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ABSTRACT 

Modeling Plankton Dynamics During a Prymnesium parvum Bloom: The Importance of 

Inflows and Allelopathic Relationships on Bloom Dynamics. (May 2011) 

Natalie Case Hewitt, B.S., Brown University 

Chair of Advisory Committee: Dr. Daniel L Roelke 

 

Harmful algal blooms’ global amplification has driven research on growth 

characteristics and instigating mechanisms.  These blooms prosper under diverse 

environmental conditions, creating challenges identifying bloom initiation.  The 

haptophyte, Prymnesium parvum, plagues the southwestern United States with massive 

system disruptions and huge fish kills caused by its toxin.  Despite many abiotic factors’ 

association with P. parvum blooms, low nutrient levels stress the alga increasing toxin 

production, eliminating nutrient competition, and alleviating grazing pressures.  This 

model examines the relationship between nutrient availability and P. parvum toxin 

production against another phytoplankton and a single grazing zooplankton, using a 

Monod function relating population growth rate with limiting nutrient concentrations.  

Sensitivity analyses emphasize plankton biological parameters most influential in 

accumulating biomass.  The impact of toxin production on zooplankton grazing rates 

underscores P. parvum’s need for top-down control suppression.  The toxin production 

equation increases production when P. parvum experiences low specific growth rates 

from nutrient availability and low biomass.  This equation is analyzed against previously 

published allelopathic relationships, comparing plankton reactions and bloom endurance.  
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The model’s toxin production equation proves more ecologically feasible, incorporating 

competing phytoplankton species’ mortality and variables easily verified through 

laboratory experiments.  Though not intended for management strategy development, the 

model explores and supports the proposed strategy of incorporating hydraulic flushing, 

pulsed and continuous inflows, to eliminate biomass accumulation.  Inflows relieve 

stressful nutrient-limiting conditions, introducing resources affecting bloom stability and 

plankton community dynamics.  The faster-growing competing phytoplankton gains 

survival advantages when inflow rates fall lower than its maximum specific growth rate, 

but greater than P. Parvum’s, emphasizing the accurate measuring of competitors’ 

maximum specific growth rates and identifying a dilution rate range where P. parvum 

loses at nutrient intake.   Inflows with various nutrient levels representing different 

source waters from freshwater lakes were tested for impacts on plankton dynamics.  

Adding any hydrological effect reduced P. parvum biomass.  Disruptions create 

disturbance, removing P. parvum’s system-dominating position, allowing the 

phytoplankton to exceed P. parvum’s density.    The model highlights the importance of 

P. parvum’s toxin’s presence to maintain dominance and emphasizes flushing agitation 

as potential and feasible management schemes to deter bloom continuation and increase 

species diversity.   
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1. INTRODUCTION 

Harmful algal blooms (HABs) are occurring more frequently and with more 

intensity, increasing in size and impact, in both freshwater and marine systems globally 

(Smayda, 1990; Hallegraeff, 1993; Smith, 2003). Processes leading to blooms are 

diverse (Roelke and Buyukates, 2001); many marine blooms are linked to nutrient 

availability allowing similar conclusions to be drawn for freshwater systems as well 

(Paerl, 1997).  Increased nutrient loadings into aquatic systems affect planktonic 

communities, impacting the growth and development of the first tier of the food chain 

(Smith, 2003; Anderson, 2009).  The excess nutrient load promotes growth and 

accumulation of algal biomass, at times leading to conditions prompting the 

development of an HAB (Anderson et al., 2002).  

Many species that develop into an HAB harness mechanisms to increase their 

chances of survival either through enhanced nutrient uptake strategies or defense tactics 

against competitors or grazing populations.  Smayda (1997) notes major adaptations 

associated with many harmful algae that facilitate nutrient acquisition and minimize cell 

losses: mixotrophy, grazer inhibition, and allelopathy.  The latter two mechanisms 

involve the production of chemicals targeting competitors through allelopathy and the 

inhibition of grazing (Gross, 2003; Graneli and Salomon, 2010).  Multiple factors drive 

toxin production including nutrient limitation, biomass density, pH, temperature,  

 
 
 
 
____________ 
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and light (Fistarol et al., 2003; Legrand et al., 2003; Baker et al. 2007, 2009; Graneli and 

Salomon, 2010).  The lysing, growth inhibition, and death of the targeted cells caused by 

the toxic chemicals decreases competition over nutrients and allows the toxin-producing 

alga an advantage in nutrient sequestration (Fistarol et al., 2003; Legrand et al., 2003).   

The impact on higher trophic levels from the production of these toxins results in 

huge economic losses worldwide from fish mortalities; contamination and closure of 

fisheries; and decreased tourism (Shumway et al., 2003; Anderson, 2009).   In addition 

to lower levels of available prey sources when an HAB eliminates competing 

phytoplankton, some toxins irritate or impair fish gill tissue or create hypoxic conditions, 

suffocating fish populations and devastating fish hatcheries nearby (Burkholder, 1998).   

The detriment of HABs on water systems drives research for management 

practices and ecological manipulations intended to reduce the frequency of blooms.  

Ideal strategies would prevent future blooms while mitigating and controlling existing 

blooms.  The array of conditions associated with bloom initiations increases the 

difficulty in accurately identifying the start of a bloom.  Often linked with the beginning 

stages of blooms, attempts to control external nutrient loads entering lakes, rivers and 

streams has been suggested to impact algal biomass and tested as management strategies 

(Roelke, 2000; Smith, 2003).  Many monitoring programs establish early detection signs 

of a bloom often including early impacts on aquatic life historically associated with an 

HAB (Heil and Steidinger, 2009). 

Flushing and inflows into some water bodies appear to be viable strategies to 

combat HABs.  Natural pulsing and flushing regenerates the system, introducing 
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nutrients and sediments beneficial to planktonic growth (Verspagen et al., 2006).  

Without replenishing nutrient supplies, nutrient-limited conditions increase competition 

among phytoplankton, and better adapted species, those with lower nutrient 

requirements for growth or with mechanisms to combat competition, tend to persist.  

Some HABs respond to the increased competition from nutrient limitations by producing 

toxins targeting competing phytoplankton for the uptake of nutrients (Fehling and 

Davidson, 2004).  With lower levels of competition resulting from the death of 

competitors and increased availability of resources, these nutrient-limited systems 

paradoxically enable bloom conditions (Chicharo et al., 2006; Roelke et al., 2007).  

Renewing the system’s nutrient supply through inflows regenerates nutrient supply, 

circumventing toxin production. 

The timing and intensity of discharges and inflows to the system present an 

opportunity to impact the development of plankton growth. Different growth strategies 

are successful in pulsed versus continuous flows (Chicharo et al., 2006).  Slower 

growing species experience greater success in continuous flows whereas pulsed flows 

alleviate nutrient stress and lead to an increase in species diversity favoring faster-

growing species (Miller et al., 2008; Roelke et al., 1999).  Shifts in phytoplankton 

influence the presence or absence of grazing zooplankton populations (Roelke 2000; 

Buyukates and Roelke, 2005).  Though a potentially impractical application, releasing 

water from reservoirs at a quicker rate than algae can replicate could prevent biomass 

accumulation regardless of nutrient concentration since the regeneration of systems has 

the potential to disrupt succession favoring HABs (Hilton et al., 2006).  Small water 
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fluctuations create disturbances in foodweb dynamics generating cascading effects.  Low 

flow rates produce changes in the delivery of nutrients to the system inducing 

reactionary changes in phytoplankton competition (Sommer, 1984).  Phytoplankton 

diversity alters higher level dynamics as grazing zooplankton respond to shifts in prey 

availability (Reynolds, 1984).  The regeneration of systems via opportunely timed inflow 

and flushing events has the potential to disrupt succession associated with HABs.    

This research focuses on a particularly effective toxic chemical-producing HAB, 

Prymnesium parvum, found only recently in the southwestern United States.  The 

haptophyte, P. parvum, also known as golden algae, was first spotted in Texas after fish 

kills were documented along the Pecos River in 1985 (James and De La Cruz, 1989).  

Since then the alga, easily spotted by its characteristic golden hue, has caused massive 

fish kills in over 30 reservoirs on 6 Texas river systems amounting to an estimated loss 

of $13 million (Southard et al., 2010).   

High biomass golden algae blooms, defined as over 107 cells liter-1, are 

frequently seen in nutrient limited systems (Lindholm et al., 1999; Roelke et al., 2007; 

Southard et al., 2010), though a variety of abiotic and biotic tendencies are associated 

with P. parvum blooms (Baker et al 2009; Graneli and Salomon, 2010).  The alga’s 

optimal growing conditions have been narrowed down to eutrophic waters, a salinity of 

22 practical salinity units (psu), and a temperature of 27oC (Baker et al., 2009), however 

the alga has formed blooms in systems that are nutrient depleted, in salinities as low as 

2-4 psu, and temperatures ranging from 5-30oC (Baker et al., 2007 and 2009; Roelke et 



5 
 

al 2010b).  The wide range of values the alga occurs in makes bloom predictions 

difficult.   

When stressed by environmental conditions or lack of resources, P. parvum 

produces and releases allelopathic chemicals to eliminate resource competitors and deter 

grazing (Graneli and Hansen, 2006).  The multiple functioning toxins, called 

prymnesins, prevent grazing and inhibit the growth of other phytoplankton competitors 

(Graneli and Johansson, 2003).  Without a measuring standard, toxin concentrations are 

unknown.  Higher trophic levels endure hemorrhaging of gills and a loss of food when in 

contact with the toxin (Barkoh et al., 2010). Though known to produce toxins 

irrespective of its nutrient state, Graneli et al (2008) found that chemical production 

increases by several magnitudes when the alga is under duress from reduced resource 

supplies.  Blooms of P. parvum in Texas are typically found in the winter months during 

which the alga experiences decreased maximum specific growth rates.  The alga’s 

growth is already typically lower than other phytoplankton typically found in the same 

Texas lake systems as itself, giving the competing phytoplankton species a survival 

advantage. The resulting increased competition for resources leads to potential increases 

in toxic chemical production by P. parvum as it combats the competing phytoplankton’s 

superior intake abilities.   

Water flowing into Lake Granbury from the Brazos River brings replenishing 

nutrients into the reservoir.  These supplemental nutrients alleviate aspects of the stress 

induced by the competition between phytoplankton species.  Nutrient influxes disturb 

already highly competitive system by reducing resource competition.  The system 
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disruptions brought about by nutrient additions, in this case a reduced competition over 

nutrients, are supported by previous research conducted at Lake Possum Kingdom and 

emphasize the importance of nutrient availability in attempting to control P. parvum and 

the production of its toxic chemicals (Roelke et al., 2007).  Combining the use of 

hydrological events to relieve high concentrations of P. parvum (Roelke et al., 2010a; 

Schwierzke et al., 2010) with different nutrient concentrations found in the studied lake 

systems may lead to promising potential management strategies.   

The primary goal of this research was to construct a simple numerical model 

during a P. parvum bloom and use the model to investigate plankton dynamics three 

ways: a sensitivity analysis of the model investigating influential parameters, the 

implementation of different toxin production equations, and the introduction of 

hydrology to the system.  Without a standard to measure prymnesin toxin 

concentrations, little is known about the prymnesin toxins’ capacity to increase P. 

parvum’s competitive advantage and dominate communities through the removal of 

resource competitors.  Other toxin production equations exist that model P. parvum’s  
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toxin production but without measurable standards, these relationships are based on 

observational data.  This research seeks to develop a production equation that represents 

toxin production based on nutrient limitation.  Comparison of this model’s toxin 

production rate with previously published equations provides the opportunity to contrast 

the toxin production methods and display plankton reactions to the presence of the toxin.  

Lastly, incorporating hydrology to the system creates disruptions similar to those 

thought to be associated with bloom dissolution (Roelke et al., 2010a).  These three 

modes of model manipulation strengthen current knowledge of P. parvum and aid in 

prioritizing further research. 
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2. METHODS 

2.1 Model Design 

The model is constructed of ordinary differential equations, solved using 

MatlabTM’s fourth-order Runge-Kutta methods(The Math Works, 2009) and uses a 

carbon currency to depict two phytoplankton groups (Ai, mol carbon L-1) competing for 

two nutrients (Rj, mol nutrient L-1), nitrogen (N) and phosphorus (P), and consumed by 

a grazing zooplankton group (G, individuals L-1), feeding without preference on the 

phytoplankton.  One of the phytoplankton groups, A1, represents P. parvum and 

produces a toxic chemical (T, g toxin L-1)  targeting the competing phytoplankton and 

  

Figure 1. Generalized diagram illustrating the interactions between the components of the 
model 
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grazer populations.  The competing algae, A2, is modeled after freshwater diatoms and 

the grazer group after rotifers, both species common in two lakes where P. parvum is 

known to bloom and much research has been conducted, Lakes Granbury and Possum 

Kingdom.  The mixotrophic ability of P. parvum was not incorporated into this model.  

