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ABSTRACT 

 

Development of Methodology and Characterization of Ruminal Lipase-Producing 

Bacteria In Vitro. (May 2011) 

Holly Danielle Edwards, B.S., Iowa State University 

Co-Chairs of Advisory Committee: Dr. Rhonda K. Miller 
                                                Dr. T. Matthew Taylor 

 

 Hydrolysis of dietary lipids to free fatty acids (FFA) is a prerequisite for ruminal 

biohydrogenation, a bacterially mediated process that extensively saturates unsaturated 

FFAs thus limiting the absorption and ultimate assimilation of these healthy nutrients 

into ruminant produced foods. Three experiments were conducted to learn how to better 

enrich, isolate and study lipolytic bacteria from the rumen while providing further 

characterization of four prominent lipase-producing bacteria that are known to be major 

contributors of lipolysis in the rumen. In experiment one the effects of various physical 

treatments on ruminal lipase activity were investigated by comparing incubation 

positions, glass bead levels, transfer techniques and combinations of headspace gasses. 

Based on results from this experiment an incubation system was established as a 

standard for subsequent studies for culturing and transferring mixed and pure cultures of 

ruminal bacteria. In experiment two the effect of glycerol on lipolysis by Anaerovibrio 

lipolyticus 5S, Butyrivibrio fibrisolvens 49, Propionibacterium avidum, and 

Propionibacterium acnes was examined. Two levels of glycerol were examined on 

lipase activity and results showed that glycerol inhibited rates of FFA accumulation at 
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both levels.  In addition the mechanism behind glycerol inhibition was also examined by 

culturing and assaying activity of the four bacteria to determine if glycerol inhibition is a 

result of equilibrium displacement or lipase gene expression inhibition. Results indicated 

that higher and constitutively expressed lipase activity of A. lipolyticus 5S and P. avidum 

probably contribute more to lipolysis in ruminants than P. acnes and B. fibrisolvens 49. 

In the case of P. acnes and B. fibrisolvens 49 cells, results suggest that lipase gene 

expression is down-regulated in these bacteria. Experiment three was conducted to 

further characterize the lipase activity of the four different bacteria by growing them 

with four different energy substrates and measuring enzyme activity at early logarithmic 

and stationary phase. Results from this study showed that diets containing a high content 

of oleic acid and linolenic acid promoted higher rates of lipolysis in the rumen. In 

accordance with findings in experiment two these results support that P. avidum may 

contribute to a higher amount of lipolysis than previously considered.   
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CHAPTER I 

INTRODUCTION 

 

The consumption of ruminal products has been associated with causing a number 

of undesirable health effects. The high content of saturated and trans fats in the meat and 

milk derived from ruminant animals is the driving factor behind these health concerns. 

Therefore, ruminal producers are required to feed a low fat diet in an attempt to control 

the high levels of saturated fats.  

Saturated fats accumulate in ruminant products as a result of the processes of 

lipolysis and biohydrogenation. Lipase-producing bacteria that are found in the rumen 

are responsible for freeing unsaturated fatty acids from a glycerol backbone, thereby 

allowing the double bond to be saturated. Eighty percent of dietary unsaturated fats that 

enter the rumen are effectively saturated. There are several bacteria in the rumen that 

contribute to lipolysis. These include Anaerovibrio lipolyticus 5S, Butyrivibrio 

fibrisolvens 49, Propionibacterium avidum and Propionibacterium acnes. Strategies that 

protect lipids from rumen lipolysis may effectively promote ruminal escape and 

intestinal absorption of unsaturated fatty acids thereby resulting in the production of 

value-added ruminant products enriched with healthy unsaturated fats. 

The objectives of this study were; (1) to develop a forage free incubation and 

transfer system for culturing and handling lipase-producing bacteria, (2) to 

determine the individual responses of A. lipolyticus 5S, B. fibrisolvens 49, P. avidum, 

____________ 
This thesis follows the style of Journal of Animal Science. 
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and P. acnes when saturated with glycerol and characterize the mechanism of action of 

glycerol on ruminal lipase. It was hypothesized that introducing glycerol into bovine 

finishing diets at 5-20% would inhibit ruminal lipase activity which ultimately may 

result in measureable enrichment in unsaturated fatty acid composition of beef, and; (3) 

to evaluate the responses of pure cultures of these bacteria when supplemented with 

different substrates (corn oil, flaxseed oil, olive oil, and glycerol). The goal of this 

research was to characterize and measure the growth and lipase activity of each 

organism when introduced to different triacylglyceride-derived energy substrates.  

Results obtained from this research will provide a foundation for further research 

to development a short-term strategy using glycerol as supplement to finishing diets to 

inhibit lipolysis activity. Another study would evaluate a means to hyper-expressing the 

lipase genes from A. lipolyticus 5S, B. fibrisolvens 49, P. avidum, or P. acnes in 

Escherichia coli for purification of the lipase enzymes. Proof of concept would then be 

tested by immunizing cattle in an attempt to generate secretory antibodies that will 

inhibit ruminal lipase activity. With further development these two strategies and 

implementation of them could have a very profound and positive effect on the beef 

industry.  
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CHAPTER II 

LITERATURE REVIEW 

 

Digestion and Health Effects of Dietary Lipids 

Diets that contain a high content of saturated fats have been associated with a 

myriad of negative health effects such as increased serum cholesterol levels and risk of 

coronary heart disease (Wahrburg, 2004). Saturated fatty acids, such as palmitic (C16:0), 

lauric (C12:0), and mysteric (C14:0) work to influence cholesterol by reducing low 

density lipoproteins receptor activity which decreases the cellular uptake of low-density 

lipoproteins uptake (Dietschy et al., 1993). High-density lipoproteins (HDLs) are also 

affected by saturated fats.  High-density lipoproteins are involved in lipid transport and 

are the predominant dietary mechanism of regulating low density lipoproteins (LDLs) 

metabolism (Wijendran and Hayes, 2004). The combined effects that saturated fats have 

on cholesterol are the major driving factors that lead to the ultimate development of 

health concerns which stresses the importance of reducing saturated fats in daily diets.   

Diets that contain a high amount of ω-6 fats increase the plasma ω-6/ ω-3 ratio. 

Human diets that contain a high ratio of ω-6/ω-3 fats are at risk for low grade chronic 

inflammation which can contribute to Alzheimer’s disease, cancer, coronary heart 

disease, metabolic syndrome, obesity, type II diabetes, osteoporosis, and dry eye 

syndrome (Morris, 2008b). By lowering the intake of ω-6 fats and increasing the intake 

of ω-3 fats it will aid in decreasing one’s risk of developing a chronic disease. The 
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recommended ratio intake should be between 4:1 and 10:1 (Gebauer et al., 2006; 

Medicine, 2002).  

Absorption of dietary lipids occurs primarily in the small intestine of ruminants. 

Microorganisms that are found in the rumen are responsible for reducing the double 

bond found in unsaturated fatty acids leaving the carbons free to attach to hydrogen 

molecules; this effectively transforms unsaturated fat into saturated fat (Doreau and 

Chilliard, 1997). Monogastric lack a pre-gastric fermentation organ which carries out 

lipolysis. Lactating dairy cows, on average, consume around 300-g of linoleic acid daily, 

of this only about 40 g remain unsaturated and reaches the small intestine intact (Jenkins 

and Bridges, 2007). 

 

Rumen Microorganisms and Factors that Contribute to Ruminal Lipolysis 

The rumen is a self-contained ecosystem where feed consumed by the ruminant 

is fermented to volatile fatty acids (VFAs) and microbial biomass. The end products 

serve as the animal’s source of energy and protein (Weimer, 1998). There are several 

different types of micro-organisms found in the rumen that are capable of lipolysis. This 

study focuses on two bacteria that have previously demonstrated the greatest lipolytic 

activity in vitro. These microorganisms include P. acnes and P. avidum. Butyrivibrio 

fibrisolvens 49 and A. lipolyticus 5S were also investigated in this study due to previous 

findings indicating them as major contributors to lipolysis (Henderson, 1971; Henderson 

and Hodgkiss, 1973; Polan et al., 1964; Prins et al., 1975). 
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Anaerovibrio lipolyticus. Anaerovibrio lipolyticus is a flagellated, curved rod-

shaped anaerobic Gram-negative rumen bacterium that produces an extracellular lipase 

during exponential growth. Hobson and Mann (1961) first isolated the bacterium from 

the ovine rumen. The lipase enzyme produce by A. lipolyticus is most active at a pH of 

7.4 and from 20 to 22ºC.  Henderson (1971) showed that the activity of this enzyme was 

enhanced by CaCl2 and BaCl2, while ZnCl2 and HgCl2 worked to inhibit activity. 

Anaerovibrio lipolyticus has limited capacity for fermenting carbohydrates; only 

glycerol, fructose and ribose are fermented with acetic, propionic, and succinic acids 

being formed (Henderson, 1975). Prins et al. (1975) reported that rumen fluid was not 

required for the bacterium’s growth and that good growth could be obtained in a medium 

containing minerals, glycerol, yeast extract, and trypticase.  

Henderson (1971) conducted a study where batch cultures of A. lipolyticus were 

grown and samples removed at designated intervals, assaying the lipase in bacteria-free 

cultures or in re-suspended bacteria using olive oil as the lipid substrate. Henderson 

(1971) found that the enzyme activity began to appear in bacteria-free medium soon 

after exponential growth. As the bacteria entered stationary phase the enzymatic activity 

decreased, presumptively due to increased acidity (subsequently was proven in pH 

controlled conditions). From this experiment predictions of when maximal enzymatic 

activity would occur could not be determined due to variation in lag phase batch 

cultures. Henderson (1971) indicated that the lipase was produced extracellularly by 

satisfying the criteria established by Pollock (1962) for enzymes to be produced 

extracellularly. Henderson (1971) demonstrated that the lipase appears in the medium 
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early in the life of the culture and that secondly the lipase activity was not associated 

with the bacterial cell or fragmented bacteria. Henderson and Hodgkiss (1973) provided 

support to the second criterion established by Pollock (1962) through an electron 

microscope study of cultures of A. lipolyticus which showed no evidence of lysed 

bacteria. This discounted the theory that lipase was released from A. lipolyticus through 

autolytic fragmentation.  

Anaerovibrio lipolyticus is responsible for hydrolyzing galactosyl, glycerides, 

phospholipids, and triglycerides. Glycerols liberated during hydrolysis from triglycerides 

are completely metabolized to volatile fatty acids. Garton et al. (1961) found that 

propionic acid made up the majority of the VFAs but it never accounted for more than 

50% of the metabolism of glycerol. It is still unknown as to what happens to the 

remaining glycerol that is not metabolized into VFAs. Clarke and Hawke (1970) could 

not detect significant lipolytic activity in clarified rumen fluid and concluded that the 

lipase in the rumen was cell bound and not released into the surrounding media. Culture 

counts of A. lipolyticus in the rumen of sheep ranged between 0.5-1.1 x 107 mL. Prins et 

al. (1975) found that A. lipolyticus was responsible for the major part of the lipolytic 

activity in ruminant animals. 

Interfacial Activation. Lipase activity is increased when at a lipid-water 

interface. In the absence of this interface, lipases have very little inter-esterifcation 

activity. Maruyama et al. (2000) conducted a study where they processed lipases in a 

two-phase hydrocarbon-water system that had an oil-water interface. They proceeded by 

taking crude lipases and adding them to a buffer and a small volume of aliphatic 



7 
 

hydrocarbon, that were mixed and then lyophilized to remove the aqueous and oil 

phases. From this they were able to compare the interfacially-processed lipase to the 

crude lipase; it was demonstrated that the interfacially-processed lipase had significant 

inter-esterification activity as compared to the crude native lipases. Thus, Clarke and 

Hawke (1970) may not have been able to detect lipolytic activity in the clarified rumen 

fluid was because there was inadequate interfacial activation to cause sufficient lipase 

activity. This suggested that the lipase may rather not be cell bound meaning that it is not 

surrounded by a cell wall. By the lipase not being surrounded and protected by a cell 

wall it should have ample exposure to any lipids present resulting in lipolysis. With 

insufficient interfacial activation, the lipase may not gain exposure to the present lipid, 

which would cause a reduction in lipolytic activity.    

Butyrivibrio fibrisolvens. High numbers during isolation of B. fibrisolvens from 

ruminal fermentation has indicated that it may also be of major importance in the rumen.  

