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ABSTRACT 

 

Oceanic and Atmospheric Response to Climate Change Over Varying Geologic 

Timescales. 

 (May 2011) 

Stella C. Woodard, B.A., State University of New York-Oswego 

Chair of Advisory Committee: Dr. Deborah J. Thomas 

 

 Global climate is controlled by two factors, the amount of heat energy received 

from the sun (solar insolation) and the way that heat is distributed Earth’s surface. Solar 

insolation varies on timescales of 10s to 100s of thousands of years due to changes in the 

path of Earth’s orbit about the sun (Milankovitch cycles). Earth’s internal boundary 

conditions, such as paleogeography, the presence/absence of polar icecaps, 

atmospheric/oceanic chemistry and sea level, provide distribution and feedback 

mechanisms for the incoming heat. Variations in these internal boundary conditions may 

happen abruptly or, as in the case of plate tectonics, take millions of years. We use 

geochemical and sedimentological techniques to investigate the response of ocean 

chemistry, regional aridity and atmospheric and oceanic circulation patterns to climate 

change during both greenhouse and icehouse climates.   

To explore the connection between orbitally-forced changes in solar insolation, 

continental aridity and wind, we generated a high-resolution dust record for ~58 Myr old 

deep-sea sediments from Shatsky Rise. Our data provide the first evidence of a 
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correlation between dust flux to the deep sea and orbital cycles during the Early 

Paleogene, indicating dust supply (regional aridity) responded to orbital forcing during 

the last major interval of greenhouse climate.  The change in dust flux was comparable 

to that during icehouse climates implying subtle variations in solar insolation have a 

similar impact on climate during intervals of over-all warmth as they do during glacial-

interglacial states. 

The Carboniferous Period (359-299 Ma) marks a critical time in Earth’s history 

when a series of tectonic and biological events caused a shift in the mean climate state 

from a global “greenhouse” to an “icehouse”. Geochemical records extracted from 

sedimentary rocks deposited in shallow epicontinental seaways are increasingly being 

used to infer relationships between tectonism, carbon cycling and climate and therefore 

are assumed to reflect global ocean processes. We analyzed radiogenic isotopes in 

biogenic apatite along a North American transect to constrain the degree of geochemical 

coupling between the epicontinental seas and the open ocean. Our results argue strongly 

for decoupling of North American seaways from the open ocean by latest Mississippian 

time. 
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CHAPTER I 

INTRODUCTION 

 

 Global climate is controlled by two factors, the amount of heat energy received 

from the sun (solar insolation) and the way that heat is distributed Earth’s surface. Solar 

insolation varies on timescales of 10s to 100s of thousands of years based on changes in 

the path of Earth’s orbit about the sun (Milankovitch cycles). Earth’s internal boundary 

conditions, such as paleogeography, the presence or absence of large ice sheets, 

evolution of organisms, atmospheric greenhouse gas concentrations, ocean chemistry 

and sea level, provide distribution and feedback mechanisms for the heat energy 

received. Variations in these internal boundary conditions may happen abruptly or, as in 

the case of plate tectonics, take millions of years. The sedimentary record provides a rich 

archive of these climatic and environmental variations over geologic time. 

 Over the Phanerozoic (past ~600 million years), Earth’s climate has transitioned 

between relatively ice-free episodes (greenhouse), characterized by warm deep ocean 

temperatures and overall global warmth, and periods of extreme cold with extensive 

glaciation and permanent polar ice (icehouse). The wholesale shift between global 

“greenhouse” and “icehouse” climate modes happens gradually over millions of years, 

yet higher frequency changes are superimposed on the long term climate trend implying  

 

____________ 
This dissertation follows the style of Paleoceanography. 
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a certain level of climate variability regardless of the overall climate state. The temporal 

resolution of the geologic archive determines what questions we can answer about the 

evolution of Earth’s climate.  

 Here, we examine the response of the ocean and atmosphere to climate change 

on two very different geologic timescales. We use deep-sea sediments to generate the 

first high resolution dust record capable of resolving changes in continental aridity and 

wind patterns on orbital timescales ~58 million years ago, during the early Cenozoic 

“greenhouse”. This investigation provides a framework for understanding environmental 

responses to short-term climate variability driven by changes in solar insolation during 

an overall climate state very different from todays.  We also generate a long term 

radiogenic isotope record to explore the transition from global “greenhouse” to 

“icehouse” during the Carboniferous Period (359-299 million years ago) using fossils 

from shallow marine rocks from North America. The resolution of the record we 

generated allows us to consider long-term variations in ocean circulation patterns as a 

result of tectonic uplift and closure of a circum-equatorial oceanic gateway as well as the 

degree of geochemical coupling between records from the shallow epicontinental 

seaways and the open ocean.  

These studies contribute to our understanding of climate in different ways. 

Higher resolution studies provide a means of assessing the regional response of climate 

and the environment within the context of an overall “greenhouse” or “icehouse”, while 

long-term studies provide insight into mechanisms driving changes in the global climate 

state. Our record of early Cenozoic dust fluxes indicates an environmental response to 
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orbital-forcing is comparable to that seen on glacial-interglacial timescales, implying 

processes operating during greenhouse intervals have a significant and similar impact on 

climate as during icehouse intervals.  



 4

CHAPTER II 

EVIDENCE FOR ORBITAL FORCING OF DUST ACCUMULATION DURING 

THE EARLY PALEOGENE GREENHOUSE* 

 

Introduction 

The record of cyclic orbital variations in solar insolation (Milankovitch cycles) 

extends throughout most of Earth’s history. The long-term persistence of all three 

Milankovitch cycles (precession, obliquity, and eccentricity) in the geologic record 

indicates that orbital insolation variations have had an impact on regional and global 

climate regardless of overall climate state. Yet, the expression of orbital cyclicity in the 

sedimentary archive has varied through geologic time [Arthur et al., 1986; Herbert and 

D’Hondt, 1990; Herbert et al., 1995; MacLeod et al., 2001], likely as a consequence of 

changes in Earth’s internal boundary conditions (e.g., the presence or absence of large 

ice sheets, variations in atmospheric greenhouse gas concentrations, ocean chemistry, 

sea level, and paleogeography). 

           Although strong interrelationships exist among the various Milankovitch para-

meters (e.g., precessional modulation by eccentricity), each orbital component influences a 

particular aspect of the climate system.  Precessional variations in insolation are known 

to impact low latitude climate patterns by changing the seasonality of  

____________ 
*Reprinted with permission from “Evidence for orbital forcing of dust accumulation 
during the Early Paleogene greenhouse” by S.C. Woodard, D.J. Thomas, S. Hovan, U. 
Röhl and T. Westerhold, 2011. Geochemistry, Geophysics, Geosystems, 12, Q02007, 
copyright [2011] by American Geophysical Union. 
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insolation, and therefore seasonal contrasts, thereby exerting strong influence on the 

monsoons which ultimately determine precipitation [Labeyrie et al., 2002]. Obliquity or 

the Earth’s axial tilt, determines the sun’s elevation above the horizon and therefore, the 

amount of summer insolation received at high latitudes [e.g. Imbrie et al., 1993]. 

Changes in the distribution of insolation on Earth’s surface, and consequently 

temperature gradients, may be a mechanism to connect low and high latitude climate by 

enhancing poleward material fluxes [Raymo and Nisancioglu, 2003]. Eccentricity 

variations directly influence the average solar insolation reaching Earth. Eccentricity 

cycles seem to dominate some climate records, yet researchers struggle to explain this 

climate response when the shorter orbital frequencies of precession and obliquity have 

more influence over the distribution of heat on Earth’s surface. It may be that longer 

periodicities observed in the geologic record simply reflect an increasingly non-linear 

response of the climate system to precessional or obliquity forcing [e.g. Maslin and 

Ridgwell, 2005; Liu et al., 2008].  

During the Plio-Pleistocene icehouse, orbital cycles identified in stable isotope 

records are also found in the record of dust supply to the oceans and ice [Rea, 1994; 

Tiedemann et al., 1994; Rea et al., 1985; Hovan et al., 1989; Petit et al., 1999; Svensson 

et al., 2000; Winckler et al., 2008], deep-ocean circulation patterns [Boyle and Keigwin, 

1987], deep-ocean carbonate ion concentrations [Farrell and Prell, 1989], and 

atmospheric greenhouse gas concentrations [Petit et al., 1999]. Variations in these 

climate parameters are all linked, directly or indirectly, to major fluctuations in 
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continental ice sheets and global temperatures [Berger and Loutre, 2004; Short et al, 

1991].  