The simplicity of the model also disregards the inclusion of other abiotic variables 

important in P. parvum blooms (Graneli and Hansen, 2006; Baker et al., 2009).   

In all of the following equations, the subscript i refers to a phytoplankton species 

and j to a resource.  Figure 1 shows a graphical representation of the interactions of the 

model. 

 

2.2 Differential Equations  

Phytoplankton concentration (i = 1, 2) 

dAi

dt
 growth A i

 grazing A i
 mortality A i

 flushing
     

  (1) 

Zooplankton concentration 

dG
dt

 assimilation G  respiration G  mortality G  flushing    (2) 

Nitrogen Concentration 

NNANGNGNGNA inflowflushinguptakeegestionrespiredmortalitymortality
dt
dN

ii


 
(3) 

Phosphorus Concentration 

PPAPGPGPGPA inflowflushinguptakeegestionrespiredmortalitymortality
dt
dP

ii


 
(4) 
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Toxin production 

dT
dt

 production  decay  flushing      (5) 

 

2.3 Model Description 

The specific growth rate by the phytoplankton uses a Monod (1950) relationship 

based on nutrient availability of the form:   














































PPA

P

NNA

N
iiA Rk

R
Rk

R
µmaxAMINAgrowth

ii

,    (6) 

in units of µmol C day-1 L-1, and where iA  is the concentration of the phytoplankton 

species (µmol C L-1), µmaxAi is the maximum specific growth rate of the species (day-1), 

RN is the ambient nitrogen concentration of resources available (mol N L-1), RP is the 

ambient phosphorus concentration of resources available (mol P L-1),  NAi
k  is the 

nitrogen half-saturation coefficient (µmol N L-1), and PAi
k  is the phosphorus half-

saturation coefficient (µmol P L-1).  Liebig’s Law of the Minimum is applied to ensure 

the growth rate used is based on availability of the limiting nutrient (DeBaar, 1994).   

The loss of phytoplankton to grazing is a function of the grazer population 

density and grazing rate, with grazing rate being a function of prey availability (i.e., 

phytoplankton concentration) and is expressed as: 



























 Ak
A

dmax
A

AGgrazing
G

G
i

Ai
     (7) 
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with units of µmol C L-1 day-1 and where G is the zooplankton concentration (individuals 

L-1), Ai is the algal concentration of a single phytoplankton species (µmol C L-1), ∑A is 

the sum of both algal species (µmol C L-1), dmaxG is the maximum specific grazing rate 

of the zooplankton (µmol C individual-1 day-1), Gk is the half saturation coefficient for 

zooplankton grazing (µmol C L-1).  In this mathematical equation, the phytoplankton are 

consumed by grazers without preference. 

Phytoplankton mortality from toxin exposure, only applicable to the competing 

phytoplankton group (i=2), is a function of toxin production and the species’ resistance 

to the toxin: 

mortalityA2
 mToxA2

T
kToxT A2

 T









A2     (8) 

with units of µmol C L-1 day-1 and where 
2AmTox  is the maximum mortality rate caused 

by the toxin (d-1), 
2ATkTox  is the concentration of toxin at which 50% of its cells die 

(g-toxin L-1), T is the ambient concentration of the toxin produced by P. parvum (g-

toxin L-1), and A2 is the concentration of the competing phytoplankton (mol C L-1).  

Without standards available for the toxic chemicals produced by P. parvum, 

development of a formal equation, or more accurately parameterizing the equation used 

here, is not possible.  The equation used here assumes a saturating relationship, and was 

parameterized to fit empirical data associated with previous experiments addressing the 

toxic effects of P. parvum on other phytoplankton.  Note, P. parvum is not affected by 

the toxin nor does it lose energy by its production. 
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The simulation of phytoplankton flushing losses, as well as zooplankton flushing 

losses, is discussed in a section further below. 

Without a grazing preference, total assimilation (or population growth) by the 

zooplankton is a function of the grazing rate on all available prey and the grazers’ static 

internal nutrient quotas (Nielsen, 1994).  The ingestion of phytoplankton is the amount 

of each nutrient taken in by filtration and is of the form: 

CA

NA
iNG

i

i

Qper

Qper
grazingAingestion 

     (9)
 

CA

PA
iPG

i

i

Qper

Qper
grazingAingestion 

     (10) 

with units of µmol N L-1 day-1 and µmol P L-1 day-1 respectively, and where grazingAi is 

the total density of each phytoplankton group ingested (µmol C L-1 day-1), NAi
Qper

 
is 

the nitrogen quota (µmol N cell-1), CAi
Qper is the carbon quota of the phytoplankton 

(µmol C cell-1), and PAi
Qper is the phosphorus quota of the phytoplankton ((µmol P cell-

1).  Representing ingestion in this manner breaks the phytoplankton concentrations taken 

up by the grazers into total nitrogen and total phosphorus consumed.  The assimilation 

rate, which equates to population growth, by the grazer population is a function of the 

grazer stoichiometry (static nitrogen and phosphorus content) and the N:P of the total 

prey ingested:
 
















PG

PG

NG

NG
G Qper

ingestion
Qper

ingestion
MINonassimilati ,

   (11) 
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with units of grazer individuals L-1 day-1 (Roelke, 2000) and where NGQper  is the static 

nitrogen content of the grazer (µmol N individual-1) and PGQper  is the static phosphorus 

content of the grazer (µmol P individual-1), and other variables are the same as 

previously described.  In this way, population growth of the grazer equates to the amount 

of the limiting nutrient ingested.  The excess amount of non-limiting nutrient ingested by 

the grazer is immediately returned to the inorganic nutrient pool through the process of 

egestion (discussed further below). 

 Zooplankton per capita respiration is based on a basal rate and an activity 

constant simulating higher energy exertion when lower algal concentrations occur 

(Roelke, 2000): 

Gbresp
Qper

grazing
arespnrespiratio G

CG

A
GG

i 













     (12) 

with units of grazer individuals L-1 day-1 and where arespG is a unitless activity 

coefficient, CGQper is the static carbon content of grazer individuals (µmol C individual-

1), brespG is the basal respiration rate (day-1), and all other variables are the same as 

previously described.  A two-part respiration function simulates lower metabolic activity 

when grazers are not feeding at higher rates (when prey densities are higher).    

The toxin’s effect on the grazer is akin to that of the phytoplankton: 

mortalityG mToxG
T

kToxT G  T









G

 
    (13) 
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with units of individuals L-1 day-1 and where mToxG is the maximum mortality rate of 

zooplankton caused by the toxin (d-1), kToxT|G is the concentration of toxin at which 50% 

of the zooplankton die (g-toxin L-1), T is the concentration of toxic chemicals present 

(g-toxin L-1), and all other variables are the same as previously described.  This 

mathematical equation results in the toxin inducing mortality of the grazers instead of 

deterring grazing activity.  Again, standards are not available for the toxins produced by 

P. parvum.  So, development of a formal equation, or more accurately parameterizing 

the equation used here, is not possible.  As with the mortality term employed for 

phytoplankton, the equation used here assumes a saturating relationship, and was 

parameterized to fit empirical data associated with previous experiments addressing the 

toxic effects of P. parvum on zooplankton. 

When any of the plankton groups experience a decrease in population, either 

through the lack of resource availability, competition, or exposure to toxic chemicals in 

the water, the nutrients comprised in the individual plankton cells or individual grazers 

are released back into the water in the form: 

  












 
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t
A

t
ANA Qper

Qper
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  
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  
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


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G

t
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t
GPG Qper

Qper
mortalityonassimilationassimilatimortality  1

 (17) 

where Equations 14 and 15 have units of µmol N L-1 day-1, and Equations 16 and 17 

have units of µmol P L-1 day-1, and where all variables are the same as previously 

described.  The first parantheses in each equation is only valid when there is a decrease 

in the population; if not, the increase in population would be calculated twice.  Releasing 

the nutrients back into the system in this way maintains mass conservation and allows 

the existing phytoplankton to intake the nutrients for further survival.
 

When the zooplankton respire, the excess resources return to the ambient supply 

in the following format: 

  NGGNG Qpernrespiratiorespired     (18)
 

  PGGPG Qpernrespiratiorespired     (19)
 

with units of µmol N L-1 day-1 and µmol P L-1 day-1, respectively, and with all variables 

the same as previously defined. 

Excess nutrients consumed by the grazers, determined by the grazer’s fixed 

stoichiometry and the N:P of the total ingested prey, are released back into the ambient 

nutrient supply (Nielsen, 1994) following:
 

NGGNGNG Qperonassimilatiingestionegestion      (20) 
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PGGPGPG Qperonassimilatiingestionegestion      (21) 

with units of µmol N L-1 day-1 and µmol P L-1 day-1, respectively, and where 

NGingestion
 is the total amount of nitrogen taken in by the grazers (µmol N L-1 day-1), 

Gonassimilati
 is the total assimilation of the grazer population (individuals L-1 day-1), 

NGQper
 is the grazer static nitrogen content (µmol N individual-1), PGingestion

 is the 

total amount of phosphorus taken in by the grazers (µmol P L-1 day-1), and  PGQper
 is 

the grazer static phosphorus content (µmol P  individual-1).  Note that following this 

notation, egestion of the nutrient limiting growth of the grazer will always be zero, with 

only the non-limiting nutrient being egested.  

The uptake of nutrients by the phytoplankton species are calculated as: 

 







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


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     (22) 

 

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i Qper

Qper
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     (23) 

with units of µmol N L-1 day-1 and µmol P L-1 day-1, resepectively and where all 

variables remain the same as previously defined.  The amount of uptake is in relation to 

the algae’s growth and is taken out of the ambient supply, indicated by a decreasing 

variable in Equations 3 and 4, representing changes in the resource supplies. 

The inflows entering the system, both pulsed and continuous, bring with them 

nutrient concentrations, affecting the existing nutrient concentrations of the form: 
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 pulsecontinuousNinflow sourceN 
     (24) 

 pulsecontinuousPinflow sourceP 
      (25) 

with units of µmol N L-1 day-1 and µmol P L-1 day-1, resepectively and where Nsource is 

the concentration of nitrogen entering the system (µmol N L-1), Psource is the 

concentration of phosphorus entering the system with the inflow (µmol P L-1), 

continuous is the chosen dilution rate used with a continuous inflow to the system (day-

1), and pulse is an intermittent rise in the dilution rate simulating a pulsed inflow to the 

system (day-1).  The continuous constant is found from daily hydraulic flushing rates at 

Lake Granbury and relating the Brazos River inflow rate to the volume of the lake, 

thereby cancelling out volumetric dimensions.  The pulse constant includes a specified 

dilution rate occurring over a period of a certain number of days.  Both variables, 

continuous and pulse, are chosen for the model and remain constant throughout the 30-

day simulation.  When the standard case is run, these variables equal 0, indicating no 

flow enters this closed system.   

Toxin production is dependent on the growth rate and density of P. parvum and 

is of the form: 

 
CA

CAA Qper
Areltoxproduction

1

1

11       (26) 

with units of µg-toxin L-1 day-1, and where toxA is the maximum toxin production rate 

(µg-toxin cell-1 day-1), 
jRArel

1
 is an unitless ratio of P. parvum’s nutrient-limited 

specific growth rate over its maximum specific growth rate to capture the alga’s 
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decreased production of toxins with higher specific growth rates, A1 is the concentration 

of P. parvum (µmol C L-1), and QperA1 C is the carbon-based cell quota of P. parvum 

(µmol C cell-1).   The growth rate and density of P. parvum determines the rate of 

production. This toxin equation is designed to simulate P. parvum’s ability to increase 

chemical production when experiencing a low growth rate, reflecting  stressed 

environment (Roelke et al., 2007; Graneli et al., 2008). Again, because standards are not 

available for the toxins produced by P. parvum development of a formal equation, or 

more accurately parameterizing the equation used here, is not possible.  As with the 

mortality terms employed for phytoplankton and zooplankton, parameterization of this 

equation was based on a fit to empirical data associated with previous experiments 

addressing the toxic effects of P. parvum on other phytoplankton and zooplankton. 

Toxin decay is governed by the toxin’s half-life in an exponential decay function 

with the form: 

kTdecay         (27) 

with units of µg toxin L-1 day-1, and where k is the toxin’s first order decay coefficient 

(day-1, Brooks, unpublished data) and T is the concentration of toxin (µg toxin L-1).  

 

2.4 Calibration of the Model 

Sampling and observations of Texas reservoirs plagued with P. parvum has led to 

a greater understanding of the alga’s tendencies, including its vulnerability to flushing.  