Butyrivibrio fibrisolvens is an obligate, curved and rod shaped anaerobe possessing a 

monotrichous flagellum enabling motility (Brown and Moore, 1960). Butyrivibrio 

fibrisolvens is a butyric acid forming bacteria and has been known to produce 

extracellular polysaccharides (Stack, 1988). However, the function of these extracellular 

polysaccharides is still unknown. Butyrivibrio fibrisolvens is universally described as a 

Gram-negative bacterium. However, their cell walls display characteristics that are 

common amongst the Gram-positive bacteria. Hespell et al. (1993) found that the cell 

walls contained teichoic acids, normally a constituent in a Gram-positive bacteria cell 
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wall. The cell wall is very thin ranging from 12 to 18-nm which could suggest why the 

bacterium easily decolorized during Gram staining. (Cheng and Costerton, 1977).    

Butyrivibrio fibrisolvens plays a major role in lipolysis and biohydrogenation in 

the rumen, leaving only a small portion of polyunsaturated fatty acids (PUFA) to find 

their way into the meat and milk of ruminant animals (Maia et al., 2010). A study was 

conducted by Maia et al. (2010) that investigated the mechanisms by which PUFA 

affects the growth of B. fibrisolvens and how they are metabolized by B. fibrisolvens. 

They found linoleic and linolenic acid to lengthen the lag phase of B. fibrisolvens with 

linoleic acid having the greatest effect. However, growth occurred only when PUFA had 

been converted to vaccenic acid. They also found the major fish oil acids, 

eicosapentaenoic acid and docosahexaenoic acid (DHA) were not metabolized and 

prevented growth of B. fibrisolvens. From these results they conclude that lipolysis and 

biohydrogenation occurs to enable B. fibrisolvens to survive the bacteriostatic effects of 

PUFA.  

The first isolation of B. fibrisolvens was achieved from the bovine rumen (Bryant 

and Small, 1956). Many other strains were also isolated later on. A vast variability exists 

between the strains. Most strains of B. fibrisolvens are xylanolytic, while a small number 

have significant fibrolytic abilities (Dalrymple et al., 1999).  In work done by Hespell 

and O’Bryan-Shah (1988), several different cultures of B. fibrisolvens were grown to 

mid- to late logarithmic growth phases prior to experimental use. The change in total 

culture esterase activity was monitored as a function of the culture growth stage. 

Butyrivibrio fibrisolvens 49, showed esterase activity increased with cell growth until the 
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stationary growth phase was reached where the activity remained stable. Cotta and 

Hespell (1986) found the production of extracellular proteases to be constitutive, similar 

to the pattern observed for esterase activity.   

Butyrivibrio fibrisolvens grow best in a rumen fluid-glucose medium with N2 and 

an absence of bicarbonate. It also grows well when rumen fluid is replaced by yeast 

extract and trypticase in a glucose medium incubated at 45ºC (Bryant and Small, 1956).  

Butyrivibrio fibrisolvens is capable of hydrogenating linoleic acid to octadecanoic but 

not to stearic acid. A completely anaerobic environment is required and with mixed 

rumen cultures more activity is obtained in an atmosphere of hydrogen versus nitrogen 

or helium, while carbon dioxide acts as an inhibitor (Polan et al., 1964). The presence of 

organisms that lack the ability to perform biohydrogenation by themselves can prevent 

loss of the activity of B. fibrisolvens due to age or dilution making biohydrogenation 

activity in B. fibrisolvens dependent on the age of the organism and the concentration of 

cells used in the medium (Polan et al., 1964). 

Propionibacterium avidum and acnes. Propionibacterium have been known to 

be present in high populations found within the rumen. Studies have established the 

effective Propionibacterium population in the rumen is between 104 and 106 CFU/mL of 

rumen fluid (Zimmer, 1999). Propionibacterium strains hydrolyze only neutral lipids but 

not polar lipids (Cirne et al., 2006; Jarvis et al., 1998; Jarvis et al., 1999; McInerey, 

1988). Propionibacterium can utilize the glycerol arising from the de-esterification of 

triglycerides and phospholipids (Jarvis and Moore, 2010).  
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Propionibacterium avidum is a Gram-positive, rod shaped, facilitative anaerobic 

bacterium. Optimum growth for this bacterium occurs at a pH between 5.0 and 8.0.  

Propionibacterium avidum produces an extracellular lipase and proteinase (Greenman et 

al., 1983). Strains of P. acnes and P. avidum can be biochemically differentiated based 

on the ability of P. avidum to ferment sucrose or maltose and to characteristically 

hydrolyze aesculin, which are properties absent in P. acnes (Cummins and Johnson, 

1974). Cove et al. (1983) conducted a study where P. acnes and P. avidum were grown 

in continuous culture at 0-100% air saturation. The results show that P. avidum is best 

adapted for growth in an aerobic environment, suggesting that P. avidum can be 

identified as a facilitative organism. In the same study they looked at the results of 

increasing the glucose concentration up to 3% in a tryptone-based medium and found 

that the increase in glucose caused an increase in the biomass of P. acnes and P. avidum.   

Research done by Chopra and Hacker (1989) looked at the effects of tetracycline 

on P. avidum and P. acnes. Tetracyclines are a group of broad-spectrum antibiotics that 

inhibit protein synthesis. They showed that the synthesis of an extracellular lipase by P. 

avidum was twofold more sensitive to inhibition by tetracycline than total cellular and 

extracellular protein synthesis. Other studies have been done with tetracyclines and its 

effects on E. coli. Several studies reported that tetracycline inhibited proteins that were 

to be exported from the cell rather than cytoplasmic proteins (Chopra and Linton, 1987; 

Hirashima et al., 1973; Piovant et al., 1978; Schifferli and Beachey, 1988). Chopra and 

Hacker (1989) concluded that tetracycline may not partition so readily into the 

cytoplasmic membrane of Gram-positive organisms as it does with E. coli.  
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Chopra and Hacker (1989) believed that the difference in tetracycline’s ability to 

enter through the cell membrane was related to membrane phospholipid composition and 

that tetracycline inhibition abilities will be influenced by the type of phospholipid it is 

exposed to. Results done from these studies have shown that tetracycline has the ability 

to inhibit the extracellular lipase produced by P. acnes and P. avidum. Evidence 

obtained in this study demonstrated that P. acnes and P. avidum contributors to lipolysis 

of dietary fats in the rumen.  

A study by Holland et al. (1979) investigated batch cultures incorporating 

glucose, fructose, glycerol, or arginine in the medium. The results showed that the 

concentrations as well as the type of carbon sources used had effects on extracellular 

enzyme production by both P. acnes and P. avidum. Propionibacterium avidum showed 

increased cell yields corresponding to increased concentrations of fructose until 0.5% 

(w/v) was reached in the medium. From this point, the yield remained constant despite 

further increases of fructose. Similar results were seen with arginine except the yields 

obtained at any given concentration of arginine were less in each case than the 

corresponding yields when P. avidum was grown in fructose. The extracellular enzyme 

of P. avidum displayed the same pattern when grown in both fructose and arginine with 

activity increasing until the 0.25% concentration of those carbon sources were reached. 

From there, the activity remained constant even with increasing amounts of these carbon 

sources. Glucose appeared to suppress lipase activity of P. avidum while glycerol had 

little effect. Further results from this study showed that the carbon source had little effect 

on the lipase activity of P. acnes.  
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Much like P. avidum, P. acnes is a Gram-positive, rod-shaped, facultatively 

anaerobic bacterium. Propionibacterium acnes produce a wide range of extracellular 

enzymes including a lipase. Optimal growth for P. acnes occurs between pH 4.5 to 7.5 

(Greenman et al., 1983). The bacterial lipase of P. acnes shares very little amino acid 

homology to other bacteria and as a result there is limited similarity to other ruminal 

lipases (Jaeger et al., 1994). The lipase nucleotide sequence (gehA) was found to be 

expressed in P. acnes as a 33kDa polypeptide (Lee and Iandolo, 1986). Miskin et al. 

(1997) confirmed this by assaying crude culture supernatant fluid for lipase activity. The 

extracellular lipase was produced from cells in the post-exponential phase of growth and 

the lipase concentration remained constant at 0.17 U/mL after 60 h incubation. Ingham et 

al. (1981) discovered that the lipase has the ability to hydrolyze trilaurin, triolein, 

trimyristin, and tripalmitin; however, the lipase did not exhibit phospholipase activity. 

The reaction products from the hydrolysis of triolein by P. acnes were analyzed and the 

results suggested that the enzyme did not demonstrate a positional specificity for the sn-

1 position of the triacylglycerol.     

Propionibacterium acnes displays lipase, hyaluronase, lyase, phosphatase, and 

proteinase activity (Greenman et al., 1983). The high activity of P. acnes makes it a 

major contributor of lipolysis and biohydrogenation in the rumen. Wallace et al. (2006) 

suggests that P. acnes may be responsible for the formation of trans-10, cis-12-18, but it 

did not metabolize conjugated linoleic acid isomers any further. Magasanik (1961) found 

that an excess of carbon could inhibit the formation of extracellular products by the 

mechanism known as catabolite repression. Catabolite repression is where a freely 
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available carbon energy source represses the synthesis of the redundant enzymes. 

Holland et al. (1979) conducted a study using different carbon energy sources and 

measured their effects through the lipase activity of the exocellular enzyme of different 

strains of Propionibacterium. The results for exocellular lipase activity from the study 

showed that glucose and glycerol suppressed activity of P. acnes strain P37; however, 

they had little effect on the P. acnes strain PF276. Glucose also appeared to suppress the 

lipase activity of P. avidum.   

 

Linoleic and Linolenic Acid as a Dietary Source 

Lipase-expressing bacteria found in the rumen play a major role in the 

composition and alteration of lipids that enter the rumen so it is important that different 

avenues be explored in order to protect important lipids in an animal’s diet. 

Polyunsaturated fats are an important component in the dietary needs of animals, 

especially those of the n-6 and n-3 family of fatty acids. Linoleic acid (C18:2n-6) is a 

primary and essential fatty acid that represents the basis of the n-6 family. Linoleic acid 

is considered an essential fatty acid due to the body’s inability to manufacture linoleic 

acid on its own and it must be supplemented through the diet. It is important in that it is 

needed for membrane structure of lipoproteins, including HDL.  

Epidemiological evidence suggests that linoleic acid lowers the risk of coronary 

heart disease (Hu et al., 1999). Linoleic acid is one of the most potent fatty acids in 

reducing plasma total cholesterol and low density lipoproteins (Hayes, 2000; Mensink et 

al., 2003). Woollett et al. (1992) fed hamsters hydrogenated coconut oil and linoleic rich 
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safflower oil. The results showed that when the safflower oil replaced the saturated fatty 

acid rich coconut oil, the LDL cholesterol production rate decreased 155%-200% 

resulting in a 75% net decline in low-density lipoprotein cholesterol. 

Linoleic and linolenic acid are the most common types of unsaturated fatty acids. 

They are considered as unsaturated fatty acids by the existence of double bonds in their 

carbon chain structure. These double bonds, in nature, typically have a cis orientation. 

This configures the hydrogen atoms of the two carbons that are double-bonded on the 

same side as the fatty acid. Since the hydrogen atoms are located on the same side of the 

double bond this results in a bend or kink in the acyl chain structure due to the strain that 

the associating hydrogen atoms create from their close proximity. However, unsaturated 

fatty acids can exist in a trans orientation, resulting when the hydrogen atoms are located 

on opposite sides of the carbons adjoined by a double bond resulting in a straight 

configuration. The trans orientation is only created when the cis double bond 

configuration is broken and re-created. The micro-organisms discussed earlier are 

responsible for the breaking of the cis configuration that in turn allows for the formation 

of the trans orientation.    

Linolenic acid (C18:3n-3) is the second most important essential fatty acid in 

relation to linoleic acid. Linolenic acid can be elongated and desaturated to form 22- 

carbon fatty acids in the n-3 family (Wijendran and Hayes, 2004).  Seed oils are the 

richest sources of linolenic acid. Linolenic acid can also be obtained from the thylakoid 

membranes of green leaves from broad leaf plants therefore providing herbivores with a 

high source of linolenic acid. Baylin et al. (2003) conducted a case control study in 
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Costa Rica and found that adipose tissue high in linolenic acid content was associated 

with lower risk of myocardial infarction.   

Conjugated Linoleic Acid. Current nutritional guidelines promote reduced 

intake of fats, especially saturated fats. Trans-10, cis-12 conjugated linoleic acid acts as 

a strong inhibitor of milk fat synthesis and therefore has major potential to be used in the 

dairy industry in order to reduce levels of milk fat. Conjugated linoleic acid is an 

unsaturated fatty acid that contains two double bonds. These double bonds can be 

present as trans/trans, trans/cis, or cis/cis in structure; conjugated linoleic acid can 

therefore exist in the form of a trans fatty acid. Conjugated linoleic acid can be used to 

supplement dairy cattle diets in order to reduce milk fat; however, conjugated linoleic 

acid is prone to ruminant degradation. Several strategies have been developed and 

applied in order to protect conjugated linoleic acid from degradation in the rumen. 