 Similar orbital cycles are recorded in deep-sea sediments of Early Paleogene age 

[e.g., Norris and Röhl, 1999; Röhl et al., 2000, 2001, 2003, 2007; Pälike et al., 2001; 

Westerhold et al., 2007, 2008] – the last major greenhouse interval, ~65-45 million years 

ago. Numerous lines of evidence indicate that the Early Paleogene was a period of 

greenhouse global warmth, with little to no evidence of permanent ice at the poles [e.g., 

Sluijs et al., 2009]. For example, evidence from recent drilling in the Arctic Ocean basin 

indicates a warm and brackish environment [Moran et al., 2006; Pagani et al., 2006] 

with warm-temperate, mixed conifer/deciduous forests colonizing the northern high-

latitudes [Sluijs et al., 2006; 2009]. The fossil record shows the range of subtropical flora 

extended at least to the mid-latitudes [Hunt and Poole, 2003; Greenwood and Wing, 

1995], and mixed thermophilic/temperate insect assemblages are suggestive of a “highly 

equable climate” [Greenwood et al., 2005]. Measurements of δ18O in benthic 

foraminiferal tests estimate mid-late Paleocene deep-water temperatures of 7-10°C [e.g., 

Zachos et al., 2001], implying high-latitude sea surface temperatures far above freezing.  

There is only very limited evidence of permanent polar ice during the early Cenozoic 

[Schmitz, 2003; DeConto and Pollard, 2003]. Thus the orbital frequency cycles found in 

Early Paleogene sediments cannot be attributed to the waxing and waning of large ice 

sheets, and must, therefore, reflect some other climatic response to changes in solar 

insolation. 
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 Early Paleogene deep-sea sediments recovered from the western North Atlantic 

(Blake Nose), the southern Atlantic (Walvis Ridge) and the northwest Pacific (Shatsky 

Rise) contain lithologic cycles with established and accepted periodicities of 100 kyr and 

400 kyr (Figure 2-1) [Röhl et al., 2001, 2003; Westerhold et al., 2008]. The cyclic 

lithology is precisely correlated among all locations and is sufficiently long and 

continuous to imply a global-scale controlling mechanism – orbitally forced changes in 

insolation. Furthermore, the cyclostratigraphy established by the global correlation of the 

lithologic cycles [Westerhold et al., 2008] is now accepted as the basis for the Paleogene 

timescale, enabling the most precise inter-site correlation possible and cited as evidence 

for the relative completeness of various stratigraphic sections [e.g., Schulte et al., 2010].  

However, the connection between orbital scale lithologic cycles and the presumed 

associated insolation forcing is more spatially variable for Cretaceous and early 

Paleogene sediments than during the Pleistocene, suggesting a more complex climatic 

response. For example, lithologic cycles in Early Paleogene and Late Cretaceous Blake 

Nose sediments are dominated by the precessional cycle with a minor component of 

eccentricity [e.g., MacLeod et al., 2001]. These cycles are interpreted to reflect 

productivity variations driven by cyclic changes in upwelling intensity and/or delivery of 

nutrients via continental weathering [Kroon et al., 2001; Norris and Röhl, 1999; Pälike 

et al., 2001; Röhl et al., 2000; 2001; 2003; 2007]. Precessional and eccentricity cycles in 

the South Atlantic (Rio Grande Rise and Walvis Ridge) may reflect changes in carbonate 

dissolution rates, terrigenous sediment supply, or sea surface productivity [Herbert and 

D’Hondt, 1990; Herbert et al., 1995]. Unraveling the nature of the lithologic cycles 
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Figure 2-1. Globally correlated sedimentary cycles. Sediments are from the Pacific (ODP 
Site 1209) and the Atlantic (ODP Sites 1262, 1051) Oceans as well as land section Zumaia 
used for orbital calibration of Paleocene time [Westerhold et al., 2008]. Black box highlights 
section used in this study, 800 kyr interval spanning ~4.2 m of sediments from Site 1209, 
Shatsky Rise. Reprinted from Palaeogeography Palaeoclimatology Palaeoecology, 257, 
Westerhold et al., Astronomical calibration of the Paleocene time, p. 387, Copyright (2008), 
with permission from Elsevier. 
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(e.g., what are the relative changes in dissolution, terrigenous inputs, productivity, etc.) 

is crucial toward understanding which aspects of the climate system are impacted by 

orbital variations in insolation.  

          The first step toward understanding how orbitally driven changes in insolation impact 

climate during greenhouse intervals is to reconstruct how the input signal is translated to 

the sedimentary record. The biogenic carbonate component of marine sediments has 

been a sensitive recorder of orbital cyclicity throughout geologic time [e.g., Arthur et al., 

1986; Bottjer et al., 1986; Herbert and D’Hondt, 1990], because several aspects of the 

climate system ultimately dictate carbonate content in deep-sea sediments. The calcium 

carbonate content of pelagic sediments is controlled by surface-water production of 

carbonate microfossils (supply), the preservation of carbonate during sedimentation and 

burial (dissolution), and the flux of other sedimentary constituents (dilution). Thus a 

decrease in sedimentary carbonate content may result from diminished production, 

increased dissolution, a relative increase in terrigenous sediment supply, or a 

combination of these factors. Each of these factors is a function of prevailing climate 

parameters. Sea-surface productivity is strongly dependent on wind stress and upwelling 

of nutrient-rich waters, or nutrient inputs from weathering and runoff. The corrosiveness 

of deep and bottom waters is controlled by atmospheric pCO2 and deep-ocean 

circulation. Delivery of terrigenous sediments to the deep sea, by wind or hemipelagic 

plumes, depends upon on continental weathering and runoff, both of which are tied to 

regional climate 
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 It is likely that several of the above climatic parameters varied in concert during 

the Early Paleogene as they did during the Pleistocene. Thus, identifying which factors 

controlled the accumulation of calcium carbonate and caused the lithologic cycles with 

orbital frequencies is complicated. However, we can eliminate several variables through 

careful selection of the study location. In remote regions of the ocean, far from any 

paleo-shoreline, the only likely source of continentally derived materials is the wind 

[Rea, 1994; Rea et al., 1985]. By selecting a site located in the center of an ocean basin 

during the targeted study interval, we can eliminate cyclic changes in hemipelagic inputs 

as a mechanism for diluting the calcium carbonate content. Furthermore, if the paleo-

location of the site was within a subtropical gyre, sea surface productivity would have 

been consistently low and relatively stable, effectively eliminating cyclic changes in 

carbonate production as a variable.  

 Shatsky Rise presents such a location. During the Early Paleogene, paleo-

geographic reconstructions place Shatsky Rise in the center of the subtropical Pacific 

gyre, far from the continents (Figure 2-2) [Hay et al., 1999]. A section of ~58 Myr old 

sediments recovered from the rise during Ocean Drilling Program (ODP) Leg 198 

consists predominantly of nannofossil ooze with varying amounts of clay. The lithologic 

cycles manifest as slight variations in sedimentary carbonate identified by changes in 

magnetic susceptibility and sedimentary Fe content. In deep-sea sediments, variations in 

magnetic susceptibility and Fe content are often inversely proportional to carbonate 

content and likely represent changes in terrigenous clay minerals. It is important to note 

that the Fe content is not itself a direct proxy of terrigenous silicate minerals, but a useful 
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Figure 2-2. Paleocene location of Shatsky Rise. ODP Site 1209 (blue), LC44-GPC3 and 
DSDP Site 576 (light blue), in the Pacific Ocean. Black lines denote plate boundaries and do 
not imply elevation above sea level. 58 Ma plate reconstruction was created based on 
magnetic frame of reference (www.odsn.de; Hay et al. [1999]). 

 
first order gauge of clay content. The concentration of terrigenous material must be 

determined independently. By selecting Shatsky Rise as the study location, we can 

effectively eliminate two of the four potential causes of the recorded lithologic cycles: 

hemipelagic inputs and significant variations in sea surface productivity. Thus, we focus 

on the relative contributions of dust accumulation (as a potential mechanism for 
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carbonate dilution) and carbonate dissolution to the generation of the recorded lithologic 

cycles. 

 

Dust as a Paleoclimate Proxy 

The mineralogy of alumino-silicate material deposited on the seafloor is similar 

to that of atmospheric dust transported by the overlying winds [Windom, 1975; Prospero 

et al., 1981; Janecek and Rea, 1983; Chuey et al., 1987]. This suggests ocean currents do 

not transport eolian material significant distances after it settles to the sea surface. 

