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ABSTRACT

Hertz Potentials and Differential Geometry. (May 2011)

Jeffrey David Bouas, B.S., Texas A&M University

Chair of Advisory Committee: Stephen Fulling

I review the construction of Hertz potentials in vector calculus starting from

Maxwell’s equations. From here, I lay the minimal foundations of differential ge-

ometry to construct Hertz potentials for a general (spatially compact) Lorentzian

manifold with or without boundary. In this general framework, I discuss “scalar”

Hertz potentials as they apply to the vector calculus situation, and I consider their

possible generalization, showing which procedures used by previous authors fail to

generalize and which succeed, if any. I give specific examples, including the standard

flat coordinate systems and an example of a non-flat metric, specifically a spherically

symmetric black hole. Additionally, I generalize the introduction of gauge terms, and

I present techniques for introducing gauge terms of arbitrary order. Finally, I give a

treatment of one application of Hertz potentials, namely calculating electromagnetic

Casimir interactions for a couple of systems.
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CHAPTER I

INTRODUCTION

The theory of Hertzian potentials is arguably as well developed as the theory of

usual electromagnetic potentials, dating back to the turn of the 20th century where

they were introduced possibly for the first time by Whittaker [1]. However, most

treatments of electromagnetism give Hertz potentials only a brief mention, and many

of the popular modern textbooks leave out the topic entirely.

Due to this lack of common treatment, generalizations of Hertz potentials start-

ing from the work of Nisbet [2] have been re-derived numerous times [3] [4] [5] in

a variety of contexts with varied notation. This means that despite their prevalent

use, readers can easily become confused when referencing multiple sources.

The goal of this thesis is to provide a cumulative overview of Hertz potentials,

starting with their classical formulation and moving into their modern geometrical

interpretation, developing on the construction provided in [6]. This provides a unified

treatment that spans most of the groundwork required by current research. The

expression of this goal is given in three parts.

First, in order to integrate Hertz potentials seamlessly into modern electromag-

netic theory, one must find their place in classical electromagnetic theory. I present a

brief review of the classical theory of electromagnetism, along with the construction

of Hertz potentials. Since the intended audience of this thesis has a cursory, qualita-

tive understanding of the history of electromagnetism, I present the material quickly

This thesis follows the style of Physical Review A.
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and in full, focusing more on the geometry and the mathematics rather than the

physics. At numerous places in this chapter I note seemingly-arbitrary symmetries

and consequences whose geometrical nature is developed further in later chapters.

Second, as with the comprehension of the general theory of relativity, an under-

standing of modern differential geometry reveals the geometrical nature of electro-

magnetism. Here I present a full discussion of modern differential geometry with a

focus on the topics required to describe electromagnetic theory in a “nice” but not

necessarily flat spacetime. What exactly constitutes “nice” will be treated rigorously.

Third, I develop and explore Hertz potentials in the differential geometric frame-

work, namely using the formalism and notation of differential forms built in the pre-

vious chapter, and I give a number of new calculations of what can and cannot be

done with these potentials. I develop the scalar framework explored initially in a flat

spacetime setting [2] and show what can and cannot generalize. After this, I present

the application of scalar Hertz potentials as it applies to quantum vacuum energy,

which was the original motivation for this research.

In the final chapter, I qualitatively discuss what has been accomplished and

what work remains.
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CHAPTER II

ELECTROMAGNETISM USING VECTOR CALCULUS

A. Maxwell’s Equations

Electromagnetism begins with the concept of the electric and magnetic vector fields

~E and ~B, respectively, that each takes as input a position in space and time and each

outputs a vector in R3 (i.e. ~E, ~B : R3×R→ R3). These satisfy Maxwell’s equations,

~∇ · ~E = ρ (2.1)

~∇× ~B − ∂ ~E

∂t
= ~ (2.2)

~∇ · ~B = 0 (2.3)

~∇× ~E +
∂ ~B

∂t
= 0 (2.4)

where the function ρ takes as input a position in space and time and outputs a real

number, and ~ takes as input a position in space and time and outputs a vector in

R3 (i.e. ρ : R3 × R→ R and ~ : R3 × R→ R3).

Along with the Lorentz force law

~F = q( ~E + ~v × ~B), (2.5)

this system of partial differential equations completely describes the classical motion

of charged matter in classical space and time.

Note that immediately from Maxwell’s equations comes a charge conservation
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relation

~∇ · ~+
∂ρ

∂t
= 0, (2.6)

which restricts the nature of the functions ρ and ~.

The classical theory of electricity and magnetism is developed in order to solve

various boundary-value/initial-value problems associated with the positions of charge

densities and current densities enclosed in (or partially enclosed in or unenclosed by)

boundaries of varying conductivity and permeability.

The special case, called the “source-free” case, is when ρ ≡ 0 and ~ ≡ ~0. For var-

ious reasons, beginning with the case’s simplicity and for geometrical and algebraic

significance explored in later chapters, this case will be studied frequently through-

out this text. This case describes all possible forms the vector-valued electric and

magnetic functions of space and time may take when the space and time considered

is removed from actual physical charges. This includes regions of space arbitrarily

close to a source, but not containing the source, that are topologically equivalent to

R3.

B. Potential Functions

Even though Maxwell’s equations are first-order differential equations, within them

many components of the electric and magnetic fields are mixed together (called cou-

pling), which often makes finding solutions difficult. Luckily, for compact domains

or electromagnetic fields that decay sufficiently rapidly, the Helmholtz Decomposi-

tion Theorem provides functions called potentials that are commonly much easier

to work with, despite the fact that they turn Maxwell’s equations into second-order
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differential equations.

Equation (2.3) guarantees that there exists a vector field ~A such that

~B = ~∇× ~A. (2.7)

This, along with equation (2.4) yields

~∇× ( ~E +
∂ ~A

∂t
) = 0, (2.8)

which guarantees there exists a scalar field Φ, taking input from space and time and

outputting a real number, such that

~E = −~∇Φ− ∂ ~A

∂t
. (2.9)

There exists an additional freedom in the determination of the potential func-

tions Φ and ~A that does not exist in the fields ~E and ~B. This freedom is called a

gauge invariance.

Let Φ and ~A be potential functions for a given physical system. Let χ be any

scalar function such that ( ∂
∂t
~∇− ~∇ ∂

∂t
)χ = 0. Define new potential functions Φ′ and

~A′ by

~A′ = ~A+ ~∇χ (2.10)

Φ′ = Φ− ∂χ

∂t
. (2.11)
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Then this gives new electric and magnetic fields ~E ′ and ~B′ where

~E ′ = −~∇Φ′ − ∂ ~A′

∂t
= −~∇(Φ− ∂χ

∂t
)− ∂( ~A+ ~∇χ)

∂t
= −~∇Φ− ∂ ~A

∂t
= ~E

~B′ = ~∇× ~A′ = ~∇× ( ~A+ ~∇χ) = ~∇× ~A+ ~∇× (~∇χ) = ~∇× ~A = ~B

since ~∇× (~∇χ) = 0 for any function χ.

Given this freedom, further conditions may be applied to Φ and ~A. One of these

is the Lorenz gauge condition

~∇ · ~A+
∂Φ

∂t
= 0, (2.12)

which can be formed of any potentials Φ and ~A by solving the equation

(
∂2

∂t2
−∇2)χ = ~∇ · ~A+

∂Φ

∂t
(2.13)

for χ. The geometrical significance of this choice of gauge condition will come to light

when deriving the Hertz potentials in both vector calculus and differential geometry.

This reduces Maxwell’s equations on ~E and ~B to the homogeneous wave equations

on Φ and ~A:

∂2 ~A

∂t2
−∇2 ~A = 0 (2.14)

∂2Φ

∂t2
−∇2Φ = 0. (2.15)

C. Hertz Potentials

The process of deriving potentials can be repeated. Since the scalar potential −Φ is

a differentiable function defined on the vector space R3, there exists a vector field ~Πe
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such that

~∇ · ~Πe = −Φ. (2.16)

Using this, the Lorenz gauge condition (2.12) yields

~∇ · ~A+
∂

∂t
(−~∇ · ~Πe) = ~∇ · ( ~A− ∂~Πe

∂t
) = 0

and thus there exists ~Πm such that

~∇× ~Πm = ~A− ∂~Πe

∂t
. (2.17)

Using the relationships between the electric and magnetic fields and the elec-

tromagnetic potentials yields the following relationships between these new Hertz

potentials and the desired fields:

~E = ~∇(~∇ · ~Πe)−
∂2~Πe

∂t2
− ∂

∂t
~∇× ~Πm (2.18)

~B = ~∇× ∂~Πe

∂t
+ ~∇× (~∇× ~Πm). (2.19)

These field relations automatically satisfy equations (2.3) and (2.4). Applying
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the other two Maxwell equations yield

ρ = ~∇ · ~∇(~∇ · ~Πe)− ~∇ · ∂
2~Πe

∂t2

= ∇2(~∇ · ~Πe)−
∂2~∇ · ~Πe

∂t2

= ~∇ · (∇2~Πe −
∂2~Πe

∂t2
) = −~∇ · (�~Πe) (2.20)

~ = ~∇× (~∇× ∂~Πe

∂t
)− ~∇(~∇ · ∂

~Πe

∂t
) +

∂3~Πe

∂t3
+ ~∇× (~∇× (~∇× ~Πm)) + ~∇× ∂2~Πm

∂t2

= − ∂

∂t
∇2~Πe +

∂

∂t

∂2~Πe

∂t2
+ ~∇× (~∇(~∇ · ~Πm)−∇2~Πm) + ~∇× ∂2~Πm

∂t2

=
∂

∂t
(�~Πe) + ~∇× (�~Πm). (2.21)

To greatly simplify the notation, I define the operator � as

� =
∂2

∂t2
−∇2 =

∂2

∂t2
− ~∇ · ~∇. (2.22)

Let us now examine the source-free case, where these relations become

0 = ~∇ · (�~Πe) (2.23)

0 =
∂

∂t
(�~Πe) + ~∇× (�~Πm). (2.24)

Note that this is very reminicent of the initial relations for ~E and ~B that allowed for

the creation of the electromagnetic potentials. In that vein, define ~W : R3×R→ R3

such that

�~Πe = ~∇× ~W, (2.25)

and, as above, we see

~∇× (
∂ ~W

∂t
+ �~Πm) = 0, (2.26)
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so define w : R3 × R→ R such that

�~Πm = −∂
~W

∂t
− ~∇w. (2.27)

As we note here an apparent asymmetry between the two Hertz potentials, let us

back up and remember how ~Πe and ~Πm came to be. We specified a particular gauge

for ~A and Φ by equation (2.12), but suppose we relax this condition by introducing

a new vector function ~G and new scalar function g such that

~∇ · ~A+
∂Φ

∂t
= −~∇ · ~G− ∂g

∂t
. (2.28)

Then

~∇ · ( ~A+ ~G) +
∂(Φ + g)

∂t
= 0, (2.29)

which gives new definitions of ~Πe and ~Πm, namely

~∇ · ~Πe = −Φ− g (2.30)

~∇× ~Πm = ~A+ ~G− ∂~Πe

∂t
. (2.31)

Repeating the calculations above with our new ~Πe and ~Πm yield

�~Πe = ~∇× ~W + ~∇g +
∂ ~G

∂t
(2.32)

�~Πm = −∂
~W

∂t
− ~∇w + ~∇× ~G, (2.33)

restoring the symmetry.



10

CHAPTER III

DIFFERENTIAL GEOMETRY

The language and construction of Differential Geometry affords a multitude of ben-

efits in the generalization and refinement of classical electrodynamics. But before

electromagnetism can be studied, first we must study the mathematics.

This chapter begins with a spartan formulation of topology; just enough modern

definitions and examples are given to provide the scaffolding necessary for construct-

ing the desired differentiable structures. After the topology, the modern formulation

of Differential Geometry is given, paying special attention to vector fields and dif-

ferential forms, and objects built from these, as these are the extensions of classical

vector fields that are of importance to this topic.

A. Topology

A topological space is the pairing of a set with a particular collection of subsets

of that set. These subsets are called open. The formal definition axiomatically

constructs the term “open set” to generalize certain aspects of open intervals of the

real line, where these open intervals are defined in terms of the Euclidean distance

function or the natural ordering on R. An open interval (a, b) is a subset of the real

line R defined by

(a, b) = {x ∈ R : a < x < b}
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and a closed interval [a, b] is defined by

[a, b] = {x ∈ R : a ≤ x ≤ b}.

Notice first that for any number x ∈ (a, b) there exists a smaller open interval

centered at x completely contained within (a, b). For example, consider the interval

(1, 2), and let ε > 0 be any very small number (such as 10−10). Then 2−ε is contained

in this interval, and the interval (2− 3ε
2
, 2− ε

2
) is centered on 2− ε and is contained

completely in (1, 2).

This is demonstrably not true with a closed interval. For instance, take now

[1, 2] and consider the endpoint 2 ∈ [1, 2]. No matter what open interval we choose,

it must always contain some number 2 + ε for some ε > 0. This is not in the interval

[1, 2].

