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ABSTRACT 

 

The Effect of Moisture Absorption on the Physical Properties of Polyurethane Shape 

Memory Polymer Foams. 

(May 2011) 

Ya-Jen Yu, B.S., Feng Chia University; M.S., National Taiwan University 

Chair of Advisory Committee: Dr. Duncan J. Maitland 

 

 The effect of moisture absorption on the glass transition temperature (Tg) and 

stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has 

been investigated. With our ultimate goal of engineering polyurethane SMP foams for use 

in blood contacting environments, we have investigated the effects of moisture exposure 

on the physical properties of polyurethane foams. To our best knowledge, this study is the 

first to investigate the effects of moisture absorption at varying humidity levels (non-

immersion and immersion) on the physical properties of polyurethane SMP foams. The 

SMP foams were exposed to differing humidity levels for varying lengths of time, and 

they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% 

relative humidity for 96 h. Differential scanning calorimetry results demonstrated that 

water absorption significantly decreased the Tg of the foam, with a maximum water 

uptake shifting the Tg from 67 °C to 5 °C. Samples that were immersed in water for 96 h 

and immediately subjected to tensile testing exhibited 100% increases in failure strains 

and 500% decreases in failure stresses; however, in all cases of time and humidity 
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exposure, the plasticization effect was reversible upon placing moisture-saturated 

samples in 40% humidity environments for 24 h. 
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1. INTRODUCTION 

 

 Shape memory polymers (SMPs) are smart materials that can store a metastable 

geometry or geometries and then actuate to a primary geometry after introduction to a 

stimulus such as heat or moisture. Because of this capability, SMPs have attracted 

increasing attention from the scientific community and are being proposed for numerous 

applications in diverse arenas, ranging from the aerospace to biomedical industries [1]. 

SMP foams are of particular interest because they exhibit large volume expansions upon 

actuation [2].  Raytheon is currently investigating SMP foams for implementation in 

aerospace applications, and an SMP foam-based biomedical implant device for treating 

aneurisms is currently being developed [3]. Neat SMPs and SMP foams can be 

manufactured to respond to specific stimuli such as heat [4], light [5], electric fields [6], 

magnetic fields [7], and moisture [8]. Currently, thermo-responsive SMPs have received 

the most attention for implementation in device-based applications [9].  

 Traditional thermo-responsive, two-shape SMPs are heated above a transition 

temperature, Ttrans, deformed, and subsequently cooled below Ttrans to fix a secondary 

geometry. The secondary geometry is maintained because thermodynamic barriers 

prevent the polymer chains from relaxing and returning to their original state of higher 

entropy, which the chains automatically assumed during initial polymerization or 

processing. Ttrans can be a glass transition temperature (Tg), a crystalline melt temperature 

(Tm), or another transition temperature [4]. After heating above Ttrans, a deformed SMP  

____________ 
This thesis follows the style of Smart Materials and Structures. 
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Figure 1 Schematic representation of the molecular mechanism of the thermally induced 
shape-memory effect for (a) a multiblock copolymer with Ttrans=Tm; (b) a covalently 
cross-linked polymer with Ttrans=Tm; (c) a polymer network with Ttrans=Tg. If the increase 
in temperature is higher than Ttrans of the switching segments, these segments are flexible 
(shown in red) and the polymer can be deformed elastically. The temporary shape is fixed 
by cooling down below Ttrans (shown in blue). If the polymer is heated up again, the 
permanent shape is recovered [4] (The figure is modified from Lendlein A and Kelch S [4] 
to draw). 
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returns to its high-entropy state, which is the original geometry. At the molecular level, 

netpoints such as covalent crosslinks, crystalline phases, and chain entanglements 

enhance the SMP systems by keeping polymer chains from sliding past one another while 

the polymer is heated above Ttrans in Figure 1 [10].  