Researchers have exploited this observation by using eolian material isolated from deep-

sea sediments as a proxy for atmospheric circulation patterns and vigor [Clemens, 1998; 

Janecek and Rea, 1983; 1985; Hovan and Rea, 1992], dust source regions and changes 

in the aridity and/or vegetation cover of those regions [Rea, 1994; Kohfield and 

Harrison, 2001; Vandenberg and Jarrard, 2004; Stancin et al., 2008]. 

Eolian grain size and mass accumulation rates (MARs) fluctuate independently, 

implying each records the response of a different combination of environmental 

parameters [e.g., Rea, 1994]. The average grain size of dust deposited in the open ocean 

indicates wind intensity [Hovan and Rea, 1992; Rea, 1994] or shifts in the location of 

prevailing winds (e.g., features such as the ITCZ or westerlies) [Janecek and Rea, 1985; 

Prospero, 2002; Hyeong et al., 2006]. In order for dust to be transported long distances 

the velocity of the transporting wind must be sufficiently strong to keep it suspended in 

the atmosphere [Pye, 1987]. Therefore, changes in the average grain size of 
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accumulating dust are interpreted to reflect variations in wind strength over the region 

throughout time. 

The rate of dust accumulation in a given location depends upon the load carried 

by the wind. This is controlled by several factors, notably the aridity of the dust source 

region and its proximity to the depositional site [e.g., Rea, 1994 and references therein], 

hydrologic cycling, wind intensity, vegetation cover, and glacial erosion [e.g., Harrison 

et al., 2001 and references therein]. Arid regions tend to produce the most dust [e.g., 

Clemens and Prell, 1990; Harrison et al., 2001]. Yet a region needs some level of 

rainfall to facilitate weathering of rock minerals and soil development, which ultimately 

supply material of suitable size to be entrained by the winds. If a region becomes hyper-

arid (< 100 mm of precipitation annually), dust generation declines and thus, dust flux 

declines [Pye, 1989]. While the development of hyper-arid conditions is of some 

concern, decreased dust MARs in the sedimentary record are typically interpreted to 

represent more a humid climate at the dust source [Rea, 1994; Hovan et al., 1989; 

Vandenberg and Jarrard, 2004; Holmes et al, 2004]. 

 Dust is produced by erosion of soils and exposed unconsolidated sediments 

scoured by the wind [Gillette, 1977; Alfaro and Gomes, 2001]. In order for dust to be 

transported out over the oceans far from its source, it must be injected sufficiently high 

into the atmosphere [Pye, 1987; Rea, 1994]. Large windstorms are an obvious 

mechanism for entraining dust and moving it to the upper troposphere where it can travel 

great distances. Therefore, the injection of dust into the atmosphere is likely to occur in 

pulses brought about by seasonal variations in wind intensity and storms [Windom, 1975; 
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Pye, 1987]. New work by McGee et al. [2010] supports this notion, suggesting the 

“gustiness” related to steep meridional temperature gradients was the fundamental driver 

of glacial increases in dust accumulation. Clemens [1998] observed a seasonal dust 

deposition in the Arabian Sea related to the onset of summer monsoonal circulation. This 

indicates dust accumulation records may reflect variations in storm frequency rather than 

changes in environmental parameters such as source region aridity or relative wind 

intensity. However, in regions of the ocean where sedimentation rates are low, benthic 

organisms mix the uppermost sediments, removing any seasonal signals. Therefore, in 

slowly accumulating marine sediments bioturbation smears temporally fluctuating 

signals such that only robust climatic shifts occurring on timescales >1000 years are 

preserved in the lithologic record [Rea et al., 1985]. 

 

Study Location and Sampling Strategy 

 Shatsky Rise, presently in the northwest Pacific Ocean (32°N, 158°E), is the only 

location with a known orbital lithologic record of Paleocene age appropriate for 

investigating changes in atmospheric dust. Plate reconstructions place Shatsky Rise in 

the center of the northern tropical Pacific (~15-20° N) near the center of the subtropical 

gyre, during the early Paleogene [Hay et al., 1999] (Figure 2-2). The paleo-location, 

remote from ocean ridges and active volcanoes, makes significant contribution of ash to 

the sediments, and subsequent alteration of the eolian signal, unlikely. The southern end 

of the rise presents a simplified depositional environment where the oligotrophic waters 

of the ancient gyre resulted in low, relatively stable production rates [Bralower et al., 
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2006]. Most importantly, the distance of this site far from any ancient coastline makes 

wind the most likely mechanism for terrigenous sediment delivery. 

We analyzed sediments from ODP Site 1209, situated on the southern high of Shatsky 

Rise, at ~2300 m paleo-water depth. At this site the recovered sedimentary section 

appears exclusively pelagic and uninfluenced by bottom water currents [Bralower et al., 

2002]. The early Paleogene age sediment is dominantly very fine-grained material 

(nannofossils and clay) with occasional horizontal laminations [pers.observation, SCW 

2007], further indicating it did not experience post-depositional winnowing. We sampled 

approximately 4.2 m of the sedimentary section spanning eight consecutive 100 kyr 

eccentricity cycles that are ~58 million years old [Westerhold and Röhl, 2006; 

Westerhold et al., 2008] (Figure 2-1, peaks 79-71). Eight to ten samples, spaced ~2-4 cm 

apart (representing ~6-10 kyr of time), were taken to adequately characterize each 

eccentricity cycle.  

 We chose an interval of “normal” sedimentation (excluding the late Paleocene 

– early Eocene hyperthermals) to examine the effect of orbital forcing on deep-sea 

lithology without the need to account for possible influences of anomalous climatic 

events. In particular, the extreme climate events in the geologic record (such as the Early 

Paleogene hyperthermals) have received great attention in the past decade as potential 

analogs for the rate and magnitude of future warming. However, it is equally important 

to understand the characteristic “background” variability of the “greenhouse” climate 

system. Our data provide a context for understanding the general relationships between 
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changes in orbital parameters, boundary conditions and climate during periods of overall 

global warmth. 

 

Analytical Methods 

 All samples were freeze-dried to remove water. Approximately 0.5 g of 

sediment was separated and homogenized with an agate mortar and pestle for carbonate 

content analysis. The remaining 3-4 g of sediment subjected to chemical treatments to 

extract dust. 

 

Carbonate Content 

 Percent total carbon was determined on bulk sediment samples using a UIC 

CM 5012 CO2 Coulometer at Texas A&M University. Five to 10 mg samples were 

weighed into ceramic boats and combusted at 1000°C in a high temperature furnace. 

Coulometer measurements were taken using a 3-4 minute count time and one minute 

purge time between samples. Analyses of two lab standards, reagent grade sucrose (%C 

= 41.6% ± 0.6, 2s.d., N=21) and Midway sediment (%C = 2.64% ± 0.04, 2s.d., N=525) 

were used to monitor instrument performance. Replicates were analyzed for one quarter 

of the samples and are included in Table 2-1; averages corrected for organic carbon 

content are plotted as percent carbonate in Figure 2-3. 

 Four samples (~50 mg each) were acidified using 1N HCl to remove carbonate, 

then analyzed for organic carbon content. Percentages of organic carbon were low and 

uniform between samples. The average organic carbon content (0.04 ±0.009%, 2 s.d.) 
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Figure 2-3. Bulk sedimentation rates and carbonate content. Comparison of linear 
sedimentation rates (LSR) calculated from tie points used in orbital calibration of Westerhold 
et al., [2008] option 1 and sediment fluxes derived using 3HeET constant flux as well as bulk 
sediment mass accumulation rates (MARs) determined using both LSR-based and 3HeET-
based sedimentation models. Sedimentary carbonate content (wt %) is shown in purple.

 

was subtracted from the measured total carbon to determine percent carbonate for each 

sample (Figure 2-3).
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Table 2-1. Carbonate and Dust Data for Shatsky Rise, Site 1209
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Table 2-1. continued 
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Table 2-1. continued 
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Table 2-1. continued 

 
 

Dust Extraction 

Refractory alumino-silicates were isolated from ~3-4 g of bulk sediment through 

a well-established series of chemical extractions [Rea and Janecek, 1981; Clemens and 

Prell, 1990; Hovan, 1995]. To remove carbonate, sediments were placed on a shaker 

table in 25% acetic acid for 2 hours. Sediments were then leached in a warm (80°C) 

sodium dithionate-sodium citrate solution buffered with sodium bicarbonate to remove 

oxy-hydroxides and zeolites. Opal removal by sodium carbonate was not necessary as 

previous analyses indicated the sediment used in this study contained no biogenic silica 

[Bralower et al., 2006]. The isolated material, operationally defined as “eolian dust”, 

was rinsed several times to remove any traces of chemical residue, freeze-dried and 

massed to determine the sediment’s eolian weight percent (Table 2-1). Estimates of 

sedimentary dust content from biogenic sediments using this method are generally 

reproducible within 10-15% [Rea and Janecek, 1981; Hovan et al., 1991]. 

