (2), (3), (4),

(1 24)

T t t t t

x
X ε ε ε ε=                         (3-58) 

The stress components in the sub-cells depend on the independent variables ijX . The 

residual vector { },σ ε=R R R  given in Eqs. (3-25) and (3-26) are used to correct for the 

trial solution. This requires defining the Jacobian tensor, which is given by 

(1) (2)

(1) (2)

(1) (3)

(1) (4)

1 2

(1) (2) (3) (4)
(24  24)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0

ax ax

sh sh

sh sh

ij sh sh

kl

x

C C
C C
C C

R C C
X f I f I

I
I

V I V I V I V I

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

∂⎡ ⎤ −⎢ ⎥=⎢ ⎥ ⎢ ⎥∂⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                    (3-59) 
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)2()1(

)1(

1 VV
Vf

+
= ,         

)2()1(

)2(

2 VV
Vf

+
=                   (3-60) 

where I and O are the 3x3 identity and zero matrices, respectively. A solution is said to 

be converged when all residual vectors defined using the micromechanical relations and 

for the time-dependent constitutive equations are diminished. The following procedure is 

performed at every material (Gaussian) integration point within elements at each 

structural iteration to achieve convergence at the structural, micromechanical and 

material levels simultaneously.   

 

th

,( ) ( ) ,( )

1. Input variables: (At the globaliteration)
, ,

, , ,

t k k t k
ij

t t t t t t t t
ij ij

k
d dt dT

T Hist

ε

ε σ−∆ −∆ −∆ −∆

 

      1.1 Calculate: ,( ) ,( )t k t t t k
ij ij ijdε ε ε−∆= + , 

,( ) ,( )t k t t t kT T dT−∆= +

 
 

2.  Initial linearized approximation variables: 
 

( ), , ( ),( , ),  1, 2,3, 4t tr t dt
ijkl ijklB C Vα α α− =  

( ), , , ( ), , ,( ),t tr M t tr t k M
ij ijkl kld B dα αε ε= ,    ( ), , ( ), ( ), , ,t tr t t tr M

ij ijkl ijd C dα α ασ ε=  
( ), , ( ), ( ), ,t tr t t t tr
ij ij ijdα α αε ε ε−∆= + , ( ), , ( ), ( ), ,t tr t t t tr

ij ij ijdα α ασ σ σ−∆= +  
 

3.  Iterate for m = 1, 2, 3. . . (m = local iteration counter at the micro level) 
 
3.1 Evaluate stresses at all subcells to obtain ( ), ,( 1) ( ), ,( ),t m t m

ij ijklCα ασ + (recursive 
iterative algorithm, Chapter II) 
 
3.2 Compute the strain correction at all subcells: 

Define: 
1,( )

,( 1) ,( ) ,( )
t m
ijt m t m t m

ij ij kl
kl

R
X X R

X

−

+ ⎡ ⎤∂
= + ⎢ ⎥

∂⎢ ⎥⎣ ⎦
 for the total strain correction 

3.3 Evaluate residual vector: { },( 1) ,( 1) ,( 1)( ) , ( )t k t k t k
ij ij ijR R Rσ ε

+ + +=  

IF TolR kt
ij ≤+ )1(,   THEN GOTO 4 and EXIT 
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ENDIF GOTO 3 
 

,( 1) , ,( 1) ,( )4. Update: , ,t k t k t k t k t
ij ij ijkl ijklC C Histσ σ+ +→ →

 
                           , , ,t t t t t t t

dis ij dis ij disw T w w Tσ ε∂ ∂ ∂ ∂ ∂ ∂  
 

3.2 NUMERICAL IMPLEMENTATION AND VERIFICATION 

The proposed micromechanical model is implemented in a 3D continuum element 

using subroutines UMAT, UEXPAN and UMATH of ABAQUS FE code. The capability 

of the proposed micromechanical model in predicting the effective mechanical, thermal 

and viscoelastic response of a particulate composite is presented. Available analytical 

and experimental works reported in the literature are used for comparisons. The 

convergence study of fully coupled thermoviscoelastic analyses is also presented. 

 
3.2.1. ELASTIC RESPONSE 

The effective linear elastic properties of composites obtained from the proposed 

micromechanical model are compared with the micromechanical models of Dvorak and 

Srinivas (1999), Mori and Tanaka (1973) and self consistent model. These verifications 

have been done by Muliana and Kim (2007). A composite system made of silicon 

carbide particles embedded in the aluminum matrix is considered. Both particle and 

matrix are modeled as isotropic linear elastic. The elastic material properties of both 

constituents are taken from Eroshkin and Tsukrov (1995), which are given in Table 3.1. 

The effective shear and Young’s moduli for several composite volume fractions are 

shown in Figures 3.3(a)-(b). The effective properties calculated from the proposed 

micromechanical model are comparable with other micromechanical models. 
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Table 3.1 Elastic properties of silicon carbide particle and aluminum matrix (Eroshkin 
and Tsukrov, 1995). 
 

Constituents Young modulus, ( )E  (MPa) Poisson ratio, ( )v  
Silicon carbide 450000 0.17 
Aluminum 70000 0.30 
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Figure 3.3 Effective composite (a) Young’s and (b) Shear moduli. 

 
Next, the nonlinear elastic response of composite is compared with available 

experimental data of Cho et al. (2006). These verifications are done by Muliana and Kim 

(2007).The experiments were performed for 5% volume fraction of glass beads 

embedded in vinylester resin. Four different diameters of particles were considered, i.e., 

6, 70, 200 and 500 µm. The nonlinear stress dependent elastic modulus of the 

unreinforced vinylester resin is modeled using parameter g0 (see Eq. (2.32)-(2.33)), 

which is fitted using a power law function, i.e., 0 1 ng Cσ= + . The calibrated nonlinear 

parameters (C and n) for the vinylester resin and elastic properties of both constituents 

are given in Table 3.2. The effective nonlinear responses for the 5% composite volume 
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fraction are then given in Figure. 3.4. Good prediction is shown by the proposed 

micromechanical model. 

 
Table 3.2 Elastic properties and nonlinear parameters of glass beads and vinylester resin 
(Cho et al., 2006). 
 

Constituents Young modulus, ( )E  (MPa) Poisson ratio, ( )v C n 
Glass bead 10500 0.25 - - 

Vinyester 600 0.30 0.00029 1.603 
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Figure 3.4 Nonlinear stress-strain relations for glass/vinylester composites. 

 
3.2.2 VISCOELASTIC BEHAVIOR 

The experimental creep compliance data reported by Aniskevich and Hristova (2000) 

are used to validate the accuracy of the proposed micromechanical model in predicting 

the effective viscoelastic responses of particulate composites (Muliana and Kim, 2007). 

Aniskevich and Hristova (2000) reported the long term creep data (4.1 months) of a 

polyester resin reinforced with diabase and marble spherical particles. The diabase and 
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marble reinforcements are assumed as linear elastic materials and the polyester resin 

follows a linear viscoelastic response. The linear elastic properties of the constituents 

and calibrated Prony parameters for linear viscoelastic behavior of the unreinforced 

polyester resin are given in Table 3.3. 

The micromechanical model predictions of the composite’s long-term transient 

compliances are illustrated in Figure. 3.5. The volume fractions of 0.36 and 0.2 are used  

 

Table 3.3 Elastic Properties of diabase, marble and polyester resin and Prony series 
coefficients for polyester resin (Aniskevich and Hristova, 2000). 
 

Constituents Young modulus, ( )E  (MPa) Poisson ratio, ( )v  

Glass 8800 0.26 
Marble 440000 0.25 
Polyester resin 5800 0.35 

Prony series coefficients for polyester resin.   
n -1(sec )nλ  6 -110 (MPa )nD −×  

1 1. 4.50 
2 10-1 3.00 
3 10-2 5.40 
4 10-3 7.60 

5 10-4 16.0 

6 10-5 22.0 

7 10-6 25.0 
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Figure 3.5 Long term creep compliance for polyester reinforced composites. 

 
 
for diabase/polyester and marble/polyester composites, respectively. Good agreement 

with the experimental tests of Aniskevich and Hristova (2000) is shown for both 

diabase/polyester and marble/polyester systems. Figure 3.5 also presents the long-term 

responses of diabase/polyester from the proposed micromechanical model without the 

iterative correction scheme at the micro level. It is seen that using only linearized 

micromechanical relations lead to significant mismatch in predicting long-term material 

responses. 

 
3.2.3 VERIFICATION OF THE EFFECTIVE CTE 

 The averaging procedure in the micromechanical model satisfies the traction 

continuity and displacement compatibility of the combined thermal and mechanical 

responses.  Thus, the overall CTE of composites having viscoelastic matrix may indeed 

exhibit time-dependent behaviors.  Furthermore, temperature changes in composites 

develop thermal stresses at each constituent due to different CTEs in the inclusion and 
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matrix. The existence of the thermal stresses can increase time-dependent deformations 

in the viscoelastic constituents. Under a constant temperature change, the overall time-

dependent deformation is attributed to the constant thermal stress, which is a creep 

problem. If the strain is fixed, the stress in the viscoelastic constituent can relax with 

time and reduce the overall composite modulus. The viscoelastic characteristic may 

cause thermal stresses to relax, which may reduce the rate of creep deformations over 

longer time period.   

 The effective CTE obtained from the presented micromodel is compared with 

available analytical models. Figure 3.6 shows the effective CTE having linear thermo-

elastic responses of the constituents. The studied composite material consists of glass 

beads as inclusions and FM73 polymer as matrix. The mechanical and thermal properties 

of the constituents are given in Table 3.4. The proposed model is compared with 

analytical 

 

Table 3.4 Material properties used for CTE verification.   

Material 
Young 
Modulus ( )E , MPa 

Poisson 
ratio ( )v  

Linear Thermal 
Expansion ( )α 10-6, 1/ K 

Glass Bead 69000 0.3 8.5 
FM73 2700 0.35 75 
Zirconia 192000 0.23 9.40 
Tin 42000 0.36 23.5 
Glass 43000 0.13 6.45 
Aluminum 69000 0.33 24 
Silicon 107000 0.17 3.2 
Ciba Geigy Epoxy 
Resin 

3380 0.39 81 

Silica Flour 95700 0.0775 10.5 
Solid Glass 74000 0.24 6.9 
Copper Powder 127050 0.346 16.5 
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models of Levin (1967), Wakashima (1974), Fahmy and Ragai (1970), which are 

obtained from the exact solutions. The present micromodel is a result of a numerical 

approximation following micromechanical averaging scheme. It is shown that the 

proposed model lies between the upper and lower bound which is acceptable as far as the 

effective properties are concerned. The results of the proposed micro-models are 

comparable to the ones reported by Levin (1967) and Fahmy and Ragai (1970). 
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Figure 3.6 Comparison of the effective CTE with analytical models. 

 
The effective CTEs of various composites are also compared with experimental 

data available in literature. Composite systems consisting of glass, zirconia and tin 

constituents are studied. The thermal and elastic properties of the glass, zirconia and tin 

constituents are taken from Tummala and Friedberg (1970), shown in Table 3.4. The 

material properties are assumed to be independent of temperature. Figure 3.7 illustrates 

the effective CTE at various volume fractions of the inclusions for two composite 

systems. In both cases, the micromodel shows good prediction. The experimental data of 
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Fahmy and Ragai (1970) is also used for verification.  Figure 3.8 shows the comparison 

of the effective CTE of composites having aluminum and silicon constituents.  The 

effective CTEs of the composite are plotted as a function of silicon contents. The 

experiments were conducted for two temperature ranges, i.e., at low temperature 

(between -196 C and 20 C) and at high temperature (between 20 C and 400 C). The 

temperature independent mechanical properties and thermal expansions of the silicon 

and aluminum are shown in Table 3.4. In both cases, the results of the proposed models 

are found in good agreement with the experimental data.  
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Figure 3.7 Comparisons of the effective CTE with the experimental data of Tummala 
and Friedberg (1970). 
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Figure 3.8 Comparisons of the effective CTE with the experimental data of Fahmy and 
Ragai (1970). 
 

Feltham and Martin (1982) have experimentally studied the effects of temperatures 

on the effective CTE of the particle reinforced epoxy composites. The capability of the 

presented micromodel to predict the temperature dependent effective CTE is evaluated 

using Feltham and Martin (1982) experimental data. The effective CTEs of three 

composite systems, i.e., silica flour/epoxy, glass/epoxy and copper/epoxy, were 

measured for a temperature range of 100°K to 300°K and with particle volume fractions 

of 10%, 20%, 30 % and 40%. The elastic modulus of the epoxy resin at room 

temperature are taken from Feltham and Martin (1982), while the temperature dependent 

elastic modulus of the epoxy resin are obtained from Hartwig and Wuchner (1975). The 

temperature dependent CTEs of the epoxy resin and solid glass are taken from Feltham 

and Martin (1982) while the one for the silica flour is given in Touloukian et. al (1977). 

The elastic moduli of the particles are assumed to be independent of temperature and 

taken from Simmons and Wang (1971). The temperature dependent properties of the 
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constituents are shown in Figure 3.9, while the properties at the reference temperature 

(300 K) are given in Table 3.4.  
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Figure 3.9 Non linear temperature dependent constituents properties a) CTE for Ciba 
Geigy epoxy resin, b) CTE for silica flour c) CTE for solid glass and d) temperature 
dependent compliance for Ciba Geigy epoxy resin. 
 

Figure 3.10 shows predictions of the effective CTE of the silica flour/epoxy 

composites. Analytical models of Fahmy and Ragai (1970) and Turner (1946) are also 

reported. It is observed that the present micromodel predicts the experimental data very 

well and also comparable to the Fahmy and Ragai (1970) model. Figure 3.11 (a) shows a 
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CTE of a composite system consists of Ciba-Geigy epoxy resin with solid glass 

microspheres, while Figure 3.11 (b) illustrates a CTE for copper powder particles 

dispersed in epoxy resin. In both composites, response obtained from the 

micromechanical model is in good agreement with the experimental data.  

 

(b)

(d)

100 150 200 250 300

Temperature (oK)

0

2E-005

4E-005

6E-005

8E-005

C
oe

ff
ic

ie
nt

 o
f T

he
rm

al
 E

xp
an

si
on

 (K
-1

) Experimental data Feltham and Martin (1982)
Present Micromodel

Turner (1946)
Fahmy and Ragai (1970)

(a)

100 150 200 250 300

Temperature (oK)

0

2E-005

4E-005

6E-005

8E-005

C
oe

ff
ic

ie
nt

 o
f T

he
rm

al
 E

xp
an

si
on

 (K
-1

) Experimental data Feltham and Martin (1982)
Present Micromodel

Turner (1946)
Fahmy and Ragai (1970)

(c)

100 150 200 250 300

Temperature (oK)

0

2E-005

4E-005

6E-005

8E-005

C
oe

ffi
ci

en
t o

f T
he

rm
al

 E
xp

an
si

on
 (K

-1
) Experimental data Feltham and Martin (1982)

Present Micromodel

Turner (1946)
Fahmy and Ragai (1970)

100 150 200 250 300

Temperature (oK)

0

2E-005

4E-005

6E-005

8E-005

Co
ef

fic
ie

nt
 o

f T
he

rm
al

 E
xp

an
si

on
 (K

-1
) Experimental data Feltham and Martin (1982)

Present Micromodel

Turner (1946)
Fahmy and Ragai (1970)

 
Figure 3.10 Temperature dependent effective CTE of Ciba-Geigy epoxy resin containing 
silica flour at different volume fraction (a) 10%, (b) 20% (c) 30% and (d) 40%.  
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Figure 3.11 Temperature dependent effective CTE of Ciba-Geigy epoxy resin containing 
(a) solid glass microspheres and (b) copper powder at volume fraction of 20%. 

 

The present micromodel is derived for predicting the effective CTE of composites 

having nonlinear thermo-viscoelastic responses. Several numerical simulations have 

been performed to analyze the time-dependent effective CTEs of the composite. The 

time-dependent behavior of the effective CTE is found to be dependent on the elastic 

moduli and the coefficient of thermal expansion of the constituents and the roles of the 

constituents as inclusion and matrix, i.e., stiffer inclusions dispersed in a softer matrix or 

softer inclusion in a stiffer matrix. Four parametric studies have been done to determine 

the effects of the particle and matrix thermal expansion and instantaneous elastic moduli 

on the overall time-dependent CTE of the particulate composite. In all studies, the matrix 

modulus follows a nonlinear viscoelastic model, while the particle has linear elastic 

behavior. The nonlinear and time-dependent properties of the epoxy matrix can be found 

in Khan (2006). A temperature loading with a constant rate is applied. In the first two 

studies, both constituents have the thermal properties independent on temperature, but 

due to the temperature dependent viscoelastic behavior of the matrix the overall CTE 



 111

shows time-dependent behaviors. In the third and fourth studies, a temperature 

dependent CTE of particle and/or matrix is considered and their effects on the overall 

CTE of the composites are examined.  

Let Ep be the elastic modulus of the particle, Em be the elastic modulus of the 

matrix and αm and αp be the linear thermal expansion coefficients of the matrix and 

particle, respectively. In the first study, the ratio of αp / αm=0.5 is considered and the 

time-dependent effective CTE are determined for composites having 10%, 25% and 50% 

volume fractions, as shown in Figure 3.12. It is shown that for Ep<Em (softer inclusions 

dispersed in a stiffer matrix), the effective CTE decreases tremendously with time as 

compared to the case when Ep>Em (stiffer inclusions dispersed in a softer matrix). In 

the second study, when αp / αm=5, the time-dependent effective CTE increases 

prominently for the case when Ep<Em as illustrated in Figure 3.13. The percentage 

changes in the value of the effective CTE after 1800 seconds is shown in Tables 3.5 and 

3.6. In both cases, for Ep<Em, a large amount of changes in the effective CTE is 

observed with the increase in the volume fraction of particles. It is noted that in all cases, 

the particle response is assumed linear elastic, while the matrix exhibits temperature 

dependent viscoelastic behaviors. Softer particles result in less resistance to the 

microstructural changes, which make matrix and the micro-constituents easier to 

deforms, while stiffer inclusions provide better resistance to deformations. Furthermore, 

adding softer inclusions increases ductility of the composite. 
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Table 3.5 Changes in effective CTE (%) after 1800 seconds with αp / αm =0.5.  
  

VF (%) Ep<Em Ep>Em
10 4.0 0.3 
25 10.4 0.9 
50 19.7 1.4 

 
 

 

Figure 3.12 Time-dependent effective CTE at different volume fraction with thermal 
expansion ratio is less than one (αp < αm). 
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Figure 3.13 Time-dependent effective CTE at different volume fraction with thermal 
expansion ratio is greater than one (αp > αm). 

     

Table 3.6 Changes in effective CTE (%)after 1800 seconds with αp / αm =5.0. 
      