Lakes Granbury and Possum Kingdom, both on the Brazos River system in Texas, have 

experienced recurring golden alga blooms and fish kills (Roelke et al., 2010c).  
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Mesocosm experiments lasting 28 days were conducted in Possum Kingdom to 

investigate the impact of nutrient additions as a P. parvum bloom deterrent, with samples 

taken every seven days (Roelke et al., 2007).  Ten fixed stations located throughout the 

entirety of Lake Granbury, downstream of Possum Kingdom, have been sampled 

monthly by our research team for over five years. Both reservoirs experienced fish 

killing golden alga blooms during their respective experiments, spring 2005 in Possum 

Kingdom and spring 2007 in Lake Granbury, recording dynamics before, during, and 

after the bloom.  Samples were collected and calculated in the same manner, resulting in 

duel records of nutrient concentrations (N and P), phytoplankton group dynamics, 

zooplankton group dynamics, P. parvum concentrations for each lake experiment, and 

environmental conditions of the systems including pH, temperature and salinity (Roelke 

et al., 2007; Roelke et al., 2010a).    The hydrology of Lake Granbury was estimated as 

releases of the river into the lake (Grover et al., 2010; Roelke et al., 2010a).  Toxicity of 

the water was determined through its LC50 values (Brooks et al., 2010).   

Initial nitrogen, phosphorus, and phytoplankton concentrations were taken from 

enclosures not receiving any treatments measured at the start of the Possum Kingdom 

study.  Estimated phytoplankton mortality rates from this study were used to calibrate 

the model.  The modest zooplankton population changes observed in Lake Possum 

Kingdom prevented a useful estimated rate of change and therefore the initial 

zooplankton concentrations and estimated mortality rates were modeled after the Lake 

Granbury data.   The model was simplified from the reported six phytoplankton groups 

and four zooplankton groups to 3 total plankton groups to maintain simplicity and 
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highlight responses from the toxin, though adding more plankton groups is feasible for 

future experiments and simulations. Without the ability to measure toxin concentrations 

in the water, toxin parameters do not have measurements for comparison. 

 

2.5 Standard Case  

 A simulation, henceforth referred to as the standard case, depicts the domination 

of the community by P. parvum, the elimination of competitors, decline of grazers, and 

is used as the control case for experimental comparisons (Figure 2).  Calculated in terms 

of µmol C L-1 day-1, the concentrations of phytoplankton are converted to chlorophyll-a 

concentrations for comparison with previously published research using a chlorophyll-a 

to carbon ratio of 50 (Riemann et al., 1982) and to present the data in a more tractable 

manner.  The standard case is a 30-day simulation, and like the 28-day Lake Possum 

Kingdom experiments, shows the depletion of the competing phytoplankton and the 

grazers from the presence of the toxin.  The model is not intended to reproduce exact 

dynamics seen in the data, but rather parallel mortality rates seen in both experiments.  

Similar to the Lake Possum Kingdom data, the competing phytoplankton, modeled after 

the diatom group, is present while P. parvum increases in density until it obtains an 

equilibrium density at which resources are insufficient to sustain further growth (Roelke 

et al., 2007).  The model shows the zooplankton concentration present at the beginning 

of the bloom, but drops quickly while P. parvum is gaining dominance, and is removed 

until after the bloom conditions subsided, in similar growth patterns as observed in the 

Lake Granbury data  (Roelke et al., 2010b).  In both the observations and the modeled 
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data, the grazer populations are eliminated within ten days and the competing 

phytoplankton concentrations within twenty.  Reducing the number of represented 

plankton groups prevents the exact population changes by eliminating other interactions 

and relationships not addressed in the model.  The system becomes nitrogen limited after 

day 15 as P. parvum increases and reaches a concentration where the system is saturated.  

As P. parvum becomes the remaining alga, the nutrient levels affect the alga’s cell 

demands requiring more nitrogen than phosphorus and then creating a nitrogen-limiting 

environment. 

 The zooplankton density initially spikes with an abundance of food available in 

the form of both phytoplankton groups and no toxin production.  Within ten days the 

grazers are entirely eliminated.  The competing phytoplankton remain in the system, are 

grazed upon until the grazers are removed, and then eliminated as well from the 

increasing toxin accumulation.  While the competing phytoplankton are still present in 

the system, competition over the ambient nutrient causes P. parvum, with a slower 

maximum specific growth rate, to strain to obtain the necessary nutrients.  The drop in P. 

parvum density at the start of the simulation, then its rapid increase to a saturating 

density, illustrates P. parvum’s ability to increase chemical production at slower growth  
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rates.  The competing phytoplankton is a superior competitor in the absence of toxin 

with a higher growth rate compared with P. parvum, seen when the competing 

phytoplankton density exceeds that of P. parvum before substantial toxin production.  

The accumulation of toxin causes mortalities of both the zooplankton and the competing 

phytoplankton.  The standard case is a closed system without any hydrological inputs.   

The nutrient levels start at the concentrations noted at the beginning of the Lake 

Possum Kingdom experiment, differ during the simulation because P. parvum becomes 

the only species present in the system utilizing the nutrients in proportion to its internal 

demands.  The Possum Kingdom enclosures included the other plankton groups that 

survived longer than the diatoms, drawing on the nutrient resources, resulting in 

different nutrient ratios than in the standard case.  Though P. parvum has required more 

phosphorus than nitrogen at times, the biological values chosen in the standard case 

follow the Redfield ratio stating phytoplankton require more nitrogen than phosphorus 

for growth (Redfield, 1934).   

 



 
 

Figure 2. Simulations of the standard case: Prymnesium parvum eliminates the competing phytoplankton and grazer populations 
through the production of toxin 

23 



24 
 

2.6 Sensitivity Analysis 

 A sensitivity analysis was performed on 24 parameters of the model comparing 

the cumulative output densities of the three plankton groups with the respective 

cumulative density of the standard case; the resulting differences are shown in Table 1. 

The cumulative density equation for each species equates to the sum of each plankton’s 

biomass at days 0, 5, 10, 15, 20, 25, and 30, and is of the form: 

Ai  Ai
t0  Ai

t5  Ai
t10  ... Ai

t30    (28) 

G Gt0 Gt5 Gt10  ...Gt30    (29) 

where Ai is the phytoplankton density (mol C L-1) and G is the zooplankton density 

(individuals L-1). This approach incorporates population density fluctuations throughout 

the simulation as using the final population density of the plankton (density at day 30) 

would not adequately account for population dynamics.  The model was run with two 

manipulations of each parameter, a 20% increase and decrease, and the output 

cumulative population densities calculated.  Differences in cumulative population 

densities between simulations were normalized against the change in parameter relative 

to the standard case, calculated using formulations of the form: 

 

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
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where 

�

O  is the resulting cumulative population density for the plankton species from 

the simulation with a changed parameter value, 

�

Ostd  is the cumulative population density 

for the plankton species from the standard case simulation, P is the new adjusted 

parameter value, and stdP  is the parameter value used in the standard case.  Using this 

relationship generates a normalized, dimensionless value accounting for the magnitude 

of change in the parameter as a function of the degree to which the parameter was 

changed (+ or – 20%).  This relative difference equation varies slightly from other 

methods used to enumerate relative sensitivity (Haan and Skaggs, 2003) in that absolute 

value brackets are used in the denominator encasing the parameter values, P   and stdP .   

This is accounted for in the way that the sensitivity analysis results are reported, where 

+20% and -20% variations in parameter values are demarcated.  This approach also 

differs in that two sensitivities for the plankton response variables are reported for each 

parameter adjustment, one for the +20% change and another for the -20% change.
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Table 1. Model parameters considered in the sensitivity analysis.  

 Symbol Units  Value Sources 
Prymnesium parvum 
Maximum specific 
growth rate 

1max A
 day-1 0.1 Baker et al., 2009 

Nitrogen half saturation 
coefficient Ni RAk  µmol N / L 0.01 

Errera et al., 2008 
Baker, 2007 

Phosphorus half 
saturation coefficient Pi RAk  µmol P / L 5.0E-3 Errera et al., 2008 

Carbon cell quota CAQper
1

 µmol C / cell 2.7E-06 
Johansson and Graneli, 
1999 
Uronen et al., 2005 

Nitrogen cellular content NAQper
1

 µmol N / cell 2.4E-07 
Johansson and Graneli, 
1999 
Uronen et al., 2005 

Phosphorus cell quota PAQper
1  µmol P / cell 1.9E-09 Uronen et al., 2005 

      
Competing Phytoplankton  

Maximum specific 
growth rate 

max A2

 day-1 0.57 
Hamilton and Schladow, 
1997 
Tilman et al., 1982 

Nitrogen half saturation 
coefficient Ni RAk  µmol N / L 0.1 Grover et al., 1999 

Phosphorus half 
saturation coefficient Pi RAk  µmol P / L 0.001 

Errera et al., 2008 
Arhonditsis and Brett, 
2005 

Carbon cell quota CAQper
2

 µmol C / cell 2.1E-06 Lynn et al., 2000 
Popp et al., 1998 

Nitrogen cell quota NAQper
2

 µmol N / cell 3.0E-07 Lynn et al., 2000 
Popp et al., 1998 

Phosphorus cell quota PAQper
2

 µmol P / cell 4.3E-08 Lynn et al., 2000 
Popp et al., 1998 

Toxin mortality rate 2AmTox  day-1 1.0  

Toxin amount causing a 
50% reduction in 
population 

2ATkTox  µg toxin / L 0.45 
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Table 1. Continued. 
 Symbol Units Value Sources 
Zooplankton population  

Maximum specific 
grazing rate 

dmaxG 
µmol C / 

individual  
day-1 

0.045 
Hansen and Bjornsen, 
1997 

Half saturation 
coefficient kG µmol C / L 6.67 Hessen and Bjerkeng, 

1997 

Carbon cell quota CGQper  µmol C / 
individual 0.046 

Telesh et al., 1998 
Rothhaupt, 1997 
Anderson and Hessen, 
1991 

Nitrogen cell quota NGQper  µmol N / 
individual 0.003 Telesh et al., 1998 

Rothhaupt, 1997 

Phosphorus cell quota PGQper  µmol P / 
individual 1.1E-4 Telesh et al., 1998 

Rothhaupt, 1997 
Basal respiration rate brespG day-1 0.05 Roelke, 2000 
Active respiration 
constant  arespG n/a 0.02  

Mortality rate from toxin mToxG day-1 2.35  

Toxin amount that causes 
a 50% reduction in 
growth  

kToxT G  µg toxin / L 0.0145 
 

Toxin Coefficients  
Maximal toxin 
production rate toxA µg toxin / 

cell day-1 1.0E-7  
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2.7 Toxin Equations 

Standards to measure P. parvum’s toxic chemical have yet to be developed 

(Baker et al., 2007, 2009; Valenti et al., 2010).  The chemical production equation 

developed here was designed to include characteristics of P. parvum seen in toxic water.  

Toxin production increases with low densities and lower specific growth rates (Graneli 

and Johansson, 2003) and the standard case equation satisfies this condition. 

Two other allelopathic relationships, from Martines et al. (2009) and Grover et 

al. (2010), were incorporated into the standard case to compare the resulting plankton 

dynamics against the standard case plankton densities.  These published equations and 

their impact on the competing phytoplankton were used in place of the toxin’s impact on 

the competing phytoplankton from the standard case equation; no changes were made to 

the grazers’ reaction from the toxin to limit variation to only allelopathic reactions.  The 

additional equations were run individually in the model with all other parameters held at 

the standard case values.    The toxin production equations were simulated for 30-day 

simulation as in the standard case, and the resulting dynamics were compared against the 

standard case. 

 

2.7.1 Martines et al. 2009 

 Developed for a similar model consisting of two phytoplankton, one producing a 

toxin killing the other, the equation from Martines et al (2009) is of the form: 

dT
dt

 max A1  A1 R j  A1 KT
     (31)
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where  is a production constant (g toxin cell-1), maxA1 is the maximum specific 

growth rate of P. parvum (day-1), A1(Rj) is the specific growth rate of P. parvum based 

on the limiting nutrient (day-1), and A1 is the density of P. parvum (mol C L-1).  Toxin 

decay is of the first order where K is the decay rate constant (day-1).  Similar to the 

standard case, toxin production is related to the difference between the specific growth 

rate derived from limiting nutrients, and the maximum specific growth rate of P. 

parvum.  This relationship allows the model to simulate an increase in toxin production 

when the specific growth rate is low. 

In the standard case, competing phytoplankton density losses resulted from 

grazing and death from contact with the toxin.  In this relationship, the competing 

phytoplankton are killed by two additional factors apart from grazing losses: a base 

mortality rate,  (day-1), and a function relating the half saturation coefficient of the 

limiting nutrient and the plankton’s growth rate that increases as toxin concentration 

increases.  The mortality losses are defined as  

2
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where 
2Amax  is the maximum specific growth rate of the competing phytoplankton 

(day-1), 
jRA

k
2

is the competing phytoplankton’s half saturation coefficient of the limiting 

nutrient (mol N or P L-1), and T is the concentration of the toxin (g-toxin L-1). 