 Previous studies on polyurethane SMPs have focused on synthesis [11-12], structural 

modeling [13], thermo-mechanical characterization [14], and moisture effects [15]. Yang 

investigated the effects of moisture absorption on shifting the glass transition temperature 

to lower values and the corresponding stress-strain behavior of neat polyurethane SMPs.  

Yang’s studies revealed that absorbed water in polyurethanes falls into two categories: 

bound water and free water. Bound water, which acts as a plasticizer by occupying 

hydrogen bonding sites between interchain carbamate N-H and C=O groups, significantly 

lowers Tg and therefore significantly alters stress-strain behavior. Free water, on the other 

hand, has much less of a plasticizing effect for polyurethanes. In the full FTIR spectrum 

of polyurethane SMPs, the infrared band of the hydrogen-bonded C=O stretching shifts 

slightly to a lower frequency after immersion because of firm hydrogen bonding. In 

contrast, the infrared band of hydrogen-bonded N–H stretching shifts to a higher 

frequency with the increase in immersion time because of loosely bound water having 

weaker hydrogen bonding. Xu et al. focused on the moisture effect to decrease the Tg and 

hardness of attapulgite clay reinforced polyurethane shape memory nanocomposites [16]. 

With moisture effect on nanocomposites, the results show that heating treatments for 

nano-powders result in moisture loss. Also, the decrease in the number of surface 

hydroxyl groups generates a crystallized and bundled structure. The decrease in the 
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moisture content of SMPs reinforced with attapulgite clay is improved by increasing the 

interfacial bonding between polymer and filler.   

 The above discussion indicates that hydrogen bonding has a significant influence on 

the Tg and mechanical properties of PU SMPs before and after water absorption. 

Hydrogen bonding has effects on polar groups, such as those contained in dry nylon 6,6. 

Dry nylon 6,6 (Tg= 50 °C) has a higher glass transition than dry polycaprolactone      (Tg= 

-60 °C) because of its ability to form hydrogen bonds between the carbonyl oxygen and 

the amide hydrogen atoms within the polymer chain. These hydrogen bonding forces can 

decrease the chain mobility to result in a higher transition point. Also, in nylon 6,6, the 

planar amide (-CO-NH-) groups are very polar, so nylon forms multiple hydrogen bonds 

among adjacent strands to have higher crystallinity.  

 Although Yang’s studies and those of others have effectively characterized the effects 

of moisture absorption on the thermal and thermo-mechanical properties of urethane 

SMPs [16-17], these studies have been limited to neat polyurethane SMPs. Research 

related to the effect of moisture exposure on polyurethane foams has examined moisture 

diffusion rate and mechanical property changes [18-19]; however, the effect of moisture 

uptake on the shape memory behavior of polyurethane foams has yet to be evaluated.   

 In this study, we evaluated the effect of moisture absorption on the Tg and stress/strain 

behavior of polyurethane SMP foams made from a urethane SMP composition described 

in Wilson 2007 [4]. The composition of SMP foams was synthesized by hexamethylene 

diisocyanate (HDI), N,N,N’,N’-tetrakis(2-hydroxypropyl) ethylenediamine (HPED), and 

triethanolamine (TEA). Moisture uptake at different temperatures and humidity levels 

were measured using thermogravimetric analysis (TGA) and mass ratio analysis. Fourier 
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transform infrared (FTIR) was used to analyze the interactions of the absorbed water with 

the N-H groups and C=O groups of the urethane foams. Some water molecules absorbed 

in the polyurethane SMP foams bridge the gaps between the hydrogen bonded N-H and 

C=O groups to cause the IR absorbance shift.  Moisture-induced Tg effects were 

measured using differential scanning calorimetry (DSC). Tg shift effects decide whether 

the polymer can maintain the deformed shape in the “package” and “in vivo” conditions 

or not. The effect of water uptake on the stress/strain and shape memory behavior of the 

foams was evaluated by strain to failure and free strain recovery experiments. 
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2. EXPERIMENTAL 

 

2.1 Polyurethane foam synthesis and sample preparation 

 

Polyurethane SMP foams were prepared based on a technique developed by Dr. 