We emphasize the fact that the extracted “dust” residue is operationally defined 

and therefore may contain materials of volcanic or authigenic origin. However, XRD 
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and Nd isotope analyses indicate the majority of the isolated material is comprised of 

quartz, feldspars, mica and clay minerals, which implies a continental source.  The εNd(t) 

values of the extracted dust also support a typical shale composition derived from 

continental sources and rule out authigenic contributions to the fine fraction [Woodard et 

al., 2009; Woodard and Thomas, 2009]. 

 

Eolian Grain Size 

Grain size distributions of the eolian component were determined using a 256 

channel Beckman Multisizer 4 Coulter Counter (Indiana University of Pennsylvania) 

with a 50µm aperture and 150,000-particle count. Samples were suspended in a 5 g/L 

calgon solution and sonicated for 5 minutes prior to analysis to evenly disperse the 

material. Each sample was analyzed twice and the resulting distributions averaged. Grain 

sizes for each sample represent the median volume percent and are expressed as median 

diameters, φ50 (Table 2-1, Appendix B), where  

   φ50 = -log2(diameter in mm) 

Variation in median grain size between replicate samples was <15%. 

 Relative wind intensity changes were estimated by comparing the squares of 

the median grain size diameters (DH,L) of two samples, which we assumed represent the 

ratio of high to low wind intensities (RW) [after Janecek and Rea, 1985]. 

 

RW = (DH)2 / (DL)2 
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Mass Accumulation Rates 

Sediment mass accumulation rates (MARbulk) were determined using the 

equation: 

MARbulk = LSR • ρbulk (• fx) 

where LSR is the linear sedimentation rate (cm/kyr), ρbulk is the dry bulk density (g/cm3) 

and fx is the weight percent fraction of the component of interest. The age model we 

employ to determine the linear sedimentation rates (Figure 2-3, Table 2-2) is based on 

the orbital cyclostratigraphy established by Westerhold et al. [2008] and widely accepted 

as the new basis for the Paleogene time scale. The age tie-points (Table 2-1) are 

determined in relation to the orbital solution provided by Laskar et al. [2004], which 

uses the more stable long eccentricity period of 405 kyr. Linear interpolation between 

datums (biostratigraphic, magnetostratigraphic, orbital) has been the convention for 

calculating sedimentation rates in pre-Pleistocene sections, and the availability of the 

astronomical age model represents a significant improvement in the temporal resolution 

of datums (which are often several hundred thousand to millions of years apart in the 

Paleocene). 

An alternate sedimentation model has been presented by Marcantonio et al. 

[2009] using extraterrestrial (ET) 3He constant flux as a proxy for sediment 

accumulation. The bulk sediment MAR is determined by dividing the known flux of 

3HeET by the amount measured in a sediment sample. This method determines the MAR 

without the need for an independent age model or interpolation between tie points and 

gives an “instantaneous” flux of material to the seafloor. However, linear sedimentation 
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Table 2-2. Sedimentation Rates and Age Models for Site 1209
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rates may be derived by dividing the 3HeET based bulk sediment MARs by the dry bulk 

density (see equation above). In order to assess how sensitive our dust record is to the 

choice of a sedimentation model, we calculated linear sedimentation rates from the 

3HeET MARs and compare both age model-based and 3HeET-based bulk sediment and 

dust mass accumulation rates. 

Gamma Ray Attenuation (GRA)-wet bulk density measurements were used to 

estimate dry bulk density by exploiting the linear relationship between shipboard  

physical properties measurements of wet and dry bulk density (after Lyle, 2003). An 

additional correction of 0.32 g/cm3 was subtracted from GRA-bulk density prior to 

calculation of ρbulk values to account for the offset between measured bulk density and 

those given by GRA [Bralower et al., 2002]. Dust MARs were determined by 

multiplying the MARbulk by the weight percent fraction (fx) of the non-dissolvable 

mineral component of the sediment (Figure 2-4, Table 2-1). 

 

Statistics 

 Statistical correlations were performed using KaleidaGraph (Version 4.03). 

Confidence intervals were established using unpaired t-tests. Spectral analysis of dust 

MARs and grain size was conducted using the SSA-MTM Toolkit (Version 4.4) 

available online at: www.atmos.ucla.edu/tcd/ssa/. Power spectra were estimated using 

the multi-taper method with a resolution of two, three tapers and a frequency ranging 

from 0 to 1/2 Nyquist frequency [Ghil et al., 2002]. Power spectrum confidence intervals 

are based on red noise null hypothesis [Mann and Lees, 1996]. We tested two different 
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Figure 2-4. Dust fluxes and grain size. Mass accumulation rates (blue) and median grain 
sizes (dark red) generated for Shatsky Rise sediments span nine consecutive short 
eccentricity cycles. Measured iron intensities (black) and interpreted eccentricity cycles, 
400 kyr (pink), 100 kyr (green) from Westerhold et al. [2008]. Core depth in revised meters 
composite depth (rmcd) from [Westerhold and Röhl, 2006]. Estimated age of boundary 
between magnetochrons C26n and C25r is 58.7 Ma [Dinares-Turrell, 2007; ICS website, 
Subcomission for Stratigraphic Information: http://stratigraphy.science.purdue.edu/ gssp/]. 
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age models for the dust flux records, one based on linear sedimentation rates using the 

widely accepted orbital age model developed by Westerhold et al. [2008], and the other 

based on sedimentation rates calculated from 3HeET derived sediment fluxes. All data 

was interpolated to even 10-kyr spacing prior to spectral analysis. To account for 

asymmetry, datasets were detrended and the mean removed. 

 

Results 

 Sedimentary carbonate content is high over the entire interval, ranging from 

88.7 to 96.9 weight percent (Table 2-1, Figure 2-3). Weight percent carbonate negatively 

correlates with Fe content (R = -0.441, p < .001, Figure 2-3). Bulk sediment MARs 

calculated using the orbital age model-based LSR averaged 0.60 ± 0.21 (2 s.d.) 

g/cm2/kyr. Average bulk MARs calculated using 3HeET accumulation are slightly higher, 

0.78 ± 0.88 (2s.d.) g/cm2/kyr [Marcantonio et al., 2009]. However, 3HeET-based MARs 

exhibit a much larger range, 0.24 – 2.1 g/cm2/kyr than orbital age model-based MARs 

(range = 0.46 – 0.87 g/cm2/kyr, Figure 2-3). Linear sedimentation rates determined using 

both methods are plotted in Figure 2-3. LSRs based on 3HeET-based MARs are much 

more variable than those derived using the age model perhaps due to the higher 

resolution of the 3HeET-based record (31 sample depths vs. four age model tie points, 

Table 2-2). 

 Sedimentary dust content ranged from ~0.2 to 2.7% (Table 2-1), and the 

variations in dust accumulation (Figure 2-4) correlate positively with sedimentary Fe 

content (R = 0.58, p < .0001). Eolian dust MARs over the eight consecutive cycles are 
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low, averaging only 3.9 ± 5.4 (2 s.d.) mg/cm2/kyr. Despite low accumulation rates the 

Site 1209 record displays up to four-fold fluctuations about the mean with dust MARs 

ranging from a minimum of 0.9 mg/cm2/kyr to a maximum of 16.6 mg/cm2/kyr (Figure 

2-4). An alternate set of Dust MARs calculated using sedimentation rates derived from 

3HeET constant flux proxy [Marcantonio et al., 2009] average 5.1 ± 6.1 (2s.d.) 

mg/cm2/kyr and show a range of 1.1 to 16.1 mg/cm2/kyr).  These variations are similar 

to those based on the orbital age model MARbulk (Appendix A). The most pronounced 

increases in dust flux occur over eccentricity peaks 71, 74, 75 and 79 (Figure 2-4), 

intervals characterized by the coincidence of 100 kyr and 400 kyr eccentricity maxima. 

