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ABSTRACT

Supersymmetric F-theory GUT Models. (May 2011)

Yu-Chieh Chung, B.S., National Tsing Hua University;

M.S., National Tsing Hua University

Chair of Advisory Committee: Dr. Katrin Becker

F-theory is a twelve-dimensional geometric version of string theory and is be-

lieved to be a natural framework for GUT model building. The aim of this dissertation

is to study how gauge theories realized by F-theory can accommodate GUT models.

In this dissertation, we focus on local and semi-local GUT model building in

F-theory. For local GUT models, we build SU(5) GUTs by using abelian U(1) fluxes

via the SU(6) gauge group. Doing so, we obtain non-minimal spectra of the MSSM

with doublet-triplet splitting by switching on abelian U(1)2 fluxes. We also classify all

supersymmetric U(1)2 fluxes by requiring an exotic-free bulk spectrum. For semi-local

GUT models, we start with an E8 singularity and obtain lower rank gauge groups by

unfolding the singularity governed by spectral covers. In this framework, the spectra

can be calculated by the intersection numbers of spectral covers and matter curves.

In particular, we use SU(4) spectral covers and abelian U(1)X fluxes to build flipped

SU(5) models. We show that three-generation spectra of flipped SU(5) models can

be achieved by turning on suitable fluxes. To construct E6 GUTs, we consider SU(3)

spectral covers breaking E8 down to E6. Also three-generation extended MSSM can

be obtained by using non-abelian SU(2)× U(1)2 fluxes.
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CHAPTER I

INTRODUCTION1

String theory is so far the most promising candidate for a unified theory. Building

realistic models of particle physics to answer fundamental questions is one of the

challenges in string theory. One of the main issues to be addressed from particle

physics is the unification of gauge couplings. The natural solution to this question is

the framework of grand unified theory (GUT). One task for string theory is whether it

can accommodate GUT models. String theory makes contact with four-dimensional

physics through various compactifications. There are two procedures to realize GUTs

in string theory compactifications. The first is the top-down procedure in which the

full compactification is consistent with the global geometry of extra dimensions; the

spectrum is close to a GUT after breaking some symmetries [1]. In the bottom-up

procedure, the gauge breaking can be understood in the decoupling limit of gravity

[2–4], particularly in the framework that D-branes are introduced on the local regions

within the extra dimensions in type IIB compactifications [2–5]. In this case we

can neglect the effects from the global geometry for the time being, which makes

the procedure more flexible and efficient. In addition, the construction of the local

models can reveal the requirements for the global geometry. Eventually, the local

models need to be embedded into some compact geometry for UV completion.

The journal model is Journal of High Energy Physics.
1Portions of this chapter are reprinted from Journal of High Energy Physics, Vol-

ume 2010, Number 3, 6, Yu-Chieh Chung, Abelian Gauge Fluxes and Local Models
in F-Theory, Copyright 2010, with permission from SISSA.; Journal of High Energy
Physics, Volume 2011, Number 3, 49, Ching-Ming Chen and Yu-Chieh Chung, Flipped
SU(5) GUTs from E8 Singularities in F-theory, Copyright 2011, with permission from
SISSA.; Journal of High Energy Physics, Volume 2011, Number 3, 129, Ching-Ming
Chen and Yu-Chieh Chung, On F-theory E6 GUTs, Copyright 2011, with permission
from SISSA.
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In SU(5) GUTs, there are two important Yukawa couplings, 10105H and 105̄M5̄H.

It is well-known that 10105H is forbidden in perturbative type IIB theory. However, it

was shown in [6,7] that the Yukawa coupling 10105H can be achieved by introducing

non-perturbative corrections. From this perspective, the non-perturbative property is

intrinsic for GUT model building in type IIB theory. F-theory is a non-perturbative

twelve-dimensional theory built on the type IIB framework with an auxiliary two-

torus [8–10]. For a nice review of F-theory, see [11]. The ordinary string extra

dimensions are regarded as a base manifold and the two-torus is as a fiber over this

base manifold. The modulus of the elliptic curve is identified as axion-dilaton in type

IIB theory. Due to the SL(2,Z) monodromy of the modulus, F-theory is essentially a

non-perturbative completion of type IIB theory. There is an elegant correspondence

between physical objects in type IIB theory and geometry in F-theory. The modular

parameter of the elliptic fiber, identified with the axion-dilaton in type IIB theory,

varies over the base. Singularities develop when the fibers degenerate. The loci of the

singular fiberation indicate the locations of the seven-branes in type IIB theory and

the type of the singularity determines the gauge group of the world-volume theory on

seven-branes [12]. According to the classification of the singular fibration, there are

singularities of types A, D, and E. The first two types have perturbative descriptions

in Type IIB. More precisely, A-type and D-type singularities correspond to config-

urations of the D7-branes and D7-branes along O-planes, respectively [13]. For the

singularity of type E, there is no perturbative description in type IIB theory, which

means that F-theory captures a non-perturbative part of the type IIB theory. Under

certain geometric assumptions, the full F-theory can decouple from gravity [14–17].

In such a way, one can focus on the gauge theory on seven-branes supported by the

discriminant loci in the base manifold of an elliptically fibered Calabi-Yau fourfold.

Extensive studies of GUT local models and their corresponding phenomenology in
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F-theory have been undertaken in [14–39] 2. In addition, supersymmetry breaking

has been discussed in [41–45], and the application to cosmology has been studied

in [46]. It is becoming clear that F-theory provides a promising framework for model

building of supersymmetric GUTs. To build local SU(5) GUTs in F-theory, one can

start by engineering a Calabi-Yau fourfold with an A4 singularity. To decouple from

gravity, it is required that the volume of S, a component of the discriminant locus,

is contractible to zero size.3 We assume that S can contract to a point and thus

possesses an ample canonical bundle K−1
S [14–17]. In particular, we focus on the case

that S is a del Pezzo surface [49,50] wrapped by seven-branes where one can engineer

an eight-dimensional supersymmetric gauge theory with gauge group GS = SU(5) in

R3,1×S. Other components S ′i of the discriminant locus intersect S along the curves

Σi. Due to the collision of the singularities, the gauge group GS is enhanced to GΣi

on Σi and the matter in the bi-fundamental representations may be localized on the

curves [51]. It was shown in [14–17] that the spectrum is given by the bundle-valued

cohomology groups. The minimal SU(5) GUT has been studied in [14–17]. In that

case, the GUT group is broken into Gstd ≡ SU(3)× SU(2)× U(1)Y by a non-trivial

U(1)Y gauge flux. Furthermore, one can obtain an exotic-free spectrum of the mini-

mal supersymmetric Standard Model (MSSM) from those curves with doublet-triplet

splitting but no rapid proton decay. The success of the minimal SU(5) GUT model

motivates us to pursue other local GUT models from higher rank gauge groups. The

next simplest case is a gauge group of rank five: like SO(10) and SU(6). These two

non-minimal SU(5) GUTs have been studied in [33]. For the latter, one can get an

2For a review, see [40]
3There are two ways in which we could take VS → 0. The first way is by requiring

S to contract to a point, and the second is by requiring S to contract to a curve of
singularities. See [47,48] for the details.
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exotic-free spectrum, but due to the lack of an extra U(1) flux, the GUT group can-

not be broken into Gstd. To avoid this difficulty, it is natural to study local F-theory

models of GS = SU(6) and GS = SO(10) with supersymmetric U(1)2 gauge fluxes,

which consist of two supersymmetric U(1) gauge fluxes and are associated with a

rank two polystable bundles over S.

In chapter II we shall explicitly construct supersymmetric U(1)2 gauge fluxes in

local F-theory models of GS = SU(6) and SO(10) and calculate the matter spectrum

of the MSSM. For the case of GS = SO(10), there is a no-go theorem [15] which states

that for an exotic-free spectrum, there are no solutions for U(1)2 gauge fluxes. For the

case of GS = SU(6), we can explicitly construct supersymmetric U(1)2 gauge fluxes.

It turns out that each flux configuration contains two fractional lines bundles. One of

the gauge fluxes is universal and is the same as U(1)Y hypercharge flux in the minimal

SU(5) GUT [14–17]. The second one varies along with the configurations of the bulk

zero modes. With suitable supersymmetric U(1)2 gauge fluxes, the bulk spectrum can

be exotic-free and the chiral matter comes from curves. The restriction of these U(1)2

fluxes to the curves induce U(1) fluxes over the curves, which breaks the enhanced

gauge group GΣ down to Gstd × U(1). In this case, the Higgs fields can be localized

on curves ΣSU(7) and ΣSO(12). On ΣSU(7), non-trivial induced fluxes break SU(7) into

Gstd×U(1). With suitable fluxes, doublet-triplet splitting can be achieved. However,

the situations become more complicated on the curves with GΣ = SO(12). Since

the dimension of the adjoint representation of SO(12) is higher than SU(7), one gets

more constraints to solve for given field configurations, which results in difficulties for

doublet-triplet splitting. By explicitly solving the allowed field configurations, one

can find that there are still a few solutions for doublet-triplet splitting. To obtain

a complete matter spectrum of the MSSM, we analyze the case of ΣE6 in addition

to ΣSU(7) and ΣSO(12). It is extremely difficult to obtain the minimal spectrum of
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the MSSM without exotic fields. However, we found that in some cases, the exotic

fields can form trilinear couplings with the doublets or triplets on the curves with

GΣ = SU(7). When these fields get vacuum expectation values (vevs), the exotic

fields will be decoupled from the low-energy spectrum. A way to do this is that we

introduce extra curves supporting the doublets or triplets, which intersect the curves

hosting the exotic fields to form the couplings. With the help of these doublets or

triplets, it turns out that the non-minimal spectrum of the MSSM without doublet-

triplet splitting problem can be achieved by local F-theory model of GS = SU(6) with

supersymmetric U(1)2 gauge fluxes. Constructing local GUT models is the first step

toward global F-theory GUTs.4 The middle step of F-theory GUT model building is

to construct semi-local models by using spectral covers. In chapters III and IV, we

shall focus on local and semi-local model building in F-theory.

Spectral cover construction [17, 47] originally was introduced in the heterotic

string compactifications [59]. This construction has been used to build an SU(5)

GUT with an SU(5) cover [16,17,39,47,52–54,57,58,60–79], an SO(10) with SU(4)

covers [80, 81], and an MSSM with an SU(5)× U(1) cover [82, 83]. For a systematic

review of recent progress of F-theory compactifications and model buildings, see [84].

Systematic studies of how models of higher rank GUT groups, such as SO(10), are

embedded into the compact geometry in F-theory have not been fully investigated. To

this end, we are interested in the SO(10) subgroup SU(5)× U(1)X which is realized

as the flipped SU(5) GUT [85–87]. Although local flipped SU(5) models have been

discussed in F-theory, we study the model as a semi-local construction. In chapter III

we shall build flipped SU(5) models by unfolding an E8 singularity via the SO(10)

gauge group. To construct flipped SU(5) models in four-dimensional spacetime, we

4Recent development for global GUT models can be found in [52–58].
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compactify F-theory on an elliptically fibered Calabi-Yau fourfold X4 with a base

threefold B3. We consider a del Pezzo surface S [49, 50] inside B3 such that we can

reduce full F-theory on X4 to an effective eight-dimensional supersymmetric gauge

theory on R3,1×S. To construct flipped SU(5) models from an SO(10) gauge group,

the singularities of types D5, D6, E6, and E7 have to be engineered in the Calabi-Yau

fourfold. Because these singularities can be embedded into a single singularity E8, it

motivate us to build models by starting with an E8 singularity and unfold it into a

D5 singularity.

Generally, one may turn on certain fluxes to obtain the chiral spectrum. In

F-theory, there is a four-form G-flux, which consists of three-form fluxes and gauge

fluxes. In type IIB theory, these three-form fluxes produce a back-reaction in the

background geometry. It was shown in [37, 88] that the three-form fluxes induce

non-commutative geometric structures and also modify the texture of the Yukawa

couplings. F-theory in Fuzzy space also was studied in [89]. In this dissertation, we

shall turn off these three-form fluxes and focus only on the gauge fluxes. The U(1)X

gauge flux is able to break the gauge group SO(10) down to SU(5)× U(1)X . It was

shown in [17,47] that the spectral cover construction naturally encodes the unfolding

information of an E8 singularity as well as the gauge fluxes. In chapter III we shall

focus on the SU(4) spectral cover encoding the D5 singularity from unfolding E8. The

four-dimensional low-energy spectrum of the flipped SU(5) model is then determined

by the cover fluxes and the U(1)X flux.

The SU(4) spectral cover has interesting properties. From the subgroup decom-

position of E8, one can find that there is no explicit presentation of 10. In addition,

the cover associated to the 10 representation forms a double-curve and along this

curve there are co-dimension two singularities. After resolving the singularities along

the curve, one finds that the net chirality of the 10 curve vanishes [52]. Since the



7

background geometry generically determines the G flux, there are not many degrees of

freedom left to adjust the chirality on the 16 curve to create three-generation models.

These ideas motivate us to consider factorizing the spectral cover [53,54,57,65,66] to

introduce additional parameters for model building. We consider two possibilities of

splitting the SU(4) spectral cover: (3,1) and (2,2) factorizations. The curve of the

fundamental representation is then divided into two 16 curves, while generically the

10 curve is detached into three. However, due to the monodromy structure there are

only two 10 curves in the (3,1) case.

In semi-local SO(10) GUTs, there exists only the 161610 Yukawa coupling

from the enhancement to an E7 singularity. The GUT Higgs fields coming from the

adjoints or other representations such as 45, 54, or 120 are absent in the F-theory

construction. Therefore, the most convincing way to break the SO(10) gauge group

is turning on the U(1)X flux on the GUT surface S. This U(1)X gauge field can be

massless [3, 14, 16], so we can interpret the gauge group as the flipped SU(5) model

after turning on such a flux. With non-trivial restrictions to the curves, this U(1)X

flux generically modifies the net chirality of matter localized on these curves. We may

identify the flipped SU(5) superheavy Higgs fields with one of the 10+10 vector-like

pairs in the spectrum for further gauge breaking to MSSM.

In local models, an abelian or a non-abelian flux of the rank greater than two

may be turned on the bulk to break the gauge group [15]. Following this idea, an

MSSM model from breaking an SU(6) model by an U(1)×U(1) gauge flux has been

studied [38]. There are two kinds of rank three fluxes, U(1)3 and SU(2)×U(1)2, both

embedded in the E6 gauge group with commutants including the Standard Model

(SM) gauge structure. We are particularly interested in the second case containing

a non-abelian SU(2) gauge flux. In chapter IV we shall study the physics of the E6

GUT model [90] broken by the SU(2) × U(1)2 fluxes in F-theory. There are many
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breaking routes from E6 to a subgroup containing the SM gauge group, such as via

SO(10) and then SU(5), via SU(6), Pati-Salam, or trinification. These breaking

routes end up with two resultant gauge groups, G1 : SU(3) × SU(2)L × U(1)3 and

G2 : SU(3) × SU(2)L × SU(2) × U(1)2. These two subgroups are referred to as

extended MSSM models of rank 6. By suitable rotation of the U(1) gauge groups

and the third component of the SU(2) gauge group, one can show that these two

subgroups are equivalent. It was found [91] that the extended MSSM models can be

obtained from an E6 unification by an SU(2)× U(1)2 or U(1)3 flux5 in the heterotic

string models. In the literature, the gauge group obtained by breaking E6 can be

rank 5 or rank 6 depending on the flux turned on [91, 93–100]. When a non-abelian

flux SU(2) × U(1)2 is turned on, E6 is broken directly to a rank 5 model with a

gauge group SU(3)×SU(2)L×U(1)Y ×U(1)η after rearranging the U(1)s. Normally

rank 6 models have more degrees of freedom with which to solve the problems in

phenomenology. However, the U(1) gauge groups induce additional gauge bosons

and increase exotic fields. By giving a large VEV to one of the U(1) gauge groups,

the rank 6 models can be further reduced to the so-called effective rank 5 models. By

arranging the matter assignments, one can build many interesting low energy models,

such as SU(3) × SU(2) × U(1)Y × U(1)N . In the rank 6 model, U(1)N is inherited

from the third U(1) gaining a VEV, whereas in the rank 5 model, U(1)η is fixed and

does not possess additional symmetries.

One of the motivations to consider models with an additional gauge group U(1)′

as a gauge extension of the Standard Model (NMSSM) is for solving the µ-problem.

The minimum matter content for such a model with gauge group SU(3) × SU(2) ×

U(1)Y × U(1)′ includes the MSSM fermions, two Higgs doublets H and H̄, an SM

5For breaking scenarios via discrete Wilson lines in the context of orbifold con-
structions, please see [92] and references therein.
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singlet S with a non-zero U(1)′ charge, and exotic color triplets. The effective scale

of µ-term can arise from the coupling SHH̄ when the singlet S acquires a VEV.

The radiative breaking of the U(1)′ gauge symmetry is usually achieved by the large

Yukawa couplings between the singlet S and the exotic fields. This model can be

naturally embedded in a model with the E6 gauge group while the fields mentioned

above are included in the three families of 27-plets. For the desire of gauge unifica-

tion without introducing anomalies, a pair of Higgs-like doublets from one or more

additional (27+27) is also needed. Recently, the minimum MSSM from the E6 GUT

has been studied, for example, in [101–105], and phenomenology such as the neutrino

physics [106], leptogenesis [107], and baryogenesis [108] were also discussed.

In chapter IV we construct E6 GUT models in F-theory by using the spectral

cover construction and study their breaking down to the rank 5 extended MSSM by

turning on non-abelian fluxes. We only consider the case that the Higgs multiplets are

located on a different 27 due to the reasons of desiring for more degrees of freedom as

well as the singularity structure of Yukawa coupling in F-theory. We represent a few

examples corresponding to two spectral cover factorizations. In the example of (2, 1)

factorization in dP7, all the fermions are located on one 27 curve and the introduction

of fluxes for gauge breaking results in extra copies of quarks and leptons which are

exotic to the conventional three-generation E6 models. We find a better model in the

(1, 1, 1) factorization where the fermions are from two different 27 curves and there

is only a pair of vector-like triplet exotic field. Both examples in dP7 contain exotic

fields on the Higgs 27 curve, and we assume they obtain zero vacuum expectation

values.

The organization of the rest of this dissertation is as follows: In chapter II we

give a brief review of F-theory and build local MSSM models by using abelian U(1)2

fluxes. In chapter III we build semi-local flipped SU(5) models by using SU(4)
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spectral covers and U(1)X fluxes. In chapter IV we construct semi-local E6 GUTs

by using SU(3) spectral covers and non-abelian SU(2) × U(1)2 fluxes. We present

matter spectra for these models and discuss their phenomenology. A summary can

be found in chapter V.
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CHAPTER II

LOCAL F-THEORY GUT MODELS6

In this chapter we briefly review F-theory and local GUT model building. In partic-

ular, we analyze abelian gauge fluxes in local F-theory models with GS = SU(6) and

SO(10). For the case of GS = SO(10), there is a no-go theorem which states that for

an exotic-free spectrum, there are no solutions for U(1)2 gauge fluxes. We explicitly

construct the U(1)2 gauge fluxes with an exotic-free bulk spectrum for the case of

GS = SU(6). We also analyze the conditions for the curves supporting the given field

content and discuss non-minimal spectra of the MSSM with doublet-triplet splitting.

A. F-theory and ADE Singularities

F-theory is a twelve-dimensional geometric version of type IIB theory. The construc-

tion of F-theory is motivated by SL(2,Z) symmetry in type IIB action. The low

energy field content of type IIB theory contains a metric gMN of then-dimensional

space M10, an anti-symmetric two-tensor BMN , a scalar dilaton φ, and form fields of

even degrees Cp. The low energy type IIB action is as follows:

SIIB =

∫
M10

d10x
√
−gR− 1

2

∫
M10

[dτIIB ∧ ?dτ̄IIB
(ImτIIB)2

+
dG3 ∧ ?dG3

(ImτIIB)

+
1

2
F̃5 ∧ ?F̃5 + C3 ∧H3 ∧ F3

]
, (2.1)

where R is the scalar curvature of M10, ? is the Hodge dual in M10, τIIB = C0 + ie−φ,

H3 = dB2, Fp+1 = dCp, G3 = F3− τIIBH3, and F̃5 = F5− 1
2
C2 ∧H3 + 1

2
B2 ∧F3. This

6Portions of this chapter are reprinted from Journal of High Energy Physics, Vol-
ume 2010, Number 3, 6, Yu-Chieh Chung, Abelian Gauge Fluxes and Local Models
in F-Theory, Copyright 2010, with permission from SISSA.
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action has SL(2,Z) symmetry under the following transformations:

τIIB →
aτIIB + b

cτIIB + d
,

 H3

F3

 →

 d c

b a


 H3

F3

 , F̃5 → F̃5, gMN → gMN , (2.2)

where

 a b

c d

 ∈ SL(2,Z). The transformation acting on the axio-dilation τIIB is

exactly the modular transformation on the complex structure τT 2 of a torus, provided

that one identifies τIIB with τT 2 . This identification not only provides a geometric in-

terpretation of SL(2,Z) symmetry in type IIB theory, but also gave birth to F-theory.

Motivated by the identity τIIB = τT 2 , F-theory is defined on a twelve-dimensional

manifold which admits an elliptic fibration and is dual to type IIB theory on the

base manifold. To preserve supersymmetry, it is required that the twelve-dimensional

manifold has to be a Calabi-Yau manifold. With the identity τIIB = τT 2 , one can

deduce the relation between the singularities of an elliptic fibration and the locations

of seven-branes in type IIB theory. Various configurations of seven-brane locations

determine eight-dimensional world volume theories with different gauge groups. It

was shown [12] that the singularity of types An, Dn, and En correspond to SU(n+1),

SO(2n), and En gauge groups, respectively. Consider F-theory compactified on an

elliptic K3 surface with a base manifold P1. This surface can be described by the

Weierstrass form

y2 = x3 + fx+ g, (2.3)

where f and g are respectively sections of K−4
P1 , and K−6

P1 , and KP1 stands for the

canonical bundle of P1. The fiber degeneration happens at the locus of ∆ ≡ 4f 3 +

27g2 = 0 which generically determines twenty four locations of seven-branes with

A0 singularities. Generally the singularities of an elliptic fibration are classified by

the vanishing orders of f , g, and ∆ denoted by ord(f), ord(g), ord(∆), respectively.
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Singularity ord(f) ord(g) ord(∆) Gauge Group

An 0 0 n+ 1 SU(n+ 1)

Dn+4 > 2 3 n+ 6 SO(2n+ 8)

Dn+4 2 > 3 n+ 6 SO(2n+ 8)

E6 > 3 4 8 E6

E7 3 > 5 9 E7

E8 > 4 5 10 E8

Table I. ADE Singularities and Gauge Groups Correspondences.

A summary of the correspondence between ADE singularities and gauge groups of

eight-dimensional gauge theories on seven-branes is in Table I.

B. Local Geometry for Model Building

Consider F-theory compactified on an elliptically fibred Calabi-Yau fourfold, πX4 :

X4 → B3 with a section, which can be realized in the Weierstrass form:

y2 = x3 + fx+ g, (2.4)

where x and y are complex coordinates on the fiber, f and g are sections of the suitable

line bundles over the base manifold B3. The degrees of f and g are determined by

the Calabi-Yau condition, c1(X4) = 0. The degenerate locus of fibers is given by the

discriminant ∆ = 4f 3 + 27g2 = 0, which is in general a codimension one reducible

subvariety in the base B3. In local models, we focus on one component S of the

discriminant locus ∆ = 0, which will be wrapped by a stack of the seven-branes and
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supports the GUT model. In order to decouple from the gravitational sector, the

anti-canonical bundle K−1
S of the surface S is assumed to be ample. According to

the classification theorem of algebraic surfaces, the surface S is a del Pezzo surface

and birational to the complex projective plane P2 . There are ten del Pezzo surfaces:

P1 × P1, P2, and dPk, k = 1, 2, ..., 8, which are blow-ups of k generic points on P2.

In this dissertation we shall focus on the case of S = dPk, 2 6 k 6 8 with (−2)

2-cycles7. It was shown that there are ten families of del Pezzo surfaces: P1 × P1,

P2 and the blow-ups of P2 at k generical points, where 1 6 k 6 8 [49, 50]. In what

follows, we shall briefly review the geometry of the del Pezzo surfaces.

The del Pezzo surface S is an algebraic surface with ample anti-canonical bundle,

namely K−1
S > 0. It follows that h1(S,OS) = h2(S,OS) = 08 and that χ(S,OS) =∑2

i=0(−1)ihi(S,OS) = 1. According to the classification theorem of algebraic sur-

faces, these surfaces are birational to the complex projective plane P2. It was shown

in [14–16] that to obtain an exotic-free bulk spectrum, the gauge fluxes have to

correspond to the dual of (−2) 2-cycles in S. Notice that the Picard group of P2 is

generated by the hyperplane divisor h with intersection number h ·h = 1. Thus, there

is no (−2) 2-cycle in P2. The Picard group of dPk is generated by the hyperplane

divisor h, which is inherited from P2 and the exceptional divisors ei, i = 1, 2, .., k

from blow-ups with intersection numbers h ·h = 1, h · ei = 0, and ei · ej = −δij, ∀ i, j.

It is easy to see that dP1 contains no (−2) 2-cycles. It follows that the candidates

of the del Pezzo surfaces containing (−2) 2-cycles are dPk with 2 6 k 6 8. In what

follows, I shall focus on the del Pezzo surfaces dPk with 2 6 k 6 8. The canonical

divisor of dPk is KS = −3h+e1+, ...,+ek. The first term comes from KP2 = −3h and

7A (−2) 2-cycle is a 2-cycle with self-intersection number −2.
8It can be easily seen by the Kodaira vanishing theorem which states that for any

ample line bundle L, hi(S,KS ⊗ L) = 0, ∀i > 0.
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Mori Cone Generators Number

NE(dP2) ei, h− e1 − e2 3

NE(dP3) ei, h−
∑2

m=1 eim 6

NE(dP4) ei, h−
∑2

m=1 eim 10

NE(dP5) ei, h−
∑2

m=1 eim , 2h−
∑5

n=1 ein 16

NE(dP6) ei, h−
∑2

m=1 eim , 2h−
∑5

n=1 ein 27

NE(dP7) ei, h−
∑2

m=1 eim , 2h−
∑5

n=1 ein , 3h− 2ei −
∑6

p=1 eip 56

ei, h−
∑2

m=1 eim , 2h−
∑5

n=1 ein , 3h− 2ei −
∑6

p=1 eip , 240

NE(dP8) 4h− 2
∑3

q=1 eiq −
∑5

r=1 eir , 5h− 2
∑6

l=1 eil − er − es,

6h− 3ei − 2
∑7

m=1 eim

Table II. The generators of the Mori cone NE(dPk) for k = 2, ...8, where all indices

are distinct.

the rest comes from the blow-ups, which lead to the exceptional divisors e1, e2, ..., ek.

For local models in F-theory, the curves supporting matter fields are required to be

effective. Next we shall define effective curves and the Mori cone. Consider a com-

plex surface Y and its homology group H2(Y,Z). Let C be a holomorphic curve in

Y . Then [C] ∈ H2(Y,Z) is called an effective class if [C] is equivalent to C. The

Mori cone NE(Y ) is spanned by a countable number of generators of the effective

classes [109, 110]. The Mori cones NE(dPk) of the del Pezzo surfaces dPk are all

finitely generated [49]. To be concrete, we list the generators of the Mori cones of

dPk for 2 6 k 6 8 in Table II.
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With the Mori cone, one can easily check that the anti-canonical divisor −KS

is ample9. The dual of the Mori cone is the ample cone, denoted by Amp(dPk),

which is defined by Amp(dPk) = {ω ∈ H2(dPk,R)| ω · ζ > 0, ∀ζ ∈ NE(dPk)}. Each

ample divisor ω in the ample cone is associated with a Kähler class ωS. In this

chapter we choose the “large volume polarization”, namely ω = Ah−
∑k

i=1 akek with

A � ak > 0 [14, 15]. It is easy to check that this ω is ample. For the del Pezzo

surfaces S and a line bundle L over S, there are two useful theorems. One is the

Riemann-Roch theorem [109,110], which says that

χ(S,L) = 1 +
1

2
c1(L)2 − 1

2
c1(L) ·KS. (2.5)

Another one is the vanishing theorem ( [14], also see [111] ), which states that for a

non-trivial holomorphic vector bundle V over S satisfying the Hermitian Yang-Mills

equations (2.11),

H0
∂̄(S,V) = H2

∂̄(S,V) = 0. (2.6)

These two theorems simplify the calculation of the spectrum. Note that the vanishing

theorem (2.6) holds when V is a line bundle. It follows from Eq. (2.5) and Eq. (2.6)

that h1(S,L) = −χ(S,L) = −(1 − 1
2
c1(L) · KS + 1

2
c1(L)2). In this case h1(S,L) is

determined by intersection numbers c1(L) ·KS and c1(L)2.

In local models, we require that all curves be effective. That is, the homological

classes of the curves in H2(S,Z) can be written as non-negative integral combinations

of the generators of the Mori cone, namely Σ =
∑

β nβCβ with nβ ∈ Z>0
10. To

calculate the genus of the curve, we can apply the adjunction formula, which says

9One can apply the Nakai-Moishezon criterion which states that for any divisor
D, D is ample if and only if D ·D > 0 and D · Cα > 0, where Cα are generators of
the Mori cone.

10By abuse of notation, we use Σ to denote the homological class of the curve Σ.
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that for a smooth, irreducible curve of genus g, the following equation holds

Σ · (Σ +KS) = 2g − 2. (2.7)

In this chapter we shall choose genus zero curves to support the matter in GUTs or

MSSM, which means that all matter curves satisfy the equation Σ·(Σ+KS) = −2. To

calculate the spectrum from curves, we also need the Rieman-Roch theorem [109,110]

for algebraic curves. For an algebraic curve Σ, the Rieman-Roch theorem states that

for a line bundle L over Σ,

h0(Σ,L)− h1(Σ,L) = 1− g + c1(L). (2.8)

In particular, for the case of g = 0, we have

h0(Σ, K
1/2
Σ ⊗ L) =

 c1(L), if c1(L) > 0

0, if c1(L) < 0,
(2.9)

where K
1/2
Σ is the spin bundle of Σ and the Serre duality [109, 110] has been used.

Eq. (2.9) will be useful to calculate the spectrum from curves.

C. Matter Spectrum

In the vicinity of S, the geometry of X may be regarded as an ALE fibration over

S [112–117]. The singularity of the ALE fiberation determines the gauge group GS

of the eight-dimensional N = 1 super-Yang-Mills theory. Let us consider this eight-

dimensional N = 1 gauge theory compactified on S. To obtain unbroken N = 1

supersymmetry in four dimensions, it was shown [14–16] that a gauge connection A
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and an adjoint Higgs field Φ have to satisfy the following BPS equations:
FA ∧ ωS + i

2
[Φ†,Φ] = 0

F 2,0
A = F 0,2

A = 0

∂̄AΦ = 0,

(2.10)

where FA is the curvature two-form of A and ωS is a Kähler form of S. To solve BPS

equations, one may take V as a holomorphic vector bundle over S with the connection

A and Φ being holomorphic. The simplest solution for (A,Φ) is that Φ is diagonal

and V is a polystable bundle. In this case [Φ†,Φ] = 0 and Eq. (2.10) is then reduced

to the Hermitian Yang-Mills (HYM) equations

F 2,0
A = F 0,2

A = 0, FA ∧ ωS = 0. (2.11)

It was shown in [118,119] that a bundle admitting a hermitian connection solving Eq.

(2.11) is equivalent to a polystable bundle, which is guaranteed by the Donaldson-

Uhlebeck-Yau theorem. We shall in the next section define the stability of vector

bundles and briefly review some facts about the equivalence. In this case, the low

energy spectrum is therefore decoupled to Φ and only depends on the Hermitian Yang-

Mills connection A. The eigenvalues of Φ characterize the locations of intersecting

seven-branes. The unbroken gauge group in four dimensions is the commutant ΓS

of HS in GS, where HS is the structure group of the bundle V . The spectrum from

the bulk is given by the bundle-valued cohomology groups H i
∂̄
(S,Rk) and their duals,

where Rk = V, ∧kV , or EndV. The spectrum of the bulk transforms in the adjoint

representation of GS. The decomposition of adGS into representations of ΓS ×HS is

adGS =
⊕
k

ρk ⊗Rk, (2.12)
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where ρk and Rk are representations of ΓS and HS, respectively. The matter fields are

determined by the zero modes of the Dirac operator on S. It was shown in [15,16] that

the chiral and anti-chiral spectrum is determined by the bundle-valued cohomology

groups

H0
∂̄(S,R

∨
k )
∨ ⊕H1

∂̄(S,Rk)⊕H2
∂̄(S,R

∨
k )
∨ (2.13)

and

H0
∂̄(S,Rk)⊕H1

∂̄(S,R
∨
k )
∨ ⊕H2

∂̄(S,Rk) (2.14)

respectively, where ∨ stands for the dual bundle and Rk is the vector bundle on S

whose sections transform in the representation Rk of the structure group HS. By

the vanishing theorem of del Pezzo surfaces [15], the number of chiral fields ρk and

anti-chiral fields ρ∗k can be calculated by

nρk
= −χ(S,Rk) (2.15)

and

nρ∗k = −χ(S,R∨
k ), (2.16)

respectively. In particular, when V = L1 ⊕ L2 with structure group U(1) × U(1),

according to Eq. (2.15), the chiral spectrum of ρr,s is determined by

nρr,s = −χ(S, L1
r ⊗ Ls2), (2.17)

where r and s correspond respectively to the U(1)1 and U(1)2 charges of the repre-

sentations in the group theory decomposition. In order to preserve supersymmetry,

the gauge bundle V has to obey the HYM equations (2.11), which is equivalent to

the polystability conditions, namely

ωS ∧ c1(L1) = ωS ∧ c1(L2) = 0, (2.18)
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where ωS is the Kähler form on S. We will discuss the polystability conditions in

more detail in section E.

Another way to obtain chiral matter is from intersecting seven-branes along a

curve, which is a Riemann surface. Let S and S ′ be two components of the discrim-

inant locus ∆ with gauge groups GS and GS′ , respectively. The gauge group on the

curve Σ will be enhanced to GΣ, where GΣ ⊃ GS × GS′ . Therefore, chiral matter

appears as the bi-fundamental representations in the decomposition of adGΣ

adGΣ = adGS ⊕ adGS′ ⊕k (Uk ⊗ U ′k). (2.19)

As mentioned above, the presence ofHS andHS′ will breakGS×GS′ to the commutant

subgroup when non-trivial gauge bundles on S and S ′ with structure groups HS and

HS′ are turned on. Let Γ = ΓS×ΓS′ and H = HS×HS′ , the decomposition of U ⊗U ′

into irreducible representation is

U ⊗ U ′ =
⊕

k
(vk,Vk), (2.20)

where vk and Vk are representations of Γ andH, respectively. The light chiral fermions

in the representation vk are determined by the zero modes of the Dirac operator on

Σ. It is shown in [15,16] that the net number of chiral fields vk and anti-chiral fields

v∗k is given by

Nvk
≡ nvk

− nv∗k = χ(Σ, K
1/2
Σ ⊗ Vk), (2.21)

where Vk is the vector bundle whose sections transform in the representation Vk of

the structure group H. In particular, if HS and HS′ are U(1) × U(1) and U(1),

respectively, GΣ can be broken into GM × U(1)× U(1)× U(1) ⊂ GS × U(1). In this
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case, the bi-fundamental representations in Eq. (2.19) will be decomposed into

⊕
j

(σj)rj ,sj ,r′j
, (2.22)

where rj, sj and r′j correspond to the U(1) charges of the representations in the

group theory decomposition and σj are representations in GM . The representations

(σj)rj ,sj ,r′j
are localized on Σ [15,16,51] and as shown in [15,16], the generation number

of the representations (σj)rj ,sj ,r′j
and (σ̄j)−rj ,−sj ,−r′j can be calculated by

n(σj)rj ,sj ,r′
j

= h0(Σ, K
1/2
Σ ⊗ L

rj
1Σ ⊗ L

sj

2Σ ⊗ L′
r′j
Σ ) (2.23)

and

n(σ̄j)−rj ,−sj ,−r′
j

= h0(Σ, K
1/2
Σ ⊗ L

−rj
1Σ ⊗ L

−sj

2Σ ⊗ L′
−r′j
Σ ), (2.24)

where L1Σ ≡ L1|Σ, L2Σ ≡ L2|Σ, and L′Σ ≡ L′|Σ are the restrictions of the line

bundles L1, L2 and L′ to the curve Σ, respectively. Note that from Eq. (2.9) below, if

c1(L
rj
1Σ⊗L

sj

2Σ⊗L′
r′j
Σ ) = 0, thenN(σj)rj ,sj ,r′

j

= N(σ̄j)−rj ,−sj ,−r′
j

= 0. If c1(L
rj
1Σ⊗L

sj

2Σ⊗L′
r′j
Σ ) 6=

0, then only one of them is non-vanishing. Using these properties, we can solve the

doublet-triplet splitting problem with suitable line bundles. In addition to the analysis

of the spectrum, the pattern of Yukawa couplings also has been studied [14–16, 62].

