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ABSTRACT 

 

Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer. 

 (May 2011) 

Tianlin Lu, B.S., Huazhong University of Science and Technology 

Chair of Advisory Committee: Dr. Haiyan Wang 

 

 Thin film solar cells, if film thickness is thinner than the optical absorption 

length, typically give lower cell performance. For the thinner structure, electric current 

loss due to light penetration can offset the electric current gain obtained from higher 

built-in electric field. Light trapping schemes can increase the effective optical 

absorption length and thus enhance the electric current for thinner solar cells. Here a new 

light trapping scheme based on light trapping transparent conducting oxide layer (LT-

TCO) is proposed to enhance the performance of thin film solar cells. Three different 

configurations of integrating the LT-TCO layer in solar cells are proposed and evaluated. 

This research aims to develop the LT-TCO layer with surface texture and good 

conductivity by pulsed laser deposition (PLD) technique at low temperature. The LT-

TCO layer is fabricated by PLD deposition of Al-doped ZnO to achieve multilayer films 

by tuning oxygen pressure. The light trapping effect is examined by optical 

transmittance measurement and the surface texture is characterized by transmission 

electron microscopy (TEM) technique. The conductivity of LT-TCO layer is measured 

by resistivity measurement. Thin film CdTe/CdS solar cells are fabricated by PLD 
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technique to develop baseline solar cells for integration of LT-TCO layer. The as-

deposited thin film solar cells show relatively low performance and are further processed 

with various post-deposition treatments to seek efficiency enhancement. The effects of 

different processes on cell performance are examined by electrical, optical, and 

microstructure studies. Air annealing of CdS layer and CdCl2 treatment of CdTe layer 

combined are found to yield the best cell performance. The fabrication issues that limit 

the cell performance are discussed and future optimizations in fabrication processes are 

suggested.  
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NOMENCLATURE 

 

Voc                              Open-Circuit Voltage 

Isc                                Short-Circuit Current 

Jsc                                Short-Circuit Current Density 

FF                               Fill Factor 

η                                  Efficiency 

J-V                              Current Density-Voltage 

LT Light Trapping 

TCO Transparent Conducting Oxide 

AZO Al-doped Zinc Oxide 

CdTe Cadmium Telluride 

CdS Cadmium Sulfide 

PLD                             Pulsed Laser Deposition 

PVD                             Physical Vapor Deposition 

XRD                            X-ray Diffraction 

SEM                            Scanning Electron Microscopy 

TEM                            Transmission Electron Microscopy 
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1. INTRODUCTION 

 

1.1 History and Overview of Solar Cells 

The photovoltaic effect was first discovered by A. E. Becquerel in 1839 at the 

time increased current was observed when the electrolytic cell was exposed to light [1]. 

In 1877, the discovery of photoconductivity in selenium led to fabrication of the first 

selenium solar cell by W. G. Adams [2]. In 1954, Chapin demonstrated a single crystal 

silicon solar cell with 6% efficiency [3]. In the same year, the first all thin film 

Cu2S/CdS heterojunction solar cell with 6% efficiency was reported by Reynolds [4]. In 

1956 Jenny reported a GaAs solar cell with 4% conversion efficiency [5]. In 1963, D. A. 

Cusano fabricated the first thin film CdTe solar cell based on CdTe/ Cu2Te 

heterojunction with 6% efficiency [6]. Bonnet and Rabenhorst reported a thin film 

CdTe/CdS solar cell in 1972 with 6% efficiency [7]. In 1974, S. Wagner et al. reported a 

thin film CuInSe2/CdS heterojunction solar cell with 12% conversion efficiency [8]. In 

the last three decades, the efficiencies of solar cells based on different materials have 

gained significant improvements as shown in Fig. 1 [9]. Solar cells, depending on 

materials and applications, are typically divided in four major categories which include 

crystalline silicon solar cells, thin film solar cells, space and concentrator solar cells, 

organic and dye sensitized solar cells [10]. 

    

 
____________ 
This thesis follows the style of Solar Energy Materials & Solar Cells. 



 2 

 

Fig. 1. Research cell efficiencies reported and summarized by NREL [9]. 

 

To meet the power demand of a specific application, solar cells are assembled 

into solar modules to output specific voltage and current [10]. The electric power 

generated by the solar modules (or solar panels) is referred to as solar power [10]. 

Among renewable energies, solar power has the highest power density and generates no 

pollution during operation [10]. Solar power is superior to power grid connection or fuel 

transport for providing electric power in remote areas in regard to cost and convenience 
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[10]. Compared to existing power technologies, solar power system requires little 

maintenance and incurs very low operation costs [10]. The advantages of solar power 

have driven the developments of various solar power applications such as solar power 

plants, solar power buildings, solar-charged vehicles, and solar powered satellites [10].   

Solar energy has grown by an average of 30% per annum accompanied with 

rapid decline in costs over the past 20 years [11]. This decline in cost has been driven by 

economies of manufacturing scale, manufacturing technology improvements, and the 

increased efficiency of solar cells [11]. The cost is proportional to the area for solar 

modules [10]. Improvement in efficiency of each solar cell in a module means the 

reduced number of solar cells needed to output the same power [10]. However, solar 

power accounted for less than 1% of the total energy matrix of which 78% was 

dominated by fossil fuels in 2010 [11]. The main barrier for the wider deployment of 

solar energy is the relative higher production costs of solar energy compared to fuel 

energy [10]. Improving efficiency and reducing cost are on the same level of importance 

to make solar energy more attractive on the market. Crystalline silicon modules 

dominated 95 percent of the photovoltaics (PV) market in 2005 but the costs reduction 

has been limited by the expensive silicon wafers [11]. Since then thin film modules have 

steadily increased their market share and have taken over 25% of the PV market in 2010 

[12]. Compared to silicon based modules that have 12 to 18% conversion efficiencies, 

thin film modules have conversion efficiency of 6 to 11% [12]. The production cost of 

thin film modules is 20% less than that of silicon based modules and is expected to 

continue dropping [12]. Owning to the cost advantage and the greater potential of 
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efficiency improvement, thin film solar technology has gained significant attention from 

researchers and has become a promising solution for achieving low cost and efficient 

solar energy applications [11]. 

 

1.2 Principles of Solar Cells 

1.2.1 Photovoltaic Process of Solar Cells 

Solar cells are solid state devices based on p-n junction which is designed and 

constructed to efficiently convert light energy into electrical energy [13]. The p-n 

junction is made by bringing n-type semiconductor and p-type semiconductor together to 

form a metallurgical junction [13].  An energy band diagram depicted in Fig. 2 is used to 

illustrate the photovoltaic process that converts light into electric current in a solar cell 

[13].  The first step involves the absorption of light in semiconductor and generation of 

carriers—electrons and holes [13]. The second step involves the separation of the 

carriers by the electric field of the junction. The separated carriers move in a specific 

direction and contribute to the electric current [13]. The energy of photons Eλ is 

dependent on the wavelength λ and is given by  

                                                                  




hc
E                                                        (1.1) 

where h is Plank’s constant and c is the speed of light [13]. Only the photon with energy 

greater than the semiconductor band gap (Eg) can generate an electron-hole pair and 

contributes to the photovoltaic process [13]. Thus the match between the semiconductor 

band gap (Eg) and spectral nature of sunlight is an important consideration in the design 

of efficient solar cells [13].  
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Fig. 2. Energy band diagram of a p-n junction solar cell [14]. 

 

The concentration of carriers generated by the photovoltaic process tends to relax 

back from non-equilibrium values toward equilibrium values through recombination 

[13]. The recombination mechanisms include recombination through traps (defects) in 

the forbidden gap, radiative (band-to-band) recombination, and Auger recombination 

[13]. The recombination through traps is commonly related to the carrier lifetimes given 

by 

                                                             
Tth N


1

                                                      (1.2) 

where σ is the capture loss section, υth is the thermal velocity of the carrier, and NT is the 

concentration of the traps [13]. The capture loss section can be imagined as the size of 

the traps present to a carrier traveling through the semiconductor at velocity υth [13]. 

Small carrier lifetimes correspond to high rates of recombination [13]. Radiative 

recombination is the emission of photons through recombination of electron-hole pair 
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[13]. In Auger recombination, the energy of a carrier is given to another carrier which 

then releases its excess energy and momentum to phonons [13]. Interfaces between two 

dissimilar materials have a high concentration defect due to the abrupt termination of the 

crystal lattice [13]. These interfaces act as a continuum of traps within the forbidden gap 

at the surface where carriers can recombine through them just as with bulk traps [13]. 

These recombination processes are therefore the sources of electrical loss in solar cells. 

 

1.2.2 Current-Voltage Characteristics of Solar Cells 

A solar cell is evaluated by four parameters obtained from its current-voltage (I-

V) characteristic under illumination [13]. These four parameters include: open-circuit 

voltage (Voc), short-circuit current density (Jsc) in mA/cm2, fill factor (FF), and efficiency 

(η) [13]. The short-circuit current density (Jsc) is obtained from the short-circuit current 

Isc divided by the effective area of the solar cell [13]. The I-V characteristic of the solar 

cell is derived by solving the minority carrier diffusion equation with appropriate 

boundary conditions [13]. The current is given by equation  

  )1
2

()1( 21 
kT

eV
eI

kT

qV
eIII oosc                                    (1.3) 

where Isc is the sum of the photocurrent contributed from the n-type region, the depletion 

region, and the p-type region [13], Io1 is the dark saturation current owing to 

recombination in the quasi-neutral region [13], Io2 is the dark saturation current due to 

recombination in the space-charge region [13], q is the elementary charge 1.6 x 10-19 

Coulombs, k is a constant of value 1.38 x 10-23 J/K, T is the cell temperature in Kelvin, 

and V is the measured cell voltage [13]. A solar cell is typically modeled by an ideal 
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current source in parallel with two diodes – one with an ideality factor of 1 and the other 

with an ideality factor of 2 as shown in Fig. 3 [13].  

 

 

Fig. 3. Simple solar cell circuit model [13]. 

 

The current-voltage characteristic of a silicon solar cell is plotted in Fig. 4 [13]. 

For simplicity, the dark current due to depletion region (diode 2) is ignored, then at open 

circuit (I=0), all the light generated current, Isc, flows through diode 1, so the open-

circuit voltage is written as 

  )ln()ln(
11

1

o

sc

o

osc

oc
I

I

q

kT

I

II

q

kT
V 


                                   (1.4) 

where Isc >> Io1.  
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Fig. 4. Current-voltage characteristic of a silicon solar cell [13]. 

 

The maximum power point defines the largest rectangular for any point on the I-

V characteristic with an area given by Pmp = VmpImp [13]. The fill factor, FF, is used to 

measure the squareness of the I-V characteristic and is always less than one [13]. The FF 

is given by  

      
scoc

mpmp

scoc

mp

IV

IV

IV

P
FF                                              (1.5) 

The most important figure of merit for the solar cell is the power conversion 

efficiency, η, which is defined as  

       
in

scoc

in

mp

P

IFFV

P

P
                                               (1.6) 
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where Pin is taken as the product of irradiance of incident light measured in W/m2 [13]. 

The standard Global AM 1.5 Illumination, equivalent to power density of 1000 W/cm2, 

is commonly used in calculating efficiency [13]. The efficiency is not only affected by 

the above parameters but also affected by various conditions such as temperature, light 

intensity and light spectrum [13].  

In reality a solar cell typically has series resistance and shunt resistance [13]. A 

simplified circuit model which includes the diode ideality factor n, the series resistance 

Rs and the shunt resistances Rsh is shown in Fig. 5 [13]. The previous equation for 

defining current is expanded and becomes 

 

 
sh

ss

o

s

osc
R

IRV

kT

IRVe
eI

kT

IRVq
eIII








 )1

2

)(
()1

)(
( 21                (1.7) 

 
 

 

Fig. 5. Solar cell circuit model including series resistance Rs and shunt resistance Rsh [13]. 
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The cell efficiency is limited mostly by Rs and Rsh which are measure of the loss 

originated from the recombination processes in solar cells [13]. The effect of Rs on I-V 

characteristic of a solar cell is shown in Fig. 6 [14]. Rs of large values over 1 Ω/cm
2 

significantly reduces the current and fill factor. Fig. 7 shows the effect of Rsh on I-V 

characteristic [14]. Low Rsh drastically reduces current, voltage, and fill factor. High 

efficiency solar cells typically show very small Rs (typically less than 1 Ω/cm2) and large 

Rsh (from several hundred to over a thousand Ω/cm2) [13].  

 

 

Fig. 6. Effect of the series resistance on I-V characteristic [14]. 
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Fig. 7. Effect of the shunt resistance on I-V characteristic [14]. 

 

1.2.3 Homojunction and Heterojunction 

Typically, the p-n junction of solar cells can be homojunction or heterojunction 

which depends on the materials that form the junction between the window layer and 

absorber layer [13]. Homojunction uses the same material for absorber layer and window 

layer [13]. Silicon solar cells are mostly based on homojunction because silicon can be 

doped both n-type and p-type. The energy band diagram of a homojunction solar cell is 

shown in Fig. 8 [13]. One advantage of the homojunction is perfect alignment of energy 

band in the p-n junction that prevents formation of barriers resulting in interface states   

[13]. The window layer must be thinned down to reduce photon loss, but very thin 

window layer can encounter increased surface recombination [13]. 