There are minor or absent increases in dust MAR over eccentricity peaks 72, 76 and 77 

(Figure 2-4), where 400 kyr eccentricity minima overlap with 100 kyr maxima (the high 

dust content coinciding with peak 73 (Figure 2-4) is marked by a single, anomalous data 

point. The dust MAR calculated from this data point, 17.43 mg/cm2/kyr, was the highest 

of any generated in this study and likely reflects some error in the preparation or discuss 

this data point further and exclude it from the dataset used for spectral analysis). 

 Spectral analysis of the dust MAR record returned significant MTM power 

spectra at frequencies corresponding to orbital parameters. Power spectrum maxima are 

observed at 23, 42, 67 and 119 thousand-year periodicities when the dust record is tied to 

the LSR-based age model (Figure 2-5a) implying eccentricity, obliquity and precessional 

forcing. Spectral analysis of dust MARs using the 3HeET-based age model returns 

significant frequencies corresponding to 77, 41 and 30 thousand-year periodicities 
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Figure 2-5. Spectral analysis. a) MTM power spectrum of dust mass accumulation rate data 
using orbital LSR-based age modle. Significant power is found at frequencies of 0.043, 0.024, 
0.015, 0.008 cycles/kyr. b) MTM power spectrum for dust fluxes when 3HeET -based age model 
is used. Significant frequencies found at 0.033, 0.024 and 0.013 cycles/kyr. All data was 
detrended, mean removed and interpolated to even 10 kyr spacing prior to spectral analysis.
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(Figure 2-5b). In this case obliquity appears as the only orbital parameter pacing the dust 

MAR record. 

 Eolian grain size distributions range from median values of 8.75φ to 8.2φ. The 

record exhibits a slight fining upwards through stratigraphic section (Figure 2-4). High 

and low amplitude variations in median grain size occur on timescales shorter than the 

eccentricity cycles (Figure 2-4). The MTM power spectrum generated for dust grain size 

reveals significant periodicities of 63, 38, 25 and 17 kyr. However, these periodicities do 

not correspond to known orbital parameters. 

 

Discussion 

Causes of Cyclic Sedimentation 

 The variations in dust accumulation at Site 1209 correlate closely with changes 

in sedimentary Fe content. This tight coherence suggests that variations in eolian dust 

accumulation were paced by orbital frequencies, and spectral analysis of the dust record 

supports this finding (Figure 2-5). Thus cyclic changes in “dilution” by terrigenous 

sediments, in this case eolian dust, indeed contributed to the observed lithologic cycles. 

 However, the amount of “dilution” by dust was only sufficient to have 

changed sedimentary carbonate contents by ~1.5 % (assuming constant carbonate 

production rates).  As indicated in Figure 2-3, sedimentary carbonate content varied by 

up to ~8%, therefore we must consider the potential contribution of carbonate 

dissolution to the variations in lithology.  This is particularly important given the 
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relatively shallow CCD during the Early Paleogene [e.g., van Andel et al., 1975; Rea and 

Lyle, 2005]. 

 Carbonate dissolution might lead to apparent changes in the concentration of 

other sedimentary phases, however the variations in bulk sediment and carbonate 

accumulation recorded at Shatsky Rise are simply too small to explain the observed 

lithologic cycles (Figure 2-4). For example, assuming carbonate export to the deep ocean 

is 1 g/cm2/kyr and dust flux is constant at .005 mg/cm2/kyr, dissolution of ~80% of the 

carbonate at depth could explain the maximum range in sedimentary carbonate content 

(~89-97 %). Such high calculated dissolution rates could drive the large changes 

observed in the 3HeET-based bulk sediment MAR record and explain nearly the entire 

range in sedimentary dust content (0.5-2.2%). However, this would require the bulk 

sediment MARs to decrease by 5 to 10 – fold during periods of dust maxima.  Such large 

bulk accumulation rate changes are not observed in the data (Figures 2-3 and 2-4) 

indicating the variations in dust flux occurred independently of carbonate dissolution.  

 The observation that dust accumulation rates varied independently of 

carbonate accumulation is also supported by the fact that the dust and carbonate records 

do not mirror each other (Figures 2-3 and 2-4).  Furthermore, Marcantonio et al. [2009] 

noted that the 3HeET-based bulk sediment MAR appears to mimic the sedimentary cycles 

picked out in the Fe record. Thus dust flux estimates based on two completely different 

sedimentation models, the 3HeET constant flux proxy [Marcantonio et al., 2009] and the 

orbital age tie-point based LSR, display similar patterns in dust accumulation (Appendix 
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A).  Therefore, independent changes in the accumulation of both sedimentary 

components are required to explain the full range of variability observed in the data.  

 The record of coarse fraction content, an established proxy for carbonate 

dissolution [e.g., Broecker and Clark, 1999] (Figure 2-6), which in this depositional 

setting consists entirely of foraminiferal tests, further corroborates this finding 

[Westerhold et al., personal comm].  Comparison of the coarse fraction data [Westerhold 

et al., submitted to Paleoceanography] with dust accumulation indicates that carbonate 

 Figure 2-6. Comparison of dust mass accumulation rates (blue) (this study), crustal 
 
 
 
 
 

4He fluxes 
(red) [Marcantonio et al. 2009] and sedimentary coarse fraction (grey) [Westerhold et al., 
submitted]. Crustal 4He fluxes are based on sedimentation rates derived from extraterrestrial 
3He constant flux and assumed to represent terrigenous inputs [Marcantonio et al. 2009]. 
Sedimentary Fe content is plotted (broken line) with eccentricity peaks labeled for reference 
(green) [Westerhold et al., 2008; Marcantonio et al., 2009]. 

 
preservation (higher weight percentage coarse fraction) does not control the rate of dust 

accumulation. 

 Comparison of the dust accumulation rates with 4Hecrustal fluxes (an 

independent proxy for dust in marine sediments) indicates that both records demonstrate 
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a similar pattern of dust maxima and minima that correlate to the Fe cyclostratigraphy 

(Figure 2-6). It is not possible to directly compare accumulation rates derived from the 

two methods (it is not possible to convert the 4Hecrustal flux estimates to mg/cm2/kyr 

because the end-member composition of crustal 4He is not known [e.g., Patterson et al., 

1999].  Regardless, the coherence of the two independently generated dust accumulation 

records strengthens our conclusion that dust accumulation to the central tropical North 

Pacific was orbitally paced during the Early Paleocene greenhouse. In fact, Marcantonio 

et al. [2009] concluded that the 4Hecrustal fluxes correlate to the record of Fe counts, and 

suggested the possibility that dust fluxes were controlled by eccentricity variations, but 

this could not be proven due to the relatively low resolution of their data set.  

Furthermore, many of the differences between the two records can be reconciled by the 

overall lower resolution of the 4He-based record. 

 

Climatic Implications of Orbitally-paced Dust Accumulation 

 The dust accumulation data from Site 1209 demonstrates the relationship 

between orbital forcing and dust supply during a greenhouse climate. Dust fluxes to 

Shatsky Rise are similar to dust MARs determined in contemporaneous Paleocene 

sediments at nearby site LL44-GPC3, ~12 mg/cm2/kyr [Janecek and Rea, 1983]. All of 

these Paleocene dust MARs are approximately an order of magnitude less than modern 

dust accumulation rates for the central tropical North Pacific [Rea, 1994; Uematsu et al., 

1985].  The lower rates of accumulation are consistent with a more humid greenhouse 

atmosphere and fewer or smaller dust source deposits.  
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 The distribution of the insolation signal across Earth’s surface is primarily 

modified by orbital cycles with shorter periodicities [Berger and Loutre, 2004; Holmes 

et al., 2004]. The presence of the 41 & 42 kyr periodicities identified by spectral analysis 

of our record, regardless of age model used, links dust accumulation during a greenhouse 

climate to obliquity variations. As discussed earlier, obliquity controls meridional 

insolation gradients. Steepened insolation gradients would cause steepened temperature 

and atmospheric pressure gradients likely promoting conditions favorable for the 

development of large low-pressure systems - the meteorological mechanism suggested to 

explain the majority of dust deposited in the oceans far from continental sources [Pye, 

1987]. Recent work by McGee et al. [2010] points out that only ~0.3% of wind is strong 

enough to entrain the majority of dust and increases in Quaternary dust accumulation 

occurs during times of enhanced meridional gradients and the prevalence of strong 

winds. If dust MARs are determined by the strength of wind storm activity, obliquity-

driven increases in meridional insolation gradients could explain increased dust fluxes in 

our “greenhouse” record.  