By the vanishing theorem of del Pezzo surfaces [15,16], Yukawa couplings can form in

two different ways. In the first way, the coupling comes from the interaction between

two fields on the curves and one field on the bulk S. In the second way, all three

fields are localized on the curves which intersect at a point where the gauge group

Gp is further enhanced by two ranks. Recently, flavor physics in F-theory models has

been studied in [?, 20,22,23,28,29,36,37,62,70]. When one turns on bulk three-form

fluxes, the structure of the Yukawa couplings will be distorted and non-commutative

geometry will emerge [37]. The case of rk(V) = 1 and minimal SU(5) GUT model
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has been studied in [14–16]. In this article, we shall focus on the case that V is a

polystable bundle of rank two. We will study non-minimal cases, namely GS = SU(6)

and SO(10), with these rank two polystable bundles and the spectrum of the MSSM.

D. U(1) Gauge Fluxes

In this section we briefly review some ingredients of SU(5) GUT Models with GS =

SU(5), SU(10) and SU(6). In these models, we introduce a non-trivial U(1) gauge

flux to break gauge group GS. We are primarily interested in doublet-triple splitting

and an exotic-free spectrum of the MSSM. From now on, unless otherwise stated, the

del Pezzo surface S is assumed to be dP8.

1. GS = SU(5)

Before discussing the case of GS = SO(10), SU(6), let us review the case of GS =

SU(5) [14–16]. On the bulk, we consider the following breaking pattern [120]:

SU(5) → SU(3)× SU(2)× U(1)S

24 → (8,1)0 + (1,3)0 + (3,2)−5 + (3̄,2)5 + (1,1)0.
(2.25)

The bulk zero modes are given by

(3,2)−5 ∈ H
0
∂̄(S, L

5)∨ ⊕H1
∂̄(S, L

−5)⊕H2
∂̄(S, L

5)∨ (2.26)

(3̄,2)5 ∈ H
0
∂̄(S, L

−5)∨ ⊕H1
∂̄(S, L

5)⊕H2
∂̄(S, L

−5)∨, (2.27)

where ∨ stands for the dual and L is the supersymmetric line bundle associated with

U(1)S. Let n(A,B)c
be the number of the fields in the representation (A,B)c under

SU(3)×SU(2)×U(1)S, where c is the charge of U(1)S. Note that (3,2)−5 and (3̄,2)5

are exotic fields in the MSSM. In order to eliminate the exotic fields (3,2)−5 and

(3̄,2)5, it is required that χ(S, L±5) = 0. It follows from the Riemann-Roch theorem
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(2.5) that c1(L
±5)2 = −2 and c1(L

±5) correspond to a root of E8, ei−ej, i 6= j, which

leads to a fractional line bundle11 L = OS(ei−ej)±1/5 [14–16]. In this case, all matter

fields must come from the curves. Now we turn to the spectrum from the curves.

In general, the gauge groups on the curves will be enhanced at least by one rank.

With GS = SU(5), the gauge groups on the curves GΣ can be enhanced to SU(6) or

SO(10) [51]. We first focus on the curves supporting the matter fields in an SU(5)

GUT. To obtain complete matter multiples of the SU(5) GUT, it is required that

LΣ = OΣ and L′Σ 6= OΣ, where L′ is a line bundle associated with U(1)′. Consider

the following breaking patterns:

SU(6) → SU(5)× U(1)′

35 → 240 + 10 + 56 + 5̄−6

(2.28)

SO(10) → SU(5)× U(1)′

45 → 240 + 10 + 104 + 10−4.
(2.29)

From the patterns (2.28) and (2.29), it can be seen by counting the dimension of

the adjoint representations that matter fields 56 and 5̄−6 are localized on the curves

with GΣ = SU(6) while 104 and 10−4 are localized on the curve with GΣ = SO(10).

The Higgs fields localize on the curves with GΣ = SU(6) as well. Since on the

matter curves LΣ is required to be trivial, the only line bundle used to determine the

spectrum is L′Σ. With non-trivial L′Σ, it is not difficult to engineer three copies of the

matter fields, 3× 56, 3× 5̄−6, and 3× 104. In order to get doublet-triplet splitting,

it is required that LΣ 6= OΣ and L′Σ 6= OΣ. With non-trivial LΣ and L′Σ, GΣ will be

11In this chapter, all indices appearing in the divisors will be assumed to be distinct
unless otherwise stated.
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Q uc dc ec L h̄ h

(3,2)1,4 (3̄,1)−4,4 (3̄,1)2,−6 (1,1)6,4 (1, 2̄)−3,−6 (1,2)3,6 (1, 2̄)−3,−6

Table III. Field content of the MSSM from GS = SU(5).

broken into Gstd × U(1)′. Consider the following breaking patterns,

SU(6) → SU(3)× SU(2)× U(1)S × U(1)′

35 → (8,1)0,0 + (1,3)0,0 + (3,2)−5,0 + (3̄,2)5,0 + (1,1)0,0

+(1,1)0,0 + (1,2)3,6 + (3,1)−2,6 + (1, 2̄)−3,−6 + (3̄,1)2,−6

(2.30)

SO(10) → SU(3)× SU(2)× U(1)S × U(1)′

45 → (8,1)0,0 + (1,3)0,0 + (3,2)−5,0 + (3̄,2)5,0 + (1,1)0,0

+(1,1)0,0 + [(3,2)1,4 + (3̄,1)−4,4 + (1,1)6,4 + c.c].

(2.31)

From the patterns (2.30) and (2.31), the field content of the MSSM is identified as

shown in Table III.

The superpotential is as follows:

WMSSM ⊃ Quch̄+Qdch+ Lech+ · · · . (2.32)

Note that the U(1)S in the patterns is consistent with U(1)Y in the MSSM and that

this is the only way to consistently identify the fields in the patterns (2.30) and (2.31)

with the MSSM. Now we are going to analyze the conditions for the curves to support

the field content in Table III. We choose the curve ΣSU(6) to be a genus zero curve

and let (m1,m2) = (n(3̄,1)2,−6
, n(1,2̄)−3,−6

), where n(A,B)a,b
is the number of the fields in

the representation (A,B)a,b under SU(3)× SU(2)× U(1)S × U(1)′, and a, b are the

charges of U(1)S and U(1)′, respectively. Note that (3,1)−2,6 is exotic in the MSSM.
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Multiplet (m1,m2) Conditions Σ

3× dc (3, 0) (ei − ej) · Σ = −3 5h− 4ej − ei

3× L (0, 3) (ei − ej) · Σ = 3 4h+ 2ej − ei

1× h (0, 1) (ei − ej) · Σ = 1 h− ei − el

1× h̄ (0,-1) (ei − ej) · Σ = −1 h− ej − es

Table IV. Field content of the SU(6) Curve from GS = SU(5).

To avoid the exotic, we require that m1 ∈ Z>0. Given (m1,m2), the homological class

of the curve ΣSU(6) has to satisfy the following equation:12

(ei − ej) · ΣSU(6) = m2 −m1, (2.33)

where L = OS(ej − ei)1/5 has been used. By Eq. (2.33), we can engineer three copies

of dR, three copies of LL, one copy of Hd, and one copy of Hu on the individual curves

as shown in Table IV.

Note that all field configurations in Table IV obey the conditions, LΣ 6= OΣ and

L′Σ 6= OΣ. In local models, the curves are required to be effective. With Table II, it

is not difficult to check that all curves in Table IV are effective. The results in Table

IV show that the triplet and double states in 56 or 5̄−6 of SU(5) can be separated by

the restrictions of the supersymmetric line bundles to the curves. Next let us turn to

the curve with GΣ = SO(10). Set (l1, l2, l3) = (n(3,2)1,4
, n(3̄,1)−4,4

, n(1,1)6,4
). To avoid

exotics in the MSSM, it is required that lk ∈ Z>0, k = 1, 2, 3. Given (l1, l2, l3), the

12LΣSU(6)
= OΣSU(6)

( (m1−m2)
5

) and L′ΣSU(6)
= OΣSU(6)

(− (3m1+2m2)
30

)
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curve ΣSO(10) has to satisfy the following equations:13 (ei − ej) · ΣSO(10) = l2 − l1

l3 = 2l1 − l2.
(2.34)

To obtain the minimal spectrum of the MSSM, we require that l1, l2 6 3. Taking the

conditions, LΣ 6= OΣ and L′Σ 6= OΣ into account, we have the following configurations:

(l1, l2, l3) =

{
(1, 2, 0), (1, 0, 2), (2, 1, 3), (2, 3, 1)

}
. (2.35)

From the configurations in (2.35), it is clear that unlike with GΣ = SU(6), it is

impossible to engineer the matter fields 3 × Q, 3 × uc, and 3 × ec on the individual

curves with GΣ = SO(10), which correspond to (l1, l2, l3) = (3, 0, 0), (0, 3, 0), and

(0, 0, 3), respectively, without extra matter fields. Fortunately, in this case all Higgs

fields come from ΣSU(6) instead of ΣSO(10). Although the field content on ΣSO(10) is

more complicated than that on ΣSU(6), we can engineer the spectrum of the MSSM

as shown in Table V.

From Table V, we find that for the case of GS = SU(5), we can get an exotic-

free, minimal spectrum of the MSSM with doublet-triplet splitting. In addition, by

arranging h̄ and h on different curves, rapid proton decay can be avoided [14–16].

2. GS = SO(10)

For the case of GS = SO(10) [33], we first look at the spectrum from the bulk.

Consider the following breaking pattern,

SO(10) → SU(5)× U(1)S

45 → 240 + 10 + 104 + 10−4.
(2.36)

13LΣSO(10)
= OΣSO(10)

( (l1−l2)
5

) and L′ΣSO(10)
= OΣSO(10)

( (4l1+l2)
20

)
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Multiplet Curve Σ gΣ LΣ L′Σ

1×Q+ 2× uc Σ1
SO(10) 2h− e2 − e3 0 OΣ1

SO(10)
(−1)1/5 OΣ1

SO(10)
(1)3/10

2×Q+ 1× uc

Σ2
SO(10) 2h− e1 − e4 0 OΣ2

SO(10)
(1)1/5 OΣ2

SO(10)
(1)9/20

+3× ec

3× dc Σ1
SU(6) 5h− 4e1 − e2 0 OΣ1

SU(6)
(1)3/5 OΣ1

SU(6)
(−1)3/10

3× L Σ2
SU(6) 4h+ 2e1 − e2 0 OΣ2

SU(6)
(−1)3/5 OΣ2

SU(6)
(−1)1/5

1× h Σd
SU(6) 2h− e2 − e4 0 OΣd

SU(6)
(−1)1/5 OΣd

SU(6)
(−1)1/15

1× h̄ Σu
SU(6) h− e1 − e3 0 OΣu

SU(6)
(1)1/5 OΣu

SU(6)
(1)1/15

Table V. A minimal spectrum of the MSSM from GS = SU(5), where

L = OS(e1 − e2)
1/5.

The bulk zero modes are determined by

104 ∈ H0
∂̄(S, L

−4)∨ ⊕H1
∂̄(S, L

4)⊕H2
∂̄(S, L

−4)∨ (2.37)

10−4 ∈ H0
∂̄(S, L

4)∨ ⊕H1
∂̄(S, L

−4)⊕H2
∂̄(S, L

4)∨. (2.38)

To eliminate 104 and 10−4, it is required that χ(S, L±4) = 0, which give rise to the

fractional line bundles L = OS(ei − ej)
±1/4. In this case, all chiral fields must come

from the curves. Let us turn to the spectrum from the curves. With GS = SO(10),

the gauge groups on the curve can be enhanced to GΣ = SO(12) or GΣ = E6. The
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Multiplet Curve Σ gΣ LΣ L′Σ

3× 10−3,−1
14 Σ1

E6
4h+ 2e1 − e2 0 OΣ1

E6
(−1)3/4 OΣ1

E6
(−1)3/4

3× 5̄−3,3
15 Σ2

E6
5h+ 3e2 − e5 0 OΣ2

E6
(1)3/4 OΣ2

E6
(−1)1/4

1× 5−2,2 Σ1
SO(12) 3h+ e3 − e1 0 OΣ1

SO(12)
(1)1/4 OΣ1

SO(12)
(−1)1/4

1× 5̄2,−2 Σ2
SO(12) h− e2 − e3 0 OΣ2

SO(12)
(−1)1/4 OΣ2

SO(12)
(1)1/4

Table VI. An SU(5) GUT model from GS = SO(10), where L = OS(e1 − e2)
1/4.

breaking chains and matter content from the enhanced adjoints of the curves are

SO(12) → SO(10)× U(1)′ → SU(5)× U(1)′ × U(1)S

66 → 450 + 10 → 240,0 + 10,0 + 100,4 + 100,−4 + 10,0

+102 + 10−2 +52,2 + 5̄2,−2 + 5̄−2,−2 + 5−2,2

(2.39)

E6 → SO(10)× U(1)′ → SU(5)× U(1)′ × U(1)S

78 → 450 + 10 → 240,0 + 10,0 + 100,4 + 100,−4 + 10,0

+16−3 + 163 +(10−3,−1 + 5̄−3,3 + 1−3,−5 + c.c.).

(2.40)

Note that the U(1)S charges of the fields localized on the curves should be conserved

in each Yukawa coupling. The superpotential is as follows:

W ⊃ 10−3,−110−3,−15−2,2 + 10−3,−15̄−3,35̄2,−2 + · · · . (2.41)

In order to get complete matter multiplets in the SU(5) GUT, we require that

LΣ and L′Σ are both non-trivial. With non-trivial LΣ and L′Σ, we can engineer field

14With six additional singlets
15With three additional singlets
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content with minimal singlets as shown in Table VI [33].

However, because of the lack of extra U(1) gauge fluxes or Wilson lines, the

doublet-triplet splitting is not achievable in the present case. This motivates us to

consider supersymmetric U(1)2 fluxes.

3. GS = SU(6)

To look at the spectrum from the bulk , we consider the following breaking pattern,

SU(6) → SU(5)× U(1)S

45 → 240 + 10 + 56 + 5̄−6.
(2.42)

The bulk zero modes are given by

56 ∈ H0
∂̄(S, L

−6)∨ ⊕H1
∂̄(S, L

6)⊕H2
∂̄(S, L

−6)∨ (2.43)

5̄−6 ∈ H0
∂̄(S, L

6)∨ ⊕H1
∂̄(S, L

−6)⊕H2
∂̄(S, L

6)∨. (2.44)

To eliminate 56 and 5−6, it is required that χ(S, L±6) = 0, which gives rise to the

fractional line bundles L = OS(ei−ej)±1/6 [33]. In this case, all chiral fields must come

from the curves. Let us turn to the spectrum from the curves. With GS = SU(6),

the gauge groups on the curve can be enhanced to GΣ = SU(7), GΣ = SO(12) or

GΣ = E6.

The breaking chains and matter content from the enhanced adjoints of the curves

are

SU(7) → SU(6)× U(1)′ → SU(5)× U(1)′ × U(1)S

48 → 350 + 10 + 6−7 + 6̄7 → 240,0 + 10,0 + 50,6 + 5̄0,−6 + 10,0

+5−7,1 + 1−7,−5 + 5̄7,−1 + 17,5

(2.45)
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Multiplet Curve Σ gΣ LΣ L′Σ

3× 102,2 Σ1
SO(12) 4h+ 2e2 − e1 0 OΣ1

SO(12)
(1)1/2 OΣ1

SO(12)
(1)

3× 5̄7,−1 Σ1
SU(7) 5h+ 3e1 − e6 0 OΣ1

SU(7)
(−1)1/2 OΣ1

SU(7)
(1)5/14

1× 52,−4 Σ2
SO(12) 3h+ e1 − e3 0 OΣ2

SO(12)
(−1)1/6 OΣ2

SO(12)
(1)1/6

1× 5̄7,−1 Σ2
SU(7) h− e2 − e3 0 OΣ2

SU(7)
(−1)1/6 OΣ2

SU(7)
(1)5/42

Table VII. An SU(5) GUT model from GS = SU(6), where L = OS(e1 − e2)
1/6.

SO(12) → SU(6)× U(1)′ → SU(5)× U(1)′ × U(1)S

66 → 350 + 10 + 152 + 15−2 → 240,0 + 10,0 + 50,6 + 5̄0,−6 + 10,0

+102,2 + 52,−4 + 10−2,−2 + 5̄−2,4

(2.46)

E6 → SU(6)× U(1)′ → SU(5)× U(1)′ × U(1)S

78 → 350 + 10 + 1±2 → 240,0 + 2× 10,0 + 50,6 + 5̄0,−6 + 1±2,0

+201 + 20−1 +101,−3 + 101,3 + 10−1,−3 + 10−1,3.

(2.47)

In this case, the U(1)S charges of the fields localized on the curves should be conserved

in each Yukawa coupling. The superpotential is:

W ⊃ 102,2102,252,−4 + 102,25̄7,−15̄7,−1 + · · · . (2.48)

With non-trivial LΣ and L′Σ, we can engineer configurations of the curves with desired

field content but without any exotic fields as shown in Table VII [33].

Although in this case one can obtain an exotic-free spectrum in an SU(5) GUT,

the doublet-triplet splitting can not be achieved, similar to the case of GS = SO(10).

Again this motivates us to consider supersymmetric U(1)2 gauge fluxes. On the

other hand, to get the spectrum of the MSSM, we also need some mechanisms to
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break SU(5) ⊂ GΣ into SU(3) × SU(2) × U(1)Y . One possible way is to consider

supersymmetric U(1)2 gauge fluxes instead of U(1) fluxes. These supersymmetric

U(1)2 gauge fluxes correspond to polystable bundles of rank two with structure group

U(1)2. In the next section we shall discuss polystable bundles of rank two.

E. Gauge Bundles

In this section we shall briefly review the notion of stability of the vector bundle and

the relation between polystable bundles and the HYM equations. In addition, we also

discuss the semi-stable bundles of rank two, in particular, polystable bundles over S.

1. Stability

Let E be a holomorphic vector bundle over a projective surface S and [ωS] be the dual

ample divisor of Kähler form ωS in the Kähler cone. The slope µ[ωS ](E) is defined by

µ[ωS ](E) =

∫
S
c1(E) ∧ ωS
rk(E)

. (2.49)

The vector bundle E is (semi)stable if for every subbundle or subsheaf E with rk(E) <

rk(E), the following inequality holds

µ[ωS](E) < (6)µ[ωS ](E). (2.50)

Assume that E = ⊕k
i Ei, then E is polystable if each Ei is a stable bundle with

µ[ωS ](E1) = µ[ωS ](E2) = ... = µ[ωS ](Ek) [118, 119]. It is clear that every line bundle

is stable and polystable bundle is a type of semistable bundle. The Donaldson-

Uhlenbeck-Yau theorem [118,119] states that a (split) irreducible holomorphic bundle

E admits a hermitian connection satisfying Eq. (2.11) if and only if E is (poly)stable.

As mentioned in section 2.1, to preserve supersymmetry, the connection of the bundle



32

has to obey the HYM equations (2.11), which is equivalent to the polystable bundle.

In particular, when the bundle is split, supersymmetry requires that the bundle is

polystable. In the next section we primarily focus on polystable bundles of rank two

over S.

2. Rank Two Polystable Bundle

Here we are interested in the case S = dPk. Consider the case of V = L1 ⊕ L2,

where L1 and L2 are line bundles over S and set Li = OS(Di), i = 1, 2, where Di are

divisors in S. Before writing down a more explicit expression for the bundle V , we

first consider the stability condition of the polystable bundle. Recall that the bundle

V is polystable if µ[ωS ](L1) = µ[ωS ](L2) where µ is the slope defined by Eq. (2.49).

To solve the HYM equation Eq. (2.18), it is required that µ[ωS ](L1) = µ[ωS ](L2) = 0.

It follows that c1(L1) ∧ ωS = c1(L2) ∧ ωS = 0 or equivalently,

D1 · [ωS] = D2 · [ωS] = 0. (2.51)

In particular, we choose “large volume polarization”, namely [ωS] = Ah−
∑k

i=1 aiei,

A� ai > 0 [14,15]. Note that Eq. (2.51) is exactly the BPS equations, c1(Li)∧ωS =

0, i = 1, 2 for supersymmetric line bundles. So the polystable bundle V is a direct

sum of the supersymmetric line bundles L1 and L2. In section 5.2 we shall apply

physical constraints to the polystable bundle that satisfies the Eq. (2.51) and derive

the explicit expression of the U(1)2 gauge fluxes L1 and L2.

3. Supersymmetric U(1)2 Gauge Fluxes

Each supersymmetric U(1)2 gauge flux configuration contains two fractional line bun-

dles, which may not be well-defined themselves. It is natural to ask whether it makes

sense for these configurations to be polystable vector bundles of rank two. In what
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follows, we shall show that supersymmetric U(1)2 gauge fluxes can be associated with

polystable vector bundles of rank two. Let us consider the case of GS = SU(6) and the

breaking pattern through SU(6) → SU(5)×U(1) → SU(3)×SU(2)×U(1)1×U(1)2.

Let L1 and L2 be two supersymmetric line bundles, which associate to U(1)1 and

U(1)2, respectively. Write Li = OS(Di), i = 1, 2, where Di are in general “Q-

divisors” which means that Di are the linear combinations of the divisors in S with

rational coefficients. Now we consider the rotation of the U(1) charges, U(1)1 and

U(1)2, given by

Ũ = MU (2.52)

with U = (U(1)1, U(1)2)
t, Ũ = (Ũ(1)1, Ũ(1)2)

t, and M ∈ GL(2,Q), where t represents

the transpose. We define L̃1 and L̃2 to be two line bundles which associate to Ũ(1)1

and Ũ(1)2, respectively and write L̃i = OS(D̃i), i = 1, 2. Let (A,B)c,d and (A,B)c̃,d̃

be representations in the breaking patten SU(6) → SU(3)× SU(2)× U(1)1 × U(1)2

and SU(6) → SU(3)×SU(2)×Ũ(1)1×Ũ(1)2, respectively. Up to a linear combination

of U(1) charges, we have n(A,B)c,d
= n(A,B)

c̃,d̃
, which requires that the corresponding

divisors be transferred as follows:

D̃ = (M−1)tD, (2.53)

where D = (D1, D2)
t, D̃ = (D̃1, D̃2)

t. In general, D̃i are Q-divisors via the rotation

(2.53). However, it is possible to get integral divisors D̃i by a suitable choice of the

matrix M = M∗. Once this is done, we obtain two corresponding line bundles, L̃1

and L̃2 since D̃i ∈ H2(S,Z), i = 1, 2. Moreover, if µ[ωS ](L̃1) = µ[ωS ](L̃2) = 0, we can

construct the polystable bundle V = L̃1⊕L̃2. Note that when Li are supersymmetric,

which means that they satisfy the BPS condition (2.51), by the transformation (2.53)

we have µ[ωS ](L̃1) = µ[ωS ](L̃2) = 0. As a result, each supersymmetric U(1)2 gauge
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fluxes is associated with a polystable vector bundle of rank two if the suitable matrix

M∗ exists. To be concrete, let us consider the case of GS = SU(6). The breaking

pattern via Gstd × U(1) is as follows:

SU(6) → SU(3)× SU(2)× U(1)1 × U(1)2

35 → (8,1)0,0 + (1,3)0,0 + (3,2)−5,0 + (3̄,2)5,0 + (1,1)0,0

+(1,1)0,0 + (1,2)3,6 + (3,1)−2,6 + (1, 2̄)−3,−6 + (3̄,1)2,−6.

(2.54)

Let L1 and L2 be the supersymmetric line bundles associated to U(1)1 and U(1)2,

respectively. Note that U(1)1 can be identified as U(1)Y in the MSSM. The exotic-

free spectrum from the bulk requires that L1 and L2 are fractional line bundles. The

details could be found in section 5.2. Now consider the rotation

M =

 −1
5

1
10

0 1
6

 . (2.55)

Then we obtain

SU(6) → SU(3)× SU(2)× U(1)1 × U(1)2

35 → (8,1)0,0 + (1,3)0,0 + (3,2)1,0 + (3̄,2)−1,0 + (1,1)0,0

+(1,1)0,0 + (1,2)0,1 + (3,1)1,1 + (1, 2̄)0,−1 + (3̄,1)−1,−1

(2.56)

with L̃1 = L−5
1 and L̃2 = L3

1 ⊗ L6
2. It is clear that n(A,B)c,d

= n(A,B)
c̃,d̃

with respect to

(2.54) and (2.56). It turns out that L̃1 and L̃2 are truly line bundles. Furthermore,

one can show that BPS condition (2.51) for (L1, L2) is equivalent to the stability

conditions of the polystable bundle V = L̃1⊕ L̃2 by the transformation (2.53). In this

case, we know that supersymmetric U(1)2 gauge fluxes are associated with polystable

bundles of rank two with the same number of zero modes charged under U(1)2. With

this correspondence, we can avoid talking about the gauge bundle defined by the
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direct sum of two fractional line bundles. In other words, a supersymmetric U(1)2

gauge flux (L1, L2) is well-defined in the sense that it can be associated with a well-

defined polystable bundle of rank two. Form now on, we shall simply use the phrase

U(1)2 gauge fluxes in stead of polystable bundle in the following sections.

F. U(1)2 Gauge Fluxes

In this section we consider U(1)2 gauge fluxes in local F-theory models, in particular

we focus on the case of GS = SO(10) and SU(6). With the gauge fluxes, GS can be

broken into Gstd×U(1). For the case of GS = SO(10), there is a no-go theorem which

states that there do not exist U(1)2 gauge fluxes such that the spectrum is exotic-free.

This result was first shown in [15]. We review the case of GS = SO(10) in subsection 1

for completeness. For the case of GS = SU(6), with appropriate physical conditions,

we shall show that there are finitely many supersymmetric U(1)2 gauge fluxes with an

exotic-free bulk spectrum and we obtain the explicit expression of these gauge fluxes

as well. With these explicit flux configurations, we study doublet-triplet splitting and

the spectrum of the MSSM. The details can be found in subsection 2 and 3.

1. GS = SO(10)

a. U(1)2 Gauge Flux Configurations

The maximal subgroups of SO(10) which contain Gstd and the consistent MSSM

spectrum are as follows [15]:

SO(10) ⊃ SU(5)× U(1) ⊃ Gstd × U(1) (2.57)

SO(10) ⊃ SU(2)× SU(2)× SU(4) ⊃ Gstd × U(1) (2.58)
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For the latter, one of SU(2) groups needs to be broken into U(1) × U(1) to get

the consistent U(1)Y charge in the MSSM. It follows from the patterns (2.57) and

(2.58) that up to linear combinations of the U(1) charges in the breaking patterns,

it is enough to analyze the case of U(1)2 gauge fluxes which breaks SO(10) via the

sequence SO(10) → SU(5)×U(1) → Gstd×U(1). The breaking pattern is as follows:

SO(10) → SU(3)× SU(2)× U(1)1 × U(1)2

45 → (8,1)0,0 + (1,3)0,0 + (3,2)−5,0 + (3̄,2)5,0 + (1,1)0,0

+(1,1)0,0 + (1,1)6,4 + (3̄,1)−4,4 + (3,2)1,4 + (1,1)−6,−4

+(3,1)4,−4 + (3̄,2)−1,−4.

(2.59)

Note that U(1)1 can be identified with U(1)Y in the MSSM. Let L̃3 and L̃4 be non-

trivial supersymmetric line bundles associated with U(1)1 and U(1)2, respectively, in

the breaking pattern (2.59). The bulk zero modes are given by

(3,2)−5,0 ∈ H
0
∂̄(S, L̃

5
3)
∨ ⊕H1

∂̄(S, L̃
−5
3 )⊕H2

∂̄(S, L̃
5
3)
∨ (2.60)

(3̄,2)5,0 ∈ H
0
∂̄(S, L̃

−5
3 )∨ ⊕H1

∂̄(S, L̃
5
3)⊕H2

∂̄(S, L̃
−5
3 )∨ (2.61)

(3,2)1,4 ∈ H
0
∂̄(S, L̃

−1
3 ⊗ L̃−4

4 )∨ ⊕H1
∂̄(S, L̃

1
3 ⊗ L̃4

4)⊕H2
∂̄(S, L̃

−1
3 ⊗ L̃−4

4 )∨ (2.62)

(3̄,2)−1,−4 ∈ H
0
∂̄(S, L̃

1
3 ⊗ L̃4

4)
∨ ⊕H1

∂̄(S, L̃
−1
3 ⊗ L̃−4

4 )⊕H2
∂̄(S, L̃

1
3 ⊗ L̃4

4)
∨ (2.63)

(3,1)4,−4 ∈ H
0
∂̄(S, L̃

−4
3 ⊗ L̃4

4)
∨ ⊕H1

∂̄(S, L̃
4
3 ⊗ L̃−4

4 )⊕H2
∂̄(S, L̃

−4
3 ⊗ L̃4

4)
∨ (2.64)

(3̄,1)−4,4 ∈ H
0
∂̄(S, L̃

4
3 ⊗ L̃−4

4 )∨ ⊕H1
∂̄(S, L̃

−4
3 ⊗ L̃4

4)⊕H2
∂̄(S, L̃

4
3 ⊗ L̃−4

4 )∨, (2.65)

(1,1)6,4 ∈ H
0
∂̄(S, L̃

−6
3 ⊗ L̃−4

4 )∨ ⊕H1
∂̄(S, L̃

6
3 ⊗ L̃4

4)⊕H2
∂̄(S, L̃

−6
3 ⊗ L̃−4

4 )∨ (2.66)

(1,1)−6,−4 ∈ H
0
∂̄(S, L̃

6
3 ⊗ L̃4

4)
∨ ⊕H1

∂̄(S, L̃
−6
3 ⊗ L̃−4

4 )⊕H2
∂̄(S, L̃

6
3 ⊗ L̃4

4)
∨. (2.67)

To avoid exotics, it is clear that the line bundles L̃5
3, L̃

1
3 ⊗ L̃4

4, L̃
4
3 ⊗ L̃−4

4 , and L̃6
3 ⊗ L̃4

4

cannot be trivial. Let n(A,B)a,b
be the number of the fields in the representation



37

(A,B)a,b under SU(3) × SU(2) × U(1)1 × U(1)2, where a and b are the charges

of U(1)1 and U(1)2, respectively. By the vanishing theorem (2.6), the exotic-free

spectrum requires that

n(3,2)−5,0
= −χ(S,E) = 0 (2.68)

n(3̄,2)5,0
= −χ(S,E−1) = 0 (2.69)

n(3̄,2)−1,−4
= −χ(S, F−1) = 0 (2.70)

n(3,1)4,−4
= −χ(S,E−1 ⊗ F−1) = 0 (2.71)

n(1,1)−6,−4
= −χ(S,E ⊗ F−1) = 0. (2.72)

We define

n(3,2)1,4
= −χ(S, F ) ≡ β1, (2.73)

n(3̄,1)−4,4
= −χ(S,E ⊗ F ) ≡ β2 (2.74)

n(1,1)6,4
= −χ(S,E−1 ⊗ F ) ≡ β3, (2.75)

where E = L̃−5
3 , F = L̃1

3 ⊗ L̃4
4 and βi ∈ Z>0, i = 1, 2, 3. By Eqs. (2.68)-(2.70), and

Eq. (2.73), we obtain the following equations

c1(E)2 = −2

c1(F )2 = −β1 − 2

c1(E) ·KS = 0

c1(F ) ·KS = β1.

(2.76)

Then by Eq. (4.105) and Eq. (2.71), we obtain

c1(E) · c1(F ) = 1. (2.77)
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On the other hand, using Eq. (4.105) and Eq. (2.72), we have

c1(E) · c1(F ) = −1, (2.78)

which leads to a contradiction. Therefore, there do not exist solutions for given

βi ∈ Z>0, i = 1, 2, 3 such that Eqs. (2.68)-(2.75) hold. This is a no-go theorem

shown in [15]. Due to this no-go theorem, we are not going to study this case further.

In the next section we turn to the case of GS = SU(6).

2. GS = SU(6)

a. U(1)2 Gauge Flux Configurations

The maximal subgroups of SU(6) which contain Gstd and the consistent MSSM spec-

trum are as follows [15]:

SU(6) ⊃ SU(5)× U(1) ⊃ Gstd × U(1) (2.79)

SU(6) ⊃ SU(2)× SU(4)× U(1) ⊃ Gstd × U(1) (2.80)

SU(6) ⊃ SU(3)× SU(3)× U(1) ⊃ Gstd × U(1). (2.81)

It follows from Eqs. (2.79)-(2.81) that up to linear combinations of the U(1) charges

in the breaking patterns, it is enough to analyze the case of U(1)2 gauge fluxes which

break SU(6) via the sequence SU(6) → SU(5)× U(1) → Gstd × U(1). The breaking

pattern is as follows:

SU(6) → SU(3)× SU(2)× U(1)1 × U(1)2

35 → (8,1)0,0 + (1,3)0,0 + (3,2)−5,0 + (3̄,2)5,0 + (1,1)0,0

+(1,1)0,0 + (1,2)3,6 + (3,1)−2,6 + (1, 2̄)−3,−6 + (3̄,1)2,−6.

(2.82)
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Note that U(1)1 is consistent with U(1)Y in the MSSM. Let L1 and L2 be non-trivial

supersymmetric line bundles associated with U(1)1 and U(1)2, respectively, in the

breaking pattern (2.82). The bulk zero modes are given by

(3,2)−5,0 ∈ H
0
∂̄(S, L

5
1)
∨ ⊕H1

∂̄(S, L
−5
1 )⊕H2

∂̄(S, L
5
1)
∨ (2.83)

(3̄,2)5,0 ∈ H
0
∂̄(S, L

−5
1 )∨ ⊕H1

∂̄(S, L
5
1)⊕H2

∂̄(S, L
−5
1 )∨ (2.84)

(1,2)3,6 ∈ H
0
∂̄(S, L

−3
1 ⊗ L−6

2 )∨ ⊕H1
∂̄(S, L

3
1 ⊗ L6

2)⊕H2
∂̄(S, L

−3
1 ⊗ L−6

2 )∨ (2.85)

(1, 2̄)−3,−6 ∈ H
0
∂̄(S, L

3
1 ⊗ L6

2)
∨ ⊕H1

∂̄(S, L
−3
1 ⊗ L−6

2 )⊕H2
∂̄(S, L

3
1 ⊗ L6

2)
∨ (2.86)

(3,1)−2,6 ∈ H
0
∂̄(S, L

2
1 ⊗ L−6

2 )∨ ⊕H1
∂̄(S, L

−2
1 ⊗ L6

2)⊕H2
∂̄(S, L

2
1 ⊗ L−6

2 )∨ (2.87)

(3̄,1)2,−6 ∈ H
0
∂̄(S, L

−2
1 ⊗ L6

2)
∨ ⊕H1

∂̄(S, L
2
1 ⊗ L−6

2 )⊕H2
∂̄(S, L

−2
1 ⊗ L6

2)
∨. (2.88)

Note that (3,2)−5,0, (3̄,2)5,0, and (3,1)−2,6 are exotic fields in the MSSM. To avoid

these exotics, L5
1 and L−2

1 ⊗ L6
2 need to be non-trivial line bundles. If L3

1 ⊗ L6
2 is

trivial, it follows from Eq. (2.85) and Eq. (2.86) that n(1,2)3,6
= n(1,2̄)−3,−6

= 1. By

the vanishing theorem (2.6), no exotic fields requires that

n(3,2)−5,0
= −χ(S, L−5

1 ) = 0 (2.89)

n(3̄,2)5,0
= −χ(S, L5

1) = 0 (2.90)

n(3,1)−2,6
= −χ(S, L−2

1 ⊗ L6
2) = 0. (2.91)

We define

n(3̄,1)2,−6
= −χ(S, L2

1 ⊗ L−6
2 ) ≡ α3, (2.92)

where α3 ∈ Z>0. Note that since L3
1 ⊗ L6

2 is trivial, then L2
1 ⊗ L−6

2
∼= L5

1. It follows

from Eq. (2.90) that α3 = 016. Therefore, the non-trivial conditions are (2.89) and

16This case will be denoted by (α1, α2, α3) = (1, 1, 0)∗ later.
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(2.90), namely χ(S, L±5
1 ) = 0, which imply that c1(L1

±5)2 = −2 and c1(L
±5
1 ) ·KS = 0.