 

Effects of Varying Dietary Supplements on Reducing Lipolysis and Biohydrogenation in 

the Rumen 

The prevention of biohydrogenation and the formation of trans fats are important 

because complete biohydrogenation results in the production of stearic acid (C18:0). 

Vaccenic acid acts as an intermediate in the pathway of biohydrogenation of both 

linoleic and linolenic acid. Vaccenic acid represents about 60-70% of the trans fatty acid 

in the milk and the meat of ruminant animals (Emken, 1995). Mosley et al. (2002) 

showed that trans 18:1 isomers can also be formed in the rumen from oleic acid.   
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Rumen diets low in effective fiber can induce milk fat depression which results 

in an increase in milk fat content of trans fatty acids, specifically an increase in trans-10 

18:1 (Griinari et al., 1998). Griinari et al. (1998) proposed that under certain dietary 

conditions the pathways of rumen biohydrogenation were altered to produce unique fatty 

acid intermediates that were potent inhibitors of milk fat synthesis. Baumgard et al. 

(2002) demonstrated that trans-10, cis 12 conjugated linoleic acid was a potent inhibitor 

of milk fat synthesis. With lipolysis being a prerequisite of biohydrogenation, it stresses 

the importance of inhibiting the ruminal microorganisms responsible for lipolysis so 

these fatty acid intermediates will not be produced.     

There have been several strategies developed in order to decrease or by-pass 

microbial biohydrogenation. Such strategies include encapsulation of unsaturated fatty-

acids inside a microbe-resistant shell or alteration of fatty acid structure so as to help 

resist the action of ruminal microorganisms (Jenkins and Bridges, 2007). Gulati et al. 

(1997) found that extruded oils provided about 15.0% protection while whole oil seeds 

provided about 40% protection to ruminal fats, as determined by in vitro assays. There 

have been a number of studies examining methods in reducing lipolysis and 

biohydrogenation by supplementing ruminal diets with different lipid sources such as 

fish, soybean, canola, sunflower, and flaxseed oils (Ashes et al., 1992; Rego et al., 2005; 

Weill et al., 2002) with each of these studies having varying degrees of success.   

Effects of Supplementing Fish Oil in the Rumen. Eicosapentaenoic and 

docosahexaenoic acid are essential ω-3 fatty acids and are the conversion products of 

linolenic acid. Mammals are incapable of producing n-3 fatty acids but are capable of  
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creating long chain unsaturated fatty acids such as eicosapentaenate and 

docosahexaenate, from short chain n-3 fatty acids such as linolenic acid. Cold-water fish 

are good sources of eicosapentaenoic and docosahexaenoic acid. These acids are 

independently associated with an increase in LDL oxidation, which is why fish oil has 

been so extensively explored as a means to prevent lipolysis and biohydrogenation.   

Leigh-Firbank et al. (2002) demonstrated the independent qualities of 

eicosapentaenoic and docosahexaenoic acid by conducting a study where 55 men 

completed a double blind placebo controlled cross over study. The individuals that 

participated in the study either consumed 6-g of fish oil or 6-g of olive oil, which acted 

as the placebo, for two six-week periods. Docosahexaenoic acid was shown to be 

independently associated with the rise in LDL cholesterol.  Eicosapentaenoic acid was 

shown to be separately associated with the reduction in fasting, postprandial 

triacylglycerol, and postprandial non-esterified fatty acid levels.  These effects of 

eicosapentaenoic and docosahexaenoic acid help decrease the risk of ischemic heart 

disease. In the physician’s health study involving 25,551 males, consumption of one or 

more servings of fish per week was associated with a 52% lower risk of sudden cardiac 

death when compared to one fish meal/month (Albert et al., 2002). 

Chow et al. (2004) investigated the effects of fish oil on biohydrogenation and 

lipolysis. They found that fish oil did not have a complete effect on ruminant 

biohydrogenation of linoleic and linolenic acid. The lipolysis of eicosapentaenoic and 

docosahexaenoic acid was not affected; however, biohydrogenation of eicosapentaenoic 

and docosahexaenoic acid was reduced significantly with increasing fish oil. Linoleic 
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and linolenic acid appeared to disappear to the same extent. Stearic acid, the end 

product, was significantly lower when fish oil was supplemented. These results indicate 

that only the final stages of the biohydrogenation pathway for linoleic and linolenic acid 

were inhibited by fish oil.   

The pathway for the biohydrogenation of linoleic acid consists of three steps. In 

the first step cis-9, trans-11 conjugated linoleic acid is produced due to isomerization. 

Conjugated linoleic acid is then hydrogenated to produce trans-11 octadecanoic acid 

(vaccenic acid). Finally vaccenic acid is hydrogenated into stearic acid, which is the final 

product of the biohydrogenation process (Harfoot et al., 1973; Kemp et al., 1984; Kepler 

et al., 1966). Biohydrogenation of linolenic acid produces cis-9, tans-11, cis-15 C18:3 

and trans-11, cis-15 C18:2 as intermediates. The intermediates are progressively 

hydrogenated into vaccenic acid and finally to stearic acid as with the pathway for 

linoleic acid (Kemp et al., 1984). 

Wasowska et al. (2006) further investigated the influence of fish oil and 

eicosapentaenoic and docosahexaenoic acid alone or in combination with linoleic and 

linolenic acid on ruminal biohydrogenation. In their study both mixed ruminal 

microorganisms and pure cultures of B. fibrisolvens were used. The results were similar 

to that of Chow et al. (2004) in that they showed that fish oil inhibited the final step of 

biohydrogenation of both linoleic and linolenic acid, in turn causing an accumulation of 

a number of intermediates. Wasowska et al. (2006) showed that fish oil incubated with 

linoleic and linolenic acid caused accumulation of vaccenic acid from linoleic acid and 

trans-11, cis-15-18:2 from linolenic acid. Non-esterified eicosapentaenoic and 
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docosahexaenoic acid were also added to mixed ruminal digesta at similar 

concentrations. Results showed that it did not replicate the effects of fish oil on linoleic 

acid metabolisms instead eicosapentaenoic and docosahexaenoic acid inhibited linoleic 

acid isomerase activity of B. fibrisolvens (Wasowska et al., 2006).   

Effects of Supplementing Vegetable Oil in the Rumen. Along with fish oil, 

vegetable oil has also been extensively studied and used to decrease ruminal lipolysis 

and biohydrogenation. Rego et al. (2005) showed that cows supplemented with 

vegetable oil demonstrated a decrease in saturated fats and an increase in unsaturated 

fats in the milk fat content, suggesting that vegetable-derived oils may have a role in 

preventing ruminant biohydrogenation. When comparing sunflower oil to soybean oil, 

Rego et al. (2005) did not find a significant difference between fatty acids concentrations 

in milk fat. Their results showed that both oils decreased saturated fatty acids by 16.0% 

in comparison to the control cattle that were on pasture and being supplemented with 5 -

kg concentrate without either oil additive.  

Effects of Supplementing Sunflower Oil in the Rumen. Sackmann et al. 

(2003) investigated the effects of varying levels of forage and sunflower oil on ruminal 

biohydrogenation. The treatment groups for this study included grass hay fed at 12%, 

24%, and 36% and sunflower oil at 2% and 4%. Dry matter intake was increased with 

increasing forage levels from 12% to 24%; until 36% forage was fed at which point there 

was a decrease in dry matter intake. In this study, sunflower oil did not appear to alter 

dry matter intake. Linoleic biohydrogenation was found to be greater with 4% than with 

2% concentration of sunflower oil, but dietary sunflower oil did not significantly alter 
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ruminal biohydrogenation of oleic acid or 18-C unsaturated linoleic acid at either level 

(Sackmann et al., 2003).       

Effects of Supplementing Linseed Oil in the Rumen. Weill et al. (2002) 

studied the protective effect that linseed oil had on fatty acids when introduced into a 

livestock diet. They introduced 5% of linseed oil into the diet of livestock. The results 

indicated that there was a decrease in the n-6/n-3 ratio by 54% in butter, 60% in meat, 

and 86% in eggs. Morris (2008a) demonstrated the effects of introducing linseed into 

beef cattle diets. The study reported that linseed increased α-linolenic acid and CLA 

content, and because of this increase the ω -6/ ω -3 ratio was decreased. The ratio was 

decreased by roughly half after each supplementation of linseed into the test cattle diets. 

The study did show, however, that there was little to no effect on saturated fat content in 

beef muscle.    

Effects of Supplementing Glycerol in the Rumen. Research by Krueger et al. 

(2010) evaluated two levels of glycerol (2% and 20%) and its inhibitory effects on 

ruminal lipolysis. Their study demonstrated that feeding glycerol at these two levels 

resulted in a 48% and 77% reduction in FFA accumulation. Results from this also 

indicated that supplementing glycerol at 20% of the total ration may negatively affect 

digestion of the fibrous fraction of the feed. However, when fed levels of glycerol less 

than 20% there did not appear to be any affect on the digestion of natural detergent fiber. 

Another study done on supplemental glycerol has shown that glycerol supplemented up 

to 10% in the daily diet does not have any effect on feed intake or performance of 

finishing beef cattle or lactating dairy cows (Kerley, 2007; Strompl et al., 1999). 



21 
 

Gilbery et al. (2010) examined the effects of glycerol supplementation on dry 

matter intake in steers fed finishing diets. Holstein steers were fed one of four treatments 

of glycerol (0%, 6%, 12%, and 18%). Results showed consistent findings from work 

already discussed in that glycerol exceeding 6% of dietary dry matter reduced dry matter 

and natural detergent fiber intake. Ruminal digestion of crude protein and natural 

detergent fiber were decreased as dietary glycerol increased in the finishing diet.    

Effects of Supplementing Varying Forage Levels in the Rumen. Latham et al. 

(1972) found that lactating dairy cows fed a low fiber (20%) diet had lower levels of 

lipolysis and biohydrogenation of unsaturated fatty acids in the ruminal fluid than cows 

fed a diet high in fiber (44%). Sackmann et al. (2003) similarly determined that initial 

stage of ruminal biohydrogenation of oleic and linoleic acids were increased 

simultaneously as the levels of forage increased. When the biohydrogenation of dietary 

linoleic acid to stearic acid is incomplete, it results in the yielding of several 

intermediates which can included trans- or cis-octadecenoic acids and conjugated 

linoleic acid isomers (Bauman et al., 2000). Increasing dietary forage levels showed a 

resulting increase on the duodenal flow of trans-11-vaccenic acid, an intermediate of 

linoleic acid. These results suggest that feeding higher levels of forage, it alters ruminal 

biohydrogenation of linoleic acid, which in turn causes an increased outflow of 

intermediates.  
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Technological Advances Used to Protect Lipids in the Rumen 

The rapid accumulation of free fatty acids produced by ruminal lipolysis limits 

the amount of fat that can be introduced into the daily diets of ruminants because of the 

inhibitory effects free fatty acids have on the digestion of cellulose and fiber (Harfoot 

and Hazlewood, 1997). Lipids provide a high energy source and because of this, fat 

supplements are useful for meeting the energy requirements of animals, furthermore, it 

may be more cost effective for producers to provide energy as fat rather than as 

carbohydrates (Doreau and Chilliard, 1997). As discussed earlier, with supplementing 

diet, technologies have also been developed to help protect fat sources from ruminal 

lipolysis and biohydrogenation, such as surrounding unsaturated fatty acids with a 

protein source that was made resistant to microbial degradation.   

Effects of Formaldehyde Cross-Linked Protein Casein in the Rumen. The 

treatment of dietary lipids with a layer of formaldehyde-treated casein protects lipids 

from ruminal lipolysis allowing for more unsaturated fatty acids to reach the small 

intestine for absorption. A number of studies have been conducted examining the effects 

of formaldehyde-protected fatty acids. Garrett et al. (1976) examined formaldehyde-

protected linoleic acid in Holstein cattle and found that only 18-25% of the protected 

linoleic acid consumed was incorporated in the body tissue. However, studies done by 

Faichney et al. (1973) and Hogan and Hogan (1976) showed that use of protected 

linoleic acid in sheep resulted in 50-60% of the protected linoleic acid consumed in the 

diet being stored in the body tissue.   
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Several research groups have looked at protected canola seed and its effects of 

the level of oleic acid in the milk on Holstein cattle (Ashes et al., 1992; Delbecchi et al., 

2001; Tymchuk et al., 1998). Each study had varying levels of success with increasing 

levels of oleic acid in milk. Ashes et al. (1992) showed an increase from 23.8 to 29.2% 

in oleic acid in the milk. While the study conducted by Tymchuk et al. (1998) showed a 

21.9% increase over the control, Delbecchi et al. (2001) showed similar results of a 

22.0% increase of the oleic acid when fed protected canola seed over the control. Jenkins 

and Bridge (2007) compared several published studies that looked at the use of 

protecting fatty acids through use of formaldehyde-cross-linked casein and found that 

with several types of fats that the casein gave protection from microbial degradation.  