 12 

Most efficient thin film solar cells to date utilize heterojunction. The energy band 

diagram of heterojunction is shown in Fig. 8 [13]. Heterojunction is superior to 

homojunction in that wide band gap material can be used for window layer and low band 

gap material can be chosen for absorber layer [13]. Heterojunction is convenient when 

certain semiconductor materials are difficult to be doped both types [13]. However, the 

band bending in heterojunction results in the formation of barrier [13]. Heterojunction 

suffers from interface states issue and contaminants due to interdiffusion between the 

two dissimilar materials [13]. The complexities such as intermediate compositions, 

different phases, lattice mismatch makes analysis of heterojunction solar cells more 

difficult than that of homojunction by current available models [13].  

 

 

Fig. 8. Energy band diagram of the homojunction (left) and the heterojunction (right) [13]. 
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1.3 Challenges of Solar Cells 

1.3.1 Efficiency Limit of Solar Cells 

The inevitable loss mechanisms such as black body emission, spectrum loss, and 

recombination impose a theoretical efficiency limit on solar cells [13]. Improving the 

efficiency of solar cells toward the theoretical efficiency limit is an everlasting task in 

solar cell research. Many researchers have attempted to predict the theoretical limit since 

1954 [13]. One of such acknowledged prediction is the detailed balance limit described 

by William Shockley et al. in 1961 [15]. The approach used by Shockley et al. is the 

calculation of efficiency as a function of band gap for hypothetical semiconductors with 

step function optical absorptions [15]. In this approach, only radiative recombination 

was included with spectrum loss and black body emission as loss mechanisms for 

calculation [15]. Another important prediction was developed by M. Wolf and D. 

Redfield in early 1980s [16-17]. In their approach, the efficiency was calculated on an 

optimized device of a particular device structure from the properties of materials [16-

17]. These two earlier approaches were further corrected by T. Tiedje et al. with 

inclusion of free carrier absorption and Auger recombination in loss mechanisms for 

calculation [18]. T.Tiedje et al. predicted the limiting efficiency for crystalline silicon 

solar cells is 29.8% under AM 1.5 for a 100 μm silicon solar cell [18]. The thickness 

reduction was predicted to enhance built-in electric field and carrier collection in solar 

cells [18]. This has driven solar cell researchers to constantly reduce the solar cell 

thickness not only for achieving lower cost but also for higher efficiency.  
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Fig. 9 shows the calculated theoretical efficiency limit and best confirmed 

efficiency as a function of the band gap of the absorber materials in a simple p-n 

junction solar cell [19]. For the determination of the efficiency limit, important 

assumptions include: first, the surface is textured to allow full randomization of the 

incident light for maximum enhancement of the optical absorption through light 

trapping; second, the front surface has a perfect antireflection coating and back surface 

has a perfect reflecting coating [18]. The determination, however, exclude the loss 

mechanisms such as surface recombination and effect of the carrier concentration [18]. 

The efficiency gap is thus a measure of how well a solar cell can be constructed to match 

the ideal condition of these assumptions and minimize loss originated from above 

recombination processes.  
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Fig. 9. Efficiency as a function of band gap for solar cells [19]. 

 

1.3.2 Issues in Thin Film Solar Cells 

Light trapping, as one of the assumptions made for determining the efficiency 

limit, has driven the development of light trapping schemes for solar cells. The light 

trapping scheme deflects the incident light away from the angle of incidence at the 

interface and traps light inside the absorber material [20]. Light trapping scheme can 

increase the optical absorption path inside the material from 2L to 4n2L, where L is the 

thickness of the absorber layer and n is the refractive index of the absorber material [20]. 
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The light trapping has been experimented to increase current density by 10% for 

crystalline silicon solar cells [21].  

For thin film solar cells, light trapping scheme has not been researched as 

extensive as other optimization schemes for absorber layer, window layer, transparent 

electrodes, and back contact layer [13]. The thickness of most high efficiency thin film 

solar cells are thick enough to allow complete absorption which eliminate the need of 

light trapping scheme [13]. For example, the 16.5% efficient thin film CdTe solar cells 

made by X. Wu et al. as well as other high efficiency CdTe solar cells typically utilized 

an absorber layer of 8 to 10 μm thickness [22, 33]. Ultra thin film solar cells with 

absorber layer of less than 1 μm thickness typically yield lower efficiency [23]. For 

example, A. D. Compaan et al. achieved 11.2% efficient CdTe solar cells with 0.7 μm 

thick absorber layer [23]. The lower efficiency in thinner CdTe solar cells could be 

caused by deep penetration loss, pinholes, weak diodes, fully depleted layers, and 

proximity of front and back contacts [24]. The penetration loss means the current loss 

associated with the semi-transparency for the longer wavelength when the absorber layer 

is thinner than 1 μm [24]. Therefore compensation of penetration loss necessitates the 

use of light trapping scheme in thin film solar cells. 

 

1.4 Scope of the Work 

1.4.1 New Light Trapping Scheme 

The light trapping scheme has been experimentally proven effective to enhance 

cell performance. Representative light trapping schemes include ―inverted pyramid‖ and 
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―honeycomb‖ surface texturing in silicon solar cells, silicon nanowire arrays, and V-

shaped layer structure [25-27]. The former two schemes rely on etching and 

photolithography which add substantial costs and complexity in fabrication. The latter 

scheme requires a large bending angle of substrate and could be problematic when 

applying to conventional thin film solar cells which use glass substrate.    

In this research, a new light trapping scheme based on light trapping transparent 

conducting oxide (LT-TCO) layer for thin film solar cells is proposed. This LT-TCO 

layer features surface texture, good conductivity, and high transmittance. The surface 

texture of the LT-TCO layer is achieved by deposition technique only. Fig. 10 shows 

three different configurations proposed to incorporate the LT-TCO layer in thin film 

solar cells. These three configurations are different in the number of LT-TCO layer 

utilized and the position of the LT-TCO layer. In the case of crystalline silicon solar 

cells, the short-circuit current density as a function of cell thickness for different light 

trapping schemes has been calculated by P. Cambell et al. [28] and summarized in Table 

1. The calculation shows that cells with random surface texture for both top and rear 

surfaces have the highest current density [28]. Cells with surface texture for only one 

surface have higher current density than cells without surface texture [28]. The cell 

integrated with single LT-TCO layer as back electrode could have improved current by 

enhanced back reflection. The cell integrated with single LT-TCO layer as front 

electrode is projected to have higher current density than the cells with single LT-TCO 

layer as back electrode.  Finally, the cell integrated with two LT-TCO layers is expected 

to have the strongest light trapping effect and thus highest current density.  
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Fig. 10. New configurations of LT-TCO layer for thin film solar cells: (a) double LT-TCO 
layers; (b) back LT-TCO layer; (c) front LT-TCO layer. 

 

Table 1 Calculated limits on silicon solar cell short-circuit current densities in mA/cm2 for 
different light trapping schemes. The rear surface reflectivity, R, has a value of unity except 
where indicated otherwise [28]. 

 Short-circuit current (mA/cm2) 

Light Trapping scheme 80-μ cell 320-μ cell 

Polished (top and rear)   

R=0 35.9 40.1 

R=1 37.6 40.2 

Pyramids (top surface only)   

Regular 39.0-39.5 41.1-41.4 

Random 40.0 41.7 

Pyramids (top and rear)   

Regular 41.0 42.4 

Random 41.6 42.7 
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1.4.2 Pulsed Laser Deposition 

Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) process [29]. 

Fig. 11 shows the schematic diagram of a typical PLD system [30]. The pulsed laser 

with ultraviolet wavelength and nanosecond pulse width is focused onto a rotating target 

of material at an incident angle of 45°. With sufficient high energy density, each laser 

pulse ablates a small amount of the material and forms a plasma plume [29]. This plume 

consists of atomic, diatomic, and other low-mass species with kinetic energy dependent 

on the laser energy density [29]. The ablation plume supplies the material flux for thin 

film growth [29]. The substrate is attached intimately with a surface parallel to the target 

surface at optimal target-to-substrate distance [29]. The substrate is usually heated to 

specific temperature in couple with optimal laser energy density to obtain desired 

properties of thin films [29]. The laser beam is scanned over a sufficiently large target 

area in order to minimize the modification of target surface [29]. Multi-layers with 

desired thickness can be achieved by simply adjusting the number of laser pulses and 

repetition rate of laser [29].  
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Fig. 11. Schematic diagram of PLD [30]. 

 

PLD has been chosen in this research to fabricate the thin film solar cells with 

LT-TCO layer for several reasons. First, PLD can deposit different layers from oxide 

materials for TCO layer to semiconductor materials for p-n junction formation within 

one chamber. Second, PLD can tune the thin film properties by controlling the 

background pressure from ultra high vacuum (UHV) to 1 Torr [31]. The gas ambient can 

be changed among vacuum, oxygen, and argon to suit the growth of specific materials 

[31]. Third, PLD is advantageous in transferring the stoichiometry of target to that of 

thin film irrespective of different vapor pressures of the elements [31]. Finally, PLD is a 

cost efficient deposition because the small laser spot of the focused laser beam allows 

for using targets of small diameter and efficient usage of materials [31].  
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1.4.3 Research Design 

In the first phase of this research, the LT-TCO layer was fabricated by PLD 

deposition of Al doped ZnO material (AZO). The AZO thin films are suitable for 

making the LT-TCO layer because the surface morphology of AZO films can be 

controlled by oxygen pressure during PLD deposition. This unique feature of AZO film 

has been demonstrated by J. H. Lee et al. [32]. The AZO deposited with oxygen was 

found to have higher resistivity and surface roughness [32]. The AZO deposited without 

oxygen was found to have lower resistivity and smooth surface [32]. Multilayer structure 

has been chosen to combine these two different AZO films for making the LT-TCO 

layer. The light trapping function of the LT-TCO layer was examined by optical 

transmittance measurement. The conductivity of LT-TCO layer was measured by 

resistivity measurement. Microstructure of the LT-TCO layer was characterized by X-

ray Diffraction (XRD) and Transmission Electron Microscopy (TEM).  

In the second phase of this research, baseline thin film CdTe/CdS heterojunction 

solar cells are fabricated for integration of the LT-TCO layer. CdTe layer is the p-type 

absorber layer and CdS layer is the n-type window layer. The thin film CdTe/CdS solar 

cells were fabricated by PLD at low temperature. The thickness of the CdTe absorber 

layer is intentionally set to 1 μm to allow ~10% light penetration. The solar cells 

fabricated were further processed with various post-deposition treatments such as air 

annealing, argon annealing, vacuum annealing, and CdCl2 treatment. These treatments 

have been reported effective in improving cell efficiency for previous high efficiency 

CdTe/CdS solar cells. The effects of post-deposition treatments were analyzed by I-V 
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characteristics of solar cells. The effects of these treatments were examined through a 

series of microstructure analysis by XRD, Scanning Electron Microscopy (SEM), and 

TEM.  
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2. LIGHT TRAPPING TRANSPARENT CONDUCTING OXIDE LAYER  

 

2.1 Introduction to LT-TCO Layer 

There exist various transparent electrodes that differ in the type of materials used. 

The most notable transparent electrodes use Tin-doped Indium Oxide (ITO), Fluorine-

doped Tin Oxide (SnO2:F), and Al-doped Zinc Oxide (AZO) [33]. AZO film has 

replaced the more expensive ITO film as preferential transparent electrode for thin film 

CIGS [Cu(In, Ga)Se2] solar cells and thin film amorphous silicon solar cells [33]. The 

AZO, with higher transmittance and better conductivity, in replacement of SnO2:F has 

been demonstrated to improve Jsc in thin film CdTe solar cells [34].  

Besides of the low cost, high transmittance, and competitive conductivity, 

surface roughness of AZO film promise AZO film as a strong candidate for making the 

LT-TCO layer with surface texture and low resistivity. Transparent electrodes for solar 

cells typical require sufficient low resistivity of least less than 10-3 Ω-cm [10]. The 

resistivity of AZO films with desired surface roughness deposited at high temperature, 

however, has relatively high values from 0.01 to 0.1 Ω-cm [32]. Such AZO film with 

thicker film thickness is required for making a transparent electrode of sufficient low 

resistance. The photon loss associated with the thicker film thickness can offset the 

photon gain from light trapping effect.  

In this research, PLD deposition of AZO film at low temperature has been 

explored to improve the conductivity and to obtain the surface texture by tuning the 

oxygen pressure. AZO film deposited with oxygen is denoted by OAZO film and AZO 
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film deposited in vacuum is denoted by VAZO film. The OAZO film with surface 

texture is combined with the more conductive VAZO film in a multilayer film to form 

the LT-TCO layer. Fig. 12 shows the OAZO/VAZO multilayer film and the 

VAZO/OAZO multilayer film fabricated. Fabrication and characterizations of these two 

potential LT-TCO layers will be discussed in parallel with the VAZO single layer film 

and the OAZO single layer film. 

 

 

Fig. 12. Structure of the OAZO/VAZO multilayer (left) and the VAZO/OAZO multilayer 
(right). 

 

2.2 Material Properties 

AZO is ZnO doped with Al impurities. ZnO is a II-VI n-type semiconductor with 

a direct wide band gap of about 3.3 eV at room temperature and a hexagonal wurzite 

structure as shown in Fig. 13 [10]. The AZO films are wide band gap semiconductors 

(Eg = 3.4 to 3.9 eV) which show good optical transmittance in the visible and near-

infrared regions [35]. The doping of ZnO with Al improves the stability and electrical 

conductivity [35]. Resistivity of AZO has been reported to be 2 to 5 x 10-4 Ω-cm [35]. In 
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addition, ZnO is nontoxic, inexpensive, and abundant on earth [35]. The cost advantage 

and excellent electrical and optical properties of AZO have been the driving force behind 

the developments of AZO films with better conductivity, transmittance, and stability. 