Note that c1(L1
±5) ∈ H2(S,Z) = spanZ{h, ei, i = 1, 2, 3, ...8}, where h and ei are

the hyperplane divisor and exceptional divisors in S = dP8. Immediately we get

a fractional line bundle 17 L1 = OS(ej − ei)
1/5 and then L2 = OS(ei − ej)

1/10. It

is clear that L1 and L2 satisfy the BPS condition (2.51). As a result, (L1, L2) is a

supersymmetric U(1)2 gauge flux configuration on the bulk. If L3
1⊗L6

2 is non-trivial,

by the vanishing theorem (2.6), an exotic-free bulk spectrum requires that

n(3,2)−5,0
= −χ(S, L−5

1 ) = 0 (2.93)

n(3̄,2)5,0
= −χ(S, L5

1) = 0 (2.94)

n(3,1)−2,6
= −χ(S, L−2

1 ⊗ L6
2) = 0. (2.95)

We define

n(1,2)3,6
= −χ(S, L3

1 ⊗ L6
2) ≡ α1 (2.96)

n(1,2̄)−3,−6
= −χ(S, L−3

1 ⊗ L−6
2 ) ≡ α2 (2.97)

n(3̄,1)2,−6
= −χ(S, L2

1 ⊗ L−6
2 ) ≡ α3, (2.98)

where αi ∈ Z>0, i = 1, 2, 3. To simplify the notation, we define C = L−5
1 , and

D = L3
1⊗L6

2. By Eqs. (2.93)-(2.98) and the Riemann-Roch theorem (2.5), we obtain

the following equations:

17Note that with α3 = 0, there is a symmetry (L1, L2) ↔ (L−1
1 , L−1

2 ) in Eq. (2.89)-
(2.92). Without loss of generality, we choose L1 = OS(ej − ei)

1/5.
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

c1(C)2 = −2

c1(D)2 = −α1 − α2 − 2

c1(C) · c1(D) = 1 + 1
2
(α1 + α2 − α3)

α3 = α2 − α1

c1(C) ·KS = 0

c1(D) ·KS = α1 − α2.

(2.99)

Note that C and D are required to be honest line bundles, in other words, c1(C),

c1(D) ∈ H2(S,Z) = spanZ{h, ei, i = 1, 2, 3, ...8}. Note that (3̄,1)2,−6 is a candidate

for a matter field in the MSSM. Therefore, we shall restrict to the case of α3 6 3. In

what follows, we shall demonstrate how to derive explicit expressions for U(1)2 gauge

fluxes from Eq. (2.99). For the case of α3 = 0, by the constraints in Eq. (2.99),

we may assume (α1, α2, α3) = (k, k, 0) with k ∈ Z>0. We shall show that there is no

solution for k > 4. Note that in this case, Eq. (2.99) reduces to

c1(C)2 = −2, c1(D)2 = −2k − 2, c1(C) · c1(D) = 1 + k, (2.100)

with c1(C) ·KS = c1(D) ·KS = 0. From the conditions c1(C)2 = −2, c1(C) ·KS = 0,

and BPS condition (2.51), it follows that C = OS(ei − ej), which is the universal

line bundle in the case of GS = SU(6) since these two conditions are independent

of αi, i = 1, 2, 3 and always appear in Eq. (2.99). Actually, the corresponding

fractional line bundle L1 of C is the U(1)Y hypercharge flux in the minimal SU(5)

GUT [14–16]. In what follows, we shall focus on the solutions for the line bundle D.

By Eq. (2.100), we can obtain the upper bound of k. Write D = OS(ciei+cjej+D̃),18

where D̃ is a integral divisor containing no h, ei, and ej. Note that the repeat indices

18Due to the BPS condition (2.51), D contains no component h.
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are not a summation, and ci, cj ∈ Z. By Eq. (2.100), we get −ci + cj = k + 1 and

c21 + c22 − D̃2 = 2k + 2. Note that D̃2 6 0 by the construction. Using the inequality19

c21 + c22 > 1
2
(c1 − c2)

2 and the condition k ∈ Z>0, we obtain 0 6 k 6 3, which implies

that there is no solution D for k > 4. Next we shall explicitly solve the configurations

(L1, L2) satisfying Eq. (2.99) for the case of (α1, α2, α3) = (k, k, 0) with 0 6 k 6 3.

Let us start with the simplification of Eq. (2.99). Note that in Eq. (2.99), there

are two conditions that are independent of αi, namely,

c1(C)2 = −2, c1(C) ·KS = 0, (2.101)

which gives rise to the universal line bundle, C = OS(ei − ej), as mentioned earlier.

The remaining conditions are

c1(D)2 = −α1 − α2 − 2

c1(C) · c1(D) = 1 + 1
2
(α1 + α2 − α3)

α3 = α2 − α1

c1(D) ·KS = α1 − α2.

(2.102)

Since C is universal, all we have to do is to solve the line bundles D in Eq. (2.102) for

a given (α1, α2, α3) and C = OS(ei − ej). When (α1, α2, α3) = (0, 0, 0), Eq. (2.102)

reduces to

c1(D)2 = −2, c1(C) · c1(D) = 1, (2.103)

with c1(D) ·KS = 0. By Eq. (2.103), we have D = OS(±el−ei) or OS(±el+ej). The

former gives rise to fractional line bundles L1 = OS(ej − ei)
1/5 and L2 = OS(±5el −

2ei − 3ej)
1/30. For the latter, we have L1 = OS(ej − ei)1/5 and L2 = OS(±5el + 3ei +

2ej)
1/30. Recall that KS = −3h+

∑8
k=1 ek. To solve the condition c1(D) ·KS = 0, it

19In general, (c1(C)2)(c1(D)2) > (c1(C) · c1(D))2.
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is clear that D has to be OS(el − ei) or OS(−el + ej). The corresponding fractional

line bundle is OS(5el − 2ei − 3ej)
1/30 or OS(−5el + 3ei + 2ej)

1/30. In addition to Eq.

(2.103), these fractional line bundles need to satisfy the BPS condition (2.51). More

precisely, for the case of L1 = OS(ej − ei)
1/5 and L2 = OS(5el − 2ei − 3ej)

1/30, BPS

equation (2.51) reduces to

(ei − ej) · ω = 0, (5el − 2ei − 3ej) · ω = 0. (2.104)

It is not difficult to see that20 ω = Ah−(ei+ej+el+ ...) solves Eq. (2.104). Similarly,

for the case of L1 = OS(ej − ei)
1/5 and L2 = OS(−5el + 3ei + 2ej)

1/30, L1 and L2

are also supersymmetric with respect to ω = Ah − (ei + ej + el + ...). As a result,

for the case of (α1, α2, α3) = (0, 0, 0), we find two supersymmetric U(1)2 gauge flux

configurations (L1, L2).

When (α1, α2, α3) = (1, 1, 0), Eq. (2.102) reduces to

c1(D)2 = −4, c1(C) · c1(D) = 2, (2.105)

with c1(D) ·KS = 0. By Eq. (2.105), D can be OS(2ej), OS(−2ei) or OS([el, em] −

ei + ej), where the bracket is defined by [A1, A2, ..Ak] = {±A1 ± A2... ± Ak}. For

later use, we also define [A1, A2, ..Ak]
′ = {±A1±A2...±Ak}r (+A1 +A2 + ...+Ak),

[A1, A2, ..Ak]
′′ = {±A1±A2...±Ak}r{(+A1+A2+...+Ak), (−A1−A2−...−Ak)}, and

[A1, A2, ..Ak]
′′′ = {(A1 +A2...+Ak−1−Ak), (A1 +A2...−Ak−1 +Ak), ..., (−A1 +A2...+

Ak−1+Ak)}. Note thatOS(2ej), OS(−2ei), OS(el+em−ei+ej), andOS(−el−em−ei+

ej) cannot solve the equation c1(D) ·KS = 0. As a result, D = OS([el, em]′′− ei+ ej),

which correspond to the fractional bundles L2 = OS(5[el, em]′′−2ei+2ej)
1/30. Clearly

20”...” in ω always stands for non-relevant terms for checking the BPS condition
Eq. (2.51). Of course, those terms are relevant for the ampleness of ω and note that
the choice of the polarizations is not unique.
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L1 and L2 satisfy Eq. (2.51) with ω = Ah− (ei + ej + el + em + ...).

For the case of (α1, α2, α3) = (2, 2, 0), Eq. (2.102) becomes

c1(D)2 = −6, c1(C) · c1(D) = 3, (2.106)

with c1(D) ·KS = 0. By Eq. (2.106), D can be OS([el]−ei+2ej) or OS([el]−2ei+ej).

For the former, it is clear that OS(el− ei + 2ej) does not satisfy the condition c1(D) ·

KS = 0. Similarly, for the latter, OS(−el − 2ei + ej) is not a solution as well. In this

case, the solutions are L2 = OS(−5el − 2ei + 7ej)
1/30 or L2 = OS(5el − 7ei + 2ej)

1/30.

It is easy to see that the solutions also satisfy the BPS condition (2.51). Note that for

the case of α3 = 0, taking ω = Ah− (
∑8

k=1 ek) = (−KS) + (A− 3)h, the conditions

c1(C) ·KS = c1(D) ·KS = 0 are equivalent to Eq. (2.51). Therefore, the solutions of

Eq. (2.99) are all supersymmetric for the case of α3 = 0.

Next we consider the case of (α1, α2, α3) = (3, 3, 0). In this case, the line bundle

D satisfies the following equations:

c1(D)2 = −8, c1(C) · c1(D) = 4, (2.107)

with c1(D)·KS = 0. By Eq. (2.107), we obtain D = OS(2ej−2ei). The corresponding

fractional line bundle is L2 = OS(ej − ei)
7/30. Obviously, L2 satisfies the condition

c1(D) ·KS = 0, and Eq. (2.51) for ω = Ah− (ei + ej + ...).

Next we shall consider the case of α3 = 1. By the constraints of Eq. (2.102),

we may assume that (α1, α2, α3) = (m,m + 1, 1), where m ∈ Z>0. Then Eq. (2.102)

becomes

c1(D)2 = −2m− 3, c1(C) · c1(D) = 1 +m, (2.108)

with c1(D)·KS = −1. Again the first thing we need to do is to get the upper bound of

m. Eq. (2.108) implies that 1−
√

6 6 m 6 1+
√

6. Sincem ∈ Z>0, we obtain 0 6 m 6
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3. Therefore, the possible configurations are (α1, α2, α3) = (0, 1, 1), (1, 2, 1), (2, 3, 1)

or (3, 4, 1).

Let us look at the case of (α1, α2, α3) = (0, 1, 1). In this case, Eq. (2.108) reduces

to the following equations

c1(D)2 = −3, c1(C) · c1(D) = 1. (2.109)

It is easy to see that D can be OS([el, em] − ei) or OS([el, em] + ej). Note that

OS([el, em]′′− ei), OS(−el− em− ei), OS(el + em + ej), and OS(−el− em + ej) do not

satisfy the equation c1(D) ·KS = −1, so we have to eliminate these cases. It turns

out that the resulting fractional line bundles are OS(5(el + em) − 2ei − 3ej)
1/30 and

OS(5[el, em]′′ + 3ei + 2ej)
1/30. In order to preserve supersymmetry, the solutions need

to solve Eq. (2.51). For the case of L2 = OS(5(el + em) − 2ei − 3ej)
1/30, Eq. (2.51)

reduces to

(ei − ej) · ω = 0, [(el + em)− ei] · ω = 0. (2.110)

For another fractional line bundle L2 = OS(5[el, em]′′ + 3ei + 2ej)
1/30, Eq. (2.51)

becomes

(ei − ej) · ω = 0, ([el, em]′′ + ei) · ω = 0 (2.111)

It is clear that ω = Ah − (el + em + 2ei + 2ej + ...) solves Eq. (2.110) and ω =

Ah − (2el + em + ei + ej + ...) solves Eq. (2.111) if [el, em]′′ = −el + em. For the

case of [el, em]′′ = el − em, ω = Ah − (el + 2em + ei + ej + ...) is a solution of Eq.

(2.111). Therefore, OS(5(el + em) − 2ei − 3ej)
1/30 and OS(5[el, em]′′ + 3ei + 2ej)

1/30

are supersymmetric. In this case, the solutions of Eq. (2.109) and the equations,

c1(C) ·KS = 0, c1(D) ·KS = −1 satisfy Eq. (2.51). It seems that for the case α3 = 1,

the condition c1(C) · KS = 0, c1(D) · KS = −1 is stronger than BPS condition

(2.51). For example, D = OS(el − em − ei) with corresponding fractional line bundle
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(α1, α2, α3) L2

1 (1, 1, 0)∗ OS(ei − ej)
1/10

2 (0, 0, 0) OS(5el − 2ei − 3ej)
1/30 , OS(−5el + 3ei + 2ej)

1/30

3 (1, 1, 0) OS(5[el, em]′′ − 2ei + 2ej)
1/30

4 (2, 2, 0) OS(−5el − 2ei + 7ej)
1/30, OS(5el − 7ei + 2ej)

1/30

5 (3, 3, 0) OS(ej − ei)
7/30

6 (0, 1, 1) OS(5[el, em]′′ + 3ei + 2ej)
1/30, OS(5(el + em)− 2ei − 3ej)

1/30

7 (1, 2, 1) OS(−5el + 3ei + 7ej)
1/30, OS(5[el, em, ek]

′′′ − 2ei + 2ej)
1/30

8 (2, 3, 1) OS(5[el, em]′′ − 2ei + 7ej)
1/30, OS(5(el + em)− 7ei + 2ej)

1/30

9 (3, 4, 1) No Solution

Table VIII. Flux configurations for GS = SU(6) with L1 = OS(ej − ei)
1/5 and

α3 = 0, 1.

L2 = OS(5el−5em−2ei−3ej)
1/30 is supersymmetric but does not satisfy the condition

c1(D) ·KS = −1. Actually, we shall see that this is not the case in the next examples.

Let us turn to the case of (α1, α2, α3) = (3, 4, 1). In this case, Eq. (2.108) reduces

to

c1(D)2 = −9, c1(C) · c1(D) = 4. (2.112)

It is not difficult to find that the solutions are D = OS([el] − 2ei + 2ej) and the

corresponding fractional line bundle are L2 = OS(5[el]−7ei+7ej)
1/30. Note that only

D = OS(el − 2ei + 2ej) satisfies the condition c1(D) ·KS = −1. However, it is clear

that it does not satisfy the BPS condition (2.51), which means that no configuration

(L1, L2) for an exotic-free spectrum exists in this case. From this example, we know
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that for the case of α3 = 1, the solutions of Eq. (2.102) are not guaranteed to be

supersymmetric and vice versa. Therefore, in general we need to check these two

conditions for each solution in the case of α3 ∈ Z>0. Following a similar procedure,

one can obtain all configurations (L1, L2) for the cases of α3 = 1. We summarize the

results of α3 = 0, 1 in Table VIII in which all L1 and L2 satisfy the BPS condition

(2.51) for suitable polarizations ω and the conditions L5
1 6= OS, L

−2
1 ⊗ L6

2 6= OS and

L3
1 ⊗ L6

1 6= OS.

Next we consider the case of α3 = 2. By the last constraint of Eq. (2.99),

we may assume (α1, α2, α3) = (l, l + 2, 2), where l ∈ Z>0. One can show that the

necessary condition for existence of the solutions of Eq. (2.99) is 0 6 l 6 3. There-

fore, (α1, α2, α3) can be (0, 2, 2), (1, 3, 2), (2, 4, 2) or (3, 5, 2). Following the previous

procedure, one can obtain all configurations (L1, L2) for the case of α3 = 2.

For the case of α3 = 3, we may assume that (α1, α2, α3) = (n, n + 3, 3) with

n ∈ Z>0. The necessary condition for existence of the solutions of Eq. (2.99) is

0 6 n 6 4, which implies that (α1, α2, α3) = (0, 3, 3), (1, 4, 3), (2, 5, 3), (3, 6, 3), or

(4, 7, 3). Following the previous procedure, one can obtain all configurations (L1, L2)

for the case of α3 = 3. Let us look at the case of (α1, α2, α3) = (3, 6, 3). In this case,

Eq. (2.102) reduces to

c1(D)2 = −11, c1(C) · c1(D) = 4, (2.113)

with c1(D) ·KS = −3. It follows from Eq. (2.113) that D can be OS([el]− ei + 3ej),

OS([el] − 3ei + ej), or OS([el, em, en] − 2ei + 2ej). When one takes the condition

c1(D) · KS = −3 into account, there are only two solutions, D = OS(el − ei + 3ej)

or OS((el + em + en) − 2ei + 2ej), which corresponds to the fractional line bundles

OS(5el−2ei+12ej)
1/30 and OS(5(el+em+en)−7ei+7ej)

1/30, respectively. However,

these two solutions cannot satisfy Eq. (2.51). Therefore, in this case there do not
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(α1, α2, α3) L2

1 (0, 2, 2)
OS(5(el + em + ek)− 2ei − 3ej)

1/30

OS(5[el, em, ek]
′′′ + 3ei + 2ej)

1/30

2 (1, 3, 2)
OS(5[el, em]′′ + 3ei + 7ej)

1/30

OS(5[el, em, en, ek]
′′′ − 2ei + 2ej)

1/30

3 (2, 4, 2)
OS(5[el, em, ek]

′′′ − 2ei + 7ej)
1/30

OS(5(el + em + ek)− 7ei + 2ej)
1/30

4 (3, 5, 2) No Solution

5 (0, 3, 3)
OS(5(el + em + en + ek)− 2ei − 3ej)

1/30

OS(5[el, em, en, ek]
′′′ + 3ei + 2ej)

1/30

6 (1, 4, 3)
OS(5[el, em, ek]

′′′ + 3ei + 7ej)
1/30

OS(5[el, em, en, ek, ep]
′′′ − 2ei + 2ej)

1/30

7 (2, 5, 3)
OS(5[el, em, en, ek]

′′′ − 2ei + 7ej)
1/30

OS(5(el + em + en + ek)− 7ei + 2ej)
1/30

8 (3, 6, 3) No Solution

9 (4, 7, 3) No Solution

Table IX. Flux configurations for GS = SU(6) with L1 = OS(ej− ei)1/5 and α3 = 2, 3.

exist any U(1)2 gauge fluxes for an exotic-free spectrum. A similar situation occurs

in the case of (α1, α2, α3) = (4, 7, 3). In this case, D can be OS(−3ei + 2ej) or

OS(−2ei + 3ej) by Eq. (2.102). However, they neither solve Eq. (2.51) nor satisfy

the condition c1(D) ·KS = −3. As a result, there are no U(1)2 gauge fluxes without

producing exotics in this case. We summarize the results of α3 = 2, 3 in Table IX in

which all L1 and L2 satisfy the BPS condition (2.51) for suitable polarizations ω and

the conditions L5
1 6= OS, L

−2
1 ⊗ L6

2 6= OS and L3
1 ⊗ L6

1 6= OS.
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b. Spectrum from the Curves

With GS = SU(6), to obtain matter in SU(5) GUT, it is required that LΣ 6= OΣ

and L′Σ 6= OΣ. In this case, there are three kinds of intersecting curves, ΣSU(7),

ΣSO(12) and ΣE6 with enhanced gauge groups SU(7), SO(12), and E6, respectively.

The breaking patterns are as shown in Eqs. (2.45)-(2.47). To achieve doublet-triplet

splitting and make contact with the spectrum in the MSSM, we consider U(1)2 flux

configurations (L1, L2) already solved in the previous section. In this section we shall

study the spectrum from the curves and show that the doublet-triplet splitting and

non-minimal spectrum of the MSSM can be achieved. A detailed example can be

found in subsection 3.

In local F-theory models, the gauge group on the curve along which S intersects

with S ′ will be enhanced at least by one rank. In the present case of GS = SU(6),

the possible enhanced gauge groups are SU(7), SO(12) and E6. The matter fields

transform as fundamental representation 6, anti-symmetric tensor representation of

rank two 15, and anti-symmetric tensor representation of rank three 20 in SU(6)

can be engineered to localize on the curves with gauge groups SU(7), SO(12), and

E6, respectively. In order to split doublet and triplet states in Higgs and obtain the

spectrum of the MSSM, L1Σ, L2Σ and L′Σ have to be non-trivial, which breaks GΣ

into Gstd × U(1)2. The breaking patterns of SU(7), SO(12) and E6 are as follows:
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SU(7) → SU(6)× U(1)′ → SU(3)× SU(2)× U(1)′ × U(1)1 × U(1)2

48 → 350 + 10 → (8,1)0,0,0 + (1,3)0,0,0 + (3,2)0,−5,0 + (3̄,2)0,5,0

+6−7 + 6̄7 +(1,1)0,0,0 + (1,1)0,0,0 + (1,2)0,3,6 + (3,1)0,−2,6

+(1, 2̄)0,−3,−6 + (3̄,1)0,2,−6 + (1,1)0,0,0 + (1,2)−7,3,1

+(3,1)−7,−2,1 + (1,1)−7,0,−5 + (1, 2̄)7,−3,−1

+(3̄,1)7,2,−1 + (1,1)7,0,5

(2.114)

SO(12) → SU(6)× U(1)′ → SU(3)× SU(2)× U(1)′ × U(1)1 × U(1)2

66 → 350 + 10 → (8,1)0,0,0 + (1,3)0,0,0 + (3,2)0,−5,0 + (3̄,2)0,5,0

+152 + 15−2 +(1,1)0,0,0 + (1,1)0,0,0 + (1,2)0,3,6 + (3,1)0,−2,6

+(1, 2̄)0,−3,−6 + (3̄,1)0,2,−6 + (1,1)0,0,0 + (1,2)2,3,−4

+(3,1)2,−2,−4 + (1,1)2,6,2 + (3̄,1)2,−4,2 + (3,2)2,1,2

+(1, 2̄)−2,−3,4 + (3̄,1)−2,2,4 + (1,1)−2,−6,−2

+(3,1)−2,4,−2 + (3̄, 2̄)−2,−1,−2

(2.115)

E6 → SU(6)× U(1)′ → SU(3)× SU(2)× U(1)′ × U(1)1 × U(1)2

78 → 350 + 10 + 1±2 → (8,1)0,0,0 + (1,3)0,0,0 + (3,2)0,−5,0 + (3̄,2)0,5,0

+201 + 20−1 +(1,1)0,0,0 + (1,1)0,0,0 + (1,2)0,3,6 + (3,1)0,−2,6

+(1, 2̄)0,−3,−6 + (3̄,1)0,2,−6 + (1,1)0,0,0 + (1,1)±2,0,0

+[(1,1)1,6,−3 + (3̄,1)1,−4,−3 + (3,2)1,1,−3 + c.c]

+[(1,1)−1,6,−3 + (3̄,1)−1,−4,−3 + (3,2)−1,1,−3 + c.c].

(2.116)
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Coupling Representation Configuration

(3,2)2,1,2(3̄,1)1,−4,−3(1,2)−7,3,1 ΣSO(12)ΣE6ΣSU(7)

(3,2)2,1,2(3̄,1)2,−4,2(1,2)2,3,−4 ΣSO(12)ΣSO(12)ΣSO(12)

Quch̄ (3,2)1,1,−3(3̄,1)2,−4,2(1,2)−7,3,1 ΣE6ΣSO(12)ΣSU(7)

(3,2)−1,1,−3(3̄,1)2,−4,2(1,2)−7,3,1 ΣE6ΣSO(12)ΣSU(7)

(3,2)1,1,−3(3̄,1)1,−4,−3(1,2)0,3,6 ΣE6ΣE6S

(3,2)−1,1,−3(3̄,1)1,−4,−3(1,2)0,3,6 ΣE6ΣE6S

(3,2)2,1,2(3̄,1)7,2,−1(1, 2̄)7,−3,−1 ΣSO(12)ΣSU(7)ΣSU(7)

(3,2)2,1,2(3̄,1)0,2,−6(1, 2̄)−2,−3,4 ΣSO(12)SΣSO(12)

(3,2)1,1,−3(3̄,1)−2,2,4(1, 2̄)7,−3,−1 ΣE6ΣSO(12)ΣSU(7)

Qdch (3,2)−1,1,−3(3̄,1)−2,2,4(1, 2̄)7,−3,−1 ΣE6ΣSO(12)ΣSU(7)

(3,2)1,1,−3(3̄,1)7,2,−1(1, 2̄)−2,−3,4 ΣE6ΣSU(7)ΣSO(12)

(3,2)−1,1,−3(3̄,1)7,2,−1(1, 2̄)−2,−3,4 ΣE6ΣSU(7)ΣSO(12)

(3,2)2,1,2(3̄,1)−2,2,4(1, 2̄)0,−3,−6 ΣSO(12)ΣSO(12)S

(1, 2̄)7,−3,−1(1,1)2,6,2(1, 2̄)7,−3,−1 ΣSU(7)ΣSO(12)ΣSU(7)

(1, 2̄)−2,−3,4(1,1)1,6,−3(1, 2̄)7,−3,−1 ΣSO(12)ΣE6ΣSU(7)

Lech (1, 2̄)−2,−3,4(1,1)−1,6,−3(1, 2̄)7,−3,−1 ΣSO(12)ΣE6ΣSU(7)

(1, 2̄)7,−3,−1(1,1)1,6,−3(1, 2̄)−2,−3,4 ΣSU(7)ΣE6ΣSO(12)

(1, 2̄)7,−3,−1(1,1)−1,6,−3(1, 2̄)−2,−3,4 ΣSU(7)ΣE6ΣSO(12)

(1, 2̄)−2,−3,4(1,1)2,6,2(1, 2̄)0,−3,−6 ΣSO(12)ΣSO(12)S

(1, 2̄)7,−3,−1(1,1)0,0,0(1,2)−7,3,1 ΣSU(7)SΣSU(7)

Lνch̄ (1, 2̄)−2,−3,4(1,1)−7,0,−5(1,2)−7,3,1 ΣSO(12)ΣSU(7)ΣSU(7)

(1, 2̄)7,−3,−1(1,1)7,0,5(1,2)2,3,−4 ΣSU(7)ΣSU(7)ΣSO(12)

(1, 2̄)−2,−3,4(1,1)0,0,0(1,2)2,3,−4 ΣSU(7)SΣSU(7)

(1, 2̄)7,−3,−1(1,1)−7,0,−5(1,2)0,3,6 ΣSU(7)ΣSU(7)S

Table X. The Yukawa couplings of the MSSM model from GS = SU(6).
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Q uc dc ec L h̄ h

M0(3,2)2,1,2 (3̄,1)2,−4,2 (3̄,1)0,2,−6(1,1)1,6,−3 (1, 2̄)7,−3,−1(1,2)−2,3,−4(1, 2̄)−2,−3,4

M1(3,2)2,1,2 (3̄,1)1,−4,−3(3̄,1)7,2,−1(1,1)2,6,2 (1, 2̄)7,−3,−1(1,2)−7,3,1 (1, 2̄)7,−3,−1

M2(3,2)1,1,−3 (3̄,1)2,−4,2 (3̄,1)−2,2,4(1,1)2,6,2 (1, 2̄)7,−3,−1(1,2)−7,3,1 (1, 2̄)7,−3,−1

M3(3,2)−1,1,−3(3̄,1)2,−4,2 (3̄,1)−2,2,4(1,1)2,6,2 (1, 2̄)7,−3,−1(1,2)−7,3,1 (1, 2̄)7,−3,−1

M4(3,2)2,1,2 (3̄,1)1,−4,−3(3̄,1)7,2,−1(1,1)−1,6,−3(1, 2̄)−2,−3,4(1,2)−7,3,1 (1, 2̄)7,−3,−1

M5(3,2)1,1,−3 (3̄,1)2,−4,2 (3̄,1)−2,2,4(1,1)−1,6,−3(1, 2̄)−2,−3,4(1,2)−7,3,1 (1, 2̄)7,−3,−1

M6(3,2)−1,1,−3(3̄,1)2,−4,2 (3̄,1)−2,2,4(1,1)−1,6,−3(1, 2̄)−2,−3,4(1,2)−7,3,1 (1, 2̄)7,−3,−1

Table XI. Field content in the MSSM from GS = SU(6).

Due to non-trivial U(1)2 flux configurations on the bulk S, the last two U(1)

charges of the fields on the curves should be conserved in each Yukawa coupling.

From the breaking patterns, we list possible Yukawa couplings of type ΣΣS and ΣΣΣ

in Table X. According to Table X, the possible field content is shown in Table XI. In

what follows, we shall focus on the case of ΣΣΣ-type couplings and find all possible

field configurations supported by the curves ΣSU(7), ΣSO(12), and ΣE6 with given U(1)2

flux configuration (L1, L2).

Let us start with the case of ΣSU(7) and consider (α1, α2, α3) = (k, k, 0) with

k = 0, 1, 2, 3. When (α1, α2, α3) = (0, 0, 0), which is the second case in Table VIII, it

is clear that we have L2 = OS(5el − 2ei − 3ej)
1/30 or L2 = OS(−5el + 3ei + 2ej)

1/30.

We define (n1, n2, n3) = (n(3̄,1)7,2,−1
, n(1,2̄)7,−3,−1

, n(1,1)7,0,5
). To avoid exotic fields, we

require that n1 ∈ Z>0. Given field configurations (n1, n2, n3) on the curve ΣSU(7), the
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necessary conditions21 for the homological class of the curve ΣSU(7) are (ei − ej) · ΣSU(7) = n2 − n1

(ei − el) · ΣSU(7) = n2 − n3.
(2.117)

if L2 = OS(5el − 2ei − 3ej)
1/30. For the case of L2 = OS(−5el + 3ei + 2ej)

1/30, the

conditions are as follows:  (ei − ej) · ΣSU(7) = n2 − n1

(ei − el) · ΣSU(7) = n3 − n1.
(2.118)

Note that the first condition of Eq. (2.117) and Eq. (2.118) is universal since it comes

from the restriction of the universal supersymmetric line bundle L1 = OS(ej − ei)
1/5

to the curve ΣSU(7). Note that there are no further constraints for ni, i = 1, 2, 3

except n1 ∈ Z>0, n1 6= n2, 3n1 + 2n2 6= 5n3 and 3n1 + 2n2 + n3 6= 0. The last three

constraints follow from the conditions L1Σ 6= OΣ, L2Σ 6= OΣ, and L′Σ 6= OΣ. Let us

look at an example. Consider the case of (n1, n2, n3) = (0, 1, 0), Eq. (2.117) and Eq.

(2.118) can be easily solved by Σ = h−ei−em and Σ = h−ei−el, respectively. In this

case, double and triplet states in the Higgs field 5̄7,−1 can be split without producing

exotic fields. Let us look at one more case, (α1, α2, α3) = (3, 3, 0). It follows from

Table VIII that L2 = OS(ej − ei)7/30. The conditions for the homological class of the

curve ΣSU(7) to support the field configurations (n1, n2, n3) are (ei − ej) · ΣSU(7) = n2 − n1

2n1 = n2 + n3.
(2.119)

This time we get one more constraint, 2n1 = n2 +n3. It follows that when (3̄,1)7,2,−1

21L1ΣSU(7)
= OΣSU(7)

(1
5
(n1 − n2)), L2ΣSU(7)

= OΣSU(7)
( 1

30
(−3n1 − 2n2 + 5n3)), and

L′ΣSU(7)
= OΣSU(7)

( 1
42

(3n1 + 2n2 + n3)).
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(α1, α2, α3) Conditions L2

(0, 0, 0)
(ei − el) · ΣSU(7) = n2 − n3 OS(5el − 2ei − 3ej)

1/30

(ei − el) · ΣSU(7) = n3 − n1 OS(−5el + 3ei + 2ej)
1/30

(1, 1, 0)∗ n2 = n3 OS(ei − ej)
1/10

(1, 1, 0) ([el, em]′′) · ΣSU(7) = n3 − n1 OS(5[el, em]′′ − 2ei + 2ej)
1/30

(2, 2, 0)
(−el + ej) · ΣSU(7) = n3 − n1 OS(−5el − 2ei + 7ej)

1/30

(el − ei) · ΣSU(7) = n3 − n1 OS(5el − 7ei + 2ej)
1/30

(3, 3, 0) 2n1 = n2 + n3 OS(ej − ei)
7/30

Table XII. The conditions for ΣSU(7) supporting the field configurations (n1, n2, n3)

with L1 = OS(ej − ei)
1/5.

vanishes, the doublets always show up together with singlets. For the cases of

(α1, α2, α3) = (k, k, 0) with k = 1, 2, we summarize the results22 in Table XII

Similarly, we can extend the calculation to the curve ΣSO(12). Let us define

(s1, s2, s3, s4, s5) = (n(3,2)2,1,2
, n(3̄,1)2,−4,2

, n(3,1)2,−2,−4
, n(1,2)2,3,−4

, n(1,1)2,6,2
) and consider

the case of (α1, α2, α3) = (1, 1, 0), which is the third case in Table VIII. It is clear

that we have L2 = OS(5[el, em]′′ − 2ei + 2ej)
1/30. The necessary conditions23 for the

homological class of the curve ΣSO(12) with field configurations (s1, s2, s3, s4, s5) are (ei − ej) · ΣSO(12) = s2 − s1

([el, em]′′) · ΣSO(12) = s2 − s3,
(2.120)

22For simplicity, we are not going to show the universal conditions (ei − ej) · Σ =
w2 − w1, w ∈ {n, s} for ΣSU(7) and ΣSO(12), respectively and (ei − ej) · Σ = p3 − p1

for ΣE6 in Table XII, XIII, and XIV.
23L1ΣSO(12)

= OΣSO(12)
(1

5
(s1 − s2)), L2ΣSO(12)

= OΣSO(12)
( 1

30
(2s1 + 3s2 − 5s3)), and

L′ΣSO(12)
= OΣSO(12)

(1
6
(2s1 + s3)).
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and  s4 = s3 + s1 − s2

s5 = 2s1 − s2.
(2.121)

Note that Eq. (2.121) impose severe restrictions on the configurations (s1, s2, s3, s4, s5).

For example, one cannot simply set (s1, s2, s3, s4, s5) = (0, 0, 0,m, 0) to achieve the

doublet-triplet splitting of Higgs 52,−4; it is easy to see that m is forced to be zero by

the constraints in Eq. (2.121). This will cause trouble when we attempt to engineer

the Higgs on the curve ΣSO(12) with doublet-triplet splitting. Consider the case of

s4 > 0 and set s1 = 0. From the constraints in Eq. (2.121), we obtain s2 +(−s3) < 0.

Note that to avoid exotic fields from ΣSO(12), it is required that s1, s2 ∈ Z>0 and

s3 ∈ Z60. It follows that 0 6 s2 + (−s3) < 0, which leads to a contradiction.

As a result, the appearance of (3,2)2,1,2 cannot be avoided on the curve ΣSO(12) as

N(1,2)2,3,−4
= s4 > 0. If s4 > 0, actually the most general non-trivial configurations are

(s1, s2, s3, s4, s5) = (l, l+n−m,n,m, l+m−n), where m, l ∈ Z>0 and m− l 6 n 6 0.

Note that (3,2)2,1,2 is treated as matter in the MSSM, which requires that24 l 6 3.

It follows that 1 6 m 6 3 and m 6 l 6 3. It turns out that there are finitely many

non-trivial configurations. More precisely, the field configurations are as follows:

(s1, s2, s3, s4, s5) =



(1, 0, 0, 1, 2), (2, 1, 0, 1, 3), (2, 0,−1, 1, 4),

(3, 2, 0, 1, 4), (3, 1,−1, 1, 5), (3, 0,−2, 1, 6),

(2, 0, 0, 2, 4), (3, 1, 0, 2, 5), (3, 0,−1, 2, 6),

(3, 0, 0, 3, 6)


. (2.122)

If −3 6 s4 6 0, with 0 6 s1, s2 6 3 and −3 6 s3 6 0, we have another branch of the

24We allow the cases in which three copies of matter fields can be distributed over
different matter curves.
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configurations as follows:

(s1, s2, s3, s4, s5) =



(0, 1,−1,−2,−1), (0, 1,−2,−3,−1), (0, 2,−1,−3,−2),

(1, 0,−1, 0, 2), (1, 0,−3,−2, 2), (1, 2, 0,−1, 0),

(1, 2,−1,−2, 0), (1, 3, 0,−2,−1), (1, 3,−1,−3,−1),

(2, 0,−2, 0, 4), (2, 0,−3,−1, 4), (2, 1,−2,−1, 3),

(2, 3, 0,−1, 1), (2, 1,−3,−2, 3), (2, 3,−1,−2, 1),

(2, 1,−1, 0, 3), (2, 3,−2,−3, 1), (3, 0,−3, 0, 6),

(3, 1,−2, 0, 5), (3, 1,−3,−1, 5), (3, 2,−1, 0, 4),

(3, 2,−2,−1, 4), (3, 2,−3,−2, 4)



,

(2.123)

where all configurations25 in (2.122) and (2.123) satisfy the conditions L1Σ 6= OΣ,

L2Σ 6= OΣ, and L′Σ 6= OΣ. With these configurations, one can solve the conditions

for the intersection numbers, namely, the conditions in Eq. (2.120). Let us consider

the case of (s1, s2, s3, s4, s5) = (1, 0, 0, 1, 2), it is clear that Σ = 2h− el − em − ej is a

solution. For a more complicated case, for example (s1, s2, s3, s4, s5) = (3, 1,−1, 1, 5),

the conditions can be solved by Σ = 4h+ ep − 2ej − 2el if [el, em]′′ = el − em and by

Σ = 4h+ ep − 2ej − 2em if [el, em]′′ = em − el.

Let us turn to another case. Consider the first case in Table VIII, namely

(α1, α2, α3) = (1, 1, 0)∗. The supersymmetric fractional line bundle L2 is OS(ei −

ej)
1/10. The necessary conditions are (ei − ej) · ΣSO(12) = s2 − s1

s1 = s3,
(2.124)

and Eq. (2.121). Note that (3̄,2)−2,−1,−2 and (3,1)2,−2,−4 are exotic fields in the

25s3 < 0 represents n(3,1)2,−2,−4
= 0 and n(3̄,1)−2,2,4

= −s3. The same rule can be

applied to other si.



57

MSSM. The constraint, s1 = s3 in Eq. (2.124) and Eq. (2.121) imply that s1 = s3 = 0.

If s4 > 0, by the constraints in Eq. (2.121), we obtain (s1, s2, s3, s4, s5) = (0, 0, 0, 0, 0).

If s4 < 0, we have general configurations (s1, s2, s3, s4, s5) = (0, n, 0,−n,−n), where

1 6 n 6 3. However, these configurations violate the condition L′Σ 6= OΣ. As a check,

using the configurations in (2.122), (2.123), and taking the condition s1 = s3 into

account, one can see that there are no solutions in this case.

Next we consider the fifth case in Table VIII, namely (α1, α2, α3) = (3, 3, 0). In

this case, L2 is OS(ej − ei)
7/30. The necessary conditions are (ei − ej) · ΣSO(12) = s2 − s1

2s2 = s1 + s3,
(2.125)

and Eq. (2.121). It is easy to see that s2 = s4. If s2 = 0, we obtain the non-

trivial configurations (s1, s2, s3, s4, s5) = (k, 0,−k, 0, 2k), where 1 6 k 6 3. Note

that these configurations satisfy the conditions, L1Σ 6= OΣ, L2Σ 6= OΣ, and L′Σ 6=

OΣ. Let us turn to the case of s2 = m ∈ Z>0. The general configurations are

(s1, s2, s3, s4, s5) = (l,m, 2m − l,m, 2l − m) with l > 2m > 0. Note that (3,2)2,1,2

is treated as matter in the MSSM. As a result, we focus on the case of l 6 3, which

implies that m = 1 and l = 2, 3. It turns out that the allowed configurations are

(s1, s2, s3, s4, s5) = {(2, 1, 0, 1, 3), (3, 1,−1, 1, 5)}, where the configurations satisfy the

conditions L1Σ 6= OΣ, L2Σ 6= OΣ, and L′Σ 6= OΣ. Putting these two branches together,

we obtain

(s1, s2, s3, s4, s5) =

 (1, 0,−1, 0, 2), (2, 0− 2, 0, 4), (3, 0,−3, 0, 6),

(2, 1, 0, 1, 3), (3, 1,−1, 1, 5)

 . (2.126)

As a check, from the field configurations in (2.122), (2.123) and the constraint 2s2 =

s1 + s3, one can find that there are exactly five solutions as shown in (2.126).
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(α1, α2, α3) Conditions L2

(0, 0, 0)
(ei − el) · ΣSO(12) = s3 − s1 OS(5el − 2ei − 3ej)

1/30

(ei − el) · ΣSO(12) = s2 − s3 OS(−5el + 3ei + 2ej)
1/30

(1, 1, 0)∗ s1 = s3 OS(ei − ej)
1/10

(1, 1, 0) ([el, em]′′) · ΣSO(12) = s2 − s3 OS(5[el, em]′′ − 2ei + 2ej)
1/30

(2, 2, 0)
(−el + ej) · ΣSO(12) = s2 − s3 OS(−5el − 2ei + 7ej)

1/30

(El − Ei) · ΣSO(12) = s2 − s3 OS(5el − 7ei + 2ej)
1/30

(3, 3, 0) 2s2 = s1 + s3 OS(ej − ei)
7/30

Table XIII. The conditions for ΣSO(12) supporting the field configurations

(s1, s2, s3, s4, s5) with L1 = OS(ej − ei)
1/5 and constraints 2s1 = s2 + s5,

s4 = s3 + s1 − s2.

Let us take a look at some solutions for the curve satisfying Eq. (2.125). For the

the case of (s1, s2, s3, s4, s5) = (2, 1, 0, 1, 3) , it is easy to see that Σ = h−ej−es solves

the first equation in Eq. (2.125). For the case of (s1, s2, s3, s4, s5) = (2, 0,−2, 0, 4),

Σ = 3h−2ej−ep can be a solution. From these examples, we expect that if we choose

ΣSO(12) to house Higgs fields, it will be difficult to achieve doublet-triple splitting with-

out introducing extra chiral fields. For other U(1)2 flux configurations corresponding

to the case of (α1, α2, α3) = (k, k, 0) with k = 0, 2, the analysis is similar to the case

of k = 1. We summarize the results in Table XIII.

In addition to doublet-triplet splitting problem, we also would like to study the

matter spectrum. According to Table XI, the matter fields can come from the curves

ΣSU(7), ΣSO(12), and ΣE6 . The configurations of the fields and the conditions of the

intersection numbers on the curves ΣSU(7) and ΣSO(12) have been studied earlier in

this section. Next we are going to analyze the case of ΣE6 . Note that for the case of
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M0 in Table XI, to engineer 3×dR on the bulk, it is required to set α3 = 3. However,

it gives rise to exotic fields (1,2)3,6 and (1, 2̄)−3,−6 on the bulk. In what follows, we

are going to focus on the case of (α1, α2, α3) = (k, k, 0) on the bulk.

Let us start with the case of (α1, α2, α3) = (0, 0, 0). It is clear that L2 = OS(5el−

2ei − 3ej)
1/30 or L2 = OS(−5el + 3ei + 2ej)

1/30. We define (p1, p2, p3, p4, p5, p6) =

(n(3,2)1,1,−3
, n(3,2)−1,1,−3

, n(3̄,1)1,−4,−3
, n(3̄,1)−1,−4,−3

, n(1,1)1,6,−3
, n(1,1)−1,6,−3

). The necessary

conditions26 for the curve ΣE6 are as follows: (ei − ej) · ΣE6 = p3 − p1

(ei − el) · ΣE6 = p2 + p3,
(2.127)

and 
p4 = p2 + p3 − p1

p5 = 2p1 − p3

p6 = p1 + p2 − p3,

(2.128)

if L2 = OS(5el − 2ei − 3ej)
1/30. For the case of L2 = OS(−5el + 3ei + 2ej)

1/30, the

conditions are  (ei − ej) · ΣE6 = p3 − p1

(ei − el) · ΣE6 = −p1 − p2,
(2.129)

and Eq. (2.128), where L1 = OS(ej−ei)1/5 has been used. Note that the first condition

in Eq. (2.127) and Eq. (2.128) are universal since they come from the restriction of

the universal supersymmetric line bundle L1 = OS(ej − ei)
1/5 to the curve ΣE6 and

from the consistency of the definition of (p1, p2, p3, p4, p5, p6), respectively and that

Eq. (2.128) impose severe restrictions on the configurations (p1, p2, p3, p4, p5, p6). For

example, one can simply set (p1, p2, p3, p4, p5, p6) = (n, 0, 0, 0, 0, 0) to engineer n copies

26L1ΣE6
= OΣE6

(1
5
(p1 − p3)), L2ΣE6

= OΣE6
(− 1

30
(3p1 + 5p2 + 2p3)), and L′ΣE6

=

OΣE6
(1

2
(p1 − p2)).
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of (3,2)1,1,−3 on the curve ΣE6 . Then by constraints in Eq. (2.128), n is forced to

be vanishing in order to avoid the exotic fields. Let us look at some examples of the

non-trivial configurations. It is easy to see that if p1 = p3 = 0, we obtain non-trivial

configurations (p1, p2, p3, p4, p5, p6) = (0, l, 0, l, 0, l), where l ∈ Z>0. When p2 = p4 =

0, the non-trivial configurations are (p1, p2, p3, p4, p5, p6) = (m, 0,m, 0,m, 0) with m ∈

Z>0. If p3 = p4 = 0, it follows that (p1, p2, p3, p4, p5, p6) = (n, n, 0, 0, 2n, 2n), where

n ∈ Z>0. However, these configurations violate the conditions L1Σ 6= OΣ, L2Σ 6= OΣ

and L′Σ 6= OΣ. Therefore, we need to find more general non-trivial configurations. For

the matter fields in the MSSM, we require that the number of the matter field is equal

to or less than three. As a result, we impose the conditions 1 6 pi 6 3, i = 1, 2, 3, 4

in this case. By the constraints in Eq. (2.128), we obtain the following configurations

(p1, p2, p3, p4, p5, p6) =



(0, r, 1− r, 1, r − 1, 2r − 1), (1, r, 1− r, 0, r + 1, 2r),

(0, q, 2− q, 2, q − 2, 2q − 2), (1, q, 2− q, 1, q, 2q − 1),

(2, q, 2− q, 0, q + 2, 2q), (0, v, 3− v, 3, v − 3, 2v − 3),

(1, v, 3− v, 2, v − 1, 2v − 2), (3, v, 3− v, 0, v + 3, 2v),

(2, v, 3− v, 1, v + 1, 2v − 1), (1, t, 4− t, 3, t− 2, 2t− 3),

(2, t, 4− t, 2, t, 2t− 2), (3, t, 4− t, 1, t+ 2, 2t− 1),

(2, u, 5− u, 3, u− 1, 2u− 3), (3, 3, 3, 3, 3, 3),

(3, u, 5− u, 2, u+ 1, 2u− 2)



,

(2.130)

where r = 0, 1, q = 0, 1, 2, v = 0, 1, 2, 3, t = 1, 2, 3, and u = 2, 3. Taking the conditions

of L1Σ 6= OΣ, L2Σ 6= OΣ and L′Σ 6= OΣ into account, the resulting configurations are
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as follows:

(p1, p2, p3, p4, p5, p6) =



(0, 1, 1, 2,−1, 0), (1, 0, 2, 1, 0,−1), (1, 2, 0, 1, 2, 3),

(2, 1, 1, 0, 3, 2), (0, 1, 2, 3,−2,−1), (0, 2, 1, 3,−1, 1),

(1, 3, 0, 2, 2, 4), (1, 0, 3, 2,−1,−2), (2, 0, 3, 1, 1,−1),

(2, 3, 0, 1, 4, 5), (3, 1, 2, 0, 4, 2), (3, 2, 1, 0, 5, 4),

(1, 2, 2, 3, 0, 1), (2, 1, 3, 2, 1, 0), (2, 3, 1, 2, 3, 4),

(3, 2, 2, 1, 4, 3)



.

(2.131)

Once we get allowed configurations, it is not difficult to calculate the homolog-

ical classes of the curves, which satisfy Eq. (2.127) or Eq. (2.129). For exam-

ple, consider the case of (p1, p2, p3, p4, p5, p6) = (0, 1, 1, 2,−1, 0), one can check that

Σ = 3h − ei + el solves Eq. (2.127). Let us look at one more complicated example,

(p1, p2, p3, p4, p5, p6) = (3, 2, 2, 1, 4, 3). In this case, Σ = 6h + 3ei + 2ej − 2el is a

solution of Eq. (2.129). Next we consider the case of (α1, α2, α3) = (1, 1, 0). It is

clear that we have L2 = OS(5[el, em]′′ − 2ei + 2ej)
1/30. The necessary conditions are (ei − ej) · ΣE6 = p3 − p1

([el, em]′′) · ΣE6 = −p1 − p2,
(2.132)

and Eq. (2.128). Note that the constraints are the same as the previous case,

(α1, α2, α3) = (0, 0, 0). As a result, the allowed configurations are the same as (2.131).

Let us take a look at the classes of the curves, which solve Eq. (2.132). For simplic-

ity, we focus on the case of [el, em]′′ = el − em and consider (p1, p2, p3, p4, p5, p6) =

(1, 0, 2, 1, 0,−1), it is not difficult to see that Σ = h − ei − em is a solution. For the

case of (p1, p2, p3, p4, p5, p6) = (2, 1, 1, 0, 3, 2), Σ = 4h + 2el − ej − em can solve Eq.

(2.132).

Let us turn to the first case in Table VIII, namely (α1, α2, α3) = (1, 1, 0)∗. In
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this case, L2 is OS(ei− ej)1/10 and the necessary conditions for the homological class

of ΣE6 with given configurations (p1, p2, p3, p4, p5, p6) are (ei − ej) · ΣE6 = p3 − p1

p2 + p3 = 0,
(2.133)

and Eq. (2.128). Note that to avoid exotic fields, we require that p1, p2, p3, p4 ∈ Z>0.

The constraint, p2 + p3 = 0 in Eq. (2.133) implies that p2 = p3 = 0. By the

constraints in Eq. (2.128), we obtain (p1, p2, p3, p4, p5, p6) = (0, 0, 0, 0, 0, 0), which

means that there are no non-trivial configurations in this case. As a check, by the

configurations in (2.131) and the constraint p2 + p3 = 0, it is easy to see that there is

indeed no solution, namely all configurations in (2.131) are completely ruled out by

the constraint p2 + p3 = 0.

For the case of (α1, α2, α3) = (3, 3, 0), we have L2 = OS(ej − ei)
7/30. Given the

configuration (p1, p2, p3, p4, p5, p6), the necessary conditions are (ei − ej) · ΣE6 = p3 − p1

p3 = 2p1 + p2,
(2.134)

and Eq. (2.128). Since (3,2)1,1,−3, (3,2)−1,1,−3, (3̄,1)1,−4,−3, and (3̄,1)1,−4,−3 are all

matter in the MSSM, we require that pi 6 3, i = 1, 2, 3, 4. By the second condition

in Eq. (2.134), we have (p1, p2) = (1, 0), (0, 1), (0, 2), (0, 3), or (1, 1). Since p4 6 3,

it follows that the allowed configurations are (p1, p2, p3, p4, p5, p6) = (0, 1, 1, 2,−1, 0),

(1, 0, 2, 1, 0,−1), and (1, 1, 3, 3,−1,−1). Recall that in order to obtain matter in the

MSSM, it is required that L1Σ 6= OΣ, L2Σ 6= OΣ and L′Σ 6= OΣ. As a result, the

resulting configurations are

(p1, p2, p3, p4, p5, p6) =

{
(0, 1, 1, 2,−1, 0), (1, 0, 2, 1, 0,−1)

}
. (2.135)
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(α1, α2, α3) Conditions L2

(0, 0, 0)
(ei − el) · Σ = p2 + p3 OS(5el − 2ei − 3ej)

1/30

(ei − el) · Σ = −p1 − p2 OS(−5el + 3ei + 2ej)
1/30

(1, 1, 0)∗ p2 + p3 = 0 OS(ei − ej)
1/10

(1, 1, 0) ([el, em]′′) · Σ = −p1 − p2 OS(5[el, em]′′ − 2ei + 2ej)
1/30

(2, 2, 0)
(−el + ej) · Σ = −p1 − p2 OS(−5el − 2ei + 7ej)

1/30

(el − ei) · Σ = −p1 − p2 OS(5el − 7ei + 2ej)
1/30

(3, 3, 0) p3 = 2p1 + p2 OS(ej − ei)
7/30

Table XIV. The conditions for ΣE6 supporting the field configurations

(p1, p2, p3, p4, p5, p6) with L1 = OS(ej − ei)
1/5 and constraints

p4 = p2 + p3 − p1, p5 = 2p1 − p3, and p6 = p1 + p2 − p3.

As a check, using the configurations in (2.131) and the constraint p3 = 2p1 + p2, one

can see that the resulting configurations are the same as that in (2.135). Now let us

solve the classes of the curves satisfying Eq. (2.134). For these two configurations,

the first condition in Eq. (2.134) can be solved by Σ = h − ei − el. For other U(1)2

flux configurations corresponding to the case of (α1, α2, α3) = (k, k, 0) with k = 2, the

analysis is similar to the case of k = 0, 1. We summarize the results in Table XIV.

After analyzing the spectrum from the curves, it is clear that we are unable to

obtain a minimal spectrum of the MSSM, but non-minimal spectra with doublet-

triplet splitting can be obtained. In the next section we will give examples of non-

minimal spectra for the MSSM.
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3. Non-minimal Spectrum for the MSSM: Examples

In the previous section we already analyzed the spectrum from the curves ΣSU(7),

ΣSO(12), and ΣE6 . With some physical requirements, we obtain all field configurations

supported by the curves. In what follows, we shall give examples of the non-minimal

MSSM spectra using the results shown in the previous subsection 2b.

In what follows, we shall focus on the case M1 in Table XIII. In this case, Q and

ec are localized on the curves with GΣ = SO(12). uc comes from ΣE6 and dc, L, h̄

and h live on ΣSU(7). It is not difficult to see that in the examples considered, we are

unable to get a minimal spectrum of the MSSM without exotic fields. However, it

is possible to construct non-minimal spectra of the MSSM. One possible way is that

we can make the exotic fields form trilinear couplings with conserved U(1) charges

so that they can decouple from the low-energy spectrum. According to the results

in Table VIII, let us consider the U(1)2 flux configuration L1 = OS(e1 − e2)
1/5 and

L2 = OS(5e3 − 2e2 − 3e1)
1/30, which corresponds to the case of (α1, α2, α3) = (0, 0, 0)

on the bulk. To obtain three copies of Q and ec, we engineer two curves Σ1
SO(12) and

Σ2
SO(12) with field content (2, 0,−2, 0, 4) and (1, 0,−1, 0, 2), respectively. The exotic

fields are 2 × (3̄,1)−2,2,4 and one singlet on Σ1
SO(12). For the curve Σ2

SO(12), we get

exotic fields 1× (3̄,1)−2,2,4 and two singlets. To get three copies of uc, we arrange two

curves, Σ1
E6

and Σ2
E6

with field content (3, 1, 2, 0, 4, 2) and (2, 1, 1, 0, 3, 2), respectively.

We have exotic fields 3 × (3,2)1,1,−3, 1 × (3,2)−1,1,−3 and six singlets on Σ1
E6

. On

Σ2
E6

, the exotic fields are 2 × (3,2)1,1,−3, 1 × (3,2)−1,1,−3 and five singlets. Since

the rest of the fields in the case of M1 come from the curves with GΣ = SU(7), we

can easily engineer 3 × dc, 3 × L, 1 × h̄ and 1 × h on individual curves, denoted

respectively by Σ1
SU(7), Σ2

SU(7), Σu
SU(7), and Σd

SU(7). Note that (3,2)±1,1,−3, (3̄,1)−2,2,4,

and (1, 2̄)7,−3,−1 can form trilinear couplings.



65

Multi. Curve Σ gΣ L1Σ L2Σ L′Σ

2×Q 27

Σ1
SO(12)

5h+ 2e2 − 2e3
0 OΣ1

SO(12)
(1)2/5 OΣ1

SO(12)
(1)7/15 OΣ1

SO(12)
(1)1/3

+3× ec −2e4 − 2e5

1×Q 28Σ2
SO(12)

4h+ e2 − e3
0 OΣ2

SO(12)
(1)1/5 OΣ2

SO(12)
(1)7/30 OΣ2

SO(12)
(1)1/6

−2e4 − 2e5

2× uc 29 Σ1
E6

5h+ 3e3 − e1 0 OΣ1
E6

(1)1/5 OΣ1
E6

(−1)3/5 OΣ1
E6

(1)

1× uc 30 Σ2
E6

4h+ 2e3 − e1 0 OΣ2
E6

(1)1/5 OΣ2
E6

(−1)13/30 OΣ2
E6

(1)1/2

3× dc Σ1
SU(7) 4h+ e2 + e3 − 2e1 0 OΣ1

SU(7)
(1)3/5 OΣ1

SU(7)
(−1)3/10OΣ1

SU(7)
(1)3/14

3× L Σ2
SU(7) 4h+ e3 + e1 − 2e2 0 OΣ2

SU(7)
(−1)3/5OΣ2

SU(7)
(−1)1/5 OΣ2

SU(7)
(1)1/7

1× h̄ Σu
SU(7) h− e1 − e3 0 OΣu

SU(7)
(1)1/5 OΣu

SU(7)
(1)1/15 OΣu

SU(7)
(−1)1/21

1× h Σd
SU(7) h− e2 − e4 0 OΣd

SU(7)
(−1)1/5OΣd

SU(7)
(−1)1/15OΣd

SU(7)
(1)1/21

1× Φ ΣΦ
SU(7) 3h− e1 − e3 − 2e2 0 OΣΦ

SU(7)
(−1)1/5OΣΦ

SU(7)
(−1)1/15OΣΦ

SU(7)
(1)1/21

Table XV. An example for a non-minimal MSSM spectrum from GS = SU(6)

with the U(1)2 gauge flux configuration L1 = OS(e1 − e2)
1/5 and

L2 = OS(5e3 − 2e2 − 3e1)
1/30.

To make the exotic fields form the couplings, we introduce one extra curve ΣΦ
SU(7)

with Φ = (1, 2̄)7,−3,−1. Now we arrange Σ1
SO(12) intersects Σ1

E6
and Σ2

E6
, so does

Σ2
SO(12). The curve Σu

SU(7) passes through the intersection point of Σ1
SO(12) and Σ1

E6
and

that of Σ2
SO(12) and Σ2

E6
. The vertices of the triple intersections (Σ1

SO(12),Σ
1
E6
,Σu

SU(7))

and (Σ2
SO(12),Σ

2
E6
,Σu

SU(7)) represent the coupling Quch̄. Another two vertices are

27With one additional singlet.
28With two additional singlets.
29With six additional singlets.
30With five additional singlets.



66

formed by triple intersections (Σ1
SO(12),Σ

2
E6
,ΣΦ

SU(7)) and (Σ2
SO(12),Σ

1
E6
,ΣΦ

SU(7)), which

represent the coupling ΘΨΦ and Θ̃ΨΦ, where Θ = (3,2)1,1,−3, Θ̃ = (3,2)−1,1,−3,

and Ψ = (3̄,1)−2,2,4. When Φ gets a vev, the exotic fields are decoupled through

the coupling, which means that at low energy, those fields will not show up in the

spectrum. To obtain the coupling Qdch, one can arrange two curves Σ1
SU(7), and

Σd
SU(7) intersect Σ1

SO(12) at one point. For the coupling Lech, one can let the curve

Σ2
SU(7) intersect Σd

SU(7) at another point on Σ1
SO(12). The intersection point of Σu

SU(7)

and Σ2
SU(7) represents the coupling Lνch̄. To sum up, the superpotential is as follows:

W ⊃ WMSSM + ΘΨΦ + Θ̃ΨΦ + · · · . (2.136)

As mentioned earlier, through the last two couplings in (2.136), we obtain a

non-minimal MSSM spectrum at low energy. Note that in this case, h̄ and h come

from the curves Σu
SU(7) and Σd

SU(7), respectively. As shown in section F-2b, doublet-

triplet splitting can be achieved by U(1)2 gauge fluxes. Therefore, a non-minimal

spectrum of the MSSM with doublet-triple splitting can be achieved in a local F-

theory model where GS = SU(6) and with U(1)2 gauge fluxes. As shown in section

F-2b, given the field configurations, one can calculate the homological classes of the

curves supporting the configurations. For the present example, we simply summarize

the field content and the classes of the curves in Table XV. Note that in the previous

example there are some exotic singlets. Following similar procedure, these singlets

can be lifted via trilinear couplings. Let us consider the following example. To

obtain three copies of Q and ec, we engineer two curves Σ̃1
SO(12) and Σ̃2

SO(12) with field

content (2, 1,−2,−1, 3) and (1, 2,−1,−2, 0), respectively. Clearly the exotic fields are

1× (3̄,1)2,−4,2, 2× (3̄,1)−2,2,4, and 1× (1, 2̄)−2,−3,4 on Σ̃1
SO(12). For the curve Σ̃2

SO(12),

we get exotic fields 2× (3̄,1)2,−4,2, 1× (3̄,1)−2,2,4, and 2× (1, 2̄)−2,−3,4. To get three

copies of uc, we arrange two curves, Σ̃1
E6

and Σ̃2
E6

with field content (2, 1, 1, 0, 3, 2) and
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(3, 1, 2, 0, 4, 2), respectively. We have exotic fields 2×(3,2)1,1,−3, 1×(3,2)−1,1,−3, and

five singlets on Σ̃1
E6

. On Σ̃2
E6

, the exotic fields are 3× (3,2)1,1,−3, 1× (3,2)−1,1,−3, and

six singlets. Since the rest of the fields in the case of M1 come from the curves with

GΣ = SU(7), we can easily engineer 3×dc, 3×L, 1× h̄ and 1×h on individual curves,

denoted respectively by Σ̃1
SU(7), Σ̃2

SU(7), Σ̃u
SU(7), and Σ̃d

SU(7). Note that these exotic

fields can form trilinear couplings with triplets on ΣSU(7). To make the exotic fields

form the couplings, we introduce three extra curves ΣΥ1

SU(7), ΣῩ2

SU(7), and Σ
Υ′

3

SU(7) with

Υ1 = (3,1)−7,−2,1, Ῡ2 = (3̄,1)7,2,−1, and Υ3+Λ, respectively, where Υ3 = (3,1)−7,−2,1

and Λ = (1,1)−7,0,−5. The superpotential is as follows:

W ⊃ WMSSM + Ξ∆Υ1 + Ξ∆̃Υ1 + ΘΠῩ2 + Θ̃ΠῩ2 + ΨΛΥ3 + · · · , (2.137)

where Ξ = (3̄,1)2,−4,2, ∆ = (1,1)1,6,−3, ∆̃ = (1,1)−1,6,−3, and Π = (1, 2̄)−2,−3,4.

When Υ1, Ῡ2, and Υ3 get vevs, the exotic fields are decoupled via the couplings,

which means that at low energy, those fields will not show up in the spectrum. For

the couplings in WMSSM, the arrangement of the curves is similar to the previous

example. We are not going to repeat that. In this example, we obtain a non-minimal

MSSM spectrum at low energy. The field content and the classes of the curves are

summarized in Table XVI.31

31In this example Q and uc are localized on different curves. The Yukawa coupling

Quch̄ descended from 10105 can be expressed as [Σ̃1
SO(12)(1, 2)+Σ̃2

SO(12)(3)][Σ̃
1
E6

(1)+

Σ̃2
E6

(2, 3)][Σ̃u
SU(7)] generating nonvanishing diagonal elements in the Yukawa mass ma-

trix, where the indices in the parenthesis represent the generations.
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Multi. Curve Σ gΣ L1Σ L2Σ L′Σ

2×Q
Σ̃1
SO(12)

5h− e1 − 4e3
0 OΣ̃1

SO(12)
(1)1/5 OΣ̃1

SO(12)
(1)17/30 OΣ̃1

SO(12)
(1)1/3

+3× ec −e5

1×Q Σ̃2
SO(12) 4h+ e1 − 2e3 + e6 0 OΣ̃2

SO(12)
(−1)1/5OΣ̃2

SO(12)
(1)13/30 OΣ̃2

SO(12)
(1)1/6

1× uc Σ̃1
E6

4h+ 2e3 − e1 0 OΣ̃1
E6

(1)1/5 OΣ̃1
E6

(−1)13/30 OΣ̃1
E6

(1)1/2

2× uc Σ̃2
E6

5h+ 3e3 − e1 0 OΣ̃2
E6

(1)1/5 OΣ̃2
E6

(−1)3/5 OΣ̃2
E6

(1)

3× dc Σ̃1
SU(7) 4h+ e2 + e3 − 2e1 0 OΣ̃1

SU(7)
(1)3/5 OΣ̃1

SU(7)
(−1)3/10OΣ̃1

SU(7)
(1)3/14

3× L Σ̃2
SU(7) 4h+ e3 + e1 − 2e2 0 OΣ̃2

SU(7)
(−1)3/5 OΣ̃2

SU(7)
(−1)1/5 OΣ̃2

SU(7)
(1)1/7

1× h̄ Σ̃u
SU(7) 3h+ e2 − e4 0 OΣ̃u

SU(7)
(1)1/5 OΣ̃u

SU(7)
(1)1/15 OΣ̃u

SU(7)
(−1)1/21

1× h Σ̃d
SU(7) h− e2 − e4 0 OΣ̃d

SU(7)
(−1)1/5 OΣ̃d

SU(7)
(−1)1/15OΣ̃d

SU(7)
(1)1/21

1×Υ1 Σ̃Υ1

SU(7) h− e2 − e3 0 O
Σ̃

Υ1
SU(7)

(−1)1/5 O
Σ̃

Υ1
SU(7)

(1)1/10 O
Σ̃

Υ1
SU(7)

(−1)1/14

1× Ῡ2 Σ̃Ῡ2

SU(7) 2h− e1 − e4 − e5 0 O
Σ̃

Ῡ2
SU(7)

(1)1/5 O
Σ̃

Ῡ2
SU(7)

(−1)1/10O
Σ̃

Ῡ2
SU(7)

(1)1/14

1×Υ3

Σ̃
Υ′

3

SU(7) h− e2 − e4 0 O
Σ̃

Υ′
3

SU(7)

(−1)1/5 O
Σ̃

Υ′
3

SU(7)

(−1)1/15O
Σ̃

Υ′
3

SU(7)

(−1)2/21

+1× Λ

Table XVI. An example for a non-minimal MSSM spectrum from GS = SU(6)

with the U(1)2 gauge flux configuration L1 = OS(e1 − e2)
1/5 and

L2 = OS(5e3 − 2e2 − 3e1)
1/30.
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G. Conclusion

In this chapter we demonstrated how to obtain U(1)2 gauge flux configurations

(L1, L2) with an exotic-free bulk spectrum of the local F-theory model with GS =

SU(6). In this case each configuration is constructed by two fractional line bundles,

which are well-defined in the sense that up to a linear transformation of the U(1)

charges, an U(1)2 flux configuration can be associated with a polystable bundle of

rank two with structure group U(1)2. Under physical assumptions, we obtained all

flux configurations as shown in Table VIII and Table IX. For the case ofGS = SO(10),

as shown in [15] there is a no-go theorem which states that for an exotic-free spectrum,

there are no solutions for U(1)2 gauge fluxes.

To build a model of the MSSM, we studied the field configurations localized

on the curves with non-trivial gauge fluxes induced from the restriction of the flux

configurations on the bulk S. With non-trivial induced fluxes, the enhanced gauge

group GΣ will be broken into Gstd × U(1). Under physical assumptions, we obtained

all field configurations localized on the curves with GΣ = SU(7), GΣ = SO(12)

and GΣ = E6. Form the breaking patterns, we knew that Higgs fields are localized

on the curves ΣSU(7) and ΣSO(12). On the curve ΣSU(7), we found that doublet-

triplet splitting can be achieved. However, it is impossible to get the splitting on the

curve ΣSO(12) without raising exotic fields, which means that when building models,

we should engineer the Higgs fields on the curve ΣSU(7) instead of ΣSO(12). Unlike

Higgs fields, matter fields in the MSSM are distributed over the curves GΣ = SU(7),

GΣ = SO(12) and GΣ = E6. With the solved field configurations, it is clear that

it is extremely difficult to get the minimal spectrum of the MSSM without exotic

fields. However, if those exotic fields can form trilinear couplings with the doublets

or triplets on the curves with GΣ = SU(7), the exotic fields can be lifted from the
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massless spectrum when these doublets or triplets get vevs. In order to achieve this,

we introduced extra curves to support these doublets or triplets coupled to exotic

fields. With this procedure, we can construct a non-minimal spectrum of the MSSM

with doublet-triple splitting.
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CHAPTER III

SEMI-LOCAL FLIPPED SU(5) MODELS32

In this chapter we construct supersymmetric flipped SU(5) GUTs from E8 singulari-

ties in F-theory. We start from an SO(10) singularity unfolded from an E8 singularity

by using an SU(4) spectral cover. To obtain realistic models, we consider (3, 1) and

(2, 2) factorizations of the SU(4) cover. After turning on the massless U(1)X gauge

flux, we obtain the SU(5)× U(1)X gauge group. Based on the well-studied geomet-

ric backgrounds in the literature, we demonstrate several models and discuss their

phenomenology.

A. ADE Singularities and Spectral Covers

1. Elliptically fibered Calabi-Yau Fourfolds and ADE Singularities

Let us consider an elliptically fibered Calabi-Yau fourfold π : X4 → B3 with a section

σB3 : B3 → X4. Due to the presence of the section σB3 , X4 can be described by the

Weierstrass form:

y2 = x3 + fx+ g, (3.1)

where f and g are sections of suitable line bundles overB3. More precisely, to maintain

Calabi-Yau condition c1(X4) = 0, it is required that33 f ∈ Γ(K−4
B3

) and g ∈ Γ(K−6
B3

),

where KB3 is the canonical bundle of B3. Let ∆ ≡ 4f 3 + 27g2 be the discriminant of

the elliptic fibration Eq. (3.1) and S be one component of the locus {∆ = 0} where

elliptic fibers degenerate. In the vicinity of S, one can regard X4 as an ALE fibration

32Reprinted from Journal of High Energy Physics, Vol 2011, Number 3, 49, Ching-
Ming Chen and Yu-Chieh Chung, Flipped SU(5) GUTs from E8 Singularities in
F-theory, Copyright 2011, with permission from SISSA.

33The symbol Γ(L) stands for a set of global sections of the bundle L.
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over the surface S. To construct SO(10) and flipped SU(5) GUT models, one can

start with engineering a D5 singularity corresponding to the gauge group SO(10) in

the following way. Let z be a section of the normal bundle NS/B3 of S in B3 and the

zero section then represents the surface S. Since f and g are sections of some line

bundles over B3, one can locally expand f and g in terms of z as follows:

f = 3
4∑

k=0

fk(u, v)z
k, g = 2

6∑
l=0

gl(u, v)z
l, (3.2)

where (u, v) are coordinates of S and the prefactors 2 and 3 are just for convenience.

Then the Weierstrass form Eq. (3.1),

y2 = x3 + 3
4∑

k=0

fk(u, v)z
kx+ 2

6∑
l=0

gl(u, v)z
l, (3.3)

describes an ALE fibration over S, where fk ∈ Γ(K−4
B3
⊗OB3(−kS)) and gl ∈ Γ(K−6

B3
⊗

OB3(−lS)).34 According to the Kodaira classification of singular elliptic fibers, one

can classify the singularity of an elliptic fibration by the vanishing order of f , g, and

∆, denoted by ord(f), ord(g), and ord(∆), respectively. We summarize the relevant

ADE classification and corresponding gauge groups in Table XVII. The detailed list

can be found in [17]. According to Table XVII, a D5 singularity corresponds to the

case of (ord(f), ord(g), ord(∆)) = (> 2, 3, 7) or (2,> 3, 7). Recall that S is the locus

{z = 0}. To obtain a D5 singularity, the vanishing orders of f and g at z = 0 are

required to be two and three, respectively35. Let us consider the sections f and g to

34By adjunction formula, KS = KB3 ⊗NS/B3|S, we have fk ∈ Γ(K−4
S ⊗N4−k

S/B3
) and

gl ∈ Γ(K−6
S ⊗N6−l

S/B3
), where KS is the canonical bundle of S.