 

 

mA2
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2.7.2 Grover et al., 2010 

Originally used to model cyanotoxin production by cyanobacteria in a freshwater 

lake, the second allelopathic equation tested from Grover et al. (2010) depicts toxin 

production as proportional to the growth of P. parvum in the form: 

TK
Qper

A
dt
dT

TTA
RA C

 
1

1

1

     (33)
 

where A1 is the density of P. parvum (mol C L-1), 
CRAQper

1
is the carbon quota of P. 

parvum(mol C cell-1) , 
1A  is the growth rate of P. parvum (day-1), and T is the toxin 

production coefficient (g toxin cell-1).  Toxin decay is of the first order with KT as the 

decay rate (day-1) and T the concentration of toxin in the system (g toxin L-1).  This 

equation does not depend on the difference from the maximum specific growth rate as 

the standard case does but has a linearly increasing function.   

The competing phytoplankton are not killed by the toxin in contrast to the 

standard case, but their specific growth rate is impeded as the concentration of toxin 

increases using a Monod-like relationship preventing the phytoplankton from reaching 

their maximum specific growth rate despite nutrient availability 


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 I
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RAA kT
kAgrowth

j 2
22

      (34) 

where 
jRA2

  is the specific growth rate of the competing phytoplankton determined by 

the limiting resource (day-1), A2 is the concentration of the competing phytoplankton 

(mol C L-1), I
Tk  is a concentration of toxin that causes a 50% reduction in algal growth 
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rate (g toxin L-1).  With this relationship, higher concentrations of toxin present will 

generate greater inhibition of the competing phytoplankton’s growth. 

 

2.8 Hydrology 

The model is designed for the inclusion of hydrological flushing to test the effect 

of flow characteristics on bloom dynamics.  The standard case was developed without 

any hydrological influences, but entirely closed systems are not common.  To test the 

effects of hydrology on plankton dynamics in the standard case, three scenarios were 

investigated: a continuous inflow with changing inflow magnitude, pulsed inflows with 

changing pulsing periodicity, and combinations of these.  Dilution rates were based on 

calculated hydraulic flushing rates found at Lake Granbury (Grover et al., 2010, Roelke 

et al., 2010), which were estimated using the rate of inflow into the reservoir from the 

Brazos River relative to the volume of the lake, resulting in a dilution rate without 

volumetric dimensions, which we now refer to as ‘flushing’: 

volume
inflowflushing          (35) 

where inflow is the rate of inflow into Lake Granbury recorded from the USGS station at 

Dennis, TX (USGS Station 08090800), located just upstream of the lake (m3 day-1) and 

volume is the overall capacity of the reservoir (m3).   

Simulated pulsed inflows are defined as a specified dilution rate occurring over a 

period of a single day with varied intervals between events up to 15 days.  The pulsing 

scenarios tested simulated pulses with intervals of 0, 3, 6, 9, 12, and 15 days. For these 
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simulations, instantaneous rates of flushing had distinctive magnitude, with pulsed 

inflows delivered using a sine function over a period of one day on the day that inflows 

occurred, and the magnitude of the pulse was a function of the interval period.  To 

illustrate, during a simulation employing a 3-day pulsing interval., the magnitude of 

inflow was three-fold greater on the day that a pulse occurred compared to the 

continuous inflow simulation, but no inflow occurred on the other two days, which 

resulted in equal flushing over the duration of the simulations being compared. 

 The initial nutrient concentrations and the nutrient concentrations of source water 

in the simulation for the standard case were taken from the experimental data from Lake 

Possum Kingdom.  Additional nutrient concentration scenarios were explored. Two 

simulations, each with varying pulsing and dilution rates, were run to test hydrological 

flushing effects with different source water composed of different nutrient 

concentrations.  One nutrient concentration represents nutrient concentrations typical 

with the Brazos River.  This concentration is a recorded nutrient concentration from the 

monthly sampling trips to Lake Granbury at a the station situated at the headwaters of 

the lake, located over the river channel and at times of high inflow into Lake Granbury, 

best represents nutrient levels typical of the river itself.  The other nutrient concentration 

tested represents nutrient concentrations from bottom water and is from a station located 

at the base of Lake Granbury taken during winter months when P. parvum blooms are 

more common in Texas lakes.    
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3. RESULTS  

3.1 Sensitivity Analysis 

The sensitivity analysis results in Table 2 display the top 20 parameter 

adjustments (±20%) that generated the greatest deviation in the cumulative state 

variables relative to the standard case, where the state variables were P. parvum, 

competing phytoplankton, and grazers; and they were considered cumulative because 

values at time 0, 5, 10 … 30 were summed.  The first 10 parameter adjustments listed 

caused the greatest increase in the designated cumulative state variables, and the last 10 

parameter adjustments listed caused the greatest decrease in the designated cumulative 

state variables.  The ‘Relative Difference’ values listed in the table, then, indicate the 

degree of change in the designated cumulative state variable divided by the ‘Percent 

Variation’, which is the degree of adjustment in a parameter value relative to the 

parameter’s value in the standard case, i.e., ±20% (see Equation 20).  

Each parameter adjustment and resulting relative difference in the designated 

state variable were graphed, and each resulted in a monotonic relationship (not shown).  

In other words, either the relationship was positive (meaning -20% parameter adjustment 

resulted in a decrease in the cumulative state variable and a +20% parameter adjustment 

resulted in an increase in the cumulative state variable), or decreasing (meaning -20% 

parameter adjustment resulted in an increase in the cumulative state variable and a +20% 

parameter adjustment resulted in a decrease in the cumulative state variable).  There 

were no unimodal or concave relationships observed over the range of parameter space 

evaluated. 
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The parameter adjustments causing the greatest change in the state variables were 

not surprising.  For example, the greatest relative population density changes were 

observed with increases in zooplankton.  This stands to reason as the grazer population 

was eliminated in the standard case within ten days.  So, parameter adjustments 

extending this persistence brought about large proportional changes.  Similarly, the large 

decreases in the P. parvum density from parameter adjustments can be explained 

because of their dominance, or bloom behavior, in the standard case.  Subsequently, 

parameter adjustments slowing the rate of bloom development or preventing the bloom 

state brought about large proportional changes. 

Another trend involved an inverse relationship between density changes of the 

grazer and the competing phytoplankton populations compared to P. parvum’s density.  

When a population increase occurs in the density of P. parvum, the same parameter 

adjustment results in a decrease of both the competing phytoplankton and grazer 

densities, and vice versa.  The other two plankton groups respond opposite of P. 

parvum’s density reaction to the parameter adjustment.  Since P. parvum blooms in the 

standard case, any difference from this saturating density allows for the persistence of 

the other plankton groups. 

  



 
 

Table 2. Sensitivity analysis results showing the most influential parameters in accumulated biomass density for all three plankton groups. 

P. parvum Density Changes Competing Phytoplankton  
Density Changes Grazer Density Changes 

Parameter  Percent 
Variation 

Relative 
Difference Parameter  Percent 

Variation 
Relative 

Difference Parameter  Percent 
Variation 

Relative 
Difference 

QperA1 RN
 -20 0.80 QperA2 RN

 +20 3.88 QperA2 RC
 -20 16.20 

dmaxG -20 0.55 mTox G  -20 3.39 mTox G  -20 9.55 
QperA1 RC

 +20 0.54 QperA2 RC
 -20 3.2 QperG R N

 -20 6.24 
QperG RN

 +20 0.45 QperG RN
 -20 3.09 QperA2 RN

 +20 4.92 
mTox G  +20 0.41 dmaxG +20 3.08 dmaxG +20 3.15 
max A1 +20 0.30 QperA1 RN

 +20 1.63 kToxT A 2
 -20 2.45 

kToxT G -20 0.17 max A1 -20 1.21 QperA1 RN
 +20 2.09 

max A2  +20 0.17 QperA1 RC
 -20 1.04 QperA1 RC

 -20 1.80 
toxA +20 0.13 toxA -20 0.65 max A2  -20 0.62 
kA1 RP

 +20 0.11 kToxT G +20 0.55 kToxT G
 +20 0.47 

         
toxA -20 -0.23 toxA +20 -0.41 toxA +20 -0.26 
max A 2  -20 -0.24 max A2  +20 -0.41 kToxT G -20 -0.35 
max A1 -20 -0.47 kToxT G -20 -0.47 max A 2  +20 -0.37 
QperA1 RC

 -20 -0.87 QperA1 RN
 -20 -0.49 QperA1 RC

 +20 -0.49 
QperA1 RN

 +20 -0.97 QperA2 RC
 +20 -0.71 QperA2 RC

 +20 -0.71 
QperA2 RN

 +20 -1.51 1max A  +20 -0.85 QperA1 RN
 -20 -0.73 

QperA2 RC
 -20 -4.17 QperA2 RN

 -20 -1.03 QperA2 RN
 -20 -0.87 

mTox G  -20 -4.49 QperG RN
 +20 -1.07 QperG R N

 +20 -1.00 
QperG RN

 -20 -4.59 mTox G  +20 -1.14 mTox G  +20 -1.09 
Gd max  +20 -4.60 Gd max  -20 -1.62 dmaxG -20 -1.10 

35 
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Parameter adjustments related to zooplankton generated large density variations.  

Changes to the maximum specific grazing rate caused the greatest density decreases for 

all three plankton groups and is prominent in the density increases as well.  Figure 3 

shows the model output when the maximum specific grazing rate is increased by 20%, 

generating 3.08 and 3.15 relative density increases in the cumulative densities of the 

competing phytoplankton and zooplankton populations, respectively.  The density of P. 

parvum experiences a decrease of 4.60 as compared with the standard case cumulative 

density and normalized as described in Equation 20.  P. parvum does not generate any 

growth and is eliminated from the system with the competing phytoplankton as the 

grazer population reaches its peak density of over 1000 individuals and grazes down the 

concentration of the phytoplankton. The toxin does not accumulate throughout the 

simulation and without its presence, the competing phytoplankton reenters the system 

once the grazer population starves and leaves the system.  The grazer population also 

reemerges at the end of the 30 days, responding to the now present food source after the 

competing phytoplankton density establishes itself as the only phytoplankton group. 
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Figure 3. Model output when the maximum specific grazing rate is increased 20% 
compared with the standard case (dashed lines) 
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Grazer mortality rate differences also resulted in density fluctuations increasing 

grazer and competing phytoplankton densities with a 20% decrease, and increasing P. 

parvum density with an increase in the mortality rate.  For example, when the specific 

mortality rate of the toxin on the grazer is increased by 20% (Figure 4), P. parvum 

reaches a saturating density faster than the standard case, generating the 0.41 relative 

cumulative density increase noted in Table 2.  The grazer population does not reach the 

same peak density as in the standard case due to the increase in mortality rate by the 

toxin and is eliminated faster, a 1.09 relative decrease in its cumulative density.  The 

competing phytoplankton obtain a similar peak density as compared to the standard case, 

but are removed from the system faster from the presence of the toxin, a 1.14 relative 

decrease in density.  The toxin accumulates in the system faster as P. parvum approaches 

its saturating density.   

Manipulations of the nutrient quota parameters for all three plankton groups 

account for almost half of all parameter adjustments listed in the sensitivity analysis 

results.  Changes to these parameters equate to different proportions of nutrients being 

required by each plankton group for survival.  Any variation of these parameters will  
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Figure 4.  Model output when the parameter mtoxG is increased by 20% as 
compared with the standard case (dashed lines) 
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generate different proportions of the nutrients in each trophic level, leading to changes in 

the densities of the plankton groups.  Altering the nutrient quotas of the phytoplankton 

redistributes the available nutrients among the lower trophic level and thus alters the 

concentration ingested by the grazer. Figure 5 shows the model output when the nitrogen 

cell quota of the competing phytoplankton is increased by 20%.  This cell quota change 

benefits the competing phytoplankton and grazer populations, generating increases in 

their densities compared with the standard case. The competing phytoplankton maintain 

a presence in the system for almost the entire 30 days, a 3.88 relative increase in 

cumulative density.  The zooplankton population also experiences an increased presence 

in the system, peaking at a density higher than that of the standard case and lasting 

nearly 10 days longer in the simulation.  The density of P. parvum does not establish 

domination over the competing phytoplankton until day 15, ten days later than in the 

standard case.  Noticeable toxin accumulation does not appear until after the competing 

phytoplankton population is removed and P. parvum is almost at its saturating density.   
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Figure 5. Model output when the nitrogen cell quota of the competing phytoplankton is 
increased by 20% 
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3.2 Toxin Equations 

3.2.1 Martines et al. 2009 

 Inserting the Martines et al. (2009) allelopathy relationship into the model results 

in reduced competing phytoplankton and grazer concentrations as compared to the 

standard case (Figure 6).  The zooplankton population does not spike as seen in the  

  

Figure 6. Model simulations using the Martines et al. (2009) allelopathic equations compared with the standard 
case (dashed line) 
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standard case, but is removed from the system at a quick rate, eliminated around day 7.   

The toxin’s effect on the grazer was not altered from the standard case values 

emphasizing the toxin production rate is quicker.  The competing phytoplankton’s 

quicker demise results from the quicker toxin production rate as well, removed almost 5 

days sooner than in the standard case.  The concentrations of P. parvum and toxin both 

reach their highest possible density allowed for by the nutrients available faster than in 

the standard case (represented by the dashed line).  The toxin accumulation is at a 

comparable rate to the standard case, though the Martines toxin production rate is 

quicker. 