 

 

Fig. 13. Atomic structure of ZnO [10]. 

 

2.3 Fabrication of LT-TCO Layer 

2.3.1 Target Preparation 

The AZO target was made by mixing ZnO (99.999%) powder with 2 wt% Al2O3 

powder. The powder mix was ball milled for 90 minutes and pressed at 8.7 x 106 Pascal 

to form a dense circular disk target of 1 inch diameter. The target was immediately 

sintered at 1050 °C in flowing oxygen (0.15 sccm) for 6 hours. Both of the VAZO thin 

films and the OAZO thin films were deposited using this target. 
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2.3.2 OAZO and VAZO Single Layer  

The OAZO single layer film and the VAZO single layer film were deposited on 

glass substrate as shown in Fig. 14. Both of the OAZO layer and the VAZO layer were 

deposited by a KrF laser (248 nm) with laser energy density fixed at 2J/cm2 and 

repetition rate of 5 Hz. The substrate temperature was fixed at 300 °C. The background 

pressure was 1 x 10-6 Torr for deposition of the VAZO layer. The background pressure 

was 0.2 Torr of oxygen for the deposition of OAZO layer. Deposition rate is 1 Å/laser 

pulse for the OAZO layer and is 0.8 Å/laser pulse for the VAZO layer. The OAZO 

single layer was 100 nm and the VAZO single layer was 365 nm. Fig. 15 shows the 

appearance of the 100 nm OAZO film and 365 nm VAZO film. 

 

 

Fig. 14. Structure of the OAZO single layer (left) and the VAZO single layer (right). 
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Fig. 15. Appearance of the OAZO single layer (left) and the VAZO single layer (right). 

 

2.3.3 OAZO/VAZO and VAZO/OAZO Multilayer 

Film structure of the OAZO/VAZO multilayer and the VAZO/OAZO multilayer 

deposited on glass substrate is shown in Fig. 16. The OAZO/VAZO multilayer was 

fabricated by sequential deposition of the VAZO layer followed by the OAZO layer. The 

OAZO/VAZO multilayer has 100 nm OAZO deposited on the 300 nm VAZO. The 

VAZO/OAZO multilayer was deposited by sequential deposition of the OAZO layer 

followed by the VAZO layer. The OAZO layer The VAZO/OAZO multilayer has 300 

nm OAZO film deposited on the 100 nm VAZO film. Fig. 17 shows the appearances of 

the OAZO/VAZO multilayer and the VAZO/OAZO multilayer of which total thickness 

was around 400 nm. 
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Fig. 16. Structure of the OAZO/VAZO multilayer (left) and the VAZO/OAZO multilayer 
(right). 

 

  

Fig. 17. Appearance of the OAZO/VAZO multilayer (left) and the VAZO/OAZO multilayer 
(right). 

 

2.4 Results and Discussion 

2.4.1 Optical Properties 

Optical transmittance measurements were conducted on the four types of AZO 

films that differ in oxygen pressure and film structures. Fig. 18 shows optical 

transmittance spectra (%) versus wavelength for these AZO films. The 365 nm VAZO 

film shows 50 to 75% transmittance in the range from 400 nm to 800 nm. The 100 nm 

OAZO film has 80 to 100% transmittance in the similar range which indicates growth of 
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AZO in oxygen results in better crystallinity and high transmittance. The OAZO film 

shows evident transmittance reduction in the range from 500 nm to 1100 nm. The 

transmittance reduction is quite uniform and independent of the wavelength. The 

assumption is that the surface texture of OAZO film reflects and scatters incident light 

resulting in transmittance reduction. The transmittance reduction is also observed in the 

VAZO film but starts at longer wavelength (900 nm). This transmittance reduction, 

however, could be in part due to the absorption of free-carriers in the VAZO film.  

The transmittance spectrum of the VAZO film shows an absorption edge at 

around 320 nm and a smooth wave form right after the absorption edge. This smooth 

waveform suggests that the VAZO film has smooth surface and high epitaxial quality. 

The spectrum of the OAZO layer shows an absorption edge at 340 nm and a form with 

one wave after the absorption edge which indicates the film has rough surface. The blue 

shift of the absorption edge observed in the VAZO film suggests higher carrier 

concentration and wider band gap. The sharper absorption edge observed in the OAZO 

film indicates that the film has lower defect density and film stoichiometry close to 

intrinsic ZnO.    

The spectrum of OAZO/VAZO multilayer film shows 5 to 10% transmittance 

reduction in the visible wavelength and evident 15% transmittance reduction after 800 

nm in comparison to that of the VAZO film. The 300 nm VAZO film in the 

OAZO/VAZO multilayer structure has higher transmittance than the 365 nm VAZO 

film. Therefore the transmittance reduction is estimated much higher than the observed 

values shown by the spectrum. This transmittance reduction is assumed to be originated 
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from the OAZO cap layer that provides enhanced reflection and scattering important to 

light trapping effect. In sharp contrast, the spectrum of the VAZO/OAZO multilayer film 

shows overall increased transmittance in comparison to that of the VAZO single layer. 

The absorption edge of the VAZO/OAZO multilayer film is observed to be sharper than 

that of the OAZO/VAZO multilayer film.  The different waveform observed in the 

VAZO/OAZO multilayer film suggests smooth surface consistent with the VAZO cap 

layer.    
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Fig. 18. Optical transmittance spectra of the VAZO single layer, the OAZO single layer, the 
OAZO/VAZO multilayer, and the VAZO/OAZO multilayer. 
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2.4.2 Electrical Properties 

Resistivity of AZO thin films was measured by four-point probe at room 

temperature and plotted as a function of oxygen pressure in Fig. 19. The resistivity was 

varied from 4 x 10-4 Ω-cm for the VAZO film to 8 x 10-3 
Ω-cm for the OAZO film. The 

higher resistivity of OAZO film is as assumed to be caused by compensation of the zinc 

interstitials and oxygen vacancies by oxygen during the film growth resulting in lower 

carrier concentration. The higher carrier concentration of the VAZO film is supported by 

the blue shift of transmittance spectrum and free-carrier absorption observed in the 

transmittance spectrum. PLD deposition of AZO with lower oxygen pressure and lower 

substrate temperature results in lower resistivity. The resistivity of 8 x 10-3 
Ω-cm for 

OAZO films deposited with 0.2 Torr at 300 °C is much lower than 0.106 Ω-cm for AZO 

films deposited with 0.25 Torr at 750 °C [32]. The resistivity of the OAZO/VAZO 

multilayer film is found to be slightly higher than that of the VAZO film and is 

controlled by the more conductive VAZO film. The VAZO/OAZO multilayer film has 

the lowest resistivity of 1.5 x 10-4 Ω-cm, close to 1.3 x 10-4 Ω-cm for commercial ITO 

film. The VAZO/glass film has a low resistivity of 4 x 10-4 Ω-cm which is better than 7 

x 10-4 Ω-cm for SnO2. The resistivity of VAZO layer is reduced when it is grown on the 

existing OAZO film than on the glass substrate.  
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Fig. 19. Resistivity of AZO films as a function of oxygen pressure. 

 

Argon annealing has been conducted on the VAZO films to examine film 

stability at elevated temperature. The VAZO films were annealed at different 

temperatures in argon of 1 atmosphere for 20 minutes. The resistivity of VAZO films 

was plotted as a function of annealing temperature in Fig. 20. In Fig. 20, there is 

minimal change of the resistivity at room temperature and that after annealing at 300 °C. 

The resistivity of the VAZO film increases slightly from 6 x 10-4 Ω-cm to 7 x 10-4 Ω-cm 

after annealing at 400 °C. Resistivity is further raised up to 1 x 10-3 Ω-cm after annealing 

at 500 °C. The resistivity of VAZO film after argon anneal at 400 °C is still close to that 

of doped SnO2 [32]. These results demonstrate that the electrical conductivity of the 

VAZO film is compatible to subsequent fabrication process at 400 °C without evident 

degradation.   
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Fig. 20. Resistivity of AZO films as a function of annealing temperature. 

 

2.4.3 Microstructure Properties  

XRD scans of AZO single layer films and multilayer films are plotted in Fig. 21. 

All AZO thin films, despite of different structures, have the same preferred growth along 

[0002] direction. The peak position of ZnO(0002) shifts from 34.39° to 34.57° as the 

oxygen pressure changes from vacuum to 0.2 Torr. This peak shift corresponds to the 

reduction of the d-spacing of the ZnO(0002) from 2.605 Å to 2.593 Å as the oxygen 

pressure increases. Compared with the bulk value, dZnO(0002) = 2.603 Å, the VAZO film 

deposited in vacuum with dZnO(0002) of 2.605 Å is in tension out of plane and in 

compression in-plane. The OAZO film with dZnO(0002) of 2.593 Å is compressive out of 

plane and in tension in-plane. The compressive in-plane strain in VAZO film could be in 
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part due to deficiency of the oxygen atom in the lattice. The tensile in-plane strain in the 

OAZO film could be interpreted to accommodation of the oxygen atom in the lattice.  

The XRD pattern of the OAZO/VAZO multilayer film is very similar to that of 

AZO single layer film except that the ZnO(0002) peak splits into two distinguishable 

peaks. This two peaks confirms the OAZO/VAZO grow as multilayer structure with 

different d-spacing values. These two d-spacing values are calculated to be 2.590 Å for 

OAZO layer and 2.626 Å for VAZO layer respectively. The first peak at 2θ = 34. 11° is 

close to that of VAZO layer deposited in vacuum. The second peak at 2θ = 34. 60° is 

close to that of OAZO layer deposited in oxygen. The VAZO/OAZO multilayer has only 

one peak at 2θ = 34.20° with a calculated d-spacing value of 2.620 Å. The d-spacing of 

the VAZO/OAZO multilayer is slightly higher than that of the VAZO single layer. The 

assumption is that the d-spacing difference in VAZO films deposited on amorphous 

glass and on polycrystalline OAZO layer results in different strains that affect the 

electrical and optical properties of the VAZO film.   
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Fig. 21. XRD pattern of the VAZO single layer, the OAZO single layer, the OAZO/VAZO 
multilayer, and the VAZO/OAZO multilayer. 

 

In order to fully understand the microstructures of AZO films with different 

optical and electrical properties, a detailed cross-sectional TEM study was conducted for 

the VAZO and the OAZO/VAZO multilayer. Fig. 22 shows the cross-sectional TEM 

image of the VAZO single layer with a Silicon cap layer deposited by PLD. The VAZO 

film grows as continuous layer with uniform thickness and smooth surface. The surface 

roughness of the VAZO film is estimated to be less than 5 nm as shown in Fig. 23. The 

low surface roughness of the VAZO film is typically favored for making conventional 

TCOs because of less recombination centers and pinholes.    
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Fig. 22. Cross-sectional TEM image of the VAZO single layer with Si cap layer. 

 

 

Fig. 23. Cross-sectional TEM image of the Si/VAZO interface. 
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Fig. 24 shows the cross-sectional TEM image of the OAZO/VAZO multilayer. 

The OAZO/VAZO multilayer film has a rough OAZO film deposited on top of the 

smooth VAZO film. The surface roughness of the OAZO cap layer is estimated to be 

~10 nm to 20 nm. The surface roughness of OAZO/VAZO multilayer supports the 

transmittance reduction in OAZO single layer shown in previous optical data. Fig. 25 

shows the TEM image of the OAZO cap layer. It is observed that the OAZO grain grows 

as nanorods with an average diameter of ~20 nm. The surface of nanorods develops a 

pyramid-like surface texture which resembles the ―inverted pyramid‖ surface texture 

achieved in previous light trapping scheme [21]. The TEM image of OAZO layer 

confirms that the formation of the desired surface roughness for the light trapping 

scheme proposed in this research. 

 

 

Fig. 24. Cross-sectional TEM image of the OAZO/VAZO multilayer film. 
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Fig. 25. Cross-sectional TEM image of the OAZO cap layer. 

 

2.5 Summary of LT-TCO Layer 

VAZO single layer films have been demonstrated by PLD deposition of AZO at 

300 °C in vacuum. The VAZO films have smooth surface, good transmission, good 

conductivity that can be applied as transparent electrodes for solar cells. The VAZO film 

is stable and compatible to fabrication processes at temperature less than 500 °C without 

significant degradation of conductivity. OAZO single layer films have been achieved by 

PLD deposition of AZO at 300 °C in oxygen of 0.2 Torr. The OAZO films grow as 

nanorods with rough surface texture confirmed by TEM study. The surface texture and 

transmittance reduction corroborates the presence of light trapping function.  