35One can show that in this case the only consistent triplet vanishing orders for
a D5 singularity is (ord(f), ord(g), ord(∆)) = (2, 3, 7). The higher order terms are
irrelevant to the singularity. However, they may change the monodromy group [76].
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Singularity ord(f) ord(g) ord(∆) Gauge Group

An 0 0 n+ 1 SU(n+ 1)

Dn+4 > 2 3 n+ 6 SO(2n+ 8)

Dn+4 2 > 3 n+ 6 SO(2n+ 8)

E6 > 3 4 8 E6

E7 3 > 5 9 E7

E8 > 4 5 10 E8

Table XVII. ADE singularities and corresponding gauge groups.

be

f = 3(f2z
2 + f3z

3), g = 2(g3z
3 + g4z

4 + g5z
5). (3.4)

Then the corresponding discriminant is given by

∆ = cz6[(f 3
2 + g2

3) + (3f 2
2 f3 + 2g3g4)z + (3f2f

2
3 + g2

4 + 2g3g5)z
2

+ (f 3
3 + 2g4g5)z

3 +O(z4)], (3.5)

where c = 4 · 27. To obtain ord(∆) = 7, let us set f2 = −h2 and g3 = h3, where

h ∈ Γ(K−2
B3
⊗OB3(−S)). Then the discriminant is reduced to

∆ = cz7[(3h4f3 + 2h3g4) + (−3h2f 2
3 + g2

4 + 2h3g5)z + (f 3
3 + 2g4g5)z

2 +O(z3)]. (3.6)

The singularity of ALE fibration is now characterized by the sections {h, f3, g4, g5}.

When h = 0, one can find that (ord(f), ord(g), ord(∆)) = (3, 4, 8) at the locus {z =

0}∩{h = 0}. It follows from the Kodaira classification that the singularity is enhanced

to E6. When 3hf3 + 2g4 = 0, the triplet vanishing orders becomes (2, 3, 8), which

implies that the singularity at the locus {z = 0} ∩ {3hf3 + 2g4 = 0} is D6 and that
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GS (ord(f), ord(g), ord(∆)) Locus

SO(10) (2, 3, 7) {z = 0}

E6 (3, 4, 8) {z = 0} ∩ {h = 0}

SO(12) (2, 3, 8) {z = 0} ∩ {3hf3 + 2g4 = 0}

E7 (3, 5, 9) {z = 0} ∩ {h = 0} ∩ {g4 = 0}

SO(14) (2, 3, 9) {z = 0} ∩ {3hf3 + 2g4 = 0} ∩ {3f 2
3 − 8hg5 = 0}

Table XVIII. Gauge enhancements and corresponding loci.

the corresponding enhanced gauge group is SO(12). In a similar manner, one can

find the codimension two singularities corresponding to E7 and SO(14) in S. We

summarize the results in Table XVIII.

For later use, it is convenient to introduce the Tate form of the fibration:

y2 = x3 + b4x
2z + b3yz

2 + b2xz
3 + b0z

5, (3.7)

where bm ∈ Γ(Km−6
S ⊗NS/B3). Actually, Eq. (3.7) is nothing more than the unfolding

of an E8 singularity to a singularity of SO(10). Notice that by comparing Eq. (3.7)

with Eqs. (3.3) and (3.4), one can obtain the relations between {f2, f3, g3, g4, g5} and

{b0,b2,b3,b4} as follows: 

f2 = −1
9
b2

4

f3 = 1
3
b2

g3 = 1
27

b3
4

g4 = 1
8
b2

3 − 1
6
b2b4

g5 = 1
2
b0.

(3.8)
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GS Locus Object

SO(10) {z = 0} GUT Seven-branes

E6 {z = 0} ∩ {b4 = 0} Matter 16

SO(12) {z = 0} ∩ {b3 = 0} Matter 10

E7 {z = 0} ∩ {b3 = 0} ∩ {b4 = 0} Yukawa Coupling 161610

SO(14) {z = 0} ∩ {b3 = 0} ∩ {b2
2 − 4b0b4 = 0} Extra Coupling

Table XIX. Gauge enhancements in SO(10) GUT geometry.

With the relations in Eq. (3.8), the discriminant Eq. (3.6) becomes

∆ = c̃z7{16b2
3b

3
4 + [27b4

3 − 72b2b
2
3b4 − 16b2

4(b
2
2 − 4b0b4)]z

+ [16b2(4b
2
2 − 18b0b4) + 216b0b

2
3]z

2 +O(z3)}, (3.9)

where c̃ = 1
16

. It follows from Eq. (3.8) that the codimension one loci {z = 0}∩{h = 0}

and {z = 0}∩ {3hf3 + 2g4} in S can be equivalently expressed as {z = 0}∩ {b4 = 0}

and {z = 0} ∩ {b3 = 0}, respectively. Due to the gauge enhancements, matter 16

and 10 are localized at the loci of E6 and SO(12) singularities, respectively. One

can also find that the loci of codimension two singularities E7 and SO(14) in S are

{z = 0} ∩ {b3 = 0} ∩ {b4 = 0} and {z = 0} ∩ {b3 = 0} ∩ {b2
2 − 4b0b4 = 0},

respectively. At these loci, the corresponding gauge groups are enhanced to E7 and

SO(14), respectively36. In particular, the Yukawa coupling 161610 can be realized

at the points with E7 singularities. We summarize the results in Table XIX.

36One can also use Tate’s algorithm to determine the singularity type of the Tate
form Eq. (3.7) [12].
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2. SU(4) Spectral Cover

To engineer the SO(10) gauge group from an E8 singularity, let us consider the

following decomposition

E8 → SO(10)× SU(4)

248 → (1,15) + (45,1) + (10,6) + (16,4) + (16, 4̄). (3.10)

and the Tate form of the fibration,

y2 = x3 + b4x
2z + b3yz

2 + b2xz
3 + b0z

5. (3.11)

For simplicity, let us define c1 ≡ c1(S) and t ≡ −c1(NS/B3), then the homological

classes of the sections x, y, z, and bm can be expressed as

[x] = 3(c1 − t), [y] = 2(c1 − t), [z] = −t, [bm] = (6−m)c1 − t ≡ η −mc1. (3.12)

Recall that locally X4 can be described by an ALE fibration over S. Pick a point

p ∈ S and the fiber is an ALE space denoted by ALEp. One can construct an

ALE space by resolving an orbifold C2/ΓADE, where ΓADE is a discrete subgroup of

SU(2) [112], for more information, see [113–117]. It was shown that the intersection

matrix of the exceptional 2-cycles corresponds to the Cartan matrix of ADE types.

In this chapter we will focus on engineering the SO(10) gauge group by unfolding an

E8 singularity. To this end, let us consider αi ∈ H2(ALEp,Z), i = 1, 2, ..., 8 to be

the roots37 of E8. The extended E8 Dynkin diagram with roots and Dynkin indices

are shown in Fig 1. Notice that α−θ is the highest root and satisfies the condition

α−θ + 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8 = 0. To obtain SO(10), we

37By abuse of notation, the corresponding exceptional 2-cycles are also denoted by
αi
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i i i i i i i i
i

1 2 3 4 5 6 4 2

3

α−θ α1 α2 α3 α4 α5 α6 α7

α8

Fig. 1. The extended E8 Dynkin diagram and indices.

keep the volume of the cycles {α4, α5, ..., α8} vanishing and then SU(4) is generated

by {α1, α2, α3}. An enhancement to E6 happens when α3 or any of its image under

the Weyl permutation shrinks to zero size. Let {λ1, ..., λ4} be the periods of these

2-cycles. As described in [16, 47], the information of theses λi can be encoded in the

coefficients bm in Eq. (3.11) via the following relations:

∑
i

λi =
b1
b0

= 0∑
i<j

λiλj =
b2
b0∑

i<j<k

λiλjλk =
b3
b0∏

l

λl =
b4
b0
,

(3.13)

where bm ≡ bm|z=0. Equivalently, {λ1, ..., λ4} can be regarded as the roots of the

equation

b0
∏
k

(s+ λk) = b0s
4 + b2s

2 + b3s+ b4 = 0. (3.14)

When p ∈ S varies along S, Eq. (3.14) defines a fourfold cover over S, called the

fundamental SU(4) spectral cover. This cover is a section of the canonical bundle

KS → S. When λi vanish,
∏

i λi = b4 = 0 in which the gauge group is enhanced

to E6 and matter 16 is localized. According to the decomposition (3.10), matter 10

corresponds to the anti-symmetric representation 6 of SU(4), associated to a sixfold
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cover C(6)

∧2V over S. This associated cover C(6)

∧2V can be constructed as follows:

b20
∏
i<j

(s+ λi + λj) = b20s
6 + 2b0b2s

4 + (b22 − 4b0b4)s
2 − b23 = 0. (3.15)

Since matter 10 corresponds to λi + λj = 0, i 6= j, it follows from Eq. (3.15) that

b3 = 0, which means that matter 10 is localized at the locus {b3 = 0} as shown

in Table XIX. It is not difficult to see that the spectral covers indeed encode the

information of singularities and gauge group enhancements. However, the power of

spectral cover is more than that. With the spectral cover, we can construct a Higgs

bundle to calculate the chirality of matter 16 and 10 by switching on a line bundle

on the cover.

Let us define X to be the total space of the canonical bundle KS over S. Note

that X is a local Calabi-Yau threefold. However, X is non-compact. To obtain a

compact space, one can compactify X to the total space X̄ of the projective bundle

over S, i.e.

X̄ = P(OS ⊕KS), (3.16)

with a map π : X̄ → S, where OS is the trivial bundle over S. Notice that X̄ is

compact but no longer a Calabi-Yau threefold. Let O(1) be a hyperplane section

of P1 fiber and denote its first Chern class by σ∞. We define the homogeneous

coordinates of the fiber by [U : V ]. Note that {U = 0} and {V = 0} are sections of

O(1)⊗KS and O(1), while the class of {U = 0} and {V = 0} are σ ≡ σ∞ − π∗c1(S)

and σ∞, respectively. By the emptiness of intersection of {U = 0} and {V = 0}, one

can obtain σ · σ = −σ · π∗c1. The affine coordinate s is defined by s = U/V . In X̄,

the SU(4) cover Eq. (3.14) is homogenized as

C(4) : b0U
4 + b2U

2V 2 + b3UV
3 + b4V

4 = 0 (3.17)
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with induced map p4 : C(4) → S. It is not difficult to see that the homological class

[C(4)] of the cover C(4) is given by [C(4)] = 4σ + π∗η. One can calculate the locus of

matter 16 curve by intersection of [C(4)] with σ

[C(4)] ∩ σ = (4σ + π∗η) · σ = σ · π∗(η − 4c1), (3.18)

which implies that [Σ16] = η − 4c1 in S. Alternatively, it can be followed from the

fact that the locus of Σ16 in S is {b4 = 0}. On the other hand, it follows from Eq.

(3.15) that the homological class of the cover C(6)

∧2V is given by

[C(6)

∧2V ] = 6σ + 2π∗η (3.19)

Notice that C(6)

∧2V is generically singular. To solve this problem, one can consider

intersection τC ∩ C and define [58,121]

[D] = [C(4)] ∩ [C(4)]− [C(4)] ∩ σ − [C(4)] ∩ 3σ∞ (3.20)

where τ is a Z2 involution V → −V acting on the spectral cover38. The 10 curve can

then be evaluated by

[D]|σ = 4(η − 3c1), (3.21)

which implies that [Σ10] = 2η − 6c1 in S.

To obtain chiral spectrum, we turn on a spectral line bundle L on the cover C(4).

The corresponding Higgs bundle is given by V = p4∗L. For an SU(n) bundle, it is

38Note that there are double points on Σ10. One can resolve these double points
by blowing-up and then obtain resolved Σ̃10 with a mapping π̃D : D → Σ̃10 of degree
4 and [Σ̃10] = η − 3c1 [52].
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required that c1(V ) = 0. It follows that

c1(p4∗L) = p4∗c1(L)− 1

2
p4∗r, (3.22)

where r is the ramification divisor given by r = p4∗c1 − c1(C(4)). It is convenient to

define the cover flux γ by

c1(L) = λγ +
1

2
r, (3.23)

where λ is a parameter used to compensate the non-integral class 1
2
r. The traceless

condition c1(p4∗L) = 0 is then equivalent to the condition p4∗γ = 0. One can show

that

γ = (4− p∗4p4∗)(C(4) · σ) (3.24)

satisfies the traceless condition. Since the first Chern class of a line bundle must be

integral, it follows that λ and γ have to obey the following quantization condition

λγ +
1

2
[p∗4c1 − c1(C(4))] ∈ H4(X̄,Z). (3.25)

With the given cover flux γ, the net chirality of matter 16 is calculated by [47,52]

N16 = (C(4) · σ) · λγ = −λη · (η − 4c1) (3.26)

On the other hand, the matter 10 corresponds to the anti-symmetric representation

6 in SU(4), associated to the spectral cover C(6)

∧2V . It turns out that for the SU(4)

cover, the net chirality of matter 10 is given by [52]

N10 = D · γ = 0. (3.27)

It follows from Eqs. (3.26) and (3.27) that one obtain an SO(10) model with −λη ·

(η − 4c1) copies of matter on the 16 curve and nothing on the 10 curve. The flux

γ does not have many degrees of freedom to tune and the candidate of 10 Higgs is
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absent. Therefore, in search of realistic models, we shall consider factorization of the

SU(4) cover C(4) to enrich the configuration, along the line of the SU(5) cover studied

in [53,57,65,66]. In the next section, we shall focus on the construction of (3, 1) and

(2, 2) factorizations of the cover C(4).

B. SU(4) Cover Factorization

1. (3, 1) Factorization

We consider the (3, 1) factorization, C(4) → C(a) × C(b) corresponding to the factor-

ization of Eq. (3.17) as follows:

C(a) × C(b) : (a0U
3 + a1U

2V + a2UV
2 + a3V

3)(d0U + d1V ) = 0. (3.28)

By comparing with Eq. (3.17), one can obtain the following relations:

b0 = a0d0, b1 = a1d0 + a0d1, b2 = a2d0 + a1d1, b3 = a3d0 + a2d1, b4 = a3d1.(3.29)

Let ξ1 be the homological class [d1] of d1 and write

[d0] = c1 + ξ1, [ak] = η − (k + 1)c1 − ξ1, k = 0, 1, 2, 3. (3.30)

To solve the traceless condition b1 = a1d0 + a0d1 = 0, we impose the ansatz a0 =

αd0, a1 = −αd1 where [α] = η − 2c1 − 2ξ1. It is easy to see that the homological

classes of C(a) and C(b) in X̄ are

[C(a)] = 3σ + π∗(η − c1 − ξ1), [C(b)] = σ + π∗(c1 + ξ1). (3.31)

With the classes given in Eq. (3.31), the homological classes of factorized matter

curves Σ16(a) and Σ16(b) in S are given by

[Σ16(a) ] = [C(a)]|σ = η − 4c1 − ξ1, [Σ16(b) ] = [C(b)]|σ = ξ1. (3.32)
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[C(b)(b)] 2[C(a)(b)] [C(a)(a)]

16 σ · π∗ξ1 - σ · π∗(η − 4c1 − ξ1)

10 -

2[σ + π∗(c1 + ξ1)] [2σ + π∗(η − 2c1 − ξ1)]

· π∗(η − 3c1 − ξ1) + 2σ · π∗ξ1 · π∗(η − 3c1 − ξ1)

+2(σ + π∗c1) · π∗ξ1

∞ σ∞ · π∗(c1 + ξ1) 4σ∞ · π∗(c1 + ξ1)
σ∞ · π∗(η − c1 − ξ1)

+2σ∞ · π∗(η − 2c1 − 2ξ1)

Table XX. The homological classes of the matter curves in the (3, 1) factorization.

To obtain the factorized 10 curves, we follow the method proposed in [57,65,66,121]

to calculate the intersection C(4) ∩ τC(4), where τ is the Z2 involution τ : V → −V

acting on the spectral cover. Since the calculation is straightforward, we omit the

detailed calculation here and only summarize the results in Table XX.3940

It follows from Table XX that the relevant classes in X̄ for 10 curves are

[C(a)(a)] = [2σ + π∗(η − 2c1 − ξ1)] · π∗(η − 3c1 − ξ1) + 2(σ + π∗c1) · π∗ξ1,(3.33)

[C(a)(b)] = [σ + π∗(c1 + ξ1)] · π∗(η − 3c1 − ξ1) + σ · π∗ξ1, (3.34)

which give rise to the 10 curve

[Σ10(a)(a) ] = [Σ10(a)(b) ] = η − 3c1. (3.35)

39To simplify notations, we denote C(k) ∩ τC(l) by C(k)(l) and notice that [C(k)(l)] =
[C(l)(k)].

40To avoid a singularity of non-Kodaira type, we impose the condition ξ1·S(c1+ξ1) =
0. Therefore, [C(b)(b)]|10 = π∗ξ1 · π∗(c1 + ξ1)=0.
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2. (2, 2) Factorization

In the (2, 2) factorization, the cover is split as C(4) → C(d1) × C(d2). More precisely,

the cover defined in Eq. (3.17) is factorized into the following form:

C(d1) × C(d2) : (e0U
2 + e1UV + e2V

2)(f0U
2 + f1UV + f2V

2) = 0. (3.36)

By comparing the coefficients with Eq. (3.17), one obtains

b0 = e0f0, b1 = e0f1 + e1f0, b2 = e0f2 + e1f1 + e2f0, b3 = e1f2 + e2f1, b4 = e2f2.

(3.37)

Let ξ2 be the homological class of f2 and then the homological classes of other sections

can be written as

[f1] = c1 + ξ2, [f0] = 2c1 + ξ2, [em] = η − (m+ 2)c1 − ξ2, m = 0, 1, 2. (3.38)

To solve the traceless condition b1 = e0f1 + e1f0 = 0, we impose the ansatz e0 =

βf0, e1 = −βf1 where [β] = η − 4c1 − 2ξ2. In this case, the homological classes of

C(d1) and C(d2) are given by

[C(d1)] = 2σ + π∗(η − 2c1 − ξ2), [C(d2)] = 2σ + π∗(2c1 + ξ2). (3.39)

The homological classes of the corresponding matter curves Σ16(d1) and Σ16(d2) are

then computed as

[Σ16(d1) ] = [C(d1)]|σ = η − 4c1 − ξ2, [Σ16(d2) ] = [C(d2)]|σ = ξ2, (3.40)

respectively. To calculate the homological classes of the factorized 10 curves, we again

follow the method proposed in [57,65,66,121] to calculate the intersection C(4)∩τC(4).

We omit the detailed calculation here and only summarize the results in Table XXI.

It follows from Table XXI that the classes in X̄ for the factorized 10 curves are
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[C(d2)(d2)] 2[C(d1)(d2)] [C(d1)(d1)]

16 σ · π∗ξ2 - σ · π∗(η − 4c1 − ξ2)

10
[2σ + π∗(2c1 + ξ2)] 2[2σ + π∗(2c1 + ξ2)] π∗(η − 3c1 − ξ2) · π∗(η − 4c1 − ξ2)

· π∗(c1 + ξ2) · π∗(η − 4c1 − ξ2) +2(σ + π∗c1) · π∗(c1 + ξ2)

∞ σ∞ · π∗(2c1 + ξ2) 4σ∞ · π∗(2c1 + ξ2)
σ∞ · π∗(η − 2c1 − ξ2)

+2σ∞ · π∗(η − 4c1 − 2ξ2)

Table XXI. The homological classes of the matter curves in the (2, 2) factorization.

as follows:

[C(d1)(d1)] = 2(σ + π∗c1) · π∗(c1 + ξ2) + π∗(η − 3c1 − ξ2) · π∗(η − 4c1 − ξ2), (3.41)

[C(d1)(d2)] = (2σ + π∗(2c1 + ξ2)) · π∗(η − 4c1 − ξ2), (3.42)

[C(d2)(d2)] = (2σ + π∗(2c1 + ξ2)) · π∗(c1 + ξ2). (3.43)

With the classes [C(d1)(d1)], [C(d1)(d2)], and [C(d2)(d2)], one can calculate the classes of

the corresponding 10 curves in S as follows:

[Σ10(d1)(d1) ] = [Σ10(d2)(d2) ] = c1 + ξ2, [Σ10(d1)(d2) ] = 2η − 8c1 − 2ξ2. (3.44)

C. Spectral Cover Fluxes

Let us consider the case of the cover factorization C(n) → C(l) ×C(m). To obtain well-

defined cover fluxes and maintain supersymmetry, we impose the following constraints

[66]:

c1(pl∗L(l)) + c1(pm∗L(m)) = 0, (3.45)

c1(L(k)) ∈ H2(C(k),Z), k = l,m, (3.46)

[c1(pl∗L(l))− c1(pm∗L(m))] ·S [ωS] = 0, (3.47)
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where pk denotes the projection map from the cover C(k) to S, pk : C(k) → S, L(k) is a

line bundle over C(k) and [ωS] is an ample divisor dual to a Kähler form of S. The first

constraint Eq. (3.45) is the traceless condition for the induced Higgs bundle41. The

second constraint Eq. (3.46) requires that the first Chern class of a well-defined line

bundle L(k) over C(k) must be integral. The third constraint states that the 2-cycle

c1(pl∗L(l))− c1(pm∗L(m)) in S has to be supersymmetic. Note that Eq. (3.45) can be

expressed as

pl∗c1(L(l))− 1

2
pl∗r

(l) + pm∗c1(L(m))− 1

2
pm∗r

(m) = 0, (3.48)

where r(l) and r(m) are the ramification divisors for the maps pl and pm, respectively.

Recall that the ramification divisors r(k) are defined by

r(k) = p∗kc1 − c1(C(k)), k = l,m. (3.49)

The term c1(C(k)) in Eq. (3.49) can be calculated by the adjuction formula [109,110],

c1(C(k)) = (c1(X̄)− [C(k)]) · [C(k)]. (3.50)

It is convenient to define cover fluxes γ(k) as

c1(L(k)) = γ(k) +
1

2
r(k), k = l,m. (3.51)

With Eq. (3.51), the traceless condition Eq. (3.45) can be expressed as pl∗γ
(l) +

pm∗γ
(m) = 0. By using Eq. (3.49) and Eq. (3.51), we can recast the quantization

condition Eq. (3.46) by γ(k) + 1
2
[p∗kc1 − c1(C(k))] ∈ H2(C(k),Z), k = l,m. Finally, the

supersymmetry condition Eq. (3.47) is reduced to pk∗γ
(k) ·S [ωS] = 0. We summarize

41One may think of Eq. (3.45) as the traceless condition of an SU(4) bundle V4 over
S split into V3 ⊕ L with V3 = pa∗L(a) and L = pb∗L(b). Then the traceless condition
of V4 can be expressed by c1(V4) = c1(pa∗L(a)) + c1(pb∗L(b)) = 0.
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the constraints as follows:

pl∗γ
(l) + pm∗γ

(m) = 0, (3.52)

γ(k) +
1

2
[p∗kc1 − c1(C(k))] ∈ H2(C(k),Z), k = l,m, (3.53)

pk∗γ
(k) ·S [ωS] = 0, k = l,m. (3.54)

In the next section, we shall explicitly construct the cover fluxes γ(k) satisfying Eq.

(3.52), (3.53), and (3.54) for the (3, 1) and (2, 2) factorizations. We also calculate the

restrictions of the fluxes to each matter curve.

1. (3,1) Factorization

In the (3, 1) factorization, the ramification divisors for the spectral covers C(a) and

C(b) are given by

r(a) = [C(a)] · [σ + π∗(η − 2c1 − ξ1)], (3.55)

r(b) = [C(b)] · (−σ + π∗ξ1), (3.56)

respectively. We define traceless fluxes γ
(a)
0 and γ

(b)
0 by

γ
(a)
0 = (3− p∗apa∗)γ

(a) = [C(a)] · [3σ − π∗(η − 4c1 − ξ1)], (3.57)

γ
(b)
0 = (1− p∗bpb∗)γ

(b) = [C(b)] · (σ − π∗ξ1) , (3.58)

where γ(a) and γ(b) are non-traceless fluxes and defined as

γ(a) = [C(a)] · σ, γ(b) = [C(b)] · σ. (3.59)

Then we can calculate the restriction of fluxes γ
(a)
0 and γ

(b)
0 to each matter curve. We

omit the calculation here and only summarize the results in Table XXII. Due to the
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γ
(b)
0 γ

(a)
0

16(b) −ξ1 ·S (c1 + ξ1) 0

16(a) 0 −(η − c1 − ξ1) ·S (η − 4c1 − ξ1)

10(a)(b) −ξ1 ·S (c1 + ξ1) −(η − 3c1 − 3ξ1) ·S (η − 4c1 − ξ1)

10(a)(a) 0 (η − 3c1 − 3ξ1) ·S (η − 4c1 − ξ1)

Table XXII. Chirality induced by the fluxes γ
(a)
0 and γ

(b)
0 .

δ(b) δ(a) ρ̃

16(b) −3c1 ·S ξ1 −ξ1 ·S (η − 4c1 − ξ1) 3ρ ·S ξ1
16(a) −ξ1 ·S (η − 4c1 − ξ1) −c1 ·S (η − 4c1 − ξ1) −ρ ·S (η − 4c1 − ξ1)

10(a)(b) ξ1 ·S (2η − 9c1 − 3ξ1)−(η − 3c1 − ξ1) ·S (η − 4c1 − ξ1) 2ρ ·S (η − 3c1)

10(a)(a) −2ξ1 ·S (η − 3c1) (η − 3c1 − ξ1) ·S (η − 4c1 − ξ1) −2ρ ·S (η − 3c1)

Table XXIII. Chirality induced by the fluxes δ(a), δ(b), and ρ̃.

factorization, one also can define additional fluxes δ(a) and δ(b) by

δ(a) = (1− p∗bpa∗)γ
(a) = [C(a)] · σ − [C(b)] · π∗(η − 4c1 − ξ1)

δ(b) = (3− p∗apb∗)γ
(b) = [C(b)] · 3σ − [C(a)] · π∗ξ1. (3.60)

Another flux one can include is [66]

ρ̃ = (3p∗b − p∗a)ρ, (3.61)

for any ρ ∈ H2(S,R). We summarize the restriction of fluxes δ(a), δ(b) and ρ̃ to each

matter curve in Table XXIII.

With Eqs. (3.58), (3.60), and (3.61), we define the universal cover flux Γ to be [66]

Γ = kaγ
(a)
0 + kbγ

(b)
0 +maδ

(a) +mbδ
(b) + ρ̃ ≡ Γ(a) + Γ(b), (3.62)
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where Γ(a) and Γ(b) are given by

Γ(a) = [C(a)] · [(3ka +ma)σ − π∗(ka(η − 4c1 − ξ1) +mbξ1 + ρ)] , (3.63)

Γ(b) = [C(b)] · [(kb + 3mb)σ − π∗(kbξ1 +ma(η − 4c1 − ξ1)− 3ρ)] . (3.64)

Note that

pa∗Γ
(a) = −3mbξ1 +ma(η − 4c1 − ξ1)− 3ρ, (3.65)

pb∗Γ
(b) = 3mbξ1 −ma(η − 4c1 − ξ1) + 3ρ. (3.66)

Clearly, Γ(a) and Γ(b) obey the traceless condition pa∗Γ
(a) + pb∗Γ

(b) = 0. Besides, the

quantization condition in this case becomes

(3ka+ma+
1

2
)σ−π∗[ka(η−4c1−ξ1)+mbξ1 +ρ− 1

2
(η−2c1−ξ1)] ∈ H4(X̄,Z), (3.67)

(kb + 3mb −
1

2
)σ − π∗[kbξ1 +ma(η − 4c1 − ξ1)− 3ρ− 1

2
ξ1] ∈ H4(X̄,Z). (3.68)

The supersymmetry condition is given by

[3mbξ1 −ma(η − 4c1 − ξ1) + 3ρ] ·S [ωS] = 0. (3.69)

2. (2,2) Factorization

We can calculate the ramification divisors r(d1) and r(d2) for the (2, 2) factorization

and obtain

r(d1) = [C(d1)] · π∗(η − 3c1 − ξ2), (3.70)

r(d2) = [C(d2)] · π∗(c1 + ξ2). (3.71)
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γ
(d2)
0 γ

(d1)
0

16(d2) −ξ2 ·S (2c1 + ξ2) 0

16(d1) 0 −(η − 2c1 − ξ2) ·S (η − 4c1 − ξ2)

10(d2)(d2) 0 0

10(d1)(d2) 0 −2(η − 4c1 − 2ξ2) ·S (η − 4c1 − ξ2)

10(d1)(d1) 0 2(η − 4c1 − 2ξ2) ·S (η − 4c1 − ξ2)

Table XXIV. Chirality induced by the fluxes γ
(d1)
0 and γ

(d2)
0 .

We then define traceless cover fluxes γ
(d1)
0 and γ

(d2)
0 by

γ
(d1)
0 = (2− p∗d1pd1∗)γ

(d1) = [C(d1)] · [2σ − π∗(η − 4c1 − ξ2)] , (3.72)

γ
(d2)
0 = (2− p∗d2pd2∗)γ

(d2) = [C(d2)] · (2σ − π∗ξ2) , (3.73)

where γ(d1) and γ(d21) are non-traceless fluxes and given by

γ(d1) = [C(d1)] · σ, γ(d2) = [C(d2)] · σ. (3.74)

We summarize the restriction of the fluxes to each factorized curve in Table XXIV.

Due to the factorization, one also can define following fluxes [66]

δ(d1) = (2− p∗d2pd1∗)γ
(d1) = [C(d1)] · 2σ − [C(d2)] · π∗(η − 4c1 − ξ2),

δ(d2) = (2− p∗d1pd2∗)γ
(d2) = [C(d2)] · 2σ − [C(d1)] · π∗ξ2, (3.75)

and

ρ̂ = (p∗d2 − p∗d1)ρ, (3.76)

for any ρ ∈ H2(S,R). We summarize the restriction of the fluxes δ(d1), δ(d2), and ρ̂ to

each factorized curve in Table XXV.
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δ(d2) δ(d1) ρ̂

16(d2) −2c1 ·S ξ2 −ξ2 ·S (η − 4c1 − ξ2) ρ ·S ξ2
16(d1) −ξ2 ·S (η − 4c1 − ξ2) −2c1 ·S (η − 4c1 − ξ2) −ρ ·S (η − 4c1 − ξ2)

10(d2)(d2) 2ξ2 ·S (c1 + ξ2) −2(c1 + ξ2) ·S (η − 4c1 − ξ2) 2ρ ·S (c1 + ξ2)

10(d1)(d2) 0 −2(η − 4c1 − 2ξ2) ·S (η − 4c1 − ξ2) 0

10(d1)(d1) −2ξ2 ·S (c1 + ξ2) 2(η − 3c1 − ξ2) ·S (η − 4c1 − ξ2) −2ρ ·S (c1 + ξ2)

Table XXV. Chirality induced by the fluxes δ(d1), δ(d2), and ρ̂.

In this case the universal cover flux is defined by

Γ = kd1γ
(d1)
0 + kd2γ

(d2)
0 +md1δ

(d1) +md2δ
(d2) + ρ̂ = Γ(d1) + Γ(d2), (3.77)

where

Γ(d1) = [C(d1)] · {2(kd1 +md1)σ − π∗[kd1(η − 4c1 − ξ2) +md2ξ2 + ρ]} ,

Γ(d2) = [C(d2)] · {2(kd2 +md2)σ − π∗[kd2ξ2 +md1(η − 4c1 − ξ2)− ρ]} . (3.78)

Note that

pd1∗Γ
(d1) = −2md2ξ2 + 2md1(η − 4c1 − ξ2)− 2ρ, (3.79)

pd2∗Γ
(d2) = 2md2ξ2 − 2md1(η − 4c1 − ξ2) + 2ρ. (3.80)

It is easy to see that Γ(d1) and Γ(d2) satisfy the traceless condition pd1∗Γ
(d1)+pd2∗Γ

(d2) =

0. In addition, the quantization condition in this case becomes

2(kd1 +md1)σ−π∗[kd1(η−4c1−ξ2)+md2ξ2 +ρ− 1

2
(η−3c1−ξ2)] ∈ H4(X̄,Z), (3.81)

2(kd2 +md2)σ − π∗[kd2ξ2 +md1(η − 4c1 − ξ2)− ρ− 1

2
(c1 + ξ2)] ∈ H4(X̄,Z). (3.82)
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The supersymmetry condition is then given by

[2md2ξ2 − 2md1(η − 4c1 − ξ2) + 2ρ] ·S [ωS] = 0. (3.83)

D. D3-brane Tadpole Cancellation

The cancellation of tadpoles is crucial for consistent compactifications. In general,

there are induced tadpoles from 7-brane, 5-brane, and 3-brane charges in F-theory.

It is well-known that 7-brane tadpole cancellation in F-theory is automatically sat-

isfied since X4 is a Calabi-Yau manifold. In spectral cover models, the cancellation

of the D5-brane tadpole follows from the topological condition that the overall first

Chern class of the Higgs bundle vanishes. Therefore, the non-trivial tadpole cancel-

lation needed to be satisfied is the D3-brane tadpole. The D3-brane tadpole can be

calculated by the Euler characteristic χ(X4). The cancellation condition is of the

form [122]

ND3 =
χ(X4)

24
− 1

2

∫
X4

G ∧G, (3.84)

where ND3 is the number of D3-branes and G is the four-form flux on X4. For a

non-singular elliptically fibered Calabi-Yau manifold, it was shown in [122] that the

Euler characteristic χ(X4) can be expressed as

χ(X4) = 12

∫
B3

c1(B3)[c2(B3) + 30c1(B3)
2], (3.85)

where ck(B3) are the Chern classes of B3. It follows from Eq. (4.108) that χ(X4)/24

is at least half-integral42. When X4 admits non-abelian singularities, the Euler char-

acteristic of X4 is replaced by the refined Euler characteristic, the Euler characteristic

of the smooth fourfold obtained from a suitable resolution of X4. On the other hand,

42For a generic Calabi-Yau manifold, it was shown in [122] that χ(X4)/6 ∈ Z, which
implies that χ(X4)/24 takes value in Z4.
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G-flux encodes the two-form gauge fluxes on 7-branes. It was shown in [123] that

1

2

∫
X4

G ∧G = −1

2
Γ2, (3.86)

where Γ is the universal cover flux defined in section C and Γ2 is the self-intersection

number of Γ inside the spectral cover43. It is a challenge to find compactifications

with non-vanishing G-flux and non-negative ND3 to satisfy the tadpole cancellation

condition Eq. (4.107). In the next two subsections, we shall derive the formulae of

refined Euler characteristic χ(X4) and the self-intersection of universal cover fluxes

Γ2 for (3, 1) and (2, 2) factorizations.

1. Geometric Contribution

In the presence of non-abelian singularities, X4 becomes singular and the Euler char-

acteristic χ(X4) is modified by resolving the singularities. To be more concrete, let

us consider X4 with an elliptic fibration which degenerates over S to a non-abelian

singularity corresponding to gauge group H and define G to be the complement of H

in E8. The Euler characteristic is modified to

χ(X4) = χ∗(X4) + χG − χE8 , (3.87)

where χ∗(X4) is the Euler characteristic for a smooth fibration over B3 given by Eq.

(4.108). The characteristic χE8 is given by [53,123,124]

χE8 = 120

∫
S

(3η2 − 27ηc1 + 62c21). (3.88)

43Eq. (3.86) originates from the spectral cover construction in heterotic string com-
pactifications [123]. This equation holds for F-theory compactified on elliptically
fibered fourfolds possessing a heterotic dual by heterotic/F-theory duality. However,
since X4 is not a global fibration over S, we assume that Eq. (3.86) is valid for
F-theory models without heterotic dual, and the fluxes can correctly described by
spectral covers.
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For the case of G = SU(n), the characteristic χSU(n) is given by44

χSU(n) =

∫
S

(n3 − n)c21 + 3nη(η − nc1). (3.89)

When G splits into a product of two groups G1 and G1, χG in Eq. (4.110) is then

replaced by χ
(k)
G1

+ χ
(l)
G2

in which η is replaced by the class η(m) in the spectral cover

C(m) for m = k, l. For the case of (3, 1) factorization, the refined Euler characteristic

is then calculated by

χ(X4) = χ∗(X4) + χ
(a)
SU(3) + χ

(b)
SU(1) − χE8

= χ∗(X4) +

∫
S

3[c1(38c1 − 21t− 20ξ1) + (3t2 + 6tξ1 + 4ξ2
1)]− χE8 . (3.90)

In the (2, 2) factorization, the refined Euler characteristic45 is

χ(X4) = χ∗(X4) + χ
(d1)
SU(2) + χ

(d2)
SU(2) − χE8

= χ∗(X4) +

∫
S

6[c1(10c1 − 6t− 4ξ2) + (t2 + 2tξ2 + 2ξ2
2)]− χE8 . (3.91)

2. Cover Flux Contribution

It follows from Eqs. (4.107) and (3.86) that

ND3 =
χ(X4)

24
+

1

2
Γ2. (3.92)

44Eqs. (4.110)-(3.89) initially were derived in heterotic string compactifications
[123,124]. A priori, these formulae are valid only for F-theory models with a heterotic
dual. It was observed in [53] that these formulae also hold for some F-theory models
which do not admit a heterotic dual. However, this match fails in other examples
observed in [80]. In these examples, extra gauge groups appear in regions away from
S and cannot be described by spectral covers. We assume that Eqs. (4.110)-(3.89)
hold for our models.