   

3.2.2 Grover et al.. 2010 

 Figure 7 shows the allelopathic equation from Grover et al. (2010) compared 

against the standard case (dashed lines).  Instead of increasing its mortality rate, the 

competing phytoplankton’s growth rate is inhibited in relation to the production of toxin.   
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With only stunted growth, the two phytoplankton species are capable of coexistence.  

Toxin production declines after the elimination of the zooplankton population and does 

not appear necessary to maintain P. parvum’s dominance of the system, suppressing the 

growth of the competing phytoplankton.  The grazer population decreases from the spike 

in toxin production despite ample food sources available.  Toxin concentrations do not 

last through the simulation, decaying after the spike.   

 

Figure 7. Model simulation comparing the toxin production equations of Grover et al 
(2010) and the standard case (dashed lines) 
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3.3 Hydrology 

3.3.1 Magnitude of inflows 

Inflows into the system reduces the density of P. parvum in a 30-day simulation.  

Figures 8 through 14 show model simulations with incrementally increasing dilution 

rates, 0.001/day to 0.65/day, typical of average daily inflow rates seen in Lake Granbury 

(Grover et al., 2010; Roelke et al., 2010).  Neither phytoplankton species survives longer 

than five days with dilution rates higher than 0.65/day.     

  

Figure 8. Model output with a 0.001/day dilution rate compared with the 
standard case without any dilution (dashed line) 
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Figure 9. Model output with a 0.005/day dilution rate compared with the standard 
case without any dilution (dashed line) 
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With a dilution rate of 0.1/day, the competing phytoplankton remain in the system for 

the longest duration; at this dilution rate, P. parvum dominates the system still, but at an 

over 80% decrease in density (Figure 12).  The grazers decrease slightly in density from 

the standard case (dashed line) until the phytoplankton groups are removed at which  

 
 
 
 

Figure 10. Model output with a 0.01/day dilution rate compared with the standard case 
without any dilution (dashed line) 
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point the grazer population is without a food source and does not reach the same peak 

density as in the standard case.  Toxin accumulation decreases as dilution rates increase 

until no accumulation is seen (Figures 13 and 14). 

  

Figure 11. Model output with a 0.05/day dilution rate compared with the standard case 
without any dilution (dashed line) 
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Figure 13 shows the model output with a dilution rate of 0.3/day, a rate higher 

than the maximum specific growth rate of P. parvum but less than the maximum specific 

growth rate of the competing phytoplankton.  The density of P. parvum does not spike 

nor maintain dominance in the system as in the standard case while the competing  

  

Figure 12. Model output with a 0.1/day dilution rate compared with the standard case 
without any dilution (dashed line) 
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Figure 13. Model output with a 0.3/day dilution rate compared with the standard case 
without any dilution (dashed lines) 
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phytoplankton density persists until day 25 at which point the grazer population removes 

them.  The competing phytoplankton do not reach a density higher than their initial 

concentration, but maintain a lower density throughout the majority of the system,  

  

Figure 14. Model output with a 0.65/day dilution rate compared with the standard 
case without any dilution (dashed line) 
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showing its capability to outcompete P. parvum under continuous flow conditions.  The 

grazer population initially spikes, and then is depleted from the system dilution, only to 

peak again at day 25, feeding upon the competing phytoplankton.  There is little to no 

toxin production while P. parvum is still in the system. Figures 15 and 16 show 

continuous inflow conditions of large magnitude, 2.6/day and 16/day dilution rates,  

 

  

Figure 15. Model output with a 2.6/day dilution rate compared with the standard case 
without any dilution (dashed line) 
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respectively, representing conditions in Lake Granbury following heavy precipitation 

events.  Very little plankton activity occurs as all three plankton species are removed 

quickly from the system.  Toxin accumulation is hampered in these simulations from the 

lack of P. parvum density and therefore little if any accumulation is noticeable. 

Figure 16. Model output with a 16/day dilution rate compared with the standard case 
without any dilution (dashed line) 

 



54 
 

3.3.2 Periodicity of inflows 

The inclusion of pulsing inflows creates disturbances in the system, generating 

fluctuations in plankton densities.  Figures 17-25 show population density changes 

resulting from the introduction of inflow pulse periodicity.  Figure 17 shows a  

  

Figure 17. Model output with a 0-day pulse (continuous inflow) and a dilution rate of 
0.03/day compared with the standard case (dashed line) 
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continuous inflow scenario with a dilution rate of 0.03/day, a typical daily dilution rate 

in wet conditions, not including very high inflow events, as reported in Grover et al. 

(2010) for Lake Granbury.  Figures 18-22 show increases in periodicity in 3-day 

increments (Figure 18 has a 3-day pulse, Figure 19 a 6-day pulse, etc) with Figure 22 

having a single pulsing event at day 15.   

  

Figure 18. Model output with a 3-day pulse and a dilution rate of 0.03/day compared 
with the standard case (dashed line) 
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The simulation with a continuous flow provides expected results: the competing 

phytoplankton maintain a similar growth pattern as in the standard case but with a 

slightly reduced density, P. parvum’s density is greatly reduced, does not increase to 

reach a saturating density, snd grazer density does not change significantly from the   

Figure 19. Model output with a 6-day pulse and a dilution rate of 0.03/day compared 
with the standard case (dashed line) 
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standard case.  P. parvum does grow to a peak density of around 25µg-chlorophyll a 

then gradually declines while in the standard case, P. parvum increases to a saturating 

density of almost 40 µg-chlorophyll a.  With the reduction in the density of P. parvum, 

the toxin does not accumulate to the same concentration seen in the standard case.  

  

Figure 20. Model output with a 9-day pulse and a dilution rate of 0.03/day compared 
with the standard case (dashed line) 
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In all simulations testing pulsing events (Figures 18-22), P. parvum remains 

dominant at the end of the 30 day simulation though at various densities.  P. parvum 

density does not reach a density higher than that of either the standard or continuous 

inflow simulation (Figure 17).  The toxin accumulation is significantly lower, never 

reaching half of the standard case accumulation concentration but still prevents the  

  

Figure 21. Model output with a 12-day pulse and a dilution rate of 0.03/day compared 
with the standard case (dashed line) 
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grazer population from increased feeding upon the phytoplankton.  Grazer 

concentrations decrease slowly with the varied periodicities and remain similar in 

density to the standard case. The competing phytoplankton density peaks are not as high 

as in the standard case, and as pulses become less frequent, the competing phytoplankton 

experience a greater decrease in population density.  Any inclusion of pulsing, however 

allows the competing phytoplankton to remain in the system longer.       

Figure 22. Model output with a 15-day pulse and a dilution rate of 0.03/day compared 
with the standard case (dashed line) 
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Testing the same pulsing periodicities at higher dilution rates generate greater density 

changes than with a lower dilution rate.  Figures 23-28 illustrate pulsing periodicity but 

with a higher dilution rate of 0.09/day.  This dilution rate remains lower than the 

maximum specific growth rates of P. parvum and the competing phytoplankton, but 

increases flow through the system. 

Without a pulse and only a 0.09/day continuous inflow rate, both phytoplankton 

densities are decreased compared to the standard case (Figure 23).  The density of P.  

  

Figure 23. Model output with a 0-day pulse and a dilution rate of 0.09/day compared 
with the standard case (dashed line) 
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parvum does not reach a density higher than its initial value, but maintains a density 

slightly less than 10µg-chlorophyll a throughout most of the simulation, decreasing after 

day 25.  Toxin accumulation is minimal and increases in concentration towards the end 

of the simulation after day 25 when P. parvum begins to decline in density.  The 

competing phytoplankton experience only a slight increase in their density, peaking at 

day 5, then gradually decreases throughout the remainder of the simulation.  The grazer 

population does not vary much from the standard case. 

  

Figure 24. Model output with a 3-day pulse and a dilution rate of 0.09/day compared 
with the standard case (dashed line) 
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Adding pulses every third and sixth day (Figures 24 and 25) decreases the 

density of P. parvum but still maintains dominance in the system.  In both simulations 

the toxin does not accumulate much and only does so after day 25.  The competing 

phytoplankton densities lasts throughout the duration of both simulations.  Zooplankton 

density peaks at the start of the simulation and declines until eliminated before day 15, 

but never reaches the same peak density as the standard case.  

  

Figure 25. Model output with a 6-day pulse and a dilution rate of 0.09/day compared 
with the standard case (dashed line) 
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When the pulses occur every 9-days (Figure 26), the competing phytoplankton 

exceed the density of P. parvum.  P. parvum density drops at the start of the simulation 

and sustains a low density throughout while the competing phytoplankton peak at day 10 

and maintain dominance throughout the simulation.  Grazer density does not peak as 

high as in the standard case, but remains in the system longer after peaking at day 4.  

Toxin accumulation is slight throughout the simulation.   

 

  

Figure 26. Model output with a 9-day pulse and a dilution rate of 0.09/day compared 
with the standard case (dashed line) 
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Pulses less frequent than every 9 days are shown in Figures 27 and 28, 

illustrating a 12-day pulse and a 15-day pulse, respectively.  In both simulations, the 

density of P. parvum declines to near 0 at or before day 10 while the competing 

phytoplankton gain dominance.  In Figure 27, the competing phytoplankton last 

throughout the simulation while with a single pulse at day 15 (Figure 28), the grazer  

population eliminates the phytoplankton community entirely.  Zooplankton populations  

 
  

Figure 27. Model output with a 12-day pulse and a dilution rate of 0.09/day compared 
with the standard case (dashed line) 
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are significantly higher than in the standard case, present throughout the duration of the 

simulation due to the lack of toxin in the system.  The grazer density responds to the 

pulsing events and the growth patterns of the phytoplankton resulting in more activity 

and density changes than in any previous simulation.  Even while P. parvum is present in 

the system, the toxin does not accumulate to noticeable levels, allowing the grazers and 

the competing phytoplankton to remain in the system.  

Figure 28. Model output with a 12-day pulse and a dilution rate of 0.09/day compared 
with the standard case (dashed line) 
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3.3.3 Combined frequency and magnitude of inflows 

Combining pulsing and inflow magnitudes disrupts the system further.  Figure 29 

shows the resulting cumulative densities of the three plankton groups and the cumulative 

toxin concentration for simulations with both dilution rates and pulsing.  Increases in 

both dilution rate and the time between pulses resulted in the lowest cumulative density 

of P. parvum.  Varying the dilution rate appears to have a greater impact on golden 

alga’s resulting cumulative density, causing a quicker decline in population density 

throughout the simulations.  Accumulating toxin concentrations parallel the decreases 

seen in the density of P. parvum, decreasing at similar rates.  This would be expected 

since toxin will not be produced without P. parvum being present.  The density of P. 

parvum and toxin concentration are the most affected variables resulting from the 

hydrologic events, experiencing the greatest declines in concentrations. 

The competing phytoplankton density remains relatively unchanged throughout 

most simulations of both pulsed inflows and varying dilution rates.  When the dilution 

rates are high and more time is allowed between pulses, the competing phytoplankton 

experiences its greatest density followed by sharp declines in density at the maximum  

  

 



 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29. Plots varying the magnitude and periodicity of inflows using the standard case nutrient concentration 
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pulsing periodicity and dilution rate.  This decline coincides with an increase in the 

grazer population and a sharp decline in P. parvum density.  Before the spike, the grazer 

density remains low and unchanged throughout the majority of the simulations.  With 

the removal of toxins from increased periodicity and dilution rates and a lack of 

production by the low-density P. parvum, the grazers experience an increase in 

population density, feeding on the competing phytoplankton and eliminating P. parvum 

concentrations.  Figures 30 and 31 investigate further this region of low P. parvum 

density and the higher densities of the other two plankton groups.  Figure 30 shows the 

model output with a 0.1/day dilution rate and a pulsing periodicity of 10 days compared 

against the standard case.  The competing phytoplankton are dominant throughout the 

majority of the simulation, declining from the grazers’ presence.  Once P. parvum is 

removed from the system after day 10, the phytoplankton group does not reemerge in the 

system leading to neither toxin production nor accumulation.  The grazer population 

does not exceed its initial density, but remains in the system until day 20, generating a 

higher density than seen in the standard case. 
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Figure 30. Model output with a 10-day pulse and a dilution rate of 0.1/day compared 
with the standard case (dashed line) 
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At the highest periodicity and inflow rate, grazer density experiences two density 

peaks after an initial spike while the two phytoplankton groups experience their greatest 

declines in density (Figure 31).  The simulation shown has a periodicity of 15 days, 

meaning a single pulse occurs in the system at day 15, and corresponds with the bottom 

right-most section area seen in Figure 29 at a dilution rate of 0.1/day.  In this simulation, 

the grazer density responds to the lack of P. parvum toxins, feeding on the competing 

phytoplankton until the food source is depleted by day 20.  The competing 

phytoplankton maintain dominance of the system, but do not generate a high population 

density throughout the system.  Toxin accumulation is low as P. parvum density is 

removed from the system by day 5.   