The OAZO/VAZO multilayer films have been fabricated by sequential PLD 

deposition of the OAZO layer on the VAZO layer with control of oxygen pressure. The 



 39 

OAZO/VAZO multilayer film has transmittance reduction which indicates its potential 

as a LT-TCO layer. When integrating the OAZO/VAZO multilayer as the transparent 

electrode in thin film solar cells, the rough surface of OAZO layer is expected to provide 

enhanced light reflection and light scattering to increase the effective optical path of the 

film. The low resistivity of the VAZO layer ensures efficient carrier transport for solar 

cells. The VAZO/OAZO multilayer films have been produced by sequential PLD 

deposition of the VAZO layer on the OAZO layer. The VAZO/OAZO multilayer films 

show improved transmittance and excellent conductivity. The VAZO/OAZO multilayer 

would serve as high quality and cost efficient TCO for flat panel displays and solar cell 

applications.  
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3. THIN FILM CADMIUM TELLURIDE SOLAR CELLS 

 

3.1 Introduction to Thin Film CdTe Solar Cells 

Thin film solar technologies promise to reduce the manufacturing cost of solar 

modules in part due to conservative material and simpler series connection of cells than 

conventional silicon solar technologies [33]. There exist various thin film solar 

technologies that typical uses amorphous Si, CdTe and CIGS as the absorber material 

[13]. In this work, thin film solar cells for integrating the LT-TCO layer is based on 

CdTe/CdS heterojunction. CdTe and CdS makes efficient heterojunction owning to 

similar II-VI group structure, small electron affinity difference, and small TEC mismatch 

[33]. CdS, with a wide band gap of 2.4 eV, tends to grow as n-type under usual film 

deposition techniques [33]. CdTe have been chosen over Si and CIGS to make the 

absorber layer based on several considerations. First, the energy gap of CdTe has the 

best match with solar spectrum [33]. Second, the absorption spectrum of CdTe (below 

800 nm) matches with the spectrum of AZO based LT-TCO layer which shows 

transmittance reduction and potential light trapping effect. Third, the direct band gap and 

high absorption coefficient of CdTe facilitate efficient laser deposition of CdTe layer 

[33]. Fourth, CdTe, as II-VI compound with strong tendency to grow as stoichiometric, 

allows easier control of composition in target and in thin films than CIS.   

The superstrate configuration as shown in Fig. 26 is conventional for the thin 

film CdTe/CdS solar cells fabricated on rigid glass substrate. In the preferred 

arrangement, ITO coated glass was used as the substrate. The CdTe/CdS heterojunction 
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is formed by sequential deposition of a thinner CdS n-type window layer followed by the 

deposition of a thicker CdTe p-type absorber layer. Finally Au layer, as back contact 

electrode, is deposited onto the CdTe to complete the solar cell device. The thickness of 

CdS layer was fixed at around 0.25 μm (250 nm) for reliability. The thickness of the 

CdTe layer was fixed at around 1 μm (1000 nm) to obtain ~10% light penetration for 

examination of the LT-TCO layer. The deposition of p-n junction was done by PLD at 

250 °C and CdCl2 treatment was used to activate the p-n junction for efficiency 

enhancements. Various post-deposition treatments were conducted on the CdTe layer 

and the CdS layer respectively to improve cell performance.  

 

 

Fig. 26. The superstrate configuration of a thin film CdTe solar cell. 

 

During the operation of the solar cell, light enters the cell through the glass 

substrate and transverse the ITO layer and CdS layers. The ITO layer and the CdS layer 

are not active in the photovoltaic process and have some-unwanted absorption. Most of 

electron-hole pairs are generated close to the CdTe/CdS junction within the CdTe 

absorber layer. The electrons are driven by the built-in field through the interface into 

the n-CdS film. The holes remain in the CdTe and join the holes within the space charge 
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region promoting the p-type conduction of CdTe and finally have to leave the cell via the 

Au electrode. The ITO electrode and the Au electrode serve to extract electric current 

from the solar cell to external circuit. 

 

3.2 Material Properties  

3.2.1 CdTe 

CdTe is an ideal semiconductor material for making absorber layer because its 

energy band gap of 1.45 eV ideally matches with the solar spectrum [13]. CdTe has a 

very high absorption coefficient of 105 cm-1 in the visible wavelength from 400 nm to 

700 nm. Theoretically, 90% of the incident light can be absorbed within 1 μm of CdTe 

and 99% of the light can be absorbed within 2 μm of CdTe [33]. CdTe has a cubic 

crystal structure as shown in Fig. 27 and lattice constant a = 6.481 Å [36-38]. The 

deviation of stoichiometry has been reported to change the lattice parameter of CdTe 

giving values of 6.480 and 6.488 for crystals grown at high temperatures from Cd-rich 

and Te-rich melts [38]. The Temperature-composition (T-x) diagram of CdTe is shown 

in Fig. 28 [39]. CdTe has a melting point at 1365 K and thermal expansion coefficient 

(TEC) of 5.9×10−6/K at 293 K [40]. In the conditions of high temperature and vacuum, 

CdTe is decomposed to Cd atoms and Te atoms which have a vapor pressure ratio of 2 to 

1 [13]. At high temperature, CdTe would tend to become Cd deficient so that p-type 

CdTe is readily formed at high temperature. CdTe has been reported to have electron 

mobility of ~300 cm2/V-sec and hole mobility of ~30 cm2/V-sec [41]. Doping in CdTe is 

difficult because of self-compensation effect, vapor pressure difference between Cd and 
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Te, and low solubility of impurity atoms in CdTe [13]. Typically the doping level for 

CdTe is within the range from 1014 to 1015 cm-3 [13]. The activation energy for n-type 

impurities has been reported to be much smaller than the activation energy for p-type 

impurities in doping CdTe [41].  

 

 

Fig. 27. Atomic structure of CdTe [36]. 

 

 

Fig. 28. T-x project of the II-VI binary system Cd-Te [39]. 
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3.2.2 CdS 

Cadmium Sulfide (CdS) is an important semiconductor material for making 

window layer because of its direct wide band gap of 2.4 eV and tendency to grow as n-

type by most fabrication techniques. CdS has a very high absorption coefficient within 

the value from 104 to 105 cm-1 in the visible wavelength [13]. The CdS occurs in nature 

with two different crystal structures: hexagonal and cubic. The energy gap for thin film 

CdS has been reported to be 2.56 eV for hexagonal phase and 2.51 eV for cubic phase 

[42]. Fig. 29 shows the atomic structure of these two different phases for CdS [43]. The 

hexagonal CdS has a lattice constant of a = 4.1367 Å and c = 6.7161 Å, whereas cubic 

CdS has a lattice constant of 5.825 Å [44]. The melting point for both phases of CdS is 

1748 K [45]. The structural phase transition of CdS from cubic phase to hexagonal phase 

was found to occur at 300 °C [46]. Electron mobility is reported to be 390 cm2/V-sec for 

hexagonal CdS and 70 - 85 cm2/V-sec for cubic CdS [47-48]. Since the electron affinity 

is reported to be 4.5 eV for hexagonal CdS and 4.28 eV for CdTe [49], the CdS readily 

forms low barrier junction with CdTe.  The TEC of 3.6 x 10-6/K for CdS also matches 

well with that of 5.9 x 10-6 /K for CdTe [13].    
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Fig. 29. Atomic structure of the hexagonal CdS (left) and the cubic CdS (right) [43]. 

 
 

3.3 Fabrication and Characterizations of Thin Films 

3.3.1 CdTe Thin Film Deposition 

CdTe thin films were deposited on glass substrate by PLD technique with a KrF 

excimer Laser (Lambda Physik Compex Pro 205, λ = 248 nm). The laser beam was 

focused on the target to obtain laser energy density of 2 J /cm2 at an incidence angle of 

45°. The CdTe target was prepared by pressing the CdTe powder of 99.999% purity into 

a circular disk of 1 inch diameter. An optimized substrate temperature at250 °C and back 

pressure of argon of 0.03 Torr were maintained during the deposition. Typical deposition 

rate was 1.15 Å/pulse with a repetition rate of 10 Hz. The CdTe films typically have 

thickness of 700 nm resulted from 6000 laser pulses of deposition.   
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3.3.2 CdS Thin Film Deposition 

CdS thin films were deposited on glass substrate with the laser energy density of 

2J/cm2 and back pressure of 0.03 Torr of argon at substrate temperature of 250 °C. The 

CdS targets were prepared from the CdS powder of 99.999% purity by the same method 

used to prepare the CdTe target. Typical deposition rate was 0.55 Å/pulse for a repetition 

rate of 10 Hz. The CdS thin films typically have thickness of 250 nm resulted from 4500 

pulses of deposition. 

 

3.3.3 Optical Properties  

Optical transmittance measurements were conducted on CdTe films and CdS 

films. Fig. 30 shows the plot of optical transmittance spectra (%) versus wavelength for 

the CdTe films and the CdS films. The absorption edge of the CdTe films is observed to 

be ~800 nm (Eg = 1.55 eV). The energy band gap of CdTe films agrees well with that of 

bulk CdTe (1.45 eV). The absorption edge of CdS film is observed to be ~500 nm (Eg = 

2.48 eV) which matches with that of bulk CdS (Eg = 2.42 eV). The absorption edge of 

the CdS films at 500 nm is consistent with that of hexagonal phase CdS (500 nm for 

hexagonal CdS and 515 nm for cubic CdS) [42]. The optical transmittance data confirms 

that the above PLD receipt has resulted in cubic phase CdTe thin films and hexagonal 

phase CdS thin films.  
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Fig. 30. Optical transmittance spectra of the CdTe film and the CdS film. 

 

3.3.4 Electrical Properties  

Electrical resistivity of thin films was measured by a four-point probe system at 

room temperature. The sheet resistance of CdTe thin film was not measurable by the 

four-point probe with a maximum measurement range of 105
Ω/sq. The thickness of the 

CdTe films was ~500 nm measured by a profilometer. The resistivity of CdTe was thus 

estimated to be higher than 5000 Ω-cm. The high resistivity of the CdTe films suggests 

that CdTe film grows as stoichiometric using the above PLD receipts. For the CdS thin 

film, the measured resistivity of 250 nm CdS film was ~0.47 Ω-cm which is sufficient 

for making the as-deposited CdS layer a suitable window layer.  
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3.3.5 Microstructure Properties 

The crystallographic structure of the thin films and the targets was characterized 

by XRD technique. XRD θ-2θ scans of the CdTe thin films and the CdTe target is 

plotted in Fig. 31. The XRD pattern of the CdTe target shows multiple peaks and 

matches well with that of bulk CdTe. The XRD pattern of the CdTe thin film shows 

single CdTe(111) peak, which suggests CdTe film grows preferentially along the (111) 

direction. The peak position of CdTe(111) is found to be 23.76° with a calculated d-

spacing of 3.742 Å. The d-spacing of CdTe(111) peak exactly matches the d-spacing 

value of CdTe(111) peak for bulk CdTe. The dominance of the CdTe(111) peak in the 

crystallographic structure of the CdTe film is consistent with that of CdTe prepared by 

PVD technique at low temperature [33].  
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Fig. 31. XRD pattern of the CdTe target and the CdTe thin film. 



 49 

XRD θ-2θ scan of the CdS thin films and CdS target is plotted in Fig. 32. The 

XRD pattern of the CdS target agrees exactly with that of bulk CdS. The single 

CdS(002) peak observed in the XRD pattern of the CdS films suggests CdS film grows 

as highly textured along (002) direction. The peak position of CdS(002) is found to be 

26.76° with a calculated d-spacing of 3.328 Å. The d-spacing value of the CdS thin film 

is close to 3.341 Å for hexagonal CdS(002) peak. The XRD pattern and the 

transmittance data corroborate the formation of hexagonal phase CdS thin film.  
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Fig. 32. XRD pattern of the CdS target and the CdS thin film. 
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3.4 Fabrication of Thin Film CdTe Solar Cells 

3.4.1 Solar Cell Device 

Fig. 33 shows device structure of the thin film CdTe solar cells. The ITO/Glass 

has an ITO coating of 0.2 µm and serves as the substrate for CdS deposition. The CdS 

window layer of 0.25 µm was deposited by PLD deposition. The CdTe absorber layer of 

1 µm was deposited by PLD deposition. The Au layer of 0.1 to 0.2 µm was deposited by 

dc sputter to complete the solar cell. Fig. 34 shows a fabrication flow chart for making 

the solar cell device. The flow chart shows the fabrication of solar cell device from the 

substrate to a finished solar cell in multiple steps. Post-deposition treatments were 

applied on the CdS window layer and the CdTe absorber layer. The fabrication and 

measurement procedures of solar cells are described later in detail. The results and 

discussion about the effects of post-deposition treatments on cell performance are 

provided.  

 

 

Fig. 33. Device structure of the thin film CdTe solar cells. 
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Fig. 34. Fabrication flow chart for the thin film CdTe solar cells. 

 

3.4.2 ITO Substrate Preparation 

The substrate used was 76 x 76 x 0.7 mm Indium-Tin-Oxide (ITO) coated glass 

plates from MTI Corporation. The ITO thin film has a sheet resistance of 13 Ω/sq and 

resistivity of 1.3 x 10-4 Ω-cm. The substrate was first cut into 10 x 10 x 0.7 mm pieces 

with a diamond pen. The substrate of area of ~1 cm2 was cleaned sequentially in acetone 

and in methanol each for 10 minutes and blew dry before attaching to the substrate 

holder. Silver conductive paint was applied to ensure good attachment and heat 
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conduction between the substrate and the holder. After loading the substrate into the 

PLD system, the chamber was first pumped down to vacuum by a mechanical pump. 

The substrate was heated at 150 °C in vacuum to evaporate out residual solvents of silver 

paint and cooled down to room temperature. The PLD system was then pumped down to 

high vacuum by a turbo molecular pump.   