45For the (3, 1) factorization, η(a) = (η− c1− ξ1) and η(b) = (c1 + ξ1). For the (2, 2)
factorization, η(d1) = (η − 2c1 − ξ2) and η(d2) = (2c1 + ξ2).
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In the previous subsection, we discussed the first term on the right hand side of

Eq. (3.92). To calculate ND3, it is necessary to compute the self-intersection Γ2 of the

universal cover flux Γ. Recall that in section C, the universal cover flux was defined

by

Γ =
∑
k

Γ(k), (3.93)

where Γ(k) are cover fluxes satisfying the traceless condition,

∑
k

pk∗Γ
(k) = 0. (3.94)

In what follows, we will compute Γ2 for both the (3, 1) and (2, 2) factorizations.

a. (3, 1) Factorization

Recall that for the case of (3, 1) factorization, the universal cover flux is given by

Γ = kaγ
(a)
0 + kbγ

(b)
0 +maδ

(a) +mbδ
(b) + ρ̃ = Γ(a) + Γ(b), (3.95)

where Γ(a) and Γ(b) are

Γ(a) = [C(a)] · [(3ka +ma)σ − π∗(ka[a3] +mb[d1] + ρ)] ≡ [C(a)] · [C̃(a)], (3.96)

Γ(b) = [C(b)] · [(kb + 3mb)σ − π∗(kb[d1] +ma[a3]− 3ρ)] ≡ [C(b)] · [C̃(b)]. (3.97)

Then the self-intersection of the cover flux Γ is calculated by [66]

Γ2 = [C(a)] · [C̃(a)] · [C̃(a)] + [C(b)] · [C̃(b)] · [C̃(b)]. (3.98)
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In the (3, 1) factorization, [C(a)] = 3σ + π∗(η − c1 − ξ1) and [C(b)] = σ + π∗(c1 + ξ1).

By Eqs. (4.117) and (4.118), one can obtain

[C(a)] · [C̃(a)] · [C̃(a)] = −(3ka +ma)
2([a3] ·S c1)− ka(3ka + 2ma)[a3]

2 + 3m2
b [d1]

2

− 2mbma([a3] ·S [d1])− 2(ma[a3]− 3mb[d1]) ·S ρ

+ 3(ρ ·S ρ), (3.99)

and

[C(b)] · [C̃(b)] · [C̃(b)] = −(kb + 3mb)
2([d1] ·S c1)− kb(kb + 6mb)[d1]

2 +m2
a[a3]

2

− 6mbma([a3] ·S [d1])− 6(ma[a3]− 3mb[d1]) ·S ρ

+ 9(ρ ·S ρ). (3.100)

Putting everything together, one obtains

Γ2 = −1

3
(3ka+ma)

2([a0] ·S [a3])− (kb+3mb)
2([d0] ·S [d1])+

4

3
(ma[a3]−3mb[d1]−3ρ)2.

(3.101)

b. (2, 2) Factorization

Recall that in the (2, 2) factorization, the universal flux is given by

Γ = kd1γ
(d1)
0 + kd2γ

(d2)
0 +md1δ

(d1) +md2δ
(d2) + ρ̂ ≡ Γ(d1) + Γ(d2), (3.102)

where Γ(d1) and Γ(d2) are

Γ(d1) = [C(d1)] · [2(kd1 +md1)σ − π∗(kd1 [e2] +md2 [f2] + ρ)] ≡ [C(d1)] · [C̃(d1)], (3.103)

Γ(d2) = [C(d2)] · [2(kd2 +md2)σ − π∗(kd2 [f2] +md1 [e2]− ρ)] ≡ [C(d2)] · [C̃(d2)]. (3.104)
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Then the self-intersection Γ2 can be computed as

Γ2 = [C(d1)] · [C̃(d1)] · [C̃(d1)] + [C(d2)] · [C̃(d2)] · [C̃(d2)]. (3.105)

Notice that [C(d1)] = 2σ+ π∗(η− 2c1− ξ2) and [C(d2)] = 2σ+ π∗(2c1 + ξ2) in the (2, 1)

factorization. It follows from Eqs. (3.103) and (3.104) that

[C(d1)] · [C̃(d1)] · [C̃(d1)] = −4(kd1 +md1)
2([e2] ·S c1)− 2kd1(kd1 + 2md1)[e2]

2

+ 2m2
d2

[f2]
2 − 4md1md2([e2] ·S [f2])− 4(md1 [e2]

− md2 [f2]) ·S ρ+ 2(ρ ·S ρ), (3.106)

and

[C(d2)] · [C̃(d2)] · [C̃(d2)] = −4(kd2 +md2)
2([f2] ·S c1)− 2kd2(kd2 + 2md2)[f2]

2

+ 2m2
d1

[e2]
2 − 4md1md2([f2] ·S [e2])

− 4(md1 [e2]−md2 [f2]) ·S ρ+ 2(ρ ·S ρ). (3.107)

Therefore, Γ2 is given by

Γ2 = −2(kd1 +md1)
2([e0] ·S [e2])−2(kd2 +md2)

2([f0] ·S [f2])+4(md1 [e2]−md2 [f2]−ρ)2.

(3.108)
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E. Models

1. U(1)X Flux and Spectrum

Let us start with the (3, 1) factorization. Consider the breaking pattern as follows:

SU(4)⊥ → SU(3)× U(1)

15 → 80 + 3−4 + 3̄4 + 10

6 → 32 + 3̄−2

4 → 3−1 + 13

(3.109)

Then the representations (16,4) and (10,6) in Eq. (3.10) are decomposed as

(16,4) → (16−1,3) + (163,1), (10,6) → (102,3) + (10−2, 3̄) (3.110)

On the other hand, we can further break SO(10) in Eq. (3.10) by U(1)X flux as

follows:

SO(10) → SU(5)× U(1)X

16 → 10−1 + 5̄3 + 1−5

10 → 52 + 5̄−2

(3.111)

We suppose that V16 ⊗ L−1
X has restriction of degree Mk to Σ16(k) while L4

X has

restriction of degree Nk. Similarly, we define V10 ⊗ L−2
X has restriction of degree Mkl

to Σ10(k)(l) while L4
X has restriction of degree Nkl. We summarize the chirality on

each matter curve in Table XXVI. For the (2, 2) factorization, the analysis is similar

to the case of the (3, 1) factorization. We summarize the chirality induced from the

cover and U(1)X fluxes in Table XXVII.
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Curve Matter Bundle Chirality

16
(a)
−1

10−1,−1 V16 ⊗ L−1
X |Σ(a)

16
Ma

5̄−1,3 V16 ⊗ L3
X |Σ(a)

16
Ma +Na

1−1,−5 V16 ⊗ L−5
X |Σ(a)

16
Ma −Na

16
(b)
3

103,−1 V16 ⊗ L−1
X |Σ(b)

16
Mb

5̄3,3 V16 ⊗ L3
X |Σ(b)

16
Mb +Nb

13,−5 V16 ⊗ L−5
X |Σ(b)

16
Mb −Nb

10
(a)(a)
−2

5−2,2 V10 ⊗ L2
X |Σ(a)(a)

10
Maa +Naa

5̄−2,−2 V10 ⊗ L−2
X |Σ(a)(a)

10
Maa

10
(a)(b)
2

52,2 V10 ⊗ L2
X |Σ(a)(b)

10
Mab +Nab

5̄2,−2 V10 ⊗ L−2
X |Σ(a)(b)

10
Mab

Table XXVI. Chirality of matter localized on matter curves 16 and 10 in the (3,1)

factorization.

2. (3,1) Factorization and CY4 with a dP2 Surface

In this section, we shall explicitly realize models in specific geometries. We first

consider the Calabi-Yau fourfold constructed in [64] to be our X4. This Calabi-Yau

fourfold contains a dP2 surface embedded into the base B3. For the detailed geometry

of this Calabi-Yau fourfold, we refer readers to [64]. Here we only collect the relevant

geometric data for calculation. The basic geometric data of X4 is

c1 = 3h− e1 − e2, t = −c1(NS/B3) = h, χ∗(X4) = 13968. (3.112)

From Eq. (3.112), we can conclude η = 17h − 6e1 − 6e2, η
2 = 217, c1 · η = 39, and

c21 = 7. For the (3,1) factorization, it follows from Eq. (3.90) that the refined Euler



99

Curve Matter Bundle Chirality

16
(d2)
−1

10−1,−1 V16 ⊗ L−1
X |Σ(d2)

16
Md2

5̄−1,3 V16 ⊗ L3
X |Σ(d2)

16
Md2 +Nd2

1−1,−5 V16 ⊗ L−5
X |Σ(d2)

16
Md2 −Nd2

16
(d1)
1

101,−1 V16 ⊗ L−1
X |Σ(d1)

16
Md1

5̄1,3 V16 ⊗ L3
X |Σ(d1)

16
Md1 +Nd1

11,−5 V16 ⊗ L−5
X |Σ(d1)

16
Md1 −Nd1

10
(d2)(d2)
−2

5−2,2 V10 ⊗ L2
X |Σ(d2)(d2)

10
Md2d2 +Nd2d2

5̄−2,−2 V10 ⊗ L−2
X |Σ(d2)(d2)

10
Md2d2

10
(d1)(d2)
0

50,2 V10 ⊗ L2
X |Σ(d1)(d2)

10
Md1d2 +Nd1d2

5̄0,−2 V10 ⊗ L−2
X |Σ(d1)(d2)

10
M

d1d2

10
(d1)(d1)
2

52,2 V10 ⊗ L2
X |Σ(d1)(d1)

10
Md1d1 +Nd1d1

5̄2,−2 V10 ⊗ L−2
X |Σ(d1)(d1)

10
Md1d1

Table XXVII. Chirality of matter localized on matter curves 16 and 10 in the (2,2)

factorization.

characteristic is

χ(X4) = 10746 + (12ξ2
1 − 18ξ1η + 48ξ1c1). (3.113)

The self-intersection of the cover flux Γ is then given by

Γ2 = −(3k2
a + 2kama)(50 + ξ2

1 − 2ξ1η + 5ξ1c1) +m2
a(6 + ξ2

1 − 2ξ1η + 9ξ1c1)

−(kb + 3mb)
2(ξ2

1 + ξ1c1) + 12m2
bξ

2
1 + 8mamb(ξ

2
1 − ξ1η + 4ξ1c1)

+12ρ2 − 8ma(ρη − ρξ1 − 4ρc1) + 24mbρξ1, (3.114)
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and the number of generations for matter 16 and 10 on the curves are

N16(b) = (ma − kb)ξ
2
1 −maξ1η + (4ma − kb − 3mb)ξ1c1 + 3ρξ1, (3.115)

N16(a) = −(50ka + 11ma) + (mb − ka)ξ
2
1 + (2ka −mb)ξ1η

+(4mb − 5ka +ma)ξ1c1 − ρη + 4ρc1 + ρξ1, (3.116)

N10(a)(b) = −28(ka +ma)− (kb + 3ka +ma + 3mb)ξ
2
1 + (4ka + 2ma + 2mb)ξ1η

−(kb + 15ka + 7ma + 9mb)ξ1c1 + 2ρη − 6ρc1, (3.117)

N10(a)(a) = 28(ka +ma) + (3ka +ma)ξ
2
1 − (4ka + 2ma + 2mb)ξ1η

+(15ka + 7ma + 6mb)ξ1c1 − 2ρη + 6ρc1. (3.118)

In this case, the supersymmetric condition Eq. (3.54) reduces to

[(3mb +ma)ξ1 −ma(η − 4c1) + 3ρ] ·S [ωdP2 ], (3.119)

where we choose [ωdP2 ] = α(e1 + e2)+β(h− e1− e2), 2α > β > α > 0 to be an ample

divisor in dP2. In the (3,1) factorization, one more constraint that we may impose

is that the ramification of the degree-one cover should be trivial. In other words, we

impose the following constraint:

(c1 + ξ1) ·S ξ1 = 0. (3.120)

In what follows, we show three examples based on this geometry. We find that there

are only finite number of solutions for parameters.

a. Model 1

In this model we represent a three-generation example. The numerical parameters

are listed in Table XXVIII. The matter content and the corresponding classes are

listed in Table XXIX. By using Eqs. (3.113) and (3.114), we obtain χ(X4) = 10674
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kb ka mb ma ρ ξ1 α β

-1.5 -0.5 -2 1 h+ 3e1 + e2 e2 9 11

Table XXVIII. Parameters of Model 1 of the (3,1) factorization in dP2.

Matter Class in S Class with fixed ξ1 Generation Restr. of [FX ]

16(b) ξ1 e2 0 1

16(a) η − 4c1 − ξ1 5h− 2e1 − 3e2 3 −1

10(a)(b) η − 3c1 8h− 3e1 − 3e2 14 0

10(a)(a) η − 3c1 8h− 3e1 − 3e2 −14 0

Table XXIX. Model 1 matter content with [FX ] = e1 − e2. It is a three-generation

model with non-trivial flux restrictions.

and Γ2 = −159.5. It follows from Eq. (3.92) that ND3 = 365.

b. Model 2

Model 2 is another example of a three-generation model with χ(X4) = 10674, Γ2 =

−159.5, and ND3 = 365. The construction is similar to the model 1. We list the

numerical parameters in Table XXX. The matter content and the corresponding

classes are shown in Table XXXI.

c. Model 3

In this model we demonstrate a four-generation model in SO(10). The reason why

we would like to discuss such a case is that the only choice for the U(1)X flux on dP2

is [FX ] = ±(e1 − e2), and then the restrictions of [FX ] to the 16 curves are always

non-zero, which results in the variation of the chirality numbers of the SU(5) matter



102

kb ka mb ma ρ ξ1 α β

-1.5 0.5 -2 -2 −4h+ 4e1 + 5e2 e1 9 11

Table XXX. Parameters of Model 2 of the (3,1) factorization in dP2.

Matter Class in S Class with fixed ξ1 Generation Restr. of [FX ]

16(b) ξ1 e1 0 1

16(a) η − 4c1 − ξ1 5h− 3e1 − 2e2 3 −1

10(a)(b) η − 3c1 8h− 3e1 − 3e2 14 0

10(a)(a) η − 3c1 8h− 3e1 − 3e2 −14 0

Table XXXI. Model 2 matter content with [FX ] = e1 − e2.

descended from the 16 curves. The two examples shown above only make sense for

an three-generation SO(10) model, and they are no longer three-generation models

after gauge breaking. Since we expect to build a three-generation model at SU(5)

level, we slightly increase the generation number at the SO(10) level to prevent the

chirality being too small. The numerical parameters are listed in Table XXXII. In

this model, it is straightforward to obtain χ(X4) = 10674 and Γ2 = −355.5. It turns

out that ND3 = 267 is a positive integer. The matter content and the corresponding

classes are listed in Table XXXIII.

d. Discussion

Model 1 and Model 2 of (3,1) factorization have the SO(10) structure shown in Table

XXXIV, where U(1)C is from the cover and is of the U(1)3 Cartan subalgebra of

SU(4) that is not removed from the monodromy. The Yukawa coupling is filtered by

the conservation of this U(1)C . Before turning on the U(1)X flux, this spectrum can
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kb ka mb ma ρ ξ1 α β

-1.5 -0.5 -2 1 5e1 + e2 e2 12 17

Table XXXII. Parameters of Model 3 of the (3,1) factorization in dP2.

Matter Class in S Class with fixed ξ1 Generation Restr. of [FX ]

16(b) ξ1 e2 0 1

16(a) η − 4c1 − ξ1 5h− 2e1 − 3e2 4 −1

10(a)(b) η − 3c1 8h− 3e1 − 3e2 10 0

10(a)(a) η − 3c1 8h− 3e1 − 3e2 −10 0

Table XXXIII. Model 3 matter content with [FX ] = e1−e2. There are four generations

on the 16(a) curve.

fit the minimum requirement by forming the Yukawa coupling 16
(a)
−116

(a)
−110

(a)(b)
2 of

the SO(10) GUT with some exotic 10s. However, when U(1)X flux is turned on, the

non-vanishing restrictions of the flux to two 16 curves change the chirality on these

two curves, while the chirality on the 10 curves remain untouched. The analysis

in Table XXVI suggests that a three-generation model may be descended from a

four-generation SO(10) model after the gauge group is broken to SU(5)× U(1)X by

[FX ] = e1 − e2. Here we try to explain Model 3 as a flipped SU(5) model with its

spectrum presented in Table XXXV.

In this case, the Yukawa couplings are

W ⊃ 10−1,−1M10−1,−1M52,2h + 10−1,−1M 5̄−1,3M 5̄2,−2h + 5̄−1,3M1−1,−5M52,2h

+ 10−1,−1H10−1,−1H52,2h + 10−1,1H10−1,1H 5̄2,−2h + . . . . (3.121)

We may identify the flipped SU(5) superheavy Higgs fields with one of the 10 + 10
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Maatter Copy U(1)C

16(b) 0 −3

16(a) 3 1

10(a)(b) 14 −2

10(a)(a) −14 2

Table XXXIV. Matter spectrum for (3, 1) factorization.

vector-like pairs on the 16(a) curve, which is not obvious from this configuration. Since

the restrictions of the flux to the curves change the chirality, there are unavoidable

exotic fermions, like the examples studied in [66]. In the following subsection, we will

study models from a different geometric backgrounds to see if it is possible to retain

the chirality unchanged while the flux FX is turned on.

3. (3,1) Factorization and CY4 with a dP7 Surface

Although dP2 surface is elegant, it does not possess enough degrees of freedom in

the number of exceptional divisors for model building. Therefore, we turn to the the

geometry of the compact Calabi-Yau fourfold realized as complete intersections of

two hypersurfaces with an embedded dP7 surface46. The detailed construction can

be found in [53]. Again here we only collect relevant geometric data for calculation.

The basic geometric data is as follows:

c1 = 3h− e1 − e2 − e3 − e4 − e5 − e6 − e7,

t = 2h− e1 − e2 − e3 − e4 − e5 − e6,

η = 16h− 5e1 − 5e2 − 5e3 − 5e4 − 5e5 − 5e6 − 6e7. (3.122)

46By abuse of notation, we also denote this Calabi-Yau fourfold by X4.
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Matter Rep. Generation

10M 10−1,−1 3

5̄M 5̄−1,3 3

1M 1−1,−5 3

10H + 10H 10−1,−1 + 10−1,1 1

5h 52,2 1

5̄h 5̄2,−2 1

10 10−1,−1 1

5̄ 5̄3,3 1

1 1−1,−5 2

1 13,5 1

5 + 5̄ exotics
5−2,2 + 5̄−2,−2 9

52,2 + 5̄2,−2 -10

Table XXXV. Flipped SU(5) spectrum of Model 3.

with χ∗(X4) = 1728. From Eq. (3.122), we have η2 = 70, η · c1 = 12, and c21 = 2.

The refined Euler characteristic is given by

χ(X4) = 738 + (12ξ2
1 − 18ξ1η + 48ξ1c1), (3.123)

and the self-intersection of the cover flux Γ is

Γ2 = −(3k2
a + 2kama)(18 + ξ2

1 − 2ξ1η + 5ξ1c1) +m2
a(2 + ξ2

1 − 2ξ1η + 9ξ1c1)

−(kb + 3mb)
2(ξ2

1 + ξ1c1) + 12m2
bξ

2
1 + 8mamb(ξ

2
1 − ξ1η + 4ξ1c1)

+12ρ2 − 8ma(ρη − ρξ1 − 4ρc1) + 24mbρξ1. (3.124)
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kb ka mb ma ρ ξ1 α β

-1.5 -1 0 1.5 1
2
(2e1 + 2e2 + e4) 2h− e1 − e2 − e3 − e5 − e6 3 2

Table XXXVI. Parameters of the (3,1) factorization model in dP7.

Again we summarize the generation number on each curve as follows:

N16(b) = (ma − kb)ξ
2
1 −maξ1η + (4ma − kb − 3mb)ξ1c1 + 3ρξ1, (3.125)

N16(a) = −(18ka + 4ma) + (mb − ka)ξ
2
1 + (2ka −mb)ξ1η

+(4mb − 5ka +ma)ξ1c1 − ρη + 4ρc1 + ρξ1, (3.126)

N10(a)(b) = −10(ka +ma)− (kb + 3ka +ma + 3mb)ξ
2
1 + (4ka + 2ma + 2mb)ξ1η

−(kb + 15ka + 7ma + 9mb)ξ1c1 + 2ρη − 6ρc1, (3.127)

N10(a)(a) = 10(ka +ma) + (3ka +ma)ξ
2
1 − (4ka + 2ma + 2mb)ξ1η

+(15ka + 7ma + 6mb)ξ1c1 − 2ρη + 6ρc1. (3.128)

The supersymmetry condition is then

[(3mb +ma)ξ1 −ma(η − 4c1) + 3ρ] ·S [ωdP7 ] = 0, (3.129)

where [ωdP7 ] is an ample divisor dual to a Kähler form of dP7. For simplicity, we

choose [ωdP7 ] to be

[ωdP7 ] = 14βh− (5β − α)
7∑
i=1

ei, (3.130)

with constraints 5β > α > 0.

In what follows, we present one example based on this geometry. This model is

three-generation with vanishing restrictions of the U(1)X flux to the 16 curves.
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Matter Class in S Class with fixed ξ1 Generation

16(b) ξ1 2h− e1 − e2 − e3 − e5 − e6 0

16(a) η − 4c1 − ξ1 2h− e4 − 2e7 3

10(a)(b) η − 3c1 7h− 2
∑6

i=1 ei − 3e7 1

10(a)(a) η − 3c1 7h− 2
∑6

i=1 ei − 3e7 -1

Table XXXVII. The dP7 model matter content. Since it is a three-generation

model, the flux is chosen to have trivial restriction. For example,

[FX ] = e5 − e6.

a. Model

We present a three-generation model in this example. The numerical result of the

parameters is listed in Table XXXVI. The matter content and the corresponding

classes are listed in Table XXXVII. With data in Table XXXVI and Table XXXVII,

one can obtain χ(X4) = 648 and Γ2 = −42 by using Eqs. (3.123) and (3.124). It

follows from Eq. (3.92) that ND3 = 6.

b. Discussion

In this example we tune [FX ] = e4− e5 to obtain trivial restrictions on all the curves,

so the chirality on each curve remains unchanged. By the analysis of Table XXVI,

we can create a flipped SU(5) spectrum as shown in Table XXXVIII. The Yukawa

couplings turn out to be

W ⊃ 10−1,−1M10−1,−1M52,2h + 10−1,−1M 5̄−1,3M 5̄2,−2h + 5̄−1,3M1−1,−5M52,2h

+ 10−1,−1H10−1,−1H52,2h + 10−1,1H10−1,1H 5̄2,−2h + · · · . (3.131)

47There is one (5, 5̄) on the 10(a)(a) curve.
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Matter Rep. Generation

10M 10−1,−1 3

5̄M 5̄−1,3 3

1M 1−1,−5 3

5h 52,2 1

5̄h 5̄2,−2 1

10H + 10H 10−1,−1 + 10−1,1 1

5 + 5̄ exotics47

Table XXXVIII. Flipped SU(5) spectrum with vanishing restrictions of [FX ] on the

curves in (3,1) factorization in dP7.

This spectrum looks standard, and the advantage is that there are no exotic

fermions and the quantum numbers(charges) of the matter are typical. We again

assume that the superheavy Higgses 10H and 10H come from one of the vector-like

10 + 10 pairs on the 16(a) curve. It is not obvious to calculate the number of such

pairs. For simplicity, we just extract one pair for phenomenology purposes.

4. (2,2) Factorization and CY4 with a dP2 Surface

Let us consider the (2, 2) factorization with the geometric background in Eq. (3.112)

[64]. In this case, the refined Euler characteristic turns out to be

χ(X4) = 10446 + (12ξ2
2 − 12ξ2η + 48ξ2c1). (3.132)
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The self-intersection of the cover flux Γ is

Γ2 = −2(kd1 +md1)
2(39 + ξ2

2 − 2ξ2η + 6ξ2c1) + 4m2
d1

(17 + ξ2
2 − 2ξ2η + 8ξ2c1)

−2(kd2 +md2)
2(ξ2

2 + 2ξ2c1) + 4m2
d2
ξ2
2 + 8md1md2(ξ

2
2 − ξ2η + 4ξ2c1)

+4ρ2 − 8md1(ρη − ρξ2 − 4ρc1) + 8md2ρξ2. (3.133)

In this case, we can find models with integral ND3. However, to have more degrees

of freedom for model building, we shall focus on the geometry of the CY4 with an

embedded dP7 surface [53] in the next subsection.

5. (2,2) Factorization and CY4 with a dP7 Surface

We again consider the geometric background in Eq. (3.122)and the (2,2) factorization.

In this case, the refined Euler characteristic is given by

χ(X4) = 636 + (12ξ2
2 − 12ξ2η + 48ξ2c1). (3.134)

The self-intersection of the cover flux Γ is

Γ2 = −2(kd1 +md1)
2(14 + ξ2

2 − 2ξ2η + 6ξ2c1) + 4m2
d1

(6 + ξ2
2 − 2ξ2η + 8ξ2c1)

−2(kd2 +md2)
2(ξ2

2 + 2ξ2c1) + 4m2
d2
ξ2
2 + 8md1md2(ξ

2
2 − ξ2η + 4ξ2c1)

+4ρ2 − 8md1(ρη − ρξ2 − 4ρc1) + 8md2ρξ2. (3.135)
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The generations of matter on the curves are

N16(d2) = (md1 − kd2)ξ
2
2 −md1ξ2η + (4md1 − 2kd2 − 2md2)ξ2c1 + ρξ2, (3.136)

N16(d1) = −(14kd1 + 8md1) + (md2 − kd1)ξ
2
2 + (2kd1 −md2)ξ2η

+(4md2 − 6kd1 + 2md1)ξ2c1 − ρη + 4ρc1 + ρξ2, (3.137)

N10(d2)(d2) = −8md1 + 2(md1 +md2)ξ
2
2 + 2(md2 + 5md1)ξ2c1 − 2md1ξ2η

+2ρc1 + 2ρξ2, (3.138)

N10(d1)(d2) = −2(kd1 +md1)(6 + 2ξ2
2 − 3ξ2η + 12ξ2c1), (3.139)

N10(d1)(d1) = (12kd1 + 20md1) + (4kd1 + 2md1 − 2md2)ξ
2
2 − 2(3kd1 + 2md1)ξ2η

+(24kd1 − 2md2 + 14md1)ξ2c1 − 2ρc1 − 2ρξ2. (3.140)

The supersymmetry condition is then

[2md2ξ2 − 2md1(η − 4c1 − ξ2) + 2ρ] ·S [ωdP2 ] = 0, (3.141)

where [ωdP2 ] is an ample divisor dual to a Kähler form of dP7. For simplicity, we

choose [ωdP2 ] to be

[ωdP2 ] = 14βh− (5β − α)
7∑
i=1

ei, (3.142)

with constraints 5β > α > 0.

In the (2,2) factorization of the SU(4) cover, we expect the matter spectrum for

an SO(10) model to be Table XXXIX. The U(1)C is of the U(1)3 Cartan subalgebra

of SU(4) that is not removed from the monodromy. The Yukawa coupling is filtered

by the conservation of this U(1)C . The possible Yukawa couplings for construct-

ing a minimum SO(10) GUT are then 16(d1)16(d1)10(d2)(d2) and 16(d2)16(d2)10(d1)(d1).

We will demonstrate examples of the flipped SU(5) GUT model from the following

models.
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Maatter Copy U(1)C

16(d2) 0/3 -1

16(d1) 3/0 1

10(d2)(d2) n1 -2

10(d1)(d2) n2 0

10(d1)(d1) n3 2

Table XXXIX. Matter spectrum for (2, 2) factorization.

kd2 kd1 md2 md1 ρ ξ2 α β

-1 0 1.5 -0.5 −1
2
(h− 2e1 + 2e2 + 2e3 + 2e4 + e7) h− e1 1 3

Table XL. Parameters of Model 1 of the (2,2) Factorization in dP7.

a. Model 1

In this example we demonstrate a three-generation model. The numerical parameters

are shown in Table XL, and the matter content and the corresponding classes with

the flux [FX ] = e2 − e3 are listed in Table XLI. By using Eqs. (3.134) and (3.135),

we obtain χ(X4) = 600 and Γ2 = −18 which gives rise to ND3 = 16.

b. Model 2

In this model, we show a four-generation example with non-zero restrictions of FX

on the matter curves. The spectrum can maintain a three-generation model after

the gauge is broken to SU(5) × U(1)X by FX . The parameters are presented in

Table XLII, while the matter content and the corresponding classes with the flux

[FX ] = e3 − e4 are listed in Table XLIII. In this model, we have χ(X4) = 600 and

Γ2 = −26 which gives rise to ND3 = 12.
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Matter Class in S Class with fixed ξ2 Generation Restr. of FX

16(d2) ξ2 h− e1 0 0

16(d1) η − 4c1 − ξ2 3h−
∑6

i=2 ei − 2e7 3 0

10(d2)(d2) c1 + ξ2 4h− 2e1 −
∑6

i=2 ei − 2e7 4 0

10(d1)(d2) 2η − 8c1 − 2ξ2 6h− 2
∑6

i=2 ei − 4e7 -3 0

10(d1)(d1) c1 + ξ2 4h− 2e1 −
∑6

i=2 ei − 2e7 -1 0

Table XLI. The Matter content of Model 1. The flux is tuned that the restriction is

zero on each curve.

kd2 kd1 md2 md1 ρ ξ2 α β

1 0 -0.5 -0.5 −1
2
(h− 2e1 + 2e2 − 2e3 − e7) 2h− e1 − e2 − e3 − e7 1 3

Table XLII. Parameters of Model 2 of the (2,2) Factorization in dP7.

c. Discussion

The number of (−2) 2-cycles in dP7 is large enough that it is possible to remain the

chirality unchanged by tuning FX with vanishing restrictions on all the curves. An

example is presented in Model 1, and the corresponding flipped SU(5) spectrum can

be found in Table XLIV.

The Yukawa couplings of the flipped SU(5) model from Model 1 then are

W ⊃ 101,−1M101,−1M5−2,2h + 101,−1M 5̄1,3M 5̄−2,−2h + 5̄1,3M11,−5M5−2,2h

+ 101,−1H101,−1H5−2,2h + 101,1H101,1H 5̄−2,−2h + . . . . (3.143)

Similar to the examples with trivial restriction of FX in the previous models,

the spectrum in this model is standard in the sense that there are no exotic chiral

fermions, and the quantum numbers of the matter are typical. We claim that the

superheavy Higgses 10H and 10H come from a vector-like pair on the 16(d1) curve,
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Matter Class in S Class with fixed ξ2 Gen. Restr. of FX

16(d2) ξ2 2h− e1 − e2 − e3 − e7 0 1

16(d1) η − 4c1 − ξ2 2h− e4 − e5 − e6 − e7 4 -1

10(d2)(d2) c1 + ξ2 5h− 2e1 − 2e2 − 2e3 −
∑6

i=4 ei − 2e7 4 1

10(d1)(d2) 2η − 8c1 − 2ξ2 4h− 2e4 − 2e5 − 2e6 − 2e7 -3 -2

10(d1)(d1) c1 + ξ2 5h− 2e1 − 2e2 − 2e3 −
∑6

i=4 ei − 2e7 -1 1

Table XLIII. Matter content of Model 2. The flux [FX ] = e3 − e4 has restrictions on

the curves.

however again it is not obvious and we are not able to fix the number of such pairs.

In addition, there exist a few exotic 5 fields from the 10 curves.

On the other hand, the restrictions of the flux FX on the curves in Model 2

are non-vanishing, thus they contribute to the chirality on the curves. From the

information in Table XXVII we can interpret the matter content to fit the flipped

SU(5) GUT spectrum in Table XLV.

In this case, the Yukawa couplings for flipped SU(5) are the same:

W ⊃ 10−1,−1M10−1,−1M52,2h + 10−1,−1M 5̄1,3M 5̄0,−2h′ + 5̄1,3M1−1,−5M50,2h′

+ 10−1,−1H10−1,−1H52,2h + 101,1H101,1H 5̄−2,−2h + . . . . (3.144)

The 10 + 10 superheavey Higgses are identified as a vector-like pair from the 16

curve. In this model there are a few unavoidable exotic fields descended from both

16 and 10 curves.

d. The Singlet Higgs

In the flipped SU(5) model, the matter singlet is the right-handed electron, while

it is the right-handed neutrino in the Georgi-Glashow SU(5) GUT. Different from
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Matter Rep. Generation

10M 101,−1 3

5̄M 5̄1,3 3

1M 11,−5 3

5h 5−2,2 1

5̄h 5̄−2,−2 1

10H + 10H 101,−1 + 101,1 1

5 + 5̄ exotics

5−2,2 + 5̄−2,−2 3

50,2 + 5̄0,−2 3

52,2 + 5̄2,−2 -1

Table XLIV. Flipped SU(5) spectrum of Model 1 of the (2,2) factorization in dP7.

the SU(5) spectral cover construction, the flipped SU(5) matter singlet is naturally

embedded into the 16 representation of SO(10) in the SU(4) spectral cover configu-

ration. Thus there is no need of additional effort to identify it in the spectrum.

Moreover, in flipped SU(5) models, a Yukawa coupling needed to explain neutrino

masses with the seesaw mechanism is [125,126]

101M10−1H10φ. (3.145)

This singlet 10 is an SO(10) object and descends neither from the 16 nor from the

10 curves. Naively, one might think that it can be captured by the spectral cover

associated to the adjoint representation in SU(4) and the matter curve corresponds

to ±(λi − λj) = 0 with i 6= j. The locus would then be given by [66]

b50

4∏
i<j

(λi − λj)
2 = −4b32b

2
3 − 27b0b

4
3 + 16b42b4 + 144b0b2b

2
3b4 − 128b0b

2
2b

2
4 + 256b20b

3
4 = 0.
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Matter Rep. Generation

10M 101,−1 3

5̄M 5̄1,3 3

1M 11,−5 3

10H + 10H 101,−1 + 101,1 1

5h 5−2,2 1

5̄h 5̄−2,−2 1

5̄ 5̄−1,3 1

1 1−1,5 1

1 11,−5 2

5 + 5̄ exotics from the 10 curves48

Table XLV. Flipped SU(5) spectrum of Model 2 of the (2,2) factorization in dP7.

However, this is not the case. In fact, this singlet matter curve lives in the base

B3 instead of the surface S and can not be described by the spectral cover. To cal-

culate the matter chirality on this singlet matter curve, we need the information of

global geometry transverse to the surface S. In other words, we need to go beyond

the spectral cover construction49. In the future, we hope there will be a global under-

standing of this singlet curve [66]. Therefore, we just assume this singlet exists and

can provide the above Yukawa coupling.

48The (5, 5̄) exotics from the 10 curves of SO(10) can be obtained from Table
XXVII.

49Recently this singlet has been discussed in [127] for the SU(5) GUT, and it is
possible to apply the same idea in this case. We leave this topic for our future work.
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F. Conclusion

In this chapter we built flipped SU(5) models from the SO(10) singularity by the

SU(4) spectral cover construction in F-theory. The 10 curve in the SU(4) spectral

cover configuration forms a double curve, and there are codimension two singular-

ities on this curve [52]. It was also shown that the net chirality on the 10 curve

vanishes [52]. In order to obtain more degrees of freedom and non-zero generation

number on the 10 curve, we split the SU(4) cover into two factorizations. In the

(3,1) factorization there are two 16 curves and two 10 curves on S, while in the (2,2)

factorization there are two 16 curves and three 10 curves. The fluxes are also spread

over the curves, providing additional parameters for model building.