Effects of Supplementing Calcium Salts in the Rumen. Calcium salts have 

also been used to help protect fat in the rumen. Fatty acids bind to calcium ions which in 

theory protects them from biohydrogenation. Research done by de Veth et al. (2005) 

compared the use formaldehyde-cross-linked casein and calcium salts. The study 

examined their use for protection of CLA from biohydrogenation and its applications in 

the dairy industry. Lipids bind to calcium ions making the lipids unavailable for bacterial 

uptake effectively preventing biohydrogenation.  

The research done by de Veth et al. (2005) showed that calcium salts were 

effective at decreasing milk fat yield by 34.0% while only 3.2% of the calcium salt 

protected CLA was found in the milk. The study also showed slightly better results with 

the formaldehyde-cross-linked protected CLA and that it was effective in decreasing 

milk fat yield by 44.0% while 7.0% of the formaldehyde-protected CLA was found in 
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the milk. Neither type of fat protection methods resulted in a decrease in milk yield. This 

study demonstrated that both calcium salts and formaldehyde are both effective to a 

degree in decreasing milk fat yields.   

Harvatine and Allen (2006) also looked at the use of calcium salts as an inhibitor 

of biohydrogenation and found that the calcium salts did not have any effect on the 

protection of PUFAs. Reviewing both Harvatine and Allen (2006) and de Veth et al. 

(2005), it can be determined that formaldehyde-protected CLA supplementation is 

currently the optimal method for use in the dairy industry at lowering milk fat yield.  

Effects of Amide Protected Lipids and Lipid Encapsulation. Perfield II et al. 

(2004) studied two different methods used to protect CLA from microbial degradation in 

the rumen. These two methods include amide-protected CLA and lipid encapsulated 

CLA. The amide-protected CLA and the encapsulated CLA were both incorporated into 

the diets of Holstein cattle and compared to a control lacking conjugated linoleic acid 

supplementation. Both types of CLA protected supplements showed similar decreases in 

milk fat with a 21% decrease in the cattle fed the amide-protected CLA and 22% in the 

lipid encapsulated CLA. The amount of total trans-10, cis-11 CLA that was transferred 

into the milk fat was the same for both amide protected (7.1%) and the lipid 

encapsulated (7.9%). Both types of protection methods of CLA resulted in decreases in 

secretion of all milk fat fatty acid constituents. However, fatty acids containing ≤ 16 

carbons were reduced slightly more than other fatty acids. Each method did show 

gradual decrease in milk secretion over the course of the study while having no decrease 
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in dry matter intake or milk fat, but the decrease was not significant enough to consider 

for application in the industry.  
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CHAPTER III 

DEVELOPMENT OF NON FORAGE BASED INCUBATION SYSTEM FOR 

CULTURING ANAEROBIC RUMINAL LIPASE-PRODUCING BACTERIA IN 

VITRO 

 
 

Introduction 

Ruminant-derived foods contain high proportions of saturated fats, a result of 

microbial biohydrogenation within the rumen that rapidly saturates and thus limits the 

availability of free unsaturated fatty acids for absorption and assimilation. 

Biohydrogenation cannot occur; however, unless free fatty acids (FFAs) are first 

hydrolyzed from their triacylglyceride precursors. Consequently, strategies that protect 

lipids from rumen lipolysis may effectively promote ruminal escape and eventual 

intestinal absorption of unsaturated fatty acids. This results in the production of value-

added ruminant products enriched with healthy unsaturated fats.  

As reviewed by Lourenço et al. (2010), the ability of ruminal microbes to 

hydrolyze triglycerides was reported more than 50 years ago. Since then, numerous 

studies have characterized the biological and physical factors affecting ruminal lipolysis 

by mixed or pure populations of ruminal bacteria. For instance, Hawke and Silcock 

(1970) shown that more than 50% of ruminal lipase activity was contained with the 

particulate fraction of freshly collected ruminal fluid. Furthermore, microbes attached to 

digesta were shown to contribute as much as 80% of the biohydrogenation activity in the 

rumen, presumably because of absorption of the linoleic acid substrate to the particulate 
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material (Harfoot et al., 1975; Harfoot and Hazlewood, 1997; Harfoot et al., 1973). It has 

since been recognized that the enzymatic activity of lipases is markedly activated in 

environments that stabilize the hydrophobic-hydrophilic interface that occurs at the point 

of contact between oil and water. Thus, studies using rumen contents as incubation 

materials likely provided a solid support that served to stabilize the hydrophobic-

hydrophilic interface, a phenomenon referred to as interfacial activation. A major 

limitation, however, of studies conducted with particulate matter and digesta is that these 

materials are not homogenous in size or microbial composition, which can lead to 

considerable variation and experimental error during their use in incubations. Therefore, 

the objective of the present study was to develop a digesta-free methodology for 

culturing mixed and pure populations of ruminal lipase-producing bacteria while still 

providing a solid matrix to support interfacial activation.  

Additionally, many previous studies on ruminal lipolysis have been conducted 

using CO2 as the anaerobic gas phase. Considering, however, that CO2 inhibits 

extracellular lipase production by Pseudomonas fluorescens strain B52 (Rowe, 1988) 

and inhibits the activity of lipase from Candida rugosa (Fadíloglu and Erkmen, 2002) as 

well as biohydrogenation of linoleic acid by mixed populations of rumen bacteria and B. 

fibrisolvens (Polan et al., 1964), this study examined the effects of different gas phases 

on lipolysis on mix cultures in the incubation system. 
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Materials and Methods 

Mixed Bacterial Populations.  Mixed bacterial populations were obtained from 

a canulated cow maintained on predominantly rye grass pasture.  Rumen contents were 

removed and strained through a nylon paint strainer (Leyendecker et al., 2004) into a 

pre-warmed insulated container (Thermos®, Rolling Meadows, IL) and transported to the 

laboratory within 30 min of collection. Upon arrival to the laboratory, CO2 was bubbled 

through the ruminal fluid in order to keep it in an anaerobic state. 

Cultural Conditions. Mixed bacterial populations obtained from the rumen were 

cultured in a standard rumen fluid medium containing 150 mL mineral mix one, 150 mL 

mineral mix two, 100 mL clarified rumen fluid, 1 mL of 0.1% rezazurin, 4 g NaHCO3 

and 0.5 g cystine hydrochloride per liter. Mineral mix one contained (per L) 6 g K2HPO4 

and mineral mix 2 contained (per liter) 6 g KH2PO4, 12 g (NH4)2SO4, 12 g NaCl, 1.2 g 

MgSO4*7H2O, 1.2 g CaCl2*6H2O and 6 g CaCl2. All chemicals were purchased from 

Sigma-Aldrich (Milwaukee, WI) unless otherwise noted.  The medium was then 

prepared by boiling to remove dissolved O2 and then saturated with O2-free gas while 

cooled on ice under a continuous flow of 100% CO2 or, in the case of studies examining 

the effect of H2 gas on lipolysis, under a mixture of 50% H2 in CO2. The cooled medium 

was distributed (6 mL/tube) using the anaerobic Hungate technique as described by 

Bryant (1972) into 18 x 150 mm glass tubes which were immediately closed with rubber 

stoppers. Tubes were placed in a press to prevent stoppers from being dislodged and 

sterilized via autoclaving. For tests using glass beads as a solid support matrix, tubes 

were pre-loaded with approximately 1.7 or 3.5 g per mL media of 4 mm diameter glass 
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beads (Fisher Scientific, Pittsburgh, PA) prior to addition of medium. After sterilization, 

0.1 mL of olive oil was added to tubes cooled to room temperature which were then 

inoculated with 1 mL freshly collected ruminal fluid and incubated at 39ºC while 

agitated at 90 rpm in an Innova™ 4000 – Incubator shaker (New Brunswick Scientific 

Co., Inc., Edison, NJ). After 48 h of incubation, for maintenance of the culture during 

the course of the study, transfers were done for a second incubation series to a fresh set 

of tubes with their given treatment and incubated, for another 48 h.  In each experiment 

tubes for each treatment were given 0.5 mL of concentrated hydrochloric acid (HCL) to 

stop growth and enzyme activity following inoculation and prior to each incubation 

series to represent zero time controls. Hydrochloric acid was also distributed to each 

tube following incubation.  Fatty acids were extracted from all tubes and concentrations 

determined colorimetrically according to methods described by Kwon and Rhee (1986). 

Following this study 3.5 g of glass beads per mL media and 100% CO2 was used as the 

standard for culture techniques in further studies done.     

Comparison of Transfer Methods. Following the study with varying levels of 

glass beads results showed a loss in enzyme activity following the transfer of cultured 

media to the second incubation series. In accordance with that study 1.0 mL of rumen 

fluid and olive oil was cultured following the methods described above for mixed 

cultures with the modification that different transfer methods were assigned to each set 

of tubes.  Two different transfer methods were compared; 1.0 mL of cultured media was 

transferred and compared to the transfer of 10 glass beads with the use of a disposable 

inoculating loop in anaerobic conditions using a Bactron Anaerobic Chamber (Sheldon 
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Labs Manufacturing Inc., Cornelius, OR).  Following this study, all transfers were done 

by transferring 10 glass beads and 1.0 mL cultured media from the first incubation series 

into the second incubation series.   

Comparing Incubation Methods and their Effects on Enzyme Activity. As 

with the varying glass bead study, 1.0 mL rumen fluid and olive oil were added to tubes 

and cultured according to the specifications of mixed rumen bacteria discussed above.  

Treatments were assigned to each set of tubes for incubation with one set being 

incubated vertically and one horizontally. In further experiments performed in this study, 

all tubes were incubated at a horizontal angle.     

Statistical Analysis. Tests for the effects of the different treatments were done 

using a general analysis of variance (ANOVA) (Statistix v.9.0, Analytical Software, 

Tallahassee, FL) with a Tukey’s separation of means (P < 0.05).  

 

Results and Discussion 

Evaluation of Glass Beads and Head Space Gasses.  The insolubility of lipid 

substrates and the lack of interfacial activation are major limitations to the study of 

ruminal lipolysis in aqueous media. Consequently, many earlier in vitro incubations have 

been conducted using rumen digesta (Garton et al., 1958; Hawke and Silcock, 1970; 

Krueger et al., 2010; Shorland et al., 1955) or by adding forage substrates to ruminal 

fluid incubations (Dohme et al., 2003; Van Nevel and Demeyer, 1995). However, the 

heterogeneous makeup of these contents introduces considerable variability into the 

conduct of such studies as differences in particle size, chemical composition, stage of 



31 
 

digestion and microbial colonization can markedly affect the amount of surface area 

available for contact with the lipid substrate. For instance, Krueger et al.(2010) reported 

rates of ruminal lipolysis of approximately 5060 nmol FFAs liberated/g of undiluted 

rumen contents per h during a 24 h incubation of 5 g freshly collected rumen digesta 

with 0.5 g added olive oil. Conversely, based on estimates of amounts of lipid degraded 

following 24 h incubation of 25 mL freshly collected strained ruminal fluid (lacking 

particle-associated bacteria), with 0.4 g ground forage and 0.125 g added soy oil, 

approximately 640 nmol FFA would have been liberated/mL of rumen contents per h 

(Dohme et al., 2003). In contrast, based on accumulations of free fatty acids reported by 

Van Nevel and Demeyer (1995) during 6 h incubation of 10 mL freshly collected and 

filtered rumen fluid diluted with 50 mL buffer containing 0.5 g of a ground concentrate 

diet and 0.08 g soy oil, the rate of lipolysis was calculated to be approximately 170 nmol 

FFA/mL per h.  