 

3.4.3 CdS Window Layer 

The base pressure of PLD deposition was 2 to 3 x 10 -6 Torr. The back pressure 

of argon of 0.03 Torr was maintained during the deposition. The substrate temperature 

was fixed at 250 °C. The CdS layer was deposited on ITO substrates with a KrF excimer 

laser operated at a repetition rate of 10 Hz and with laser energy density of 2 J/cm2. The 

total deposition time was around 450 seconds equivalent to 4500 laser pulses to obtain a 

CdS layer of 250 nm. Fig. 35 shows the as-deposited CdS film colored in orange on the 

ITO substrate. 
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Fig. 35. Appearance of the as-deposited CdS layer. 

After the CdS deposition, the CdS/ITO sample was deposited with CdTe layer or 

further processed with four different treatments prior to CdTe deposition. These four 

treatments include air annealing, argon annealing, vacuum annealing, and CdCl2 

treatment. For the air annealing, the CdS/ITO substrate was heated at 400 °C for 10 min 

in air. For the argon annealing, the CdS/ITO substrate was heated at 400 °C for 10 min 

in argon of 0.03 Torr. For the vacuum annealing, the CdS/ITO substrate was heated at 

400 °C for 10 min in vacuum. For the CdCl2 treatment, the CdS/ITO substrate was first 

coated with CdCl2 and then heated at 400 °C for 10 min in air. Deposition of CdS with 

laser energy density of 3 J/cm2 and substrate temperature of 300°C has been referred to 

as the optimized PLD conditions and used to prepare some CdS/ITO samples.  
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3.4.5 CdTe Absorber Layer  

CdTe thin film was deposited on CdS/ITO substrates with a KrF excimer laser 

operated at a repetition rate of 10 Hz and with a laser energy density of 2 J/cm2. The 

total deposition time was around 800 seconds equivalent to 8000 laser pulses to obtain a 

CdTe layer of around 1 μm. Fig. 36 shows the as-deposited CdTe film colored in black 

on the CdS/ITO substrate. 

 

 

Fig. 36. Appearance of the as-deposited CdTe layer. 

 

After the CdTe layer deposition, the CdTe/CdS/ITO samples were either directly 

deposited with Au contacts or further processed with two post-deposition treatments. 

These two treatments were air annealing and CdCl2 treatment. For the air annealing, the 
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CdTe/CdS/ITO sample was heated at 390 °C for 10 min in air. For the CdCl2 treatment, 

the CdTe/CdS/ITO sample was first coated with a thin layer of CdCl2 and then heated at 

390 °C for 10 min in air. The CdCl2 treatment has been reported to eliminate the fast-

recombination centers in the CdTe film, reduce recombination centers in the junction, 

and eliminate small grains in the grain boundaries [50]. The CdCl2 treatment performed 

in this research was modified from the methods reported by D. H. Rose et al. [50]. In the 

modified CdCl2 treatment, the CdTe solar cells were soaked in a saturated CdCl2: 

methanol solution (0.11 g in 10 mL methanol). The soak lasted for 5 minutes in a 

covered beaker on a hot plate heated to near the boiling point of methanol (55-60 °C). 

After that soak, the samples were taken out of the solution and left dry to evaporate 

excess methanol. The samples were loaded into a tube furnace. The furnace was heated 

to 390 °C and left for 10 min in air. After cooling to below 50 °C, the samples were 

rinsed in DI water to remove excess CdCl2 and blew dry before metallization.  

 

3.4.6 Au Layer 

The Au layer was deposited by DC sputter at room temperature. Prior to sputter, 

Kapton tape (3M 5413 polymide film) was used to mask the edge of the CdTe/CdS/ITO 

sample and the region between the ITO substrate and CdTe layer. This mask step is to 

ensure deposition of Au electrodes just on the defined areas on the ITO surface and 

CdTe surface. The sample was loaded into a DC magnetron sputtering system (Kurt J. 

Lesker TORUS 2 inch) which was then pumped down to 3 x 10-6 Torr. The back 

pressure of argon of 5.5 x 10-3 Torr was maintained during the sputtering. The Au layer 
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was sputtered with power density of 7.4 W/cm2 and target-to-substrate distance of 5.5 

cm. Deposition rate was 20 Å/sec and the total deposition time was ~50 seconds to 

obtain 100 nm Au layer. After the deposition of Au layer, the CdTe/CdS/ITO samples 

became complete thin film CdTe solar cells ready for measurements. Fig. 37 shows the 

appearance of a finished solar cell.  

 

 

Fig. 37. Appearance of the complete thin film CdTe solar cell. 

 

3.4.7 Solar Cell Measurements 

The thin film CdTe solar cells were measured using a homemade solar cell 

measurement system as shown in Fig. 38. The solar cell measurement system consists of 

a solar simulator from Newport, a magnetic based probe station with four 

micromanipulators, a test station with cooling function, and a SourceMeter (2440) from 

Keithley. The output power density Pin of the solar simulator was calibrated by a 
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reference monocrystalline silicon solar cell with a meter equipped with thermocouple. 

The Pin was measured to be ~95 mW/cm2 under the Global AM 1.5 illumination at ~25 

°C and is used for calculation of solar cell efficiency.  

 

 

Fig. 38. Appearance of the solar cell measurement system. 

 

Prior to solar cell measurement, a test plate was made by sputtering Au on a 

masked glass slide to form two Au electrodes. Copper wires were used to connect the 

solar cell and the Au electrodes using indium solder as shown in Fig. 39. The test plate 

with the solar cell was situated in the work plane of the solar simulator and on the test 

station. The test station was made with a heat sink and air cooled by a fan. During the 

measurement, the temperature of the solar cell was maintained at 25 to 30 °C.  
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Fig. 39. Appearance of a solar cell soldered to the test plate. 

 

To extract the current readings and the voltage readings from the solar cell under 

illumination, electrical connections between the solar cell and the SourceMeter were 

made. The cables completed the electrical connections by connecting the probe tips of 

the micromanipulator to the SourceMeter. The probe tips made contacts with the Au 

electrodes of the test plate so that the current flows from the solar cell into the 

SourceMeter. Voltage was applied to the solar cell and current was measured by the 

SourceMeter for plotting the I-V characteristic. Solar cell measurement typical generates 

the light I-V characteristic and the dark I-V characteristic. The light I-V characteristic 

can be used to extract the Voc, Jsc, FF, and efficiency of the solar cell [13]. The dark I-V 

characteristic can be used to extract the shunt resistance Rsh, the diode factor, the energy 

and concentration of the dominant recombination center, the lifetime of charge carriers 

[13]. 
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3.5 Results and Discussion 

3.5.1 Summary of Solar Cell Performance 

Thin film CdTe solar cells have been fabricated by PLD and processed with 

different CdS treatments and CdTe treatments. The CdTe treatments include air 

annealing and the CdCl2 treatment. The CdS treatments include air annealing, argon 

annealing, vacuum annealing, and the CdCl2 treatment. CdS layer in some cells was 

deposited with the optimized PLD condition. Representative solar cells are grouped into 

four categories for analysis of the effect of the above fabrication processes on cell 

performance as shown in Fig. 40. These solar cells were measured to obtain their light J-

V characteristics and dark J-V characteristics. The performance parameters and 

processes of representative solar cells are summarized in Table 2.  

 

 

Fig. 40.  Grouping of solar cells for analysis of (a) effect of CdTe treatments; (b) effect of CdS 
treatments; (c) effect of oxygen; (d) effect of annealing temperature. 
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Table 2 A list of performance parameters and treatments of representative CdTe solar cells. 

Cell #  Voc 

 (mV)  

Jsc 

(mA/cm2)  

FF  η CdS 

Treatments  

CdTe 

Treatments  

TL09  390  6.4  0.44  1.2%  Air Annealing  CdCl2 Treatment 

TL13  460  5.8  0.26  0.7%  Air Annealing  CdCl2 Treatment 

TL20  46  4  0.25  0.05%  Air Annealing  CdCl2 Treatment 

TL22  120  5.78  0.25  0.18%  CdCl2 Treatment CdCl2 Treatment 

TL06  320  2.5  0.25  0.2%  / Air Annealing  

TL08  200  0.38  0.25  0.02%  / / 

TL16  112  0.31  0.25  0.009%  / CdCl2 Treatment 

TL12  5  0.62  0.25  0.0008%  Argon Annealing  CdCl2 Treatment 

TL21  2.5  0.6  0.25  0.0004%  Optimized PLD condition CdCl2 Treatment 

TL15  0.24  0.31  0.25  0.00002%  Vacuum Annealing  CdCl2 Treatment 

 

3.5.2 Effect of CdTe Treatments 

Solar cell TL08, without treatments, has Voc of 200 mV, Jsc of 0.38 mA/cm2, FF 

of 0.25. The low performance of the as-deposited cell indicates the as-deposited cell has 

low built-in electric field and inefficient carrier transport correlated with low FF, high Rs 

and low Rsh. Fig. 41 shows three cells with different CdTe treatments for improving Rs 

and Rsh of the CdTe layer. Fig. 42 compares the light J-V characteristics of these three 
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cells. For cell TL09, CdS layer received air annealing and CdTe layer received CdCl2 

treatment. The cell TL 09 has Voc of 390 mV, Jsc of 6.4 mA/cm2, and FF of 0.44. For cell 

TL16, CdS layer was left as-deposited and CdTe layer received CdCl2 treatment. The 

cell TL16 has Voc of 112 mV, Jsc of 0.3 mA/cm2, FF of 0.25. For cell TL06, CdS layer 

was left as-deposited and CdTe layer received air anneal. The cell TL06 has Voc of 320 

mV, Jsc of 2.5 mA/cm2, and FF of 0.25.  

 

 

Fig. 41.Structures of the solar cells TL09, TL16, and TL06. 
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Fig. 42. Light J-V characteristics of the solar cells TL06, TL09, and TL16. 

 

The comparison between the performance parameters of the cell TL16 and that 

of the cell TL08 shows that CdCl2 treatment reduces the Voc from 200 mV to 112 mV 

without changing Jsc and FF. The lowered Voc suggests the degradation of built-in 

electric field in the p-n junction caused by CdCl2 treatment. The CdCl2 treatment, 

however, does not further reduce the Jsc which indicates minimal change in carrier 

generation and carrier transport in the CdTe layer. The degradation of Voc is opposed to 

overall enhancement in Voc, Jsc and FF typical in CdTe solar cells processed by the 

CdCl2 treatment in previous reports [33]. It has been reported that solar cells fabricated 

by PLD necessitate CdCl2 treatment to achieve good performance [51]. The assumption 
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is that the CdCl2 treatment results in degradation mainly in the CdTe/CdS interface due 

to interdiffusion between CdTe and CdS.  

Air annealing of the CdTe layer for the cell TL06 increases the Voc from 200 mV 

to 320 mV and improves Jsc from 0.38 mA/cm2 to 2.5 mA/cm2. However, air annealing 

does not improve the FF. The increased Voc, however without improvements in FF, 

suggest there is unlikely change in the junction quality. The increased Jsc suggests that 

air annealing may enhance the p-type conductivity of CdTe layer resulting in lower Rs.  

Air annealing is considered to cause formation of Te-rich CdTe layer near the surface 

resulting in the back surface field. This back surface field can assist the carriers transport 

toward the junction so that Jsc is enhanced by Voc. The enhanced Voc by air annealing is 

consistent with earlier report by P. K. Raychaudhuri [52]. It has been reported that 

heating of CdTe in an oxygen containing atmosphere alters the surface of the CdTe to 

contain Tellurium oxide (TeO2) phase [52]. The air annealing has been reported to 

convert the n-type CdTe to p-type CdTe by S. S. Ou et al. [53]. The p-type CdTe film 

has been characterized to have higher absorption coefficient than n-type CdTe film [53]. 

This suggests that air annealing could cause the type-conversion in the as-deposited 

CdTe layer. The as-deposited CdTe layer could be high stoichiometric without sufficient 

p-type conductivity that results in high resistivity and low cell performance.  

With air annealing of the CdS layer and CdCl2 treatment of the CdTe layer, the 

cell TL09 outperform other cells with Voc of 390 mV, Jsc of 6.4 mA/cm2, and FF of 0.44. 

If the CdTe layer is assumed to be of similar electrical properties after CdCl2 treatment, 

air annealing of CdS layer is found to significantly improve cell performance. The 
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improved Voc suggests that the CdTe/CdS heterojunction has higher built in electric 

field. The air annealing of CdS and air annealing of CdTe are considered to improve cell 

performance in a different way. The former improves the built-in electric field in the 

junction and the latter enhances the back surface field. The higher Jsc of cell TL09 

suggests that enhancing carrier collection near the junction leads to more efficient carrier 

collection. The benefit of air annealing to CdTe/CdS heterojunction is corroborated by 

Y. S. Tyan’s report on closed space sublimation (CSS) growth of CdTe solar cells with 

oxygen [54]. It has been reported that CdS deposited in oxygen leads to an 

improvements in cell efficiency more than 1% versus CdS deposited in oxygen-deficient 

ambient [54]. The evident increase of FF and slope change of I-V characteristic suggests 

that cell TL09 has improvement in Rs and Rsh. The reduced Rs caused by air annealing of 

CdS is consistent with earlier reports on photo conductivity of CdS by Kolomiets et al. 

[55]. It has been reported that annealing of CdS in air improved photoconductivity of 

CdS by conversion of CdS to CdO [55].  

 

3.5.3 Effect of CdS Treatments 

The air annealing of CdS layer has been confirmed to improve cell performance. 

However, resistivity measurement shows that air annealing increases the in-plane 

resistivity of the CdS layer by a factor of 3 as well as the resistivity of ITO substrate. 