We started model building from setting up appropriate SO(10) spectrum on the

16 and 10 curves. Some Higgs fields, such as 210, 120, and 126 + 126 breaking

the SO(10) gauge group are absent in this construction. Therefore, we introduced a

U(1)X flux to break SO(10) to SU(5)×U(1)X . We interpreted the resulting spectrum

as a flipped SU(5) model. The flux may have non-vanishing restrictions on the curves

such that the corresponding chiralities may be modified. The superheavy Higgs fields

10H and 10H needed for breaking the gauge group to the MSSM are not obvious from

the spectrum. We assumed that they are a vector-like pair from the 16 curve including

the fermion representations, but we are not able to fix the number of such pairs.

In the (3,1) factorization, we discussed first the construction on the geometry

of the Calabi-Yau fourfold with an embedded dP2 surface constructed in [64]. We

demonstrated three examples. Two of them have three-generation, minimal SO(10)

GUT matter spectra. The U(1)X flux has always non-vanishing restrictions on the

16 curves, while it generically has vanishing restrictions on the 10 curves. Therefore,

on a 16 curve, the chiralities of the 10, 5, and 1 representations are modified in the
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factor of the U(1)X charges, and the model no longer has three generations after the

SO(10) gauge symmetry is broken. To solve this problem, we constructed a four-

generation model such that its corresponding flipped SU(5) spectrum can possess at

least three generations after the U(1)X flux is turned on. On the other hand, the

U(1)X flux in the case of dP7 geometry background [53] can be tuned to have trivial

restrictions on the 16 curves so the chiralities remain untouched. We presented one

three-generation example of the (3,1) factorization based on this geometry.

In the (2,2) factorization, to have more degrees of freedom for model building,

we focused only on the geometry of the Calabi-Yau fourfold with an embedded dP7

surface [53] and presented two examples. The first was a three-generation flipped

SU(5) model from the SO(10) gauge group broken by the flux with trivial restrictions

on all the matter curves. The second example, however, starts from a four-generation

SO(10) model whose gauge group is broken to SU(5) × U(1)X by the flux with

non-trivial restrictions on the matter curves. The resulting chiralities are modified

by the flux restrictions to achieve the spectrum of a three-generation flipped SU(5)

model. Generically, the flipped SU(5) models from a four-generation SO(10) setup

with non-vanishing flux restrictions to the 16 curves results in exotic fields from the

16 curves.
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CHAPTER IV

SEMI-LOCAL E6 MODELS50

In this chapter we approach the MSSM from an E6 GUT by using the spectral cover

construction and non-abelian gauge fluxes in F-theory. We start with an E6 singular-

ity unfolded from an E8 singularity, and obtain E6 GUTs by using an SU(3) spectral

cover. By turning on SU(2)×U(1)2 gauge fluxes, we obtain a rank 5 model with the

gauge group SU(3)×SU(2)×U(1)2. Based on the well-studied geometric backgrounds

in the literature, we demonstrate several models and discuss their phenomenology.

A. SU(3) Spectral Cover

Let X4 be an elliptically fibered Calabi-Yau fourfold πX4 : X4 → B3 with a section

σB3 : B3 → X4, and let S be one component of the discriminant locus of X4 with a

projection π̃ : X4 → S, where X4 develops an E6 singularity51. To describe X4, let

us consider the Tate model [12]:

y2 = x3 + b3yz
2 + b2xz

3 + b0z
5, (4.1)

where x, y are the coordinates of the fibration and z is the coordinate of the normal

direction of S in B3. Note that the coefficients bk generically depend on the coordinate

z and that Eq. (4.1) can be regarded as unfolding of an E8 singularity52 into an E6

50Reprinted from Journal of High Energy Physics, Volume 2011, Number 3, 129,
Ching-Ming Chen and Yu-Chieh Chung, On F-theory E6 GUTs, Copyright 2011, with
permission from SISSA.

51In this chapter, S will be assumed to be a del Pezzo surface unless otherwise
stated [49,50].

52If b3 = b2 = 0, the elliptic fibration y2 = x3 + b0z
5 possess an E8 singularity at

z=0.
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singularity. For convenience, we define the shorthand notations c1(S) ≡ c1, t ≡

−c1(NS/B3), and η ≡ 6c1− t where c1 is the first Chern class and NS/B3 is the normal

bundle of S in B3. To maintain the Calabi-Yau condition c1(X4) = 0, it is required

that x and y in Eq. (4.1) are sections of K−4
B3

and K−6
B3

, respectively. It follows that

the homological classes [bk] are η−kc1. Note that the fiber π̃−1(b) for b ∈ S is an ALE

space [112–117]. The singularity of the fiber over S is determined by the volumes λk

of (−2) 2-cycles of the ALE space. So unfolding a singularity corresponds to giving

some of these 2-cycles finite volumes. In the Tate model Eq. (4.1), the fibration

singularity is determined by the coefficients bk. Indeed, the coefficients bk encode

the information of the volumes λk. In what follows, we shall introduce the spectral

cover construction making the relation between the coefficients bk in Eq. (4.1) and

the volumes λk of (−2) 2-cycles manifest53.

Let us consider the eight-dimensional N = 1 gauge theory compactified on S. To

obtain unbroken N = 1 supersymmetry in four dimensions, it was shown [14, 17, 62]

that the bosonic fields, a gauge connection A and an adjoint Higgs field Φ, have to

satisfy the BPS equations (2.10). To solve BPS equations, one may take V as a

holomorphic vector bundle over S with the connection A and Φ being holomorphic.

The simplest solution for (A,Φ) is that Φ is diagonal and V is a stable bundle. In

particular, let us consider a 3× 3 case as follows:

Φ =


λ1 0 0

0 λ2 0

0 0 λ3

 ,
3∑

k=1

λk = 0, (4.2)

where λk is holomorphic for k = 1, 2, 3. In this case [Φ†,Φ] = 0, and Eq. (2.10) is

then reduced to the Hermitian Yang-Mills equations (2.11). The low-energy spec-

53For more details, please see [47] and references therein.
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trum is therefore decoupled to Φ and only depends on the Hermitian Yang-Mills

connection A. The eigenvalues λk characterize the locations of intersecting seven-

branes. Alternatively, the information of intersecting seven-branes can be encoded in

the characteristic polynomial PΦ(s) = det(sI − Φ) associated with a spectral cover

over S. For generically diagonal Φ, the polynomial equation PΦ(s) = 0 has distinct

roots and the associated spectral cover is smooth. In what follows, we shall focus on

the case of Eq. (4.2) and its associated spectral cover. Notice that the polynomial

equation

b0det(sI − Φ) = b0s
3 + b2s+ b3 = 0 (4.3)

defines a three-sheeted cover of S inside the total space of the canonical bundle

KS → S, a local Calabi-Yau threefold, where bk ≡ bk|z=0, k = 0, 2, 3. However, this

threefold is non-compact. For well-defined intersection numbers, one can compactify

the non-compact threefold to the total space of projective bundle P(OS ⊕KS) over

S. Let us define X as the total space of the projective bundle with two sections U ,

V and with a projection map π : X → S. The homological classes of zero sections

{U = 0} and {V = 0} are σ and σ + c1, respectively. In compact threefold X, the

spectral cover Eq. (4.3) can be expressed as a homogeneous polynomial as follows:

C(3) : b0U
3 + b2UV

2 + b3V
3 ≡ b0

3∏
k=1

(U + λkV ) = 0, (4.4)

with a projection map p3 : C(3) → S where bk ≡ bk|z=0, k = 0, 2, 3. The homological

class of C(3) is given by [C(3)] = 3σ+π∗η. The singularities get enhanced at some loci

of S. Let us consider the following breaking pattern

E8 → E6 × SU(3)

248 → (78,1) + (1,8) + (27,3) + (27, 3̄).
(4.5)

The matter 27 is localized on the curve Σ27 given by the locus of {b3 = 0} where the
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singularity E6 is enhanced to E7, so it implies the homological class of [Σ27] is η−3c1

in S. Alternatively, it follows from λi = 0 in Eq. (4.4) that the homological class of

[Σ27] can be also computed by [C(3)] · σ|σ = η − 3c1. With a spectral cover C(3), one

can obtain a Higgs bundle p3∗L on S by the pushforward of a line bundle L on C(3).

To maintain the traceless condition c1(p3∗L) = 0, it is required that p3∗γ
(3) = 0 where

c1(L) ≡ γ(3) + 1
2
r(3) ∈ H4(X,Z) and r(3) is the ramification divisor of the projection

map p3 : C(3) → S. Up to a constant, the unique solution of the traceless condition

p3∗γ
(3) = 0 is γ(3) = (3− p∗3p3∗)[C(3)] · σ, and one can calculate the chiral spectrum by

turning on the traceless flux γ(3). More precisely, the net chirality N27 of the matter

field 27 can be computed as

N27 = γ(3) · Σ27 = −η ·S (η − 3c1). (4.6)

To obtain three generations for 27, it is required that (6c1 − t) ·S (3c1 − t) = −3

which is a non-trivial constraint on embedding of S into the Calabi-Yau fourfold X4.

On the other hand, the irreducible cover C(3) only provides a single matter curve, so

we need more matter curves and more degrees of freedom on the cover flux to build

promising realistic models. Therefore we shall study the factorizations of the spectral

cover C(3) in what follows.

1. (2,1) Factorization

Let us consider the factorization C(3) → C(a) × C(b):

b0U
3 + b2UV

2 + b3V
3 = (a0U

2 + a1UV + a2V
2)(d0U + d1V ) (4.7)
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with projection maps pa : C(a) → S and pb : C(b) → S, respectively. Let [d1] ≡ ξ. One

can write the homological class of remaining sections as

[an] = η − (n+ 1)c1 − ξ, n = 0, 1, 2, [d0] = c1 + ξ. (4.8)

It follows from Eqs. (4.7) and (4.8) that the homological classes of the covers C(a) and

C(b) are given by

[C(a)] = 2σ + π∗(η − ξ − c1), [C(b)] = σ + π∗(ξ + c1). (4.9)

With the homological classes [C(a)] and [C(b)], one can compute the homological classes

of matter curves Σ
(a)
27 and Σ

(b)
27 as

[Σ
(a)
27 ] = [C(a)] · σ|σ = η − 3c1 − ξ, [Σ

(b)
27] = [C(b)] · σ|σ = ξ. (4.10)

The ramification divisors of the maps pa : C(a) → S and pb : C(b) → S are given by

r(a) = [C(a)] · π∗(η − 2c1 − ξ), r(b) = [C(b)] · (−σ + π∗ξ). (4.11)

The traceless fluxes γ
(a)
0 and γ

(b)
0 is defined as (2−p∗apa∗)[C(a)]·σ and (1−p∗bpb∗)[C(b)]·σ,

respectively, where pa∗γ
(a)
0 = 0 and pb∗γ

(b)
0 = 0. The explicit forms of the traceless

fluxes γ
(a)
0 and γ

(b)
0 are given by

γ
(a)
0 = [C(a)] · (2σ − π∗(η − 3c1 − ξ)), γ

(b)
0 = [C(b)] · (σ − π∗ξ). (4.12)

The chirality of matter 27 on each matter curve due to the fluxes γ
(a)
0 and γ

(b)
0 is then

shown in Table XLVI.

Due to the factorization, one can introduce the additional fluxes δ(a) = (1 −

p∗bpa∗)[C(a)] · σ and δ(b) = (2− p∗apb∗)[C(b)] · σ. It is not difficult to obtain [66]:

δ(a) = [C(a)] · σ − [C(b)] · π∗(η − 3c1 − ξ), δ(b) = [C(b)] · 2σ − [C(a)] · π∗ξ. (4.13)
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γ
(a)
0 γ

(b)
0

27(a) −(η − c1 − ξ) ·S (η − 3c1 − ξ) 0

27(b) 0 −ξ ·S (c1 + ξ)

Table XLVI. Chirality induced by the fluxes γ
(a)
0 and γ

(b)
0 .

δ(a) δ(b) ρ̃

27(a) −c1 ·S (η − 3c1 − ξ) −ξ ·S (η − 3c1 − ξ) −ρ ·S (η − 3c1 − ξ)

27(b) −ξ ·S (η − 3c1 − ξ) −2c1 ·S ξ 2ρ ·S ξ

Table XLVII. Chirality induced by the fluxes δ(a), δ(b), and ρ̃.

Also for any ρ ∈ H2(S,R), one can define a non-trivial flux ρ̃ as

ρ̃ = (2p∗b − p∗a)ρ, (4.14)

then the chirality induced by these additional fluxes on each matter curve is summa-

rized in Table XLVII.

The total flux Γ is then a linear combination of the fluxes above:

Γ = kaγ
(a)
0 + kbγ

(b)
0 +maδ

(a) +mbδ
(b) + ρ̃ ≡ Γ(a) + Γ(b), (4.15)

where

Γ(a) ≡ [C(a)] · [C̃(a)] = [C(a)] · [(2ka +ma)σ − π∗(ka(η − 3c1 − ξ) +mbξ + ρ)], (4.16)

Γ(b) ≡ [C(b)] · [C̃(b)] = [C(b)] · [(kb + 2mb)σ − π∗(kbξ +ma(η − 3c1 − ξ)− 2ρ)]. (4.17)
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The parameters ka, kb, ma, mb will be determined later by physical and consistency

conditions. In addition, by

pa∗Γ
(a) = ma(η − 3c1 − ξ)− 2mbξ − 2ρ, (4.18)

pb∗Γ
(b) = −ma(η − 3c1 − ξ) + 2mbξ + 2ρ, (4.19)

we find that Γ(a) and Γ(a) indeed satisfy the traceless condition pa∗Γ
(a) + pb∗Γ

(b) = 0.

In the (2, 1) factorization, the quantization conditions are then given by

(2ka +ma)σ − π∗(ka(η − 3c1 − ξ) +mbξ + ρ− 1

2
(η − 2c1 − ξ)) ∈ H4(X,Z), (4.20)

(kb + 2mb −
1

2
)σ − π∗(kbξ +ma(η − 3c1 − ξ)− 2ρ− 1

2
ξ) ∈ H4(X,Z). (4.21)

In addition, the supersymmetry condition is

[ma(η − 3c1 − ξ)− 2mbξ − 2ρ] ·S [ωS] = 0, (4.22)

where [ωS] is an ample divisor dual to a Kähler form of S.

2. (1,1,1) Factorization

Let us consider the factorization C(3) → C(l1) × C(l2) × C(l3):

b0U
3 + b2UV

2 + b3V
3 = (f0U + f1V )(g0U + g1V )(h0U + h1V ), (4.23)

with the projection maps pl1 : C(l1) → S, pl2 : C(l2) → S, and pl3 : C(l3) → S. Let

[g1] ≡ ξ1 and [h1] ≡ ξ2, the homological classes of the remaining sections are

[fm] = η − (m+ 2)c1 − ξ1 − ξ2, m = 0, 1. [g0] = c1 + ξ1, [h0] = c1 + ξ2. (4.24)
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It follows from Eqs. (4.23) and (4.24) that the homological classes of the covers C(l1),

C(l2), and C(l3) are given by

[C(l1)] = σ+π∗(η− 2c1− ξ1− ξ2), [C(l2)] = σ+π∗(ξ1 + c1), [C(l3)] = σ+π∗(ξ2 + c1).

(4.25)

The homological classes of the matter curves can be obtained from the intersection

[C(li)] · σ|σ:

[Σ
(l1)
27 ] = η − 3c1 − ξ1 − ξ2, [Σ

(l2)
27 ] = ξ1, [Σ

(l3)
27 ] = ξ2. (4.26)

In the (1, 1, 1) factorization, the ramification divisors are given by

rl1 = [C(l1)]·[−σ+π∗(η−3c1−ξ1−ξ2)], rl2 = [C(l2)]·(−σ+π∗ξ1), rl3 = [C(l3)]·(−σ+π∗ξ2).

(4.27)

For general fluxes γ(i) = [C(i)] · σ, we define the traceless fluxes γ
(i)
0 as

γ
(l1)
0 = (1− p∗l1pl1∗)γ

(l1) = [C(l1)] · [σ − π∗(η − 3c1 − ξ1 − ξ2)], (4.28)

γ
(l2)
0 = (1− p∗l2pl2∗)γ

(l2) = [C(l2)] · (σ − π∗ξ1), (4.29)

γ
(l3)
0 = (1− p∗l3pl3∗)γ

(l3) = [C(l3)] · (σ − π∗ξ2). (4.30)

It is easy to see that γ
(i)
0 satisfies the condition pi∗γ

(i)
0 = 0 for all i. The chirality

induced by the fluxes γ
(l1)
0 , γ

(l2)
0 , and γ

(l3)
0 is summarized in Table XLVIII.
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γ
(l1)
0 γ

(l2)
0 γ

(l3)
0

27(l1) −(η − 2c1 − ξ1 − ξ2) ·S (η − 3c1 − ξ1 − ξ2) 0 0

27(l2) 0 −ξ1 ·S (c1 + ξ1) 0

27(l3) 0 0 −ξ2 ·S (c1 + ξ2)

Table XLVIII. Chirality induced by the fluxes γ
(l1)
0 , γ

(l2)
0 , and γ

(l3)
0 .

There are many choices of the additional fluxes, for simplicity, we consider

δ(l1) = [(1− p∗l2pl1∗) + (1− p∗l3pl1∗)]γ
(l1)

= [C(l1)] · 2σ − ([C(l2)] + [C(l3)]) · π∗(η − 3c1 − ξ1 − ξ2), (4.31)

δ(l2) = [(1− p∗l1pl2∗) + (1− p∗l3pl2∗)]γ
(l2)

= [C(l2)] · 2σ − [C(l1)] · π∗ξ1 − [C(l3)] · π∗ξ1, (4.32)

δ(l3) = [(1− p∗l1pl3∗) + (1− p∗l2pl3∗)]γ
(l3)

= [C(l3)] · 2σ − [C(l1)] · π∗ξ2 − [C(l2)] · π∗ξ2. (4.33)

ρ̂ = (p∗l2 − p∗l1)ρ1 + (p∗l3 − p∗l2)ρ2 + (p∗l1 − p∗l3)ρ3, (4.34)

where ρi ∈ H2(S,R), ∀i. The chirality induced by these additional fluxes on each

matter curve is summarized in Table XLIX.

The total flux Γ with the parameters kl1 , kl2 kl3 , ml1 , ml2 , and ml3 is [66]

Γ = kl1γ
(l1)
0 + kl2γ

(l2)
0 + kl3γ

(l3)
0 +ml1δ

(l1) +ml2δ
(l2) +ml3δ

(l3) + ρ̂ ≡ Γ(l1) + Γ(l2) + Γ(l3),

(4.35)
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δ(l1) δ(l2) δ(l3) ρ̂

27(l1) −2c1 ·S [f1] −ξ1 ·S [f1] −ξ2 ·S [f1] (ρ3 − ρ1) ·S [f1]

27(l2) −ξ1 ·S [f1] −2c1 ·S ξ1 −ξ1 ·S ξ2 (ρ1 − ρ2) ·S ξ1

27(l3) −ξ2 ·S [f1] −ξ1 ·S ξ2 −2c1 ·S ξ2 (ρ2 − ρ3) ·S ξ2

Table XLIX. Chirality induced by the fluxes δ(l1), δ(l2), δ(l3) and ρ̂.

where

Γ(l1) = [C(l1)] · [(kl1 + 2ml1)σ − π∗(kl1 [f1] +ml2ξ1 +ml3ξ2 + ρ1 − ρ3)], (4.36)

Γ(l2) = [C(l2)] · [(kl2 + 2ml2)σ − π∗(ml1 [f1] + kl2ξ1 +ml3ξ2 + ρ2 − ρ1)], (4.37)

Γ(l3) = [C(l3)] · [(kl3 + 2ml3)σ − π∗(ml1 [f1] +ml2ξ1 + kl3ξ2 + ρ3 − ρ2)]. (4.38)

It is then straightforward to compute

pl1∗Γ
(l1) = 2ml1(η − 3c1 − ξ1 − ξ2)−ml2ξ1 −ml3ξ2 − ρ1 + ρ3, (4.39)

pl2∗Γ
(l2) = −ml1(η − 3c1 − ξ1 − ξ2) + 2ml2ξ1 −ml3ξ2 − ρ2 + ρ1, (4.40)

pl3∗Γ
(l3) = −ml1(η − 3c1 − ξ1 − ξ2)−ml2ξ1 + 2ml3ξ2 − ρ3 + ρ2. (4.41)

The sum is zero, as it should be for the traceless condition. In this case, the quanti-

zation conditions are given by

(kl1 + 2ml1 −
1

2
)σ − π∗{(kl1 −

1

2
)[f1] +ml2ξ1 +ml3ξ2 + ρ1 − ρ3} ∈ H4(X,Z), (4.42)

(kl2 + 2ml2 −
1

2
)σ − π∗{ml1 [f1] + (kl2 −

1

2
)ξ1 +ml3ξ2 + ρ2 − ρ1} ∈ H4(X,Z), (4.43)

(kl3 + 2ml3 −
1

2
)σ − π∗{ml1 [f1] +ml2ξ1 + (kl3 −

1

2
)ξ2 + ρ3 − ρ2} ∈ H4(X,Z),(4.44)
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and the supersymmetry conditions are as follows:

[2ml1(η − 3c1 − ξ1 − ξ2)−ml2ξ1 −ml3ξ2 − ρ1 + ρ3] ·S [ωS] = 0, (4.45)

[−ml1(η − 3c1 − ξ1 − ξ2) + 2ml2ξ1 −ml3ξ2 − ρ2 + ρ1] ·S [ωS] = 0, (4.46)

[−ml1(η − 3c1 − ξ1 − ξ2)−ml2ξ1 + 2ml3ξ2 − ρ3 + ρ2] ·S [ωS] = 0. (4.47)

B. Breaking E6

The MSSM fermion and electroweak Higgs fields can be included in the same 27

multiplet of a three-family E6 GUT model. On the other hand, it is possible to

assign the Higgs fields to a different 27H multiplet where only the Higgs doublets

and singlets obtain the electroweak scale energy. The Yukawa coupling for these two

cases can be written as

W ⊃ 27 · 27 · 27 (Case A) or 27 · 27 · 27H (Case B). (4.48)

The Yukawa coupling of Case A is either a triple-intersection of one 27 curve or

an intersection of three different curves in F-theory model building. It is difficult

to obtain a three family model from a single curve and the geometry of a triple-

intersection is generally complicated. On other hand, it is not easy to achieve the

mass hierarchy of the third generation in the three-curve model. Therefore, we do not

consider Case A in this paper. In case B, there are two possible constructions from

spectral cover factorizations. In the (2, 1) factorization, the fermions are assigned

to 27(a) curve and the Higgs fields come from the other 27(b) curve. The Yukawa

coupling then turns out

W(2,1) ⊃ 27(a) · 27(a) · 27(b). (4.49)
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In the (1, 1, 1) factorization, the matter fields are assigned to curve 27(a) and 27(b)

while the Higgs fields come from the 27(c) curve. In this case the Yukawa coupling is

then

W(1,1,1) ⊃ 27(a) · 27(b) · 27(c). (4.50)

In order to realize the MSSM in the E6 GUT models, it is useful to study the

subgroups of E6. In our F-theory model building we consider the picture that the E6

gauge group is broken by the SU(2)×U(1)2 flux on the seven-branes. This flux may

tilt the chirality of the matter on the curve after E6 is broken.

1. Subgroups of E6

The subgroups of E6 including the Standard Model gauge group can be denoted E6 ⊃

SU(3)× SU(2)L ×Gc. Here Gc marks a rank 3 group which is a product of U(1) or

SU(2). It has been shown (for example, [90,94,100,128]) that by suitable assignments

of the hypercharge of the SM and the B − L symmetry, these E6 subgroups with

different Gc are equivalent to different matter content arrangements. This property

would be useful for the analysis of the non-abelian fluxes of type Gc. In this section

we will briefly review the subgroups of E6.

Let us consider the following breaking patterns of E6:

(1a) E6 → SO(10)× U(1) → SU(5)× U(1)2, (4.51)

(1b) E6 → SO(10)× U(1) → SU(4)× SU(2)× SU(2)× U(1), (4.52)

(2a) E6 → SU(6)× SU(2) → SU(5)× U(1)× SU(2), (4.53)

(2b) E6 → SU(6)× SU(2) → SU(4)× SU(2)× U(1)× SU(2), (4.54)

(2c) E6 → SU(6)× SU(2) → SU(3)× SU(3)× U(1)× SU(2), (4.55)

(3) E6 → SU(3)× SU(3)× SU(3). (4.56)



130

In all of these cases, there are two possible outcomes when E6 is broken down to the

subgroups containing the Standard Model group. Case (1a) turns out to be

E6 → SU(3)× SU(2)L × U(1)Y × U(1)χ × U(1)ψ, (4.57)

and the other cases become

E6 → SU(3)× SU(2)× SU(2)× U(1)U × U(1)W . (4.58)

Note that the assignments of U(1)U and U(1)W groups of the cases (1b), (2a), (2b),

(2c) and (3) are different, but they are equivalent up to linear transformations. Take

case (3) as an example, the breaking is through a trinification model, therefore we

can write

E6 ⊃ SU(3)× SU(2)L × SU(2)(R) × U(1)YL
× U(1)Y(R)

. (4.59)

The parenthesis on R in SU(2)(R) indicates that it has three different assignments de-

noted by SU(2)R, SU(2)R′ , and SU(2)E [128]. The third component I3(R) of SU(2)(R)

along with the quantum numbers of U(1)YL
and U(1)Y(R)

can have a linear relation

to the quantum numbers of U(1)Y , U(1)χ and U(1)ψ of case (1a) in (4.57), i.e.,

Y = a1YL+a2Y(R) +a3I3(R), χ = b1YL+ b2Y(R) + b3I3(R), ψ = c1YL+ c2Y(R) + c3I3(R),

(4.60)

where ai, bi and ci are coefficients of the transformation. These three different kinds

of SU(2)(R) assignments also confine the three different embedding of SM matter

representations into the SU(5) multiplets belonging to 27 of E6, as well as the cor-

responding assignments of the hypercharge. The three assignments of U(1)Y should

be orthogonal to the three SU(2)(R), respectively.

The U(1)B−L symmetry is conserved in SUSY E6 models, which is not difficult

to see from the gauge breaking via the Pati-Salam gauge group. U(1)B−L has a
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linear relation with U(1)YL
, U(1)Y(R)

, and the third component of SU(2)(R). There

are also three U(1)B−L assignments orthogonal to the three SU(2)(R), respectively.

For consistency with the SM structure, U(1)B−L and U(1)Y are not orthogonal to

the same SU(2)(R). Therefore, there are six totally different charge assignments of

the SM multiplets - six different embedding of SM multiplets in 27 of E6. For the

detailed analysis, we refer readers to [128].

The E6 subgroups listed in Eqs. (4.57) and (4.58) are rank 6. In heterotic

string compactifications, E6 can be broken by a non-abelian flux down to a rank 5

subgroup [91,93–95]:

E6 → SU(3)× SU(2)L × U(1)Y × U(1)η. (4.61)

This model is usually marked as the η-model. Rank 6 models [96, 98, 99] have more

symmetries, but it is common practice to give a large VEV to one U(1) gauge group

to reduce them to the so called effective rank 5 models. For instance, from Eq. (4.57)

the remaining abelian gauge group U(1)θ is a reduction

U(1)θ = cos θU(1)χ + sin θU(1)ψ. (4.62)

Particularly, the rank 5 η-model can be regarded as a special case of this setup by

U(1)η =

√
3

8
U(1)χ −

√
5

8
U(1)ψ. (4.63)

In our F-theory models, a non-abelian flux SU(2)×U(1)2 is turned on to break the E6

gauge group to SU(3)×SU(2)×U(1)2 taken to be the η-model. However, since U(1)η

is only determined by the two U(1)s while the SU(2) is integrated out, the η-model

does not possess the degrees of freedom from the mixing angle θ preserving some

symmetries such as the B−L symmetry [100]. The corresponding phenomenology of

the F-theory rank 5 model will basically follow the properties of the η-model.
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The particle content of the E6 model we will consider is conventional. It includes

three copies of 27-plets, each copy includes an SM ordinary family, two Higgs-type

doublets, two SM singlets, and two exotic SU(2)-singlet quarks. The 27 matter con-

tent of the SU(3)×SU(2)×U(1)Y ×U(1)η model with the corresponding charges are

27 → Q(3,2) 1
3
,2 + uc(3̄,1)− 4

3
,2 + ec(1,1)2,2

+ L(1,2)−1,−1 + dc(3̄,1) 2
3
,−1 + νc(1,1)0,5

+ D̄(3,1)− 2
3
,−4 + h̄(1,2)1,−4

+ D(3̄,1) 2
3
,−1 + h(1,2)−1,−1 + S(1,1)0,5,

(4.64)

where the first subscript denotes the U(1)Y charge and the second indicates the U(1)η

charge. The superpotential for the 27 · 27 · 27 coupling can be expanded as

W = W0 +W1 +W2 +W3 + · · · , (4.65)

W0 = λ1h̄Qu
c + λ2hQd

c + λ3hLe
c + λ4hh̄S + λ5DD̄S, (4.66)

W1 = λ6D̄u
cec + λ7DQL+ λ8D̄ν

cdc, (4.67)

W2 = λ9D̄QQ+ λ10Du
cdc, (4.68)

W3 = λ11h̄Lν
c. (4.69)

Additional symmetries should be considered to avoid the terms that may cause se-

rious phenomenological problems. The exotic fields are only confined by the charge,

isospin, and hypercharge assignments while their baryon and lepton numbers remain

unspecified. By assigning baryon and lepton numbers to D, it is possible to forbid

some of the interactions in W by the conservation of baryon and lepton numbers. For

example, if the baryon number B(D) = 1
3

and the lepton number L(D) = 1, W2 = 0;

if B(D) = −2
3

and L(D) = 0, thenW1 = 0. In the case B(D) = 1
3

and L(D) = 0, D is

regarded as a conventional quark - able to mix with the d-quarks - then decaying via

flavor changing neutral currents (FCNC) or charged currents (CC) [100]. By setting
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B(h, h̄) = L(h, h̄) = 0 and B(S) = L(S) = 0, h and h̄ are the usual MSSM Higgs

doublets, and the VEV of S provides a mass for D. See [100] for a detailed review.

Another possibility is considering the MSSM Higgs fields coming from a different

27H (or 27H). In this case the exotics of the matter 27-plet are taken as the ordi-

nary quarks and leptons, B(D) = 1
3

and L(D) = 0, as well as B(h, h̄, νc, S) = 0 and

L(h, h̄, νc, S) = ±1. The doublets H1(1,2)−1,−1, H2(1,2)−1,−1 and H̄2(1,2)1,−4, and

the singlets H3(1,1)0,5 and H4(1,1)0,5 of 27H develop VEVs so that the superpoten-

tial takes the form

W ′ ⊃ H̄2Qu
c +H2Qd

c +H2Le
c +H1he

c + h̄hH4

+ H̄2hS +H2h̄S + D̄DH4 +H1QD +H3D̄d
c + H̄2Lν

c + · · · . (4.70)

We can see the mixings between the ordinary fermions and their corresponding exotic

fields. These kinds of mixings allow the exotics to decay via FCNC or CC [100].

There can be one or more additional Higgs-like doublets from (27 + 27) vector-

like pairs preserving the gauge unification without introducing anomalies. In sum-

mary, with the picture of electroweak Higgs fields from a different 27H , the minimum

spectrum at low energy is

3× 27 + (27H) + (27 + 27). (4.71)

2. Non-abelian Gauge Fluxes

In what follows, we shall analyze the effects on the chirality after the SU(2)× U(1)2

flux is turned on. We choose the breaking chain (1b) in Eq. (4.52) via SO(10) and

SU(4)×SU(2)×SU(2). When the flux is turned on, the matter on the bulk decom-
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poses as

E6 −−−→
U(1)a

SO(10)× [U(1)a]

−−−→
SU(2)

SU(4)× SU(2)1 × [SU(2)2 × U(1)a]

−−−→
U(1)b

SU(3)× SU(2)1 × [SU(2)2 × U(1)a × U(1)b]

78 → 450 + 10 + 16−3 + 163

→ (15,1,1)0 + (6,2,2)0 + (1,3,1)0 + (1,1,3)0 + (1,1,1)0

[(4,2,1)−3 + (4̄,1,2)−3 + c.c.]

→ (8,1,1)0,0 + (3,1,1)0,−4 + (3̄,1,1)0,4 + (1,1,1)0,0

+(3,2,2)0,2 + (3̄,2,2)0,−2 + (1,3,1)0,0 + (1,1,3)0,0 + (1,1,1)0,0

+[(3,2,1)−3,−1 + (1,2,1)−3,3 + (3̄,1,2)−3,1 + (1,1,2)−3,−3 + c.c.].

(4.72)

The SM hypercharge is defined as

U(1)Y =
1

2
[U(1)a +

1

3
U(1)b]. (4.73)

Under the breaking pattern (4.72), the gauge group E6 can be broken down to SU(3)×

SU(2)1×U(1)a×U(1)b by turning on a gauge bundle on S with the structure group

SU(2)2 × U(1)a × U(1)b. Let us define L1 and L2 to be the line bundles associated

with U(1)a and U(1)b, respectively. V2 is defined as a vector bundle of rank two

with the structure group SU(2). To preserve supersymmtry, the connection of the

gauge bundle W = V2 ⊕ L1 ⊕ L2 has to satisfy the Hermitian Yang-Mills equations

(2.11)54 It was shown in [118, 119] that the bundle W has to be poly-stable with

µ[ω](V2) = µ[ω](L1) = µ[ω](L2) = 0, where slope µ[ω](E) of a bundle E on S is

defined by µ[ω](E) = 1
rank(E)

c1(E) ·S [ω] and [ω] is an ample divisor of S. The poly-

54More precisely, L1 and L2 are fractional line bundles [14–17].
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stability also requires that V2 is a [ω]-stable bundle. Since S is a del Pezzo surface,

it was shown in [14] that for any non-trivial holomorphic vector bundle E satisfies

Eq. (2.11), h0(S,E) = h2(S,E) = 0. This vanishing theorem dramatically simplifies

the calculation of the chiral spectrum. It turns out that the matter spectrum can be

calculated by the holomorphic Euler characteristic [109, 110]. By the decomposition

Eq. (4.72) and the vanishing theorem, the spectrum is given by

n(3,1,1)0,−4
= −χ(S,G−1) ≡ γ1, (4.74)

n(3̄,1,1)0,4
= −χ(S,G) ≡ γ2, (4.75)

n(3,2,2)0,2
= −χ(S, U2) ≡ γ3, (4.76)

n(3̄,2,2)0,−2
= −χ(S, U∨

2 ) ≡ γ4, (4.77)

n(3,2,1)−3,−1
= −χ(S, F ) ≡ γ5, (4.78)

n(3̄,2,1)3,1
= −χ(S, F−1) ≡ γ6, (4.79)

n(3,1,2)3,−1
= −χ(S, U∨

2 ⊗ F−1) ≡ γ7, (4.80)

n(3̄,1,2)−3,1
= −χ(S, U2 ⊗ F ) ≡ γ8, (4.81)

n(1,1,2)−3,−3
= −χ(S, U∨

2 ⊗ F ) ≡ δ1, (4.82)

n(1,1,2)3,3
= −χ(S, U2 ⊗ F−1) ≡ δ2, (4.83)

n(1,2,1)−3,3
= −χ(S,G⊗ F ) ≡ δ3, (4.84)

n(1,2,1)3,−3
= −χ(S,G−1 ⊗ F−1) ≡ δ4, (4.85)

where ∨ stands for the dual bundle, χ is the holomorphic Euler characteristic defined

by χ(S,E) =
∑

i h
0,i(S,E), U2 = V2 ⊗L2

2, F = L−3
1 ⊗L−1

2 , G = L4
2, and γi, δi ∈ Z>0.
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After some algebra, Eqs. (4.74)-(4.85) can be recast as

c1(G)2 = −2− γ1 − γ2, (4.86)

c1(F )2 = −2− γ5 − γ6, (4.87)

c1(S) · c1(G) = γ1 − γ2, (4.88)

c1(S) · c1(F ) = γ6 − γ5, (4.89)

c2(V2) =
1

4
(6− γ1 − γ2 + 2γ3 + 2γ4), (4.90)

c1(G) · c1(F ) =
1

2
(4 + γ3 + γ4 + 2γ5 + 2γ6 − γ7 − γ8), (4.91)

γ1 − γ2 + γ3 − γ4 = 0, (4.92)

γ1 − γ2 − 2γ5 + 2γ6 − γ7 + γ8 = 0, (4.93)

δ1 =
1

2
(8 + γ1 − γ2 + 2γ3 + 2γ4 + 6γ5 + 2γ6 − γ7 − γ8), (4.94)

δ2 =
1

2
(8− γ1 + γ2 + 2γ3 + 2γ4 + 2γ5 + 6γ6 − γ7 − γ8), (4.95)

δ3 = −1

2
(2− 2γ2 + γ3 + γ4 + 2γ6 − γ7 − γ8), (4.96)

δ4 = −1

2
(2− 2γ1 + γ3 + γ4 + 2γ5 − γ7 − γ8). (4.97)

Note that given γk, k = 1, 2, ..., 8 satisfying the constraints Eqs. (4.92) and (4.93),

(F,G, V2) are constrained by Eqs. (4.86)-(4.91) and (δ1, δ2, δ3, δ4) are then given by

Eqs. (4.94)-(4.97). In particular, we are interested in the configurations of the vector-

like pairs, namely (γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, δ1, δ2, δ3, δ4) = (a, a, b, b, c, c, d, d, e, e, f, f),
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where a, b, c, d, e are all non-negative integers. Then Eqs. (4.86)-(4.97) reduce to

c1(G)2 = −2− 2a

c1(F )2 = −2− 2c

c1(S) · c1(G) = 0

c1(S) · c1(F ) = 0

c2(V2) = 1
2
(3 + 2b− a)

c1(G) · c1(F ) = 2 + b+ 2c− d

e = 4 + 2b+ 4c− d

f = −1 + a− b− c+ d.