The highest cumulative density of P. parvum is seen in simulations without any 

dilution or pulsing, the same cumulative density as in the standard case.  This peak 

density exceeds the standard case densities of the other two plankton groups and allows 

for the greatest density decreases to be observed by this plankton.  In other words, P. 

parvum density was highest in the standard case, and therefore has more density to lose 

with fluctuations in hydrology. 
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Figure 31. Model output with a 15-day pulse and a dilution rate of 0.1/day compared 
with the standard case (dashed line) 
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3.3.4 Nutrient influences 

3.3.4.1 High river flow nutrient concentration 

To test potential management strategies, pulsing and dilution rates were tested 

with different nutrient concentrations.  Figure 32 shows the cumulative densities when 

varying periodicities and dilution rates using nutrient concentrations representative of 

high flow conditions of the Brazos River, entering Lake Granbury, 30.17M N and 

0.23M P.  This nutrient concentration was taken from a sampling station located at the 

top of the reservoir, above the deep river channel in Lake Granbury at the time of the 

high flushing event that eliminated the P. parvum bloom in April 2007. When compared 

to the standard case, the high-flow nutrient concentration produces lower densities in the 

grazers and competing phytoplankton and a much higher P. parvum density (Figure 33).  

P. parvum reaches a higher saturating density later in the simulation, almost three times 

as high as the standard case.  The competing phytoplankton maintain presence in the 

system longer than in the standard case, but are removed shortly after day 25.  Grazer 

 

   

 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32. Model output varying periodicity and dilution rates and using a nutrient composition representative of high 
flow conditions of the Brazos River in April 2007 73 
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density mirrors that seen in the standard case, but at a lower peak and are removed 

quicker from the system.  Toxin accumulation is slight until before day 25 when P. 

parvum reaches its peak density.  At this point, the toxin concentration rises higher than 

seen in the standard case.   

  

Figure 33. Model output comparing the nutrient concentration representative of high 
flow of the Brazos River with the standard case (dashed lines) 
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With the introduction of hydrological influences, both phytoplankton 

concentrations decline as the period and the dilution rates are increased (Figure 32).  The 

cumulative density of P. parvum gradually declines, with more influence on the resulting 

density coming from changes in the dilution rate than changes in the periodicity.  The 

competing phytoplankton density declines with the increased dilution, but experiences 

higher concentrations when pulsed every 5, 10, and15 days.  These spikes in cumulative 

density are still lower than the standard case simulations.  The grazer concentration 

declines throughout most of the simulations, but peaks with simulations run with a  high 

period and dilution rate.  With frequent pulses, or a low periodicity, the grazers 

experience more decline in density than with less frequent pulses.  Pulses every 4 days 

resulted in the greatest declines of density.  Toxin accumulation drops significantly as 

the dilution rate increases with low concentrations of toxin remaining in the system in 

simulations with dilution rates higher than 0.03/day.  The lack of toxin accumulating in 

the system allows the grazers to feed upon the phytoplankton groups remaining in the 

system at a quick rate, increasing its density, as with the lower nutrient concentration. 

The next two figures highlight simulations run with the high-flownutrient 

concentration from the Brazos River (Figures 34 and 35) compared with the same 

nutrient concentration with the inclusion of hydrological effects. Figure 34 illustrates 

model output when a 15-day pulse and a 0.1/day dilution rate are introduced.  None of 

the three plankton groups exceed their initial densities.  The grazer population lasts a 

similar amount of time as the simulation run without any hydrology but has a greater 

cumulative density, not experiencing the sharp decline at the start.  This simulation  
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 Figure 34. Model output comparing the standard nutrient concentration representing high 
flow of the Brazos River (dashed lines) with a simulation with a 15-day pulse and a 
0.1/day dilution rate at the same nutrient concentration 
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illustrates the grazer density peak seen at the highest dilution rate and most infrequent 

pulsing strategy in Figure 32.  The competing phytoplankton compete throughout the 

simulation with P. parvum, but are not dominant nor sustain a high density.  There is 

little to no toxin accumulation despite P. parvum being dominant at the conclusion of the 

simulation.  P. parvum density is low throughout the simulation, barely maintaining 

dominance over the competing phytoplankton. 

Figure 35 shows the model simulation when the same nutrient concentration is 

run with a 5 day pulse and a 0.1/day dilution rate.  This simulation represents the spike 

in the competing phytoplankton density and the increase in density by the grazers seen in 

Figure 32.  The competing phytoplankton density sustains throughout the 30-day 

simulation but does not experience substantial growth.  The density of P. parvum 

responds to the pulsing shown by the sudden drops in density, but maintains dominance 

of the system throughout the simulation.  The grazer population declines suddenly and 

does not experience a large increase in density accumulation at the start of the 

simulation.  Toxin does not accumulate through the simulation though it begins to 

accumulate at the end of the 30 days. 
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  Figure 35. Model output comparing the standard nutrient concentration representing 
high flow of the Brazos River (dashed lines) with a simulation with a 5-day pulse and a 
0.1/day dilution rate at the same nutrient concentration 
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3.3.4.2 Bottom source waters 

As with the above explored nutrient concentration seen upstream of Lake 

Granbury, using bottom-water generates decreases in the density of P. parvum.  Figure 

36 shows the varying of periodicity and dilution rates using a nutrient composition lower 

than the high river flow concentration, representative of bottom waters of Lake 

Granbury, 13.97 M N and 0.09 M P.  This nutrient composition is from a well-mixed, 

deep-water station at the bottom of Lake Granbury from January 2007.   

As with the high river flow nutrient concentration, the cumulative density of P. 

parvum declines gradually as the period and dilution rates increase.  The decrease is 

great however, a drop in density of over 2 magnitudes, and is the largest change in 

density compared with the other two plankton groups.  The competing phytoplankton 

experience a greater decline in density when the dilution rate is increased than with less 

frequent pulsing events. The lowest phytoplankton densities occur with higher dilution 

rates and more time between pulses.  Unlike simulations run using other nutrient  

 



 
 

 

 

Figure 36. Model output when varying periodicity and dilution rates and using a nutrient composition 
representative of bottom waters of Lake Granbury  
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concentrations, the grazer density does not respond to the lack of toxin and does not 

increase in density throughout the simulations always resulting in densities lower than 

simulations without hydrological influences.  The grazer population experiences its 

lowest density at the highest dilution rate and with the greatest amount of time between 

pulses.  The toxin accumulates in the system but is quickly removed as the dilution rates 

increase.  Little toxin is calculated for simulations containing dilution rates higher than 

0.06/day.  

Figure 37 shows the standard case simulation compared with the bottom-water 

nutrient concentration without any hydrological influences.  The density of P. parvum 

greatly doubles the highest density capable of sustaining the alga population as seen in 

the standard case, maintaining dominance throughout the simulation.  The competing 

phytoplankton are present in the system longer than in the standard case, but do not 

survive past day 20.  Their density remains low and declining throughout.  The grazers 

do not experience the spike in density seen with the standard case, but instead decline.  

Toxin accumulation occurs after P. parvum reaches its saturating density and exceeds 

the standard case concentration. 

  



82 
 

  

 Figure 37. Model output comparing the nutrient concentration representative of bottom 
waters of Lake Granbury with the standard case (dashed lines) 
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Figure 38 shows the model output when the bottom water nutrient concentration 

experiences a 5-day pulse and a 0.1/day dilution rate.  The density of P. parvum 

maintains domination throughout the simulation with a recurring pattern reacting to the 

pulses every 5 days.  The competing phytoplankton are removed from the system after 

25 days without experiencing densities higher than its initial condition.  The grazer 

density is removed from the system quickly and the toxin does not noticeably 

accumulate.  

Figure 38. Model output comparing the standard nutrient concentration representing a 
bottom-water concentration of Lake Granbury (dashed lines) with a simulation with a 
5-day pulse and a 0.1/day dilution rate at the same nutrient concentration 
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4. CONCLUSION 

4.1 Sensitivity Analysis 

 Sensitivity analyses are robust tests that uncover the most influential parameters 

in simulation studies.  The parameter adjustments identified as having high relative 

sensitivity for this model are valuable as their understanding will lead to further 

comprehension of the biotic interactions dictating P. parvum growth. Influential 

parameters are defined here as those parameters that, when manipulated, result in the 

greatest relative difference in the cumulative state variables.  Accurate measurements of 

the parameters highlighted as influential will reduce error in predictive models and 

generate knowledge on the growth characteristics of P. parvum when faced with 

nutrient-depleted environments. 

Changes to nutrient quotas were influential in density changes for all three 

plankton groups.  By changing the cell quotas, ingestion rates of each nutrient by 

zooplankton are altered, changing their population dynamics, which then affects the 

model’s top-down influence (Gasol et al., 1999; Sherr and Sherr, 2002).  For example, 

changing the nutrient quotas of its prey (Figure 5), at least in regards to nitrogen, alters 

the population growth rate of grazers because more nitrogen is ingested per unit carbon 

(Equation 9) (Williams et al., 2008).  Similarly, decreasing the carbon cell quota results 

in greater ingestion of nutrients per unit carbon (Monod, 1950).  The resulting increased 

grazer density leads to an increased feeding rate on phytoplankton.  Also, decreasing the 

nitrogen content of the grazer increases the effect of ingested nitrogen.  In other words, 

the same amount of ingested nitrogen leads to more grazer individuals, which in turn 
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increases top-down control on phytoplankton (Hessen, 1992).  With lower nutrient 

contents in the phytoplankton, the grazer may become nutrient-limited and not be 

capable of ingesting enough nutrients for survival.   

Top-down control is also emphasized when adjusting the maximum specific 

grazing rate of the zooplankton.  Increasing the maximum specific grazing rate allows 

the zooplankton to ingest the phytoplankton at such a rate all food sources are depleted 

from the system (Figure 3).  A decrease in the maximum specific grazing rate prevents 

the zooplankton from ingesting enough nutrients for density growth before the toxin 

eliminates the group.  The presence of a grazer is influential in determining the resulting 

densities of the two phytoplankton groups.  Without a grazer present, the competing 

phytoplankton face their demise by the toxin accumulating in the system, allowing P. 

parvum to reach a system-saturating density.  Knowing the grazer plays an important 

role in determining the presence of a bloom, accurate calculation of the grazer’s 

maximum specific grazing rate will assist in predictive modeling of a potential P. 

parvum bloom.  Just as the increased density of the grazers resulting from the changes in 

nutrient quotas increased the feeding rate, the increase in feeding rate of the grazers 

increases the grazer density (Williams, et al., 2008).   

Altering the toxin’s effect on the grazer population (mToxG) influences the 

resulting densities of the two phytoplankton groups.  Increasing the mortality rate from 

the toxin’s presence, the zooplankton density decreases at a faster pace (Figure 4), the 

species dying at a faster rate from the toxin’s presence.  As shown previously, when the 

grazer presence is removed, the competing phytoplankton density is eliminated shortly 
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after from the toxin as well.  The grazer species’ presence prolongs competition between 

the two phytoplankton groups.  Its quick removal decreases competiton, allowing P. 

parvum to overcome the competing phytoplankton.  Decreasing the zooplankton 

mortality rate from the toxin delays the removal of the grazer from the system.  The 

grazers and competing phytoplankton experience increases in density while P. parvum 

density decreases.  These results indicate the grazer density is a buffer of sorts for the 

competing phytoplankton’s susceptibility to the toxin.  When the grazers are present, the 

competing phytoplankton are able to compete for longer durations of time with P. 

parvum while the absence of a zooplankton species, increases the mortality of the 

competing phytoplankton by the toxin. 

 

4.2 Toxin Production Equations 

Despite both toxin-production equations tested resulting in P. parvum densities 

reaching a saturating level, the toxin accumulation patterns varied.  Without toxin 

standards, the concentration of toxin molecules in the water system is unable to be 

determined and modeling efforts are based on the conditions observed when waters are 

toxic (Brooks et al., 2010).  Toxins produced by P. parvum may reach a saturating 

concentration, seen in the Martines et al. (2009) and standard case simulations, or a 

lower toxin concentration may be all that is needed to suppress competitors as with the 

Grover et al. (2010) equation.  Standards to measure the toxin’s concentrations are 

absolutely necessary to further research and knowledge of the prymnesins.   
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The components of a model related to P. parvum toxins have underpinning 

ecological mechanisms.  That is, toxin related variables can be calculated and calibrated 

in experimental settings.  The Martines et al. (2009) equation, when implemented, 

displays results comparable to the standard case resulting densities.  One significant 

drawback is a dimensionality issue in the competing phytoplankton’s mortality function 

(Equation 32).  This function uses units uncommon with ecological parameters and are 

difficult to reproduce, thus without the ability to measure the parameters used in the 

model, the equation is not as robust a choice for modeling the toxic chemical production.  

The novel approach to toxic chemical production presented here contains fully 

mechanistic variables, apple to be accurately determined through experimentation. The 

Grover et al (2010) model inhibits the competing phytoplankton’s growth rate allowing 

coexistence of the phytoplankton groups, a common feature seen in nature.  Both the 

inhibition of growth and lysing of target cells are observed with P. parvum (Graneli and 

Hansen 2006), and successful coexistence between species groups during blooms has 

been noted (Fistarol et al., 2003).  The toxin’s ability to deter grazers aids both 

phytoplankton species relieving grazing pressures and releasing the nutrients from the 

now dead grazers back into the system (Roelke and Buyukates, 2001).  The competing 

phytoplankton has a growth advantage with ample nutrients and lack of top-down 

control with the removal of the grazer density, yet is suppressed by the toxin’s presence 

from reaching its maximum specific growth rate.  The toxin’s addition to the system 

shifts plankton assemblages away from the quicker growing algae and allows P. parvum 

to maintain dominance.  This equation’s parameters are feasible to reproduce with 
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laboratory experiments for verification and though does not include a mortality rate, 

does simulate P. parvum’s ability to prevent growth of more competitive phytoplankton  

to obtain dominance.  The Grover et al.(2010) equation is strong due to its ability to 

allow the coexistence of the two phytoplankton species.  This toxic chemical production 

equation does not include a mortality factor where the toxin-producing phytoplankton 

induces the death of the targeted species.  A significant difference separating the Grover 

et al. (2010) function from the model’s approach and the Martines et al. (2009) equation 

is the assumption that toxin production increases proportionally as the nutrient-limited 

growth rate increases as in the case with Grover et al. (2010) while the latter two assume 

decreases in the nutrient-limited growth rate generates an increase in toxin production.  

The growth strategies of P. parvum are assumed to follow the second reasoning.   

Including a similar function into the toxin-production equation presented here would 

strengthen the representation of P. parvum dynamics, incorporating the alga’s ability to 

prosper alongside competing phytoplankton. 

 

4.3 Hydrology 

The inclusion of hydrological events to the standard case forces the plankton 

groups to respond.  Without disruption, the standard case illustrates P. parvum’s ability 

to out compete against the faster-growing competing phytoplankton and eliminate the 

grazer population through the use of its toxins.  When the system is pulsed and inflows 

are increased, the dominance of the system becomes dictated by growth characteristics 

of the plankton groups and the presence of toxic chemicals produced by P. parvum.  The 
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combination of dilution rates and freshwater inflows supports the idea that hydrological 

events are viable management strategies to decrease the density of P .parvum (Roelke et 

al., 2010a). 

The lowest and highest rates of dilution produce expected results in that lower 

dilution rates do not impact population densities much and the highest dilution rates 

eliminate the population densities quickly, while the intermediate ranges emphasize the 

growth characteristics of the phytoplankton.  As witnessed in Figure 29 high rates of 

dilution without and with few pulsing events result in the suppression of all three 

plankton groups.  Dilution rates below 0.1/day resulted in the dominance of P. parvum, 

however the competing phytoplankton consistently prolonged their presence in the 

system.  This rate is important as it is the chosen maximum specific growth rate of P. 

parvum in this simulation.  If alone in the system, rates higher than this would result in 

the elimination of P. parvum as a species cannot sustain a population with system 

dilutions higher than its maximum specific growth rate (Ketchum, 1954).  In this same 

manner, rates higher than 0.57/day would remove the competing phytoplankton from the 

system from lack of ability to grow faster than the system receives inflows (Figure 14).  

This range of dilution values is important as it defines environmental conditions during 

which the competing phytoplankton has a survival advantage based on its faster 

maximum specific growth rate.  As with the toxin standards, the accuracy of estimations 

of the competing phytoplankton’s maximum specific growth rate increases in 

importance.   
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With the addition of pulsing events, the dilution rate is still an influential 

variable, however the same range of dilution rates does not result in the same model 

output.  In other words, the competing phytoplankton has an advantage when the dilution 

rate exceeds the maximum specific growth rate of P. parvum when there are not pulsing 

events, but with the inclusion of pulses, the range of dilution rates through which the 

competing phytoplankton density exceeds that of P. parvum is not the same.  The 

pulsing events create disturbances in the system as seen in nature.  Pulsing at 0.03/day, a 

rate lower than both phytoplankton’s maximum specific growth rates, does not disrupt 

the system enough for P. parvum to lose dominance.  Despite the periodicity of the 

pulses, P. parvum retains a greater density with little changes in the model output 

(Figures 17-22). 

Pulsing events at a higher dilution rate, one still lower than both maximum 

specific growth rates, 0.09/day, allows the competing phytoplankton to exceed P. 

parvum’s density (Figure 26 and 27).  In these simulations, the competing phytoplankton 

out-competed P. parvum for the available resources and dominated the system when the 

pulses were less frequent.  In the same way dilution rates greater than P. paruvm’s 

maximum specific growth rate eliminated the species, the combination of less frequent 

pulsing with a dilution rate close to its maximum specific growth rate, P. parvum cannot 

gain enough of a foothold in the system to overcome the density of the competing 

phytoplankton. The disruptions to the system favor the faster growing plankton as it can 

rebound quicker and establish itself, maintaining a density higher than P. parvum 

(Reynolds, 1984).  Since static systems are infrequent in nature, understanding the 
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relationship between pulsing events and the dilution rate could generate management 

strategies with the knowledge that combinations of pulses and dilution rates can result in 

the decrease in the density of P. parvum.   

The pulsing events are intended to represent natural flushing events experienced 

in river systems, delivering water with different nutrient compositions into systems 

previously undisturbed.  Introducing new nutrient concentrations to the system alters the 

competition between the phytoplankton groups in the same way inflows will induce 

responsive growth rates amongst the phytoplankton (Schluter, 1998).  Nutrient 

concentrations higher than the standard case impact density differences, generating 

higher overall P. parvum densities (Figures 34 and 38).  The competing phytoplankton 

fared better in these simulations as well, lasting longer throughout the 30 days than in 

the standard case, and enduring relatively smaller decreases in density when compared to 

the density declines of P. parvum.  These simulations support the notion that managing 

hydrological activity of the lake system could mitigate blooms through the disruption of 

plankton communities and developing increased species diversity (Buyukates and 

Roelke, 2005; Roelke et al., 2010a).   

Grazer communities appeared to influence the phytoplankton competition, acting 

as a buffer between the phytoplankton and the perturbations to the system (Cottingham 

and Schindler, 2000).  In this way, the zooplankton shielded the phytoplankton from the 

disturbance to the system, allowing the faster growth rates of the competing 

phytoplankton to supersede the growth of P. parvum.  When the grazer population 

increased in cumulative density, the competing phytoplankton experienced increased 
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competition with P. parvum in most cases (Figure 29).   Altering the population of 

grazers throughout the system alongside a hydrological regimen appears a management 

strategy to influence the growth and survival of the competing phytoplankton to out 

compete P. parvum. 

The bottom-water nutrient concentration simulations provide useful information 

regarding the type of water necessary to agitate the system in such a way to alter the 

dominating species.  Flushing an entire lake system to achieve dilution and pulsing 

effects noted in this research is highly improbable and unfeasible with large systems.  

However, displacing water plagued by populations of P. parvum with water from the 

bottom regions of a lake appear to generate similar results: greater declines in P. parvum 

density than competing phytoplankton, and a decline in the concentrations of toxin 

(Figure 37).  Pumping water from lower depths or from other areas of the lake appears to 

introduce enough disruption to the system to be a successful mitigation strategy easily 

employed in terms of economics and feasibility.  Targeting certain areas of a lake with 

water with a different nutrient concentration would alleviate the need to flush the 

entirety of a lake.      
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APPENDIX A 

A.1 Standard Case 

% This is the standard case. 

 

% A Half Dozen Phytoplankton, a Handful of Grazers, Two  

% Nutrients, and some awesome fun 

% Programming by Natalie Hewitt 

% This is the bloom scenario 

%----------------------------------------------------------

----- 

%----------------------------------------------------------

----- 

 

clear all 

 

global dinky1 N P umaxA dmaxG knA knG QperA QperG day1p 

period mark pulsesize tD GNtoP BrespG ArespG PtoxA c mtoxA 

ktoxA mtoxG ktoxG ktox 

 

  % Sets the default font and axis size to Times New Roman 

set(0,'defaultAxesFontName', 'Times New Roman'); 

set(0,'defaultAxesFontSize', 12); 



103 
 

set(0,'defaulttextFontSize', 18); 

set(0,'defaultAxesFontSize', 14); 

set(0,'defaultFigureColor','white') 

%----------------------------------------------------------

----- 

% PARAMETER VALUES 

%----------------------------------------------------------

----- 

%----------------------------------------------------------

----- 

% INITIAL CONDITIONS 

%----------------------------------------------------------

----- 

dinky1 =0; 

    % to get the delta t in the toxin accumulation  

 

N   = 1.70;        % Nitrogen source, µM 

P   = 0.40;        % Phosphorus source, µM 

 

% Initial Algal concentration - taken from Roelke 2000 

%     µg chl-a / L 

Ain =   [ 016.0,  0.0,    0.0,    0.0,    9.75,    0.0]; 

%       parvum         chlorophytes      diatoms 
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%            euglenophytes     cryptophytes           

%          cyanobacteria 

 

%   convert into carbon to run the model 

Ain = Ain.*(50/1)*(1/12); 

        % µmol C / L 

 

% Initial nutrient concentrations for nutrients, µM 

Rin = [N, P]; 

 

% Initial grazer concentrations, from Roelke 2000 

% individuals / L 

Gin = [0.0,      321.2850,       0.00,       0.00]; 

%   protozoan     rotifer     copepods      nauplii 

 

%----------------------------------------------------------

----- 

% GROWTH & GRAZING RATES 

%----------------------------------------------------------

----- 

% Maximum specific growth rates for phytoplankton species 

%   d-1 

umaxA = [ 0.10, 1.8, 0.72, 0.57, 0.5, 0.67]; 
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% Maximum specific grazing rate 

    % µmol C / ind / day 

dmaxG = [.11956622, 0.045, 1.224, 1.32]; 

 

%----------------------------------------------------------

----- 

% HALF SATURATION COEFFICIENTS 

%----------------------------------------------------------

----- 

% Phytoplankton half saturation coefficients  

    % µmol N / L and µmol P / L 

 

knA = [0.01000  0.30000      0.29986    0.48530  0.10000     

0.09281;   % N 

       0.00500  0.32285      0.15000    0.16142  0.01000     

0.05166];  % P 

 

% Zooplankton half saturation coefficients 

    %   µmol C / L 

% knG = [3.83014,   0.208333,    7.916667,   .75601]; 

%   protozoan     rotifer     copepods      nauplii 

knG = [3.164,   6.66667,    8.3259094,   14.25]; 
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%----------------------------------------------------------

----- 

% CELL CONTENT  

%----------------------------------------------------------

----- 

% Fixed cell contents phytoplankton 

%  (µmol nutrient / cell) 

QperA = [2.7330e-06    8.44e-6      5.2667e-6    6.8917e-6    

2.07e-6      0.05e-6;    

            % µmol carbon per cell 

        0.2430e-06    1.079e-6     0.7357e-6    1.3286e-6    

0.304e-6     0.0071e-6;   

            % µmol nitrogen per cell 

        0.0019400e-06  0.200e-6     0.0293e-6    0.0200e-6    

0.0432e-6    0.002e-6]; 

            % µmol phosphorous per cell 

%              

 

QperG = [.93830142  0.04625         0.817305    0.25; 

            % µmol carbon per individual 

         0.630846   0.002744994     0.15039     

0.057142857; 
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            % µmol nitrogen per individual 

         0.045060   0.0001050424    0.02187     0.01832];             

            % µmol phosphorus per individual  

 

% grazer N:P ratio used in the limiting nutrient logic 

statements 

GNtoP(1,:) = QperG(2,:)./QperG(3,:); 

GNtoC(1,:) = QperG(2,:)./QperG(1,:);    % N:C ratio of 

grazers 

GPtoC(1,:) = QperG(3,:)./QperG(1,:);    % P:C ratio of 

grazers 

 

% algae N:C and P:C ratios used in amounts ingested 

ANtoC(1,:) = QperA(2,:)./QperA(1,:); 

            % µmol N / µmol C  

APtoC(1,:) = QperA(3,:)./QperA(1,:); 

            % µmol P / µmol C 

             

%----------------------------------------------------------

----- 

% RESPIRATION RATE 

%----------------------------------------------------------

----- 
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% Grazer Respiration Rate 

    % basal grazer respiration rate 

BrespG = [0.5      0.050     0.1195757  0.005]; 

% based on concentration of the grazer growth 

    % d-1 

  

ArespG = [0.2     0.02   0.35   0.2]; 

    % grazing respiration when actively ingesting 

    % production dependent - unitless 

 

%----------------------------------------------------------

----- 

% Toxin  

%----------------------------------------------------------

----- 

 

Toxin = [ 00.0 ]; 

% µg tox / L 

 

ktox = 0.0849    % day-1 

    % 2.038668178/hr - the number above is multiplied by 24 

to find /day 

% used for the exponential decay of the toxins 
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% generated from knowledge that at 1 light intensity, the 

half  

% life of parvum is 0.34 hr               

% using this, solved 0.5 = exp^(-kt) where t is 0.34hr 

 

 

c = [  0.1 ]; 

    % fudge factor in the exponential of the toxin 

production 

    % allows for variability of control on the production 

of the % toxin 

 

% µg tox / cell day -1 

PtoxA = [  1.0e-7 ]; 

    % entirely made up this number 

    % toxin production constant affecting the growth of 

% competing algae 

    % allelopathic 

 

% Phytoplankton effects from toxin 

mtoxA = [0.0     0.45    0.45     0.45     1.0     0.45]; 

        % day -1 

    % mortality rate of the toxin specific to each alga 
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ktoxA = [0.1e-25     0.25    0.25     0.25     0.45     

0.25]; 

        % µg tox / L 

        % amount of toxin that causes a 50% reduction in 

algae density 

   

% Grazer Toxin effects 

mtoxG = [ 0.00250   2.35   0.550     0.00250 ]; 

    % day -1 

    % mortality rate from the effect of the toxin specific 

to each grazer 

     

ktoxG = [ 0.25   0.01450     0.25     0.25 ]; 

    % µg tox / L 

    % amount of toxin that causes a 50% reduction in grazer 

concentration 

 

%----------------------------------------------------------

----- 

%----------------------------------------------------------

----- 

% MODEL CONTROL 
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%----------------------------------------------------------

----- 

tD  = 0.0;      % Dilution rate, d-1 

pulsesize   = 1; 

    % percent of continuous flow that becomes episodic 

period      = 0; 

    % Period of pulsing (continuous = 0) 

day1p       = 1; 

    % Initial pulse = 1; No initial pulse = 0 

 

%----------------------------------------------------------

----- 

% RUNNING THE MODEL 

%----------------------------------------------------------

----- 

 

t0      = 0;    % time start 

tfinal  = 30;  % time finish (days) 

mark    = t0;    

dinky   = 1.0; 

zin     = [Ain, Rin, Gin, dinky, Toxin]; 

[t,z]   = ode45('standardCasefunc',t0,tfinal.,zin,1e-25);  

% always the standard case 
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% [t2,z2] = ode45('standardCase2func',t0,tfinal.,zin,1e-

25); 

 

%----------------------------------------------------------

----- 

% conversions  

%----------------------------------------------------------

----- 

% convert algae back into chl-a 

for i=1:6 

    ChlA(:,i) = z(:,i)*12/50; 

end 

 

% keyboard 

%----------------------------------------------------------

-----% PLOT THE MODEL OUTPUT 

%----------------------------------------------------------

----- 

figure 

plot(t,z(:,7),'b',t,z(:,8),'r','LineWidth',2) 

ylabel('resources µM','FontSize',16) 

xlabel('days','FontSize',16) 

title(' Ambient Nutrients','FontSize',20) 
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legend('Nitrogen','Phosphorus') 

  

figure 

plot(t,ChlA(:,1),'r',t,ChlA(:,5),'b','LineWidth',2)%, 

t,ChlA(:,3),'k',t,ChlA(:,4),'c', 

t,ChlA(:,5),'m',t,ChlA(:,6),'g') 

legend('P. parvum','competing phytoplankton',2) 

ylabel('µg chl-a per 

liter','FontSize',16),xlabel('days','FontSize',16) 

title('Phytoplankton Concentration','FontSize',20) 

  

figure 

plot(t,z(:,10),'b','LineWidth',2)%,t,z(:,11),'g',t,z(:,12),

'c') 

xlabel('days','FontSize',16) 

ylabel('individuals per liter','FontSize',16) 

title('Grazer Concentration','FontSize',16) 

legend('grazer','FontSize',10) 

  

figure 

plot(t,z(:,14),'LineWidth',2) 

title('Toxin Accumulation','FontSize',16) 

xlabel('days','FontSize',16) 
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ylabel('µg tox / L','FontSize',16) 

A.2 Standard Case Function 
 
% This is a function called by the routine, standard.m 

% It contains the equations for the whole shindig. 

% Programming adjusted and created by Natalie Hewitt 

%----------------------------------------------------------

----- 

function zdot=standardCasefunc(t,z) 

 

global dinky1 N P umaxA dmaxG knA knG QperA QperG day1p ... 

period mark pulsesize tD BrespG ArespG PtoxA  c mtoxA ktoxA 

... mtoxG ktoxG ktox 

 

%----------------------------------------------------------

----- 

% INCOMING INFORMATION 

%----------------------------------------------------------

----- 

A   = z(1:6)';      % Algae (µmol C / L) 

R   = z(7:8)';  % Resources (nutrients); (µmol nutrient 

/ L) 

G   = z(9:12)';     % Grazers (individuals / liter) 
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T   = z(14)';  % Toxin (µg tox L-1) 

 

%----------------------------------------------------------

----- 

% NUTRIENT PULSE 

%----------------------------------------------------------

----- 

if period == 0        

% Continuous conditions 

    D1 = tD; 

 D2 = 0; 

    else          

% Pulsing conditions 

    D1 =(1-pulsesize)* tD;       

 pulse = floor(t)/period - floor(floor(t)/period)==0;

  

% On/Off switch 

 D2 = pulsesize*tD*(2*period)*((1+cos(t*2*pi-

pi))/2)*pulse; 

 if day1p == 0 

        if t<period-1     % No initial 

pulse 

   D2  = 0; 
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        end 

    end 

end 

 

 

%----------------------------------------------------------

----- 

% ALGAE GROWTH RATE 

%----------------------------------------------------------

----- 

for i=1:length(knA(1,:))           

% number of phytoplankton species (columns in K) 

    for j=1:length(knA(:,1))       

% number of resources (rows of K) 

        uA(j,i) = umaxA(i).*(R(j)./(knA(j,i)+R(j))); 

                            % d-1  

    end 

end 

 

uminA = min(uA); % use Liebig's 'Law of Minimum' 

    % d-1 

urel = uminA(1)/umaxA(1);        % unitless  
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                        % used for toxin production 

equation 

 

%----------------------------------------------------------

----- 

% GRAZER GRAZING RATE 

%----------------------------------------------------------

----- 

% Grazing Rate - based on the Monod function 

grazC = dmaxG.*((sum(A))./(knG + sum(A))); 

        % grazing rate based on the Monod equation using 

the  

% half saturation coefficient in proportion to the 

total  

% available carbon in the prey 

    % µmol C / ind. / day     

        % based on a Monod-relationship to relate the  

% "dependence of grazer activity on food quantity"  

% (Hansen and Bjornsen, 1997) 

           

%----------------------------------------------------------

----- 

% amount of carbon from each phyto group ingested  
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for k=1:length(knG) 

    for i=1:length(A) 

        % µmol C / day / L 

        ClossperA(k,i) = (A(i)/(sum(A)))*grazC(k)*G(k); 

            % ClossperA is the carbon loss from ingestion 

for  

% each species of algae 

 

% ClossperA is a 4x6 with grazer species in rows, 

algae % in columns 

            % each value is the amount of carbon lost per 

grazer  

% per species algae 

    end 

end 

 

% total carbon lost from each algal species 

ClostbyA = sum(ClossperA); 

    % µmol C / day / L 

 

%----------------------------------------------------------

----- 

% Grazed amount by nutrient 
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%----------------------------------------------------------

----- 

% convert the ingestion losses of nutrients from carbon to  

% nitrogen and phosphorus using the cell content ratio 

 

for k=1:length(knG) 

        % µmol N / day / L 

    grazN(k,:) = ClossperA(k,:).*(QperA(2,:)./QperA(1,:)); 

        % using the cell content ratio QperA(C):QperA(N)  

% multiplied by the losses to find the nitrogen 

lost in  

% proportion to the loss of carbon 

         

    grazP(k,:) = ClossperA(k,:).*(QperA(3,:)./QperA(1,:)); 

        % µmol P / day / L 

            % using published optimal N:P ratios, convert 

the N  

% loss from ingestion 

            % found above to phosphorus losses 

end 

 

% grazN and grazP are the total molar amounts lost from  

% ingestion by the grazer species 
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%----------------------------------------------------------

----- 

% grazer ingestion 

        % grazA sums the total nitrogen and phosphorus 

losses  

% for each phyto species 

grazA = [sum(grazN'); ...       % µmol N / day / L 

         sum(grazP')];         % µmol P / day / L 

 

%----------------------------------------------------------

-----% GROWTH OF THE GRAZERS                      

%(sounds like a movie right?) 

%----------------------------------------------------------

----- 

 

% total amounts of ingested nutrients per individual 

TotalG = [grazA(1,:)./QperG(2,:);...      

            % amount of nitrogen ingested per individual  

                %  ind / L / day 

          grazA(2,:)./QperG(3,:)]; 

            % amount of phosphorus ingested per individual 

                % ind / L / day 
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RlimG = min(TotalG); 

    % the minimum value in TotalG per grazer is the growth 

rate  

% based on ingestion of nutrients 

    % taking the minimum of TotalG will be the lower 

ingested  

% nutrient and thus the limiting one 

 

%----------------------------------------------------------

-----% GRAZER EGESTION 

%----------------------------------------------------------

-----% Egestion of those nutrients not limiting 

 

y1 = RlimG.*QperG(2,:); 

y2 = RlimG.*QperG(3,:); 

 

GegestR = grazA - [y1; y2]; 

        % from the total nitrogen and phosphorus ingested, 

the  

        % µmol nutrient d-1 L-1 
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%----------------------------------------------------------

-----% GRAZER RESPIRATION 

%----------------------------------------------------------

----- 

    % individuals L-1 d-1 

Grespa = ArespG.*RlimG; 

Grespb = BrespG.*G; 

    % based on Roelke 2000 zooplankton respiration 

    % BrespG is the basal respiration dependent on the 

grazer  

% growth  

    % ArespG is the active respiration rate when the food 

is  

% less abundant  

     

Gresp = Grespa + Grespb; 

    % GrespR is the total amount of respiration per 

individual 

 

% Grazer mortality 

% Gmort = [0.005   0.905  0.0065   0.15]; 
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%----------------------------------------------------------

----- 

% Toxin Production 

%----------------------------------------------------------

----- 

% The production of toxins from P. parvum will have both an  

% allelopathic term as well as inhibition of grazing 

pressures 

 

% use lim_res (found with algae growth rate) to determine 

the  

% limiting nutrient for growth of each algae 

noP = A - [A(1) 0 0 0 0 0]; 

ToxLossA = mtoxA.*(T./(ktoxA + T)).*noP; 

        % µmol C / L day-1 

 

ToxLossG = mtoxG.*(T./(ktoxG + T)).*G; 

        % ind / L day-1 

 

%----------------------------------------------------------

----- 

% DIFFERENTIAL EQUATIONS 
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%----------------------------------------------------------

----- 

 

% total phytoplankton - µmol C / L / day 

z1dot = A.*(uminA - D1 - D2 ) - ClostbyA - ToxLossA; 

       

% first resource - µmol Nitrogen / L / day 

z2dot = (D1 + D2)*(N - R(1)) - ... 

sum(QperA(2,:).*uminA.*(A./QperA(1,:))) ...     

    + sum(GegestR(1,:)) + sum(Gresp.*QperG(2,:)) + ... 

sum(QperA(2,:).*ToxLossA./QperA(1,:))...         

    + sum(ToxLossG.*QperG(2,:));  

     

% second resource - µmol Phosphorous / L day-1 

z3dot = (D1 + D2)*(P - R(2)) - ... 

sum(QperA(3,:).*uminA.*(A./QperA(1,:))) + ... 

    + sum(GegestR(2,:)) + sum(Gresp.*QperG(3,:)) + ... 

sum(QperA(3,:).*ToxLossA./QperA(1,:))...         

    + sum(ToxLossG.*QperG(3,:)); 

     

% total zooplankton - individuals / L / day 

z4dot = G*( - D1 - D2 ) + RlimG - Gresp - ToxLossG; 

z5dot = sin(25*t); 
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% toxin production - µg toxin / L day-1 

z6dot = PtoxA.*(1-urel).*A(1)./QperA(1,1) - T*(D1 + D2) - 

... T*ktox;  

 

dinky1 = t; 

 

%----------------------------------------------------------

----- 

% COUNTER (for impatient modelers) 

%----------------------------------------------------------

----- 

if t>mark     

format compact 

  t  

  mark=mark+10; 

end 

% This provides feedback to the monitor so impatient 

modelers  

% (like me) can check on the progress of the simulation 

 

%----------------------------------------------------------

----- 

% OUTPUT 
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%----------------------------------------------------------

----- 

zdot=[z1dot,z2dot,z3dot,z4dot,z5dot,z6dot]'; 
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