Therefore optimizations in the PLD deposition and alternative post-deposition treatments 

have been experimented to improve the conductivity of the CdS layer. Here the cell 

TL09 is used as reference to compare with cell TL21 and cell TL22. The reference Cell 
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TL09 has Voc of 390 mV and Jsc of 6.4 mA/cm2, and FF of 0.44. Fig. 43 shows these 

three cells with different CdS treatments. Fig. 44 compares the light J-V characteristics 

of these cells. For the cell TL21, the CdS layer and the CdTe layer were deposited with 

optimized PLD condition and CdTe layer was processed with CdCl2 treatment. Cell TL 

21 has Voc of 2.5 mV, Jsc of 0.6 mA/cm2, and FF of 0.25. For the cell TL22, both of the 

CdS layer and the CdTe layer were processed with the CdCl2 treatment. Cell TL 22 has 

Jsc of 5.78 mA/cm2, Voc of 120 mV, and FF of 0.25. The dark J-V characteristics of three 

cells are shown in Fig. 45.  

 

 

Fig. 43. Structures of the solar cells TL09, TL21, TL22. 
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Fig. 44. Light J-V characteristics of the solar cells TL09, TL21, and TL22. 
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Fig. 45. Dark J-V characteristics of the solar cells TL09, TL21, and TL22. 
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The optimized PLD condition is found to degrade cell performance. The slopes 

of dark J-V characteristic in the range of 0 to 40 mV suggest the cell TL22 has much 

lower low Rsh than other cells. By comparing the cell TL21 and the cell TL16, the 

optimized PLD reduced the Voc from 112 mV to only 2.5 mV and merely improves the 

Jsc from 0.3 mA/cm2 to 0.6 mA/cm2. The substrate temperature of 250 °C is confirmed to 

be better than 300 °C for fabrication of the CdTe/CdS heterojunction. This is consistent 

with the earlier reports by O. M. Hussian et al. [56]. It has been reported that the 

substrate temperature can affect the stoichiometry of CdTe films prepared by PLD 

technique [56]. The CdTe films deposited at temperature less than 250 °C shows p-type, 

CdTe films deposited at temperature higher than 330 °C shows n-type, and CdTe films 

deposited in the temperature between 250 °C and 330 °C shows intrinsic [56]. The 

degradation induced by higher substrate temperature is interpreted as that the 

stoichiometry of CdTe could shift from intrinsic at 300 °C to slightly p-type at 250 °C. 

Therefore deposition of CdTe layer at temperature lower than 250 °C could promote the 

formation of p-type CdTe and lead to better efficiency.    

The cell TL22 with CdS processed with CdCl2 treatment has Jsc of 5.78 mA/cm2 

which is comparable to 6.4 mA/cm2 for CdS with air annealing. However, the cell TL22 

has lower Voc of 120 mV and FF of 0.25 compared to cell TL09. The air annealing is 

found better than CdCl2 treatment in improving Voc and FF. The CdCl2 treatment 

suppresses the leakage current and increases Rsh to some extent but is not as good as air 

annealing.  In consideration of the comparable Jsc with relatively low Voc and low FF, it 

is found that CdCl2 treatment increases the conductivity of CdS layer. This is consistent 
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with the earlier reports by A. Romeo et al. on CdCl2 treated HVE-CdS (high vacuum 

evaporated CdS) [57]. It has been reported that CdCl2 treatment causes crystallization in 

CdS and increases the grain size resulting in better mobility and higher conductivity 

[57].   

 

3.5.4 Effect of Oxygen  

Annealing of the CdS layer with and without CdCl2 in air has been found to 

improve Rsh and increase Jsc. To further illustrate the effect of oxygen and the effect of 

annealing on cell performance, alternative post-deposition treatments such as vacuum 

annealing and argon annealing have been conducted on the CdS layer. Fig. 46 shows the 

three cells with different CdS treatments. Fig. 47 compares the light J-V characteristics 

of these cells. For the reference cell TL09, the CdS layer received air annealing and the 

CdTe layer received CdCl2 treatment. The reference Cell TL09 gives Voc of 390 mV, Jsc 

of 6.4 mA/cm2, and FF of 0.44. For the cell TL12, the CdS layer received argon 

annealing and the CdTe layer received CdCl2 treatment. The cell TL12 has Voc of 5 mV, 

Jsc of 0.6 mA/cm2, and FF of 0.25. For the cell TL15, the CdS layer received vacuum 

annealing and the CdTe layer received CdCl2 treatment. The cell TL15 has Voc of 0.24 

mV, Jsc of 0.3 mA/cm2, and FF of 0.25.  
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Fig. 46. Structures of the solar cells TL09, TL12, and TL15. 
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Fig. 47. Light J-V characteristics of the solar cells TL09, TL12, and TL15. 
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Both argon annealing and vacuum annealing are found to degrade the cell 

performance similar to the case of optimized PLD condition. The annealing of the CdS 

layer in presence of oxygen and without presence of oxygen is found to have huge 

impact on cell performance. The degradation is interpreted as the loss in stoichiometry 

of CdS due to evaporation of Sulfur (S) at elevated temperature. The non-stoichiometry 

CdS could lead to deteriorated CdTe/CdS interface that has very low built-in electric 

field and low Voc. Vacuum annealing of the CdS layer is found to yield even lower Voc 

and Jsc than argon annealing of the CdS layer. This is related to more aggressive 

evaporation of S in the vacuum than in the argon of 0.03 Torr. The effect of annealing 

temperature on stoichiometry of CdS is supported by the previous report by N. Romeo et 

al. [58]. The substrate temperature at 150 °C has been suggested for depositing HVE-

CdS to prevent the very high evaporation rate of S [58].  

The comparison among three cells does shed some light on the understanding of 

the oxygen effect on the stoichiometry of CdS, as well as the quality of the CdTe/CdS 

junction. If the CdS layer is annealed in the presence of oxygen, the formation of CdO 

phase on the surface of CdS may act as a passivation layer preventing the evaporation of 

S. Therefore, annealing in air is confirmed so far the optimal CdS treatment for thin film 

CdTe/CdS cells prepared in argon by PLD deposition. The quality of CdS layer could be 

further improved by deposition of CdS layer at 150 °C instead of 250 °C to promote the 

stoichiometry of CdS layer.  
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3.5.5 Effect of Annealing Temperature 

The air annealing of CdS and CdCl2 treatment of CdTe combined have been 

confirmed to achieve the highest efficiency in solar cells fabricated in this research. The 

insufficient CdCl2 treatment has been suggested as the cause of limited cell performance. 

Therefore solar cell, with air annealing of CdS layer, received CdCl2 treatment for the 

same annealing time but at higher temperature was experimented to seek efficiency 

enhancement. Fig. 48 shows cell TL13 and cell TL09 with the CdS layer received air 

anneal and CdTe layer received CdCl2 treatment at 420 °C and 390 °C respectively. The 

argon pressure during the PLD deposition of CdS and CdTe layer was 0.018 Torr which 

resulted in thinner CdS layer and CdTe layer due to lower deposition rate. Fig. 49 and 

Fig. 50 compare the light J-V characteristics and dark J-V characteristics for these two 

cells. Cell TL09 has Voc of 400 mV, Jsc of 6.4 mA/cm2, FF of 0.44, and η of ~1.2%. Cell 

TL13 has Voc of 460 mV, Jsc of 5.8 mA/cm2, FF of 0.26, and η of ~0.7%.  

 

 

Fig. 48. Structures of the solar cells TL09 and TL13. 
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Fig. 49. Light J-V characteristics of the solar cells TL09 and TL13. 

 

The higher temperature of the CdCl2 treatment is found to enhance the Voc by 

over 50 mV even the CdS layer is 80 nm thinner in cell TL13. The thinner CdS layer 

typically improves Jsc owning to reduced photon loss, but reduces Voc and FF due to 

shunting effect. The dark J-V characteristics of solar cells TL09 and TL13 are very 

different. The slope of the dark I-V characteristic in the range of 0 to 40 mV range is 

indicating cell TL13 has lower Rsh corresponding to lower FF. The reasons for lower Rsh 

could be in part due to the thinner CdS layer or the CdCl2 treatment at elevated 

temperature. CdCl2 treatment at elevated temperature could cause the excess 

interdiffusion between CdTe and CdS that consumes the CdS layer during the treatment. 

This influence of thickness of the CdS layer on cell performance is supported by A. D. 
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Compaan et al.’s report [51]. The cells with 0.15 μm CdS have Voc of 0.764 V, Jsc of 

20.69 mA/cm2, and FF of 0.66 [51].  The cells with 0.6 μm CdS have Voc of 0.815 V, Jsc 

of 17.61 mA/cm2, and FF of 0.73 [51]. It has been reported that PVD grown CdS of 

typically 0.2 to 0.5 μm thick are needed for reliability [59]. The better FF in cell TL09 

suggests that the thicker CdS layer of 250 nm is more resistant to interdiffusion during 

the treatment.  
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Fig. 50. Dark J-V characteristics of the solar cells TL09 and TL13. 

 

3.5.6 XRD Analysis 

XRD θ-2θ scans of thin film CdTe/CdS solar cells before and after the CdCl2 

treatment is plotted in Fig. 51. The effect of CdCl2 treatment is examined by the change 

of crystallographic structure in the CdTe/CdS heterojunction. XRD patterns show that 
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CdCl2 treatment causes a complete rearrangement of the crystallographic structure of the 

CdTe films. Before the treatment, CdTe layer has a single CdTe(111) peak with 

preferential orientation. In sharp contrast, after the treatment, the CdTe layer develops 

multiple peaks which resemble that of polycrystalline bulk CdTe. This change in 

crystallographic orientation of the CdTe layer matches well with the observation by H. 

R. Moutinho et al. [60] on PVD CdTe sample processed with CdCl2 treatment. The 

CdTe(111) peak shifts from 23.781° to 23.87°. This peak shift corresponds to a 

reduction in the CdTe lattice parameter from 6.481 Å to 6.451 Å. The reduction of 

lattice parameter supports the interdiffusion between CdS and CdTe resulting in the 

formation of a mixed CdSxTe1-x layer with smaller lattice. This is consistent with the 

formation of alloy between CdTe and CdS observed by B. E. McCandless et al. [61]. For 

the CdS layer, XRD patterns indicated sharpened CdS reflection, and peak shift of 

CdS(002) from 26.63° to 26.49°. This peak shift also corroborates that the alloy 

formation in the CdS layer due to interdiffusion between CdS and CdTe.  
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Fig. 51. XRD pattern of a CdTe solar cell before and after CdCl2 treatment. 

 

3.5.7 Cross-sectional SEM Analysis 

Cross-sectional SEM images were obtained for solar cells with CdS of different 

conditions which include air annealing, optimized PLD condition, and CdCl2 treatment. 

Fig. 52 and Fig. 53 show the cross-sectional SEM images of the cell TL20 with CdS 

processed with air annealing. The cell has continuous and uniform CdTe/CdS 

heterojunction on top of ITO substrate. The grain size of CdTe is observed to be close to 

1 μm in some area but the diameter of grains in majority is by less than 0.2 μm. It is 

found that the CdS layer is only ~123 nm thick which accounts for low Voc of 46 mV 

and FF of 0.25 measured in this cell.  
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Fig. 52. Cross-sectional SEM image of the solar cell TL20 (low-magnification). 

 

 

Fig. 53. Cross-sectional SEM image of the solar cell TL20 (high-magnification). 



 77 

Fig. 54 and Fig. 55 show cross-sectional SEM images of the cell TL21 with CdS 

deposited with optimal PLD conditions without annealing. Fig. 54 show the cell has 

continuous and uniform CdTe/CdS layer on top of ITO substrate. The delamination 

between the ITO substrate and the CdTe/CdS junction is in part due to poor adhesion of 

the as-deposited CdS. Both the CdTe layer and the CdS layer have quite similar 

columnar grains with average grain size of 100 nm. It is evident that the small grain size 

and high density of grain boundaries accounts for high Rs and small Rsh. Fig. 55 shows 

the local region of CdTe/CdS junction. It is worth to note that thickness of the CdS layer 

is close to 400 nm in some area but is reduced significantly to only less than 200 nm in 

some area. The non-uniformity and thickness reduction in CdS layer is responsible for 

degradation in Voc and FF. Moreover, CdS layer, although with thickness of at least 200 

nm, still results in low Voc and FF which could be in part due to shunting in the grain 

boundaries.  
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Fig. 54. Cross-sectional SEM image of the solar cell TL21 (low-magnification). 

 

 

Fig. 55. Cross-sectional SEM image of the solar cell TL21 (high-magnification). 
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Fig. 56 and Fig. 57 show cross-sectional SEM images of the cell TL22 with CdS 

processed with CdCl2 treatment. The cell has continuous and uniform CdTe/CdS layer. 

The CdCl2 treatment of CdS is similar to air annealing in maintaining the uniform and 

continuity of the CdS layer. However, the CdS grains of larger size are not observed in 

the CdCl2 treated CdS. The integrity of the CdS layer is related to the better Jsc and Rsh 

as shown in the J-V characteristic. Fig. 57 shows that cell TL22 has 250 nm CdS layer 

which accounts for the better Voc of 120 mV among these three cells characterized by 

SEM. Both of the air annealing and CdCl2 treatment have been confirmed to effective 

suppress the consumption of CdS due to CdTe/CdS intermix during the CdCl2 treatment. 

This is consistent with report by B. E. McCandless et al. [62] in that CdCl2 treatment of 

CdS restructures the CdS layer and making CdS resistant to Te diffusion.  