Thomas S. Wilson at Lawrence Livermore National Laboratory.  Prepolymers were made 

from hexamethylene diisocyanate (HDI, 98%, TCI America), N,N,N’,N’-tetrakis(2-

hydroxypropyl) ethylenediamine (HPED, 98%, TCI America), and triethanolamine (TEA, 

99%, Sigma-Aldrich).  Foams were formulated from the prepolymers by adding the 

following surfactants, catalysts, and blowing agents in a Flackteck 150 DAC speed mixer 

for 15 s at 3400 rpm: DC-5179 (Air Products), DC-I990 (Air Products), T131 (Air 

Products), BL-22 (Air Products), DI water and Enovate (Honeywell Corp.) For foaming, 

an overall NCO/OH ratio of 1.05 was used. 

 After sample preparation, the polyurethane foams were dried at 90 °C for 12 h at 1 

torr to remove residual moisture. The samples were then placed in a CSZ MCBH-1.2-.33-

.33-H/AC environmental chamber at a controlled temperature of 25 °C, with controlled 

humidities of 40 %, 60 %, and 80% (simulating the general environment condition for 

“package”) for time periods of 0.5 h, 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 12 h, 24 h, 48h, and 96 h. 

For sample preparation at 100% humidity, the samples were immersed into a water bath 

at control temperatures of 25 °C or 37 °C (simulating the “in vivo” condition) for time 

periods of 12 h, 24 h, 48 h, and 96 h. 
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2.2 Characterization 

 

2.2.1     Moisture uptake 

 

TGA analysis was used to measure the water uptake of samples exposed to various 

humidities for time periods of 12 h, 24 h, 48 h, and 96 h. TGA was run on 10-15 mg 

samples in a TA Instruments Q80 thermogravimetric analyzer. TGA samples, tested in 

triplicate, were heated from 30 °C to 400 °C at 10 °C/min. In order to accurately evaluate 

the time it took the foams to reach moisture saturation at each humidity level, a second 

set of foam samples was subjected to mass ratio analysis. Five specimens of each sample 

were massed, exposed to the different humidity levels for 0.5 h, 1 h, 2 h, 3 h, 4 h, 5 h, and 

6 h, and re-massed immediately after removal from the environmental chamber.  

 

2.2.2     Glass transition temperature shift 

 

 DSC experiments were run using a TA Instruments Q200 differential scanning 

calorimeter from -40 °C to 80 °C at 10 °C/min on 5-10 mg samples to evaluate the effect 

of moisture absorption on Tg. To determine whether the Tg shift was reversible, samples 

that had been exposed to various humidity levels for 96 h were put back in the 

environmental chamber at 40% humidity for 1 day, 2 days, and 5 days, after which DSC 

experiments were run with the same experimental procedures described above. 
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2.2.3     Infrared band shift 

 

 The interactions between absorbed water molecules and hydrogen-bonded N-H and 

C=O groups were analyzed using a Bruker Tensor 27 FTIR spectrometer. A control foam 

sample that had not been exposed to moisture was run in addition to the humidified 

samples. FTIR spectra were collected by averaging 150 scans with a resolution of 4 cm-1 

and a wavenumber range of 600 cm-1 to 4000 cm-1. To determine whether the shifts in the 

IR spectra were reversible, samples that had been exposed to various humidity levels for 

96 h were put back in the environmental chamber at 40% humidity for 1 day, 2 days, and 

5 days, after which FTIR experiments were run with the same experimental procedures 

described above. 

 

2.2.4     Stress/strain behavior 

 

 Strain to failure experiments were carried out on 60 x 15 x 6 mm polyurethane foam 

samples using an MTS Insight 30 Universal Tensile Tester. In accordance with ASTM 

D638 Standard Test Method for the Tensile Properties of Plastics, samples were mounted 

in epoxy blocks and exposed to different humidity levels for 96 h. These samples were 

then immediately subjected to strain to failure experiments at a constant strain rate of 50 

mm/min at 25 °C. To determine whether the moisture-induced changes in stress-strain 

behavior were reversible, samples that had been exposed to various humidity levels for 

96 h were put back in the environmental chamber at 40% humidity for 1 day, after which 
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strain to failure experiments were run with the same experimental procedures described 

above. 

 

2.2.5     Shape memory effect     

 

 Free strain recovery experiments were carried out on 60 x 15 x 6 mm polyurethane 

foam samples in an MTS Insight 30 Universal Tensile Tester with a thermal chamber. In 

accordance with ASTM D3574-08 Standard Test Method for Polyurethane Foams, 

samples were mounted on epoxy blocks and exposed to 100% humidity for 96 h (one 

sample at 25 °C, and another at 37 °C). The samples were then gripped in the tensile 

tester, heated to 80 °C at 1 °C/min, and strained to 15%, 25%, and 35%. The strained 

samples were then cooled to 25 °C at 1 °C/min to fix the respective strains. Then, for free 

strain recovery, the bottoms of the samples were unclamped inside the thermal chamber, 

and the samples were heated to 80 °C at 1 °C/min to determine recoverable strain, which 

was measured by a laser extensometer. Percent recoverable strain, or recovery ratio, is 

calculated according to Equation (1), 

Recovery Ratio = Recovered length / Initial length * 100                             (1) 
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3. RESULTS AND DISCUSSION 

 

3.1 Moisture uptake 

 

 Results for percent moisture uptake as measured by TGA and mass ratio analysis are 

provided in Figures 2 and 3, respectively. For 40%, 60%, and 80% relative humidities, 

moisture absorption increased with humidity exposure time until 6 h, after which it 

generally remained constant. For the samples exposed to 100% humidity (i.e., immersion 

in water), reaching maximum water uptake took longer. As Figure 2 demonstrates, the 

maximum water uptake after 96 h at 25 °C in the 100% relative humidity environment 

was 8%, and this value did not change significantly when the temperature in the 

environmental chamber was increased to 37 °C. However, increased temperature did 

increase the moisture absorption rate [20]. The 37 °C sample reached maximum water 

uptake at 20 h, while the 25 °C sample did not reach maximum water uptake until 96 h. 

As expected, moisture absorption and moisture saturation levels were dependent on 

moisture exposure time, humidity level, and temperature. Our results prove that moisture 

saturation is dependent on the ambient humidity level that at higher humidity levels, more 

water uptake is possible [21]. 

 Figures 2 and 3 show the moisture absorption with water immersion is different 

from non-immersion water absorption. Even though the environmental chamber provides 

100% humidity, the 100% humidity absorption is not equivalent to water immersion. Our 

finding agrees with Loos et al., who showed that different environmental exposure affects 

the water absorption behavior [22]. 
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Figure 2 The effect of humidity exposure time up moisture absorption, measured by 
TGA. 
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Figure 3 The effect of humidity exposure time on moisture absorption, measured by 
mass ratio analysis. 
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3.2. Glass transition temperature shift 

 

 The glass transition temperatures of all samples decreased upon moisture absorption, 

as shown in Figure 4. After 12 h, the Tg’s of the foams generally reached a plateau. A 

maximum shift in Tg occurred for the 100% humidity foams (both 25 °C and 37 °C), 

where the Tg dropped from 67 °C to 5 °C after 96 h.  The moisture effects on Tg were 

reversible, as shown in Figure 5. Samples that were exposed to humidity for 96 h and 

then placed in the environmental chamber at 40% humidity exhibited significant moisture 

loss after 1 day.  The absorbed moisture for all samples was approximately the same after 

one day (2.2%). This value of 2.2% corresponds to the initial absorbed moisture value for 

the foam exposed to 40% relative humidity that is plotted in Figure 2. This moisture loss 

was accompanied by an increase in Tg: after being placed in the environmental chamber 

at 40% humidity for one day, the Tg’s of all samples increased to roughly the same value: 

42 °C, the Tg value for the initial foam exposed to 40% humidity that is plotted in Figure 

5. 

The PU foams characterized in this work are homogeneous, amorphous foams that 

exhibit a single Tg, 67 °C, which decreases as water is absorbed by the foam. The 

Gordon-Taylor equation predicts the effect of absorbed water on the glass transition 

temperature of polymers,  

)1(
)1(

11

2111

WkW
TWkTW

T gg
g −+

−+
=                                                                                         (2) 

where W1 is the weight fraction of water, Tg1 is the Tg of water, and Tg2 is Tg of the 

polymer. The constant k is equal to ΔCp2 /ΔCp1, which are the respective heat capacities 

for the materials in the equation with Tg1 and Tg2. Equation 2 predicts that absorbed 
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moisture, W1, will lower Tg. The increase in W1 value accompanies an increase in k. Lim 

1999 reported the equation describing the law of regular solution in the binary system and 

may not be appropriate for specific interaction between the polymers and water. However 

it is still widely accepted to describe the absorbed water dropped the Tg largely [23]. In 

the Figure 6, our system indicates that Tg decreases with the increase of the weight of 

water to foams but not in a linear manner. Also, we fit the experimental data to find the 

function between Tg and weight ratio of water to foam to express the following equation: 

Tg = 86.112*exp(-(weight ratio of water to foam)/5.868) - 17.529                       (3) 
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Figure 4 The effect of moisture absorption of Tg. 
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Figure 5 Change in Tg in a moisture absorption for up to 96 h, placing samples into 
environment chamber with 40% humidity at 25 °C for 1 day, 2 days, 5days.  
 
 
 

0 2 4 6 8 10
0

10

20

30

40

50

60

70

 

 

G
la

ss
 tr

an
si

tio
n 

te
m

pe
ra

tu
re

 (ο
C

)

Weight ratio of water to foam

y = 86.112*exp(-x/5.868) - 17.529

y: Glass transition temperature
x: Weight ratio of water to foam

 
Figure 6 The relationship of Tg versus weight ratio of water. 
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3.3. Infrared band shift 
 

 The control foam sample that was not exposed to humidity exhibited a bond N-H 

stretch intensity peak at 3307 cm-1. As Figure 7 indicates, the bond N-H stretch intensity 

peaks were shifted both to higher wavenumbers and higher intensities with increasing 

moisture absorption, with the 100% humidity samples exhibiting N-H stretch intensity 

peaks at approximately 3332 cm-1. Figure 8 shows the effect of absorbed moisture on the 

carbamate and urea C=O stretch intensity peaks, occuring at 1687 cm-1 and 1647 cm-1, 

respectively.  Although increased water content resulted in increased intensities for the 

respective C=O peaks, observable shifts in wavenumber did not occur. 

 In a moisture-free polyurethane foam, hydrogen bonding occurs between carbamate 

N-H and C=O groups. After moisture absorption, the hydrogens in water molecules can 

either form hydrogen bonding bridges between two carbamate C=O groups or occupy the 

hydrogen bonding sites at carbamate N-H groups that can be explained by the schematic 

model in Figure 9 [23]. Hydrogen bonds formed with the N-H groups cause the N-H 

infrared bands to increase in intensity and shift to higher wavenumbers because loosely 

bound water weakens the hydrogen bonding (shown in Table 1). Such behavior is 

apparent in the IR spectra in Figure 7 for our polyurethane SMP foams. In contrast, the 

hydrogen bonds formed with the C=O groups cause the C=O infrared bands to increase in 

intensity and shift to lower wavenumbers [24]. Although our foams exhibited increased 

carbamate C=O peak intensities with increasing moisture absorption, no discernable shift 

in wavenumber was apparent.   

 One possible explanation for this behavior is that the chemical structure of the 

polyurethane foams characterized in this work is significantly different from that of other 
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urethanes: there are no traditional hard and soft segments. Also, our foaming process 

includes the addition of water, which results in an increased urea content and even more 

hydrogen bonding interactions.  The foams are entirely comprised of 6-carbon-long 

diisocyanates and low-molecular weight tri-and-tetrafunctional alcohols, so the ratio of 

carbamate and urea linkages to the total number of molecules in the polymer is much 

higher than that of an SMP with an oligomeric soft segment. Since each carbamate 

linkage has two hydrogen bonding sites (C=O and N-H; three in the case of urea 

linkages), our foams have significantly more hydrogen bonding sites than a polyurethane 

with, for example, a polyethylene oxide or polybutadiene soft segment.  The urethane and 

urea in this study could have so great a number of bound carbonyls before moisture 

absorption that, even after maximum moisture absorption, there could still be no 

discernable shift in wavenumber. This theory could also explain why there are no 

apparent free carbonyl peaks in our IR spectrum. Since bound carbonyl peaks are 

significantly broader than free carbonyl peaks, it is possible that the broadness and 

intensity of the bond carbonyl peaks makes it impossible to observe the free carbonyl 

peaks [25-26]. 

 We found the moisture-induced shifts of the N-H peaks in the IR spectra peak to be 

reversible. Yang, et al. demonstrated such reversibility by driving off absorbed moisture 

by heating polyurethane samples [8]. We demonstrated a similar effect by placing 

moisture-saturated samples in a lower humidity environment (40% humidity). The N-H 

peaks shift back to 3307 cm-1 in the Figure 10, and the C=O peaks shift back to lower 

intensities after exposure to 40% humidity at 25 °C in the Figure 11. Although moisture 

appears to evaporate from our foams with relative ease (Yang, et al. heated neat 
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polyurethane at different temperatures to drive off moisture), this observation does not 

necessarily indicate that there are weaker hydrogen bonding interactions in our urethane 

than in other urethanes. Urethane foams have significantly more surface area than neat 

urethane films, so the significant moisture evaporation from the foams could simply be a 

result of increased surface area. 
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Figure 7 FTIR spectra of N-H stretching region of polyurethane foam with differing 
water uptake levels for up to 96 h. 
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Figure 8 FTIR spectra of C=O stretching region of polyurethane foam with differing 
water uptake levels for up to 96 h. 
 
 
 

 
 
Figure 9 Effects of water on the hydrogen bonding in polyurethane polymer (The figure 
is modified from Yang B et al. [8] to draw). 
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Table 1 (a) Original N-H stretch, (b) Dry polyurethane SMP foams, (c) Polyurethane 
SMP foams exposed to moisture. 

(a)  

N-H stretch has strong bond 

(b)  

Hydrogen bonding weakens N-H 
stretch, lowers its force constant, the 
bond N-H stretch intensity peaks 
shift to lower frequency 

(c)  

Loosely bound water molecule 
weakens hydrogen bond, it results in 
the bond N-H stretch intensity peaks 
shift back to higher frequency 
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Figure 10 FTIR spectra of N-H stretching region of polyurethane foam with differing 
water uptake levels for up to 96 h, placing samples into environment chamber with 40% 
humidity at 25 °C for 1 day. 
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Figure 11 FTIR spectra of C=O stretching region of polyurethane foam with differing 
water uptake levels for up to 96 h, placing samples into environment chamber with 40% 
humidity at 25 °C for 1 day. 
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3.4. Stress/strain behavior 

 

 Tensile testing data for all samples is provided in Table 2. Strain to failure results 

demonstrated that absorbed moisture significantly plasticized the urethane foams [27], 

although this plasticization effect proved to be reversible. Upon exposing the foam to 

humidity, the water molecules can act as a plasticizer that not only decreases the Tg, but 

also increase the breaking strain. The increase in water content corresponding with the 

decrease in stress and the increase in strain may result from the hydrogen bonding 

between polymer chains. As previous mentioned the water molecules can separate into 

two parts: one is free water that can freely transfer from holes to polymer chains, and the 

other one is bound water that can interact with functional groups of material. Extensive 

moisture absorption leads to the increase in bound water to interact with functional 

groups of PU foams. Water molecules, penetrating the inner structure of PU foams, act as 

a plasticizer to generate hydrogen bonding between N-H and C=O groups to permit 

polymer chains of molecules to move freely. In our research, the samples that were 

exposed to various humidities and then placed in the room temperature for 1 day 

exhibited failure strains on the order of 20% and failure stresses on the order of 50 kPa. 

The samples were exposed to 100% humidity, and then immediately tested within 1 h 

exhibited failure strains on the order of 30-40% and failure stresses on the order of 15 

kPa. Similar trends occurred for Young’s modulus values. The observed plasticization 

effect was in accordance with the results of Yang’s studies on the effects of moisture on 

the stress/strain behavior of neat polyurethanes. 
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Table 2 Mechanical property of polyurethane foams with different humidities absorption. 
  Breaking strain (%) Breaking tensile strength (kPa) Young modulus (kPa) 

25C-40%H-96h-after 1 day 21 ± 7 52 ± 11 281 ± 117 

25C-60%H-96h-after 1 day 18 ± 5 50 ± 12 282 ± 56 

25C-80%H-96h-after 1 day 18 ± 6 43 ± 13 275 ± 143 

25C-100%H-96h-after 1 day 23 ± 5 55 ± 13 247 ± 77 

37C-100%H-96h-after 1 day 21 ± 6 43 ± 11 226 ± 108 

25C-100%H-96h-immediately 31 ± 1 17 ± 1 52 ± 2 

37C-100%H-96h-immediately 41 ± 12 14 ± 5 35 ± 13 
                                                                                   (Average ± Standard deviation; n=10) 
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3.5    Shape memory effect 

 

Free strain recovery results for samples exposed to 100% humidity at 25 °C and 37 

°C for 96 h are provided in Figures 12 and 13. For 15% and 25% strains, the observed 

recovery ratio was approximately 95%. For 35% strains, the recovery ratio decreased to 

87%. Since the polyurethane foams characterized in this work were highly crosslinked, 

even strains as low as 35% could result in localized permanent deformations and 

destruction of foam cells [28]. 
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Figure 12 Recovery upon heating (Sample with condition of 100% humidity at 25 °C). 
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Figure 13 Recovery upon heating (Sample with condition of 100% humidity at 37 °C). 
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4. CONCLUSIONS 

 

 The water uptake of the polyurethane SMP foams characterized in this work 

increased with increased humidity exposure time, increased humidity, and increased 

temperature. The maximum water uptake was 8%, which occurred after exposure to 

100% humidity for 96 h at room temperature and for 20 h at 37 °C. At humidities less 

than or equal to 80%, moisture saturation occurred after 6 h.  

 The Tg of the polyurethane foams decreased upon moisture absorption, and a 

maximum shift from 67 °C to 5 °C occurred after 8% water uptake. This Tg shift affected 

a transformation from glassy to viscoelastic behavior when the SMP foams were 

subjected to tensile testing at 25 °C. Both the Tg shifts and the resulting mechanical 

behavior transformations were reversible upon placing the foams in a 40% humidity 

environment for 24 h. 

Recovery ratios approaching 100% for samples strained to 25% or less demonstrate 

that the SMP foams characterized in this work are potentially useful for applications 

where complete tensile strain recovery is necessary. 
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