Results from the present study demonstrated that rates of FFA accumulation 

during incubation of 1 mL freshly collected ruminal fluid in 6 mL of a standard aqueous 

medium supplemented with 0.1 mL olive oil were markedly lower (less than 3.86 nmol 

free fatty acid/mL per h) then previous research discussed above. However, during the 

first incubation series the rates of lipolysis were increased (P < 0.05) more than 94% in 

cultures incubated in tubes containing glass beads compared to rates measured in control 

cultures incubated without glass beads (Table 3.1). It is possible that the glass beads may 

have helped to provide an environment conducive to the growth of lipase-producing 

bacteria as well as for the secretion of the extracellular lipases. In support of this later 
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hypothesis, Martinez and Nudel (2002) demonstrated that secretion of lipase produced 

by Acinetobacter calcoaceticus was stimulated by glass beads. During the initial 

incubation series, the rate of lipolysis was more rapid in the tubes containing 3.5 g glass 

beads per mL medium than in tubes containing only 1.7 g glass beads per mL. The most 

likely explanation for this difference in rates is that the bed-level in the tubes containing 

3.5 g of glass beads per mL media was sufficient to contain all of the medium volume 

whereas approximately 1.5 to 2 cm of the aqueous medium, of which the added oil 

floated on top, remained above the bed-level for tubes containing only 1.7 g of glass 

beads per mL media. Thus, in the tubes containing the higher amount of beads, the oil 

substrate was spread over the surface and remained in constant contact with glass beads 

thereby providing an environment favorable for continuous interfacial activation of the 

extracellular enzymes secreted by lipase-producing bacteria. Work done by Maruyama 

(2000) compared a interfacially processed lipase to a crude lipase and showed that the 

interfacially processed lipase had significantly greater inter-esterification activity 

compared to the crude native lipases.  

 
  

Table 3.1. Least square mean effect of glass beads and incubation series on 
ruminal lipase activity in vitro. 

 Rate of free fatty acid accumulation (nmol/mL/h)a 

Incubation series No Beads 1x Beads 2x Beads 
1 3.86c 76.59b 192.34a 
2 0.98c 6.70c 7.47c 

a Values depict least square means calculated from identical replications (n=3). 
Least square means within rows and columns with unlike superscripts differ at P 
< 0.05. SEM = 13.984.  
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Rates of FFA accumulation were reduced considerably (P < 0.05) after 24 h 

incubation of a subsequent incubation series conducted likewise, but inoculated with 1 

mL of fluid from respective cultures of the first incubation series. Moreover, the rates 

did not differ (P > 0.05) between cultures incubated with or without the inclusion of 

beads in the second incubation series. The loss of lipase activity in the second incubation 

series suggests that lipase-producing bacteria in the cultures from the first incubation 

series were not planktonic or free floating, but rather were attached or firmly associated 

with the bead environment.   

The highest rate of FFA accumulation was achieved in the full bead treatment 

when all liquid contents of the test tube were completely submerged just under the bead 

level suggesting that the full bead treatment provided the most contact between the 

bacteria and their substrate. The glass beads helped in dispersing the oil throughout the 

medium and the limitation of using a lower level of bead treatment is that the oil can still 

separate from the medium and coalesce together. Since the full bead treatment provided 

the maximal interfacial activation in this trial, this treatment would be applied as a 

standard in further assays conducted in this study.  

The study done by Polan et al. (1964) showed that more biohydrogenation was 

achieved when B. fibrisolvens was exposed to an atmosphere of hydrogen while an 

atmosphere of carbon dioxide decreased activity. Treatments of CO2 and a H2:CO2 

(50:50) mix were incorporated with the bead variation trial to determine if these 

treatments would cause similar effects on ruminal mixed culture bacterial lipase activity. 

Results revealed no difference (P > 0.05) in lipase activity due to the composition of 
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head space gasses used between treatments with mean rates being 78.00 and 103.87 

(SEM = 12.419) during the first incubation series and 4.37 and 5.73 (SEM = 16.032 for 

tubes incubated under CO2 or H2:CO2, respectively. Based on the results of this study in 

combination with the work done by Polan et al. (1964), it can be suggested that different 

headspace gasses only have an effect during the biohydrogenation step of lipid 

saturation.  

   Tube Orientations During Incubation. Different tube orientations were 

compared during incubation and tubes were agitated in attempts to increase surface area 

in which the medium and energy substrate could interact with the glass beads. Tube sets 

were incubated vertically and horizontally; results (Figure 3.1) showed that there was an 

increase in rates of FFA accumulation (nmol/mL per h) in the treatment that was 

incubated horizontally.  Although the effect of horizontal tube orientation on enzyme 

rate was non-significant (P > 0.05), all reaction tubes were incubated horizontally in 

subsequent studies.  
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Figure 3.1. Comparison of rates of free fatty acid accumulation by mixed 
population of ruminal microbes incubated 48 h at 39°C. Test tube sets were 
incubating vertically or horizontally; bars indicate means of three replications with 
error bars indicating one standard deviation from the mean.  

 
 
 
Transfer Techniques.  Results from the glass beads study showed that there was 

a significant loss of lipase activity when the media were transferred from the first 

incubation series to the second incubation series. The loss in activity after the transfer is 

detrimental to obtaining accurate results from assays performed later in the study 

because transfers are needed to carry out the experiments. It was considered that the 

presence of the glass beads served as a support matrix simulating digesta found in the 

rumen and therefore the bacteria could potentially be adhering to the glass beads and not 

be present in a planktonic state. The transfer of planktonic bacteria between incubation 



36 
 

series of mixed rumen cultures was compared to the transfer of just the glass beads.  The 

results (Figure 3.2) revealed a tendency (P = 0.061) for the bead transfer to support 

higher subsequent rates versus fluid transfer as rates were increased >79% upon transfer 

of beads, but were decreased 34% upon transfer of fluid. These findings indicated that 

accumulation of free fatty acids (nmol/mL per h) was higher for the tubes containing 

previously-incubated beads versus those inoculated only with previously-inoculated 

fluid medium.  

 
 

 
Figure 3.2. Comparison of free fatty acid accumulation by mixed population of 
ruminal microbes incubated 48 h at 39°C. Beads or fluid fraction from test tube 
sets were transferred between incubation series; bars indicate means of three 
replications with error bars indicating one standard deviation from the mean. 
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Implications 

Results showed that the introduction of glass beads into an in vitro incubation 

system markedly increased lipolysis, most likely a result of establishing a better interface 

between the aqueous medium and the lipidic, energy substrate. The introduction of a 

second incubation series demonstrated that the ruminal bacteria were adhering to the 

glass beads, suggesting that along with increasing interfacial activation the glass beads 

served as a solid support matrix simulating rumen digesta. The use of glass beads in 

place of fiber digesta, in incubation systems, allows for a more controlled system during 

culturing whereas fiber digesta is a more heterogeneous solid support matrix that differs 

in degree of degradation, chemical composition and microbial colonization.   

Previous work has implicated CO2 as having an inhibitory effect on lipase-

producing bacteria. Therefore, the use of different headspace gasses was compared and 

results showed that in mixed rumen populations the use of 100% CO2 did not 

demonstrate an inhibitory effect when compared to a combination of H2:CO2 (50:50). 

The application of CO2 into the incubation system allowed for the production of 

comparable results to other ruminal studies that have traditionally used CO2 to establish 

anaerobic conditions.  
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CHAPTER IV 

GLYCEROL INHIBITION OF RUMINAL LIPOLYSIS IN VITRO 

 

Introduction 

Glycerol is a major by-product in the production of biodiesel. Recently glycerol 

has been investigated for use as a dietary supplement for ruminants as a means to inhibit 

lipolysis, a pre-requisite of biohydrogenation. Work done in vitro by Krueger et al. 

(2010) showed that supplemental glycerol inhibited ruminal lipolysis by 60-80% when 

introduced at an inclusion rate of 2 and 20% of dry matter. However, results from this 

study also showed glycerol content exceeding 20% of dry matter resulted in neutral 

detergent fiber digestion being negatively affected. Gilbery et al. (2010) showed that 

glycerol concentrations exceeding 6% negatively affected acid detergent fiber and 

neutral detergent fiber digestion. Our goal was to investigate whether FFA accumulation 

could still be reduced at the 6% inclusion rate and also to evaluate and compare free 

fatty acid accumulation between the 6% and 20% concentration levels. 

Ruminal lipolysis has long been attributed mainly to A. lipolyticus 5S and 

Butyrivibrio fibrisolvens 49. Conversely, P. avidum and P. acnes are also known to 

express lipase activity but little is known regarding the contribution of these prominent 

anaerobes to rumen lipolysis. Two potential mechanisms of glycerol’s inhibition on 

microbial lipase activity were examined in this study in an attempt to characterize these 

four bacteria organisms and their role in the rumen. A electron microscope study done 

by Henderson (1973) showed that the lipase produced by A. lipolyticus is extracellular. 
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Similar studies were conducted on B. fibrisolvens, P. avidum, and P. acnes and results 

indicated concluded that all of them produce an extracellular lipase (Cotta and Hespell, 

1986; Greenman et al., 1983; Miskin et al., 1997). Prins et al. (1975) showed that the 

lipase was constitutively expressed when cultured in vitro. Some ruminal lipase-

producing bacteria, such as A. lipolyticus 5S, target the glycerol backbone, freeing the 

esterified fatty acids leaving the acids susceptible to eventual biohydrogenation. Other 

bacteria, such as B. fibrisolvens 49 may be fatty acid auxotrophs and thus express lipase 

so as to acquire free fatty acids required for membrane construction. Because glycerol is 

one of the products of lipolysis, it was thus hypothesized that supplementing glycerol to 

culture media would effectively inhibit lipolysis through the means of displaced 

equilibrium in the breakdown reaction of a triacylglyceride.  

A study was also conducted to examine the induction of the lipase in each of 

these bacteria. The bacterium’s DNA carries the template for the lipase gene and from 

there it is transcribed into mRNA. The coded information for the lipase gene is carried in 

mRNA where it can later be translated into a functional protein. It was hypothesized that 

glycerol may causes the repressor molecule to bind to the lac operon preventing RNA 

polymerase from binding and transcription taking place.  By gaining better 

understanding of glycerol’s role in the inhibition of lipolysis, better strategies can be 

developed for inhibiting lipolysis in the rumen.  
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Materials and Methods 

Mixed and Pure Bacterial Populations.  Ruminal fluid containing a mixed 

bacterial population was obtained from a canulated cow maintained on predominantly 

rye grass pasture. Rumen content was removed and the fluid strained through a nylon 

paint strainer (Leyendecker et al., 2004) where it was collected into a pre-warmed 

insulated container (Thermos®, Rolling Meadows, IL) for transport to the laboratory.  

Immediately following transportation, CO2 was bubbled through the rumen fluid in order 

to keep it in an anaerobic state. Pure culture strains of A. lipolyticus 5S and B. 

fibrisolvens 49 were obtained from Dr. Jay Yankee, Agriculture-Agri Food Canada, 

(Lethbridge, Alberta).  Strains of P. avidum and P. acnes were previously isolated from 

the rumen of a pastured cow (Krueger et al., 2008) and had been found to exhibit among 

the highest rates of lipolytic activity in earlier screening studies. For long-term 

preservation of the pure cultures, these bacteria were stored in 20% anaerobic glycerol at 

- 80ºC. 

Glycerol Inhibition on Mixed Ruminal Cultures.  Using the Hungate 

technique described by Bryant (1972), 5 mL of standard anaerobic medium which 

contained (per liter) 292 mg of K2HPO4, 292 mg of KHPO4, 480 mg (NH4)2SO4, 480 mg 

of NaCl, 100 mg of MgSO4 · 7H2O, 64 mg of CaCl2 · 2H20, 4,000 mg of Na2CO3, 600 

mg of cysteine hydrochloride, 10 g of trypticase (BBL Microbiology Systems, 

Cockeysville, MD), 2.5 g of yeast extract, branched-chain fatty acids (1 mmol each of 

isobutyrate, isovalerate, and 2-methylbutyrate), plus hemin, vitamins, and trace minerals 

(Cotta and Russell, 1982). All chemicals were purchased from Sigma-Aldrich 
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(Milwaukee, WI) unless otherwise noted. Medium was boiled to displace dissolved 

oxygen, then cooled on ice while being saturated with a continuous flow O2-free CO2 

and then distributed to 18 x 150 mm glass tubes using the anaerobic Hungate technique 

as described by (Bryant, 1972). Tubes were assigned glycerol treatments of the 

following concentrations: 0%, 6%, and 20% (vol/vol). Along with glycerol, tubes also 

contained 0.1 mL olive oil and 2 mL of mixed culture rumen fluid was used to inoculate 

each tube. Tubes collected from each treatment immediately upon inoculation with 

ruminal fluid received 0.5 mL of concentrated HCL, to represent the zero time controls, 

in order to stop growth and lipase activity. The remaining tubes were incubated and 

agitated for 48 h in an Innova™ 4000 – Incubator shaker (New Brunswick Scientific Co. 