 

 

Fig. 56. Cross-sectional SEM image of the solar cell TL22 (low-magnification). 
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Fig. 57. Cross-sectional SEM image of the solar cell TL22 (high-magnification). 

 

3.5.8 Cross-sectional TEM Analysis 

To further understand the origin of high Rs and low Rsh for further optimization 

of cell performance, cross-sectional TEM study was conducted on the 1.2% efficient 

solar cell TL09. Fig. 58 shows that the cell TL09 has a uniform and continuous 

CdTe/CdS junction formed between the CdTe layer of ~913 nm and the CdS layer of 

260nm. The TEM image is consistent with the SEM images in showing no presence of 

ITO/CdTe junction due to consumption of CdS layer by the CdCl2 treatment. The 

average grain size of the CdTe layer is observed to be in the range of 100 to 200 nm. 

This grain size is significantly smaller than that of 1 to 2 μm observed in CdTe layer of 

high efficiency CdTe cells deposited at high temperature or received effective CdCl2 

treatment [33]. Small grain size is equivalent to high density of grain boundary resulting 
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in high density of efficient recombination centers that sink photo generated carriers and 

reduce Jsc [13]. The defects such as twins and dislocations are observed in high density 

as shown in the Fig. 58. The defects within CdTe grains act as traps that capture the 

carriers and reduce the carrier lifetimes [13]. The grain boundaries, defects, and grain 

size within CdTe layer and CdS layer revealed by the TEM image are confirmed as the 

origins of Rs and Rsh. 

 

 

 

Fig. 58. Cross-sectional TEM image of the solar cell TL09. 

 

Fig. 59 shows the TEM image of the CdTe/CdS interface. The observed domain 

match in the interface region indicates the presence of interface states due to lattice 

mismatch between CdTe and CdS. The interface states could act as effective surface 
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recombination centers that sink the carriers traveling across the junction [13]. The CdCl2 

treatment is confirmed by TEM to be insufficient to repair these interface states. 

Dislocations are observed in the CdTe/CdS interface as shown in Fig. 60. The density of 

these dislocations could be a measure of the effectiveness of CdCl2 treatment. A 

discontinuous oxide phase is found near the interface. The oxide phase can be originated 

from the interaction between CdS and oxygen during the air annealing. The oxide phase 

could cause non-uniformity in spatial current flows across the CdTe/CdS junction. The 

possible oxide trace on CdS surface can be removed by dilute HCl etching or hydrogen 

annealing to improve Jsc [50, 63].  

 

 

Fig. 59. Cross-sectional TEM image of the CdTe/CdS interface. 
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Fig. 60. Cross-sectional TEM image of the dislocations and the oxide phase. 

 

Fig. 61 shows an area of interest in the CdTe grain where twins of high density 

are observed. The lamellar twins of double directions match with the observation by Y. 

Yan et al. [64]. It has been reported that the double-positioning twin boundaries have Te 

dangling bonds and Cd dangling bonds [64]. These dangling bonds, if left without 

passivation, are effective carrier traps that sink photogenerated carriers. It has been 

reported that the twins create energy states in the band gap that harm electronic property 

of CdTe [64]. The CdS grain is found to have dislocations but not twins of high density. 

The origin of twins was explained by A. W. Vene et al. in that twinning is an intrinsic 

property of the zinc blend structure in CdTe single crystal [65]. The abundance of 

twinning was determined by the ionicity of the lattice [65]. The formation of twins may 

be originated from vapor-solid interface during the growth. The presence of these defects 
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suggests that insufficient CdCl2 treatment is limiting the cell performance by not 

effectively reducing the density of these defects in CdTe layer and CdS layer.  

 

 

Fig. 61. Cross-sectional TEM image of twins in CdTe. 

 

 

Fig. 62. Cross-sectional TEM image of defects in CdS. 
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3.5.9 Analysis of CdCl2 Treatment 

The J-V characteristics and microstructure studies have confirmed insufficient 

CdCl2 treatment could be the key limiting factor for relatively low cell performance. The 

CdCl2 treatment used in this research is compared with previous reported CdCl2 

treatments to clarify the issues of CdCl2 treatment. The solar cell TL09 with insufficient 

CdCl2 treatment and the PVD cell without CdCl2 treatment is similar in microstructure 

as shown in Fig. 63 [66]. In Fig. 64, the PVD cell, without effective CdCl2 treatment, 

actually has Voc of ~400 mV and Jsc of 4 mA/cm2. This PVD cell before treatment is 

similar in performance as the cell TL09 after treatment. In sharp contrast, the effective 

CdCl2 treatment improved Jsc by a factor of 5 and Voc by a factor of 2 for the same PVD 

cell as shown in Fig. 64 [66]. This correlates with microstructure changes such as growth 

of grain size by a factor of 10, and evident reduction in the density of the defects as well 

as grain boundaries in the CdTe/CdS heterojunction as shown in Fig. 63 [66].  This 

suggests the current thin film CdTe cells have room to improve provided the effective 

CdCl2 treatment. 
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Fig. 63. Cross-sectional of TEM image of the PVD CdTe/CdS cell before CdCl2 treatment (left) 
and after CdCl2 treatment (right) [66]. 

 

 

Fig. 64. Current density-voltage characteristic of a PVD CdTe/CdS cells as-deposited (curve a), 
after air annealing (curve b), and after CdCl2 treatment (curve c) [66]. 

 



 87 

The issue of insufficient CdCl2 treatment is considered to be the annealing 

profile. In this research, the annealing profile of the CdCl2 treatment is heating at 390 °C 

for 10 minutes. Table 3 summarizes the annealing profiles of representative effective 

CdCl2 treatment with respect to different CdTe layer thickness by previous results [23, 

50, 66]. The CdCl2 treatment at 390 °C for 10 min has been reported optimal for 1 μm rf 

sputtered CdTe cell by A. D. Compaan et al. [23]. However, it has been confirmed in 

this research that this annealing profile results in insufficient CdCl2 treatment for 1 μm 

PLD deposited CdTe cells under similar deposition conditions. The electrical data and 

microstructure results show that CdTe solar cells prepared by PLD require longer 

annealing time for the same temperature and CdTe layer thickness. This is consistent 

with the annealing time of 30 minutes suggested for the 1 to 2 μm PVD deposited cell 

fabricated by R.W. Birkmire et al. [66]. It is confirmed that current PLD cell has similar 

quality as the PVD cell which requires the CdCl2 treatment with longer annealing time to 

achieve the desired change in microstructure and electrical properties. 

 

Table 3 A List of representative CdCl2 treatments receipts. 

Research Groups Temp 

(°C) 

Time 

(min) 

CdTe (μm) CdS (μm) Efficiency 

(%) 

CdTe layer 

fabrication 

CdS layer 

fabrication 

D. H. Rose [50]  400 40 8 – 10  0.08 12.6 CSS CBD 

R.W. Birkmire [66] 400 30 2 1-2 9.6% PVD PVD 

A. D. Compaan [23]  390 10 1 0.06 12% Sputter Sputter 
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3.5.10 Analysis of Oxygen Incorporation  

Introduction of oxygen during the fabrication is suggested to further improve cell 

performance. Oxygen incorporation in CdS by air annealing has been demonstrated 

essential to reproducibly achieve the 0.73% and 1.2% efficient solar cells in this 

research. Fabrication of CdTe solar cells by PLD technique is considered similar to the 

case of cells produced by CSS technique—oxygen incorporation is beneficial to the 

formation of efficient CdTe/CdS heterojunction. It has been demonstrated that CSS 

deposition of CdTe/CdS junction at high temperature requires sufficient amount of 

oxygen to improve Voc by several hundred mV and results in 8.9 % efficient cell [67]. 

The deposition of CdS layer in appropriate amount of oxygen could allow for the use of 

thinner CdS layer without degradation of Rsh because oxygen effective passivates the 

grain boundaries of CdS. It has been reported that the incorporation of oxygen in the 

CdS deposition was found to create CdO or CdSO3 phase which passivates the grain 

boundaries of CdS and suppress Te diffusion [58]. X. Wu et al. reported 15.5% efficient 

cell utilizing a 50 nm CdS layer rf sputtered in Argon containing 2% oxygen at room 

temperature [68]. Therefore oxygen incorporation in fabrication is considered crucial to 

improve the cells by PLD deposition. 

 

3.6 Summary of Thin Film CdTe Solar Cells 

In summary, a process has been demonstrated to fabricate thin film CdTe/CdS 

solar cells with efficiency exceeding 1% by PLD technique. Two post-deposition 

treatments have been demonstrated to improve the cell performance significantly. The 
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first treatment is air annealing on CdS layer and the second treatment is CdCl2 treatment 

on CdTe layer. These two treatments combined have been proven to improve the current, 

voltage, and fill factor to a greater extent than that achieved in the sample with only the 

air annealing of CdTe layer. The air annealing of CdS layer is more effective than CdCl2 

treatment of CdS in improving the cell voltage and fill factor. Other post-deposition 

treatments such as vacuum annealing and argon annealing have been found to degrade 

cell performance. The possible reasons of high series resistance and shunt resistance in 

current CdTe solar cells by PLD have been identified by the microstructure analysis. The 

CdCl2 treatment at 390 °C for 10 min is insufficient to achieve desired grain growth and 

reduction of defect density in solar cells fabricated by current PLD receipt. The 

adjustment of CdCl2 treatment as well as oxygen incorporation during the fabrication has 

been proposed to further enhance the cell performance.  
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4. SUMMARY AND CONCLUSIONS 

4.1 Conclusions  

In this thesis, new thin film solar cells with light trapping transparent conducting 

oxide layer has been proposed with three new configurations in the first section. The 

potential LT-TCO layer with good conductivity and desired surface texture has been 

demonstrated in the second section. The baseline thin film CdTe solar cells with 

efficiency exceeding 1% have been achieved and discussed in the third section.  

For the development of LT-TCO layer, AZO thin film has been found to be a 

good candidate. Two AZO multilayer films have been fabricated and shown different 

optical and electrical properties. The OAZO/VAZO multilayer shows reduced 

transmittance and surface texture, and is a promising LT-TCO layer that provides the 

light trapping function and the sufficient low resistivity of ~4 x 10-4 Ω-cm. The 

VAZO/OAZO multilayer shows smooth surface, high transmittance of ~85%, and 

improved resistivity of ~1.5 x 10-4 Ω-cm. By reducing the resistivity of VAZO layer 

through tuning the PLD parameter, the thickness of the LT TCO layer can be further 

reduced to minimize the photon loss. Meanwhile, the surface texture and surface 

roughness of the OAZO layer can be further tuned to achieve better light trapping effect.   

For the baseline thin film CdTe solar cells, thin film CdTe solar cells with 

conversion efficiency of 1% and 0.7% have been demonstrated by PLD deposition. The 

CdTe/CdS heterojunction cells were deposited at low temperatures followed by 

optimized post-deposition treatments. The air annealing is found to significantly enhance 

the overall cell performance. The CdCl2 treatment requires longer annealing time to 
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achieve the desired microstructure and lead to the enhancement for thin film solar cells. 

The oxygen back pressure during deposition is proven to be beneficial to thin film CdTe 

solar cells prepared by PLD. However further optimization of the oxygen pressure 

during the deposition of CdTe/CdS heterojunction is needed for achieving high 

efficiency solar cells.  

 

4.2 Future Research Plans 

In order to further optimize cell performance, adjustments in PLD conditions and 

in post-deposition treatments are proposed for future research. Deposition of the CdS 

layer at low temperature such as 150 °C could ensure the stoichiometry and mitigate the 

loss of Sulfur. Higher laser energy density is suggested to compensate the kinetic energy 

of adatoms to assist the diffusion of adatoms at lower substrate temperature. These 

adjustments are expected to increase the carrier concentration of CdS resulting in built-in 

electric field of the CdTe/CdS heterojunction. Deposition of CdTe at the substrate 

temperature of 200 °C is suggested to promote the p-type conductivity of CdTe layer. In 

addition, optimization in the CdTe target deserves consideration. By adding appropriate 

amount of Te in the CdTe target, the excess Te in CdTe target could promote the 

formation of Te-rich p-type CdTe film. The optimizations in target preparation and 

substrate temperature are expected to improve the p-type conductivity of CdTe as well as 

the built in electric field.  

Optimization in post-deposition treatments aims to improve the crystallinity of 

the CdTe/CdS heterojunction deposited at low temperature. Higher annealing 
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temperature such as 450 °C is proposed to promote re-crystallization of the CdS layer. 

The larger grain size and lower density of grain boundaries in CdS layer assisted by 

annealing at higher temperature could achieve thin CdS layer with sufficient high Rsh. 

The CdCl2 treatment shall be explored more in the future. The annealing time is 

suggested to be at least 20 minutes or longer to seek complete microstructure change and 

efficiency enhancement. Meanwhile alternative CdCl2 vapor treatment shall be 

examined. This method is expected to reduce the residual CdCl2 on CdTe surface that 

could be detrimental to the contact between the CdTe layer and Au electrode.  



 93 

REFERENCES 

 

[1]       A.E. Becquerel, Mémoire sur les effets électriques produits sous l'influence des  

rayons solaires, Comptes Rendus 9 (1839) 561-567. 

[2]       W.G. Adams, R.E. Day, The action of light on selenium, Proceedings of the 

Royal Society London 25 (1877) 113-117.  

[3]       D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for 

converting solar radiation into electrical power, Journal of Applied Physics 25 

(5) (1954) 676-677.  