 The pattern of dust accumulation clearly coincides with the 100- and 400-kyr 

changes in lithology (Fe counts) indicating a strong component of eccentricity forcing of 

dust accumulation.  Yet spectral analysis of the record using the LSR-based age model 

indicates that all three orbital parameters (eccentricity, obliquity and precession) 

contributed to variations in dust accumulation (Figure 2-4). It is significant that the 

amplitude of eccentricity-paced variations in our early Paleogene dust accumulation 

record was comparable to that recorded in Pacific Ocean Pleistocene glacial-interglacial 
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sedimentary sequences (~two- to four-fold) [Kohfield and Harrison, 2001; Winckler et 

al., 2008].  This suggests that the relative impact of orbitally-induced changes in dust 

accumulation may have been similar during the Pleistocene and Paleocene. 

 The causal relationship between eccentricity forcing and the factors that 

influence dust supply is relatively straightforward. Eccentricity is the only orbital 

parameter that controls the total amount of solar radiation received by Earth annually 

[e.g., Pälike, 2005]. At maximum eccentricity, the global variation in annual solar 

insolation can be as much as 24% causing the greatest seasonal contrasts to occur in both 

hemispheres [Williams et al., 2007; Pälike, 2005]. Such seasonal contrasts during a 

greenhouse climate would likely have manifested themselves as wet-dry variations 

[Barron, 1995; Williams, et al., 2007]. During maximum eccentricity (maximum 

seasonality) dust source regions would have experienced drier dry seasons leading to 

increased dust generation and wetter wet seasons allowing chemical weathering and 

runoff to recharge dust source regions with fine-grained materials. Variations in 

hydrologic cycling would have also impacted vegetation cover, in turn affecting dust 

supply. The coincidence of 100 kyr and 400 kyr eccentricity maxima would have 

amplified that seasonal contrast even further, explaining the largest peaks in dust 

accumulation (Figures 2-3 and 2-4). 

 The signal from climatic precession is always present in insolation time series 

and is modulated in amplitude by eccentricity [Pälike, 2005]. This leads to variability in 

the timing of periods of maximum insolation with respect to Earth’s seasons and 

ultimately effects the latitudinal distribution of the seasons.  The 23 and 119 kyr 
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periodicities identified by spectral analysis suggest a connection with 100 kyr 

eccentricity forcing modulating precession [Maslin and Ridgwell, 2005].  

 The coincidence of high dust MARs with eccentricity maxima as well as 

presence of obliquity and precessional components in the dust flux record implies that 

enhanced dust production/transport was tied to strong seasonality.  Intensification of 

seasonal contrasts during eccentricity maxima in the form of amplified wet-dry cycles, 

specifically the enhanced aridity of the dry season, provides a plausible mechanism for 

increased dust delivery. In addition, enhanced seasonality may increase dust storm 

generation causing higher dust fluxes to the pelagic ocean [Pye, 1987; McGee et al., 

2010]. This explanation is also consistent with the monsoonal type climate suggested to 

have dominated global atmospheric circulation patterns during the Paleogene [Lawrence 

et al., 2003; Holmes et al., 2004]. 

 

Implications of the Grain Size Distribution of Dust at Site 1209 

 While the flux of dust to the open ocean provides a relative constraint on the 

supply of dust available, the grain size distribution is dictated by variations in 

sandblasting efficiency, the size of soil aggregates at the source region, and wind speed 

[Muhs and Bettis, 2003; Alfaro and Gomes, 2001]. As the wind transports dust away 

from its source the majority of the particles settle out.  However, Gillette et al. [1974] 

showed that particles with a diameter of <14 μm are essentially “non-settling” and can 

remain suspended in the atmosphere indefinitely. Particles in this size range are capable 

of long distance travel in the upper troposphere where they form part of the background 
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atmospheric aerosol and are largely removed by precipitation.  This is supported by 

studies modeling atmospheric dust [Schütz et al, 1981], and sea-floor sediment data 

[Janecek, 1985] that indicate by >2000 km distance from shore atmospheric dust is in 

equilibrium with transporting winds [Janecek and Rea, 1985; Pye, 1987]. When the 

atmospheric dust load reaches equilibrium state, the grain size distribution of the dust 

remains constant proportional to the transporting wind velocity at the time.  

 Dust accumulating in the region of Shatsky Rise was likely transported 

thousands of kilometers from its source. The grain size distributions of our samples are 

typical of those classified as “dominantly to entirely eolian” [Rea and Hovan, 1995] 

(Appendix B). If we assume the region supplying dust to the central Pacific Ocean 58Ma 

did not change appreciably over our ~800 kyr interval, then physical conditions (i.e. 

saltation-sandblasting or soil aggregate size) dictating grain size at the source likely 

remained constant over the interval. Therefore, our dust grain size record can be 

interpreted to reflect changes in the carrying capacity of the wind whether controlled by 

absolute changes in wind speed or changes in the dominant delivery pathway of particles 

to the remote ocean.  

 Median grain size diameters of dust deposited on Shatsky Rise at ~58 Ma 

exhibits significant high frequency variability ranging from 2.3 - 3.4μm (8.75φ to 8.2φ) 

(Figure 2-4, Table 2-1), well within the “non-settling” size fraction range. The range of 

median grain sizes in the ~800-kyr Site 1209 record is consistent with coeval values 

reported from nearby DSDP Site 576 and LL44-GPC3 to the east (Figure 2-2) (~8.7φ 

and ~8.4φ, respectively) [Rea et al, 1985; Janecek and Rea, 1983].  However, the 
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variations in Site 1209 median grain size do not reflect known orbital frequencies 

(Figure 2-4). 

 Regardless of the lack of orbital periodicity, the eolian grain size distributions 

shed important light on the intensity of atmospheric circulation during the Early 

Paleogene greenhouse. The grain size record from Shatsky Rise is similar to that of 

eolian dust deposited in the Pacific Ocean over the past 750 kyr. Median grain sizes of 

dust deposited beneath the westerlies (Core KK75-02) and in the eastern equatorial 

Pacific (DSDP Site 503) ranged from 8.81φ to 8.37φ and from 8.79φ to 8.25φ, 

respectively [Janecek and Rea, 1985; Janecek, 1985]. Based on paleo-location, it is 

likely that Shatsky Rise lay within the tropical trade wind belts at ~58 Ma. Variations in 

wind intensity spanning several Pleistocene glacial-interglacial cycles (past 750 kyr) 

average 22% beneath the westerlies (KK75-02) and 36% under the trade winds (Site 

503) [Janecek and Rea, 1985]. Assuming dust deposited on Shatsky Rise was in 

equilibrium with transporting winds, we estimate relative wind intensity fluctuated by as 

much as 30-50% from the change in median grain size (see Methods). These values 

suggest relative trade wind strength and patterns were at least as variable in the early to 

late Paleocene as during the Pleistocene icehouse and the vigor of atmospheric 

circulation may have been comparable to the modern regime. Alternatively, similarities 

observed between our record and Quaternary grain sizes might simply reflect the natural 

variability in grain size distribution of background aerosol particles transported far out 

over the pelagic ocean, although they do imply that winds in the upper troposphere had 

similar carry-capacities. 
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Conclusions 

 The new records of eolian dust grain size and accumulation on Shatsky Rise 

for the time period ~58 Ma provide insight into the response of the paleoenvironment to 

orbitally paced changes in solar insolation. The range of eolian grain sizes analyzed is 

similar to that of dust presently accumulating in the central Pacific Ocean. This implies 

atmospheric circulation may have been as vigorous during the greenhouse at ~58 Ma as 

it has been throughout the late Cenozoic icehouse, corroborating other recent evidence 

that equator-to-pole thermal gradients may have been steeper than previously believed. 

The overall dust fluxes, however, were substantially less than modern due to an overall 

more humid atmosphere or fewer/smaller dust source regions during the early Paleogene 

(or a combination of both). 