Inc., Edison, NJ) at 39ºC.  The incubation tubes were then also given 0.5 mL of 

concentrated HCL and total FFAs were extracted and concentrations determined 

colorimetrically according to methods described by Kwon and Rhee (1986).  

Cultural Conditions for Pure Culture Bacteria. Upon removal from storage, 

each bacterium was revived during two consecutive 24 to 48 h cultures in 10 mL 

standard anaerobic medium supplemented with 2% pre-sterilized olive oil. Each bacteria 

was then grown for a third consecutive culture in standard anaerobic medium 

supplemented with pre-sterilized olive oil, glucose or glycerol as indicated. Tubes were 

incubated and agitated horizontally for 24 to 96 h as indicated in an Innova™ 4000 – 

Incubator shaker. 

Effects of Lipid or Non-Lipid Energy Sources on Growth of Pure Cultures 

of Rumen Lipolytic Bacteria. Effects of lipid or non-lipid energy sources on growth of 
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the ruminal lipase-producing bacteria A. lipolyticus 5S, B. fibrisolvens 49, P. avidum, 

and P. acnes were determined by inoculating 0.2 mL of a late log phase growth culture 

into 4 mL of the same anaerobic standard medium containing treatments of 5% olive oil 

and 0.02% glucose. Anaerovibrio lipolyticus 5S is unable to utilize glucose as an energy 

source so it was grown in 5% glycerol in place of glucose. The bacteria were incubated 

at 39ºC in an L-C Incubator and removed every 6 h over the course of 4 d to be 

measured for growth. Bacterial growth was determined by measuring absorbance at 600 

nm (A600) on a spectrophotometer (Spectronic 20D+, Spectronic Instruments, Inc., 

Rochester, NY). Mean specific growth rates, µ, were calculated according to the 

equation (µ = Δlog10 A600/Δt, where t = time) (Koch, 1981). 

Assay Conditions. Short term anaerobic assays were conducted to minimize 

effects of cell propagation. Potential induction of enzymatic activity was determined in 

18 x 150 mm glass tubes preloaded with 21 g solid 4 mm glass beads, and additions of 

0.6 mL olive oil and anaerobic buffer were made to achieve a final reaction volume of 6 

mL. The anaerobic buffer contained only minerals and cysteine-HCl as in the standard 

buffer but otherwise was prepared similarly.  

Test for Glycerol’s Mechanism of Lipolysis Inhibition. In the first enzymatic 

assay conducted to test if displaced equilibrium would affect lipase activity. Cells were 

obtained from cultures grown to late logarithmic phase with olive oil as the only added 

energy substrate. The entire contents of cultures containing 2 or 4 mL volume were 

transferred anaerobically to the assay tubes prepared as above so as to ensure transfer of 

soluble and cell-associated lipase enzymes, thereby representing 1X and 2X crude 
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enzyme suspensions in the final reaction volume which was achieved upon addition of 

anaerobic buffer and 0, 2 or 10% added glycerol. A 0.2 mL sample was taken from each 

tube for determination of protein using the Modified Lowry Protein Assay Kit (Pierce, 

Rockford, IL) and then tubes were incubated at 39oC and agitated horizontally in an 

Innova™ 4000 – Incubator shaker. Reactions were stopped at 0 and 8 h by addition of 

0.5 mL concentrated HCl and FFA extractions and measurements were performed as 

described earlier.  

In a second enzymatic assay conducted to test if energy substrate during growth 

may influence, via induction, lipase activity during subsequent assay with olive oil, each 

respective bacterium was grown in 4 mL of standard anaerobic medium supplemented 

with either 5% olive oil or with a non-lipid energy source. For B. fibrisolvens 49, P. 

avidum and P. acnes, the non-lipid energy source was provided by 0.2% glucose but for 

A. lipolyticus 5S 5% glycerol was provided as this bacterium cannot ferment glucose. 

Cells obtained from cultures grown to late log phase were adjusted to achieve equivalent 

A600 via dilution with anaerobic buffer and then the contents of each tube were 

transferred anaerobically into assay tubes prepared as described above. Assay tubes were 

incubated as described above and reactions were stopped at 0 and 6 h by addition of 0.5 

mL concentrated HCl for subsequent FFA extractions and measurement.    

Statistical Analysis. Tests for the effects of the different treatments were done 

using a general analysis of variance (ANOVA) (Statistix v.9.0, Analytical Software, 

Tallahassee, FL) with a Tukey’s separation of means (P < 0.05). 
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Results and Discussion 

Glycerol Inhibition on Mixed Ruminal Cultures. Consistent with the earlier 

observations of Krueger et al. (2010), results from the present study showed that rates of 

FFA accumulation (nmol/mL per h) were reduced more than 80% by glycerol treatment 

when compared to controls (8.606 nmol/mL per h). Furthermore, results indicated that 

the rate of FFA accumulation observed with the 6% glycerol treatment (1.673 nmol/mL 

per h) did not differ (P > 0.05) from that observed with the 20% glycerol treatment 

(0.4866 nmol/mL per h; SEM = 1.258). Considering findings of Gilbery et al. (2010), the 

results obtained here suggest that supplementing ruminant diets with 6% glycerol would 

be sufficient to effectively reduce rumen lipolysis without adversely affecting digestion. 

Effects of Lipid or Non-Lipid Energy Sources on Growth of Pure Cultures 

of Rumen Lipolytic Bacteria. In order to examine the effects of lipid or non-lipid 

energy sources on growth of A. lipolyticus 5S, B. fibrisolvens 49, P. avidum, and P. 

acnes, growth rates and maximum absorbencies were measured during their culture in 

media supplemented with olive oil or glucose, or in the case of A. lipolyticus 5S, with 

glycerol. Each bacterium was analyzed separately with measurements being taken for 

rate and maximum growth.   

The results (Tables 4.1 and 4.2) indicate that olive oil supplementation produced 

significantly higher maximum growth, as evidenced by a higher absorbance, for A. 

lipolyticus 5S but the growth rate was significantly faster when grown in glycerol (P < 

0.05) (Table 4.1). Butyrivibrio fibrisolvens 49 had a significantly higher maximum  



 

Table 4.1. Least square means of the mean specific growth rate during growth of ruminal lipase-producing bacteria with 
lipid or non-lipid energy source. 

 
Growth substrate 

Mean specific growth rate (µ) 
A. lipolyticus 5S B. fibrisolvens 49 P. avidum P. acnes 

5% Glycerol 0.0664 --- --- --- 
0.02% Glucose --- 0.0505 0.0566 0.0406 
5% Olive oil 0.0130 0.0162 0.0293 0.0234 
     Main effect ---------- ---------- ---------- ---------- 
Growth substrate P = 0.0001 P = 0.0447 P = 0.0074 P = 0.1260 
CVCa       0.0097        0.0330          0.0151        0.0229 
SEM       0.0025        0.0084          0.0038        0.0063 

 
Table 4.2. Least square means of the maximum observed absorbance during growth of ruminal lipase-producing 
bacteria with lipid or non-lipid energy source. 
Growth substrate Maximum observed absorbance (A600 nm) 

A. lipolyticus 5S B. fibrisolvens 49 P. avidum P. acnes 
5% Glycerol 1.2267 --- --- --- 
0.02% Glucose --- 1.9990 1.9990 1.9990 
5% Olive oil 1.9990 0.4750 1.9990 1.4430 
     Main effect ---------- ---------- ---------- ---------- 
Growth substrate P < 0.0001 P = 0.0003 P = 1.000 P = 0.1224 
CVCa   0.0334        0.3655         0.0001        0.7908 
SEM        0.0085        0.0930         0.0001        0.0248 
aCVC: critical value for comparison (equivalent to a Fishers Protected LSD and represents the difference between 
means needed to achieve significance at P < 0.05).  
 
 

aCVC: critical value for comparison (equivalent to a Fishers Protected LSD and represents the difference between means 
needed to achieve significance at P < 0.05).  
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growth for both glucose treatments than for the olive oil treatments (Table 4.2). This is 

not surprising, as while B. fibrisolvens 49 can obtain energy for growth by fermenting a  

wide variety of sugar and amino acid substrates, it does not ferment glycerol and likely 

would gain little energetic benefit from high lipase activity. Some strains of B. 

fibrisolvens are auxotrophic for fatty acids and thus lipase activity may provide a 

mechanism to acquire fatty acids needed for their cell membrane synthesis (Hazlewood 

et al., 1980). The results also indicated that there was not a significant difference for the 

growth rate of B. fibrisolvens 49 amongst both treatments, with amino acid sources 

likely serving as fermentable substrate for growth in the olive-oil supplemented medium. 

The glucose treatment for P. avidum showed a significantly higher growth rate for 

glucose than olive oil; however, there was not a significant difference in the results for 

maximum growth between the two treatments for P. avidum. The results for P. acnes did 

not indicate significant differences between the three treatments for either maximum 

growth or growth rate. The results for P. acnes did not indicate significant differences 

between the two treatments for either maximum growth or growth rate. 

Test for Potential Displaced Equilibrium Effect.  Glycerol was tested to 

determine if it causes an equilibrium displacement in the triacylglyceride reaction 

resulting in an inhibition in lipase activity. The enzymatic ability of entire contents of 

cultures (2 or 4 mL) of A. lipolyticus 5S, B. fibrisolvens 49, P. avidum and P. acnes to 

hydrolyze olive oil (10%) was assayed in the presence of 0, 2 or 10% added glycerol.  

Tubes were pre-loaded with glass beads which served as a reaction matrix. The entire 

contents of the cultures were used in the short-term assay so as to include lipase that 
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could be both soluble and or cell-associated. An effect of glycerol treatment was not 

observed on any of the bacterial suspensions thus indicating that glycerol had no direct 

inhibitory effect on lipase activity by these pure cultures (Table 4.3). In the case of B. 

fibrisolvens 49, P. avidum and P. acnes, but not A. lipolyticus 5S, a main effect of 

enzyme concentration was observed, with more activity observed in assays containing 

2X bacterial suspension than 1X bacterial suspension (Table 4.3). Provided olive oil was 

present in excess during the assay it would be expected that more enzyme in the reaction 

mixture would yield higher activity. Only in the case of B. fibrisolvens 49 was a glycerol 

by enzyme level interaction observed (Table 4.3).   

 Glycerol’s Down Regulation on Gene Expression.  For this study each of the 

four bacteria were grown in either glucose or olive oil with the exception of A. 

lipolyticus 5S which was grown in glycerol in place of glucose due to its inability to 

effectively utilize glucose as an energy substrate. With the lack of oil as a substrate in 

the glucose/glycerol grown treatments it was hypothesized that the bacteria would not 

produce the lipase enzyme effectively inhibiting lipolysis. The results (Table 4.4) 

suggest that lipase activity by A. lipolyticus 5S and P. avidum was not regulated by 

glucose or glycerol, as specific activities (nmol FFA/mg protein per h) by cells grown 

with these substrates were not decreased (P > 0.05) compared to activities by cells 

grown with olive oil. There was a significant effect of energy substrate on specific 

activity obtained with P. avidum but the activity was increased in cells grown with 

glucose compared to cells grown with olive oil, which certainly indicates that glucose 

did not down regulate expression of lipase activity by this bacterium (Table 4.4). 



 

 

 
 
 
Table 4.3. Least square means of the specific lipase activity of olive oil grown cells assayed in the 
presence of olive oil (10%) with 0, 2 or 10% added glycerol as potential inhibitor. 

