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ABSTRACT

Algorithms for Gene Clustering Analysis on Genomes. (May 2011)

Gang Man Yi, B.S., Kangnung National University, South Korea;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Sing-Hoi Sze

The increased availability of data in biological databases provides many opportu-

nities for understanding biological processes through these data. As recent attention

has shifted from sequence analysis to higher-level analysis of genes across multiple

genomes, there is a need to develop efficient algorithms for these large-scale applica-

tions that can help us understand the functions of genes.

The overall objective of my research was to develop improved methods which

can automatically assign groups of functionally related genes in large-scale data sets

by applying new gene clustering algorithms. Proposed gene clustering algorithms

that can help us understand gene function and genome evolution include new algo-

rithms for protein family classification, a window-based strategy for gene clustering

on chromosomes, and an exhaustive strategy that allows all clusters of small size to

be enumerated. I investigate the problems of gene clustering in multiple genomes,

and define gene clustering problems using mathematical methodology and solve the

problems by developing efficient and effective algorithms.

For protein family classification, I developed two supervised classification algo-

rithms that can assign proteins to existing protein families in public databases and,

by taking into account similarities between the unclassified proteins, allows for pro-

gressive construction of new families from proteins that cannot be assigned. This

approach is useful for rapid assignment of protein sequences from genome sequencing
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projects to protein families. A comparative analysis of the method to other previ-

ously developed methods shows that the algorithm has a higher accuracy rate and

lower mis-classification rate when compared to algorithms that are based on the use

of multiple sequence alignments and hidden Markov models. The proposed algo-

rithm performs well even on families with very few proteins and on families with low

sequence similarity.

Apart from the analysis of individual sequences, identifying genomic regions that

descended from a common ancestor helps us study gene function and genome evolu-

tion. In distantly related genomes, clusters of homologous gene pairs serve as evidence

used in function prediction, operon detection, etc. Thus, reliable identification of gene

clusters is critical to functional annotation and analysis of genes. I developed an ef-

ficient gene clustering algorithm that can be applied on hundreds of genomes at the

same time. This approach allows for large-scale study of evolutionary relationships

of gene clusters and study of operon formation and destruction. By placing a stricter

limit on the maximum cluster size, I developed another algorithm that uses a dif-

ferent formulation based on constraining the overall size of a cluster and statistical

estimates that allow direct comparisons of clusters of different size. A comparative

analysis of proposed algorithms shows that more biological insight can be obtained

by analyzing gene clusters across hundreds of genomes, which can help us understand

operon occurrences, gene orientations and gene rearrangements.
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CHAPTER I

INTRODUCTION

A. Motivation

One of the major technological advances in biology in the last few years is the devel-

opment of high-throughput genome sequencing technology that produces gigabases of

data in a single run. Thus, the increased availability of data in biological databases

provides many opportunities for understanding biological processes through these

data. To investigate the value of sequence data, scientists need to identify proteins

encoded by genomes and understand how these proteins are functioning, but the

functions of these genes are still unknown. The traditional way of predicting the gene

function is laborious and expensive, because biologists deduce gene functions through

experimentation. The general approach for functional annotations of unknown se-

quences is to predict functions based on sequence similarity to known sequences in

databases, but the very weak similarities between sequences that have a common

function often gives improper results. An alternative way of constructing ontologi-

cal frameworks that describe gene function (e.g., Gene Ontology (Ashburner et al.,

2000)) still relies on manual curation (Fraser and Marcotte, 2004). As recent atten-

tion shifts from sequence analysis to higher-level analysis of genes across multiple

genomes, automated prediction methods of gene function and annotation in compu-

tational bioinformatics also have created many challenging computational problems,

This dissertation follows the style of Bioinformatics.
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such as identification of functionally related gene clusters and their functional annota-

tions in large-scale genome data. Thus, it is a challenge for computational biologists

to devise the best computational model that can accurately predict gene functions

from available data.

One important gene clustering problem is the protein family classification prob-

lem, which groups a given set of genes into families so that genes within the same

family have a common function. After a genome is sequenced, the first steps are

to annotate protein coding genes and assign the genes to families using automated

and manual methods. Proteins within gene families (or protein families) are usu-

ally homologous and have similar structure of conserved functional domains. The

classification of proteins to protein families is an intrinsic part of comparative and

evolutionary genomics. The pace of genome sequencing continues to increase, and

thus, the need for sensitive and automated protein family classification methods also

continues to increase.

Whereas supervised classification algorithms are available for this purpose (Be-

jerano and Yona, 2001; Eskin et al., 2003; Liao and Noble, 2003), they do not allow

for progressive construction of new families and most of them are not efficient enough

to handle large data sets. Although it is possible to use unsupervised classification

algorithms (Altschul et al., 1990; Enright et al., 2002; Chen et al., 2006; Kim and

Lee, 2006), these algorithms do not make use of knowledge from known protein fam-

ilies and do not work well for large data sets. By precomputing sequence similarities

between proteins in existing families, I observe that it is possible to develop efficient

algorithms that achieve much improved accuracy over previous approaches while al-
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lowing for automatic construction of new families. This approach will be useful for

rapid assignment of protein sequences from genome sequencing projects to protein

families.

Another key factor is that identifying genomic regions that descended from a

common ancestor helps us study gene function and genome evolution. In distantly

related genomes, clusters of homologous gene pairs are evidence used in function

prediction, operon detection, etc. (Raghupathy and Durand, 2009). Thus, reliable

identification of gene clusters is critical to functional annotation and analysis of genes.

Many kinds of computational methods have been proposed for defining gene clusters

in order to study the genome organization, evolution and function of individual gene

groups. But there are not many efficient algorithms for identifying gene families and

operons in the large-scale data set.

In gene clustering on chromosomes, while the most popular approaches require

that the distance between adjacent genes in a cluster be small (A. Bergeron and

Raffinot, 2002; Luc et al., 2003; He and Goldwasser, 2005; Parida, 2007), it has been

shown that there are considerable difficulties in developing efficient algorithms when

paralogous genes are allowed in the model (He and Goldwasser, 2005). By using a

different formulation of gene clusters, which requires that the distance between any

pair of genes within a cluster be small (Rose Hoberman and Durand, 2005), I observe

that it is possible to use a window-based strategy that can identify significantly more

functionally-enriched gene clusters than previous approaches.

While many of these algorithms can be used to perform gene clustering across two

or more genomes, very few algorithms are efficient enough to analyze a large number
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of genomes (Kim et al., 2005). By placing a stricter limit on the maximum cluster

size, I observed that efficient algorithms can be developed to perform gene clustering

on hundreds of genomes at the same time. This strategy is sufficient for analyzing

gene clustering in bacterial genomes, and allows for large-scale study of evolutionary

relationships of gene clusters and study of operon formation and destruction. It will

also allow for the study of whether gene clusters in bacteria occur only at the operon

level or whether there are higher-level structures, and the functional relationships

between them.

B. Objectives

The overall objective of the proposed research is to improve our ability to auto-

matically make groups of functionally related genes. I propose new methods which

automatically assign groups of genes by applying new gene clustering algorithms.

The proposed gene clustering algorithms that can help us better understand genome

evolution include new algorithms for protein family classification, a window-based

strategy for gene clustering on chromosomes, and an exhaustive strategy that allows

all clusters of small size to be enumerated. I investigate the problems of gene cluster-

ing in multiple genomes, and I define gene clustering problems using mathematical

methodology and solve the problems by developing efficient and effective algorithms.

Supervised protein family classification and new family construction – The goal

of the protein family classification problem is to group genes into families so that

genes within the same family have common function. It is an important problem in

computational biology, since it suggests possible functions and structures for proteins
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(Smith, 2004).

The general approach for functional annotations of unknown proteins is to pre-

dict protein functions based on sequence similarity to known protein sequences in

databases (Wu et al., 2003). Existing methods that rely on sequence similarity com-

parisons utilize BLAST and pattern/profile search methods (Attwood et al., 2002;

Gribskov et al., 1990; Krogh et al., 1994). Predicting protein function by sequence

similarity is a powerful approach, but one of the problems in identifying protein fami-

lies only based on sequence similarity is that there is significant difficulty in classifying

proteins where the similarity between proteins is very weak within a family. Numer-

ous genome annotation errors have also been reported (Brenner, 1999; Henikoff et al.,

1997; Smith and Zhang, 1997; Doolittle, 1995).

Whereas supervised classification algorithms are available for this purpose, most

of them focus on assigning unclassified proteins to the correct families and do not allow

for progressive construction of new families. Although unsupervised classification

algorithms are also available, they do not make use of information from known protein

families.

I propose a new method that assigns unclassified proteins to families based on

sequence alignments from the sequence alignment algorithm (Altschul et al., 1990;

Smith and Waterman, 1981). I developed supervised classification algorithms that

overcome the problems of existing supervised and unsupervised algorithms and achieve

much improved accuracy. The proposed approach can assign proteins to existing pro-

tein families in public databases and, by taking into account similarities between the

unclassified proteins, can assign them to new families. This approach will be useful
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for rapid assignment of protein sequences from genome sequencing projects to protein

families.

• Classifying proteins to existing families

The simpler problem is first considered when only one unclassified protein is given.

We assume that each protein belongs to at most one family, which consists of ei-

ther individual protein domain or single domain proteins. The goal is to determine

whether the unclassified protein belongs to one of the existing families. I assume

that optimal alignment scores between any two proteins in these families have al-

ready been precomputed by using a pairwise sequence comparison algorithm such

as BLAST (Altschul et al., 1990) or the Smith-Waterman local alignment algorithm

SSEARCH (Smith and Waterman, 1981), and assign the unclassified protein to the

family with the highest average minus log e-value.

• Constructing new families from unclassified proteins

To further improve accuracy, I consider the generalized problem when more than one

unclassified protein is given, and the goal is either to assign each unclassified protein

to an existing family or to automatically construct new families if necessary, while

also making use of the similarities among the unclassified proteins. Each unclassified

protein is initially treated as a family by itself, and a family that contains unclassified

proteins is iteratively merged into either an existing family or with another family

that contains unclassified proteins. During each iteration, we make sure that the

average minus log e-value between the two merged families is the highest among all
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such pairs of families, where the average is taken over pairs of proteins that have

e-value below a cutoff. The procedure terminates when it is no longer possible to

satisfy the e-value cutoff or the sequence coverage requirement, with the families that

have not been merged with existing families becoming new families.

Large-scale analysis of gene clusters in multiple genomes – The goal of the pro-

posed method is to define an efficient gene clustering algorithm that can investigate

related gene clusters across multiple genomes and study operons and their evolution.

In bacteria, one of the main mechanisms to facilitate control of gene expression is the

organization of genes into operons. The most popular approaches require only that

the distance between adjacent genes in a cluster be small (A. Bergeron and Raffinot,

2002; Luc et al., 2003; He and Goldwasser, 2005; Parida, 2007), because homologous

regions are straightforward when genomic regions are closely related (Raghupathy

and Durand, 2009). Although current algorithms are available to identify gene clus-

ters across multiple genomes, very few algorithms are efficient enough to study gene

clusters across multiple genomes. I propose a different formulation based on con-

straining the overall size of a cluster and develop statistical estimations that allow

direct comparisons of clusters of different sizes. I use this algorithm by starting from

a well-characterized list of operons in Escherichia coli K12 and perform comparative

analysis of operon occurrences, gene orientations, and rearrangements both within

and across clusters.

• Window-based approach

I investigate a different formulation which requires that the distance between any pair
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of genes within a cluster be small (Rose Hoberman and Durand, 2005), thus placing

a constraint on the overall cluster size.

Each gene (while ignoring its orientation) is represented by a number so that

the same number represents a set of orthologous genes in different genomes and each

chromosome is represented by a sequence of gene numbers. The same gene number

is allowed to appear more than once within each chromosome, which represents par-

alogous copies of a gene. To ensure that all genes in genomes are clustered within a

region of size at most length l on each chromosome, we require that each gene number

appear at least once in each cluster.

To obtain statistical significance estimates, the probability of a gene cluster ap-

pearing in a given chromosome can be obtained by assuming a random background

distribution based on the average length of the chromosomes, the cluster size and

the average size of the non-empty lists (Durand and Sankoff, 2003). I estimate the

p-value of gene cluster by the probability of the gene cluster appearing in at least k′

out of k chromosomes using the binomial distribution, and obtain an e-value from

this p-value. To consider the algorithm that guarantees that all clusters with e-value

below a cutoff are found, I start with each window of size l on chromosome c1 and

find the locations of all occurrences of its gene numbers in the other chromosomes. I

apply the algorithm over 1 ≤ l ≤ 50 on four yeast genomes.

• Exhaustive approach

I investigate a modified version of the window-based strategy to analyze hundreds

of genomes simultaneously by placing a stricter limit on the maximum cluster size.
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This makes it possible to avoid the combinatorial explosion of intersecting all combi-

nations at one time with one from each chromosome, and allows the use of a different

strategy for finding the clusters. I consider each window within each chromosome

and enumerate each of the subsets of genes within the window. I think of each subset

as a potential gene cluster and identify the subset of chromosomes in which all genes

that appear within a window.