(4.98)

It was proven in [129] that for an algebraic surface S with a given n > 4([h0(S,KS)/2]+

1), there exists a [ωS]-stable bundle V of rank two with c1(V ) = 0 and c2(V ) = n.

When S is a del Pezzo surface, h0(S,KS) = 0 and this theorem implies that for any

given number m > 4, there exists a [ωS]-stable bundle of rank two with c1(V ) = 0

and c2(V ) = m. To apply this theorem to our case, we require that c2(V2) > 4.

In general, c1(V ) and c2(V ) of a stable bundle V over a compact Kähler surface S

with c1(S) > 0 satisfy the inequality 2rc2(V ) − (r − 1)c1(V )2 > (r2 − 1), where r is

the rank of V [111]. When r = 2 and c1(V ) = 0, one can obtain the lower bound

c2(V ) > 2. It is possible to obtain a [ωS]-stable bundle V of rank two with c1(V ) = 0

and c2(V ) 6 4 for S being a del Pezzo surface. One can start with V defined by the

following extension:

0 → L→ V →M → 0. (4.99)

To obtain vanishing c1(V ), one can set M = L−1 and compute c2(V ) = −c1(L)2.

The extension is classified by Ext1(L,M) = H1(S, L ⊗M∗). When M = L−1, the

obstruction of the non-trivial extension is h1(S, L2) 6= 0. Let L be a non-trivial line
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bundle and S be a del Pezzo surface. By the vanishing theorem, one can obtain

h1(S, L2) = −1− c1(S) · c1(L)− 2c1(L)2. (4.100)

If c1(S) · c1(L) = 0 with negative c1(L)2, it is easy to see that h1(S, L2) > 1. The

simple example for such a line bundle is L = OS(ei − ej), i 6= j, where {e1, ..., e8} is

a set of the exceptional divisors of S. With non-trivial extensions, one may construct

a [ωS]-stable bundle V with (r, c1(V ), c2(V )) = (2, 0, 2) and with the structure group

SU(2). In what follows, we shall focus on the case of c2(V2) > 4. We summarize the

constraints for (a, b, c, d) as follows:

2b+ 4c− d > −4

a− b− c+ d > 1

a− 2b 6 −5

a, b, c, d ∈ Z>0.

(4.101)

Note that a must be odd otherwise c2(V2) cannot be integral. It follows from the

condition c2(V2) > 4 that b > 3. Let us consider the case (a, b, c) = (1, 3, 0). Then

Eq. (4.98) becomes 

c1(G)2 = −4

c1(F )2 = −2

c1(S) · c1(G) = 0

c1(S) · c1(F ) = 0

c2(V2) = 4

c1(G) · c1(F ) = 5− d

e = 10− d

f = −3 + d.

(4.102)



139

Note that for the case (a, b, c) = (1, 3, 0), the necessary condition for d is 3 6 d 6 10.

From the conditions c1(G)2 = −4 and c1(F )2 = −2, we set G = OS(ei − ej + ek −

el), i 6= j 6= k 6= l and F = OS(em − en), m 6= n. Clearly, G and F also satisfy the

conditions c1(S) · c1(G) = 0 and c1(S) · c1(F ) = 0. We shall not attempt to explore

all solutions (G,F ) and only list some solutions as follows:

(G,F ) =



(OS(ei − ej + ek − el),OS(ei − ej)), (d, e, f) = (7, 3, 4)

(OS(ei − ej + ek − el),OS(em − ej)), (d, e, f) = (6, 4, 3)

(OS(ei − ej + ek − el),OS(ei − ek)), (d, e, f) = (5, 5, 2)

(OS(ei − ej + ek − el),OS(ej − en)), (d, e, f) = (4, 6, 1)

(OS(ei − ej + ek − el),OS(ej − ek)), (d, e, f) = (3, 7, 0).

(4.103)

Let us consider another example, (a, b, c) = (3, 4, 0). In this case Eq. (4.98)

reduces to 

c1(G)2 = −8

c1(F )2 = −2

c1(S) · c1(G) = 0

c1(S) · c1(F ) = 0

c2(V2) = 4

c1(G) · c1(F ) = 6− d

e = 12− d

f = −2 + d.

(4.104)

When (a, b, c) = (3, 4, 0), it follows from Eq. (4.104) that the necessary condition

for d is 2 6 d 6 12. From the conditions c1(G)2 = −8 and c1(F )2 = −2, we set

G = OS(2ei − 2ej), i 6= j and F = OS(em − en), m 6= n. It is not difficult to see

that G and F satisfy the conditions c1(S) · c1(G) = 0 and c1(S) · c1(F ) = 0. Some
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solutions of (G,F ) are as follows:

(G,F ) =



(OS(2ei − 2ej),OS(ei − ej)), (d, e, f) = (10, 2, 8)

(OS(2ei − 2ej),OS(em − ej)), (d, e, f) = (8, 4, 6)

(OS(2ei − 2ej),OS(em − en)), (d, e, f) = (6, 6, 4)

(OS(2ei − 2ej),OS(em − ei)), (d, e, f) = (4, 8, 2)

(OS(2ei − 2ej),OS(ej − ei)), (d, e, f) = (2, 10, 0).

(4.105)

Let us turn to the chiral spectrum on the matter curves. The breaking pattern

of the presentation 27 is

E6 → SU(3)× SU(2)1 × [SU(2)2 × U(1)a × U(1)b]

27 → (3,2,1)1,−1 + (1,2,1)1,3 + (3̄,1,2)1,1 + (1,1,2)1,−3

+(3,1,1)−2,2 + (3̄,1,1)−2,−2 + (1,2,2)−2,0 + (1,1,1)4,0.

(4.106)

Let us define V27 ⊗ L4
1|Σ(k)

27
= Γ|

Σ
(k)
27

= M (k), F |
Σ

(k)
27

= N
(k)
1 , and G|

Σ
(k)
27

= N
(k)
2 . The

chirality of matter localized on matter curves Σ
(k)
27 is determined by the restrictions of

the cover flux Γ and gauge fluxes to the curves. The spectrum induced by the cover

flux and gauge fluxes is summarized in Table L.

C. Tadpole Cancellation

The cancellation of tadpoles is crucial for consistent compactifications. In general,

there are induced tadpoles from 7-brane, 5-brane, and 3-brane charges in F-theory.

The 7-brane tadpole cancellation in F-theory is automatically satisfied since X4 is

a Calabi-Yau manifold. The cancellation of the D5-brane tadpole in the spectral

cover construction follows from the topological condition that the overall first Chern

class of the Higgs bundle vanishes. Therefore, the non-trivial tadpole cancellation in
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Curve Matter Bundle Chirality

27(k)

(3,2,1)1,−1 V27 ⊗ L1 ⊗ L−1
2 |Σ(k)

27
M (k) +N

(k)
1

(1,2,1)1,3 V27 ⊗ L1 ⊗ L3
2|Σ(k)

27
M (k) +N

(k)
1 +N

(k)
2

(3̄,1,2)1,1 V27 ⊗ V2 ⊗ L1 ⊗ L2|Σ(k)
27

2(M (k) +N
(k)
1 ) +N

(k)
2

(1,1,2)1,−3 V27 ⊗ V2 ⊗ L1 ⊗ L−3
2 |Σ(k)

27
2(M (k) +N

(k)
1 )−N

(k)
2

(3,1,1)−2,2 V27 ⊗ L−2
1 ⊗ L2

2|Σ(k)
27

M (k) + 2N
(k)
1 +N

(k)
2

(3̄,1,1)−2,−2 V27 ⊗ L−2
1 ⊗ L−2

2 |Σ(k)
27

M (k) + 2N
(k)
1

(1,2,2)−2,0 V27 ⊗ V2 ⊗ L−2
1 |Σ(k)

27
2(M (k) + 2N

(k)
1 ) +N

(k)
2

(1,1,1)4,0 V27 ⊗ L4
1|Σ(k)

27
M (k)

Table L. Chirality of matter localized on matter curve 27(k).

F-theory needed to be satisfied is the D3-brane tadpole which can be calculated by

the Euler characteristic χ(X4). The cancellation condition is of the form [122]

ND3 =
χ(X4)

24
− 1

2

∫
X4

G ∧G, (4.107)

where ND3 is the number of D3-branes and G is the four-form flux on X4. For a

non-singular elliptically fibered Calabi-Yau fourfold X4, it was shown in [122] that

the Euler characteristic χ(X4) can be expressed as

χ(X4) = 12

∫
B3

c1(B3)[c2(B3) + 30c1(B3)
2], (4.108)
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where ck(B3) are the Chern classes of B3. It follows from Eq. (4.108) that χ(X4)/24

is at least half-integral55. When X4 admits non-abelian singularities, the Euler char-

acteristic of X4 is replaced by a refined Euler characteristic, the Euler characteristic

of the smooth fourfold obtained from a suitable resolution of X4. On the other hand,

G-flux encodes the two-form gauge fluxes on the 7-branes. It was shown in [123] that∫
X4

G ∧G = −Γ2, (4.109)

where Γ is the universal cover flux defined in section A and Γ2 is defined as the

self-intersection number of Γ inside the spectral cover. It is a challenge to find com-

pactifications with non-vanishing G-flux and non-negative ND3 to satisfy the tadpole

cancellation condition (4.107). In the next two subsections, we shall derive the formu-

lae of the refined Euler characteristic χ(X4) and the self-intersection of the universal

cover fluxes Γ2 for the (2, 1) and (1, 1, 1) factorizations.

1. Geometric Contribution

In the presence of non-abelian singularities, X4 becomes singular and the Euler char-

acteristic χ(X4) needs to be modified by resolving the singularities. To be more

concrete, let us define H to be the gauge group corresponding to the non-abelian sin-

gularity over S and G to be the complement of H in E8. Then the Euler characteristic

is modified to

χ(X4) = χ∗(X4) + χG − χE8 , (4.110)

55For a generic Calabi-Yau manifold X4, χ(X4)/24 takes value in Z4 [122].
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where χ∗(X4) is the Euler characteristic for a smooth fibration over B3 given by Eq.

(4.108) and the characteristic χE8 is given by [53,123,124]

χE8 = 120

∫
S

(3η2 − 27ηc1 + 62c21). (4.111)

For the case of G = SU(n), the characteristic χSU(n) is computed as

χSU(n) =

∫
S

(n3 − n)c21 + 3nη(η − nc1). (4.112)

When the group G splits into a product of two groups G1 and G1, χG in Eq. (4.110)

is then replaced by χ
(k)
G1

+ χ
(l)
G2

, where η in χG is split into the classes η(m) as shown

in the footnote below. It turns out that the refined Euler characteristic of the (2, 1)

factorization is given by

χ(X4) = χ∗(X4) + χ
(a)
SU(2) + χ

(b)
SU(1) − χE8

= χ∗(X4) +

∫
S

3[c1(32c1 − 16t− 15ξ) + (2t2 + 4tξ + 3ξ2)]− χE8 .(4.113)

In the (1, 1, 1) factorization, the refined Euler characteristic56 is

χ(X4) = χ∗(X4) + χ
(l1)
SU(1) + χ

(l2)
SU(1) + χ

(l3)
SU(1) − χE8

= χ∗(X4) + 3

∫
S

c1 [12c1 − 7t− 6(ξ1 + ξ2)]

+ 3

∫
S

[
t2 + 2t(ξ1 + ξ2) + 2(ξ2

1 + ξ1ξ2 + ξ2
2)

]
− χE8 . (4.114)

2. Cover Flux Contribution

Under cover factorizations, the universal cover flux is of the form

Γ =
∑
k

Γ(k), (4.115)

56For the (2, 1) factorization, η(a) = (η− c1− ξ) and η(b) = (c1 + ξ). For the (1, 1, 1)
factorization, η(l1) = (η − 2c1 − ξ1 − ξ2), η

(l2) = (c1 + ξ1), and η(l3) = (c1 + ξ2).
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where the fluxes Γ(k) satisfy the traceless condition
∑

k pk∗Γ
(k) = 0. In what follows,

we shall compute the self-intersection Γ2 of the universal fluxes for the (2,1) and

(1,1,1) factorizations.

a. (2, 1) Factorization

Let us recall that in the (2, 1) factorization, the universal cover flux is given by

Γ = kaγ
(a)
0 + kbγ

(b)
0 +maδ

(a) +mbδ
(b) + ρ̃ = Γ(a) + Γ(b), (4.116)

where Γ(a) and Γ(b) are

Γ(a) = [C(a)] · [(2ka +ma)σ − π∗(ka[a2] +mb[d1] + ρ)] ≡ [C(a)] · [C̃(a)], (4.117)

Γ(b) = [C(b)] · [(kb + 2mb)σ − π∗(kb[d1] +ma[a2]− 2ρ)] ≡ [C(b)] · [C̃(b)]. (4.118)

Then the self-intersection Γ2 is calculated by [66]

Γ2 = [C(a)] · [C̃(a)] · [C̃(a)] + [C(b)] · [C̃(b)] · [C̃(b)]. (4.119)

In the (2, 1) factorization, [C(a)] = 2σ + π∗(η − c1 − ξ) and [C(b)] = σ + π∗(c1 + ξ).

With Eqs. (4.117) and (4.118), it is straightforward to compute

Γ2 = [C(a)
2 ] · [C̃(a)

2 ]2 + [C(b)
1 ] · [C̃(b)

1 ]2

= −1

2
(2ka +ma)

2[a2] · [a0]− (kb + 2mb)
2[d1] · [d0]

+
3

2
(ma[a2]− 2mb[d1]− 2ρ)2. (4.120)
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b. (1, 1, 1) Factorization

In the (1, 1, 1) factorization, the universal flux is given by

Γ = kl1γ
(l1)
0 + kl2γ

(l2)
0 + kl3γ

(l3)
0 +ml1δ

(l1) +ml2δ
(l2) +ml3δ

(l3) + ρ̃ ≡ Γ(l1) + Γ(l2) + Γ(l3),

(4.121)

where Γ(l1), Γ(l2), and Γ(l3) are

Γ(l1) = [C(l1)] · [(kl1 + 2ml1)σ − π∗(kl1 [f1] +ml2ξ1 +ml3ξ2 + ρ1 − ρ3)], (4.122)

Γ(l2) = [C(l2)] · [(kl2 + 2ml2)σ − π∗(ml1 [f1] + kl2ξ1 +ml3ξ2 + ρ2 − ρ1)], (4.123)

Γ(l3) = [C(l3)] · [(kl3 + 2ml3)σ − π∗(ml1 [f1] +ml2ξ1 + kl3ξ2 + ρ3 − ρ2)]. (4.124)

In this case the self-intersection Γ2 is computed as

Γ2 = [C(l1)] · [C̃(l1)] · [C̃(l1)] + [C(l2)] · [C̃(l2)] · [C̃(l2)] + [C(l2)] · [C̃(l3)] · [C̃(l3)]. (4.125)

Recall that [C(l1)] = σ + π∗(η − 2c1 − ξ1 − ξ2), [C(l2)] = σ + π∗(c1 + ξ1), and [C(l3)] =

σ + π∗(c1 + ξ2). It follows from Eqs. (4.122)-(4.124) that

Γ2 = [C(l1)] · [C̃(l2)]2 + [C(l2)] · [C̃(l2)]2 + [C(l3)] · [C̃(l3)]2

= −(kl1 + 2ml1)
2[f1] · [f0]− (kl2 + 2ml2)

2[g1] · [g0]− (kl3 + 2ml3)
2[h1] · [h0]

+(ρ1 − ρ3 − 2ml1 [f1] +ml2 [g1] +ml3 [h1])
2

+(ρ2 − ρ1 +ml1 [f1]− 2ml2 [g1] +ml3 [h1])
2

+(ρ3 − ρ2 +ml1 [f1] +ml2 [g1]− 2ml3 [h1])
2. (4.126)
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D. Models

In this section we give some numerical examples in the geometric backgrounds dP2

studied in [64] and dP7 in [53]. The basic geometric data of dP2 in X4 is

c1 = 3h− e1 − e2, t = h, η = 17h− 6e1 − 6e2. (4.127)

It follows from Eqs. (4.113) and (4.114) that the refined Euler characteristic χ(X4)

for the (2, 1) and (1, 1, 1) factorizations are

χ(X4)(2,1) = 10662 +

∫
S

3[−15ξc1 + 4tξ + 3ξ2], (4.128)

χ(X4)(1,1,1) = 10320 +

∫
S

6
[
(t− 3c1)(ξ1 + ξ2) + (ξ2

1 + ξ1ξ2 + ξ2
2)

]
, (4.129)

where χ∗(X4) = 13968 has been used. The ample divisor [ωdP2 ] is chosen to be

[ωdP2 ] = α(e1 + e2) + β(h− e1 − e2), 2α > β > α > 0. (4.130)

For the dP7 studied in [53], the basic geometric data is

c1 = 3h− e1 − e2 − e3 − e4 − e5 − e6 − e7,

t = 2h− e1 − e2 − e3 − e4 − e5 − e6, (4.131)

η = 16h− 5e1 − 5e2 − 5e3 − 5e4 − 5e5 − 5e6 − 6e7.

with χ∗(X4) = 1728. By Eqs. (4.113) and (4.114), the refined Euler characteristic

χ(X4) for the (2, 1) and (1, 1, 1) factorizations are

χ(X4)(2,1) = 708 +

∫
S

3[−15ξc1 + 4tξ + 3ξ2], (4.132)

χ(X4)(1,1,1) = 594 +

∫
S

6
[
(t− 3c1)(ξ1 + ξ2) + (ξ2

1 + ξ1ξ2 + ξ2
2)

]
. (4.133)
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In this case we choose the ample divisor [ωdP7 ] to be

[ωdP7 ] = 14βh− (5β − α)
7∑
i=1

ei, 5β > α > 0. (4.134)

We shall discuss the models of the (2,1) and (1,1,1) factorizations. In each case the

trivial and non-trivial restrictions of the U(1) fluxes to the matter curves will be

discussed. Non-trivial restriction leads to the modification of the chirality of each

matter on the curve after E6 is broken according to the calculation in section B. In

addition, there could exist vector-like pairs on each curve since we only know the net

chirality. The Higgs vector-like pair (27 + 27) needed for the gauge unification is

therefore assigned to one of these pairs, though the machinery to calculate the exact

number of these vector-like fields is not clear yet.

1. Examples of the (2, 1) Factorization

In the (2,1) factorization the matter fields are assigned to 27(a) curve and the Higgs

fields come from the other 27(b) curve. The Yukawa coupling then turns out to be

W ⊃ 27(a) · 27(a) · 27(b). (4.135)

Since the fermion and Higgs fields are not on the same 27 curve, the exotic fields

in 27(a) can be taken as exotic quarks and leptons which are able to mix with the

ordinary ones by suitable discrete symmetries and to decay via mechanisms such as

FCNC after E6 is broken mentioned in section B.

a. A three-family E6 model in dP2

The parameters of the model are listed in Table LI. These parameters give the

spectrum N27(a) = 3 and N27(b) = 3 with ND3 = 415 as shown in Table LII. The dP2

surface is probably too limited for the fluxes to break the E6 gauge group. Therefore,
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ka kb ma mb ρ ξ α β

0.5 -1.5 -1 -1 −5
2
h+ 3

2
e1 − 3

2
e2 e1 2 3

Table LI. Parameters of an example of a three-generation E6 GUT.

Curve Class Gen.

27(a) 8h− 4e1 − 3e2 3

27(b) e1 3

Table LII. The 27 curves of the three-generation E6 example in dP2.

we stop at a three-generation E6 GUT model in this example.

b. An example of three-generation without flux restriction in dP7

The parameters of the model with ND3 = 12 are listed in the Table LIII. The matter

contents on the curves are listed in Table LIV. If the line bundles G and F associated

to SU(2)×U(1)a×U(1)b flux are chosen to have trivial restrictions57 to both matter

27 curves, for example, F = OS(e5 − e6) and G = OS(e1 − e2 + e3 − e4)
58, then

the chirality on each matter curve remains the same after E6 is broken down to

SU(3)×SU(2)×U(1)a×U(1)b. After suitably transforming the U(1) gauge groups,

the corresponding matter content and phenomenology at low energy is a conventional

rank 5 model discussed in section B.

57To avoid receiving a Green-Schwarz mass, it is required that [H] ·S c1=0 and
[H] ·S η = 0, for H = F, G [14–17,65].

58G can be chosen also as G = OS(2(e3 − e4)) from Eq. (4.105).
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ka kb ma mb ρ ξ α β

-0.5 1.5 0 -0.5 1
2
(3e1 + e2 + e3 + e4) h− e5 − e6 + e7 3 1

Table LIII. Parameters of an example of the (2,1) factorization in dP7.

Curve Class Gen.

27(a) 6h− 2e1 − 2e2 − 2e3 − 2e4 − e5 − e6 − 4e7 3

27(b) h− e5 − e6 + e7 2

Table LIV. The 27 curves of the example of the (2,1) factorization without flux re-

strictions in dP7.

c. An example with non-trivial flux restrictions in dP7

In this example we consider a model with non-trivial flux restrictions to the matter

curves in dP7. From the chirality formulae discussed in section B and listed in Table

L, we find that it is unavoidable to have exotic fields under this construction. To

maintain at least three copies for the MSSM matter after the gauge group E6 is

broken, we may have to start from a model with more chirality on the 27 curves. The

parameters of an example of this scenario are listed in Table LV.

It follows from Eq. (4.107) and the parameters in Table LV that ND3 = 14. We

choose chirality-three curve for the matter fields and a chirality-four curve for the

Higgs fields to make sure that there are enough MSSM matter after the gauge group

E6 is broken. From Eq. (4.103), we can turn on the fluxes F = OS(e1 − e2) and

G = OS(e2 − e3 + e4 − e5) in dP7
59. The detailed information of the curves and the

59G can be chosen also as G = OS(2(e4 − e5)) from Eq. (4.105).
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ka kb ma mb ρ ξ α β

0.5 -0.5 -1 -0.5 −h+ 1
2
(e1 − 2e2 + e3 + e4 + e6) h− e2 + e5 − e7 13 11

Table LV. Parameters of an example with non-trivial flux restrictions in dP7.

Curve Class M N1 N2

27(a) 6h− 2e1 − e2 − 2e3 − 2e4 − 3e5 − 2e6 − 2e7 3 1 -2

27(b) h− e2 + e5 − e7 4 -1 2

Table LVI. The 27 curves with non-trivial flux restrictions in dP7.

restrictions of fluxes to each curve are listed in Table LVI.

The low energy spectrum is listed in Table LVII. One can see that there are

exotic fields from non-trivial restrictions of fluxes to the curves.

2. Examples of the (1, 1, 1) Factorization

The Yukawa coupling of the 27 curves in the (1, 1, 1) factorization is 27(l1)27(l2)27(l3).

The fermions are assigned to the two 27 curves while the Higgs fields are located on

the third 27 curve. For instance,

W ⊃ 27
(l1)
M · 27(l2)

M · 27(l3)
H . (4.136)

In this scenario the fermions are separated on different matter curves and the sum

of the generations should accomplish a three-family model, for example, two families

on 27(l1) and one family on 27(l2), or vice versa. However, this construction generally

has some problems with the mass matrices. With the assistance from the flux restric-

tions, the method studied in [27] can be applied to obtain a more reasonable Yukawa



151

Rep. Gen. on 27(a) Gen. on 27(b)

(3,2)1,−1 3×Q+ 1× (3,2)1,−1 3

(3̄,1)−2,−2 3× uc + 2× (3̄,1)−2,−2 2

(3̄,1)1,1 3× dc + 3×D 4+4

(1,2)−2,0 3× L+ 5× h 3× (H1 +H2)

(1,1)4,0 3× ec 4

(1,1)1,−3 3× νc + 7× S 2× (H3 +H4)

(3,1)−2,2 3× D̄ 4

(1,2)1,3 2× h̄ 5× H̄2

Table LVII. The MSSM spectrum of the (2, 1) factorization in dP7.

kl1 kl2 kl3 ml1 ml2 ml3 ρ1 ξ1 ξ2 α β

-1.5 -0.5 1.5 0 0 0 −h+ e1 + 2e2 e1 2h− 2e1 − e2 + e3 − e7 1 3

Table LVIII. Parameters of a three family model in dP7 with ρ2 = 2ρ1 and ρ3 = 0.

structure. However, from the chirality given in Table L we expect exotic fields to

remain in the spectrum after this mechanism. In what follows, we demonstrate one

example for each case in the (1, 1, 1) factorization.

a. An example of three-generation without flux restriction in dP7

The parameters of the model are listed in Table LVIII. These parameters give the

spectrum shown in Table LIX with ND3 = 10. Let us choose the line bundles to
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Curve Class Gen. Matter

27(l1) 5h− e1 − e2 − 3e3 − 2e4 − 2e5 − 2e6 − 2e7 2 Fermion

27(l2) e1 1 Fermion

27(l3) 2h− 2e1 − e2 + e3 − e7 4 Higgs

Table LIX. The spectrum of the three-generation model in dP7.

kl1 kl2 kl3 ml1 ml2 ml3 ρ1 ξ1 ξ2 α β

-0.5 -0.5 -0.5 0 0 -1 e2 2h− 2e1 − e3 − e7 h− e1 − e2 1 3

Table LX. Parameters of a three family model in dP7 with ρ2 = 2ρ1 and ρ3 = 0.

be F = OS(e5 − e6) and G = OS(e2 − e4 + e3 − e6)
60 having trivial restrictions

to each 27 curve. Then the chirality remains the same after E6 is broken down to

SU(3)×SU(2)×U(1)a×U(1)b. After suitably transforming the U(1) charges, the cor-

responding matter content and phenomenology at low energy is again a conventional

rank 5 model.

b. An Example of non-trivial flux restrictions in dP7

The parameters of the model are listed in Table LX. These parameters confine the

spectrum of E6 shown in Table LXI with ND3 = 10. If the line bundles associated to

SU(2)×U(1)a×U(1)b flux are chosen as F = OS(e3−e5) and G = OS(e1−e2+e4−e6)
61, then the chirality of MSSM matter after E6 is broken will be modified by numbers

N1 and N2 shown in Table LXI.

60G can be chosen also as G = OS(2(e4 − e5)) from Eq. (4.105).
61G can be chosen also as G = OS(2(e3 − e4)) from Eq. (4.105).



153

Curve Class M N1 N2 Matter

27(l1) 4h+ e1 − e2 − e3 − 2e4 − 2e5 − 2e6 − 2e7 3 -1 -2 Fermion

27(l2) 2h− 2e1 − e3 − e7 0 1 2 Fermion

27(l3) h− e1 − e2 4 0 0 Higgs

Table LXI. The spectrum of the three-generation model in dP7.

Originally, there is no chirality on curve 27(l2) so it does not look realistic before

the E6 gauge group is broken. However after the fluxes are turned on, the chirality is

“reshuffled” and shared between curves 27(l1) and 27(l2). Therefore, we can interpret

the model in the way studied in [27] that is able to give a rich structure to the

mass matrices via the Yukawa couplings. We demonstrate the corresponding MSSM

spectrum in Table LXII.

E. Conclusion

In this chapter we discussed E6 GUT models where the gauge group is broken by the

non-abelian flux SU(2)× U(1)2 in F-theory. The non-abelian part SU(2) of the flux

is not commutative with E6 so the gauge group after breaking is SU(3)× SU(2)L ×

U(1)a×U(1)b which is equivalent to a rank-5 model with SU(3)×SU(2)L×U(1)Y ×

U(1)η. We start building models from the SU(3) spectral cover and then factorize

it into (2, 1) and (1, 1, 1) structures to obtain enough curves and degrees of freedom

to construct models with MSSM matter content. The restrictions of the line bundles

associated with two U(1) gauge groups to matter curves can modify the chirality of

matter localized on matter curves. This modification generally results in plenty of

exotic fields that may cause troubles in the phenomenological interpretation of the
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Rep. Gen. on 27(l1) Gen. on 27(l2) Gen. on 27(l3)

(3,2)1,−1 2×Q 1×Q 4

(3̄,1)−2,−2 1× uc 2× uc 4

(3̄,1)1,1 1× dc + 1×D 2× dc + 2×D 8

(1,2)−2,0 0 3× L+ 3× h 4× (H1 +H2)

(1,1)4,0 3× ec 0 4

(1,1)1,−3 3× νc + 3× S 0 4× (H3 +H4)

(3,1)−2,2 1× (3̄,1)2,−2 3× D̄ + 1× (3,1)−2,2 4

(1,2)1,3 0 3× h̄ 4× H̄2

Table LXII. The MSSM matter shared by two curves in dP7.

models.

One way to arrange the matter content in the conventional E6 GUT model build-

ing is that all the MSSM matter and Higgs fields are included in the same 27-plet

with three copies and the Yukawa coupling is 27 · 27 · 27. Such kind of interac-

tion implies a structure of either one curve intersecting itself twice or three curves

intersecting, which causes difficulties in geometry or the mass hierarchy structure in

F-theory model building. Therefore, we adopt an alternate way that the weak scale

Higgs particles are assigned to another 27 curve while the representations of their

original assignments in the matter 27 curve are taken as exotic leptons. By using

additional symmetries such as baryon and lepton numbers, we can rule out the unde-

sired interactions coupled to the exotic fields. The (2, 1) factorization providing two

curves 27(a) and 27(b) with the interaction 27(a) ·27(a) ·27(b) satisfies the basic require-
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ments of this picture. One the other hand, the (1, 1, 1) factorization confines three

curves to the interaction 27(l1) · 27(l2) · 27(l3). In this case we have to distribute the

MSSM matter to both 27(l1) and 27(l2) curves while the electroweak Higgs fields are

assigned on the third curve. The fermion mass matrices are generally not able to ad-

mit the hierarchical structures except they are tuned by appropriate flux restrictions.

As mentioned before, the additional one or more (27 + 27) pairs can be included

to make sure that the gauge unification occurs. These vector-like pairs generically

exist on the curves in F-theory and can be assigned to the same curve containing

the electroweak Higgs fields. However, the exact number of the vector-like pairs on

a matter curve is still unclear in the present construction, so we assume that there

exits at least one pair.

We demonstrated several models both in the (2, 1) and (1, 1, 1) factorizations

with geometric backgrounds dP2 and dP7 studied in [64] and [53], respectively. We

also discuss the cases that the restrictions of the line bundles associated with U(1)s

to the curves are trivial or non-trivial. Due to the chirality constraints to the fields

on the bulk, it is hard to construct consistent U(1) fluxes in dP2. Therefore, we

only demonstrated a three-family E6 GUT model without gauge breaking in the dP2

geometry. On the other hand, the dP7 geometry has more degrees of freedom for

the parameters to build realistic models. We therefore showed in the (2, 1) case an

example of a three-generation model without U(1) flux restrictions, and an example

with non-trivial U(1) flux restrictions which gives rise to exotic particles. In the

(1, 1, 1) factorization, we also presented an example of three-family model without

flux restriction. In that case there are two flavors on one matter curve and the

third flavor on the other. In the model with non-trivial flux restrictions, we adjusted

the parameters so that the total chirality of each representation on the two matter

curves remain three while the hierarchies of the mass matrices can be maintained.
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Regardless of the exotic fields, the matter contents of our examples are conventional

and the corresponding phenomenology has been discussed in the literature.
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CHAPTER V

SUMMARY

The Grand Unified Theory is a natural framework to unified gauge symmetries in

particle physics. F-theory is a twelve-dimensional geometric version of string theory

which is so far the most promising candidate for a fundamental unified theory. How

to realize GUTs in F-theory is an natural and important question one might ask. In

this dissertation, we studied supersymmetric F-theory GUT models. In particular,

we focused on local and semi-local model GUT building. In chapter II, to obtain

non-minimal local SU(5) GUTs with doublet-triplet splitting, we considered super-

symmetric U(1)2 gauge fluxes associated with polystable bundles of rank two over

a del Pezzo surface. We explicitly solved all U(1)2 flux configurations for the re-

quirements of an exotic-free bulk spectrum and supersymmetry. We also constructed

examples of a non-minimal spectrum of the MSSM with doublet-triplet splitting. We

then considered semi-local GUT models in F-theory. In chapter III we constructed

semi-local flipped SU(5) models in F-theory by using the spectral cover construction.

We started with an E8 singularity and unfolded it into a D5 singularity controlled

by an SU(4) spectral cover. We calculated the spectra induced by cover fluxes and

by U(1)X gauge fluxes. We constructed three-generation models satisfying the tad-

pole cancellation condition and discussed their phenomenology. In addition to flipped

SU(5) models, we also studied semi-local E6 GUTs in chapter IV. We started with

an E8 singularity and unfolded it into a singularity of type E6. This unfolding can

be described by an SU(3) spectral cover. We broke the gauge group E6 down to

SU(3) × SU(2) × U(1)Y × U(1)η by turning on non-abelian fluxes and found three-

generation models satisfying all constraints including the tadpole cancellation condi-
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tion. It is becoming clear that F-theory open a new window for model building and

provides a powerful framework to study four-dimensional particle phenomenology.

There remain interesting directions for future research. Here are two: First, we

could construct GUT models by using spectral covers associated with non-diagonalizable

Higgs fields. The heart of the spectral cover construction are Hitchin’s equations gov-

erning the dynamics of the resulting four-dimensional N = 1 supersymmetric gauge

theory. The spectral covers used to construct semi-local GUT models are only a spe-

cial class of spectral covers. In this special class, the adjoint Higgs field parameterizing

the normal motion of a seven-brane stack in the ambient space is diagonal and the

spectral cover is then given by the characteristic polynomial of the Higgs field. In

this case the low-energy spectrum is decoupled to the Higgs field, and the eigenvalues

of the Higgs field characterize the locations of intersecting seven-branes. It would be

interesting to construct GUT models by using spectral covers associated with non-

diagonalizable Higgs fields, for example, nilpotent Higgs fields [130, 131]. Second,

model building in M-theory has been studied for a long time, but computation of

the matter spectrum has been deemphasized due to the difficulty of carrying out

the procedure in conventional approaches. One can obtain four-dimensional N = 1

theory by compactifying M-theory on a seven-dimensional G2 manifold. To obtain

interesting physics in four dimensions, this G2 manifold is required to admit particu-

lar kinds of singularities where matter fields are localized [132]62. Similar to F-theory

model building, one may use a bottom-up approach to construct GUT models in M-

theory. It was conjectured [134] that locally a G2 manifold can be described by an

ALE fibration over a three-dimensional manifold Q3. With the bottom-up approach,

one can only focus on a seven-dimensional super-Yang-Mills theory on R3,1 × Q3.

62For a nice review, see [133].
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The ALE fibration admits the singularities of An−1, Dk, and Em types correspond-

ing to the gauge symmetries of SU(n), SO(2k), and Em types, respectively. In this

framework, chiral matter is localized at critical points of the Morse functions of Q3,

and the four-dimensional physics is governed by Hitchin’s equations arising from the

compactification of the seven-dimensional super-Yang-Mills theory on Q3 [134]. It

would be interesting to study semi-local GUTs in M-theory by using the spectral

cover construction or Hitchin’s equations.
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