Amount of 
added 

glycerol 
(vol/vol) 

Specific activity (nmol free fatty acid/mg protein per h) 
A. lipolyticus 5S B. fibrisolvens 49 P. avidum P. acnes 
1X 

protein 
2X 

protein 
1X 

protein 
2X 

protein 
1X 

protein 
2X 

protein 
1X 

protein 
2X 

protein 
0 0.0031 0.0024 0.0230 0.0302 0.0219 0.0878 0.0170 0.0535 
2% 0.0052 0.0060 0.0424 0.0378 0.0459 0.0758 0.0302 0.0663 
10% 0.00090 0.0051 0.0063 0.0531 0.0115 0.1356 0.0077 0.0579 
     Main Effects       ---------- ---------- ---------- ---------- 
Glycerol P = 0.4898 P = 0.3395 P = 0.7449 P = 0.3976 
Protein level  P = 0.4590 P = 0.0492 P = 0.0033 P = 0.0014 
Interaction P = 0.5781 P = 0.0399 P = 0.1946 P = 0.8124 
CVCa 0.0130        0.0437        0.1166        0.0614 
SEM         0.0024        0.0092        0.0245        0.0139 
aCVC: critical value for comparison (equivalent to a Fishers Protected LSD and represents the 
difference between means needed to achieve significance at P < 0.05).  
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Table 4.4. Least square means of the specific lipase activity of lipid or non-lipid energy source grown cells 
assayed in the presence of olive oil (10%). 
Growth substrate Specific activity (nmol free fatty acid/mg protein per h) 

A. lipolyticus 5S B. fibrisolvens 49 P. avidum P. acnes 
Glycerol 0.2080 --- --- --- 
Glucose --- 0.0001 0.4511 0.0273 
Olive oil 0.3607 0.0544 0.3019 0.0666 
     Main effect ---------- ---------- ---------- ---------- 
Growth substrate P = 0.5161 P = 0.0518 P = 0.3820 P = 0.0135 

CVCa   0.5967        0.0551          0.1363        0.0259 
SEM       0.1518        0.0140          0.0347        0.0065 
aCVC: critical value for comparison (equivalent to a Fishers Protected LSD and represents the difference between 
means needed to achieve significance at P < 0.05).  
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Regardless of growth substrate, P. acnes and B. fibrisolvens 49 cells expressed 

lower lipase activity (P < 0.05) than A. lipolyticus 5S and P. avidum. In the case of 

glucose-grown P. acnes cells, lipase activity was lower (P < 0.05) than olive oil-grown 

cells thus suggesting that glucose down regulated lipase gene expression by bacterium 

(Table 4.2). Similarly, there was a tendency (P < 0.10) for B. fibrisolvens 49 cells grown 

with glucose to express lower specific lipase activity than olive oil grown cells. Results 

indicate that higher and constitutively expressed lipase activity of A. lipolyticus 5S and 

P. avidum probably contribute more to lipolysis of triacylglycerol in ruminants than P. 

acnes and B. fibrisolvens 49. There is a conundrum in that activities of A. lipolyticus 5S 

and P. avidum that were unaffected by glycerol which suggests that there may be an 

even more important as yet unidentified glycerol-susceptible rumen bacterium 

contributing to rumen lipolysis.  

 

Implications 

Based on the results in this set of experiments there does not appear to be a 

significant justification for supplementing glycerol above the 6% concentration in the 

ruminal diet which, based from other glycerol research, should prevent any negative 

effects that glycerol may have on neutral detergent fiber digestion. However, further 

research needs to be done to determine the effects of feeding glycerol for different 

lengths of time in the finishing diet and what the result may be by withdrawing glycerol 

from the finishing diet after introducing it for an applicable length of time. By 

conducting further research the best application could be suggested for establishing a 
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time frame for feeding increasing amounts of glycerol in order to achieve the maximum 

reduction in the accumulation of free fatty acids.   

Further characterization and understanding of pure culture bacteria supplemented 

with glycerol has provided insight in furthering the manipulation of glycerol’s effect on 

these bacteria and the development of strategies for inhibiting lipolysis in the rumen.  

Our investigation of lipase gene expression did not contain measurements of mRNA; 

therefore, the results do not provide certainty that lipase gene expression is down 

regulated in B. fibrisolvens 49 and P. acnes. However, it is likely that lipolysis by B. 

fibrisolvens 49 and P. acnes were not inhibited by the mechanism of equilibrium 

displacement and that it is most likely by the interruption of the transcription process of 

mRNA. Propionibacterium avidum also consistently showed the highest lipolysis 

activity in these studies. Based on this knowledge our attention is being directed towards 

trying to inhibit the lipase activity of A. lipolyticus 5S and P. avidum.  
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CHAPTER V 

VARYING ENERGY SUBSTRATES AND THEIR EFFECTS ON PURE CULUTRES 

OF RUMINAL LIPASE-PRODUCING BACTERIA 

 

Introduction 

Diets that contain a high amount of saturated fats have been associated with 

negative health effects such as increased serum cholesterol levels and risk of coronary 

heart disease (Wahrburg, 2004). Food products derived from ruminant animals contain 

high contents of saturated fats, a consequence of microbial biohydrogenation. 

Biohydrogenation is a process that occurs in the rumen that rapidly saturates FFAs, thus 

limiting the availability of free unsaturated fatty acids for absorption and assimilation. In 

order for biohydrogenation to occur FFA must first be hydrolyzed from their 

triacylglyceride precursors. Consequently, strategies that protect lipids from rumen 

lipolysis may effectively promote ruminal escape and intestinal absorption of 

unsaturated fatty acids. 

 Ruminal lipolysis has long been attributed mainly to A. lipolyticus and B. 

fibrisolvens. Conversely, Propionibacterium species avidum and acnes are also known 

to express lipase activity but little is known regarding the contribution of these 

prominent anaerobes to rumen lipolysis. Moreover, it is known that the introduction of 

different energy substrates can have mixed effects on the growth and metabolic activity 

of ruminal bacteria and extensive research has been done to try and develop a dietary 

regimen that can lower the impacts of lipolysis and biohydrogenation in the rumen. 



53 
 

 

Flaxseed oil, also known as linseed oil, is rich in α-linolenic acid which is an ω-3 fatty 

acid found predominantly in plants. Weill et al. (2002) studied the protective effect that 

linseed has on fatty acids when introduced to a livestock diet and results showed that use 

of linseed oil decreased the fat percentage in milk; however, it did not have an effect on 

daily fat production. Morris (2008a) demonstrated the effects of introducing linseed into 

beef cattle diets and showed that linseed oil increases α-linolenic acid and CLA content 

in beef adipose tissue which consequently decreased the ω-6/ω-3 ratio. In order to 

further characterize and understand the lipase activity of these bacteria, each was grown 

with four different energy substrates: olive oil, corn oil, flaxseed oil, and glycerol. 

Results from this study will help elucidate the potential contribution of each of these 

bacteria to the lipolysis of differing lipid sources potentially entering the rumen. 

Ultimately, the development of a better dietary ration will help capitalize on other 

strategies developed for the reduction of lipolysis.  

 

Materials and Methods 

Pure Bacterial Populations. Pure culture stains of A. lipolyticus 5S and B. 

fibrisolvens 49 was obtained from Dr. Jay Yankee, Agriculture-Agri Food Canada 

(Lethbridge, Alberta). Strains of P. avidum and P. acnes were previously isolated from 

the rumen of a pastured cow (Krueger et al., 2008). For long-term preservation of the 

pure cultures, these bacteria were stored in 20% anaerobic glycerol at -80ºC. 

Cultural Conditions for Pure Culture Bacteria. Bacteria were grown in 

standard anaerobic medium under 100% CO2 containing (per L) 292 mg of K2HPO4, 292 
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mg of KHPO4, 480 mg (NH4)2SO4, 480 mg of NaCl, 100 mg of MgSO4 · 7H2O, 64 mg 

of CaCl2 · 2H20, 4,000 mg of Na2CO3, 600 mg of cysteine hydrochloride, 10 g of 

trypticase (BBL Microbiology Systems, Cokeysville, Md.), 2.5 g of yeast extract, 

branched-chain fatty acids (1 mmol each of isobutyrate, isovalerate, and 2-

methylbutyrate), plus hemin, vitamins, and trace minerals (Cotta and Russell, 1982). All 

chemicals were purchased from Sigma-Aldrich (Milwaukee, WI) unless indicated 

otherwise. Glucose or glycerol, when utilized, was added before autoclaving to achieve 

0.2 mg or 3.6 mg/mL final concentration, respectively. The medium was then further 

prepared by boiling to remove dissolved O2 and then saturated with O2-free gas while 

cooled on ice under a continuous flow of 100% CO2. The cooled medium was 

distributed (6 mL/tube) using the anaerobic Hungate technique as described by Bryant 

(1972) to 18 x 150 mm glass tubes which were immediately closed with rubber stoppers. 

Tubes were placed in a press to prevent stoppers from being dislodged and sterilized via 

autoclaving. Tubes were cooled to room temperature before inoculation. Following 

inoculation with the given bacteria tubes were incubated and agitated horizontally for a 

given amount of time in an Innova™ 4000 – Incubator shaker (New Brunswick 

Scientific Co., Inc., Edison, NJ) at 39ºC at 90 rpm. In each experiment tubes for each 

treatment were given 0.5 mL of concentrated HCL to stop growth and enzyme activity 

following inoculation and prior to each incubation series to represent zero time controls. 

Hydrochloric acid was also distributed to each tube following incubation. Fatty acid 

extractions were performed on all tubes according to methods described by Kwon and 

Rhee (1986). 
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Growth Curves. Growth curves were performed on the pure culture strains in 

preparation for the study comparing different energy substrates. This was done to 

determine mid logarithmic and stationary phase of growth of each bacteria in the 

presence of each energy substrate. Each bacterial strain, following removal from -80ºC 

storage, was cycled twice in 10 mL of the standard anaerobic media containing 0.2 mL 

olive oil before beginning the study. To determine the growth curve, 0.2 mL of each 

bacterium was transferred anaerobically to 6 mL of the same anaerobic standard medium 

containing treatments of the four different energy substrates (3% vol/vol) and 

absorbance at 600 nm (A600) readings were taken every 6 h on a Spectronic 

20D+spectrophotometer (Spectronic Instruments Inc., Rochester, NY). Specific growth 

rate, µ, was calculated according to the equation (µ = Δlog10 A600/Δt, where t = time) 

(Koch, 1981). Growth curve procedures were repeated with the modification that 

glucose was absent from the media. 

Energy Substrate Comparison. Each pure culture bacterium was grown in 6 

mL of standard anaerobic medium containing 3% of each energy medium treatment. The 

bacteria were cultured according to previously elaborated methods for pure culture 

bacteria. Growth for each bacterium in each energy substrate was stopped at zero time, 

early log, and stationary growth phases with each treatment and time phase being done 

in triplicate. This experiment was repeated with the modification that glucose was left 

out of the standard anaerobic medium.  
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Statistical Analysis. Tests for the effects of the different treatments were done 

using a general analysis of variance (ANOVA) (Statistix v.9.0, Analytical Software, 

Tallahassee, FL) with a Tukey’s separation of means (P < 0.05). 

 

Results and Discussion 

Growth Curves. Anaerovibrio lipolyticus 5S and some Butyrivibrio species have 

long been considered to play a major role in the ruminal hydrolysis of dietary lipids, 

with A. lipolyticus 5S contributing mainly to the hydrolysis of triglycerides and B. 

fibrisolvens 49 contributing mainly but not exclusively to the hydrolysis of galactolipids 

and phospholipids (Lourenço et al., 2010). More recently, isolations of lipolytic 

clostridia, propionibacteria, staphylococci and selenomonads from the rumen have been 

reported (Cirne et al., 2006; Dighe et al., 1998; Jarvis and Moore, 2010; Krueger et al., 

2010). There have been very few recent studies comparing the effects of different energy 

substrates on the growth characteristics and lipolytic activities of these prominent 

lipolytic bacteria.   

Growth curves were performed measuring growth rate (Table 5.1) and maximum 

absorbance (Table 5.2) of A. lipolyticus 5S, B. fibrisolvens 49, P. avidum, and P. acnes 

in the presence or absence of glucose in four varying energy substrates. Each oil 

substrate and glucose treatment was analyzed separately to determine if there was an 

interaction between the bacteria. Propionibacterium acnes and avidum exhibited a much 

broader substrate range than A. lipolyticus 5S. Both species of Propionibacterium differ 

from  B. fibrisolvens 49 in their ability to ferment glycerol (Holdeman et al., 1977; 
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Stackebrandt and Schaal, 2006) and thus it is reasonable to hypothesize that they may 

hydrolyze triacylglycerides to access glycerol. However, the possibility that some of the 

liberated fatty acids may be assimilated into lipid membrane of these bacteria cannot be 

excluded. The results indicate that P. acnes and P. avidum generally grew the most rapid 

in every oil and glucose treatment when compared to the other bacterium (Table 5.1). 

However, the exception of this was P. avidum which did not grow the most rapid (P > 

0.05) when grown in flaxseed oil compared to the other bacteria. In contrast to this P. 

acnes in that same treatment had most rapid rate of growth (µ = 0.1100). 

Propionibacterium avidum supported the highest cell density consistently across all 

treatments when compared to the other bacteria. Propionibacterium acnes, however, 

consistently supported the lowest (P < 0.05) cell density among all treatments.   