The accumulation of dust at Shatsky Rise ~58 Ma is strongly correlated to the 

orbitally paced lithologic cycles defined by sedimentary Fe content. Thus we conclude 

that dust accumulation was likely controlled by the same forcing function – orbital 

eccentricity – establishing for the first time that eccentricity variations in solar insolation 

influence climate during greenhouse intervals as has been determined for glacial-

interglacial climate intervals. The data suggest that source regions supplying dust to the 

tropical North Pacific may have experienced amplified wet-dry cycles corresponding 

with orbital eccentricity maxima, and the relative response of dust supply to eccentricity 

forcing during the last major interval of greenhouse climate was comparable to that 

during the Pleistocene.  
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 Intervals of increased dust accumulation may “dilute” the total calcium 

carbonate accumulation, yet the recorded dust changes only account for a fraction of the 

total carbonate change. Therefore, some other mechanism controlling carbonate 

preservation at the seafloor must also have responded to orbital forcing, driving the total 

lithologic change (defined by the Fe or magnetic susceptibility variations) and 

accounting for the remaining difference in carbonate content. 
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CHAPTER III 

TH DERIVED DUST FLUXES TO THE TROPICAL PACIFIC OCEAN, 58 MA 

 

Introduction 

Geologic records of atmospheric (eolian) dust are increasingly used in 

paleoclimatic reconstructions because modern studies suggest mineral dust plays an 

important role, both directly and indirectly, as a climate feedback mechanism. Dust 

absorbs and scatters incoming solar radiation directly influencing the global heat budget. 

Additionally, dust grains of sufficiently small size can provide seeding material for 

clouds thereby impacting the planet’s hydrologic cycle. The presence of large amounts 

of dust in the atmosphere may also modify cloud properties. Since clouds serve as 

barriers for incoming UV in the atmosphere and outgoing IR radiation from Earth’s 

surface, their modification by dust indirectly impacts Earth’s radiative heat balance 

[Ramanathan et al., 2001; Kaufman et al., 2002]. Increased dust fluxes may play an 

important role in modulating climate through the development of ice clouds, especially 

in the tropics [Hoose et al., 2010]. Furthermore, eolian dust deposited in the ocean may 

spur primary production. Partial dissolution of detrital minerals at the sea surface 

releases iron [Jickells et al., 2005; Duce and Tindale, 1991; Mahowald et al., 2005], an 

important micro-nutrient that limits phytoplankton productivity in approximately one 

third of the Earth’s surface oceans [Boyd et al, 2005]. Therefore, increased dust flux to 

the open ocean may generate a positive climate feedback by stimulating the biologic 
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pump causing enhanced carbon export to the deep ocean thus drawing down atmospheric 

CO2. 

Most high-resolution geologic reconstructions of eolian dust focus on the late 

Neogene (last few million years) because of the abundance of well-dated sedimentary 

records and availability of ice cores. In general, studies of late Neogene dust records 

preserved in marine sediments indicate dust flux varied in concert with global ice growth 

and decay recorded by marine δ18O [Clemens and Prell, 1990; Rea, 1994; Hovan et al., 

1989; 1991; Winckler et al., 2008; Muhs and Bettis, 2003; Patterson et al., 1999; Petit et 

al., 1999; EPICA, 2004]. Dust records from ice cores show 10 to 20 fold increases in 

dust deposited in Greenland [e.g Biscaye et al., 1997] and Antarctic [Petit et al., 1999] 

ice sheets during the last glacial maxima. Tropical dust fluxes varied in concert with 

those at higher latitudes but the magnitude of variation was less, only ~2-fold [Winckler 

et al., 2008]. These records indicate a global-scale control of atmospheric dust. Changes 

in dust flux have been connected to source region aridity and meteorological conditions 

that promote the development of large storm fronts [Pye, 1989; McGee et al., 2010; 

Prospero, 1996; Rea, 1994 and references therein]. The increased dust flux during 

glacial periods are interpreted to reflect the reduction of atmospheric humidity [Hovan et 

al., 1989; Rea et al, 1994], desert region expansion [Pokras and Mix, 1985; Maher et al., 

2010] and decreased vegetation cover [Rea, 1994; Pye, 1987; Bergengren et al., 2001], 

as well as increased equator-to-pole temperature/pressure gradients responsible for wind 

storm development [McGee et al., 2010].  
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The response of atmospheric dust fluxes to changing environmental conditions 

during the greenhouse climate of the early Paleogene is not as well constrained as during 

the Neogene due, in part, to the lack of high-resolution sedimentary records. New 

astronomically tuned age models of Paleocene and Eocene time [Westerhold et al., 2008; 

Pälike et al., 2001] provide the opportunity to resolve dust fluxes in recently drilled deep 

sea sediments at a resolution high enough for comparison with Neogene 

“icehouse”records (e.g. Holmes et al., 2004; Marcantonio et al., 2009; Woodard et al., 

2011]. 

Early Paleogene dust reconstructions are also hampered by our inability to 

quantitatively measure the dust content of these sediments. “Traditional” chemical 

extraction techniques isolate refractory aluminosilicates from the sediments by 

dissolving biogenic carbonate, silica and apatite as well as authigenic oxy-hydroxides 

and zeolites [Rea and Janecek, 1981; Hovan, 1995]. The refractory non-dissovable 

minerals are thus operationally defined as “eolian dust”, but this fraction may contain 

volcanic ash and authigenic clays [e.g. Olivarez et al., 1991; Krissek and Janecek, 1993; 

Weber et al., 1996]. Studies of older sediments may be complicated by high abundances 

of authigenic material due to their relatively longer diagenetic history [Ziegler et al., 

2007a]. The potential for minerals derived from volcanic or authigenic sources to inflate 

estimates of the eolian dust flux in deep sea sediments has led to the use of independent 

geochemical proxies for dust such as sedimentary crustal 4He and 232Th concentrations. 

These proxies have proven successful in Neogene sedimentary sections where the 

volcanic contribution to the refractory sedimentary component was as much as 50% [e.g. 
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Patterson et al., 1999; Marcantonio et al., 2001; McGee et al., 2007; Winckler et al., 

2008].  

Helium in deep-sea sediments is derived from two primary sources, U-Th 

bearing minerals and interplanetary dust particles (IDPs) [e.g. Farley,1995; Marcantonio 

et al., 1995]. The He isotopic composition indicates the source of the He to the 

sediments. In typical deep-sea settings >99% of the 3He contained in the sediments is 

derived from extraterrestial sources [Hiyagon, 1994; Farley and Eltgroth, 2003; 

Marcantonio et al., 1995, 1996, 2009]. The 3He/4He ratio of the extraterrestrial end-

member has remained essentially constant at ~2.4 x10-4 throughout the Cenozoic [Neir 

and Schlutter, 1992; Marcantonio et al., 2009] allowing for the calculation of helium 

contributed to the sediment by terrestrial inputs. The vast majority of 4He is derived from 

terrestrial sources through alpha decay of U and Th, elements abundant in upper 

continental crust and virtually absent in volcanic materials [Taylor and McLennan, 1995; 

Patterson et al., 1999; Marcantonio et al., 1998].  

232Th is delivered to the ocean in association with continentally derived materials 

[Koczy, 1966]. Upper continental crust typically contains more than an order of 

magnitude more 232Th relative to basaltic volcanic material (10.7 ppm vs. 0.22 ppm, 

Taylor and McLennan, [1985]). Therefore the majority of  232Th in seawater is sourced 

from the continents. Thorium is highly particle reactive with an oceanic residence time 

of 10-40 yrs [Chen et al., 1986; Clegg and Whitfield, 1991], but particle scavenging of 

Th is likely a reversible process [Bacon and Anderson, 1982; Nozaki et al., 1981, 1987]. 

Recent studies suggest that 232Th in deep-sea sediments is associated with detrital 
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minerals and thus its presence correlates with terrigenous inputs into the ocean [Roy-

Barman et al., 1996; Marcantonio et al., 1995, 2001; Anderson et al., 2006].  A global 

compilation of 232Th content measured in modern loess and dust samples indicates a 

concentration range of ~7-14 ppm [McGee et al., 2007]. The 7 ppm variation indicates 

heterogeneity in the 232Th concentrations of weathered materials in the source regions. A 

growing body of work suggests that normalizing analyzed sedimentary 232Th 

concentrations to the average upper continental crust value of 10.7 [Taylor and 

McLennan, 1995] permits accurate estimation of overall dust accumulation [e.g. McGee 

et al., 2007; Winckler et al., 2008]. 232Th -based dust fluxes to the Arabian Sea were 

used to link variations in low latitude southwest monsoon to climate records from the 

North Atlantic providing evidence for a global teleconnection between atmospheric 

processes over the past 110 kyr [Pourmand et al., 2004]. 232Th has also been used to 

develop late Neogene glacial-interglacial eolian records in equatorial Pacific where 

previous dust studies were hindered by the large volcanic sedimentary component 

[McGee et al., 2007; Winckler et al., 2008]. 