Next, let Ai = (0, 2 − 1
i
) and Bi = (0, 1 + 1

i
). Then

∞⋃
i=1

Ai = (0, 2). Since this

infinite union produces an open set, so should the union of infinitely many open sets

be open. But
∞⋂
i=1

Bi = (0, 1], so only the intersection of finitely many open sets must

be open.

Note also
∞⋃
n=1

(−n, n) = R and (−1, 0) ∩ (0, 1) = ∅, so the entirety of a set and

the empty set must be considered open as well. From these three properties we give

the formal definition.

Definition III.1. A topological space is a set X together with a collection of

subsets T called a topology such that

1. the empty set and X are elements of T ,

2. any union of elements of T is an element of T ,
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3. any finite intersection of elements of T is an element of T .

If U ∈ T , then U ⊂ X and U is called open.

Example III.2. Real Numbers with the Standard Topology

As the source of the intuition, the real numbers R with the topology

T =

{⋃
i∈I

(ai, bi) : ai, bi ∈ R, ai < bi

}

satisfy this definition.

However, this is not the only topology one can place on the real numbers.

Example III.3. Real Numbers with the Finite Complement Topology

Consider the set R of real numbers with the topology

T = {U⊂R : R \ U = {u1, u2, . . . , un}, u1, . . . , un ∈ R, n ∈ Z+}.

This is called the finite complement topology. Conceptually, in the finite comple-

ment topology, a set is open of it consists of the real line with only finitely many

numbers punched out. This means no “strips” (intervals) are missing, just singular-

ities, and only so many of them.

To show that it is a topology, note that taking a union of sets can only de-

crease the number of missing numbers. Also, finitely many intersections increases

the number of missing elements by only finite amounts, so such sets will still be open.

Coming up with an explicit formulation of every open set in a topological space

can be difficult at times, and so we would find useful a way to reduce our effort, but

still to provide rigorously everything one would need to reconstruct our topology. A
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basis for a topology does just this and mimics somewhat the concept of a basis from

linear algebra.

Definition III.4. A subset B ⊂ T is called a basis if every set U ∈ T can be written

as a union U =
⋃
Bi∈B

Bi of some Bi ∈ B.

Equivalently, a subset B ⊂ T is a basis for the topology T if for every U, V ∈ B

and x ∈ U ∩ V there exists W ∈ B such that x ∈ W , W ⊂ U ∩ V , and X =
⋃
Bi∈B

Bi.
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Example III.5. Open Intervals with Rational Endpoints

A set A ⊂ X is dense in X if for every x ∈ X and every open set U ⊂ X with

x ∈ U , A ∩ U 6= ∅. Since the rational numbers (Q) are dense in the real numbers

(R), take for a basis the set of all open intervals with rational endpoints. That is,

for the real numbers R with the standard topology, let

B = {(a, b)|a, b ∈ Q, a < b}.

For any real numbers x, y ∈ R with x < y, let {xi}∞i=0, with xi < y, be a sequence

converging to x from above and let {yi}∞i=0, with yi > x, be a sequence converging

to y from below. Then (x, y) =
∞⋃
i=0

(xi, yi).

This example along with the next will be critical soon.

Example III.6. Open Balls with Rational Centers and Radii

The example above can be extended to Rn by taking

B = {Bq(r)|r ∈ Q, q ∈ Q+}

where Bq(r) = {x ∈ R|d(x, r) ≤ q} with d : Rn × Rn → R the usual Euclidean

distance function.

The following two definitions will later restrict pathological topological spaces

from complicating our discussion of differential geometry. I include them here simply

for completeness and note their influence on physics is arguably minimal.

Definition III.7. A topological space is called second countable if there exists a

basis for the topology B such that the cardinality of B is countable (i.e. the set B

contains countably many elements).
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Definition III.8. A topological space X is called Hausdorff or T2 if for every

x, y ∈ X with x 6= y there exist U, V ⊂ X with U and V open such that x ∈ U ,

y ∈ V , and U ∩ V = ∅.

We are now zeroing in on exactly how we want to construct our generalized

spacetime with regards to topology, however, to relate topological spaces to each

other, we need a purely topological definition of an analytical construct from calculus,

namely the continuous function. For spaces similar to Euclidean space (“similar” will

be defined more rigorously shortly) this definition is equivalent to the usual epsilon-

delta limit definition.

Definition III.9. A function f : X → Y between topological spaces is called con-

tinuous if for every V ⊂ Y such that V is open in Y , f−1(V ) is open in X.

Next, we would like to characterise when two spaces are topologically indistin-

guishable, and for this we use the following definition.

Definition III.10. A function f : X → Y between topological spaces is called a

homeomorphism if

1. f is a 1-1 and onto (i.e. f is bijective),

2. f is continuous,

3. and f−1 is continuous.

We can now define what it means to be “similar” to Euclidean space.

Definition III.11. A topological space X is locally Euclidean or locally home-

omorphic to Euclidean space if there exists an n such that for every x ∈ X there
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exists a neighborhood N ⊂ X, with x ∈ N , where N is homeomorphic to Rn. For

this n, we can also say X is locally homeomorphic to Rn.

Finally, we finish this section with the definitions most pertinent to our geometric

investigations.

Definition III.12. A topological manifold is a second countable Hausdorff space

that is locally Euclidean.

Definition III.13. A topological manifold with boundary is a second countable

Hausdorff space that is locally homeomorphic to Hn = {(x1, . . . , xn) ∈ Rn|x1 ≥ 0}.

B. Differentiable Manifolds

A topological manifold provides homeomorphisms between itself and Euclidean space.

In the discussion of differentiable manifolds, these homeomorphisms are called charts.

Consider two such maps, φ : U → Rn and ψ : V → Rn with U ∩ V 6= ∅. Since each

is a homeomorphism, each is bijective, and so we can consider the map

φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ).

This provides a homeomorphism from a subset of Rn to another subset of Rn. Since

calculus is defined on such domains already, it makes sense to say whether or not

φ ◦ ψ−1 is differentiable.

Definition III.14. Let M be a topological manifold. Let φ : U → Rn and ψ : V →

Rn with U ∩ V 6= ∅ and U, V ⊂M . Then φ and ψ are called compatible if the two
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maps

φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ),

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

are differentiable as functions on Euclidean space.

But this is only a local consideration. To describe the entire manifold, we need

a collection of charts where every point on the manifold is in the domain of some

chart.

Definition III.15. An atlas is a collection of compatible charts that covers the

manifold. That is, let M be a topological manifold, let A be a set of charts (Ui, xi),

and let p ∈ M . Then A is an atlas if the charts (Ui, xi) are compatible and p ∈ Uj

for some j.

Definition III.16. Two atlases are compatible if all charts with overlapping do-

mains are compatible.

Definition III.17. We say two atlases A,A′ are equivalent if they can be combined

to form another atlas A′′ = A ∪ A′. A differentiable manifold is an equivalence

class of compatible atlases under this equivalence relation.

Definition III.18. A manifold is called a Ck manifold if all transition maps are

k-times continuously differentiable, and a manifold is called a C∞ manifold or

smooth manifold if all transition maps have derivatives of all orders.

Unless otherwise stated, we assume all manifolds to be smooth, since present
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experiment does not seem to imply that spacetime (up to quantum corrections) is

not smooth.

Definition III.19. Let M and N be manifolds. A function f : M → N is k-

times differentiable or Ck if for all coordinate charts (U, x) in M and (V, y) in N,

x−1 ◦ f ◦ y is Ck where defined as a function between subsets of Euclidean space.

With all of these definitions, let us take a moment to explore some examples.

Example III.20. Euclidean Space (Rn)

As a trivial example, we can consider the manifold consisting of Euclidean space.

To show that this is a manifold, we need an atlas, and the manifold is then the

equivalence class of atlases for which our atlas is a representative. For simplicity,

we can consider a single chart consisting of the whole space under the identity map

i : Rn → Rn. Symbolically, this means U = Rn and x(p) = i(p) = p, where

p = (p1, . . . , pn). Thus Rn is a manifold.

Example III.21. 2-Sphere (S2 ⊂ R3)

The sphere S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1} is a manifold of dimension 2.

To define this manifold, again we need to specify an atlas. In this case, there is no one

chart that can cover the whole sphere (as the sphere is compact, and compact sets

in R3 are closed). Instead, we can choose the sphere less the point (0, 0, 1) under the

map of stereographic projection, and likewise take the sphere less the point (0, 0,−1)

again under stereographic projection.

Let p = (px, py, pz) ∈ S2 be a point on the sphere. We define the first stereo-
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graphic projection by the function φ : S2 → R2,

(px, py, pz) 7→ (
px

1− pz
,

py
1− pz

),

and the second stereographic projection by the function ψ : S2 → R2,

(px, py, pz) 7→ (
px

1 + pz
,

py
1 + pz

).

C. Vectors and Covectors

In vector calculus, the concept of a vector field is the pairing of each point in Eu-

clidean space with a vector based at that point. For Euclidean space, this is well-

defined since the space containing the point is also a vector space. However, for a

differentiable manifold, this is not the case in general, and so a more careful definition

of vectors and vector fields must be chosen.

First, we need to determine what it means to have a vector based at a point

on a manifold. With this understanding, we then need to decide what a vector field

looks like.

1. Vectors and Covectors

Instead of viewing a vector as an independent entity, we can think of it as the rate

of change of a curve. If we imagine a curve as the trajectory of a particle, the

instantaneous rate of change of the position of that particle tells us the direction the

particle is moving and the magnitude of its velocity. We can abstract this view to a

curve on an arbitrary differentiable manifold via the following definition.
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Definition III.22. Let M be a smooth manifold with p ∈ M , let (U, x) be a chart

with p ∈ U , and let γ0 : (−ε, ε) → U with ε > 0 be a function such that γ0(0) = p

and (x ◦ γ0)(t) is differentiable at t = 0.

The class of all functions γ : (−ε, ε)→ U such that γ(0) = p and d
dt

[x ◦ γ]t=0 =

d
dt

[x ◦ γ0]t=0 forms an equivalence class, and this class is called a tangent vector.

It is a standard exercise to show that the space of all tangent vectors at a point

p ∈ M forms a vector space of the same dimension as M . This vector space is

denoted TpM and is called the tangent space of M at p.

This definition affords another view of the tangent vector: that of an operator

on differentiable functions. To illustrate this, let M be a smooth manifold, and

let f : M → R be a C1 function. We can then make the following definition: for

v ∈ TxM with representative γ : (−ε, ε)→M ,

v(f) =
d

dt
[f ◦ γ]t=0.

This is called the derivative of f in the direction of v, and is a generalization of

the directional derivative from vector calculus.

So far the tangent space seems like an arbitrary, abstract construction we have

simply attached to a point on M . However we can build a basis for the tangent space

based on the coordinate chart around p, and when this is accomplished, the nature

of the tangent space becomes clear.

Before we do this, however, we need to explore the dual vector space to the

tangent space, called the cotangent space.

Definition III.23. Let M be a smooth manifold, let p ∈ M and let (U, x) be a
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coordinate chart with p ∈ U .

Given the tangent space TpM , we define the cotangent space to be T ∗pM =

(TpM)∗, the dual space of TpM . Elements of T ∗pM are called covectors.

This means that elements of the cotangent space are linear functionals on the

tangent space, and that the two vector spaces have the same dimension. We can use

the coordinate chart (U, x) to define a natural basis on the cotangent space using the

concept of the differential of a function.

Definition III.24. Let f : M → N be a differentiable function between smooth

manifolds M,N . The differential of f (or the pushforward of f) is a linear map

dfp = f∗p : TpM → Tf(p)N defined as follows. For any v = [γ] ∈ TpM ,

dfp(v) = [f ◦ γ] ∈ Tf(p)N.

We now note that the coordinate map, x : U → Rn consists of n functions,

namely x = (x1, . . . , xn) with xj : M → R. The differentials of each of the these n

maps at p ∈M forms a basis for T ∗pM , namely {dxi}ni=1.

The dual to this dual space basis becomes the basis for the tangent space, and

it is denoted {∂i}ni=1 in order to realize the following notation.

dxi(
∂

∂xj
) =

∂xi

∂xj
= δij,

where δij denotes the Kronecker delta (δii = 1 and δij = 0 for i 6= j).

Likewise, we observe the following about the direction derivative. Let v = vi∂i ∈

TpM and let f : M → Rn be a Ck function. Then the derivative of f in the direction
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of v is

v(f) = (vi∂i)(f) = vi(∂if),

which matches the usual definition and notation from vector calculus.

Example III.25. Vectors and Covectors in Euclidean 3-Space (R3)

Let us consider the usual Euclidean three-dimensional space. For our coordinate

chart we can consider the whole space and the usual Cartesian coordinates. Under

this association, familiar vectors in 3-space based at particular points (such as v =

2x̂ + 3ẑ at the point p = (0, 1, 0)) become vectors in the tangent spaces of those

points (likewise, v = 2∂x + 3∂z at the same point p = (0, 1, 0)).

Using this notation, transforming vectors under a coordinate transformation

becomes straightforward as a pushforward between manifolds. Consider spherical

coordinates. The manifold mapping from R+ × (0, π)× (−π, π) to R3 is represented

by the function

x(r, θ, φ) = (r sin θ sinφ, r sin θ cosφ, r cos θ).

This function maps an open half-infinite box in R3 to all of R3 with the negative-x

part of the xz-plane removed. The inverse map is

x−1(x, y, z) =

(√
x2 + y2 + z2, arccos

(
z√

x2 + y2 + z2

)
,Arg(x+ iy)

)

where the argument function is expressable as a piecewise-defined function of arctan

that is nonetheless differentiable.
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For an arbitrary point (x, y, z), d(x−1) takes the form of the matrix

d(x−1) =


∂(x−1)1

∂x
∂(x−1)1

∂y
∂(x−1)1

∂z

∂(x−1)2

∂x
∂(x−1)2

∂y
∂(x−1)2

∂z

∂(x−1)3

∂x
∂(x−1)3

∂y
∂(x−1)3

∂z

 ,

which for p = (0, 1, 0) takes the form

d(x−1)|p =


0 1 0

0 0 1

1 0 0

 .

Hence, our vector of 2∂x + 3∂z transforms to −3∂θ − 2∂φ at the point (0, 1, 0).

2. Vector Fields and Differential Forms

The disjoint union of all vector spaces of M ,

TM =
⋃
p∈M

{p} × TpM,

is also a differentiable manifold of dimension twice that of M , and it is called the

tangent bundle of M . The reason we want to look at such a union is because,

unlike for Euclidean space, on a manifold there is no canonical transformation that

takes us from one tangent space to another, so if we want to talk about a vector

field on a manifold, it is not enough to simply supply a position and a vector in an

arbitrary n-dimensional vector space. We must specify the point p ∈ M and the

vector in that point’s tangent space TpM . This brings us to our next definitions.

Definition III.26. A vector field is a function X : M → TM that sends a point
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p ∈M to a vector in that point’s tangent space. That is, p 7→ Xp ∈ TpM .

A covector field (or 1-form) is a function α : M → T ∗M that sends a point

p ∈M to a covector in that point’s cotangent space. That is, p 7→ αp ∈ T ∗pM .

Definition III.27. A vector field X : M → TM is Ck or k-times differentiable

if X(f) : M → R, p 7→ Xp(f) is a Ck function for every Cm function f with m > k.

The vector field X : M → TM is smooth if this is true for all k.

A covector field α : M → T ∗M is Ck or k-times differentiable if α(X) :

M → R, p 7→ αp(Xp) is a Ck function for every Cm vector field X with m ≥ k. The

covector field is smooth if this is true for all k.

We denote the space of all Ck 1-forms on M as Ωk(M) or Ω1
k(M). The space of

all smooth 1-forms on M is denoted Ω(M) or Ω1(M).

D. Multivectors and k-Forms

To extend the concept of the vector field and 1-form into higher-dimensional ana-

logues, we first need a coordinate-independent way to express such objects.

Definition III.28. A k-linear functional f : (TpM)k → R is alternating if for

every v ∈ TpM ,

f(. . . , v, . . . , v, . . .) = 0

The space of all alternating k-linear functionals on TpM is denoted
∧kT ∗pM .

The space of k-vectors
∧kTpM (which are multivectors) is defined as the dual

to the space of alternating k-linear functionals on TpM , namely

∧k
TpM = (

∧k
T ∗pM)∗.
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The space
∧kT ∗pM is a vector space of dimension

(
n
k

)
, where n is the dimension

of M . As in the extensions of vectors and covectors to vector fields and 1-forms, we

can extend these point-wise definitions to form Ck fields over our manifold M .

Definition III.29. A k-form is a function α : M →
∧kT ∗M such that each point

p ∈M is sent to an element of
∧kT ∗pM .

A k-vector field is a function X : M →
∧kTM such that each point p ∈M is

sent to an element of
∧kTpM .

A k-form α is C l if for every set of Cm vector fields X1, . . . , Xk : M → TM

with m ≥ k, the function α(X1, . . . , Xk) : M → R, p 7→ αp((X1)p, . . . , (Xk)p) is C l.

A k-vector field X is C l if for every set of Cm functions f1, . . . , fk : M → R

with m > k, the function X(f1, . . . , fk) : M → R is C l.

Definition III.30. Let α be a k-form and β be an l-form. Let X1, . . . , Xk+l be vector

fields, and let Sk+l be the set of permutations on k + l letters. The wedge product

α∧β is defined as

α∧β(X1, . . . , Xk+l) =
1

k!l!

∑
σ∈Sk+1

sgn(σ)α(Xσ(1), . . . , Xσ(k))β(Xσ(k+1), . . . , Xσ(k+l)).

Let X be a k-vector and Y be an l-vector. Let f1, . . . , fk+l be functions on M ,

and let Sk+l as above. The wedge product X∧Y is defined as

X∧Y (f1, . . . , fk+l) =
1

k!l!

∑
σ∈Sk+l

sgn(σ)X(fσ(1), . . . , fσ(k))Y (fσ(k+1), fσ(k+l)).
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E. The Exterior Derivative and De Rham Cohomology

The exterior derivative is a generalization of the gradient, divergence, and curl oper-

ations from vector calculus. It is the unique operator that is defined by the following

three conditions, but reduces in local coordinates to a simple to use form.

Definition III.31. Let M be a Ck manifold of dimension n, and let m ≤ k. Then

d : Ωl(M)→ Ωl+1(M) is called an exterior derivative if

1. df is the differential of f for f ∈ Cm(M),

2. d(df) = 0 for any f ∈ Cm(M),

3. d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ for α ∈ Ωp(M).

Let α be a Cm p-form on a Ck manifold M of dimension n, and let (U, x) be a

coordinate chart. Then in U we can express α in terms of
(
n
k

)
functions αi1···ip by

α =
1

p!
αi1···ipdx

i1∧ · · · ∧dxip .

The exterior derivative of α is then

dα =
1

p!

∂αi1···ip
∂xj

dxj∧dxi1∧ · · · ∧dxip .

Theorem III.32. Poincaré Lemma

Let U ⊂ Rn be open and simply connected, and let α be a p-form such that

dα = 0. Then there exists a p− 1-form β such that

α = dβ.
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We denote by Zp the set of p-forms with vanishing exterior derivative; these are

the closed p-forms. That is, if dα = 0, then α ∈ Zp. We denote by Bp the set of

p-forms that are the derivatives of p− 1-forms; these are the exact p-forms. That

is, if α = dβ for some form p− 1-form β, then α ∈ Bp. Since d2α = 0 for any α, we

see that Bp ⊂ Zp.

Definition III.33. The de Rham cohomology space of degree k is

Hk(M) :=
Zk
Bk

.

Even though the cohomology space is defined by this quotient of spaces, it is

best calculated by other means and then applied to forms. For example, if Bk = Zk,

then Hk(M) becomes trivial, and we know that every closed k-form is also exact, as

with the Poincaré Lemma.

F. The Metric

All of our work so far has been independent of any metric, or notion of length of a

vector and distance. Now we incorporate this concept into our study.

Definition III.34. A metric is a function gp : TpM ⊗ TpM → R such that for

u, v, w ∈ Tp(M); a, b ∈ R,

g(au+ bv, w) = ag(u,w) + bg(v, w) (g is linear)

g(u,w) = g(w, u) (g is symmetric)

g(u,X) = 0 for all X ∈ TpM ⇐⇒ u = 0 (g is non-degenerate)

In a traditional treatment of the metric in Differential Geometry, instead of
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non-degeneracy, one would impose that the metric is positive definite, which means

g(v, v) ≥ 0 for all v ∈ TpM and vanishes if and only if v = 0. This requirement turns

each tangent and cotangent space into a Hilbert space, allowing the utilization of a

great many theorems related to Hilbert spaces. However, since the goal is to apply

all work here to spacetime or compact subsects of spacetime, we are not afforded this

luxury.

Our definition of a metric is, so far, limited to individual tangent spaces; however

we can extend this in the following way.

Definition III.35. A metric tensor is a function g : M × TM ⊗ TM → R such

that for all p ∈ M , g(p, ·, ·) = gp(·, ·) is a metric. We say the metric tensor g is Ck

if for all Ck vector fields v, w ∈ TM , g(v, w) : M → R is a Ck function on M .

Such a metric tensor can be generated by, say, the Einstein field equations.

Theorem III.36. Let p ∈ U ⊂ M , and let x : U → Rn be a coordinate chart

around p. A metric g can be uniquely represented by an n×n symmetric matrix with

elements denoted gµν.

Knowing this now about our metric allows us to utilize concepts and theorems

about matrices from linear algebra. One of important note is that of signature.

The definition of signature varies widely by author, but the purpose of signature is

to carry information about the sign of the eigenvalues of the metric.

Definition III.37. Let g be a metric on an n-dimensional manifold M with eigen-
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values e1, . . . , en. The signature of g is the sum

s =
n∑
i=1

sgn(ei) =
n∑
i=1

ei
|ei|

We note that if g is a Ck metric tensor with k ≥ 1 on a connected manifold M ,

its signature is constant on all of M .

Definition III.38. Let M be an n-dimensional Ck manifold with k ≥ 2. Let g be a

Ck metric tensor on M with k ≥ 2. Then we say (M, g) is a Lorentzian Manifold

if the signature of g is s = n− 2 or s = 2− n.

Since g is non-degenerate, it can have only non-vanishing eigenvalues. Thus,

this definition of a Lorentzian manifold means that the metric tensor has precisely 1

negative and n− 1 positive eigenvalues or 1 positive and n− 1 negative eigenvalues.

Theorem III.39. Let g be a metric. Then g forms an isomorphism g : TpM →

T ∗pM , v 7→ g(v, ·).

Let (U, x) be a coordinate chart with p ∈ U ⊂ M and v ∈ TpM . Theorems

III.36 and III.39 allow us to write the associated covector to v as vµ = gµνv
ν where

{ ∂
∂xµ
} forms the basis for TpM and {dxµ} forms the basis for T ∗pM .

Theorem III.40. Let g be a Ck metric tensor, and let v ∈ TM be a Cj vector

field. Then g forms an isomorphism g : TM → T ∗M , and v 7→ g(v, ·) preserves

differentiability of v for j ≤ k.
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G. The Hodge Dual and Coderivative

A given metric 〈·, ·〉p = gp(·, ·) : T ∗pM ⊗ T ∗pM → R defines a unique unit volume

n-form ν ∈ Ωn(M). We define ∗k : Ωk(M) → Ωn−k(M), called the Hodge star by

requiring that for every α, β ∈ Ωk(M),∫
M

α∧ ∗k β =

∫
M

〈α, β〉ν, (3.1)

where we note that for given α, β, 〈α, β〉 : M → R is a real-valued function on

the manifold. From this point forward we drop the subscript on the Hodge star to

improve readability and rely on the degree of its operand to remove ambiguity.

We can use the metric and the volume form to define a metric on the space of

k-forms as follows.

Definition III.41. For any α, β ∈ Ωk(M),

<α, β> :=

∫
M

〈α, β〉ν (3.2)

Definition III.42. The coderivative δ : Ωk(M) → Ωk−1(M) is given by the ex-

pression

δ = (−1)k+1 ∗−1 d ∗ .

We define the coderivative in this way to make the following observation. Let

α ∈ Ωk(M) and β ∈ Ωk+1(M) (such that α, β vanish on ∂M if ∂M 6= ∅). Then
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α∧ ∗ β ∈ Ωn−1(M), so

d(α∧ ∗ β) = (dα)∧ ∗ β + (−1)kα∧d ∗ β

= (dα)∧ ∗ β)− α∧ ∗ [(−1)k ∗−1 d ∗ β]

= (〈dα, β〉 − 〈α, δβ〉)ν,

so

0 =

∫
M

d(α∧β)

=

∫
M

〈dα, β〉ν −
∫
M

〈α, δβ〉ν,

by Stokes’ theorem, which means <dα, β> = <α, δβ>, so that δ is the adjoint

operator to d under the <·, ·> metric.

H. Hodge Decomposition

For a compact, Riemannian manifold M , there exists the following decomposition:

Ωk(M) = Bk × ck ×Hk,

where Bk is the set of exact k-forms, ck the set of co-exact k-forms, and Hk the space

of harmonic k-forms, that is the space of k-forms α such that ∆α = (dδ + δd)α = 0.

This means that every k-form ω can be written as

ω = dα + δβ + γ,

where α is a k − 1-form, β a k + 1-form, and γ a harmonic k-form.
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For a compact, pseudo-Riemannian manifold M , the Hodge decomposition fol-

lows similarly, though with a additional subtlety. We define a set Λk as follows:

Λk = Bk × ck × (Zk ∩ Ck),

where Zk is the set of closed k-forms, and Ck is the set of co-exact k-forms. Then

one of the following is true:

1. M is Strongly de Rham (in the sense of [7]) if Λk = Ωk(M).

2. M is Weakly de Rham (in the sense of [7]) if Λk is dense in Ωk(M).

For the purposes of this thesis, we assume every manifold is strongly de Rham. Thus

for every k-form ω there exist α, β, γ such that

ω = dα + δβ + γ,

where α is a k−1-form, β a k+1-form, and γ a k-form such that dγ = 0 and δγ = 0.
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CHAPTER IV

ELECTROMAGNETISM AND DIFFERENTIAL GEOMETRY

A. Electromagnetic 2-Forms

With a firm grasp of the relevant parts of differential geometry under our belt, we

can now pursue a differential geometric formulation of electromagnetic theory.

On a Lorentzian manifold, a 2-form is called an electromagnetic field if it satisfies

two conditions,

dF = 0 (4.1)

δF = J, (4.2)

where J is a 1-form that satisfies the charge conservation condition δJ = 0. From

a geometrical perspective, this means that all closed 2-forms are electromagnetic

fields for some charge distribution. In the following example, we see how this is a

generalization of the vector calculus Maxwell equations (2.1)–(2.4).

Example IV.1. Cartesian Flat Space

For the case of a 3+1-dimensional flat space using Cartesian coordinates, the

metric takes values 1 = −g00 = g11 = g22 = g33 and 0 = gαβ, α 6= β, which gives

for values of the volume form η0123 = η0123 = −1. The electromagnetic field then

takes the form F = −Eidx0∧dxi +Bi ∗ (dx0∧dxi), and the current density 1-form is

J = −ρdx0 + jidx
i where ~ = ji~ei is the current vector seen in Chapter II (indices

are raised and lowered using the metric as usual: J i = giµJµ).
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Equations (4.1) and (4.2) then become

dF = (−∂kEj + η0i
jk∂0Bi)dx

0∧dxj∧dxk + (η0i
jk∂iBi)dx

i∧dxj∧dxk

=
∑
j<k

(~∇× ~E +
∂ ~B

∂t
) · ~eiη0i

jkdx
0∧dxj∧dxk + (~∇ · ~B)dx1∧dx2∧dx3 (4.3)

δF = ∗[(−∂kBj − η0i
jk∂0Ei)dx

0∧dxj∧dxk − (η0i
jk∂iEi)dx

i∧dxj∧dxk]

= −~∇ · ~Edx0 + (~∇× ~B − ∂ ~E

∂t
) · ~eidxi (4.4)

Compare the results of equation (4.4) with equations (2.1) and (2.2), and equation

(4.3) with equations (2.3) and (2.4). We see that equations (4.1) and (4.2) form a

faithful, coordinate-independent generalization of Maxwell’s equations.

B. Potential 1-Forms

In the case of a simply-connected manifold, (4.1) means F is closed, and so by the

Poincaré lemma F is also exact. Thus, there is a 1-form A such that

F = dA. (4.5)

Moreover, this form is not unique. Let χ be any function. Then for A′ = A+dχ

we find

dA′ = d(A+ dχ) = dA = F. (4.6)

Example IV.2. Cartesian Flat Space Revisited

We again wish to see what this looks like in Cartesian coordinates. For A =
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−Φdx0 + Aidx
i, we find

dA = (∂0Ai − ∂iA0)dx
0∧dxi + ∂jAkdx

j∧dxk (4.7)

= −((−~∇Φ− ∂ ~A

∂t
) · ~ei)dx0∧dxi + (~∇× ~A) · ~ei ∗ (dx0∧dxi), (4.8)

which precisely matches the results in the second chapter.

C. Non-Trivial Topology

For this section, we assume our Lorentzian manifold and metric g are “strongly de

Rham” in the sense of [7]. Then, equation (4.1) implies there exist A, a 1-form, and

f , a 2-form, such that

F = dA+ f (4.9)

df = 0, δf = 0. (4.10)

Note that this means F is the consequence of an electromagnetic potential A super-

imposed on a solution to the vacuum (J ≡ 0) Maxwell equations generated by no

such potential.

Considerations of these topological complications can be seen as in the treatment

in [8], wherein the singularity caused by a black hole produces additional freedoms

in field quantities. Principally, a non-vanishing magnetic flux can exist over a closed

surface surrounding the singularity, making the black hole appear to have a magnetic

charge.
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CHAPTER V

HERTZ POTENTIALS AND DIFFERENTIAL GEOMETRY

This chapter is a deeper treatment of the form representation of Hertz potentials

used in [6], along with a construction for the primary purpose of treating the use of

Hertz potentials in [9] and related work.

A. Hertz Potential 2-Forms

As we saw in Chapter IV, the theorems from vector calculus in Chapter II that bore

the electromagnetic potentials were really a specific expression of the Poincaré lemma.

This process can be repeated utilizing the gauge freedom of the electromagnetic

potential 1-form.

For any particular choice of A, take χ such that δdχ = −δA. Then taking

A′ = A+ dχ yields

δA′ = 0. (5.1)

This is the Lorenz guage, and this makes A′ coclosed, so, in this simply connected

space, coexact. (From here, we drop the prime from A′.)

Since A is coexact, there exists a 2-form Π such that δΠ = A. This is the Hertz

potential 2-form.

Now the electromagnetic 2-form takes the form

F = dA = dδΠ. (5.2)

Example V.1. Cartesian Coordinates
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Let’s look at the Hertz potential 2-form under specific coordinates to see how

it is a generalization of our derivation from vector calculus. The simplest expression

is under Cartesian coordinates. In this frame, the metric takes the form 1 = −g00 =

g11 = g22 = g33 and 0 = gαβ, α 6= β. As we saw in the previous chapter, this makes

F = −Eidx0∧dxi+Bi∗(dx0∧dxi), and A = −φdx0 +Aidx
i. If we make the definition

Π = (Πe)idx
0∧dxi + (Πm)i∗(dx0∧dxi), we then see that

δΠ = (~∇ · ~Πe)dx
0 + ((~∇× ~Πm)i + (

∂~Πe

∂t
)i)dx

i.

This matches our definitions (2.16) and (2.17) from Chapter II.

B. Gauge Invariance

Applying (4.2) to (5.2) gives

J = δF = δdA = δdδΠ = δ(dδ + δd)Π = δ�Π. (5.3)

Since J is coclosed, it is coexact. Therefore let Q be a 2-form such that δQ = J .

Then δ�Π = δQ, and so

�Π = Q+ δC

for some 3-form C. Since Q is already arbitrary, we can assume that δC = 0, yielding

�Π = Q. (5.4)

Again let us look at the source-free case, as that is the condition for vacuum.

This means J = 0, which leads to δQ = 0, making Q coclosed/coexact. So let W be
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a 3-form such that δW = Q. Then we obtain

�Π = δW. (5.5)

This is one of the two gauge freedom four-vectors seen in Chapter II. The other

arises from observing the following.

We noted before that the condition (5.1) gives us the ability to define Π, but

this condition can be relaxed if we introduce a new 1-form G via the relation

δA = −δG. (5.6)

This changes the definition of Π to

δΠ = A+G (5.7)

yielding the new field relationship as

F = d(δΠ−G) = dδΠ− dG. (5.8)

This means we must update equation (5.3) to

δdδΠ− δdG = J (5.9)

and so finally, through the same manipulations as before, we obtain

�Π = dG+ δW. (5.10)

This expresses the full gauge freedom, up to second order, of the Hertz poten-

tials, without changing A (even by its own gauge transformation). In effect, (5.10)
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determines the maximum freedom inherent in choosing Π.

C. Scalar Hertz Potentials

Throughout the history of electromagnetic theory, scalar potentials whose derivatives

yield the standard electromagnetic potentials have occasionally been used to greatly

simplify various calculations. [1] [10] These potentials always come in pairs and are

actually Hertz potentials of two non-vanishing components.

In more modern quantum field theoretical applications, quantization of scalar

fields is more well-known and direct than the quantization of vector fields. Therefore,

in certain circumstances, it becomes advantageous to find a scalar field or collection of

scalar fields that relate to the desired vector fields through known, fixed relationships.

Hertz potentials under the formulation above are apt for some of these circumstances.

Obviously, by the above formulation, the Hertz potentials are not truly scalar

fields. But, by breaking the background independence inherent in the differential

geometry, we may choose the 2-form Π to attain non-vanishing values in only two

dimensions of the vector space of 2-forms. These components of Π comprise the

scalar fields we seek.

In the following examples, we bring together the works of several past authors.

As each author has their preferred notation, the notation so far developed is used

instead so as to illustrate the unification of ideas under the differential geometry

formalism.
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Examples of Scalar Hertz Potentials

Example V.2. Cartesian Scalar Hertz Potentials

We consider first Cartesian coordinates, where (x0, x1, x2, x3) = (t, x, y, z). The

earliest such treatment of Hertz potentials is found in [1]; however a more general

vector-based treatment is given in [2], with [3] converting it to relativistic covariance.

Finally, the results are used in [9] in a manner we will mirror in the next chapter.

Let φ, ψ be defined such that Π = φdx01 + ψdx23, with the notation dxα1...αn =

dxα1∧ . . .∧dxαn . Then

�Π = �φdx01 + �ψ∗(dx01), (5.11)

and so to satisfy �φ = 0 = �ψ, we take simply �Π = 0, G = 0, and W = 0.

This yields the electromagnetic 2-form F in terms of the Hertz potential Π as

F = − Ezdt∧dz − Exdt∧dx− Eydt∧dy +Bz∗(dt∧dz) +Bx∗(dt∧dx) +By∗(dt∧dy)

= (∂2
t φ− ∂2

zφ)dt∧dz + (∂t∂yψ − ∂x∂zφ)dt∧dx+ (−∂t∂xψ − ∂y∂zφ)dt∧dy (5.12)

+ (−∂2
xψ − ∂2

yψ)∗(dt∧dz) + (∂t∂yφ+ ∂z∂xψ)∗(dt∧dx) + (∂y∂zψ − ∂t∂xφ)∗(dt∧dy)

Note that here we needed no gauge functions. The significance of this con-

struction is that the wave equation yields all solutions to the vacuum states of the

electromagnetic field in Cartesian coordinates through the relationship between Hertz

potentials and electromagnetic fields.

Example V.3. Axial Scalar Hertz Potentials in Cylindrical Coordinates

Consider now cylindrical coordinates. To use a similar form as the above deriva-

tion, we take our coordinates to be ordered non-typically, namely let (x0, x1, x2, x3) =
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(t, z, ρ, θ). Note, however, that this merely rearranges the metric terms; the volume

form η remains unchanged. So let φ, ψ be defined such that Π = φdx01 + ψ∗dx01.

Again, this system has been treated by [2], and [5] and [11] use its results in appli-

cations related to Casimir interactions.

Essentially identically to the Cartesian case, we obtain

�Π = �φdx01 + �ψ∗(dx01). (5.13)

Again note that this simple scalar relation on φ and ψ appears without requiring the

gauge forms G and W to be nonvanishing.

The electromagnetic field 2-form F takes the form

F = − Ezdt∧dz − Eρdt∧dρ− Eϕdt∧dϕ

+Bz∗(dt∧dz) +Bρ∗(dt∧dρ) +Bϕ∗(dt∧dϕ)

= (∂2
t φ− ∂2

zφ)dt∧dz + (
1

ρ
∂t∂ϕψ − ∂z∂ρφ)dt∧dρ

+ (−ρ∂t∂ρψ − ∂ϕ∂zφ)dt∧dϕ+ (−1

ρ
∂ρρ∂ρψ −

1

ρ2
∂2
ϕψ)∗(dt∧dz)

+ (
1

ρ
∂t∂ϕφ+ ∂z∂ρψ)∗(dt∧dρ) + (∂ϕ∂zψ − ρ∂t∂ρφ)∗(dt∧dϕ) (5.14)

Example V.4. Spherical Scalar Hertz Potentials

The spherical case makes use of the gauge forms G and W in a straightforward

way. It was first treated by [12] and again independently by [10]. A basic discussion

is given by [2], upon which the following treatment builds. This time, we define φ

and ψ such that

Π = φdx01 + ψ(∗dx01) = φdx01 + ψ(η01
23dx

23) = φdx01 + ψr2 sin θdx23. (5.15)
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Here I would like to define a new operator, �̂, defined in spherical coordinates as

�̂f = �f +
2

r
∂rf = ∂2

t f − ∂2
rf −

1

r2 sin θ
∂θ(sin θ∂θf)− 1

r2 sin2 θ
∂2
ϕf. (5.16)

Note that �̂φ = 0 still denotes a homogeneous wave equation for φ, but �̂ is not the

D’Alembertian operator for spherical coordinates.

After laborious calculations, we find

�Π = (�̂φ− 2

r
∂rφ+

2

r2
φ)dx01 + (−2

r
∂θφ)dx02 + (−2

r
∂ϕφ)dx03

+ (�̂ψ − 2

r
∂rψ +

2

r2
ψ)(r2 sin θdx23) + (−2

r
∂θψ)(− sin θdx13)

+ (−2

r
∂ϕψ)(

1

sin θ
dx12) (5.17)

= (�̂φ− 2

r
∂rφ+

2

r2
φ)dx01 + (−2

r
∂θφ)dx02 + (−2

r
∂ϕφ)dx03

+ (�̂ψ − 2

r
∂rψ +

2

r2
ψ)∗dx01 + (−2

r
∂θψ)∗dx02 + (−2

r
∂ϕψ)∗dx03. (5.18)

Let us pause here for a moment to look at the 2-form just calculated. If we were

to forget that we have G and W at our disposal and could only take �Π = 0,

this would put some odd constraints on φ and ψ. The dx02 and dx03 (and their

conjugate dx13 and dx12) terms imply that our scalar functions are independent of

solid angle by both the θ and ϕ coordinates. Further, if we still attempt to impose

the conditions �̂φ = 0 = �̂ψ, then the dx01 and dx23 terms show that our functions

are independent of the radial coordinate as well! So it becomes imperative, rather

than just interesting, that these gauge freedoms exist.

Turning back now to calculations, the relations �̂φ = 0 = �̂ψ and �Π =
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dG+ δW show

dG+ δW = (
2

r2
φ− 2

r
∂rφ)dx01 + (−2

r
∂θφ)dx02 + (−2

r
∂ϕφ)dx03

+ (
2

r2
ψ − 2

r
∂rψ)∗dx01 + (−2

r
∂θψ)∗dx02 + (−2

r
∂ϕψ)∗dx03. (5.19)

Taking G = 2φ
r
dx0 and ∗W = 2ψ

r
dx0 satisfies this requirement, thus leaving us again

with scalar fields that satisfy a homogeneous wave equation and provide the general

electromagnetic fields in vacuum.

This yields an expression for the electromagnetic field F as

F =(∂2
t φ− ∂2

rφ)dt∧dr + (
1

sin θ
∂t∂ϕψ − ∂r∂θφ)dt∧dθ

+ (− sin θ∂t∂θψ − ∂ϕ∂rφ)dt∧dϕ+ (− 1

r2 sin θ
∂θ sin θ∂θψ −

1

r2 sin2 θ
∂2
ϕψ)∗(dt∧dr)

+ (
1

sin θ
∂t∂ϕφ+ ∂r∂θψ)∗(dt∧dθ) + (∂ϕ∂rψ − sin θ∂t∂θφ)∗(dt∧dϕ). (5.20)

Example V.5. Spherical Schwarzschild Metric

One of the benefits of this formulation is perfect agreement with General Rela-

tivity. Consequently, metrics other than flat space can be taken and yield consistent

results. One such result is a case for scalar Hertz potentials that satisfy a wave-like

equation near an uncharged, non-rotating, spherically symmetric massive body.

For this construction we take the spherical Schwarzschild metric

ds2 = (1− rs
r

)dt2 + (
1

1− rs
r

)dr2 + r2dθ2 + r2 sin2 θdφ2.

To simplify the notation, set ζ = 1− rs
r

. This gives

g00 =
1

ζ
, g11 = ζ, g22 =

1

r2
, g33 =

1

r2 sin2 θ
,



44

and again we take

Π = φdx01 + ψ(∗dx01) = φdx01 + ψr2 sin θdx23. (5.21)

Note that, for this coordinate system, the operator � takes the form

� =
1

ζ
∂2
t −

1

r2
∂rζr

2∂r −
1

r2
∂2
θ −

1

r2 sin2 θ
∂2
ϕ (5.22)

⇒ �f =
1

ζ
∂2
t f −

1

r2
∂r(ζr

2(∂rf))− 1

r2 sin θ
∂θ(sin θ∂θf)− 1

r2 sin2 θ
∂2
ϕf. (5.23)

So once more, define a new operator �̃ by

�̃f = �f +
2

r
ζ∂rf =

1

ζ
∂2
t f − ∂r(ζ∂rf)− 1

r2
∂2
θf −

1

r2 sin2 θ
∂2
ϕf. (5.24)

Take �̃φ = 0 = �̃ψ like in the standard spherical case, and (5.10) yields

dG+ δW = (−2ζ

r
∂rφ− (

2ζ ′

r
− 2ζ

r2
)φ)dx01 + (−2ζ

r
∂θφ)dx02

+ (−2ζ

r
∂ϕφ)dx03 + (−2ζ

r
∂rψ − (

2ζ ′

r
− 2ζ

r2
)ψ)∗dx01

+ (−2ζ

r
∂θψ)∗dx02 + (−2ζ

r
∂ϕψ)∗dx03. (5.25)

Therefore, we find natural the choices G = 2ζ
r
φdx0 and ∗W = 2ζ

r
ψdx0.

Since the only fact used about ζ was its dependence strictly on the first coordi-

nate, these results can be immediately generalized to any metric taking the form

ds2 =
dt2

ζ
− ζdr2 − dθ2

r2
− dϕ2

r2 sin2 θ
, (5.26)

which includes the Reissner-Nørdström metric of a charged, non-rotating black hole.

Example V.6. Radial Scalar Hertz Potentials in Cylindrical Coordinates
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We return now to cylindrical coordinates, taking the traditional arrangement of

(x0, x1, x2, x3) = (t, ρ, ϕ, z). The Hertz 2-form takes the form

Π = φ dx01 + ψ ∗dx01

= φ dt∧dρ+ ψ ρdϕ∧dz.

This choice of non-vanishing Hertz potential components does not appear in the liter-

ature, and in fact it is this choice that inspired the search for the general formulation.

We now wish to find the equations of motion for this Hertz potential, and

through calculations find

�Π = (�φ+
φ

ρ2
)dx01 − 2

ρ
∂ϕφdx

02 + (�ψ +
ψ

ρ2
) ∗ dx01 − 2

ρ
∂ϕψ ∗ dx02. (5.27)

And at this point, we pause. If we treat this as the Cartesian scenario, with vanishing

gauge terms, then we obtain a similar problem to that in the spherical case. Namely,

vanishing gauge terms imply, from the second term above, that the scalar Hertz

potentials do not depend on the polar coordinate. We know from the scalar Hertz

potentials in the axial direction above that this is not the case. However, if we

treat this as the spherical case, with gauge terms G and W dependent upon first

derivatives of φ and ψ, respectively, then one finds that the scalar potentials become

independent of the axial direction, which is again contradicted by the above case. In

fact, assuming G independent of ψ and W independent of φ (while each dependent on

the other function, respectively, and possibly explicitly on the coordinate variables)

leads to the scalar potentials being independent of at least one coordinate, which is

unacceptable.
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At this point, the author admits an impasse with the case and an inability to

find general solutions to φ and ψ that construct all possible electromagnetic fields F

via the relation dδ(φdx01 + ψ∗dx01) = F .

For reference, the expression for the electromagnetic 2-form without including

a G term is

F =(∂2
t φ− ∂ρ

1

ρ
∂ρρφ)dt∧dρ

+ (ρ∂t∂zψ −
1

ρ
∂ρρ∂ϕφ)dt∧dϕ

+ (−1

ρ
∂t∂ϕψ − ∂z

1

ρ
∂ρρφ)dt∧dz

+ (− 1

ρ2
∂2
ϕψ − ∂2

zψ)∗(dt∧dρ)

+ (ρ∂t∂zφ+ ρ∂ρ
1

ρ
∂ϕψ)∗(dt∧dϕ)

+ (∂z
1

ρ
∂ρρψ − ∂t∂ϕψ)∗(dt∧dz). (5.28)

As a final note on the radial cylindrical scalar Hertz potentials, we would like

to highlight the following. For our choice of Π = φ dt∧dρ+ ψ ∗(dt∧dρ), consider

G = δΠ− δΠA

W = dΠ− dΠA

where ΠA = φA dt∧dz + ψA ∗(dt∧dz), which is the axial cylindrical Hertz potential.



47

We remember that �Π = dδΠ + δdΠ, so we may rewrite �Π = dG+ δW as

0 = dδΠ− dG+ δdΠ− δW (5.29)

= d(δΠ−G) + δ(dΠ−W )

= d(δΠ− [δΠ− δΠA]) + δ(dΠ− [dΠ− dΠA])

= dδΠA + δdΠA. (5.30)

What we have done here is use the gauge terms G and W to turn the radial con-

struction into the axial construction, effectly “decoupling” the choice of scalar Hertz

potential from coordinate system. This, however, is of little practical use, as the

form of the electromagnetic field F will be exactly that of the axial cylindrical case,

and the equations of motion for the scalar potentials are, again, those from the axial

case.

D. Higher-Order Gauge Transformations

We have seen that we can take a weak restriction on the gauge of A to find a

d’Alembertian equation, (5.10), for the Hertz potential 2-form Π with two gauge

terms. All derivatives in these expressions remain at or below second order. Now we

take a look at higher-order gauge transformations.

Let Π be a Hertz potential that generates some source-free (J ≡ 0) electromag-

netic field satisfying (5.10) with gauge terms G and W . Then we define a new 2-form
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Π′, along with G′ and W ′ by the relations

Π′ = Π− dΓ− δΛ (5.31)

G′ = G− δdΓ (5.32)

W ′ = W − dδΛ (5.33)

where Γ is an arbitrary 1-form and Λ an arbitrary 3-form. Note that

�Π′ = (dδ + δd)Π′

= dδ(Π− dΓ) + δd(Π− δΛ)

= �Π− dδdΓ− δdδΛ

= d(G− δdΓ) + δ(W − dδΛ)

= dG′ + δW ′,

and

δΠ′ = δ(Π− dΓ− δΛ)

= δΠ− δdΓ

= A+ (G− δdΓ)

= A+G′.

This means Π′ satisfies a similar type of equation as Π and generates exactly the

same potential A, which means it generates the same electromagnetic field F .
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Due to the identities d2 = 0, δ2 = 0, we can, in fact, add even more terms,

Π′ = Π− d(Γ0 + δ(Γ1 + d(Γ2 + · · · )))− δ(Λ0 + d(Λ1 + δ(Λ2 + · · · ))) (5.34)

G′ = G− δd(Γ0 + δ(Γ1 + d(Γ2 + · · · ))) (5.35)

W ′ = W − dδ(Λ0 + d(Λ1 + δ(Λ2 + · · · ))), (5.36)

depending on the symmetries and demands of the system investigated.

The apparent wealth of available gauge terms of this form might be exploited to

achieve constructions of scalar Hertz potentials as sought in the previous section. An

investigation of this was not done during this project, but it merits future research.

E. Non-Trivial Topology

All constructions to this point have been done in a trivial topology. This means the

space contains no singularities or significant contortions. Now, utilizing the power of

de Rham Cohomology and Hodge theory on Lorentzian manifolds [7], we drop the

constraint of trivial topology and reformulate Hertz potentials in spacetimes with

more interesting geometry.

As in the section of the same name from Chapter IV, let F be a 2-form that

satisfies Maxwell’s equations. Then there exist A, a 1-form, and f , a 2-form, such

that F = dA+ f and df = 0, δf = 0. Now, suppose A satisfies the Lorenz condition

δA = 0, then there exist Π, a 2-form, and a, a 1-form, such that

A = δΠ + a (5.37)

da = 0, δa = 0. (5.38)
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This means that

F = dA+ f

= d(δΠ + a) + f

= dδΠ + f

where the last relation is due to equation (5.38). From this we can deduce, as before,

J = δF = δ(dA+ f)

= δd(δΠ + a) = δ(dδΠ + δdΠ)

= δ�Π.

Let us once again examine the source-free case. Then δ�Π = 0 implies there

exist W , a 3-form, and β, a 2-form, such that

�Π = δW + β

where β is a solution to the vacuum Maxwell equations. We can repeat the procedure

as in the trivial topology case and again insert a dG term, yielding

�Π = dG+ δW + β, (5.39)

where, again, dβ = 0, δβ = 0, and is thus a solution to the vacuum Maxwell equa-

tions.

The existence of an electromagnetic field with no corresponding Hertz potential

corresponds to the so-called TEM modes of classical electromagnetism. A specific

example of this will be treated at the end of the next chapter.
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CHAPTER VI

APPLICATIONS – QUANTUM VACUUM ENERGY

A more recent use of scalar Hertz potentials has been in the calculation of the Casimir

force through vacuum energy calculations. By treating the scalar Hertz potentials as

a pair of non-interacting scalar fields, we can more easily quantize the electromagnetic

field in a given compact geometry and produce vacuum expectation values for the

energy of the field. This is accomplished by calculating the normal modes of the

scalar potential functions, quantizing them with a special normalizing factor, and

finding the expectation value for the energy in a vacuum state.

A. Perfectly Conducting Rectangular Cavity

This section is a summary and sharpening of material in [9]. Consider a hollow box

with side lengths a, b, and c running in the x, y, and z directions, respectively, with

a corner on the origin. We take the vector Hertz potentials to be in the ẑ direction,

making the Hertz 2-form take the form

Π = φdt∧dz + ψ∗(dt∧dz). (6.1)

Perfectly conducting boundary conditions on the sides lead to Neumann boundary

conditions on the z-dimensional boundaries and Dirichlet conditions on the remaining

boundaries for the φ function, and the reverse for the ψ function (Dirichlet on the

z = 0 and z = c planes, and Neumann on the remaining boundaries). This yields
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classical solutions of the form

φ(t, x, y, z) =
∞∑

l,m,n=0

1

k2
l + k2

m

sin(klx) sin(kmy) cos(knz) (6.2)

× (E+
lmne

iωlmnt + E−lmne
−iωlmnt)

ψ(t, x, y, z) =
∞∑

l,m,n=0

Blmn

k2
l + k2

m

cos(klx) cos(kmy) sin(knz) (6.3)

× (B+
lmne

iωlmnt +B−lmne
−iωlmnt),

where kl = πl
a
, km = πm

b
, kn = πn

c
, and ω2

lmn = k2
l + k2

m + k2
n.

Moving into the quantum realm, we want the resulting electromagnetic field

operators to satisfy the commutation relations

[Ei(~x), Bj(~y)] = iεij
k ∂

∂xk
δ(~x− ~y), (6.4)

[Ei(~x), Ej(~y)] = 0, (6.5)

[Bi(~x), Bj(~y)] = 0, (6.6)

which take t in both arguments to be the same, so this requires a non-standard
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quantization of the above fields. The resulting fields are then

φ(t, ~x) =
∞∑

l,m,n=0

Nlmn√
2k2
⊥ωlmn

sin(klx) sin(kmy) cos(knz)

× (almne
−iωlmnt + a†lmne

iωlmnt) (6.7)

ψ(t, ~x) =
∞∑

l,m,n=0

Nlmn√
2k2
⊥ωlmn

cos(klx) cos(kmy) sin(knz)

× (blmne
−iωlmnt + b†lmne

iωlmnt), (6.8)

where k2
⊥ = k2

l + k2
m and Nlmn = 2

√
2/
√
abc, and a, a†, b, b† satisfy the commutation

relations

[almn, bl′m′n′ ] = 0 = [a†lmn, bl′m′n′ ] = [almn, b
†
l′m′n′ ] = [a†lmn, b

†
l′m′n′ ] (6.9)

[almn, a
†
l′m′n′ ] = δll′δmm′δnn′ = [blmn, b

†
l′m′n′ ]. (6.10)
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1. Commutation Relations

Now we must check that our choice of φ and ψ satisfy the commutation relations

given above. Beginning with (6.5),

[Ex(~x), Ey(~y)] =[∂z∂xφ(t, x, y, z)− ∂t∂yψ(t, x, y, z), ∂y′∂z′φ(t, x′, y′, z′) + ∂t∂x′ψ(t, x′, y′, z′)]

=[∂z∂xφ(t, x, y, z), ∂y′∂z′φ(t, x′, y′, z′)]− [∂t∂yψ(t, x, y, z), ∂t∂x′ψ(t, x′, y′, z′)]

=
∑
lmn

∑
l′m′n′

Clmn,l′m′n′ cos(klx) sin(kl′x
′) sin(kmy) cos(km′y

′) sin(knz) sin(kn′z
′)

× ([almn, a
†
l′m′n′ ] + [a†lmn, al′m′n′ ])

+ i
∑
lmn

∑
l′m′n′

Dlmn,l′m′n′ cos(klx) sin(kl′x
′) sin(kmy) cos(km′y

′) sin(knz) sin(kn′z
′)

× ([blmn,−b†l′m′n′ ] + [−b†lmn, bl′m′n′ ])

= 0

by the relation [almn, a
†
l′m′n′ ] = δll′δmm′δnn′ = [blmn, b

†
l′m′n′ ], where

Clmn,l′m′n′ =
NlmnNl′m′n′klkm′knkn′

2
√
k2
⊥k

2
⊥′ωlmnωl′m′n′

(6.11)

and

Dlmn,l′m′n′ =
NlmnNl′m′n′kl′kmωlmnωl′m′n′

2
√
k2
⊥k

2
⊥′ωlmnωl′m′n′

. (6.12)

Similar relations follow for any commutations that appear symmetric in time

derivatives, that is, with the same number of time derivatives in the first argument

of the commutator as the second. This occurs for every iteration of (6.5) and (6.6),
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so all that remains is to check (6.4). We begin with Ez and Bx to obtain

[Ez(~x), Bx(~y)] = [−∇⊥φ(t, x, y, z), ∂t∂y′φ(t, x′, y′, z′) + ∂z′∂x′ψ(t, x′, y′, z′)]

= − ∂y′ [∇⊥φ(t, x, y, z), ∂tφ(t, x′, y′, z′)] (6.13)

= − i∂y′
∑
l,m,n

∑
l′,m′,n′

NlmnNl′m′n′|k⊥|
√
ωlmn

2|k⊥′|
√
ωl′m′n′

× sin(klx) sin(kl′x
′) sin(kmy) sin(km′y

′) cos(knz) cos(kn′z
′)

× ([almn, a
†
l′m′n′ ] + [a†lmn,−al′m′n′ ])

= − i∂y′
[

(
∑
l

N2
l sin(klx) sin(kl′x

′))(
∑
m

N2
m sin(kmy) sin(km′y

′))

× (
∑
n

N2
n cos(knz) cos(kn′z

′))

]

= − i∂y′ [δ(x− x′)δ(y − y′)δ(z − z′)]

= i∂yδ(~x− ~y). (6.14)

Next, Ez with By yields

[Ez(~x), By(~y)] = [−∇⊥φ(t, x, y, z), ∂y′∂z′ψ(t, x′, y′, z′)− ∂t∂x′φ(t, x′, y′, z′)]

= ∂x′ [∇⊥φ(t, x, y, z), ∂tφ(t, x′, y′, z′)], (6.15)

but here we notice a similar form to (6.13), and so we can immediately write down

the answer

[Ez(~x), By(~y)] = ∂x′(iδ(~x− ~y))

= − i∂xδ(~x− ~y). (6.16)
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In a similar way, Ex with Bz comes to

[Ex, Bz] = [∂z∂xφ(t, x, y, z)− ∂t∂yψ(t, x, y, z),−∇⊥ψ(t, x′, y′, z′)]

= ∂y[∂tψ(t, x, y, z),∇⊥ψ(t, x′, y′, z′)]

= i∂y
∑
l,m,n

∑
l′,m′,n′

NlmnNl′m′n′ |k⊥′ |
√
ωlmn

2|k⊥|
√
ωl′m′n′

× cos(klx) cos(kl′x
′) cos(kmy) cos(km′y

′) sin(knz) sin(kn′z
′)

× ([−blmn, b†l′m′n′ ] + [b†lmn, bl′m′n′ ])

= − i∂yδ(x− x′)δ(y − y′)δ(z − z′)

= − i∂yδ(~x− ~y),

and Ey with Bz to

[Ey, Bz] = [∂t∂xψ(t, x, y, z) + ∂y∂zφ(t, x, y, z),−∇⊥ψ(t, x′, y′, z′)]

= − ∂x[∂tψ(t, x, y, z),∇⊥ψ(t, x′, y′, z′)]

= i∂xδ(~x− ~y),
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so we must finally check Ex with By and Ey with Bx. We find

[Ex, By] = [∂z∂xφ(t, x, y, z)− ∂t∂yψ(t, x, y, z), ∂y′∂z′ψ(t, x′, y′, z′)− ∂t∂x′φ(t, x′, y′, z′)]

= − ∂z[∂xφ, ∂t∂x′φ′]− ∂z′ [∂t∂yψ, ∂y′ψ′]

= − i∂z
∑
l,m,n

∑
l′,m′,n′

NlmnNl′m′n′
√
ωl′m′n′

2|k⊥||k⊥′|
√
ωlmn

× klkl′ cos(klx) cos(kl′x
′) sin(kmy) sin(km′y

′) cos(knz) cos(kn′z
′)

×
(

[almn, a
†
l′m′n′ ] + [a†lmn,−al′m′n′ ]

)
− i∂z′

∑
l,m,n

∑
l′,m′,n′

NlmnNl′m′n′
√
ωlmn

2|k⊥||k⊥′|
√
ωl′m′n′

× kmkm′ cos(klx) cos(kl′x
′) sin(kmy) sin(km′y

′) sin(knz) sin(kn′z
′)

×
(

[−blmn, b†l′m′n′ ] + [b†lmn, bl′m′n′ ]
)

= − i∂z
∑
lmn

N2
lmn cos(klx) cos(klx

′) sin(kmy) sin(kmy
′) cos(knz) cos(knz

′)

= − i∂zδ(~x− ~y), (6.17)

and Ey with Bx follows similarly.

To compare with the cylindrical case treated in the next section, we point out

that any commutations involving the components of either the electric or magnetic

field in the direction of the “scalar” potentials almosted immediately yielded the

desired delta function relations. Commutations with neither component in the Hertz

potential directions were much more subtle and involved.
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2. Vacuum Expectation Values

To calculate the vacuum expectation value of the energy density, we must calculate

the vacuum expectation values of the square of each component of the electromag-

netic field. As an example, let ~x = (x, y, z) and ~y = (x′, y′, z′) and consider the

component of the electric field in the z-direction. Then,

〈Ez(~x)Ez(~y)〉 = 〈
∑
lmn

∑
l′m′n′

NlmnNl′m′n′k
2
⊥k

2
⊥′

2|k⊥||k⊥′|
√
ωlmnωl′m′n′

× sin(klx) sin(kl′x
′) sin(kmy) sin(km′y

′) cos(knz) cos(kn′z
′)

× (almnal′m′n′e
−i(ωlmn+ωl′m′n′ )t + almna

†
l′m′n′e

i(ωl′m′n′−ωlmn)

+ a†lmnal′m′n′e
i(ωlmn−ωl′m′n′ ) + a†lmna

†
l′m′n′e

i(ωlmn+ωl′m′n′ ))〉

=
∑
lmn

N2
lmn

2ωlmn
k2
⊥ sin(klx) sin(klx

′) sin(kmy) sin(kmy
′) cos(knz) cos(knz

′).

Similarly for the magnetic field in the z-direction,

〈Bz(~x)Bz(~y)〉 =〈∇⊥ψ(t, x, y, z)∇⊥′ψ(t, x′, y′, z′)〉

= 〈
∑
lmn

∑
l′m′n′

NlmnNl′m′n′k
2
⊥k

2
⊥′

2|k⊥||k⊥′ |
√
ωlmnωl′m′n′

× cos(klx) cos(kl′x
′) cos(kmy) cos(km′y

′) sin(knz) sin(kn′z
′)

× (blmnbl′m′n′e
−i(ωlmn+ωl′m′n′ )t + blmnb

†
l′m′n′e

i(ωl′m′n′−ωlmn)

+ b†lmnbl′m′n′e
i(ωlmn−ωl′m′n′ ) + b†lmnb

†
l′m′n′e

i(ωlmn+ωl′m′n′ ))〉

=
∑
lmn

N2
lmn

2ωlmn
k2
⊥ cos(klx) cos(klx

′) cos(kmy) cos(kmy
′) sin(knz) sin(knz

′)

Because of the degeneracy of the eigenfunctions in each dimension, the other four

expectation values in the other two directions can be calculated just as easily by
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considering scalar Hertz potential constructions in those dimensions.

B. Perfectly Conducting Cylinder

Consider a hollow cylinder of length L with circular cross section of radius R, per-

fectly conducting boundary, and no electromagnetic sources. This system can be

solved completely with two scalar Hertz potentials, one satisfying a Dirichlet condi-

tion on the circular boundary and a Neumann condition on the axial boundary, and

the other satisfying opposite conditions (i.e., Neumann at the radial boundary and

Dirichlet on the caps). [5] [11] For reference, the classical solution given by normal

modes is

φ(t, ρ, ϕ, z) =
∞∑

j=0,l=1
n=−∞

1

λDjn
2 cos(klz)Jn(λDjnρ) (6.18)

× (E+
jlne

i(nϕ−ωjlnt) + E−jlne
−i(nϕ−ωjlnt))

ψ(t, ρ, ϕ, z) =
∞∑

j=0,l=1
n=−∞

1

λNjn
2 sin(klz)Jn(λNjnρ) (6.19)

× (B+
jlne

i(nϕ−ωjlnt) +B−jlne
−i(nϕ−ωjlnt))

where kl = π
L
l, λ satisfies the conditions Jn(λDjnR) = 0 for φ and J ′n(λNjnR) = 0 for ψ,

and we remark for completeness that λ2
jn = ω2

jln − k2
l .

As in the Cartesian case, to produce quantum operators for the electromagnetic

fields satisfying the known commutation relations we must quantize the scalar fields

in a slightly non-canonical way. Using the same eigenvalue definitions as above, the
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quantized fields are

φ(t, ρ, ϕ, z) =
∞∑

j=0,l=1
n=−∞

Njln

λDjn
√

2ωjln
cos(klz)Jn(λDjnρ)

× (ajlne
−i(nϕ−ωjlnt) + a†jlne

i(nϕ−ωjlnt)) (6.20)

ψ(t, ρ, ϕ, z) =
∞∑

j=0,l=1
n=−∞

Njln

λNjn
√

2ωjln
sin(klz)Jn(λNjnρ)

× (bjlne
−i(nϕ−ωjlnt) + b†jlne

i(nϕ−ωjlnt)) (6.21)

where a, b are lowering operators and a†, b† are raising operators for the φ, ψ scalar

fields, respectively.

1. Stress-Energy Tensor

The energy density may be calculated from the stress-energy tensor. This is, in

turn, calculated by finding vacuum expectation values of various products of the

components of the electromagnetic field. For the calculations below, we consider the

product of field elements for different spacetime events, namely (x0, ~x) = (t, ρ, ϕ, z)

and (y0, ~y) = (t′, ρ′, ϕ′, z′), but we take t = t′, and we let 〈·〉 here denote the vacuum

expectation value. For the electric field in the axial direction, we obtain

〈Ez(~x)Ez(~y)〉 = 〈(−∆⊥φ(~x))(−∆⊥φ(~y))〉 (6.22)

=
∞∑
j,l,n

N2
jln

2

λDjn
2

ωjln
cos(klz) cos(klz

′)Jn(λDjnρ)Jn(λDjnρ
′). (6.23)

At this point, the ideal next step would be the construction of scalar Hertz potentials

in the other dimensions, as was possible in the Cartesian case. It is, in fact, this desire
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that initiated the search for the general formulation presented herein. However, since

such a construction was not obtained, we note that the remaining vacuum expectation

values can either follow a lengthy computation using the above construction, or be

computed as in [5].

2. Commutation Relations

To make sure that the Hertz construction doesn’t miss any quantum states, we now

check the commutation relations for the components of the electric and magnetic

fields. If any states are missing, the calculated sums will not converge to the proper
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variations of the Dirac delta function.

[Eρ(x
µ), Bρ(y

µ)] =[∂z∂ρφ(xµ)− 1

ρ
∂t∂ϕψ(xµ),

1

ρ′
∂t′∂ϕ′φ(yµ) + ∂z′∂ρ′ψ(yµ)]

=
1

ρ′
[∂z∂ρφ(xµ), ∂t′∂ϕ′φ(yµ)]− 1

ρ
[∂t∂ϕψ(xµ), ∂z′∂ρ′ψ(yµ)]

=
1

ρ′

∞∑
jln

∞∑
j′l′n′

NjlnNj′l′n′n
′ωj′l′n′

2λDjnλ
D
j′n′

kl sin(klz) cos(kl′z
′)(∂ρJn(λDjnρ))Jn′(λ

D
j′n′ρ

′)

× [ajlne
i(nϕ−ωjlnt) + a†jlne

−i(nϕ−ωjlnt), aj′l′n′e
i(n′ϕ′−ωj′l′n′ t′) + a†j′l′n′e

−i(n′ϕ′−ωj′l′n′ t′)]

− 1

ρ

∞∑
jln

∞∑
j′l′n′

NjlnNj′l′n′nωjln
2λNjnλ

N
j′n′

kl′ sin(klz) cos(kl′z
′)Jn(λNjnρ)(∂ρ′Jn′(λ

N
j′n′ρ

′))

× [bjlne
i(nϕ−ωjlnt) + b†jlne

−i(nϕ−ωjlnt), bj′l′n′e
i(n′ϕ′−ωj′l′n′ t′) + b†j′l′n′e

−i(n′ϕ′−ωj′l′n′ t′)]

=
1

ρ′

∞∑
jln

∞∑
j′l′n′

NjlnNj′l′n′n
′ωj′l′n′

2λDjnλ
D
j′n′

kl sin(klz) cos(kl′z
′)(∂ρJn(λDjnρ))Jn′(λ

D
j′n′ρ

′)

× (ei([nϕ−n
′ϕ′]−[ωjlnt−ωj′l′n′ t′])[ajln, a

†
j′l′n′ ] + e−i([nϕ−n

′ϕ′]−[ωjlnt−ωj′l′n′ t′])[a†jln, aj′l′n′ ])

− 1

ρ

∞∑
jln

∞∑
j′l′n′

NjlnNj′l′n′nωjln
2λNjnλ

N
j′n′

kl′ sin(klz) cos(kl′z
′)Jn(λNjnρ)(∂ρ′Jn′(λ

N
j′n′ρ

′))

× (ei([nϕ−n
′ϕ′]−[ωjlnt−ωj′l′n′ t′])[bjln, b

†
j′l′n′ ] + e−i([nϕ−n

′ϕ′]−[ωjlnt−ωj′l′n′ t′])[b†jln, bj′l′n′ ])

=
1

ρ′

∞∑
jln

N2
jlnnωjln

2λDjn
2 kl sin(klz) cos(klz

′)(∂ρJn(λDjnρ))Jn(λDjnρ
′)

× (2i sin(n(ϕ− ϕ′)))

− 1

ρ

∞∑
jln

N2
jlnnωjln

2λNjn
2 kl sin(klz) cos(klz

′)Jn(λNjnρ)(∂ρ′Jn(λNjnρ
′))

× (2i sin(n(ϕ− ϕ′)))

= 0
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All same-field (e.g. [Eρ, Eϕ]) and same-dimension (e.g. [Eϕ, Bϕ]) commutations

follow with similar sine function cancellation. The final test is off-diagonal, cross-field

commutation.

[Eρ(x
µ), Bϕ(yµ)] = [∂z∂ρφ(xµ)− 1

ρ
∂t∂ϕψ(xµ),

1

ρ′
∂ϕ′∂z′ψ(yµ)− ∂t∂ρφ(yµ)]

= [∂z∂ρφ(xµ),−∂t∂ρ′φ(yµ)] + [− 1

ρρ′
∂t∂ϕψ(xµ), ∂ϕ′∂z′ψ(yµ)]

=

[
∂z

∞∑
j,l,n

Njln

λDjn
√

2ωjln
cos(klz)∂ρJn(λDjnρ)(ajle

i(nϕ−ωjlnt) + a†jle
−i(nϕ−ωjlnt)),

i
∞∑

j′,l′,n′

Nj′l′n′
√
ωj′l′n′

λDj′,n′
√

2
cos(kl′z)∂ρ′Jn′(λ

D
j′n′ρ

′)

×(−aj′l′ei(n
′ϕ′−ωj′l′n′ t) + a†j′l′e

−i(n′ϕ′−ωj′l′n′ t))
]

+
1

ρρ′

[
i
∞∑
j,l,n

Njln
√
ωjln

λNjn
√

2
sin(klz)Jn(λNjnρ)∂ϕ(−bjlei(nϕ−ωjlnt) + b†jle

−i(nϕ−ωjlnt)),

∂z′
∞∑

j′,l′,n′

Nj′l′n′

λNj′,n′
√

2ωj′l′n′
sin(k′lz

′)Jn′(λ
N
j′n′ρ

′)

×∂ϕ′(bj′l′ei(n
′ϕ′−ωj′l′t) + b†j′l′e

−i(n′ϕ′−ωj′l′n′ t))
]

= i∂z

∞∑
j,l,n

N2
jln

λDjn
2 cos(klz) cos(klz

′)∂ρJn(λDjnρ)∂ρ′Jn(λDjnρ
′)(ein(ϕ−ϕ′) + e−in(ϕ−ϕ′))

+
i

ρρ′
∂z′

∞∑
j,l,n

N2
jln

λNjn
2 sin(klz) sin(klz

′)Jn(λNjnρ)Jn(λNjnρ
′)∂ϕ∂ϕ′(e

in(ϕ−ϕ′) + e−in(ϕ−ϕ′))

= 2i∂z

∞∑
j,l,n

cos(klz) cos(klz
′)

× (
N2
jln

λDjn
2 ∂ρJn(λDjnρ)∂ρ′Jn(λDjnρ

′)ein(ϕ−ϕ′)

+
N2
jln

ρρ′λNjn
2Jn(λNjnρ)Jn(λNjnρ

′)∂ϕ∂ϕ′e
in(ϕ−ϕ′))
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We pause here to note the following. For notational simplicity, let

S = i∂z

∞∑
j,l,n

cos(klz) cos(klz
′)

×

(
N2
jln

λDjn
2 ∂ρJn(λDjnρ)∂ρ′Jn(λDjnρ

′)ein(ϕ−ϕ′)

+
N2
jln

ρρ′λNjn
2Jn(λNjnρ)Jn(λNjnρ

′)∂ϕ∂ϕ′e
in(ϕ−ϕ′)

)
.

We also point out that the normalization factor Njln depends only on the Bessel

functions, and is thus actually independent of l. Then

S =(i∂z

∞∑
l

cos(klz) cos(klz
′))

× (
∞∑
j,n

N2
jln

λDjn
2 ∂ρJn(λDjnρ)∂ρ′Jn(λDjnρ

′)ein(ϕ−ϕ′) +
N2
jln

ρρ′λNjn
2Jn(λNjnρ)Jn(λNjnρ

′)∂ϕ∂ϕ′e
in(ϕ−ϕ′))

=(i∂zδ(z − z′))

× ∂ρ∂ρ′
∞∑
j,n

N2
jln

λDjn
2Jn(λDjnρ)Jn(λDjnρ

′)ein(ϕ−ϕ′) +
1

ρρ′
∂ϕ∂ϕ′

∞∑
j,n

N2
jln

λNjn
2Jn(λNjnρ)Jn(λNjnρ

′)ein(ϕ−ϕ′)

The final step in this calculation involves recognizing the summations as Green’s

functions for the wave equation in the plane in polar coordinates with Dirichlet and

Neumann boundary conditions. In the case of Neumann boundary conditions, we

note that no standard Green’s function exists, as the Laplacian contains a vanishing

eigenvalue, so what we mean here by Green’s function is instead the inverse operator

for the Laplacian restricted to the space spanned by eigenfunctions of nonvanishing
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eigenvalue. These functions come out to be

G0(ρ, ϕ; ρ′, ϕ′) =
1

4π
log

(
ρ2

R2
+
ρ′2

R2
− 2

ρρ′

R2
cos(ϕ− ϕ′)

)
(6.24)

GD(ρ, ϕ; ρ′, ϕ′) = G0(ρ, ϕ; ρ′, ϕ′)− 1

4π
log

(
1 +

ρ2ρ′2

R4
− 2

ρρ′

R2
cos(ϕ− ϕ′)

)
(6.25)

GN(ρ, ϕ; ρ′, ϕ′) = G0(ρ, ϕ; ρ′, ϕ′) +
1

4π
log

(
1 +

ρ2ρ′2

R4
− 2

ρρ′

R2
cos(ϕ− ϕ′)

)
+
ρ2 + ρ′2

4πR2
− 3

8π
, (6.26)

as we will show from a more general construction in an annulus case (which turns the

cylinder into a coaxial cable of finite length) below. Returning to the S calculation

with these in hand,

S =(i∂zδ(z − z′))× (∂ρ∂ρ′GD(ρ, ϕ, ρ′, ϕ′) +
1

ρρ′
∂ϕ∂ϕ′GN(ρ, ϕ, ρ′, ϕ′))

=i∂zδ(~x− ~y) (6.27)

by a computation using the Mathematica computer algebra system.

These commutations turn out to be the most computationally involved. For rela-

tions between axial components of the electric or magnetic field with cross-sectional

components, the computation follows much more easily and in fact generalizes to

cylinders of any cross section. Such calculation yields the desired relation

[Ei(t, ~x), Bj(t
′, ~y)] = iεij

k∂xkδ(~x− ~y).

This means all EM modes are accounted for, and any further calculations involving

the scalar Hertz potentials, such as the vacuum expectation values of their second

derivatives, will produce quantities directly relevant to the electromagnetic field.
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3. Cylinder with Non-Trivial Topology – Perfectly Conducting Coaxial Cable

By adding a second cylinder of equal length and smaller radius, with perfectly con-

ducting boundary, inside the first, we find the cavity between them forms a com-

putationally simple non-trivial topology. The classical scalar field solutions change

from Bessel functions of the first kind to a linear combination of Bessel functions of

the first and second kind, but other than a change of normalization constants, no

other significant change occurs.

However, since it is a non-trivial topology, we expect possible solutions to the EM

field that cannot be represented with Hertz potentials, scalar or otherwise. Thus, in

the calculation of the commutation relations, we expect not to obtain (6.4). Relations

involving the axial components of the electric and magnetic fields remain unchanged,

and so it is the commutation relation involving the Green’s functions from above that

we expect to change. So for this, we must find the Green’s functions for Dirichlet

and Neumann boundary conditions on these surfaces.

For Dirichlet boundary conditions, we look to solve the differential equation

−∆G(ρ, ϕ; ρ′;ϕ′) =
δ(ρ− ρ′)

ρ
δ(ϕ− ϕ′). (6.28)

We can expand in terms of an eigenfunction basis in the angular coordinates using

the relation δ(ϕ− ϕ′) =
∑

n un(ϕ)u∗n(ϕ′) and obtain the equation

1

2π

∞∑
n=−∞

(−1

ρ
∂ρρ∂ρgn(ρ; ρ′) +

n2

ρ2
)einϕe−inϕ

′
=

1

2π

∞∑
n=−∞

1

ρ
δ(ρ− ρ′)einϕe−inϕ′ .

As the exponential functions are linearly independent, the n-th term in the right-
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hand summation must match the n-th term in the left-hand summation. This yields

−∂ρρ∂ρgn(ρ; ρ′) +
n2

ρ
= δ(ρ− ρ′). (6.29)

This is solved differently for n = 0 and n 6= 0, so first consider n 6= 0. For ρ > ρ′,

the general solution is of the form

gn(ρ; ρ′) = Anρ
n +Bnρ

−n,

and ρ < ρ′, of the form

gn(ρ; ρ′) = Cnρ
n +Dnρ

−n.

We require gn to be continuous when ρ = ρ′, so

An(ρ′)n +Bn(ρ′)−n = Cn(ρ′)n +Dn(ρ′)−n, (6.30)

and integrating (6.29) over an infinitesimal interval around ρ′ requires

An(ρ′)n −Bn(ρ′)−n − Cn(ρ′)n +Dn(ρ′)−n = − 1

n
. (6.31)

Boundary conditions yield two more equations, namely

Bn = −AnR2n
2 (6.32)

Dn = −CnR2n
1 (6.33)

where R2 is the radius of the outer cylinder and R1 is the radius of the inner cylinder.

Putting together these four equations in four unknown coefficients provides the
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solution

gn(ρ; ρ′) =
R2n

1 (ρ>
ρ<

)n − (ρ>ρ<)n − (R1R2)
2n(ρ>ρ<)−n +R2n

2 (ρ<
ρ>

)n

2n(R2n
2 −R2n

1 )
, (6.34)

=
1

2n

[(
ρ<
ρ>

)n
−
(
ρ>ρ<
R2

2

)2

−
(

R2
1

ρ>ρ<

)n]

+
1

2n(1−
(
R2n

1

R2n
2

)
)

[(
R2

1ρ>
R2

2ρ<

)n
−
(
R2

1ρ>ρ<
R4

2

)n
−
(

R4
1

R2
2ρ>ρ<

)n
+

(
R2

1ρ<
R2

2ρ>

)n]

=
1

2n

[(
ρ<
ρ>

)n
−
(
ρ>ρ<
R2

2

)2

−
(

R2
1

ρ>ρ<

)n]

+
1

2n

∞∑
s=0

[(
R2s+2

1 ρ>

R2s+2
2 ρ<

)n
−
(
R2s+2

1 ρ>ρ<

R2s+4
2

)n
−
(

R2s+4
1

R2s+2
2 ρ>ρ<

)n
+

(
R2s+2

1 ρ<

R2s+2
2 ρ>

)n]
where, for ρ > ρ′, ρ> = ρ and ρ< = ρ′, while for ρ < ρ′, ρ> = ρ′ and ρ< = ρ.

For n = 0, the equation we find is

−∂ρρ∂ρg0(ρ; ρ′) = δ(ρ− ρ′)

and we use the same basic prescription as above. When ρ > ρ′, the general solution

takes the form

g0(ρ; ρ′) = A0 +B0 log(ρ),

and for ρ < ρ′,

g0(ρ; ρ′) = C0 +D0 log(ρ).

And again, boundary conditions, continuity, and the differential condition yield the

four unknown coefficients, giving a final solution as

g0(ρ; ρ′) =
log(ρ>

R2
) log(ρ<

R1
)

log(R1

R2
)

. (6.35)
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Taking the summation of all of these solutions yields

GD(ρ, ϕ; ρ′, ϕ′) =
log(ρ>

R2
) log(ρ<

R1
)

2π log(R1

R2
)

+
1

2π

∞∑
n=−∞
n 6=0

ein(ϕ−ϕ′) 1

2n

[(
ρ<
ρ>

)n
−
(
ρ>ρ<
R2

2

)2

−
(

R2
1

ρ>ρ<

)n]

+
ein(ϕ−ϕ′)

2n

∞∑
s=0

[(
R2s+2

1 ρ>

R2s+2
2 ρ<

)n
−
(
R2s+2

1 ρ>ρ<

R2s+4
2

)n
−
(

R2s+4
1

R2s+2
2 ρ>ρ<

)n
+

(
R2s+2

1 ρ<

R2s+2
2 ρ>

)n]
.

By a simple repeat of the above solution technique, one can find that the first term

appearing in the summation over n is in fact the free Green’s function

G0(ρ, ϕ; ρ′, ϕ′) =
1

4π
log
[
ρ2 + (ρ′)2 − 2ρρ′ cos(ϕ− ϕ′)

]
.

The next two terms can then be summed in a similar way, and can be interpretted

as corrections due to, in the first case, a disk of radius R2 with Dirichlet boundary,

and in the second case, the plane less a disk of radius R1 with Dirichlet boundary.

These are then

ΓR2 =
1

4π
log

[
R2

2

ρ2
>

+
ρ2
<

R2
2

− 2
ρ<
ρ>

cos(ϕ− ϕ′)
]

(6.36)

ΓR1 =
1

4π
log

[
ρ2
>

R2
1

+
R2

1

ρ2
<

− 2
ρ>
ρ<

cos(ϕ− ϕ′)
]
, (6.37)

and with these terms computed, we can pull the summation over s outside of the
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summation over n to obtain

GD(ρ, ϕ; ρ′, ϕ′) =
log(ρ>

R2
) log(ρ<

R1
)

2π log(R1

R2
)

+G0 − ΓR2 − ΓR1

+
∞∑
s=0

1

2π

∞∑
n=−∞
n 6=0

ein(ϕ−ϕ′)

2n

[(
R2s+2

1 ρ>

R2s+2
2 ρ<

)n
−
(
R2s+2

1 ρ>ρ<

R2s+4
2

)n

−
(

R2s+4
1

R2s+2
2 ρ>ρ<

)n
+

(
R2s+2

1 ρ<

R2s+2
2 ρ>

)n]
.

The terms under the summation in s follow the same pattern as the free Green’s

function; they are each geometric series of either a ratio or product of ρ< and ρ>

and have the required prefactor of (2n)−1. So these can then separately be summed

to produce an infinite sum of logarithms,

GD(ρ, ϕ; ρ′, ϕ′) =
log(ρ>

R2
) log(ρ<

R1
)

2π log(R1

R2
)

+G0 − ΓR2 − ΓR1 (6.38)

+
∞∑
s=0

1

4π

[
log

(
1 +

(
R2s+2

1 ρ>

R2s+2
2 ρ<

)2

− 2

(
R2s+2

1 ρ>

R2s+2
2 ρ<

)
cos(ϕ− ϕ′)

)

− log

(
1 +

(
R2s+2

1 ρ>ρ<

R2s+4
2

)2

− 2

(
R2s+2

1 ρ>ρ<

R2s+4
2

)
cos(ϕ− ϕ′)

)

− log

(
1 +

(
R2s+4

1

R2s+2
2 ρ>ρ<

)2

− 2

(
R2s+4

1

R2s+2
2 ρ>ρ<

)
cos(ϕ− ϕ′)

)

+ log

(
1 +

(
R2s+2

1 ρ<

R2s+2
2 ρ>

)2

− 2

(
R2s+2

1 ρ<

R2s+2
2 ρ>

)
cos(ϕ− ϕ′)

)]
.

The Green’s function for the Neumann boundary conditions follows very simi-

larly, except here we wish to solve the equation

−∆G(ρ, ϕ; ρ′, ϕ′) =
1

ρ
δ(ρ− ρ′)δ(ϕ− ϕ′)− 1

π(R2
2 −R2

1)
, (6.39)
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where the last term on the right-hand side represents the removal of the subspace of

eigenfunctions with vanishing eigenvalue from the domain of G.

When taking the angular eigenfunction expansion, the constant term only ap-

pears for n = 0, and so for n 6= 0 the solution proceeds exactly as the Dirichlet case,

excepting that the boundary conditions change the sign on the right-hand side of

equations (6.32) and (6.33). This yields the solution for n 6= 0 as

gn(ρ; ρ′) =
R2n

1 (ρ>
ρ<

)n + (ρ>ρ<)n + (R1R2)
2n(ρ>ρ<)−n +R2n

2 (ρ<
ρ>

)n

2n(R2n
2 −R2n

1 )
, (6.40)

=
1

2n

[(
ρ<
ρ>

)n
+

(
ρ>ρ<
R2

2

)2

+

(
R2

1

ρ>ρ<

)n]

+
1

2n

∞∑
s=0

[(
R2s+2

1 ρ>

R2s+2
2 ρ<

)n
+

(
R2s+2

1 ρ>ρ<

R2s+4
2

)n
+

(
R2s+4

1

R2s+2
2 ρ>ρ<

)n
+

(
R2s+2

1 ρ<

R2s+2
2 ρ>

)n]
.

For the n = 0 case, we obtain the equation

−∂ρρ∂ρg0(ρ; ρ′) = δ(ρ− ρ′)− 2

R2
2 −R2

1

ρ,

which, for ρ 6= ρ′ is an inhomogeneous O.D.E. with particular solution ρ2

2(R2
2−R2

1)
, so

for ρ > ρ′ we find

g0(ρ; ρ′) = A0 +B0 log(ρ) +
ρ2

2(R2
2 −R2

1)
(6.41)

and for ρ < ρ′

g0(ρ; ρ′) = C0 +D0 log(ρ) +
ρ2

2(R2
2 −R2

1)
. (6.42)

Here, the continuity condition and integration condition are degenerate, and so we

must determine one of the coefficients, say A0, by some other means. Since we

require G to be orthogonal to the subspace of solutions with vanishing eigenvalue,

this means the integral of GN over the annulus must vanish. With this the final
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solution becomes

g0(ρ; ρ′) =
ρ2
> + ρ2

<

2(R2
2 −R2

1)
+

log(ρ<)(R4
1 −R2

1R
2
2) + log(ρ>)(R2

1R
2
2 −R4

2)

(R2
1 −R2

2)2
(6.43)

− 3(R2
2 +R2

1)

4(R2
2 −R2

1)
+
R4

2 log(R2)−R4
1 log(R1)

(R2
2 −R2

1)2
.

Thus, for Neumann boundary conditions in the annulus, the Green’s function is

GN(ρ, ϕ; ρ′, ϕ′) =
ρ2
> + ρ2

<

4π(R2
2 −R2

1)
+

log(ρ<)(R4
1 −R2

1R
2
2) + log(ρ>)(R2

1R
2
2 −R4

2)

2π(R2
1 −R2

2)2

− 3(R2
2 +R2

1)

8π(R2
2 −R2

1)
+
R4

2 log(R2)−R4
1 log(R1)

2π(R2
2 −R2

1)2
(6.44)

+G0 + ΓR2 + ΓR1

+
∞∑
s=0

1

4π

[
log

(
1 +

(
R2s+2

1 ρ>

R2s+2
2 ρ<

)2

− 2

(
R2s+2

1 ρ>

R2s+2
2 ρ<

)
cos(ϕ− ϕ′)

)

+ log

(
1 +

(
R2s+2

1 ρ>ρ<

R2s+4
2

)2

− 2

(
R2s+2

1 ρ>ρ<

R2s+4
2

)
cos(ϕ− ϕ′)

)

+ log

(
1 +

(
R2s+4

1

R2s+2
2 ρ>ρ<

)2

− 2

(
R2s+4

1

R2s+2
2 ρ>ρ<

)
cos(ϕ− ϕ′)

)

+ log

(
1 +

(
R2s+2

1 ρ<

R2s+2
2 ρ>

)2

− 2

(
R2s+2

1 ρ<

R2s+2
2 ρ>

)
cos(ϕ− ϕ′)

)]
.

A similar Mathematica calculation for the commutation relation as in the trivial

topology case yields a result that does not reduce to the delta function; however it

is not readily apparent that this represents the expected missing modes.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

In Cartesian, axial cylindrical, and radial spherical coordinates, the scalar Hertz

potentials represent a concrete realization of a concept long theorized in the physics

community: that of a complete formulation of electromagnetic fields directly in terms

of their two degrees of freedom. A differential geometric formulation offers the only

hope of generalizing these results to arbitrary coordinate systems and beyond to

curved spacetime, however the process is not straightforward.

The presentation given in this thesis has shown how the most obvious and direct

formulation fails. At this point, we expect unexplored gauge transformations to

provide the necessary freedoms that will produce Hertz potentials in other, more

complicated coordinate systems, if such a description is possible at all.
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