Butyrivibrio fibrisolvens 49 also possesses a broad substrate profile, being able to 

catabolize and ferment a variety of polysaccharide and protein substrates. Nevertheless, 

many strains of B. fibrisolvens, including strain 49, do not ferment glycerol (Bryant and 

Small, 1956). Butyrivibrio fibrisolvens 49 thus likely expressed extracellular lipase to 

acquire nutritional sources of medium and long chain fatty acids for their cell 

membranes (Hazlewood et al., 1980). The growth curve results showed that B. 

fibrisolvens grew the slowest consistently when compared to the other bacterium.     

Anaerovibrio lipolyticus 5S has a limited substrate range, being able to ferment fructose, 

ribose, lactate and glycerol; the latter which may provide an important lipolytic niche for 

this bacterium in the rumen.  



 

 

 

 

 
 
 

 
 
 
Table 5.2 Least square means of the maximum absorbance (A600 nm) ruminal lipase-producing bacteria 
during growth in the presence of varying lipid substrates with or without added glucose. 

Maximum absorbance (A600 nm)a 
Energy Substrate Olive Oil Corn Oil Flaxseed Oil 
 Glucose 

present 
Glucose 
absent 

Glucose 
present 

Glucose 
absent 

Glucose 
present 

Glucose 
absent 

A. lipolyticus 5S 1.3767b 0.9483bc 1.3300ab 1.1433b 1.2300bc 1.1367b 
B. fibrisolvens 49 1.3733b 1.1883b 1.3100bc 0.9967b 1.3533ab 1.1117b 
P. avidum 1.6400a 1.8500a 1.4567a 1.6000a 1.4933a 1.6800a 
P. acnes 1.0117c 0.8933c 1.1767c 0.7657b 1.1300c 0.8653c 

Bacteria P < 0.0001 P < 0.0001 P = 0.0012 P = 0.0015 P = 0.0008 P < 0.0001 
SEM       0.0339        0.0634       0.0295       0.0935       0.0420        0.0343 
a Least square means within columns with unlike superscripts differ (P < 0.05) 

 
 
Table 5.1 Least square means of the growth rate of ruminal lipase-producing bacteria during growth in the 
presence of varying lipid substrates with or without added glucose. 

Mean specific growth rate (µ)a 
Energy Substrate Olive Oil Corn Oil Flaxseed Oil 
 Glucose 

present 
Glucose 
absent 

Glucose 
present 

Glucose 
absent 

Glucose 
present 

Glucose 
absent 

A. lipolyticus 5S 0.0752ab 0.0682ab 0.0829 0.0331b 0.0726b 0.0588ab 
B. fibrisolvens 49 0.0619b 0.0217b 0.0744 0.0216b 0.0342c 0.0319b 
P. avidum 0.0971a 0.0657ab 0.0526 0.0542a 0.0895b 0.0625ab 
P. acnes 0.0905a 0.0791a 0.0707 0.0539a 0.1100a 0.0843a 

Bacteria  P = 0.0114 P = 0.0311 P = 0.0886 P = 0.0001 P < 0.0001 P = 0.0104 
SEM        0.0059       0.0114       0.0072       0.0029       0.0053       0.0440 
a Least square means within columns with unlike superscripts differ (P < 0.05).  
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The growth rate and maximum growth for A. lipolyticus displayed results that fell in 

about the center of the other results when compared to the other bacteria. 

Even though glycerol was used as a negative control through this study, growth 

curves were performed on each bacterium in the presence of glycerol with or without 

glucose (Table 5.3).  The results indicated that P. avidum had the most rapid (P < 0.05) 

rate of growth in the presence of glucose while P. acnes had the most rapid (P < 0.05) 

rate of growth in the absence of glucose. 

Energy Substrate Comparative Assay with Glucose. Results (Figure 5.1) 

indicated that P. avidum had the highest (P < 0.05) rate of FFA accumulation (nmol/mL 

per h) no matter the substrate when compared to the other bacteria. Flaxseed and olive 

oil resulted in the highest (P < 0.05) rates of FFA accumulation among all four bacterial 

organisms (P < 0.05). 

The present study did not show significant interactions between log or stationary 

phases of growth for lipolytic activity. Results from this study give no indication on 

when the lipase for these bacteria are potentially produced. A study of A. lipolyticus 

done by Hobson and Summers (1967) suggested the organism produced two enzymes, 

an esterase associated mainly with the cells and a lipase which is secreted into the 

culture medium. Results from their study showed that one enzyme was preferentially 

produced during log phase growth and the other during stationary phase.  



 

 

 
 
Table 5.3 Least square means of the mean specific growth rate and maximum observed absorbance (A600 
nm) of ruminal lipase-producing bacteria during growth in the presence of glycerol with or without added 
glucose. 
  Mean specific growth rate (µ)a        Maximum absorbance (A600 nm)a 
 Glucose 

present 
Glucose 
Absent 

Glucose 
Present 

Glucose 
Absent 

A. lipolyticus 5S 0.0451bc  0.0194b  1.9900a  1.9000ab  
B. fibrisolvens 49 0.0265c  0.0145b  1.7767a  1.7267ab  
P. avidum 0.1023a  0.0220b  1.9500a  1.9990a  
P. acnes 0.0631b  0.0879a  1.5167b  1.3500b  

Bacteria P = 0.0001 P < 0.0001 P = 0.0023 P = 0.0236 
SEM        0.0065        0.0435        0.0670        0.1399 
a Least square means within columns with unlike superscripts differ (P < 0.05). 
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Figure 5.1. Rate of free fatty acid accumulation by pure cultures of ruminal bacteria incubated at 39°C in standard 
anaerobic medium containing glucose and in the presence of varying added energy substrates. Cultures were stopped at 
different phases of growth as indicated. a Free fatty acid accumulation for each energy substrate with unlike 
superscripts differ (P < 0.05). *Indicates difference in rate of free fatty acid accumulation between each bacteria (P < 
0.05). 61 
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In batch culture, numerous blebs are associated with the walls of A. lipolyticus during of 

early logarithmic phase of growth when lipase production appeared to be maximal 

(Henderson, 1971; Henderson and Hodgkiss, 1973).  

Hazelwood et al. (1979) found that B. fibrisolvens almost completely hydrolyzed 

galactolipids and phospholipids after 8 h of culturing, suggesting the effective lipases 

were also produced during log growth. However, very little has been reported on the 

expression of lipase activity against triacylglycerides by this bacterium.  

Pablo et al. (1974) found that lipase activity for P. acnes appeared to be 

expressed during early log growth, but expression was diminished in older cultures. 

Holland et al. (1979) further investigated lipase production by P. acnes and P. avidum; 

results suggested that the effects of energy source on the expression of lipase activity 

may be strain specific. Lipase expression by P. avidum appeared to be suppressed by 

glucose and both glucose and glycerol suppressed lipase production by P. acnes strain 

37, but neither substrate appeared to influence expression by P. acnes strain PF276. The 

growth curves from the present study showed that growth in glucose containing medium 

resulted in a reduction in overall maximum growth for P. avidum in the presence of each 

lipid and a reduction (P < 0.05) was seen for glucose and glycerol grown cells as well.  

Energy Substrate Comparative Assay without Glucose. Results (Figure 5.2) 

were consistent with the first assay showing that P. avidum had the highest (P < 0.05) 

rate of FFA accumulation, but unlike the first energy substrate assay, this study did not 

show a difference (P > 0.05) among oil treatments. Figure 5.1 shows that the FFA 

accumulation for olive oil and flaxseed did appear to be higher than for corn oil. Overall 
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the absence or presence of glucose did not appear to make a discernable difference 

between the two studies.   

 

Implications 

The results from this study indicate that olive oil and flaxseed oil are the energy 

substrates most susceptible to lipolysis and biohydrogenation in the rumen. Therefore, 

further research in vivo should be done to see if limiting their presence in dietary rations 

could have a substantial impact at reducing ruminal biohydrogenation. Also the results 

indicated that P. avidum had the highest activity in the presence of all the energy 

substrates suggesting that the focus needs to be on looking at methods to inhibit P. 

avidum. 

Based on the growth curves, completed here, glycerol supported the overall 

highest cell density for all four bacterial organisms. Further research should be 

completed to ensure that glycerol is not enriching the lipase-producing bacteria that 

might eventually adapt to the concentration levels being fed.  
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Figure 5.2. Rate of free fatty acid accumulation by pure cultures of ruminal bacteria incubated at 39°C in standard 
anaerobic medium without glucose and in the presence of varying added energy substrates. Cultures were stopped at 
different phases of growth as indicated. *Indicates difference in rate of free fatty acid accumulation between each 
bacteria (P < 0.05).
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CHAPTER VI 

CONCLUSION 

 

Strategies that protect lipids from rumen lipolysis may effectively promote 

ruminal escape and intestinal absorption of unsaturated fatty acids, resulting in the 

production of value-added ruminant products enriched with healthy unsaturated fats. 

Numerous studies have been conducted to characterize the biological and physical 

factors affecting ruminal lipolysis using rumen contents as incubation materials that 

likely acted as a solid support to stabilize the hydrophobic-hydrophilic interface, a 

phenomenon referred to as interfacial activation. A major limitation of studies conducted 

with particulate matter and digesta is that these materials are not homogenous in size or 

microbial composition which can lead to considerable variation and experimental error 

during their use in incubations.  

In an attempt to develop a consistent incubation system for culturing ruminal 

bacteria glass beads were examined as a substitute for rumen contents. Results showed 

that the introduction of glass beads into an in vitro incubation system markedly increased 

lipolysis activity by establishing a better interface between the water based media and 

the lipid energy substrate. The use of glass beads during incubation allows for a more 

controlled system that is uniform and consistent during culturing. In combination to the 

introduction of glass beads, the use of different head space gasses was also investigated 

to determine if their use had any effect on ruminal bacteria lipolysis. Previous work has 

implicated CO2 as having an inhibitory effect on lipase-producing bacteria. From the 
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results in this study it was shown that CO2 did not demonstrate an inhibitory effect. The 

application of CO2 into the incubation system allowed for the production of comparable 

results to other similar studies that traditionally have used CO2 to establish anaerobic 

conditions. The development of an in vitro ruminal bacterial incubation system will 

allow us to enrich, isolate and study lipolytic bacteria from the rumen, in hopes that a 

method to inhibit ruminal lipolysis can be developed.   

Previous research has indicated that supplementing glycerol into ruminal diets 

can inhibit lipolysis up to 60-80%. Studies were conducted to further examine glycerol’s 

effect on ruminal bacteria. Results showed that there does not appear to be a significant 

justification for supplementing glycerol above 6% concentration in the ruminal diet 

which, based on other glycerol research, should avoid the possibility of negative effects 

on neutral detergent fiber digestion. Further research needs to be conducted in order for 

the best application in feeding increasing amounts of glycerol to be developed to achieve 

the maximum reduction in the accumulation of free fatty acids without reducing neutral 

detergent fiber digestion.  

This study also focused on pure culture ruminal bacteria in order to provide 

insight on the mechanism of inhibition that glycerol has on individual bacteria found in 

the rumen. Results indicated that lipolysis by B. fibrisolvens 49 and P. acnes was not 

inhibited by end-product inhibition and that it was most likely inhibited by the 

interruption of the transcription process of mRNA. This knowledge helps us to know 

that the lipase of A. lipolyticus 5S and P. avidum is most likely easier to manipulate and 
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inhibit. Therefore, our attention is more directed on trying to inhibit the lipase activity of 

A. lipolyticus 5S and P. avidum versus the other experimental bacteria. 

In addition, the effects of introducing different energy substrates in the presence 

of pure cultures of ruminal bacteria were evaluated to better characterize the effects of 

those substrates on the lipid profile most likely found in the rumen. Olive oil and 

flaxseed oil appeared to be the most susceptible energy substrates to lipolysis in this 

study. It is possible the bacteria targeted these two energy sources more than corn oil due 

to their fatty acid composition. Olive oil is composed primarily of oleic acid, flaxseed oil 

is composed mainly of α-linolenic, acid and corn oil consists of predominantly linoleic 

acid. Therefore, this work supports supplementing more corn oil in the ruminal diet due 

to its potential to escape the majority of lipolysis.  

The ruminal bacterium P. avidum consistently demonstrated across every study 

to have the highest amount of lipolysis activity indicating that the high rate of lipolysis 

in the rumen could be contributed to mainly P. avidum. The combination of these studies 

suggest that further work needs to be done in the direction of developing a strategy for 

inhibiting P. avidum with the overall goal of protecting rumen susceptible fatty acids 

such as oleic acid and flaxseed oil in an attempt to reduce lipolysis and 

biohydrogenation.  
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