In this study, we use the 232Th content of ~58 Ma, carbonate-rich sediments from 

Shatsky Rise to quantify eolian dust and compare these data with estimates of dust 

accumulation from the same sedimentary section based on “traditionally” extracted dust 

[Woodard et al., 2011] and 4Hecrustal concentrations [Marcantonio et al., 2009]. All three 

records show similar patterns of variation in dust flux, and these variations correspond to 

cyclic changes in orbital eccentricity [Westerhold et al., 2008; Woodard et al., 2011]. A 

comparison of the 4Hecrustal  and 232Th concentrations suggests that there were at least 
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two sources of dust to the central subtropical North Pacific during the late Paleocene, but 

variations in dust provenance do not appear related to orbital forcing.  In addition, we 

find that the majority of the sedimentary 232Th is associated with leachable oxyhydroxide 

coatings and the refractory extracted “dust”. This suggests that sedimentary Th 

concentrations may be useful in estimating the total dust flux to the ocean surface - the 

dust that dissolves in the water column as well as that preserved at the seafloor. 

 

Materials and Methods 

Site and Samples 

The study location is Ocean Drilling Program (ODP) Site 1209 cored at the 

southern end of Shatsky Rise (Figure 3-1), presently located in the northwestern Pacific 

Ocean (32°39’N, 158°30’E). Shatsky Rise presents an ideal location for investigating 

atmospheric dust fluxes during the early Paleogene. Paleogeographic reconstructions 

place Site 1209 in the central subtropical North Pacific, ~15-20°N during the Paleocene 

(Figure 3-1). This location would have been remote from continental coastlines 

effectively eliminating the potential for contamination of the eolian signal by 

hemipelagic sedimentation [Rea et al., 1985; Rea, 1994].  Furthermore, the section has 

orbital age control established using globally correlative eccentricity-scale variations in 

the sedimentary iron content [Westerhold et al., 2008]. 

 We measured the thorium concentration of 60 bulk sediment samples over a 4.5 

m sedimentary interval spanning ~800,000 kyr of time some 58 million years ago (Table 

3-1). We previously generated sedimentary helium abundances and isotopic composition 
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analyses [Marcantonio et al., 2009] and analyses of eolian content determined using the 

“traditional” chemical extraction technique [Woodard et al., 2011], on the same 

sedimentary section. 

 Figure 3-1. Pacific Ocean site map. Location of ODP Site 1209 (red) in the northwest 
Pacific Ocean as well as other deep sea sediment sites (purple) discussed in the text. 
Location of Shatsky Rise ~58 Ma based on paleo-reconstructions of Hay et al. [1999] is 
indicated by light blue “x”. 

 
 
 

To further investigate how the thorium signal is distributed in the sediments, we 

measured the Th content contained within the biogenic fraction (weak acid dissolvable) 
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and oxyhydroxide sedimentary coatings (hydroxylamine hydrochloride (HH) leachable) 

of an additional five bulk sediment samples. Earlier studies indicate carbonate content 

varies from 88-96 weight percent over the study interval [Woodard et al., 2011] and 

consists primarily of nannofossil ooze with only a minor foraminiferal component and 

no biogenic silica [Bralower et al., 2002]. We assume biogenic component consists of 

both biogenic carbonate (i.e., nanoplankton and foraminiferal remains) and apatite (i.e., 

fish debris), which dissolve completely after exposure to weak acetic acid. The HH 

leachable sedimentary fraction consists primarily of Fe-Mn based oxy-hydroxide 

coatings which form as authigenic precipitates on the exterior of marine particulates 

[Haley et al., 2004; Gutjahr et al., 2007]. In oxic waters, these coatings incorporate trace 

metals directly from porewaters within a few centimeters of the sediment-water interface 

and record the geochemical composition of the water mass bathing the seafloor [Haley et 

al., 2004]. We also analyzed the Th content of the refractory non-dissolvable mineral 

component of seven “dust” samples extracted using the traditional technique. Due to the 

high carbonate content, our samples were subject to large weighing errors (50-75%) of 

the decarbonated residue and extracted sediment residue.  As a result we were only able 

to determine the HH leachable weight percent of two samples (see Table 3-2) and unable 

to determine the [Th]  content of the residual sediment. The Th content of in remaining 

HH leachate samples is estimated assuming HH leachable component is 0.15% of the 

total sediment by mass.
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Table 3-1. Sedimentary [Th] for Site 1209 
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Table 3-1. continued 

 
Analytical Methods 

Freeze-dried bulk sediment samples were thoroughly homogenized in an agate 

mortal and pestle. Bulk sediment and refractory extracted “dust” samples, 0.1 g and 5-10 

mg respectively, were spiked with 50 ng 229Th and completely digested using HF, HNO3 

and HClO4 at 200°C. Th concentrations were determined via isotope dilution on the 

Thermo Element XR inductively coupled plasma mass spectrometer (ICP-MS) in the R. 

Ken Williams ’45 Radiogenic Isotope Geoscience Laboratory at Texas A&M University. 

Samples were analyzed using a 30 second uptake followed by a 60 second count time 

with a 10 minute wash between samples. A 2 ppb U-500 enriched uranium standard 

(235U/238U = 1) was measured every fifth sample and used to correct for machine 

fractionation during the analysis and monitor drift. Fractionation corrections were 

generally low, <0.2%/amu. Tailing from 232Th on 229Th was also corrected. Replicate 

analyses were performed for two samples, and differences in [232Th] between replicates 
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were <12%. 

To separate biogenic and oxy-hydroxide sedimentary fractions for 232Th 

determination we modified methods used by Gutjahr et al. [2007] and Haley et al. 

[2004]. The biogenic fraction (carbonate and apatite) was removed from ~0.3 g of bulk 

sediment by shaking in a 48:52 mixture of 1M acetic acid and 1M Na acetate buffer for 2 

hrs. The solution was then centrifuged and the decanted supernatant plus 3 milli-Q water 

rinses were combined and saved for analysis. The residual solids were dried, weighed 

and leached with a solution of 0.02M hydroxylamine HCl suspended in 20% acetic acid 

to extract the oxy-hydroxides.  Samples were centrifuged, the supernatant decanted and 

the remaining sediment freeze-dried and weighed. The decanted solutions, termed 

“biogenic” and “HH leachable”, were spiked with 229Th, allowed to equilibrate for 48 

hrs, then dried down, re-suspended in 2% HNO3 and analyzed on the ICP-MS. 

Procedural blanks were run with each method. In all cases, blanks contained 232Th 

concentrations equaling <2% of that measured in the samples. Therefore, no blank 

corrections were necessary. 

Sedimentary dust content was estimated by normalizing bulk sediment 232Th 

concentrations to that of average upper continental crust, 10.7 ppm [Taylor and 

McLennan, 1995]. 232Th-based dust fluxes are then calculated by multiplying the 

estimated sedimentary dust content by bulk sediment accumulation rates (MARbulk): 

 

232Th-based dust flux = 
[232Th]sample 

* MARbulk 10.7 ppm 
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230Th-normalized MARs are often used in conjunction with 232Th to determine 

eolian fluxes [e.g. Marcantonio et al., 2001; Pourmand et al., 2004] because both 230Th 

and 232Th can be measured during the same analysis. However this technique is not 

useful for early Paleogene sedimentary sequences due to the relatively short half-life of 

230Th (75.38 kyrs). 

 

 

Table 3-2. [Th] of Biogenic and HH Leachable Sedimentary Fractions 

 
 

 

Table 3-3. [Th] of Extracted “Dust” 
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In order to estimate sedimentary MARs we calculated two bulk sedimentation 

models for this interval. One is tied to an astronomical calibration of Paleocene time 

based on globally correlated variations in sedimentary Fe content [Westerhold et al., 

2008] and the orbital solution provided by Laskar et al. [2004]. This model relies on 

linear sedimentation rates (LSR) interpolated between four age-tie points over the 

interval studied. Bulk sediment fluxes are calculated by multiplying the LSR by dry bulk 

density derived from shipboard physical properties [Woodard et al., 2011]. The other 

sedimentation model is presented by Marcantonio et al. [2009] and uses the 

extraterrestrial (ET) 3He constant flux proxy. It is assumed that over geologically short 

time periods (< 1 Myr) the flux of 3He bearing IDPs to the deep sea occurs at a constant 

rate. Thus sediment MARs can be determined for any sedimentary interval by dividing 

the flux of 3HeET by the concentration of 3HeET measured in a sample. