BIOMETAL CATALYZED RING-OPENING POLYMERIZATION OF CYCLIC ESTERS: LIGAND DESIGN, CATALYST STEREOSELECTIVITY, AND COPOLYMER PRODUCTION

A Dissertation
by
OSIT KARROONNIRUN

Submitted to the Office of Graduate Studies of Texas A\&M University
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

May 2011

Major Subject: Chemistry

BIOMETAL CATALYZED RING-OPENING POLYMERIZATION OF CYCLIC ESTERS: LIGAND DESIGN, CATALYST STEREOSELECTIVITY, AND COPOLYMER PRODUCTION

A Dissertation
by
OSIT KARROONNIRUN

Submitted to the Office of Graduate Studies of
Texas A\&M University
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee,	Donald J. Darensbourg
Committee Members,	Abraham Clearfield Timothy R. Hughbanks
	Jean-Philippe Pellois
Head of Department,	David H. Russell

May 2011

Major Subject: Chemistry

ABSTRACT
Biometal Catalyzed Ring-Opening Polymerization of Cyclic Esters:
Ligand Design, Catalyst Stereoselectivity, and Copolymer Production. (May 2011)
Osit Karroonnirun, B.S., Mahidol University
Chair of Advisory Committee: Dr. Donald J. Darensbourg

Biodegradable polyesters represent a class of extremely useful polymeric materials for many applications. Among these polyesters, the biodegradable and biocompatible, polylactide is very promising for many applications in both medical and industrial areas. Other biodegradable polymers such as polytrimethylene carbonate, polybutyrolactone, polyvalerolactone, and polycaprolactone can be blended or copolymerized with polylactide to fine tune the properties to fit the needs for their applications. The properties of these polymers and copolymers depend upon the tacticity of the polymers which can be directly controlled by the catalysts used for polymer production. Therefore, it has been of great interest to develop new selective catalytic systems for the ring-opening polymerization of lactide and other cyclic monomers. This dissertation focuses on developing new zinc and aluminum complexes and studying their selectivity and reactivity of these complexes for the ring-opening polymerization of lactide and other cyclic monomers, i.e. trimethylene carbonate, β-butyrolactone, δ valerolactone, and ε-caprolactone.

Herein, aspects of the ring-opening polymerization of lactide and other cyclic monomers utilizing novel zinc and aluminum complexes will be discussed in detail. In the process for the ring-opening polymerization of lactide, chiral zinc half-salen complexes derived from natural amino acids have shown to be very active catalysts for producing polymers with high molecular weight and narrow polydispersities at ambient temperature. The chiral zinc complexes were found to catalyze rac-lactide to heterotactic polylactides with P_{r} values ranging from $0.68-0.89$, depending on the catalyst and reaction temperature employed during the polymerization process. The reactivities of the various catalysts were greatly affected by substituents on the Schiff base ligands, with sterically bulky substituents being rate-enhancing. Furthermore, a series of both chiral and achiral aluminium half-salen complexes have been synthesized and characterized. These aluminum complexes all showed moderate selectivity to the ring-opening polymerization of rac-lactide to produce isotactic polylactide with P_{m} value up to 0.82 in toluene at $70{ }^{\circ} \mathrm{C}$. Moreover, some of the studied aluminum complexes displayed epimerization of rac-lactide to meso-lactide during the polymerization process. Kinetic studies for the ring-opening polymerization of lactide utilizing these zinc and aluminum complexes are included in this dissertation. Along with these studies, the copolymerization of lactide with ε-caprolactone and δ-valerolactone will also be presented.

DEDICATION

I dedicate this dissertation to my parents, Sumate and Wilawan, my brother, Kavit, and my sister, Kornnika. Thank you Mom and Dad for the love you have given me and supporting me in everything I do. Without your constant encouragement and the belief you have in me, I would never have succeeded in my life the way that I have. Thanks to my siblings for always being such good friends to me. I love you all so much.

ACKNOWLEDGEMENTS

I have always heard that being in a graduate school can either be the most valuable or difficult time in one's life. To me, it has been delightful. This would have not happened without my graduate advisor, Dr. Donald J. Darensbourg. I can only say that having Don as a graduate advisor is one of the best decisions that I have ever made in my life. Thank you, Don, for being patient and putting up with me during my graduate career. Don has given me the scientific freedom in the lab which has allowed me to grow as a scientist, and I am so grateful for that. I would like to also thank my undergraduate research advisor, Dr. Tienthong Thongpanchang, for being so enthusiastic about chemistry and encouraging me to continue on to graduate school. Dr. Abraham Clearfield, Dr. Jean-Philippe Pellois, Dr. Marcetta Y. Darensbourg, and Dr. Timothy R. Hughbanks are to be thanked for being involved in my education, for their guidance and assistance when needed, and for serving as my committee members. I would like to also express my appreciation to Dr. Nattamai Bhuvanesh and Dr. Joseph Reibenspies for their time and guidance for X-ray crystallography during my tenure here at A\&M.

I would like to thank all the former and present members of the DJD group not only for their advice but also for the beautiful friendships they have given me. I would especially like to thank to my very good friend Dr. Adriana I. Moncada for being so supportive and encouraging during the time I spent here in DJD group. I thank Dr. Wonsook Choi for advising me when I first arrived here, Dr. Eric B. Frantz for his time teaching me on X-ray crystallography, and Dr. Shawn B. Fitch and Dr. Jeremy R.

Andreatta for their assistance when I needed it. I would like to also thank Ross Poland, Sheng-Hsuan Wei, Stephanie J. Wilson, Andrew Yeung, Samuel John Rajkumar, and Wan-Chun Chung, as well as the MYD research group for their friendships and their help in many different ways while I have been here at A\&M. Stephanie is probably helping me correcting my thesis right now, and just for your information she is so good at everything she does, so please ask her for help. They have been some really awesome people to work with, and I am very thankful for that opportunity. Susan Winters and Ethel Mejia are to be thanked for their help with paperwork and miscellaneous questions. I have truly enjoyed my time here, and this is due to the wonderful people I have met and worked with while at A\&M. Thank you, guys.

Finally, thanks to my mother and father for their encouragement and to my brother and sister for their love and support.

TABLE OF CONTENTS

Page

ABSTRACT iii
DEDICATION v
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS viii
LIST OF FIGURES x
LIST OF TABLES xvi
CHAPTER
I INTRODUCTION 1
Petroleum-Based Polymers and Bio-Based Polymers:
An Overview 1
Polylactides as an Alternative Bio-Based Polymer 2
Tacticity and Thermal Properties of Polylactide 5
Strategies to Control Tacticity of Polylactide 7
Catalyst Development: A Brief Introduction to Sn, Al, and Zn Complexes for the ROP of Lactide 9
Copolymers 13
II RING-OPENING POLYMERIZATION OF LACTIDE CATALYZED BY NATURAL AMINO-ACID BASED ZINC CATALYSTS 16
Introduction 16
Experimental Section 19
Results and Discussion 29
Summary Remarks 49
CHAPTER Page
III RING-OPENING POLYMERIZATION OF L-LACTIDE AND ε - CAPROLACTONE UTILIZING BIOCOMPATIBLE ZINC CATALYSTS: RANDOM COPOLYMERIZATION OF L-LACTIDE AND ε-CAPROLACTONE 50
Introduction 50
Experimental Section 51
Results and Discussion 54
Summary Remarks 68
IV STEREOSELECTIVE RING-OPENING POLYMERIZATION OF $R A C$-LACTIDES CATALYZED BY CHIRAL AND ACHIRAL ALUMINUM HALF-SALEN COMPLEXES 69
Introduction 69
Experimental Section 71
Results and Discussion 83
Summary Remarks 93
V RING-OPENING POLYMERIZATION OF CYCLIC ESTERS AND TRIMETHYLENE CARBONATE CATALYZED BY ALUMINUM HALF-SALEN COMPLEXES 95
Introduction 95
Experimental Section 96
Results and Discussion 99
Summary Remarks 129
VI SUMMARY AND CONCLUSIONS 131
REFERENCES 138
APPENDIX A 148
APPENDIX B 149
VITA 234

LIST OF FIGURES

FIGURE

I-1 Polylactide microstructure from the stereocontrolled ROP of lactide 6
I-2 Coordination-insertation polymerization of lactide by metal-based catalysts 8
I-3 Stereoselective aluminum complexes for the ROP of rac-lactide 11
I-4 General structure of zinc complexes prepared from the β-diketiminate ligand by Coates and cowerkers 13
I-5 Solvated magnesium, calcium, and zinc complexes of the β-diketiminate ligand by Chisholm and coworkers 13
I-6 Various monomers for the copolymerization with lactide 15
II-1 X-ray crystal structures of (a) II6a, (b) II6b, (c) II6c, and (d) II6d. Thermal ellipsoids represent the 50% probability surfaces. Hydrogen atoms are omitted for the sake of clarity 33
II-2 X-ray crystal structure of complex II6e. Thermal ellipsoids represent the 50% probability surfaces. Hydrogen atoms are omitted for the sake of clarity. Selected bond lengths (\AA) and angles (deg): Zn2-N3 : 2.050 (6), Zn2-N4 : 2.301 (5), Zn2-O2 : 2.080 (4), Zn2-O3 : 2.016 (5), Zn2-O4 : 1.977 (4), O4-Zn2-O3 : 106.69 (17), O4-Zn2-N3 : 89.61 (18), O3-Zn2-N3 : 126.78 (19), O4-Zn2-O2 : 95.69 (16), O3-Zn2-O2 : 80.79 (16), N3-Zn2-O2 : 148.99 (18), O4-Zn2-N4 : 161.08 (19), O3-Zn2-N4 : 92.24 (18), N3-Zn2-N4 : 78.79 (19), O2-Zn2-N4 : 87.10 (17). 34
II-3 $\ln \left([\mathrm{La}]_{0} /[\mathrm{La}]_{\mathrm{t}}\right)$ vs time plots for the ROP of D-lactide(O) or L-lactide $(\mathbf{\Lambda})$ catalyzed by various zinc complexes at ambient temperature. (a) complex II6a, (b) complex II6b, (c) complex II6c, and (d) complex II6d. 36
II-4 $\ln \left([\mathrm{LA}]_{0} /[\mathrm{LA}]_{\mathrm{t}}\right) v s$ time plot for the ROP of L-lactide by the dimeric complex II6e at ambient temperature 37

FIGURE
II-5 Independence of the rate constant for the ROP of L-lactide on the THF concentration in $\mathrm{C}_{6} \mathrm{D}_{6}$ at ambient temperature.
(a) Complex II6a as catalyst, (b) complex II6d as catalyst

II-6 $\quad{ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ during the ROP of L-lactide in the presence
of complex II6d at ambient temperature. Mething proton of
meso-lactide observed at 4.15 ppm 38

II-7 $\quad{ }^{1} \mathrm{H}$ NMR spectra of polylactide in CDCl_{3} prepared from L-lactide.
(a) In the presence of complex II6d, with $\mathbf{1 \rightarrow 2}$ illustrating expanded methine region before and after homonuclear decoupling.
(b) In the presence of complex II6a, with $\mathbf{3} \rightarrow \mathbf{4}$ illustrating expanded methine region before and after homonuclear decoupling

II-8 Linear relationship observed between M_{n} and monomer/initiator ratio of polylactide produced from rac-lactide catalyzed by complex II6a at ambient temperature in CHCl_{3}42

II-9 Homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MH}_{3}\right)$ spectra of
the methine region of polylactide produced from rac-lactide with
catalyst (a) II6a, (b) II6b, (c) II6c, and (d) II6d. A. Polymerization
temperature ambient. B. Polymerization temperature $-30^{\circ} \mathrm{C}$ 43

II-10 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, rt $)$ of II6d before addition of
2-methylcyclohexanone (bottom) and 15 min after addition of 6 equiv of
2-methylcyclohexanone (top) 45
II-11 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, rt) of II6d before addition of THF (bottom) and 15 min after addition of 10 equiv of THF (top) 46

III-1 Plot of $\ln \left([\mathrm{M}]_{0} /[\mathrm{M}]_{\mathrm{t}}\right.$ vs time for ROP of L-lactide (red solid circles) or ε-caprolactone (blue solid triangles) catalyzed by the specified zinc complex at ambient temperature. Each reaction was performed in $\mathrm{C}_{6} \mathrm{D}_{6}$ at ambient temperature. Monomer and catalyst concentrations were held constant at 0.34 and 0.0069 M , respectively.
(A) Complex III1a: the rate constants were determined by the slope of the plots and were found to be $0.110 \pm 0.005 \mathrm{M}^{-1} \mathrm{sec}^{-1}$
with $R^{2}=0.999$ for ROP of L-lactide and $(2.17 \pm 0.10) \times 10^{-3} \mathrm{M}^{-1} \mathrm{sec}^{-1}$
with $R^{2}=0.994$ for ROP of ε-caprolactone. (B) Complex III1b: the rate constants were determined by the slope of the plots and were

FIGURE

found to be $(8.90 \pm 0.12) \times 10^{-3} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ with $R^{2}=0.998$ for ROP of L-lactide and $(2.90 \pm 0.10) \times 10^{-3} \mathrm{M}^{-1} \sec ^{-1}$ with $R^{2}=0.998$ for ROP of ε-caprolactone56

III-2 (a) X-ray crystal structure of complex III1a. (b) Stick drawings of
complexes III1a (red) and III1b (blue) obtained for X-ray determined
structures 58

III-3 (a) Linear relationship observed between M_{n} and monomer/initiator
ratio of polylactide from rac-lactide catalyzed by complex III1a at
ambient temperature in CHCl_{3}. (b) Linear relationship observed
between M_{n} and monomer/initiator ratio of polycaprolactone
from ε-caprolactone in bulk at $110^{\circ} \mathrm{C}$.

III-4 Linear relationship observed between M_{n} and monomer/initiator ratio
of copolymer from L-lactide and ε-caprolactone catalyzed by
complex III1a in the melt at $110^{\circ} \mathrm{C}$ 63
III-5 ${ }^{1} \mathrm{H}$ NMR spectra of the copolymer in CDCl_{3} at ambient temperature
showing the ε - and α-methylene ranges in the copolymers of entry 1
(a), entry 2 (b), entry 3(c), entry 4 (d) from Table III-4 64
III-6 ${ }^{13} \mathrm{C}$ NMR spectra of the copolymer in CDCl_{3} at ambient temperature of the mixture of polylactide and polycaprolactone (a), entry 2 (b), entry 3(c), entry 4 (d) from Table III-4 65
III-7 DSC curves (second heating run) of polymers from table III-5, entries 1-10 from top to bottom. 66
III-8 Plots of the dependence of $T_{\mathrm{g}}(\mathbf{a}), T_{\mathrm{c}}(\mathbf{b})$, and $T_{\mathrm{m}}(\mathbf{c})$ of copolymers on the molar \% lactide in copolymers 67

IV-1 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, \mathrm{rt}\right)$ of the reaction mixtures during the ROP of L-lactide in the presence of complex IV2a (A), IV2e (B), IV2g (C) (entries 3, 10, 12; Table IV-1, respectively). The polymerization reactions were performed in toluene at $70{ }^{\circ} \mathrm{C}$ for 15 h . Methyl proton of meso-lactide, L-lactide, and polylactide were observed at 1.70 (a), 1.66 (b), and 1.57 (c) respectively

FIGURE

IV-2 DSC curves (second heating run) of polylactide from rac-lactide
catalyzed by complex IV2i 88

IV-3 X-ray crystal structures of (a) IV2f (cis-), (b) IV2f (trans-).
Thermal ellipsoids represent the 50% probability surfaces. Hydrogen
atoms are omitted for the sake of clarity 89

IV-4 Variable-temperature ${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of
complex IV2f in deuterated toluene taken sequentially at different
temperatures. (A) room temperature, (B) $40^{\circ} \mathrm{C}$, (C) $70^{\circ} \mathrm{C}$, (D) $100^{\circ} \mathrm{C}$,
(E) sample cooled down from $100^{\circ} \mathrm{C}$ to room temperature,
spectrum taken two days later

IV-5 Variable-temperature ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) of
complex IV2g in deuterated toluene taken sequentially at different
temperatures. (A) room temperature, (B) $40^{\circ} \mathrm{C}$, (C) $70^{\circ} \mathrm{C}$, (D) $100^{\circ} \mathrm{C}$,
(E) sample cooled down from $100^{\circ} \mathrm{C}$ to room temperature,
spectrum taken two days later 92

V-1 X-ray crystal structures of (a) complex V2a, (b) complex V2d, and
(c) complex V3b. Thermal ellipsoids represent the 50% probability
levels with hydrogen atoms omitted for the sake of clarity 102

V-2 X-ray crystal structures of (a) V2g (trans-), (b) V2f (cis), and (c) V2f
(trans-). Thermal ellipsoids represent the 50% probability surfaces.
Hydrogen atoms are omitted for the sake of clarity 104

V-3 X-ray crystal structure of complex V3e. Thermal ellipsoids represent
the 50% probability surfaces. Hydrogen atoms and $2\left[B\left(\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right)_{4}\right]^{-}$
are omitted for the sake of clarity. Selected bond lengths (\AA)
and angles (deg): Al1-N1: 1.944 (4), Al1-O1: 1.779 (4), Al1-O2:
1.873 (4), Al1-O4: 1.862 (3), Al2-N2: 1.959 (4), Al2-O3: 1.765 (4),
Al2-O4: 1.876 (4), Al2-O5: 1.817 (4), N1-Al1-O1: 92.06 (18),
N1-Al1-O2: 82.50 (17), O1-Al1-O4: 96.97 (16), O2-Al1-O4:
76.15 (15), N1-Al1-O4: 150.00 (19), O1-Al1-O2: 152.03 (17),
N2-A12-O3: 91.67 (19), N2-A12-O4: 81.80 (17), O2-Al2-O4:
76.79 (15), O2-Al2-O3: 97.18 (17), N2-Al2-O2: 150.29 (19),
O3-Al2-O4: 151.12 (18), O3-Al2-O5: 105.53 (18)

V-4 X-ray crystal structure of complex V4e. Thermal ellipsoids represent the 50% probability surfaces. Hydrogen atoms and $2\left[B\left(\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right)_{4}\right]^{-}$ are omitted for the sake of clarity. Selected bond lengths (\AA)

FIGURE

and angles (deg): Al1-N1: 1.948 (8), Al1-O1: 1.756 (7), Al1-O2:
1.886 (6), Al1-O4: 1.839 (6), Al1-O9: 1.805 (6), O11-H9D:
1.876 (8), N1-Al1-O1: 92.4 (3), N1-Al1-O2: 81.7 (3), O2-Al1-O4:
76.5 (3), O1-Al1-O4: 96.7 (3), N1-Al1-O4: 149.7 (3), O1-Al1-O2:
151.4 (3), O1-Al1-O9: 104.6 (3), Al1-O9-Al3: 139.2 (3).

V-5 (a) Linear relationship observed between M_{n} and monomer/initiator ratio of polylactide from rac-lactide catalyzed by complex $\mathbf{V} 2 \mathrm{~g}$ at $70^{\circ} \mathrm{C}$ in toluene. (b) Linear relationship observed between M_{n} and monomer/initiator ratio of poly- β-butyrolactone from rac- β-butyrolactone catalyzed by complex V2g at $70^{\circ} \mathrm{C}$ in toluene.

V-6 $\ln \left([r a c-L A]_{0} /[r a c-L A]_{t}\right)$ vs time plot depicting a reaction order of unity with respect to monomer concentration $\left(R^{2}=0.999\right)$

V-7 (a) Plot of $k_{\text {obsd }} v s$ [Al] with slope $=0.011$ and $R^{2}=0.984$.
(b) Plot of $\ln k_{\text {obsd }} v s \ln [\mathrm{Al}]$ with slope $=0.86$ and $R^{2}=0.984$

V-8 Eyring plot of ROP of rac-lactide in the presence of catalyst $\mathbf{V} 2 \mathrm{~g}$ in toluene-d ${ }_{8}$. Slope $=-7.180$ with $R^{2}=0.995$117

V-9 $\ln \left([\mathrm{M}]_{0} /[\mathrm{M}]_{\mathrm{t}}\right)$ vs time plot depicting a reaction order of unity with respect to a) $[\mathrm{TMC}]\left(R^{2}=0.987\right)$, b) $[r a c-\beta-\mathrm{BL}]\left(R^{2}=0.996\right)$, c) $[\delta-\mathrm{VL}]\left(R^{2}=0.997\right)$, and d) $[\varepsilon$-CL $]\left(R^{2}=0.995\right)$. 118

V-10 Plot of $\ln k_{\text {obsd }} v s \ln [\mathrm{Al}]$ from the ROP of a) TMC (slope $=0.73, R^{2}=0.997$), b) rac- β-BL (slope $=0.85, R^{2}=0.994$), c) δ - VL $\left(\right.$ slope $\left.=0.48, R^{2}=0.954\right)$, and d) ε-CL $($ slope $=0.54$, $R^{2}=0.994$)

V-11 Eyring plot of ROP of a) TMC (Slope $=-5.193$ with $R^{2}=0.994$), b) $r a c-\beta$ - $\mathrm{BL}\left(\right.$ Slope $=-11.285$ with $\left.R^{2}=0.990\right)$, c) δ VL $($ Slope $=-6.500$ with $\left.R^{2}=0.992\right)$, and d) ε-CL $\left(\right.$ Slope $=-6.645$ with $\left.R^{2}=0.991\right)$ in the presence of catalyst $\mathbf{V} 2 \mathrm{~g}$ in toluene- d_{8}.

V-12 Plot of $(f-1) / F$ vs f / F^{2} with slope $=2.78$ and and $R^{2}=0.98$, the interception $=0.14$.

V-13 $\ln \left([\mathrm{M}]_{0} /[\mathrm{M}]_{t}\right)$ vs time plot depicting a reaction order of unity with respect to rac -lactide (red solid circles) and ε-VL (green solid squares) concentration $\left(R^{2}=0.993\right.$ for polylactide and $R^{2}=0.991$

FIGURE

for poly- δ-VL)... 125
V-14 (a) Plot of $k_{\text {obsd }} v s$ [Al] with slope $=0.016$ for $r a c$-lactide (red solid circles,$R^{2}=0.996$) and slope $=0.038$ for δ VL (green solid squares, $R^{2}=0.995$). (b) Plot of $\ln k_{\text {obsd }} \mathrm{Vs} \ln [\mathrm{Al}]$ with slope $=0.92$ for rac-lactide (red solid circles,$R^{2}=0.997$) and slope $=1.20$ for $\delta \mathrm{VL}\left(\right.$ green solid squares, $\left.R^{2}=0.999\right)$.

LIST OF TABLES

TABLE

I-1 Mechanical Properties of Poly(L-Lactide), Polystyrene, and Polyethylene Terepthalate (PET). Reproduced from Reference 7 4
II-1 Selected Bond Lengths (\AA) and Angles (deg) for Zn Complexes II6a-d 34
II-2 Rate Constants for the ROP of D- or L-Lactide in the Presence of Zinc Complexes. ${ }^{a}$ 37
II-3 Polylactides Produced from the ROP of Rac-lactide in Chloroform at Ambient Temperature 41
II-4 $\quad P_{\mathrm{r}}$ Values of Poly(Rac-Lactide) at Different Temperature. ${ }^{a, b}$. 44
II-5 Physical and Thermal Properties of Polylactides 47
II-6 Crystallographic Data for Complexes II6a-b 48
II-7 Crystallographic Data for Complexes II6c-e 48
III-1 Rate Constants for the ROP of L-Lactide or ε-Caprolactone in The Presence of Zinc Complexes. ${ }^{a}$ 55
III-2 Polylactides Produced from the ROP of Rac-Lactide in Chloroform at Ambient Temperature 59
III-3 Polycaprolactone Produced from the ROP of ε-caprolactone in the melt at $110^{\circ} \mathrm{C}$ 61
III-4 Copolymerization of L-Lactide and ε-Caprolactone with Complex III1a. ${ }^{a}$ 61
III-5 Molecular Weight of Copolymer Depending on M/I. ${ }^{a}$. 62
III-6 Thermal Properties of Copolymers of Polylactide and Polycaprolactone 65

TABLE

IV-1 Reactivity and Selectivity of Aluminum Complexes IV2a-j for the ROP of Rac-Lactide. ${ }^{a}$ 85
IV-2 The ROP of rac- and L-Lactide Using Aluminum Complexes 2IVe-g, 2IVi-j. ${ }^{a}$ 87
IV-3 Crystallographic Data for Complexes IV2f (cis-) and IV2f (trans-). 93
V-1 Selected Bond Lengths (\AA) and Angles (deg) for Al Complexes V2a, V2b, V2d, V2f (cis-), V2f (trans-), and V2g (trans-). 103
V-2 Reactivity and Selectivity of Aluminum Complexes V2a-k for the ROP of Rac-Lactide. ${ }^{a}$ 105
V-3 Reactivity of Aluminum Complex V2g for the ROP of Cyclic Monomers. ${ }^{a}$ 111
V-4 Polylactide Produced from the ROP of Rac-Lactide in Toluene at $70{ }^{\circ} \mathrm{C}$. 112
V-5 Poly- β-Butyrolactone Producted from the ROP of Rac-Lactide in Toluene at $70{ }^{\circ} \mathrm{C}$. 112
V-6 Rate Constants Dependence on the Concentration of the Catalyst ($\mathbf{V} 2 \mathbf{g}$) and Temperature for the Ring-Opening Polymerization of Rac-Lactide. ${ }^{a}$ 116
V-7 Rate Constants Dependence on the Concentration of the Catalyst (V2g) and Temperature in the ROP of Cyclic Monomers. ${ }^{a}$ 119
V-8 Activation Parameter in Homopolymerization 121
V-9 The Data Set of Mole Fraction of the Fineman-Ross Plot. ${ }^{a}$. 123
V-10 Rate Constants Dependence on the Concentration of the Catalyst ($\mathbf{V} \mathbf{2 g}$) and Temperature in Copolymerization of Rac-Lactide and δ-Velerolactone. ${ }^{a}$ 126
V-11 Comparison of Rates and Activation Parameters in Homopolymerization and of Copolymerization of Rac-Lactide and δ-VL Catalyzed by Complex V2g. 127
V-12 Crystallographic Data for Complexes V2a, V3b, and V2d. 127

TABLE Page
V-13 Crystallographic Data for Complexes V2f (cis-), V2f (trans-),
and V2g (trans-)... 128
V-14 Crystallographic Data for Complexes V3e and V4e.................................. 128

CHAPTER I

INTRODUCTION

Petroleum-Based Polymers and Bio-Based Polymers: An Overview

Petroleum-based synthetic polymers, such as polyethylene, polypropylene, and polyamide are very useful materials in industry due to their numerous applications in our daily life. Despite their many benefits, these polymers seem inappropriate for applications in which plastics are used for short time periods and then disposed. Accumulations of the resulting waste from petroleum-based plastics have become an environmental concern. Since these synthetic polymers have been around in nature for only a short period of time, and microorganisms have not yet developed new enzyme structures to consume them. ${ }^{1}$ As a result, they often end their life cycles either buried in landfill sites or being burned, generating harmful gaseous emissions to the atmosphere. In addition, since they are derived from petrochemical resources, there are concerns over the long-term availability of these petrochemical feedstocks. ${ }^{2}$ Bio-based plastics have been receiving much recent attention from scientific community. They are not only biodegradable in the ecosystem by the enzyme action of microorganisms such as bacteria, fungi, and algae, but the polymer chains may also be shorten by nonenzymatic processes such as chemical hydrolysis and photolysis. Biodegradation of these

This dissertation follows the style of Inorganic Chemistry.
bio-based plastics transforms them to natural substances, such as carbon dioxide, methane, water, biomass, and humus that can be reused for photosynthesis by plants. The raw materials for bio-based plastics are generally available from the fermentation of sugar (beet or cane) or starch (corn, wheat, potatoes, or manioc). Therefore, bio-plastics are considered to be renewable and will eliminate concerns of long-term uses of these renewable materials. Currently, bio-based plastics can be found in various every day products (i.e. trash bags, wrappings, loose-fill, food container, film wrapping, laminated pater), hygiene products (i.e. diaper, bed sheets, cotton swabs), consumer goods, (i.e. fast-food tableware, containers, egg cartons, razor handles, toys), and agricultural tools (i.e. mulch films, planters). ${ }^{2 \mathrm{~b}}$ The worldwide consumption of biodegradable polymers has increased from 14 million kg in 1996 to 326 million kg in 2007 and is expected to grow to 2,113 million kg in $2020 .{ }^{2 \mathrm{~b}, 3}$ Although bio-plastics have found their ways in many applications in our society, the price of producing these plastics are still expensive compared with commodity petroleum-based plastics. Furthermore, some of the physical and mechanical properties of bio-based plastics have not yet met the necessary requirements for many different applications. As a result, there are numerous researchers have been focusing on finding effective and cheaper ways to make and process these biodegradable polymers as well as improve the physical and mechanical properties of the polymers to fit the needs of the global market.

Polylactides as an Alternative Bio-Based Polymer

Polylactide or polylactic acid (PLA) is an aliphatic polyester produced via direct condensation from lactic acid, direct coupling by isocyanate ${ }^{4}$, or by ring-opening
polymerization (ROP) of lactide (the cyclic dimer of lactic acid, Scheme I-1). Polylactide is highly biocompatible, being resorbed via the Krebs cycle in human body. ${ }^{5}$ The life cycle of polylactide is shown in Scheme I-2. The original application of polylactide was found in biomedical and pharmaceutical industries, including but not limited to biodegradable sutures, slow release drug delivery, and tissue engineering. ${ }^{6}$ An example of first resorbable sutures was a copolyester, composed of 8% L-lactide and 92% glycolide, developed in 1962 by American Cyanamide Co. under the trade name of Dexon. ${ }^{5}$ Although, polylactide was originally used in the biomedical field, it has many attractive properties comparable to those of synthetic thermoplastics such as polystyrene and poly(ethylene terephthalate) (Table I-1) ${ }^{7}$, i.e. mechanical strength, elastic recovery, and heat sealability. Polylactide also has other properties similar to bio-based polymers, such as biodegradability, barrier characteristics, and dyeability. ${ }^{8}$ Nature Works and PURAC have agreed on the potential of polylactide in partially replacement of low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), polyamide (PA), polyethylene terephthalate (PET), and polymethylmethacrylate (PMMA). Although polylactide has been widely used in textile and packaging industry, its market is expected to grow and extend to transportation as well as electronic and electrical equipment. ${ }^{3}$

Scheme I-1. Formation of Lactide from Lactic Acids.

Scheme I-2. Life Cycle of Polylactide. ${ }^{8}$ Adapted from Reference 8.

Table I-1. Mechanical Properties of Poly(L-Lactide), Polystyrene, and Polyethylene Terepthalate (PET). Reproduced from Reference 7.

Polymer	Density $\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	Tensile strength (MPa)	Elastic modulas (GPa)	Elongation at break $(\%)$	Notched Izod $\left(\mathrm{J} . \mathrm{m}^{-1}\right)$	Heat deflection $\left({ }^{\circ} \mathrm{C}\right)$
PLLA a	1.26	59	3.8	$4-7$	26	55
PS	1.05	45	3.2	3	21	75
PET	1.40	57	$2.8-4.1$	300	59	67

[^0]
Tacticity and Thermal Properties of Polylactide

As previously mentioned, there are three possible methods to synthesize polylactide. This work will focus on the ring-opening polymerization (ROP) of lactide (the cyclic dimer of lactic acid). The ROP of lactide offers a great degree of control over the polymerization process. In comparison with direct condensation, the ROP of cyclic monomers uses milder reaction conditions and avoids the formation of small molecule byproducts. In addition, the relief of lactide's ring strain is the thermodynamic driving force for the ROP processes. ${ }^{9}$ The resulting polylactide obtained from this method typically has lower polydispersities, higher molecular weight, and high levels of endgroup reliability in contrast to direct condensation from lactic acids.

Since lactic acid is a chiral molecule, there are three possible isomers of lactide formed during the dimerization, i.e. L-, D- and meso-lactide as shown in Scheme I-1. A rac-lactide is defined as a mixture of $50 \% \mathrm{~L}-$ and 50% D-lactide. The stereocontrolled ROP of rac- and meso-lactide will result in polylactide with different microstructures (Figure I-1). Stereocontrolled ROP of meso-lactide can possibly yield either syndiotactic polylactide (polylactide with alternating of S and R stereocenters in the polymer chain i.e. - SRSRSR-) or heterotactic polylactide (having the stereocenters doubly alternate i.e. -SSRRSSRR-) throughout the polymer chain. Heterotactic polylactide can possibly be obtained from stereocontrolled ROP of rac-lactide when each L- and D-lactide are alternatively ring-opened resulting in a doubly alternating sequence in polymer chain. Isotactic polylactide, obtained from either L-, D-, or rac-lactide, has a pure enantiomeric enrichment in the polymer chain, i.e. -SSSSSSSS- or RRRRRRRR-.

Figure I-1. Polylactide microstructure from the stereocontrolled ROP of lactide.

The tacticity of polylactide was initially determined by the optical activity of the polymer compared to isotactic polylactide ($M_{\mathrm{n}}>6000, a^{22}{ }_{\mathrm{D}}$ remains constant at 142°)..10 However, ${ }^{13} \mathrm{C}$ NMR and homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR studies of polylactide reported by Munson and coworkers showed that the tacticity of polylactide can be determined. ${ }^{11}$ The degree of stereoselectivity is shown as the probability of racemic or meso enrichment, that is, the probability of forming a new racemic (syndiotactic) or meso (isotactic) diad), P_{r} and P_{m}, respectively. P_{r} or P_{m} values are calculated based on the ratio of the (area of racemic or meso)/(total area in methine proton region) from the homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR spectra. If P_{r} or P_{m} is equal to 0.50 for polylactide obtained from the ROP of either rac- or meso-lactide, this indicates a completely atactic polymer. In the case of the ROP of rac-lactide, a P_{r} or P_{m} equals to 1 means that the resulting polymer is completely heterotactic or isotactic, respectively. When mesolactide is ring-opened and $P_{\mathrm{r}}=1$ or $P_{\mathrm{m}}=1$, this describes a perfect syndiotactic or heterotactic polymer being formed during the polymerization process, respectively.

Interestingly, thermal properties of polylactides highly depend upon the microstructure of the polymer. Differences in tacticity of the polymer have shown to cause different in crystallization temperature $\left(T_{\mathrm{c}}\right)$, melting temperature $\left(T_{\mathrm{m}}\right)$, and glass transition temperature $\left(T_{\mathrm{g}}\right)$ of the polymer. For example, there is no T_{m} observed in heterotactic polylactide, while isotactic polylactide is more crystalline and displays a T_{m} of $180^{\circ} \mathrm{C}$. Both isotactic and heterotactic polylactide show a T_{g} ranging from $55-60^{\circ} \mathrm{C}$, while syndiotactic polylactide displays a T_{g} around $45-50{ }^{\circ} \mathrm{C}$. Isotactic polylactide possesses a T_{c} of $90^{\circ} \mathrm{C}$, in contrast, there is no T_{c} observed in heterotactic or syndiotactic polylactide. In addition, when poly-L-lactide and poly-D-lactide are mixed together in a 1:1 ratio, a polymer with significantly high in melting temperature $\left(T_{\mathrm{m}}=230{ }^{\circ} \mathrm{C}\right)$ is formed. This dramatic change in T_{m} is due to the formation of a stereocomplex from cocrystallization of the two opposite chains of poly-L-lactide and poly-D-lactide, leading to polymer with much more stable structure than both pure enantiomeric chains.

Strategies to Control Tacticity of Polylactide

There are several catalytic processes for the ring-opening polymerization of lactide, including anionic, cationic, organocatalytic, and coordination-insertation polymerizations (Figure I-2). The coordination-insertation has proven to be an effective method to control the stereoselectivity of PLA through the coordination of the carbonyl oxygen from the lactide monomer to the metal center during the polymerization process. Binding of the carbonyl oxygen to the metal center will activate the carbonyl carbon and allow the lactide monomer to be ring-opened by the metal. The combination of the ligand architecture and the growing polymer chain play crucial role in stereocontrol
during the polymerization process. From a mechanistic point of view, there are two different mechanisms for the stereoselective ROP of lactide. ${ }^{12}$ When a chiral catalyst is employed for the ROP of lactide that results in a stereocontrolled polymerization process, an enantiomorphic site-control mechanism is applied for such process. If the stereocontrol, however, is observed utilizing an achiral catalytic system, a chain-end controlled mechanism is accounted for the stereoselectivity. ${ }^{13}$

Figure I-2. Coordination-insertation polymerization of lactide by metal-based catalysts.

Catalyst Development: A Brief Introduction to Sn , Al , and Zn Complexes for the ROP of Lactide

A large number of simple metal salts and coordination compounds have been reported as effective catalysts for the ROP of lactide. Among these catalytic systems, tin (II) 2-ethylhexanoate (stannous octanoate, SnOct_{2}) is the most commonly used catalyst for the ROP of lactide. It is easy to handle and is well soluble in most common organic solvents. ${ }^{5}$ Although tin(II) 2-ethylhexanoate is approved by the Food and Drug Administration (FDA), it has been reported that this tin compound cannot be removed completely by a purification method including precipitation and dissolution. In addition, it has been reported by Schwach and coworkers that a residue of 306 ppm of tin compound remained in the purified polymer. ${ }^{14}$ This has raised concerns for the use of polylactide in biomedical and pharmaceutical applications due to the trace amount of toxic tin compound in the purified polymer.

Even though stannous otanoate and several tin compounds have shown moderate to good activity for the ring-opening polymerization of lactide, there is no evidence of stereocontrolled polymerizations utilizing these catalytic systems. Aluminum complexes on the other hand show excellent stereoselectivity toward the ROP of lactide. In 1996, Spassky and coworkers were the first group to have success in the stereocontrolled polymerization of rac-lactide utilizing an aluminum methoxide complex bearing a binaphthyl Schiff-base ligand (Figure I-3, 1). ${ }^{15}$ They reported the kinetic resolution polymerization of rac-lactide by aluminum complex 1. The chiral binaphthyl Schiff-base ligand led to the highly selective ring-opening polymerization of D-lactide from rac-
lactide to give isotactic polylactide via an enantiomorphic site-control mechanism. Llactide was left largely unreacted in the polymerization media. In 2002, Feijen and coworkers reported another chiral base aluminum complex 2 derived from (R, R) cyclohexanediamine Schiff base ligand stereoselectively catalyzed L-lactide over Dlactide. ${ }^{16}$ Although aluminum complexes bearing chiral ligands by Spassky and coworkers and Feijen and coworkers have shown excellent stereoselectivity for the ROP of lactide, Nomura and coworkers reported the first achiral aluminum based catalyst $\mathbf{3}$ that can polymerize rac-lactide to a highly stereoblock polylactide $\left(T_{\mathrm{m}}=230{ }^{\circ} \mathrm{C}\right)$ via a chain-end control mechanism. ${ }^{13 \mathrm{a}}$ Similar results were observed by Gibson and coworkers when achiral aluminum complexes $\mathbf{4 a}$ and $\mathbf{4 b}$ with tetradentate N, N^{\prime} 'disubstituted bis(amino-phenoxide) was used for the polymerization process. In this instance, an isotactic stereoblock of polylactide with a P_{m} value up to 0.79 was produced. ${ }^{17}$ It was also shown by the work of Gibson and coworkers that the tacticity is dramatically influenced by the substituents R^{1} attached to the nitrogen atoms. In this manner, the larger substituent found in complex $\mathbf{4 b}$ results in higher isotacticity ($P_{\mathrm{m}}=0.79$) compared with the resulting polylactide from the smaller substituent on complex $\mathbf{4 a}\left(P_{\mathrm{m}}\right.$ $=0.68)$. It has also been shown that the ligand chirality, polymer chain end, and even the solvent can effect in the stereocontrol of the ROP of lactide. ${ }^{18}$ Although these aluminum complexes have shown excellent stereoselectivity toward for the ROP of lactide, the reaction temperature for the polymerization $\left(70-100{ }^{\circ} \mathrm{C}\right)$ is rather high, yet the rate for the ROP of lactide is slow compared to other catalytic systems.

1: $\mathrm{X}=\mathrm{Oi} \mathrm{Pr}, \mathrm{OMe}$

3

2

4a: $\mathrm{R}^{1}=\mathrm{Me}$
4b: $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$

Figure I-3. Stereoselective aluminum complexes for the ROP of rac-lactide.

Zinc-based catalysts are considered to be less toxic to humans because zinc is an essential trace element for humans. It is also important for many biological functions, and about 2-3 grams of zinc cam be found in an adult body. ${ }^{19}$ There are many zinc catalysts have been reported in the literature for the ring-opening polymerization of lactide. ${ }^{20}$ Among these complexes, (β-diketiminate)zinc isopropoxide species 5 (Figure I-4) reported by Coates and coworkers polymerized rac-lactide to highly heterotactic polylactide with a P_{m} value of 0.94 at room temperature with monomer/initiator ratio $=$ 200. The zinc complex 6 with alkoxide generated by reaction of $\mathbf{5}$ with isopropanol
yielded controlled polymers with narrow PDI at $20^{\circ} \mathrm{C}$. Variation of the initiators in the dimer bridge (β-diketiminate)zinc complex 7, 8 , and $\mathbf{9}$ still resulted in active species for the ROP of lactide. Utilizing of a methyl lactate initiator 7 resulted in little changes in activity, whereas, amide 5 and alkyl $\mathbf{8}$ were dramatically less reactive compared to $\mathbf{6}$, and acetate 9 was the worst performer among these initiators. They proposed that the stereocontrol of the ROP of lactide by these catalytic system occurred via a chain-end control mechanism. ${ }^{21}$ These zinc complexes were the first Group 12 metal complexes to catalyze lactide polymerization with high stereochemical control. β-diiminate systems have since been investigated with great enthusiasm. Chisholm and coworkers ${ }^{22}$ also showed that an analogous series of (β-diketiminate) complexes with one THF molecule coordinated to metal center are monomeric rather than dimeric compared to complexes reported by Coates and coworkers (Figure I-5). The experimental results revealed that all the complexes were reactive for the ROP of lactide and had the similar trends to those reported by Coates and coworkers. When the zinc metal center was changed to magnesium 11, the polymerization reaction went significantly faster than complex $\mathbf{1 0}$, however the results showed that there was no stereocontrolled polymerization observed when 11 was employed. Chisholm also discovered that solvent could significantly affect the stereoselectiviy. When complex $\mathbf{1 1}$ was employed in THF rather than in methylene chloride, 90% hetereotactic polylactide was observed from rac-lactide. In addition, they also showed that calcium complex $\mathbf{1 2}$ was also active for the ROP of rac-lactide, affording atactic polylactide. ${ }^{23}$

$$
\begin{aligned}
& \text { 5: } \mathrm{R}=\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2} \\
& \text { 6: } \mathrm{R}=\mathrm{O} i \mathrm{Pr} \\
& \text { 7: } \mathrm{R}=\mathrm{OCHMeCO} \\
& 2
\end{aligned} \mathrm{Me}, \begin{aligned}
& \text { 8: } \mathrm{R}=\mathrm{Et} \\
& \text { 9: } \mathrm{R}=\mathrm{OAc}
\end{aligned}
$$

Figure I-4. General structure of zinc complexes prepared from the β-diketiminate ligand by Coates and cowerkers. ${ }^{21}$

10: $\mathrm{M}=\mathrm{Zn}, \mathrm{R}=\mathrm{OSiPh}_{3}$
11: $\mathrm{M}=\mathrm{Mg}, \mathrm{R}=\mathrm{O}^{t} \mathrm{Bu}$
12: $\mathrm{M}=\mathrm{Ca}, \mathrm{R}=\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}$

Figure I-5. Solvated magnesium, calcium, and zinc complexes of the β-diketiminate ligand by Chisholm and coworkers. ${ }^{22}$

Copolymers

Synthetic biodegradable polymers are advantageous over natural based polymers for many reasons. They can be fine-tuned to meet specific needs, for example, hydrophobicity, crystallinity, degradability, solubility, glass transition temperature, and melting temperature by either copolymerization with different monomers or using different synthesis conditions. Polylactide is possibly the most important biodegradable polymer in pharmaceutical and medical applications due to its properties, such as high strength, degradability, and biocompatibility. ${ }^{5,}{ }^{24}$ Polylactide is often used to copolymerize with some other monomers, for example, trimethylene carbonate (TMC), β-butyrolactone, δ-valerolactone, and ε-caprolactone as shown in Figure I-6 to tune for desired polymeric properties. Polytrimethylene carbonate (poly(TMC)) is an amorphous elastomer with a glass transition temperature at about $-15{ }^{\circ} \mathrm{C}$. It displays good mechanical properties, including high flexibility and high tensile strength. In addition,
the byproduct from degradation of poly(TMC) is not acidic and therefore is not harmful to the living cells. ${ }^{25}$ The hydrolytic degradation rate in vitro for $\operatorname{poly}(\mathrm{TMC})$ is rather slow and is dependent on initial molecular weights and the ionic strength of the conditioning medium. ${ }^{26}$ Polyhydroxybutyrate (PHB or PBL) on the other hand is naturally produced from renewable resources by microorganisms. The level of PBL in bacteria can be as high as 95% of the cellular dry weight. ${ }^{2 b}$ Isotactic PBL has a glass transition temperature at about $5{ }^{\circ} \mathrm{C}$ and melting temperature ($180^{\circ} \mathrm{C}$) comparable to isotactic polylactide. A atactic PBL on the other hand has a glass transition temperature of $-2{ }^{\circ} \mathrm{C}$. Poly- δ-valerolactone (PVL) and poly- ε-caprolactone (PCL) can be derived from the ROP of cyclic esters, i.e. δ-valerolactone and ε-caprolactone, respectively. Both PVL and PCL are semicrystalline polymers with glass transition temperatures of about 63 and $-60^{\circ} \mathrm{C}$, respectively. They both also melt at similar temperatures around $60^{\circ} \mathrm{C}$ for PVL and $65{ }^{\circ} \mathrm{C}$ for PCL. ${ }^{27}$ Copolymerization of polyesters (PBL, PVL, and PCL) and poly(TMC) with polylactide is often used to adjust the degradation rate as well as mechanical properties. ${ }^{28}$ Copolymers can be engineered to adjust the degradation rate suitable for various applications. For example in orthopedic fixation devices, the rate of the degradation should be slow enough to allow the healing bone to recover and be able to carry sufficient load during the healing process.

TMC

β-butyrolactone

γ-butyrolactone

δ-valerolactone

ε-caprolactone

Figure I-6. Various monomers for the copolymerization with lactide.

Within the remainder of this dissertation, a new series of well-characterized zinc and aluminum complexes for the stereosective ring-opening polymeration of lactide will be deliberated. The topic discussed will range from ligand synthesis, complex characterization, comparison of selectivity and reactivity of each catalyst for the ROP of rac-lactide as well as kinetic investigation unique to this system. The copolymerization of lacitde with different monomers as well as detail kinetic studies for the copolymerization of lactide and δ-valerolactone will be presented.

CHAPTER II

RING-OPENING POLYMERIZATION OF LACTIDE CATALYZED BY NATURAL AMINO-ACID BASED ZINC CATALYSTS*

Introduction

Presently there is considerable interest in synthesizing useful polymeric materials wholly or in part from renewable resources. ${ }^{29}$ For example, major efforts are underway for industrially preparing the most widely used polymers worldwide, polyethylene and poly(ethylene terephthalate), from renewable resources, that is, ethanol-based ethylene ${ }^{30}$ and ethylene glycol derived from sugar and molasses. ${ }^{31}$ Polyesters represent another class of polymers that can serve as alternative materials for petrochemical-based polymers and are derived from 100% renewable resources. That is, polylactides are aliphatic polyesters obtained by polymerizing lactic acid which is available from the fermentation of sugar (beet or cane) or starch (corn, wheat, potatoes, or manioc). Of importance, these polymers have the highly desirable properties of biocompatibility and biodegradability. As a consequence, polymers such as polylactides have been widely used in medical applications, such as, biodegradable sutures, slow release drug delivery, and tissue engineering. ${ }^{6}$

[^1]The use of metal-based catalysts for the ring-opening polymerization (ROP) of cyclic esters has been the subject of several reviews. ${ }^{6 c, 32}$ Included in these studies are metal complexes of $\mathrm{Sn},{ }^{33} \mathrm{Ge},{ }^{34} \mathrm{Y},{ }^{35} \mathrm{Fe},{ }^{36} \mathrm{Ti} / \mathrm{Zr},{ }^{33 \mathrm{e},}{ }^{37} \mathrm{Mg},{ }^{38} \mathrm{Al},{ }^{10 \mathrm{a},}{ }^{12-13,}{ }^{17,}{ }^{39} \mathrm{Ca},{ }^{380}, 40$ $\mathrm{Na},{ }^{41} \mathrm{Li},{ }^{42} \mathrm{Zn},{ }^{21 \mathrm{~b}, 22 \mathrm{~b}, 38 \mathrm{a}-\mathrm{c}, 38 \mathrm{e}, 381,38 \mathrm{n}, 380,39 \mathrm{q}, 43}$ and $\mathrm{In} .{ }^{44}$ Although a large variety of metal derivatives effectively catalyzes the ROP of lactide, it is preferable to use biocompatible metals since polylactides are widely utilized in food packaging and biomedical applications. Because the lactide monomer consists of two stereocenters, it exists as three possible stereoisomers, L-lactide, D-lactide, and meso-lactide. The extent of stereocontrol exhibited by a catalytic system is very important because the physical and degradation properties of the polylactide depend upon the tacticity of the polymer. Isotactic L- or D-polylactides can easily be obtained from enantiomerically pure L- or Dlactide, respectively. However, upon polymerizing rac- or meso-lactide, selective catalysts greatly influence the tacticity of the resulting polymeric material. For example, utilizing a catalyst system with stereocontrol syndiotactic polylactide and heterotactic polylactide can be synthesized from meso- or rac-lactide, respectively. These processes are depicted in eqs 1 and 2 .

In addition, stereocomplexed polylactides can be produced from a blend of poly-L-lactide acid (PLLA) and poly-D-lactide acid (PDLA) which have a T_{m} value of 230 ${ }^{\circ} \mathrm{C},{ }^{45}$ while homocrystallized polylactides have melting temperatures in the range of $170-180{ }^{\circ} \mathrm{C} .{ }^{46}$ An increase in T_{m} coupled with different physical and mechanical properties relative to the parent homopolymers makes the stereocomplexed polylactide an attractive polymer (eq 3). Because the properties of polylactide are so highly dependent on the polymer's tacticity, ${ }^{32 b, 47}$ research studies employing chiral catalysts for the ROP of lactides where enantiomorphic site control is possible are of much current interest.

stereocomplexed polylactide
Herein we wish to describe the synthesis of chiral Schiff base ligands derived from the natural amino acids, L-phenylalanine, L-leucine, and L-methionine and their complexes with the biocompatible metal, zinc. These metal derivatives have been fully characterized and all shown to be highly active catalysts for the ROP of lactides. Included in these studies is the selectivity of these chiral zinc catalysts for the ROP of Land D-lactide, as well as the effect of the substituents on the Schiff base ligands on the tacticity of the polylactide afforded from rac-lactide.

Experimental Section

Method and Materials. All manipulations were carried out using a double manifold Schlenk vacuum line under an argon atmosphere or an argon filled glovebox unless otherwise stated. Toluene and THF were freshly distilled from sodium/benzophenone before use. Methanol and dichloromethane were purified by an MBraun Manual Solvent Purification System packed with Alcoa F200 activated alumina desiccant. Pentane was freshly distilled from CaH_{2}. Deuterated chloroform and deuterated benzene from Cambridge Isotope Laboratories Inc. were stored in the glovebox and used as received. L- and D-lactide were gifts from PURAC America Inc., and rac-lactide was purchased from Aldrich. These lactides were recrystallized from toluene, dried under vacuum at $40{ }^{\circ} \mathrm{C}$ overnight, and stored in the glovebox. Sodium bis(trimethylsilyl)amide and p-fluophenol were purchased from Alfa Aesar, zinc chloride anhydrous was purchased from Strem Chemicals, and all were stored in the glovebox. N-Boc-L-phenylalanine, N-Boc-L-methionine, and N-Boc-L-leucine were purchased from Chem-Impex international and used as received. N,Ndimethylethylendiamine was purchased from Acros and used as received. 3,5-Di-tert-butyl-2-hydroxybenzaldehyde and zinc(bis-trimethylsilyl amide) ${ }_{2}$ were prepared according to published procedure. ${ }^{40 \mathrm{c}, 40 \mathrm{~d}, 48}$ All other compounds and reagents were obtained from Aldrich and were used without further purification. Analytical elemental analysis was provided by Canadian Microanalytical Services Ltd.

Measurements. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Unity+ 300 MHz and VXR 300 MHz superconducting NMR spectrometers. Molecular weight determinations were
carried out with Viscotek Modular GPC apparatus equipped with ViscoGEL I-series columns ($\mathrm{H}+\mathrm{L}$) and Model 270 dual detector composed of refractive index and light scattering detectors. TGA measurements were performed with TGA 1000 Thermogravimetric Analyzer by Instrument Specialists Incorporated. The samples were scanned from room temperature to the desired temperature under argon atmosphere with a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$. DSC measurements were performed with a Polymer DSC by Mettler Toledo. The samples were scanned from -100 to $200{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The glass transition temperature $\left(T_{\mathrm{g}}\right)$, the crystallization temperature $\left(T_{\mathrm{c}}\right)$, and the melting temperature $\left(T_{\mathrm{m}}\right)$ of polylactides were determined from the second heating at a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$. X-ray crystallography was done on a Bruker Smart 1000 diffractometer equipped with a CCD detector in a nitrogen cold stream maintained at 110 K . Crystal data and details of the data collection for complexes II6a-6e are provided in Tables on page 48.

General Procedure for Synthesis of Chiral Diamines II4a-c. The chiral diamines II4a-c were prepared according to the reported literature ${ }^{49}$ with some modifications. To N-Boc-L-phenylalanine (75 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added DCC (83 mmol) followed by HOBt (83 mmol) at ambient temperature. The dimethylamine ($83 \mathrm{mmol}, 40 \%$ aq solution) was added after 2 h . The reaction mixture was stirred overnight, and the solvent was removed under reduced pressure to obtain a white precipitate. The white precipitate was removed by filtration, and the filtrate was washed with 10% citric acid solution followed by washing with a saturated NaHCO_{3} solution. The organic layer was separated, dried over NaSO_{4}, and concentrated to
dryness under reduced pressure to afford the crude amides II2a-c which were used in the next step without further purification.

The N-Boc-protected amines were then deprotected with TFA. To a solution of N-Boc-protected amines II2a-c (55 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, TFA (165 mmol) was added and stirred for overnight at room temperature. Excess TFA and solvent were removed under reduced pressure. The resulting yellowish oil was neutralized with sat. NaHCO_{3}, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The crude amides II3a-c were used for the next step without purification.

The amides II3a-c (45 mmol) were dissolved in THF (30 mL) and cannulated into a suspension of $\mathrm{LiAlH}_{4}(180 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ cooled in an ice bath. The reaction mixture was heated to reflux overnight. The mixture was placed in an ice bath, and $\mathrm{EtOAc}(100 \mathrm{~mL})$ was slowly added to the mixture, followed by saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ $(100 \mathrm{~mL})$. The resulting white solid was washed with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure to afford slightly yellow oils II4a-c. The crude products II4a-c were purified by vacuum distillation in a short-path apparatus.
(S)- N^{\prime}, N^{\prime}-dimethyl-3-phenylpropane-1,2-diamine II4a Following the general procedure for synthesis of chiral diamines, the title compound II4a was purified by vacuum distillation ($0.5-0.7 \mathrm{mmHg}$) in a short-path apparatus at $121^{\circ} \mathrm{C} ; 4.36 \mathrm{~g}$ of yellowish liquid was collected (61% yield $) .[\alpha]_{\mathrm{D}}=+12.64\left(c=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.20-1.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.13-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}), 2.27-2.31$
(m, 1H), $2.47(\mathrm{dd}, J=13.46,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=13.25,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.18$ $(\mathrm{m}, 1 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=49.25$, 52.05, 53.35, 68.46, 116.28, 118.08, 118.78, 126.78. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2}: \mathrm{C}, 74.11$; H, 10.18; N, 15.71. Found: C, 71.98; H, 10.26; N, 14.56. HRMS (ESI), $m / z, 179.1591$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2}, 179.15$.
(S)- $N^{\prime}, N^{\prime}, 4$-trimethylpentane-1,2-diamine II4b. Following the general procedure for synthesis of chiral diamines, the title compound II4b was purified by vacuum distillation ($0.5-0.7 \mathrm{mmHg}$) in a short-path apparatus at $110{ }^{\circ} \mathrm{C} ; 3.75 \mathrm{~g}$ of product was collected (59\% yield). $[\alpha]_{\mathrm{D}}{ }^{20}=+27.77\left(c=1.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.24(\mathrm{~m}, 2 \mathrm{H})$, $1.69-1.80(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=12.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $2.22(\mathrm{~s}, 6 \mathrm{H}), 2.90-2.98(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=22.00,23.52,24.60$, 45.09, 45.81, 45.99, 67.43. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}_{2}: \mathrm{C}, 66.61 ; \mathrm{H}, 13.97 ; \mathrm{N}, 19.42$. Found: C, 61.97; H, 13.34; N, 16.53. HRMS (ESI), $m / z, 144.1523\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}_{2}, 144.15$.
(S)- N^{\prime}, N^{\prime}-dimethyl-4-(methylthio)butane-1,2-diamine II4c. Following the general procedure for synthesis of chiral diamines, the title compound II4c was purified by vacuum distillation $(1.2 \mathrm{mmHg})$ in a short-path apparatus at $125^{\circ} \mathrm{C} ; 4.22 \mathrm{~g}$ of product was collected $(40 \%$ yield $) .[\alpha]_{\mathrm{D}}{ }^{21}=+12.22\left(c=1.14, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=1.29-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 2.30-2.46$ $(\mathrm{m}, 2 \mathrm{H}), 2.71-2.81(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=15.39,30.74,35.04$, 45.49, 47.33, 66.68. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 51,80 ; \mathrm{H}, 11.18 ; \mathrm{N}, 17.26 ; \mathrm{S}, 19.76$

Found: C, 51.51; H, 10.97; N, 15.11; S, 17.09. HRMS (ESI), $m / z, 163.1309\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}$, 163.13.

General Procedure for Synthesis of Tridentate Schiff Base Ligands. 3,5-Di-tert-butyl-2-hydroxybenzaldehyde ${ }^{40 \mathrm{c}, 40 \mathrm{~d}, 48 \mathrm{~b}}$ (1.0 equiv) in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added to II4a-d, (1.0 equiv). The solution mixture was heated to reflux overnight and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by filtration. The volatile component was removed in vacuo to obtain tridentate Schiff base ligands II5a-d in 88\% to quantitative yield.
(S,E)-2,4-di-tert-butyl-6-((1-(dimethylamino)-3-phenylpropan-2-ylimino)
methyl)phenol ($\mathbf{L}^{\mathbf{1}} \mathbf{- H}$) II5a. Following the general procedure for synthesis of tridentate Schiff base ligands, 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($1.26 \mathrm{~g}, 5.38 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added to II4a ($0.958 \mathrm{~g}, 5.38 \mathrm{mmol}$). The solution mixture was heated to reflux overnight and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by filtration. The volatile component was removed in vacuo to obtain II5a in 95% yield. $[\alpha]_{\mathrm{D}}{ }^{20}=-154.54(c=1.1$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.55(\mathrm{~s}, 9 \mathrm{H}), 2.35(\mathrm{~s}$, $6 \mathrm{H}), 2.55-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{dd}, J=13.39,8.33 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=13.39,4.16 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54-3.63(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, 7.03(\mathrm{~d}, J=2.87 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph} H)$, $7.44(\mathrm{~d}, J=2.65 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 13.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=29.58,31.62,34.21,35.13,41.14,46.34,65.14,69.86,117.90,126.10,126.28$, $126.83,128.41,129.74,136.54,138.89,139.83,158.25,165.63$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 79.14 ; \mathrm{H}, 9.71 ; \mathrm{N}, 7.10$. Found: C, 78.56; H, 9.69; N, 6.93. HRMS (ESI), $m / z, 395.3184\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}$, 395.31.
(S,E)-2,4-di-tert-butyl-6-((1-(dimethylamino)-4-methylpentan-2-ylimino)
methyl)phenol ($\mathbf{L}^{\mathbf{2}} \mathbf{- H}$) II5b. Following the general procedure for synthesis of tridentate Schiff base ligands, 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($1.30 \mathrm{~g}, 5.54 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added to II4a ($0.799 \mathrm{~g}, 5.54 \mathrm{mmol}$). The solution mixture was heated to reflux overnight and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by filtration. The volatile component was removed in vacuo to obtain II5b in 96% yield. $[\alpha]_{\mathrm{D}}{ }^{21}=-18.72(c=1.17$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.87(\mathrm{dd}, J=10.37,5.88 \mathrm{~Hz}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$, $1.46(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 2.42-2.46(\mathrm{~m}, 2 \mathrm{H})$, $3.34-3.43(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=2.60 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H})$, $13.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\delta=\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.46,23.89,24.44,29.59$, $33.66,34.26,35.13,43.36,46.40,65.14,117.96,126.06,126.79,136.65,139.90$, 158.37, 165.02. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 76.61$; $\mathrm{H}, 11.18$; N, 7.77. Found: C, 76.19; H, 11.05; N, 7.36. HRMS (ESI), $m / z, 361.3292\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}$, 361.31.

(S,E)-2,4-di-tert-butyl-6-((1-(dimethylamino)-4-(methylthio)butan-2-ylimino)

 methyl)phenol ($\mathbf{L}^{\mathbf{3}} \mathbf{- H}$) II5c. Following the general procedure for synthesis of tridentate Schiff base ligands, 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($1.03 \mathrm{~g}, 4.41 \mathrm{mmol}$) in MeOH (30 mL) was added to $\mathbf{I I} 4 \mathbf{a}(0.72 \mathrm{~g}, 4.41 \mathrm{mmol})$. The solution mixture was heated to reflux overnight and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by filtration. The volatile component was removed in vacuo to obtain II5c in 88% yield. $[\alpha]_{\mathrm{D}}{ }^{21}=-62.80\left(c=1.21, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.33(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.84-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 2.38-2.65(\mathrm{~m}, 4 \mathrm{H}), 3.44-3.56(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.63 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$$(\mathrm{d}, J=2.63 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 13.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $15.57,29.73,31.11,33.27,34.26,35.24,46.45,65.54,66.52,177.87,126.32,127.11$, $136.75,140.10,158.39,166.26$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 69.79 ; \mathrm{H}, 10.12$; N , 7.40; S, 8.47 Found: C, 69.88; H, 10.16; N, 7.17; S, 8.27. HRMS (ESI), $m / z, 379.2673$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{OS}$, 379.27.
(E)-2,4-di-tert-butyl-6-((2-(dimethylamino)ethylimino)methyl)phenol (\mathbf{L}^{4}-H) II5d ${ }^{50}$. Following the general procedure for synthesis of tridentate Schiff base ligands, 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($2.00 \mathrm{~g}, 8.53 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added to II4d (N^{\prime}, N^{\prime}-dimethylethane-1,2-diamine) $(0.75 \mathrm{~g}, 8.53 \mathrm{mmol})$. The solution mixture was heated to reflux overnight and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by filtration. The volatile component was removed in vacuo to obtain II5d in 92% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.32(\mathrm{~s}, 9 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{t}, J=7.03,2 \mathrm{H})$, $3.31(\mathrm{t}, J=7.03,2 \mathrm{H}), 6.98(\mathrm{~d}, J=2.52,1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.52,1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 14.26$ (s, $1 \mathrm{H}, \mathrm{OH}$) ${ }^{13}{ }^{13} \mathrm{CNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=29.8,31.7,34.3,35.4,45.7,57.8,60.1$, 118.7, 126.3, 126.7, 137.1, 140.0, 158.9, 166.8. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.95 ; \mathrm{H}$, 10.59; N, 9.20. Found: C, 74.94; H, 10.61; N, 9.02. HRMS (ESI), m/z, 305.2620 $\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}, 305.25$.

General Procedure for Synthesis of Tridentate Schiff Base Zinc Complexes

 ($\left.\mathbf{L}^{1-4}-\mathbf{H}\right)$ II6a-d. A Tridentate Schiff base ligand (1 equiv) was dissolved in pentane and was cannulated to a solution of $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ (1.0 equiv) in pentane. The reaction mixture was stirred until a yellow precipitate was formed and allowed to stir at room temperature for an additional 3 h . The resulting yellow precipitate was then washed withcold pentane $(3 \times 2 \mathrm{~mL})$. The volatile component was removed under reduced pressure to obtain light yellow solid II6a-d.

Synthesis of $\left[\mathbf{L}^{\mathbf{1}} \mathbf{Z n N}\left(\mathbf{S i M e}_{\mathbf{3}}\right)_{\mathbf{2}}\right]$ II6a. A Tridentate Schiff base ligand II5a (1.06 $\mathrm{g}, 2.68 \mathrm{mmol})$ was dissolved in pentane (3 mL) and was cannulated to a solution of $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(1.04 \mathrm{~g}, 2.68 \mathrm{mmol})$ in pentane $(1 \mathrm{~mL})$. The reaction mixture was stirred until a yellow precipitate was formed and allowed to stir at room temperature for an additional 3 h . The resulting yellow precipitate was then washed with cold pentane (3×2 mL). The volatile component was removed under reduced pressure to obtain light yellow solid II6a in 51% yield. $[\alpha]_{\mathrm{D}}{ }^{21}=+67.50\left(c=1.02, \mathrm{C}_{6} \mathrm{D}_{6}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $=0.43(\mathrm{~s}, 18 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.57-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 9 \mathrm{H}), 1.82(\mathrm{~s}, 6 \mathrm{H}), 2.35-2.47$ $(\mathrm{m}, 2 \mathrm{H}), 2.67-2.74(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.24(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.95 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, 1 \mathrm{H}), 7.09-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.53,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=6.20,30.04,31.69,34.02,36.11,39.91,45.41,61.89,63.28,118.24$, $127.25,128.33,129.09,129.63,129.85,137.17,142.05,168.56,170.82,165.63$; Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{OSi}_{2} \mathrm{Zn}: \mathrm{C}, 62.05 ; \mathrm{H}, 8.95$; $\mathrm{N}, 6.78$. Found: C, 62.48; H, 8.55; N, 6.07.

Synthesis of $\left[\mathbf{L}^{\mathbf{2}} \mathbf{Z n N}\left(\mathbf{S i M e}_{\mathbf{3}}\right)_{\mathbf{2}}\right]$ II6b. A Tridentate Schiff base ligand II5b (1.08 $\mathrm{g}, 2.97 \mathrm{mmol})$ was dissolved in pentane (3 mL) and was cannulated to a solution of $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(1.15 \mathrm{~g}, 2.97 \mathrm{mmol})$ in pentane $(1 \mathrm{~mL})$. The reaction mixture was stirred until a yellow precipitate was formed and allowed to stir at room temperature for an additional 3 h . The resulting yellow precipitate was then washed with cold pentane (3×2 mL). The volatile component was removed under reduced pressure to obtain light yellow
solid II6b in 50% yield. $[\alpha]_{\mathrm{D}}{ }^{21}=+89.82\left(c=1.00, \mathrm{C}_{6} \mathrm{D}_{6}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=0.4(\mathrm{~s}, 18 \mathrm{H}), 0.72(\mathrm{dd}, J=11.25,5.62 \mathrm{~Hz}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.78(\mathrm{~s}, 9 \mathrm{H}), 1.82(\mathrm{bs}$, $2 \mathrm{H}), 1.94(\mathrm{~s}, 6 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{bs}, 1 \mathrm{H}), 3.13-3.27(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=3.03 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=3.03 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=2.78,6.19$, $22.20,23.26,24.54,30.09,31.80,34.15,36.28,41.83,46.10,58.26,64.88,118.66$, 129.97, 135.09, 142.35, 168.59; Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{OSi}_{2} \mathrm{Zn}: \mathrm{C}, 59.50 ; \mathrm{H}, 9.81 ; \mathrm{N}$, 7.18. Found: C, 59.63; H, 9.63; N, 6.66.

Synthesis of $\left[\mathbf{L}^{\mathbf{3}} \mathbf{Z n N}\left(\mathbf{S i M e}_{3}\right)_{2}\right]$ II6c. A Tridentate Schiff base ligand II5c (1.03 $\mathrm{g}, 2.73 \mathrm{mmol}$) was dissolved in pentane (3 mL) and was cannulated to a solution of $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(1.05 \mathrm{~g}, 2.73 \mathrm{mmol})$ in pentane $(1 \mathrm{~mL})$. The reaction mixture was stirred until a yellow precipitate was formed and allowed to stir at room temperature for an additional 3 h . The resulting yellow precipitate was then washed with cold pentane (3×2 mL). The volatile component was removed under reduced pressure to obtain light yellow solid II6c in 55% yield. $[\alpha]_{\mathrm{D}}{ }^{21}=+115.70\left(c=1.21, \mathrm{C}_{6} \mathrm{D}_{6}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=0.39(\mathrm{~s}, 18 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 9 \mathrm{H}), 1.90(\mathrm{~s}$, $6 \mathrm{H}), 2.04-2.27(\mathrm{~m}, 4 \mathrm{H}), 3.11-3.24(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.73 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.73$ $\mathrm{Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.14,15.23,30.06,30.26,31.78$, $32.50,34.11,36.18,45.78,59.33,63.64,118.46,128.49,129.99,135.10,142.14$, 168.65, 170.03; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{OSSi}_{2} \mathrm{Zn}: \mathrm{C}, 55.73 ; \mathrm{H}, 9.91 ; \mathrm{N}, 6.69 ; \mathrm{S}, 5.31$. Found: C, 55.68; H, 8.89; N, 6.05; S, 5.28.

Synthesis of $\left[\mathbf{L}^{\mathbf{4}} \mathbf{Z n N}\left(\mathbf{S i M e}_{3}\right)_{\mathbf{2}}\right]$ II6d. A Tridentate Schiff base ligand II5d (1.00 $\mathrm{g}, 3.28 \mathrm{mmol})$ was dissolved in pentane $(3 \mathrm{~mL})$ and was cannulated to a solution of
$\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(1.27 \mathrm{~g}, 3.28 \mathrm{mmol})$ in pentane. The reaction mixture was stirred until a yellow precipitate was formed and allowed to stir at room temperature for an additional 3 h . The resulting yellow precipitate was then washed with cold pentane ($3 \times 2 \mathrm{~mL}$). The volatile component was removed under reduced pressure to obtain light yellow solid II6d in 52% yield. $[\alpha]_{\mathrm{D}}{ }^{21}=0.00\left(c=1.05, \mathrm{C}_{6} \mathrm{D}_{6}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=0.37$ $(\mathrm{s}, 18 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.75(\mathrm{~s}, 9 \mathrm{H}), 1.90(\mathrm{~s}, 6 \mathrm{H}), 2.78(\mathrm{t}, J=6.01 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=$ $6.01 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.10,30.06,31.84,34.06,36.29,45.64,52.99,57.22,59.67$, $60.33,118.66,129.79,135.14,142.26,169.87$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{OSi}_{2} \mathrm{Zn}: \mathrm{C}$, 56.73; H, $9.33 ;$ N, 7.94. Found: C, $57.91 ;$ H, 8.61; N, 7.18.

Synthesis of [$\left.\mathbf{L}^{\mathbf{1}} \mathbf{Z n O P h}\right] \mathbf{6 e}$. A Tridentate Schiff base ligand II5a ($0.55 \mathrm{~g}, 1.82$ $\mathrm{mmol})$ and p-fluorophenol $(0.24 \mathrm{~g}, 1.82 \mathrm{mmol})$ were dissolved in pentane (3 mL) and was cannulated to a solution of $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}(0.74 \mathrm{~g}, 1.82 \mathrm{mmol})$ in pentane $(1 \mathrm{~mL})$. The reaction mixture was stirred until a yellow precipitate was formed and allowed to stir at room temperature for an additional 3 h . The resulting yellow precipitate was then washed with cold pentane ($3 \times 2 \mathrm{~mL}$). The volatile component was removed under reduced pressure to obtain light yellow solid II6e in 55% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=1.39(\mathrm{~s}, 9 \mathrm{H}), 1.76(\mathrm{~s}, 9 \mathrm{H}), 1.99(\mathrm{~s}, 6 \mathrm{H}), 2.80(\mathrm{t}, J=5.72 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=$ $5.72 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=8.78 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{bs}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=2.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.10,30.36,31.77,34.12,36.05,45.50$, 46.31, 54.44, 57.17, 59.57, 115.75, 116.04, 118.10, 119.50, 129.82, 135.49, 141.75,
169.67, 171.81, Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{Zn}: \mathrm{C}, 62.56 ; \mathrm{H}, 7.35$; N, 5.84; F, 3.96. Found: C, 62.83; H, 7.54; N, 5.89; F, 3.84.

Polymerization Procedure. In a typical experiment (Table on page 41, entry 1), in the glovebox, a Schlenk flask was charged with a solution of complex II6a (8.58 mg , $13.87 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$. To this solution was added rac-lactide ($100 \mathrm{mg}, 0.69$ mmol, 50 equiv). The mixture was stirred at room temperature for 60 min . After a small sample of the crude solution was removed with a syringe to be characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the product was isolated and purified by precipitation from dichloromethane by the addition of 5\% hydrochloric acid in methanol. The polymer was collected and dried under vacuum to constant weight.

Kinetic Studies. Polymerizations of L- or D-lactide using complexes II6a-d were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Each monomer and corresponding zinc complex were dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$, and the \% conversion was investigated from the integration of polymer and monomer signals. The chemical shifts of polylactide are 5.01 (q, H) and $1.32\left(\mathrm{~d}, \mathrm{CH}_{3}\right)$, and the chemical shifts of lactide monomer are $3.79(\mathrm{q}, \mathrm{H})$ and $1.16\left(\mathrm{~d}, \mathrm{CH}_{3}\right)$.

Results and Discussion

Synthesis and Characterization of Proligands and Their Zinc Complexes.

 The synthesis of chiral diamines II4a-c is based on the reported literature ${ }^{49}$ using different N-Boc-L-protected amino acids with modification as shown in Scheme II-1. Condensation reactions of these diamines II4a-d with 3,5-di-tert-butyl-2hydroxybenzaldehyde at reflux in methanol yielded the analogous compounds II5a-d,where $\mathrm{R}=$ benzyl, isobutyl, 2-(methylthio)ethyl, and hydrogen, respectively (Scheme II2). The reactions of these chiral ligands with $\operatorname{zinc}(\text { bis-trimethylsilyl amide })_{2}$, $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ in dry pentane resulted in straightforward formation of the yellow zinc complexes II6a-d. In an analogous manner, the reaction of II5d with $\mathrm{Zn}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}$ in the presence of p-fluorophenol yielded complex II6e as shown in (Scheme II-3). The complexes were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, as well as, elemental analysis. The molecular structures of the complexes were determined by X-ray crystallography.

Scheme II-1

Suitable single crystals of complexes II6a-e were obtained from recrystallization in dry pentane, and their molecular structures were determined by single X-ray
crystallography. Complexes II6a-d are very similar to each other. The solid-state structures of complexes II6a-d have shown that two nitrogen atoms and one oxygen atom of the ligands coordinate to a metal center in a tridentate coordination mode along with one amido group. The geometry of the zinc complexes is a distorted tetrahedron with zinc at the center. The complexes are shown in Figure II-1, with atomic labeling for non-hydrogen atoms. Selected bond distances and angles are listed in Table II-1. On the other hand, if the amido group is replaced by p-fluorophenolate to give complex II6e, the solid-state structure is shown to be dimeric with a $\mathrm{Zn}(1) / \mathrm{O}(2) / \mathrm{Zn}(2) / \mathrm{O}(3)$ planar core bridged by the two oxygen atoms of p-fluorophenol as illustrated in Figure II-2. The dimeric structure shows that one zinc center adopts a distorted tetrahedral geometry, in comparison with the other zinc center which possesses distorted trigonal bipyramidal geometry.

Scheme II-2

Scheme II-3

II6e : $\mathrm{R}=\mathrm{H}$

(b)

(d)

Figure II-1. X-ray crystal structures of (a) II6a, (b) II6b, (c) II6c, and (d) II6d. Thermal ellipsoids represent the 50% probability surfaces. Hydrogen atoms are omitted for the sake of clarity.

Table II-1. Selected Bond Lengths (\AA) and Angles (deg) for Zn Complexes II6a-d.

	II6a	II6b	II6c	II6d
	Bond lengths			
Zn1-N1	$2.017(4)$	$2.030(4)$	$2.022(2)$	$2.010(5)$
Zn1-N2	$2.198(3)$	$2.193(4)$	$2.211(2)$	$2.211(6)$
Zn1-N3	$1.920(4)$	$1.921(4)$	$1.913(2)$	$1.917(5)$
Zn1-O1	$1.933(3)$	$1.930(3)$	$1.9406(18)$	$1.930(4)$
		Bond angles		
N3-Zn1-O1	$115.60(14)$	$119.64(15)$	$116.01(9)$	$122.2(2)$
N3-Zn1-N1	$136.85(16)$	$133.83(15)$	$138.63(9)$	$132.3(2)$
O1-Zn1-N1	$91.24(13)$	$92.20(13)$	$91.58(8)$	$90.6(2)$
N3-Zn1-N2	$110.14(14)$	$114.20(16)$	$108.68(9)$	$112.0(2)$
O1-Zn1-N2	$121.26(14)$	$112.07(14)$	$120.65(8)$	$110.9(2)$
N1-Zn1-N2	$78.64(14)$	$77.40(14)$	$78.21(8)$	$81.4(2)$

Figure II-2. X-ray crystal structure of complex II6e. Thermal ellipsoids represent the 50% probability surfaces. Hydrogen atoms are omitted for the sake of clarity. Selected bond lengths (A) and angles (deg): $\mathrm{Zn} 2-\mathrm{N} 3: 2.050$ (6), $\mathrm{Zn} 2-\mathrm{N} 4: 2.301$ (5), Zn2-O2 : 2.080 (4), Zn2-O3 : 2.016 (5), Zn2-O4 : 1.977 (4), O4-Zn2-O3 : 106.69 (17), O4-Zn2N3 : 89.61 (18), O3-Zn2-N3 : 126.78 (19), O4-Zn2-O2 : 95.69 (16), O3-Zn2-O2 : 80.79 (16), N3-Zn2-O2 : 148.99 (18), O4-Zn2-N4 : 161.08 (19), O3-Zn2-N4 : 92.24 (18), N3-Zn2-N4 : 78.79 (19), O2-Zn2-N4 : 87.10 (17).

Polymerization Studies. Ring-Opening of Lactides. There are two different mechanisms for the stereoselective ROP of rac-lactide, ${ }^{13 \mathrm{c}}$ that is, a chain-end control ${ }^{12}$ and an enantiomorphic site-control mechanism. ${ }^{13 \mathrm{a}, 13 \mathrm{~b}}$ To examine this latter mechanism we have synthesized enantiomerically pure zinc complexes II6a-c, and these plus the achiral complex II6d were tested for the ROP of L- and D-lactide under the same reaction conditions to compare their selectivity and reactivity for this polymerization process. All reactions were carried out in $\mathrm{C}_{6} \mathrm{D}_{6}$ at ambient temperature and were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The experimental observations reveal all zinc complexes to be active for the ROP of D - and L-lactide, and the resulting polymers were obtained with the expected molecular weights and with low polydispersity indices. To quantitatively compare the selectivity of each complex for the ROP of D- and L-lactide, the rates of the reactions were investigated. The polymerization reactions were found to be first-order in monomer as illustrated in Figure II-3 for several catalytic systems. Table II-2 summarizes the rate constants (k_{obsd}) for these various processes. As evident in Figure II-3 and Table II-2 the ratio of $k_{\text {d(obsd) }}$ over $k_{\text {l(obsd) }}$ is close to unity for reactions catalyzed by complexes II6a-c, indicative of a lack of preferences of the enantiomerically pure complexes for L- or D-lactide. Complex II6a was found to be the most active of the zinc complexes. The ROP of L-lactide utilizing the dimeric complex II6e began slowly for the first 5 h , followed by a rate consistent with the more active monomeric catalyst II6d (Figure II-4). This is presumably due to dimeric disruption leading to a more active monomeric species as previously illustrated by Lin and coworkers. ${ }^{431}$

(a)

(b)

(c)

(d)

Figure II-3. $\ln \left([\mathrm{La}]_{0} /[\mathrm{La}]_{\mathrm{t}}\right)$ vs time plots for the ROP of D-lactide($)$) or L-lactide($\mathbf{\Delta}$) catalyzed by various zinc complexes at ambient temperature. (a) complex II6a, (b) complex II6b, (c) complex II6c, and (d) complex II6d.

Table II-2. Rate Constants for the ROP of D- or L-Lactide in the Presence of Zinc Complexes. ${ }^{a}$

entry	M	$\left.\boldsymbol{k}_{\boldsymbol{D}(\text { obs } d)} \mathbf{h}^{\mathbf{- 1}}\right)$	$\boldsymbol{k}_{\text {L(obsd)}}\left(\mathbf{(h}^{\mathbf{- 1}}\right)$	$\boldsymbol{k}_{\boldsymbol{D}} / \boldsymbol{k}_{\boldsymbol{L}}$
$\mathbf{1}$	II6a	3.13	2.73	1.14
$\mathbf{2}$	II6b	2.38	2.30	1.03
$\mathbf{3}$	II6c	0.07	0.06	1.16
$\mathbf{4}$	II6d		0.22	
$\mathbf{5}$	II6e		0.20^{b}	

${ }^{a}$ Each reaction was performed in $\mathrm{C}_{6} \mathrm{D}_{6}$ at ambient temperature. Monomer and catalyst concentration were held constant at 0.34 M and 0.0069 M respectively. The $k_{\text {obsd }}$ values were determined by the slope of the plots of $\ln \left([\mathrm{LA}]_{0} /[\mathrm{LA}]_{t}\right)$ vs time. ${ }^{b}$ Linear portion of plot which occurs after 5 hours.

Figure II-4. $\ln \left([\mathrm{LA}]_{0} /[\mathrm{LA}]_{\mathrm{t}}\right)$ vs time plot for the ROP of L-lactide by the dimeric complex II6e at ambient temperature.

Figure II-5. Independence of the rate constant for the ROP of L-lactide on the THF concentration in $\mathrm{C}_{6} \mathrm{D}_{6}$ at ambient temperature. (a) Complex II6a as catalyst, (b) complex II6d as catalyst.

The rates of ROP of L-lactide in the presence of complex II6a or II6d were found to be independent of the addition of tetrahydrofuran (THF) to the benzene solvent. Figure II-5 illustrates the lack of influence of significant concentrations of THF on $k_{\text {obsd }}$ at ambient temperature for either of the catalyst systems. This is to be contrasted with comparable calcium complexes which were shown to be more active upon addition of the coordinating THF solvent. ${ }^{40 \mathrm{~d}}$ That is, in this instance the larger calcium center is better able to expand its coordination number, thereby enhancing the nucleophilicity of the propagating chain end.

Figure II-6. ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ during the ROP of L-lactide in the presence of complex II6d at ambient temperature. Methine proton of meso-lactide observed at 4.15 ppm.

As noted in Table II-2 and Figure II-3d, the rate of ROP of L-lactide for complex II6d is slower than its more sterically hindered analogues, complexes II6a and II6b.

Another differentiating feature noted for the ROP of L-lactide in the presence of complex II6d is seen in the ${ }^{1} \mathrm{H}$ NMR spectra in $\mathrm{C}_{6} \mathrm{D}_{6}$ (Figure II-6) during the catalytic reaction. That is, a methine proton resonance at 4.15 ppm is observed which corresponds to a meso-lactide, indicating that epimerization of the lactide monomer occurs during the polymerization process. This is further seen in the ROP of L-lactide catalyzed by complex II6d where the anticipated isotactically pure polylactide exhibits small defects in microstructure as shown in Figure II-7a. With the other closely related, but sterically more encumbered catalysts, complexes II6a-c, this isomerization process is not observed as illustrated by the ${ }^{1} \mathrm{H}$ NMR spectrum of the polylactide in Figure II-7b. In the case of complex II6c, the sulfur atom from the amine backbone possibly coordinates to the zinc center following dissociation of the dimethylamine arm resulting in the slowest rate of catalysis for all the complexes (vide infra).

The ROP of rac-lactide catalyzed by complexes II6a-d was performed in chloroform at ambient temperature. The resulting polylactides were isolated and purified by precipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $5 \% \mathrm{HCl}$ in methanol followed by drying in vacuo. The molecular weights and polydispersity indices of the purified polymers were determined by gel permeation chromatography (dual RI and light scattering detectors) in THF using polystyrene as a standard. These experimental findings indicate that the polymerization process is well-controlled (Table II-3). The living character of the process can be noted by the low polydispersites over the range of $1.05-1.07$, and the linear relationship between M_{n} and the monomer/initiator ratio as depicted in Figure II-8.

(b)

Figure II-7. ${ }^{1} \mathrm{H}$ NMR spectra of polylactide in CDCl_{3} prepared from L-lactide. (a) In the presence of complex II6d, with $\mathbf{1 \rightarrow 2} \mathbf{~ i l l u s t r a t i n g ~ e x p a n d e d ~ m e t h i n e ~ r e g i o n ~ b e f o r e ~}$ and after homonuclear decoupling. (b) In the presence of complex II6a, with $\mathbf{3} \rightarrow \mathbf{4}$ illustrating expanded methine region before and after homonuclear decoupling.

Table II-3. Polylactides Produced from the ROP of Rac-lactide in Chloroform at Ambient Temperature.

				M_{n}			
entry	Complex	M/I	Conversion $(\%)^{a}$	Theoretical b	GPC	$0.58 M_{\mathrm{n}, \mathrm{GPC}}{ }^{c}$	PDI
1	II6a	50	97	6990	8630	5000	1.08
2	II6a	300	96	41509	96191	55790	1.05
3	II6a	700	96	96855	181730	105400	1.08
4	II6a	1000	96	138782	285108	165360	1.05
5	II6a	2000	96	279612	530141	307480	1.07
6	II6b	50	98	7062	8161	4730	1.31
7	II6c	50	95	6846	8757	5080	1.31
8	II6d	50	98	7062	8171	4740	1.13
9	II6e	50	97	6990	8056	4672	1.07

${ }^{a}$ Obtained from ${ }^{1} \mathrm{H}$ NMR spectroscopy. For entries 1 and 6 the reaction times were 2 hours, all other reactions were carried out for 24 hours. ${ }^{b}$ Theoretical $M_{\mathrm{n}}=(\mathrm{M} / \mathrm{I}) \times$ (\% conversion) x (mol. wt. of lactide). ${ }^{c} M_{\mathrm{n}}$ values corrected by the equation: $M_{\mathrm{n}}=0.58 M_{\mathrm{n}, \mathrm{GPC}} .{ }^{51}$

As previously mentioned the physical and degradation properties of polylactides are intimately dependent on the tacticity of the polymer. Herein we have examined the tacticity of the polymers resulting from the ROP of rac-lactide as catalyzed by the series of zinc derivatives, since the ligand's architecture is expected to play a major role in stereoselectivity. ${ }^{36 \mathrm{~g}, 52}$ Complexes II6a-d were evaluated for the ROP of rac-lactide in CHCl_{3} at various temperatures, and the afforded polymers' tacticities were assigned using the methine proton regions with homonuclear decoupling as described by Hillmyer and co-workers. ${ }^{11}$

Figure II-8. Linear relationship observed between M_{n} and monomer/initiator ratio of polylactide produced from rac-lactide catalyzed by complex II6a at ambient temperature in CHCl_{3}.
P_{r} values were calculated from the ratio of the (area of isi and sis)/(total area in methine proton region) from the decoupled ${ }^{1} \mathrm{H}$ NMR spectra shown in Figure II-9. As illustrated in Figures II-9 and Table II-4, complex II6c produced the highest degree of heterotacticity in the polylactide produced from rac-lactide with a $P_{\mathrm{r}}=0.83$ at ambient temperature which increases to 0.89 at $-30^{\circ} \mathrm{C}$. By way of contrast, the least sterically hindered zinc derivative, complex II6d, provided polylactide with the lowest degree of heterotacticity ($P_{\mathrm{r}}=0.68$ at ambient temperature $)$. In this latter instance, decreasing the polymerization temperature to $-30{ }^{\circ} \mathrm{C}$ provided a P_{r} value of 0.87 . Since the chiral center in complexes 6a-c did not exhibit any selectivity in the ROP of L- or D-lactide, we suggest that the stereoselectivity in the polymerization of rac-lactide occurs via a chain-end mechanism. ${ }^{39 t}$ Because the steric bulk of the ligands in complexes II6a and II6b is rather remote relative to the metal center, this rate effect may be due to a more facile dissociation of the dimethylamine arm during the polymerization process

Figure II-9. Homonuclear decoupled ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MH}_{3}\right)$ spectra of the methine region of polylactide produced from rac-lactide with catalyst (a) II6a, (b) II6b, (c) II6c, and (d) II6d. A. Polymerization temperature ambient. B. Polymerization temperature $-30^{\circ} \mathrm{C}$.
involving these catalysts. Indeed, Mehrkhodavandi and co-workers have shown in related diamino-phenol zinc complexes that the dimethylamine arm of the ligand is hemilabile. ${ }^{43 s}$ To examine this possibility, we carried out an experiment where 6 equiv of 2-methylcyclohexanone were added to complex II6d in $\mathrm{C}_{6} \mathrm{D}_{6}$. As seen in Figure II-10, ${ }^{1} H$ NMR spectroscopy reveals a significant portion of the complex showed the dimethylamine arm free with presumably concomitant binding of the ketone to the metal center via the oxygen donor. This binding would closely mimic the coordination of the lactide monomer to the zinc center. This reaction pathway would also account for the greatly reduced activity and highest heterotacticity exhibited by complex II6c which contains the methylthio group. Nevertheless, inconsistent with an amine dissociation mechanism and lactide ROP reactivity is the observation that complex II6d in the presence of excess THF exhibited a similar amine lability (Figure II-11). However, as noted in Figure II-5 the addition of THF did not inhibit the ROP of L-lactide.

Table II-4. P_{r} Values of $\operatorname{Poly}($ Rac-Lactide $)$ at Different Temperature. ${ }^{a, b}$

Complex	P_{r} at $-30{ }^{\circ} \mathrm{C}$	P_{r} at $0{ }^{\circ} \mathrm{C}$	P_{r} at $22{ }^{\circ} \mathrm{C}$
II6a	88	81	76
II6b	85	80	76
II6c	89	86	83
II6d	87	79	68
${ }^{a}$ Each reaction was performed in CHCl_{3} at different temperatures. ${ }^{b} P_{\mathrm{r}}$ values were calculated from the ratio of the			
(area of isi and sis)/(total area in methine proton region).			

Figure II-10. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, rt $)$ of II6d before addition of 2methylcyclohexanone (bottom) and 15 min after addition of 6 equiv of 2methylcyclohexanone (top).

Figure II-11. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, rt) of II6d before addition of THF (bottom) and 15 min after addition of 10 equiv of THF (top).

A point worthwhile noting regarding the measurement of P_{r} values from ${ }^{1} \mathrm{H}$ NMR peak areas is that the relative peak areas presented in Table II-4 were measured multiple times with a planimeter. ${ }^{53}$ In general, we have observed this method provides lower P_{r} values than those routinely determined by programs provided for deconvolutions by NMR software providers. For example, complex II6c gave a P_{r} value of 0.89 at $-30{ }^{\circ} \mathrm{C}$ for the polylactide produced from rac-lactide, whereas the FIT
deconvolution program provided by Varian Instruments yielded a value of 0.98 . Hence, we conclude that P_{r} values determined by this latter technique overestimate the heterotacticity of the thus formed polylactide.

The dependence of the thermal properties on the tacticity of the polylactides synthesized can be readily gleamed from the DSC measurements listed in Table II-5. As is readily seen in Table II-5, the isotactically pure polylactide afforded from the ROP of L-lactide by complex II6a is highly crystalline and possesses a T_{g} value of $60^{\circ} \mathrm{C}$, with T_{c} and T_{m} values of 90 and $178{ }^{\circ} \mathrm{C}$, respectively. On the other hand, the heterotactically enriched polymers provided by complexes II6a and II6c from the ROP of rac-lactide exhibited T_{g} parameters which increased with increasing P_{r} values. That is, complex II6a which gave a polymer with a P_{r} value of 0.76 has a T_{g} of $39^{\circ} \mathrm{C}$, and complex II6c which provided a polymer with a P_{r} of 0.89 has a T_{g} of $50^{\circ} \mathrm{C}$. Crystal data and details of the data collection for complexes II6a-6e are provided in Table II-6 and Table II-7.

Table II-5. Physical and Thermal Properties of Polylactides.

Complex	M/I	Lactide	Tacticity	M_{n}	Decomposition Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$T_{\mathrm{g}}{ }^{a}$ $\left({ }^{\circ} \mathrm{C}\right)$	$T_{\mathrm{c}}{ }^{a}$ $\left({ }^{\circ} \mathrm{C}\right)$	$T_{\mathrm{m}}{ }^{a}$ $\left({ }^{\circ} \mathrm{C}\right)$
II6a	50	L-lactide	Isotactic	$\mathrm{N} / \mathrm{A}^{b}$	300	60	90	178
II6a	50	rac-lactide	Hetero $\left(P_{\mathrm{r}}=0.76\right)$	8630	300	39	-	-
II6c	50	rac-lactide	Hetero $\left(P_{\mathrm{r}}=0.89\right)$	8760	300	50	-	-

${ }^{a}$ Determined from second heating run. ${ }^{b}$ Molecular weight was not measured because of polymer's insolubility in THF due to its high crystallinity.

Table II-6. Crystallographic Data for Complexes II6a-b.

	II6a	II6b
empirical formula	$\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{OSi}_{2} \mathrm{Zn}$	$\mathrm{C}_{58} \mathrm{H}_{114} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Si}_{4} \mathrm{Zn}_{2}$
fw	619.34	1170.65
temperature (K)	$150(2) \mathrm{K}$	$110(2) \mathrm{K}$
crystal system	orthorhombic	monoclinic
space group	$\mathrm{P}(2) 1(2) 1(2) 1$	$\mathrm{P} 2(1)$
$a(\mathrm{~A})$	$8.719(4)$	$10.616(3)$
$b(\AA)$	$16.535(8)$	$18.225(4)$
$c(\AA)$	$17.992(4)$	
$\alpha($ deg $)$	90	90
$\beta($ deg $)$	90	$91.995(13)$
$\gamma(\operatorname{deg})$	90	90
$V\left(\mathrm{~A}^{\circ}\right)$	$3590(3)$	$3478.7(14)$
$D_{\mathrm{c}}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.146	1.118
Z	4	2
abs coeff(mm	1.805	
reflections collected	0.777	27837
independent reflections	32055	$9520[R(\mathrm{int})=0.0627]$
data/restrains $/$ parameters	$7063[R($ int $)=0.1231]$	$9520 / 4 / 694$
GOF on F^{2}	$7063 / 4 / 373$	1.077
final R indices	1.014	$R_{1}=0.0402$
$[I>2 \sigma(I)]$	$R_{1}=0.0539$	$R_{\mathrm{w}}=0.0963$
final R indices	$R_{\mathrm{w}}=0.1190$	$R_{1}=0.0515$
(all data)	$R_{1}=0.0779$	$R_{\mathrm{w}}=0.1030$

Table II-7. Crystallographic Data for Complexes II6c-e.

	II6c	II6d	II6e
empirical formula	$\mathrm{C}_{33} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{OSSi}_{2} \mathrm{Zn}$	$\mathrm{C}_{55} \mathrm{H}_{108} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Si}_{4} \mathrm{Zn}_{2}$	$\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Zn}_{2}$
fw	675.51	1128.57	959.84
temperature (K)	$110(2) \mathrm{K}$	$110(2) \mathrm{K}$	$110(2) \mathrm{K}$
crystal system	monoclinic	monoclinic	monoclinic
space group	$\mathrm{P} 2(1)$	$\mathrm{P} 2(1) / \mathrm{c}$	$\mathrm{P} 2(1) / \mathrm{n}$
$a(\AA)$	$13.530(5)$	$12.128(12)$	
$b(\AA)$	$15.315(7)$	$23.298(5)$	$21.45(2)$
$c(\AA)$	$10.089(5)$	$10.488(5)$	$20.25(2)$
$\alpha($ deg $)$	$26.190(13)$	$90.000(5)$	90
$\beta($ deg $)$	90	$99.190(5)$	$105.529(12)$
$\gamma(\operatorname{deg})$	$104.946(6)$	$90.000(5)$	90
$V\left(\mathrm{~A}^{\circ}\right)$	90	$3264(2)$	$5074(9)$
$D_{\mathrm{c}}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	$3910(3)$	1.148	1.257
Z	1.148	2	4
abs coeff(mm $)$	4	0.848	0.997
reflections collected	0.770	22528	48125
independent reflections	44430	$4681[R(\mathrm{int})=0.1202]$	$11309[R(\mathrm{int})=0.0242]$
data/restrains $/$ parameters	$17705[R($ int $)=0.0242]$	$4681 / 2 / 337$	$11309 / 0 / 575$
GOF on F^{2}	$17705 / 44 / 818$	0.965	1.036
final R indices	1.032	$R_{1}=0.0756$	$R_{1}=0.0932$
$[I>2 \sigma(I)]$	$R_{1}=0.0347$	$R_{\mathrm{w}}=0.1935$	$R_{\mathrm{w}}=0.2505$
final R indices	$R_{\mathrm{w}}=0.0899$	$R_{1}=0.1165$	$R_{1}=0.1435$
$($ all data $)$	$R_{1}=0.0408$	$R_{\mathrm{w}}=0.2405$	$R_{\mathrm{w}}=0.3180$

Summary Remarks

Herein we have reported a new series of well-characterized chiral tridentate Schiff base ligands and their zinc complexes. The complexes are shown to be active toward the ROP of lactide. The polymerization processes appear to be living systems as depicted by a linear relationship between M_{n} and $\%$ conversion, as well as, a low polydispersity index. Experimental results revealed that enantiomeric pure complexes did not preferably polymerize one enantiomer over the other as is evident from the ratios of $k_{\mathrm{d}(\text { obsd })} / k_{\mathrm{l} \text { (obsd) }}$ being close to 1 for all catalysts investigated. However, the substituent of the chiral tridentate Schiff base ligands played a major role in producing heterotactic polylactide from rac-lactide, and it was shown that complex II6c produced the highest degree of heterotactic polylactide with P_{r} values of 0.83 and 0.89 at ambient and $-30^{\circ} \mathrm{C}$, respectively. As might be anticipated, the T_{g} of the heterotactic polylactides increased significantly as the degree of heterotacticity increased.

CHAPTER III

RING-OPENING POLYMERIZATION OF L-LACTIDE AND ε CAPROLACTONE UTILIZING BIOCOMPATIBLE
 ZINC CATALYSTS: RANDOM COPOLYMERIZATION OF L-LACTIDE AND ε-CAPROLACTONE*

Introduction

Polylactide, poly(ε-caprolactone), and their copolymers are among the most widely used polymeric materials in medical and pharmaceutical applications due to their physical properties and nontoxicity to humans. Biodegradable sutures, artificial skin, resorbable prostheses, and controlled drug release ${ }^{54}$ are examples of the applications of these polymeric materials, since these copolymers can be metabolized and remove from the body via normal metabolic pathways. ${ }^{54 c, 55}$ It has been shown that polylactides from rac-lactide have shorter half-life (a few weeks) in vivo than that of polycaprolactone (one year), ${ }^{56}$ in addition, the permeability to drugs of polycaprolactone is higher than polylactide. ${ }^{54 \mathrm{c}}$ The permeability to drugs and biodegradability ${ }^{2 \mathrm{a}, 54 \mathrm{a}, 57}$ of copolymers of these two monomers can be fine-tuned by the copolymer composition, monomer sequencing, and polymer's molecular weight. ${ }^{28}$ Therefore, a number of reports have been focused on producing both random ${ }^{39 \mathrm{u}, 56 \mathrm{~b}, 58}$ and block ${ }^{39 \mathrm{u}, 54 \mathrm{~b}, 59}$ copolymers from

[^2]lactide and ε-caprolactone to provide copolymers with desirable properties.
While a large variety of metal complexes successfully catalyzes the ring-opening polymerization (ROP) of lactide and ε-caprolactone, it is desirable to use biocompatible metals since polylactides, ε-caprolactone, and their copolymers are widely utilized in biomedical applications. In Chapter II, we have reported the effective use of zinc complexes derived from natural amino acids (Scheme 1) for the ROP of lactides that produces heterotactic polylactide with P_{r} value up to $0.89 .{ }^{60}$ Since ε-caprolactone is expected to undergo the ring-opening polymerization in the same manner as lactide, we have investigated these zinc complexes for the ROP of ε-caprolactone. Our results show that these zinc complexes are active catalysts for the ring-opening polymerization of ε caprolactone. Included in these studies is the production of copolymers from L-lactide and ε-caprolactone as well as the effect of the monomer composition on the thermal properties of produced polymers.

Experimental Section

Methods and Materials. All manipulations were carried out using a double manifold Schlenk vacuum line under an argon atmosphere or an argon-filled glovebox unless otherwise stated. Toluene was freshly distilled from sodium/benzophenone before use. Methanol and dichloromethane were purified by an MBraun Manual Solvent Purification System packed with Alcoa F200 activated alumina desiccant. Pentane was freshly distilled from CaH_{2}. Deuterated chloroform and deuterated benzene from Cambridge Isotope Laboratories Inc. were stored in the glovebox and used as received. L-Lactide and rac-lactide were gifts from PURAC America Inc. These lactides were
recrystallized from toluene, dried under vacuum at $40^{\circ} \mathrm{C}$ overnight, and stored in the glovebox. ε-Caprolactone was distilled under vacuum from CaH_{2} and strored on 4A molecular sieves in the glovebox. The zinc complexes III1a and III1b were synthesized according to our previously reported procedure. ${ }^{60}$

Measurement. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Unity+ 300 MHz and VXR 300 MHz superconducting NMR spectrometers. Molecular weight determinations were carried out with a Viscotek Modular GPC apparatus equipped with ViscoGEL I-series columns $(\mathrm{H}+\mathrm{L})$ and Model 270 dual detector comprised of refractive index and light scattering detectors. DSC measurements were performed with a Polymer DSC by Mettler Toledo. The samples were scanned from -100 to $200{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The glass transition temperature $\left(T_{\mathrm{g}}\right)$, the crystallization temperature $\left(T_{\mathrm{c}}\right)$, and the melting temperature $\left(T_{\mathrm{m}}\right)$ of polymers were determined from the second heating at heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$. For these DSC measurements, samples were first heated to $200^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ and cooled to $20^{\circ} \mathrm{C}$ for two cycles. The samples were then cooled to $-100^{\circ} \mathrm{C}$ by liquid nitrogen, followed by heating to $200^{\circ} \mathrm{C}$ at a heating rate of 5 ${ }^{\circ} \mathrm{C} / \mathrm{min}$ to determine their thermal properties $\left(T_{\mathrm{g}}, T_{\mathrm{c}}\right.$, and $\left.T_{\mathrm{m}}\right)$.

Lactide Polymerization Procedure. In a typical experiment (Table III-1, entry 1), in a glovebox, a Schlenk flask was charged with a solution of complex III1a (8.58 $\mathrm{mg}, 13.87 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ equipped with a magnetic stirring bar. To this solution was added rac-lactide ($100 \mathrm{mg}, 0.69 \mathrm{mmol}, 50$ equiv). The mixture was stirred at room temperature for 60 min . After a small sample of the crude solution was removed with a syringe to be characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the product was isolated and
purified by precipitation from dichloromethane by the addition of 5\% hydrochloric acid in methanol. The polymer was collected and dried under vacuum to constant weight.

Caprolactone Polymerization Procedure. In a typical experiment (Table III-2, entry 1), in a glovebox, a glass ampule equipped with a magnetic stirring bar was charged with complex III1a ($23.80 \mathrm{mg}, 38.48 \mu \mathrm{~mol}$) and ε-caprolactone $(219.65 \mathrm{mg}$, $1.92 \mathrm{mmol}, 50$ equiv). The ampule was sealed under vacuum. The reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 60 min . After the reaction mixture was allowed to cool to room temperature, 1 mL of CDCl_{3} was added to the reaction mixture, and the reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The product was isolated and purified by precipitation from dichloromethane by the addition of 5\% hydrochloric acid in methanol. The polymer was collected and dried under vacuum to constant weight.

Copolymerization of \mathbf{L}-Lactide and ε-Caprolactone. In a typical experiment (Table on page 53, entry 2), in a glovebox, a glass ampule equipped with a magnetic stirring bar was charged with complex III1a ($8.58 \mathrm{mg}, 13.87 \mu \mathrm{~mol}$), ε-caprolactone (285.06 mg, $2.49 \mathrm{mmol}, 180$ equiv), and L-lactide ($40 \mathrm{mg}, 0.27 \mathrm{mmol}, 20$ equiv). The ampule was sealed under vacuum. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 30 min . After the reaction mixture was allowed to cool to room temperature, 1 mL of CDCl_{3} was added, and the solution was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The product was isolated and purified by precipitation from dichloromethane by the addition of 5% hydrochloric acid in methanol. The polymer was collected and dried under vacuum to constant weight.

Kinetic Studies. Polymerizations of L-lactide and ε-caprolactone using complexes III1a and III1b were monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. L-Lactide or ε caprolactone and the corresponding zinc complex were dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$, and the $\%$ conversion was investigated from the integration of polymer and monomer signals. The chemical shifts of polylactide are $5.01(\mathrm{q}, \mathrm{H})$ and $1.32\left(\mathrm{~d}, \mathrm{CH}_{3}\right)$, and the chemical shifts of lactide monomer are $3.79(\mathrm{q}, \mathrm{H})$ and $1.16\left(\mathrm{~d}, \mathrm{CH}_{3}\right)$. The chemical shifts of polycaprolactone are $3.94\left(2 \mathrm{H}, \mathrm{t},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)$, $2.09\left(2 \mathrm{H}, \mathrm{t},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 1.47$ $\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right)$, and $1.13\left(4 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right)$. The chemincal shifts of ε-caprolactone are $3.46\left(2 \mathrm{H}, \mathrm{t},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 2.09\left(2 \mathrm{H}, \mathrm{t},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 1.12\left(2 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right)$, and $0.98\left(4 \mathrm{H}, \mathrm{m},-\mathrm{CH}_{2}-\right)$.

Results and Discussion

Polymerization of L-Lactide and ε-Caprolactone. As mentioned earlier, the zinc complexes indicated in Scheme III-1 were shown to be very effective catalysts for the controlled ring-opening polymerization (ROP) of lactides. Since lactides and lactones undergo similar ROP processes via a coordination-insertion mechanism, ${ }^{43 \mathrm{~g}, 43 \mathrm{p} \text {, }}$ ${ }^{61}$ it is of interest to examine the efficiency of these zinc derivatives to catalyze the ROP of ε-caprolactone. First, we determined the catalytic activity of complexes III1a and III1b for the ROP of L-lactide and ε-caprolactone under identical reaction conditions. This was achieved by monitoring the polymerization reactions in $\mathrm{C}_{6} \mathrm{D}_{6}$ at ambient temperature by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Both complexes were found to be active catalysts for the ROP of L-lactide and ε-caprolactone, providing polymers with the expected molecular weights and with low polydispersity indices. The polymerization processes
were shown to be first-order in monomer concentrations as depicted in Figure III-1, affording the rate constants summarized in Table III-1. A zinc analogue complex containing a $\mathrm{N}, \mathrm{N}, \mathrm{O}$ ligand where the nitrogen atom is saturated was found to catalyze the ROP of lactide at $25{ }^{\circ} \mathrm{C} \sim 20$ times faster than complex $\mathbf{1 a}, 2.2 \mathrm{M}^{-1} \mathrm{~s}^{-1} v s$ $0.11 \mathrm{M}^{-1} \mathrm{~s}^{-1}{ }^{43 \mathrm{~g}}$

Scheme III-1

Table III-1. Rate Constants for the ROP of L-Lactide or ε-Caprolactone in the Presence of Zinc Complexes. ${ }^{a}$

entry	\mathbf{M}	$\boldsymbol{k}_{\text {L-lactide }}\left(\mathbf{M}^{-1} \mathbf{s}^{-1}\right)$	$\boldsymbol{k}_{\varepsilon \text { c-apro }} \mathbf{M}^{-\mathbf{1}-\mathbf{s}^{-1}}$	$\boldsymbol{k}_{\text {L-lactide }} / \boldsymbol{k}_{\varepsilon \text { capro }}$
$\mathbf{1}$	III1a	0.110 ± 0.005	$2.17 \pm 0.10 \times 10^{-3}$	51
$\mathbf{2}$	III1b	$(8.90 \pm 0.12) \times 10^{-3}$	$(2.90 \pm 0.10) \times 10^{-3}$	3

${ }^{a}$ Each reaction was performed in $\mathrm{C}_{6} \mathrm{D}_{6}$ at ambient temperature. Monomer and catalyst concentrations were held constant at 0.34 M and 0.0069 M respectively. The rate constants were determined from the slope of the plots of $\ln \left([\mathrm{LA}]_{0} /[\mathrm{LA}]_{\mathrm{t}}\right)$ vs time divided by [catalyst].

Figure III-1. Plot of $\ln \left([\mathrm{M}]_{0} /[\mathrm{M}]_{\mathrm{t}}\right.$ vs time for ROP of L-lactide (red solid circles) or ε caprolactone (blue solid triangles) catalyzed by the specified zinc complex at ambient temperature. Each reaction was performed in $\mathrm{C}_{6} \mathrm{D}_{6}$ at ambient temperature. Monomer and catalyst concentrations were held constant at 0.34 and 0.0069 M , respectively. (A) Complex III1a: the rate constants were determined by the slope of the plots and were found to be $0.110 \pm 0.005 \mathrm{M}^{-1} \mathrm{sec}^{-1}$ with $R^{2}=0.999$ for ROP of L-lactide and ($2.17 \pm$ 0.10) $\times 10^{-3} \mathrm{M}^{-1} \sec ^{-1}$ with $R^{2}=0.994$ for ROP of ε-caprolactone. (B) Complex III1b: the rate constants were determined by the slope of the plots and were found to be ($8.90 \pm$ $0.12) \times 10^{-3} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ with $R^{2}=0.998$ for ROP of L-lactide and $(2.90 \pm 0.10) \times 10^{-3} \mathrm{M}^{-}$ ${ }^{1} \sec ^{-1}$ with $R^{2}=0.998$ for ROP of ε-caprolactone.

As is evident from Figure III-1 as well as Table III-1, complex III1a catalyzes the polymerization of L-lactide significantly faster than complex III1b, with the ratio of $k_{\text {obsd }}$ values determined to be 12.4 at ambient temperature. This behavior has previously been noted for a slightly different set of reaction conditions and was ascribed to sterically bulky substituents on the Schiff base ligands being rate enhancing. ${ }^{60}$ However, as depicted in Figure III-2 for overlapping stick structures for the two catalysts as defined by X-ray crystallography, in the solid state the steric impact of the benzyl group appears to be minimal. Hence, the rate enhancement observed may at least in part be due to the electron-donating effect of the benzyl substituent. By way of contrast, the rate constants for the ROP of ε-caprolactone catalyzed by the two zinc complexes were quite similar at 2.17×10^{-3} and $2.90 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at ambient temperature. This difference in rates of polymerization of the two monomers may reflect the difference in Lewis basicity of lactides vs caprolactone. Even if the Lewis basicities are similar, lactides have two carboxyl groups for potential coordination at the metal center. Another consideration is that the alkoxide resulting from the ring-opening of a caprolactone monomer is a primary alkoxide which should bind to zinc more strongly than the secondary alkoxide afforded from ring-opening lactide, thereby resulting in a slower polymerization process.

Figure III-2. (a) X-ray crystal structure of complex III1a. (b) Stick drawings of complexes III1a (red) and III1b (blue) obtained for X-ray determined structures. ${ }^{60}$

The preparation of polymer samples of polylactide and polycaprolactone as a function of the monomer-to-initiator ratio was carried out using complex III1a as catalyst. The ROP of rac-lactide was performed in chloroform at ambient temperature, whereas the ring-opening polymerization of caprolactone was carried out in the melt at $110{ }^{\circ} \mathrm{C}$. The resulting polymers were isolated and purified by precipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $5 \% \mathrm{HCl}$ in methanol followed by drying in vacuo. Gel permeation chromatography (dual RI and light scattering detectors) using polystyrene as a standard was used to determine the molecular weights and polydispersities of the purified polymers in THF. These experiments revealed that complex III1a behaved in a well-controlled manner producing polylactide with narrow PDIs (1.05-1.08) at ambient temperature as shown in Table III-2. Furthermore, the polymerization process displayed a linear correlation between M_{n} and the monomer/initiator ratio as illustrated in Figure III-3a. A
pseudoliving character for the ROP of ε-caprolactone is seen in the linear relationship between M_{n} and the monomer/initiator ratio (Table III-3 and Figure III-3b); however, the polydispersity indices are rather broad (1.23-1.56). In addition, the molecular weights of the polycaprolactones were not in agreement with their expected theoretical values. These findings suggest the existence of transesterification occurring during the polymerization process (vide infra).

Table III-2. Polylactides Produced from the ROP of Rac-Lactide in Chloroform at Ambient Temperature.

entry	M/I	Conversion (\%) ${ }^{a}$	$M_{\text {n }}$			PDI
			Theoretical ${ }^{\text {b }}$	GPC	$0.58 M_{\mathrm{n}, \mathrm{GPC}}{ }^{\text {c }}$	
1	50	97	6990	8630	5000	1.08
2	300	96	41509	96191	55790	1.05
3	700	96	96855	181730	105400	1.08
4	1000	96	138782	285108	165360	1.05
5	2000	96	279612	530141	307480	1.07
${ }^{a}$ Obtained from ${ }^{1} \mathrm{H}$ NMR spectroscopy. For entry 1 the reaction times was 2 hours, all other reactions were carried out for 24 hours. ${ }^{b}$ Theoretical $M_{\mathrm{n}}=(\mathrm{M} / \mathrm{I}) \times$ ($\%$ conversion) x (mol. wt. of lactide). ${ }^{c} M_{\mathrm{n}}$ values corrected by the equation: $M_{\mathrm{n}}=0.58 M_{\mathrm{n}}, \mathrm{GPC} .{ }^{51}$						

Copolymerization of L-Lactide and ε-Caprolactone. The random copolymerization of L-lactide and ε-caprolactone was carried out in the melt at $110{ }^{\circ} \mathrm{C}$ using complex III1a as the catalyst. In order to gain insight into the copolymerization process of these cyclic esters in the presence of this catalytic system, a series of reactions were performed at various molar ratio of L-lactide and ε-caprolactone. These copolymerization were undertaken in sealed ampules stirred at $110^{\circ} \mathrm{C}$ for 30 min . The resulting copolymers were purified by precipitation from dichloromethane by the addition of 5\% hydrochloric acid in methanol. The copolymers were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, gel permeation chromatography, and differential scanning
calorimetry. The results of these random copolymerization reactions are summarized in
Table III-4.

Figure III-3. (a) Linear relationship observed between M_{n} and monomer/initiator ratio of polylactide from rac-lactide catalyzed by complex III1a at ambient temperature in CHCl_{3}. (b) Linear relationship observed between M_{n} and monomer/initiator ratio of polycaprolactone from ε-caprolactone in bulk at $110^{\circ} \mathrm{C}$.

Table III-3. Polycaprolactone Produced from the ROP of ε-caprolactone in the melt at $110^{\circ} \mathrm{C}$.

entry	M/I x monomer conversion	M/I	Conversion (\%) ${ }^{\text {a }}$	M_{n}		PDI
				Theoretical ${ }^{\text {b }}$	GPC	
1	50	50	100	5707	5115	1.56
2	198	200	99	22828	13632	1.55
4	460	2000	23	45656	19613	1.23
5	595	700	85	67114	31887	1.43

${ }^{a}$ Obtained from ${ }^{1} \mathrm{H}$ NMR spectroscopy. The reaction times was 60 mins. ${ }^{b}$ Theoretical $M_{\mathrm{n}}=(\mathrm{M} / \mathrm{I}) \times(\%$ conversion) x (mol. wt. of ε-caprolactone).

Table III-4. Copolymerization of L-Lactide and ε-Caprolactone with Complex III1a. ${ }^{a}$

entry	L-lactide: ε-CL in the feed (mmol);$\mathrm{M} / \mathrm{I}=200$	\%conversion		\% lactide in the polymer	M_{n}		PDI
		lactide	CL		Theoritical ${ }^{\text {b }}$	GPC	
1	0:100		100	0	22828	13632	1.55
2	10:90	98	82	15	19729	9253	1.26
3	30:70	98	98	30	24148	21341	1.46
4	50:50	99	84	55	23887	16330	1.70
5	70:30	98	86	77	26067	21062	2.12
6	90:10	99	99	95	28227	N/A ${ }^{\text {c }}$	N/A ${ }^{c}$
7	100:0	99		100	28828	N/A ${ }^{\text {c }}$	N/A ${ }^{c}$

${ }^{a}$ Each reaction was performed in the melt at $110{ }^{\circ} \mathrm{C}$ using complex III1a 30 mins: (L-lactide $+\varepsilon$-caprolactone) : complex III1a $=200 .{ }^{b}$ Theoretical $M_{\mathrm{n}}=[(\mathrm{M} / \mathrm{I}) \times(\%$ conversion of L-lactide) x (mol. wt. of L-lactide) $]+[(\mathrm{M} / \mathrm{I}) \mathrm{x}$ (\% conversion of ε-caprolactone) x (mol. wt. of ε-caprolactone)]. ${ }^{c}$ Molecular weight was not measured because of polymer's insolubility in THF due to its high crystallinity.

The percentage of each monomer incorporated into polymer chains was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in CDCl_{3}. The methylene signal of polycaprolactone $\left(-\mathrm{COO}^{-} \mathrm{CH}_{2}-\right)$ is observed around 4.00 ppm , and the methine signal of polylactide $\left(-\mathrm{COO}-\mathrm{CHCH}_{3}\right)$ appears around 5.20 ppm . Experimental observations revealed that the percent of lactide and ε-caprolactone units in the polymer chains corresponded well with the monomer feed ratios. In all the cases, the percent conversion of lactide was $98-99 \%$, while the percent conversion of ε-caprolactone ranged from 82 to 99% (Table III-4). This result correlates with the reactivity of complex III1a which displayed a higher
reactivity toward the ROP of L-lactide as discussed earlier. Two additional copolymerization reactions were performed for the 50:50 feed ratio of lactide:CL for shorter reaction times of 8 and 16 min . These runs resulted in 79 and 94% conversions of lactide and 75 and 80% conversions of CL with the percentages of lactide in the copolymers of 51 and 54%, respectively. Hence, these results are not very different from entry 5 which resulted in a copolymer composed of 55% lactide. The dependence of the molecular weights of the copolymers on monomer/initiator ratios was investigated by performing a series of experiments as listed in Table III-5. The experimental results revealed that there is a linear correlation of M_{n} and monomer/initiator ratio (Figure III4). All molecular weights of the produced copolymers were lower than their theoretical values, and the polydispersity indices were broad compared to those of their homopolymers.

Table III-5. Molecular Weight of Copolymer Depending on M/I. ${ }^{a}$

entry	M / I(lactide: $\mathrm{CL}=70: 30$)	\%conversion ${ }^{\text {b }}$		\% lactide in the polymer ${ }^{b}$	M_{n}		PDI
		lactide	CL		Theoritical ${ }^{\text {c }}$	GPC	
1	100	99	87	73	10933	8923	2.50
2	200	98	86	77	22828	21062	2.12
3	400	98	54	84	47754	39879	2.10
4	800	99	40	90	91669	$\mathrm{N} / \mathrm{A}^{d}$	$\mathrm{N} / \mathrm{A}^{d}$
5	1600	73	20	95	127191	$\mathrm{N} / \mathrm{A}^{d}$	$\mathrm{N} / \mathrm{A}^{d}$
${ }^{a}$ Each spectro conver in THF	action was performed opy. ${ }^{c}$ Theoretical M_{n} n) x (mol. wt. of ε-cap ue to its high crystallin	melt at M/IO x (tone)]. ${ }^{d}$		g complex III1a of L-lactide) x eight was not mea	30 mins. ${ }^{b}$ Ob ol. wt. of L-la ed because of	ned fro de] + [lymer's	HMR x (\% lubility

As illustrated in Table III-4 and Figure III-5, increasing the percentage of Llactide in the feed from 0 to 100% resulted in the formation of ε-caprolactone and lactide linkages, with the ${ }^{1} \mathrm{H}$ NMR signals for the CL-LA heterodiads resonances increasing.

That is, as seen in Figure III-5a-d, the intensities of the resonances assigned to ε (CL-LA) and α (CL-LA) are increased as the mole ratio of the lactide in the monomer feed increases, indicative of a higher propensity for random copolymerization behavior. In addition, the copolymer's microstructure was assessed by ${ }^{13} \mathrm{C}$ NMR spectroscopy in the carbonyl region of the spectra. Figure III-6 displays the ${ }^{13} \mathrm{C}$ NMR spectrum (a) of a mixture of polylactide and polycaprolactone, with spectra for the random copolymers with increasing lactide compositions in (b) (15\%), (c) (30\%), and (d) (50\%). The ${ }^{13} \mathrm{C}$ NMR carbonyl sequences were assigned according to the reported literature. ${ }^{62} \mathrm{~A}{ }^{13} \mathrm{C}$ NMR resonance at 170.9 ppm corresponds to the carbonyl group of a CapLCap linkage, indicative of transeserification occurring during the copolymerization process.

Figure III-4. Linear relationship observed between M_{n} and monomer/initiator ratio of copolymer from L-lactide and ε-caprolactone catalyzed by complex III1a in the melt at $110^{\circ} \mathrm{C}$.

Figure III-5. ${ }^{1} \mathrm{H}$ NMR spectra of the copolymer in CDCl_{3} at ambient temperature showing the ε - and α-methylene ranges in the copolymers of entry 1 (a), entry 2 (b), entry 3(c), entry 4 (d) from Table III-4.

DSC Studies. The thermal properties of the polymers prepared in this study were measured by differential scanning calorimetry. The thermal parameters are listed in Table III-6 for polylactide, polycaprolactone, and their copolymers. DSC thermograms of the copolymers of varying composition are provided in Figure III-7. As anticipated, the thermal properties for the copolymers are very dependent on the composition of the monomers incorporated in the polymer chains. That is, the T_{g} of the copolymers increased from $-67^{\circ} \mathrm{C}$ (pure polycaprolactone) to $60^{\circ} \mathrm{C}$ (pure polylactide) as the percent of lactide units in the copolymer increased (Figure III-8). The values calculated from Fox law fit reasonably well with the obtained values listed in Table III-6. The same trend was observed for T_{m}, as the crystalline units (lactide) increased the T_{m} increased as noted
in entries 6-10 in Table III-6. By way of contrast, the T_{c} 's of the copolymers decreased with increasing lactide content (entries 7-10).

Figure III-6. ${ }^{13} \mathrm{C}$ NMR spectra of the copolymer in CDCl_{3} at ambient temperature of the mixture of polylactide and polycaprolactone (a), entry 2 (b), entry 3(c), entry 4 (d) from Table III-4.

Table III-6. Thermal Properties of Copolymers of Polylactide and Polycaprolactone.

entry	\% lactide in the copolymers ${ }^{a}$	$T_{\mathrm{g}}\left({ }^{\circ} \mathrm{C}\right)$	$T_{\mathrm{g}}{ }^{b}\left({ }^{\circ} \mathrm{C}\right)$	$T_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	$T_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)$
1	0	-67	-67	-62	57
2	15	-60	-47	-55	49
3	30	-31	-40	n.d.	49
4	55	9	-24	n.d.	n.d.
5	73	22	12	n.d.	n.d.
6	77	35	19	n.d.	164
7	84	42	30	116	166
8	90	52	41	105	171
9	95	55	50	98	175
10	100	60	60	88	179

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy on purified copolymers. The glass transition temperature $\left(T_{\mathrm{g}}\right)$, the crystallization temperature (T_{c}), and the melting temperature $\left(T_{\mathrm{m}}\right)$ of copolymers were determined from the $2^{\text {nd }}$ heating at heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min} .{ }^{b}$ Theoretical values calculated by Fox equation according to the literature reported. ${ }^{58 \mathrm{a}}$

Figure III-7. DSC curves (second heating run) of polymers from table III-5, entries 1-10 from top to bottom.

Figure III-8. Plots of the dependence of $T_{\mathrm{g}}(\mathbf{a}), T_{\mathrm{c}}(\mathbf{b})$, and $T_{\mathrm{m}}(\mathbf{c})$ of copolymers on the molar \% lactide in copolymers.

Summary Remarks

Herein we have reported biocompatible zinc complexes which are effective catalysts for the ring-opening polymerization of L-lactide and ε-caprolactone. The most active catalyst utilized in detailed studies contained a Schiff base ligand derived from the natural amino acid phenylalanine. Although homopolymerization rates in the presence of this initiator of lactide and caprolactone differ significantly in benzene at ambient temperature, the polyester resulting from the copolymerization of equimolar quantity of lactide and caprolactone has a close content of both monomers. That is, copolymerization of L-lactide and caprolactone in the presence of this catalyst in the melt at $110{ }^{\circ} \mathrm{C}$ afforded random copolymers of content consistent with the monomer mixture in the feed. This suggests that caprolactone significantly inhibits the reactivity of lactide leading to a matched reactivity of the two monomers during the copolymerization process. Nevertheless, reactions run under these conditions showed evidence of some transesterification occurring during the copolymerization process. Differential scanning calorimetry revealed the thermal properties of the copolymers to be highly dependent upon the monomer compositions. For example, the T_{g} is adjustable in a linear fashion between -67 and $60{ }^{\circ} \mathrm{C}$ by controlling the relative proportions of lactide and caprolactone content. Similar trends were observed in the measured T_{c} and T_{m} parameters as a function of monomer ratio in the copolymers.

CHAPTER IV

STEREOSELECTIVE RING-OPENING POLYMERIZATION OF RAC-LACTIDES CATALYZED BY CHIRAL AND ACHIRAL ALUMINUM HALF-SALEN COMPLEXES *

Introduction

Polylactides are biodegradable polymers derived from renewable resources such as corn, wheat, and sugar beets. ${ }^{2 \mathrm{a}, 20,380,63}$ These polymeric materials have received much attention over the past decade because of their attractive physical and mechanical properties, which lend them to having numerous applications in medical ${ }^{6}$ and microelectronic areas. ${ }^{64}$ Of importance, polylactides and various copolymers thereof are readily metabolized in the human body by normal metabolic pathways. ${ }^{54 \mathrm{c}}$ The thermal properties of polylactides are highly dependent on the microstructures of the polylactides. Therefore, researchers have focused their studies on synthesizing stereocomplex polylactides from rac-lactide, utilizing catalytic systems which can control the tacticity of the polymers formed. Stereocomplexed polylactides can thereby be produced from a blend of poly-L-lactide and poly-D-lactide which have melting temperatures up to $230{ }^{\circ} \mathrm{C} .{ }^{65}$

[^3]The use of metal-based catalysts, especially those derived from a biocompatible metal, for the ring-opening polymerization (ROP) of cyclic esters has been the subject of numerous reviews. ${ }^{6 \mathrm{c}, 9,32}$ Relevant to this topic, in Chapter II, we have reported the ROP of rac-lactide using zinc-based half-salen complexes derived from chiral natural amino acids as catalysts. ${ }^{60}$ Although these complexes were chiral, our observations revealed these zinc complexes underwent ROP of rac-lactide via a chain-end control mechanism to provide heterotactic polylactide. ${ }^{39 t,}{ }^{66}$ While chiral ligands bound to active metal centers are typically expected to play a major role in stereoselectivity via an enantiomorphic site control mechanism, ${ }^{13 a, 13 b}$ it is generally not true for the ROP of cyclic esters by zinc-catalyzed systems. Indeed, zinc complexes derived from chiral ${ }^{38 e}$, $43 \mathrm{~s}, 60,67$ or achiral ligands ${ }^{21 \mathrm{~b}, 22,38 \mathrm{c}, 381,43 \mathrm{a}, 43 \mathrm{j}, 431,43 \mathrm{n}, 43 \mathrm{r}, 68}$ which have been reported in the literature thus far undergo a chain-end control mechanism to produce heterotactic polylactides. On the other hand, chiral ${ }^{10 \mathrm{a}, 15,18,39 \mathrm{~b}-\mathrm{d}, 39 \mathrm{o}, 65,69}$ and achiral ${ }^{12-13,17,39 \mathrm{~g}, 39 \mathrm{n}, 39 \mathrm{r} \text {, }}$ ${ }^{39 t}, 70$ complexes of aluminum have shown significant stereocontrol for the ROP of raclactide to afford polylactides with high degrees of isotactic enrichment. Chisholm and co-workers have shown that, in addition to chiral ligands bound to aluminum, other factors such as the chirality of the alkoxide initiator and solvents can contribute to the stereoselectivity in the ROP of lactides when utilizing aluminum salen catalysts. ${ }^{18,390}$

In Chapter IV, we have synthesized and characterized structurally a series of aluminum half-salen complexes containing both chiral and achiral ligands and report some of our preliminary observations on their use as catalysts for the ring-opening polymerization of lactides.

Experimental Section

Methods and Materials. All manipulations were carried out using a doublemanifold Schlenk vacuum line under an argon atmosphere or an argon-filled glovebox unless otherwise stated. Toluene was freshly distilled from sodium/benzophenone before use. Methanol and dichloromethane were purified by an MBraun Manual Solvent Purification System packed with Alcoa F200 activated alumina desiccant. Pentane was freshly distilled from CaH_{2}. Deuterated chloroform and deuterated benzene from Cambridge Isotope Laboratories Inc. were stored in the glovebox and used as received. L- and D-lactide and rac-lactide were gifts from PURAC America Inc. These lactides were recrystallized from toluene, dried under vacuum at $40^{\circ} \mathrm{C}$ overnight, and stored in the glovebox. 4-Amino-1-butanol and triethylaluminium were purchased from TCI America and Sigma-Aldrich, respectively, and used without further purification. Ethanolamine, 3-amino-1-propanol, 5-amino-1-pentanol, trans-2-aminocyclohexanol hydrochloride, 2-hydroxy-3-methoxybenzaldehyde, rac-methionine, rac-phenylalanine, and tert-butyldimethylchlorosilane were purchased from Alfa Aesar and used as received. 3,5-Di-tert-butyl-2-hydroxybenzaldehyde and 3-(tert-butyldimethylsilyl)-2-hydroxy-5-methylbenzaldehyde were prepared according to the published procedure. ${ }^{40 c}$, 40d, 48b, 71 All other compounds and reagents were obtained from Sigma-Aldrich and were used without further purification. Analytical elemental analysis was provided by Canadian Microanalytical Services Ltd.

Measurements. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Unity+ 300 or 500 MHz and VXR 300 or 500 MHz superconducting NMR spectrometers. Molecular weight
determinations were carried out with a Viscotek Modular GPC apparatus equipped with ViscoGEL I-series columns ($\mathrm{H}+\mathrm{L}$) and Model 270 dual detector comprised of refractive index and light scattering detectors. DSC measurements were performed with a Polymer DSC instrument by Mettler Toledo. The samples were scanned from -100 to $200{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The glass transition temperature $\left(T_{\mathrm{g}}\right)$, the crystallization temperature $\left(T_{\mathrm{c}}\right)$, and the melting temperature $\left(T_{\mathrm{m}}\right)$ of polylatides were determined from the second heating at a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$. X-ray crystallography was done on a Bruker GADDS X-ray diffractometer under a nitrogen cold stream maintained at 110 K . Crystal data and details of the data collection for complexes $\mathbf{2 f}$ (cis) and $2 f$ (trans) are provided in Table on page 93.

General Procedure for Synthesis of Tridentate Schiff Base Ligand IV1a-d.

 trans-2-Aminocyclohexanol hydrochloride (1.1 equiv) and triethylamine (1.09 equiv) were added to the corresponding benzaldehyde (1.0 equiv) in $\mathrm{MeOH}(30 \mathrm{~mL}$). The solution mixture was heated to reflux overnight, and the solvent was removed under reduced pressure to give a yellow solid. The resulting yellow solid was washed with water ($3 \times 20 \mathrm{~mL}$) to remove excess trans-2-aminocyclohexanol hydrochloride and triethylamine. The organic layer was separated, dried over NaSO_{4}, and concentrated to dryness under reduced pressure to afford the crude products; these were crystallized in pentane to give a yellow powder in $81-95 \%$ yield.(E)-2,4-Di-tert-butyl-6-(((trans-2-hydroxycyclohexyl)imino)methyl)phenol
(IV1a; $\left.\mathbf{L}^{\mathbf{1}} \mathbf{- H}\right)$. Following the general procedure for synthesis of the tridentate Schiff base ligands IV1a-d, trans-2-aminocyclohexanol ($0.711 \mathrm{~g}, 4.69 \mathrm{mmol}, 1.1$ equiv) and
triethylamine $(0.470 \mathrm{~g}, 4.65 \mathrm{mmol}, 1.09$ equiv) were added to 3,5 -di-tert-butyl-2hydroxybenzaldehyde ($1.00 \mathrm{~g}, 4.26 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(30 \mathrm{~mL})$. The solution mixture was heated to reflux overnight, and the solvent was removed under reduced pressure to give a yellow solid. The resulting yellow solid was washed with water ($3 \times$ 20 mL) to remove excess trans-2-aminocyclohexanol hydrochloride and triethylamine. The organic layer was separated, dried over NaSO_{4}, and concentrated to dryness under reduced pressure to afford product IV1a, which was crystallized in pentane to give a yellow powder in 95% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.31\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.35-2.4\left(\mathrm{bm}, 8 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\right), 2.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.69(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 7.12\left(\mathrm{~d}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.40\left(\mathrm{~d}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 8.45(\mathrm{~s}$, $1 \mathrm{H}, \quad \mathrm{CH}=\mathrm{N}), \quad 13.60(\mathrm{~s}, \quad 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.28$ $\left(\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 24.43\left(\mathrm{OCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $29.42\left(\mathrm{C}\left({ }^{\mathrm{P}} \mathrm{CH}_{3}\right)_{3}\right)$, $\left.31.47\left(\mathrm{C}^{\circ}{ }^{\circ} \mathrm{CH}_{3}\right)_{3}\right)$, $32.51\left(\mathrm{NCHCH}_{2} \mathrm{CH}_{2}\right), 32.83\left(\mathrm{OCHCH}_{2} \mathrm{CH}_{2}\right), 34.12\left({ }^{\mathrm{P}} \mathrm{CCH}_{3}\right), 35.01\left({ }^{\circ} \mathrm{CCH}_{3}\right), 73.68$ $\left(\mathrm{NCHCH}_{2}\right), 75.55\left(\mathrm{OCHCH}_{2}\right), 117.73,126.04,127.06,136.66,140.22,157.97$ (Ar), $166.59(C=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{2}$: $\mathrm{C}, 76.09$; $\mathrm{H}, 10.03$; $\mathrm{N}, 4.23$. Found: C , 75.93; H, 10.13; N, 4.16. HRMS (ESI): $m / z 332.2581\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{2}$ 331.25.

(E)-2-(((trans-2-Hydroxycyclohexyl)imino)methyl)-6-methoxyphenol

(IV1b; $\mathbf{L}^{\mathbf{2}} \mathbf{- H}$). Following the general procedure for synthesis of the tridentate Schiff base ligands IV1a-d, trans-2-aminocyclohexanol ($1.09 \mathrm{~g}, 7.22 \mathrm{mmol}, 1.1$ equiv) and triethylamine $(0.724 \mathrm{~g}, 7.16 \mathrm{mmol}, 1.09$ equiv) were added to 2-hydroxy-3methoxybenzaldehyde ($1.00 \mathrm{~g}, 6.57 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(30 \mathrm{~mL})$. Compound

IV1b was obtained as a yellow powder in 87% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.38, 1.62, 1.81, $2.08\left(\mathrm{bm}, 8 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\right), 3.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.66(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 6.78,6.81,6.84,6.88,6.91,6.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 8.42(\mathrm{~s}$, $1 \mathrm{H}, \quad \mathrm{CH}=\mathrm{N}), \quad 13.84(\mathrm{~s}, \quad 1 \mathrm{H}, \quad \mathrm{OH}) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.12$ $\left(\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \quad 24.28 \quad\left(\mathrm{OCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \quad 32.58 \quad\left(\mathrm{NCHCH}_{2} \mathrm{CH}_{2}\right), \quad 32.62$ $\left(\mathrm{OCHCH}_{2} \mathrm{CH}_{2}\right), 73.59\left(\mathrm{NCHCH}_{2}\right), 74.76\left(\mathrm{OCHCH}_{2}\right), 114.08,117.97,118.42,123.00$, 148.50, $151.94(\mathrm{Ar}), 165.41(C=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 67.45 ; \mathrm{H}, 7.68 ; \mathrm{N}$, 5.62. Found: C, 67.63; H, 7.73; N, 5.60. HRMS (ESI): $m / z 250.1515\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}$ 249.14.
(E)-2-(((trans-2-Hydroxycyclohexyl)imino)methyl)-4-methyl-6(triphenylsilyl)
phenol (IV1c; $\left.\mathbf{L}^{\mathbf{3}} \mathbf{- H}\right)$. Following the general procedure for the synthesis of tridentate Schiff base ligands IV1a-d, trans-2-aminocyclohexanol ($0.338 \mathrm{~g}, 2.23 \mathrm{mmol}, 1.1$ equiv) and triethylamine ($0.223 \mathrm{~g}, 2.21 \mathrm{mmol}, 1.09$ equiv) were added to 2-hydroxy-5-methyl-3-(triphenylsilyl)benzaldehyde ${ }^{71}$ ($0.800 \mathrm{~g}, 2.02 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(30 \mathrm{~mL})$. Compound IV1c was obtained as a yellow powder in 90% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.31,1.56,1.75,2.03\left(\mathrm{bm}, 8 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.97(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 7.07-7.64(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ar})$, $8.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.43\left(\mathrm{CCH}_{3}\right)$, $24.25\left(\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 24.40\left(\mathrm{OCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 32.59\left(\mathrm{NCHCH}_{2} \mathrm{CH}_{2}\right), 32.76$ $\left(\mathrm{OCHCH}_{2} \mathrm{CH}_{2}\right), 73.42\left(\mathrm{NCHCH}_{2}\right), 75.71\left(\mathrm{OCHCH}_{2}\right), 117.73,121.32,127.40,127.67$, $129.24,129.76,134.23,134.68,135.16,135.42,136.35,142.04,163.98$ (Ar), 165.54
$(C=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}: \mathrm{C}, 78.17 ; \mathrm{H}, 6.76$; $\mathrm{N}, 2.85$. Found: $\mathrm{C}, 76.99 ; \mathrm{H}$, 6.67; $\mathrm{N}, 2.16$. HRMS (ESI): $m / z 492.2625\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si} 491.23$.
(E)-2-(tert-Butyldimethylsilyl)-6-(((trans-2-hydroxycyclohexyl)imino) methyl)-4-methylphenol (IV1d; $\mathbf{L}^{\mathbf{4}} \mathbf{- H}$). Following the general procedure for synthesis of tridentate Schiff base ligands IV1a-d, trans-2-aminocyclohexanol ($0.166 \mathrm{~g}, 1.09$ mmol, 1.1 equiv) and triethylamine ($0.110 \mathrm{~g}, 1.08 \mathrm{mmol}, 1.09$ equiv) were added to 2-hydroxy-5-methyl-3-(triphenylsilyl)benzaldehyde ${ }^{71}(0.250 \mathrm{~g}, 0.99 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(30 \mathrm{~mL})$. Compound IV1d was obtained as a yellow powder in 81% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 0.32$ (s, $\left.6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.92$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.37,1.63$, 1.80, $2.08\left(\mathrm{bm}, 8 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\right), 2.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 3.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right)$, $7.05\left(\mathrm{~d}, J=1.78 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}\right), 7.20\left(\mathrm{~d}, J=2.09 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}\right), 8.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N})$, $12.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-4.71\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.61\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $20.43\left(\mathrm{CCH}_{3}\right), 24.28\left(\mathrm{NCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 24.45\left(\mathrm{OCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $27.11\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $32.53\left(\mathrm{NCHCH}_{2} \mathrm{CH}_{2}\right), 32.83\left(\mathrm{OCHCH}_{2} \mathrm{CH}_{2}\right), 73.62\left(\mathrm{NCHCH}_{2}\right), 75.74\left(\mathrm{OCHCH}_{2}\right)$, $117.42,124.72,126.81,133.06,140.20,163.73(\mathrm{Ar}), 165.90(C=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}: \mathrm{C}, 69.11$; H, 9.57 ; N, 4.03. Found: C, 69.34; H, 9.81; N, 4.01. HRMS (ESI): $m / z 348.2482\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}, 347.23$.

General Procedure for Synthesis of Tridentate Schiff Base Ligands IV1e-h.

 The corresponding benzaldehyde (1.0 equiv) was added to the corresponding amino alcohol (1.0 equiv) in $\mathrm{MeOH}(30 \mathrm{~mL}$). The solution mixture was heated to reflux overnight and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by filtration. The volatile component was removed in vacuo to give tridentate Schiff base ligands in quantitative yield.
(E)-2,4-Di-tert-butyl-6-(((2-hydroxyethyl)imino)methyl)phenol (IV1e; $\mathbf{L}^{\mathbf{5}} \mathbf{- H}$).

 Following the general procedure for synthesis of tridentate Schiff base ligands IV1e-h, 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($1.00 \mathrm{~g}, 4.26 \mathrm{mmol}, 1.0$ equiv) was added to ethanolamine ($0.260 \mathrm{~g}, 4.26 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(30 \mathrm{~mL})$. The solution mixture was heated to reflux overnight and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, followed by filtration. The volatile component was removed in vacuo to give the tridentate Schiff base ligand IV1e in quantitative yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.37(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 7.03(\mathrm{~d}, J=2.68 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} H_{2}\right), 7.32\left(\mathrm{~d}, J=2.68 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}\right), 8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.40\left(\mathrm{C}\left({ }^{\mathrm{P}} \mathrm{CH}_{3}\right)_{3}\right)$, $31.48\left(\mathrm{C}\left({ }^{\circ} \mathrm{CH}_{3}\right)_{3}\right), 34.35\left({ }^{\mathrm{P}} \mathrm{CCH}_{3}\right), 35.01$ $\left({ }^{\circ} \mathrm{CCH}_{3}\right), 61.82\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 62.33\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 117.73,126.05,127.14,136.71,140.21$, 157.95 (Ar), $168.14(C=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{2}: \mathrm{C}, 73.61 ; \mathrm{H}, 9.81$; $\mathrm{N}, 5.05$. Found: C, 73.94; H, 10.16; N, 4.70. HRMS (ESI): m/z $278.2213\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{2}$, 277.20.
(E)-2,4-Di-tert-butyl-6-(((3-hydroxypropyl)imino)methyl)phenol (IV1f;

$\mathbf{L}^{\mathbf{6}} \mathbf{- H}$). Following the general procedure for synthesis of tridentate Schiff base ligands IV1e-h, 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($0.800 \mathrm{~g}, 3.41 \mathrm{mmol}, 1.0$ equiv) was added to 3-amino-1-propanol ($0.256 \mathrm{~g}, 3.41 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(30 \mathrm{~mL})$. The solution mixture was heated to reflux overnight and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, followed by filtration. The volatile component was removed in vacuo to give the tridentate Schiff base ligand IV1f in quantitative yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.31(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.71(\mathrm{t}, J=6.84 \mathrm{~Hz}, 2 \mathrm{H}$,
$\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.76(\mathrm{t}, J=6.25 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHCH} 2), 7.09\left(\mathrm{~d}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}\right), 7.38$ $\left(\mathrm{d}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 8.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 29.40\left(\mathrm{C}\left({ }^{\mathrm{P}} \mathrm{CH}_{3}\right)_{3}\right)$, $\left.31.48\left(\mathrm{C}^{\mathrm{o}} \mathrm{CH}_{3}\right)_{3}\right)$, $33.50\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) 34.11$ $\left({ }^{\mathrm{P}} \mathrm{CCH}_{3}\right), 35.00\left({ }^{\circ} \mathrm{CCH}_{3}\right), 55.84\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 60.31\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 117.77,125.78,126.83$, 136.65, 139.97, 158.08 (Ar), $166.35(C=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{2}: \mathrm{C}, 74.18 ; \mathrm{H}$, 10.03; N, 4.81. Found: C, 74.05; H, 10.20; N, 4.84. HRMS (ESI): m/z 292.2394 [M + H^{+}], calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{2}$, 291.22.

(E)-2,4-Di-tert-butyl-6-(((4-hydroxybutyl)imino)methyl)phenol (IV1g; L ${ }^{7}$-H).

 Following the general procedure for synthesis of tridentate Schiff base ligands IV1e-h, 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($1.00 \mathrm{~g}, 4.26 \mathrm{mmol}, 1.0$ equiv) was added to 4-amino-1-butanol ($0.380 \mathrm{~g}, 4.26 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(30 \mathrm{~mL})$. The solution mixture was heated to reflux overnight and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, followed by filtration. The volatile component was removed in vacuo to give the tridentate Schiff base ligand IV1g in quantitative yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.31\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45$ ($\left.\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.62(\mathrm{t}, J=$ $\left.6.55 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.70\left(\mathrm{t}, J=6.24 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 7.08(\mathrm{~d}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} H_{2}\right), 7.37\left(\mathrm{~d}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}\right), 8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, $\left.\left.\mathrm{CDCl}_{3}\right): \quad \delta \quad 27.19 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), \quad 29.39 \quad\left(\mathrm{C}_{(}^{\mathrm{P}} \mathrm{CH}_{3}\right)_{3}\right), \quad 30.29$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 31.48\left(\mathrm{C}\left({ }^{\circ} \mathrm{CH}_{3}\right)_{3}\right), 34.08\left({ }^{\mathrm{P}} \mathrm{CCH}_{3}\right), 34.98\left({ }^{\circ} \mathrm{CCH}_{3}\right), 59.17\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $62.56\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 117.77,125.70,126.72,136.62,139.88,158.13(\mathrm{Ar}), 166.83(C=\mathrm{N})$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}$: C, 74.71; H, 10.23; N, 4.59. Found: C, 74.73; H, 10.32; N, 4.58. HRMS (ESI): $m / z 306.2501\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{2}, 305.24$.(E)-2,4-Di-tert-butyl-6-(((5-hydroxypentyl)imino)methyl)phenol ($\left.1 \mathrm{~h} ; \mathbf{L}^{8}-\mathbf{H}\right)$. Following the general procedure for synthesis of tridentate Schiff base ligands IV1e-h, 3,5-di-tert-butyl-2-hydroxybenzaldehyde ($1.00 \mathrm{~g}, 4.26 \mathrm{mmol}, 1.0$ equiv) was added to 5-amino-1-pentanol ($0.440 \mathrm{~g}, 4.26 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(30 \mathrm{~mL})$. The solution mixture was heated to reflux overnight and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, followed by filtration. The volatile component was removed in vacuo to give the tridentate Schiff base ligand IV1h in quantitative yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.31\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.74(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.59\left(\mathrm{t}, J=6.84 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.67(\mathrm{t}, J=6.54 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHCH} 2)$, $7.07\left(\mathrm{~d}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}\right), 7.37\left(\mathrm{~d}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}\right), 8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N})$, $13.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 23.39\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.40$ $\left.\left(\mathrm{C}^{(}{ }^{\mathrm{P}} \mathrm{CH}_{3}\right)_{3}\right), 30.66\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 31.49\left(\mathrm{C}\left({ }^{\circ} \mathrm{CH}_{3}\right)_{3}\right), 33.44\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 34.10$ $\left({ }^{\mathrm{P}} \mathrm{CCH}_{3}\right), 35.00\left({ }^{\circ} \mathrm{CCH}_{3}\right), 59.43\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 62.80\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 117.80,125.67,126.70$, 136.63, 139.86, 158.17 (Ar), $158.17(C=N)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2}: \mathrm{C}, 75.19 ; \mathrm{H}$, 10.41; N, 4.38. Found: C, 75.10; H, 10.41; N, 4.38. HRMS (ESI): m/z $320.2708[\mathrm{M}+$ H^{+}], calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2}, 319.25$.

General Procedure for Synthesis of Tridentate Schiff Base Ligands 1i,j. The corresponding amino acid (2 equiv) and triethylamine (2 equiv) were added to 3,5-di-tert-butyl-2-hydroxybenzaldehyde ${ }^{40 \mathrm{c}, 40 \mathrm{~d}, 48 \mathrm{~b}}$ (1.0 equiv) in $\mathrm{MeOH}(30 \mathrm{~mL})$. The solution mixture was heated to reflux for overnight, and the solvent was removed under reduced pressure to obtain a yellow solid. The resulting yellow solid was washed with water $(3 \times$ 20 mL) to remove excess amino acid and triethylamine. The organic layer was separated,
dried over NaSO_{4}, and concentrated to dryness under reduced pressure to afford the crude products with 0.5 equiv of triethylamine, which were crystallized in pentane to give a yellow powder in $81-85 \%$ yield.

(E)-2-((3,5-Di-tert-butyl-2-hydroxybenzylidene)amino)-4-(methylthio)

butanoic acid (IV1i; $\left.\mathbf{L}^{\mathbf{9}} \mathbf{- H}\right)$. Following the general procedure for synthesis of tridentate Schiff base ligands IV1i,j, rac-methionine ($1.273 \mathrm{~g}, 8.535 \mathrm{mmol}, 2$ equiv) and triethylamine $(0.863 \mathrm{~g}, 8.535 \mathrm{mmol}, 2$ equiv) were added to 3,5-di-tert-butyl-2hydroxybenzaldehyde ($1.00 \mathrm{~g}, 4.26 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{~mL})$. Compound IV1i was obtained as a yellow powder in 81% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.20(\mathrm{t}, J=$ $\left.7.44 \mathrm{~Hz}, 4.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.08(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{SCH}_{3}\right), 2.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 2.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.05(\mathrm{q}, J=7.73 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) 4.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right) 7.10\left(\mathrm{~d}, J=2.67 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}\right), 7.37(\mathrm{~d}, J=2.38 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 8.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 15.19$ $\left.\left(\mathrm{SCH}_{3}\right), 29.25\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 29.42\left(\mathrm{C}\left({ }^{\mathrm{p}} \mathrm{CH}_{3}\right)_{3}\right), 31.30\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 31.49\left(\mathrm{C}^{\circ}{ }^{\circ} \mathrm{CH}_{3}\right)_{3}\right)$, $34.10\left({ }^{\mathrm{P}} \mathrm{CCH}_{3}\right), 35.01\left({ }^{\circ} \mathrm{CCH}_{3}\right), 44.99\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 71.76\left(\mathrm{NCHCH}_{2}\right), 117.90,126.24$, 127.02, 136.52, 139.84, $158.22(\mathrm{Ar}), 167.41(C=\mathrm{N}), 175.78(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{77} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}$: C, 66.39; H, 9.33; N, 5.05; S, 7.71. Found: C, 66.14; H, 9.28; N, 5.07; S, 8.00. HRMS (ESI): $m / z 366.2241\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{46} \mathrm{H}_{77} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}, 365.20$.
(E)-2-((3,5-Di-tert-butyl-2-hydroxybenzylidene)amino)-3-phenylpropanoic acid (IV1j; $\left.\mathbf{L}^{\mathbf{1 0}} \mathbf{- H}\right)$. Following the general procedure for synthesis of tridentate Schiff base ligands IV1i,j, rac-phenylalanine ($1.409 \mathrm{~g}, 8.532 \mathrm{mmol}$, 2 equiv) and triethylamine ($0.863 \mathrm{~g}, 8.532 \mathrm{mmol}, 2$ equiv) were added to 3,5-di-tert-butyl-2-hydroxybenzaldehyde
$(1.00 \mathrm{~g}, 4.26 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$. Compound IV1j was obtained as a yellow powder in 85% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.18(\mathrm{t}, J=7.23 \mathrm{~Hz}, 4.5 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.00(\mathrm{q}, J=7.37 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) 3.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Ph}\right), 3.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{Ph}\right), 4.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right)$, $6.93\left(\mathrm{~d}, J=2.46 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}\right), 7.10-7.21\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} H_{5}\right), 7.33(\mathrm{~d}, J=2.46 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{2}\right), 8.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.37\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.42$ $\left.\left(\mathrm{C}^{\mathrm{P}} \mathrm{CH}_{3}\right)_{3}\right), 31.46\left(\mathrm{C}\left({ }^{\circ} \mathrm{CH}_{3}\right)_{3}\right), 34.05\left({ }^{\mathrm{P}} \mathrm{CCH}_{3}\right), 35.00\left({ }^{\circ} \mathrm{CCH}_{3}\right), 40.24\left(\mathrm{CHCH}_{2} \mathrm{Ph}\right), 45.10$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 74.61\left(\mathrm{NCHCH}_{2}\right), 117.87,126.17,126.82,128.23,129.66,136.39,138.33$, 139.61, $158.20(\mathrm{Ar}), 166.95(C=\mathrm{N}), 175.23(\mathrm{C}=\mathrm{O})$. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{77} \mathrm{~N}_{3} \mathrm{O}_{6}: \mathrm{C}$, 75.05; H, 8.98; N, 4.68. Found: C, 75.28; H, 9.14; N, 4.90. HRMS (ESI): m/z 382.2631 $\left[\mathrm{M}+\mathrm{H}^{+}\right]$, calcd for $\mathrm{C}_{54} \mathrm{H}_{77} \mathrm{~N}_{3} \mathrm{O}_{6}, 381.23$.

Preparation of Aluminum Complexes IV2a-j. A solution of triethylaluminum in toluene ($0.10 \mathrm{M}, 0.25 \mathrm{~mL}, 1$ equiv) was added to a solution of the corresponding ligands IV1a- \mathbf{j} in 0.75 mL of toluene in a sealed tube, and the reaction mixture was stirred for 3 h at room temperature.

Polymerization Procedure. In a typical experiment carried out in the argonfilled glovebox, a Teflon-screw-capped heavy-walled pressure vessel containing the corresponding aluminum complex IV2a-j and 50 equiv of rac-lactide (per aluminum center) in 1.00 mL of toluene was stirred at $70^{\circ} \mathrm{C}$ for the designated time period. Upon removal of a small sample of the crude product via syringe, it was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in CDCl_{3}. The product was isolated and purified by precipitation from
dichloromethane by the addition of 5% hydrochloric acid in methanol. The solid polymer was collected and dried under vacuum to constant weight.

General Procedure for Synthesis of Tridentate Schiff Base Aluminum Complexes (IV2e-g; $\left.\mathbf{L}^{\mathbf{5 - 7}} \mathbf{A l E t h y l}\right)$. A solution of triethylaluminum (1.0 equiv) in pentane was cannulated to a solution of tridentate Schiff base ligand (1 equiv) in pentane. The reaction mixture was stirred until a yellow precipitate was formed, and this mixture was stirred at room temperature for an additional 3 h . The resulting yellow precipitate was washed with cold pentane $(3 \times 1 \mathrm{~mL})$. The volatile component was removed under reduced pressure to give light yellow solids of complexes IV2e-g.

Synthesis of [L ${ }^{\mathbf{5}} \mathbf{A l E t h y l}$ (IV2e). A solution of triethylaluminum ($0.463 \mathrm{~g}, 4.06$ mmol, 1.0 equiv) in pentane (2 mL) was cannulated to a suspended solution of the tridentate Schiff base ligand IV1e ($1.12 \mathrm{~g}, 4.06 \mathrm{mmol}$, 1 equiv) in pentane (2 mL). Complex IV2e was obtained in 62% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.37(\mathrm{bm}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.79,0.90$ (2 sets of $\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.29, 1.31 (2 set of $\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$), 1.45, 1.48 (2 set of s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.52,3.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.10,4.34(\mathrm{~m}, 2 \mathrm{H}$, NCHCH_{2}), 7.01, 7.04 (2 set of d, $J=2.67$ and $2.67 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}$), $7.45,7.48(\mathrm{~d}, J=$ 2.67 and $2.38 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}$), 8.27, 8.22 (2 set of $\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$). ${ }^{13} \mathrm{C}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 10.10,14.07,22.35,29.25,31.43,33.98,35.39,55.40,55.80,59.31,60.23$, 118.66, 119.19, 126.91, 127.07, 129.74, 137.67, 137.93, 139.90, 139.97, 161.66, 161.93, 166.25, 166.55. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{AlNO}_{2}: \mathrm{C}, 68.85 ; \mathrm{H}, 9.12$; N, 4.23. Found: C, 68.63; H, 9.40; N, 4.20.

Synthesis of [L' ${ }^{\mathbf{6}}$ AIEthyl] (IV2f). A solution of triethylaluminum ($0.156 \mathrm{~g}, 1.37$ mmol, 1.0 equiv) in pentane (2 mL) was cannulated to a suspended solution of the tridentate Schiff base ligand IV1f ($0.400 \mathrm{~g}, 1.37 \mathrm{mmol}, 1$ equiv) in pentane (2 mL). Complex IV2f was obtained in 20% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-0.32,-0.14$ (2 sets of $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.83,0.92$ (2 set of $\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.28, 1.38 (2 set of s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.31,1.48$ (2 set of s, 9H, C(CH3 $\left.)_{3}\right), 1.83,1.93,2.21,3.50,3.86,4.11$, $4.39\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 6.95,7.00\left(2\right.$ set of d, $J=2.38$ and $2.67 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}$), 7.40, $7.47\left(\mathrm{~d}, J=2.68\right.$ and $\left.2.68 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 8.04,8.09$ (2 set of $\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$). ${ }^{13} \mathrm{C}$ NMR (300 MHz, CDCl_{3}): $\delta 10.22,10.34,29.44,30.36,31.40,31.82,33.89,35.02,35.16$, $57.45,60.77,61.30,63.52,118.22,118.66,127.37,127.64,129.57,129.69,137.54$, 137.80, 139.24, 139.51, 161.57, 161.68, 167.61, 167.92. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{AlNO}_{2}$: C, 69.54; H, 9.34; N, 4.05. Found: C, 68.81; H, 9.54; N, 4.01.

Synthesis of [L ${ }^{\mathbf{7}}$ AIEthyl] (IV2g). A solution of triethylaluminum ($0.196 \mathrm{~g}, 1.71$ mmol, 1.0 equiv) in pentane (2 mL) was canulated to a suspended solution of the tridentate Schiff base ligand IV1g ($0.525 \mathrm{~g}, 1.71 \mathrm{mmol}$, 1 equiv) in pentane (2 mL). Complex IV2g was obtained in 21% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-0.34,-0.15$ (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.82, 0.88 (2 sets of $\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.31 (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.50(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.44(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 6.99\left(\mathrm{~d}, J=2.68 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}\right), 7.45(\mathrm{~d}, J=2.68$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}_{6} H_{2}\right), 8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 13.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ $10.08,10.52,14.07,22.34,27.73,28.68,29.50,31.38,33.85,33.94,34.73,35.44,58.06$,
58.35, 61.56, 62.18. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{AlNO}_{2}$: C, 70.16; H, 9.53; N, 3.90. Found: C, 69.12; H, 9.91; N, 3.57.

Results and Discussion

The ligands used in our studies were derived from either amino alcohols or amino acids by condensation reactions with the corresponding aldehydes to afford compounds IV1a-j. Reactions of these ligands with triethylaluminum in dry toluene resulted in the formation of complexes IV2a- \mathbf{j}, as depicted in Scheme IV-1. In this manner three series of closely related aluminum half-salen complexes were synthesized whose ligand backbones were easily modified by chiral amino alcohols (IV2a-d), aliphatic amino alcohols (IV2e-h), and amino acids (IV2i,j). The reactivity and selectivity of aluminum complexes IV2a-j for catalyzing the ROP of rac-lactide are provided in Table IV-1.

As noted in Table IV-1, complex IV2a did not polymerize rac-lactide in CDCl_{3} after 66 h at $60^{\circ} \mathrm{C}$ (entry2); however, in toluene a 57% conversion to polylactide was observed over the same time period at $70{ }^{\circ} \mathrm{C}$ (entry4). For complexes in the series IV2a-d and the substituents $\left(\mathrm{R}^{2}\right)$ on the phenoxide of the half-salen ligand increase in size $\left(\mathrm{R}^{2}=\mathrm{SiPh}_{3}\right)$ or are more electron donating $\left(\mathrm{R}^{2}=\mathrm{OMe}\right)$, the rate of lactide polymerization decreases (entries 6 and 8). Similar observations have been previously reported by Normura and co-workers and Gibson and co-workers. ${ }^{12,17}$ Complex IV2a afforded a moderately isotactic polymer with a P_{m} value of 0.70 , while complexes IV2b,c yielded polylactides with P_{m} values less than 0.50 . The complexes with achiral aliphatic backbone with the exception of IV2f, i.e., complexes IV2e,g,h, were found to
catalyze the ROP of rac-lactide at rates faster than that of complex IV2a to give isotactic polylactides with P_{m} values of $0.62,0.76$, and 0.73 , respectively. Similarly, the complexes derived from rac-amino acids, IV2i,j, were also found to be active for the ring-opening polymerization of rac-lactide, providing substantially isotactic polymers with P_{m} values of 0.74 and 0.72 , respectively.

Scheme IV-1

Table IV-1. Reactivity and Selectivity of Aluminum Complexes IV2a-j for the ROP of Rac-Lactide. ${ }^{a}$

entry	M	time (h)	$\begin{gathered} \text { Conversion } \\ (\%)^{b} \\ \hline \end{gathered}$	meso- ${ }^{\text {c }}$	M_{n}		PDI	$P_{\mathrm{m}}{ }^{f}$
					Theoretical ${ }^{d}$	$0.58 M_{\mathrm{n}, \mathrm{GPC}}{ }^{e}$		
1	IV2a ${ }^{\text {g }}$	20	0	no				
2	IV2a ${ }^{\text {h }}$	66	0	yes				
3	IV2a	15	0	yes				
4	IV2a	66	57	yes	4107	7938	1.05	70
5	IV2b	15	0	yes				
6	IV2b	69	43	yes	3243	3844	1.08	<50
7	IV2c	15	0	yes				
8	IV2c	168	45	yes	3207	4962	1.09	<50
9	IV2d	15	0	yes				
10	IV2e	15	64	yes	4614	6987	1.04	62
11	IV2f	15	0	yes				
12	IV2g	15	34	no	2446	2456	1.07	76
13	IV2h	15	50	no				73
14	IV2i	15	36	no	2594	3916	1.07	74
15	IV2j	15	42	no	3026	4043	1.03	72

${ }^{a}$ Unless otherwise specified, the polymerization reactions were performed in sealed reaction tubes with the following conditions: $[\mathrm{rac}-\mathrm{LA}] /[\mathrm{Al}]=50$, in toluene at $70{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Obtained from ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectroscopy. ${ }^{c}$ meso-lactide was obtained from epimerization of L- or D-lactide during the polymerization process. ${ }^{d}$ Theoretical $M_{\mathrm{n}}=(\mathrm{M} / \mathrm{I}) \mathrm{x}(\%$ conversion) x (mol. wt. of lactide). ${ }^{e} M_{\mathrm{n}}$ values were corrected by the equation: $M_{\mathrm{n}}=0.58 M_{\mathrm{n}}, \mathrm{GPC}^{51 f}{ }^{51} P_{\mathrm{m}}$ values were calculated from the ratio of the (area of iii)/(total area in methine proton region). ${ }^{g} \mathrm{CDCl}_{3}$ was used as the solvent at ambient temperature. ${ }^{h} \mathrm{CDCl}_{3}$ was used as the solvent at $60{ }^{\circ} \mathrm{C}$.

A noteworthy point of importance is that for several of these aluminum-catalyzed systems, namely IV2a-f, a ${ }^{1} \mathrm{H}$ NMR signal at 1.70 ppm appears during the polymerization process, while polymerization reactions catalyzed by complexes IV2g-j did not exhibit such a ${ }^{1} \mathrm{H}$ NMR signal (see resonance labeled \mathbf{a} in Figure IV-1). This ${ }^{1} \mathrm{H}$ NMR peak is assigned to intermediate formation of meso-lactide from epimerization of L- and D-lactide during the ROP process. In order to further confirm this occurrence, select aluminum complexes IV2e-g,i,j were used to catalyze the ROP of L-lactide. In these instances, if there is no epimerization occurring during the polymerization process, only isotactic polylactide will be formed. As anticipated, complexes IV2e,f polymerized L-lactide to afford atactic polylactide with P_{m} values of 0.52 and <0.50, respectively,
while complexes IV2g,i,j provided isotactic polylactide with a P_{m} value of 1 , indicative of an absence of epimerization in these instances (Table IV-2).

Figure IV-1. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, rt) of the reaction mixtures during the ROP of L-lactide in the presence of complex IV2a (A), IV2e (B), IV2g (C) (entries 3, 10, 12; Table IV-1, respectively). The polymerization reactions were performed in toluene at 70 ${ }^{\circ} \mathrm{C}$ for 15 h . Methyl proton of meso-lactide, L-lactide, and polylactide were observed at 1.70 (a), 1.66 (b), and 1.57 (c) respectively.

The observed molecular weights of all the polymer produced via catalysis with the aluminum complexes employed in this study, i.e., complexes IV2a-j, were found to closely parallel the theoretical values. In addition, the polymers thus afforded had polydispersity indices ranging from 1.03 to 1.08 . The ring-opening polymerization was shown to be first order in [monomer] and [catalyst]. Hence, these catalytic systems have
the characteristic of well-controlled polymerization processes. The thermal properties of a purified polylactide sample produced from the ROP of rac-lactide by complex IV2i ($P_{\mathrm{m}}=74 \%$) were determined by differential scanning calorimetry (DSC). The T_{m} and T_{g} values of the polymer were found to be 158 and $52^{\circ} \mathrm{C}$, respectively (Figure IV-2). The observed T_{m} value is consistent with a moderately isotactic polylactide.

Table IV-2. The ROP of rac- and L-Lactide Using Aluminum Complexes 2IVe-g, 2IVi-j. ${ }^{a}$

entry	M	lactide	conversion$(\%)^{b}$	meso ${ }^{\text {c }}$	M_{n}		PDI	$P_{\mathrm{m}}{ }^{\text {f }}$
					theoretical ${ }^{\text {d }}$	$0.58 M_{\mathrm{n}, \mathrm{GPC}}{ }^{e}$		
,	IV2e	rac	64	yes	4614	6987	1.04	62
2	IV2e	L	77	yes	4107	7938	1.05	52
3	IV2f	rac	0	yes				
4	IV2f ${ }^{\text {g }}$	L	36	yes	2600	3726	1.07	<50
5	IV2g	rac	34	no	2446	2456	1.07	76
6	IV2g	L	44	no	3164	N/A ${ }^{h}$	N/A ${ }^{h}$	100
7	IV2i	rac	34	no	2594	3916	1.07	74
8	IV2i	L	54	no	3891	N/A ${ }^{h}$	N/A ${ }^{h}$	100
9	IV2j	rac	42	no	3026	4043	1.03	72
10	IV2j	L	45	no	3243	N/A ${ }^{h}$	N/A ${ }^{h}$	100

${ }^{a}$ Unless otherwise specified, the polymerization reactions were performed in sealed reaction tubes under the following conditions: $[\mathrm{LA}] /[\mathrm{Al}]=50$, in toluene at $70{ }^{\circ} \mathrm{C}$ for 15 h . ${ }^{b}$ Obtained from ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{c}$ meso-lactide was obtained from epimerization of L- or D-lactide during the polymerization process. ${ }^{d}$ Theoretical $M_{\mathrm{n}}=(\mathrm{M} / \mathrm{I}) \times(\%$ conversion) x (mol. wt. of lactide). ${ }^{e} M_{\mathrm{n}}$ values were corrected by the equation: $M_{\mathrm{n}}=0.58 M_{\mathrm{n}}$, $\mathrm{GPC} \cdot{ }^{51 f} P_{\mathrm{m}}$ values were calculated from the ratio of the (area of iii)/(total area in methine proton region). ${ }^{g}$ The reaction time was $76 \mathrm{~h} .{ }^{h}$ Molecular weight was not measure because of polymer's insolubility in THF due to its high crystallinity.

In an effort to understand the catalytic differences noted for the ROP of lactides by the closely related aluminum complexes IV2e-h, we report here the structural characterization of one of these derivatives. Specifically, complex IV2f was synthesized and isolated according to Scheme IV-1, except pentane was used as solvent, which
allowed the complex to precipitate out of solution during its preparation. Single crystals suitable for X-ray structural analysis were obtained upon recrystallization from dichloromethane at $-10{ }^{\circ} \mathrm{C}$. In this manner both platelike crystals and blocklike crystals were obtained. X-ray crystallography revealed the blocklike crystals to be dimeric, with bridging oxygen atoms. The two five-coordinate aluminum centers possess a distortedbipyramidal geometry with the ethyl group of each metal cis to one another, as shown in Figure IV-3a. Similarly, the solid-state structure of the platelike crystals was shown to be dimeric, except that the ethyl groups on the aluminum centers were trans to one another (Figure IV-3b).

Figure IV-2. DSC curves (second heating run) of polylactide from rac-lactide catalyzed by complex IV2i.
a)

b)

Figure IV-3. X-ray crystal structures of (a) IV2f (cis-), (b) IV2f (trans-). Thermal ellipsoids represent the 50% probability surfaces. Hydrogen atoms are omitted for the sake of clarity.

Since this difference in dimeric aluminum structures may be related to the disparity in catalytic reactivity for the ROP of lactides noted above, and the ROP processes are carried out in solution at $70^{\circ} \mathrm{C}$, it is important to examine the structures of these aluminum complexes in solution. We therefore performed variable-temperature ${ }^{1} \mathrm{H}$ NMR spectroscopic studies of complex IV2f in deuterated toluene. As observed in Figure IV-4, the ${ }^{1} \mathrm{H}$ NMR spectrum of complex IV2f at ambient temperature reveals two sets of methyl group protons from the tert-butyl substituents of the phenoxide ligands (resonances \mathbf{a} and \mathbf{a}^{\prime} and \mathbf{b} and \mathbf{b}^{\prime}). As the temperature was increased, the intensity of
the proton signals \mathbf{a}^{\prime} and \mathbf{b}^{\prime} increased with a concomitant decrease in the ${ }^{1} \mathrm{H}$ NMR signals at \mathbf{a} and \mathbf{b}. Both set of resonances were noted at $100^{\circ} \mathrm{C}$, with those of \mathbf{a}^{\prime} and \mathbf{b}^{\prime} being more intense. Once the distribution of the isomeric complex mixture was reached at $100^{\circ} \mathrm{C}$, this complex mixture remained the same after the solution stood at ambient temperature for 2 days (spectrum \mathbf{E} in Figure IV-4). As indicated in Figure IV-4, we

Figure IV-4. Variable-temperature ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) of complex IV2f in deuterated toluene taken sequentially at different temperatures. (A) room temperature, (B) $40{ }^{\circ} \mathrm{C}$, (C) $70{ }^{\circ} \mathrm{C}$, (D) $100{ }^{\circ} \mathrm{C}$, (E) sample cooled down from $100{ }^{\circ} \mathrm{C}$ to room temperature, spectrum taken two days later.
propose the isomeric mixture of aluminum complexes favors the trans arrangement of ethyl groups. That is, due to the decrease in steric repulsion of the bulky phenyl ring, the trans isomer is thermodynamically more stable.

As indicated by the variable-temperature ${ }^{1} \mathrm{H}$ NMR study, complex IV2f exists as both the cis and trans isomers in toluene solution at the ROP temperature of $70^{\circ} \mathrm{C}$. We propose that one of these isomeric forms of the aluminum complex IV2f is responsible for meso-lactide formation: i.e., the cis form (vide infra). In much the same way, the ${ }^{1} \mathrm{H}$ NMR spectrum of complex IV2e exhibited two sets of tert-butyl group methyl protons at ambient temperature. However, in this case, upon increasing the temperature to $100{ }^{\circ} \mathrm{C}$ with periodic monitoring of the spectra, no spectral changes were observed. This result strongly suggests that the structural rearrangements seen in these aluminum dimers are related to the length of the carbon chain backbone in the amino-alkoxide bridging ligand, with the five-membered ring (IV2e) being, as expected, more stable than the sixmembered ring (IV2f). In support of this contention, upon examination of the variabletemperature ${ }^{1} \mathrm{H}$ NMR spectra of complex IV2g, which contains a longer four-carbonchain backbone leading to a seven-membered amino-alkoxide bridging ligand, a facile isomeric exchange reaction was observed (Figure IV-5). That is, at ambient temperature the ${ }^{1} \mathrm{H}$ NMR spectrum revealed the presence of both isomers in solution, with the cis isomer in larger quantity. As the temperature was increased, the distribution of isomers converted to all trans by $70^{\circ} \mathrm{C}$, with no further change occurring with either an increase in temperature to $100^{\circ} \mathrm{C}$ or a decrease down to ambient temperature. ${ }^{72}$ As evident from Table IV-1, when complexes IV2g,h (four- or five-membered carbon chain backbone)
were employed as catalysts for the ROP of rac-lactide, no meso-lactide formation was observed. These observations confirm our suggestion that the cis isomer is responsible for the epimerization of lactide prior to the ring-opening polymerization process. Crystal data and details of the data collection for complexes IV2f (cis-) and IV2f (trans-) are provided in Table IV-3.

Figure IV-5. Variable-temperature ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) of complex IV2g in deuterated toluene taken sequentially at different temperatures. (A) room temperature, (B) $40{ }^{\circ} \mathrm{C}$, (C) $70{ }^{\circ} \mathrm{C}$, (D) $100{ }^{\circ} \mathrm{C}$, (E) sample cooled down from $100{ }^{\circ} \mathrm{C}$ to room temperature, spectrum taken two days later.

Table IV-3. Crystallographic Data for Complexes IV2f (cis-) and IV2f (trans-).

	IV2f (cis-)	IV2f (trans-)
empirical formula	$\mathrm{C}_{40} \mathrm{H}_{64} \mathrm{Al}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{40} \mathrm{H}_{64} \mathrm{Al}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$
fw	690.89	690.89
temperature (K)	110(2) K	110(2) K
crystal system	orthorhombic	monoclinic
space group	Pben	P21/C
$a(\mathrm{~A})$	32.810(7)	14.234(4)
$b(\AA)$	20.945(5)	8.985(3)
$c(\AA)$	17.910(4)	18.655(5)
α (deg)	90	90
β (deg)	90	123.063(16)
χ (deg)	90	90
$V(\AA)$	12308(5)	1999.5(10)
$D_{\text {c }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.119	1.148
Z	12	2
abs coeff(mm^{-1})	0.940	0.964
reflections collected	71247	12357
independent reflections	$9145[R(\mathrm{int})=0.0715]$	2689 [$R(\mathrm{int}$) $=0.1829]$
data/restrains/parameters	9145/34/696	2689/0/225
GOF on F^{2}	1.066	1.019
final R indices	$R_{1}=0.0873$	$R_{1}=0.0945$
$[I>2 \sigma(I)]$	$R_{\text {w }}=0.2201$	$R_{\text {w }}=0.2215$
final R indices	$R_{1}=0.1077$	$R_{1}=0.1233$
final R indices (all data)	$R_{\text {w }}=0.2348$	$R_{\text {w }}=0.2334$

Summary Remarks

Herein we have reported the synthesis of a series of tridentate NOO Schiff base ligands along with their aluminum complexes. These metal complexes were dimeric and exhibited two isomeric structures, one with the initiators on the two aluminum centers cis to one another and the other with the trans arrangement. The latter form was shown to be thermodynamically more stable by variable-temperature ${ }^{1} \mathrm{H}$ NMR studies. All complexes were shown to polymerize rac-lactide in toluene at $70^{\circ} \mathrm{C}$. The molecular weights of the afforded polylactides correlated well with monomer/initiator and conversion level and displayed narrow distributions with PDI values ranging from 1.03 to 1.08 . It was established that complexes which existed in both cis and trans forms under the conditions of the ring-opening polymerization reaction led to partial
epimerization of D- and L-lactide to meso-lactide prior to polymerization. On the other hand, complexes which exist in the trans isomeric form led to polymerization of raclactide with no epimerization and concomitantly a polylactide with a high degree of isotacticity $\left(P_{\mathrm{m}}=76 \%\right)$. More detailed studies of the mechanistic aspects of the ROP of lactides, employing a complete series of structurally well-characterized aluminum dimeric complexes will be presented in Chapter V.

CHAPTER V

RING-OPENING POLYMERIZATION OF CYCLIC ESTERS AND TRIMETHYLENE CARBONATE CATALYZED BY ALUMINUM HALFSALEN COMPLEXES

Introduction

Much research is currently focused on the development of polymers with sophisticated macromolecular structures derived from renewable resources. ${ }^{73}$ Among the most well-studied of these non-petrochemical based polymeric materials are those synthesized from lactides. Polylactides (PLA) which originate from replenishable resources such as corn, wheat, and sugar beets are biodegradable polymers widely used not only in commodity plastics, i.e., the textile industry, ${ }^{74}$ but also in medical applications such as drug delivery ${ }^{64 a, 75}$ and tissue engineering. ${ }^{6 a, 6 b}$ On the other hand, polyhydroxybutyrate (PHB) is an aliphatic polyester produced by a variety of microorganisms and bacteria. ${ }^{76}$ Hence, PHB can be degraded by microorganisms and used as a source of internal energy and carbon reserve. Importantly, over 300 bacterial species are known to synthesize polyhydroxyalkonoates (PHAs). ${ }^{77}$ The mechanical properties of PHB are similar to those of petrochemical-based polymers, allowing PHB to be a potential replacement polymer for the packaging and agricultural industries. ${ }^{\text {77-78 }}$ It is also worthy to note that both PLA and PHA exhibit very good green design assessments as well as moderate life cycle assessments. ${ }^{79}$

Poly- ε-caprolactone (PCL) and poly- δ-valerolactone (PVL) are other examples of biobased aliphatic polyesters that have emerged as important materials in industrial processes that require biodegradable high performance plastics. In addition, PCL, because of various valuable properties of the polymer, finds uses in the construction industry. ${ }^{80}$ Polytrimethylene carbonate (PTMC) is a biodegradable polymer which degrades without forming acidic compounds. This property of PTMC makes it ideal for applications involving protein delivery, since low pH conditions tend to lead to protein denaturation. ${ }^{81}$ Although these biobased polymers can be employed in numerous applications, a common use of these biodegradable polymers is in drug delivery, for they are readily removed from the human body via normal metabolic pathways. ${ }^{54 \mathrm{c}}$

We have recently demonstrated in Chapter IV that aluminum half-salen complexes are effective catalysts for the ring-opening polymerization (ROP) of raclactide. ${ }^{60}$ Herein, we wish to report extensive studies of these catalysts for the ringopening polymerization of cyclic monomers, rac-lactide, trimethylene carbonate (TMC), rac- β-butyrolactone (rac- β-BL), δ-valerolactone (δ-VL), and ε-caprolactone (ε-CL). Included in these investigations are X-ray structural analysis of the aluminum complexes, kinetic studies for the ROP of various cyclic monomers, as well as kinetic studies of copolymerization reactions of rac-lactide and δ - VL.

Experimental Section

Methods and Materials. All manipulations were carried out using a double manifold Schlenk vacuum line under an argon atmosphere or an argon filled glove box unless otherwise stated. Toluene was freshly distilled from sodium/benzophenone before
use. Methanol and dichloromethane were purified by an MBraun Manual Solvent Purification System packed with Alcoa F200 activated alumina desiccant. Pentane was freshly distilled from CaH_{2}. Deuterated chloroform, deuterated benzene and deuterated toluene from Cambridge Isotope Laboratories Inc. were stored in the glove box and used as received. L-, D-lactide and rac-lactide were gifts from PURAC America Inc. These lactides were recrystallized from toluene, dried under vacuum at $40{ }^{\circ} \mathrm{C}$ overnight, and stored in the glove box. β-butyrolactone, γ-butyrolactone, δ-valerolactone and ε caprolactone were distilled under vacuum from CaH_{2} and storred in the glove box. Trimethylene carbonate (Boehringer Ingelheim) was recrystallized from tetrahydrofuran and diethyl ether, dried under vacuo and stored in the glove box. 4-amino-1-butanol and triethylaluminium were purchased from TCI America and Sigma-Aldrich respectively and used without further purification. Ethanolamine, 3-amino-1-propanol, 5-amino-1pentanol, trans-2-aminocyclohexanol hydrochloride, 2-hydroxy-3methoxybenzaldehyde, rac-methionine, rac-phenylalanine, and tertbutyldimethylchlorosilane were purchased from Alfa Aesar and used as received. 3,5-di-tert-butyl-2-hydroxybenzaldehyde, 3-(tert-butyldimethylsilyl)-2-hydroxy-5methylbenzaldehyde, and 2-hydroxy-5-methyl-3-(triphenylsilyl)benzaldehyde were prepared according to published procedure. ${ }^{40 \mathrm{c}, 40 \mathrm{~d}, 48 \mathrm{~b}, 71 \text { All other compounds and }{ }^{71} \text {. }{ }^{\text {a }} \text {. }}$ reagents were obtained from Sigma-Aldrich and were used without further purification. The preparation and spectral characterization of all ligands and their aluminum complexes have previously been reported in detail in an earlier publication. ${ }^{60}$ Analytical elemental analysis was provided by Canadian Microanalytical Services Ltd.

Measurements. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Unity+ 300 or 500 MHz and VXR 300 or 500 MHz superconducting NMR spectrometers. Molecular weight determinations were carried out with Viscotek Modular GPC apparatus equipped with ViscoGEL ${ }^{\text {TM }}$ I-series columns $(\mathrm{H}+\mathrm{L})$ and Model 270 dual detector comprised of refractive index and light scattering detectors. DSC measurements were performed with a Polymer DSC by Mettler Toledo. The samples were scanned from - $100{ }^{\circ} \mathrm{C}$ to $200{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The glass transition temperature $\left(T_{\mathrm{g}}\right)$, was determined from the $2^{\text {nd }}$ heating at heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$. X-ray crystallography was done on a Bruker GADDS X-ray diffractometer in a nitrogen cold stream maintained at 110K. Crystal data and details of the data collection for complexes V2a, V3b, V2d, V2f (cis), V2f (trans), V3e, V4e are provided in Tables on pages 127-128.

Lactide Polymerization Procedure. In a typical experiment carried out in the argon filled glovebox a Teflon-screw-capped heavy walled pressure vessel containing the corresponding aluminum complex (V2a-k) and 50 equivalents of rac-lactide (per aluminum center) in 1.00 mL of toluene was stirred at $70{ }^{\circ} \mathrm{C}$ for the designated time period. Upon removal of a small sample of the crude product via syringe, it was analyze by ${ }^{1} \mathrm{H}$ NMR spectroscopy in CDCl_{3}. The product was isolated and purified by precipitation from dichloromethane by the addition of 5\% hydrochloric acid in methanol. The solid polymer was collected and dried under vacuum to constant weight.

Kinetic Studies for Homopolymers. In a typical experiment carried out in the argon filled glovebox (Table on page 111, entry 3), a J. Young NMR tube containing 0.41 mmol of an appropriate monomer (rac-lactide, trimethylene carbonate (TMC), β -
butyrolactone, γ-butyrolactone, δ-valorolactone, or ε-caprolactone) was added 0.1 ml of complex V2g in deuterated toluene from a 8.94 mM stock solution. Next, 0.5 ml of deuterated toluene was added to adjust the total volume to 0.6 ml . The NMR tube was then placed to the preheated NMR spectrometer at corresponding temperature (70-105 ${ }^{\circ} \mathrm{C}$, typically $90{ }^{\circ} \mathrm{C}$), and the $\%$ conversion was investigated from the integration of polymer and monomer signals. The characteristic chemical shift for each monomer in deuterated toluene is $4.12(\mathrm{q},-\mathrm{CH}-$; lactide $), 3.62\left(\mathrm{~m},-\mathrm{CH}_{2}-; \mathrm{TMC}\right), 3.93(\mathrm{~m},-\mathrm{CH}-; \beta$ butyrolactone), 3.63 (t, - $\mathrm{CH}_{2}-; \delta$-valerolactone), and 3.63 (m, - $\mathrm{CH}_{2}-\varepsilon$-caprolactone). The characteristic chemical shif for each polymer in deuterated toluene is 5.12 (q, - $\mathrm{CH}-$; polylactide), 4.06(t, - $\mathrm{CH}_{2}-$; TMC), 5.31 ($\mathrm{m},-\mathrm{CH}-;$ poly- β-butyrolactone), 3.95 ($\mathrm{t},-\mathrm{CH}_{2}$-; poly- δ-valerolactone), and $4.00\left(\mathrm{t},-\mathrm{CH}_{2}\right.$-; poly- ε-caprolactone).

Kinetic Studies for Copolymers. In a typical experiment carried out in the argon filled glovebox (Table on page 110, entry 3), a J. Young NMR tube containing 0.41 mmol of rac -lactide and 0.41 mmol of δ-VL was added 0.1 ml of complex $\mathbf{V} 2 \mathrm{~g}$ in deuterated toluene from a 8.94 mM stock solution. Next, 0.5 ml of deuterated toluene was added to adjust the total volume to 0.6 ml . The NMR tube was then placed to the preheated NMR spectrometer at corresponding temperature (70-105 ${ }^{\circ} \mathrm{C}$, typically $90^{\circ} \mathrm{C}$), and the $\%$ conversion was investigated from the integration of polymer and monomer signals.

Results and Discussions

Synthesis and X-ray Structural Characterization of Aluminum Complexes.

As described in our earlier report the aluminum complexes were prepared by treatment
of the appropriate Schiff base ligand with a stoichiometric quantity of AlEt_{3} in dry toluene. ${ }^{60}$ Scheme V-1 illustrates the synthesis of these dimeric aluminum complexes, along with their designated numeric label, derived from the reaction of triethylaluminum and chiral amino alcohols (V2a-d), aliphatic amino alcohols (V2e-i), and amino acids (V2j,k). Suitable single crystals of the chiral amino alcohol complexes V2a and V2d were obtained upon recrystallization from dichloromethane at $-10{ }^{\circ} \mathrm{C}$. On the other hand, the other two derivatives, V2b and V2c, failed to provide single crystals under similar conditions. Instead the addition of one equivalent of benzyl alcohol to a crystal tube containing complex $\mathbf{V} 2 \mathbf{b}$ afforded crystals of complex $\mathbf{V 3} \mathbf{3}$, where the ethyl group was replaced by the benzyloxide group as evidenced by X-ray crystallography (Scheme V-2).

Scheme V-1

Scheme V-2

The X-ray structures of the closely related aluminum complexes V2a, V2d, and V3b derived from chiral amino alcohols are illustrated in Figure V-1, where all
complexes are shown to be dimeric. The aluminum centers coordinated to these Schiff base ligands are held together by bridging oxygen atoms with each metal adopting a distorted-bipyramidal geometry with an ethyl group (V2a and V2d) or a benzyloxide (V3b) on the metal centers arranged cis to one another. Selected bond distances and bond angles for these derivatives are provided in Table V-1. All bond lengths within the three complexes are quite similar with the exception of the $\mathrm{Al}(1)-\mathrm{O}(1)$ distance which is slightly shorter in complex V3b as a result of the electron donating methoxy substituent on the phenoxide ring. The bond angles in complex V3b were also found to be slightly different from those in complexes V2a and V2d due to less steric hindrance of OMe as compared to the bulky ${ }^{\mathrm{t}} \mathrm{Bu}$ and $\mathrm{SiMe}_{2}{ }^{\mathrm{t}} \mathrm{Bu}$ substituents on the phenoxide ring.

Figure V-1. X-ray crystal structures of (a) complex V2a, (b) complex V2d, and (c) complex V3b. Thermal ellipsoids represent the 50% probability levels with hydrogen atoms omitted for the sake of clarity.

Table V-1. Selected Bond Lengths (\AA) and Angles (deg) for Al Complexes V2a, V2b, V2d, V2f (cis-), V2f (trans-), and V2g (trans-).

	V2a	V2b	V2d	V2f (cis-)	V2f (trans-)	V2g
Bond lengths						
Al1-O1	1.811 (2)	1.778 (3)	1.8142 (15)	1.796 (3)	1.797 (4)	1.792 (4)
Al1-N1	2.011 (3)	1.978 (4)	2.2041 (18)	2.030 (4)	2.034 (4)	2.047 (5)
Al1- $\mathrm{X}^{\text {a }}$	1.873 (2)	1.850 (3)	1.8716 (15)	1.846 (3)	1.851 (3)	1.831 (5)
All- ${ }^{\text {b }}$	1.899 (2)	1.899 (3)	1.8959 (15)	1.915 (3)	1.905 (3)	1.935 (5)
Al1-Z ${ }^{\text {c }}$	1.963 (3)	1.733 (3)	1.977 (2)	1.992 (5)	1.993 (5)	2.002 (7)
Bond angles						
O1-Al1-N1	88.31 (10)	90.26 (16)	88.93 (7)	88.75 (14)	89.83 (16)	90.3 (2)
O1-Al1-X ${ }^{\text {a }}$	94.78 (10)	92.39 (15)	97.19 (7)	89.61 (13)	92.14 (16)	91.3 (2)
${ }^{\text {a }} \mathrm{X}$-Al1- Y^{b}	75.30 (10)	76.66 (14)	74.61(6)	75.94 (14)	74.91 (17)	77.2 (2)
${ }^{\text {b }}$ Y-Al1-N1	79.52 (10)	82.12 (15)	79.36 (7)	88.58 (14)	87.52 (16)	90.6 (2)
O1-Al1-Z ${ }^{\text {c }}$	111.65 (13)	108.04 (18)	110.56 (8)	113.62 (17)	113.4 (2)	116.2 (3)
N1-Al1- ${ }^{\text {a }}$	147.29 (11)	145.38 (16)	149.03 (7)	157.52 (15)	158.63 (17)	167.1(2)

${ }^{\mathrm{a}} \mathrm{X}=\mathrm{O} 2$ (red), O6, O2, O2 (red), O2 (red), O2 (red) in V2a, V2b, V2d, V2f (cis-), V2f (trans-), V2g respectively. ${ }^{6} \mathrm{Y}$
 C21, C19, in V2a, V2b, V2d, V2f (cis-) respectively.

The solid state structures of the aliphatic amino alcohol derivatives of aluminum were also obtained in this study. As we previously noted based on variable-temperature ${ }^{1} \mathrm{H}$ NMR studies, in these instances the isomer isolated, i.e., cis or trans arrangement of apical ligands, depends on temperature. ${ }^{60}$ For example, complex V2g was recrystallized following heating of the complex at $50{ }^{\circ} \mathrm{C}$ in methylene chloride in a sealed tube until complete dissolution. Upon cooling the solution and maintaining it at $-10^{\circ} \mathrm{C}$, the trans
isomer was exclusively afforded (Figure V-2a). On the other hand, complex V2f was dissolved in methylene chloride at ambient temperature and kept at $-10^{\circ} \mathrm{C}$ resulting in formation of crystals of both cis and trans isomers. The two five-coordinate aluminum centers in this series of aluminum complex possess distorted-bipyramidal geometries with the ethyl groups on each metal center cis to one another in complex V2f (cis) and trans to each other in complex V2f (trans) and V2g. Thermal ellipsoid representations of these structures are shown in Figure V-2, with selected bond distances and bond angles listed in Table V-1. Although we have thusfar not been successful in obtaining crystals of complexes $\mathbf{V} \mathbf{2} \mathbf{j}$ and $\mathbf{V} \mathbf{2 k}$, these are most likely similarly dimeric in structure.

Figure V-2. X-ray crystal structures of (a) V2g (trans-), (b) V2f (cis), and (c) V2f (trans-). Thermal ellipsoids represent the 50% probability surfaces. Hydrogen atoms are omitted for the sake of clarity.

Polymerization Studies: Ring-Opening Polymerization of Lactides. The aluminum complexes shown in Scheme V-1 were examined as catalysts for the ROP of rac-lactide in solution, where Table V-2 summarizes the relative reactivity and selectivity observed for this polymerization process under similar reaction conditions. Although complex V2a was not efficient at catalyzing rac-lactide in CDCl_{3} after an extended period of time at $60^{\circ} \mathrm{C}$

Table V-2. Reactivity and Selectivity of Aluminum Complexes V2a-k for the ROP of Rac-Lactide. ${ }^{a}$

entry	M	time (h)	conversion $(\%)^{b}$	meso- c	M_{n}			Theoretical d	$0.58 M_{\mathrm{n}, \mathrm{GPC}}{ }^{e}$

[^4](entry 2); over the same time period a 57% conversion to polylactide was noted in toluene at $70{ }^{\circ} \mathrm{C}$ (entry 4). In the series of aluminum complexes V2a-d when the substituents $\left(\mathrm{R}^{2}\right)$ on the phenoxide portion of the Schiff base ligand increased in size $\left(\mathrm{R}^{2}\right.$ $\left.=\mathrm{SiPh}_{3}\right)$ or is more electron donating $\left(\mathrm{R}^{2}=\mathrm{OMe}\right)$, the rate of polymerization decreased (entries 6 and 8). Similar results have been reported previously in related systems by Gibson and coworkers, as well as by Nomura and coworkers. ${ }^{12,}{ }^{17}$ Complex V2a afforded a moderately isotactic polylactide with a P_{m} value of 0.70 , whereas, complexes $\mathbf{V} 2 \mathbf{b}$, \mathbf{c} produced atactic polylactide with P_{m} values less than 0.50 . The aluminum complexes with achiral aliphatic backbones with the exception of V2f, i.e., complexes $\mathbf{V 2 e}, \mathbf{g}, \mathbf{h}, \mathbf{I}$ were observed to polymerize rac-lactide at faster rates than complex V2a to provide isotactic polymers with P_{m} values of $0.62,0.76,0.73$, and 0.82 , respectively. It should also be noted here that when the substituents on the phenoxide $\left(\mathrm{R}^{2}\right)$ of the halfsalen ligand in the series of complexes V2e-i increased in size from ${ }^{t} \mathrm{Bu}$ to $\mathrm{SiMe}_{2}{ }^{\mathrm{t}} \mathrm{Bu}$, the percent of isotacticity of the polymer increased from 0.76 to 0.82 .

The complexes derived from rac-amino acids, $\mathbf{V} \mathbf{2 j}$ and $\mathbf{V} 2 \mathbf{k}$, were also active for catalyzing the ROP of rac-lactide, providing isotactic polylactide with P_{m} values of 0.74 and 0.72 as shown in Table V-2. Previously we established that aluminum complexes which existed in both cis and trans forms, e.g., V2e and V2f, under conditions of the ring-opening polymerization reaction led to partial epimerization of D - and L-lactide to meso-lactide prior to polymerization. ${ }^{60}$ Similarly, upon utilizing complexes V2a-d as catalysts for the ROP of rac-lactide, meso-lactide was observed to be produced during the polymerization process. Presumably, the cis isomeric form of the series of complexes

V2a-d is responsible for the formation of meso-lactide. As evident from X-ray crystallography only the cis isomeric form of complexes V2a, V3b, and V2d was obtained in the solid state. On the contrary, when complexes which exist in the trans isomeric form are used to catalyze the ROP of rac-lactide in toluene at $70{ }^{\circ} \mathrm{C}$, no epimerization was observed and concomitantly a polylactide was produced with a high degree of isotacticity $\left(P_{\mathrm{m}}=82 \%\right)$.

There are two proposed mechanisms for the stereoselective ROP of raclactide, ${ }^{13 \mathrm{c}}$ that is, an enantiomorphic site-control, ${ }^{13 \mathrm{a}, 13 \mathrm{~b}}$ and a chain-end control mechanism. ${ }^{12}$ Chisholm and coworkers have shown in addition to chiral ligands bound to aluminum centers, other factors can also contribute to the stereoselectivity in the ROP of lactides when utilizing aluminum salen complexes as catalysts. ${ }^{18,390}$ These include considerations of the chirality of the initiator as well as the solvent. In order to better understand the origin of the stereoselectivity of rac-lactide during the polymerization process in our catalytic system, we attempted to obtain crystal structures of lactide binding to the aluminum centers in our complexes. The ethyl group on the aluminum center can be removed upon reaction with $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right)_{4}\right]^{-}$as illustrated in equation 1 in Scheme V-3. Zwitterion formation and aryl transfer to aluminum can be avoided when using the non-nucleophilic $\left[B\left(\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right)_{4}\right]^{-}$as counter anion. ${ }^{82}$ X-ray quality crystals obtained from a CHCl_{3} solution of complex $\mathbf{V 2 e}$ in the presence of $\left[\mathrm{H}\left(\mathrm{OEt}_{2}\right)_{2}\right]^{+}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right)_{4}\right]^{-}$and one equivalent of rac-lactide were found to consist of two morphological forms, i.e., plate-like and block-like crystals. The plate-like crystals were shown to be a tetrameric aluminum complex with two $\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right)_{4}\right]^{-}$counter

Scheme V-3

v3e

(1)

V4e
ions. All four aluminum centers are five-coordinate with bridging oxygen atoms from the Schiff base ligands and hydroxyl groups as illustrated in Figure V-3 and Scheme V3, equation 2. The molecular structure of the block-like crystals are also tetrameric and similar to that observed in V3e, except the ${ }^{t} \mathrm{Bu}$ substituents were found in this derivative, complex V4e, on opposite sides as seen in Figure V-4 and Scheme V-3, equation 3. In
addition, complex V4e contains two lactide molecules located between the phenoxides of the half-salen ligands with hydrogen bonds from the carbonyl oxygen of the lactide to the bridging hydroxyl ligands (1.876 Å). Both L-lactide (left) and D-lactide (right) were found in the solid state structure as shown in Figure V-4 and Scheme V-3, equation 3. This observation suggests that the stereoselectivity noted for the ROP of rac-lactide in the presence of the aluminum complexes $\mathbf{V} 2 \mathrm{e}-\mathrm{i}$ results from an enantiomorphic site control mechanism dictated by the bulky ${ }^{t} \mathrm{Bu}$ substituents in the R^{1} position. The bond distance of Al1-O9 of $1.805 \AA$ A lies within the range of those reported in the literature. ${ }^{83}$ We assume the hydroxyl bridging ligands result from adventitious water being present during the crystal growth process.

Figure V-3. X-ray crystal structure of complex V3e. Thermal ellipsoids represent the 50% probability surfaces. Hydrogen atoms and $2\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right)_{4}\right]^{-}$are omitted for the sake of clarity. Selected bond lengths (\AA) and angles (deg): Al1-N1: 1.944 (4), Al1-O1: 1.779 (4), All-O2: 1.873 (4), Al1-O4: 1.862 (3), Al2-N2: 1.959 (4), Al2-O3: 1.765 (4), Al2-O4: 1.876 (4), Al2-O5: 1.817 (4), N1-Al1-O1: 92.06 (18), N1-Al1-O2: 82.50 (17), O1-Al1-O4: 96.97 (16), O2-Al1-O4: 76.15 (15), N1-Al1-O4: 150.00 (19), O1-Al1-O2: 152.03 (17), N2-Al2-O3: 91.67 (19), N2-Al2-O4: 81.80 (17), O2-Al2-O4: 76.79 (15), O2-Al2-O3: 97. 18 (17), N2-Al2-O2: 150.29 (19), O3-Al2-O4: 151.12 (18), O3-Al2-O5: 105.53 (18).

Figure V-4. X-ray crystal structure of complex V4e. Thermal ellipsoids represent the 50% probability surfaces. Hydrogen atoms and $2\left[\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{-}$are omitted for the sake of clarity. Selected bond lengths (\AA) and angles (deg): Al1-N1: 1.948 (8), Al1-O1: 1.756 (7), Al1-O2: 1.886 (6), All-O4: 1.839 (6), All-O9: 1.805 (6), O11-H9D: 1.876 (8), N1-Al1-O1: 92.4 (3), N1-Al1-O2: 81.7 (3), O2-Al1-O4: 76.5 (3), O1-Al1-O4: 96.7 (3), N1-Al1-O4: 149.7 (3), O1-Al1-O2: 151.4 (3), O1-Al1-O9: 104.6 (3), Al1-O9-Al3: 139.2 (3).

Ring-Opening of Other Cyclic Monomers. Complex V2g was selected to investigate the ring-opening polymerization for other cyclic monomers (Chart V-1) because of its greater reactivity and selectivity compared to the other aluminum complexes for the ROP of lactides. Table V-3 summarizes the reactivity of complex V2g for the various cyclic monomers in toluene at $70^{\circ} \mathrm{C}$ with a monomer:initiator of $50: 1$. The percent conversion of each monomer to polymer was monitored by ${ }^{1} \mathrm{H}$ NMR after 15 h of reaction, with the resulting polymers isolated and purified by precipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $5 \% \mathrm{HCl}$ in methanol followed by drying in vacuo.

Chart V-1

lactide

γ-butyrolactone

TMC

δ-valerolactone

β-butyrolactone

ε-caprolactone

Table V-3. Reactivity of Aluminum Complex V2g for the ROP of Cyclic Monomers. ${ }^{a}$

entry	Monomer	${\text { conversion }(\%)^{b}}^{*}$	M_{n}		
			$M_{\mathrm{n}, \mathrm{GPC}}$		
1	rac-lactide	34	2446	2456^{d}	1.07
2	TMC	99	5050	2567	1.66
3	rac- β-butyrolactone	26	1118	1450	1.23
4	γ-butyrolactone	0	N/A	N/A	N/A
5	δ-valerolactone	30	1501	1819	1.89
6	ε-caprolactone	99	5649	2356	1.75

${ }^{a}$ Unless otherwise specified, the polymerization reactions were performed in sealed reaction tubes with the following conditions: monomer/[Al] $=50$, in toluene at $70{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Obtained from ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{c}$ Theoretical $M_{\mathrm{n}}=(\mathrm{M} / \mathrm{I}) \mathrm{x}$ (\% conversion) x (mol. wt. of lactide). ${ }^{d} M_{\mathrm{n}}$ values were corrected by the equation: $M_{\mathrm{n}}=0.58 M_{\mathrm{n}}$, $\mathrm{GPC} .{ }^{51}{ }^{e}$ The reaction was both performed in toluene at 70 and $105^{\circ} \mathrm{C}$.

As indicated in Table V-3, complex V2g was found to catalyze all of the cyclic monomers examined except for the five-membered cyclic lactone (γ-butyrolactone), even at $105{ }^{\circ} \mathrm{C}$ in toluene. This is explained based on the fact that the geometric
distortion in the ester group in γ-butyrolactone is much less than that in δ-valerolactone resulting in lower ring strain. ${ }^{84}$ Complex V2g was more effective at catalyzing the ROP of trimethylene carbonate and ε-caprolactone than the other cyclic monomer, with 99% conversion being observed in 15 h . Although complex V2g catalyzed the ROP of raclactide to isotactic polylactide with a P_{m} value of $0.76, \beta$-butyrolactone similarly underwent ROP to afford an atactic polymer as evidenced by ${ }^{13} \mathrm{C}$ NMR spectroscopy. ${ }^{85}$

Table V-4. Polylactide Produced from the ROP of Rac-Lactide in Toluene at $70{ }^{\circ} \mathrm{C}$.

entry	M / I	${\text { conversion }(\%)^{a}}^{*}$		M_{n}				Theoretical b	GPC	$0.58 M_{\mathrm{n}, \mathrm{GPC}}{ }^{c}$	PDI
			15913	28024	16254	1.12					
2	155	96	21448	40598	23457	1.09					
3	230	96	31826	59694	34632	1.18					
4	460	96	63552	109513	63518	1.10					

${ }^{a}$ Obtained from ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{b}$ Theoretical $M_{\mathrm{n}}=(\mathrm{M} / \mathrm{I}) \mathrm{x}$ (\% conversion) x (mol. wt. of lactide). ${ }^{c} M_{\mathrm{n}}$ values were corrected by the equation: $M_{\mathrm{n}}=0.58 M_{\mathrm{n}}$, GPC^{51}

Table V-5. Poly- β-Butyrolactone Produced from the ROP of Rac-Lactide in Toluene at $70^{\circ} \mathrm{C}$.

entry	M/I x monmer conversion	M/I	conversion (\%) ${ }^{\text {a }}$	$M_{\text {n }}$		PDI
				Theoretical ${ }^{\text {b }}$	GPC	
1	142	160	89	12347	12753	1.12
2	177	217	82	15235	15601	1.22
3	202	317	64	17552	18248	1.28

The dependence of the molecular weights of polylactide and poly- β-butyrolactone produced on the monomer/initiator ratios was investigated and the results are provided in Tables V-4 and V-5, respectively. As illustrated in Figure V-5 there is a linear

Figure V-5. (a) Linear relationship observed between M_{n} and monomer/initiator ratio of polylactide from rac-lactide catalyzed by complex V2g at $70{ }^{\circ} \mathrm{C}$ in toluene. (b) Linear relationship observed between M_{n} and monomer/initiator ratio of poly- β-butyrolactone from rac- β-butyrolactone catalyzed by complex V2g at $70^{\circ} \mathrm{C}$ in toluene.
correlation of M_{n} and the monomer/initiator ratio, indicative of a well-controlled polymerization process. The living character of these polymerization processes is further noted in the low polydispersities observed, where the PDIs for polylactide and poly- β butyrolactone span the range of $1.09-1.18$ and $1.12-1.18$, respectively. However, the molecular weights of poly(TMC), poly- δ-valerolactone, and poly- ε-caprolactone observed for the polymers produced by the ROP of the corresponding monomers catalyzed by complex V2g did not agree with the expected values. Furthermore, the PDIs of these polymers were found to be rather broad, see Table V-3. These results are suggestive of transesterification occurring during the polymerization process possibly resulting from less steric hindrance of the alkoxide formed at the metal center from the ring-opening of these cyclic monomers.

Kinetic Studies of the Ring-Opening Polymerization of rac-lactide. Kinetic measurements of the ring-opening polymerization of rac-lactide were carried out in modest pressure NMR tubes employing complex V2g as catalyst in toluene solution. It should be noted here that rac-lactide is not very soluble in deuterated toluene at ambient temperature, therefore, all reactions were preheated at $90{ }^{\circ} \mathrm{C}$ prior to be placed in the preheated NMR spectrometer. The observed rate constants (k_{obsd}) were extracted from a plot of $\left.\ln (r a c-L A]_{0} /[r a c-L A]_{\mathrm{t}}\right)$ vs time (Figure V-6). The reaction order in catalyst concentration was determined from a plot of $k_{\text {obsd }} v s[\mathrm{Al}]$ and the $\ln \left[k_{\mathrm{obsd}}\right] v s \ln [\mathrm{Al}]$ as shown in Figure V-7. As seen from the linearity of the plot of $k_{\text {obsd }} v s$ [catalyst]

Figure V-6. $\ln \left([r a c-L A]_{0} /[r a c-L A]_{t}\right) v s$ time plot depicting a reaction order of unity with respect to monomer concentration $\left(R^{2}=0.999\right)$.
as well as the near unity of the slope of the $\ln \left[k_{\text {obsd }}\right]$ vs $\ln [c a t a l y s t]$ plot, the ROP of raclactide in the presence of complex $\mathbf{V} 2 \mathrm{~g}$ is first order in catalyst concentration. This kinetic data is listed in Table V-6, along with analogous temperature dependent data. The activation parameters for the ROP of rac-lactide catalyzed by complex $\mathbf{V} 2 \mathbf{g}$ in deuterated toluene were determined from the data in Table V-6 to be $\Delta \mathrm{H}^{\neq}=59.7 \pm 2.8$ $\mathrm{kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}^{\neq}=-129.1 \pm 7.7 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$ (see Eyring plot in Figure V-8). The corresponding free energy of activation for this polymerization process was calculated to be $106.6 \mathrm{~kJ} / \mathrm{mol}$ at $90^{\circ} \mathrm{C}$.
a)

b)

Figure V-7. (a) Plot of $k_{\text {obsd }} v s$ [Al] with slope $=0.011$ and $R^{2}=0.984$. (b) Plot of $\ln k_{\text {obsd }}$ vs $\ln [\mathrm{Al}]$ with slope $=0.86$ and $R^{2}=0.984$.

Table V-6. Rate Constants Dependence on the Concentration of the Catalyst (V2g) and Temperature for the Ring-Opening Polymerization of Rac-Lactide. ${ }^{a}$

entry	$[\mathrm{Al}](\mathrm{mM})$	temp $\left({ }^{\circ} \mathrm{C}\right)$	$k_{\text {obsd }}\left(\mathrm{h}^{-1}\right)$	$K_{\mathrm{p}}\left(\mathrm{m}^{-1}-\mathrm{sec}^{-1}\right)$
1	1.49	90	0.0219	
2	2.98	90	0.0424	
3	4.47	90	0.0600	
4	5.96	90	0.0713	3.77×10^{-3}
5	4.47	80	0.0304	1.89×10^{-3}
6	4.47	100	0.0985	6.12×10^{-3}
7	4.47	105	0.1263	7.85×10^{-3}

[^5]

Figure V-8. Eyring plot of ROP of rac-lactide in the presence of catalyst $\mathbf{V 2 g}$ in toluene-d ${ }_{8}$. Slope $=-7.180$ with $R^{2}=0.995$.

Kinetic measurements of the ring-opening polymerization of the other cyclic monomers examined in this report were conducted in the same manner as those for raclactide. The polymerization processes were shown to be first-order in monomer concentration for all monomers investigated as evidenced by the plot of $\ln \left([\mathrm{M}]_{0} /[\mathrm{M}]_{\mathrm{t}}\right)$ vs time as depicted in Figure V-9. Table V-7 listed the $k_{\text {obsd }}$ values for each monomer as a function of both catalyst concentration and temperature. It is noteworthy that in each case there is a brief initiation period involved. Furthermore, plots of $\ln \left[k_{\text {obsd }}\right]$ vs $\ln [\mathrm{Al}]$ as shown in Figure V-10 reveal the order of the reaction with respect to catalyst (V2g) concentration to be $0.73,0.85,0.48$, and 0.55 for the ROP of TMC, rac- β-BL, δ-VL, and ε-CL, respectively. Fractional dependencies on [catalyst] have previously been reported for the ROP of lactones with other aluminum complexes. ${ }^{86}$ A fractional order on [catalyst] can be explained by an aggregation of the active species during the
polymerization process. Hence, a determination of the propagation rate constant $\left(\mathrm{k}_{\mathrm{p}}\right)$ in the polymerization process is complicated. ${ }^{55 c}$ The fractional order will be equal to the reciprocal of the degree of aggregation when the majority of the active species is aggregated and only a small fraction is unaggregated. ${ }^{87}$

Figure V-9. $\ln \left([\mathrm{M}]_{0} /[\mathrm{M}]_{\mathrm{t}}\right)$ vs time plot depicting a reaction order of unity with respect to a) $[\mathrm{TMC}]\left(R^{2}=0.987\right)$, b) $\left[\mathrm{rac}-\beta\right.$-BL] $\left(R^{2}=0.996\right)$, c) $\left[\delta\right.$ VL] $\left(R^{2}=0.997\right)$, and d) $[\varepsilon$ CL] $\left(R^{2}=0.995\right)$.

Table V-7. Rate Constants Dependence on the Concentration of the Catalyst (V2g) and Temperature in the ROP of Cyclic Monomers. ${ }^{a}$

entry	$[\mathrm{Al}](\mathrm{mM})$	temp $\left({ }^{\circ} \mathrm{C}\right)$	$r a c-$ lactide $k_{\text {obsd }}\left(\mathrm{h}^{-1}\right)$	TMC $k_{\text {obsd }}\left(\mathrm{h}^{-1}\right)$	$r a c-\beta$-BL $k_{\text {obsd }}\left(\mathrm{h}^{-1}\right)$	$\delta \mathrm{VL}$ $k_{\text {obsd }}\left(\mathrm{h}^{-1}\right)$	ε-CL $k_{\text {obsd }}\left(\mathrm{h}^{-1}\right)$
1	0.74	90	-	-	-	0.047	-
2	1.49	90	0.0219	1.0015	0.0264	-	1.2779
3	2.98	90	0.0424	1.6584	0.0519	0.0777	1.8167
4	4.47	90	0.0600	2.1617	0.0692	0.1187	2.2469
5	5.96	90	0.0713	2.7963	0.0868	0.1279	2.7790
6	4.47	70	-	0.8863	-	0.0355	-
7	4.47	80	0.0304	1.5420	0.0230	0.0617	1.4593
8	4.47	100	0.0985	-	0.1481	0.1743	4.0329
9	4.47	105	0.1263	4.0881	0.2051	-	5.3720

${ }^{a}$ Monomer concentration was held constant at 0.69 M and reactions carried out in toluene- d_{8}.

Figure V-10. Plot of $\ln k_{\text {obsd }}$ vs $\ln [\mathrm{Al}]$ from the ROP of a) TMC (slope $=0.73, R^{2}=$ 0.997), b) rac- β-BL (slope $=0.85, R^{2}=0.994$), c) δ-VL (slope $=0.48, R^{2}=0.954$), and d) ε-CL (slope $=0.54, R^{2}=0.994$).

It is apparent that the steric of methyl group on polylactide and poly- β-BL affects the degree of aggregation during the polymerization process. The more steric alkoxide resulting from the ROP of a rac-lactide and rac- β-BL monomer is a secondary alkoxide. The more steric hindrance of this methyl group should decrease the degree of aggregation during the polymerization process when compared to the primary alkoxide derived from the ROP of TMC, δ-VL and ε-CL. The rates for the ROP of each cyclic monomer under the same condition were compared (entry 4, Table V-7). The experimental results indicated that complex $\mathbf{V} 2 \mathrm{~g}$ catalyzed ε-CL and TMC at similar rates with $k_{\text {obsd }}$ values of $2.2469 \mathrm{~h}^{-1}$ and $2.1617 \mathrm{~h}^{-1}$ respectively. The k_{obsd} value for the ROP of δ-VL $\left(0.1187 \mathrm{~h}^{-1}\right)$ catalyzed by complex $\mathbf{V} 2 \mathrm{~g}$ is slightly higher than that of the polymerization reactions of $r a c-\beta$ - BL $\left(0.0692 \mathrm{~h}^{-1}\right)$ and rac-lactide $\left(0.0600 \mathrm{~h}^{-1}\right)$.

The ring-opening polymerizations of rac- β-bL, TMC, δ - VL and ε-CL were carried out over the temperature range $70-105{ }^{\circ} \mathrm{C}$ in order to obtain the activation parameters for these processes. The activation parameters $\Delta \mathrm{H}^{\neq}$and $\Delta \mathrm{S}^{\neq}$calculated from the Eyring plot shown in Figure V-11 were determined and are listed in Table V-8. The $\Delta \mathrm{G}^{\neq}$values for the ROP of these cyclic monomers at $90{ }^{\circ} \mathrm{C}$ were also calculated and listed in Table V-8. The $\Delta \mathrm{G}^{\neq}$values at $90{ }^{\circ} \mathrm{C}$ of $95.4 \mathrm{~kJ} / \mathrm{mol}$ and $95.2 \mathrm{~kJ} / \mathrm{mol}$ for the ROP of TMC and ε-CL are similar. This results demonstrates that the two processes are energetically the same. Likewise, the $\Delta \mathrm{G}^{\neq}$values at $90{ }^{\circ} \mathrm{C}$ for the ROP of rac-lactide ($106.6 \mathrm{~kJ} / \mathrm{mol}$) and rac- β - $\mathrm{BL}(106.3 \mathrm{~kJ} / \mathrm{mol})$ were similar and are slightly higher than the $\Delta \mathrm{G}^{\neq}$value for the ROP of $\delta-\mathrm{VL}(104.5 \mathrm{~kJ} / \mathrm{mol})$ at $90{ }^{\circ} \mathrm{C}$.

Figure V-11. Eyring plot of ROP of a) TMC (Slope $=-5.193$ with $R^{2}=0.994$), b) rac- β BL (Slope $=-11.285$ with $\left.R^{2}=0.990\right)$, c) δ VL (Slope $=-6500$ with $R^{2}=0.992$), and d) ε-CL (Slope $=-6.645$ with $R^{2}=0.991$) in the presence of catalyst $\mathbf{V} 2 \mathrm{~g}$ in toluene- d_{8}.

Table V-8. Activation Parameter in Homopolymerization.

entry	monomer	$k\left(\mathrm{M}^{-1} \mathrm{~h}^{-1}\right)$	$\Delta \mathrm{H}^{\neq}$ $(\mathrm{kJ} / \mathrm{mol})$	$\Delta \mathrm{S}^{\neq}$ $(\mathrm{J} / \mathrm{mol} . \mathrm{K})$	$\Delta \mathrm{G}^{\neq}$ $(\mathrm{kJ} / \mathrm{mol})$
1	rac-lactide	0.0111	59.7 ± 2.8	-129.1 ± 7.7	106.6
2	TMC	0.3951	43.1 ± 2.2	-144.1 ± 6.3	95.4
3	rac- β-BL	0.0133	93.8 ± 6.3	-34.5 ± 17.1	106.3
4	δ-VL	0.0165	54.0 ± 3.3	-139.1 ± 9.3	104.5
5	ε-CL	0.3311	55.2 ± 3.6	-110.2 ± 9.8	95.2

Copolymerization of Cyclic Monomers. Although complex V2g was shown to effectively catalyze the ROP of rac-lactide and rac- β-BL in toluene at $90^{\circ} \mathrm{C}$ with similar $k_{\text {obsd }}$ values ($0.060 \mathrm{~h}^{-1}$ vs $0.069 \mathrm{~h}^{-1}$, see Table V-7), in a copolymerization reaction (50:50 monomer feed) only rac-lactide was polymerized after an extended time period with no evidence of polybutyrolactone being formed. A similar copolymerization reaction was carried out involving rac-lactide and δ-VL. In this instance a tapered polylactidepolyvalerolactone copolymer, where the lactide monomer conversion was initially high, was obtained as evidenced by ${ }^{1} \mathrm{H}$ NMR spectroscopy. A series of experiments were performed as indicated in Table V-9 in order to determine the monomer reactivity ratios as defined by the Fineman-Ross equations 4 and $5 .{ }^{88}$ From the mole fraction of δ-VL in the monomer feed (F) and in the copolymer (f) as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the purified copolymer, a Fineman-Ross plot was created as indicated in Figure V-12.

$$
\begin{gather*}
\frac{(f-1)}{F}=-r_{\text {lactide }} \frac{f}{F^{2}}+r_{\text {valero }} \tag{4}\\
r_{\text {lactide }}=\frac{k_{L L}}{k_{L V}} \quad \text { and } \quad r_{\text {valero }}=\frac{k_{V V}}{k_{V L}} \tag{5}
\end{gather*}
$$

The reactivity ratios determined from the slope ($\mathrm{r}_{\text {lactide }}$) and the intercept ($\mathrm{r}_{\text {valero }}$) of the Fineman-Ross plot were found to be 2.78 and 0.140 , respectively. The value of
$\mathrm{r}_{\text {lactide }}$ indicates that the polymer's lactide unit prefers to ring open rac-lactide over $\delta \mathrm{VL}$, and the $\mathrm{r}_{\text {valero }}$ designates that upon insertion of δ-VL in the polymer chain, it also prefers to ring open a rac-lactide monomer as opposed to a δ-VL monomer. This result clearly demonstrates that a tapered polylactide-polyvalerolactone copolymer with high lactide composition should be observed early on in the copolymerization process. A purified copolymer, which was precipitated from $5 \% \mathrm{HCl}$ in methanol followed by drying, with a composition of rac-lactide to δ-valerolactone of 6.50:1.74 (entry 3 in Table V-9) displayed a M_{n} value of $9600(\mathrm{PDI}=1.69)$ which is in good agreement with the theoretical molecular weight of 11,000 . The T_{g} of this copolymer was determined to be $7.69{ }^{\circ} \mathrm{C}$ which lies between the T_{g} of pure polylactide $\left(55^{\circ} \mathrm{C}\right)$ and poly- δ-VL $\left(-63{ }^{\circ} \mathrm{C}\right) .{ }^{27}$

Table V-9. The Data Set of Mole Fraction of the Fineman-Ross Plot. ${ }^{a}$

entry	$r a c-$-lactide $: \delta-$ valerolactone in the feed	F^{b}	$r a c$-lactide $: \delta-$ valerolactone in the copolymer	f^{d}
1	$29: 71$	2.44	$7.96: 2.34$	0.305
2	$34: 66$	1.94	$6.81: 1.86$	0.273
3	$44: 56$	1.27	$6.50: 1.74$	0.268
4	$49: 51$	1.04	$6.69: 1.56$	0.233
7	$53: 47$	0.88	$8.11: 1.66$	0.204

${ }^{a}$ Polymerization conditions: $r a c$-lactide $+\delta$-VL $(818 \mu \mathrm{~mol}),([r a c$-lactide $] /[\delta \mathrm{VL}]) /[\mathrm{Al}]=100$, in toluene- d_{8} at $90{ }^{\circ} \mathrm{C}$.
${ }^{b}$ Mole fraction of δ VL in the feed ($F=\mathrm{X}_{\mathrm{VL}, \text { monomer }} / \mathrm{X}_{\mathrm{LA}, \text { monomer }}$). ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Mole fraction of δ - VL in the polymer $\left(f=\mathrm{X}_{\mathrm{VL}, \text { polymer }} / \mathrm{X}_{\mathrm{LA}, \text { polymer }}\right)$.

Figure V-12. Plot of $(f-1) / F$ vs f / F^{2} with slope $=2.78$ and $R^{2}=0.98$, the interception $=$ 0.14 .

Kinetic measurements of the copolymerization of rac-lactide and δ-VL catalyzed by complex V2g in deuterated toluene were carried out at $90{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. As expected based on the Fineman-Ross analysis above the rate of enchainment of rac-lactide was observed to be faster than that of δ-VL. The copolymerization process was found to be first order in both rac-lactide and δ-VL concentrations as illustrated from the plots of $\ln \left([\mathrm{M}]_{0} /[\mathrm{M}]_{\mathrm{t}}\right)$ vs time in Figure V-13. As previously noted in the homopolymerization processes there is a brief initiation period seen in the copolymerization process. From the plots of $k_{\mathrm{obsd}} v s$ [catalyst] or $\ln k_{\mathrm{obsd}} v s$ \ln [catalyst], the reaction order in complex $\mathbf{V} 2 \mathrm{~g}$ concentration was also found to be unity (Figure V-14). Table V-10 lists the rate constants (k_{obsd}) for the copolymerization of raclactide and δ - VL as a function of both catalyst concentration and temperature. Hence, the rate law for the copolymerization process can be expressed as shown in equation 6 .

$$
\begin{equation*}
\text { rate }=[\mathrm{Al}]\left(k_{\mathrm{LA}}[r a c \text {-lactide }]+k_{\delta \mathrm{VL}}[\delta-\mathrm{VL}]\right) \tag{6}
\end{equation*}
$$

Figure V-13. $\ln \left([\mathrm{M}]_{0} /[\mathrm{M}]_{\mathrm{t}}\right)$ vs time plot depicting a reaction order of unity with respect to rac-lactide (red solid circles) and ε-VL (green solid squares) concentration ($R^{2}=$ 0.993 for polylactide and $R^{2}=0.991$ for poly- δ-VL).

The activation parameters for the enchainment of rac-lactide and δ - VL in the copolymerization reaction were calculated from the temperature dependent data in Table V -10. In both instances the $\Delta \mathrm{H}^{\neq}$values for the copolymerization processes were larger and the $\Delta \mathrm{S}^{\neq}$values less negative than for the corresponding homopolymerization processes. Table V-11 compiles the Eyring derived activation parameter for the two ROP processes, which illustrates the observation that the $\Delta \mathrm{G}^{\neq}$at $90{ }^{\circ} \mathrm{C}$ for the copolymerization and homopolymerization processes to be quite similar. Nevertheless, the $\Delta \mathrm{G}^{\neq}$for the ROP of δ-VL in the copolymerization has increased somewhat as anticipated from the Fineman-Ross analysis. Crystal data and details of the data collection for complexes V2a, V3b, V2d, V2f (cis), V2f (trans), V3e, V4e are provided in Table V-12-V14.
a)
b)

Figure V-14. (a) Plot of $k_{\text {obsd }} v s$ [Al] with slope $=0.016$ for $r a c$-lactide (red solid circles ,$R^{2}=0.996$) and slope $=0.038$ for δ VL(green solid squares, $R^{2}=0.995$). (b) Plot of \ln $k_{\text {obsd }} v s \ln [\mathrm{Al}]$ with slope $=0.92$ for rac-lactide (red solid circles,$R^{2}=0.997$) and slope $=$ 1.20 for $\delta \mathrm{VL}\left(\right.$ green solid squares, $\left.R^{2}=0.999\right)$.

Table V-10. Rate Constants Dependence on the Concentration of the Catalyst (V2g) and Temperature in Copolymerization of Rac-Lactide and δ-Velerolactone. ${ }^{a}$

entry	$[\mathrm{Al}](\mathrm{mM})$	temp $\left({ }^{\circ} \mathrm{C}\right)$	$k_{\text {obsd }}\left(\mathrm{h}^{-1}\right)$	$k_{\mathrm{obsd}}\left(\mathrm{h}^{-1}\right)$
	1.49	90	0.0285	0.0039
2	2.98	90	0.0520	0.0091
3	4.47	90	0.0808	0.0143
4	5.96	90	0.1014	0.0211
5	4.47	80	0.0379	0.0061
6	4.47	100	0.1472	0.0345
7	4.47	105	0.1938	0.0425

[^6]Table V-11. Comparison of Rates and Activation Parameters in Homopolymerization and Copolymerization of Rac-Lactide and δ-VL Catalyzed by Complex V2g.

	homopolymerizatoin			copolymerization	
	$r a c$-lactide	δ-VL		$r a c$-lactide	δ - VL
$\Delta \mathrm{H}^{\neq}(\mathrm{kJ} / \mathrm{mol})$	59.7 ± 2.8	54.0 ± 3.3		69.7 ± 2.5	85.7 ± 4.9
$\Delta \mathrm{~S}^{\neq}(\mathrm{J} / \mathrm{mol} . \mathrm{K})$	-129.1 ± 7.7	-139.1 ± 9.3		-100.2 ± 6.9	-68.8 ± 13.3
$\Delta \mathrm{G}^{\neq}(\mathrm{kJ} / \mathrm{mol})$	106.6	104.5		106.1	110.7

${ }^{a}$ Free energy of activated calculated at $90^{\circ} \mathrm{C}$.

Table V-12. Crystallographic Data for Complexes V2a, V3b, and V2d.

	V2a	V3b	V2d
empirical formula	$\mathrm{C}_{46} \mathrm{H}_{72} \mathrm{Al}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{Al}_{2} \mathrm{~N}_{2} \mathrm{O}_{8}$	$\mathrm{C}_{44} \mathrm{H}_{72} \mathrm{Al}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}$
fw	771.02	762.78	803.18
temperature (K)	110(2) K	110(2) K	110(2) K
crystal system	orthorhombic	monoclinic	triclinic
space group	P4/ncc	P21/c	P-1
$a(\mathrm{~A})$	23.795(3)	20.036(2)	9.5815(12)
$b(\AA)$	23.795(3)	13.6282(14)	13.506(2)
$c(\mathrm{~A})$	18.707(3)	17.6152(19)	18.158(3)
α (deg)	90	90	89.262(9)
$\beta(\mathrm{deg})$	90	96.586(6)	86.668(9)
χ (deg)	90	90	75.039(9)
$V(\AA)$	10592(2)	4778.2(9)	2266.4(6)
$D_{\text {c }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	0.967	1.060	1.177
Z	8	4	2
abs coeff(mm^{-1})	0.769	0.923	1.407
reflections collected	79230	37179	15570
independent reflections	$3958[R(\mathrm{int})=0.1174]$	$7055[R(\mathrm{int})=0.0390]$	6277 [$R(\mathrm{int}$) $=0.0274]$
data/restrains/parameters	3958 / 0 / 257	7055 / 6 / 501	6277 / 0 / 513
GOF on F^{2}	1.104	1.128	1.045
final R indices	$R_{1}=0.0633$	$R_{1}=0.0964$	$R_{1}=0.0369$
[$I>2 \sigma(I)]$	$R_{\text {w }}=0.1578$	$R_{\text {w }}=0.2061$	$R_{\text {w }}=0.0962$
final R indices	$R_{1}=0.0927$	$R_{1}=0.1061$	$R_{1}=0.0435$
final R indices (all data)	$R_{\mathrm{w}}=0.1712$	$R_{\text {w }}=0.2099$	$R_{\mathrm{w}}=0.1052$

Table V-13. Crystallographic Data for Complexes V2f (cis-), V2f (trans-), and V2g (trans-).

	V2f (cis-)	V2f (trans-)	V2g (trans-)
empirical formula	$\mathrm{C}_{40} \mathrm{H}_{64} \mathrm{Al}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{40} \mathrm{H}_{64} \mathrm{Al}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{44} \mathrm{H}_{72} \mathrm{Al}_{2} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$
fw	690.89	690.89	888.80
temperature (K)	110(2) K	110(2) K	110(2)K
crystal system	orthorhombic	monoclinic	triclinic
space group	Pben	P21/C	P-1
$a(\AA)$	32.810(7)	14.234(4)	10.847(4)
$b(\AA)$	20.945(5)	8.985(3)	12.387(5)
$c(\AA)$	17.910(4)	18.655(5)	18.808(7)
$\alpha(\mathrm{deg})$	90	90	106.82(2)
$\beta(\mathrm{deg})$	90	123.063(16)	91.91(2)
(deg)	90	90	90.50(2)
$V(\AA)$	12308(5)	1999.5(10)	2417.1(16)
$D_{\mathrm{c}}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.119	1.148	1.221
Z	12	2	2
abs coeff(mm^{-1})	0.940	0.964	2.893
reflections collected	71247	12357	16050
independent reflections	$9145[\mathrm{R}(\mathrm{int})=0.0715]$	2689 [$R(\mathrm{int}$) $=0.1829]$	6270 [$R(\mathrm{int}$) $=0.0880]$
data/restrains/parameters	9145 / 34 / 696	2689 / 0 / 225	6270 / 114 / 519
GOF on F^{2}	1.066	1.019	1.235
final R indices	$\mathrm{R} 1=0.0873$	$R_{1}=0.0945$	$R_{1}=0.1225$
[$I>2 \sigma(I)$]	$\mathrm{Rw}=0.2201$	$R_{\text {w }}=0.2215$	$R_{\text {w }}=0.3020$
final R indices	$\mathrm{R} 1=0.1077$	$R_{1}=0.1233$	$R_{1}=0.1508$
final R indices (all data)	$\mathrm{Rw}=0.2348$	$R_{\text {w }}=0.2334$	$R_{\text {w }}=0.3281$

Table V-14. Crystallographic Data for Complexes V3e, and V4e.

	$\mathbf{V 3 e}$	$\mathbf{V 4 e}$
empirical formula	$\mathrm{C}_{132} \mathrm{H}_{124} \mathrm{Al}_{4} \mathrm{~B}_{2} \mathrm{~F}_{48} \mathrm{~N}_{4} \mathrm{O}_{10}$	$\mathrm{C}_{150} \mathrm{H}_{145} \mathrm{Al}_{4} \mathrm{~B}_{2} \mathrm{Cl}_{18} \mathrm{~F}_{48} \mathrm{~N}_{4} \mathrm{O}_{18}$
fw	2967.89	3971.34
temperature (K)	$110(2) \mathrm{K}$	$110(2) \mathrm{K}$
crystal system	triclinic	monoclinic
space group	$\mathrm{P}-1$	$\mathrm{P} 21 / \mathrm{c}$
$a(\mathrm{~A})$	$16.202(6)$	$29.458(2)$
$b(\AA)$	$17.644(7)$	$20.3463(15)$
$c(\AA)$	$18.126(6)$	$30.256(2)$
$\alpha($ deg $)$	$74.59(2)$	90
$\beta($ deg $)$	$66.12(2)$	102.383
$\gamma(\operatorname{deg})$	$75.58(2)$	90
$V(\AA)$	$4509(3)$	$17712(2)$
$D_{\mathrm{c}}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.093	1.489
Z	1	4
abs coeff(mm	1.077	3.725
reflections collected	34543	129138
independent reflections	$12628[R($ int $)=0.1016]$	$26167[R(\mathrm{int})=0.0959]$
data/restrains $/$ parameters	$12628 / 42 / 913$	$26167 / 1005 / 2194$
GOF on F^{2}	0.916	3.754
final R indices	$R_{1}=0.1010$	$R_{1}=0.1655$
$[I>2 \sigma(I)]$	$R_{\mathrm{w}}=0.2435$	$R_{\mathrm{W}}=0.3270$
final R indices	$R_{1}=0.1486$	$R_{1}=0.2258$
final R indices (all data)	$R_{\mathrm{w}}=0.2762$	$R_{1}=0.3404$

Summary Remarks

In summary, we have reported the synthesis of a series of aluminum half-salen complexes derived from tridentate Schiff base ligands synthesized from either the chiral amino alcohols, achiral amino alcohols, or amino acids. X-ray crystallographic analysis of a closely related complexes V2a, V3b, and $\mathbf{V} 2 d$ reveal that the solid state structures are dimeric with two five-coordinate aluminum centers with bridging oxygen atoms. The ethyl (V2a, V2d) or benzyl alkoxide (V3b) groups located on each aluminum enter are positioned cis to one another across the molecule. However, the greater flexibility of the backbones derived from aliphatic amino alcohols allow trans conformation to occur as observed for complexes V2f and V2g. Each of the aluminum complexes V2a-k polymerized rac-lactide in toluene at $70{ }^{\circ} \mathrm{C}$. Among these aluminum complexes, complex $\mathbf{V} 2 \mathbf{i}$ was found to give isotactic polylactide with P_{m} of up to 0.82 . In addition, complex V2g has shown reactivity toward the ring-opening polymerization of TMC, rac- β-butyrolactone, δ-valerolactone, ε-caprolactone in toluene at $70^{\circ} \mathrm{C}$. However, only the polymerization processes of rac-lactide and rac- β-butyrolactone appear to be living system as illustrated by a linear relationship between M_{n} and $\%$ conversion, as well as a low dispersity indices. The solution kinetic studies using complex V2g for the ROP of the cyclic monomer were determined to be first order in monomer concentration. And, the fractional orders in catalyst concentration, i.e. $0.86,0.73,0.85,0.48$ and 0.55 for raclactide, TMC, rac- β-butyrolactone, δ-valerolactone, and ε-caprolactone, respectively, were observed. This is due to the differences in bulk surrounding the alkoxide, resulting in different degree of aggregation of active species during the processes. The activation
parameters for all cyclic monomers were determined, and the $\Delta \mathrm{G}^{\neq}$values are as follows $\Delta \mathrm{G}^{\neq}{ }_{\mathrm{LA}}(106.6 \mathrm{~kJ} / \mathrm{mol}) \cong \Delta \mathrm{G}^{\neq}{ }_{\mathrm{BL}}(106.3 \mathrm{~kJ} / \mathrm{mol})>\Delta \mathrm{G}^{\neq}{ }_{\mathrm{VL}}(104.5 \mathrm{~kJ} / \mathrm{mol})>\Delta \mathrm{G}^{\neq}{ }_{\mathrm{TMC}}(95.4$ $\mathrm{kJ} / \mathrm{mol}) \cong \Delta \mathrm{G}^{\neq}{ }_{\mathrm{CL}}(95.2 \mathrm{~kJ} / \mathrm{mol})$. The activation parameters for copolymerization of raclactide and δ-VL have also been determined from an Eyring plot and compared with those of their homopolymerizations. In addition, the monomer reactivity ratios were determined from a Fineman-Ross plot, the results revealed that polymer lactide unit favors to ring-open rac-lactide more than ring open δ-VL molecule resulting in a tapered polylactide/polyvalerolactone copolymer.

CHAPTER VI

SUMMARY AND CONCLUSIONS

For decades, petroleum-based plastics have been increasing used across the globe. However, the accumulations of the waste from these non-biodegradable plastics as well as the concerns of limitation of petroleum feedstock have pushed scientific community to find alternative bio-based polymers. Among these polymeric materials, polylactide is a promising candidate as a replacement for petrochemical thermoplastics in several applications due to its outstanding physical and mechanical properties. These properties rely strongly upon the microstructures of the polymer which can be affected directly by the catalysts employed during the lactide polymerization process. This dissertation has focused on newly designed catalytic systems based on zinc and aluminum for the stereoselective ring-opening polymerization of rac-lactide as well as copolymerization of lactide with other cyclic monomers. Efforts have been made to understand stereoselectivity and kinetic aspects of these new catalysts for the ringopening polymerization of these cyclic monomers.

As discussed in Chapter II, a series of chiral NNO-tridentate Schiff base ligands derived from natural amino acids along with their corresponding zinc complexes have been designed and synthesized. X-ray crystallographic analysis revealed that the solid state structures of zinc complexes II6a-e are similar to each other. They have all shown to have a distorted tetrahedron geometry with zinc at the center as shown in Figure II-1.

Polymerization studies of these newly designed zinc complexes II6a-e were found to be reactive for the ring-opening polymerization of both D - and L -lactide in $\mathrm{C}_{6} \mathrm{D}_{6}$ at ambient temperature, and the resulting polymers were obtained with the expected molecular weights and narrow polydispersity indices. Kinetic studies of the ring-opening polymerization of $\mathrm{D}-$ and L -lactide revealed to be first order in monomer concentration. The rates of the reaction for the ROP of D- and L-lactide were compared for each catalyst, and the experimental results indicate that enantiomerically pure complexes did not favorably catalyze one enantiomer over the other as evidenced from the ratio of $k_{\mathrm{D}(\text { obsd) }} / k_{\text {L(obsd) }}$ being close to unity for all catalysts employed. Since the chiral center in complexes II6a-c did not affect the selectivity in the ring-opening polymerization of Dor L-lactide, we suggest that stereoselectivity in the polymerization of rac-lactide occurs via a chain-end control mechanism rather than enantiomorphic site control mechanism. In addition, the rates of the polymerization were found to be independent of the coordinating solvent, e.g. THF. Although the chiral center on tridentate Schiff base ligands did not play a role in stereregularity for these zinc complexes, the subsituent of the chiral tridentate Schiff base ligands did however play a significant role in producing heterotactic polylactide from rac-lactide. It was shown that complex II6c yielded the highest degree of heterotactic polylactide with P_{r} values of 0.84 and 0.89 at ambient temperature and $-30^{\circ} \mathrm{C}$, respectively. Furthermore, the sterically bulky substituent of the tridentate Schiff base ligands can prevent the formation of meso-lactide during the polymerization process. That is, when complex II6d was employed, a methine proton resonance at 4.15 ppm is observed which corresponds to a meso-lactide, demonstrating
that epimerization of the lactide monomer occurs during the polymerization process. Conversely, when complexes II6a-c containing more steric bulk were used for the ringopening polymerization of rac-lactide, there is no evidence of meso-lacitde formation, as observed from ${ }^{1} \mathrm{H}$ NMR.

In Chapter III, it is of interest to explore the reactivity of the zinc complexes from Chapter II for the ring-opening polymerization of ε-caprolactone, since lactides and lactones undergo similar ring-opening polymerization processes as lactides via a coordination-insertion mechanism. The results revealed that complexes III1a and III1b were both reactive for the ring-opening polymerization of ε-caprolactone in $\mathrm{C}_{6} \mathrm{D}_{6}$ at ambient temperature. And, these polymerization processes appear to be living systems affording polymers with the expected molecular weights and low polydispersity indices. It was also shown that complex III1a polymerizes L-lactide significantly faster than ε caprolactone, with $k_{\text {obsd }}$ value determinded to be 12.4 at room temperature. This may be explained by the difference in Lewis basicity of lactides and ε-carprolactone. In addition, the fact that latides contain two carbonyl groups increases the probability of coordination of the lactide monomer to the metal center, facilitating the rate of the polymerization. Another explanation is that the less sterically encumbering primary alkoxide generated from the ROP of an ε-caprolactone unit should bind more strongly to the zinc center as opposed to the secondary alkoxide from a lactide monomer unit. This stronger binding should slow down the polymerization process. The copolymerization of lactide and ε caprolactone in melt at $110{ }^{\circ} \mathrm{C}$ by complex III1a revealed that the polyester afforded by this catalyst was a random copolymer evidenced by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra.

Additionally, the resulting copolymers have the composition of lactide and ε caprolactone consistent with monomer mixture in the feed. The random copolymers produced from this catalyst system suggest that ε-caprolactone dramatically hinders the reactivity of lactide leading to a matched reactivity of the two monomers during the polymerization process, even though the polymerization rates for the ring-opening homopolymerizations of lactide and ε-caprolactone are different in benzene solution. Differential scanning calorimetry showed that the thermal properties of copolymers are strongly dependent upon the monomer compositions. That is, the T_{g} of the resulting copolymers increased from $-67^{\circ} \mathrm{C}$ (pure polycaprolactone) to $60^{\circ} \mathrm{C}$ (pure polylactide) as the molar ratio of lactide units in the copolymer increased, and the calculated T_{g} correspond well with the values obtained from Fox equation. Similar trends were observed for both T_{m} and T_{c} of the copolymers as evidenced from the plot of T_{m} or T_{c} versus monomer ratio in the copolymers.

Based on the results obtained in Chapter II, the chiral zinc complexes II2a-c are reactive for the ring-opening polymerization of lactide, however, the complexes did not show stereoselectivity toward either L- or D-lactide. Although chiral complexes are anticipated to control the selectivity via an enantiomorphic site control mechanism, it has not been always true for zinc-catalyzed systems. In fact, both chiral and achiral zinc complexes reported in the literature thus far catalyze rac-lactide to heterotactic polylactide by a chain-end control mechanism. Our newly designed zinc complexes from Chapter II are some of the few examples of chiral zinc complexes for the ring-opening
polymerization of lactide, and they yet polymerize rac-lactide to heterotactic polylactide via a chain-end control mechanism rather than by an enantiomorphic site control.

On the other hand, chiral and achiral aluminum complexes have shown excellent stereocontrol toward the ring-opening polymerization of rac-lactide via an enantiomorphic site control mechanism as reported in the literature. We thus wanted to compare the roles of zinc and aluminum with regards to the stereocontrol in the ringopening polymerization of rac-lactide. In Chapter IV, aluminum half-salen complexes closely related to our zinc complexes have been synthesized from both chiral and achiral ligands. The results revealed that both chiral and achiral aluminum complexes IV2a, IV2e, and IV2g-j in fact are reactive for the ring-opening polymerization of rac-lactide in toluene at $70{ }^{\circ} \mathrm{C}$, affording isotactic polylactide with a P_{m} value of up to 0.76 . The findings indicated that metal center has a great impact on the mechanism involved in polymerization process. The molecular weights of the resulting polymers correspond well with the theoretical values and the polydispersity indexes range from 1.03-1.08. From the variable-temperature ${ }^{1} \mathrm{H}$ NMR studies, complexes which existed in both cis and trans forms under the reaction condition, i.e. in toluene at $70^{\circ} \mathrm{C}$, epimerize raclactide to meso-lactide during the polymerization process. Complexes existing in only trans form did not show existence of meso-lactide during the ring-opening polymerization of rac-lactide. As a result, the produced polylactide was found to have a high degree of isotacticity $\left(P_{\mathrm{m}}=76 \%\right)$.

Some of the aluminum complexes from Chapter IV were characterized by X-ray crystallography and presented here in Chapter V. Additionally, the exploration of the
ring-opening polymerization of cyclic monomers, i.e. rac-lactide, trimethylene carbonate, β-butyrolactone, δ-valerolactone, and ε-caprolactone, were examined by using an aluminum complex V2g. The solid state structures of closely related aluminum complexes V2a, V3b, V2d, and V2f showed to be dimeric with bridging of oxygen atoms from the ligands, and the aluminum center adopts a distorted-bipyramidal geometry with the ligands positioned cis to one another. However, with the more flexible back bone found in aluminum complexe $\mathbf{V} \mathbf{2 g}$, the solid state structures display both cis and trans isomer. In addition, aluminum complex V2g was found to catalyze all of the cyclic monomers mentioned above. Polylactide obtained by this catalytic system was found to have a high degree of isotacticity, but the produced polybutyrolactone was found to be a completely atactic polymer. The ring-opening polymerizations of both raclactide and β-butyrolactone were found to be living processes as evidenced by the linear relationship between molecular weights and monomer/initiator ratios. The molecular weights of the resulting polymers were in good agreement with the theoretical values. Narrow polydispersity indexes were also observed from the resulting polymers. Kinetic studies of these cyclic monomers utilizing complex V2g revealed to be first order with respect to monomer concentration and to be fractional order in catalyst concentration, that is $0.86,0.73,0.85,0.48$ and 0.55 for rac-lactide, TMC, rac- β-butyrolactone, δ valerolactone, and ε-caprolactone, respectively. The fractional order can be explained by some aggregation of the active species during the polymerization process as explained in detail in Chapter V. Activation parameters for all homopolymerization have been determined from Eyring plots and it was determined that the ring-opening
polymerization of rac-lactide and rac- β-butyrolactone are more energetically similar than that of TMC. It was also found that the ring-opening polymerization of δ valerolactone and ε-caprolactone are also similar but less energetically favorable than that of TMC. In addition, copolymerization of rac-lactide and δ-valerolactone were studies and the activation parameters for such process were determined and compared with those in homopolymerization. A Fineman-Ross relationship was plotted, and the experimental results revealed that chain-end lactide units prefer to ring-open rac-lactide as opposed to δ-valerolactone monomer, resulting in a tapered polylactide/ polyvalerolactone copolymer.

In summary, I hope that the work presented in this dissertation has contributed to the understanding of the stereoselective ring-opening polymerization of lactide as well as the ring-opening polymerization of other cyclic monomers, and that the discoveries in this dissertation will allow for new development in catalysts for the better production of polylactide and its copolymers.

REFERENCES

(1) Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. Bioresour. Technol. 2010, 101, 8493-8501.
(2) (a) Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater. 2000, 12, 18411846; (b) Gross, R. A.; Kalra, B. Science 2002, 297, 803-807.
(3) Bourbigot, S.; Fontaine, G. Polym. Chem. 2010, 1, 1413-1422.
(4) Sawyer, D. J. Macromol. Symp. 2003, 201, 271-282.
(5) Albertsson, A.-C.; Varma, I. K. Biomacromolecules 2003, 4, 1466-1486.
(6) (a) Penco, M.; Donetti, R.; Mendichi, R.; Ferruti, P. Macromol. Chem. Phys. 1998, 199, 1737-1745; (b) Ikada, Y.; Tsuji, H. Macromol. Rapid Commun. 2000, 21, 117-132; (c) Platel, R. H.; Hodgson, L. M.; Williams, C. K. Polym. Rev. 2008, 48, 11-63.
(7) Becker, J. M.; Pounder, R. J.; Dove, A. P. Macromol. Rapid Commun. 2010, 31, 1923-1937.
(8) Avinc, O.; Khoddami, A. Fibre Chem. 2010, 42, 68-78.
(9) Thomas, C. M. Chem. Soc. Rev. 2010, 39, 165-173.
(10) (a) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 4072-4073; (b) Chisholm, M. H.; Eilerts, N. W.; Huffman, J. C.; Iyer, S. S.; Pacold, M.; Phomphrai, K. J. Am. Chem. Soc. 2000, 122, 11845-11854.
(11) Zell, M. T.; Padden, B. E.; Paterick, A. J.; Thakur, K. A. M.; Kean, R. T.; Hillmyer, M. A.; Munson, E. J. Macromolecules 2002, 35, 7700-7707.
(12) Nomura, N.; Ishii, R.; Yamamoto, Y.; Kondo, T. Chem.-Eur. J. 2007, 13, 44334451.
(13) (a) Nomura, N.; Ishii, R.; Akakura, M.; Aoi, K. J. Am. Chem. Soc. 2002, 124, 5938-5939; (b) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 13161326; (c) Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick, J. L.; Wade, C. G. J. Am. Chem. Soc. 2007, 129, 12610-12611.
(14) Schwach, G.; Coudane, J.; Engel, R.; Vert, M. Polym. Bull. 1996, 37, 771-776.
(15) Spassky, N.; Wisniewski, M.; Pluta, C.; Borgne, A. L. Macromol. Chem. Phys. 1996, 197, 2627-2637.

Zhong, Z; Dijkstra, P. J.; Feijen, J. Angew. Chem., Int. Ed. 2002, 41, 4510-4513.
(17) Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2004, 126, 2688-2689.
(18) Chisholm, M. H.; Patmore, N. J.; Zhou, Z. Chem. Commun. 2005, 127-129.
(19) International Zinc Association. http://www.zinc.org/zinc_health.html.
(20) Stanford, M. J.; Dove, A. P. Chem. Soc. Rev. 2010, 39, 486-494.
(21) (a) Allen, S. D.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. J. Organomet. Chem. 2003, 683, 137-148; (b) Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 11583-11584.
(22) (a) Chisholm, M. H.; Huffman, J. C.; Phomphrai, K. J. Chem. Soc., Dalton Trans. 2001, 222-224; (b) Chisholm, M. H.; Gallucci, J.; Phomphrai, K. Inorg. Chem. 2002, 41, 2785-2794.
(23) (a) Chisholm, M. H.; Gallucci, J.; Phomphrai, K. Chem. Commun. 2003, 48-49; (b) Chisholm, M. H.; Gallucci, J. C.; Phomphrai, K. Inorg. Chem. 2004, 43, 6717-6725.
(24) Middleton, J. C.; Tipton, A. J. Biomaterials 2000, 21, 2335-2346.
(25) Pêgo, A. P.; Van Luyn, M. J. A.; Brouwer, L. A.; van Wachem, P. B.; Poot, A. A.; Grijpma, D. W.; Feijen, J. J. Biomed. Mater. Res. Part A 2003, 67A, 10441054.
(26) Albertsson, A.-C.; Eklund, M. J. Appl. Polym. Sci. 1995, 57, 87-103.
(27) Coulembier, O.; Degée, P.; Hedrick, J. L.; Dubois, P. Prog. Polym. Sci. 2006, 31, 723-747.
(28) Schindler, A.; Jeffcoat, R.; Kimmel, G. L.; Pitt, C. G.; Wall, M. E.; Zweidinger, R.; Pearce, E. M.; Schaefgen, J. R., Contemporary Topics in Polymer Science; Plenum: New York, 1977; Vol. 2, p 251.
(29) (a) Gandini, A. Macromolecules 2008, 41, 9491-9504; (b) Platel, R. H.; Hodgson, L. M.; Williams, C. K. Polymer. Rev. 2008, 48, 11-63; (c) Coates, G. W.; Hillmyer, M. A. Macromolecules 2009, 42, 7987-7989.
(a) Ruckenstein, E.; Yuan, Y. J. Appl. Polym. Sci. 1998, 69, 1429-1434; (b) Kricheldorf, H. R.; Stricker, A. Macromol. Chem. Phys. 1999, 200, 1726-1733; (c) Pospiech, D.; Komber, H.; Jehnichen, D.; Haussler, L.; Eckstein, K.; Scheibner, H.; Janke, A.; Kricheldorf, H. R.; Petermann, O. Biomacromolecules 2005, 6, 439-446; (d) Chisholm, M. H.; Gallucci, J. C.; Krempner, C. Polyhedron 2007, 26, 4436-4444; (e) Grafov, A.; Vuorinen, S.; Repo, T.; Kemell, M.; Nieger, M.; Leskelä, M. Eur. Polym. J. 2008, 44, 3797-3805.
(34) Chmura, A. J.; Chuck, C. J.; Davidson, M. G.; Jones, M. D.; Lunn, M. D.; Bull, S. D.; Mahon, M. F. Angew. Chem., Int. Ed. 2007, 46, 2280-2283.
(a) Stolt, M.; Sodergard, A. Macromolecules 1999, 32, 6412-6417; (b) O'Keefe, B. J.; Monnier, S. M.; Hillmyer, M. A.; Tolman, W. B. J. Am. Chem. Soc. 2001, 123, 339-340; (c) Gibson, V. C.; Marshall, E. L.; Navarro-Llobet, D.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Dalton Trans. 2002, 4321-4322; (d) O'Keefe, B. J.; Breyfogle, L. E.; Hillmyer, M. A.; Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 4384-4393; (e) McGuinness, D. S.; Marshall, E. L.; Gibson, V. C.; Steed, J. W. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3798-3803; (f) Stolt, M.; Krasowska, K.; Rutkowska, M.; Janik, H.; Rosling, A.; Södergård, A. Polym. Int. 2005, 54, 362-368; (g) Wang, X.; Liao, K.; Quan, D.; Wu, Q. Macromolecules 2005, 38, 4611-4617.
(37) (a) Kim, Y.; Verkade, J. G. Organometallics 2002, 21, 2395-2399; (b) Kim, Y.; Jnaneshwara, G. K.; Verkade, J. G. Inorg. Chem. 2003, 42, 1437-1447; (c) Russell, S. K.; Gamble, C. L.; Gibbins, K. J.; Juhl, K. C. S.; Mitchell, W. S.; Tumas, A. J.; Hofmeister, G. E. Macromolecules 2005, 38, 10336-10340; (d) Chmura, A. J.; Davidson, M. G.; Jones, M. D.; Lunn, M. D.; Mahon, M. F.; Johnson, A. F.; Khunkamchoo, P.; Roberts, S. L.; Wong, S. S. F. Macromolecules 2006, 39, 7250-7257; (e) Gregson, C. K. A.; Gibson, V. C.; Long, N. J.; Marshall, E. L.; Oxford, P. J.; White, A. J. P. J. Am. Chem. Soc. 2006, 128, 7410-7411; (f) Gendler, S.; Segal, S.; Goldberg, I.; Goldschmidt, Z.;

Kol, M. Inorg. Chem. 2006, 45, 4783-4790; (g) Chmura, Amanda J.; Davidson, M. G.; Jones, M. D.; Lunn, M. D.; Mahon, M. F. Dalton Trans. 2006, 887 - 889; (h) Atkinson, R. C. J.; Gerry, K.; Gibson, V. C.; Long, N. J.; Marshall, E. L.; West, L. J. Organometallics 2006, 26, 316-320; (i) Lee, J.; Kim, Y.; Do, Y. Inorg. Chem. 2007, 46, 7701-7703; (j) Chmura, A. J.; Cousins, D. M.; Davidson, M. G.; Jones, M. D.; Lunn, M. D.; Mahon, M. F. Dalton Trans. 2008, 1437 1443.
(a) Chisholm, M. H.; Phomphrai, K. Inorg. Chim. Acta 2003, 350, 121-125; (b) Dove, A. P.; Gibson, V. C.; Marshall, E. L.; White, A. J. P.; Williams, D. J. Dalton Trans. 2004, 570 - 578; (c) Chisholm, M. H.; Gallucci, J. C.; Phomphrai, K. Inorg. Chem. 2005, 44, 8004-8010; (d) Ejfler, J.; Micha, K.; Jerzykiewicz, L. B.; Sobota, P. Dalton Trans. 2005, 2047-2050; (e) Wu, J.-C.; Huang, B.-H.; Hsueh, M.-L.; Lai, S.-L.; Lin, C.-C. Polymer 2005, 46, 9784-9792; (f) Yu, T.-L.; Wu, C.-C.; Chen, C.-C.; Huang, B.-H.; Wu, J.; Lin, C.-C. Polymer 2005, 46, 5909-5917; (g) Sanchez-Barba, L. F.; Hughes, D. L.; Humphrey, S. M.; Bochmann, M. Organometallics 2006, 25, 1012-1020; (h) Lian, B.; Thomas, C. M.; Casagrande Jr, O. L.; Roisnel, T.; Carpentier, J.-F. Polyhedron 2007, 26, 3817-3824; (i) Sanchez-Barba, L. F.; Garces, A.; Fajardo, M.; Alonso-Moreno, C.; Fernandez-Baeza, J.; Otero, A.; Antinolo, A.; Tejeda, J.; Lara-Sanchez, A.; Lopez-Solera, M. I. Organometallics 2007, 26, 6403-6411; (j) Tang, H.-Y.; Chen, H.-Y.; Huang, J.-H.; Lin, C.-C. Macromolecules 2007, 40, 8855-8860; (k) Wu, J.; Chen, Y.-Z.; Hung, W.-C.; Lin, C.-C. Organometallics 2008, 27, 49704978; (1) Huang, Y.; Hung, W.-C.; Liao, M.-Y.; Tsai, T.-E.; Peng, Y.-L.; Lin, C.C. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 2318-2329; (m) Hung, W.-C.; Lin, C.-C. Inorg. Chem. 2009, 48, 728-734; (n) Tsai, Y.-H.; Lin, C.-H.; Lin, C.C.; Ko, B.-T. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4927-4936; (o) Wheaton, C. A.; Hayes, P. G.; Ireland, B. J. Dalton Trans. 2009, 4832-4846.
(a) Cameron, P. A.; Jhurry, D.; Gibson, V. C.; White, A. J. P.; Williams, D. J.; Williams, S. Macromol. Rapid Commun. 1999, 20, 616-618; (b) Radano, C. P.; Baker, G. L.; Smith, M. R. J. Am. Chem. Soc. 2000, 122, 1552-1553; (c) Zhong, Z.; Dijkstra, P. J.; Feijen, J. Angew. Chem., Int. Ed. 2002, 41, 4510-4513; (d) Zhong, Z.; Dijkstra, P. J.; Feijen, J. J. Am. Chem. Soc. 2003, 125, 11291-11298; (e) Doherty, S.; Errington, R. J.; Housley, N.; Clegg, W. Organometallics 2004, 23, 2382-2388; (f) Li, H.; Wang, C.; Bai, F.; Yue, J.; Woo, H.-G. Organometallics 2004, 23, 1411-1415; (g) Tang, Z.; Chen, X.; Pang, X.; Yang, Y.; Zhang, X.; Jing, X. Biomacromolecules 2004, 5, 965-970; (h) Ma, H.; Melillo, G.; Oliva, L.; Spaniol, T. P.; Englert, U.; Okuda, J. Dalton Trans. 2005, 721-727; (i) Tang, Z.; Yang, Y.; Pang, X.; Hu, J.; Chen, X.; Hu, N.; Jing, X. J. Appl. Polym. Sci. 2005, 98, 102-108; (j) Tang, Z.; Pang, X.; Sun, J.; Du, H.; Chen, X.; Wang, X.; Jing, X. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4932-4938; (k) Du, H.; Pang, X.; Yu, H.; Zhuang, X.; Chen, X.; Cui, D.; Wang, X.; Jing, X. Macromolecules 2007, 40, 1904-1913; (1) Tang, Z.; Gibson, V. C.

Eur. Polym. J. 2007, 43, 150-155; (m) Wu, J.; Pan, X.; Tang, N.; Lin, C.-C. Eur. Polym. J. 2007, 43, 5040-5046; (n) Bouyahyi, M.; Grunova, E.; Marquet, N.; Kirillov, E.; Thomas, C. M.; Roisnel, T.; Carpentier, J.-F. o. Organometallics 2008, 27, 5815-5825; (o) Chisholm, M. H.; Gallucci, J. C.; Quisenberry, K. T.; Zhou, Z. Inorg. Chem. 2008, 47, 2613-2624; (p) Iwasa, N.; Fujiki, M.; Nomura, K. J. Mol. Catal. A: Chem. 2008, 292, 67-75; (q) Zhang, C.; Wang, Z.-X. J. Organomet. Chem. 2008, 693, 3151-3158; (r) Alaaeddine, A.; Thomas, C. M.; Roisnel, T.; Carpentier, J.-F. o. Organometallics 2009, 28, 1469-1475; (s) Du, H.; Velders, Aldrik H.; Dijkstra, Pieter J.; Sun, J.; Zhong, Z.; Chen, X.; Feijen, J. Chem.-Eur. J. 2009, 15, 9836-9845; (t) Du, H.; Velders, A. H.; Dijkstra, P. J.; Zhong, Z.; Chen, X.; Feijen, J. Macromolecules 2009, 42, 1058-1066; (u) Pappalardo, D.; Annunziata, L.; Pellecchia, C. Macromolecules 2009, 42, 60566062.
(a) Zhong, Z.; Schneiderbauer, S.; Dijkstra, P. J.; Westerhausen, M.; Feijen, J. Polym. Bull. 2003, 51, 175-182; (b) Chen, H.-Y.; Tang, H.-Y.; Lin, C.-C. Polymer 2007, 48, 2257-2262; (c) Darensbourg, D. J.; Choi, W.; Richers, C. P. Macromolecules 2007, 40, 3521-3523; (d) Darensbourg, D. J.; Choi, W.; Karroonnirun, O.; Bhuvanesh, N. Macromolecules 2008, 41, 3493-3502.
(41) Chen, H.-Y.; Zhang, C.; Lin, C.-C.; Reibenspies, J. H.; Miller, S. A. Green Chem. 2007, 9, 1038-1040.
(42) Hsueh, M.-L.; Huang, B.-H.; Wu, J.; Lin, C.-C. Macromolecules 2005, 38, 94829487.
(43) (a) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229-3238; (b) Chisholm, M. H.; Gallucci, J. C.; Zhen, H.; Huffman, J. C. Inorg. Chem. 2001, 40, 5051-5054; (c) Chisholm, M. H.; Huffman, J. C.; Phomphrai, K. J. Chem. Soc., Dalton Trans. 2001, 222 - 224; (d) Hill, M. S.; Hitchcock, P. B. J. Chem. Soc., Dalton Trans. 2002, 4694-4702; (e) Williams, C. K.; Brooks, N. R.; Hillmyer, M. A.; Tolman, W. B. Chem. Commun. 2002, 2132-2133; (f) Che, C.-M.; Huang, J.-S. Coord. Chem. Rev. 2003, 242, 97-113; (g) Williams, C. K.; Breyfogle, L. E.; Choi, S. K.; Nam, W.; Young, V. G.; Hillmyer, M. A.; Tolman, W. B. J. Am. Chem. Soc. 2003, 125, 11350-11359; (h) Jensen, T. R.; Breyfogle, L. E.; Hillmyer, M. A.; Tolman, W. B. Chem. Commun. 2004, 2504-2505; (i) Bukhaltsev, E.; Frish, L.; Cohen, Y.; Vigalok, A. Org. Lett. 2005, 7, 5123-5126; (j) Chen, H.-Y.; Huang, B.-H.; Lin, C.-C. Macromolecules 2005, 38, 5400-5405; (k) Jensen, T. R.; Schaller, C. P.; Hillmyer, M. A.; Tolman, W. B. J. Organomet. Chem. 2005, 690, 5881-5891; (1) Chen, H.-Y.; Tang, H.-Y.; Lin, C.-C. Macromolecules 2006, 39, 3745-3752; (m) Börner, J.; Herres-Pawlis, S.; Flörke, U.; Huber, K. Eur. J. Inorg. Chem. 2007, 2007, 5645-5651; (n) Bunge, S. D.; Lance, J. M.; Bertke, J. A. Organometallics 2007, 26, 6320-6328; (o) Chen, C.-C.; Chen, C.-Y.; Huang,
C.-A.; Chen, M.-T.; Peng, K.-F. Dalton Trans. 2007, 4073-4078; (p) Hung, W.C.; Huang, Y.; Lin, C.-C. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 64666476; (q) Börner, J.; Flörke, U.; Huber, K.; Döring, A.; Kuckling, D.; HerresPawlis, S. Chem.-Eur. J. 2009, 15, 2362-2376; (r) Jones, M. D.; Davidson, M. G.; Keir, C. G.; Hughes, L. M.; Mahon, M. F.; Apperley, D. C. Eur. J. Inorg. Chem. 2009, 2009, 635-642; (s) Labourdette, G.; Lee, D. J.; Patrick, B. O.; Ezhova, M. B.; Mehrkhodavandi, P. Organometallics 2009, 28, 1309-1319.
(44) (a) Douglas, A. F.; Patrick, B. O.; Mehrkhodavandi, P. Angew. Chem., Int. Ed. 2008, 47, 2290-2293; (b) Peckermann, I.; Kapelski, A.; Spaniol, T. P.; Okuda, J. Inorg. Chem. 2009, 48, 5526-5534; (c) Pietrangelo, A.; Hillmyer, M. A.; Tolman, W. B. Chem. Commun. 2009, 2736-2737.
(45) (a) Sarasua, J.-R.; Prud'homme, R. E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Macromolecules 1998, 31, 3895-3905; (b) Tsuji, H.; Ikada, Y. Polymer 1999, 40, 6699-6708.
(46) Spinu, M.; Jackson, C.; Keating, M. Y. J. Macromol. Sci., Pure, Appl. Chem. 1996, A33, 1497-1530.
(47) (a) Chisholm, M. H.; Zhou, Z. J. Mater. Chem. 2004, 14, 3081-3092; (b) Wu, J.; Yu, T.-L.; Chen, C.-T.; Lin, C.-C. Coord. Chem. Rev. 2006, 250, 602-626.
(a) Darensbourg, D. J.; Holtcamp, M. W.; Struck, G. E.; Zimmer, M. S.; Niezgoda, S. A.; Rainey, P.; Robertson, J. B.; Draper, J. D.; Reibenspies, J. H. J. Am. Chem. Soc. 1999, 121, 107-116; (b) Hansen, T. V.; Skattebøl, L. Tetrahedron Lett. 2005, 46, 3829-3830.
(49) Coldham, I.; O'Brien, P.; Patel, J. J.; Raimbault, S.; Sanderson, A. J.; Stead, D.; Whittaker, D. T. E. Tetrahedron: Asym. 2007, 18, 2113-2119.
(50) Cameron, P. A.; Gibson, V. C.; Redshaw, C.; Segal, J. A.; Bruce, M. D.; White, A. J. P.; Williams, D. J. Chem. Commun. 1999, 1883-1884.
(51) Baran, J.; Duda, A.; Kowalski, A.; Szymanski, R.; Penczek, S. Macromol. Rapid Соттип. 1997, 18, 325-333.
(52) (a) MacDonald, R. T.; McCarthy, S. P.; Gross, R. A. Macromolecules 1996, 29, 7356-7361; (b) Stevels, W. M.; Ankone, M. J. K.; Dijkstra, P. J.; Feijen, J. Macromolecules 1996, 29, 6132-6138.
(53) From expanded version of the ${ }^{1} \mathrm{H}$ NMR spectra illustrated in Figure II-9, and assuming the sis and isi peaks are symmetrical, the areas of these peaks vs that of the total methine proton region were measured using a planimeter. This
mechanical integrating instrument used to measure the area under a curve by moving a point attached to an arm of the device around the perimeter of the defined curve can be easily demonstrated to accurately assess areas as indicated by concomitant area measurements of known dimensions.
(a) Chiellini, E.; Solaro, R. Adv. Mater. 1996, 8, 305-313; (b) Qian, H.; Bei, J.; Wang, S. Polym. Degrad. Stab. 2000, 68, 423-429; (c) Ghosh, S. J. Chem. Res. 2004, 2004, 241-246.
(a) Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskov, V.; Torchilin, V.; Langer, R. Science 1994, 263, 1600-1603; (b) Bhardwaj, R.; Blanchard, J. Int. J. Pharm. 1998, 170, 109-117; (c) Chamberlain, B. M.; Jazdzewski, B. A.; Pink, M.; Hillmyer, M. A.; Tolman, W. B. Macromolecules 2000, 33, 3970-3977.
(a) Van Butsele, K.; Jérôme, R.; Jérôme, C. Polymer 2007, 48, 7431-7443; (b) Shen, Y.; Zhu, K. J.; Shen, Z.; Yao, K.-M. J. Polym. Sci., Part A: Polym. Chem. 1996, 34, 1799-1805.
(57) Okada, M. Prog. Polym. Sci. 2001, 27, 87-133.
(58) (a) Vanhoorne, P.; Dubois, P.; Jerome, R.; Teyssie, P. Macromolecules 1992, 25, 37-44; (b) Bero, M.; Kasperczyk, J. Macromol. Chem. Phys. 1996, 197, 32513258; (c) Kister, G.; Cassanas, G.; Bergounhon, M.; Hoarau, D.; Vert, M. Polymer 2000, 41, 925-932; (d) Faÿ, F.; Renard, E.; Langlois, V.; Linossier, I.; Vallée-Rehel, K. Eur. Polym. J. 2007, 43, 4800-4813; (e) Calandrelli, L.; Calarco, A.; Laurienzo, P.; Malinconico, M.; Petillo, O.; Peluso, G. Biomacromolecules 2008, 9, 1527-1534; (f) Nomura, N.; Akita, A.; Ishii, R.; Mizuno, M. J. Am. Chem. Soc. 2010, 132, 1750-1751.
(a) Song, C. X.; Feng, X. D. Macromolecules 1984, 17, 2764-2767; (b) Huang, M.-H.; Li, S.; Coudane, J.; Vert, M. Macromol. Chem. Phys. 2003, 204, 19942001; (c) Jeon, O.; Lee, S.-H.; Kim, S. H.; Lee, Y. M.; Kim, Y. H. Macromolecules 2003, 36, 5585-5592; (d) Lahcini, M.; Castro, P. M.; Kalmi, M.; Leskela, M.; Repo, T. Organometallics 2004, 23, 4547-4549; (e) Wang, J.-L.; Dong, C.-M. Macromol. Chem. Phys. 2006, 207, 554-562; (f) Zhao, Z.; Yang, L.; Hu, Y.; He, Y.; Wei, J.; Li, S. Polym. Degrad. Stab. 2007, 92, 1769-1777; (g) Wei, Z.; Liu, L.; Yu, F.; Wang, P.; Qu, C.; Qi, M. Polym. Bull. 2008, 61, 407413.
(60) Darensbourg, D. J.; Karroonnirun, O. Inorg. Chem. 2010, 49, 2360-2371.
(61) (a) Kricheldorf, H. R.; Berl, M.; Scharnagl, N. Macromolecules 1988, 21, 286293; (b) Dubois, P.; Jacobs, C.; Jérôme, R.; Teyssié, P. Macromolecules 1991, 24, 2266-2270; (c) Kricheldorf, H. R.; Sumbél, M. V.; Kreiser-Saunders, I.

Macromolecules 1991, 24, 1944-1949; (d) Nijenhuis, A. J.; Grijpma, D. W.; Pennings, A. J. Macromolecules 1992, 25, 6419-6424; (e) Nishiura, M.; Hou, Z.; Koizumi, T.-A.; Imamoto, T.; Wakatsuki, Y. Macromolecules 1999, 32, 82458251; (f) Kricheldorf, H. R.; Kreiser-Saunders, I. Polymer 2000, 41, 3957-3963; (g) Lewinski, J.; Horeglad, P.; Wojcik, K.; Justyniak, I. Organometallics 2005, 24, 4588-4593.
(62) (a) Kasperczyk, J.; Bero, M. Makromol. Chem. 1991, 192, 1777-1787; (b) Kasperczyk, J.; Bero, M. Makromol. Chem. 1993, 194, 913-925.
(63) Dove, A. P. Chem. Commun. 2008, 6446-6470.
(64) (a) Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Chem. Rev. 1999, 99, 3181-3198; (b) Auras, R.; Harte, B.; Selke, S. Macromol. Biosci. 2004, 4, 835-864.
(65) Ovitt, T. M.; Coates, G. W. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 46864692.
(66) Zhang, Z.; Xu, X.; Sun, S.; Yao, Y.; Zhang, Y.; Shen, Q. Chem. Commun. 2009, 7414-7416.
(67) Drouin, F. d. r.; Oguadinma, P. O.; Whitehorne, T. J. J.; Prud'homme, R. E.; Schaper, F. Organometallics 2010, 29, 2139-2147.
(68) Xu, X.; Chen, Y.; Zou, G.; Ma, Z.; Li, G. J. Organomet. Chem. 2010, 695, 11551162.
(69) (a) Wisniewski, M.; Borgne, A. L.; Spassky, N. Macromol. Chem. Phys. 1997, 198, 1227-1238; (b) Majerska, K.; Duda, A. J. Am. Chem. Soc. 2004, 126, 10261027; (c) Lian, B.; Ma, H.; Spaniol, T. P.; Okuda, J. Dalton Trans. 2009, 90339042.
(70) (a) Pang, X.; Chen, X.; Du, H.; Wang, X.; Jing, X. J. Organomet. Chem. 2007, 692, 5605-5613; (b) Phomphrai, K.; Chumsaeng, P.; Sangtrirutnugul, P.; Kongsaeree, P.; Pohmakotr, M. Dalton Trans. 2010, 39, 1865-1871.
(71) Thadani, A. N.; Huang, Y.; Rawal, V. H. Org. Lett. 2007, 9, 3873-3876.
(72) Complex 2 g was recrystallized by heating the complex in a sealed test tube at 50 ${ }^{\circ} \mathrm{C}$ in dichloromethane until all of the complex was dissolved. The crystal tube was kept at $-10{ }^{\circ} \mathrm{C}$ and provided crystals of the trans form exclusively, as evidenced by X-ray crystallographic studies.
(73) Williams, C. K.; Hillmyer, M. A. Polym. Rev. 2008, 48, 1-10.
(74) (a) Schmack, G.; Tändler, B.; Vogel, R.; Beyreuther, R.; Jacobsen, S.; Fritz, H. G. J. Appl. Polym. Sci. 1999, 73, 2785-2797; (b) Perepelkin, K. E. Fibre Chem. 2002, 34, 85-100; (c) Avinc, O.; Khoddami, A. Fibre Chem. 2009, 41, 391-401.
(75) Paulsson, M.; Singh, S. K. J. Pharm. Sci. 1999, 88, 406-411.
(76) Reichardt, R.; Vagin, S.; Reithmeier, R.; Ott, A. K.; Rieger, B. Macromolecules 2010, 43, 9311-9317.
(77) Dobroth, Z. T.; Hu, S.; Coats, E. R.; McDonald, A. G. Bioresour. Technol. 2011, 102, 3352-3359.
(78) van der Walle, G.; de Koning, G.; Weusthuis, R.; Eggink, G., Properties, Modifications and Applications of Biopolyesters. In Biopolyesters, Babel, W.; Steinbüchel, A., Eds. Springer Berlin / Heidelberg: 2001; Vol. 71, pp 263-291.
(79) Tabone, M. D.; Cregg, J. J.; Beckman, E. J.; Landis, A. E. Environ. Sci. Technol. 2010, 44, 8264-8269.
(80) Toncheva, N.; Jerome, R.; Mateva, R. Eur. Polym. J. 2011, 47, 238-247.
(81) Jansen, J.; Bosman, M. B.; Boerakker, M. J.; Feijen, J.; Grijpma, D. W. J. Controlled Release 2010, 148, e79-e80.
(82) Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920-3922.
(83) (a) Adams, J. Acta Crystallogr., Sect. B 1979, 35, 1084-1088; (b) Valle, G. C.; Bombi, G. G.; Corain, B.; Favarato, M.; Zatta, P. J. Chem. Soc., Dalton Trans. 1989, 1513-1517; (c) Mason, M. R.; Smith, J. M.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc. 1993, 115, 4971-4984; (d) Schnitter, C.; Roesky, H. W.; Albers, T.; Schmidt, H.-G.; Röpken, C.; Parisini, E.; Sheldrick, G. M. Chem.-Eur. J. 1997, 3, 1783-1792; (e) Veith, M.; Jarczyk, M.; Huch, V. Angew. Chem., Int. Ed. 1998, 37, 105-108; (f) Chen, H.-L.; Ko, B.-T.; Huang, B.-H.; Lin, C.-C. Organometallics 2001, 20, 5076-5083; (g) Zhu, H.; Chai, J.; He, C.; Bai, G.; Roesky, H. W.; Jancik, V.; Schmidt, H.-G.; Noltemeyer, M. Organometallics 2004, 24, 380-384; (h) Joszai, R.; Kerekes, I.; Satoshi, I.; Sawada, K.; Zekany, L.; Toth, I. Dalton Trans. 2006, 3221-3227; (i) Li, X.; Song, H.; Duan, L.; Cui, C.; Roesky, H. W. Inorg. Chem. 2006, 45, 1912-1914; (j) Cametti, M.; Dalla Cort, A.; Colapietro, M.; Portalone, G.; Russo, L.; Rissanen, K. Inorg. Chem. 2007, 46, 9057-9059.
(84) Alemán, C.; Betran, O.; Casanovas, J.; Houk, K. N.; Hall, H. K. J. Org. Chem. 2009, 74, 6237-6244.
(85) Rieth, L. R.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 15239-15248.
(86) (a) Ouhadi, T.; Hamitou, A.; Jerome, R.; Teyssie, P. Macromolecules 1976, 9, 927-931; (b) Dubois, P.; Jacobs, C.; Jerome, R.; Teyssie, P. Macromolecules 1991, 24, 2266-2270; (c) Beila, T.; Duda, A.; Penczek, S. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 1994, 35, 508-508.
(87) Duda, A.; Penczek, S. Macromol. Rapid Commun. 1994, 15, 559-566.
(88) Fineman, M.; Ross, S. D. J. Polym. Sci. 1950, 5, 259-262.

APPENDIX A

COPYRIGHT INFORMATION

American Chemical Society's Policy on Theses and Dissertations

If your university requires a signed copy of this letter see contact information below.
Thank you for your request for permission to include your paper(s) or portions of text from your paper(s) in your thesis. Permission is now automatically granted; please pay special attention to the implications paragraph below. The Copyright Subcommittee of the Joint Board/Council Committees on Publications approved the following:

Copyright permission for published and submitted material from theses and dissertations ACS extends blanket permission to students to include in their theses and dissertations their own articles, or portions thereof, that have been published in ACS journals or submitted to ACS journals for publication, provided that the ACS copyright credit line is noted on the appropriate page(s).

Publishing implications of electronic publication of theses and dissertation material
Students and their mentors should be aware that posting of theses and dissertation material on the Web prior to submission of material from that thesis or dissertation to an ACS journal may affect publication in that journal. Whether Web posting is considered prior publication may be evaluated on a case-by-case basis by the journal's editor. If an ACS journal editor considers Web posting to be "prior publication", the paper will not be accepted for publication in that journal. If you intend to submit your unpublished paper to ACS for publication, check with the appropriate editor prior to posting your manuscript electronically.

If your paper has not yet been published by ACS, we have no objection to your including the text or portions of the text in your thesis/dissertation in print and microfilm formats; please note, however, that electronic distribution or Web posting of the unpublished paper as part of your thesis in electronic formats might jeopardize publication of your paper by ACS. Please print the following credit line on the first page of your article: "Reproduced (or 'Reproduced in part') with permission from [JOURNAL NAME], in press (or 'submitted for publication'). Unpublished work copyright [CURRENT YEAR] American Chemical Society." Include appropriate information.

If your paper has already been published by ACS and you want to include the text or portions of the text in your thesis/dissertation in print or microfilm formats, please print the ACS copyright credit line on the first page of your article: "Reproduced (or 'Reproduced in part') with permission from [FULL REFERENCE CITATION.] Copyright [YEAR] American Chemical Society." Include appropriate information.

Submission to a Dissertation Distributor: If you plan to submit your thesis to UMI or to another dissertation distributor, you should not include the unpublished ACS paper in your thesis if the thesis will be disseminated electronically, until ACS has published your paper. After publication of the paper by ACS, you may release the entire thesis (not the individual ACS article by itself) for electronic dissemination through the distributor; ACS's copyright credit line should be printed on the first page of the ACS paper.

Use on an Intranet: The inclusion of your ACS unpublished or published manuscript is permitted in your thesis in print and microfilm formats. If ACS has published your paper you may include the manuscript in your thesis on an intranet that is not publicly available. Your ACS article cannot be posted electronically on a publicly available medium (i.e. one that is not password protected), such as but not limited to, electronic archives, Internet, library server, etc. The only material from your paper that can be posted on a public electronic medium is the article abstract, figures, and tables, and you may link to the article's DOI or post the article's author-directed URL link provided by ACS. This paragraph does not pertain to the dissertation distributor paragraph above.

APPENDIX B

TABLES OF CRYSTALLOGRAPHIC DATA

Complex II6a

Complex II6b

Complex II6d

Complex II6e

Complex IV2f (trans-)
Complex V2f (trans-)

Complex V2f (cis-)

Complex V3b

Complex IV2g
Complex V2g

Complex V2a

Complex V2d

Complex V3e

Complex V4e

Table B-1. Crystal Data and Structure Refinement for Complex II6a.

Identification code	Complex II6a
Empirical formula	C32 H55 N3 O Si2 Zn
Formula weight	619.34
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	$\mathrm{P}(2) 1(2) 1(2) 1$
Unit cell dimensions	
	$\mathrm{b}=16.535(8) \AA$ A $\quad \beta=90^{\circ}$.
Volume	3590(3) \AA^{3}
Z	4
Density (calculated)	$1.146 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.777 \mathrm{~mm}^{-1}$
$F(000)$	1336
Crystal size	$0.20 \times 0.20 \times 0.18 \mathrm{~mm}^{3}$
Theta range for data collection	2.05 to 25.99°.
Index ranges	$-10<=\mathrm{h}<=10,-20<=\mathrm{k}<=20,-30<=\mathrm{l}<=30$
Reflections collected	32055
Independent reflections	$7063[\mathrm{R}(\mathrm{int})=0.1231]$
Completeness to theta $=25.99^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8728 and 0.8601
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7063 / 4 / 373
Goodness-of-fit on F^{2}	1.014
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0539, \mathrm{wR} 2=0.1190$
R indices (all data)	$\mathrm{R} 1=0.0779, w R 2=0.1299$
Absolute structure parameter	0.012(15)
Largest diff. peak and hole	0.620 and -0.538 e. \AA^{-3}

Table B-2. Bond Lengths $[\AA]$ and Angles $\left[^{\circ}\right]$ for Complex II6a.

$\mathrm{C}(1)-\mathrm{O}(1)$	1.293(5)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.419(6)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.444(6)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.408(6)
$\mathrm{C}(2)-\mathrm{C}(15)$	1.444(6)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.376(6)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.386(6)	$\mathrm{C}(4)-\mathrm{C}(11)$	1.524(6)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.386(6)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.533(7)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.525(7)	$\mathrm{C}(7)-\mathrm{C}(10)$	1.530(7)
C (7)-C(9)	1.541(7)	$\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~A})$	1.46(11)
$\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~B})$	1.527(3)	$\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~B})$	1.527(3)
$\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~A})$	1.529(3)	$\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~A})$	1.531(3)
$\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~B})$	1.55(5)	$\mathrm{C}(15)-\mathrm{N}(1)$	1.280(5)
$\mathrm{C}(16)-\mathrm{N}(1)$	1.480(5)	$\mathrm{C}(16)-\mathrm{C}(26)$	1.515(6)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.522(6)	$\mathrm{C}(17)-\mathrm{N}(2)$	1.472(6)
$\mathrm{C}(18)-\mathrm{N}(2)$	1.466(6)	$\mathrm{C}(19)-\mathrm{N}(2)$	1.470(6)
$\mathrm{C}(20)-\mathrm{Si}(2)$	1.878(6)	C (21)-Si(2)	1.872(6)
$\mathrm{C}(22)-\mathrm{Si}(2)$	1.868(6)	$\mathrm{C}(23)-\mathrm{Si}(1)$	1.859(5)
$\mathrm{C}(24)-\mathrm{Si}(1)$	1.866(5)	$\mathrm{C}(25)-\mathrm{Si}(1)$	1.879(5)
$\mathrm{C}(26)-\mathrm{C}(27)$	1.517(6)	C(27)-C(28)	1.374(7)
$\mathrm{C}(27)-\mathrm{C}(32)$	1.379(7)	$\mathrm{C}(28)-\mathrm{C}(29)$	1.397(7)
$\mathrm{C}(29)-\mathrm{C}(30)$	1.357(9)	$\mathrm{C}(30)-\mathrm{C}(31)$	1.376(9)
$\mathrm{C}(31)-\mathrm{C}(32)$	1.401(8)	$\mathrm{N}(1)-\mathrm{Zn}(1)$	2.017(4)
$\mathrm{N}(2)-\mathrm{Zn}(1)$	$2.198(3)$	$\mathrm{N}(3)-\mathrm{Si}(2)$	1.697(4)
$\mathrm{N}(3)-\mathrm{Si}(1)$	1.703(4)	$\mathrm{N}(3)-\mathrm{Zn}(1)$	1.920(4)
$\mathrm{O}(1)-\mathrm{Zn}(1)$	1.933(3)		
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	123.5(4)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	119.8(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	116.6(4)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.9(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(15)$	115.8(4)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	121.8(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	121.4(4)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.5(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	121.5(4)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	122.0(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	125.7(4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	117.9(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	122.8(4)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	119.3(4)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	107.5(5)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	111.4(4)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(6)$	110.5(4)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	108.0(4)

$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(9)$	110.2(4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	109.1(4)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(4)$	113(4)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~B})$	108(3)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~B})$	108.9(5)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~B})$	129(3)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~B})$	113.5(7)	$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~B})$	77.0 (8)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~A})$	110(3)	$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~A})$	110.8(5)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~A})$	106.9(6)	$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~A})$	31.3(6)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~A})$	82(3)	$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~A})$	107.3(7)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~A})$	29.9(7)	$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~A})$	104.6(9)
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(12 \mathrm{~A})$	131.1(8)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~B})$	14(4)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~B})$	113.0(18)	$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~B})$	119.4(17)
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~B})$	120.3(19)	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~B})$	97.0(18)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~B})$	95.3(18)	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(2)$	126.7(4)
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(26)$	112.5(4)	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	106.6(3)
$\mathrm{C}(26)-\mathrm{C}(16)-\mathrm{C}(17)$	111.7(4)	$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	112.9(4)
$\mathrm{C}(16)-\mathrm{C}(26)-\mathrm{C}(27)$	111.4(4)	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(32)$	119.0(5)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	121.1(4)	$\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(26)$	119.9(4)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	120.8(5)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	119.6(6)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	120.9(5)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	119.2(6)
$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{C}(31)$	120.4(5)	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	118.2(4)
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{Zn}(1)$	122.6(3)	$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Zn}(1)$	116.3(3)
$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(19)$	110.0(4)	$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(17)$	107.9(3)
$\mathrm{C}(19)-\mathrm{N}(2)-\mathrm{C}(17)$	110.5(3)	$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{Zn}(1)$	115.5(3)
$\mathrm{C}(19)-\mathrm{N}(2)-\mathrm{Zn}(1)$	113.2(3)	$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{Zn}(1)$	99.0(2)
$\mathrm{Si}(2)-\mathrm{N}(3)-\mathrm{Si}(1)$	126.6(2)	$\mathrm{Si}(2)-\mathrm{N}(3)-\mathrm{Zn}(1)$	118.6(2)
$\mathrm{Si}(1)-\mathrm{N}(3)-\mathrm{Zn}(1)$	114.7(2)	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Zn}(1)$	125.7(3)
$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(23)$	109.7(2)	$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(24)$	111.8(2)
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(24)$	108.0(3)	$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(25)$	114.5(2)
$\mathrm{C}(23)-\mathrm{Si}(1)-\mathrm{C}(25)$	105.8(2)	$\mathrm{C}(24)-\mathrm{Si}(1)-\mathrm{C}(25)$	106.7(3)
$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(22)$	112.4(2)	$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(21)$	110.7(2)
$\mathrm{C}(22)-\mathrm{Si}(2)-\mathrm{C}(21)$	107.6(3)	$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(20)$	113.4(2)
$\mathrm{C}(22)-\mathrm{Si}(2)-\mathrm{C}(20)$	105.6(3)	$\mathrm{C}(21)-\mathrm{Si}(2)-\mathrm{C}(20)$	106.9(3)
$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{O}(1)$	115.60(14)	$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{N}(1)$	136.85(16)
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(1)$	91.24(13)	$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{N}(2)$	110.14(14)
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(2)$	121.26(14)	$\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{N}(2)$	78.64(14)

Table B-3. Crystal Data and Structure Refinement for Complex II6b

Identification code	Complex II6b
Empirical formula	C58 H114 N6 O2 Si4 Zn2
Formula weight	1170.65
Temperature	110(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	$a=10.616(3) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=18.225(4) \AA \quad \beta=91.995(13)^{\circ}$.
	$\mathrm{c}=17.992(4) \AA \quad \gamma=90^{\circ}$.
Volume	3478.7(14) \AA^{3}
Z	2
Density (calculated)	$1.118 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.805 \mathrm{~mm}^{-1}$
F(000)	1272
Crystal size	$0.18 \times 0.17 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	2.46 to 60.51°.
Index ranges	$-11<=\mathrm{h}<=11,-19<=\mathrm{k}<=20,-20<=1<=19$
Reflections collected	27837
Independent reflections	$9520[\mathrm{R}(\mathrm{int})=0.0627]$
Completeness to theta $=60.51^{\circ}$	97.0\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7735 and 0.7371
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9520/4/694
Goodness-of-fit on F^{2}	1.077
Final R indices [$1>2$ sigma(I] $]$	$\mathrm{R} 1=0.0402, \mathrm{wR} 2=0.0963$
R indices (all data)	$\mathrm{R} 1=0.0515, \mathrm{wR} 2=0.1030$
Absolute structure parameter	-0.01(2)
Largest diff. peak and hole	0.418 and $-0.541 \mathrm{e} . \mathrm{A}^{-3}$

Table B-4. Bond Lengths $[\AA]$ and Angles $\left[{ }^{\circ}\right]$ for Complex II6b.

$\mathrm{C}(1)-\mathrm{O}(1)$	1.324(6)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.420(6)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.441(7)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.415(6)
$\mathrm{C}(2)-\mathrm{C}(15)$	1.445(6)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.377(7)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500	$\mathrm{C}(4)-\mathrm{C}(5)$	1.403(7)
$\mathrm{C}(4)-\mathrm{C}(11)$	1.538(7)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.378(7)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500	C(6)-C(7)	1.530(6)
$\mathrm{C}(7)-\mathrm{C}(9)$	1.530(7)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.540(7)
$\mathrm{C}(7)-\mathrm{C}(10)$	1.541(7)	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9800	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9800	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9800	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9800	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	0.9800
$\mathrm{C}(11)-\mathrm{C}(13)$	1.518(8)	$\mathrm{C}(11)-\mathrm{C}(14)$	1.525(7)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.541(7)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800
$\mathrm{C}(15)-\mathrm{N}(1)$	1.294(6)	$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(16)-\mathrm{N}(1)$	$1.485(6)$	$\mathrm{C}(16)-\mathrm{C}(26)$	1.516(6)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.542(6)	$\mathrm{C}(16)-\mathrm{H}(16)$	1.0000
$\mathrm{C}(17)-\mathrm{N}(2)$	1.453(6)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9900	$\mathrm{C}(18)-\mathrm{N}(2)$	1.480(6)
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800	$\mathrm{C}(19)-\mathrm{N}(2)$	1.498(6)
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800	$\mathrm{C}(20)-\mathrm{Si}(1)$	1.886(5)
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800	$\mathrm{C}(21)-\mathrm{Si}(1)$	1.867(5)
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800	$\mathrm{C}(22)-\mathrm{Si}(1)$	1.878(6)
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800	$\mathrm{C}(23)-\mathrm{Si}(2)$	1.876(5)

$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800	$\mathrm{C}(24)-\mathrm{Si}(2)$	1.888(6)
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9800	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800	$\mathrm{C}(25)-\mathrm{Si}(2)$	1.882(6)
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9800	$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	0.9800	$\mathrm{C}(26)-\mathrm{C}(27)$	1.534(7)
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9900	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	0.9900
$\mathrm{C}(27)-\mathrm{C}(28)$	1.531(7)	C(27)-C(29)	1.532(8)
$\mathrm{C}(27)-\mathrm{H}(27)$	1.0000	$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	0.9800
C(28)-H(28B)	0.9800	$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	0.9800
$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	0.9800	$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	0.9800
$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	0.9800	$\mathrm{C}(30)-\mathrm{O}(2)$	$1.315(5)$
$\mathrm{C}(30)-\mathrm{C}(31)$	1.430(6)	$\mathrm{C}(30)-\mathrm{C}(35)$	1.447(7)
$\mathrm{C}(31)-\mathrm{C}(32)$	1.398(6)	$\mathrm{C}(31)-\mathrm{C}(44)$	1.447(6)
$\mathrm{C}(32)-\mathrm{C}(33)$	1.377(7)	$\mathrm{C}(32)-\mathrm{H}(32)$	0.9500
C(33)-C(34)	1.409(6)	$\mathrm{C}(33)-\mathrm{C}(40)$	1.528(6)
C(34)-C(35)	1.385(7)	$\mathrm{C}(34)-\mathrm{H}(34)$	0.9500
$\mathrm{C}(35)-\mathrm{C}(36)$	1.536(6)	$\mathrm{C}(36)-\mathrm{C}(37)$	1.530(7)
$\mathrm{C}(36)-\mathrm{C}(38)$	1.537(6)	$\mathrm{C}(36)-\mathrm{C}(39)$	1.542(6)
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	0.9800	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	0.9800
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	0.9800	$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	0.9800
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	0.9800	$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	0.9800
C(39)-H(39A)	0.9800	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	0.9800
$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	0.9800	$\mathrm{C}(40)-\mathrm{C}(43 \mathrm{~A})$	1.472(17)
$\mathrm{C}(40)-\mathrm{C}(41)$	1.493(8)	$\mathrm{C}(40)-\mathrm{C}(41 \mathrm{~A})$	1.498(17)
$\mathrm{C}(40)-\mathrm{C}(43)$	1.521(8)	$\mathrm{C}(40)-\mathrm{C}(42)$	1.598(8)
$\mathrm{C}(40)-\mathrm{C}(42 \mathrm{~A})$	1.648(16)	$\mathrm{C}(41)-\mathrm{H}(41 \mathrm{~A})$	0.9800
$\mathrm{C}(41)-\mathrm{H}(41 \mathrm{~B})$	0.9800	$\mathrm{C}(41)-\mathrm{H}(41 \mathrm{C})$	0.9800
$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~A})$	0.9800	$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	0.9800
$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	0.9800	$\mathrm{C}(43)-\mathrm{H}(43 \mathrm{~A})$	0.9800
$\mathrm{C}(43)-\mathrm{H}(43 \mathrm{~B})$	0.9800	$\mathrm{C}(43)-\mathrm{H}(43 \mathrm{C})$	0.9800
$\mathrm{C}(44)-\mathrm{N}(4)$	1.279(6)	$\mathrm{C}(44)-\mathrm{H}(44)$	0.9500
$\mathrm{C}(45)-\mathrm{N}(4)$	1.475(5)	$\mathrm{C}(45)-\mathrm{C}(55)$	1.519(6)
$\mathrm{C}(45)$-C(46)	1.527(6)	$\mathrm{C}(45)-\mathrm{H}(45)$	1.0000

$\mathrm{C}(46)-\mathrm{N}(5)$	1.483(5)	$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	0.9900
$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	0.9900	$\mathrm{C}(47)-\mathrm{N}(5)$	1.459(6)
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	0.9800	C(47)-H(47B)	0.9800
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	0.9800	$\mathrm{C}(48)-\mathrm{N}(5)$	1.482(6)
$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	0.9800	$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	0.9800
$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{C})$	0.9800	$\mathrm{C}(49)-\mathrm{Si}(3)$	1.886(5)
$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~A})$	0.9800	C(49)-H(49B)	0.9800
$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	0.9800	$\mathrm{C}(50)-\mathrm{Si}(3)$	1.881(5)
$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~A})$	0.9800	$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~B})$	0.9800
$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	0.9800	$\mathrm{C}(51)-\mathrm{Si}(3)$	1.875(6)
$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	0.9800	$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	0.9800
$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	0.9800	$\mathrm{C}(52)-\mathrm{Si}(4)$	1.865(5)
$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	0.9800	$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	0.9800
$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	0.9800	$\mathrm{C}(53)-\mathrm{Si}(4)$	1.877(5)
$\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~A})$	0.9800	$\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~B})$	0.9800
$\mathrm{C}(53)-\mathrm{H}(53 \mathrm{C})$	0.9800	$\mathrm{C}(54)-\mathrm{Si}(4)$	1.882(5)
$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	0.9800	$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	0.9800
$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	0.9800	$\mathrm{C}(55)-\mathrm{C}(56)$	1.523(7)
$\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	0.9900	$\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	0.9900
$\mathrm{C}(56)-\mathrm{C}(57)$	1.508(7)	$\mathrm{C}(56)-\mathrm{C}(58)$	1.534(7)
$\mathrm{C}(56)-\mathrm{H}(56)$	1.0000	$\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~A})$	0.9800
C(57)-H(57B)	0.9800	$\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	0.9800
$\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~A})$	0.9800	$\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~B})$	0.9800
$\mathrm{C}(58)-\mathrm{H}(58 \mathrm{C})$	0.9800	$\mathrm{C}(41 \mathrm{~A})$ - $\mathrm{H}(41 \mathrm{D})$	0.9800
$\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{E})$	0.9800	$\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{~F})$	0.9800
$\mathrm{C}(42 \mathrm{~A})-\mathrm{H}(42 \mathrm{D})$	0.9800	$\mathrm{C}(42 \mathrm{~A})-\mathrm{H}(42 \mathrm{E})$	0.9800
$\mathrm{C}(42 \mathrm{~A})-\mathrm{H}(42 \mathrm{~F})$	0.9800	$\mathrm{C}(43 \mathrm{~A})-\mathrm{H}(43 \mathrm{D})$	0.9800
$\mathrm{C}(43 \mathrm{~A})-\mathrm{H}(43 \mathrm{E})$	0.9800	$\mathrm{C}(43 \mathrm{~A})-\mathrm{H}(43 \mathrm{~F})$	0.9800
$\mathrm{N}(1)-\mathrm{Zn}(1)$	$2.030(4)$	$\mathrm{N}(2)-\mathrm{Zn}(1)$	2.193(4)
$\mathrm{N}(3)-\mathrm{Si}(2)$	$1.706(4)$	$\mathrm{N}(3)-\mathrm{Si}(1)$	1.711(4)
$\mathrm{N}(3)-\mathrm{Zn}(1)$	1.921(4)	$\mathrm{N}(4)-\mathrm{Zn}(2)$	2.007(4)
$\mathrm{N}(5)-\mathrm{Zn}(2)$	2.232(4)	$\mathrm{N}(6)-\mathrm{Si}(3)$	1.697(4)
$\mathrm{N}(6)-\mathrm{Si}(4)$	1.707(4)	$\mathrm{N}(6)-\mathrm{Zn}(2)$	1.927(4)
$\mathrm{O}(1)-\mathrm{Zn}(1)$	1.930(3)	$\mathrm{O}(2)-\mathrm{Zn}(2)$	1.922(3)

		$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	122.2(4)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	119.6(4)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	118.1(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	119.8(4)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(15)$	116.9(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	122.9(4)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	123.1(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	118.5	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	118.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	115.2(4)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	122.7(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	122.1(5)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	126.0(5)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	117.0	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	117.0
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	117.5(4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	122.3(4)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	120.2(4)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(6)$	110.2(4)
$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8)$	107.5(4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	112.0(4)
$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(10)$	109.6(4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	110.5(4)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	106.9(4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(14)$	109.7(5)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(4)$	112.0(4)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(4)$	107.6(4)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)$	107.6(5)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(12)$	108.3(5)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	111.6(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5	$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(2)$	126.9(4)

$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{H}(15)$	116.6	$\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{H}(15)$	116.6
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(26)$	113.3(4)	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	106.1(4)
$\mathrm{C}(26)-\mathrm{C}(16)-\mathrm{C}(17)$	109.0(4)	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{H}(16)$	109.4
$\mathrm{C}(26)-\mathrm{C}(16)-\mathrm{H}(16)$	109.4	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	109.4
$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	114.8(4)	$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	108.6
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	108.6	$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.6
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.6	H(17A)-C(17)-H(17B)	107.6
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5	$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5	$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5	H(18B)-C(18)-H(18C)	109.5
$\mathrm{N}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5	$\mathrm{N}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5	$\mathrm{N}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5	H(19B)-C(19)-H(19C)	109.5
$\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5	$\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5	$\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5	$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5	$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5	$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5	$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5	$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5	H(22B)-C(22)-H(22C)	109.5
$\mathrm{Si}(2)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5	$\mathrm{Si}(2)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5	$\mathrm{Si}(2)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5	H(23B)-C(23)-H(23C)	109.5
$\mathrm{Si}(2)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5	$\mathrm{Si}(2)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5	$\mathrm{Si}(2)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5	$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{Si}(2)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	109.5	$\mathrm{Si}(2)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5	$\mathrm{Si}(2)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5	H(25B)-C(25)-H(25C)	109.5
$\mathrm{C}(16)-\mathrm{C}(26)-\mathrm{C}(27)$	116.9(4)	$\mathrm{C}(16)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	108.1
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	108.1	$\mathrm{C}(16)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	108.1
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	108.1	$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	107.3

$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(29)$	109.8(5)	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	109.8(5)
$\mathrm{C}(29)-\mathrm{C}(27)-\mathrm{C}(26)$	112.9(4)	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{H}(27)$	108.1
$\mathrm{C}(29)-\mathrm{C}(27)-\mathrm{H}(27)$	108.1	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27)$	108.1
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	109.5	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5
$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
H(28A)-C(28)-H(28C)	109.5	H(28B)-C(28)-H(28C)	109.5
$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	109.5	$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	109.5
$\mathrm{H}(29 \mathrm{~A})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	109.5	$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	109.5
H(29A)-C(29)-H(29C)	109.5	$\mathrm{H}(29 \mathrm{~B})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{C}(30)-\mathrm{C}(31)$	123.4(4)	$\mathrm{O}(2)-\mathrm{C}(30)-\mathrm{C}(35)$	119.3(4)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(35)$	117.3(4)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	120.6(4)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(44)$	116.8(4)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(44)$	122.3(4)
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	123.0(4)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(32)$	118.5
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32)$	118.5	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	115.8(4)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(40)$	122.3(4)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(40)$	121.8(4)
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(33)$	125.0(4)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{H}(34)$	117.5
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34)$	117.5	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(30)$	118.1(4)
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	121.7(4)	$\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{C}(36)$	120.2(4)
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(35)$	112.4(4)	$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(38)$	107.7(4)
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(38)$	110.2(4)	$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(39)$	107.1(4)
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(39)$	110.2(4)	$\mathrm{C}(38)-\mathrm{C}(36)-\mathrm{C}(39)$	109.2(4)
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	109.5	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.5
H(37A)-C(37)-H(37B)	109.5	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5
$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5	H(37B)-C(37)-H(37C)	109.5
$\mathrm{C}(36)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	109.5	$\mathrm{C}(36)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.5
$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.5	$\mathrm{C}(36)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5	$\mathrm{H}(38 \mathrm{~B})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{C}(36)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	109.5	$\mathrm{C}(36)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	109.5
$\mathrm{H}(39 \mathrm{~A})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	109.5	$\mathrm{C}(36)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.5
$\mathrm{H}(39 \mathrm{~A})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.5	$\mathrm{H}(39 \mathrm{~B})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{C})$	109.5
$\mathrm{C}(43 \mathrm{~A})-\mathrm{C}(40)-\mathrm{C}(41)$	130.5(10)	$\mathrm{C}(43 \mathrm{~A})-\mathrm{C}(40)-\mathrm{C}(41 \mathrm{~A})$	109.6(15)
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(41 \mathrm{~A})$	46.6(11)	$\mathrm{C}(43 \mathrm{~A})-\mathrm{C}(40)-\mathrm{C}(43)$	46.6(10)
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(43)$	111.1(5)	$\mathrm{C}(41 \mathrm{~A})-\mathrm{C}(40)-\mathrm{C}(43)$	132.3(10)
$\mathrm{C}(43 \mathrm{~A})-\mathrm{C}(40)-\mathrm{C}(33)$	116.6(10)	$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(33)$	112.9(5)

$\mathrm{C}(41 \mathrm{~A})-\mathrm{C}(40)-\mathrm{C}(33)$	115.3(10)	$\mathrm{C}(43)-\mathrm{C}(40)-\mathrm{C}(33)$	112.4(4)
$\mathrm{C}(43 \mathrm{~A})-\mathrm{C}(40)-\mathrm{C}(42)$	59.7(11)	$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(42)$	107.6(6)
$\mathrm{C}(41 \mathrm{~A})-\mathrm{C}(40)-\mathrm{C}(42)$	62.3(12)	$\mathrm{C}(43)-\mathrm{C}(40)-\mathrm{C}(42)$	105.6(5)
$\mathrm{C}(33)-\mathrm{C}(40)-\mathrm{C}(42)$	106.7(4)	$\mathrm{C}(43 \mathrm{~A})-\mathrm{C}(40)-\mathrm{C}(42 \mathrm{~A})$	107.3(14)
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(42 \mathrm{~A})$	55.3(10)	$\mathrm{C}(41 \mathrm{~A})-\mathrm{C}(40)-\mathrm{C}(42 \mathrm{~A})$	100.3(14)
$\mathrm{C}(43)-\mathrm{C}(40)-\mathrm{C}(42 \mathrm{~A})$	64.0(10)	$\mathrm{C}(33)-\mathrm{C}(40)-\mathrm{C}(42 \mathrm{~A})$	106.1(9)
$\mathrm{C}(42)-\mathrm{C}(40)-\mathrm{C}(42 \mathrm{~A})$	147.0(9)	$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{H}(41 \mathrm{~A})$	109.5
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{H}(41 \mathrm{~B})$	109.5	$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{H}(41 \mathrm{C})$	109.5
$\mathrm{C}(40)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~A})$	109.5	$\mathrm{C}(40)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	109.5
$\mathrm{C}(40)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	109.5	$\mathrm{C}(40)-\mathrm{C}(43)-\mathrm{H}(43 \mathrm{~A})$	109.5
$\mathrm{C}(40)-\mathrm{C}(43)-\mathrm{H}(43 \mathrm{~B})$	109.5	$\mathrm{C}(40)-\mathrm{C}(43)-\mathrm{H}(43 \mathrm{C})$	109.5
$\mathrm{N}(4)-\mathrm{C}(44)-\mathrm{C}(31)$	126.0(4)	$\mathrm{N}(4)-\mathrm{C}(44)-\mathrm{H}(44)$	117.0
$\mathrm{C}(31)-\mathrm{C}(44)-\mathrm{H}(44)$	117.0	$\mathrm{N}(4)-\mathrm{C}(45)-\mathrm{C}(55)$	118.0(4)
$\mathrm{N}(4)-\mathrm{C}(45)-\mathrm{C}(46)$	103.6(3)	$\mathrm{C}(55)-\mathrm{C}(45)-\mathrm{C}(46)$	112.5(4)
$\mathrm{N}(4)-\mathrm{C}(45)-\mathrm{H}(45)$	107.4	$\mathrm{C}(55)-\mathrm{C}(45)-\mathrm{H}(45)$	107.4
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{H}(45)$	107.4	$\mathrm{N}(5)-\mathrm{C}(46)-\mathrm{C}(45)$	112.1(4)
$\mathrm{N}(5)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	109.2	$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	109.2
$\mathrm{N}(5)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.2	$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.2
$\mathrm{H}(46 \mathrm{~A})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	107.9	$\mathrm{N}(5)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	109.5
$\mathrm{N}(5)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	109.5	$\mathrm{H}(47 \mathrm{~A})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	109.5
$\mathrm{N}(5)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	109.5	$\mathrm{H}(47 \mathrm{~A})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	109.5
H(47B)-C(47)-H(47C)	109.5	$\mathrm{N}(5)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	109.5
$\mathrm{N}(5)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	109.5	$\mathrm{H}(48 \mathrm{~A})-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	109.5
$\mathrm{N}(5)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{C})$	109.5	H(48A)-C(48)-H(48C)	109.5
H(48B)-C(48)-H(48C)	109.5	$\mathrm{Si}(3)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~A})$	109.5
$\mathrm{Si}(3)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	109.5	H(49A)-C(49)-H(49B)	109.5
$\mathrm{Si}(3)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	109.5	H(49A)-C(49)-H(49C)	109.5
H(49B)-C(49)-H(49C)	109.5	$\mathrm{Si}(3)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~A})$	109.5
$\mathrm{Si}(3)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~B})$	109.5	$\mathrm{H}(50 \mathrm{~A})-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~B})$	109.5
$\mathrm{Si}(3)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	109.5	$\mathrm{H}(50 \mathrm{~A})-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	109.5
$\mathrm{H}(50 \mathrm{~B})-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	109.5	$\mathrm{Si}(3)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	109.5
$\mathrm{Si}(3)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	109.5	$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	109.5
$\mathrm{Si}(3)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	109.5	$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	109.5
H(51B)-C(51)-H(51C)	109.5	$\mathrm{Si}(4)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	109.5

$\mathrm{Si}(4)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	109.5	$\mathrm{H}(52 \mathrm{~A})-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	109.5
$\mathrm{Si}(4)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	109.5	$\mathrm{H}(52 \mathrm{~A})-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	109.5
$\mathrm{H}(52 \mathrm{~B})-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~A})$	109.5
$\mathrm{Si}(4)-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~B})$	109.5	$\mathrm{H}(53 \mathrm{~A})-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~B})$	109.5
$\mathrm{Si}(4)-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{C})$	109.5	$\mathrm{H}(53 \mathrm{~A})-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{C})$	109.5
$\mathrm{H}(53 \mathrm{~B})-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{C})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	109.5
$\mathrm{Si}(4)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	109.5	$\mathrm{H}(54 \mathrm{~A})-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	109.5
$\mathrm{Si}(4)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	109.5	$\mathrm{H}(54 \mathrm{~A})-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	109.5
$\mathrm{H}(54 \mathrm{~B})-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	109.5	$\mathrm{C}(45)-\mathrm{C}(55)-\mathrm{C}(56)$	116.2(4)
$\mathrm{C}(45)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	108.2	$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	108.2
$\mathrm{C}(45)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	108.2	$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	108.2
$\mathrm{H}(55 \mathrm{~A})-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	107.4	$\mathrm{C}(57)-\mathrm{C}(56)-\mathrm{C}(55)$	111.0(4)
$\mathrm{C}(57)-\mathrm{C}(56)-\mathrm{C}(58)$	109.6(4)	$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(58)$	111.7(4)
$\mathrm{C}(57)-\mathrm{C}(56)-\mathrm{H}(56)$	108.2	$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{H}(56)$	108.2
$\mathrm{C}(58)-\mathrm{C}(56)-\mathrm{H}(56)$	108.2	$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~A})$	109.5
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B})$	109.5	$\mathrm{H}(57 \mathrm{~A})-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B})$	109.5
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	109.5	$\mathrm{H}(57 \mathrm{~A})-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	109.5
$\mathrm{H}(57 \mathrm{~B})-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{C})$	109.5	$\mathrm{C}(56)-\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~A})$	109.5
$\mathrm{C}(56)-\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~B})$	109.5	$\mathrm{H}(58 \mathrm{~A})-\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~B})$	109.5
$\mathrm{C}(56)-\mathrm{C}(58)-\mathrm{H}(58 \mathrm{C})$	109.5	$\mathrm{H}(58 \mathrm{~A})-\mathrm{C}(58)-\mathrm{H}(58 \mathrm{C})$	109.5
$\mathrm{H}(58 \mathrm{~B})-\mathrm{C}(58)-\mathrm{H}(58 \mathrm{C})$	109.5	$\mathrm{C}(40)-\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{D})$	109.5
$\mathrm{C}(40)-\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{E})$	109.5	H(41D)-C(41A)-H(41E)	109.5
$\mathrm{C}(40)-\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{~F})$	109.5	H(41D)-C(41A)-H(41F)	109.5
$\mathrm{H}(41 \mathrm{E})-\mathrm{C}(41 \mathrm{~A})-\mathrm{H}(41 \mathrm{~F})$	109.5	$\mathrm{C}(40)-\mathrm{C}(42 \mathrm{~A})-\mathrm{H}(42 \mathrm{D})$	109.5
$\mathrm{C}(40)-\mathrm{C}(42 \mathrm{~A})-\mathrm{H}(42 \mathrm{E})$	109.5	H(42D)-C(42A)-H(42E)	109.5
$\mathrm{C}(40)-\mathrm{C}(42 \mathrm{~A})-\mathrm{H}(42 \mathrm{~F})$	109.5	H(42D)-C(42A)-H(42F)	109.5
$\mathrm{H}(42 \mathrm{E})-\mathrm{C}(42 \mathrm{~A})-\mathrm{H}(42 \mathrm{~F})$	109.5	$\mathrm{C}(40)-\mathrm{C}(43 \mathrm{~A})-\mathrm{H}(43 \mathrm{D})$	109.5
$\mathrm{C}(40)-\mathrm{C}(43 \mathrm{~A})-\mathrm{H}(43 \mathrm{E})$	109.5	H(43D)-C(43A)-H(43E)	109.5
$\mathrm{C}(40)-\mathrm{C}(43 \mathrm{~A})-\mathrm{H}(43 \mathrm{~F})$	109.5	H(43D)-C(43A)-H(43F)	109.5
$\mathrm{H}(43 \mathrm{E})-\mathrm{C}(43 \mathrm{~A})-\mathrm{H}(43 \mathrm{~F})$	109.5	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	119.4(4)
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{Zn}(1)$	121.3(3)	$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Zn}(1)$	115.6(3)
$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{C}(18)$	109.7(4)	$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{C}(19)$	111.1(4)
$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(19)$	109.0(4)	$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{Zn}(1)$	100.5(3)
$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{Zn}(1)$	114.1(3)	$\mathrm{C}(19)-\mathrm{N}(2)-\mathrm{Zn}(1)$	112.4(3)

$\mathrm{Si}(2)-\mathrm{N}(3)-\mathrm{Si}(1)$	124.9(2)	$\mathrm{Si}(2)-\mathrm{N}(3)-\mathrm{Zn}(1)$	119.0(2)
$\mathrm{Si}(1)-\mathrm{N}(3)-\mathrm{Zn}(1)$	115.9(2)	$\mathrm{C}(44)-\mathrm{N}(4)-\mathrm{C}(45)$	124.0(4)
$\mathrm{C}(44)-\mathrm{N}(4)-\mathrm{Zn}(2)$	122.7(3)	$\mathrm{C}(45)-\mathrm{N}(4)-\mathrm{Zn}(2)$	109.2(3)
$\mathrm{C}(47)-\mathrm{N}(5)-\mathrm{C}(48)$	109.8(4)	$\mathrm{C}(47)-\mathrm{N}(5)-\mathrm{C}(46)$	110.5(4)
$\mathrm{C}(48)-\mathrm{N}(5)-\mathrm{C}(46)$	110.4(4)	$\mathrm{C}(47)-\mathrm{N}(5)-\mathrm{Zn}(2)$	111.0(3)
$\mathrm{C}(48)-\mathrm{N}(5)-\mathrm{Zn}(2)$	109.8(3)	$\mathrm{C}(46)-\mathrm{N}(5)-\mathrm{Zn}(2)$	105.4(3)
$\mathrm{Si}(3)-\mathrm{N}(6)-\mathrm{Si}(4)$	127.2(2)	$\mathrm{Si}(3)-\mathrm{N}(6)-\mathrm{Zn}(2)$	116.1(2)
$\mathrm{Si}(4)-\mathrm{N}(6)-\mathrm{Zn}(2)$	116.5(2)	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Zn}(1)$	125.6(3)
$\mathrm{C}(30)-\mathrm{O}(2)-\mathrm{Zn}(2)$	124.2(3)	$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(21)$	110.9(2)
$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(22)$	112.4(2)	$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(22)$	106.1(3)
$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(20)$	113.5(2)	$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(20)$	106.8(2)
$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(20)$	106.7(3)	$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(23)$	111.1(2)
$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(25)$	112.2(2)	$\mathrm{C}(23)-\mathrm{Si}(2)-\mathrm{C}(25)$	108.2(3)
$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(24)$	113.8(2)	$\mathrm{C}(23)-\mathrm{Si}(2)-\mathrm{C}(24)$	105.2(3)
$\mathrm{C}(25)-\mathrm{Si}(2)-\mathrm{C}(24)$	105.9(3)	$\mathrm{N}(6)-\mathrm{Si}(3)-\mathrm{C}(51)$	112.5(3)
$\mathrm{N}(6)-\mathrm{Si}(3)-\mathrm{C}(50)$	113.2(2)	$\mathrm{C}(51)-\mathrm{Si}(3)-\mathrm{C}(50)$	106.9(3)
$\mathrm{N}(6)-\mathrm{Si}(3)-\mathrm{C}(49)$	110.6(2)	$\mathrm{C}(51)-\mathrm{Si}(3)-\mathrm{C}(49)$	106.7(3)
$\mathrm{C}(50)-\mathrm{Si}(3)-\mathrm{C}(49)$	106.6(3)	$\mathrm{N}(6)-\mathrm{Si}(4)-\mathrm{C}(52)$	112.0(2)
$\mathrm{N}(6)-\mathrm{Si}(4)-\mathrm{C}(53)$	112.3(2)	$\mathrm{C}(52)-\mathrm{Si}(4)-\mathrm{C}(53)$	107.6(2)
$\mathrm{N}(6)-\mathrm{Si}(4)-\mathrm{C}(54)$	113.4(2)	$\mathrm{C}(52)-\mathrm{Si}(4)-\mathrm{C}(54)$	105.6(3)
$\mathrm{C}(53)-\mathrm{Si}(4)-\mathrm{C}(54)$	105.4(3)	$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{O}(1)$	119.64(15)
$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{N}(1)$	133.83(15)	$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(1)$	92.20(13)
$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{N}(2)$	114.20(16)	$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(2)$	112.07(14)
$\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{N}(2)$	77.40(14)	$\mathrm{O}(2)-\mathrm{Zn}(2)-\mathrm{N}(6)$	122.97(15)
$\mathrm{O}(2)-\mathrm{Zn}(2)-\mathrm{N}(4)$	92.78(13)	$\mathrm{N}(6)-\mathrm{Zn}(2)-\mathrm{N}(4)$	126.87(15)
$\mathrm{O}(2)-\mathrm{Zn}(2)-\mathrm{N}(5)$	111.59(14)	$\mathrm{N}(6)-\mathrm{Zn}(2)-\mathrm{N}(5)$	113.90(16)
$\mathrm{N}(4)-\mathrm{Zn}(2)-\mathrm{N}(5)$	80.37(14)		

Table B-5. Crystal Data and Structure Refinement for Complex II6c.

Identification code	Complex II6c
Empirical formula	C33 H67 N3 O S Si2 Zn
Formula weight	675.51
Temperature	110(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	$a=15.315(7) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=10.089(5) \AA \quad \beta=104.946(6)^{\circ}$
	$\mathrm{c}=26.190(13) \AA \quad \gamma=90^{\circ}$.
Volume	3910(3) \AA^{3}
Z	4
Density (calculated)	$1.148 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.770 \mathrm{~mm}^{-1}$
F(000)	1472
Crystal size	$0.15 \times 0.14 \times 0.12 \mathrm{~mm}^{3}$
Theta range for data collection	1.38 to 27.50°.
Index ranges	$-19<=\mathrm{h}<=19,-13<=\mathrm{k}<=13,-34<=1<=33$
Reflections collected	44430
Independent reflections	$17705[\mathrm{R}(\mathrm{int})=0.0242]$
Completeness to theta $=27.50^{\circ}$	99.6\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9133 and 0.8933
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	17705 / 44 / 818
Goodness-of-fit on F^{2}	1.032
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I}$)]	$\mathrm{R} 1=0.0347, \mathrm{wR} 2=0.0899$
R indices (all data)	$\mathrm{R} 1=0.0408, \mathrm{wR} 2=0.0927$
Absolute structure parameter	0.004(6)
Largest diff. peak and hole	0.827 and -0.583 e. \AA^{-3}

Table B-6. Bond Lengths [\AA] and Angles $\left[{ }^{\circ}\right.$] for Complex II6c.

$\mathrm{C}(1)-\mathrm{O}(1)$	1.299(3)	$\mathrm{C}(1)-\mathrm{C}(6)$	1.430(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.442(3)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.364(4)
$\mathrm{C}(2)-\mathrm{C}(7)$	1.540(3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.410(3)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500	$\mathrm{C}(4)-\mathrm{C}(5)$	1.364(3)
$\mathrm{C}(4)-\mathrm{C}(11)$	1.532(4)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.415(3)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500	$\mathrm{C}(6)-\mathrm{C}(15)$	1.435(3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.532(4)	$\mathrm{C}(7)-\mathrm{C}(9)$	1.537(4)
$\mathrm{C}(7)-\mathrm{C}(10)$	1.544(3)	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9800	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9800	C(9)-H(9B)	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9800	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9800	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	0.9800
$\mathrm{C}(11)-\mathrm{C}(14)$	1.522(8)	$\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~A})$	1.527(13)
$\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~A})$	1.528(13)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.533(4)
$\mathrm{C}(11)-\mathrm{C}(13)$	1.535(9)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800	C(13)-H(13B)	0.9800
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800
$\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{D})$	0.9800	$\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{E})$	0.9800
$\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~F})$	0.9800	$\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{D})$	0.9800
$\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{E})$	0.9800	$\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~F})$	0.9800
$\mathrm{C}(15)-\mathrm{N}(1)$	1.290(3)	$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(16)-\mathrm{N}(1)$	1.471(3)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.529(3)
$\mathrm{C}(16)-\mathrm{C}(26)$	1.533(3)	$\mathrm{C}(16)-\mathrm{H}(16)$	1.0000
$\mathrm{C}(17)-\mathrm{N}(2)$	1.478(3)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9900	$\mathrm{C}(18)-\mathrm{N}(2)$	1.469(3)
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800	$\mathrm{C}(19)$ - $\mathrm{N}(2)$	1.472(3)
C(19)-H(19A)	0.9800	C(19)-H(19B)	0.9800
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800	$\mathrm{C}(20)-\mathrm{Si}(1)$	1.861(3)
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800

$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800	$\mathrm{C}(21)-\mathrm{Si}(1)$	1.877(3)
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800	$\mathrm{C}(22)-\mathrm{Si}(1)$	1.881(3)
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9800	$\mathrm{C}(22) \mathrm{H}(22 \mathrm{~B})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9800	$\mathrm{C}(23)-\mathrm{Si}(2)$	1.869(3)
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800	$\mathrm{C}(24)-\mathrm{Si}(2)$	1.878(3)
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9800	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	0.9800
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	0.9800	C (25)-Si(2)	1.871(3)
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9800	$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	0.9800
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	0.9800	$\mathrm{C}(26)-\mathrm{C}(27)$	1.521(3)
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9900	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	0.9900
$\mathrm{C}(27)-\mathrm{S}(1)$	1.810(3)	$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	0.9900
$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	0.9900	$\mathrm{C}(28)-\mathrm{S}(1)$	1.800(3)
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	0.9800	$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	0.9800
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	0.9800	$\mathrm{C}(29)-\mathrm{O}(2)$	1.309(3)
$\mathrm{C}(29)-\mathrm{C}(34)$	1.424(3)	$\mathrm{C}(29)-\mathrm{C}(30)$	1.427(3)
$\mathrm{C}(30)-\mathrm{C}(31)$	1.386(3)	$\mathrm{C}(30)-\mathrm{C}(35)$	1.539(3)
$\mathrm{C}(31)-\mathrm{C}(32)$	1.417(3)	$\mathrm{C}(31)-\mathrm{H}(31)$	0.9500
$\mathrm{C}(32)-\mathrm{C}(33)$	1.365 (3)	$\mathrm{C}(32)-\mathrm{C}(39)$	1.535(3)
$\mathrm{C}(33)-\mathrm{C}(34)$	1.417(3)	$\mathrm{C}(33)-\mathrm{H}(33)$	0.9500
$\mathrm{C}(34)-\mathrm{C}(43)$	1.434(3)	C(35)-C(38)	1.530(3)
$\mathrm{C}(35)-\mathrm{C}(36)$	1.528(4)	$\mathrm{C}(35)-\mathrm{C}(37)$	1.530(3)
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	0.9800	$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	0.9800
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	0.9800	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	0.9800
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	0.9800	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	0.9800
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	0.9800	$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	0.9800
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	0.9800	$\mathrm{C}(39)-\mathrm{C}(40)$	1.523(4)
$\mathrm{C}(39)-\mathrm{C}(42)$	1.525(4)	$\mathrm{C}(39)-\mathrm{C}(41)$	1.535(4)
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	0.9800	$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	0.9800
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	0.9800	$\mathrm{C}(41)-\mathrm{H}(41 \mathrm{~A})$	0.9800
$\mathrm{C}(41)-\mathrm{H}(41 \mathrm{~B})$	0.9800	$\mathrm{C}(41)-\mathrm{H}(41 \mathrm{C})$	0.9800
$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~A})$	0.9800	$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	0.9800
$\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	0.9800	$\mathrm{C}(43)-\mathrm{N}(4)$	1.288(3)

$\mathrm{C}(43)-\mathrm{H}(43)$	0.9500	$\mathrm{C}(44)-\mathrm{N}(4)$	1.477(3)
$\mathrm{C}(44)-\mathrm{C}(54)$	1.515(3)	$\mathrm{C}(44)-\mathrm{C}(45)$	1.535(3)
$\mathrm{C}(44)-\mathrm{H}(44)$	1.0000	$\mathrm{C}(45)-\mathrm{N}(5)$	1.481(3)
$\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~A})$	0.9900	$\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~B})$	0.9900
$\mathrm{C}(46)-\mathrm{N}(5)$	1.474(3)	$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	0.9800
$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	0.9800	$\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	0.9800
$\mathrm{C}(47)-\mathrm{N}(5)$	1.477(3)	$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	0.9800
$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	0.9800	$\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	0.9800
$\mathrm{C}(48)-\mathrm{Si}(3)$	1.867(3)	$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	0.9800
$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	0.9800	$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{C})$	0.9800
$\mathrm{C}(49)-\mathrm{Si}(3)$	1.870(3)	$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~A})$	0.9800
$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	0.9800	$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	0.9800
$\mathrm{C}(50)-\mathrm{Si}(3)$	1.875(3)	$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~A})$	0.9800
$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~B})$	0.9800	$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	0.9800
$\mathrm{C}(51)-\mathrm{Si}(4)$	1.862(3)	$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	0.9800
$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	0.9800	$\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	0.9800
$\mathrm{C}(52)-\mathrm{Si}(4)$	1.874(3)	$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	0.9800
$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	0.9800	$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	0.9800
$\mathrm{C}(53)-\mathrm{Si}(4)$	1.880(3)	$\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~A})$	0.9800
$\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~B})$	0.9800	$\mathrm{C}(53)-\mathrm{H}(53 \mathrm{C})$	0.9800
$\mathrm{C}(54)-\mathrm{C}(55)$	1.520(3)	$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	0.9900
$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	0.9900	$\mathrm{C}(55)-\mathrm{S}(2)$	1.802(3)
$\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	0.9900	$\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	0.9900
$\mathrm{C}(56)-\mathrm{S}(2)$	1.797(3)	$\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~A})$	0.9800
$\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~B})$	0.9800	$\mathrm{C}(56)-\mathrm{H}(56 \mathrm{C})$	0.9800
C(80)-C(81)	$1.5400(11)$	$\mathrm{C}(80)-\mathrm{H}(80 \mathrm{~A})$	0.9800
$\mathrm{C}(80)-\mathrm{H}(80 \mathrm{~B})$	0.9800	$\mathrm{C}(80)-\mathrm{H}(80 \mathrm{C})$	0.9800
$\mathrm{C}(81)-\mathrm{C}(82)$	$1.5393(12)$	$\mathrm{C}(81)-\mathrm{H}(81 \mathrm{~A})$	0.9900
$\mathrm{C}(81)-\mathrm{H}(81 \mathrm{~B})$	0.9900	$\mathrm{C}(82)-\mathrm{C}(83)$	1.5378(11)
$\mathrm{C}(82)-\mathrm{H}(82 \mathrm{~A})$	0.9900	$\mathrm{C}(82)-\mathrm{H}(82 \mathrm{~B})$	0.9900
C(83)-C(84)	$1.5420(12)$	$\mathrm{C}(83)-\mathrm{H}(83 \mathrm{~A})$	0.9900
$\mathrm{C}(83)-\mathrm{H}(83 \mathrm{~B})$	0.9900	$\mathrm{C}(84)-\mathrm{H}(84 \mathrm{~A})$	0.9800
$\mathrm{C}(84)-\mathrm{H}(84 \mathrm{~B})$	0.9800	$\mathrm{C}(84)-\mathrm{H}(84 \mathrm{C})$	0.9800
$\mathrm{C}(90)-\mathrm{C}(91)$	1.5376(12)	C(90)-H(90A)	0.9800

$\mathrm{C}(90)-\mathrm{H}(90 \mathrm{~B})$	0.9800	$\mathrm{C}(90)-\mathrm{H}(90 \mathrm{C})$	0.9800
$\mathrm{C}(91)-\mathrm{C}(92)$	1.5404(12)	$\mathrm{C}(91)-\mathrm{H}(91 \mathrm{~A})$	0.9900
$\mathrm{C}(91)-\mathrm{H}(91 \mathrm{~B})$	0.9900	$\mathrm{C}(92)-\mathrm{C}(93)$	1.5394(12)
$\mathrm{C}(92)-\mathrm{H}(92 \mathrm{~A})$	0.9900	C(92)-H(92B)	0.9900
C(93)-C(94)	$1.5393(12)$	C(93)-H(93A)	0.9900
C(93)-H(93B)	0.9900	C(94)-H(94A)	0.9800
C(94)-H(94B)	0.9800	C(94)-H(94C)	0.9800
C(80A)-C(81A)	1.5394(12)	C(80A)-H(80D)	0.9800
C(80A)-H(80E)	0.9800	$\mathrm{C}(80 \mathrm{~A})-\mathrm{H}(80 \mathrm{~F})$	0.9800
$\mathrm{C}(81 \mathrm{~A})-\mathrm{C}(82 \mathrm{~A})$	$1.5393(12)$	$\mathrm{C}(81 \mathrm{~A})-\mathrm{H}(81 \mathrm{C})$	0.9900
$\mathrm{C}(81 \mathrm{~A})-\mathrm{H}(81 \mathrm{D})$	0.9900	$\mathrm{C}(82 \mathrm{~A})-\mathrm{C}(83 \mathrm{~A})$	1.5404(12)
$\mathrm{C}(82 \mathrm{~A})-\mathrm{H}(82 \mathrm{C})$	0.9900	$\mathrm{C}(82 \mathrm{~A})-\mathrm{H}(82 \mathrm{D})$	0.9900
C(83A)-C(84A)	1.470(12)	$\mathrm{C}(83 \mathrm{~A})-\mathrm{H}(83 \mathrm{C})$	0.9900
C(83A)-H(83D)	0.9900	$\mathrm{C}(84 \mathrm{~A})-\mathrm{H}(84 \mathrm{D})$	0.9800
$\mathrm{C}(84 \mathrm{~A})-\mathrm{H}(84 \mathrm{E})$	0.9800	$\mathrm{C}(84 \mathrm{~A})-\mathrm{H}(84 \mathrm{~F})$	0.9800
C(90A)-C(91A)	1.598(11)	C(90A)-H(90D)	0.9800
C(90A)-H(90E)	0.9800	C(90A)-H(90F)	0.9800
$\mathrm{C}(91 \mathrm{~A})-\mathrm{C}(92 \mathrm{~A})$	1.5380(11)	$\mathrm{C}(91 \mathrm{~A})-\mathrm{H}(91 \mathrm{C})$	0.9900
C(91A)-H(91D)	0.9900	$\mathrm{C}(92 \mathrm{~A})-\mathrm{C}(93 \mathrm{~A})$	1.5385(12)
$\mathrm{C}(92 \mathrm{~A})-\mathrm{H}(92 \mathrm{C})$	0.9900	$\mathrm{C}(92 \mathrm{~A})-\mathrm{H}(92 \mathrm{D})$	0.9900
C(93A)-C(94A)	1.5406(11)	C(93A)-H(93C)	0.9900
C(93A)-H(93D)	0.9900	C(94A)-H(94D)	0.9800
C(94A)-H(94E)	0.9800	$\mathrm{C}(94 \mathrm{~A})-\mathrm{H}(94 \mathrm{~F})$	0.9800
$\mathrm{N}(1)-\mathrm{Zn}(1)$	2.022(2)	$\mathrm{N}(2)-\mathrm{Zn}(1)$	2.211(2)
$\mathrm{N}(3)-\mathrm{Si}(2)$	1.702(2)	$\mathrm{N}(3)-\mathrm{Si}(1)$	1.714(2)
$\mathrm{N}(3)-\mathrm{Zn}(1)$	1.913(2)	$\mathrm{N}(4)-\mathrm{Zn}(2)$	1.999(2)
$\mathrm{N}(5)-\mathrm{Zn}(2)$	2.226(2)	N(6)-Si(3)	1.707(2)
$\mathrm{N}(6)-\mathrm{Si}(4)$	1.711(2)	$\mathrm{N}(6)-\mathrm{Zn}(2)$	1.911(2)
$\mathrm{O}(1)-\mathrm{Zn}(1)$	1.9406(18)	$\mathrm{O}(2)-\mathrm{Zn}(2)$	$1.9351(17)$
		$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	122.7(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	120.4(2)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	116.8(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	118.7(2)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	122.0(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	119.3(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	125.3(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	117.4	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	117.4

$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	116.1(2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	124.0(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	119.8(2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	122.3(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	118.8	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	118.8
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	120.6(2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(15)$	116.4(2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(15)$	122.5(2)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	110.4(2)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(2)$	110.4(2)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(2)$	109.7(2)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	108.1(2)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(10)$	106.9(2)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(10)$	111.3(2)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~A})$	97.3(16)
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~A})$	14.6(11)	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~A})$	108(2)
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(4)$	108.7(9)	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(4)$	110(2)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(4)$	113.2(15)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(12)$	114.7(9)
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(12)$	116.0(16)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(12)$	100.4(11)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	109.4(2)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(13)$	107.8(11)
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(13)$	12.9(19)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(11)-\mathrm{C}(13)$	116.2(17)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(13)$	112.2(12)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	104.1(11)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5	$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5	$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5	$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{D})$	109.5	$\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{E})$	109.5
H(13D)-C(13A)-H(13E)	109.5	$\mathrm{C}(11)-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~F})$	109.5
$\mathrm{H}(13 \mathrm{D})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~F})$	109.5	$\mathrm{H}(13 \mathrm{E})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~F})$	109.5
$\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{D})$	109.5	$\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{E})$	109.5

$\mathrm{H}(14 \mathrm{D})-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{E})$	109.5	$\mathrm{C}(11)-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~F})$	109.5
$\mathrm{H}(14 \mathrm{D})-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~F})$	109.5	$\mathrm{H}(14 \mathrm{E})-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~F})$	109.5
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(6)$	127.0(2)	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{H}(15)$	116.5
$\mathrm{C}(6)-\mathrm{C}(15)-\mathrm{H}(15)$	116.5	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	107.37(19)
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(26)$	112.1(2)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(26)$	110.55(19)
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{H}(16)$	108.9	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	108.9
$\mathrm{C}(26)-\mathrm{C}(16)-\mathrm{H}(16)$	108.9	$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	113.21(19)
$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	108.9	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	108.9
$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.9	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.9
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	107.7	$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5	$\mathrm{N}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{N}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{N}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5	$\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5	$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5	$\mathrm{Si}(2)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{Si}(2)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5	$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{Si}(2)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5	$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5	$\mathrm{Si}(2)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	109.5
$\mathrm{Si}(2)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~B})$	109.5
$\mathrm{Si}(2)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5	$\mathrm{H}(24 \mathrm{~A})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5
$\mathrm{H}(24 \mathrm{~B})-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{C})$	109.5	$\mathrm{Si}(2)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	109.5
$\mathrm{Si}(2)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5	$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~B})$	109.5
$\mathrm{Si}(2)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5	$\mathrm{H}(25 \mathrm{~A})-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{C})$	109.5
H(25B)-C(25)-H(25C)	109.5	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(16)$	113.7(2)

$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	108.8	$\mathrm{C}(16)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	108.8
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	108.8	$\mathrm{C}(16)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	108.8
$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	107.7	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{S}(1)$	114.23(18)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	108.7	$\mathrm{S}(1)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	108.7
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	108.7	$\mathrm{S}(1)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	108.7
$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	107.6	$\mathrm{S}(1)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	109.5
$\mathrm{S}(1)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5	$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5
$\mathrm{S}(1)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5	$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{H}(28 \mathrm{~B})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5	$\mathrm{O}(2)-\mathrm{C}(29)-\mathrm{C}(34)$	122.3(2)
$\mathrm{O}(2)-\mathrm{C}(29)-\mathrm{C}(30)$	119.9(2)	$\mathrm{C}(34)-\mathrm{C}(29)-\mathrm{C}(30)$	117.8(2)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	118.8(2)	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(35)$	120.7(2)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(35)$	120.4(2)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	124.1(2)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31)$	118.0	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31)$	118.0
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	116.3(2)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(39)$	123.9(2)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(39)$	119.7(2)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	122.7(2)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33)$	118.7	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33)$	118.7
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(29)$	120.1(2)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(43)$	115.6(2)
$\mathrm{C}(29)-\mathrm{C}(34)-\mathrm{C}(43)$	123.8(2)	$\mathrm{C}(38)-\mathrm{C}(35)-\mathrm{C}(36)$	106.88(19)
$\mathrm{C}(38)-\mathrm{C}(35)-\mathrm{C}(37)$	107.5(2)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(37)$	110.4(2)
$\mathrm{C}(38)-\mathrm{C}(35)-\mathrm{C}(30)$	112.5(2)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(30)$	109.1(2)
$\mathrm{C}(37)-\mathrm{C}(35)-\mathrm{C}(30)$	110.42(19)	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	109.5
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	109.5	$\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	109.5
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5	$\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5
$\mathrm{H}(36 \mathrm{~B})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5	$\mathrm{C}(35)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	109.5
$\mathrm{C}(35)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.5	$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.5
$\mathrm{C}(35)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5	$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5
$\mathrm{H}(37 \mathrm{~B})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{C})$	109.5	$\mathrm{C}(35)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	109.5
$\mathrm{C}(35)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.5	$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.5
$\mathrm{C}(35)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5	$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{H}(38 \mathrm{~B})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5	$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(42)$	109.7(2)
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(41)$	108.2(2)	$\mathrm{C}(42)-\mathrm{C}(39)-\mathrm{C}(41)$	108.2(2)
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(32)$	110.5(2)	$\mathrm{C}(42)-\mathrm{C}(39)-\mathrm{C}(32)$	108.8(2)
$\mathrm{C}(41)-\mathrm{C}(39)-\mathrm{C}(32)$	111.4(2)	$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	109.5
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5	$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5

$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5	$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
H(40B)-C(40)-H(40C)	109.5	$\mathrm{C}(39)-\mathrm{C}(41)-\mathrm{H}(41 \mathrm{~A})$	109.5
$\mathrm{C}(39)-\mathrm{C}(41)-\mathrm{H}(41 \mathrm{~B})$	109.5	$\mathrm{H}(41 \mathrm{~A})-\mathrm{C}(41)-\mathrm{H}(41 \mathrm{~B})$	109.5
$\mathrm{C}(39)-\mathrm{C}(41)-\mathrm{H}(41 \mathrm{C})$	109.5	$\mathrm{H}(41 \mathrm{~A})-\mathrm{C}(41)-\mathrm{H}(41 \mathrm{C})$	109.5
$\mathrm{H}(41 \mathrm{~B})-\mathrm{C}(41)-\mathrm{H}(41 \mathrm{C})$	109.5	$\mathrm{C}(39)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~A})$	109.5
$\mathrm{C}(39)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	109.5	$\mathrm{H}(42 \mathrm{~A})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{~B})$	109.5
$\mathrm{C}(39)-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	109.5	$\mathrm{H}(42 \mathrm{~A})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	109.5
$\mathrm{H}(42 \mathrm{~B})-\mathrm{C}(42)-\mathrm{H}(42 \mathrm{C})$	109.5	$\mathrm{N}(4)-\mathrm{C}(43)-\mathrm{C}(34)$	126.0(2)
$\mathrm{N}(4)-\mathrm{C}(43)-\mathrm{H}(43)$	117.0	$\mathrm{C}(34)-\mathrm{C}(43)-\mathrm{H}(43)$	117.0
$\mathrm{N}(4)-\mathrm{C}(44)-\mathrm{C}(54)$	116.2(2)	$\mathrm{N}(4)-\mathrm{C}(44)-\mathrm{C}(45)$	103.08(19)
$\mathrm{C}(54)-\mathrm{C}(44)-\mathrm{C}(45)$	112.9(2)	$\mathrm{N}(4)-\mathrm{C}(44)-\mathrm{H}(44)$	108.1
$\mathrm{C}(54)-\mathrm{C}(44)-\mathrm{H}(44)$	108.1	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{H}(44)$	108.1
$\mathrm{N}(5)-\mathrm{C}(45)-\mathrm{C}(44)$	111.9(2)	$\mathrm{N}(5)-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~A})$	109.2
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~A})$	109.2	$\mathrm{N}(5)-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~B})$	109.2
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~B})$	109.2	$\mathrm{H}(45 \mathrm{~A})-\mathrm{C}(45)-\mathrm{H}(45 \mathrm{~B})$	107.9
$\mathrm{N}(5)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~A})$	109.5	$\mathrm{N}(5)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.5
$\mathrm{H}(46 \mathrm{~A})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{~B})$	109.5	$\mathrm{N}(5)-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5
$\mathrm{H}(46 \mathrm{~A})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5	$\mathrm{H}(46 \mathrm{~B})-\mathrm{C}(46)-\mathrm{H}(46 \mathrm{C})$	109.5
$\mathrm{N}(5)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~A})$	109.5	$\mathrm{N}(5)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	109.5
$\mathrm{H}(47 \mathrm{~A})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{~B})$	109.5	$\mathrm{N}(5)-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	109.5
$\mathrm{H}(47 \mathrm{~A})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	109.5	$\mathrm{H}(47 \mathrm{~B})-\mathrm{C}(47)-\mathrm{H}(47 \mathrm{C})$	109.5
$\mathrm{Si}(3)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	109.5	$\mathrm{Si}(3)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	109.5
$\mathrm{H}(48 \mathrm{~A})-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	109.5	$\mathrm{Si}(3)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{C})$	109.5
$\mathrm{H}(48 \mathrm{~A})-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{C})$	109.5	H(48B)-C(48)-H(48C)	109.5
$\mathrm{Si}(3)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~A})$	109.5	$\mathrm{Si}(3)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	109.5
H(49A)-C(49)-H(49B)	109.5	$\mathrm{Si}(3)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	109.5
H(49A)-C(49)-H(49C)	109.5	H(49B)-C(49)-H(49C)	109.5
$\mathrm{Si}(3)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~A})$	109.5	$\mathrm{Si}(3)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~B})$	109.5
H(50A)-C(50)-H(50B)	109.5	$\mathrm{Si}(3)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	109.5
$\mathrm{H}(50 \mathrm{~A})-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	109.5	H(50B)-C(50)-H(50C)	109.5
$\mathrm{Si}(4)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~A})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	109.5
$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{~B})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	109.5
$\mathrm{H}(51 \mathrm{~A})-\mathrm{C}(51)-\mathrm{H}(51 \mathrm{C})$	109.5	H(51B)-C(51)-H(51C)	109.5
$\mathrm{Si}(4)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	109.5

$\mathrm{H}(52 \mathrm{~A})-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	109.5
$\mathrm{H}(52 \mathrm{~A})-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	109.5	$\mathrm{H}(52 \mathrm{~B})-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	109.5
$\mathrm{Si}(4)-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~A})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~B})$	109.5
$\mathrm{H}(53 \mathrm{~A})-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~B})$	109.5	$\mathrm{Si}(4)-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{C})$	109.5
$\mathrm{H}(53 \mathrm{~A})-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{C})$	109.5	$\mathrm{H}(53 \mathrm{~B})-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{C})$	109.5
$\mathrm{C}(44)-\mathrm{C}(54)-\mathrm{C}(55)$	113.5(2)	$\mathrm{C}(44)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	108.9
$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	108.9	$\mathrm{C}(44)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	108.9
$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	108.9	$\mathrm{H}(54 \mathrm{~A})-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	107.7
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{S}(2)$	113.11(18)	$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	109.0
$\mathrm{S}(2)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~A})$	109.0	$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	109.0
$\mathrm{S}(2)-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	109.0	$\mathrm{H}(55 \mathrm{~A})-\mathrm{C}(55)-\mathrm{H}(55 \mathrm{~B})$	107.8
$\mathrm{S}(2)-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~A})$	109.5	$\mathrm{S}(2)-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~B})$	109.5
$\mathrm{H}(56 \mathrm{~A})-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~B})$	109.5	$\mathrm{S}(2)-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{C})$	109.5
$\mathrm{H}(56 \mathrm{~A})-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{C})$	109.5	$\mathrm{H}(56 \mathrm{~B})-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{C})$	109.5
$\mathrm{C}(82)-\mathrm{C}(81)-\mathrm{C}(80)$	108.55(10)	$\mathrm{C}(82)-\mathrm{C}(81)-\mathrm{H}(81 \mathrm{~A})$	110.0
$\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{H}(81 \mathrm{~A})$	110.0	$\mathrm{C}(82)-\mathrm{C}(81)-\mathrm{H}(81 \mathrm{~B})$	110.0
$\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{H}(81 \mathrm{~B})$	110.0	$\mathrm{H}(81 \mathrm{~A})-\mathrm{C}(81)-\mathrm{H}(81 \mathrm{~B})$	108.4
$\mathrm{C}(83)-\mathrm{C}(82)-\mathrm{C}(81)$	108.71(10)	$\mathrm{C}(83)-\mathrm{C}(82)-\mathrm{H}(82 \mathrm{~A})$	109.9
$\mathrm{C}(81)-\mathrm{C}(82)-\mathrm{H}(82 \mathrm{~A})$	109.9	$\mathrm{C}(83)-\mathrm{C}(82)-\mathrm{H}(82 \mathrm{~B})$	109.9
$\mathrm{C}(81)-\mathrm{C}(82)-\mathrm{H}(82 \mathrm{~B})$	109.9	$\mathrm{H}(82 \mathrm{~A})-\mathrm{C}(82)-\mathrm{H}(82 \mathrm{~B})$	108.3
$\mathrm{C}(82)-\mathrm{C}(83)-\mathrm{C}(84)$	108.76(10)	$\mathrm{C}(82)-\mathrm{C}(83)-\mathrm{H}(83 \mathrm{~A})$	109.9
$\mathrm{C}(84)-\mathrm{C}(83)-\mathrm{H}(83 \mathrm{~A})$	109.9	$\mathrm{C}(82)-\mathrm{C}(83)-\mathrm{H}(83 \mathrm{~B})$	109.9
$\mathrm{C}(84)-\mathrm{C}(83)-\mathrm{H}(83 \mathrm{~B})$	109.9	$\mathrm{H}(83 \mathrm{~A})-\mathrm{C}(83)-\mathrm{H}(83 \mathrm{~B})$	108.3
$\mathrm{C}(90)-\mathrm{C}(91)-\mathrm{C}(92)$	108.37(10)	$\mathrm{C}(90)-\mathrm{C}(91)-\mathrm{H}(91 \mathrm{~A})$	110.0
$\mathrm{C}(92)-\mathrm{C}(91)-\mathrm{H}(91 \mathrm{~A})$	110.0	$\mathrm{C}(90)-\mathrm{C}(91)-\mathrm{H}(91 \mathrm{~B})$	110.0
$\mathrm{C}(92)-\mathrm{C}(91)-\mathrm{H}(91 \mathrm{~B})$	110.0	$\mathrm{H}(91 \mathrm{~A})-\mathrm{C}(91)-\mathrm{H}(91 \mathrm{~B})$	108.4
$\mathrm{C}(93)-\mathrm{C}(92)-\mathrm{C}(91)$	108.53(10)	$\mathrm{C}(93)-\mathrm{C}(92)-\mathrm{H}(92 \mathrm{~A})$	110.0
$\mathrm{C}(91)-\mathrm{C}(92)-\mathrm{H}(92 \mathrm{~A})$	110.0	$\mathrm{C}(93)-\mathrm{C}(92)-\mathrm{H}(92 \mathrm{~B})$	110.0
$\mathrm{C}(91)-\mathrm{C}(92)-\mathrm{H}(92 \mathrm{~B})$	110.0	$\mathrm{H}(92 \mathrm{~A})-\mathrm{C}(92)-\mathrm{H}(92 \mathrm{~B})$	108.4
$\mathrm{C}(94)-\mathrm{C}(93)-\mathrm{C}(92)$	108.59(10)	$\mathrm{C}(94)-\mathrm{C}(93)-\mathrm{H}(93 \mathrm{~A})$	110.0
$\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{H}(93 \mathrm{~A})$	110.0	$\mathrm{C}(94)-\mathrm{C}(93)-\mathrm{H}(93 \mathrm{~B})$	110.0
$\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{H}(93 \mathrm{~B})$	110.0	$\mathrm{H}(93 \mathrm{~A})-\mathrm{C}(93)-\mathrm{H}(93 \mathrm{~B})$	108.4
C(81A)-C(80A)-H(80D)	109.5	C(81A)-C(80A)-H(80E)	109.5
H (80D)-C(80A)-H(80E)	109.5	$\mathrm{C}(81 \mathrm{~A})-\mathrm{C}(80 \mathrm{~A})-\mathrm{H}(80 \mathrm{~F})$	109.5

H(80D)-C(80A)-H(80F)	109.5	$\mathrm{H}(80 \mathrm{E})-\mathrm{C}(80 \mathrm{~A})-\mathrm{H}(80 \mathrm{~F})$	109.5
$\mathrm{C}(80 \mathrm{~A})-\mathrm{C}(81 \mathrm{~A})-\mathrm{C}(82 \mathrm{~A})$	108.58(10)	$\mathrm{C}(80 \mathrm{~A})-\mathrm{C}(81 \mathrm{~A})-\mathrm{H}(81 \mathrm{C})$	110.0
$\mathrm{C}(82 \mathrm{~A})-\mathrm{C}(81 \mathrm{~A})-\mathrm{H}(81 \mathrm{C})$	110.0	$\mathrm{C}(80 \mathrm{~A})-\mathrm{C}(81 \mathrm{~A})-\mathrm{H}(81 \mathrm{D})$	110.0
$\mathrm{C}(82 \mathrm{~A})-\mathrm{C}(81 \mathrm{~A})-\mathrm{H}(81 \mathrm{D})$	110.0	$\mathrm{H}(81 \mathrm{C})-\mathrm{C}(81 \mathrm{~A})-\mathrm{H}(81 \mathrm{D})$	108.4
$\mathrm{C}(81 \mathrm{~A})-\mathrm{C}(82 \mathrm{~A})-\mathrm{C}(83 \mathrm{~A})$	108.55(11)	$\mathrm{C}(81 \mathrm{~A})-\mathrm{C}(82 \mathrm{~A})-\mathrm{H}(82 \mathrm{C})$	110.0
$\mathrm{C}(83 \mathrm{~A})-\mathrm{C}(82 \mathrm{~A})-\mathrm{H}(82 \mathrm{C})$	110.0	$\mathrm{C}(81 \mathrm{~A})-\mathrm{C}(82 \mathrm{~A})-\mathrm{H}(82 \mathrm{D})$	110.0
$\mathrm{C}(83 \mathrm{~A})-\mathrm{C}(82 \mathrm{~A})-\mathrm{H}(82 \mathrm{D})$	110.0	$\mathrm{H}(82 \mathrm{C})-\mathrm{C}(82 \mathrm{~A})-\mathrm{H}(82 \mathrm{D})$	108.4
$\mathrm{C}(84 \mathrm{~A})-\mathrm{C}(83 \mathrm{~A})-\mathrm{C}(82 \mathrm{~A})$	116.2(9)	$\mathrm{C}(84 \mathrm{~A})-\mathrm{C}(83 \mathrm{~A})-\mathrm{H}(83 \mathrm{C})$	108.2
$\mathrm{C}(82 \mathrm{~A})-\mathrm{C}(83 \mathrm{~A})-\mathrm{H}(83 \mathrm{C})$	108.2	$\mathrm{C}(84 \mathrm{~A})-\mathrm{C}(83 \mathrm{~A})-\mathrm{H}(83 \mathrm{D})$	108.2
$\mathrm{C}(82 \mathrm{~A})-\mathrm{C}(83 \mathrm{~A})-\mathrm{H}(83 \mathrm{D})$	108.2	$\mathrm{H}(83 \mathrm{C})-\mathrm{C}(83 \mathrm{~A})-\mathrm{H}(83 \mathrm{D})$	107.4
$\mathrm{C}(83 \mathrm{~A})-\mathrm{C}(84 \mathrm{~A})-\mathrm{H}(84 \mathrm{D})$	109.5	$\mathrm{C}(83 \mathrm{~A})-\mathrm{C}(84 \mathrm{~A})-\mathrm{H}(84 \mathrm{E})$	109.5
H(84D)-C(84A)-H(84E)	109.5	$\mathrm{C}(83 \mathrm{~A})-\mathrm{C}(84 \mathrm{~A})-\mathrm{H}(84 \mathrm{~F})$	109.5
H(84D)-C(84A)-H(84F)	109.5	$\mathrm{H}(84 \mathrm{E})-\mathrm{C}(84 \mathrm{~A})-\mathrm{H}(84 \mathrm{~F})$	109.5
$\mathrm{C}(92 \mathrm{~A})-\mathrm{C}(91 \mathrm{~A})-\mathrm{C}(90 \mathrm{~A})$	111.7(6)	$\mathrm{C}(92 \mathrm{~A})-\mathrm{C}(91 \mathrm{~A})-\mathrm{H}(91 \mathrm{C})$	109.3
$\mathrm{C}(90 \mathrm{~A})-\mathrm{C}(91 \mathrm{~A})-\mathrm{H}(91 \mathrm{C})$	109.3	$\mathrm{C}(92 \mathrm{~A})-\mathrm{C}(91 \mathrm{~A})-\mathrm{H}(91 \mathrm{D})$	109.3
C(90A)-C(91A)-H(91D)	109.3	H(91C)-C(91A)-H(91D)	107.9
$\mathrm{C}(91 \mathrm{~A})-\mathrm{C}(92 \mathrm{~A})-\mathrm{C}(93 \mathrm{~A})$	108.80(10)	$\mathrm{C}(91 \mathrm{~A})-\mathrm{C}(92 \mathrm{~A})-\mathrm{H}(92 \mathrm{C})$	109.9
$\mathrm{C}(93 \mathrm{~A})-\mathrm{C}(92 \mathrm{~A})-\mathrm{H}(92 \mathrm{C})$	109.9	$\mathrm{C}(91 \mathrm{~A})-\mathrm{C}(92 \mathrm{~A})-\mathrm{H}(92 \mathrm{D})$	109.9
C(93A)-C(92A)-H(92D)	109.9	H(92C)-C(92A)-H(92D)	108.3
$\mathrm{C}(92 \mathrm{~A})-\mathrm{C}(93 \mathrm{~A})-\mathrm{C}(94 \mathrm{~A})$	108.59(10)	$\mathrm{C}(92 \mathrm{~A})-\mathrm{C}(93 \mathrm{~A})-\mathrm{H}(93 \mathrm{C})$	110.0
$\mathrm{C}(94 \mathrm{~A})-\mathrm{C}(93 \mathrm{~A})-\mathrm{H}(93 \mathrm{C})$	110.0	$\mathrm{C}(92 \mathrm{~A})-\mathrm{C}(93 \mathrm{~A})-\mathrm{H}(93 \mathrm{D})$	110.0
$\mathrm{C}(94 \mathrm{~A})-\mathrm{C}(93 \mathrm{~A})-\mathrm{H}(93 \mathrm{D})$	110.0	$\mathrm{H}(93 \mathrm{C})-\mathrm{C}(93 \mathrm{~A})-\mathrm{H}(93 \mathrm{D})$	108.4
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	117.8(2)	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{Zn}(1)$	122.36(16)
$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Zn}(1)$	116.82(16)	$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(19)$	110.1(2)
$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(17)$	108.48(19)	$\mathrm{C}(19)-\mathrm{N}(2)-\mathrm{C}(17)$	111.5(2)
$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{Zn}(1)$	114.65(17)	$\mathrm{C}(19)-\mathrm{N}(2)-\mathrm{Zn}(1)$	111.78(16)
$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{Zn}(1)$	99.96(14)	Si(2)-N(3)-Si(1)	123.91(13)
$\mathrm{Si}(2)-\mathrm{N}(3)-\mathrm{Zn}(1)$	121.22(12)	$\mathrm{Si}(1)-\mathrm{N}(3)-\mathrm{Zn}(1)$	114.83(11)
$\mathrm{C}(43)-\mathrm{N}(4)-\mathrm{C}(44)$	120.9(2)	$\mathrm{C}(43)-\mathrm{N}(4)-\mathrm{Zn}(2)$	123.54(16)
$\mathrm{C}(44)-\mathrm{N}(4)-\mathrm{Zn}(2)$	111.61(16)	$\mathrm{C}(46)-\mathrm{N}(5)-\mathrm{C}(47)$	108.8(2)
$\mathrm{C}(46)-\mathrm{N}(5)-\mathrm{C}(45)$	109.29(19)	$\mathrm{C}(47)-\mathrm{N}(5)-\mathrm{C}(45)$	110.32(19)
$\mathrm{C}(46)-\mathrm{N}(5)-\mathrm{Zn}(2)$	113.60(15)	$\mathrm{C}(47)-\mathrm{N}(5)-\mathrm{Zn}(2)$	108.56(16)
$\mathrm{C}(45)-\mathrm{N}(5)-\mathrm{Zn}(2)$	106.21(14)	Si(3)-N(6)-Si(4)	122.66(12)
$\mathrm{Si}(3)-\mathrm{N}(6)-\mathrm{Zn}(2)$	115.44(10)	$\mathrm{Si}(4)-\mathrm{N}(6)-\mathrm{Zn}(2)$	121.80(11)

$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Zn}(1)$	$127.00(15)$	$\mathrm{C}(29)-\mathrm{O}(2)-\mathrm{Zn}(2)$	$127.26(14)$
$\mathrm{C}(28)-\mathrm{S}(1)-\mathrm{C}(27)$	$99.97(14)$	$\mathrm{C}(56)-\mathrm{S}(2)-\mathrm{C}(55)$	$100.80(14)$
$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(20)$	$113.16(14)$	$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(21)$	$111.49(12)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(21)$	$106.73(15)$	$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(22)$	$111.49(12)$
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(22)$	$106.46(15)$	$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(22)$	$107.13(15)$
$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(23)$	$110.60(12)$	$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(25)$	$113.01(13)$
$\mathrm{C}(23)-\mathrm{Si}(2)-\mathrm{C}(25)$	$107.01(14)$	$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(24)$	$113.63(13)$
$\mathrm{C}(23)-\mathrm{Si}(2)-\mathrm{C}(24)$	$106.15(15)$	$\mathrm{C}(25)-\mathrm{Si}(2)-\mathrm{C}(24)$	$105.96(16)$
$\mathrm{N}(6)-\mathrm{Si}(3)-\mathrm{C}(48)$	$111.03(12)$	$\mathrm{N}(6)-\mathrm{Si}(3)-\mathrm{C}(49)$	$113.32(13)$
$\mathrm{C}(48)-\mathrm{Si}(3)-\mathrm{C}(49)$	$106.98(13)$	$\mathrm{N}(6)-\mathrm{Si}(3)-\mathrm{C}(50)$	$112.74(12)$
$\mathrm{C}(48)-\mathrm{Si}(3)-\mathrm{C}(50)$	$106.15(14)$	$\mathrm{C}(49)-\mathrm{Si}(3)-\mathrm{C}(50)$	$106.14(15)$
$\mathrm{N}(6)-\mathrm{Si}(4)-\mathrm{C}(51)$	$111.72(12)$	$\mathrm{N}(6)-\mathrm{Si}(4)-\mathrm{C}(52)$	$113.50(12)$
$\mathrm{C}(51)-\mathrm{Si}(4)-\mathrm{C}(52)$	$\mathrm{N}(6)-\mathrm{Si}(4)-\mathrm{C}(53)$	$113.39(12)$	
$\mathrm{C}(51)-\mathrm{Si}(4)-\mathrm{C}(53)$	$\mathrm{C}(52)-\mathrm{Si}(4)-\mathrm{C}(53)$	$105.83(15)$	
$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{O}(1)$	$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{N}(1)$	$138.63(9)$	
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(1)$	$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{N}(2)$	$108.68(9)$	
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(2)$	$\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{N}(2)$	$78.21(8)$	
$\mathrm{N}(6)-\mathrm{Zn}(2)-\mathrm{O}(2)$	$105.48(14)$	$\mathrm{N}(6)-\mathrm{Zn}(2)-\mathrm{N}(4)$	$134.15(8)$
$\mathrm{O}(2)-\mathrm{Zn}(2)-\mathrm{N}(4)$	$118.01(9)$	$\mathrm{N}(6)-\mathrm{Zn}(2)-\mathrm{N}(5)$	$111.19(9)$
$\mathrm{O}(2)-\mathrm{Zn}(2)-\mathrm{N}(5)$	$\mathrm{N}(4)-\mathrm{Zn}(2)-\mathrm{N}(5)$	$80.05(8)$	
	$115.33(7)$		

Table B-7. Crystal Data and Structure Refinement for Complex II6d.

Table B-8. Bond Lengths $[\AA]$ and Angles $\left[^{\circ}\right]$ for Complex II6d.

$\mathrm{C}(1)-\mathrm{O}(1)$	1.318(7)	$\mathrm{C}(1)-\mathrm{C}(6)$	1.437(8)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.446(9)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.386(9)
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.558(8)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.415(9)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.372(9)	$\mathrm{C}(4)-\mathrm{C}(11)$	1.559(9)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.411(9)	$\mathrm{C}(6)-\mathrm{C}(15)$	1.473(10)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.527(10)	$\mathrm{C}(7)-\mathrm{C}(9)$	1.537(10)
$\mathrm{C}(7)-\mathrm{C}(10)$	1.546(10)	$\mathrm{C}(11)-\mathrm{C}(13)$	1.531(10)
$\mathrm{C}(11)-\mathrm{C}(14)$	1.541(10)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.557(10)
$\mathrm{C}(15)-\mathrm{N}(1)$	1.276(9)	$\mathrm{C}(16)-\mathrm{N}(1)$	$1.466(9)$
$\mathrm{C}(16)-\mathrm{C}(17)$	1.534(9)	$\mathrm{C}(17)-\mathrm{N}(2)$	1.501(8)
$\mathrm{C}(18)-\mathrm{N}(2)$	1.472(9)	$\mathrm{C}(19)-\mathrm{N}(2)$	1.476 (8)
$\mathrm{C}(20)-\mathrm{Si}(1)$	1.864(8)	$\mathrm{C}(21)-\mathrm{Si}(1)$	1.857(9)
$\mathrm{C}(22)-\mathrm{Si}(1)$	1.882(10)	$\mathrm{C}(23)-\mathrm{Si}(2)$	1.881(7)
$\mathrm{C}(24)-\mathrm{Si}(2)$	1.880(7)	$\mathrm{C}(25)-\mathrm{Si}(2)$	1.871(8)
C(30)-C(31)\#1	1.322(18)	$\mathrm{C}(30)-\mathrm{C}(31)$	1.322(18)
C(30)-C(31A)\#1	1.397(19)	$\mathrm{C}(30)-\mathrm{C}(31 \mathrm{~A})$	1.397(19)
$\mathrm{C}(31)-\mathrm{C}(32)$	1.55(2)	$\mathrm{C}(31 \mathrm{~A})-\mathrm{C}(32 \mathrm{~A})$	1.55(2)
$\mathrm{N}(1)-\mathrm{Zn}(1)$	2.010(5)	$\mathrm{N}(2)-\mathrm{Zn}(1)$	2.211(6)
$\mathrm{N}(3)-\mathrm{Si}(2)$	1.713(5)	$\mathrm{N}(3)-\mathrm{Si}(1)$	$1.725(5)$
$\mathrm{N}(3)-\mathrm{Zn}(1)$	$1.917(5)$	$\mathrm{O}(1)-\mathrm{Zn}(1)$	1.930(4)
		$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	123.2(6)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.6(5)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	115.2(5)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.0(6)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	120.9(6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	119.1(6)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	123.6(7)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	116.7(6)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	121.8(6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	121.3(6)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	122.0(6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	121.8(6)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(15)$	117.5(6)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(15)$	120.4(6)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	109.8(6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	108.3(6)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(10)$	108.0(6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(2)$	110.7(5)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(2)$	108.5(6)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(2)$	111.4(5)	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(14)$	109.8(6)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)$	108.7(6)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(12)$	108.5(6)

$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(4)$	108.3(6)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(4)$	109.0(6)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(4)$	112.6(5)	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(6)$	125.3(6)
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	105.0(5)	$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	111.0(5)
C(31)\#1-C(30)-C(31)	179.999(10)	C(31)\#1-C(30)-C(31A)\#1	48.7(11)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(31 \mathrm{~A}) \# 1$	131.3(11)	C(31)\#1-C(30)-C(31A)	131.3(11)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(31 \mathrm{~A})$	48.7(11)	$\mathrm{C}(31 \mathrm{~A}) \# 1-\mathrm{C}(30)-\mathrm{C}(31 \mathrm{~A})$	180.0(10)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	119.0(18)	$\mathrm{C}(30)-\mathrm{C}(31 \mathrm{~A})-\mathrm{C}(32 \mathrm{~A})$	128(2)
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	119.0(6)	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{Zn}(1)$	125.1(5)
$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Zn}(1)$	110.5(4)	$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(19)$	109.1(5)
$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(17)$	109.5(6)	$\mathrm{C}(19)-\mathrm{N}(2)-\mathrm{C}(17)$	108.9(5)
$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{Zn}(1)$	110.3(4)	$\mathrm{C}(19)-\mathrm{N}(2)-\mathrm{Zn}(1)$	113.2(4)
$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{Zn}(1)$	105.7(4)	$\mathrm{Si}(2)-\mathrm{N}(3)-\mathrm{Si}(1)$	123.3(3)
$\mathrm{Si}(2)-\mathrm{N}(3)-\mathrm{Zn}(1)$	113.9(3)	$\mathrm{Si}(1)-\mathrm{N}(3)-\mathrm{Zn}(1)$	122.7(3)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Zn}(1)$	127.5(4)	$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(21)$	112.7(3)
$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(20)$	111.9(3)	$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(20)$	104.5(5)
$\mathrm{N}(3)-\mathrm{Si}(1)-\mathrm{C}(22)$	114.8(3)	$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(22)$	106.0(5)
$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(22)$	106.2(4)	$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(25)$	113.5(3)
$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(24)$	110.0(3)	$\mathrm{C}(25)-\mathrm{Si}(2)-\mathrm{C}(24)$	105.1(4)
$\mathrm{N}(3)-\mathrm{Si}(2)-\mathrm{C}(23)$	110.9(3)	$\mathrm{C}(25)-\mathrm{Si}(2)-\mathrm{C}(23)$	108.3(4)
$\mathrm{C}(24)-\mathrm{Si}(2)-\mathrm{C}(23)$	108.8(3)	$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{O}(1)$	122.2(2)
$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{N}(1)$	132.3(2)	$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(1)$	90.6(2)
$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{N}(2)$	112.0(2)	$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(2)$	110.9(2)
$\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{N}(2)$	81.4(2)		

Table B-9. Crystal Data and Structure Refinement for Complex II6e.

Identification code	Complex II6e
Empirical formula	C50 H70 F2 N4 O4 Zn2
Formula weight	959.84
Temperature	110(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	$\mathrm{P} 2(1) / \mathrm{n}$
Unit cell dimensions	$\mathrm{a}=12.128(12) \AA \AA^{\circ} \quad \alpha=90^{\circ}$.
	$\mathrm{b}=21.45(2) \AA \quad \beta=105.529(12)^{\circ}$.
Volume	5074(9) \AA^{3}
Z	4
Density (calculated)	$1.257 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.997 \mathrm{~mm}^{-1}$
F(000)	2032
Crystal size	$0.19 \times 0.18 \times 0.16 \mathrm{~mm}^{3}$
Theta range for data collection	1.78 to 27.50°.
Index ranges	$-15<=\mathrm{h}<=15,-27<=\mathrm{k}<=27,-26<=1<=26$
Reflections collected	48125
Independent reflections	$11309[\mathrm{R}($ int $)=0.1135]$
Completeness to theta $=27.50^{\circ}$	97.1\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8567 and 0.8331
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	11309 / 0 / 575
Goodness-of-fit on F^{2}	1.036
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0932, \mathrm{wR} 2=0.2505$
R indices (all data)	$\mathrm{R} 1=0.1435, \mathrm{wR} 2=0.3180$
Largest diff. peak and hole	1.794 and -2.246 e. \AA^{-3}

Table B-10. Bond Lengths [\AA]] and Angles [${ }^{\circ}$] for Complex II6e.

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.315(7)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.420(8)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.463(8)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.393(9)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.535(8)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.421(8)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.388(8)$	$\mathrm{C}(4)-\mathrm{C}(11)$	$1.536(8)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.418(8)$	$\mathrm{C}(6)-\mathrm{C}(15)$	$1.454(8)$
$\mathrm{C}(7)-\mathrm{C}(9)$	$1.529(9)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.542(8)$
$\mathrm{C}(7)-\mathrm{C}(10)$	$1.559(9)$	$\mathrm{C}(11)-\mathrm{C}(13)$	$1.539(9)$
$\mathrm{C}(11)-\mathrm{C}(14)$	$1.547(9)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.562(9)$
$\mathrm{C}(15)-\mathrm{N}(1)$	$1.276(8)$	$\mathrm{C}(16)-\mathrm{N}(1)$	$1.484(8)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.500(9)$	$\mathrm{C}(17)-\mathrm{N}(3)$	$1.492(8)$
$\mathrm{C}(18)-\mathrm{N}(3)$	$1.489(8)$	$\mathrm{C}(19)-\mathrm{N}(3)$	$1.479(9)$
$\mathrm{C}(20)-\mathrm{O}(2)$	$1.330(7)$	$\mathrm{C}(20)-\mathrm{C}(25)$	$1.4248)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.440(8)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.393(9)$
$\mathrm{C}(21)-\mathrm{C}(26)$	$1.541(8)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.425(8)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.378(8)$	$\mathrm{C}(23)-\mathrm{C}(30)$	$1.554(9)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.443(9)$	$\mathrm{C}(25)-\mathrm{C}(34)$	$1.440(8)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.555(9)$	$\mathrm{C}(26)-\mathrm{C}(29)$	$1.557(8)$
$\mathrm{C}(26)-\mathrm{C}(28)$	$1.557(8)$	$\mathrm{C}(30)-\mathrm{C}(33)$	$1.535(8)$
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.545(8)$	$\mathrm{C}(30)-\mathrm{C}(32)$	$1.546(9)$
$\mathrm{C}(34)-\mathrm{N}(2)$	$1.311(8)$	$\mathrm{C}(35)-\mathrm{N}(2)$	$1.470(8)$
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.532(9)$	$\mathrm{C}(36)-\mathrm{N}(4)$	$1.470(10)$
$\mathrm{C}(37)-\mathrm{N}(4)$	$1.467(8)$	$\mathrm{C}(38)-\mathrm{N}(4)$	$1.470(10)$
$\mathrm{C}(39)-\mathrm{O}(3)$	$1.362(6)$	$\mathrm{C}(39)-\mathrm{C}(44)$	$1.385(9)$
$\mathrm{C}(39)-\mathrm{C}(40)$	$1.389(9)$	$\mathrm{C}(40)-\mathrm{C}(41)$	$1.410(8)$
$\mathrm{C}(41)-\mathrm{C}(42)$	$\mathrm{C}(42)-\mathrm{C}(43)$	$1.357(10)$	
$\mathrm{C}(42)-\mathrm{F}(1)$	$\mathrm{C}(43)-\mathrm{C}(44)$	$1.413(8)$	
$\mathrm{C}(45)-\mathrm{O}(4)$	$\mathrm{C}(45)-\mathrm{C}(46)$	$1.392(8)$	
$\mathrm{C}(45)-\mathrm{C}(50)$	$\mathrm{C}(46)-\mathrm{C}(47)$	$1.389(8)$	
$\mathrm{C}(47)-\mathrm{C}(48)$	$\mathrm{C}(48)-\mathrm{F}(2)$	$1.372(7)$	
$\mathrm{C}(48)-\mathrm{C}(49)$	$\mathrm{C}(49)-\mathrm{C}(50)$	$1.383(8)$	
$\mathrm{N}(1)-\mathrm{Zn}(1)$	$\mathrm{N}(2)-\mathrm{Zn}(2)$	$1.980(5)$	
$\mathrm{N}(3)-\mathrm{Zn}(1)$	$\mathrm{O}(1)-\mathrm{Zn}(1)$	$1.977(4)$	

$\mathrm{O}(2)-\mathrm{Zn}(2)$	1.907(4)	$\mathrm{O}(3)-\mathrm{Zn}(2)$	$1.965(5)$
$\mathrm{O}(3)-\mathrm{Zn}(1)$	2.080(4)	$\mathrm{O}(4)-\mathrm{Zn}(2)$	2.001(4)
$\mathrm{O}(4)-\mathrm{Zn}(1)$	2.016(5)		
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	123.0(5)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	119.1(5)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	118.0(5)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	117.2(5)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	121.9(5)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	120.9(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	125.5(5)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	116.1(5)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	124.8(5)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	119.0(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.9(6)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	121.3(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(15)$	116.0(5)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(15)$	122.6(5)
$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(2)$	108.9(5)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8)$	107.7(5)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	111.8(5)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(10)$	110.4(6)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(10)$	110.7(5)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	107.3(5)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(13)$	112.2(5)	$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(14)$	109.9(6)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(14)$	107.4(5)	$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	109.9(5)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)$	108.5(6)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(12)$	108.7(6)
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(6)$	128.5(6)	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	110.1(6)
$\mathrm{N}(3)-\mathrm{C}(17)-\mathrm{C}(16)$	111.4(5)	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(25)$	122.5(5)
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(21)$	118.7(5)	$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(21)$	118.8(5)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	118.3(5)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	122.1(5)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(26)$	119.5(5)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	124.7(6)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	116.0(6)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(30)$	123.5(6)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(30)$	120.5(5)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	122.8(6)
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(34)$	126.4(5)	$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	119.3(5)
$\mathrm{C}(34)-\mathrm{C}(25)-\mathrm{C}(24)$	114.3(5)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(27)$	111.3(5)
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(29)$	110.3(5)	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(29)$	106.8(5)
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(28)$	111.1(4)	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(28)$	107.3(5)
$\mathrm{C}(29)-\mathrm{C}(26)-\mathrm{C}(28)$	109.8(5)	$\mathrm{C}(33)-\mathrm{C}(30)-\mathrm{C}(31)$	110.0(5)
$\mathrm{C}(33)-\mathrm{C}(30)-\mathrm{C}(32)$	109.3(5)	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(32)$	108.3(5)
$\mathrm{C}(33)-\mathrm{C}(30)-\mathrm{C}(23)$	109.7(5)	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(23)$	109.3(5)
$\mathrm{C}(32)-\mathrm{C}(30)-\mathrm{C}(23)$	110.2(5)	$\mathrm{N}(2)-\mathrm{C}(34)-\mathrm{C}(25)$	127.9(5)
$\mathrm{N}(2)-\mathrm{C}(35)-\mathrm{C}(36)$	109.9(5)	$\mathrm{N}(4)-\mathrm{C}(36)-\mathrm{C}(35)$	110.6(6)
$\mathrm{O}(3)-\mathrm{C}(39)-\mathrm{C}(44)$	120.9(6)	$\mathrm{O}(3)-\mathrm{C}(39)-\mathrm{C}(40)$	120.1(5)
$\mathrm{C}(44)-\mathrm{C}(39)-\mathrm{C}(40)$	119.0(5)	C(39)-C(40)-C(41)	121.2(6)

$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(40)$	117.9(7)	$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	122.7(6)
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{F}(1)$	118.5(6)	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{F}(1)$	118.7(7)
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	119.3(6)	$\mathrm{C}(39)-\mathrm{C}(44)-\mathrm{C}(43)$	120.0(7)
$\mathrm{O}(4)-\mathrm{C}(45)-\mathrm{C}(46)$	122.6(6)	$\mathrm{O}(4)-\mathrm{C}(45)-\mathrm{C}(50)$	118.4(5)
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(50)$	119.0(5)	$\mathrm{C}(47)-\mathrm{C}(46)-\mathrm{C}(45)$	120.8(6)
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(48)$	119.3(6)	$\mathrm{F}(2)-\mathrm{C}(48)-\mathrm{C}(49)$	119.4(7)
$\mathrm{F}(2)-\mathrm{C}(48)-\mathrm{C}(47)$	119.0(6)	$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{C}(47)$	121.6(6)
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)$	120.1(6)	$\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(45)$	119.2(6)
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	118.0(5)	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{Zn}(1)$	125.0(4)
$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Zn}(1)$	116.6(4)	$\mathrm{C}(34)-\mathrm{N}(2)-\mathrm{C}(35)$	116.5(5)
$\mathrm{C}(34)-\mathrm{N}(2)-\mathrm{Zn}(2)$	119.1(4)	$\mathrm{C}(35)-\mathrm{N}(2)-\mathrm{Zn}(2)$	124.4(4)
$\mathrm{C}(19)-\mathrm{N}(3)-\mathrm{C}(18)$	111.3(6)	$\mathrm{C}(19)-\mathrm{N}(3)-\mathrm{C}(17)$	108.9(5)
$\mathrm{C}(18)-\mathrm{N}(3)-\mathrm{C}(17)$	110.7(6)	$\mathrm{C}(19)-\mathrm{N}(3)-\mathrm{Zn}(1)$	115.7(4)
$\mathrm{C}(18)-\mathrm{N}(3)-\mathrm{Zn}(1)$	108.8(4)	$\mathrm{C}(17)-\mathrm{N}(3)-\mathrm{Zn}(1)$	101.1(4)
$\mathrm{C}(37)-\mathrm{N}(4)-\mathrm{C}(38)$	110.1(6)	$\mathrm{C}(37)-\mathrm{N}(4)-\mathrm{C}(36)$	110.6(6)
$\mathrm{C}(38)$-N(4)-C(36)	111.3(5)	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Zn}(1)$	130.9(4)
$\mathrm{C}(20)-\mathrm{O}(2)-\mathrm{Zn}(2)$	125.3(4)	$\mathrm{C}(39)-\mathrm{O}(3)-\mathrm{Zn}(2)$	128.5(4)
$\mathrm{C}(39)-\mathrm{O}(3)-\mathrm{Zn}(1)$	131.3(4)	$\mathrm{Zn}(2)-\mathrm{O}(3)-\mathrm{Zn}(1)$	97.04(16)
$\mathrm{C}(45)-\mathrm{O}(4)-\mathrm{Zn}(2)$	117.8(4)	$\mathrm{C}(45)-\mathrm{O}(4)-\mathrm{Zn}(1)$	133.6(4)
$\mathrm{Zn}(2)-\mathrm{O}(4)-\mathrm{Zn}(1)$	98.01(16)	$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{O}(4)$	106.69(17)
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(1)$	89.61(18)	$\mathrm{O}(4)-\mathrm{Zn}(1)-\mathrm{N}(1)$	126.78(19)
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{O}(3)$	95.69(16)	$\mathrm{O}(4)-\mathrm{Zn}(1)-\mathrm{O}(3)$	80.79(16)
$\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{O}(3)$	148.99(18)	$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(3)$	161.08(19)
$\mathrm{O}(4)-\mathrm{Zn}(1)-\mathrm{N}(3)$	92.24(18)	$\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{N}(3)$	78.79(19)
$\mathrm{O}(3)-\mathrm{Zn}(1)-\mathrm{N}(3)$	87.10(17)	$\mathrm{O}(2)-\mathrm{Zn}(2)-\mathrm{O}(3)$	117.98(18)
$\mathrm{O}(2)-\mathrm{Zn}(2)-\mathrm{N}(2)$	98.5(2)	$\mathrm{O}(3)-\mathrm{Zn}(2)-\mathrm{N}(2)$	127.02(19)
$\mathrm{O}(2)-\mathrm{Zn}(2)-\mathrm{O}(4)$	118.13(17)	$\mathrm{O}(3)-\mathrm{Zn}(2)-\mathrm{O}(4)$	84.05(17)
$\mathrm{N}(2)-\mathrm{Zn}(2)-\mathrm{O}(4)$	112.40(18)		

Table B-11. Crystal Data and Structure Refinement for Complex IV2f, V2f (trans-).

Identification code	Complex IV2f, V2f (trans-)
Empirical formula	C40 H64 Al2 N2 O4
Formula weight	690.89
Temperature	110(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P21/C
Unit cell dimensions	$a=14.234(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=8.985(3) \AA \quad \beta=123.063(16)^{\circ}$.
	$\mathrm{c}=18.655(5) \AA \quad \gamma=90^{\circ}$.
Volume	$1999.5(10) \AA^{3}$
Z	2
Density (calculated)	$1.148 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.964 \mathrm{~mm}^{-1}$
F(000)	752
Crystal size	$0.15 \times 0.12 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	3.71 to 58.83°.
Index ranges	$-15<=\mathrm{h}<=15,-9<=\mathrm{k}<=9,-20<=1<=20$
Reflections collected	12357
Independent reflections	2689 [R(int) $=0.1829]$
Completeness to theta $=58.83^{\circ}$	94.1\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9534 and 0.8689
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2689 / 0 / 225
Goodness-of-fit on F^{2}	1.019
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I}$)]	$\mathrm{R} 1=0.0945, \mathrm{wR} 2=0.2215$
R indices (all data)	$\mathrm{R} 1=0.1233, \mathrm{wR} 2=0.2334$
Extinction coefficient	0.0038(9)
Largest diff. peak and hole	1.250 and -0.360 e. \AA^{-3}

Table B-12. Bond Lengths [\AA] and Angles [${ }^{\circ}$] for Complex IV2f, V2f (trans-).

$\mathrm{Al}(1)-\mathrm{O}(1)$	1.797(4)	$\mathrm{Al}(1)-\mathrm{O}(2)$	1.851(3)
$\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	1.905(3)	$\mathrm{Al}(1)-\mathrm{C}(20)$	1.993(5)
$\mathrm{Al}(1)-\mathrm{N}(1)$	2.034(4)	$\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	2.982(3)
$\mathrm{O}(1)-\mathrm{C}(2)$	1.325(6)	$\mathrm{O}(2)-\mathrm{C}(19)$	1.422(6)
$\mathrm{O}(2)-\mathrm{Al}(1) \# 1$	1.905(3)	$\mathrm{N}(1)-\mathrm{C}(16)$	1.299(6)
$\mathrm{N}(1)-\mathrm{C}(17)$	1.455(6)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.415(7)
$\mathrm{C}(2)-\mathrm{C}(7)$	1.442(7)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.395(7)
$\mathrm{C}(3)-\mathrm{C}(16)$	1.441(7)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.390 (7)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.405(7)$
$\mathrm{C}(5)-\mathrm{C}(12)$	$1.528(7)$	$\mathrm{C}(6)-\mathrm{C}(7)$	1.378(7)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500	$\mathrm{C}(7)-\mathrm{C}(8)$	1.529(7)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.527(7)	$\mathrm{C}(8)-\mathrm{C}(10)$	1.535(7)
$\mathrm{C}(8)-\mathrm{C}(11)$	1.538(8)	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9800	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9800	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	0.9800	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9800
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9800	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.9800
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.526(8)$	$\mathrm{C}(12)-\mathrm{C}(15)$	1.531(7)
$\mathrm{C}(12)-\mathrm{C}(14)$	1.547(8)	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500	$\mathrm{C}(17)-\mathrm{C}(18)$	1.542(7)
C(17)-H(17A)	0.9900	C(17)-H(17B)	0.9900
$\mathrm{C}(18)-\mathrm{C}(19)$	1.510(7)	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9900
C(18)-H(18B)	0.9900	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9900
C(19)-H(19B)	0.9900	$\mathrm{C}(20)-\mathrm{C}(21)$	1.541(8)
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9900	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9900
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800		
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	129.73(17)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	92.14(16)

$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	74.91(17)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{C}(20)$	113.4(2)
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{C}(20)$	116.57(19)	$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{C}(20)$	99.24(19)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{N}(1)$	89.83(16)	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{N}(1)$	87.52(16)
$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{N}(1)$	158.63(17)	$\mathrm{C}(20)-\mathrm{Al}(1)-\mathrm{N}(1)$	99.48(19)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	114.88(13)	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	38.09(10)
$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	36.83(10)	$\mathrm{C}(20)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	112.34(16)
$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	124.62(14)	$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{Al}(1)$	135.9(3)
$\mathrm{C}(19)-\mathrm{O}(2)-\mathrm{Al}(1)$	126.7(3)	$\mathrm{C}(19)-\mathrm{O}(2)-\mathrm{Al}(1) \# 1$	127.9(3)
$\mathrm{Al}(1)-\mathrm{O}(2)-\mathrm{Al}(1) \# 1$	105.09(17)	$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{C}(17)$	117.0(4)
$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Al}(1)$	124.4(3)	$\mathrm{C}(17)-\mathrm{N}(1)-\mathrm{Al}(1)$	118.6(3)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	121.3(4)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	121.0(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	117.7(4)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	121.2(5)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(16)$	117.3(5)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(16)$	121.3(5)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	122.1(5)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	118.9
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	118.9	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	115.7(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(12)$	124.6(5)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(12)$	119.8(5)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	125.4(5)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	117.3
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	117.3	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	117.8(5)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	121.2(5)	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	121.0(4)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	112.8(4)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)$	107.7(5)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(10)$	110.2(4)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(11)$	106.9(5)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(11)$	108.7(4)	$\mathrm{C}(10)-\mathrm{C}(8)-\mathrm{C}(11)$	110.5(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5	$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5	$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5	$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5	$\mathrm{C}(8)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5	$\mathrm{C}(8)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5	$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(5)$	111.9(5)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(15)$	108.5(5)
$\mathrm{C}(5)-\mathrm{C}(12)-\mathrm{C}(15)$	111.0(4)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(14)$	109.4(5)
$\mathrm{C}(5)-\mathrm{C}(12)-\mathrm{C}(14)$	108.4(4)	$\mathrm{C}(15)-\mathrm{C}(12)-\mathrm{C}(14)$	107.5(5)

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
H(13A)-C(13)-H(13B)	109.5	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5	$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5	$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5	$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5	$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(3)$	126.9(5)	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{H}(16)$	116.6
$\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{H}(16)$	116.6	$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	113.1(4)
$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.0	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.0
$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.0	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.0
H(17A)-C(17)-H(17B)	107.8	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	114.2(4)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	108.7	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	108.7
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.7	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.7
H(18A)-C(18)-H(18B)	107.6	$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{C}(18)$	111.4(4)
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.3	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.3
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.3	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.3
H(19A)-C(19)-H(19B)	108.0	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{Al}(1)$	114.2(4)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	108.7	$\mathrm{Al}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	108.7
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	108.7	$\mathrm{Al}(1)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	108.7
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	107.6	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5		

Table B-13. Crystal Data and Structure Refinement for Complex IV2g, V2g.

Identification code	Complex IV2g, V2g
Empirical formula	C44 H72 Al2 Cl4 N2 O4
Formula weight	888.80
Temperature	110(2) K
Wavelength	1.54178 A
Crystal system	Triclinic
Space group	$\mathrm{P}_{-}-1$
Unit cell dimensions	$a=10.847(4) \AA \quad \alpha=106.82(2)^{\circ}$.
	$\mathrm{b}=12.387(5) \AA$ ¢ $\quad \beta=91.91(2)^{\circ}$.
	$\mathrm{c}=18.808(7) \AA \quad \gamma=90.50(2)^{\circ}$.
Volume	2417.1(16) \AA^{3}
Z	2
Density (calculated)	$1.221 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.893 \mathrm{~mm}^{-1}$
F(000)	952
Crystal size	$0.20 \times 0.20 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	2.46 to 59.90°.
Index ranges	$-12<=\mathrm{h}<=11,-13<=\mathrm{k}<=13,-21<=1<=20$
Reflections collected	16050
Independent reflections	6270 [R(int) $=0.0880]$
Completeness to theta $=\mathrm{ACTA} 50^{\circ}$	ACTA 50 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6708 and 0.5954
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6270 / 114/519
Goodness-of-fit on F^{2}	1.235
Final R indices [I 2sigma(I] $]$	$\mathrm{R} 1=0.1225, \mathrm{wR} 2=0.3020$
R indices (all data)	$\mathrm{R} 1=0.1508, \mathrm{wR} 2=0.3281$
Largest diff. peak and hole	1.569 and $-0.825 \mathrm{e} . \AA^{-3}$

Table B-14. Bond Lengths [\AA] and Angles $\left[^{\circ}\right.$] for Complex IV2g, V2g.

$\mathrm{Al}(1)-\mathrm{O}(1)$	1.792(4)	$\mathrm{Al}(1)-\mathrm{O}(2)$	1.831(5)
$\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	1.935(5)	$\mathrm{Al}(1)-\mathrm{C}(20)$	2.002(7)
$\mathrm{Al}(1)-\mathrm{N}(1)$	2.047(5)	$\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	2.943(4)
$\mathrm{Al}(2)-\mathrm{O}(3)$	1.791(4)	$\mathrm{Al}(2)-\mathrm{O}(4)$	1.820(5)
$\mathrm{Al}(2)-\mathrm{O}(4) \# 2$	1.941(5)	$\mathrm{Al}(2)-\mathrm{C}(41)$	1.991(7)
$\mathrm{Al}(2)-\mathrm{N}(2)$	2.070(6)	$\mathrm{Al}(2)-\mathrm{Al}(2) \# 2$	2.949(4)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.334(8)	$\mathrm{C}(1)-\mathrm{C}(6)$	1.409(9)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.430(9)$	$\mathrm{C}(2)-\mathrm{C}(3)$	1.402(9)
$\mathrm{C}(2)-\mathrm{C}(15)$	1.439(9)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.367(10)
C(4)-C(5)	1.414(10)	$\mathrm{C}(4)-\mathrm{C}(11)$	1.549(10)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.385(9)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.547(9)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.521(10)	$\mathrm{C}(7)-\mathrm{C}(9)$	1.538(10)
$\mathrm{C}(7)-\mathrm{C}(10)$	1.551(10)	$\mathrm{C}(11)-\mathrm{C}(14)$	1.503(12)
$\mathrm{C}(11)-\mathrm{C}(13)$	1.508(11)	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.542(11)$
$\mathrm{C}(15)-\mathrm{N}(1)$	1.281(8)	$\mathrm{C}(16)-\mathrm{N}(1)$	1.477(8)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.529(10)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.502(10)
$\mathrm{C}(18)$-C(19)	1.555(9)	$\mathrm{C}(19)-\mathrm{O}(2)$	1.417(8)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.534(10)	$\mathrm{C}(22)-\mathrm{O}(3)$	1.336(7)
$\mathrm{C}(22)$ - $\mathrm{C}(27)$	$1.405(9)$	$\mathrm{C}(22)-\mathrm{C}(23)$	1.428(9)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.399(9)	C(23)-C(36)	1.439(9)
$\mathrm{C}(24)$ - $\mathrm{C}(25)$	1.378(9)	$\mathrm{C}(25)-\mathrm{C}(26)$	1.411(9)
$\mathrm{C}(25)-\mathrm{C}(32)$	1.536(10)	C(26)-C(27)	1.403(9)
$\mathrm{C}(27)$ - $\mathrm{C}(28)$	1.539(9)	C(28)-C(31)	1.520(10)
$\mathrm{C}(28)$ - $\mathrm{C}(29)$	1.534(10)	C(28)-C(30)	1.540(9)
$\mathrm{C}(32)-\mathrm{C}(35)$	1.498(14)	$\mathrm{C}(32)-\mathrm{C}(33)$	1.521(14)
$\mathrm{C}(32)-\mathrm{C}(34)$	1.530(12)	$\mathrm{C}(36)-\mathrm{N}(2)$	1.262(8)
$\mathrm{C}(37)-\mathrm{N}(2)$	1.466(8)	$\mathrm{C}(37)-\mathrm{C}(38)$	1.547(10)
$\mathrm{C}(38)-\mathrm{C}(39)$	1.512(10)	$\mathrm{C}(39)-\mathrm{C}(40)$	1.512(10)
$\mathrm{C}(40)-\mathrm{O}(4)$	1.441(8)	$\mathrm{C}(41)-\mathrm{C}(42)$	1.503(11)
$\mathrm{C}(43)-\mathrm{Cl}(2)$	1.751(9)	$\mathrm{C}(43)-\mathrm{Cl}(1)$	1.752(9)
$\mathrm{C}(44)-\mathrm{Cl}(3)$	1.754(9)	$\mathrm{C}(44)-\mathrm{Cl}(4)$	1.767(8)
$\mathrm{O}(2)-\mathrm{Al}(1) \# 1$	1.935(5)	$\mathrm{O}(4)-\mathrm{Al}(2) \# 2$	1.941(5)

		$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	116.4(2)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	91.3(2)	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	77.2(2)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{C}(20)$	116.2(3)	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{C}(20)$	127.4(3)
$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{C}(20)$	99.2(2)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{N}(1)$	90.3(2)
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{N}(1)$	90.6(2)	$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{N}(1)$	167.1(2)
$\mathrm{C}(20)-\mathrm{Al}(1)-\mathrm{N}(1)$	91.5(3)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	106.97(17)
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	39.87(14)	$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	37.35(13)
$\mathrm{C}(20)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	118.8(2)	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	130.38(18)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(4)$	117.7(2)	$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(4) \# 2$	91.3(2)
$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{O}(4) \# 2$	76.8(2)	$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{C}(41)$	119.4(3)
$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{C}(41)$	122.8(3)	$\mathrm{O}(4) \# 2-\mathrm{Al}(2)-\mathrm{C}(41)$	98.4(3)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{N}(2)$	89.1(2)	$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{N}(2)$	91.2(2)
$\mathrm{O}(4) \# 2-\mathrm{Al}(2)-\mathrm{N}(2)$	166.6(2)	$\mathrm{C}(41)-\mathrm{Al}(2)-\mathrm{N}(2)$	93.0(3)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{Al}(2) \# 2$	107.55(17)	$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{Al}(2) \# 2$	39.85(14)
$\mathrm{O}(4) \# 2-\mathrm{Al}(2)-\mathrm{Al}(2) \# 2$	36.92(13)	$\mathrm{C}(41)-\mathrm{Al}(2)-\mathrm{Al}(2) \# 2$	115.5(2)
$\mathrm{N}(2)-\mathrm{Al}(2)-\mathrm{Al}(2) \# 2$	130.79(18)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	120.7(6)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	120.4(6)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	119.0(6)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	119.6(6)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(15)$	118.5(6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	121.8(6)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	122.6(6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.3(6)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	123.9(6)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	119.7(6)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	124.5(6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	118.0(6)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.9(6)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	121.2(6)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	107.7(6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	112.9(6)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(6)$	109.2(6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	107.9(6)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(10)$	109.9(6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	109.2(5)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(13)$	109.1(8)
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(12)$	108.8(7)	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)$	109.3(7)
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(4)$	109.5(6)	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(4)$	109.5(6)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(4)$	110.6(6)	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(2)$	127.3(6)
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	111.8(5)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	115.4(6)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	116.2(5)	$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{C}(18)$	113.9(5)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{Al}(1)$	110.9(5)	$\mathrm{O}(3)-\mathrm{C}(22)-\mathrm{C}(27)$	120.9(5)
$\mathrm{O}(3)-\mathrm{C}(22)-\mathrm{C}(23)$	120.2(5)	$\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{C}(23)$	118.8(6)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	120.2(6)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(36)$	117.8(6)

$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(36)$	$121.9(6)$	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	$122.5(6)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$116.2(6)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(32)$	$121.5(6)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(32)$	$122.3(6)$	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	$124.3(6)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(22)$	$118.0(6)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$121.6(6)$
$\mathrm{C}(22)-\mathrm{C}(27)-\mathrm{C}(28)$	$120.4(6)$	$\mathrm{C}(31)-\mathrm{C}(28)-\mathrm{C}(29)$	$108.1(6)$
$\mathrm{C}(31)-\mathrm{C}(28)-\mathrm{C}(27)$	$109.4(5)$	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	$111.7(6)$
$\mathrm{C}(31)-\mathrm{C}(28)-\mathrm{C}(30)$	$110.4(6)$	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(30)$	$106.9(6)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(30)$	$110.3(5)$	$\mathrm{C}(35)-\mathrm{C}(32)-\mathrm{C}(33)$	$108.6(8)$
$\mathrm{C}(35)-\mathrm{C}(32)-\mathrm{C}(34)$	$111.4(8)$	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(34)$	$105.7(7)$
$\mathrm{C}(35)-\mathrm{C}(32)-\mathrm{C}(25)$	$109.0(7)$	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(25)$	$111.1(7)$
$\mathrm{C}(34)-\mathrm{C}(32)-\mathrm{C}(25)$	$111.1(7)$	$\mathrm{N}(2)-\mathrm{C}(36)-\mathrm{C}(23)$	$127.0(6)$
$\mathrm{N}(2)-\mathrm{C}(37)-\mathrm{C}(38)$	$111.1(6)$	$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{C}(37)$	$114.2(6)$
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	$118.2(6)$	$\mathrm{O}(4)-\mathrm{C}(40)-\mathrm{C}(39)$	$114.4(6)$
$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{Al}(2)$	$116.5(5)$	$\mathrm{Cl}(2)-\mathrm{C}(43)-\mathrm{Cl}(1)$	$113.0(5)$
$\mathrm{Cl}(3)-\mathrm{C}(44)-\mathrm{Cl}(4)$	$112.3(5)$	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	$116.5(5)$
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{Al}(1)$	$123.6(4)$	$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Al}(1)$	$119.8(4)$
$\mathrm{C}(36)-\mathrm{N}(2)-\mathrm{C}(37)$	$116.4(5)$	$\mathrm{C}(36)-\mathrm{N}(2)-\mathrm{Al}(2)$	$124.7(4)$
$\mathrm{C}(37)-\mathrm{N}(2)-\mathrm{Al}(2)$	$118.8(4)$	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Al}(1)$	$135.8(4)$
$\mathrm{C}(19)-\mathrm{O}(2)-\mathrm{Al}(1)$	$130.6(4)$	$\mathrm{C}(19)-\mathrm{O}(2)-\mathrm{Al}(1) \# 1$	$121.6(4)$
$\mathrm{Al}(1)-\mathrm{O}(2)-\mathrm{Al}(1) \# 1$	$102.8(2)$	$\mathrm{C}(22)-\mathrm{O}(3)-\mathrm{Al}(2)$	$136.3(4)$
$\mathrm{C}(40)-\mathrm{O}(4)-\mathrm{Al}(2)$	$132.2(4)$	$\mathrm{C}(40)-\mathrm{O}(4)-\mathrm{Al}(2) \# 2$	$121.3(4)$
$\mathrm{Al}(2)-\mathrm{O}(4)-\mathrm{Al}(2) \# 2$	$103.2(2)$		

Table B-15. Crystal Data and Structure Refinement for Complex Vf (cis-).

Identification code	Complex Vf (cis-)
Empirical formula	C40 H64 Al2 N2 O4
Formula weight	690.89
Temperature	110(2) K
Wavelength	1.54178 A
Crystal system	Orthorhombic
Space group	Pben
Unit cell dimensions	$\mathrm{a}=32.810(7) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=20.945(5) \AA$ A $\quad \beta=90^{\circ}$.
	$\mathrm{c}=17.910(4) \AA \quad \gamma=90^{\circ}$.
Volume	12308(5) \AA^{3}
Z	12
Density (calculated)	$1.119 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.940 \mathrm{~mm}^{-1}$
F(000)	4512
Crystal size	$0.20 \times 0.16 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	2.50 to 60.54°.
Index ranges	$-36<=\mathrm{h}<=36,-23<=\mathrm{k}<=23,-19<=1<=20$
Reflections collected	71247
Independent reflections	$9145[\mathrm{R}(\mathrm{int})=0.0715]$
Completeness to theta $=60.54^{\circ}$	98.4\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8719 and 0.8343
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9145 / 34 / 696
Goodness-of-fit on F^{2}	1.066
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0873, \mathrm{wR} 2=0.2201$
R indices (all data)	$\mathrm{R} 1=0.1077, \mathrm{wR} 2=0.2348$
Largest diff. peak and hole	0.734 and $-0.755 \mathrm{e} . \AA^{-3}$

Table B-16. Bond Lengths [\AA]] and Angles [${ }^{\circ}$] for Complex $\mathbf{V f}$ (cis-).

$\mathrm{Al}(1)-\mathrm{O}(1)$	1.796 (3)	$\mathrm{Al}(1)-\mathrm{O}(2)$	1.846(3)
$\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	1.915(3)	$\mathrm{Al}(1)-\mathrm{C}(19)$	$1.992(5)$
$\mathrm{Al}(1)-\mathrm{N}(1)$	2.030(4)	$\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	2.944(2)
$\mathrm{Al}(2)-\mathrm{O}(3)$	1.793(3)	$\mathrm{Al}(2)-\mathrm{O}(4)$	1.846(3)
$\mathrm{Al}(2)-\mathrm{O}(6)$	1.923(4)	$\mathrm{Al}(2)-\mathrm{C}(39)$	2.000(5)
$\mathrm{Al}(2)-\mathrm{N}(2)$	2.028(4)	$\mathrm{Al}(2)-\mathrm{Al}(3)$	2.951(2)
$\mathrm{Al}(3)-\mathrm{O}(5)$	1.797(3)	$\mathrm{Al}(3)-\mathrm{O}(6)$	1.843(3)
$\mathrm{Al}(3)-\mathrm{O}(4)$	1.907(3)	$\mathrm{Al}(3)-\mathrm{C}(59)$	1.988(5)
$\mathrm{Al}(3)-\mathrm{N}(3)$	2.022(4)	$\mathrm{O}(1)-\mathrm{C}(1)$	1.325 (5)
$\mathrm{O}(2)-\mathrm{C}(18)$	1.433(5)	$\mathrm{O}(2)-\mathrm{Al}(1) \# 1$	$1.915(3)$
$\mathrm{O}(3)-\mathrm{C}(21)$	1.324(5)	$\mathrm{O}(4)-\mathrm{C}(38)$	$1.436(5)$
$\mathrm{O}(5)-\mathrm{C}(41)$	1.325(6)	$\mathrm{O}(6)-\mathrm{C}(58)$	1.435(5)
$\mathrm{N}(1)-\mathrm{C}(15)$	1.282(5)	$\mathrm{N}(1)-\mathrm{C}(16)$	$1.472(5)$
$\mathrm{N}(2)-\mathrm{C}(35)$	1.278(6)	$\mathrm{N}(2)-\mathrm{C}(36)$	$1.472(6)$
$\mathrm{N}(3)-\mathrm{C}(55)$	1.285(6)	$\mathrm{N}(3)-\mathrm{C}(56)$	1.466(6)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.419(6)	$\mathrm{C}(1)-\mathrm{C}(6)$	1.424(6)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.409(6)	$\mathrm{C}(2)-\mathrm{C}(15)$	$1.438(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	1.373(6)	$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.409(6)$	$\mathrm{C}(4)-\mathrm{C}(11)$	1.539(6)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.396(6)	$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500
$\mathrm{C}(6)-\mathrm{C}(7)$	1.530(6)	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.536(6)$
$\mathrm{C}(7)-\mathrm{C}(9)$	1.536(7)	$\mathrm{C}(7)-\mathrm{C}(10)$	1.551(7)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9800	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9800	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9800
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9800	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9800	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	0.9800	$\mathrm{C}(11)-\mathrm{C}(12)$	1.517(6)
$\mathrm{C}(11)-\mathrm{C}(13)$	1.522(6)	$\mathrm{C}(11)-\mathrm{C}(14)$	1.536(7)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9800	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9800
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	0.9800	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800	$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800

$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800	$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(16)-\mathrm{C}(17)$	1.520(6)	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9900
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9900	$\mathrm{C}(17)-\mathrm{C}(18)$	1.517(6)
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9900
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9900	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9900
$\mathrm{C}(19)-\mathrm{C}(20)$	1.509(7)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9900
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9900	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(21)-\mathrm{C}(26)$	1.416 (6)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.421(6)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.405(7)	$\mathrm{C}(22)-\mathrm{C}(35)$	1.439(7)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.373(7)	$\mathrm{C}(23)-\mathrm{H}(23)$	0.9500
$\mathrm{C}(24)$-C(25)	1.398(7)	$\mathrm{C}(24)-\mathrm{C}(31)$	1.535(7)
$\mathrm{C}(25)-\mathrm{C}(26)$	1.384(7)	$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500
C(26)-C(27)	1.535(7)	$\mathrm{C}(27)-\mathrm{C}(28)$	1.536(7)
$\mathrm{C}(27)$-C(29)	1.538(7)	$\mathrm{C}(27)-\mathrm{C}(30)$	1.550(7)
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	0.9800	$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	0.9800
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	0.9800	$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	0.9800
$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	0.9800	$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	0.9800
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	0.9800	$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	0.9800
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	0.9800	$\mathrm{C}(31)-\mathrm{C}(32)$	1.494(11)
$\mathrm{C}(31)-\mathrm{C}(33)$	1.513(15)	$\mathrm{C}(31)-\mathrm{C}(33 \mathrm{~A})$	1.514(15)
$\mathrm{C}(31)-\mathrm{C}(34 \mathrm{~A})$	1.514(13)	$\mathrm{C}(31)-\mathrm{C}(34)$	1.602(13)
$\mathrm{C}(31)-\mathrm{C}(32 \mathrm{~A})$	1.612(13)	$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	0.9800
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	0.9800	$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	0.9800
$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	0.9800	$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	0.9800
$\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	0.9800	$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	0.9800
$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	0.9800	$\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	0.9800
$\mathrm{C}(35)-\mathrm{H}(35)$	0.9500	$\mathrm{C}(36)-\mathrm{C}(37)$	1.520(7)
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	0.9900	$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	0.9900
$\mathrm{C}(37)-\mathrm{C}(38)$	1.515(7)	$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	0.9900
$\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	0.9900	$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	0.9900
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	0.9900	$\mathrm{C}(39)-\mathrm{C}(40)$	$1.509(8)$
$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	0.9900	$\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	0.9900
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	0.9800	$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	0.9800

$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	0.9800	$\mathrm{C}(41)-\mathrm{C}(42)$	1.409(6)
$\mathrm{C}(41)-\mathrm{C}(46)$	1.413(6)	$\mathrm{C}(42)-\mathrm{C}(43)$	1.411(7)
$\mathrm{C}(42)$-C(55)	1.442(6)	$\mathrm{C}(43)-\mathrm{C}(44)$	1.374(7)
C(43)-H(43)	0.9500	$\mathrm{C}(44)-\mathrm{C}(45)$	1.407(7)
$\mathrm{C}(44)-\mathrm{C}(51)$	1.533(7)	$\mathrm{C}(45)-\mathrm{C}(46)$	1.387(7)
$\mathrm{C}(45)-\mathrm{H}(45)$	0.9500	$\mathrm{C}(46)-\mathrm{C}(47)$	1.543(7)
$\mathrm{C}(47)-\mathrm{C}(50)$	1.535(8)	$\mathrm{C}(47)-\mathrm{C}(49)$	1.535(7)
$\mathrm{C}(47)-\mathrm{C}(48)$	1.537(7)	$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	0.9800
$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	0.9800	$\mathrm{C}(48)-\mathrm{H}(48 \mathrm{C})$	0.9800
$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~A})$	0.9800	$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	0.9800
$\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	0.9800	$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~A})$	0.9800
$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~B})$	0.9800	$\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	0.9800
$\mathrm{C}(51)-\mathrm{C}(53 \mathrm{~A})$	1.447(16)	$\mathrm{C}(51)-\mathrm{C}(52)$	1.488(9)
$\mathrm{C}(51)-\mathrm{C}(53)$	1.522(8)	$\mathrm{C}(51)-\mathrm{C}(54 \mathrm{~A})$	$1.535(16)$
$\mathrm{C}(51)-\mathrm{C}(54)$	1.581(8)	$\mathrm{C}(51)-\mathrm{C}(52 \mathrm{~A})$	1.585(18)
$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	0.9800	$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	0.9800
$\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	0.9800	$\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~A})$	0.9800
$\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~B})$	0.9800	$\mathrm{C}(53)-\mathrm{H}(53 \mathrm{C})$	0.9800
$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	0.9800	$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	0.9800
$\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	0.9800	$\mathrm{C}(55)-\mathrm{H}(55)$	0.9500
$\mathrm{C}(56)-\mathrm{C}(57)$	1.524(8)	$\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~A})$	0.9900
$\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~B})$	0.9900	$\mathrm{C}(57)-\mathrm{C}(58)$	1.506(7)
$\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~A})$	0.9900	$\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B})$	0.9900
$\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~A})$	0.9900	$\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~B})$	0.9900
$\mathrm{C}(59)$-C(60)	1.471(8)	$\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~A})$	0.9900
$\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~B})$	0.9900	$\mathrm{C}(60)-\mathrm{H}(60 \mathrm{~A})$	0.9800
$\mathrm{C}(60)-\mathrm{H}(60 \mathrm{~B})$	0.9800	$\mathrm{C}(60)-\mathrm{H}(60 \mathrm{C})$	0.9800
$\mathrm{C}(32 \mathrm{~A})-\mathrm{H}(32 \mathrm{D})$	0.9800	$\mathrm{C}(32 \mathrm{~A})-\mathrm{H}(32 \mathrm{E})$	0.9800
$\mathrm{C}(32 \mathrm{~A})-\mathrm{H}(32 \mathrm{~F})$	0.9800	$\mathrm{C}(33 \mathrm{~A})-\mathrm{H}(33 \mathrm{D})$	0.9800
$\mathrm{C}(33 \mathrm{~A})-\mathrm{H}(33 \mathrm{E})$	0.9800	$\mathrm{C}(33 \mathrm{~A})-\mathrm{H}(33 \mathrm{~F})$	0.9800
$\mathrm{C}(34 \mathrm{~A})-\mathrm{H}(34 \mathrm{D})$	0.9800	$\mathrm{C}(34 \mathrm{~A})-\mathrm{H}(34 \mathrm{E})$	0.9800
$\mathrm{C}(34 \mathrm{~A})-\mathrm{H}(34 \mathrm{~F})$	0.9800	$\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{D})$	0.9800
$\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{E})$	0.9800	$\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{~F})$	0.9800
$\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{D})$	0.9800	C(53A)-H(53E)	0.9800

$\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{~F})$	0.9800	$\mathrm{C}(54 \mathrm{~A})-\mathrm{H}(54 \mathrm{D})$	0.9800
$\mathrm{C}(54 \mathrm{~A})-\mathrm{H}(54 \mathrm{E})$	0.9800	$\mathrm{C}(54 \mathrm{~A})-\mathrm{H}(54 \mathrm{~F})$	0.9800
		$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	131.81(14)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	89.61(13)	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	75.94(14)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{C}(19)$	113.62(17)	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{C}(19)$	114.37(17)
$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{C}(19)$	102.88(18)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{N}(1)$	88.75(14)
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{N}(1)$	88.58(14)	$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{N}(1)$	157.52(15)
$\mathrm{C}(19)-\mathrm{Al}(1)-\mathrm{N}(1)$	98.31(19)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	119.55(10)
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	39.32(9)	$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	37.64(9)
$\mathrm{C}(19)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	106.92(14)	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	127.67(1
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(4)$	129.01(15)	$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(6)$	89.84(15)
$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{O}(6)$	75.72(15)	$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{C}(39)$	113.4(2)
$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{C}(39)$	117.2(2)	$\mathrm{O}(6)-\mathrm{Al}(2)-\mathrm{C}(39)$	100.1(2)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{N}(2)$	88.98(16)	$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{N}(2)$	88.54(16)
$\mathrm{O}(6)-\mathrm{Al}(2)-\mathrm{N}(2)$	158.62(16)	$\mathrm{C}(39)-\mathrm{Al}(2)-\mathrm{N}(2)$	100.0(2)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{Al}(3)$	117.44(12)	$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{Al}(3)$	38.92(10)
$\mathrm{O}(6)-\mathrm{Al}(2)-\mathrm{Al}(3)$	37.47(10)	$\mathrm{C}(39)-\mathrm{Al}(2)-\mathrm{Al}(3)$	108.11(19)
$\mathrm{N}(2)-\mathrm{Al}(2)-\mathrm{Al}(3)$	127.23(13)	$\mathrm{O}(5)-\mathrm{Al}(3)-\mathrm{O}(6)$	130.12(15)
$\mathrm{O}(5)-\mathrm{Al}(3)-\mathrm{O}(4)$	89.40(15)	$\mathrm{O}(6)-\mathrm{Al}(3)-\mathrm{O}(4)$	76.16(15)
$\mathrm{O}(5)-\mathrm{Al}(3)-\mathrm{C}(59)$	114.8(2)	$\mathrm{O}(6)-\mathrm{Al}(3)-\mathrm{C}(59)$	114.9(2)
$\mathrm{O}(4)-\mathrm{Al}(3)-\mathrm{C}(59)$	102.1(2)	$\mathrm{O}(5)-\mathrm{Al}(3)-\mathrm{N}(3)$	88.79(16)
$\mathrm{O}(6)-\mathrm{Al}(3)-\mathrm{N}(3)$	88.79(16)	$\mathrm{O}(4)-\mathrm{Al}(3)-\mathrm{N}(3)$	158.56(16)
$\mathrm{C}(59)-\mathrm{Al}(3)-\mathrm{N}(3)$	98.0(2)	$\mathrm{O}(5)-\mathrm{Al}(3)-\mathrm{Al}(2)$	117.61(12)
$\mathrm{O}(6)-\mathrm{Al}(3)-\mathrm{Al}(2)$	39.38(10)	$\mathrm{O}(4)-\mathrm{Al}(3)-\mathrm{Al}(2)$	37.45(10)
$\mathrm{C}(59)-\mathrm{Al}(3)-\mathrm{Al}(2)$	108.00(17)	$\mathrm{N}(3)-\mathrm{Al}(3)-\mathrm{Al}(2)$	127.85(14)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Al}(1)$	136.8(3)	$\mathrm{C}(18)-\mathrm{O}(2)-\mathrm{Al}(1)$	129.0(3)
$\mathrm{C}(18)-\mathrm{O}(2)-\mathrm{Al}(1) \# 1$	119.7(2)	$\mathrm{Al}(1)-\mathrm{O}(2)-\mathrm{Al}(1) \# 1$	103.04(14)
$\mathrm{C}(21)-\mathrm{O}(3)-\mathrm{Al}(2)$	137.1(3)	$\mathrm{C}(38)-\mathrm{O}(4)-\mathrm{Al}(2)$	130.0(3)
$\mathrm{C}(38)-\mathrm{O}(4)-\mathrm{Al}(3)$	119.5(3)	$\mathrm{Al}(2)-\mathrm{O}(4)-\mathrm{Al}(3)$	103.63(15)
$\mathrm{C}(41)-\mathrm{O}(5)-\mathrm{Al}(3)$	136.9(3)	$\mathrm{C}(58)-\mathrm{O}(6)-\mathrm{Al}(3)$	130.0(3)
$\mathrm{C}(58)-\mathrm{O}(6)-\mathrm{Al}(2)$	119.9(3)	$\mathrm{Al}(3)-\mathrm{O}(6)-\mathrm{Al}(2)$	103.15(15)
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	116.5(4)	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{Al}(1)$	125.9(3)
$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Al}(1)$	117.6(3)	$\mathrm{C}(35)-\mathrm{N}(2)-\mathrm{C}(36)$	117.0(4)
$\mathrm{C}(35)-\mathrm{N}(2)-\mathrm{Al}(2)$	125.5(3)	$\mathrm{C}(36)-\mathrm{N}(2)-\mathrm{Al}(2)$	117.4(3)

$\mathrm{C}(55)-\mathrm{N}(3)-\mathrm{C}(56)$	117.0(4)	$\mathrm{C}(55)-\mathrm{N}(3)-\mathrm{Al}(3)$	125.6(3)
$\mathrm{C}(56)-\mathrm{N}(3)-\mathrm{Al}(3)$	117.4(3)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	120.8(4)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	121.1(4)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	118.1(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.0(4)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(15)$	117.6(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	121.3(4)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	121.9(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.0	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.0
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.3(4)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	121.6(4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	122.1(4)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	124.8(4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	117.6	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	117.6
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	117.9(4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	121.4(4)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	120.7(4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	112.3(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	109.4(4)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	107.6(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	110.2(4)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	106.7(4)
$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(10)$	110.5(4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5	$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5	$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	110.5(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	108.4(4)	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(14)$	107.0(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(4)$	108.5(4)	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(4)$	111.3(4)
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(4)$	111.1(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	109.5	$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5

$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(2)$	126.4(4)
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{H}(15)$	116.8	$\mathrm{C}(2)-\mathrm{C}(15)-\mathrm{H}(15)$	116.8
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	109.2(4)	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.8
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.8	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.8
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.8	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	108.3
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	112.4(4)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.1
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.1	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.1
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.1	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	107.9
$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{C}(17)$	112.7(4)	$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.1
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.1	$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.1
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.1	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	107.8
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{Al}(1)$	115.3(3)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	108.4
$\mathrm{Al}(1)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	108.4	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	108.4
$\mathrm{Al}(1)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	108.4	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	107.5
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}(26)$	121.3(4)	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}(22)$	120.1(4)
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	118.6(4)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	120.1(4)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(35)$	118.2(4)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(35)$	121.6(4)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	122.1(5)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	119.0
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	119.0	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	116.5(5)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(31)$	122.7(5)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(31)$	120.8(5)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	124.9(5)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	117.5
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	117.5	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	117.8(4)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	121.5(4)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(27)$	120.6(4)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	112.0(4)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(29)$	109.1(4)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(29)$	107.2(5)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(30)$	110.2(4)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(30)$	107.5(5)	$\mathrm{C}(29)-\mathrm{C}(27)-\mathrm{C}(30)$	110.7(5)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	109.5	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5
$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	109.5	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5	$\mathrm{H}(28 \mathrm{~B})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{C})$	109.5
$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	109.5	$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	109.5
$\mathrm{H}(29 \mathrm{~A})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	109.5	$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	109.5

$\mathrm{H}(29 \mathrm{~A})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	109.5	$\mathrm{H}(29 \mathrm{~B})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{C})$	109.5
$\mathrm{C}(27)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	109.5	$\mathrm{C}(27)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	109.5
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	109.5	$\mathrm{C}(27)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5	$\mathrm{H}(30 \mathrm{~B})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(33)$	128(4)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(33 \mathrm{~A})$	119(4)
$\mathrm{C}(33)-\mathrm{C}(31)-\mathrm{C}(33 \mathrm{~A})$	12(6)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(34 \mathrm{~A})$	76.0(9)
$\mathrm{C}(33)-\mathrm{C}(31)-\mathrm{C}(34 \mathrm{~A})$	113(4)	$\mathrm{C}(33 \mathrm{~A})-\mathrm{C}(31)-\mathrm{C}(34 \mathrm{~A})$	120(4)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(24)$	109.4(6)	$\mathrm{C}(33)-\mathrm{C}(31)-\mathrm{C}(24)$	111(4)
$\mathrm{C}(33 \mathrm{~A})-\mathrm{C}(31)-\mathrm{C}(24)$	112(4)	$\mathrm{C}(34 \mathrm{~A})-\mathrm{C}(31)-\mathrm{C}(24)$	115.7(8)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(34)$	106.6(9)	$\mathrm{C}(33)-\mathrm{C}(31)-\mathrm{C}(34)$	91(3)
$\mathrm{C}(33 \mathrm{~A})-\mathrm{C}(31)-\mathrm{C}(34)$	102(3)	$\mathrm{C}(34 \mathrm{~A})-\mathrm{C}(31)-\mathrm{C}(34)$	30.7(8)
$\mathrm{C}(24)-\mathrm{C}(31)-\mathrm{C}(34)$	107.0(7)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(32 \mathrm{~A})$	35.2(6)
$\mathrm{C}(33)-\mathrm{C}(31)-\mathrm{C}(32 \mathrm{~A})$	102(3)	$\mathrm{C}(33 \mathrm{~A})-\mathrm{C}(31)-\mathrm{C}(32 \mathrm{~A})$	91(3)
$\mathrm{C}(34 \mathrm{~A})-\mathrm{C}(31)-\mathrm{C}(32 \mathrm{~A})$	108.7(9)	$\mathrm{C}(24)-\mathrm{C}(31)-\mathrm{C}(32 \mathrm{~A})$	105.4(6)
$\mathrm{C}(34)-\mathrm{C}(31)-\mathrm{C}(32 \mathrm{~A})$	137.3(8)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	109.5
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	109.5	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	109.5
$\mathrm{C}(31)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~A})$	109.5	$\mathrm{C}(31)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{~B})$	109.5
$\mathrm{C}(31)-\mathrm{C}(33)-\mathrm{H}(33 \mathrm{C})$	109.5	$\mathrm{C}(31)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~A})$	109.5
$\mathrm{C}(31)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{~B})$	109.5	$\mathrm{C}(31)-\mathrm{C}(34)-\mathrm{H}(34 \mathrm{C})$	109.5
$\mathrm{N}(2)-\mathrm{C}(35)-\mathrm{C}(22)$	126.5(4)	$\mathrm{N}(2)-\mathrm{C}(35)-\mathrm{H}(35)$	116.8
$\mathrm{C}(22)-\mathrm{C}(35)-\mathrm{H}(35)$	116.8	$\mathrm{N}(2)-\mathrm{C}(36)-\mathrm{C}(37)$	109.0(4)
$\mathrm{N}(2)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	109.9	$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	109.9
$\mathrm{N}(2)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	109.9	$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	109.9
$\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	108.3	$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(36)$	112.6(4)
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	109.1	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~A})$	109.1
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.1	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	109.1
$\mathrm{H}(37 \mathrm{~A})-\mathrm{C}(37)-\mathrm{H}(37 \mathrm{~B})$	107.8	$\mathrm{O}(4)-\mathrm{C}(38)-\mathrm{C}(37)$	113.1(4)
$\mathrm{O}(4)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	109.0	$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	109.0
$\mathrm{O}(4)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.0	$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.0
$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	107.8	$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{Al}(2)$	120.8(4)
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	107.1	$\mathrm{Al}(2)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~A})$	107.1
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	107.1	$\mathrm{Al}(2)-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	107.1
$\mathrm{H}(39 \mathrm{~A})-\mathrm{C}(39)-\mathrm{H}(39 \mathrm{~B})$	106.8	$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	109.5
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5	$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5

$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5	$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{H}(40 \mathrm{~B})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5	$\mathrm{O}(5)-\mathrm{C}(41)-\mathrm{C}(42)$	120.6(4)
$\mathrm{O}(5)-\mathrm{C}(41)-\mathrm{C}(46)$	121.1(4)	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(46)$	118.2(4)
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	121.0(4)	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(55)$	121.3(4)
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(55)$	117.5(4)	$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(42)$	121.7(4)
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{H}(43)$	119.1	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{H}(43)$	119.1
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	116.0(5)	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(51)$	122.6(5)
$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(51)$	121.4(4)	$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	124.8(5)
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{H}(45)$	117.6	$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{H}(45)$	117.6
$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(41)$	118.2(4)	$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(47)$	120.9(4)
$\mathrm{C}(41)-\mathrm{C}(46)-\mathrm{C}(47)$	120.9(4)	$\mathrm{C}(50)-\mathrm{C}(47)-\mathrm{C}(49)$	110.8(4)
$\mathrm{C}(50)-\mathrm{C}(47)-\mathrm{C}(48)$	107.2(5)	$\mathrm{C}(49)-\mathrm{C}(47)-\mathrm{C}(48)$	107.6(4)
$\mathrm{C}(50)-\mathrm{C}(47)-\mathrm{C}(46)$	110.0(4)	$\mathrm{C}(49)-\mathrm{C}(47)-\mathrm{C}(46)$	109.0(4)
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{C}(46)$	112.2(4)	$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~A})$	109.5
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	109.5	$\mathrm{H}(48 \mathrm{~A})-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{~B})$	109.5
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{C})$	109.5	$\mathrm{H}(48 \mathrm{~A})-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{C})$	109.5
$\mathrm{H}(48 \mathrm{~B})-\mathrm{C}(48)-\mathrm{H}(48 \mathrm{C})$	109.5	$\mathrm{C}(47)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~A})$	109.5
$\mathrm{C}(47)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	109.5	$\mathrm{H}(49 \mathrm{~A})-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{~B})$	109.5
$\mathrm{C}(47)-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	109.5	$\mathrm{H}(49 \mathrm{~A})-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	109.5
$\mathrm{H}(49 \mathrm{~B})-\mathrm{C}(49)-\mathrm{H}(49 \mathrm{C})$	109.5	$\mathrm{C}(47)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~A})$	109.5
$\mathrm{C}(47)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~B})$	109.5	$\mathrm{H}(50 \mathrm{~A})-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{~B})$	109.5
$\mathrm{C}(47)-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	109.5	$\mathrm{H}(50 \mathrm{~A})-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	109.5
$\mathrm{H}(50 \mathrm{~B})-\mathrm{C}(50)-\mathrm{H}(50 \mathrm{C})$	109.5	$\mathrm{C}(53 \mathrm{~A})-\mathrm{C}(51)-\mathrm{C}(52)$	127.9(16)
$\mathrm{C}(53 \mathrm{~A})-\mathrm{C}(51)-\mathrm{C}(53)$	25.6(10)	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(53)$	112.0(6)
$\mathrm{C}(53 \mathrm{~A})-\mathrm{C}(51)-\mathrm{C}(44)$	115.1(15)	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(44)$	110.2(5)
$\mathrm{C}(53)-\mathrm{C}(51)-\mathrm{C}(44)$	112.4(5)	$\mathrm{C}(53 \mathrm{~A})-\mathrm{C}(51)-\mathrm{C}(54 \mathrm{~A})$	114.0(13)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(54 \mathrm{~A})$	66.2(12)	$\mathrm{C}(53)-\mathrm{C}(51)-\mathrm{C}(54 \mathrm{~A})$	130.6(11)
$\mathrm{C}(44)-\mathrm{C}(51)-\mathrm{C}(54 \mathrm{~A})$	113.9(12)	$\mathrm{C}(53 \mathrm{~A})-\mathrm{C}(51)-\mathrm{C}(54)$	79.3(11)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(54)$	108.6(6)	$\mathrm{C}(53)-\mathrm{C}(51)-\mathrm{C}(54)$	103.8(5)
$\mathrm{C}(44)-\mathrm{C}(51)-\mathrm{C}(54)$	109.6(5)	$\mathrm{C}(54 \mathrm{~A})-\mathrm{C}(51)-\mathrm{C}(54)$	44.0(12)
$\mathrm{C}(53 \mathrm{~A})-\mathrm{C}(51)-\mathrm{C}(52 \mathrm{~A})$	108.6(13)	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(52 \mathrm{~A})$	37.8(11)
$\mathrm{C}(53)-\mathrm{C}(51)-\mathrm{C}(52 \mathrm{~A})$	84.6(13)	$\mathrm{C}(44)-\mathrm{C}(51)-\mathrm{C}(52 \mathrm{~A})$	99.4(14)
$\mathrm{C}(54 \mathrm{~A})-\mathrm{C}(51)-\mathrm{C}(52 \mathrm{~A})$	103.8(12)	$\mathrm{C}(54)-\mathrm{C}(51)-\mathrm{C}(52 \mathrm{~A})$	143.2(14)
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~A})$	109.5	$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{~B})$	109.5

$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{H}(52 \mathrm{C})$	109.5	$\mathrm{C}(51)-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~A})$	109.5
$\mathrm{C}(51)-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{~B})$	109.5	$\mathrm{C}(51)-\mathrm{C}(53)-\mathrm{H}(53 \mathrm{C})$	109.5
$\mathrm{C}(51)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~A})$	109.5	$\mathrm{C}(51)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{~B})$	109.5
$\mathrm{C}(51)-\mathrm{C}(54)-\mathrm{H}(54 \mathrm{C})$	109.5	$\mathrm{N}(3)-\mathrm{C}(55)-\mathrm{C}(42)$	126.5(4)
$\mathrm{N}(3)-\mathrm{C}(55)-\mathrm{H}(55)$	116.8	$\mathrm{C}(42)-\mathrm{C}(55)-\mathrm{H}(55)$	116.8
N(3)-C(56)-C(57)	108.7(4)	$\mathrm{N}(3)-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~A})$	110.0
$\mathrm{C}(57)-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~A})$	110.0	$\mathrm{N}(3)-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~B})$	110.0
$\mathrm{C}(57)-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~B})$	110.0	$\mathrm{H}(56 \mathrm{~A})-\mathrm{C}(56)-\mathrm{H}(56 \mathrm{~B})$	108.3
$\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{C}(56)$	113.6(4)	$\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~A})$	108.8
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~A})$	108.8	$\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B})$	108.8
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B})$	108.8	$\mathrm{H}(57 \mathrm{~A})-\mathrm{C}(57)-\mathrm{H}(57 \mathrm{~B})$	107.7
$\mathrm{O}(6)-\mathrm{C}(58)-\mathrm{C}(57)$	112.1(4)	$\mathrm{O}(6)-\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~A})$	109.2
$\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~A})$	109.2	$\mathrm{O}(6)-\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~B})$	109.2
$\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~B})$	109.2	$\mathrm{H}(58 \mathrm{~A})-\mathrm{C}(58)-\mathrm{H}(58 \mathrm{~B})$	107.9
$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{Al}(3)$	115.3(4)	$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~A})$	108.5
$\mathrm{Al}(3)-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~A})$	108.5	$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~B})$	108.5
$\mathrm{Al}(3)-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~B})$	108.5	$\mathrm{H}(59 \mathrm{~A})-\mathrm{C}(59)-\mathrm{H}(59 \mathrm{~B})$	107.5
$\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{~A})$	109.5	$\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{~B})$	109.5
$\mathrm{H}(60 \mathrm{~A})-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{~B})$	109.5	$\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{C})$	109.5
$\mathrm{H}(60 \mathrm{~A})-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{C})$	109.5	$\mathrm{H}(60 \mathrm{~B})-\mathrm{C}(60)-\mathrm{H}(60 \mathrm{C})$	109.5
$\mathrm{C}(31)-\mathrm{C}(32 \mathrm{~A})-\mathrm{H}(32 \mathrm{D})$	109.5	$\mathrm{C}(31)-\mathrm{C}(32 \mathrm{~A})-\mathrm{H}(32 \mathrm{E})$	109.5
$\mathrm{H}(32 \mathrm{D})-\mathrm{C}(32 \mathrm{~A})-\mathrm{H}(32 \mathrm{E})$	109.5	$\mathrm{C}(31)-\mathrm{C}(32 \mathrm{~A})-\mathrm{H}(32 \mathrm{~F})$	109.5
$\mathrm{H}(32 \mathrm{D})-\mathrm{C}(32 \mathrm{~A})-\mathrm{H}(32 \mathrm{~F})$	109.5	$\mathrm{H}(32 \mathrm{E})-\mathrm{C}(32 \mathrm{~A})-\mathrm{H}(32 \mathrm{~F})$	109.5
$\mathrm{C}(31)-\mathrm{C}(33 \mathrm{~A})-\mathrm{H}(33 \mathrm{D})$	109.5	$\mathrm{C}(31)-\mathrm{C}(33 \mathrm{~A})-\mathrm{H}(33 \mathrm{E})$	109.5
$\mathrm{H}(33 \mathrm{D})-\mathrm{C}(33 \mathrm{~A})-\mathrm{H}(33 \mathrm{E})$	109.5	$\mathrm{C}(31)-\mathrm{C}(33 \mathrm{~A})-\mathrm{H}(33 \mathrm{~F})$	109.5
$\mathrm{H}(33 \mathrm{D})-\mathrm{C}(33 \mathrm{~A})-\mathrm{H}(33 \mathrm{~F})$	109.5	$\mathrm{H}(33 \mathrm{E})-\mathrm{C}(33 \mathrm{~A})-\mathrm{H}(33 \mathrm{~F})$	109.5
$\mathrm{C}(31)-\mathrm{C}(34 \mathrm{~A})-\mathrm{H}(34 \mathrm{D})$	109.5	$\mathrm{C}(31)-\mathrm{C}(34 \mathrm{~A})-\mathrm{H}(34 \mathrm{E})$	109.5
$\mathrm{H}(34 \mathrm{D})-\mathrm{C}(34 \mathrm{~A})-\mathrm{H}(34 \mathrm{E})$	109.5	$\mathrm{C}(31)-\mathrm{C}(34 \mathrm{~A})-\mathrm{H}(34 \mathrm{~F})$	109.5
$\mathrm{H}(34 \mathrm{D})-\mathrm{C}(34 \mathrm{~A})-\mathrm{H}(34 \mathrm{~F})$	109.5	$\mathrm{H}(34 \mathrm{E})-\mathrm{C}(34 \mathrm{~A})-\mathrm{H}(34 \mathrm{~F})$	109.5
$\mathrm{C}(51)-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{D})$	109.5	$\mathrm{C}(51)-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{E})$	109.5
$\mathrm{H}(52 \mathrm{D})-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{E})$	109.5	$\mathrm{C}(51)-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{~F})$	109.5
$\mathrm{H}(52 \mathrm{D})-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{~F})$	109.5	$\mathrm{H}(52 \mathrm{E})-\mathrm{C}(52 \mathrm{~A})-\mathrm{H}(52 \mathrm{~F})$	109.5
$\mathrm{C}(51)-\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{D})$	109.5	$\mathrm{C}(51)-\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{E})$	109.5
$\mathrm{H}(53 \mathrm{D})-\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{E})$	109.5	$\mathrm{C}(51)-\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{~F})$	109.5

$\mathrm{H}(53 \mathrm{D})-\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{~F})$	109.5	$\mathrm{H}(53 \mathrm{E})-\mathrm{C}(53 \mathrm{~A})-\mathrm{H}(53 \mathrm{~F})$	109.5
$\mathrm{C}(51)-\mathrm{C}(54 \mathrm{~A})-\mathrm{H}(54 \mathrm{D})$	109.5	$\mathrm{C}(51)-\mathrm{C}(54 \mathrm{~A})-\mathrm{H}(54 \mathrm{E})$	109.5
$\mathrm{H}(54 \mathrm{D})-\mathrm{C}(54 \mathrm{~A})-\mathrm{H}(54 \mathrm{E})$	109.5	$\mathrm{C}(51)-\mathrm{C}(54 \mathrm{~A})-\mathrm{H}(54 \mathrm{~F})$	109.5
$\mathrm{H}(54 \mathrm{D})-\mathrm{C}(54 \mathrm{~A})-\mathrm{H}(54 \mathrm{~F})$	109.5	$\mathrm{H}(54 \mathrm{E})-\mathrm{C}(54 \mathrm{~A})-\mathrm{H}(54 \mathrm{~F})$	109.5

Table B-17. Crystal Data and Structure Refinement for Complex V2a.

Identification code	Complex V2a
Empirical formula	C46 H72 Al2 N2 O2
Formula weight	739.02
Temperature	110(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	P4/ncc
Unit cell dimensions	$\mathrm{a}=23.795(3) \AA \AA^{\circ} \quad \alpha=90^{\circ}$.
	$\mathrm{b}=23.795(3) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=18.707(3) \AA$ ¢ ${ }^{\text {¢ }}$,
Volume	10592(2) \AA^{3}
Z	8
Density (calculated)	$0.927 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.723 \mathrm{~mm}^{-1}$
F(000)	3232
Crystal size	$0.18 \times 0.18 \times 0.16 \mathrm{~mm}^{3}$
Theta range for data collection	2.63 to 60.27°.
Index ranges	$-25<=\mathrm{h}<=26,-26<=\mathrm{k}<=25,-20<=1<=21$
Reflections collected	79230
Independent reflections	$3958[\mathrm{R}(\mathrm{int})=0.1174]$
Completeness to theta $=60.27^{\circ}$	99.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8931 and 0.8808
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3958 / 0 / 257
Goodness-of-fit on F^{2}	1.104
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0633, \mathrm{wR} 2=0.1578$
R indices (all data)	$\mathrm{R} 1=0.0927, \mathrm{wR} 2=0.1712$
Largest diff. peak and hole	0.405 and -0.237e. \AA^{-3}

Table B-18. Bond Lengths [\AA] and Angles [${ }^{\circ}$] for Complex V2a.

$\mathrm{Al}(1)-\mathrm{O}(1)$	1.811(2)	$\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	1.873(2)
$\mathrm{Al}(1)-\mathrm{O}(2)$	1.899(2)	$\mathrm{Al}(1)-\mathrm{C}(22)$	1.963(3)
$\mathrm{Al}(1)-\mathrm{N}(1)$	2.011(3)	$\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	2.9650 (18)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.331(4)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.416(4)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.429(4)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.408(4)
$\mathrm{C}(2)-\mathrm{C}(15)$	1.436(4)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.382(5)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.405(5)$	$\mathrm{C}(4)-\mathrm{C}(11)$	$1.533(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	1.380(4)	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.534(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	1.527(5)	$\mathrm{C}(7)-\mathrm{C}(10)$	$1.535(6)$
$\mathrm{C}(7)-\mathrm{C}(9)$	1.543(5)	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.502(6)$
$\mathrm{C}(11)-\mathrm{C}(13)$	$1.504(5)$	$\mathrm{C}(11)-\mathrm{C}(14)$	$1.525(6)$
$\mathrm{C}(15)-\mathrm{N}(1)$	1.288(4)	$\mathrm{C}(16)-\mathrm{N}(1)$	$1.476(4)$
$\mathrm{C}(16)-\mathrm{C}(17)$	1.497(5)	$\mathrm{C}(16)-\mathrm{C}(21)$	1.528(4)
$\mathrm{C}(17)-\mathrm{O}(2)$	1.416(4)	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.504(5)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.515(5)$	$\mathrm{C}(19)-\mathrm{C}(20)$	1.490 (5)
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.534(5)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.542(5)$
$\mathrm{O}(2)-\mathrm{Al}(1) \# 1$	1.873(2)		
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	94.78(10)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	134.83(11)
$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{O}(2)$	75.30(10)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{C}(22)$	111.65(13)
$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{C}(22)$	106.84(12)	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{C}(22)$	113.40(13)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{N}(1)$	88.31(10)	$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{N}(1)$	147.29(11)
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{N}(1)$	79.52(10)	$\mathrm{C}(22)-\mathrm{Al}(1)-\mathrm{N}(1)$	102.13(13)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	114.40(7)	$\mathrm{O}(2) \# 1-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	38.50(7)
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	37.87(6)	$\mathrm{C}(22)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	122.58(10)
$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{Al}(1) \# 1$	111.50(9)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.4(3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	120.9(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	117.7(3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.1(3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(15)$	117.2(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	121.7(3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	121.9(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	115.6(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	123.2(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	121.2(3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	125.6(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	117.9(3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.6(3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	121.4(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	112.7(3)

$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	$108.0(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	$108.7(3)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	$106.0(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	$109.9(3)$
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(9)$	$111.6(3)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	$109.3(4)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	$109.2(4)$	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(14)$	$107.4(4)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(4)$	$109.1(3)$	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(4)$	$112.0(3)$
$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(4)$	$109.8(3)$	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(2)$	$124.0(3)$
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	$104.3(3)$	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(21)$	$118.8(3)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)$	$111.9(3)$	$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	$108.5(3)$
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(18)$	$116.0(3)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$111.2(3)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$110.6(3)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$114.6(3)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$114.4(3)$	$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$	$108.1(3)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{Al}(1)$	$119.5(2)$	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	$123.6(3)$
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{Al}(1)$	$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Al}(1)$	$108.0(2)$	
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Al}(1)$	$\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{Al}(1) \# 1$	$132.8(2)$	
$\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{Al}(1)$	$\mathrm{Al}(1) \# 1-\mathrm{O}(2)-\mathrm{Al}(1)$	$103.63(10)$	

Table B-19. Crystal Data and Structure Refinement for Complex V3b.

Identification code	Complex V3b
Empirical formula	C42 H48 Al2 N2 O8
Formula weight	762.78
Temperature	110(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$a=20.036(2) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=13.6282(14) \AA \quad \beta=96.586(6)^{\circ}$.
	$\mathrm{c}=17.6152(19) \AA \AA^{\circ} \quad \gamma=90^{\circ}$.
Volume	4778.2(9) \AA^{3}
Z	4
Density (calculated)	$1.060 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.923 \mathrm{~mm}^{-1}$
F(000)	1616
Crystal size	$0.18 \times 0.16 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	2.22 to 60.14°.
Index ranges	$-22<=\mathrm{h}<=22,-14<=\mathrm{k}<=15,-19<=1<=19$
Reflections collected	37179
Independent reflections	$7055[\mathrm{R}(\mathrm{int})=0.0390]$
Completeness to theta $=60.14^{\circ}$	99.1\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8740 and 0.8515
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7055 / 6/501
Goodness-of-fit on F^{2}	1.128
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0964, \mathrm{wR} 2=0.2061$
R indices (all data)	$\mathrm{R} 1=0.1061, \mathrm{wR} 2=0.2099$
Largest diff. peak and hole	0.657 and $-0.393 \mathrm{e} . \AA^{-3}$

Table B-20. Bond Lengths $[\AA]$ and Angles $\left[{ }^{\circ}\right]$ for Complex V3b.

$\mathrm{Al}(1)-\mathrm{O}(8)$	1.733(3)	$\mathrm{Al}(1)-\mathrm{O}(1)$	1.778(3)
$\mathrm{Al}(1)-\mathrm{O}(6)$	1.850(3)	$\mathrm{Al}(1)-\mathrm{O}(3)$	1.899(3)
$\mathrm{Al}(1)-\mathrm{N}(1)$	1.978(4)	$\mathrm{Al}(2)-\mathrm{O}(7)$	1.730(4)
$\mathrm{Al}(2)-\mathrm{O}(4)$	1.779(4)	$\mathrm{Al}(2)-\mathrm{O}(3)$	1.858(3)
$\mathrm{Al}(2)-\mathrm{O}(6)$	1.871(3)	$\mathrm{Al}(2)-\mathrm{N}(2)$	1.989(4)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.316(6)	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.405(7)$
$\mathrm{C}(1)-\mathrm{C}(6)$	1.429(7)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.396(7)
$\mathrm{C}(2)-\mathrm{C}(8)$	1.451(7)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.409(8)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.383(9)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.384(8)
$\mathrm{C}(6)-\mathrm{O}(2)$	1.367(7)	$\mathrm{C}(7)-\mathrm{O}(2)$	1.433(6)
$\mathrm{C}(8)-\mathrm{N}(1)$	1.280(6)	$\mathrm{C}(9)-\mathrm{N}(1)$	1.464(6)
$\mathrm{C}(9)-\mathrm{C}(14)$	1.519(7)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.527(6)
$\mathrm{C}(10)-\mathrm{O}(3)$	1.433(5)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.513(7)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.539(7)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.551(7)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.542(8)	$\mathrm{C}(15)-\mathrm{O}(4)$	1.321(6)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.400(7)	$\mathrm{C}(15)-\mathrm{C}(20)$	$1.423(7)$
$\mathrm{C}(16)-\mathrm{C}(17)$	1.428(7)	$\mathrm{C}(16)-\mathrm{C}(22)$	1.447(7)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.339(8)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.393(8)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.385(8)	$\mathrm{C}(20)-\mathrm{O}(5)$	1.366(7)
$\mathrm{C}(21)-\mathrm{O}(5)$	1.444(7)	$\mathrm{C}(22)$ - $\mathrm{N}(2)$	1.291(6)
$\mathrm{C}(23)-\mathrm{N}(2)$	1.480(6)	$\mathrm{C}(23)-\mathrm{C}(28)$	1.506(7)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.538(7)	$\mathrm{C}(24)-\mathrm{O}(6)$	$1.424(6)$
$\mathrm{C}(24)$-C(25)	1.504(7)	$\mathrm{C}(25)-\mathrm{C}(26)$	1.519(7)
$\mathrm{C}(26)-\mathrm{C}(27)$	1.521(7)	$\mathrm{C}(27)-\mathrm{C}(28)$	1.525(7)
$\mathrm{C}(29)-\mathrm{O}(7)$	1.370(6)	$\mathrm{C}(29)$-C(30)	1.529(8)
$\mathrm{C}(30)-\mathrm{C}(31)$	1.340(10)	$\mathrm{C}(30)-\mathrm{C}(35)$	1.360(9)
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.339(11)$	$\mathrm{C}(32)-\mathrm{C}(33)$	1.371(14)
$\mathrm{C}(33)-\mathrm{C}(34)$	1.412(14)	$\mathrm{C}(34)$ - $\mathrm{C}(35)$	$1.413(11)$
$\mathrm{C}(36)-\mathrm{O}(8)$	1.420(7)	$\mathrm{C}(36)-\mathrm{C}(37)$	1.510(8)
$\mathrm{C}(37)-\mathrm{C}(38)$	1.338(9)	$\mathrm{C}(37)$-C(42)	1.441(9)
$\mathrm{C}(38)$-C(39)	1.360(9)	$\mathrm{C}(39)$-C(40)	1.352(12)
$\mathrm{C}(40)-\mathrm{C}(41)$	1.319(12)	$\mathrm{C}(41)-\mathrm{C}(42)$	1.351(11)

		$\mathrm{O}(8)-\mathrm{Al}(1)-\mathrm{O}(1)$	108.04(18)
$\mathrm{O}(8)-\mathrm{Al}(1)-\mathrm{O}(6)$	109.35(17)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(6)$	92.39(15)
$\mathrm{O}(8)-\mathrm{Al}(1)-\mathrm{O}(3)$	105.77(16)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(3)$	146.19(17)
$\mathrm{O}(6)-\mathrm{Al}(1)-\mathrm{O}(3)$	76.66(14)	$\mathrm{O}(8)-\mathrm{Al}(1)-\mathrm{N}(1)$	102.53(17)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{N}(1)$	90.26(16)	$\mathrm{O}(6)-\mathrm{Al}(1)-\mathrm{N}(1)$	145.38(16)
$\mathrm{O}(3)-\mathrm{Al}(1)-\mathrm{N}(1)$	82.12(15)	$\mathrm{O}(7)-\mathrm{Al}(2)-\mathrm{O}(4)$	112.61(18)
$\mathrm{O}(7)-\mathrm{Al}(2)-\mathrm{O}(3)$	108.10(16)	$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{O}(3)$	91.90(15)
$\mathrm{O}(7)-\mathrm{Al}(2)-\mathrm{O}(6)$	108.36(17)	$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{O}(6)$	138.98(18)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(6)$	77.15(14)	$\mathrm{O}(7)-\mathrm{Al}(2)-\mathrm{N}(2)$	99.53(16)
$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{N}(2)$	89.95(16)	$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{N}(2)$	149.12(16)
$\mathrm{O}(6)-\mathrm{Al}(2)-\mathrm{N}(2)$	81.34(15)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	123.6(5)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	117.9(5)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	118.5(5)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.9(5)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(8)$	118.7(5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(8)$	120.4(4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.9(5)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.3(5)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	122.0(6)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	126.0(5)	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(1)$	114.6(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	119.5(5)	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(2)$	124.2(5)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(14)$	118.5(4)	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	104.4(4)
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)$	110.9(4)	$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(11)$	112.8(4)
$\mathrm{O}(3)-\mathrm{C}(10)-\mathrm{C}(9)$	106.6(4)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	110.9(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	108.4(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	111.0(4)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	111.0(5)	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	108.4(4)
$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(16)$	124.2(5)	$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{C}(20)$	117.6(4)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)$	118.1(5)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.9(5)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(22)$	121.1(4)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(22)$	119.0(5)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	120.1(5)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	121.7(5)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	119.7(5)	$\mathrm{O}(5)-\mathrm{C}(20)-\mathrm{C}(19)$	126.0(5)
$\mathrm{O}(5)-\mathrm{C}(20)-\mathrm{C}(15)$	113.5(5)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	120.5(5)
$\mathrm{N}(2)-\mathrm{C}(22)-\mathrm{C}(16)$	122.7(4)	$\mathrm{N}(2)-\mathrm{C}(23)-\mathrm{C}(28)$	120.0(4)
$\mathrm{N}(2)-\mathrm{C}(23)-\mathrm{C}(24)$	103.6(4)	$\mathrm{C}(28)-\mathrm{C}(23)-\mathrm{C}(24)$	111.6(4)
$\mathrm{O}(6)-\mathrm{C}(24)-\mathrm{C}(25)$	114.3(4)	$\mathrm{O}(6)-\mathrm{C}(24)-\mathrm{C}(23)$	106.1(4)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	109.6(4)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	109.4(5)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	111.8(4)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	112.4(4)
$\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{C}(27)$	108.6(4)	$\mathrm{O}(7)-\mathrm{C}(29)-\mathrm{C}(30)$	110.2(4)

$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(35)$	$118.6(6)$	$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	$121.5(6)$
$\mathrm{C}(35)-\mathrm{C}(30)-\mathrm{C}(29)$	$119.9(6)$	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	$123.6(8)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$119.4(9)$	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$120.4(8)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$116.3(7)$	$\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{C}(34)$	$121.6(8)$
$\mathrm{O}(8)-\mathrm{C}(36)-\mathrm{C}(37)$	$111.8(5)$	$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(42)$	$116.8(6)$
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(36)$	$123.9(6)$	$\mathrm{C}(42)-\mathrm{C}(37)-\mathrm{C}(36)$	$119.2(6)$
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$	$121.9(7)$	$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(38)$	$119.7(7)$
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(39)$	$121.3(7)$	$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	$120.6(8)$
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(37)$	$119.6(7)$	$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(9)$	$123.7(4)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{Al}(1)$	$127.7(3)$	$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{Al}(1)$	$108.5(3)$
$\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{C}(23)$	$123.2(4)$	$\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{Al}(2)$	$128.3(3)$
$\mathrm{C}(23)-\mathrm{N}(2)-\mathrm{Al}(2)$	$108.5(3)$	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Al}(1)$	$133.7(3)$
$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{C}(7)$	$118.4(4)$	$\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{Al}(2)$	$129.8(3)$
$\mathrm{C}(10)-\mathrm{O}(3)-\mathrm{Al}(1)$	$\mathrm{Al}(2)-\mathrm{O}(3)-\mathrm{Al}(1)$	$102.04(15)$	
$\mathrm{C}(15)-\mathrm{O}(4)-\mathrm{Al}(2)$	$\mathrm{C}(20)-\mathrm{O}(5)-\mathrm{C}(21)$	$115.5(5)$	
$\mathrm{C}(24)-\mathrm{O}(6)-\mathrm{Al}(1)$	$\mathrm{C}(24)-\mathrm{O}(6)-\mathrm{Al}(2)$	$118.9(3)$	
$\mathrm{Al}(1)-\mathrm{O}(6)-\mathrm{Al}(2)$	$\mathrm{C}(29)-\mathrm{O}(7)-\mathrm{Al}(2)$	$127.8(3)$	
$\mathrm{C}(36)-\mathrm{O}(8)-\mathrm{Al}(1)$	$132.2(3)$		

Table B-21. Crystal Data and Structure Refinement for Complex V2d.

Identification code	Complex V2d
Empirical formula	C44 H72 Al2 N2 O4 Si2
Formula weight	803.18
Temperature	110(2) K
Wavelength	1.54178 A
Crystal system	Triclinic
Space group	P_{-}-1
Unit cell dimensions	$\mathrm{a}=9.5815(12) \AA \quad \alpha=89.262(9)^{\circ}$.
	$\mathrm{b}=13.506(2) \AA \quad \beta=86.668(9)^{\circ}$.
	$\mathrm{c}=18.158(3) \AA \quad \gamma=75.039(9)^{\circ}$.
Volume	2266.4(6) \AA^{3}
Z	2
Density (calculated)	$1.177 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.407 \mathrm{~mm}^{-1}$
F(000)	872
Crystal size	$0.18 \times 0.15 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	2.44 to 60.23°.
Index ranges	$-10<=\mathrm{h}<=10,-15<=\mathrm{k}<=15,-19<=1<=19$
Reflections collected	15570
Independent reflections	6277 [$\mathrm{R}(\mathrm{int})=0.0274]$
Completeness to theta $=\mathrm{ACTA} 50^{\circ}$	ACTA 50 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8167 and 0.7858
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6277/0/513
Goodness-of-fit on F^{2}	1.045
Final R indices [I 2 $2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0369, \mathrm{wR} 2=0.0962$
R indices (all data)	$\mathrm{R} 1=0.0435, \mathrm{wR} 2=0.1052$
Largest diff. peak and hole	0.441 and $-0.287 \mathrm{e} . \mathrm{A}^{-3}$

Table B-22. Bond Lengths [$\AA \AA$] and Angles $\left[{ }^{\circ}\right]$ for Complex V2d.

$\mathrm{Al}(1)-\mathrm{O}(1)$	1.8142(15)	$\mathrm{Al}(1)-\mathrm{O}(4)$	1.8716 (15)
$\mathrm{Al}(1)-\mathrm{O}(2)$	1.8959(15)	$\mathrm{Al}(1)-\mathrm{C}(21)$	1.977(2)
$\mathrm{Al}(1)-\mathrm{N}(1)$	2.0241(18)	$\mathrm{Al}(2)-\mathrm{O}(3)$	$1.8108(16)$
$\mathrm{Al}(2)-\mathrm{O}(2)$	1.8828(15)	$\mathrm{Al}(2)-\mathrm{O}(4)$	$1.8914(15)$
$\mathrm{Al}(2)-\mathrm{C}(43)$	1.983(2)	$\mathrm{Al}(2)-\mathrm{N}(2)$	$2.0224(18)$
$\mathrm{C}(1)-\mathrm{O}(1)$	1.342(3)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.420(3)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.425(3)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.406 (3)
$\mathrm{C}(2)-\mathrm{C}(14)$	1.441(3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.378(3)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.398(3)	$\mathrm{C}(4)-\mathrm{C}(7)$	1.517(3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.394(3)	$\mathrm{C}(6)-\mathrm{Si}(1)$	1.884(2)
$\mathrm{C}(8)-\mathrm{Si}(1)$	1.864(2)	$\mathrm{C}(9)-\mathrm{Si}(1)$	1.873(2)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.532(3)	$\mathrm{C}(10)-\mathrm{C}(13)$	1.534(3)
$\mathrm{C}(10)-\mathrm{C}(12)$	1.539(3)	$\mathrm{C}(10)-\mathrm{Si}(1)$	$1.915(2)$
$\mathrm{C}(14)-\mathrm{N}(1)$	1.282(3)	$\mathrm{C}(15)-\mathrm{N}(1)$	1.466 (3)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.521(3)	$\mathrm{C}(15)-\mathrm{C}(20)$	1.524(3)
$\mathrm{C}(16)-\mathrm{O}(2)$	1.427(2)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.506(3)
$\mathrm{C}(17)$-C(18)	1.536(3)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.530(3)
$\mathrm{C}(19)$-C(20)	1.527(3)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.533(3)
$\mathrm{C}(23)-\mathrm{O}(3)$	1.337(3)	C(23)-C(28)	1.420(3)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.428(3)	$\mathrm{C}(24)-\mathrm{C}(25)$	1.397(3)
C(24)-C(36)	1.444(3)	$\mathrm{C}(25)-\mathrm{C}(26)$	1.378(3)
C(26)-C(27)	1.402(3)	$\mathrm{C}(26)-\mathrm{C}(29)$	1.507(3)
C(27)-C(28)	1.394(3)	$\mathrm{C}(28)-\mathrm{Si}(2)$	1.890(2)
$\mathrm{C}(30)-\mathrm{Si}(2)$	1.860(2)	$\mathrm{C}(31)-\mathrm{Si}(2)$	1.877(2)
$\mathrm{C}(32)$-C(35)	1.524(4)	$\mathrm{C}(32)-\mathrm{C}(33)$	1.528(3)
$\mathrm{C}(32)$-C(34)	1.532(4)	$\mathrm{C}(32)-\mathrm{Si}(2)$	1.903(2)
$\mathrm{C}(36)-\mathrm{N}(2)$	1.277(3)	$\mathrm{C}(37)-\mathrm{N}(2)$	1.470(3)
$\mathrm{C}(37)$-C(42)	1.520(3)	C(37)-C(38)	1.527(3)
$\mathrm{C}(38)$-O(4)	1.428(2)	$\mathrm{C}(38)-\mathrm{C}(39)$	1.507(3)
$\mathrm{C}(39)$-C(40)	1.532(3)	$\mathrm{C}(40)-\mathrm{C}(41)$	1.530(3)
$\mathrm{C}(41)-\mathrm{C}(42)$	1.535(3)	$\mathrm{C}(43)-\mathrm{C}(44)$	1.540(3)
		$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(4)$	97.19(7)

$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	134.10(7)	$\mathrm{O}(4)-\mathrm{Al}(1)-\mathrm{O}(2)$	74.61(6)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{C}(21)$	110.56(8)	$\mathrm{O}(4)-\mathrm{Al}(1)-\mathrm{C}(21)$	107.09(8)
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{C}(21)$	115.03(8)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{N}(1)$	88.93(7)
$\mathrm{O}(4)-\mathrm{Al}(1)-\mathrm{N}(1)$	149.03(7)	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{N}(1)$	79.36(7)
$\mathrm{C}(21)-\mathrm{Al}(1)-\mathrm{N}(1)$	98.92(8)	$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(2)$	98.03(7)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(4)$	131.20(7)	$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{O}(4)$	74.46(6)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{C}(43)$	115.03(9)	$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{C}(43)$	102.94(8)
$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{C}(43)$	113.62(9)	$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{N}(2)$	89.54(7)
$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{N}(2)$	150.82(7)	$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{N}(2)$	79.36(7)
$\mathrm{C}(43)-\mathrm{Al}(2)-\mathrm{N}(2)$	99.15(8)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.89(18)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	119.57(19)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	118.53(18)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.50(19)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(14)$	117.14(19)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(14)$	122.37(19)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	121.8(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.83(19)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	122.4(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	120.8(2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	124.7(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	117.62(19)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Si}(1)$	121.76(16)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{Si}(1)$	120.60(16)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(13)$	109.8(2)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(12)$	107.6(2)	$\mathrm{C}(13)-\mathrm{C}(10)-\mathrm{C}(12)$	107.3(2)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{Si}(1)$	113.74(17)	$\mathrm{C}(13)-\mathrm{C}(10)-\mathrm{Si}(1)$	112.01(16)
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{Si}(1)$	106.02(15)	$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(2)$	123.3(2)
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	104.28(16)	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(20)$	120.34(18)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)$	110.29(18)	$\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{C}(17)$	114.40(18)
$\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{C}(15)$	107.63(17)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	109.83(18)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	109.45(18)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	112.38(18)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	112.95(18)	$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	108.70(17)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{Al}(1)$	112.45(15)	$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(28)$	120.32(18)
$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(24)$	121.84(19)	$\mathrm{C}(28)-\mathrm{C}(23)-\mathrm{C}(24)$	117.83(19)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	120.42(19)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(36)$	117.09(19)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(36)$	122.42(19)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	122.8(2)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	115.8(2)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(29)$	123.2(2)
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(29)$	121.0(2)	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	124.7(2)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(23)$	118.28(19)	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{Si}(2)$	116.40(16)
$\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{Si}(2)$	125.29(16)	$\mathrm{C}(35)-\mathrm{C}(32)-\mathrm{C}(33)$	108.6(2)
$\mathrm{C}(35)-\mathrm{C}(32)-\mathrm{C}(34)$	109.6(2)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(34)$	108.1(2)

$\mathrm{C}(35)-\mathrm{C}(32)-\mathrm{Si}(2)$	$110.86(17)$	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{Si}(2)$	$110.22(17)$
$\mathrm{C}(34)-\mathrm{C}(32)-\mathrm{Si}(2)$	$109.38(17)$	$\mathrm{N}(2)-\mathrm{C}(36)-\mathrm{C}(24)$	$123.93(19)$
$\mathrm{N}(2)-\mathrm{C}(37)-\mathrm{C}(42)$	$120.00(18)$	$\mathrm{N}(2)-\mathrm{C}(37)-\mathrm{C}(38)$	$103.21(16)$
$\mathrm{C}(42)-\mathrm{C}(37)-\mathrm{C}(38)$	$110.26(17)$	$\mathrm{O}(4)-\mathrm{C}(38)-\mathrm{C}(39)$	$114.12(18)$
$\mathrm{O}(4)-\mathrm{C}(38)-\mathrm{C}(37)$	$107.42(17)$	$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{C}(37)$	$110.02(18)$
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	$108.82(19)$	$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(39)$	$111.94(18)$
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	$112.44(18)$	$\mathrm{C}(37)-\mathrm{C}(42)-\mathrm{C}(41)$	$108.39(18)$
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{Al}(2)$	$115.22(15)$	$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{C}(15)$	$122.62(18)$
$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{Al}(1)$	$128.36(15)$	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{Al}(1)$	$108.51(13)$
$\mathrm{C}(36)-\mathrm{N}(2)-\mathrm{C}(37)$	$\mathrm{C}(36)-\mathrm{N}(2)-\mathrm{Al}(2)$	$127.83(15)$	
$\mathrm{C}(37)-\mathrm{N}(2)-\mathrm{Al}(2)$	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Al}(1)$	$133.19(13)$	
$\mathrm{C}(16)-\mathrm{O}(2)-\mathrm{Al}(2)$	$\mathrm{C}(16)-\mathrm{O}(2)-\mathrm{Al}(1)$	$119.34(12)$	
$\mathrm{Al}(2)-\mathrm{O}(2)-\mathrm{Al}(1)$	$\mathrm{C}(23)-\mathrm{O}(3)-\mathrm{Al}(2)$	$133.68(13)$	
$\mathrm{C}(38)-\mathrm{O}(4)-\mathrm{Al}(1)$	$\mathrm{C}(38)-\mathrm{O}(4)-\mathrm{Al}(2)$	$119.16(12)$	
$\mathrm{Al}(1)-\mathrm{O}(4)-\mathrm{Al}(2)$	$\mathrm{C}(8)-\mathrm{Si}(1)-\mathrm{C}(9)$	$111.91(11)$	
$\mathrm{C}(8)-\mathrm{Si}(1)-\mathrm{C}(6)$	$\mathrm{C}(9)-\mathrm{Si}(1)-\mathrm{C}(6)$	$107.68(10)$	
$\mathrm{C}(8)-\mathrm{Si}(1)-\mathrm{C}(10)$	$\mathrm{C}(9)-\mathrm{Si}(1)-\mathrm{C}(10)$	$108.28(11)$	
$\mathrm{C}(6)-\mathrm{Si}(1)-\mathrm{C}(10)$	$\mathrm{C}(30)-\mathrm{Si}(2)-\mathrm{C}(31)$	$106.27(11)$	
$\mathrm{C}(30)-\mathrm{Si}(2)-\mathrm{C}(28)$	$\mathrm{C}(31)-\mathrm{Si}(2)-\mathrm{C}(28)$	$108.48(10)$	
$\mathrm{C}(30)-\mathrm{Si}(2)-\mathrm{C}(32)$	$105.78(7)$	$\mathrm{C}(31)-\mathrm{Si}(2)-\mathrm{C}(32)$	$108.19(11)$
$\mathrm{C}(28)-\mathrm{Si}(2)-\mathrm{C}(32)$	$113.88(13)$		

Table B-23. Crystal Data and Structure Refinement for Complex V3e.

Identification code	Complex V3e
Empirical formula	C132 H124 Al4 B2 F48 N4 O10
Formula weight	2967.89
Temperature	110(2) K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	$\mathrm{P}_{-}-1$
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=16.202(6) \AA & \alpha=74.59(2)^{\circ} . \\ \mathrm{b}=17.644(7) \AA & \beta=66.12(2)^{\circ} . \\ \mathrm{c}=18.126(6) \AA & \gamma=75.58(2)^{\circ} . \end{array}$
Volume	4509(3) \AA^{3}
Z	1
Density (calculated)	$1.093 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.077 \mathrm{~mm}^{-1}$
$F(000)$	1518
Crystal size	$0.20 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	2.63 to $61.64{ }^{\circ}$.
Index ranges	$-18<=\mathrm{h}<=17,-19<=\mathrm{k}<=19,-20<=1<=20$
Reflections collected	34543
Independent reflections	$12628[\mathrm{R}($ int $)=0.1016]$
Completeness to theta $=$ ACTA 50°	ACTA 50%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8135 and 0.8135
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	12628 / 42 / 913
Goodness-of-fit on F^{2}	0.916
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.1010, \mathrm{wR} 2=0.2435$
R indices (all data)	$\mathrm{R} 1=0.1486, \mathrm{wR} 2=0.2762$
Largest diff. peak and hole	0.643 and -0.700 e. $\AA^{-}{ }^{-3}$

Table B-24. Bond Lengths [\AA]] and Angles [${ }^{\circ}$] for Complex V3e.

$\mathrm{Al}(1)-\mathrm{O}(1)$	1.779(4)	$\mathrm{Al}(1)-\mathrm{O}(5) \# 1$	1.810(4)
$\mathrm{Al}(1)-\mathrm{O}(4)$	1.862(3)	$\mathrm{Al}(1)-\mathrm{O}(2)$	1.873(4)
$\mathrm{Al}(1)-\mathrm{N}(1)$	1.944(4)	$\mathrm{Al}(2)-\mathrm{O}(3)$	1.765(4)
$\mathrm{Al}(2)-\mathrm{O}(5)$	1.817(4)	$\mathrm{Al}(2)-\mathrm{O}(2)$	1.832(3)
$\mathrm{Al}(2)-\mathrm{O}(4)$	1.876(4)	$\mathrm{Al}(2)-\mathrm{N}(2)$	1.959(4)
B(1)-C(35)	1.606(9)	B(1)-C(43)	1.637(7)
$\mathrm{B}(1)-\mathrm{C}(51)$	1.655(9)	B(1)-C(59)	1.658(7)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.340(6)	$\mathrm{C}(1)-\mathrm{C}(6)$	1.414(7)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.431(7)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.424(8)
$\mathrm{C}(2)-\mathrm{C}(15)$	1.458(7)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.372(8)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.426(8)	$\mathrm{C}(4)-\mathrm{C}(11)$	1.520(9)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.379(8)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.562(7)
$\mathrm{C}(7)-\mathrm{C}(9)$	1.511(8)	$\mathrm{C}(7)-\mathrm{C}(10)$	1.538(8)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.549(8)	$\mathrm{C}(11)-\mathrm{C}(13)$	1.505(9)
$\mathrm{C}(11)-\mathrm{C}(14)$	1.540(11)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.541(1
$\mathrm{C}(15)-\mathrm{N}(1)$	1.258(7)	$\mathrm{C}(16)-\mathrm{N}(1)$	1.478(6)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.493(8)	$\mathrm{C}(17)-\mathrm{O}(2)$	1.467(6)
$\mathrm{C}(18)-\mathrm{O}(3)$	1.317(6)	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.426(8)$
$\mathrm{C}(18)-\mathrm{C}(23)$	1.452(8)	$\mathrm{C}(19)$-C(20)	1.417(9)
$\mathrm{C}(19)-\mathrm{C}(32)$	1.441(9)	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.362(10)$
$\mathrm{C}(21)-\mathrm{C}(22)$	1.424(10)	$\mathrm{C}(21)-\mathrm{C}(28)$	1.523(9)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.344(8)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.563(8)
$\mathrm{C}(24)$-C(26)	1.526(9)	$\mathrm{C}(24)$-C(27)	1.532(8)
$\mathrm{C}(24)-\mathrm{C}(25)$	1.546(9)	$\mathrm{C}(28)$-C(29)	1.520(11)
$\mathrm{C}(28)$-C(31)	1.562(12)	$\mathrm{C}(28)$-C(30)	1.570(11)
$\mathrm{C}(32)-\mathrm{N}(2)$	1.271(7)	$\mathrm{C}(33)-\mathrm{N}(2)$	1.444(7)
$\mathrm{C}(33)-\mathrm{C}(34)$	1.508(8)	$\mathrm{C}(34)$-O(4)	$1.436(5)$
$\mathrm{C}(35)-\mathrm{C}(40)$	1.414(8)	C(35)-C(36)	$1.423(8)$
$\mathrm{C}(36)-\mathrm{C}(37)$	1.375(8)	C(37)-C(38)	$1.396(8)$
$\mathrm{C}(37)-\mathrm{C}(42)$	1.500(9)	C(38)-C(39)	1.367(8)
$\mathrm{C}(39)$-C(40)	1.407(8)	$\mathrm{C}(39)$-C(41)	1.467(9)
$\mathrm{C}(41)-\mathrm{F}(3)$	1.272(9)	$\mathrm{C}(41)-\mathrm{F}(2)$	$1.290(11)$

$\mathrm{C}(41)-\mathrm{F}(1)$	$1.335(11)$	$\mathrm{C}(42)-\mathrm{F}(5)$	1.325(7)
$\mathrm{C}(42)-\mathrm{F}(4)$	1.346(7)	$\mathrm{C}(42)-\mathrm{F}(6)$	$1.353(7)$
$\mathrm{C}(43)-\mathrm{C}(48)$	$1.374(8)$	$\mathrm{C}(43)-\mathrm{C}(44)$	1.417(7)
$\mathrm{C}(44)-\mathrm{C}(45)$	1.367(8)	$\mathrm{C}(45)-\mathrm{C}(46)$	1.364(9)
$\mathrm{C}(45)-\mathrm{C}(50)$	$1.520(10)$	$\mathrm{C}(46)-\mathrm{C}(47)$	1.390(8)
$\mathrm{C}(47)$ - $\mathrm{C}(48)$	1.418(8)	$\mathrm{C}(47)-\mathrm{C}(49)$	1.463(9)
$\mathrm{C}(49)-\mathrm{F}(9)$	1.296 (8)	$\mathrm{C}(49)-\mathrm{F}(8)$	1.333(8)
$\mathrm{C}(49)-\mathrm{F}(7)$	1.349(9)	$\mathrm{C}(50)-\mathrm{F}(10)$	1.322(10)
$\mathrm{C}(50)-\mathrm{F}(11)$	$1.332(16)$	$\mathrm{C}(50)-\mathrm{F}(12)$	1.346(12)
$\mathrm{C}(51)-\mathrm{C}(52)$	$1.406(8)$	$\mathrm{C}(51)-\mathrm{C}(56)$	1.412(9)
$\mathrm{C}(52)-\mathrm{C}(53)$	1.379(8)	$\mathrm{C}(53)-\mathrm{C}(54)$	1.353(9)
$\mathrm{C}(53)-\mathrm{C}(58)$	1.483(9)	$\mathrm{C}(54)-\mathrm{C}(55)$	1.405(10)
$\mathrm{C}(55)-\mathrm{C}(56)$	$1.396(9)$	$\mathrm{C}(55)-\mathrm{C}(57)$	1.485(10)
$\mathrm{C}(57)-\mathrm{F}(13)$	$1.333(8)$	$\mathrm{C}(57)-\mathrm{F}(15)$	1.357(7)
$\mathrm{C}(57)-\mathrm{F}(14)$	1.360(9)	$\mathrm{C}(58)-\mathrm{F}(16)$	1.285(7)
$\mathrm{C}(58)-\mathrm{F}(17)$	$1.316(8)$	$\mathrm{C}(58)-\mathrm{F}(18)$	1.352(9)
$\mathrm{C}(59)$-C(60)	1.357(8)	$\mathrm{C}(59)-\mathrm{C}(64)$	1.414(7)
$\mathrm{C}(60)-\mathrm{C}(61)$	1.416(7)	$\mathrm{C}(61)-\mathrm{C}(62)$	1.389(8)
$\mathrm{C}(61)-\mathrm{C}(66)$	$1.501(10)$	$\mathrm{C}(62)-\mathrm{C}(63)$	1.353(8)
$\mathrm{C}(63)-\mathrm{C}(64)$	1.400(7)	$\mathrm{C}(63)-\mathrm{C}(65)$	1.517(7)
$\mathrm{C}(65)-\mathrm{F}(20)$	1.324(7)	$\mathrm{C}(65)-\mathrm{F}(19)$	1.332(6)
$\mathrm{C}(65)-\mathrm{F}(21)$	1.352(6)	$\mathrm{C}(66)-\mathrm{F}(23)$	1.271(8)
$\mathrm{C}(66)-\mathrm{F}(22)$	1.293 (8)	$\mathrm{C}(66)-\mathrm{F}(24)$	1.375(10)
$\mathrm{O}(5)-\mathrm{Al}(1) \# 1$	1.811(4)		
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(5) \# 1$	103.25(17)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(4)$	96.97(16)
$\mathrm{O}(5) \# 1-\mathrm{Al}(1)-\mathrm{O}(4)$	103.84(17)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	152.03(17)
$\mathrm{O}(5) \# 1-\mathrm{Al}(1)-\mathrm{O}(2)$	104.72(16)	$\mathrm{O}(4)-\mathrm{Al}(1)-\mathrm{O}(2)$	76.15(15)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{N}(1)$	92.06(18)	$\mathrm{O}(5) \# 1-\mathrm{Al}(1)-\mathrm{N}(1)$	101.79(17)
$\mathrm{O}(4)-\mathrm{Al}(1)-\mathrm{N}(1)$	150.00(19)	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{N}(1)$	82.50(17)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(5)$	105.53(18)	$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(2)$	97.18(17)
$\mathrm{O}(5)-\mathrm{Al}(2)-\mathrm{O}(2)$	103.10(16)	$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(4)$	151.12(18)
$\mathrm{O}(5)-\mathrm{Al}(2)-\mathrm{O}(4)$	103.34(17)	$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{O}(4)$	76.79(15)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{N}(2)$	91.67(19)	$\mathrm{O}(5)-\mathrm{Al}(2)-\mathrm{N}(2)$	101.70(17)
$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{N}(2)$	150.29(19)	$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{N}(2)$	81.80(17)

$\mathrm{C}(35)-\mathrm{B}(1)-\mathrm{C}(43)$	102.8(4)	$\mathrm{C}(35)-\mathrm{B}(1)-\mathrm{C}(51)$	115.1(5)
$\mathrm{C}(43)-\mathrm{B}(1)-\mathrm{C}(51)$	111.8(5)	$\mathrm{C}(35)-\mathrm{B}(1)-\mathrm{C}(59)$	113.4(5)
$\mathrm{C}(43)-\mathrm{B}(1)-\mathrm{C}(59)$	110.1(4)	$\mathrm{C}(51)-\mathrm{B}(1)-\mathrm{C}(59)$	103.9(4)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	121.1(4)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.2(5)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	117.7(5)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.1(5)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(15)$	118.2(5)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	120.6(5)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	121.1(5)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.3(5)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	124.3(5)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	119.4(5)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	125.0(5)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	118.6(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.9(5)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	120.4(5)
$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(10)$	110.7(5)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8)$	107.1(4)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(8)$	107.7(5)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(6)$	110.2(5)
$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{C}(6)$	110.4(4)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	110.7(5)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(4)$	110.6(5)	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(14)$	108.9(7)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(14)$	110.2(5)	$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(12)$	108.4(6)
$\mathrm{C}(4)-\mathrm{C}(11)-\mathrm{C}(12)$	109.5(6)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(12)$	109.3(7)
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(2)$	125.4(5)	$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	107.4(4)
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	106.2(4)	$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{C}(19)$	122.3(5)
$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{C}(23)$	121.3(5)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)$	116.4(5)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	121.3(6)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(32)$	118.1(5)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(32)$	120.5(5)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	122.2(6)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	115.1(6)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(28)$	123.5(7)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(28)$	121.3(7)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	126.6(7)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(18)$	118.2(6)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	122.4(5)
$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(24)$	119.3(5)	$\mathrm{C}(26)-\mathrm{C}(24)-\mathrm{C}(27)$	111.3(5)
$\mathrm{C}(26)-\mathrm{C}(24)-\mathrm{C}(25)$	107.4(5)	$\mathrm{C}(27)-\mathrm{C}(24)-\mathrm{C}(25)$	108.3(5)
$\mathrm{C}(26)-\mathrm{C}(24)-\mathrm{C}(23)$	108.5(5)	$\mathrm{C}(27)-\mathrm{C}(24)-\mathrm{C}(23)$	110.8(5)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	110.6(5)	$\mathrm{C}(21)-\mathrm{C}(28)-\mathrm{C}(29)$	109.4(6)
$\mathrm{C}(21)-\mathrm{C}(28)-\mathrm{C}(31)$	111.9(7)	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(31)$	108.9(6)
$\mathrm{C}(21)-\mathrm{C}(28)-\mathrm{C}(30)$	108.7(6)	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(30)$	108.2(7)
$\mathrm{C}(31)-\mathrm{C}(28)-\mathrm{C}(30)$	109.7(7)	$\mathrm{N}(2)-\mathrm{C}(32)-\mathrm{C}(19)$	125.2(5)
$\mathrm{N}(2)-\mathrm{C}(33)-\mathrm{C}(34)$	108.1(4)	$\mathrm{O}(4)-\mathrm{C}(34)-\mathrm{C}(33)$	106.9(4)
$\mathrm{C}(40)-\mathrm{C}(35)-\mathrm{C}(36)$	113.4(5)	$\mathrm{C}(40)-\mathrm{C}(35)-\mathrm{B}(1)$	121.5(5)
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{B}(1)$	124.6(5)	$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(35)$	123.9(5)

$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	119.8(5)	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(42)$	121.6(5)
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(42)$	118.5(6)	$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{C}(37)$	119.6(5)
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	119.9(5)	C(38)-C(39)-C(41)	120.2(7)
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(41)$	119.8(7)	$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(35)$	123.2(5)
$\mathrm{F}(3)-\mathrm{C}(41)-\mathrm{F}(2)$	106.3(8)	$\mathrm{F}(3)-\mathrm{C}(41)-\mathrm{F}(1)$	102.5(9)
$\mathrm{F}(2)-\mathrm{C}(41)-\mathrm{F}(1)$	102.8(7)	$\mathrm{F}(3)-\mathrm{C}(41)-\mathrm{C}(39)$	115.2(7)
$\mathrm{F}(2)-\mathrm{C}(41)-\mathrm{C}(39)$	115.0(8)	$\mathrm{F}(1)-\mathrm{C}(41)-\mathrm{C}(39)$	113.6(7)
$\mathrm{F}(5)-\mathrm{C}(42)-\mathrm{F}(4)$	106.9(5)	$\mathrm{F}(5)-\mathrm{C}(42)-\mathrm{F}(6)$	105.9(5)
$\mathrm{F}(4)-\mathrm{C}(42)-\mathrm{F}(6)$	106.9(5)	$\mathrm{F}(5)-\mathrm{C}(42)-\mathrm{C}(37)$	112.2(5)
$\mathrm{F}(4)-\mathrm{C}(42)-\mathrm{C}(37)$	112.2(5)	$\mathrm{F}(6)-\mathrm{C}(42)-\mathrm{C}(37)$	112.4(5)
$\mathrm{C}(48)-\mathrm{C}(43)-\mathrm{C}(44)$	116.4(5)	$\mathrm{C}(48)-\mathrm{C}(43)-\mathrm{B}(1)$	121.8(5)
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{B}(1)$	121.3(5)	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(43)$	120.8(5)
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	123.0(6)	$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(50)$	118.0(5)
$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(50)$	119.0(6)	$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(47)$	118.3(5)
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(48)$	119.1(5)	$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(49)$	121.1(5)
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{C}(49)$	119.7(5)	$\mathrm{C}(43)-\mathrm{C}(48)-\mathrm{C}(47)$	122.5(5)
$\mathrm{F}(9)-\mathrm{C}(49)-\mathrm{F}(8)$	108.8(7)	$\mathrm{F}(9)-\mathrm{C}(49)-\mathrm{F}(7)$	103.4(6)
$\mathrm{F}(8)-\mathrm{C}(49)-\mathrm{F}(7)$	99.1(6)	$\mathrm{F}(9)-\mathrm{C}(49)-\mathrm{C}(47)$	115.6(6)
$\mathrm{F}(8)-\mathrm{C}(49)-\mathrm{C}(47)$	115.0(5)	$\mathrm{F}(7)-\mathrm{C}(49)-\mathrm{C}(47)$	113.1(7)
$\mathrm{F}(10)-\mathrm{C}(50)-\mathrm{F}(11)$	107.5(8)	$\mathrm{F}(10)-\mathrm{C}(50)-\mathrm{F}(12)$	104.2(10)
$\mathrm{F}(11)-\mathrm{C}(50)-\mathrm{F}(12)$	106.4(8)	$\mathrm{F}(10)-\mathrm{C}(50)-\mathrm{C}(45)$	114.0(8)
$\mathrm{F}(11)-\mathrm{C}(50)-\mathrm{C}(45)$	113.6(11)	$\mathrm{F}(12)-\mathrm{C}(50)-\mathrm{C}(45)$	110.4(8)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(56)$	115.7(5)	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{B}(1)$	125.5(6)
$\mathrm{C}(56)-\mathrm{C}(51)-\mathrm{B}(1)$	118.7(5)	$\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(51)$	121.6(6)
$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{C}(52)$	121.9(6)	$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{C}(58)$	119.2(6)
$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(58)$	118.8(7)	$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	119.3(6)
$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{C}(54)$	119.0(6)	$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{C}(57)$	120.7(7)
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(57)$	120.1(7)	$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(51)$	122.4(6)
$\mathrm{F}(13)-\mathrm{C}(57)-\mathrm{F}(15)$	105.8(6)	$\mathrm{F}(13)-\mathrm{C}(57)-\mathrm{F}(14)$	104.1(6)
$\mathrm{F}(15)-\mathrm{C}(57)-\mathrm{F}(14)$	105.8(6)	$\mathrm{F}(13)-\mathrm{C}(57)-\mathrm{C}(55)$	115.9(7)
$\mathrm{F}(15)-\mathrm{C}(57)-\mathrm{C}(55)$	111.2(6)	$\mathrm{F}(14)-\mathrm{C}(57)-\mathrm{C}(55)$	113.3(6)
$\mathrm{F}(16)-\mathrm{C}(58)-\mathrm{F}(17)$	106.5(6)	$\mathrm{F}(16)-\mathrm{C}(58)-\mathrm{F}(18)$	104.5(7)
$\mathrm{F}(17)-\mathrm{C}(58)-\mathrm{F}(18)$	101.6(6)	$\mathrm{F}(16)-\mathrm{C}(58)-\mathrm{C}(53)$	114.1(5)
$\mathrm{F}(17)-\mathrm{C}(58)-\mathrm{C}(53)$	114.3(7)	$\mathrm{F}(18)-\mathrm{C}(58)-\mathrm{C}(53)$	114.6(5)

$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{C}(64)$	$114.9(5)$	$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{B}(1)$	$121.5(4)$
$\mathrm{C}(64)-\mathrm{C}(59)-\mathrm{B}(1)$	$123.2(5)$	$\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{C}(61)$	$123.2(5)$
$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(60)$	$120.1(5)$	$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(66)$	$120.4(5)$
$\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{C}(66)$	$119.4(5)$	$\mathrm{C}(63)-\mathrm{C}(62)-\mathrm{C}(61)$	$118.2(5)$
$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(64)$	$120.9(5)$	$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(65)$	$119.1(4)$
$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{C}(65)$	$120.0(5)$	$\mathrm{C}(63)-\mathrm{C}(64)-\mathrm{C}(59)$	$122.5(5)$
$\mathrm{F}(20)-\mathrm{C}(65)-\mathrm{F}(19)$	$106.2(5)$	$\mathrm{F}(20)-\mathrm{C}(65)-\mathrm{F}(21)$	$105.9(4)$
$\mathrm{F}(19)-\mathrm{C}(65)-\mathrm{F}(21)$	$105.8(4)$	$\mathrm{F}(20)-\mathrm{C}(65)-\mathrm{C}(63)$	$113.9(4)$
$\mathrm{F}(19)-\mathrm{C}(65)-\mathrm{C}(63)$	$112.4(5)$	$\mathrm{F}(21)-\mathrm{C}(65)-\mathrm{C}(63)$	$112.0(5)$
$\mathrm{F}(23)-\mathrm{C}(66)-\mathrm{F}(22)$	$109.2(7)$	$\mathrm{F}(23)-\mathrm{C}(66)-\mathrm{F}(24)$	$104.0(9)$
$\mathrm{F}(22)-\mathrm{C}(66)-\mathrm{F}(24)$	$104.6(6)$	$\mathrm{F}(23)-\mathrm{C}(66)-\mathrm{C}(61)$	$115.0(6)$
$\mathrm{F}(22)-\mathrm{C}(66)-\mathrm{C}(61)$	$112.6(7)$	$\mathrm{F}(24)-\mathrm{C}(66)-\mathrm{C}(61)$	$110.6(6)$
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	$121.7(4)$	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{Al}(1)$	$126.9(3)$
$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Al}(1)$	$\mathrm{C}(32)-\mathrm{N}(2)-\mathrm{C}(33)$	$121.7(5)$	
$\mathrm{C}(32)-\mathrm{N}(2)-\mathrm{Al}(2)$	$\mathrm{C}(33)-\mathrm{N}(2)-\mathrm{Al}(2)$	$112.3(3)$	
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Al}(1)$	$\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{Al}(2)$	$131.0(3)$	
$\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{Al}(1)$	$\mathrm{Al}(2)-\mathrm{O}(2)-\mathrm{Al}(1)$	$103.98(15)$	
$\mathrm{C}(18)-\mathrm{O}(3)-\mathrm{Al}(2)$	$\mathrm{C}(34)-\mathrm{O}(4)-\mathrm{Al}(1)$	$131.2(3)$	
$\mathrm{C}(34)-\mathrm{O}(4)-\mathrm{Al}(2)$	$125.9(4)$	$\mathrm{Al}(1)-\mathrm{O}(4)-\mathrm{Al}(2)$	$102.74(15)$
$\mathrm{Al}(1) \# 1-\mathrm{O}(5)-\mathrm{Al}(2)$	$132.3(3)$		

Table B-25. Crystal Data and Structure Refinement for Complex V4e.

Identification code	Complex V4e
Empirical formula	C150 H145 Al4 B2 Cl18 F48 N4 O18
Formula weight	3971.34
Temperature	110(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	$a=29.458(2) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=20.3463(15) \AA \quad \beta=102.383(4)^{\circ}$.
Volume	17712(2) \AA^{3}
Z	4
Density (calculated)	$1.489 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.725 \mathrm{~mm}^{-1}$
F(000)	8068
Crystal size	$0.12 \times 0.11 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	2.64 to 60.90°.
Index ranges	-31<=h<=33, -23<=k<=23, -33<=1<=34
Reflections collected	129138
Independent reflections	$26167[\mathrm{R}$ (int) $=0.0959]$
Completeness to theta $=60.90^{\circ}$	96.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7071 and 0.6635
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	26167/1005/2194
Goodness-of-fit on F^{2}	3.754
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.1655, \mathrm{wR} 2=0.3270$
R indices (all data)	$\mathrm{R} 1=0.2258, \mathrm{wR} 2=0.3404$
Largest diff. peak and hole	2.367 and -1.045 e. \AA^{-3}

Table B-26. Bond Lengths [\AA] $]$ and Angles $\left[{ }^{\circ}\right.$] for Complex V4e.

$\mathrm{Al}(1)-\mathrm{O}(1)$	1.756(7)	$\mathrm{Al}(1)-\mathrm{O}(9)$	1.805(6)
$\mathrm{Al}(1)-\mathrm{O}(4)$	1.839(6)	$\mathrm{Al}(1)-\mathrm{O}(2)$	1.886(6)
$\mathrm{Al}(1)-\mathrm{N}(1)$	1.948(8)	$\mathrm{Al}(1)-\mathrm{Al}(2)$	2.901(4)
$\mathrm{Al}(2)-\mathrm{O}(3)$	1.753(6)	$\mathrm{Al}(2)-\mathrm{O}(2)$	1.813(6)
$\mathrm{Al}(2)-\mathrm{O}(10)$	1.817(6)	$\mathrm{Al}(2)-\mathrm{O}(4)$	1.877(6)
$\mathrm{Al}(2)-\mathrm{N}(2)$	1.943(8)	$\mathrm{Al}(3)-\mathrm{O}(5)$	1.758(7)
$\mathrm{Al}(3)-\mathrm{O}(9)$	1.809(6)	$\mathrm{Al}(3)-\mathrm{O}(8)$	1.845(7)
$\mathrm{Al}(3)-\mathrm{O}(6)$	1.886(6)	$\mathrm{Al}(3)-\mathrm{N}(3)$	1.931(8)
$\mathrm{Al}(3)-\mathrm{Al}(4)$	2.905(4)	$\mathrm{Al}(4)-\mathrm{O}(7)$	1.766(6)
$\mathrm{Al}(4)-\mathrm{O}(10)$	1.786(6)	$\mathrm{Al}(4)-\mathrm{O}(6)$	1.826(6)
$\mathrm{Al}(4)-\mathrm{O}(8)$	1.866(7)	$\mathrm{Al}(4)-\mathrm{N}(4)$	1.938(9)
B(1)-C(77)	1.599(14)	B(1)-C(93)	1.617(15)
$\mathrm{B}(1)-\mathrm{C}(69)$	1.646(15)	B(1)-C(85)	1.663(16)
$\mathrm{B}(2)-\mathrm{C}(101)$	1.60(2)	$\mathrm{B}(2)-\mathrm{C}(125)$	1.646(17)
$\mathrm{B}(2)-\mathrm{C}(109)$	1.66(2)	$\mathrm{B}(2)-\mathrm{C}(117)$	1.656(17)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.371(10)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.398(14)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.428(14)	$\mathrm{C}(2)-\mathrm{C}(15)$	1.431(15)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.430(14)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.317(16)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.406(17)	$\mathrm{C}(4)-\mathrm{C}(11)$	1.554(15)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.420(14)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.471(15)
$\mathrm{C}(7)-\mathrm{C}(9)$	1.519(15)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.534(15)
$\mathrm{C}(7)-\mathrm{C}(10)$	1.571(14)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.500(13)
$\mathrm{C}(11)-\mathrm{C}(14)$	1.517(13)	$\mathrm{C}(11)-\mathrm{C}(13)$	1.548(14)
$\mathrm{C}(15)-\mathrm{N}(1)$	1.318(12)	$\mathrm{C}(16)-\mathrm{N}(1)$	1.459(12)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.525(13)	$\mathrm{C}(17)-\mathrm{O}(2)$	$1.435(11)$
$\mathrm{C}(18)-\mathrm{O}(3)$	1.352(11)	$\mathrm{C}(18)-\mathrm{C}(23)$	1.382(11)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.428(13)	C(19)-C(20)	1.398(12)
$\mathrm{C}(19)-\mathrm{C}(32)$	1.449 (13)	$\mathrm{C}(20)-\mathrm{C}(21)$	1.367(13)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.333(12)	$\mathrm{C}(21)-\mathrm{C}(28)$	1.511(13)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.430(12)	C(23)-C(24)	1.551(12)
C(24)-C(27)	1.537(17)	C(24)-C(26)	1.540(17)
C(24)-C(25)	1.603(15)	C(28)-C(31)	1.503(14)

$\mathrm{C}(28)-\mathrm{C}(29)$	1.543(14)	C(28)-C(30)	1.577(13)
$\mathrm{C}(32)-\mathrm{N}(2)$	1.302(11)	$\mathrm{C}(33)-\mathrm{N}(2)$	1.472(11)
C(33)-C(34)	1.504(12)	$\mathrm{C}(34)-\mathrm{O}(4)$	1.401(11)
$\mathrm{C}(35)-\mathrm{O}(5)$	1.354(11)	C(35)-C(40)	1.393(13)
$\mathrm{C}(35)-\mathrm{C}(36)$	1.437(13)	C(36)-C(37)	1.401(12)
$\mathrm{C}(36)-\mathrm{C}(49)$	1.431(14)	$\mathrm{C}(40)-\mathrm{C}(39)$	1.386(13)
C(40)-C(41)	1.522(14)	$\mathrm{C}(41)-\mathrm{C}(44)$	1.526(15)
$\mathrm{C}(41)-\mathrm{C}(42)$	1.540(14)	$\mathrm{C}(41)-\mathrm{C}(43)$	1.568(16)
$\mathrm{C}(49)-\mathrm{N}(3)$	1.303(12)	$\mathrm{C}(50)-\mathrm{C}(51)$	$1.429(12)$
$\mathrm{C}(50)-\mathrm{N}(3)$	1.474(17)	$\mathrm{C}(51)-\mathrm{O}(6)$	$1.405(15)$
$\mathrm{C}(50 \mathrm{~A})-\mathrm{C}(51 \mathrm{~A})$	1.414(12)	$\mathrm{C}(50 \mathrm{~A})-\mathrm{N}(3)$	1.472(17)
$\mathrm{C}(51 \mathrm{~A})-\mathrm{O}(6)$	1.399 (16)	$\mathrm{C}(52)-\mathrm{O}(7)$	1.330(10)
$\mathrm{C}(52)-\mathrm{C}(53)$	1.407(13)	C(52)-C(57)	1.423(13)
$\mathrm{C}(53)-\mathrm{C}(54)$	1.420(13)	C(53)-C(66)	1.443(14)
$\mathrm{C}(54)-\mathrm{C}(55)$	1.330(15)	C(55)-C(56)	1.370(15)
$\mathrm{C}(55)-\mathrm{C}(62)$	1.577(17)	C(56)-C(57)	1.407(14)
$\mathrm{C}(57)-\mathrm{C}(58)$	1.516(14)	$\mathrm{C}(58)-\mathrm{C}(59)$	1.522(14)
$\mathrm{C}(58)-\mathrm{C}(61)$	1.522(15)	$\mathrm{C}(58)-\mathrm{C}(60)$	1.581(14)
$\mathrm{C}(62)-\mathrm{C}(63)$	1.45(2)	$\mathrm{C}(62)-\mathrm{C}(65)$	1.54(2)
$\mathrm{C}(62)-\mathrm{C}(64)$	1.63(2)	$\mathrm{C}(66)-\mathrm{N}(4)$	1.272(12)
$\mathrm{C}(67)-\mathrm{N}(4)$	1.468(12)	$\mathrm{C}(67)-\mathrm{C}(68)$	1.547(13)
$\mathrm{C}(68)-\mathrm{O}(8)$	1.429(12)	C(69)-C(70)	1.411(13)
$\mathrm{C}(69)-\mathrm{C}(74)$	1.409(13)	$\mathrm{C}(70)-\mathrm{C}(71)$	1.348(13)
$\mathrm{C}(71)-\mathrm{C}(72)$	1.388(14)	$\mathrm{C}(71)-\mathrm{C}(75)$	1.505(15)
$\mathrm{C}(72)-\mathrm{C}(73)$	1.372(15)	$\mathrm{C}(73)-\mathrm{C}(74)$	1.369(14)
$\mathrm{C}(73)-\mathrm{C}(76)$	1.469(17)	$\mathrm{C}(75)-\mathrm{F}(5 \mathrm{~A})$	1.308(17)
$\mathrm{C}(75)-\mathrm{F}(5)$	1.312(11)	$\mathrm{C}(75)-\mathrm{F}(6)$	1.320(11)
$\mathrm{C}(75)-\mathrm{F}(6 \mathrm{~A})$	1.327(17)	$\mathrm{C}(75)-\mathrm{F}(4)$	1.330(11)
$\mathrm{C}(75)-\mathrm{F}(4 \mathrm{~A})$	1.340(17)	$\mathrm{C}(76)-\mathrm{F}(2)$	1.305(17)
$\mathrm{C}(76)-\mathrm{F}(3)$	1.29 (2)	$\mathrm{C}(76)-\mathrm{F}(1)$	1.37(2)
C(77)-C(78)	1.422(13)	$\mathrm{C}(77)-\mathrm{C}(82)$	1.423(13)
$\mathrm{C}(78)-\mathrm{C}(79)$	1.316(13)	$\mathrm{C}(79)$-C(80)	1.457(15)
$\mathrm{C}(79)-\mathrm{C}(83)$	1.469(16)	C(80)-C(81)	1.384(14)
$\mathrm{C}(81)-\mathrm{C}(82)$	1.364(13)	C(81)-C(84)	1.517(15)

$\mathrm{C}(83)-\mathrm{F}(9)$	1.305(11)	$\mathrm{C}(83)-\mathrm{F}(7 \mathrm{~A})$	1.320(17)
$\mathrm{C}(83)-\mathrm{F}(9 \mathrm{~A})$	1.316(16)	$\mathrm{C}(83)-\mathrm{F}(8)$	1.336(11)
$\mathrm{C}(83)-\mathrm{F}(8 \mathrm{~A})$	1.320(17)	$\mathrm{C}(83)-\mathrm{F}(7)$	1.334(12)
$\mathrm{C}(84)-\mathrm{F}(10)$	1.329(13)	$\mathrm{C}(84)-\mathrm{F}(12)$	1.317(13)
$\mathrm{C}(84)-\mathrm{F}(11)$	1.341(12)	$\mathrm{C}(85)-\mathrm{C}(86)$	1.403(13)
C(85)-C(90)	1.437(13)	C(86)-C(87)	1.379(13)
C(87)-C(88)	1.390(13)	$\mathrm{C}(87)-\mathrm{C}(91)$	1.510(14)
C(88)-C(89)	1.369(14)	C(89)-C(90)	1.370(14)
C(89)-C(92)	1.483(15)	$\mathrm{C}(91)-\mathrm{F}(13)$	$1.335(11)$
$\mathrm{C}(91)-\mathrm{F}(14)$	1.329(11)	$\mathrm{C}(91)-\mathrm{F}(15)$	1.369(12)
$\mathrm{C}(92)-\mathrm{F}(16)$	1.324(13)	$\mathrm{C}(92)-\mathrm{F}(17)$	1.348(15)
$\mathrm{C}(92)-\mathrm{F}(18)$	1.365(14)	C(93)-C(98)	1.401(13)
C(93)-C(94)	1.431(13)	$\mathrm{C}(94)-\mathrm{C}(95)$	1.337(14)
C(95)-C(96)	1.363(15)	C(95)-C(99)	1.559(17)
C(96)-C(97)	1.355(15)	C(97)-C(98)	1.413(14)
$\mathrm{C}(97)-\mathrm{C}(100)$	1.484(16)	$\mathrm{C}(99)-\mathrm{F}(21 \mathrm{~A})$	1.272(15)
$\mathrm{C}(99)-\mathrm{F}(21)$	$1.296(11)$	C (99)-F(19A)	1.299(15)
$\mathrm{C}(99)-\mathrm{F}(19)$	1.309(12)	$\mathrm{C}(99)-\mathrm{F}(20 \mathrm{~A})$	1.317(15)
$\mathrm{C}(99)-\mathrm{F}(20)$	1.344(12)	$\mathrm{C}(100)-\mathrm{F}(23)$	1.299(14)
$\mathrm{C}(100)-\mathrm{F}(22)$	1.349(13)	$\mathrm{C}(100)-\mathrm{F}(24)$	1.337(15)
$\mathrm{C}(101)-\mathrm{C}(106)$	1.453(19)	$\mathrm{C}(101)-\mathrm{C}(102)$	1.45(2)
$\mathrm{C}(102)-\mathrm{C}(103)$	1.40(2)	$\mathrm{C}(103)-\mathrm{C}(104)$	1.47(2)
C(103)-C(107)	1.61(2)	$\mathrm{C}(104)-\mathrm{C}(105)$	1.41(2)
$\mathrm{C}(105)-\mathrm{C}(106)$	1.316(18)	$\mathrm{C}(105)-\mathrm{C}(108)$	1.567(19)
$\mathrm{C}(107)-\mathrm{F}(29)$	1.19(2)	$\mathrm{C}(107)-\mathrm{F}(28)$	1.36(2)
$\mathrm{C}(107)-\mathrm{F}(30)$	1.43(2)	$\mathrm{C}(108)$-F(25)	1.291(19)
$\mathrm{C}(108)$-F(26)	1.270(18)	$\mathrm{C}(108)-\mathrm{F}(27)$	1.38(2)
$\mathrm{C}(109)-\mathrm{C}(110)$	1.365(18)	$\mathrm{C}(109)-\mathrm{C}(114)$	1.426 (18)
$\mathrm{C}(110)-\mathrm{C}(111)$	1.38(2)	$\mathrm{C}(111)-\mathrm{C}(112)$	1.34(2)
$\mathrm{C}(111)-\mathrm{C}(115)$	1.49 (3)	$\mathrm{C}(112)$-C(113)	1.39 (2)
$\mathrm{C}(113)-\mathrm{C}(114)$	1.375(18)	$\mathrm{C}(113)-\mathrm{C}(116)$	1.51(2)
$\mathrm{C}(115)-\mathrm{F}(33)$	1.28(2)	$\mathrm{C}(115)-\mathrm{F}(32)$	1.27(2)
$\mathrm{C}(115)-\mathrm{F}(31)$	1.32(2)	$\mathrm{C}(116)-\mathrm{F}(35)$	1.254(19)
$\mathrm{C}(116)-\mathrm{F}(36)$	1.274(19)	$\mathrm{C}(116)-\mathrm{F}(34)$	1.37(2)

$\mathrm{C}(117)-\mathrm{C}(118)$	1.395(15)	$\mathrm{C}(117)-\mathrm{C}(122)$	1.390(16)
$\mathrm{C}(118)-\mathrm{C}(119)$	1.368(15)	$\mathrm{C}(119)-\mathrm{C}(120)$	1.433(18)
$\mathrm{C}(119)-\mathrm{C}(123)$	1.488(18)	$\mathrm{C}(120)-\mathrm{C}(121)$	1.360(17)
$\mathrm{C}(121)-\mathrm{C}(122)$	1.387(15)	$\mathrm{C}(121)-\mathrm{C}(124)$	1.49(2)
$\mathrm{C}(123)-\mathrm{F}(38)$	1.304(18)	$\mathrm{C}(123)-\mathrm{F}(39)$	1.283(16)
$\mathrm{C}(123)-\mathrm{F}(37)$	1.38(2)	$\mathrm{C}(124)-\mathrm{F}(42)$	1.086(17)
$\mathrm{C}(124)-\mathrm{F}(41)$	1.42(2)	$\mathrm{C}(124)-\mathrm{F}(40)$	1.43(2)
$\mathrm{C}(125)-\mathrm{C}(130)$	1.409(14)	$\mathrm{C}(125)-\mathrm{C}(126)$	1.428(15)
$\mathrm{C}(126)-\mathrm{C}(127)$	1.391(14)	$\mathrm{C}(127)-\mathrm{C}(128)$	1.396 (14)
$\mathrm{C}(127)-\mathrm{C}(131)$	1.499(15)	$\mathrm{C}(128)-\mathrm{C}(129)$	1.382(15)
$\mathrm{C}(129)-\mathrm{C}(130)$	1.359(14)	$\mathrm{C}(129)-\mathrm{C}(132)$	1.494(15)
$\mathrm{C}(131)-\mathrm{F}(44)$	1.339(12)	$\mathrm{C}(131)-\mathrm{F}(43)$	1.325(12)
$\mathrm{C}(131)-\mathrm{F}(45)$	1.329(13)	$\mathrm{C}(132)-\mathrm{F}(48)$	1.292(14)
$\mathrm{C}(132)-\mathrm{F}(47)$	1.319(13)	$\mathrm{C}(132)-\mathrm{F}(46)$	1.385(14)
$\mathrm{C}(133)-\mathrm{O}(11)$	1.090(18)	$\mathrm{C}(133)-\mathrm{O}(12)$	1.31(2)
C(133)-C(134)	1.56(2)	$\mathrm{C}(134)-\mathrm{O}(14)$	1.414(19)
C(134)-C(137)	1.44(2)	$\mathrm{C}(135)-\mathrm{O}(13 \mathrm{~A})$	1.138(15)
$\mathrm{C}(135)-\mathrm{O}(13)$	1.131(14)	$\mathrm{C}(135)-\mathrm{O}(14)$	1.32(2)
C(135)-C(136)	1.566(17)	$\mathrm{C}(136)-\mathrm{O}(12)$	1.324(14)
$\mathrm{C}(136)-\mathrm{C}(138)$	1.51(2)	$\mathrm{C}(139)$-O(17)	1.15(2)
$\mathrm{C}(139)$-O(15)	1.28(2)	$\mathrm{C}(139)$-C(140)	1.47(2)
C(139)-C(240)	1.49(2)	$\mathrm{C}(140)$-O(16)	1.44(2)
C(140)-C(143)	1.561(16)	$\mathrm{C}(141)-\mathrm{O}(18)$	1.136(12)
$\mathrm{C}(141)-\mathrm{O}(16)$	1.30(2)	$\mathrm{C}(141)-\mathrm{C}(142)$	1.452(18)
C(240)-C(243)	1.555(17)	$\mathrm{C}(240)-\mathrm{O}(16)$	1.47(3)
$\mathrm{C}(241)-\mathrm{O}(18 \mathrm{~A})$	1.110(15)	$\mathrm{C}(241)$ - $\mathrm{O}(16)$	1.31(2)
$\mathrm{C}(241)-\mathrm{C}(142)$	1.441(18)	$\mathrm{C}(142)-\mathrm{O}(15)$	$1.442(18)$
$\mathrm{C}(142)$-C(144)	1.472(15)	$\mathrm{C}(150)-\mathrm{Cl}(2)$	1.757(15)
$\mathrm{C}(150)-\mathrm{Cl}(1)$	1.781(16)	$\mathrm{C}(150)-\mathrm{Cl}(3 \mathrm{~A})$	1.788(17)
$\mathrm{C}(150)-\mathrm{Cl}(3)$	1.819(17)	$\mathrm{C}(151)-\mathrm{Cl}(6)$	$1.665(12)$
$\mathrm{C}(151)-\mathrm{Cl}(4)$	$1.755(11)$	$\mathrm{C}(151)-\mathrm{Cl}(5)$	1.776(12)
$\mathrm{C}(152)-\mathrm{Cl}(7 \mathrm{~A})$	1.658(19)	$\mathrm{C}(152)-\mathrm{Cl}(9)$	1.607(17)
$\mathrm{C}(152)-\mathrm{Cl}(8)$	1.654(16)	$\mathrm{C}(152)-\mathrm{Cl}(7)$	1.827(17)
$\mathrm{C}(152)-\mathrm{Cl}(8 \mathrm{~A})$	1.785(19)	$\mathrm{C}(152)-\mathrm{Cl}(9 \mathrm{~A})$	1.82(2)

$\mathrm{C}(153)-\mathrm{Cl}(12)$	1.713(15)	$\mathrm{C}(153)-\mathrm{Cl}(11)$	1.719(14)
$\mathrm{C}(153)-\mathrm{Cl}(10)$	1.726(14)	$\mathrm{C}(153)-\mathrm{Cl}(22)$	1.756(17)
$\mathrm{C}(154)-\mathrm{Cl}(13)$	1.786(18)	$\mathrm{C}(154)-\mathrm{Cl}(14)$	1.792(19)
$\mathrm{C}(154)-\mathrm{Cl}(25)$	1.81(2)	$\mathrm{C}(154)-\mathrm{Cl}(23)$	1.822(19)
$\mathrm{C}(154)-\mathrm{Cl}(15)$	1.842(19)	$\mathrm{C}(154)-\mathrm{Cl}(24)$	1.853(19)
$\mathrm{C}(155)-\mathrm{Cl}(17)$	1.725(18)	$\mathrm{C}(155)-\mathrm{Cl}(18)$	1.727(18)
$\mathrm{C}(155)-\mathrm{Cl}(16)$	1.755(18)	$\mathrm{C}(255)-\mathrm{Cl}(28)$	1.718(18)
$\mathrm{C}(255)-\mathrm{Cl}(27)$	1.732(18)	$\mathrm{C}(255)-\mathrm{Cl}(26)$	1.741(19)
C(38)-C(37)	1.347(14)	C(38)-C(39)	1.397(14)
$\mathrm{C}(38)$-C(45)	1.536(15)	$\mathrm{C}(45)-\mathrm{C}(47)$	1.45(2)
$\mathrm{C}(45)$-C(46)	1.52(2)	$\mathrm{C}(45)-\mathrm{C}(48)$	1.63(2)
		$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(9)$	104.6(3)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(4)$	96.7(3)	$\mathrm{O}(9)-\mathrm{Al}(1)-\mathrm{O}(4)$	105.2(3)
$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{O}(2)$	151.4(3)	$\mathrm{O}(9)-\mathrm{Al}(1)-\mathrm{O}(2)$	103.9(3)
$\mathrm{O}(4)-\mathrm{Al}(1)-\mathrm{O}(2)$	76.5(3)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{N}(1)$	92.4(3)
$\mathrm{O}(9)-\mathrm{Al}(1)-\mathrm{N}(1)$	100.3(3)	$\mathrm{O}(4)-\mathrm{Al}(1)-\mathrm{N}(1)$	149.7(3)
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{N}(1)$	81.7(3)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{Al}(2)$	128.7(2)
$\mathrm{O}(9)-\mathrm{Al}(1)-\mathrm{Al}(2)$	110.7(2)	$\mathrm{O}(4)-\mathrm{Al}(1)-\mathrm{Al}(2)$	39.1(2)
$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{Al}(2)$	37.4(2)	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{Al}(2)$	115.6(3)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(2)$	97.1(3)	$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(10)$	105.1(3)
$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{O}(10)$	102.8(3)	$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{O}(4)$	149.9(3)
$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{O}(4)$	77.3(3)	$\mathrm{O}(10)-\mathrm{Al}(2)-\mathrm{O}(4)$	104.9(3)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{N}(2)$	92.2(3)	$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{N}(2)$	152.8(3)
$\mathrm{O}(10)-\mathrm{Al}(2)-\mathrm{N}(2)$	99.3(3)	$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{N}(2)$	81.8(3)
$\mathrm{O}(3)-\mathrm{Al}(2)-\mathrm{Al}(1)$	128.4(2)	$\mathrm{O}(2)-\mathrm{Al}(2)-\mathrm{Al}(1)$	39.2(2)
$\mathrm{O}(10)-\mathrm{Al}(2)-\mathrm{Al}(1)$	110.0(2)	$\mathrm{O}(4)-\mathrm{Al}(2)-\mathrm{Al}(1)$	38.2(2)
$\mathrm{N}(2)-\mathrm{Al}(2)-\mathrm{Al}(1)$	117.3(2)	$\mathrm{O}(5)-\mathrm{Al}(3)-\mathrm{O}(9)$	102.3(3)
$\mathrm{O}(5)-\mathrm{Al}(3)-\mathrm{O}(8)$	96.9(3)	$\mathrm{O}(9)-\mathrm{Al}(3)-\mathrm{O}(8)$	107.8(3)
$\mathrm{O}(5)-\mathrm{Al}(3)-\mathrm{O}(6)$	156.8(3)	$\mathrm{O}(9)-\mathrm{Al}(3)-\mathrm{O}(6)$	100.9(3)
$\mathrm{O}(8)-\mathrm{Al}(3)-\mathrm{O}(6)$	76.5(3)	$\mathrm{O}(5)-\mathrm{Al}(3)-\mathrm{N}(3)$	92.4(3)
$\mathrm{O}(9)-\mathrm{Al}(3)-\mathrm{N}(3)$	104.8(4)	$\mathrm{O}(8)-\mathrm{Al}(3)-\mathrm{N}(3)$	143.2(3)
$\mathrm{O}(6)-\mathrm{Al}(3)-\mathrm{N}(3)$	81.1(3)	$\mathrm{O}(5)-\mathrm{Al}(3)-\mathrm{Al}(4)$	131.0(2)
$\mathrm{O}(9)-\mathrm{Al}(3)-\mathrm{Al}(4)$	109.8(2)	$\mathrm{O}(8)-\mathrm{Al}(3)-\mathrm{Al}(4)$	38.7(2)
$\mathrm{O}(6)-\mathrm{Al}(3)-\mathrm{Al}(4)$	37.8(2)	$\mathrm{N}(3)-\mathrm{Al}(3)-\mathrm{Al}(4)$	113.0(3)

$\mathrm{O}(7)-\mathrm{Al}(4)-\mathrm{O}(10)$	105.2(3)	$\mathrm{O}(7)-\mathrm{Al}(4)-\mathrm{O}(6)$	95.5(3)
$\mathrm{O}(10)-\mathrm{Al}(4)-\mathrm{O}(6)$	104.6(3)	$\mathrm{O}(7)-\mathrm{Al}(4)-\mathrm{O}(8)$	149.5(3)
$\mathrm{O}(10)-\mathrm{Al}(4)-\mathrm{O}(8)$	105.3(3)	$\mathrm{O}(6)-\mathrm{Al}(4)-\mathrm{O}(8)$	77.4(3)
$\mathrm{O}(7)-\mathrm{Al}(4)-\mathrm{N}(4)$	91.6(3)	$\mathrm{O}(10)-\mathrm{Al}(4)-\mathrm{N}(4)$	99.9(3)
$\mathrm{O}(6)-\mathrm{Al}(4)-\mathrm{N}(4)$	151.7(3)	$\mathrm{O}(8)-\mathrm{Al}(4)-\mathrm{N}(4)$	82.6(3)
$\mathrm{O}(7)-\mathrm{Al}(4)-\mathrm{Al}(3)$	127.2(2)	$\mathrm{O}(10)-\mathrm{Al}(4)-\mathrm{Al}(3)$	110.9(2)
$\mathrm{O}(6)-\mathrm{Al}(4)-\mathrm{Al}(3)$	39.3(2)	$\mathrm{O}(8)-\mathrm{Al}(4)-\mathrm{Al}(3)$	38.2(2)
$\mathrm{N}(4)-\mathrm{Al}(4)-\mathrm{Al}(3)$	117.7(3)	$\mathrm{C}(77)-\mathrm{B}(1)-\mathrm{C}(93)$	104.5(8)
$\mathrm{C}(77)-\mathrm{B}(1)-\mathrm{C}(69)$	113.1(8)	$\mathrm{C}(93)-\mathrm{B}(1)-\mathrm{C}(69)$	111.5(8)
$\mathrm{C}(77)-\mathrm{B}(1)-\mathrm{C}(85)$	113.7(8)	$\mathrm{C}(93)-\mathrm{B}(1)-\mathrm{C}(85)$	109.7(8)
$\mathrm{C}(69)-\mathrm{B}(1)-\mathrm{C}(85)$	104.5(8)	$\mathrm{C}(101)-\mathrm{B}(2)-\mathrm{C}(125)$	111.4(10)
$\mathrm{C}(101)-\mathrm{B}(2)-\mathrm{C}(109)$	111.1(11)	$\mathrm{C}(125)-\mathrm{B}(2)-\mathrm{C}(109)$	103.9(11)
$\mathrm{C}(101)-\mathrm{B}(2)-\mathrm{C}(117)$	105.1(11)	$\mathrm{C}(125)-\mathrm{B}(2)-\mathrm{C}(117)$	114.3(10)
$\mathrm{C}(109)-\mathrm{B}(2)-\mathrm{C}(117)$	111.2(10)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	119.2(9)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	118.4(9)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	122.3(9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(15)$	125.4(9)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118.2(11)
$\mathrm{C}(15)-\mathrm{C}(2)-\mathrm{C}(3)$	116.3(10)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	122.6(12)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.0(10)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	122.1(12)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(11)$	119.8(11)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	125.1(11)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	113.6(10)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	123.7(9)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	122.7(10)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	112.8(10)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	114.0(9)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(8)$	107.0(9)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	109.1(9)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(10)$	108.2(9)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	105.4(9)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	110.1(10)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	112.9(11)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(13)$	105.5(12)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(4)$	107.3(11)	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(4)$	110.7(9)
$\mathrm{C}(13)-\mathrm{C}(11)-\mathrm{C}(4)$	110.4(11)	$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(2)$	121.9(10)
$\mathrm{N}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	105.4(8)	$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(16)$	107.1(7)
$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{C}(23)$	120.8(9)	$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{C}(19)$	120.1(8)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)$	119.0(9)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	121.0(9)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(32)$	117.4(9)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(32)$	121.6(8)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	121.4(10)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	115.1(9)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(28)$	121.4(9)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(28)$	123.5(9)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	129.2(9)	$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	114.2(8)

$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(24)$	121.0(8)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	124.7(8)
$\mathrm{C}(27)-\mathrm{C}(24)-\mathrm{C}(23)$	109.1(10)	$\mathrm{C}(27)-\mathrm{C}(24)-\mathrm{C}(26)$	111.2(9)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(26)$	110.1(9)	$\mathrm{C}(27)-\mathrm{C}(24)-\mathrm{C}(25)$	107.9(10)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	114.7(8)	$\mathrm{C}(26)-\mathrm{C}(24)-\mathrm{C}(25)$	103.7(11)
$\mathrm{C}(31)-\mathrm{C}(28)-\mathrm{C}(21)$	112.6(8)	$\mathrm{C}(31)-\mathrm{C}(28)-\mathrm{C}(29)$	108.7(9)
$\mathrm{C}(21)-\mathrm{C}(28)-\mathrm{C}(29)$	111.2(8)	$\mathrm{C}(31)-\mathrm{C}(28)-\mathrm{C}(30)$	107.4(9)
$\mathrm{C}(21)-\mathrm{C}(28)-\mathrm{C}(30)$	107.8(8)	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(30)$	109.1(8)
$\mathrm{N}(2)-\mathrm{C}(32)-\mathrm{C}(19)$	124.5(9)	$\mathrm{N}(2)-\mathrm{C}(33)-\mathrm{C}(34)$	106.1(7)
$\mathrm{O}(4)-\mathrm{C}(34)-\mathrm{C}(33)$	108.5(8)	$\mathrm{O}(5)-\mathrm{C}(35)-\mathrm{C}(40)$	121.9(9)
$\mathrm{O}(5)-\mathrm{C}(35)-\mathrm{C}(36)$	119.6(9)	$\mathrm{C}(40)-\mathrm{C}(35)-\mathrm{C}(36)$	118.4(8)
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(35)$	120.7(9)	C(37)-C(36)-C(49)	117.3(9)
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(49)$	121.9(8)	$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(35)$	117.2(9)
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{C}(41)$	121.8(9)	$\mathrm{C}(35)-\mathrm{C}(40)-\mathrm{C}(41)$	121.1(8)
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(44)$	109.9(9)	$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	113.1(9)
$\mathrm{C}(44)-\mathrm{C}(41)-\mathrm{C}(42)$	104.8(10)	$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(43)$	109.6(9)
$\mathrm{C}(44)-\mathrm{C}(41)-\mathrm{C}(43)$	112.4(9)	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(43)$	107.0(9)
$\mathrm{N}(3)-\mathrm{C}(49)-\mathrm{C}(36)$	125.2(9)	$\mathrm{C}(51)-\mathrm{C}(50)-\mathrm{N}(3)$	108.2(16)
$\mathrm{O}(6)-\mathrm{C}(51)-\mathrm{C}(50)$	114.4(16)	$\mathrm{C}(51 \mathrm{~A})-\mathrm{C}(50 \mathrm{~A})-\mathrm{N}(3)$	114.2(17)
$\mathrm{O}(6)-\mathrm{C}(51 \mathrm{~A})-\mathrm{C}(50 \mathrm{~A})$	109.2(17)	$\mathrm{O}(7)-\mathrm{C}(52)-\mathrm{C}(53)$	120.6(8)
$\mathrm{O}(7)-\mathrm{C}(52)-\mathrm{C}(57)$	119.5(9)	$\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(57)$	119.8(9)
$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	119.3(10)	$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(66)$	121.7(9)
$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{C}(66)$	119.0(10)	$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(53)$	122.3(11)
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$	117.3(10)	$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(62)$	122.6(12)
$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{C}(62)$	120.1(11)	$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)$	126.1(10)
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(52)$	114.9(10)	$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(58)$	122.9(9)
$\mathrm{C}(52)-\mathrm{C}(57)-\mathrm{C}(58)$	122.1(8)	$\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(59)$	113.1(9)
$\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(61)$	111.5(9)	$\mathrm{C}(59)-\mathrm{C}(58)-\mathrm{C}(61)$	107.3(10)
$\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(60)$	110.7(8)	$\mathrm{C}(59)-\mathrm{C}(58)-\mathrm{C}(60)$	106.3(9)
$\mathrm{C}(61)-\mathrm{C}(58)-\mathrm{C}(60)$	107.8(9)	$\mathrm{C}(63)-\mathrm{C}(62)-\mathrm{C}(65)$	123.2(15)
$\mathrm{C}(63)-\mathrm{C}(62)-\mathrm{C}(55)$	110.0(12)	$\mathrm{C}(65)-\mathrm{C}(62)-\mathrm{C}(55)$	108.7(12)
$\mathrm{C}(63)-\mathrm{C}(62)-\mathrm{C}(64)$	104.7(13)	$\mathrm{C}(65)-\mathrm{C}(62)-\mathrm{C}(64)$	97.8(13)
$\mathrm{C}(55)-\mathrm{C}(62)-\mathrm{C}(64)$	111.6(12)	$\mathrm{N}(4)-\mathrm{C}(66)-\mathrm{C}(53)$	124.8(10)
$\mathrm{N}(4)-\mathrm{C}(67)-\mathrm{C}(68)$	107.5(8)	$\mathrm{O}(8)-\mathrm{C}(68)-\mathrm{C}(67)$	106.6(8)
$\mathrm{C}(70)-\mathrm{C}(69)-\mathrm{C}(74)$	112.5(9)	$\mathrm{C}(70)-\mathrm{C}(69)-\mathrm{B}(1)$	125.0(8)

$\mathrm{C}(74)-\mathrm{C}(69)-\mathrm{B}(1)$	122.4(8)	$\mathrm{C}(71)-\mathrm{C}(70)-\mathrm{C}(69)$	124.8(9)
$\mathrm{C}(70)-\mathrm{C}(71)-\mathrm{C}(72)$	119.6(9)	$\mathrm{C}(70)-\mathrm{C}(71)-\mathrm{C}(75)$	121.9(9)
$\mathrm{C}(72)-\mathrm{C}(71)-\mathrm{C}(75)$	118.5(9)	$\mathrm{C}(73)-\mathrm{C}(72)-\mathrm{C}(71)$	119.3(9)
$\mathrm{C}(74)-\mathrm{C}(73)-\mathrm{C}(72)$	119.5(10)	$\mathrm{C}(74)-\mathrm{C}(73)-\mathrm{C}(76)$	120.6(12)
$\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{C}(76)$	119.8(12)	$\mathrm{C}(73)-\mathrm{C}(74)-\mathrm{C}(69)$	124.3(9)
$\mathrm{F}(5 \mathrm{~A})-\mathrm{C}(75)-\mathrm{F}(5)$	35(2)	$\mathrm{F}(5 \mathrm{~A})-\mathrm{C}(75)-\mathrm{F}(6)$	119(2)
$\mathrm{F}(5)-\mathrm{C}(75)-\mathrm{F}(6)$	105.7(12)	$\mathrm{F}(5 \mathrm{~A})-\mathrm{C}(75)-\mathrm{F}(6 \mathrm{~A})$	114(4)
$\mathrm{F}(5)-\mathrm{C}(75)-\mathrm{F}(6 \mathrm{~A})$	87(3)	$\mathrm{F}(6)-\mathrm{C}(75)-\mathrm{F}(6 \mathrm{~A})$	28(2)
$\mathrm{F}(5 \mathrm{~A})-\mathrm{C}(75)-\mathrm{F}(4)$	69(2)	$\mathrm{F}(5)-\mathrm{C}(75)-\mathrm{F}(4)$	103.9(11)
$\mathrm{F}(6)-\mathrm{C}(75)-\mathrm{F}(4)$	107.6(10)	$\mathrm{F}(6 \mathrm{~A})-\mathrm{C}(75)-\mathrm{F}(4)$	134(2)
$\mathrm{F}(5 \mathrm{~A})-\mathrm{C}(75)-\mathrm{F}(4 \mathrm{~A})$	111(3)	$\mathrm{F}(5)-\mathrm{C}(75)-\mathrm{F}(4 \mathrm{~A})$	139.8(18)
$\mathrm{F}(6)-\mathrm{C}(75)-\mathrm{F}(4 \mathrm{~A})$	68.9(17)	$\mathrm{F}(6 \mathrm{~A})-\mathrm{C}(75)-\mathrm{F}(4 \mathrm{~A})$	97(3)
$\mathrm{F}(4)-\mathrm{C}(75)-\mathrm{F}(4 \mathrm{~A})$	47.1(16)	$\mathrm{F}(5 \mathrm{~A})-\mathrm{C}(75)-\mathrm{C}(71)$	122(2)
$\mathrm{F}(5)-\mathrm{C}(75)-\mathrm{C}(71)$	112.1(10)	$\mathrm{F}(6)-\mathrm{C}(75)-\mathrm{C}(71)$	114.4(11)
$\mathrm{F}(6 \mathrm{~A})-\mathrm{C}(75)-\mathrm{C}(71)$	104(3)	$\mathrm{F}(4)-\mathrm{C}(75)-\mathrm{C}(71)$	112.3(9)
$\mathrm{F}(4 \mathrm{~A})-\mathrm{C}(75)-\mathrm{C}(71)$	105.6(16)	$\mathrm{F}(2)-\mathrm{C}(76)-\mathrm{F}(3)$	106.4(15)
$\mathrm{F}(2)-\mathrm{C}(76)-\mathrm{F}(1)$	104.1(13)	$\mathrm{F}(3)-\mathrm{C}(76)-\mathrm{F}(1)$	103.1(14)
$\mathrm{F}(2)-\mathrm{C}(76)-\mathrm{C}(73)$	117.1(14)	$\mathrm{F}(3)-\mathrm{C}(76)-\mathrm{C}(73)$	114.3(15)
$\mathrm{F}(1)-\mathrm{C}(76)-\mathrm{C}(73)$	110.4(15)	$\mathrm{C}(78)-\mathrm{C}(77)-\mathrm{C}(82)$	110.5(8)
$\mathrm{C}(78)-\mathrm{C}(77)-\mathrm{B}(1)$	123.9(8)	$\mathrm{C}(82)-\mathrm{C}(77)-\mathrm{B}(1)$	125.1(9)
$\mathrm{C}(79)-\mathrm{C}(78)-\mathrm{C}(77)$	127.6(9)	$\mathrm{C}(78)-\mathrm{C}(79)-\mathrm{C}(80)$	118.8(9)
$\mathrm{C}(78)-\mathrm{C}(79)-\mathrm{C}(83)$	124.2(10)	C(80)-C(79)-C(83)	116.8(9)
$\mathrm{C}(81)-\mathrm{C}(80)-\mathrm{C}(79)$	116.2(9)	$\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{C}(82)$	121.7(9)
$\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{C}(84)$	118.0(10)	$\mathrm{C}(82)-\mathrm{C}(81)-\mathrm{C}(84)$	120.0(10)
$\mathrm{C}(81)-\mathrm{C}(82)-\mathrm{C}(77)$	124.6(9)	$\mathrm{F}(9)-\mathrm{C}(83)-\mathrm{F}(7 \mathrm{~A})$	119(3)
$F(9)-C(83)-\mathrm{F}(9 \mathrm{~A})$	51.5(19)	$\mathrm{F}(7 \mathrm{~A})-\mathrm{C}(83)-\mathrm{F}(9 \mathrm{~A})$	118(3)
$\mathrm{F}(9)-\mathrm{C}(83)-\mathrm{F}(8)$	106.7(11)	$\mathrm{F}(7 \mathrm{~A})-\mathrm{C}(83)-\mathrm{F}(8)$	28(2)
$\mathrm{F}(9 \mathrm{~A})-\mathrm{C}(83)-\mathrm{F}(8)$	132.5(19)	$\mathrm{F}(9)-\mathrm{C}(83)-\mathrm{F}(8 \mathrm{~A})$	46.4(17)
$\mathrm{F}(7 \mathrm{~A})-\mathrm{C}(83)-\mathrm{F}(8 \mathrm{~A})$	89(3)	$\mathrm{F}(9 \mathrm{~A})-\mathrm{C}(83)-\mathrm{F}(8 \mathrm{~A})$	96(3)
$\mathrm{F}(8)-\mathrm{C}(83)-\mathrm{F}(8 \mathrm{~A})$	66.5(18)	$\mathrm{F}(9)-\mathrm{C}(83)-\mathrm{F}(7)$	108.1(11)
$\mathrm{F}(7 \mathrm{~A})-\mathrm{C}(83)-\mathrm{F}(7)$	75(2)	$\mathrm{F}(9 \mathrm{~A})-\mathrm{C}(83)-\mathrm{F}(7)$	60.3(19)
$\mathrm{F}(8)-\mathrm{C}(83)-\mathrm{F}(7)$	102.2(12)	$\mathrm{F}(8 \mathrm{~A})-\mathrm{C}(83)-\mathrm{F}(7)$	137.8(18)
$\mathrm{F}(9)-\mathrm{C}(83)-\mathrm{C}(79)$	116.5(10)	$\mathrm{F}(7 \mathrm{~A})-\mathrm{C}(83)-\mathrm{C}(79)$	119(3)
$\mathrm{F}(9 \mathrm{~A})-\mathrm{C}(83)-\mathrm{C}(79)$	116.3(18)	$\mathrm{F}(8)-\mathrm{C}(83)-\mathrm{C}(79)$	111.2(10)

$\mathrm{F}(8 \mathrm{~A})-\mathrm{C}(83)-\mathrm{C}(79)$	110.8(17)	$\mathrm{F}(7)-\mathrm{C}(83)-\mathrm{C}(79)$	111.1(10)
$\mathrm{F}(10)-\mathrm{C}(84)-\mathrm{F}(12)$	106.7(10)	$\mathrm{F}(10)-\mathrm{C}(84)-\mathrm{F}(11)$	105.9(9)
$\mathrm{F}(12)-\mathrm{C}(84)-\mathrm{F}(11)$	107.4(10)	$\mathrm{F}(10)-\mathrm{C}(84)-\mathrm{C}(81)$	112.2(10)
$\mathrm{F}(12)-\mathrm{C}(84)-\mathrm{C}(81)$	113.3(9)	$\mathrm{F}(11)-\mathrm{C}(84)-\mathrm{C}(81)$	110.8(10)
C (86)-C(85)-C(90)	113.5(9)	$\mathrm{C}(86)-\mathrm{C}(85)-\mathrm{B}(1)$	125.6(8)
$\mathrm{C}(90)-\mathrm{C}(85)-\mathrm{B}(1)$	120.5(8)	C (87)-C(86)-C(85)	122.6(9)
C(86)-C(87)-C(88)	122.5(9)	C(86)-C(87)-C(91)	119.8(9)
C(88)-C(87)-C(91)	117.7(9)	C(89)-C(88)-C(87)	115.9(9)
C(88)-C(89)-C(90)	123.0(9)	C(88)-C(89)-C(92)	119.9(10)
C(90)-C(89)-C(92)	117.1(10)	C(89)-C(90)-C(85)	122.2(9)
$\mathrm{F}(13)-\mathrm{C}(91)-\mathrm{F}(14)$	107.0(8)	$\mathrm{F}(13)-\mathrm{C}(91)-\mathrm{F}(15)$	104.8(8)
$\mathrm{F}(14)-\mathrm{C}(91)-\mathrm{F}(15)$	105.3(8)	$\mathrm{F}(13)-\mathrm{C}(91)-\mathrm{C}(87)$	114.0(9)
$\mathrm{F}(14)-\mathrm{C}(91)-\mathrm{C}(87)$	114.0(8)	$\mathrm{F}(15)-\mathrm{C}(91)-\mathrm{C}(87)$	111.0(8)
$\mathrm{F}(16)-\mathrm{C}(92)-\mathrm{F}(17)$	106.9(11)	$\mathrm{F}(16)-\mathrm{C}(92)-\mathrm{F}(18)$	105.7(11)
$\mathrm{F}(17)-\mathrm{C}(92)-\mathrm{F}(18)$	103.1(9)	$\mathrm{F}(16)-\mathrm{C}(92)-\mathrm{C}(89)$	114.3(10)
$\mathrm{F}(17)-\mathrm{C}(92)-\mathrm{C}(89)$	113.1(10)	$\mathrm{F}(18)-\mathrm{C}(92)-\mathrm{C}(89)$	112.9(11)
C(98)-C(93)-C(94)	114.4(9)	$\mathrm{C}(98)-\mathrm{C}(93)-\mathrm{B}(1)$	121.8(9)
$\mathrm{C}(94)-\mathrm{C}(93)-\mathrm{B}(1)$	123.5(9)	C(95)-C(94)-C(93)	122.6(9)
C(94)-C(95)-C(96)	121.7(10)	C(94)-C(95)-C(99)	118.5(9)
C(96)-C(95)-C(99)	119.9(10)	C(97)-C(96)-C(95)	119.5(11)
C(96)-C(97)-C(98)	120.1(10)	C(96)-C(97)-C(100)	122.8(11)
$\mathrm{C}(98)-\mathrm{C}(97)-\mathrm{C}(100)$	117.1(10)	C(93)-C(98)-C(97)	121.5(9)
$\mathrm{F}(21 \mathrm{~A})-\mathrm{C}(99)-\mathrm{F}(21)$	129(2)	$\mathrm{F}(21 \mathrm{~A})-\mathrm{C}(99)-\mathrm{F}(19 \mathrm{~A})$	111.0(16)
$\mathrm{F}(21)-\mathrm{C}(99)-\mathrm{F}(19 \mathrm{~A})$	36.6(17)	$\mathrm{F}(21 \mathrm{~A})-\mathrm{C}(99)-\mathrm{F}(19)$	62.4(17)
$\mathrm{F}(21)-\mathrm{C}(99)-\mathrm{F}(19)$	108.7(11)	$\mathrm{F}(19 \mathrm{~A})-\mathrm{C}(99)-\mathrm{F}(19)$	133.8(19)
$\mathrm{F}(21 \mathrm{~A})-\mathrm{C}(99)-\mathrm{F}(20 \mathrm{~A})$	109.2(15)	$\mathrm{F}(21)-\mathrm{C}(99)-\mathrm{F}(20 \mathrm{~A})$	71.6(17)
$\mathrm{F}(19 \mathrm{~A})-\mathrm{C}(99)-\mathrm{F}(20 \mathrm{~A})$	107.8(15)	$\mathrm{F}(19)-\mathrm{C}(99)-\mathrm{F}(20 \mathrm{~A})$	47.9(15)
$\mathrm{F}(21 \mathrm{~A})-\mathrm{C}(99)-\mathrm{F}(20)$	43.2(18)	$\mathrm{F}(21)-\mathrm{C}(99)-\mathrm{F}(20)$	106.6(11)
$\mathrm{F}(19 \mathrm{~A})-\mathrm{C}(99)-\mathrm{F}(20)$	74.2(18)	$\mathrm{F}(19)-\mathrm{C}(99)-\mathrm{F}(20)$	104.1(11)
$\mathrm{F}(20 \mathrm{~A})-\mathrm{C}(99)-\mathrm{F}(20)$	144.3(19)	$\mathrm{F}(21 \mathrm{~A})-\mathrm{C}(99)-\mathrm{C}(95)$	115.0(18)
F(21)-C(99)-C(95)	113.9(11)	F(19A)-C(99)-C(95)	110.3(17)
F(19)-C(99)-C(95)	113.3(11)	F(20A)-C(99)-C(95)	103.0(18)
F(20)-C(99)-C(95)	109.6(10)	$\mathrm{F}(23)-\mathrm{C}(100)-\mathrm{F}(22)$	109.9(11)
$\mathrm{F}(23)-\mathrm{C}(100)-\mathrm{F}(24)$	103.9(11)	$\mathrm{F}(22)-\mathrm{C}(100)-\mathrm{F}(24)$	101.9(10)

$\mathrm{F}(23)-\mathrm{C}(100)-\mathrm{C}(97)$	$113.1(11)$	$\mathrm{F}(22)-\mathrm{C}(100)-\mathrm{C}(97)$	$112.9(10)$
$\mathrm{F}(24)-\mathrm{C}(100)-\mathrm{C}(97)$	$114.1(11)$	$\mathrm{C}(106)-\mathrm{C}(101)-\mathrm{C}(102)$	$113.6(12)$
$\mathrm{C}(106)-\mathrm{C}(101)-\mathrm{B}(2)$	$123.1(12)$	$\mathrm{C}(102)-\mathrm{C}(101)-\mathrm{B}(2)$	$123.3(13)$
$\mathrm{C}(103)-\mathrm{C}(102)-\mathrm{C}(101)$	$123.8(15)$	$\mathrm{C}(102)-\mathrm{C}(103)-\mathrm{C}(104)$	$116.2(15)$
$\mathrm{C}(102)-\mathrm{C}(103)-\mathrm{C}(107)$	$120.6(16)$	$\mathrm{C}(104)-\mathrm{C}(103)-\mathrm{C}(107)$	$122.3(16)$
$\mathrm{C}(105)-\mathrm{C}(104)-\mathrm{C}(103)$	$120.1(15)$	$\mathrm{C}(106)-\mathrm{C}(105)-\mathrm{C}(104)$	$120.7(15)$
$\mathrm{C}(106)-\mathrm{C}(105)-\mathrm{C}(108)$	$119.9(15)$	$\mathrm{C}(104)-\mathrm{C}(105)-\mathrm{C}(108)$	$119.4(15)$
$\mathrm{C}(105)-\mathrm{C}(106)-\mathrm{C}(101)$	$125.0(13)$	$\mathrm{F}(29)-\mathrm{C}(107)-\mathrm{F}(28)$	$110(2)$
$\mathrm{F}(29)-\mathrm{C}(107)-\mathrm{F}(30)$	$121(2)$	$\mathrm{F}(28)-\mathrm{C}(107)-\mathrm{F}(30)$	$111.5(18)$
$\mathrm{F}(29)-\mathrm{C}(107)-\mathrm{C}(103)$	$107.7(18)$	$\mathrm{F}(28)-\mathrm{C}(107)-\mathrm{C}(103)$	$103.5(17)$
$\mathrm{F}(30)-\mathrm{C}(107)-\mathrm{C}(103)$	$101.2(16)$	$\mathrm{F}(25)-\mathrm{C}(108)-\mathrm{F}(26)$	$113.9(17)$
$\mathrm{F}(25)-\mathrm{C}(108)-\mathrm{F}(27)$	$98.8(15)$	$\mathrm{F}(26)-\mathrm{C}(108)-\mathrm{F}(27)$	$104.6(14)$
$\mathrm{F}(25)-\mathrm{C}(108)-\mathrm{C}(105)$	$115.3(14)$	$\mathrm{F}(26)-\mathrm{C}(108)-\mathrm{C}(105)$	$115.1(16)$
$\mathrm{F}(27)-\mathrm{C}(108)-\mathrm{C}(105)$	$106.9(15)$	$\mathrm{C}(110)-\mathrm{C}(109)-\mathrm{C}(114)$	$112.1(13)$
$\mathrm{C}(110)-\mathrm{C}(109)-\mathrm{B}(2)$	$122.6(12)$	$\mathrm{C}(114)-\mathrm{C}(109)-\mathrm{B}(2)$	$124.8(12)$
$\mathrm{C}(109)-\mathrm{C}(110)-\mathrm{C}(111)$	$124.0(15)$	$\mathrm{C}(112)-\mathrm{C}(111)-\mathrm{C}(110)$	$121.8(17)$
$\mathrm{C}(112)-\mathrm{C}(111)-\mathrm{C}(115)$	$120.3(18)$	$\mathrm{C}(110)-\mathrm{C}(111)-\mathrm{C}(115)$	$117.3(17)$
$\mathrm{C}(111)-\mathrm{C}(112)-\mathrm{C}(113)$	$118.5(16)$	$\mathrm{C}(114)-\mathrm{C}(113)-\mathrm{C}(112)$	$118.6(14)$
$\mathrm{C}(114)-\mathrm{C}(113)-\mathrm{C}(116)$	$116.9(15)$	$\mathrm{C}(112)-\mathrm{C}(113)-\mathrm{C}(116)$	$124.5(15)$
$\mathrm{C}(113)-\mathrm{C}(114)-\mathrm{C}(109)$	$124.6(13)$	$\mathrm{F}(33)-\mathrm{C}(115)-\mathrm{F}(32)$	$104(2)$
$\mathrm{F}(33)-\mathrm{C}(115)-\mathrm{F}(31)$	$105(2)$	$\mathrm{F}(32)-\mathrm{C}(115)-\mathrm{F}(31)$	$103.5(19)$
$\mathrm{F}(33)-\mathrm{C}(115)-\mathrm{C}(111)$	$117(2)$	$\mathrm{F}(32)-\mathrm{C}(115)-\mathrm{C}(111)$	$113(2)$
$\mathrm{F}(31)-\mathrm{C}(115)-\mathrm{C}(111)$	$112.5(19)$	$\mathrm{F}(35)-\mathrm{C}(116)-\mathrm{F}(36)$	$109.5(17)$
$\mathrm{F}(35)-\mathrm{C}(116)-\mathrm{F}(34)$	$98.7(15)$	$\mathrm{F}(36)-\mathrm{C}(116)-\mathrm{F}(34)$	$104.0(16)$
$\mathrm{F}(35)-\mathrm{C}(116)-\mathrm{C}(113)$	$114.8(17)$	$\mathrm{F}(36)-\mathrm{C}(116)-\mathrm{C}(113)$	$118.9(16)$
$\mathrm{F}(34)-\mathrm{C}(116)-\mathrm{C}(113)$	$108.2(16)$	$\mathrm{C}(118)-\mathrm{C}(117)-\mathrm{C}(122)$	$115.3(10)$
$\mathrm{C}(118)-\mathrm{C}(117)-\mathrm{B}(2)$	$120.3(10)$	$\mathrm{C}(122)-\mathrm{C}(117)-\mathrm{B}(2)$	$123.5(10)$
$\mathrm{C}(119)-\mathrm{C}(118)-\mathrm{C}(117)$	$123.5(11)$	$\mathrm{C}(118)-\mathrm{C}(119)-\mathrm{C}(120)$	$119.3(11)$
$\mathrm{C}(118)-\mathrm{C}(119)-\mathrm{C}(123)$	$121.9(13)$	$\mathrm{C}(120)-\mathrm{C}(119)-\mathrm{C}(123)$	$118.9(12)$
$\mathrm{C}(121)-\mathrm{C}(120)-\mathrm{C}(119)$	$117.3(12)$	$\mathrm{C}(120)-\mathrm{C}(121)-\mathrm{C}(122)$	$121.6(12)$
$\mathrm{C}(120)-\mathrm{C}(121)-\mathrm{C}(124)$	$118.9(13)$	$\mathrm{C}(122)-\mathrm{C}(121)-\mathrm{C}(124)$	$118.8(12)$
$\mathrm{C}(121)-\mathrm{C}(122)-\mathrm{C}(117)$	$122.2(11)$	$\mathrm{F}(38)-\mathrm{C}(123)-\mathrm{F}(39)$	$105.7(14)$
$\mathrm{F}(38)-\mathrm{C}(123)-\mathrm{F}(37)$	$112.3(15)$	$\mathrm{F}(39)-\mathrm{C}(123)-\mathrm{F}(37)$	$102.4(14)$
$\mathrm{F}(38)-\mathrm{C}(123)-\mathrm{C}(119)$	$111.9(14)$	$\mathrm{F}(39)-\mathrm{C}(123)-\mathrm{C}(119)$	$115.5(14)$

$\mathrm{F}(37)-\mathrm{C}(123)-\mathrm{C}(119)$	108.8(14)	$\mathrm{F}(42)-\mathrm{C}(124)-\mathrm{F}(41)$	112.6(19)
$\mathrm{F}(42)-\mathrm{C}(124)-\mathrm{F}(40)$	101.0(19)	$\mathrm{F}(41)-\mathrm{C}(124)-\mathrm{F}(40)$	90.5(13)
$\mathrm{F}(42)-\mathrm{C}(124)-\mathrm{C}(121)$	124.2(17)	$\mathrm{F}(41)-\mathrm{C}(124)-\mathrm{C}(121)$	109.6(15)
$\mathrm{F}(40)-\mathrm{C}(124)-\mathrm{C}(121)$	113.5(16)	$\mathrm{C}(130)-\mathrm{C}(125)-\mathrm{C}(126)$	114.5(9)
$\mathrm{C}(130)-\mathrm{C}(125)-\mathrm{B}(2)$	120.2(10)	$\mathrm{C}(126)-\mathrm{C}(125)-\mathrm{B}(2)$	124.5(9)
$\mathrm{C}(127)-\mathrm{C}(126)-\mathrm{C}(125)$	121.3(9)	$\mathrm{C}(128)-\mathrm{C}(127)-\mathrm{C}(126)$	121.4(10)
$\mathrm{C}(128)-\mathrm{C}(127)-\mathrm{C}(131)$	118.6(10)	$\mathrm{C}(126)-\mathrm{C}(127)-\mathrm{C}(131)$	120.0(9)
$\mathrm{C}(129)-\mathrm{C}(128)-\mathrm{C}(127)$	117.6(10)	$\mathrm{C}(130)-\mathrm{C}(129)-\mathrm{C}(128)$	121.3(9)
$\mathrm{C}(130)-\mathrm{C}(129)-\mathrm{C}(132)$	118.8(11)	$\mathrm{C}(128)-\mathrm{C}(129)-\mathrm{C}(132)$	119.9(10)
$\mathrm{C}(129)-\mathrm{C}(130)-\mathrm{C}(125)$	123.8(10)	$\mathrm{F}(44)-\mathrm{C}(131)-\mathrm{F}(43)$	106.1(8)
$\mathrm{F}(44)-\mathrm{C}(131)-\mathrm{F}(45)$	105.1(9)	$\mathrm{F}(43)-\mathrm{C}(131)-\mathrm{F}(45)$	105.9(10)
$\mathrm{F}(44)-\mathrm{C}(131)-\mathrm{C}(127)$	112.3(9)	$\mathrm{F}(43)-\mathrm{C}(131)-\mathrm{C}(127)$	113.9(10)
$\mathrm{F}(45)-\mathrm{C}(131)-\mathrm{C}(127)$	112.9(9)	$\mathrm{F}(48)-\mathrm{C}(132)-\mathrm{F}(47)$	109.2(11)
$\mathrm{F}(48)-\mathrm{C}(132)-\mathrm{F}(46)$	106.7(10)	$\mathrm{F}(47)-\mathrm{C}(132)-\mathrm{F}(46)$	104.1(10)
$\mathrm{F}(48)-\mathrm{C}(132)-\mathrm{C}(129)$	112.9(10)	$\mathrm{F}(47)-\mathrm{C}(132)-\mathrm{C}(129)$	114.0(10)
$\mathrm{F}(46)-\mathrm{C}(132)-\mathrm{C}(129)$	109.2(10)	$\mathrm{O}(11)-\mathrm{C}(133)-\mathrm{O}(12)$	116.0(19)
$\mathrm{O}(11)-\mathrm{C}(133)-\mathrm{C}(134)$	126(2)	$\mathrm{O}(12)-\mathrm{C}(133)-\mathrm{C}(134)$	118.1(17)
$\mathrm{O}(14)-\mathrm{C}(134)-\mathrm{C}(137)$	109.1(15)	$\mathrm{O}(14)-\mathrm{C}(134)-\mathrm{C}(133)$	104.4(15)
$\mathrm{C}(137)-\mathrm{C}(134)-\mathrm{C}(133)$	116.0(16)	$\mathrm{O}(13 \mathrm{~A})-\mathrm{C}(135)-\mathrm{O}(13)$	54(2)
$\mathrm{O}(13 \mathrm{~A})-\mathrm{C}(135)-\mathrm{O}(14)$	119(2)	$\mathrm{O}(13)-\mathrm{C}(135)-\mathrm{O}(14)$	122.0(19)
$\mathrm{O}(13 \mathrm{~A})-\mathrm{C}(135)-\mathrm{C}(136)$	123(2)	$\mathrm{O}(13)-\mathrm{C}(135)-\mathrm{C}(136)$	123(2)
$\mathrm{O}(14)-\mathrm{C}(135)-\mathrm{C}(136)$	107.3(17)	$\mathrm{O}(12)-\mathrm{C}(136)-\mathrm{C}(138)$	110.4(15)
$\mathrm{O}(12)-\mathrm{C}(136)-\mathrm{C}(135)$	109.2(14)	$\mathrm{C}(138)-\mathrm{C}(136)-\mathrm{C}(135)$	108.4(16)
$\mathrm{O}(17)-\mathrm{C}(139)-\mathrm{O}(15)$	119.9(19)	$\mathrm{O}(17)-\mathrm{C}(139)-\mathrm{C}(140)$	129(2)
$\mathrm{O}(15)-\mathrm{C}(139)-\mathrm{C}(140)$	106(2)	$\mathrm{O}(17)-\mathrm{C}(139)-\mathrm{C}(240)$	118(2)
$\mathrm{O}(15)-\mathrm{C}(139)-\mathrm{C}(240)$	120(2)	$\mathrm{C}(140)-\mathrm{C}(139)-\mathrm{C}(240)$	39.5(19)
$\mathrm{O}(16)-\mathrm{C}(140)-\mathrm{C}(139)$	113.4(19)	$\mathrm{O}(16)-\mathrm{C}(140)-\mathrm{C}(143)$	98(2)
$\mathrm{C}(139)-\mathrm{C}(140)-\mathrm{C}(143)$	104(2)	$\mathrm{O}(18)-\mathrm{C}(141)-\mathrm{O}(16)$	120.1(19)
$\mathrm{O}(18)-\mathrm{C}(141)-\mathrm{C}(142)$	128(2)	$\mathrm{O}(16)-\mathrm{C}(141)-\mathrm{C}(142)$	111.4(14)
$\mathrm{C}(139)-\mathrm{C}(240)-\mathrm{C}(243)$	116(3)	$\mathrm{C}(139)-\mathrm{C}(240)-\mathrm{O}(16)$	111(2)
$\mathrm{C}(243)-\mathrm{C}(240)-\mathrm{O}(16)$	125(3)	$\mathrm{O}(18 \mathrm{~A})-\mathrm{C}(241)-\mathrm{O}(16)$	115(2)
$\mathrm{O}(18 \mathrm{~A})-\mathrm{C}(241)-\mathrm{C}(142)$	131(3)	$\mathrm{O}(16)-\mathrm{C}(241)-\mathrm{C}(142)$	111.8(16)
$\mathrm{C}(241)-\mathrm{C}(142)-\mathrm{C}(141)$	11(2)	$\mathrm{C}(241)-\mathrm{C}(142)-\mathrm{O}(15)$	122.6(15)
$\mathrm{C}(141)-\mathrm{C}(142)-\mathrm{O}(15)$	119.6(14)	$\mathrm{C}(241)-\mathrm{C}(142)-\mathrm{C}(144)$	120.2(14)

$\mathrm{C}(141)-\mathrm{C}(142)-\mathrm{C}(144)$	117.9(14)	$\mathrm{O}(15)-\mathrm{C}(142)-\mathrm{C}(144)$	113.5(14)
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	120.9(8)	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{Al}(1)$	126.9(8)
$\mathrm{C}(16)-\mathrm{N}(1)-\mathrm{Al}(1)$	112.2(5)	$\mathrm{C}(32)-\mathrm{N}(2)-\mathrm{C}(33)$	121.9(8)
$\mathrm{C}(32)-\mathrm{N}(2)-\mathrm{Al}(2)$	125.2(7)	$\mathrm{C}(33)-\mathrm{N}(2)-\mathrm{Al}(2)$	112.7(6)
$\mathrm{C}(49)-\mathrm{N}(3)-\mathrm{C}(50 \mathrm{~A})$	118.9(11)	$\mathrm{C}(49)-\mathrm{N}(3)-\mathrm{C}(50)$	119.6(11)
$\mathrm{C}(50 \mathrm{~A})-\mathrm{N}(3)-\mathrm{C}(50)$	29.3(10)	$\mathrm{C}(49)-\mathrm{N}(3)-\mathrm{Al}(3)$	125.5(7)
$\mathrm{C}(50 \mathrm{~A})-\mathrm{N}(3)-\mathrm{Al}(3)$	113.6(10)	$\mathrm{C}(50)-\mathrm{N}(3)-\mathrm{Al}(3)$	113.0(9)
$\mathrm{C}(66)-\mathrm{N}(4)-\mathrm{C}(67)$	121.6(9)	$\mathrm{C}(66)-\mathrm{N}(4)-\mathrm{Al}(4)$	126.3(7)
$\mathrm{C}(67)-\mathrm{N}(4)-\mathrm{Al}(4)$	112.1(6)	$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Al}(1)$	132.7(6)
$\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{Al}(2)$	132.4(5)	$\mathrm{C}(17)-\mathrm{O}(2)-\mathrm{Al}(1)$	118.1(5)
$\mathrm{Al}(2)-\mathrm{O}(2)-\mathrm{Al}(1)$	103.3(3)	$\mathrm{C}(18)-\mathrm{O}(3)-\mathrm{Al}(2)$	131.6(6)
$\mathrm{C}(34)-\mathrm{O}(4)-\mathrm{Al}(1)$	132.8(5)	$\mathrm{C}(34)-\mathrm{O}(4)-\mathrm{Al}(2)$	118.8(5)
$\mathrm{Al}(1)-\mathrm{O}(4)-\mathrm{Al}(2)$	102.7(3)	$\mathrm{C}(35)-\mathrm{O}(5)-\mathrm{Al}(3)$	132.3(6)
$\mathrm{C}(51 \mathrm{~A})-\mathrm{O}(6)-\mathrm{C}(51)$	21.8(14)	$\mathrm{C}(51 \mathrm{~A})-\mathrm{O}(6)-\mathrm{Al}(4)$	124.7(11)
$\mathrm{C}(51)-\mathrm{O}(6)-\mathrm{Al}(4)$	140.3(10)	$\mathrm{C}(51 \mathrm{~A})-\mathrm{O}(6)-\mathrm{Al}(3)$	121.3(10)
$\mathrm{C}(51)-\mathrm{O}(6)-\mathrm{Al}(3)$	115.3(10)	$\mathrm{Al}(4)-\mathrm{O}(6)-\mathrm{Al}(3)$	103.0(3)
$\mathrm{C}(52)-\mathrm{O}(7)-\mathrm{Al}(4)$	132.1(6)	$\mathrm{C}(68)-\mathrm{O}(8)-\mathrm{Al}(3)$	133.0(5)
$\mathrm{C}(68)-\mathrm{O}(8)-\mathrm{Al}(4)$	120.0(5)	$\mathrm{Al}(3)-\mathrm{O}(8)-\mathrm{Al}(4)$	103.0(3)
$\mathrm{Al}(1)-\mathrm{O}(9)-\mathrm{Al}(3)$	139.2(3)	$\mathrm{Al}(4)-\mathrm{O}(10)-\mathrm{Al}(2)$	139.2(3)
$\mathrm{C}(133)-\mathrm{O}(12)-\mathrm{C}(136)$	116.6(15)	$\mathrm{C}(135)-\mathrm{O}(14)-\mathrm{C}(134)$	126.3(15)
$\mathrm{C}(139)$-O(15)-C(142)	120.6(16)	$\mathrm{C}(141)-\mathrm{O}(16)-\mathrm{C}(241)$	12(3)
$\mathrm{C}(141)-\mathrm{O}(16)-\mathrm{C}(140)$	114.8(16)	$\mathrm{C}(241)-\mathrm{O}(16)-\mathrm{C}(140)$	109.9(18)
$\mathrm{C}(141)-\mathrm{O}(16)-\mathrm{C}(240)$	126(2)	$\mathrm{C}(241)-\mathrm{O}(16)-\mathrm{C}(240)$	130.1(18)
$\mathrm{C}(140)-\mathrm{O}(16)-\mathrm{C}(240)$	40.2(18)	$\mathrm{Cl}(2)-\mathrm{C}(150)-\mathrm{Cl}(1)$	109.3(9)
$\mathrm{Cl}(2)-\mathrm{C}(150)-\mathrm{Cl}(3 \mathrm{~A})$	120.5(10)	$\mathrm{Cl}(1)-\mathrm{C}(150)-\mathrm{Cl}(3 \mathrm{~A})$	108.7(9)
$\mathrm{Cl}(2)-\mathrm{C}(150)-\mathrm{Cl}(3)$	100.3(8)	$\mathrm{Cl}(1)-\mathrm{C}(150)-\mathrm{Cl}(3)$	111.8(8)
$\mathrm{Cl}(3 \mathrm{~A})-\mathrm{C}(150)-\mathrm{Cl}(3)$	22.1(4)	$\mathrm{Cl}(6)-\mathrm{C}(151)-\mathrm{Cl}(4)$	113.2(8)
$\mathrm{Cl}(6)-\mathrm{C}(151)-\mathrm{Cl}(5)$	110.8(8)	$\mathrm{Cl}(4)-\mathrm{C}(151)-\mathrm{Cl}(5)$	108.5(7)
$\mathrm{Cl}(7 \mathrm{~A})-\mathrm{C}(152)-\mathrm{Cl}(9)$	90.6(10)	$\mathrm{Cl}(7 \mathrm{~A})-\mathrm{C}(152)-\mathrm{Cl}(8)$	115.9(11)
$\mathrm{Cl}(9)-\mathrm{C}(152)-\mathrm{Cl}(8)$	119.8(11)	$\mathrm{Cl}(7 \mathrm{~A})-\mathrm{C}(152)-\mathrm{Cl}(7)$	27.9(5)
$\mathrm{Cl}(9)-\mathrm{C}(152)-\mathrm{Cl}(7)$	114.4(10)	$\mathrm{Cl}(8)-\mathrm{C}(152)-\mathrm{Cl}(7)$	90.4(8)
$\mathrm{Cl}(7 \mathrm{~A})-\mathrm{C}(152)-\mathrm{Cl}(8 \mathrm{~A})$	140.1(12)	$\mathrm{Cl}(9)-\mathrm{C}(152)-\mathrm{Cl}(8 \mathrm{~A})$	114.2(10)
$\mathrm{Cl}(8)-\mathrm{C}(152)-\mathrm{Cl}(8 \mathrm{~A})$	24.8(6)	$\mathrm{Cl}(7)-\mathrm{C}(152)-\mathrm{Cl}(8 \mathrm{~A})$	113.2(10)
$\mathrm{Cl}(7 \mathrm{~A})-\mathrm{C}(152)-\mathrm{Cl}(9 \mathrm{~A})$	114.0(11)	$\mathrm{Cl}(9)-\mathrm{C}(152)-\mathrm{Cl}(9 \mathrm{~A})$	23.5(6)

$\mathrm{Cl}(8)-\mathrm{C}(152)-\mathrm{Cl}(9 \mathrm{~A})$	$104.9(10)$	$\mathrm{Cl}(7)-\mathrm{C}(152)-\mathrm{Cl}(9 \mathrm{~A})$	$136.1(11)$
$\mathrm{Cl}(8 \mathrm{~A})-\mathrm{C}(152)-\mathrm{Cl}(9 \mathrm{~A})$	$93.1(10)$	$\mathrm{Cl}(12)-\mathrm{C}(153)-\mathrm{Cl}(11)$	$110.1(11)$
$\mathrm{Cl}(12)-\mathrm{C}(153)-\mathrm{Cl}(10)$	$115.8(12)$	$\mathrm{Cl}(11)-\mathrm{C}(153)-\mathrm{Cl}(10)$	$131.6(14)$
$\mathrm{Cl}(12)-\mathrm{C}(153)-\mathrm{Cl}(22)$	$49.2(11)$	$\mathrm{Cl}(11)-\mathrm{C}(153)-\mathrm{Cl}(22)$	$93.8(15)$
$\mathrm{Cl}(10)-\mathrm{C}(153)-\mathrm{Cl}(22)$	$104.4(16)$	$\mathrm{Cl}(13)-\mathrm{C}(154)-\mathrm{Cl}(14)$	$106.7(15)$
$\mathrm{Cl}(13)-\mathrm{C}(154)-\mathrm{Cl}(25)$	$139(2)$	$\mathrm{Cl}(14)-\mathrm{C}(154)-\mathrm{Cl}(25)$	$59.3(14)$
$\mathrm{Cl}(13)-\mathrm{C}(154)-\mathrm{Cl}(23)$	$43.1(7)$	$\mathrm{Cl}(14)-\mathrm{C}(154)-\mathrm{Cl}(23)$	$116.2(19)$
$\mathrm{Cl}(25)-\mathrm{C}(154)-\mathrm{Cl}(23)$	$104.6(18)$	$\mathrm{Cl}(13)-\mathrm{C}(154)-\mathrm{Cl}(15)$	$90.1(14)$
$\mathrm{Cl}(14)-\mathrm{C}(154)-\mathrm{Cl}(15)$	$101.8(17)$	$\mathrm{Cl}(25)-\mathrm{C}(154)-\mathrm{Cl}(15)$	$59.7(15)$
$\mathrm{Cl}(23)-\mathrm{C}(154)-\mathrm{Cl}(15)$	$47.6(11)$	$\mathrm{Cl}(13)-\mathrm{C}(154)-\mathrm{Cl}(24)$	$86.6(12)$
$\mathrm{Cl}(14)-\mathrm{C}(154)-\mathrm{Cl}(24)$	$33.2(8)$	$\mathrm{Cl}(25)-\mathrm{C}(154)-\mathrm{Cl}(24)$	$91.9(16)$
$\mathrm{Cl}(23)-\mathrm{C}(154)-\mathrm{Cl}(24)$	$117.3(17)$	$\mathrm{Cl}(15)-\mathrm{C}(154)-\mathrm{Cl}(24)$	$129(2)$
$\mathrm{Cl}(17)-\mathrm{C}(155)-\mathrm{Cl}(18)$	$110.6(16)$	$\mathrm{Cl}(17)-\mathrm{C}(155)-\mathrm{Cl}(16)$	$105.7(15)$
$\mathrm{Cl}(18)-\mathrm{C}(155)-\mathrm{Cl}(16)$	$109.3(16)$	$\mathrm{Cl}(28)-\mathrm{C}(255)-\mathrm{Cl}(27)$	$110.3(15)$
$\mathrm{Cl}(28)-\mathrm{C}(255)-\mathrm{Cl}(26)$	$110.4(15)$	$\mathrm{Cl}(27)-\mathrm{C}(255)-\mathrm{Cl}(26)$	$107.8(15)$
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$	$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(45)$	$121.8(11)$	
$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{C}(45)$	$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(38)$	$125.3(9)$	
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(36)$	$\mathrm{C}(47)-\mathrm{C}(45)-\mathrm{C}(38)$	$114.5(12)$	
$\mathrm{C}(47)-\mathrm{C}(45)-\mathrm{C}(46)$	$\mathrm{C}(38)-\mathrm{C}(45)-\mathrm{C}(46)$	$111.1(12)$	
$\mathrm{C}(47)-\mathrm{C}(45)-\mathrm{C}(48)$	$120.9(10)$	$\mathrm{C}(38)-\mathrm{C}(45)-\mathrm{C}(48)$	$104.7(12)$
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(48)$	$124.0(10)$		

VITA

Osit Karroonnirun was born to Sumate and Wilawan Karroonnirun. He grew up in the southern part of Thailand in the city of Narathiwat. He later moved to Bangkok where he graduated from Mahidol Wittayanusorn High School in 1999. He attended Mahidol University in Bangkok and graduated with a B.S. in chemistry in March 2003. Osit began his graduate studies at Texas A\&M University in September 2005 under the direction of Dr. Donald J. Darensbourg and received his Ph.D. degree in May 2011. Questions and comments may be directed to pope_chem1ok@hotmail.com or Texas A\&M University, Department of Chemistry, MS 3255, College Station, TX 77842-3012.

[^0]: ${ }^{a}$ PLA properties are highly dependent on a range of molecular parameters such as molecular weight, architecture, and stereochemistry as well as several processing parameters that can have a dramatic effect on some or all of these properties.

[^1]: * Reproduced in part with permission from Darensbourg, D. J.; Karroonnirun, O. Inorg. Chem. 2010, 49, 2360-2371. Copyright 2010 American Chemical Society.

[^2]: * Reproduced in part with permission from Darensbourg, D. J.; Karroonnirun, O. Macromolecules 2010, 43, 8880-8886. Copyright 2010 American Chemical Society.

[^3]: * Reproduced in part with permission from Darensbourg, D. J.; Karroonnirun, O. Organometallics 2010, 29, 5627-5634. Copyright 2010 American Chemical Society.

[^4]: ${ }^{a}$ Unless otherwise specified, the polymerization reactions were performed in sealed reaction tubes with the following conditions: $[\mathrm{rac}$-LA $] /[\mathrm{Al}]=50$, in toluene at $70{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Obtained from ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{c}$ meso-lactide was obtained from epimerization of L- or D-lactide during the polymerization process. ${ }^{d}$ Theoretical $M_{\mathrm{n}}=(\mathrm{M} / \mathrm{I})$ x (\% conversion) x (mol. wt. of lactide). ${ }^{e} M_{\mathrm{n}}$ values were corrected by the equation: $M_{\mathrm{n}}=0.58 M_{\mathrm{n}}$, GPC. ${ }^{51}{ }^{f} P_{\mathrm{m}}$ values were calculated from the ratio of the (area of iii)/(total area in methine proton region). ${ }^{g} \mathrm{CDCl}_{3}$ was used as the solvent at ambient temperature. ${ }^{h} \mathrm{CDCl}_{3}$ was used as the solvent at $60{ }^{\circ} \mathrm{C}$.

[^5]: ${ }^{a}$ Monomer concentration was held constant at 0.69 M and reactions carried out in toluene- d_{8}.

[^6]: ${ }^{a}$ Monomer concentration was held constant at 0.69 M and reactions carried out in toluene- d_{8}.