[4]       D.C. Reynolds, G. Leies, L.L. Antes, R.E. Marburger, Photovoltaic effect in 

cadmium sulfide, Physical Review 96 (1954) 533–534. 

[5]       D.A. Jenny, J.J. Lofersky, P. Rappaport, Photovoltaic effect in GaAs p-n 

junctions and solar energy conversion, Physical Review 101 (3) (1956) 1208–

1209. 

[6]       D.A. Cusano, CdTe solar cells and PV heterojunction in II-VI compounds, Solid 

State Electronics 6 (3) (1963) 217-218. 

[7]       D. Bonnet, H. Rabenhorst, New results on the development of a thin-film p-  

CdTe-n-CdS heterojunction solar cell, in: 9th PVSC, Silver Spring, MD, USA, 

1972,  pp. 129-132. 

[8]       S. Wagner, J.L. Shay, H.M. Kasper, The p-CuInSe2/n-CdS heterodiode:  

photovoltaic detecter, solar cell and light emitting diode, Journal de Physique 

Colloques 36 (C3) (1975) 101-104. 



 94 

[9]       http://en.wikipedia.org/wiki/File:PVeff(rev100921).jpg, Wikipedia, Web. 25 Feb 

2011. 

[10]     http://en.wikipedia.org/wiki/Solar_cells, Wikipedia, Web. 25 Feb 2011.  

[11]     http://www.solarbuzz.com/facts-and-figures/markets-growth/market-growth, 

Solarbuzz, Web. 25 Feb 2011.  

[12]     http://www.motherearthnews.com/Renewable-Energy/Thin-Film-Solar-Utility-

Scale-PV-Power.aspx, Motherearthnews, Web. 25 Feb 2011.  

[13]     A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering, 

Wiley, NJ, 2003. 

[14]     http://medlibrary.org/medwiki/Theory_of_solar_cell, Medlibrary, Web. 25 Feb 

2011. 

[15]     W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction 

solar cells, Journal of Applied Physics 32 (3) (1961) 510-519. 

[16]     M. Wolf, How will we get to 20% (AMI) efficient Si solar cells, in: 16th IEEE  

PVSC, San Diego, CA, 1982, p. 355. 

[17]     D. Redfield, Unified model of fundamental limitations on the performance of 

silicon solar cells, IEEE Transactions on Electron Devices 27 (4) (1980) 766-

771. 

[18]     T. Tiedje, E. Yablonovitch, G.D. Cody, B.G. Brooks, Limiting efficiency of 

silicon solar cells, IEEE Transactions on Electron Devices 31 (5) (1984) 711-

716. 



 95 

[19]     L. Kazmerski, T. Surek, http://spie.org/x18290.xml?ArticleID=x18290, Web. 25 

Feb 2011. 

[20]     E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for 

solar cells, IEEE Transactions on Electron Devices 29 (2) (1982) 300-305. 

[21]     M.A. Green, A.W. Blakers, J. Shi, E.M. Keller, S.R. Wenham, High-efficiency 

silicon solar cells, IEEE Transactions on Electron Devices 31 (5) (1984) 679-

683. 

[22]     X. Wu, R.G. Dhere, D.S. Albin, T.A. Gessert, C. DeHart, J.C. Keane, A. Duha, 

T.J. Coutts, S. Asher, D. H. Levi, High-efficiency CTO/ZTO/CdS/CdTe 

polycrystalline thin-film solar cells, in: NCPV Program Review Meeting, 

Lakewood, CO, 2001. 

[23]     A. Gupta, V. Parikh, A.D. Compaan, High efficiency ultra-thin sputtered CdTe 

solar cells, Solar Energy Materials and Solar Cells 90 (15) (2006) 2263-2271. 

[24]     V. Plotinikov, Fabrication of Thin CdS/CdTe Solar Cells by Magnetron 

Sputtering, Ph.D. dissertation, University of Toledo, Toledo, OH, 2009. 

[25]     J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8% efficient ―honeycomb‖ 

textured  multicrystalline and 24.4% monocrystalline silicon solar cells, Applied 

Physics Letters 73 (14) (1998) 1991-1993. 

[26]     E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells, Nano Letters 

10 (3) (2010) 1082-1087. 



 96 

[27]     S.B. Rim, S. Zhao, S.R. Scully, M.D. McGehee, P. Peumans, An effective light 

trapping configuration for thin-film solar cells, Applied Physics Letters 91 (24) 

(2007) 243501. 

[28]     P. Campbell, M.A. Green, Light trapping properties of pyramidally textured 

surfaces, Journal of Applied Physics 61 (1) (1987) 243-249. 

[29]     R. Eason, Pulsed Laser Deposition of Thin Films: Applications-led Growth of 

Functional Materials, Wiley-Interscience, Hoboken, NJ, 1997. 

[30]     http://www.physandtech.net/1.htm, Web. 25 Feb 2011. 

[31]     H.U. Krebs, M. Weisheit, J. Faupel, E. Suske, T. Scharf, C. Fuhse, M. Stormer,   

K. Sturm, Pulsed laser deposition (PLD) - a versatile thin film technique, 

Advances in Solid State Physics 43 (2003) 505-517.  

[32]     J.H. Lee, C.Y. Chou, Z. Bi, C.F. Tsai, H. Wang, Growth-controlled surface 

roughness in Al-doped ZnO as transparent conducting oxide, Nanotechnology 20 

(39) (2009) 395704 (7pp). 

[33]     T. Markvart, L. Castaner, Practical Handbook of Photovoltaics: Fundamentals 

and Applications, Elsevier Science, New York, 2003. 

[34]     A. Gupta, A. D. Compaan, All-sputtered 14% CdS∕CdTe thin-film solar cell with 

ZnO: Al transparent conducting oxide, Applied Physics Letters 85 (4) (2004) 

684-686. 

 

 



 97 

[35]     H. Kim, C.M. Gilmore, J.S. Horwitz,  A. Pique, H. Murata, G.P. Kushto, R. 

Schlaf,  Z.H. Kafafi, D.B. Chrisey, Transparent conducting aluminum-doped zinc 

oxide thin films for organic light-emitting devices, Appled Physics Letters 76 (3) 

(2000) 259-261.  

[36]     T. Wicheert, http://www.nssp.uni-saarland.de/forschung/halbleiterenglish.htm, 

Web. 25 Feb 2011. 

[37]     S. Adachi, Handbook on Physical Properties of Semiconductors, Springer, 

Boston, 2004. 

[38]     P. Capper, Properties of Narrow Gap Cadmium-based Compounds, INSPEC, the 

Institution of Electrical Engineers, London, United Kingdom, 1994. 

[39]     M. Aven, J.S. Prener, Physics and Chemistry of II-VI Compounds, Wiley, New 

York, 1967.  

[40]     R.H. Bube, Photoconductivity of the sulfide, selenide, and telluride of zinc or 

cadmium, Proceedings of The IRE 43 (12) (1836) 1836-1850. 

[41]      D.A. Jenny, R.H. Bube, Semiconductor cadmium telluride, Physical Review 96 

(5) (1954) 1190-1191. 

[42]      E.L. Lind, R.H. Bube, Photoconductivity in cubic cadmium sulfide, Journal of 

Chemistry Physics 37 (10) (1962) 2449-2450. 

[43]      H. Lohninger, http://www.vias.org/genchem/chem_cds.html, General Chemistry, 

Web. 25 Feb 2011. 

[44]      W.R. Cook JR, The CdS-MnS and cdse-MnSe phase diagrams, Journal of the 

American Ceramic Society 51 (9) (1968) 518-520.  

http://www.nssp.uni-saarland.de/forschung/halbleiterenglish.htm


 98 

[45]     H.H. Woodbury, Measurement of the Cd-CdS liquidus, Journal of Physics and 

Chemistry of Solids 24 (7) (1963) 881-884. 

[46]     O. Zelaya-Angel, R. Lozada-Morales, Sphalerite-wurzite phase transformation in 

CdS, Physical Review B 62 (19) (2000) 13064-13069. 

[47]      J.D. Zook, R.N. Dexter, Galvanomagnetic effects in cadmium sulfide, Physical 

Review 129 (5) (1963) 1980-1989. 

[48]     K. Yasuda, H.B. Samion, M. Miyata, N. Araki, Y. Masuda, Y. Tomita, Growth 

and characterization of cubic-CdS layers on (100) GaAs in metalorganic vapor-

phase epitaxy, Journal of Crystal Growth 222 (3) (2001) 477-481. 

[49]     A.G. Milnes, D.L. Feucht, Heterojunctions and Metal Semiconductor Junctions, 

Academic Press Inc, New York, 1972.  

[50]     D.H. Rose, F.S. Hasoon, R.G. Dhere, D.S. Albin, R.M. Ribelin, X.S. Li, Y.  

Mahathongdy, T.A. Gessert, P. Sheldon, Fabrication procedures and process 

sensitivities for CdS/CdTe solar cells, progress in photovoltaics: research and 

applications 7 (5) (1999) 331-340. 

[51]     A. Compaan, A. Bhat, C. Tabory, S. Liu, M. Nguyen, A. Aydinli, L.H. Tsien, 

R.G. Bohn, Fabrication of CdTe solar cells by laser-driven physical vapor 

deposition, Solar Cells 30 (1-4) (1991) 79-88. 

[52]     P.K. Raychaudhuri, Barrier Type Photovoltaic Cells with Enhanced Open-circuit 

Voltage, and Process of Manufacture, US Patent 4035197 (1977). 

[53]     S.S. Ou, O.M. Stafsudd, B.M. Basol, Optical properties of electrochemically 

deposited CdTe films, Journal of Applied Physics 55 (10) (1984) 3769-3772. 



 99 

[54]     Y.S. Tyan, Topics on thin film CdS/CdTe solar cells, Solar Cells 23 (1-2) (1988) 

19-29. 

[55]     B.T. Kolomiets, Proceedings of the Russian Academy of Science 83 (1952) 561. 

[56]     O.M. Hussian, P.J. Reddy, Characterization of laser evaporated cadmium 

telluride films, Materials Letters 10 (4-5) (1990) 165-169. 

[57]     A. Romeo, D.L. Batzner, H. Zogg, C. Vignali, A.N. Tiwari, Influence of CdS 

growth process on structural and photovoltaic properties of CdTe/CdS solar cells, 

Solar Energy Materials and Solar Cells 67 (1-4) (2001) 311-321. 

[58]     N. Romeo, A. Bosio, V. Canevari, A. Podesta, Recent progress on CdTe/CdS thin 

film solar cells, Solar Energy 77 (6) (2004) 795-801.  

[59]     A. Romeo, D.L. Batzner, H. Zogg, A.N. Tiwari, Recrystallization in CdTe/CdS, 

Thin Solid Films 361 (2000) 420-425. 

[60]     H.R. Moutinho, F.S. Hasoon, F. Abulfotuh, L.L. Kazmerski, Investigation of 

polycrystalline CdTe thin films deposited by physical vapor deposition, close-

spaced sublimation, and sputtering, Journal of Vacuum Science and Technology 

A: Vacuum, Surfaces, and Films 13 (6) (1995) 2877-2883. 

[61]     B.E. McCandless, R.W. Birkmire, Analysis of post deposition processing for 

CdTe/CdS thin film solar cells, Solar Cells 31 (6) (1991) 527-535. 

[62]     B.E. McCandless, I. Youm, R.W. Birkmire, Optimization of vapor post-

deposition processing for evaporated CdS/CdTe Solar Cells, Progress in 

Photovoltaics: Research and Applications 7 (1) (1990) 21-30. 



 100 

[63]     A. Rohatgi, R. Sudharsanan, S.A. Ringel, M.H. MacDougal, Growth and process 

optimization of CdTe and CdZnTe polycrystalline films for high efficiency solar 

cells, Solar Cells 30 (1-4) (1991) 109-122. 

[64]     Y. Yan, M.M. Al-Jassim, K.M. Jones, Structure and effects of double-positioning 

twin boundaries in CdTe, Journal of Applied Physics 94 (5) (2003) 2976-2979. 

[65]     A.W. Vere, S. Cole, D.J. Williams, The origins of twinning in CdTe, Journal of 

Electronic Materials 12 (3) (1983) 551-561. 

[66]     R.W. Birkmire, E. Ester, Polycrystalline thin film solar cells: Present status and 

future potential, Annual Review of Materials Science 27 (1997) 625-653. 

[67]     Y.S. Tyan, Polycrystalline Thin Film CdS/CdTe Photovoltaic Cell, US Patent 

4207119 (1978). 

[68]     X. Wu, Y. Yan, R.G. Dhere, Y. Zhang, J. Zhou, C. Perkins, B. To, 

Nanostructured CdS:O film: preparation, properties, and application, 11th 

international conference on II-VI compounds (2004) 1062-1066. 

 

 

 

 

 

 

 

 



 101 

VITA 

 

Tianlin Lu received his Bachelor of Science degree in electrical engineering from 

the Huazhong University of Science and Technology at Wuhan in 2004. He entered the 

Graduate School at Texas A&M University in September 2008 and received his Master 

of Science degree in May 2011. His research interests include solar cells and functional 

oxide thin films. 

 Mr. Lu may be reached at: Department of Electrical and Computer Engineering, 

Texas A&M University, 214 Zachry Engineering Center, TAMU 3128, College Station, 

Texas 77843-3128. His email is lutianlin_ch@tamu.edu. 

 

 

 

 