I estimate the p-value of the subset by its probability of appearing in at least

these many chromosomes and obtain an e-value. Since all possible combinations of

included genes and intervening genes are included within each window, this algorithm

will not lose any clusters that satisfy the definition. One important advantage of

the algorithm is that its time complexity grows linearly with the input size and

the base of 2 in the exponential part of the time complexity is small, thus a large

number of genomes can be considered at the same time. To investigate whether

these gene clusters correspond mostly to one operon or many operons, I partition

each cluster into maximal subregions so that all genes within each subregion have the

same orientation and there are no intervening genes between these genes within the

subregion. I evaluate the agreement between these subregions with experimentally

validated E. coli operons from the RegulonDB database (Salgado et al., 1999). I

apply the algorithm over 1 ≤ l ≤ 12 on 700 bacterial genomes.

With these objectives, I organize the dissertation as follows. In Chapter II, I

describe the background that includes gene clusters, protein families and operons.

In Chapter III, I describe two algorithms for grouping proteins into families so that

proteins within the same family have a common function or are related by ancestry. In
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addition, I demonstrate that the proposed method uses a large-scale dataset such as

the protein cluster DB (Klimke et al., 2009) and the entire pfam-a database (Bateman

et al., 2000) that has at least two proteins in one family. In Chapter IV, I review

the related work on gene clustering on multiple genomes and propose two efficient

approaches for investigating clustering of related genes across multiple genomes. I

use this algorithm to study gene clustering in 700 bacterial genomes. In Chapter

V, I summarize my contributions to developing new gene clustering algorithms and

conclude the dissertation by discussing the importance of gene clustering to studying

genome organization, evolution and function of individual gene groups, and future

work.



11

CHAPTER II

BACKGROUND

A. Gene cluster

A gene cluster is a set of genes that have a common function. There are several

ways to identify gene clusters that belong to a common function. One of the ways is

to investigate a set of homologous genes or similar structure of conserved functional

domains that can belong to different genomes but have a common function. We

identify these gene clusters by comparisons between sequence alignments or functional

annotations of genes. Another way is to identify sets of genes that are spatially co-

located. The gene cluster is constrained by the maximum proximity between adjacent

genes or the maximum size of the cluster, and considered as a set of orthologous

and paralogous gene pairs. Orthologs are homologous genes in different species that

evolved from a common ancestral gene by speciation, and paralogs are genes related

by duplication within a genome (Hunter et al., 2008). The set of orthologous gene

pairs is a gene cluster that includes genes with one gene from g1 genome and another

gene from g2 genome, Those gene clusters within genomic regions descended from

a common ancestor are important for understanding the function and evolution of

genomes (See Figure 1).

Computational approaches to identifying gene clusters are usually aimed at iden-

tifying specific cluster types, such as those that correspond to metabolic pathways or

that represent sets of co-expressed genes, which are part of a single transcriptional

unit or operon. A generalized approach that can identify all clusters in a genome
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Fig. 1. Illustration of gene cluster.

would be of great value for the study of eukaryotic genome organization and evo-

lution. In addition, identification of gene clusters may help to identify functional

relationships among genes, and aide in the discovery of metabolic pathways and pro-

tein interactions. Currently, many kinds of computational approaches to identify gene

clusters have been applied to identify protein families in which a set of genes in the

same family has a common function, or operons in which a set of genes facilitates

control of gene expressions.

In this dissertation, a gene cluster is defined as a group of genes that are anno-

tated with the same function or are evolutionarily related from a common ancestor,

and are also found within close proximity to each other on a chromosome. Cluster
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Table I. UniProt 3-oxoacid CoA-transferase family.

ID Organism

Gene Ontology

SCO2A MOUSE (Q9JJN4) Mus musculus (Mouse)

GO:0046952, GO:0005739, GO:0008260

SCO2A RAT (Q5XIJ9) Rattus norvegicus (Rat)

GO:0046952, GO:0005739, GO:0008260

SCOT1 HUMAN (P55809) Homo sapiens (Human)

GO:0046952, GO:0005739, GO:0008260 GO:0042803

SCOT1 PIG (Q29551) Sus scrofa (Pig)

GO:0046952, GO:0005739, GO:0008260

SCOT CAEEL (Q09450) Caenorhabditis elegans

GO:0046952, GO:0005739, GO:0008260

SCOT DICDI (Q54JD9) Dictyostelium discoideum (Slime mold)

GO:0046952, GO:0005739 GO:0045335, GO:0008260

size refers to the number of genes in the cluster having the same function. Cluster

length refers to the chromosomal length occupied by the cluster, including intervening

genes that are not members of the cluster.

B. Protein family

A protein family is the group of proteins that has a common function or is related

by ancestry, so proteins in the same protein family have similar functions, three-
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dimensional structures, and sequences, because proteins descended from a common

ancestor are produced as the result of gene duplication, divergence and combination

(Vogel and Chothia, 2006).

Currently, many computational approaches have been researched to organize

proteins into families and to describe their component domains and motifs, because

reliable identification of protein families is important for biologists to study evolu-

tionary analysis, localization analysis, functional annotation, and the exploration of

diversity of protein function. There are several protein family databases such as Prot-

ClustDB (Klimke et al., 2009), UniProt (Apweiler et al., 2001), pfam (Bateman et al.,

2000) and SCOP (Murzin et al., 1995). ProtClustDB and UniProt support curated

protein families with full-length sequences that include all amino acids that begin with

N-terminus and end with C-terminus in the amino acids (Table I). Apart from full-

length sequences, pfam and SCOP are based on protein domains that are functional

regions in proteins. pfam defines a large collection of protein domain families.

One of the reasons that protein family has been needed is that high-throughput

genome sequencing has resulted in the availability of large sets of genes, but the func-

tions of many of these genes are still unknown. The traditional way of predicting

the gene function is laborious and expensive, since biologists deduce gene functions

through experimentation. Thus, the construction of protein families enables identi-

fying functions of unknown sequences.
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3’– repressor gene – promoter operator lacZ lacY LacA – 5’

Repressor Gene - Produces a repressor protein that fits in the operator to turn the

operon off

Promoter - RNA polymerase initiates transcription of the genes

Operator - The active repressor physically blocks RNA polymerase and turns off

transcription

Structural Genes - The genes that are co-regulated by the operon.

Fig. 2. The example of the lac operon structure.

C. Operon

One of the main mechanisms of facilitating control of a single regulatory signal or

promoter in bacteria is organization of the set of adjacent genes into operons (See

Figure 2). An operon is a functional unit that organizes groups of transcriptionally

linked genes. Operon prediction is based on finding gene clusters in which gene

order and orientation is conserved in localized regions of more than two genomes

(Ermolaeva et al., 2001), and that belong to the same pathways. Identifying clusters

of related genes within localized regions across multiple bacterial genomes helps us

study operons and their evolution.

An operon includes three major components that are located each other on the

same chromosome. Basically, the operon is working with two regions. The promoter

region is the site where RNA polymerase binds to initiate transcription of genes, the
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operator region is the site where the repressor protein binds to block RNA transcrip-

tion, and the structural genes are transcribed into mRNA and include information to

translate proteins (See Figure 2). An operon is off under normal circumstances when

the repressor protein is bound to the operator region, and RNA polymerase is blocked

and transcription can not occur. An operon can be turned on only when the repressor

protein leaves the operator region. However, the repressor protein will not leave the

operator region if substrate is not present. When RNA polymerase is not blocked, it

can transcribe the structural genes. The operon will return to the off position and

the repressor protein returns to the original shape and bind to the operator region.
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CHAPTER III

SUPERVISED PROTEIN FAMILY CLASSIFICATION AND NEW FAMILY

CONSTRUCTION

The goal of protein family classification is to group proteins into families so that pro-

teins within the same family have common function or are related by ancestry. While

supervised classification algorithms are available for this purpose, most of these ap-

proaches focus on assigning unclassified proteins to known families but do not allow

for progressive construction of new families from proteins that cannot be assigned.

Although unsupervised clustering algorithms are also available, they do not make

use of information from known families. By computing similarities between proteins

based on pairwise sequence comparisons, we develop supervised classification algo-

rithms that achieve improved accuracy over previous approaches while allowing for

construction of new families. We show that our algorithm has higher accuracy rate

and lower mis-classification rate when compared to algorithms that are based on the

use of multiple sequence alignments and hidden Markov models, and our algorithm

performs well even on families with very few proteins and on families with low se-

quence similarity.

A. Introduction

After a genome is sequenced, the first steps are to annotate protein coding genes

and assign the genes to families. Depending on the definition of a family, proteins

within gene families (or protein families) are usually homologous and have similar
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structure of conserved functional domains. The classification of proteins to families

is an intrinsic part of comparative and evolutionary genomics. As the pace of genome

sequencing continues to increase, the need for sensitive and automated protein family

classification methods also continues to increase.

One strategy for protein family classification is through the use of unsupervised

clustering algorithms, which take as input a large set of proteins, and perform all-

against-all comparisons of sequence similarity using BLAST (Altschul et al., 1990),

the Smith-Waterman local alignment algorithm (Smith and Waterman, 1981), or

some other pairwise comparison algorithm. The pairwise scores are then used as

a basis to apply a variety of clustering algorithms such as single linkage cluster-

ing, as implemented in the popular BLAST package. BLASTClust (Dondoshansky,

2002) is based on a hierarchical clustering algorithm by utilizing the BLAST package

from NCBI. It yields fairly good results, however, a large single cluster that contains

huge number of sequences may be generated due to multi-domain proteins (Chen

et al., 2006). Other unsupervised approaches include the Markov clustering strategy

(Enright et al., 2002), the density-based ordering method (Chen et al., 2006), and

clustering algorithms based on the use of graph-theoretic properties (Kim and Lee,

2006). Unsupervised methods are useful for clustering a set of proteins, but they

have two shortcomings: they do not assign proteins to existing families that can be

found in databases such as Pfam (Bateman et al., 2000) and InterPro (Mulder et al.,

2003), and they do not make use of properties of known families, such as inter- and

intra-family sequence diversity, to aide in the formation of new families.

Supervised classification algorithms can overcome some of these shortcomings.
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These methods include algorithms based on the use of profile hidden Markov models

(Eddy, 1998), algorithms based on probabilistic suffix trees (Bejerano and Yona,

2001), algorithms based on the use of discriminative strategies such as support vector

machines (Jaakkola et al., 2000; Liao and Noble, 2003), and algorithms based on

sparse Markov transducers (Eskin et al., 2003). Whereas most of these supervised

techniques focus on the assignment of unclassified proteins to known families, they

do not allow for progressive construction of new families from proteins that cannot

be assigned.

We develop supervised classification algorithms that overcome the problems of

existing supervised and unsupervised algorithms and achieve improved accuracy. By

utilizing sequence similarity from pairwise comparisons, we show that our algorithm

has higher accuracy rate and lower mis-classification rate when compared to algo-

rithms that are based on the use of multiple sequence alignments and hidden Markov

models. Our approach can assign proteins to existing families in databases, and by

taking into account similarities between the unclassified proteins, can assign them to

new families. Our algorithm will be useful for rapid assignment of sequences from

genome sequencing projects to families.

B. Methods

1. Classifying proteins to existing families

We first consider the problem of assigning an unclassified protein to known families.

We assume that each protein belongs to at most one family, which consists of ei-

ther individual protein domains or single domain proteins. The goal is to determine
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Algorithm SClassify (F ,p,t)

input: a set F of protein families, an unclassified protein p, e-value cutoff t;

output: either a family F ∈ F to which p is classified, or a new family for p; {

for each family F ∈ F do {

if there exists a protein p′ ∈ F with e-value e(p, p′) ≤ t then {

sF ← average value of − log e(p, p′) over those p′ with e(p, p′) ≤ t;

}

}

if sF is defined for some F then {

return the family F with the largest sF ; }

else {

return a new family for p;

}}

Fig. 3. Algorithm SClassify when one unclassified protein is given.
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whether the unclassified protein belongs to one of the existing families. We consider

the following algorithm: compute an e-value score from the given unclassified protein

to each protein within the existing families by using a pairwise sequence comparison

algorithm such as BLAST (Altschul et al., 1990) or the Smith-Waterman local align-

ment algorithm SSEARCH (Smith and Waterman, 1981), and assign the unclassified

protein to the family with the highest average minus log e-value, where the average

is taken over proteins in the family that have e-value below a cutoff (see Figure 3 for

the detailed algorithm.)

Because sequences within the same family can have low similarity, we only con-

sider proteins within a family that are of sufficiently high similarity to the unclassified

protein during the computation of average scores. This avoids the problem of getting

consistently low average scores, and thus not being able to assign any new proteins

to these families. When the unclassified protein is not sufficiently similar to any of

the existing families, it is not assigned to any family. The worst case time complexity

of the algorithm is O(fs), where f is the total number of proteins within the ex-

isting families, and s is the time to perform one pairwise comparison. The memory

requirement of the algorithm is proportional to the total size of the existing families.

2. Constructing new families from unclassified proteins

We consider the problem when a set of more than one unclassified protein is given,

and the goal is either to assign each unclassified protein to an existing family or to

automatically construct new families if necessary. We treat each unclassified protein

initially as a family by itself, and iteratively merge a family that contains unclassified
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proteins either into an existing family or with another family that contains unclassified

proteins. During each iteration, we make sure that the average minus log e-value

between the two merged families is the highest among all pairs of families considered,

where the average is taken over pairs of proteins that have e-value below a cutoff. The

algorithm terminates when no pairs of proteins have e-value below the cutoff within

all pairs of families considered and thus it is no longer possible to merge, with the

families that have not been merged into existing families becoming new families (see

Figure 4 for the detailed algorithm).

The algorithm also takes advantage of similarity between unclassified proteins

but will not merge existing families together, thus there is no need to perform pair-

wise comparisons between proteins in existing families. There are u(f + u) pairwise

comparisons to perform, where f is the total number of proteins within the existing

families, and u is the number of unclassified proteins. There are a total of O(u) itera-

tions, with O(u(n+u)) average scores to compare within each iteration, and O(n+u)

average scores to update after each merge, where n is the total number of existing

families. Because each update takes constant time, the worst case time complexity

of the algorithm is O(u(f + u)s + u2(n + u)), where s is the time to perform one

pairwise comparison. The memory requirement of the algorithm is proportional to

the number of scores that need to be stored, which is u(f + u).

3. Availability

The SClassify software is available for download at

http://faculty.cse.tamu.edu/shsze/sclassify.
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Algorithm SClassify (F ,U ,t)

input: a set F of protein families, a set U of unclassified proteins, e-value cutoff t;

output: a set of families that include all the proteins; {

N ← {{p} | p ∈ U};

loop {

for each pair of families (F1, F2) where

F1 ∈ N and F2 ∈ F or F2 ∈ N with F1 6= F2 do {

if there exist proteins p1 ∈ F1 and p2 ∈ F2 with e-value e(p1, p2) ≤ t then {

s(F1,F2) ← average value of − log e(p1, p2) over

those (p1, p2) with e(p1, p2) ≤ t;

}

}

if s(F1,F2) is defined for some (F1, F2) then {

(F1, F2)← pair of families with the largest s(F1,F2);

N ← N − {F1};

if F2 ∈ F then {

F ← F − {F2} ∪ {F1 ∪ F2}; }

else {

N ← N − {F2} ∪ {F1 ∪ F2}; } }

else {

return the set of families F ∪N ; } } } }

Fig. 4. Algorithm SClassify when a set of more than one unclassified protein is given.
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C. Experiments

1. Data sets

We apply our algorithm to a few large-scale data sets, including curated families

from the Pfam database (Bateman et al., 2000), protein families from the SCOP

database (Murzin et al., 1995), full length prokaryotic sequences from the Prot-

ClustDB database (Klimke et al., 2009), and curated proteins from the Swiss-Prot

subset of the UniProt database (Apweiler et al., 2001). To compare the performance

of our algorithm to slower algorithms, we use families within individual species from

Pfam, including Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster,

Escherichia coli, Homo sapiens, Mus musculus and Saccharomyces cerevisiae, with

the proteins that are within each species forming a data set.

Whereas the sequences from Pfam and SCOP are short sequences that correspond

to protein domains, the sequences from ProtClustDB and UniProt are full length

sequences that correspond to entire proteins (see Table II). We remove individual

proteins that do not belong to any family within each of the data sets, while allowing

proteins from different species to be within the same family in the data sets that

contain multiple species. Except for UniProt, each remaining protein domain or

full length sequence belongs to one family. We remove the very small percentage of

proteins (less than 1%) that belong to more than one family from UniProt.
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Table II. Data sets for performance evaluation. For each set, family is the number of

families, protein is the total number of proteins in all families, avg pro is the

average number of proteins within a family, and avg len is the average length

of proteins in amino acids.

Data set family protein avg pro avg len

Pfam 9318 2286710 245.4 151.1

A. thaliana 1962 36387 18.6 114.7

C. elegans 1164 15971 13.7 137.4

D. melanogaster 1294 13664 10.6 128.6

E. coli 404 2177 5.4 159.7

H. sapiens 1596 23051 14.4 102.2

M. musculus 1516 21891 14.4 110.8

S. cerevisiae 814 4526 5.6 157.2

SCOP 2234 15045 6.7 169.8

ProtClustDB 6521 356615 54.7 348.1

UniProt 8213 448469 54.6 343.7
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Fig. 5. Illustration of the procedure of the proposed method.
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Fig. 6. Accuracy rate and mis-classification rate of SClassify over different SSEARCH

e-value cutoffs by using SSEARCH to compute pairwise scores. Solid lines

represent accuracy rates, while dotted lines represent mis-classification rates.

More tests are performed for e-value cutoffs between 1 and 1e–5.

2. Choice of parameters

We evaluate the accuracy of our algorithm by employing the 10-fold cross validation

procedure over different e-value cutoffs (see Figure 5). We randomly subdivide a given

set of proteins into ten subsets, and take each subset as a testing data set while using

the remaining nine subsets as a training data set. For each testing data set, we take

each protein as an unclassified protein and apply our algorithm for classifying one

protein against families that include proteins in the training data set. We define the
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Fig. 7. Accuracy rate and mis-classification rate of SClassify over different BLAST

e-value cutoffs by using BLAST to compute pairwise scores. Solid lines repre-

sent accuracy rates, while dotted lines represent mis-classification rates. More

tests are performed for e-value cutoffs between 1 and 1e–5.

accuracy rate to be the fraction of proteins that are classified to the correct family.

Since it is not likely that the 10-fold cross validation procedure groups many

complete families into individual subsets, we further evaluate the mis-classification

of our algorithm by removing proteins from one entire family at a time, and taking

each protein as an unclassified protein while applying our algorithm for classifying

one protein against all the other families. We define the mis-classification rate to

be the fraction of proteins that are incorrectly classified to some other family. Since
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this procedure retains the largest number of already classified families during each

test, it corresponds to the most difficult scenario that one can use for evaluating

mis-classification. This procedure complements the above 10-fold cross validation

procedure by evaluating the reliability of our algorithm on unclassified proteins that

should not belong to any existing families.

Figures 6 and 7 shows the performance of our algorithm SClassify over different

e-value cutoffs by using SSEARCH and BLAST to compute pairwise scores. There is

a large performance difference between data sets that contain sequences corresponding

to protein domains, including Pfam and SCOP, and data sets that contain full length

sequences, including ProtClustDB and UniProt. To simultaneously achieve high ac-

curacy rate and low mis-classification rate, a high e-value cutoff is needed for data sets

that contain sequences corresponding to protein domains, and a low e-value cutoff is

needed for data sets that contain full length sequences to avoid mis-classification.

When SSEARCH is used to compute pairwise scores, we choose an e-value cut-

off of 0.1 for data sets that contain sequences corresponding to protein domains,

including Pfam and SCOP, which achieves an accuracy rate of at least 89% and a

mis-classification rate of at most 9%. We choose a SSEARCH e-value cutoff of 1e–30

for data sets that contain full length sequences, including ProtClustDB and UniProt,

which achieves an accuracy rate of at least 90% and a mis-classification rate of at

most 13%. For these choices, the minimum accuracy rate is about the same as one

minus the maximum mis-classification rate.

We use a similar strategy to obtain appropriate e-value cutoffs for BLAST, except

that we consider a BLAST e-value to be above the cutoff if no hits are obtained
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between a protein pair. We choose a BLAST e-value cutoff of 0.1 for data sets

that contain sequences corresponding to protein domains, including Pfam and SCOP,

which achieves an accuracy rate of at least 85% and a mis-classification rate of at most

6%, resulting in a decrease of the minimum accuracy rate by 4% when using BLAST

instead of SSEARCH. Such a decrease in performance is expected since SSEARCH

computes optimal alignments while BLAST employs a heuristic, and the similarity

scores from SSEARCH are more accurate than the ones from BLAST. We choose

a BLAST e-value cutoff of 1e–30 for data sets that contain full length sequences,

including ProtClustDB and UniProt, which achieves an accuracy rate of at least 89%

and a mis-classification rate of at most 13%, resulting in a similar minimum accuracy

rate and maximum mis-classification rate as before, although the actual accuracy

rate on the ProtClustDB data set will decrease by 3% when using BLAST instead

of SSEARCH. A caution is that although the same e-value cutoffs are chosen for

SSEARCH and BLAST, the SSEARCH e-value and the BLAST e-value use different

formulas and are not directly comparable.

3. Comparison with other supervised algorithms

We compare the performance of SClassify to HMMER (Eddy, 1998), which classifies

proteins against existing families according to profile hidden Markov models, to LIB-

SVM (Fan et al., 2005), which performs supervised classification based on the use

of support vector machines, and to SMT (Eskin et al., 2003), which is a supervised

classification algorithm that uses sparse Markov transducers to train a given set of

known families. We employ the 10-fold cross validation procedure as before, and use
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the same training and testing sets in each case.

For SClassify, we use the variant for classifying one protein. For HMMER, we

construct a profile hidden Markov model for each family in the training set from a

multiple sequence alignment obtained by ClustalW (Thompson et al., 1994). These

alignments are constructed either from a subset of distinct sequences in each family

with pairwise BLAST e-values above a cutoff, or from all sequences in each fam-

ily. For each family, a subset of distinct sequences is obtained by starting from an

empty subset and iteratively adding a sequence that has the largest possible mini-

mum BLAST e-value against sequences in the current subset as long as this largest

minimum is above the cutoff. For the Pfam database, we also use the profile hidden

Markov model that was created for each curated family from a subset of curated seed

sequences in Bateman et al. (2000). For a given e-value cutoff, we assign an unclassi-

fied protein to the family with the lowest e-value if such a family exists, otherwise the

unclassified protein is not assigned to any family. For LIBSVM, we follow a similar

strategy as in Liao and Noble (2003), and define a feature vector for a protein based

on the set of minus log e-values from BLAST to each training protein, while allowing

missing values that correspond to pairwise scores above the BLAST e-value cutoff 1.

Each attribute of the feature vector is normalized by using the same scaling factor

for the training and testing data, and the radial basis kernel is used. Various gamma

and cost parameters are tested, and the result with the best performance is selected

for each data set. For SMT, we use the classifier variant that allows wild cards in

the sequence motifs, and assign an unclassified protein to the family with the highest

average log probability of the proteins within the family without using a cutoff.
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Fig. 8. Accuracy rate and mis-classification rate of HMMER over different e-value

cutoffs. Light bars and solid lines represent accuracy rates, while dark bars

and dotted lines represent mis-classification rates. Bars denote performance

on Pfam by applying HMMER on the profile hidden Markov model that was

created for each curated family from a subset of curated seed sequences in

Bateman et al. (2000). Lines denote performance by applying HMMER on

the profile hidden Markov model that is constructed for each family in the

training set from a multiple sequence alignment obtained by ClustalW. These

alignments are constructed from all sequences in each family. More tests are

performed for e-value cutoffs between 1 and 1e–5.
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Fig. 9. Accuracy rate and mis-classification rate of HMMER over different e-value

cutoffs. Light bars and solid lines represent accuracy rates, while dark bars

and dotted lines represent mis-classification rates. Bars denote performance

on Pfam by applying HMMER on the profile hidden Markov model that was

created for each curated family from a subset of curated seed sequences in

Bateman et al. (2000). Lines denote performance by applying HMMER on

the profile hidden Markov model that is constructed for each family in the

training set from a multiple sequence alignment obtained by ClustalW. These

alignments are constructed from a subset of distinct sequences in each family

with pairwise BLAST e-values above 0.1 (a BLAST e-value is considered to be

above the cutoff if no BLAST hits are obtained).
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Figures 8 and 9 shows two boundary cases for HMMER in which the pairwise

BLAST e-value cutoff to obtain a subset of distinct sequences in each family is set

to a very high value 0.1, and in which all sequences in each family are used to ob-

tain a multiple alignment. While the minimum mis-classification rate of HMMER is

achieved in the first case, the accuracy rate is low. While the maximum accuracy rate

of HMMER is achieved in the second case, the mis-classification rate is high. The

performance of using other pairwise BLAST e-value cutoffs is intermediate between

the two. For Pfam, using the profile hidden Markov model that was created for each

curated family from a subset of curated seed sequences in Bateman et al. (2000) si-

multaneously achieves high accuracy rate and low mis-classification rate. However,

the accuracy rate of HMMER is significantly lower than the accuracy rate of SClas-

sify at a fixed mis-classification rate, while the mis-classification rate of HMMER is

significantly higher than the mis-classification rate of SClassify at a fixed accuracy

rate (compare to Figure 6 and 7). A caution is that the HMMER e-value cutoffs are

not directly comparable to the SSEARCH or BLAST e-value cutoffs.

Table III shows that SClassify has better accuracy than LIBSVM and much

better accuracy than SMT on individual species from Pfam and on SCOP. When

compared to our previous results, SClassify performs better on families that contain

multiple species from Pfam, which may be due to the increased amount of information

from the much larger number of proteins in multiple species.



35

Table III. Accuracy rate comparison of SClassify (using either SSEARCH or BLAST

to compute pairwise scores), LIBSVM and SMT on individual species from

Pfam and on SCOP.

SClassify SClassify

Data set (SSEARCH) (BLAST) LIBSVM SMT

Pfam

A. thaliana 0.96 0.90 0.82 0.11

C. elegans 0.91 0.80 0.71 0.46

D. melanogaster 0.90 0.77 0.68 0.28

E. coli 0.90 0.82 0.61 0.40

H. sapiens 0.92 0.84 0.74 0.22

M. musculus 0.92 0.83 0.76 0.18

S. cerevisiae 0.81 0.72 0.52 0.38

SCOP 0.89 0.85 0.63 0.00

4. Comparison with unsupervised algorithms

We compare the performance of SClassify to unsupervised clustering algorithms MCL

(Enright et al., 2002), which uses the Markov cluster algorithm to classify a given set

of proteins into families, and to BLASTClust (Altschul et al., 1990), which groups a

given set of proteins into clusters based on computing pairwise scores from BLAST.

In order to make the results from SClassify comparable to the clusters obtained from

these unsupervised classification algorithms, we use the same 10-fold cross validation

procedure as before and merge the family assignments of each protein from SClassify
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to obtain a set of clusters, with each protein that is not assigned to any existing family

being in a new family by itself. This procedure roughly models the subdivision of a

given set of proteins into clusters of proteins.

We evaluate the performance of each algorithm by checking whether each pair of

proteins are correctly classified either to the same family or to different families. For

each set of true clusters that are predefined in the original data set and each set of

predicted clusters that are obtained from each algorithm, we compute the statistics

true positives(TP), false positives(FP) and false negatives(FN), which are the number

of protein pairs that are within the same true cluster and within the same predicted

cluster, the number of proteins pairs that are within the same predicted cluster but

in different true clusters, and the number of protein pairs that are within the same

true cluster but in different predicted clusters, respectively (Halkidi et al., 2001).

True clusters are predefined by the original data set, thus we know all proteins and

their families. Predicted clusters are results from each clustering method. For each

protein pair(i, j), I define T (i, j)=1 if they are within the same true cluster, T (i, j)=0

otherwise. I define S(i, j)=1 if they are within the same predicted cluster, S(i, j)=0

otherwise. I define TP, TN, FP and FN as follows.

• TP = { (i, j) | T (i, j) = 1 and S(i, j) = 1, where i < j }

• FN = { (i, j) | T (i, j) = 1 and S(i, j) = 0, where i < j }

• FP = { (i, j) | T (i, j) = 0 and S(i, j) = 1, where i < j }

• TN = { (i, j) | T (i, j) = 0 and S(i, j) = 0, where i < j }
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From these statistics, we compute the precision, the recall and the f-measure as

follows:

• PC =
TP

(TP + FP)

• RC =
TP

(TP + FN)

• F-measure = 2×
(PC× RC)

(PC + RC)

Note that the F-measure from SClassify roughly corresponds to the accuracy rate in

our previous tests but not the mis-classification rate, and is highly correlated to the

accuracy rate.

For SClassify, we use the variant for classifying one protein while using BLAST

to compute pairwise scores. For MCL, we use the minus log e-value from BLAST

as the edge weight, and test various inflation values while selecting the result with

the best F-measure for each data set. For BLASTClust, we test various similarity

thresholds and minimum length coverages while selecting the result with the best

F-measure for each data set.

Figure 10 shows that while MCL and BLASTClust are able to obtain high preci-

sion or high recall for some data sets, this is often at the expense of low recall or low

precision respectively, and the overall F-measure is not high. By using information

from known families, SClassify is able to obtain very good performance with respect

to both precision and recall, which results in consistently high F-measure across all

data sets.
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Fig. 10. Performance comparison of SClassify with unsupervised clustering algorithms

MCL and BLASTClust by using BLAST to compute pairwise scores. For

each data set, PC is the precision, RC is the recall, and the lines denote the

F-measure.
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Fig. 11. Accuracy rate comparison of different variants of SClassify when a set of un-

classified proteins is given while using BLAST to compute pairwise scores.

Given a set U of unclassified proteins, Seq corresponds to the original algo-

rithm for classifying one protein on each protein sequentially in U according

to a random order, while Set corresponds to the algorithm for classifying the

proteins in U simultaneously by also taking into account similarities between

unclassified proteins.

5. Classifying a set of proteins

To evaluate the performance of SClassify when a set of unclassified proteins is given,

we perform the 10-fold cross validation procedure as before. Instead of taking each

protein within the testing data set as an unclassified protein individually, given a set

size u, we subdivide the testing data set further into subsets U that are roughly of the

same size u and as evenly as possible. We apply the SClassify variant for classifying a
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set of proteins on each subset U independently against families that include proteins in

the training data set. We compare the performance of this algorithm to the alternative

strategy of applying the original algorithm for classifying one protein on each protein

sequentially within each subset U according to a random order, in which each newly

classified protein in U is retained in its assigned family before the next one in U is

classified. To determine whether there are significant improvements in performance

between these algorithms, we evaluate their accuracy rates over increasing values of

u.

We further evaluate the mis-classification by removing proteins from one entire

family at a time and setting U to be the removed family. Since it is possible that

proteins in U are classified to different families, we take the largest new family that

contain proteins in U to be the correct family for U after classification.

Figure 11 and 12 shows that significantly better accuracy rate can be obtained

when u becomes large enough, which is especially evident on UniProt. Significantly

lower mis-classification rates are also obtained, which is evident on SCOP and Prot-

ClustDB.

D. Discussion

We have developed an algorithm SClassify that allows both accurate classification

of proteins to existing families and progressive construction of new families. We

have shown that there is a tradeoff between achieving high accuracy rates and low

mis-classification rates. While we have used the default parameters in BLAST that

limit the output to the top 250 alignments, removing this constraint simultaneously
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Fig. 12. Mis-classification rate comparison of different variants of SClassify when a

set of unclassified proteins is given while using BLAST to compute pairwise

scores. Given a set U of unclassified proteins, Seq corresponds to the original

algorithm for classifying one protein on each protein sequentially in U accord-

ing to a random order, while Set corresponds to the algorithm for classifying

the proteins in U simultaneously by also taking into account similarities be-

tween unclassified proteins.

increases the accuracy rate and the mis-classification rate, and does not necessarily

give better results.

To investigate whether SClassify performs well on families with very few proteins

and on families with low sequence similarity, we subdivide our results on the variant

for classifying one protein into categories by grouping together all families that contain

the same number of proteins and grouping together all families with average sequence
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Fig. 13. Accuracy rate and mis-classification rate of SClassify by grouping together

all families that contain the same number of proteins (each point denotes the

performance on proteins within such families). Solid lines represent accuracy

rates, while dotted lines represent mis-classification rates. Missing points

correspond to no proteins being assigned to the category.

identity between proteins within a specified range, where the sequence identity is

obtained by dividing the number of exact matches by the average length of two

aligned proteins. The performance of our algorithm remains high on families with

very few proteins or on families with low sequence identity (see Figures 13 and 14).

To evaluate the running time of SClassify on each data set, we apply SClassify

against all existing protein families in each data set by using the variant for classifying

a set of proteins. Although the worst case time complexity of SClassify is not linear,

Figures 15, 16 and 17 shows that the running time is roughly linear after the number

of proteins to be classified becomes large enough and the computational overhead
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Fig. 14. Accuracy rate and mis-classification rate of SClassify by grouping together

all families with average sequence identity between proteins within a specified

range (each point denotes the performance on proteins within such families

with average sequence identity within the range from l to u, where l is the

label to the left of the point on the x-axis and u is the label to the right of the

point on the x-axis), while using BLAST to compute pairwise scores. Solid

lines represent accuracy rates, while dotted lines represent mis-classification

rates. Missing points correspond to no proteins being assigned to the category.

becomes relatively low. When BLAST is used to compute pairwise scores, it takes

less than a day on one processor for the largest case with 32768 proteins to classify.

When the time to compute pairwise scores is excluded, SClassify is very fast and

takes at most an hour in all the tests. If SSEARCH is used instead of BLAST, the

total time to compute SSEARCH optimal alignments dominates, and the running

time increases by about a factor of ten. The memory requirement is less than two

gigabytes in all the tests with at most 32768 proteins to classify (Figure 18).
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PFAMALL SCOP NCBI UNIPROT
78.0000 1.0000 13.0000 19.0000
80.0000 1.0000 15.0000 24.0000
84.0000 1.0000 21.0000 32.0000
91.0000 1.0000 29.0000 41.0000
106.0000 1.0000 43.0000 60.0000
128.0000 1.0000 73.0000 111.0000
199.0000 2.0000 127.0000 173.0000
317.0000 4.0000 274.0000 315.0000
580.0000 9.0000 524.0000 627.0000
1074.0000 17.0000 1031.0000 1176.0000
2063.0000 36.0000 2072.0000 2404.0000
3996.0000 4121.0000 4641.0000
8083.0000 8351.0000 9501.0000
16016.0000 16813.0000 18919.0000
32220.0000 34390.0000 38994.0000
66149.0000 70706.0000 78763.0000
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Fig. 15. Running time of SClassify on one processor while including the time to com-

pute pairwise scores by BLAST. In each case, the average running time is

given.

We have shown that for the purpose of protein family classification, it may not be

necessary to consider more complicated models such as multiple sequence alignments

and hidden Markov models, as it is possible to obtain better performance from the

use of pairwise sequence comparisons alone. Since pairwise alignments may conflict

with each other within a family, such multiple sequence representations will still be

needed to define a consistent model for a family. These representations are especially

important for determining conserved or critical residue positions within a family.

In order to handle multiple domain proteins, domain prediction algorithms such as
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PFAMALL SCOP NCBI UNIPROT
74.0000 1.0000 11.0000 15.0000
74.0000 1.0000 11.0000 15.0000
76.0000 1.0000 11.0000 15.0000
77.0000 1.0000 12.0000 15.0000
77.0000 1.0000 12.0000 15.0000
77.0000 1.0000 12.0000 15.0000
78.0000 1.0000 12.0000 16.0000
78.0000 1.0000 12.0000 16.0000
80.0000 1.0000 13.0000 17.0000
81.0000 1.0000 15.0000 19.0000
88.0000 1.0000 18.0000 22.0000
102.0000 25.0000 29.0000
132.0000 39.0000 44.0000
193.0000 106.0000 100.0000
416.0000 475.0000 416.0000
1587.0000 2537.0000 1993.0000

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

R
un

ni
ng

 t
im

e 
in

 s
ec

on
d

s 
ex

cl
ud

in
g 

B
LA

S
T 

(lo
g 

sc
al

e)

Number of proteins to be classified

Pfam SCOP
ProtClustDB UniProt

Fig. 16. Running time of SClassify on one processor while excluding the time to com-

pute pairwise scores by BLAST. In each case, the average running time is

given.

ADDA (Heger and Holm, 2003) can be used to determine domain boundaries before

SClassify is applied.

To illustrate the use of SClassify in real life applications, we consider all 688172

computationally predicted domains in Pfam, and apply SClassify to these domains

against all existing curated families in Pfam (containing a total of over two million

proteins, see Table II), by using BLAST to compute pairwise scores. It takes about 60

processor-days to obtain all the BLAST scores, and about two weeks on one processor

when the variant for classifying a set of proteins is used after all the BLAST scores
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PFAMALL SCOP NCBI UNIPROT
83.0000 1.0000 34.0000 48.0000
99.0000 1.0000 44.0000 68.0000
129.0000 1.0000 79.0000 112.0000
196.0000 2.0000 118.0000 181.0000
340.0000 3.0000 228.0000 193.0000
568.0000 5.0000 417.0000 301.0000
1287.0000 11.0000 417.0000 363.0000
2506.0000 22.0000 1690.0000 543.0000
5108.0000 46.0000 3267.0000 3991.0000
10062.0000 91.0000 6516.0000 7812.0000
20049.0000 184.0000 13186.0000 15605.0000
39887.0000 25978.0000 30642.0000
79782.0000 52103.0000 62857.0000
167535 104691 123803
352167 208594 249061
740013 420821 505262

1

10

100

1000

10000

100000

1000000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

R
un

ni
ng

 t
im

e 
in

 s
ec

on
d

s 
in

cl
ud

in
g 

S
S

E
A

R
C

H
 (l

og
 s

ca
le

)

Number of proteins to be classified

Pfam SCOP
ProtClustDB UniProt

Fig. 17. Running time of SClassify on one processor while including the time to com-

pute pairwise scores by SEARCH. In each case, the average running time is

given.

are obtained.

When the variant for classifying a set of proteins is used on all the predicted

domains, about 31% of these domains are assigned to some curated family. When the

variant for classifying one protein is used sequentially according to a random order of

predicted domains, about 27% of these domains are assigned to some curated family.

These results are in contrast to the smaller number of predicted domains that are

assigned (about 20%) when HMMER is applied with an e-value cutoff of 0.1 while

using the profile hidden Markov model that was created for each curated family from

a subset of curated seed sequences in Bateman et al. (2000). A caution is that the
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PFAMALL SCOP NCBI UNIPROT
426.6016 5.9336 63.2148 88.7383
426.6016 5.9375 63.3438 88.8672
426.6016 5.9531 63.4727 88.9961
426.8594 5.9648 63.7305 89.2539
427.2461 6.0039 64.2461 89.7695
428.0117 6.0664 65.1484 90.8008
429.6953 6.2031 67.0820 92.7344
432.6602 6.7383 70.6914 96.6016
439.4922 8.4961 78.1680 103.0469
451.2227 11.4805 92.7344 118.6445
475.0703 15.6523 122.7695 146.4883
521.7344 180.6484 198.5664
614.9336 296.9219 310.7148
796.8203 532.4336 529.8477
1158.6602 999.4609 970.5859
1863.1328 1947.6953 1863.1328
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Fig. 18. Memory requirement of SClassify on a single processor while excluding to

compute pairwise scores by SSEARCH or BLAST.

domain boundaries in the predictions may not be accurate and the assignments from

different algorithms can be quite different from each other.

For the remaining domains that are not assigned to a curated family, both vari-

ants of SClassify are able to create new families. In both cases, about 60% of these

new families contain only one domain. For the remaining families that contain more

than one domain, about 90% of them are completely contained within a computation-

ally generated family in Pfam that contains these predicted domains. These results

indicate that the new families generated by SClassify are largely consistent with the
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families generated by Pfam, except that a large number of them are split into smaller

families by SClassify due to insufficient sequence similarities.

While most existing classification algorithms are based on sequence similarity

information from alignments, alignment-free approaches are also available (Ma and

Chan, 2008). One future direction is to investigate whether it is possible to use these

techniques to improve accuracy.
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CHAPTER IV

LARGE-SCALE CLUSTERING ACROSS MULTIPLE GENOMES

Identifying genomic regions that descended from a common ancestor helps us study

the gene function and genome evolution. In distantly related genomes, clusters of

homologous gene pairs are evidence used in function prediction, operon detection,

etc. (Raghupathy and Durand, 2009). Thus, reliable identification of gene clusters is

critical to functional annotation and analysis of genes. Many kinds of computational

methods have been proposed defining gene clusters in order to study the genome

organization, evolution and function of individual gene groups. But there are not

many efficient algorithms for identifying gene families and operons in the large-scale

data set. Thus, the goal of the proposed method is to define an efficient gene clustering

algorithm that can investigate related gene clusters across multiple genomes and study

operons and their evolutions.

A. Introduction

In bacteria, one of the main mechanisms to facilitate control of gene expression is the

organization of gens into operons (Che et al., 2006; Price et al., 2005; Salgado et al.,

2000; Yang and Sze, 2008). In gene clustering on chromosomes, the most popular

approaches require that the distance between adjacent genes in a cluster to be small

(A. Bergeron and Raffinot, 2002; He and Goldwasser, 2005; Luc et al., 2003; Parida,

2007), because homologous regions are straightforward when genomic regions are

closely related (Raghupathy and Durand, 2009). However, it has been shown that
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there are considerable difficulties to develop efficient algorithms when paralogous

genes are allowed in the model (He and Goldwasser, 2005). By using a different

formulation of gene clusters which requires that the distance between any pair of

genes within a cluster to be small (Rose Hoberman and Durand, 2005), we observe

that it is possible to use a window-based strategy that can identify significantly more

functionally enriched gene clusters than previous approaches.

Several clustering methods have been developed to find gene clusters that have

common functions in different genomes. In order to identify gene clusters, GeneTeams

(A. Bergeron and Raffinot, 2002; Luc et al., 2003) require that the distance between

adjacent genes in a cluster to be small. It allows intervening genes that appear

consecutively, possibly in different orders, between genes in a cluster so that various

cluster sizes can be adopted. But it includes a restriction that each gene has at most

one occurrence in each chromosome. This limits the model as many genomes contain

multigene families. To overcome the problem, HomologyTeams (He and Goldwasser,

2005) is a generalized version of GeneTeams that does not require a cluster to appear

in every chromosome. It provides statistical significant estimates of identified gene

clusters and a fast way to identify sets of gene clusters. Within the gene clusters,

neither the order of the genes nor their orientation need to be conserved, but a fixed

threshold of the distance between adjacent genes limits the model (Pertea et al.,

2009). DomainTeams (Pasek et al., 2005) is a modified version of GeneTeams that

considers chromosomal regions of conserved protein domains as domain teams rather

than each gene as basic unit, while other algorithms allows multiple genomes and use

a gene proximity parameter that restricts the number of intervening genes between
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adjacent genes in a cluster.

Didier (2003); Heber and Stoye (2001); Schmidt and Stoye (2004) generalized

the common interval formulation to allow for the inclusion of paralogous genes within

a genome by representing sets of genes as sequences rather than permutations and

proposed efficient algorithms to find conserved clusters. It finds all common intervals

of two sequences in O(n2logn) time, using O(n) space. Schmidt and Stoye presented

an algorithm that finds all common intervals of two sequences and extended the

algorithm to find all common intervals in more than two genomes.

Since it is difficult to find gene clusters from sequence comparisons, stringent

alignment criteria and statistical validation are required to evaluate accurately whether

the association between two or more genes found in the same order on two chromoso-

mal segments in different genomes occurs by chance or reflects true colinearity (Salse

et al., 2008). FISH (Calabrese et al., 2003) models the probability of observing puta-

tive segmental homologies and establishes correspondences between segments on two

chromosomes that may not simply be genes, but imposes an almost colinear ordering

of pairwise homologous regions.

Lee and Sonnhammer (Lee and Sonnhammer, 2003) examines genes linked to the

same pathway described in the Kyoto Encyclopedia of Genes and Genomes (Kanehisa

and Goto, 2000). The average distance of gene pairs within a pathway is compared

to the distance calculated with a randomized gene order. Each genome is analyzed

separately by identifying clusters of genes belonging to the same metabolic pathway

and comparing the result across a large number of genomes. This method is one of

the first genome-wide analyses of metabolic pathway clustering in eukaryotes which
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revealed that gene clusters may span large segments of the genome. One drawback

of the strategy is that it is impossible to utilize comparative data during the initial

analysis.

While many of these algorithms can be used to perform gene clustering across two

or more genomes, very few algorithms are efficient enough to analyze a large number

of genomes (Kim et al., 2005). By placing a stricter limit on the maximum cluster

size, we observe that efficient algorithms can be developed to perform gene clustering

on hundreds of genomes at the same time. This strategy is sufficient for analyzing

gene clustering in bacterial genomes, and allows for large-scale study of evolutionary

relationships of gene clusters and study of operon formation and destruction. We

develop a different formulation based on constraining the overall size of a cluster and

develop statistical estimations that allow direct comparisons of clusters of different

sizes. It also allow the study of whether gene clusters in bacteria occur only at the

operon level or whether there are higher-level structures, and the functional relation-

ships between them. This algorithm performs seven hundred bacteria data sets which

contain a well-characterized list of operons such as Escherichia coli K12 and perform

comparative analysis of operon occurrences, gene orientations, and rearrangements

both within and across clusters.

B. Method

1. Window-based approach

We investigate a different formulation which requires that the distance between any

pair of genes within a cluster to be small (Rose Hoberman and Durand, 2005), by
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placing a constraint on the overall cluster size. We allow genes in a same paralo-

gous group to appear in more than one gene on a same chromosome. This model is

suitable for identifying gene clusters in localized regions with a small number of gene

rearrangements.

Let C = {c1, . . . , ck} be a set of k chromosomes, one from each genome under

consideration. We represent each gene by a number (while ignoring its orientation)

so that the same number represents a set of orthologous genes in different genomes

and each chromosome ci is represented by a sequence of gene numbers. The same

gene number is allowed to appear more than once within each ci which represents

paralogous copies of a gene.

A gene cluster G′ that appears in k′ chromosomes is represented by k lists

P ′1, . . . , P
′
k, with k′ of these lists non-empty and each list P ′i containing a set of posi-

tions on ci, which together specify all the positions of genes that are in G′. To ensure

that all genes in G′ are clustered within a region of size at most l on each chromo-

some ci for which P ′i is non-empty, we require that each gene number that appears

in G′ must appear at least once in each of the k′ non-empty lists P ′i , and within each

non-empty P ′i , |r − s| < l for any pair of positions r, s ∈ P ′i (Figure 19).

To obtain statistical significance estimates, let n be the average length of the

chromosomes ci and l′ be the average size of the non-empty lists P ′i . The probability

of G′ appearing in a given chromosome can be obtained by assuming a random back-

ground distribution based on n, l and l′ (Durand and Sankoff, 2003). We estimate the

p-value of G′ by the probability of G′ appearing in at least k′ out of k chromosomes

using the binomial distribution, and obtain an e-value from this p-value as follows.
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Algorithm window based clustering({c1, ..., ck},l,n,e) {

G ← empty;

for s← 1 to k do {

for each windows w1 of length l on chromosome cs do {

G′ ← set of gene numbers in w1;

G′′ ← empty;

for i← 1 to k, where i 6= s, do {

Pi ← set of positions on chromosome ci in which gene numbers in G′ appear;

for j ← 1 to |Pi| do {

wj ← window of length l starting from jth position in Pi on ci;

G′′i,j ← set of gene numbers in wj that must appear at least once in G′; }}

for each tuple(j1,...,jk) with 1≤ ji ≤ |Pi| do {

G′ = Gs

⋂
(
⋂k

i=1 Giji
, where i 6= s);

if e-value(G′) that appears in G′′ with n, l, l′ ≤ e then {

add G′ to G;

}}}}}

Fig. 19. Algorithm to identify gene clusters that include same gene number at least

once within a window of length l. Paralogous genes are allowed while requiring

that each cluster appears in each of the k given chromosomes. G is the set of

clusters returned with each cluster G′ represented by a list of gene numbers.

l, n, e is the window length, the average length of chromosomes, and e-value

cutoff respectively.
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p (n, l, l′) =

(n− l)

 l − 1

l′ − 1

 +

 l

l′


 /

 n

l′



p(n, l, l′) is a simple definition of a gene cluster that calculates the probability of

observing a cluster in a chromosome. If genes in l′ are required to appear in a given

order, the probability of observing the gene cluster is p(n, l, l′)/l′, but we consider

the probability of observing such a gene cluster in a chromosome with a random gene

order, so p(n, l, l′) performs a significant test that shows how a gene cluster were

found.

In case of G′ appearing in k′ chromosomes, we estimate the p-value of G′ by the

probability of G′ appearing in at least k′ out of k chromosomes using the binomial

distribution, thus the p-value can be modeled as

p (k, k′, n, l, l′) =
k∑

i=k′

 n

l′

 p (n, l, l′)
i
(1− p (n, l, l′))

k−i

If a gene cluster is found in more chromosomes, the probability of this gene clus-

ter decreases and its statistical significance increases. The e-value of G′ from the

p-value can be estimated by

e (k, k′, n, l, l′) =

 n

l′

 p (k, k′, n, l, l′)
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c1 = ( g1 g2 g3 g4 g5 g6 g6 g7 )

c2 = ( g7 g2 g5 g3 g6 g1 g4 g2 )

c3 = ( g8 g5 g4 g9 g1 g7 g2 g7 g8 )

G1 = {g1, g2, g3}

G21 = {g2, g3}, G22 = {g1, g3}, G23 = {g1, g2}, G24 = {g2}

G31 = {g1, g2}, G32 = {g2}

G′1 = G1 ∩G21 ∩G31 = {g2} G′2 = G1 ∩G21 ∩G32 = {g2}

G′3 = G1 ∩G22 ∩G31 = {g1} G′4 = G1 ∩G22 ∩G32 = {}

G′5 = G1 ∩G23 ∩G31 = {g1, g2} G′6 = G1 ∩G23 ∩G32 = {g2}

G′7 = G1 ∩G24 ∩G31 = {g2} G′8 = G1 ∩G24 ∩G32 = {g2}

Fig. 20. Illustration of the window-based algorithm when window length l = 3. The

window under consideration on chromosome c1 is enclosed in a box. The

occurrences of the gene numbers in chromosomes c2 and c3 are enclosed in

boxes. The set of returned clusters is G = {G′1, . . . , G′8}.

We consider the following algorithm that guarantees that all clusters with e-value

below a cutoff are found. We start with each window of size l on chromosome c1 and

find the locations of all occurrences of its gene numbers in the other chromosomes.

We form windows of size l on each chromosome that contain these occurrences and

intersect them, up to k windows at a time with one from each chromosome, to obtain a

list of candidate gene clusters G′ each containing a list of gene numbers. The positions

of the genes in each cluster G′ is recovered by investigating how the intersection was

originally obtained (See Figure 20).
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We apply the algorithm over 1 ≤ l ≤ 50 on four yeast genomes, including Sac-

charomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces mikatae and Sac-

charomyces bayanus, with ortholog groups from Kellis et al. (2003). We retain gene

clusters that appear in all the four genomes with e-value below 1e–5 while removing

clusters that have their position lists of gene occurrences completely contained within

another cluster with a better e-value.

We compare results to distinct clusters obtained from GeneTeams (A. Bergeron

and Raffinot, 2002; Luc et al., 2003), which is among the most popular algorithms

that require the different gene distance parameter that restricts number of intervening

genes between adjacent genes in a cluster to be small. We evaluate the functional

enrichment of each cluster by applying the GO Term Finder (Boyle et al., 2004) on

the Saccharomyces cerevisiae genes in the gene cluster. The Gene Ontology (GO)

is a common controlled vocabulary of terms and phrases describing the function of

genes and gene products (Ashburner et al., 2000). Each GO term is assigned to one of

the three categories of molecular function, biological process or cellular component.

The terms and relationships are organized into a directed acyclic graph (DAG) in

which vertices represent GO terms and edges represent relationships among similar

terms. Genes can be annotated with GO terms creating gene associations that can be

used for whole genome analyses. The Gene Ontology provides a rich framework for

identifying gene clusters, regardless of the evolutionary mechanisms responsible for

their formation (See Figure 21). We define a cluster to have a significant GO term if

its Bonferroni corrected p-value is below 0.05 within any of the three ontologies that

are biological process, molecular function and celluar component.
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Fig. 21. The biological process overview of the glutathione metabolic process

(GO:0006749) in the GO structure.
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Table IV. Result comparison with GeneTeam.

#cluster #cluster #gene #gene #extra #extras

(GO) (GO) (GO)

GeneTeams 2534 606 4510 2240 316 587

Proposed algorithm 2633 1203 4197 3239 3 1586

Table IV shows results where #cluster is the total number of gene clusters,

#cluster(GO) is the number of clusters that have significant GO terms, #gene is the

total number of S. cerevisiae genes covered by the gene clusters, #gene(GO) is the

number of genes covered by gene clusters that have significant GO terms, #extra is

the total number of genes that are covered by gene clusters from one algorithm but

not by gene clusters from the other, and #extra(GO) is the number of genes that are

covered by gene clusters with significant GO terms from one algorithm but not by

gene clusters with significant GO terms from the other.

While the total number of gene clusters and the total number of genes covered

by these gene clusters are similar for both algorithms, the window-based algorithm

found almost twice as many gene clusters that are significantly functionally enriched.

A similar trend was observed both for the number of genes covered by the gene clusters

and the number of genes that are covered by gene clusters from one algorithm but

not by gene clusters from the other.
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2. Large-scale clustering across multiple genomes

We investigate a modified version of the window-based strategy to analyze hundreds of

genomes simultaneously by placing a stricter limit on the maximum cluster size. This

makes it possible to avoid the combinatorial explosion of intersecting all combinations

of up to k windows at a time with one from each chromosome, and allow the use of

a different strategy to find the clusters.

Let C = {c1, . . . , ck} be a set of k chromosomes that is same as Window-based

approach, one from each genome under consideration. We represent each gene by a

number, while ignoring its orientation, so that the same number represents a set of

orthologous genes in different genomes and each chromosome ci is represented by a

sequence of gene numbers. The same gene number is allowed to appear more than

once within each ci which represents paralogous copies of a gene.

We consider each window of length l within each chromosome and enumerate

each of the 2l subsets of genes within the window. We think of each subset S as

a potential gene cluster and identify the subset of chromosomes in which all genes

in S appear within a window of length l (See Figures 22 and 23). A subset S that

appears in k′ chromosomes is represented by k lists P ′1, . . . , P
′
k, with k′ of these lists

non-empty and each list P ′i containing a set of positions on ci, which together specify

all the positions of genes that are in S. To ensure that all genes in S are clustered

within a region of size at most l on each chromosome ci for which P ′i is non-empty,

we require that each gene number that appears in G′ must appear at least once in

each of the k′ non-empty lists P ′i , and within each non-empty P ′i , |r − s| < l for any

pair of positions r, s ∈ P ′i .
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Algorithm largescale clustering({c1, ..., ck},l,n,m,e) {

G ← empty;

for s← 1 to k do {

for each windows w1 of length l on chromosome cs do {

G′ ← set of gene numbers in w1;

for each combination B of G′, where |B| ≥ 2, do {

G′′ ← empty;

for i← 1 to k, where i 6= s, do {

Pi ← set of positions on chromosome ci in which gene numbers in B appear;

for j ← 1 to |Pi| do {

wj ← window of length l starting from jth position in Pi on ci;

G′′i,j ← set of gene numbers in wj that must appear at least once in B; }}

if e-value(B) that appears in G′′ with n, l, l′ ≤ e then {

add B to G;

}}}

Fig. 22. Algorithm to identify gene clusters that include same gene numbers at least

once within a window of length l by the combination of unique gene numbers

not to lose potential gene clusters. Paralogous genes are allowed while requir-

ing that each cluster appears in each of the k given chromosomes. G is the

set of clusters returned with each cluster B represented by a list of gene num-

bers. l, n,m, e is the window length, the average length of chromosomes, the

minimum number of chromosomes to appear, and e-value cutoff respectively.
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c1 = g1 ∗ g2 ∗ g3 g4

c2 = g3 g5 g10 ∗ g1 g2 g4 l = 2 l′ = 2

c3 = g2 g5 g4 g3 ∗ ∗ g1 k = 3 k′ = 2

c1 = g1 ∗ g2 ∗ g3 g4

c2 = g3 g5 g10 ∗ g1 g2 g4 l = 3 l′ = 2

c3 = g2 g5 g4 g3 ∗ ∗ g1 k = 3 k′ = 2

c1 = g1 ∗ g2 ∗ g3 g4

c2 = g3 g5 g10 ∗ g1 g2 g4 l = 3 l′ = 2

c3 = g2 g5 g4 g3 ∗ ∗ g1 k = 3 k′ = 2

c1 = g1 ∗ g2 ∗ g3 g4

c2 = g3 g5 g10 ∗ g1 g2 g4 l = 4 l′ = 2

c3 = g2 g5 g4 g3 ∗ ∗ g1 k = 3 k′ = 3

Fig. 23. Illustration of sample clusters of size greater than one. l, l′, k and k′ represent

the window size, the number of genes in the window, the total number of

chromosomes and the number of chromosomes that appears gene clusters,

respectively.
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To obtain statistical significance estimates, the p-value of S is estimated by the

probability of S appearing in at least this many chromosomes. Let n be the average

length of the chromosomes ci and l′ be the average size of the non-empty lists P ′i .

The probability of S appearing in a given chromosome can be obtained by assuming

a random background distribution based on n, l and l′ where n is the average number

of genes in a genome, l is the window size, and l′ is the number of genes selected by

subregion S. This calculation is same as Window-based approach. We estimate the

p-value of S by the probability of S appearing in at least k′ out of k chromosomes

spanning at most l in each case using the binomial distribution, and obtain an e-value

from this p-value, where l′ genes are observed in windows of length at most l in k′

out of k chromosomes.

Since all possible combinations of included genes and intervening genes are in-

cluded within each window, this algorithm will not lose any clusters that satisfy the

definition. One important advantage of the algorithm is that its time complexity

grows linearly with the input size and the base of 2 in the exponential part of the

time complexity is small, thus a large number of genomes can be considered at the

same time.

C. Experiments

1. Data sets

The data set used in the experiment is comprised of 700 bacterial genomes from NCBI

(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria). The total number of genes used in

700 bacterial genomes is 2214301 genes, and the average number of genes per a genome
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Table V. Distribution of the number of homologs and its average size over different

e-value cutoffs.

BLAST e-value cutoff 1e–05 1e–10 1e–15 1e–20

#Homologs 64340 76873 87329 97220

Avg. Homolog Size 31.80 25.99 22.49 19.66

is 3163 genes. We apply the algorithm over 1 ≤ l ≤ 12 on these bacterial genomes,

with homolog groups constructed by finding bidirectional best hits using protein-

protein BLAST (Altschul et al., 1990) with various e-value cutoffs, and performing

single linkage clustering. The stringent e-value cutoff to construct homologous groups

generates homologs of the smaller size and the larger number of homologs (See Table

V and Figure 24). Since we allow paralogous and orthologous genes, genes that belong

to the same homologous group identified by each e-value cutoff can appear more than

once on the same chromosome and can also appear more than once in the different

genomes. We do not assign a gene into new homologous group if only one gene is

within the homologous group, since this enables the combination of homolgous group

within a windows to bre reduced. We construct the gene map for each chromosome

with the gene location information defined by NCBI.

2. Implementation

We implements the above described algorithm and provides output of the clusters and

statistical test in human readable format. The algorithm finds all gene clusters that
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e-value cutoff : 1e–01 e-value cutoff : 1e–10

Fig. 24. Illustration of constructing groups of homologous genes. The first graph is

constructed by BLAST e-value. Two graphs below the first original graph

represent different homologous groups constructed by the different e-value

cutoff. The stringent e-value cutoff makes homologous groups smaller in size,

but produces a larger number of homologous group.
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cluster 1 h2 h4 h5 e-value : 2.32e-08

removed h4 h5 e-value : 1.27e-05

removed h2 h4 e-value : 3.05e-05

cluster 2 h1 h2 h3 h4 h5 h6 e-value : 4.32e-04

removed h3 h4 h6 e-value : 1.32e-04

removed h1 h2 e-value : 4.32e-03

removed h3 h6 e-value : 2.02e-02

removed h1 h2 h3 e-value : 3.12e-02

removed h4 h6 e-value : 3.33e-01

removed h2 h3 e-value : 4.82e-01

Fig. 25. Illustration of removal of clusters that are exact subsets of a larger cluster

that has a lower e-value.

have an e-value below a user specified cutoff and as such, numerous overlapping gene

clusters are often reported. To facilitate comparative analyses of multiple genomes

and improve readability of the output, I also apply two steps: filtering subsets and

grouping subsets (Figure 25 and 26). The standard filtering step consists of the

removal of clusters that are exact subsets of a larger cluster that has a lower e-

value. I also implement the grouping step that either masks or removes highly similar

overlapping clusters. In the grouping process, the clusters are first sorted by e-value.

Then, starting with the cluster with the lowest e-value, all other clusters that overlap

by a user specified threshold are labeled as members of a group of overlapping clusters.

This process is repeated for each cluster that has not yet been labeled as a member

of another group. A user supplied parameter defines whether the labeled groups are
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A B C
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Group 1 =

Group 2 =

Group 3 =

Grouping

Tuesday, February 8, 2011

Fig. 26. Illustration of clusters that overlap by a user specified threshold. Clusters

are labeled as a member of a group of overlapping clusters. Threshold of

overlapping clusters = 50%.

reported in the output file or are ignored.

3. Gene clusters on E. coli K12

To validate our algorithm, we compare the results of gene clusters that include E.

coli K12 operons which are experimentally confirmed by the RegulonDB database

(Salgado et al., 1999). For each predicted gene cluster, we retain gene clusters with

an e-value below a certain cutoff, while allowing gene clusters that are completely

contained within another gene cluster with a better e-value so that we do not lose

any potential gene clusters that satisfy the definition. We investigate whether these



68

gene clusters correspond mostly to one operon or many operons with different e-

value cutoffs, and we partition each gene cluster into maximal subregions so that all

genes within each subregion have the same orientation and there are no intervening

genes between these genes within the subregion. Maximal subregions are constructed

by intersection and union. Intersection subdivides subregion by the start and end

position of overlap, and union makes a group of overlapping subregions into one

region. We evaluate predicted subregions with respect to a given operon from the

database by computing the Smin score that divides the number of genes that overlap in

both an operon and the gene cluster by the minimum size of the operon and the gene

cluster. We compute the Smax score that divides the number of genes that overlaps

in both the operon and the gene cluster by the maximum size of the operon and the

gene cluster. A predicted gene cluster will have a high Smin and low Smax score if

the size of either operon from the database or subregion is very small, then the Smin

score will be high, although the significant overlaps with genes is small. Thus, we

compute the Savg score which divides the number of genes that overlap in both the

operon and the gene cluster by the average size of the operon and the gene cluster.

For each subregion, we only consider predicted gene clusters that include E. coli .

We investigate subregions with different e-value cutoffs, and evaluate the agreement

between these subregions with experimentally validated E. coli operons from the

database. Given a subregion, we compute it with respect to the entire RegulonDB by

finding the maximum scores of Smin, Savg and Smax over all operons from the database.

Since these evaluations are only approximations, predicted subregions may correspond

to higher level organizations such as super-operons or more than one operon, and real
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Table VI. Intersection & Union of subregions to E. coli operons from the RegulonDB

database.

BLAST Intersection Union

e-value gclust e-value

Smin 1e-05 1e-10 1e-15 1e-20 1e-05 1e-10 1e-15 1e-20

1e-01 0.9937 0.9969 0.9985 0.999 0.9692 0.9673 0.9676 0.9673

1e-10 0.9934 0.9964 0.9984 0.999 0.9687 0.9673 0.9676 0.9673

1e-20 0.9932 0.9964 0.9982 0.9987 0.9689 0.9676 0.9682 0.9676

1e-30 0.9928 0.9964 0.9982 0.9989 0.9695 0.968 0.9692 0.9673

1e-40 0.993 0.996 0.9975 0.9983 0.9716 0.9686 0.9688 0.9677

1e-50 0.9919 0.9954 0.997 0.998 0.9713 0.9699 0.9699 0.967

Savg 1e-05 1e-10 1e-15 1e-20 1e-05 1e-10 1e-15 1e-20

1e-01 0.6884 0.6799 0.6778 0.6757 0.7684 0.7661 0.7661 0.7648

1e-10 0.6885 0.6802 0.678 0.6759 0.7669 0.7661 0.7661 0.7649

1e-20 0.6891 0.6799 0.6777 0.6762 0.7697 0.7672 0.7668 0.7658

1e-30 0.6893 0.6798 0.6779 0.6762 0.7729 0.7696 0.769 0.7661

1e-40 0.6888 0.6796 0.6784 0.6763 0.7733 0.771 0.7718 0.7677

1e-50 0.6897 0.6799 0.6791 0.6771 0.775 0.7744 0.7727 0.771

Smax 1e-05 1e-10 1e-15 1e-20 1e-05 1e-10 1e-15 1e-20

1e-01 0.6042 0.5942 0.5919 0.5898 0.6995 0.697 0.6966 0.6952

1e-10 0.6044 0.5946 0.5921 0.5899 0.6974 0.697 0.6967 0.6952

1e-20 0.605 0.5942 0.5918 0.5903 0.7007 0.698 0.6973 0.6965

1e-30 0.6052 0.5942 0.5919 0.5904 0.7043 0.7004 0.6999 0.697

1e-40 0.6045 0.5939 0.5926 0.5906 0.7045 0.7024 0.7032 0.6988

1e-50 0.6058 0.5944 0.5939 0.5919 0.7072 0.7068 0.7041 0.7026
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Fig. 27. The distribution of E. coli operon size in the database.

operons that are not in the database or are not experimentally confirmed yet.

To obtain appropriate e-value cutoffs for BLAST and gene cluster, we perform

our algorithm by employing different e-value cutoffs in both BLAST and gene clus-

ter (Table VI). The goal of choosing the e-value is to ensure that the number of

predicted subregions is not too low while having a high average Smin score and an

acceptable average Smax score, since the result may be different in other bacteria. We

choose a BLAST e-value cutoff of 1e-10 for constructing homlogous groups, and our

algorithm e-value cutoff of 1e-10 for retaining gene clusters below the cutoff. The

overlapping subregion by intersection decreases in Smin and increases in Smax, while
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union increases in both Smin and Smax. We choose the optimal cutoff which does

not drastically effect performance and achieves 99% and 96% in both intersection

and union rates respectively. Savg and Smax in intersection outperforms other cutoffs,

although it does not achieve the best rate in union: the rate only decreases 1% in

overall cutoffs. We will use these e-value cutoffs to define significant clusters in our

later analysis.

To show that the choice of e-value gives high accuracy, we investigate whether

subregions correspond mostly to one operon or many operons with the e-value cutoffs.

Figure 27 shows the size of the E. coli operon, in which 68% of operons in the database

are the size of one and the maximum operon size in the database is 15 genes (0.08%)

in two operons. While most E. coli operons contain a small number of genes, most

of the clusters contain at least a few subregions ( see Table VII and VIII ). About

half of these subregions have perfect overlap with an E. coli operon by intersection

and union, thus the gene clustering results reveal a significant amount of spatial

conservation that is at a higher level than operons, and some of these clusters are

likely to correspond to uber-operons (Lathe et al., 2000; Che et al., 2006).

4. Comparative analysis on bacteria groups

We study the distribution of occurrences of operons in 23 bacterial groups (Table IX).

We define the occurrence rate of each bacterial group that appears in gene cluster to

be a number of each bacterial group that divides by the total of genomes that appears

in gene cluster. We define the overall occurrence rate of a unique bacteria group in all

gene cluster to be a number of gene clusters that divides by the total number of gene
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Table VII. Intersection result of subregion overlaps with the E. coli operon database.

(a) showing the distribution of the number of subregions among all clusters,

(b) showing the distribution of the size of subregions among all clusters,

and (c) showing the distribution of the best overlap of subregions with E.

coli operons among the ones that has overlap (Smin, Savg and Smax) with

some E. coli operon, which is defined to be the largest ratio of the number

of shared genes between a subregion and an operon to the average number

of genes of the subregion and the operon.

(a) (b) (c)

#subregion %cluster size %subregion %overlap %subregion

min, avg, max

1 0.26 1 96.68 0-9 0.00 0.00 3.45

2 5.10 2 2.26 10-19 0.00 3.61 10.54

3 21.70 3 0.65 20-29 0.05 10.49 14.24

4 33.32 4 0.22 30-39 0.05 5.72 10.70

5 25.12 5 0.08 40-49 0.03 8.52 0.24

6 10.80 6 0.05 50-59 0.43 11.02 19.98

7 3.04 7 0.03 60-69 0.13 19.82 0.32

8 0.59 8 0.03 70-79 0.00 0.05 0.05

9 0.06 80-89 0.00 0.32 0.05

10 0.00 90-100 99.30 40.44 40.41

11 0.00
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Table VIII. Union result of subregion overlaps with the E. coli operon database. (a)

showing the distribution of the number of subregions among all clusters,

(b) showing the distribution of the size of subregions among all clusters,

and (c) showing the distribution of the best overlap of subregions with E.

coli operons among the ones that has overlap (Smin, Savg and Smax) with

some E. coli operon, which is defined to be the largest ratio of the number

of shared genes between a subregion and an operon to the average number

of genes of the subregion and the operon.

(a) (b) (c)

#subregion %cluster size %subregion %overlap %subregion

min, avg, max

1 0.26 1 36.87 0-9 0.00 0.08 0.08

2 5.10 2 20.34 10-19 0.49 0.89 3.00

3 21.70 3 11.43 20-29 1.30 4.05 9.16

4 33.32 4 8.59 30-39 0.97 4.70 8.02

5 25.12 5 6.32 40-49 0.41 5.59 4.70

6 10.80 6 4.54 50-59 0.97 10.94 18.56

7 3.04 7 2.92 60-69 1.10 18.15 7.70

8 0.59 8 2.43 70-79 0.24 1.70 1.95

9 0.06 9 1.38 80-89 0.08 7.37 0.73

10 0.00 10 1.54 90-100 94.49 46.52 46.11

11 0.00 11,12,13 0.97,0.57,0.41

14,15,16 0.49,0.49,0.16

17,18,20 0.08,0.08,0.16

23,26,35 0.08,0.08,0.08
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Table IX. Bacterial groups.

Bac Group %Appear in original data %Appear in gene cluster

Gammaproteobacteria 23.86 29.15

Firmicutes 20.86 22.73

Alphaproteobacteria 11.86 10.17

Betaproteobacteria 8.29 8.72

Actinobacteria 7.43 6.71

Euryarchaeota 4.71 3.40

Cyanobacteria 4.57 5.38

Epsilonproteobacteria 2.86 2.86

Deltaproteobacteria 2.57 1.32

Bacteroidetes/Chlorobi 2.57 1.50

Crenarchaeota 2.29 1.81

Chlamydiae/Verrucomicrobia 1.86 3.63

Spirochaetes 1.57 2.78

Chloroflexi 1.00 0.99

Other Bacteria 1.00 0.35

Thermotogae 1.00 1.04

Deinococcus-Thermus 0.57 0.47

Aquificae 0.29 0.06

Acidobacteria 0.29 0.09

Other Archaea 0.14 0.01

Planctomycetes 0.14 0.03

Fusobacteria 0.14 0.01

Nanoarchaeota 0.14 0.0
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Fig. 28. The distribution of the number of bacterial groups in gene cluster.

clusters. Because the algorithm finds gene clusters by homologs that have a similar

gene structure and evolutionary origin to a gene in another species, Figure 28 shows

that 98% of gene clusters belong to one bacterial group, which is not surprising. In

five gene clusters, all 23 bacterial groups appeared. These gene clusters consist of two

homologs with (h0,h251), (h0, h385), (h0,h300), (h0,h717) and (h0,h920), where h0 was

found in common. Since h0 appears in 30% of the total number of homologs in all

genomes, and the rest of homologs appear in at least 600 genomes.
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5. Gene rearrangement

The gene rearrangement between adjacent genes within bacterial operons is important

for function, expression and regulation of these genes (Itoh et al., 1999; Tamames,

2001). We study the distribution of gene order with subregions. For a given pair of

subregions in a genome g1 and a set of correspondences with each of them linking a

gene in a subregion to a related gene in subregion of another genome g2, we obtain

a subset of one-to-one corresponding pairs of link as follows: if there is more than

one link for a gene in subregion s1 to another gene in subregion s2, we retain the one

with the lowest BLAST e-value in both s1 and s2. In the remaining set of k genes in

s1 and k related genes in s2, we assign a number from 1 to k to each gene according

to the order of genes in subregion, and assign a direction of genes to the number

from 1 to k by its gene strand, such as forward and reverse. k genes in subregion s1

that correspond to a signed permutation, in which each pair of neighboring genes in

s1 is with number n1 and n2, are considered to be a breakpoint if n1 and n2 are not

consecutive (|n1−n2| 6= 1) (Kececioglu and Sankoff, 1995). This iterates |g|(|g|−1)/2

times, where |g| is the total number of genomes. We define the percentage of conserved

neighboring gene pairs to be the total number of neighboring gene pairs that are not

breakpoints, which is divided by the total number of neighboring gene pairs by k-1,

and use it to evaluate the degree of conservation of gene order. 99.92% and 94.6%

had perfectly conserved neighboring gene pairs in the intersection and union test,

respectively, which means that gene order within subregions are the same either both

the forward and reverse directions. While comparing all subregions in g1 and g2,

we also evaluate subregion in g1 that corresponds to one subregion in g2 with the
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Fig. 29. Distribution of the percentage of conserved neighboring gene pairs.

best percentage of conserved neighboring gene pairs (Figure 29). 99.91% and 96.93%

of them are perfectly conserved neighboring gene pairs in intersection and union,

respectively. We also performed this rearrangement test within gene clusters. 39.74%

are perfectly conserved. This is not surprising since it is possible to locate more

than one operon within a gene cluster. Although gene order within operons can be

unstable (Itoh et al., 1999), our results on gene orientation and gene order indicate

that predicted subregions tend to contain only one orientation and the gene order

tends to be conserved.

To investigate stronger correlations between the frequency of gene duplication
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Table X. Pearson correlation coefficient of subregions and gene clusters.

intersection union within cluster

all best all best

CorrCoef 0.63 0.58 0.51 0.63 0.10

p-value 0.0 4.4e-16 2.2e-16 1.1e-16 5.6e-16

that contains more than two duplicated genes in a subregion and the frequency of

gene rearrangement that contains breakpoints between neighboring gene pairs, we

compute the Pearson correlation coefficient between them (See Table X). While there

were significant positive correlations among subregions by intersection and union,

there were no significant correlations within gene clusters with a value of 0.1. Since

there can be more than two operons in a gene cluster, the relationship between gene

rearrangement and gene duplication is decreased.

6. Comparative analysis on operon occurrences

We study occurrences of the trp operon in 700 bacterial genomes. The trp operon

is present in many bacteria and promotes the production of a chemical (tryptophan)

when tryptophan, which is one of the standard amino acids and an essential amino

acid in the human diet, is not present in the environment (Morse et al., 1969). It

consists of trpE, trpD, trpC, trpB and trpA that encodes tryptophan synthetase. Since

the trp operon is an important experiment system in gene regulation, we investigate

the occurrences of trp operon in multiple genomes in detail.
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Thursday, January 20, 2011

Fig. 30. Illustration of trp operon in Gammaproteobacteria bacteria group.



80

Merino et al. (2008) showed the phylogenetic tree of trp gene organization and

associated regulatory factors, elements and mechanisms. The trp operon in Merino

et al. (2008) appears in 16 bacterial groups that are covered by 700 bacterial genomes

that we use as input genomes. While seven trp biosynthetic genes are organized

within a single transcriptional unit that includes a trpCF fusion and a trpGD fusion

as well, we only consider trpE, trpD, trpC, trpB and trpA that encode tryptophan

synthetase in the investigation of operon occurrences in gene clusters.

The total number of gene clusters that include the trp operon in all genomes

within a gene cluster is 55202 clusters. Within those 55202 gene clusters, we consider

16 bacteria groups that appear in the distribution of trp gene organization. The 16

bacteria groups include Gammaproteobacteria, Betaproteobacteria, Alphaproteobac-

teria, Spirochaetales, Epsilonproteobacteria, Bacillasles, Lactobacillales, Clostridia,

Actinobacteria, Chroococcales, Thermotogales, Bacteroidetes, Chiamydiales and

Deinococci.

In the Gammaproteobacteria bacteria group which is the largest group (23.86%)

among the 700 bacteria genomes, two gene clusters that only consist of trp operons

are found with 14 genomes that perfectly match with genomes identified by Merino

et al. (2008). One of the two gene clusters that has the lowest e-value is the most

significant gene cluster out of 55202 gene clusters (See Figure 30).

In the Alphaproteobacteria bacteria group, all genomes that appeared in two

gene clusters that are the same as the cluster that appeared in the Gammaproteobac-

teria bacteria group, supporting the theory that Alphaproteobacteria is evolutionar-

ily related with Gammaproteobacteria, and it validates the transcription attenuation
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Friday, January 21, 2011
Fig. 31. Illustration of trp operon in Firmicutes bacteria group.
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mechanism used to regulate the trpE in both Gammaproteobacteria (e.g Pseudomonas

aeruginosa) and Alphaproteobacteria (e.g Rhizobium etli) (Merino et al., 2008).

We separately evaluate Bacillasles, Lactobacillales and Clostridia that are within

the Firmicutes phylum, and also perform all genomes in those three bacteria groups

that are within Firmicutes. Bacillasles, Lactobacillales and Clostridia consist of 7,

4 and 5 genomes, respectively. Bacillales and Lactobacillales are an order of Gram-

positive bacteria in which Bacillales includes Bacillus, Listeria and Staphylococcus,

and Lactobacillales includes Streptococcus, Lactobacillus and Leuconostoc. Clostridia

are in the group of Firmicutes that includes Clostridium, but is different from Bacil-

lales by the lack of aerobic respiration. 20 gene clusters in Bacillales and Lactobacil-

lales perfectly match with the graph. Those of 20 gene clusters are the same in both

bacteria groups, since they are in the same order of Gram-positive bacteria within

Firmicutes. In Clostridium group, there were only 4 gene clusters that perfectly

matched with 5 genomes, since the gene proximity from trpB and trpA to other genes

in Syntrophomonas wolfei is too far to be within a gene cluster. We found 4 gene

clusters that are covered by all genomes in Firmicutes, since Clostridium consists of

the smallest number of gene clusters that are perfectly matched (See Figure 31).

In the Betaproteobacteria bacteria group, there were no gene clusters that in-

clude trp operon in all genomes in the group, while Bordetella parapertussis, Neis-

seria meningitidis and Acidovorax sp. were found separately in 252, 1426 and 301

gene clusters, respectively. There are no gene clusters that have trp operon between

Bordetella parapertussis and Neisseria meningitidis, but 10 and 4 gene clusters were

found in Bordetella parapertussis & Acidovorax sp. and Neisseria meningitidis & Aci-
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Bordetella parapertussis

Neisseria meningitidis

trpL trpE trpB trpAtrpDtrpG trpC trpF

trpE trpDtrpG trpC

Acidovorax sp. trpE trpB trpAtrpDtrpG trpC

trpF trpB trpA

trpL trpF

Thursday, January 20, 2011

Fig. 32. Illustration of trp operon in Betaproteobacteria bacteria group.

dovorax sp., since all genes of the trp operon in Neisseria meningitidis are sparsely

located in different regions. This makes it difficult to find clusters with other genomes

that include all trp genes within localized regions (See Figure 32).

The rest of the bacteria groups that include Spirochaetales, Epsilonproteobacte-

ria, Chroococcales, Thermotogales, Bacteroidetes, Chiamydiales and Deinococci are

composed of at least two genomes in a group: thus, the perfect matching rate was

significantly high. The result so far shows that although very few trp operons are

shared by 700 bacterial genomes, most trp operons can be found in many bacteria

groups defined by Merino et al. (2008). The proposed algorithm allows the evaluation

of various hypotheses regarding evolution and conservation of gene clusters.

D. Discussion

We have developed a gene clustering algorithm that allows the analysis of gene clus-

ters across a large number of genomes and important biological insights to be obtained
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from this analysis. We validated the results of gene clusters that include Escherichia

coli K12 operons, which are experimentally confirmed by RegulonDB. The gene clus-

tering result reveals a significant amounts of spatial conservation that is at a higher

level than operon and some of these clusters are likely to correspond to uber-operon.

The study for the distribution of gene order within a subregion showed the spatial

arrangement of genes within bacterial subregion that is important for function, ex-

pression and regulation. Although gene order within operons can be unstable (Itoh

et al., 1999), our results implied that the gene order tends to be conserved and gene

orientation appears to face the same direction in the subregion. Because our algo-

rithm does not impose constraints on gene orientations, we can conclude that there

is a strong force to preserve gene orientations in bacterial clusters, which is a pre-

requisite for functioning as operons. To validate subregions that are predicted from

clusters, we investigated a relationship between gene duplication and rearrangement.

As a result, a strong positive correlation was predictable between gene duplication

and rearrangement considering gene rearrangements include a gene duplication. Ac-

cording to our comparative analysis, it was confirmed that trp operon was shared

among bacterial genomes within the same group and the ortholog of trp operon was

found as well (Merino et al., 2008).

The first algorithm allows paralogous genes and clusters that appear in input

chromosomes, and estimates the statistical significance of each gene cluster. The

second algorithm placed a strict limit on the maximum cluster size to allow analyzing

of hundreds of genomes simultaneously with the modified version of the window-

based strategy. We have a maximum size of gene clusters to avoid the combinatorial



85

explosion of intersecting all combinations, since the overall maximum size of operons

is not large. There are only three Escherichia coli K12 operons in RegulonDB which

are larger than other operons that include at least 13 genes. The window of small size

is efficient enough to identify gene clusters across hundreds of genomes simultaneously

in terms of the speed and the performance.

The proposed algorithm is able to identify gene clusters that are not found by

other algorithms, since we developed a different formulation. One of the advantages

in the proposed algorithm is that it allows paralogous genes in a same chromosome

and orthologous genes in different genomes so that it considers the more biologically

accurate model, and the statistical significance estimate while allowing gene cluster

that may not appear in every genome is important for biologists in identifying im-

portant gene clusters. We used BLAST and the method in Kellis et al. (2003) to

construct homologous gene groups, but it is also possible to use existing database on

homology relationships such as COG (Tatusov et al., 1997) and other ways that es-

tablish orthologous and paralogous correspondences (Calabrese et al., 2003; Fujibuchi

et al., 2000; Luc et al., 2003; Remm et al., 2001; Vandepoele et al., 2002).
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CHAPTER V

CONCLUSION

A. Summary

One of the major technological advances in biology in the last few years is the de-

velopment of sequencing technology that produces gigabases of data in a single run.

Thus, automated prediction of gene function has been an important issue for biol-

ogists, since the development of high-throughput genome sequencing has produced

large amounts of sequence data, rendering biologists unable to deduce their gene func-

tions through experimentation. In addition, automated prediction of gene functions

and gene annotation methods in computational bioinformatics have created many

challenging computational problems such as functionally related gene clusters and

their functional annotations in large-scale genome data. Thus, I have developed and

improved algorithms and applications to identify clusters of functionally related genes

across multiple genomes that can help us understand how gene clusters are function-

ing. In this dissertation, I have developed four algorithms for predicting groups of

functionally related genes.

For the classification of protein family, I developed two algorithms that classify

proteins to existing families and construct new families from unclassified proteins. By

utilizing sequence similarity from pairwise comparisons using either BLAST or the

Smith-Waterman algorithm SSEARCH, I developed a supervised classification algo-

rithm based on an iterative merging strategy. The major difference of the proposed

approach from previous supervised techniques is that the simplicity of the algorithm
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results in a low time complexity, and the new approach automatically constructs new

families if necessary.

The first algorithm enables us to determine whether the unclassified protein

belongs to one of the existing families. Since sequences within the same family can

have low similarity, I only considered proteins within a family that are of sufficiently

high similarity to the unclassified protein during the computation of scores. This

avoids the problem of getting consistently low average scores, and enables us to assign

any new proteins to existing families. In the second algorithm, I considered the

problem when a set of more than one unclassified protein is given. This method is

not only able to assign each unclassified protein to an existing family, but also able

to automatically construct new families if necessary.

I applied the algorithm to a few large-scale data sets that contain sequences

corresponding to protein domains, and data sets that contain full length sequences. I

showed that very good performance can be obtained by choosing appropriate e-value

cutoffs in these two cases. I compared the performance of the proposed algorithm to a

few supervised algorithms, and showed that the proposed algorithm has significantly

higher accuracy rate and lower mis-classification rate than other algorithms. Through

evaluations of the proposed algorithm, I have also shown that for the purpose of

protein family classification, it may not be necessary to consider more complicated

models such as multiple sequence alignments and hidden markov models.

In the gene clustering across multiple genomes, I defined two algorithms that

can investigate related gene clusters and study operons and their evolutions. The

first algorithm uses a different formulation based on constraining the overall size of



88

a cluster and statistical estimations that allow direct comparisons among clusters

of different sizes. I compared the performance of the proposed algorithm to a few

gene clustering algorithms, and showed that the functional enrichment of each cluster

from the proposed algorithm outperforms clusters obtained from GeneTeams which

is the most popular algorithm that requires the different gene distance parameter

to restrict number of intervening genes between adjacent genes in a cluster. I used

GO term finder to evaluate the functional enrichment of gene clusters. In the second

algorithm, I developed a modified version of the window-based strategy to analyze

hundreds of genomes simultaneously by placing a stricter limit on the maximum

cluster size. Due to the different formulation, the proposed algorithm can identify gene

clusters that are not found by other gene clustering algorithms, and it also provides

statistical significance estimates that may be important for biologists to identify the

most important clusters. I demonstrated proposed algorithms that will be useful for

biological insight by analyzing gene clusters across a large number of genomes that

can help us understand operon occurrences, gene orientations and distributions of

gene rearrangements.

I constructed gene maps on different chromosomes with gene location information

defined by NCBI, and homologous gene group by finding bidirectional genes with best

hits using protein–protein BLAST. In addition, to reduce the computational time for

identifying homologous gene groups using BLAST, it is also possible to use existing

database such as COG (Tatusov et al., 1997) or INPARANOID (Remm et al., 2001),

to find groups of genes that are homologous (Fujibuchi et al., 2000; Vandepoele et al.,

2002).
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B. Future work

While the proposed algorithm for classifying proteins into families and most existing

classification algorithms are based on sequence similarity information from align-

ments, alignment-free approaches are also available (Ma and Chan, 2008; Vinga and

Almeida, 2003; Pham and Zuegg, 2004; Kantorovitz et al., 2007). The alignment-free

approach may be applied to improve the similarity in which two sequences to be

compared are not orthologous but are functionally related or they are highly diverged

evolutionarily. This new sequence similarity score that can be used for detecting func-

tional and evolutionary similarities may be helpful in increasing the accuracy of the

proposed method. One future direction is to investigate whether it is possible to use

these techniques to improve accuracy with this new sequence similarity information.

Another future direction is to incorporate more features into the classification algo-

rithm such as bio-chemical properties, protein structure information, etc., so that the

accurate classification can be increased and the mis-classification can be decreased.

These features that help in identifying evolutionary similarities can be essential values

to improving the performance of the proposed algorithm in the future direction.

I developed a modified version of the window-based strategy to analyze hundreds

of genomes simultaneously by placing a stricter limit on the maximum cluster size.

This makes it possible to avoid the combinatorial explosion of intersecting all combi-

nations of windows at one time with one from each chromosome, and allow the use of a

different strategy to find the gene clusters. However, the most computationally heavy

part in the algorithm is the combination of genes within windows when it becomes
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larger and larger, because all possible combinations of genes and intervening genes

are included within each window, while we do not allow duplicated gene numbers

in the combination of genes. One future direction is to investigate a novel approach

that can overcome computations of combinations and will not lose any clusters that

satisfy the definition.

It is well known that genes in bacterial genomes are usually not distributed

randomly in the genome, and genes are organized into groups of operons. Unlike genes

in bacterial genomes, genes in eukaryotic genomes are traditionally thought of as being

randomly distributed among the chromosomes (Yi et al., 2007). Another possible

future direction for gene clustering algorithm is to investigate a new possibility that

can identify larger clusters in higher organisms by combining overlapping seed clusters

that are located in sparse regions. Seed clusters may be utilized to identify clusters

of larger size that commonly occure in higher organisms.
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