VF (%) Ep<Em Ep>Em
10 28 1.3 
25 61 2.3 
50 83 1.9 

 
  
 The last two studies deal with the cases when the CTEs of the matrix and particle are 

temperature dependent. The following cases are considered for each of the parametric 

studies: a) αp is a linear function of temperature, αp(T), and αm is constant; (b) αm is a 
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linear function of temperature, αm(T), and αp is constant; and (c) Both αp and αm are 

linear functions of temperature. Figures 3.14(a)-(d) show the variation of time-dependent 

CTEs of the composite under a linear temperature loading from reference temperature 

(300˚K) to 600˚K at different volume fractions with the ratio of αp/αm=0.5. Composites 

having Ep>Em and Ep<Em are studied. It is found that with the increase in volume 

fractions the change in the effective CTE after 1800 seconds increases for the 

composites having temperature dependent CTE of the particle. For the composites with 

αm(T) and both αm(T) and αp(T) the percent change in the effective CTE decreases after 

1800 seconds with increasing volume contents of the inclusion. Figures 3.15(a)-(d) show 

the time-dependent CTEs of the composite subject to a linear temperature loading from 

reference temperature (300˚K) to 600˚K at different volume fractions with the ratio of 

αp/αm=5. The results follow a similar trend as observed in the previous study. Tables 3.7 

and 3.8 show the percent changes in the effective CTE for all cases described earlier. 

Table 3.7 Changes in effective CTE (%) with αp / αm =0.5. 
      

VF(%) Ep<Em Ep>Em 
αp (T) αm(T) αp(T) and αm(T) αp(T) αm(T) αp(T) and αm(T) 

10 2.66 51.64 51.74 1.52 113.71 114.29 

50 16.35 31.20 32.40 5.22 59.36 63.55 
 
 
Table 3.8. Changes in effective CTE (%) with αp/αm=5.0. 
      

VF 
(%) 

Ep<Em Ep>Em 
αp(T) αm(T) αp(T) and αm(T) αp(T) αm(T) αp(T) and αm(T) 

10 18.18 52.38 52.46 3.90 60.02 60.36 

50 36.36 43.51 43.83 0.55 8.53 9.25 
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Figure 3.14 Time-dependent effective CTE at different volume fraction for CTE ratios is 
less than one, i.e., αp<αm, with and/or without linear temperature dependent CTE of each 
constituent. 
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Figure 3.15 Time-dependent effective CTE at different volume fraction for CTE ratios is 
greater than one, i.e., αp>αm, with and/or without linear temperature dependent CTE of 
each constituent. 
  

It is therefore concluded that for the temperature independent thermal and 

mechanical properties, the effective CTE is strongly dependent on the elastic moduli of 

the constituents. With any ratio of the CTE of the constituents, the softer inclusion 

allows the composite to deform easily under temperature changes as compare to the ones 
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with the stiffer inclusion. Changes in the effective CTE with time increases with the 

increase in volume contents. When temperature dependent properties are considered, 

with the increase in volume fractions of the softer inclusion, the effective CTE is 

strongly dependent on αp(T). This is valid only for the case when αp > αm. For all other 

cases, the effective CTE of the composite is strongly dependent on the function of the 

temperature dependent CTE of the matrix, i.e., αm(T). 

 
3.2.4 VERIFICATION OF THE ETC  

The ETC obtained from the micromechanical formulation is verified using 

analytical models and experimental data available in the literature. Figure 3.16 shows the 

ETC obtained from the present micromodel at various volume fractions. High density 

polyethylene (HDPE) based composite systems with tin particles as inclusion is used. 

The thermal conductivities for all constituents are constant and given in Table 3.9.  

 

Table 3.9. Material properties used for ETC verification.    
  

Material Thermal Conductivity (K) , W/m/ K 
Air  0.02 
Sandstone 1.6 
Firebrick 1.2 
High Density Polyethylene 0.532 
Polyethylene 0.29 
Polystyrene 0.14 
Polyvinyl Chloride 0.17 
Polyamide 0.19 
Tin 64 
Graphite 209 
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Figure 3.16 Comparison of the ETC with different analytical models. 

 
It is shown that the ETC obtained from the present micromodel is comparable to 

the results obtained by Maxwell (1954), Hashin and Shtrikman (1962) and Benveniste 

(1986) and is closer to the lower bound. The experimental data of Sugawara and 

Yoshizawa is also considered to validate the ETC.  

Figure 3.17 shows the ETC of the air saturated sandstone with porosity. Thermal 

conductivities of the studied materials are given in Table 3.9. The porous sandstone is 

assumed containing macroscopically series of consolidated spheres of pores and the air 

in the pores is considered as the inclusions. In this case, the conductivity of the inclusion 

is less than the matrix with a ratio of Kp/Km is equal to 1:80. The ETC determined from 

the present micromodel agrees well with the experimental data.   
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Figure 3.17 Comparisons of the ETC with the experimental data of Sugawara and 
Yoshizawa (1962). 
 
 

Highly conductive materials have been added as fillers to the polymeric based 

matrix composites to increase the overall thermal conductivity of the composites. In 

most cases, fillers have less than 15% volume fractions. It has been observed that with 

the increase in the inclusion volume fractions and the ratios of the thermal conductivity 

of inclusions to the ones of the matrix are high, the ETC of the composites increases 

tremendously. Tavman (1998) experimentally investigated the ETC of tin powder filled 

high density polyethylene composites. Figure 3.18 shows the comparison of the present 

micromodel and Maxwell model (1954) with the experimental data. Thermal properties 

of tin and polyethylene are given in Table 3.9. Good predictions are shown for 

composites with volume content less than 10%. The results of the proposed model 

deviate from the experimental data as the volume fraction of tin particle increases as the 

present micromodel does not account for the conductive chain mechanism.  
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Figure 3.18 Comparison of the ETC with the experimental data of Tavman (1998). 

 
 Next, the experimental data of Zhang et al. (2005) on composites with various ratios 

of Kp/Km is also used in this study, as illustrated in Figure 3.19.  It is seen that the 

micromechanical model predictions are in good agreement with the experimental data 

for composites with low values of Kp/Km. As Kp/Km increases, the micromechanical 

model shows good predictions only for lower volume contents (less than 15%). To better 

predict the ETC at higher volume fractions, there is a need to develop a micromodel that 

incorporate the chain conductive mechanism of the particles. Nevertheless, the present 

micromechanical model is suitable for predicting the ETC for filler composite or for 

composite with low Kp/Km (thermal conductivity of the particle is comparable to the one 

of the matrix). 
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Figure 3.19 Comparisons of the ETC with the experimental data of Zhang et. al. (2005).  

 
As mentioned earlier, the proposed model is developed for the class of particulate 

composite materials consisting of equi-sized spheres of one phase arranged in a simple 



 122

cubic array throughout a continuous second phase. Therefore the effect of percolation 

(the formation of thermal conductive strings of the particles) cannot be considered in the 

present study. It is shown by Zhang et al.(2005) that the larger Kp/Km gives the larger 

ETC/ Km for a certain volume fraction (VF), the increase of ETC is not significant when 

VF < 0.3. According to the percolation theory (1985), the exact value of the threshold for 

cubic percolation, VFc, is 0.3117–0.3333. When VF < VFc, the conductive particles are 

mainly dispersed, so the effect of the conductive chain mechanism on the ETC is small. 

When VF goes up to VFc, the connections of the particles increase exponentially and the 

formations of the conductive chains dominate the change of the ETC. Yin et al (2005) 

mentioned that the threshold limit of the percolation can go as high as 78%. It is 

observed that for the present model, the threshold limit is found to be near 80 %, as 

shown in Figure 3.20.  
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Figure 3.20 Numerical results of ETC/Km for different volume fraction and Kp/Km. 
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 The parametric studies are done to determine the variations in the ETC of the 

composite when the particle and/or matrix conductivities are temperature dependent. The 

thermal conductivities of the particle and matrix are assumed to vary linearly with 

temperatures. Consider the thermal conductivities of the particle and matrix as Kp and 

Km, respectively. Three cases have been considered: a) Kp is a linear function of 

temperature and Km is constant; (b) Kp is constant and Km is a linear function of 

temperature; and (c) Both Kp and Km are linear functions of temperature. Since the 

present micromodel does not incorporate the chain conductive mechanism, the ETC is 

analyzed for a low ratio of thermal conductivities, i.e, Kp/Km=7.7:1. Figure 3.21 shows 

the variation of the ETC with temperatures for composites with 5%, 15% and 50% 

volume fractions. For low volume contents (<15%), with only temperature dependent 

Kp(T), the ETC insignificantly varies with temperatures. For composites with 50% 

volume contents, the ETC with the temperature dependent Kp(T) shows significant 

variations with temperatures, although the changes are less than the ones with the 

temperature dependent Km(T). It is noted that the rate of change of the thermal 

conductivity with temperatures for the particle is higher than the one of the matrix. It is 

observed that the ETC is strongly depend on the rate of change in the thermal 

conductivity of the matrix with temperature, i.e., with only temperature dependent 

Kp(T), less variations of ETC at all volume contents are shown, while higher variations 

of the ETC with temperatures are shown for temperature dependent Km(T). These 

parametric studies indicate that the ETC depends on the microstructural constituents 

(inclusion and matrix) and also on the properties of the constituents. To better 
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understand the effects of temperature dependent thermal conductivities and their 

variations on ETC with the increase of volume fraction, it is required to analyze the ETC 

of the composites with the micromodel that incorporate the chain conductive 

mechanism.  
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Figure 3.21 ETC with and/or without linear temperature variation of the thermal 
conductivities of each constituent for a ratio of Kp/Km=7.7:1. 
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3.3 CONVERGENCE BEHAVIOR OF THE COUPLED 

THERMOVISCOELASTIC RESPONSE OF PARTICULATE COMPOSITE 

The proposed numerical scheme is integrated within the ABAQUS (FE code). The 

material subroutines UMAT, UMATH and UEXPAN are used to compute the effective 

thermo-mechanical response of a particulate composite. The effective nonlinear coupled 

thermo-viscoelastic response is calculated at each integration point of a FE mesh. At the 

FE structural level, the default ABAQUS FE code (2005) iterative solver is used for the 

nonlinear analyses. Two criteria are checked in the ABAQUS iterative linear solver, 

which are force (flux) residual and displacement (temperature) corrections. The residual 

force (heat flux) tolerance is set to be 0.5% times the average force (heat flux) over time 

t. The default tolerance for the displacement correction is 10-2. At the micro level an 

iterative algorithm with the Newton-Raphson (NR) scheme is used to compute the 

strain/stress correction while the recursive-iterative algorithm (Chapter II) is used to 

compute the nonlinear thermoviscoelastic response of the matrix constituents in the sub-

cells. The convergence criteria at both micromechanical (Eq.3.25-3.26) and material 

(Eq.2.49) levels are used with a tolerance of 10-6. These residuals are defined in terms of 

strain components and the given tolerances allow for a maximum error to be 1 micro-

strain. These tolerances are set as the limits within our numerical values of interests. 

Tightening the tolerances below these values does not significantly change overall 

response while relaxing at any level beyond these values might cause deviations in the 

responses and accumulate errors which leads to divergence (Haj-Ali and Muliana 2004; 

Muliana and Kim 2007).  
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The convergence study is presented for a linear stress ramp loading. The composite 

consisting of HDPE matrix reinforced with TiC+HDPE particle is used. The nonlinear 

stress and temperature dependent properties of the HDPE are given in Figure 3.22. The 

properties are taken from Lai and Bakker (1995) and Dorigato et al., 2009. The Prony 

series coefficients, thermal and mechanical properties of the HDPE matrix and 

TiC+HDPE particle are given in Tables 3.10 and 3.11. The thermal and mechanical 

properties of the TiC and HDPE particles are taken from available literature. For the 

HDPE, the specific heat and thermal conductivity are taken from Ghazanfari et al. 

(2008), the CTE is from Dzenis and Ponomarev (1989) and Young’s Modulus are taken 

from Yuan et al. (2003). For the TiC, the specific heat, thermal conductivity and CTE 

are taken from Pierson (1996) and Young’s Modulus are taken from Hannink and 

Murray (1974). In this study the HDPE particle size of 200 µm coated with 2 µm TiC is 

considered as a spherical particle (Inhance/Fluoro-Seal Ltd.). 
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Figure.3.22 Nonlinear material parameters for HDPE. a) stress dependent and b) 
temperature dependent (Lai and Bakker, 1995; Dorigato et al., 2009). 
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Table 3.10 Prony series coefficients for HDPE polymer. 
 

n -1(sec )nλ  4 -110 (MPa )nD −×  

1 1.0 2.23 

2 10-1 2.27 

3 10-2 1.95 

4 10-3 3.5 

5 10-4 5.5 

6 10-5 5.5 
 
 

The strain response and temperature increases of the composite with different 

volume fractions of particle at a rate of 1MPa/s are given in Figures 3.23(a)-(b). As 

expected, with the addition of stiff thermoelastic particles lower strain and temperature 

increase are shown.  

 
Table 3.11 Temperature dependent mechanical and physical properties of materials of 
HDPE (polymer) and TiC+HDPE (particle) used in coupled thermo-viscoelastic FE 
analyses.  
 

Property HDPE TiC+HDPE 

Elastic Compliance, (D0) 
(1/MPa) 

2.21x10-4 7.9181x10-5 

Poisson ratio,(υ) 0.3 0.297 
 

Coefficient of Thermal 
Expansion, (α)10-6, 1/ K 

 

6.9x10-5 – 4.8x10-7 T + 
3.0x10-9 T2 

 

7.0x10-5-5.0x10-7 T+3.0x10-9 T2 

Thermal Conductivity, (K), 
W/m/ K 

1.223-5.963x10-3 T 
+1.14x10-5T2 

1.7 – 4.90x10-3 T+1.02x10-5 T2 

Specific heat,(c) , J/Kg.K 18535-119.7 T +0.2055T2 17865 – 116.2 T + 0.2T2 

Density, (ρ) , Kg/m3 958.0 965.1 
* T is temperature in °K. 
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Figure 3.23 Coupled thermo-viscoelastic analyses of HDPE/TiC+HDPE composite 
under linear stress ramp loading with different volume fractions of TiC+HDPE particle. 
(a) strain and (b) temperature increase. 

 

The multi-level convergence behavior is studied for the composite with a volume 

fraction of 10%.  The residuals norm, in a logarithmic scale, at two stress levels: 6 and 

12MPa is illustrated in Figures 3.24(a)-(d). The analysis is performed with a constant 

time increment of 1 second which is comparable to an incremental stress of 1 MPa. 

More iterations are required at the higher stress level to minimize the residuals of both 

force and heat flux. However, most of the time the force residuals meet the convergence 



 129

criterion in less iterations than the heat flux, as shown in Figures 3.24 (a)-(b). The 

residual norm at the micro level is shown in Figure 3.24 (c) during the last iteration at  
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Figure 3.24 Multi-level convergence behaviors at two stresses during the nonlinear 
analyses of HDPE/TiC+HDPE composites (VF = 10%): (a) macro heat flux (b) macro 
force (c) micro (d) constituent (polymer) levels. 
 
the macro level, which are iteration numbers 3 and 5 for stress levels 6 and 12 MPa, 

respectively. At the material levels the convergence behavior is reported at the last  

converged step at the micro level. Figure 3.24 (d) shows the residual norm for the matrix 

sub-cell numbers 2, 3 and 4. For the sub-cell numbers 3 and 4 the same convergence 

behavior is observed while more iterations are needed for the subcell number 2 to meet 
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the convergence criterion. The behaviors of these norms explain the needs of correction 

algorithm at each level. Otherwise large residual strains at the lower level may cause a 

divergence of the solutions at the upper level. 

 In summary, the proposed model is capable in predicting the effective elastic, 

viscoelastic, coefficient of thermal expansion and coupled thermo-viscoelastic response 

of particulate composites. The proposed model capability for predicting the elastic, 

viscoelastic and temperature dependent CTE of particulate composite is also presented 

by showing excellent agreement with the available experimental data. For composites 

having viscoelastic constituents, the expression of the effective CTE is also found to be 

strongly dependent on time-dependent moduli and CTE of each constituent. It is also 

found that the proposed model is not capable to predict the effective thermal 

conductivity quite well for the composite having high particle to matrix thermal 

conductivity ratio. With the increase in VF, the connections of the particles increase 

exponentially and as Kp/Km increases the formations of the conductive chains govern 

the change of the ETC. The present micromechanical model has not incorporated the 

conductive chain mechanism of the particles. Nonetheless, the proposed model is 

suitable for predicting ETC for filler composite (VF~15%) or for composite with low 

Kp/Km. Regardless of few limitations, the proposed micromechanical model provides 

the effective coupled response of particulate composites and simultaneously recognizes 

time-temperature-stress dependent behaviors of the individual constituents. 
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CHAPTER IV 

A MULTISCALE MODEL FOR COUPLED HEAT CONDUCTION AND 

DEFORMATIONS OF VISCOELASTIC COMPOSITES 

This study presents an integrated micromechanical model-FE framework for 

analyzing coupled heat conduction and deformations of particulate composites. Thermo-

mechanical properties of the constituents in the particulate composites depend on time, 

temperature and stress. The integrated micromechanical model-FE framework is 

illustrated in Figure 4.1. The micromechanical model treats the composites as 

homogenized bodies. This micromechanical model is implemented at each material point 

within finite elements. This study uses a three dimensional (3D) continuum element. 

Therefore, the effective response evaluated at each integration (material) point represents 

homogenized composite response. 

Two types of field-coupling (FC) between the mechanical and thermal effects are 

considered. The first type of FC is referred to sequentially coupled thermomechanical 

analysis. In this case, the heat generation due to the dissipation of viscoelastic effects is 

neglected and the conduction of heat is assumed to be independent of the deformation; 

however, the deformation in the viscoelastic composites is influenced by temperature 

changes in the composite bodies. This allows to separately solve the equations that 

govern heat conduction and deformation in the composites. The temperature profiles are 

used as inputs to analyze deformation in the viscoelastic composites. When the 

deformation of the composites is relatively small, the sequentially coupled analyses can 

still give reasonably good predictions of the field variables in the composites. 
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Figure 4.1 Schematic diagram of integration of micro-macro scale approach for 
particulate composites. 
 

The second type of FC considers a fully coupled thermo-mechanical interaction. In 

this case, the heat generation due to the dissipation of energy during the deformation of 

viscoelastic bodies is considered. The heat conduction equation needs to be solved by 

incorporating the heat generation rate in addition to the existing prescribed thermal 

boundary conditions. The mechanical and thermal properties at each material point 

depend on the temperature which arises from both the prescribed thermal loads and heat 

generation during viscoelastic deformation. Therefore, one needs to solve 

simultaneously the equations governing the heat conduction and deformation in the 

composite bodies. In small deformation problems, the heat generation can be 
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pronounced when the viscoelastic composites undergoes a cyclic loading over a 

relatively long period of time. 

4.1 SEQUENTIALLY COUPLED THERMOMECHANICAL ANALYSIS OF 

PARTICULATE COMPOSITES 

The thermo-micromechanical analyses are performed to examine the effects of 

constituents’ properties and microstructural details on the variation of field variables like 

stress, displacement and temperature within the homogenized and heterogeneous 

composites. The first type of FC is considered in this study.  Two micromechanical 

modeling approaches are used to analyze spatial variations of these field variables in 

particulate composites during the transient heat conduction. In the first approach, a 

simple micromechanical model based on the first order homogenization scheme is 

adopted to obtain the effective mechanical and thermal properties, i.e., coefficient of 

linear thermal expansion, thermal conductivity, and elastic constants, of a particulate 

composite. These effective properties are evaluated at each material (integration) point 

in three dimensional (3D) finite element (FE) models that represent homogenized 

composite media. The second approach treats a heterogeneous composite explicitly. 

Heterogeneous composites that consist of solid spherical particles randomly distributed 

in homogeneous matrix are generated using 3D continuum elements in FE framework. 

For each volume fraction (VF) of particles, the FE models of heterogeneous composites 

with different particle sizes and arrangements are generated such that these models 

represent realistic volume elements “cut out” from a particulate composite. An extended 

definition of a RVE for heterogeneous composite is introduced, i.e., the number of 
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heterogeneities in a fixed volume that yield the same expected effective response for the 

quantity of interest when subjected to similar loading and boundary conditions. Thermal 

and mechanical properties of both particle and matrix constituents are temperature 

dependent. The effects of particle distributions and sizes on the variations of 

temperature, stress and displacement fields are examined. The predictions of field 

variables from the homogenized micromechanical model are compared with those of the 

heterogeneous composites. 

This section focuses on understanding the effects of constituents’ properties and 

microstructural details on the variation of stress, displacement and temperature in 

composites. The micromechanical model is called at each integration point in a FE mesh 

to calculate the local effective properties of the composite. The responses thus obtained 

are then compared to FE simulations of composites using the meshes of Barello and 

Lévesque (2008). The results are used to justify the capability of micromechanical 

models to analyze the overall response of composites subjected to simultaneous 

mechanical and thermal stimuli, within a certain degree of accuracy. A sequentially 

thermo-mechanical coupled problem, i.e., the temperature field influences the 

deformation field, is considered. The effects of particle volume contents and temperature 

dependent constituent properties on the overall thermo-elastic behavior of the 

composites are examined. An example of homogeneous composite and heterogeneous 

composites is shown in Figure 4.2.  
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(a)                                     (b) 

 

Figure 4.2 3D FE models of (a) homogenized and (b) heterogeneous composites. 

 
It should be emphasized here that the present micromechanical model idealizes the 

particles as cubes arranged uniformly in a homogeneous matrix. But the particles 

arrangement in realistic microstructures may not be statistically homogeneous and 

therefore composites are considered as heterogeneous materials that exhibit 

discontinuities in the field variables at the inter-phases of the different constituents and 

large variations in the field variables. These variations and discontinuities at the micro-

scale cannot be captured if one treats the composites as homogenous (homogenized) 

body. The main advantage of the micromechanical model is that it predicts the overall 

response of composites with capabilities of incorporating field dependent thermo-

mechanical properties of the constituents. As a result, large-scale structural analyses can 

be carried out under complex thermo-mechanical loadings. 

The first micromechanical modeling approach is describes as follows. The micro-

mechanical model of Chapter III has been integrated into a multi-scale FE framework in 

order to compute the field variables of a real-size composite. Boundary conditions are 

imposed on the real-size composite model and initial values of the field variables are 
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assumed. Local effective properties (thermal, mechanical) are computed at each 

integration point using the micro-mechanical model. The evaluation of the effective 

properties is based on the assumption that the each integration point is associated with a 

much smaller volume than that of the whole composite. As a result, we assumed that 

each volume associated with each integration point was at a uniform temperature. 

Therefore, at the micro-scale, both the matrix and reinforcement were assumed to be at 

the same temperature. This allows determining temperature-dependent thermal 

conductivities for the particle and matrix constituents and calculating the effective 

thermal conductivities of the composite at that instant of time in each material point. 

Therefore, in this context, the periodic boundary conditions are fully justified for 

obtaining the effective properties. At the macroscopic scale during the transient heat 

conduction, the temperature-dependent properties of the constituents lead to a spatially 

dependent ETC.  

To simulate the effective thermo-mechanical response of the particulate composite, 

the micromechanical model is integrated with ABAQUS/standard FE code. At each 

integration point in the FE mesh, the user subroutine UMATH is first called to evaluate 

the effective thermal conductivity, heat fluxes, and temperature gradient for solving the 

equation that governs the conduction of heat in the composite body. The temperature 

distributions obtained from the heat transfer analyses at various instants of time in the 

composites are used as an input transient thermal load to determine the deformation in 

the composite body. UMAT and UEXPAN subroutines were used to evaluate the 
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effective mechanical response and CTE, respectively. Figure 4.1 illustrates the multi-

scale framework. 

The second micromechanical modeling approach is explained as follows. The multi-

scale model of Chapter III can be considered as an approximation to a complicated 

thermo-mechanical problem: the problem of computing the temperature and stresses 

inside a heterogeneous material subjected to both thermal and mechanical loads. In order 

to evaluate the reliability of the micro-mechanical model, it is therefore required to 

compare its predictions against the “numerically exact solution”. The objective of this 

section is to generate this so called numerically exact solution. 

When dealing with effective properties, one of the key issues is the definition of the 

RVE. A RVE can be seen as a volume of material having the same behavior as any 

larger volume of the same material. The size of the RVE is measured in terms of 

inhomogeneities it contains (e.g. the number of particles meshed, like 5, 10, 15, etc., 

particles). One of the techniques used for obtaining the RVE size is to use a numerical 

homogenization based on FE. The method consists in generating many FE meshes of the 

composite microstructure with a fixed number of reinforcements (10, 15, 50, etc.). Since 

the particles are distributed according to a statistical distribution, each mesh, or 

realization, will be different. Therefore, each realization should lead to different (within 

certain accuracy) effective properties. For the same number of reinforcements and load 

history, the effective responses are computed for each realization and then averaged. 

Computing a confidence interval (for example a two-tail 95% confidence interval) on 

this data could give an estimation of the composite’s effective properties and its 
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precision for a given number of reinforcements. The relative precision (for example the 

Young’s modulus is estimated to be x ± y%) can be adjusted by varying the number of 

realizations. If many realizations are performed, the confidence interval can be adjusted 

to the desired width. Kanit et al. (2003) mentioned that for microstructures containing 

numerous reinforcements, smaller numbers of realizations are required to estimate the 

wanted overall property within desired precision. For relatively small number of 

particles, the homogenized properties vary statistically until a certain number of particles 

are meshed. The number of particles after which the effective response does not change 

anymore is called the representative volume element. 

The FE meshes used in this study are those of Barello and Lévesque (2008). Their 

generation is recalled here. The detailed composite consists of a randomly distributed 

identical spherical particles reinforced matrix. The microstructures were generated using 

the Random Sequential Algorithm (Segurado and Llorca, 2002). The algorithm consists 

in generating the position of a first spherical particle center into a cubic volume using a 

uniform random number generator. Then, the center position of a second sphere is 

generated. If the distance between the centers of the first two particles and the distance 

from the particle center from the cube’s faces is smaller than a preset value, then the 

second particle is rejected and a new center position is generated until the minimum 

distance criterion mentioned above is met. The other particles are sequentially added, 

following the same process where the distance criteria are checked with all the existing 

particles. The particles are added until the desired volume fraction is reached.  
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The particles were allowed to cut the edges and the faces of the cube. When this 

happened, the particles were completed periodically on the corresponding faces and 

edges. The realizations thus obtained were therefore periodic and always had an integer 

number of “complete” spheres. The minimum distance between two particles centers 

was set to 2.07r, where r is the particle radius while the minimum distance from a 

particle center to a cube’s face was set to 0.1r. These distance criteria were obtained 

through trial and errors with the meshing software until elements of acceptable aspect 

ratios were obtained.  

A Matlab program was used for generating the particles centers. This program wrote 

an ANSYS command file for generating the FE mesh of the microstructure*. Finally, a 

Matlab program was used for converting the ANSYS model to ABAQUS. The mesh 

consisted of 10-noded tetrahedra. 

4.1.1 THERMOELASTIC ANALYSIS OF PARTICULATE COMPOSITES 

For both the multi-scale framework and the detailed models of Barello and Lévesque 

(2008), cubic models of dimensions 10 x 10 x 10mm were used. Figure 4.3 shows these 

models as well as the axes used for defining the boundary conditions below. The studied 

composite is a ZrO2 matrix reinforced by randomly distributed Ti-6Al-4V spherical 

particles. The heterogeneous composites directly incorporate nonlinear thermo-elastic 

behaviors for the particle and matrix regions. The thermal as well as the mechanical 

 
 
* All the FE meshes, having microstructural details, used in this study are generated by 
Barello and Lévesque (2008).  
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properties used in the simulations can be found in Khan and Muliana (2010) and are 

given in Table 4.1. Two volume fractions of reinforcements were studied, namely 20% 

and 30%. For the detailed FE meshes, cubes containing 15, 20, 30, 40 and 45 spheres 

were generated. The transient thermal analysis consisted in a problem where a composite 

was initially at 300°K, except for one face that was at 600°K. This transient heat transfer 

problem was solved until a steady state was reached. A uniform stress of 10 MPa was 

applied on the face that was at 600°K in order to simulate the effective transient thermal 

stresses. The models were subjected to the following boundary conditions:  
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2 2
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      (4.2) 

where ui and ti (i=1,2,3) are the components of the displacements and the surface 

tractions, respectively. 

In the following subsections, the field variables distributions predicted from the 

multi-scale framework are compared to those of the detailed FE meshes of Barello and 

Lévesque (2008). We used an extended definition of the RVE in the sense that the 
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‘effective properties’ studied are in fact the field variables distributions. The averaged 

field variables distributions (within a prescribed confidence interval) predicted from the 

detailed models should converge as the number of spheres meshed is increased. It should 

be noted, as exemplified by Kanit et al. (2003), RVE sizes can vary from one property to 

the other (e.g. thermal vs. elastic properties) and from one set of constituent property to 

the other. Once converged, the field variables distributions predicted from the RVEs 

could be compared to those predicted by the multi-scale framework in order to evaluate 

its accuracy.   

Due to the boundary conditions, the field variables distribution on the four cube 

segments oriented along x1 (see Figure 4.3) should be identical for a large number of 

spheres. For the detailed models, the field variables were extracted at identical x1 

coordinates and then averaged. At each x1 coordinate, 95% confidence intervals on the  

 

Table 4.1 Temperature dependent mechanical and physical properties of materials of Ti-
6Al-4V and Zr02 used in 3D FE analyses.  
 

Property Ti-6Al-4V Zirconia (Zr02) 

 
Young modulus, (E) (Pa) 

 
1.23x1011-56.457x106 T 

 
2.44x1011-334.28x106T+295.24x103T 2- 
89.79T 3 

Poisson ratio,(υ) 0.3 0.3 
 

Coefficient of Thermal 
Expansion, (α)10-6, 1/˚K 

 

7.58x10-6 + 4.927x10-9 T + 
2.388x10-12 T 2 

 

1.28x10-5-19.07x10-9 T + 1.28x10-11  T 2- 
8.67x10-17T 3 

Thermal Conductivity, 
(K), W/m/˚K 

1.2095 + 0.01686 T 1.7 + 2.17x10-4 T + 1.13x10-5 T 2 

Specific heat,(c), J/Kg. ˚K 625.2969 - 0.264 T + 
4.49x10-4 T 2 

487.3427 + 0.149 T - 2.94x10-5 T 2 

Density, (ρ) , Kg/m3 4429 5700 
* T is temperature in °K. 
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Figure 4.3 Schematic of thermal and mechanical loading directions and profiles along 
which field variables are evaluated, i.e., AB, CD, EF and GH. 

 
mean value were computed. Finally, the averaged distributions of the detailed models 

were compared to the distributions of the multi-scale model. 

 
4.1.1.1 TEMPERATURE DISTRIBUTION 

Figures 4.4(a) and 4.4(b) show the temperature distributions obtained from the 

homogenized model as well as from the heterogeneous composite reinforced by 20% of 

Ti-6Al-4V particles for model sizes of 20 and 40 particles, respectively, for different 

times. Figures 4.4(c) and 4.4(d) show the mean responses of the various realizations, 

along with 95% confidence intervals for models of 20 and 40 particles, respectively. For 

the 20 particle model, the largest width of the confidence interval is 1.74% of the mean 

value while it is of 3.42% for the 40 particles model. The width of the confidence 

interval decreases as the time increases. Figures 4.5(a)-(f) show the temperature profiles 
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from a similar type of analyses but for a composite reinforced by 30% of Ti-6Al-4V 

particles and for models containing 15, 30 and 45 particles. The largest widths of the 

confidence intervals are of 3.25%, 1.88% and 3.7% for the 15, 30 and 45 particle 

models, respectively.  
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Figure 4.4 Comparison of temperature profiles for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of 20%. (a) and (b) are actual 
values of temperature at top (corner) edge {(X1,10,10); 0≤X1 ≤10}, (c) and (d), mean 
value of temperatures of different FE models measured at extreme top and bottom 
(corner) edges of the cubes along the temperature gradient direction. 

 



 144

0 2 4 6 8 10

Distance (mm)

300

400

500

600

700

Te
m

pe
ra

tu
re

 (K
)

t =12s

t =26s

t =2s

Detail Microstructural Model 

Micromechanical Model

Model-1 
Model-2 

Model-3 
Model-4 

(Volume fraction = 30%, 15 particles)
(a)

0 2 4 6 8 10

Distance (mm)

300

400

500

600

700

Te
m

pe
ra

tu
re

 (K
)

t =12s

t =26s

t =2s

Detail Microstructural Model 

Micromechanical Model

Model-1 
Model-2 

Model-3 
Model-4 

(Volume fraction = 30%, 30 particles) (b)

0 2 4 6 8 10

Distance (mm)

300

400

500

600

700

Te
m

pe
ra

tu
re

 (K
)

t =12s

t =26s

t =2s

Detail Microstructural Model 

Micromechanical Model

Model-1 
Model-2 

Model-3 
Model-4 

(Volume fraction = 30%, 45 particles) (c)

0 2 4 6 8 10

Distance (mm)

300

400

500

600

700

Te
m

pe
ra

tu
re

 (K
)

t =12s

t =26s

t = 2s

Detail Microstructural Model 

Micromechanical Model

(Volume fraction = 30%, 15 particles)

(d)

0 2 4 6 8 10

Distance (mm)

300

400

500

600

700

Te
m

pe
ra

tu
re

 (K
)

t =12s

t =26s

t =2s

Detail Microstructural Model 
Micromechanical Model

(Volume fraction = 30%, 30 particles)
(e)

0 2 4 6 8 10

Distance (mm)

300

400

500

600

700

Te
m

pe
ra

tu
re

 (K
)

t =12s

t =26s

t =2s

Detail Microstructural Model 
Micromechanical Model

(Volume fraction = 30%, 45 particles)
(f)

 
Figure 4.5 Comparison of temperature profiles for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of 30%. (a), (b) and (c) are 
actual values of temperature at top (corner) edge{(X1,10,10); 0≤X1 ≤10}, (d), (e) and (f), 
mean value of temperatures of different FE models measured at extreme top and bottom 
(corner) edges of the cubes along the temperature gradient direction. 
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Figure 4.6 (a) shows the mean temperature curves for a composite with 20% of Ti-

6Al-4V particle volume content and for models containing 20 and 40 particles. 

Considering their relatively narrow confidence intervals, it can be seen that the RVE has 

been reached for these microstructures since both the 20 and 40 particle models lead to 

very similar results. Figure 4.6 (b) shows the mean temperature curves for the 15, 30 and 

45 particle models for composites with 30% particle volume content. It can also be  
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Figure 4.6 Mean temperature profiles for FE models with the unit cell (micromechanical 
model) at each integration point (solid line) and the FE models with 3D microstructural 
detail (symbols) for volume fraction of (a) 20% and (b) 30%. 
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concluded that the RVE size has been reached and overcame. Figures 3.4 and 3.5 show 

that the micromechanical model predicts fairly well the temperature profiles for the 

range of material properties simulated.  

 
4.1.1.2 DISPLACEMENT DISTRIBUTION 

Figures 4.7(a) and 4.7(b) show the displacement distributions obtained from the 

homogeneous and heterogeneous models for a composite containing 20% of Ti-6Al-4V 

particles for models having 20 and 40 particles, respectively. Figures 4.7(c) and 4.7(d) 

show the average response of the various realizations, along with 95% confidence 

intervals on the mean value for models containing 20 and 40 particles, respectively. For 

the 20 particles model, the largest width of the confidence interval is 96% of the mean 

value while it is of 52% for the 40 particles model.  

Figures 4.8(a)-(f) show displacements from similar analyses but for a composite 

reinforced by 30% of Ti-6Al-4V particles for models containing 15, 30 and 45 particles. 

The largest widths of the confidence intervals were of 30%, 65% and 143% for the 15, 

30 and 45 particle models, respectively.   
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Figure 4.7 Comparison of axial displacements for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of 20%.(a) and (b) are actual 
values of displacements at top (corner) edge {(X1,10,10); 0≤X1 ≤10}, (c) and (d), mean 
value of displacements of different FE models measured at extreme top and bottom 
(corner) edges of the cubes along the temperature gradient direction. 
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Figure 4.8 Comparison of axial displacements for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of 30%. %.(a), (b) and (c) are 
actual values of displacements at top (corner) edge {(X1,10,10); 0≤X1 ≤10}, (d), (e) and 
(f), mean value of displacements of different FE models measured at extreme top and 
bottom (corner) edges of the cubes along the temperature gradient direction. 
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Figure 4.9 Mean displacement profiles for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of (a) 20% and (b) 30%. 

 

Figure 4.9(a) shows the superimposed curves for 20 and 40 particles model for a 

sphere volume fraction of 20%. Considering the width of the confidence intervals of 

Figure 4.7, it can be seen that the average responses are reasonably close and hence that 

the RVE has been reached. These observations allow to conclude that the micro-

mechanical model predicts relatively well the macroscopic response of the composite for 

this specific microstructure. Figure 4.9(b) shows the superimposed curves for 15, 30 and 

45 particles model for a sphere volume fraction of 30%. For times t=12 and t=26 
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seconds, the huge widths of the confidence intervals (see Figures 4.8(d)-(f)) do not allow 

to conclude whether the size of the RVE has been reached or not within a reasonable 

precision and hence render these RVE analyses meaningless. However, for t=2 sec, the 

confidence intervals are relatively narrow and it is possible to conclude from Figure 

4.9(b) that for this time, the RVE size has been reached. For t=2 sec, it seems that the 

micro-mechanical model predicts relatively well the homogenized displacement 

distribution, although it is less accurate than the microstructure having 20% of 

reinforcements. Moreover, it seems that performing simulations with more than 45 

reinforcements might lead to narrower confidence intervals for a better assessment of the 

RVE size. Finally, it can be observed that the micro-mechanical model predicts with 

more accuracy the temperature distribution than the displacement field, for the cases 

studied here. 

 
4.1.1.3 THERMAL STRESSES DISTRIBUTIONS 

The contrast in the CTEs values of the constituents and high temperature gradient are 

the main cause for the generation of high thermal stresses. Figures 4.10 to 4.13 show the 

variation of thermal stresses for spheres volume fractions of 20% and 30% at different 

times for the homogenized and heterogeneous composites, respectively. For all the 

figures, except for t=2 sec over a certain distance, the width of the confidence intervals 

cannot be used to determine if the RVE size has been reached with a high degree of  
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Figure 4.10 Axial thermal stresses for FE models with the unit cell (micromechanical 
model) at each integration point (solid line) and the FE models with 3D microstructural 
detail (symbols) for volume fraction of 20% at different times. 
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Figure 4.11 Axial thermal stresses for FE models with the unit cell (micromechanical 
model) at each integration point (solid line) and the FE models with 3D microstructural 
detail (symbols) for volume fraction of 20% at different times with C.I of 95%. (a), (b) 
and (c) are mean value of stresses of different FE models with 20 particles and (d), (e) 
and (f) with 40 particles, measured at extreme top and bottom (corner) edges of the 
cubes along the temperature gradient direction. 
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Figure 4.12 Axial thermal stresses for FE models with the unit cell (micromechanical 
model) at each integration point (solid line) and the FE models with 3D microstructural 
detail (symbols) for volume fraction of 30% at different times. 
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Figure 4.13 Axial thermal stresses for FE models with the unit cell (micromechanical 
model) at each integration point (solid line) and the FE models with 3D microstructural 
detail (symbols) for volume fraction of 30% at different times with C.I of 95%. (a), (b) 
and (c) are mean value of stresses of different FE models with 15 particles and (d), (e) 
and (f) with 30 particles, (g), (h) and (i) with 45 particles, measured at extreme top and 
bottom (corner) edges of the cubes along the temperature gradient direction. 
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confidence. For t=2 sec, it seems that the micro-mechanical model can predict 

reasonably well the thermal stresses distribution. However, for all the other cases, the 

results suggest that the micro-mechanical is not capable of capturing the thermal stresses 

with good accuracy. To corroborate the above-mentioned hypothesis, the mean values of 

axial thermal stress at different times are shown in Figures 4.14(a)-(c) for the 

microstructures having 20% of reinforcements. More realizations, and possibly with 

models having more reinforcements, are required for confirming this hypothesis with 

more confidence.  

The localized stresses are found in some models which are generally due to the 

specific micro-geometrical features and the high fluctuation about the mean stress profile 

is due to the presence or absence of the particle along the profile where the stresses are 

computed. These high compressive stresses are found in those matrix elements which 

surrounds the particle region. In this study the thermal expansion of the particle is higher 

than the surrounding matrix at all temperatures. Therefore, during the transient heat 

conduction the free expansions of the particle are restrained by the surrounding matrix 

elements. The larger CTE mismatch of particle/matrix elements results in such high 

values of compressive stresses in the neighboring elements of particle.   

For example, consider model-2 shown in Figure 4.15(a) for which the high 

compressive stresses are found in the matrix region that restraint the free expansion of 

two particle regions. A similar behavior is found for the elements neighboring the 

particle region approximately at 2.5mm and 8.3mm, respectively. For the same 
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temperature difference the particle expands more than the matrix but the surrounding 

restraints  
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Figure 4.14 Mean stress profiles for FE models with the unit cell (micromechanical 
model) at each integration point (solid line) and the FE models with 3D microstructural 
detail (symbols) for volume fraction of (a) 20% at different times. 
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provided by the matrix elements are the main cause for the generation of such high 

values of compressive stresses. The same description is applicable to other models where 

such micro-geometrical features are found; for example, see below Figure 4.15(b) of 

model-1. 

TOP ELEMENTS

BOTTOM ELEMENTS

0 2 4 6 8 10
Distance (mm)

-400

-200

0

200

400

A
xi

al
 S

tre
ss

es
 (σ

11
) M

Pa

t =26s

(a)

TOP ELEMENTS

BOTTOM ELEMENTS

0 2 4 6 8 10
Distance (mm)

-400

-200

0

200

400

A
xi

al
 S

tre
ss

es
 (σ

11
) M

Pa

t =26s

Detail Microstructural Model 
Model-1 

(b)

Detail Microstructural Model 

Model-2 

 
Figure 4.15 Axial thermal stresses for FE models with 3D microstructural detail for 
volume fraction of 20% at t=26 sec. (a) and (b) are actual values of stresses at top 
(corner) edge {(X1,10,10); 0≤X1 ≤10} for model-2 and model-1, respectively. 
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4.1.1.4 EFFECTIVE THERMOELASTIC DISPLACEMENT 

The effective displacement, ( 1δ ), is defined as 1 11 Lδ ε= , where 11ε is the volume 

average of the strains in x1 direction and L is the length of the cube. For both the multi-

scale and the detailed models, ( 1δ ) was computed at the face of loading (BDHF in 

Figure 4.3) for composites having a sphere volume fraction of 20% and 30%, 

respectively. The 1δ  as a function of time is plotted in Figure 4.16 (a)-(b). The mean 

values of effective displacements (along with 95% confidence intervals) for  
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Figure 4.16 Effective axial displacements for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of (a) 20% and (b) 30%. Mean 
values of effective displacements for (c) 20% and (d) 30% with C.I of 95%. 
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heterogeneous composite models having 20% and 30% reinforced particles are shown in 

Figures 4.16(c)-(d). Agreement of these results corroborate that the present 

micromechanical formulation is suitable for the prediction of effective responses of 

composites through the incorporation of a nonlinear thermo-elastic constitutive material 

model. 

 
4.1.2 THERMOVISCOELASTIC ANALYSES 

Next, the sequentially coupled thermo-viscoelastic analyses are performed. Both 

micromechanical approaches of Section 4.1, cubic models of dimensions 10 x 10 x 

10mm, were used. The studied composite is a Hercules epoxy matrix reinforced by 

randomly distributed TiC+HDPE spherical particles. Two volume fractions of 

reinforcements were studied, namely 20% and 30%. For the detailed FE meshes, cubes 

containing 20 and 30 spheres are considered. The matrix follows non-linear thermo-

viscoelastic behavior while particle is considered to be thermoelastic. The heterogeneous 

composites directly incorporate nonlinear thermo-viscoelastic behaviors for the particle 

and matrix regions. The thermal as well as the mechanical properties used in the 

simulations given in Table 4.2. The thermal, mechanical and Prony series coefficients 

for Hercules epoxy are taken from Khan (2006). The thermal and mechanical properties 

for TiC and HDPE particles are taken from available literature. The details of references 

are given in Section 3.3 of Chapter III. 
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Table 4.2. Temperature dependent mechanical and physical properties of materials of 
Hercules 3502 epoxy (polymer) and TiC+HDPE (particle) used in thermo-viscoelastic 
FE analyses.  
 

Property Hercules Epoxy TiC+HDPE 

 
Young modulus, (E) 
(MPa) 

0.7873034291.85exp 0.675
303

T⎡ ⎤−⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

- 6 x106 + 84074T - 527.32T2 + 
1.7504T3- 0.0032 T4+ 3 x10-6 T5  
- 1 x10-9 T6 

Poisson ratio,(υ) 0.36 0.297 
 

Coefficient of Thermal 
Expansion, (α)10-6, 1/˚K 

 

30x10-6 T + 2.67x10-7 (T-273) 
 

7.0x10-5-5.0x10-7 T+3.0x10-9 T2 

Thermal Conductivity, 
(K), W/m/˚K 

0.202+6.12x10-3 T -4.81x10-5  
T2+ 1.25x10-7T3-1.04x10-10T4 

1.7 – 4.90x10-3 T+1.02x10-5 T2 

Specific heat,(c) , J/Kg. 
˚K 

5.347 T – 456.9 17865 – 116.2 T + 0.2T2 

Density, (ρ) , Kg/m3 1260 965.1 
* T is temperature in °K. 
 

 
The transient creep thermal analysis consisted in a problem where a composite was 

initially at 300°K, except for one face that was at 400°K. This transient heat transfer 

problem was solved until a steady state was reached. A uniform stress of 10 MPa was 

applied on the face that was at 400°K in order to simulate effective transient creep 

response. The models were subjected to the following boundary conditions:  

1 2 3 1 2 3

2 3 2 3

1 3 1 3
1 3

2 2

1 2 1 2
1 2

3 3

( , , ,0) 300 ; 0 10,0 10, 0 10
(10, , , ) 400 ; 0 10, 0 10, 0

( ,0, , ) ( ,10, , ) 0.0; 0 10, 0 10, 0

( , ,0, ) ( , ,10, ) 0.0; 0 10, 0 10, 0

T x x x K x x x
T x x t K x x t

T x x t T x x t x x t
x x

T x x t T x x t x x t
x x

= ≤ ≤ ≤ ≤ ≤ ≤
= ≤ ≤ ≤ ≤ ≥

∂ ∂
= = ≤ ≤ ≤ ≤ ≥

∂ ∂

∂ ∂
= = ≤ ≤ ≤ ≤ ≥

∂ ∂

        (4.3) 
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1 2 3 2 3

2 1 3 1 3

3 1 2 1 2

1 2 3 2 3

2 1 3 1 3

3 1 2 1

(0, , , ) 0.0; 0 10, 0 10
( ,0, , ) 0.0; 0 10, 0 10
( , ,0, ) 0.0; 0 10, 0 10

(10, , , ) 10.0 MPa; 0 10, 0 10
( ,10, , ) 0.0 MPa; 0 10, 0 10
( , ,10, ) 0.0 MPa; 0

u x x t x x
u x x t x x
u x x t x x
t x x t x x
t x x t x x
t x x t x

= ≤ ≤ ≤ ≤
= ≤ ≤ ≤ ≤
= ≤ ≤ ≤ ≤

= ≤ ≤ ≤ ≤
= ≤ ≤ ≤ ≤
= ≤ 210, 0 10x≤ ≤ ≤

                            (4.4) 

where ui and ti (i=1,2,3) are the components of the displacements and the surface 

tractions, respectively. In the following subsections, the field variables variations during 

transient creep forecasted from the multi-scale framework are compared to those of the 

detailed FE meshes of Section 4.1.  

 

4.1.2.1 TEMPERATURE DISTRIBUTION 

Figure 4.17(a) shows the temperature distributions obtained from the homogenized 

model as well as from the heterogeneous composite reinforced by 20% of TiC+HDPE 

particles for model size of 20 particles, for different times. Figure 4.17(b) shows the 

mean responses of the various realizations, along with 95% confidence intervals for 

models of 20 particles. The largest width of the confidence interval was found to be 

1.36% of the mean value. The width of the confidence interval decreases as the time 

increases. Figures 4.18(a)-(b) shows temperature profiles from a similar type of analyses 

but for a composite reinforced by 30% of TiC+HDPE particles and for model containing 

30 particles. The largest width of the confidence intervals is 1.52% of the mean value. 

Figures 4.17 and 4.18 show that the micromechanical model predicts fairly well the 

temperature profiles for the range of material properties simulated.  
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Figure 4.17 Comparison of temperature profiles for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of 20% at different times. (a) 
average values of temperature at top and bottom (4-corners) edges {(X1,0,0); (X1,0,10); 
(X1,10,0); (X1,10,10); 0≤X1 ≤10} (b) mean values of temperature of different FE models 
with C.I of 95% along the temperature gradient direction. 
 

 

0 2 4 6 8 10

Distance (mm)

300

320

340

360

380

400

420

Te
m

pe
ra

tu
re

 (K
)

t =100s

t =300s

t =20s

Detail Microstructural Model 

Micromechanical Model

Model-1 
Model-2 

Model-3 
Model-4 

(Volume fraction = 30%, 30 particles) (a)

0 2 4 6 8 10

Distance (mm)

300

320

340

360

380

400

420

Te
m

pe
ra

tu
re

 (K
)

t =100s

t =300s

t = 20s

Detail Microstructural Model 

Micromechanical Model

(Volume fraction = 30%, 30 particles)
(b)

Steady State Time = 875 seconds

 
Figure 4.18 Comparison of temperature profiles for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of 30% at different times. (a) 
average values of temperature at top and bottom (4-corners) edges {(X1,0, 0); (X1,0,10); 
(X1,10,0); (X1,10,10); 0≤X1 ≤10} (b) mean values of temperature of different FE models 
with C.I of 95% along the temperature gradient direction. 
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Table 4.3 Prony series coefficients for the Hercules 3502 polymer. 
 

n -1(sec )nλ   6 -110 (MPa )nD −×  

1 1 176.0 

2 110−  5.0 
3 210−  29.0 
4 310−  25.0 
5 410−  35.0 
6 510−  6.80 

 
 
 

4.1.2.2 DISPLACEMENT DISTRIBUTION 

Figure 4.19(a) shows the displacement distributions obtained from the homogeneous 

and heterogeneous models for a composite containing 20% of TiC+HDPE particles for 

model having 20 particles. Figure 4.19(b) shows the average response of the various 

realizations, along with 95% confidence intervals on the mean value. The largest width 

of the confidence interval was found to be 156% of the mean value. Figures 4.20(a)-(b) 

show displacements from similar analyses but for a composite reinforced by 30% of 

TiC+HDPE particles for models containing 30 particles. The largest width of the 

confidence interval was of 160%. It can be observed that the similar trends are found in 

the thermoviscoelastic analyses as were observed for the thermoelastic analyses. The 

micro-mechanical model predicts with more accuracy the temperature distribution than 

the displacement field, for the cases studied here. Nevertheless, it still gives average 

displacement response of the composite. 
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Figure 4.19 Comparison of axial displacements for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of 20% at different times. (a) 
average values of displacements at top and bottom (4-corners) edges {(X1,0,0); (X1,0,10); 
(X1,10,0); (X1,10,10); 0≤X1 ≤10} (b) mean values of displacements of different FE 
models with C.I of 95% along the temperature gradient direction. 
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Figure 4.20 Comparison of axial displacements for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of 30% at different times. (a) 
average values of displacements at top and bottom (4-corners) edges {(X1,0,0); (X1,0,10); 
(X1,10,0); (X1,10,10); 0≤X1 ≤10} (b) mean values of displacements of different FE 
models with C.I of 95% along the temperature gradient direction. 
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4.1.2.3 THERMAL STRESSES DISTRIBUTIONS 

Figures 4.21 to 4.22 show the variation of thermal stresses for spheres volume 

fractions of 20% and 30% at different times for the homogenized and heterogeneous 

composites, respectively. For all the figures, the widths of the confidence intervals are 

very high. The results show that the micromechanical model only gives average 

responses of the overall thermal stresses. This approach is useful for designing 

composite structures in which the structures are designed with the maximum load 

carrying capacity below the threshold of failure/damage. However the simplified 

micromechanical model is limited in obtaining detailed field variables such as 

discontinuities of stress at the interfaces of the constituents and therefore it is not capable 

of incorporating failure mechanism such as de-bonding, damage, crack propagation etc. 

4.1.2.4 EFFECTIVE THERMOVISCOELASTIC DISPLACEMENT 

For both the multi-scale and the detailed models, ( 1δ ,effective far field displacement) 

was computed at the face of loading (BDHF in Figure 4.3) for composites having a 

sphere volume fraction of 20% and 30%, respectively. The 1δ  is plotted as a function of 

time in Figures 4.23 (a)-(b). The mean values of effective displacements (along with 

95% confidence intervals) for heterogeneous composite models having 20% and 30% 

reinforced particles are shown in Figures 4.23 (c)-(d). Good agreements are observed for 

the sphere volume fraction of 20% while for the particle VF of 30% the present 

micromechanical predictions for effective displacements are higher than those of the 

heterogeneous composite. One of the reasons for the higher values of displacements for 

30% VF is that the CTE for particles are approximately 7 times more than the matrix that  
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Figure 4.21 Comparison of axial thermal stresses for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of 20% at different times. (a) 
average values of stresses at top and bottom (4-corners) edges {(X1,0,0); (X1,0,10); 
(X1,10,0); (X1,10,10); 0≤X1 ≤10} (b) mean values of stresses of different FE models with 
C.I of 95% along the temperature gradient direction. 
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Figure 4.22 Comparison of axial thermal stresses for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of 30% at different times. (a) 
average values of stresses at top and bottom (4-corners) edges {(X1,0,0); (X1,0,10); 
(X1,10,0); (X1,10,10); 0≤X1 ≤10} (b) mean values of stresses of different FE models with 
C.I of 95% along the temperature gradient direction. 
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raised the effective CTE of the homogenized composite. However, for detailed 

microstructural FE models the expansion of the particles are restrained causing in high 

compressive thermal stresses but lesser displacement values than the homogenized ones. 

Moreover, this is expected because of the increase of the volume content of stiffer 

inclusion. 
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Figure 4.23 Effective axial displacements for FE models with the unit cell 
(micromechanical model) at each integration point (solid line) and the FE models with 
3D microstructural detail (symbols) for volume fraction of (a) 20% and (b) 30%. Mean 
values of effective displacements for (c) 20% and (d) 30% with C.I of 95%. 

 

The comparisons of transient responses of the homogenized and heterogeneous 

composites due to coupled heat conduction and mechanical loading have been studied.  
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For the temperature response, the RVE size was reached for both models having 20% 

and 30% reinforcements.  It was found that the temperature distribution is relatively well 

predicted by the multi-scale model. The width of the confidence intervals for the 

displacements were larger than those for the temperature but allowed nevertheless to 

conclude that the multi-scale framework can also predict with a reasonable accuracy the 

displacement field inside the composite. The RVE size was not reached for the thermal 

stresses and it is not possible to conclude that the multi-scale framework is suitable for 

representing accurately these stresses. Larger RVEs or many more simulations for the 

same RVE sizes would be required in order to narrow the confidence intervals. However, 

the mean results obtained are encouraging and running more simulations might reveal 

that the multi-scale framework is also suitable for evaluating the overall (average) 

thermal stresses. Finally, the multi-scale model predicted with reasonable accuracy the 

effective displacement. Therefore, the main contribution of this work was the 

development and the partial validation of a multi-scale framework that allows predicting 

the effective field variables of composite undergoing coupled thermo-mechanical 

loadings. 
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 4.2 FULLY COUPLED THERMOMECHANICAL ANALYSIS OF 

PARTICULATE COMPOSITES 

The proposed multiscale framework is used to analyze fully coupled thermo-

viscoelastic response of composite structural components under multi-axial stresses. A 

square composite plate with dimensions of 200mm x 200mm x1 mm having a hole of a 

diameter 10 mm is considered (see Figure 4.24(a)).  A multi-axial state of stress exists 

around the hole for a uniaxial load prescribed at the two opposite surfaces. Due to a 

double symmetric condition, only a quarter of the plate is modeled. FE mesh with 8-

node linear brick element (C3D8T) is generated to perform the coupled temperature-

displacement analysis. One element is used through the thickness of 1 mm. A total of 

463 nodes and 269 elements are generated. 

The studied composite is a FM73 matrix reinforced by TiC+HDPE particles. The 

Prony series coefficients, nonlinear stress and temperature dependent parameters, 

thermal and mechanical properties used in the simulations are already given in section 

2.3 of Chapter II and section 3.3 of Chapter III. The schematic of the geometry of the 

plate and boundary conditions are given in Figure 4.24(a)-(c). A cyclic stress of 

11 0 sin tσ σ ω= along x1 direction is applied at the far ends of the plate for duration of 

2400 seconds (40 minutes). A composite was initially at 303°K. The following case 

studies are considered: 

Case 1: The cyclic stress of amplitude 0( )σ 10MPa and frequency ( )ω 4π  is applied 

with no heat flux across prescribed at all faces of the plate including the surface of a 
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hole. As a result, the evolution of temperature is only due to the energy dissipation of 

a viscoelastic body during the deformation. 
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Figure 4.24 a) Geometry of the plate, loading direction and locations at which the 
temperatures are measured. (b) plate dimensions and loading type (c) representation of 
multiscale models along with geometry, loading and boundary conditions of the FE 
model. 

 
 

Case 2: The cyclic stress of amplitude 0( )σ 10MPa and frequency ( )ω 4π  is applied 

with no heat flux across prescribed at all faces of the plate except the face where the 

axial load is applied. The temperature of 313°K is specified on the face at which the 

load is applied. This allows us to analyze the heat conduction along axial direction 

(x1 axis) along with the dissipation of energy due to the viscoelastic deformation.  
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The temperature generation at three different locations (see Figure 4.24a) is shown in 

Figure 4.25 for the case 2 with VF of 0% and 10%. It is observed that the heat 

generation at these points is not affected by the conduction for the given duration of the 

analysis. The maximum heat is generated at point 2 where the maximum stresses are 

present. At these three points the conduction due to the prescribed temperature at the 

boundary is taking place very slowly as compare to the heat generation due to the 

dissipation. Lower heat is generated for the composite as compared to the unreinforced 

material resulting in lower temperature increase. 
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Figure 4.25 Temperature increase due to temperature and cyclic stress loading at 
locations 1, 2 and 3 for composites having TiC+HDPE particle volume fractions of 0% 
and 10%. 
 

 
The temperature increase along the line joining points 1 and 4 (see Figure 4.24a) in 

the x1 direction is reported in Figure 4.26. During the entire cyclic loading the 
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temperature boundary condition is specified at the right face. Figure 4.26(a) shows the 

conduction behavior for the neat FM73 matrix along with the heat generation during the 

viscoelastic deformation. The conduction is taking place so slowly such that the  
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Figure 4.26 Temperature profile along the x1-axis (line joining point 1-4) for composites. 
a) heat transfer vs. coupled temperature displacement analysis for pure FM73 polymer. 
b) coupled temperature displacement analysis for composites having 0% and 10% VF of 
TiC+HDPE particles. 
 
 
temperature rise due to the dissipation overcomes the propagation of the temperature due 

to conduction along the axial direction. The heat generation rate increases with time, 
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accelerating the temperature increase, as shown in Figure 4.26(b) and 4.27. As expected 

less temperature rise is obtained for the composite reinforced with particle VF of 10% as 

compared to the neat matrix. 
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Figure 4.27 Temperature profile along the x2-axis (line joining point 2-5) for 
FM73/TiC+HDPE composites during coupled temperature displacement analysis. 

 

Next, bending of a cantilever beam under a cyclic load is studied. The beam with 

dimensions of 100mm x 20mm x2 mm is considered. FE mesh with 8-node linear brick 

element (C3D8T) is generated to perform the coupled temperature-displacement 

analysis. One element is used through the thickness of 2 mm. A total of 198 nodes and 

80 elements are generated. 

The studied composite is a FM73 matrix reinforced by TiC+HDPE particles. The 

schematic of the geometry of the beam and boundary conditions are shown in Figure 
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4.28. All boundaries of the specimen are assumed to be insulated, i.e, no heat lost across 

the boundary. The cyclic transverse load of different amplitudes is applied at the free end 

of the beam for duration of 1200 seconds (20 minutes). The beam made of a composite 

material with particle VF of 0%, 12.5% and 25% is studied. The temperature is 

measured at a point located on the top surface of the beam at a distance of h1 from the 

fixed end. Figure 4.29 shows the temperature generation for homogeneous and 

composite beams. It is found that the temperature generation greatly influenced by the 

magnitude of the applied load however the temperature increase is slightly lowered by 

adding some amount of particles.  
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Figure 4.28 Illustration of a multiscale modeling approach for analyzing fully coupled 
thermoviscoelastic bending analysis of a composite cantilever beam. 
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Figure 4.29 Temperature generations at point 1 during fully coupled thermoviscoelastic 
analysis of a homogeneous and composite cantilever beam. 

 

These analyses show a successful integration of the multiscale micromechanical 

framework to perform structural analyses and incorporating the dissipation of energy on 

the deformation of viscoelastic structures. 

In summary, the particulate composite having polymeric matrix can generate 

enormous amount of heat when subjected to cyclic loading for a long period of time. 

Primarily, the viscoelastic properties of the matrix dominate the overall heat generation 

rate of the composite. In addition to that, the heat generation rate also depends on the 

amplitude and frequency of the cyclic loading. The dissipation of energy in the 

viscoelastic bodies is important for polymer matrix composite structures in which non-

uniform heat is generated under a cyclic loading where there is no such cooling 
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mechanism available that can lowered the localized temperature increase. Moreover, 

since polymeric based composites have low thermal conductivity, there is a possibility 

that conduction takes place so slowly such that the temperature continues to increase 

locally as time progresses. This local temperature increase degrades the material 

properties and could possibly affect the performance of the structure. If highly 

conductivity particles are added to the low thermal conductivity matrix then it might be 

possible that these localized temperature regions could possibly spread out and the 

overall performance of the composite can be slightly improved. In such cases, the heat 

generation due to viscoelastic deformation dominates and should be considered. In 

contrast to large structures conduction plays a very important role in lowering the 

temperature at the points of maximum stresses in small structures, even for composites 

having low thermal conductivity. For example, when a composite beam is subjected to a 

cyclic loading, the conduction takes place from highest temperature regions (due to the 

generation of high stresses) towards the lowest ones in the beam. As a result, the 

temperature is dispersed throughout the body of the beam and the values of temperature 

decreases at the point of maximum stresses. However, under a cyclic loading at high 

stress amplitudes and moderate frequencies (0.1-10 rad/sec.) for a long period of time 

the temperature generation is significant and therefore the dissipation of energy due to 

viscoelastic constituents in composites should be considered.       
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CHAPTER V 

A MULTI-SCALE MODEL FOR COUPLED HEAT CONDUCTION AND 

DEFORMATIONS OF VISCOELASTIC FUNCTIONALLY GRADED MATERIALS* 

 
An integrated micromechanical-structural framework is presented to analyze coupled 

heat conduction and deformations of functionally graded materials (FGM) having 

temperature and stress dependent viscoelastic constituents. A through-thickness 

continuous variation of the thermal and mechanical properties of the FGM is 

approximated as an assembly of homogeneous layers. Average thermo-mechanical 

properties in each homogeneous medium are computed using a simplified 

micromechanical model for particle reinforced composites described in Chapter III. This 

micromechanical model consists of two isotropic constituents. The mechanical 

properties of each constituent are time-stress-temperature dependent. The thermal 

properties (coefficient of thermal expansion and thermal conductivity) of each 

constituent are allowed to vary with temperature.  Sequentially and fully coupled heat 

transfer and displacement analyses are performed, which allow analyzing stress/strain 

behaviors of FGM having time stress, and temperature dependent material properties. 

The thermo-mechanical responses of the homogenized FGM obtained from the 

 

 

 
*Reprinted with permission from “A Multi-scale Model for Coupled Heat Conduction 
and Deformations in Functionally Graded Materials” by Khan, K.A., Muliana, A.H., 
2009. Special Issue on Blast/impact on engineered (nano) composite materials 
Composites Part B: Engineering, 40(6), 511-521, Copyright 2009 by Elsevier Ltd. 
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multiscale framework are compared with experimental data and the results obtained 

from finite element (FE) analyses of FGMs having microstructural details. The present 

micromechanical modeling approach is computationally efficient and shows good 

agreement with experiments in predicting time-dependent response of FGMs. Our 

analysis forecasts a better design for creep resistant materials using FGMs. 

FGMs are composite materials in which the physical and mechanical properties of 

the materials vary spatially along specific directions over the entire domain. Structures 

made of FGMs are often subjected to high temperature gradient loadings. Under such 

conditions, the properties of the constituents in FGM structure can vary significantly 

with temperatures accompanied by a non-negligible time-dependent response. For 

example, FGMs composed of metal and ceramic constituents tend to creep at high 

temperatures. In addition, non-uniform temperature fields and mismatch in the properties 

of the constituents in FGMs generate thermal/residual stresses that affect overall 

performance of FGMs. Therefore, understanding nonlinear thermo-viscoelastic behavior 

of FGMs plays a significant role in evaluating the performance of structures made from 

such materials.  

Extensive numerical and analytical models have been developed to determine the 

macroscopic thermal, elastic and inelastic behaviors of FGMs. Noda (1991) and 

Tanigawa (1995) provided detailed reviews on thermoelastic and thermo-inelastic 

studies in FGMs having temperature dependent/independent material properties. Limited 

analytical models have been developed to study the linear viscoelastic macroscopic 

behavior of FGMs, e.g., Yang (2000), Paulino and Jin (2001) and Mukherjee and 
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Paulino (2003). Yang (2000) formulated analytical solutions of the time-temperature 

dependent behavior of joined cylinder having spatially gradation of the material 

properties. Paulino and Jin (2001) introduced the correspondence principle for non-

homogeneous linearly isotropic viscoelastic materials whose relaxation (or moduli) 

functions can be uncoupled as functions of space and time. The principle is applied for 

the viscoelastic FGMs with spatially varying material properties but having time-

independent coefficient of thermal expansion. The validity of the principle is presented 

by applying it on standard Maxwell and linear solid models. Later, Mukherjee and 

Paulino (2003) found that there are some material behaviors for which relaxation (or 

moduli) functions cannot be separated and thus for those class of materials, the 

correspondence principle is not valid. 

FE formulations have also been developed to obtain solution for the thermo-

mechanical behavior of cylinders and plates having graded material properties. The 

macroscopic properties are obtained using a rule of mixture approach and the effect of 

spatial variations of the properties on the overall response of FGM is examined. 

Examples are given in Reddy and Chin (1998), Praveen and Reddy (1998), Praveen et al. 

(1999), Reddy (2000) and Shabana and Noda (2008). Few experimental studies have 

been performed to determine the variation of the thermal as well as mechanical 

properties of FGMs and are mainly limited to thermo-elastic behavior, e.g., Zhai et al. 

(1993b) and Paramesvaran and Shukla (2000). 

Simulating the microscopic responses of FGMs using detailed FE modeling of the 

graded microstructure with some idealized geometry is computationally expensive and 
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inadvisable for practical applications. Micromechanical models with simplified 

microstructural geometries have an advantage over other modeling techniques because 

they can give approximate macroscopic properties of non-homogeneous materials while 

recognizing the microscopic properties of each constituent. However, there are some 

limitations in the simplified micromechanical models which depend on the assumptions 

and simplifications made on deriving the micromechanical models. Thus, it cannot 

capture the detail discontinuities of the thermal stresses at the particle-matrix inter-phase 

regions and local variations of the field variables within the particle and matrix regions. 

Several micromechanical modeling approaches have been used to study the elastic 

behavior of composites including FGMs. Micromechanical models like the self-

consistent method (SCM), Mori-Tanaka (MT), and Method of Cells (MOC) have been 

used for evaluating the properties of FGMs. The FGM was represented as a piece-wise 

layered material with uniform effective properties in each layer, which were evaluated 

using the micromechanical models. The self consistent scheme and Mori Tanaka method 

have been widely used by the authors to analyze the behavior of FGM, e.g., Zhai et al. 

(1993a), Reiter et al. (1997), Tsukamoto (2003) and Zhang et al. (2005). A detailed 

review of the micromechanical-modeling approaches used by the researchers to study 

the behavior of FGM can also be found in Gasik (1998). Aboudi et al. (1999) developed 

a generalized higher order micromechanical theory using MOC. The coupling effects at 

the micro and macro levels were considered to analyze the thermo-mechanical behavior 

of the FGM graded in three directions.  
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 Another approach to idealize the graded microstructure of FGM is done by defining 

RVE, in which functional spatial variations of the inclusions are assumed, to analyze the 

thermo-mechanical behavior of the FGM. Grujicic and Zhang (1998) used the Voronoi 

cell FE method (VCFEM), and Yin et al. (2007) introduced pair wise particle 

interactions and Eshelby’s equivalent inclusion solution to evaluate the effective thermo-

elastic properties of graded RVE.  Reiter et al. (1997) and Dao et al. (1997) performed 

thermo-elastic FE analysis of FGM models having linear gradation of an idealized 

geometry of inclusions. Available micromechanical and FE based studies on FGM are 

limited to thermo-elastic and linear viscoelastic behaviors. There is clearly a need to 

understand the non-linear thermo-viscoelastic behavior of FGMs with non-constant 

properties of the constituents. In this study, the proposed micromechanical model is 

applied to analyze the coupled thermoviscoelastic behavior of FGMs. 

The present study addresses coupled heat conduction and deformation of viscoelastic 

FGM using a micromechanical modeling approach. A through-thickness continuous 

variation of the thermal and mechanical properties of the FGM is modeled as an 

assembly of homogeneous layers. Average thermo-mechanical properties in each 

homogeneous medium are defined using micromechanical model for particle reinforced 

composites developed at Chapter III.  Experimental data available in the literature are 

used to verify the model. Numerical simulations are also performed to analyze non-

linear thermo-viscoelastic responses of homogenized FGM using a micromechanical 

model and comparisons are made with the results obtained from FE analysis of two 

dimensional (2D) FGM models having microstructural details (i.e., heterogeneous 
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FGM). In the 2D FE model of heterogeneous FGM, the inclusions are idealized as 

circles and their volume fraction vary from one end of geometric model to the other. 

Comparisons of results show that the present micromechanical model is capable of 

predicting the non-linear viscoelastic responses of FGMs. In the end, fully coupled 

thermoviscoelastic behavior of functionally graded beam under cyclic loading is 

presented.  

 
5.1 MODELING OF FUNCTIONALLY GRADED MATERIALS 

In this study, a FGM consisting of two constituents whose material properties change 

with time, stress, and temperature, is considered. The FGM graded in one direction is 

idealized as a piece-wise homogeneous medium whose macroscopic properties are 

evaluated using a micromechanical model. The variation in properties from a series of 

homogeneous layers along the graded direction is shown in Figure 5.1(a).  The FGM is 

approximated as an assembly of a fictitious layered medium to facilitate the process of 

integration of micromechanical model with FE package, i.e., ABAQUS.  The variations 

in material properties with locations are incorporated by introducing the multiple 

integration points along the graded directions, i.e. thickness direction.  Each integration 

point represents a material property of a discretized area. Thus, the overall through-

thickness FGM responses show zigzag (discontinuous) variations.  By increasing the 

number of integration points along the graded directions, the discontinuities in the FGM 

can be minimized.   
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Figure 5.1 Illustration of modeling approach for FGM using a micromechanical model. 
 

Each layer of the FGM is composed of a homogeneous matrix and spherical 

inclusion particles. The spherical particles are assumed to be uniformly distributed in 

each macroscopic layer. The particles in the microstructure are idealized as cubes and 

distributed uniformly in three dimensional periodic arrays. A representative volume 

element (RVE) consisting of one particle embedded in cubic matrix is considered. Due 

to the three plane symmetry, one-eight unit cell is assumed to consist of four sub cells. 

The first sub-cell contains a particle constituent, while the subcells 2, 3, and 4 represent 

the matrix constituents, as shown in Figure 5.1(e). Perfect bonds are assumed at the 

subcell’s interfaces. Periodic boundary conditions are imposed on the RVE. Stress, 

temperature and time-dependent constitutive models are used for the isotropic 

constituents. Temperature dependent thermal properties are considered for particle and 

matrix constituents. The effective properties of the unit cell define the macroscopic 

properties at a material point in the homogeneous layer which in turn represents the 

effective response of each layer. The present micromechanical model is compatible with 

a) Functionally graded  
material idealization

  b) Microstructure  
details

   c) Microstructure 
Idealization d) RVE e) Unit Cell 
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general displacement based FE software to perform the thermo-mechanical analyses of 

FGM structures. 

In the following sections, Eqs. (3.15), (3.22) and (3.44) are used to determine the 

variations of the effective time-dependent stiffness matrix, coefficient of linear thermal 

expansion, and thermal conductivity along the graded direction of FGMs.  

 
5.2 EFFECTIVE THERMO-MECHANICAL PROPERTIES OF FGM 

To demonstrate the capability of the proposed micromechanical model, the thermo-

mechanical responses of FGM from the micromechanical model are compared with ones 

from existing experimental data, and FE model of FGMs having microstructural details. 

The experimental data of Zhai et al. (1993b) is used to compare the variations of 

elastic modulus in the FGMs. TiC/Ni3Al FGMs were prepared with Ni3Al particles 

dispersed in the continuous TiC matrix. The elastic properties of the constituents are 

shown in Table 5.1. Comparisons of the predicted elastic modulus distribution along the 

gradation direction with the experimental data are shown in Figure 5.2. The proposed 

model provides relatively good agreement with the experimental data. The responses are 

characterized at fixed temperature. 
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Table 5.1 Mechanical and physical properties of materials used in FGM.   

Material 
 
Young Modulus 
( )E , GPa 

Poisson ratio ( )v  Linear Thermal 
Expansion ( )α 10-6, 1/˚K 

Thermal 
Conductivity
( )K , W/m/˚K. 

Ni3Al 199   0.295 11.90 - 

TiC 460 0.19 7.20 - 
Al-6061 
(T6)                70.3 0.34 23.40 173 

SiC 400 0.20 3.4 120 

Si    112.4 0.42 3.0 100 
Al 72 0.33 23.6 234 
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Figure 5.2 Comparison of Young’s Modulus for FGM consisting of TiC and Ni3Al. 
 

The FGMs consisting of metal-matrix systems are widely used in high temperature 

applications. The metallic components having a high coefficient of thermal expansion 

(CTE) are generally doped with constituents having a low CTE to tailor the overall CTE. 

Thus, the FGM can be used in applications requiring low CTE and high thermal 
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conductivity. The CTE is one of the main features of FGM needed to be analyzed when 

designing FGM for high temperature applications. Geiger and Jackson (1989) measured 

the CTE distribution in Al/Si FGM with a volume fraction of Si particles that varies 

from 0 to 45%. The material properties of Al and Si are given in Table 5.1. Comparisons 

of the effective CTE obtained from the micromechanical model with the ones obtained 

from the experimental data are shown in Figure 5.3. The results are found to be in good 

agreement with the experimental data.  Geiger and Jackson (1989) also measured the 

thermal conductivity of the Al-6061(T6) /SiC FGM with a SiC particle volume fraction 

varies from 0 to 60%. The material properties of Al-6061(T6) and SiC are given in Table 

5.1. Figure 5.4 shows the comparison of experimental data and the results obtained from 

the micromechanical model for the thermal conductivity variations along the graded 

direction. Comparing the experimental data with the results obtained from the 

micromechanical model, as shown in Figures 5.2-5.4, it is suggested that the proposed 

micromechanical model is capable of predicting the thermo-mechanical behaviors of 

FGM along the graded direction. 
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Figure 5.3 Comparison of the coefficient of thermal expansion for FGM consisting of Al 
with Si inclusions. 
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Figure 5.4 Comparison of the thermal conductivity of FGM consisting of Al and SiC 
particles. 
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5.3 SEQUENTIALLY COUPLED HEAT CONDUCTION AND 

DEFORMATIONS OF FGM 

Experimental data of FGMs having time-temperature dependent behavior is currently 

not available. FE analysis is performed to determine the effects of time-temperature 

dependent constituent properties on the thermo-viscoelastic behaviors of FGMs. All 

simulations are performed using the ABAQUS FE software. The results obtained from 

the micromechanical model are compared with the ones from FE analysis of the FGM 

model having microstructural details. The FGM panel of 16mm length x 10mm height x 

1mm depth is studied. The volume fraction of inclusions varies along the length 

direction. A 2D FE model of FGM having a gradation of the particle in one direction is 

shown in Figures 5.5 (a) and 5.5(b). The particles in the form of circles are dispersed 

randomly with a gradient of volume fractions of particle from 0 to 40%. In Figure 5.5(a), 

large diameter particles are distributed while Figure 5.5 (b) contains small size particles. 

Small size particles show more uniform distribution as compare to the ones with large 

size particle. Figure 5.5 (c) illustrates the simplified piece-wise homogenized model with 

sixteen (16) layers. Each layer represents the macroscopic material point with 

homogeneous properties varying with the gradient of volume fraction of the particles. 

The heat transfer analysis is first performed to obtain the temperature distribution along 

the graded direction. Using the temperature distribution, the stress analyses are carried 

out to determine the time-temperature dependent deformations of FGM along the graded 

directions.  In order to obtain the temperature profiles, the equation governing the heat 

conduction in an FGM body needs to be solved.  This equation is written as: 
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,( ) , 1, 2,3k i ic x T q i kρ = − =             (5.1) 

where )( kxcρ is the effective heat capacity that depends on the composition, density, 

and specific heat of the two constituents in the FGM body.  The effective heat capacity is 

obtained using a volume average method. 

           
 
 

Figure 5.5 Illustration of the geometry of the finite element models for a volume fraction 
that varies from 0 to 40%. a) coarse and b) fine microstructural details c) piece wise 
homogeneous macroscopic layers. 
 

The FGM consisting of Ti-6Al-4V and Zr02 is first considered. The temperature 

dependent mechanical and physical properties of these materials are given in Table 5.2. 

The properties are taken from Praveen et al. (1999). First, a transient heat transfer 

analysis is performed by applying a uniform temperature of 1000˚K at one end. The 

entire FGM is initially at constant temperature of 300˚K. After 159 seconds, the 

temperature distributions reach to steady state condition. Temperature profile is plotted 

along the graded direction. The results obtained from our micromechanical formulation 

are compared with the ones obtained from FE model having coarse and fine 

microstructural details. Comparison of the results in Figure 5.6 shows that profiles 

obtained from the fine microstructural details and micromechanical model are in good 

agreement, while results obtained from coarse microstructural details show some 

(a) (b) (c) 
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deviations. The deviation is mainly due to uneven and sparse distribution of inclusions. 

In all further analyses, FE model having fine microstructural details will be considered. 

The computational (CPU) time taken to analyze the FE model of FGM having fine 

microstructural details is 118 seconds which is about 13 times higher than the one taken 

by the analysis using our micromechanical formulation.  
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Figure 5.6 Temperature profiles at different times along the graded direction of FGM 
having constituents with temperature dependent thermal conductivities, for Ti6Al-
4V/Zr02. 

 

Next, the stress analyses are performed based on the temperature distribution 

obtained from the heat conduction analyses. A uniaxial stress of 10 MPa is applied along 

the graded direction. The temperature distribution obtained from transient heat transfer 

analysis is considered as a field dependent temperature loading. The elastic properties of 
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the constituents change with temperature as shown in Table 5.2. Figure 5.7 shows the 

profiles of the displacement fields. The results obtained from FE analysis of FGM 

models having fine microstructural details and the ones using a micromechanical model 

are in good agreement. In the above analyses, the effect of temperature on the 

deformation is incorporated through the temperature dependent elastic properties while 

the effect of thermal expansion is neglected. However, with such a high temperature 

changes, the effects of free thermal expansion of each constituents can be very 

significant. Mismatches in the thermal expansion coefficient of the constituents can 

generate thermal stresses. Figure 5.8 shows the results of variations of displacement 

along the graded direction with temperature dependent thermal expansion and elastic 

properties. The FE model with microstructural details incorporates thermal stresses due 

to mismatches in the thermal expansion coefficients. At the beginning of the heat 

transfer analysis, there is a high rate of change of the temperature gradient which causes 

generation of high thermal stresses at the interfaces of the constituents. These stress 

fields in turn affect the displacement fields of the entire FGM. The thermal stress effect 

is currently not being included in the present micromechanical model, which is shown 

by the deviation in the two responses in Figure 5.8. As time progresses, the temperature 

gradient decreases which reduces thermal stresses and for a zero temperature gradient 

both results agree quite well. 
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Table 5.2 Temperature dependent mechanical and physical properties of materials of Ti-
6Al-4V and Zr02. 
  

Property Ti-6Al-4V Zirconia (Zr02) 

Young modulus, ( )E  (Pa) 1.23x1011-56.457x106 T 2.44x1011-334.28x106 T 
+295.24x103T 2- 89.79T 3 

Poisson ratio, ( )v  0.3 0.3 
Coefficient of Thermal 
Expansion, ( )α 10-6, 1/˚K 

7.58x10-6 + 4.927x10-9 T + 
2.388x10-12 T 2 

1.28x10-5-19.07x10-9 T + 1.28x10-11 T 2- 
8.67x10-17T 3 

Thermal Conductivity, ( )K , 
W/m/˚K 

1.2095 + 0.01686 T 1.7 + 2.17x10-4 T + 1.13x10-5 T 2 

Specific heat, ( )c , J/Kg. ˚K 625.2969 - 0.264 T  
+ 4.49x10-4 T 2 487.3427 + 0.149 T - 2.94x10-5 T 2 

Density, ( )ρ , Kg/m3 4429 5700 
   

* T is temperature in ˚K. 
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Figure 5.7 Variations of displacement field at different times along the graded direction 
of FGM having constituents with temperature dependent elastic properties, for Ti6Al-
4V/Zr02. 
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Figure 5.8 Variations of displacement field at different times along the graded direction 
of FGM having constituents with temperature dependent elastic and thermal properties, 
for Ti6Al-4V/Zr02. 

 

Next, coupled heat-conduction and deformation analysis is performed to investigate 

the effect of viscoelastic constituents on the overall thermo-mechanical responses of 

FGMs. The time-dependent behavior of metal matrix composites is of importance at 

high temperatures. The creep behavior of Al with Silicon carbide inclusions is thus 

numerically studied as an example. The temperature dependent elastic modulus of 

aluminum is taken from Kaufman (2000). The properties of SiC are taken from Geiger 

and Jackson (1989). The temperature dependent mechanical and physical properties of 

Al and SiC are given in Table 5.3. The present model requires the creep parameters 

which can be obtained from a series of experimental data performed at constant stress 

and different temperatures. Because of the unavailability of such data, creep properties 
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of aluminum at 573°K and 28.5 MPa are taken from the experimental work of Tjong and 

Ma (1999). The time-dependent and non-linear temperature dependent parameters of Al 

are given in Table 5.4. Moreover, Dicarlo and Yun (2006) reported that the SiC does not 

show any creep up to 1073°K. This temperature is far above the temperatures considered 

in this study. Therefore, SiC is assumed to behave linearly elastic. The axial creep data 

of pure aluminum is shown in Figure 5.9.  The axial creep of composites and FGMs 

consisting of aluminum and SiC is computed using the micromechanical model. A 

constant stress of 28.5 MPa and fixed temperature of 573°K are prescribed at one end for 

12000 seconds. The boundary conditions of the specimens are shown in Figure 5.9. 

Composites having a uniform distribution and linear gradation of SiC along the graded 

direction are considered. The results of axial creep deformations (measured at point B) in 

Figure 5.9 show that, the graded material shows more creep resistance than the 

composites having uniform distribution of the SiC particles.  

 
 
Table 5.3 Temperature dependent mechanical and physical properties of materials of Al 
and SiC. 
  

Property Aluminum (Al) Silicon carbide (SiC) 

Young modulus, ( )E  (MPa) 65144 + 73.432 T -0.1618 T 2 406783-22.61T  
Poisson ratio, ( )v  0.33 0.2 
Thermal Conductivity, ( )K , 
W/m/˚K 

235 - 0.0305 T + 0.0003 T 2- 
 6x10-7  T 3+3 x10-10 T 4      183.78 - 0.1569 T 

Specific heat, ( )c , J/Kg. °K 900 750 
Density, ( )ρ , Kg/m3 2700 3210 
Coefficient of Thermal 
Expansion, ( )α 10-6, 1/˚K 

2 x10-5  + 6 x10-9 T  
+ 3 x10-12 T 2+1 x10-14 T 3 3 x10-6  + 3 x10-9 T -6 x10-13 T 2 

* T is temperature in °K. 
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Table 5.4 Prony series coefficients and temperature dependent parameters for Al.   

n -1(sec )nλ  6 -110 (MPa )nD −×  

1 1 0.1 

2 10-1 0.15 

3 10-2 20 

4 10-3 30 

5 10-4 160 

6 10-5 1100 
2

0
0

0

exp 0.36T T Tg
T

⎡ ⎤⎛ ⎞−
⎢ ⎥= ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

, 1 2 1T T
Tg g a= = =  

 

0 4000 8000 12000
Time (seconds)

0

0.002

0.004

0.006

0.008

0.01

A
xi

al
 C

re
ep

 D
ef

or
m

at
io

n 
(m

m
)

Pure Aluminum Experimental Creep Data ( Tjong and Ma,1999)

25% inclusions by volume distributed uniformly

Al with SiC inclusions

25% inclusions by volume graded linearly with a maximum of 40%.

σο=28.5

σ(MPa)

t
12000

T (oK)

t
12000

To= 573

A B

σο
x

 
 

Figure 5.9 Comparison of axial creep deformations for Al, Al/SiC composite and FGM.  
 

A sequentially coupled analysis of Al/SiC FGM is then performed to analyze its 

time-temperature dependent behavior. The Al is assumed to have time-temperature 
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dependent properties while SiC behaves linearly elastic. Initially the entire FGM is 

assumed to be at 300˚K. Transient heat transfer analysis is performed by applying a 

constant temperature of 573˚K at one end. The temperature reached steady state after 

14.8 seconds. Figure 5.10 shows the temperature profile at different times along the 

graded direction. The results obtained from heat transfer analyses of the FGM models 

having fine microstructural details and the ones using micromechanical model are in 

good agreement. Next, the stress analyses are performed based on the temperature 

distribution obtained from the thermal analyses. A constant stress of 28.5 MPa is applied 

in the graded direction. The stress is held constant for up to 2000 seconds. Creep 

deformations at different times are plotted along the graded direction.  Though, steady 

state time is reached after 14.8 seconds, because of the presence of the viscoelastic Al, 

the deformation continues to grow under a constant stress of 28.5 MPa at a temperature 

of 573˚K. Figure 5.11 shows that the results obtained from FE analysis of FGM models 

having fine microstructural details and the ones using a micromechanical model are in 

good agreement. The comparisons of these results are strong evidence that the present 

micromechanical model is capable of predicting non-linear viscoelastic behavior of 

FGM with a reasonable level of uncertainty (±10%).  
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Figure 5.10 Temperature profiles at different times along the graded direction of FGM 
having constituents with temperature dependent thermal conductivities, for Al/SiC. 
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Figure 5.11 Variations of axial creep deformations of FGM having constituents with 
temperature dependent elastic and thermal properties, for Al/SiC. 



 199

5.4 FULLY COUPLED HEAT CONDUCTION AND DEFORMATIONS OF FGM 

BEAM 

The proposed multiscale framework is implemented in the ABAQUS to analyze the 

fully coupled thermo-viscoelastic behavior of structural components. A cyclic bending 

of a functionally graded beam under uniformly distributed load is studied. An FGM 

beam with dimensions of 100mm x 20mm x1 mm is considered.  FE mesh with 20-node 

quadratic brick element (C3D20T) is generated to perform a coupled temperature-

displacement analysis. One element is used through the thickness of 2 mm. A total of 

653 nodes and 64 elements are generated. 

The studied composite is a FM73 matrix reinforced by TiC+HDPE particles. The 

Prony series coefficients, nonlinear stress and temperature dependent parameters, 

thermal and mechanical properties used in the simulations are already given in section 

2.3 of Chapter II and section 3.3 of Chapter III. The schematic of geometry of the beam 

and boundary conditions are shown in Figure 5.12. All boundaries of the specimen are 

assumed to be insulated, i.e, no heat lost across the boundary. The cyclic distributed load 

of 1 kN/m along x2 direction is applied at the top surface of a beam for duration of 2400 

seconds (40 minutes). The simplified piece-wise homogenized model of beam with eight 

(8) layers along the height of the beam is also shown in Figure 5.12. Each layer 

represents the macroscopic material point with homogeneous properties. The beam made 

of composite material with particle VF of 0%, 12.5% and step-wise varying the gradient 

of volume fraction from 0 to 25% through-height of the beam on both side of x1 axis.    
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Figure 5.12 Illustration of multiscale modeling approach for analyzing fully coupled 
thermoviscoelastic bending analysis of a functionally graded simply supported beam 
under cyclic distributed load. 
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Figure 5.13 Temperature generation at point 1 during fully coupled thermoviscoelastic 
analysis of a homogeneous, composite and functionally graded beam. 
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The comparison of temperature generation for homogeneous, composite and 

functionally graded beam at point 1 on the bottom surface and through-height of the 

beam are shown in Figures 5.13 and 5.14. It is found that the lowest temperature is 

generated for the beam consisting of FGMs while the maximum temperature is 

generated in the case of beam made of homogeneous material.  
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Figure 5.14 Temperature generation at the center of beam (i.e., x1=L1, -10≤x2≤10) during 
fully coupled thermoviscoelastic analysis of a homogeneous, composite and functionally 
graded beam. 

 

In summary, the coupled thermo-viscoelastic analysis of FGM is performed using a 

multiscale modeling approach. The proposed model has a capability to analyze the 

coupled heat conduction and thermo-viscoelastic deformations of FGMs having time-

temperature and stress dependent field dependent properties. When the gradients of 
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temperature in the FGM are relatively large, the effect of thermal stresses due to the 

mismatch in the coefficient of thermal expansions of the constituents on the overall 

mechanical responses of FGM is significant. The thermal stresses are localized at the 

interface between the inclusion and matrix, which can potentially cause debonding. In 

the present micromechanical model, the effect of stress concentration is not 

incorporated, which is shown to be a limitation of the current model.  Based on the creep 

analysis of Al/SiC, it is concluded that better creep resistant material for high 

temperature applications can be obtained by proper distribution of the SiC particles 

along the graded direction of the composites. The fully coupled analyses of a 

functionally graded beam also showed that lower temperature generation at the point of 

maximum stress can be achieved by using the composite or graded materials while 

maintaining the structural flexibility. The present micromechanical modeling approach is 

computationally efficient and reasonable in predicting time-dependent response of 

FGMs. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH 

Polymeric based structural components are currently used in many applications. 

Experimental results show that the polymers are dissipative in nature and under cyclic 

loading for a long time the heat generation is significant; thus increasing the temperature 

of the materials (Schapery and Cantey 1966a; Huang and Lee 1967; Tauchert 1967a, b, 

c). In this study, the following hypotheses have been made for polymeric based 

structural components undergoing small deformations and subjected to cyclic loadings 

for a relatively longer time. 1) The dissipation effect is affected due to the stress and 

temperature dependent parameters that material possessed. 2) The conduction plays a 

vital role during the coupled heat conduction and deformations. 3) The dissipation effect 

can be minimized and creep resistant materials can be obtained by adding particle to 

polymer matrix. 4) In general, the effective thermal and mechanical properties of the 

composites can be tailored by adding the particles into the homogeneous matrix. For this 

purpose, the effect of uniform spatial distribution and functional gradation of the 

particles in the polymeric matrix are examined on the heat generation rate and overall 

performance of the composite. Several numerical simulations have been performed 

under various loadings to examine the above-mentioned hypothesis and then numerous 

conclusions are drawn. 

   
6.1 CONCLUSIONS 

An integrated micromechanical FE framework for analyzing fully coupled nonlinear 

thermoviscoelastic response of particulate composite structures has been developed. A 
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simplified micromechanical model consisting of four sub-cells, i.e., one particle and 

three matrix sub-cells is formulated. The highest scale represents the homogenized 

continuum elements within the finite element (FE) structural analyses. The lowest scale 

represents three dimensional nonlinear thermoviscoelastic constitutive material models 

of each constituent having stress and temperature dependent material parameters. The 

proposed simplified micromechanical model is capable of predicting the effective 

thermal and mechanical properties and effective nonlinear thermoviscoelastic response 

of particulate composites. The proposed model has also been used to analyze response of 

coupled heat conduction and deformation of viscoelastic composites and structures made 

of particulate composite. The thermo mechanical coupling is due to the viscous 

dissipation of the constituents and temperature dependent material parameters in the 

viscoelastic constitutive model. A recursive-iterative algorithm for simultaneously 

solving the equations that govern heat conduction and thermoviscoelastic deformations 

of isotropic homogeneous materials is developed. The algorithm is then incorporated 

within each sub-cell of the micromechanical model together with the macroscopic 

energy equation to determine the effective coupled thermoviscoelastic response of the 

particulate composite. The micromechanical modeling framework is implemented within 

the ABAQUS to perform coupled heat conduction and deformations of composite 

structures. The research summary, findings and conclusions are discussed as follows: 

1)  A numerical algorithm is formulated for solving nonlinear coupled thermo 

mechanical constitutive equations of homogeneous isotropic viscoelastic materials 

(Chapter II). The Schapery (1969) single integral model is used for a 3D isotropic 
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nonlinear thermoviscoelastic response while the Fourier law of conduction is used to 

represent the thermal constitutive behavior. An energy equation along with a 

nonlinear dissipation function is derived using the Gibbs free energy expression 

introduced by Schapery (1997). A recursive-iterative time integration algorithm is 

employed to integrate the time-dependent dissipation function in the energy equation 

and nonlinear thermoviscoelastic integral model of the Schapery (1969). An iterative 

scheme is added to minimize errors arising from the linearization of the nonlinear 

viscoelastic constitutive equations. The numerical formulation and constitutive 

material model are suitable only for small deformation gradient problems under a 

quasi-static loading.  

For linear viscoelastic materials, the capability of the algorithm is justified by 

showing excellent agreement with the analytical solutions. It is established that the 

fully coupled thermoviscoelastic analyses should be performed when analyzing the 

viscoelastic materials under cyclic loading for a longer period of time. The 

temperature increases were found to be accelerated with the increase of frequency 

and amplitudes of the cyclic load. It is concluded that the linear viscoelastic behavior 

with temperature independent material properties generates linear temperature 

increase. The nonlinear stress and temperature dependent material parameters were 

found to have a significant effect on the heat generation and should be accounted for 

in designing the components made of viscoelastic materials. The nature of the effect 

of these parameters on temperature generation depends on the type of nonlinearity 

that the material possessed. Moreover, including the conduction behavior shows 
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more realistic temperature fields due to the non-uniform heat generation during the 

cyclic loading.  

2)  A micromechanical model has been developed for predicting the effective CTE, 

ETC and mechanical properties of composites having solid spherical reinforcements. 

A representative volume element (RVE) of the composites is modeled by a single 

particle embedded in the cubic matrix. A one eighth unit-cell model consisting of 

four sub-cells is generated. A perfect bond is assumed along the sub-cell’s interfaces. 

The effective mechanical properties and coefficient of thermal expansion are derived 

by satisfying the displacement- and traction continuities at the interfaces during 

thermo-viscoelastic deformations. The effective thermal conductivity is formulated 

by imposing the heat flux- and temperature continuities at the subcells’ interfaces. 

When a nonlinear and time-dependent response is considered, an incremental 

formulation consisting of linearized prediction and iterative scheme is derived to 

obtain effective material properties and field variables of the composite. The 

macroscopic energy equation is also derived in terms of the effective thermal and 

mechanical properties and dissipation function. In this study, the coefficient of 

thermal expansion is assumed to be time-independent at the constituents’ level. 

However, the formulation of the effective CTE leads to time-dependent because of 

the time-dependence of the matrix moduli. The effect of the dissipation of energy 

due to the transient component of the effective CTE is shown negligible for small 

deformation problems. The proposed homogenization scheme is compatible with a 

displacement based FE framework, i.e., ABAQUS and used to predict the effective 
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coupled heat conduction and thermoviscoelastic deformations of particle reinforced 

composites.  

 The capability of the proposed micromechanical model in predicting the effective 

mechanical, thermal and viscoelastic responses of particulate composites is validated 

by comparing these properties with analytical and experimental works reported in the 

literature. The proposed model is not suitable to predict the overall composite 

mechanical response when the effects of percolation, particle size and interfacial 

properties on the overall response of the composites are significant. The proposed 

model is also not suitable to predict the ETC for composites having high particle 

volume fractions (VF>15%) and high ratios (Kp/Km>100) of the particle to matrix 

thermal conductivity. However, the model is found to be good for predicting the 

ETC of the composites with low ratios of the particle to matrix thermal conductivity 

and for filler composites.    

3) An integrated micromechanical model-FE framework has been successfully 

employed for analyzing the coupled heat conduction and deformations of particulate 

composite structures. Sequentially coupled and fully coupled thermomechanical 

behaviors of particulate composites are studied. The latter requires simultaneous 

solution while the former allows independent solutions of the equations that govern 

the heat conduction and deformation in the composites.  

When the duration of loading is relatively short and thermomechanical coupling 

effects are negligible, the sequentially coupled analyses can give reasonably good 

predictions of the field variables in the composites. It is found that the multiscale 
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model predicts the microscopic temperature and displacements fields with a 

reasonable accuracy. Based on the sequentially coupled analyses, it is conclude that 

the multiscale framework is not suitable to represent accurately the discontinuities at 

the interfaces within the composite. However, it is concluded that the miltiscale 

framework predicts the effective displacements with relatively better accuracy.   

For fully coupled thermo-mechanical analyses, under mechanical loadings only, 

FE simulations show that an addition of the thermo-elastic particles can help to 

reduce the temperature generation during the cyclic thermoviscoelastic deformations. 

It is concluded that the temperature generation is governed by the matrix 

constituents. A better creep resistant matrix material can lower the temperature 

generation. Higher temperature generations would deteriorate the material properties 

of the composite and thus affects its load bearing capacity and furthermore its 

functionality. 

For fully coupled thermo-mechanical analyses, under simultaneous thermal and 

mechanical boundary conditions, FE simulation shows that the heat generation due 

to mechanical loads dominates the temperature generation at a farthest distance from 

the boundary because the heat conduction due to the prescribed temperature at the 

boundary takes place very slowly due to the low thermal conductivity of the 

polymeric based composites. This leads to local deterioration of the material 

properties and thus affecting the overall response of the composite structure.    

4)  An integrated micromechanical-FE framework was successfully implemented 

within ABAQUS to analyze coupled heat conduction and deformations of 
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functionally graded materials (FGM). A through-thickness continuous variation of 

the thermal and mechanical properties of the FGM is approximated as an assembly 

of homogenized particulate composite layers. The proposed model has a capability to 

analyze the heat conduction and thermo-viscoelastic deformations of FGMs having 

time-temperature and stress dependent field dependent properties. The thermo-

mechanical responses of the homogenized FGM obtained from the micromechanical 

model are compared with experimental data and the results obtained from finite 

element (FE) analysis of FGMs having microstructural details. The present 

micromechanical modeling approach is computationally efficient and shows good 

agreement with experiments in predicting time-dependent responses of FGMs. Our 

analysis forecasts a better design for creep resistant and less dissipative materials 

using particulate FGM composites while maintaining the structural flexibility. 

 

6.1.1 COMPUTATIONAL EXPENSE 

The proposed integrated micromechanical FE framework is computationally efficient 

in solving various difficult thermo-mechanical problems of composites. The efficiency 

of the proposed miltiscale model in terms of computational time has been shown in 

Chapter IV for heat transfer and stress analysis of homogeneous and heterogeneous 

composites. It was noticed that the proposed model is approximately 20 times faster than 

the FE analysis of heterogeneous composites.  

For cyclic loadings under specific loading and boundary conditions, the 

computational time to obtain coupled linear viscoelastic response is often reduced by 
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taking average dissipation per cycle. For generalized nonlinear case, the analyses are 

performed by taking complete cyclic loading to capture the factual coupled 

thermoviscoelastic response of a material. Nevertheless, the proposed model is found to 

be efficient as compared to the FE simulations based on heterogeneous composites 

having microstructural details. As the computational capability continues to advances, it 

is possible to incorporate more complicated micromechanical models within the 

proposed multiscale framework. 

 

6.2 FUTURE RESEARCH 

The current study can be extended as follows: 

1) The time-dependent constitutive models can be modified to include the effects of 

environmental condition, such as moisture diffusion etc. A general integral form of 

the time-dependent constitutive material model can be extended to include time 

dependent coefficient of thermal expansion. The effect of time dependent specific 

heat on the evolution of dissipation function and temperature can also be studied. 

2) Damage and plasticity are also the most vital behaviors in composites.  The time 

dependent constitutive model can also be extended to incorporate the dissipation of 

energy due to combined viscoelastic-viscoplastic-damage behavior of the materials 

and its effect on the degradation on the material properties. 

3) Interphase subcells can be added to the micromechanical model to simulate a 

traction separation type damage between the particle and matrix subcells. 
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4)  Conduction in inhomogeneous materials is strongly influenced by the 

conductance at the interfaces between phases. The simplified micromechanical 

model with four subcells in its present condition is not capable of incorporating the 

effect of the conductance at the interface on the overall conduction process in 

heterogeneous materials. It might be possible to incorporate the interface effect by 

adding more subcells that represent interphase constituents. 

5) The procedure for the characterization of the effective nonlinear properties from 

the micromechanical model can be established. 

A multiscale framework that has all the above features would be an ideal 

framework to analyze the thermomechanical responses of composite structures made of 

polymer, metal and ceramic based composites under variety of loading conditions. 
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APPENDIX A 

In this appendix, the Schapery’s viscoelastic material model which was derived 

using the thermodynamics of irreversible processes (TIP) is revisited. Using the Gibbs 

free energy potential that was originally introduced by Schapery (1997) the energy 

equation capable to model temperature evolution in nonlinear coupled 

thermoviscoelastic materials is established. Explicit expressions are derived for 

mechanical dissipation rate, the rate of change of entropy and specific heat expressions, 

respectively.  

The thermodynamic state of a material is fully characterized by the independent 

variables called as state variables. The choice of a state variable depends on the physical 

phenomena of the thermodynamic system. Under isothermal conditions, the free energy 

potentials can be expressed as a function of the strains or stresses and other possible 

internal state variables (ISVs). Schapery (1997) introduced Gibbs free energy in terms of 

stresses ( iσ ) and internal state variables (ISVs) mζ and temperature T. The Gibbs free 

energy for a nonlinear thermoviscoelastic material can be expressed in the following 

form 

0
1
2m m mn m nG G A Bζ ζ ζ= − +          (A.1) 

where 0G , mA  and mnB  are function of iσ and T. The strain can be obtained from the 

following equation (Schapery, 1969) 

i
i

Gε
σ
∂

= −
∂

          (A.2) 
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so that,
 

0
i i

i

G dε ε
σ
∂

= − +
∂

         (A.3) 

where, m
i m

i

Adε ζ
σ
∂

=
∂

         (A.4) 

after neglecting terms of second order in mζ . The first and second law of 

thermodynamics leads to the expression for entropy production rate  intγ  (e.g. Rice, 

1971) 

int 0m mT fγ ζ= ≥          (A.5) 

where m
m

Gf
ζ
∂

= −
∂

         (A.6) 

The entropy production rate in Eq. (A.5) is always positive unless 0mζ = . The 

expression for thermodynamic forces can be obtained using Eq. (A.1) and can be written 

as: 

m m mn n
m

Gf A B ζ
ζ
∂

= − = −
∂

        (A.7) 

The present model is equivalent to generalized nonlinear Voigt model. The ranges of 

m and n depend on number of dashpots. To obtain the expression that describes the 

changes in the ISVs, evolution equations are needed that relate the thermodynamic 

forces and ISVs, which can be written as. 

1

mn n
m

c f
a

ζ =           (A.8) 
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where mnc  is a constant, positive definite, symmetric matrix and 1a  is a positive scalar 

quantity that may be a function of iσ and T. At the reference state 1 1a = .  

The thermodynamic forces in Eq. (A.7) are combined with the inverse of Eq. (A.8), 

yields: 

1 mn n mn n ma c B Aζ ζ+ =          (A.9) 

where 
1

mn mnc c
−

⎡ ⎤= ⎣ ⎦ . Assuming 2mn mnB a C= , the Eq. (A.9) can be expressed as  

2

n m
mn mn n

d Ac C
d a
ζ ζ
ψ

+ =          (A.10) 

where 2a  is a positive scalar quantity that may be a function of iσ and T, and
 

2

1

ad dt
a

ψ =  or dtd
aσ

ψ =  or 
0

t dt
aσ

ψ
′

= ∫        (A.11) 

is reduce time. The function aσ is stress-dependent that is used to define a time scale 

shift factor for stress dependent behaviors. Since mnC  and mnc are symmetric and positive 

definite matrices, it is always possible to diagonalize Eq. (A.10). Thus uncoupled set of 

equations in terms of the new principal ISVs can be written as (m not summed) 

2

m m m
m m m

d c Ac C
d a
ζ ζ
ψ

+ =         (A.12) 

where mC  and mc replace mnC  and mnc , respectively. The general solution of Eq. (A.12) 

is (m not summed)  

20

1 1 exp m
m

m m

Ad d
C d a

ψ ψ ψζ ψ
τ ψ

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞′− ′= − −⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟′⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦⎣ ⎦
∫      (A.13) 
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where, ( ) 1
m m mc Cτ −=  is positive retardation time. The term ψ ′ is a function of time t′ , 

time at which the input load is applied. To facilitate the characterization in terms of 

master creep functions through reduce time, let assume mA  as follows. 

ˆˆm mj j mA C σ α φ= +          (A.14) 

where mjC  and mα  are constants. ˆ jσ depend on iσ  and T and  φ̂  may depend on 

temperature but not on stress. φ̂  accounts for thermal expansion effect; thus ˆ 0φ = when 

T=TR (reference temperature). Substituting of mA  into Eq. (A.13) and after some 

simplification, we can write Eq. (A.4) as 

( ) ( )
2 20 0

ˆˆ ˆj k
i jk j

i

d dd dD d d d
d a d a

ψ ψσ σ φε ψ ψ ψ α ψ ψ ψ
σ ψ ψ

⎡ ⎤⎛ ⎞∂ ⎛ ⎞
′ ′ ′ ′= − + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫   (A.15) 

where ( )jkdD ψ and ( )jdα ψ are the transient components of the mechanical and 

expansion creep compliances, respectively, which are given by 

 ( ) 1 exp mmj mk
jk

m m

C C
dD

C

ψ
τψ

−⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑               (A.16) 

( ) 1 exp mmj m
j

m m

C
d

C

ψ
τα

α ψ
−⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦

∑        (A.17) 

The total strain using Eq. (A.3) can be expressed as 

( ) ( )0

2 20 0

ˆˆ ˆj k
i jk j

i i

G d ddD d d d
d a d a

ψ ψσ σ φε ψ ψ ψ α ψ ψ ψ
σ σ ψ ψ

⎡ ⎤⎛ ⎞∂ ⎛ ⎞∂ ′ ′ ′ ′= − + − + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′∂ ∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫  (A.18) 

Considering G0 (the nonlinear thermo-elastic potential) such that it yields the 

following form of thermal strain and instantaneous nonlinear mechanical strain as: 
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( )0
0 0 0- ( , )t t t t t

i i
i

G T T g T Dα σ σ
σ
∂

− = +
∂

       (A.19) 

When only one component of stress or strain is considered the constitutive 

expression for strain can be simplified. Schapery (1969) derived an expression for strain 

response due to uniform uniaxial state of stress (σ̂ σ= ) and introduce nonlinear 

parameters to incorporate the contribution of higher orders terms of the Gibb’s free 

energy in terms of the applied stresses. Under isothermal conditions, the uniaxial strain 

in Eq. (A.18) can be rewritten in order to incorporate nonlinear effects as: 

( ) ( )0 0 1 2
0

( ) ( ) ( ) - ( )dg D g dD g d
d

ψ
ψ ψ ψ ψ ψε ψ σ σ σ ψ ψ σ σ ψ

ψ
′ ′′ ′= +

′∫    (A.20) 

where 0 ( )g ψσ , 1( )g ψσ and 2 ( )g ψσ are the nonlinear parameters which represent the 

instantaneous nonlinearity in thermo-elastic strain,  the nonlinearity in transient strain 

and the effect of loading rate of stress for viscoelastic strain, respectively. For uniaxial 

loading, Schapery (1969) defined these nonlinear parameters as follows: 

( ) 0
0

0

1.Gg
D

σ
σ σ

∂
= −

∂
         (A.21) 

( )1
ˆ

g σσ
σ
∂

=
∂

           (A.22) 

( )2
2

ˆ
g

a
σσ
σ

=           (A.23) 

The dependence of temperature on mechanical properties and thermal expansion 

history can be incorporated to yield expression for thermal and mechanical strain 

histories as follows: 
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( ) ( )0 0 1 2
0

( ) ( , ) ( , ) - ( , )

( )

t t t

T

dg T D g T dD g T d
d

ψ
ψ ψ ψ ψ ψε ψ σ σ σ ψ ψ σ σ ψ

ψ

ε ψ

′ ′′ ′= +
′

+

∫
 

(A.24) 

where the thermal strain history can be expressed using Eqs. (A.18) and (A.19) as   

( )1
20

ˆ
( ) ( , )T t t dg T d d

d a

ψ
ψ ψ φε ψ α φ σ α ψ ψ ψ

ψ
⎛ ⎞

′ ′= + − ⎜ ⎟⎜ ⎟′ ⎝ ⎠
∫     (A.25) 

The expression for entropy can be found using Eq. (A.1), Schapery (1997) 

0 m
m

G AG
T T T

η ζ∂ ∂∂
= − = − +

∂ ∂ ∂
        (A.26) 

Substituting mA  from Eq. (A.14), we get 

0
ˆ

m m
G
T T

φη α ζ∂ ∂
= − +

∂ ∂
         (A.27) 

Substituting mζ  from Eq. (A.13) and after some simplification, we can write Eq. 

(A.27) as 

( ) ( )0

2 20 0

ˆ ˆ ˆˆ j
j

G d dd d dC d
T T d a T d a

ψψ ψσφ φ φη α ψ ψ ψ ψ ψ ψ
ψ ψ

′⎛ ⎞ ⎛ ⎞∂ ∂ ∂′ ′ ′ ′= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′ ′∂ ∂ ∂ ⎝ ⎠⎝ ⎠
∫ ∫  (A.28) 

where ( )jdα ψ is already defined in Eq. (A.17), while ( )dC ψ  is the transient 

components of the specific heat at constant stress, which is given by 

( ) 1 expm m

m m m

dC
C

α α ψ ψψ ψ
τ

⎡ ⎤⎡ ⎤⎛ ⎞′−′− = − −⎢ ⎥⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

∑      (A.29) 

The specific heat capacity is defined as 

2

2

Gc T T
T Tσ

σσ

η⎛ ⎞∂ ∂⎛ ⎞= − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
        (A.30) 
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The specific heat can also be defined using internal energy E, i.e., 

c
Tσ
∂

=
∂
E

          
(A.31) 

Substituting Eq. (A.28) into Eq. (A.30), we get specific heat at constant stress 

( ) ( )

2
0

2

2 20 0

ˆ ˆ ˆˆ j
j

Gc T
T

d dT d d dC d
T T d a T d a

σ

ψψ ψσφ φ φα ψ ψ ψ ψ ψ ψ
ψ ψ

′

∂
= −

∂
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂′ ′ ′ ′+ − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′ ′∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∫ ∫
 

(A.32) 

The similar form of specific heat given in Eq. (A.32) has been developed by 

Schapery (1964, 1966b) and Chazal and Arfaoui (2001) using Helmholtz free energy. 

Now the rate of internal entropy generation can be found using Eq. (A.5), which can be 

expressed using Eq. (A.7) and assuming 2m mB a C=  as (m not summed): 

( )int 2m m m m n mT f A a Cγ ζ ζ ζ= = −        (A.33) 

Substituting mA  and mζ from Eq. (A.13) and Eq. (A.14), we can write Eq. (A.33) as 

2
20

int

2
20

ˆ
ˆ 1 exp

ˆ ˆ1 exp

1 1 exp

j
mj j

m m

m m

m
m

m m

mm m

dC a d
d a

T f
da d

d a

d
dt C

ψψ
ψ

ψ

σψ ψσ ψ
τ ψ

γ ζ
α φψ ψ ψ α φ

τ ψ

ψ ψ
τ

′⎛ ⎞⎧ ⎫⎡ ⎤ ⎛ ⎞⎡ ⎤⎛ ⎞′−⎪ ⎪⎜ ⎟′− − −⎢ ⎥ ⎜ ⎟⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟′⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭= = ⎜ ⎟
⎜ ⎟⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞′− ′− − − +⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟′⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦⎝ ⎠

⎛ ⎞′−
− −⎜ ⎟

⎝ ⎠

∑∫

∑∫

∑
20

ˆˆmj j mCd d
d a

ψψ σ α φ
ψ

ψ

′⎛ ⎞⎛ ⎞⎡ ⎤⎡ ⎤ +
⎜ ⎟′⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟⎜ ⎟′⎢ ⎥⎣ ⎦⎣ ⎦ ⎝ ⎠⎝ ⎠

∫

 (A.34) 

If dissipation due to transient components of thermal strain and specific heat is 

neglected then after some simplification, we can write Eq. (A.34) as 
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( )

( ) ( )

int 2 2 2
0

2
0

( ) 1 exp ( )

( )

j j
m m

jk k

dT a g g d
d

d ddD g d
dt d

ψ
ψ ψ ψ ψ

ψ
ψ ψ

ψ ψγ σ σ σ σ ψ
τ ψ

ψ ψ σ σ ψ
ψ

′

′ ′

⎧ ⎫⎡ ⎤⎡ ⎤⎛ ⎞′−⎪ ⎪′= − − −⎢ ⎥⎨ ⎬⎢ ⎥⎜ ⎟ ′⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭
⎛ ⎞

′ ′−⎜ ⎟⎜ ⎟′⎝ ⎠

∑∫

∫

 (A.35) 

The force fm is acting on mth dashpot and mζ  is proportional to the strain in the mth 

Voigt unit. The 2 m ma C ζ in the expression of thermodynamic force 2m m m mf A a C ζ= −  

represent nonlinear back stress provide by the spring to resist the increment of mζ (m not 

summed). Thus, it is appropriate to assume that the a2 can be approximately equivalent 

to the nonlinear parameter 1 ( )g ψσ which measures the nonlinearity effect in the 

transient compliance. Thus, the mechanical dissipation expression becomes: 

( )

( ) ( )

int 1 2 2
0

2
0

( ) ( ) 1 exp ( )

( )

j j
m m

jk k

dT g g g d
d

d ddD g d
dt d

ψ
ψ ψ ψ ψ ψ

ψ
ψ ψ

ψ ψγ σ σ σ σ σ ψ
τ ψ

ψ ψ σ σ ψ
ψ

′ ′

′ ′

⎧ ⎫⎡ ⎤⎡ ⎤⎛ ⎞′−⎪ ⎪′= − − −⎢ ⎥⎨ ⎬⎢ ⎥⎜ ⎟ ′⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭
⎛ ⎞

′ ′−⎜ ⎟⎜ ⎟′⎝ ⎠

∑∫

∫

 (A.36) 

The expression for energy balance can be easily obtained from Gibbs potential 

energy given in Eq. (A.1). Combining the first and second law of thermodynamics, the 

following expression for the energy balance in thermoviscoelastic materials can be easily 

established (Valanis, 1968; Rajagopal and Srinivasa, 2011). 

, inti i
d GT T q T
dt T

η γ∂⎧ ⎫= − = − +⎨ ⎬∂⎩ ⎭
       (A.37) 

where entropy is given in Eq. (A.28). Assuming thermo-elastic Gibbs potential ( 0G ) in 

Eq. (A.28) of the following form: 
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0
1( ) ( , )
2

e
th ij ij ijkl ij klG C T D Tα θσ σ σ σ= − − −         (A.38) 

where Cth  and e
ijklD are the thermal part of the Gibbs free energy (thermo-elastic) and 

elastic compliance respectively. The entropy of thermo-elastic material is 

0
0

( ) ( , )1( )
2

e
ij ijklth

ij ij ij ij kl

T D TG C T
T T T T

α σ
η θσ α σ σ σ

∂ ∂∂ ∂
= − = + + +

∂ ∂ ∂ ∂
   (A.39) 

and the rate of entropy generation can be expressed as 

0
0

0

( ) ( )

( , )( )

ij ijth
ij ij

e
ij ij ijkl ij kl

T TG Cd d
dt T dt T T T

g TT D
T

α α
η θσ θσ

σα σ σ σ

∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞= − = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂

+ +
∂

    (A.40) 

Substituting Eq. (A.39) into Eq. (A.32), the specific heat expression can be obtained 

for infinitesimal theory and expressed as: 

( ) ( )

22 2
0

2 2 2

2 20 0

( ) ( ) ( , )12
2

ˆ ˆ ˆˆ

ij ij eth
ij ij ijkl ij kl

j
j

T TC g Tc T T T T D
T T T T

d dT d d dC d
T T d a T d a

σ

ψψ ψ

α α σθσ σ σ σ

σφ φ φα ψ ψ ψ ψ ψ ψ
ψ ψ

′

∂ ∂∂ ∂
= + + +

∂ ∂ ∂ ∂
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂′ ′ ′ ′+ − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′ ′∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∫ ∫
 

(A.41) 

The total rate of change of entropy using Eq. (A.28) and Eq. (A.40) can be expressed as  

( ) ( )

0

0 02 2

( ) ( )

( , )
( )

ˆ ˆ ˆˆ

ij ijth
ij ij

e
ijkl ij kl ij ij

j
j

T TCd
T T T T

dt T T T

g T
T D T T

T

d d
T d d dC d

t T d a T d a

ψψ ψ

α α
η θσ θσ

σ
σ σ α σ

σφ φ φ
α ψ ψ ψ ψ ψ ψ

ψ ψ

′

∂ ∂∂
= + +

∂ ∂ ∂

∂
+ +

∂

∂ ∂ ∂′ ′ ′ ′+ − + −
′ ′∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

∫ ∫

  

(A.42) 

The energy equation using Eq. (A.37) and Eq. (A.42) becomes 
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( ) ( )

0

0 02 2

,

1 2

( ) ( ) ( , )
( )

ˆ ˆ ˆˆ

( ) ( ) 1 exp

ij ij eth
ij ij ijkl ij kl ij ij

j
j

i i

j
m

T TC g Td
T T T T D T T

dt T T T T

d d
T d d dC d

t T d a T d a

q

g g

ψψ ψ

ψ ψ ψ

α α σ
θσ θσ σ σ α σ

σφ φ φ
α ψ ψ ψ ψ ψ ψ

ψ ψ

ψ
σ σ σ

′

∂ ∂∂ ∂
+ + + +

∂ ∂ ∂ ∂

∂ ∂ ∂′ ′ ′ ′+ − + −
′ ′∂ ∂ ∂

= −

−
+ − − −

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

∫ ∫

∑ ( )

( ) ( )

2
0

2
0

( )

( )

j
m

jk k

d
g d

d

d d
dD g d

dt d

ψ
ψ ψ

ψ
ψ ψ

ψ
σ σ ψ

τ ψ

ψ ψ σ σ ψ
ψ

′ ′

′ ′

′
′

′

′ ′−
′

⎧ ⎫⎡ ⎤⎡ ⎤⎛ ⎞⎪ ⎪
⎨ ⎬⎢ ⎥⎜ ⎟⎢ ⎥
⎪ ⎪⎝ ⎠⎣ ⎦⎣ ⎦⎩ ⎭
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫

∫  

(A.43) 

Let assume that the thermal part of thermoelastic Gibbs free energy Cth is same as 

used in linear thermoelasticity formulation, i.e, 

0
2

0

1
2th

cC
T

σρ θ=          (A.44) 

where 0cσ is the temperature independent specific heat at constant stress and reference 

temperature. Substituting Eq. (A.44) into Eq. (A.42) and neglecting terms containing 

transient specific heat, thermal expansion and temperature dependent properties, the Eq. 

(A.42) becomes,  

( ) ij ijT c T T Tση ρ α σ= +         (A.45) 

where ( )c Tσ  is the linear dependence of the specific heat at constant stress on 

temperature. For isotropic materials, using Eq. (A.45), the energy equation considering 

nonlinearity only due to dissipation function, having both stress and temperature 

dependent parameters, can be expressed as 
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( )

( ) ( )

,

1 2 2
0

2
0

( )

( , ) ( , ) 1 exp ( , )

( , )

i ikk

t t t
j j

m m

t
jk k

c T T T q

dg T g T g T d
d

d ddD g T d
dt d

σ

ψ
ψ ψ ψ ψ ψ

ψ
ψ ψ

ρ ασ

ψ ψσ σ σ σ σ ψ
τ ψ

ψ ψ σ σ ψ
ψ

′ ′

′ ′

⎧ ⎫⎡ ⎤⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥⎢ ⎥⎨ ⎜ ⎟ ⎬
⎢ ⎥⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

+ = −

′− ′+ − − −
′

′ ′−
′

∑∫

∫
  

(A.46) 

For linear viscoelastic material, the above equation can be written as 

 

 ( ) ( ) ( )

,

0 0

( )

1 exp

i ikk

t t
t t

j j jk k
m m

c T T T q

t t d d ddt dD t t dt
dt dt dt

σρ ασ

σ σ σ
τ

′ ′
⎧ ⎫⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞⎪ ⎪⎢ ⎥ ⎜ ⎟⎢ ⎥⎨ ⎜ ⎟ ⎬⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦⎣ ⎦⎩ ⎭

+ = −

′− ′ ′ ′+ − − − −
′ ′∑∫ ∫

   (A.47) 
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APPENDIX B 

This Appendix presents the analytical solutions for linear viscoelastic materials under 

various loadings. 

1. STANDARD LINEAR SOLID (SLS) MODEL (See Reddy, 2008) 

1.1 SHEAR CREEP LOADING 

Under shear strain, the governing equation for SLS model can be written as: 

( ) ( ) ( ) ( ) ( )12 12 1 22
12 12

1 1

1t t
t t

t t
ε σ µ µµ ε σ

η µ ηµ
∂ ∂ +

+ = +
∂ ∂

     (B.1) 

Let an instantaneous constant shear stress of magnitude 1τ is applied at time t=0. 

( )12 1 ( )t H tσ τ=          (B.2) 

where H(t) is a Heaviside function. Substituting Eq. (B.2) into Eq. (B.1), taking Laplace 

transform and using initial condition ( )12 0 0ε = , we get 

( ) ( )
( )

1 1 2
12

1 2

s
s

s
τ η µ µ

ε
µ η µ

+ +
=

+
        (B.3) 

where bar shows the transformed variable. Taking inverse Laplace of Eq. (B.3), we get 

the expression for time-dependent strain as  

( ) 1 1 2
12

1 2

1 exp[ ]t tτ τ µε
µ µ η

⎛ ⎞
= + − −⎜ ⎟

⎝ ⎠
       (B.4) 

The energy equation, assuming an adiabatic process and no internal heating source, for 

an isotropic viscoelastic material can be expressed as: 
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t
disc T wσρ =           (B.5) 

For SLS model the energy equation becomes 

( ) ( ) 2
12

12
1

( ) 1 tT tc t
t tσ

σ
ρ η ε

µ
∂⎡ ⎤∂

= −⎢ ⎥∂ ∂⎣ ⎦
       (B.6) 

Substituting the expressions of ( )12 tε and ( )12 tσ  and solving the Eq. (B.6) using initial 

condition T(0)=0, we can obtained the expression for the evolution of temperature. 

( ) ( )
2

2 2 21 2 2
1 12

10

2( ) exp 2exp
t

T t d
cσ

τ µ µψ µ ψ ηµ δ ψ δ ψ η ψ
ηρ µ η η

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫  (B.7) 

where ( )tδ is the Dirac delta function. The integration is done using Maple 13 to obtain 

numerical values of the temperature. 

1.2 CYCLIC STRESS LOADING 

Now consider the oscillating shear stress  

( )12 2 sin( )t tσ τ ω=          (B.8) 

Substituting the Eq. (B.8) into Eq. (B.1), taking Laplace transform and using initial 

condition ( )12 0 0ε = . 

( ) ( )
( )( )
2 1 2

12 2 2
1 2

s
s

s s
τ ω η µ µ

ε
µ ω η µ

+ +
=

+ +
       (B.9) 

Taking inverse Laplace of Eq. (B.9), we get expression for time-dependent strain as  

( ) 2 2 2
12 22 2 2

1 2

sin( ) sin( ) exp[ ] cos( )tt t t tτ ω τ µε ω µ ωη ω
µ µ ω η η

⎡ ⎤⎧ ⎫
= + + − −⎨ ⎬⎢ ⎥+ ⎩ ⎭⎣ ⎦

  (B.10) 
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Substituting the expressions of ( )12 tε and ( )12 tσ  and solving the Eq. (B.6) using initial 

condition T(0) =0, the expression for the evolution of temperature can be obtained. 

 

4 2 2 2 4 4
2 2

2 6 6 3 2 4 4
2 2 2 2

4 2 2 2 4 4 4 2 2 2 4 4
2 2 2 2

5 2 2 2
3 2 4 3 2 32 2

2 24 2 2 2 4 4
2 2

2 2
2

1( )
4 8 4

16 32
4 8 4 4 8 4

16 2 sin(2 )
4 8 4X
2

T t
c c c

c c
c c c c c c

c t t
c c c

σ σ σ

σ σ

σ σ σ σ σ σ

σ

σ σ σ

ρ µ ρ µ ω η ρ ω η

ρ µ τ ω η ρ µ τ ω η
ρ µ ρ µ ω η ρ ω η ρ µ ρ µ ω η ρ ω η

ρ µ τ ω η η τ ω η τ ω ω
ρ µ ρ µ ω η ρ ω η

η τ ω

=
+ +

− −
+ + + +

− + −
+ +

− 2 2 2
2 2 2

2 2 2 2 2 2 2 2 22 2
2 2 2 2 2 2

cos(2 ) sin(2 )

28 exp 2 exp 2

t t

t t t

µ ω ητ ωµ ω

µ µη ω τ µ η ω τ µ ητ ω µ
η η

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞
+ − − − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

 (B.11) 

1.3 CONSTANT AXIAL STRESS RATE LOADING 

For uni-axial loading, the governing equation for SLS model can be written as: 

( ) ( ) ( ) ( ) ( )11 11 1 22
11 11

1 1

1t t E EE t t
t E t E

ε σ
ε σ

η η
∂ ∂ +

+ = +
∂ ∂

     (B.12) 

Let a constant stress rate of magnitude 0σ is applied till time t=t1. 

( )11 0t tσ σ=           (B.13) 

Substituting Eq. (B.13) into Eq. (B.12), taking Laplace transform and using initial 

condition ( )11 0 0ε = , we get 

( ) ( )
( )

0 1 2
11 2

1 2

s E E
s

E s s E
σ η

ε
η
+ +

=
+

        (B.14) 

Taking inverse Laplace of Eq. (B.14), we get the expression for time-dependent strain as  
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( ) ( )1 2 2
11 0 2

1 2 2

1 exp[ ]
t E E Et t

E E E
ηε τ

η
⎡ ⎤+ ⎛ ⎞

= − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

     (B.15) 

The energy equation, assuming an adiabatic process and no internal heating source, for 

an isotropic viscoelastic material can be expressed as: 

( )2
0 0 119 t

disc KT T T wερ α α σ+ + =        (B.16) 

For SLS model the energy equation becomes 

( ) ( ) ( ) 2
112

0 0 11 11
1

( ) 19
tT tc KT T t

t E tε

σ
ρ α α σ η ε

∂⎡ ⎤∂
+ + = −⎢ ⎥∂ ∂⎣ ⎦

    (B.17) 

Substituting the expressions of ( )11 tε and ( )11 tσ  and solving the Eq. (B.17) using initial 

condition T(0)=0, we can obtained the expression for the evolution of temperature. 

( ) ( )

( )

2 2
20 0 02 2

0 2 02 2
2 20 2

2 2
0

2 3
0 2

2 82exp[ ] exp[ ] 9 4
9

2
3 9

E ET t t t T E t t
E Ec T K E

c T K E

ε

ε

τ τ η τ η α τ η
η ηρ α

τ η
ρ α

⎡ ⎤
= − − − + −⎢ ⎥+ ⎣ ⎦

−
+

 

 
2. INTEGRAL MODEL 

2.1 SHEAR CREEP LOADING 

For linear viscoelastic material, the shear strain can be expressed as 

( ) 12
12 0 12

0

( )
t

t dt J dJ t d
d

τσε σ τ τ
τ

= + −∫        (B.18) 

Here J0 and ( )dJ t  are the shear instantaneous elastic and transient compliances. The 

shear transient creep compliance is expressed as: 
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( )( )
1

1 exp[ ]
N

t
n n

n
dJ J tλ τ

=

= − − −∑        (B.19) 

where nJ  and nλ are Prony coefficients and retardation times, respectively. Using the 

creep compliance data, the Prony series coefficients can be characterized. With one 

Prony coefficient, the integral model is equivalent to SLS model, the transient shear 

creep compliance become  

( )( )1 1 exp[ ]tdJ J tλ τ= − − −         (B.20) 

Apply a constant shear stress of magnitude 1τ  the strain can be obtained using Eq. (B.18) 

as 

( ){ }12 0 1 1( ) 1 exp[ ] ( )t J J t H tε λ τ= + − −       (B.21) 

The energy equation (Schapery 1969, 1997), assuming an adiabatic process and no 

internal heating source, for an isotropic linear viscoelastic material can be expressed as: 

( ) ( )12 12

0 0

exp
t td ddc T t d dD t d

d dt d

τ τ

σ
σ σρ λ τ τ τ τ
τ τ

⎧ ⎫
= − − −⎡ ⎤ ⎨ ⎬⎣ ⎦

⎩ ⎭
∫ ∫     (B.22) 

Substituting the expressions of ( )12 tε , ( )12 tσ  and dD(t) and solving the Eq. (B.22) using 

initial condition T(0)=0, we can obtained the expression for the evolution of 

temperature. 

( )
2

21 1 1 1( ) ( )exp ( )
2 2

JT t H t t H t
cσ

τ λ
ρ

⎡ ⎤= − − +⎢ ⎥⎣ ⎦
      (B.23) 
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2.2 CYCLIC STRESS LOADING 

Under oscillating shear stress the expression for strain can be obtained using Eq. (B.18) 

as 

( ) [ ]1 2
12 0 2 2 2sin( ) exp[ ] sin( ) cos( )Jt J t t t tλτε τ ω ω λ ω λ ω ω

λ ω
= + − + −

+
   (B.24) 

Substituting the expressions of ( )12 tε , ( )12 tσ  and dD(t) and solving the Eq. (B.24) using 

initial condition T(0)=0, we can obtained the expression for the evolution of 

temperature. 

4 2 2 4

2 2 6 4 2 4
1 2 1 2

4 2 2 4 4 2 2 4

2 6 2
3 2 2 3 21 2

2 1 2 14 2 2 4

2 2 2 2 3
2 1 2 1

1( )
4 8 4

16 32
4 8 4 4 8 4

16 2 sin(2 )X 4 8 4

2 cos(2 ) sin

T t
c c c

c J c J
c c c c c c

c J J t J t
c c c

J t J

σ σ σ

σ σ

σ σ σ σ σ σ

σ

σ σ σ

ρ λ ρ λ ω ρ ω

ρ τ ω λ ρ λ τ ω
ρ λ ρ λ ω ρ ω ρ λ ρ λ ω ρ ω

ρ τ ω λ λ τ ω λ τ ω ω
ρ λ ρ λ ω ρ ω

λ τ ω ω λτ ω

=
+ +

− −
+ + + +

− + −
+ +

− −

( ) ( )

2 4
2 1

2 2 2 2 2 2
2 1 2 1

(2 ) 2

8 exp cos(2 ) 2 exp 2

t J t

J t t J t

ω τ ω λ

λ ω τ λ ω λ ω τ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥+ − − −⎣ ⎦

  (B.25) 

2.3 CONSTANT AXIAL STRESS RATE LOADING 

The uni-axial transient creep compliance dD(t) with one Prony coefficient can be 

expressed  as: 

( )( )1 1 exp[ ]tdD D tλ τ= − − −         (B.26) 

Under constant stress rate the expression for axial strain can be obtained using Eq. 

(B.18) as 
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( ) [ ]1 0
11 0 0 exp[ ] exp[ ] 1Dt D t t t tσε σ λ λ λ

λ
= + − − −      (B.27) 

where D0 is an axial instantaneous elastic compliance. Assuming an adiabatic process 

and no internal heating source, for an isotropic thermo-viscoelastic material and 

assuming temperature independent material properties, the energy equation can be 

expressed as: 

( ) ( ) ( )2 11 11
0 0 11

0 0

( )9 exp
t td ddT t dc KT T t d dD t d

dt d dt d

τ τ

ε
σ σρ α α σ λ τ τ τ τ
τ τ

⎧ ⎫
+ + = − − −⎡ ⎤ ⎨ ⎬⎣ ⎦

⎩ ⎭
∫ ∫ (B.28) 

Substituting the expressions of ( )11 tε , ( )11 tσ  and dD(t) and solving the Eq. (B.28) using 

initial condition T(0)=0, we can obtained the expression for the evolution of 

temperature. 

( ) ( )
( )

2 2
1 0

1 00
2

0

1 0
0 0

1 1exp[ ] exp[ ]
2 4

exp[ ] exp[ ]
9

3exp[ ]
4

D t t t

D t t t
T t

c T K
DT t T

ε

σ λ λ λ

λ
σ λ λ λσ

λρ α λ
σα λ α
λ

⎡ ⎤⎛ ⎞− − − −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥−
⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥= +

+ ⎢ ⎥
⎢ ⎥
+ − + −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (B.29) 
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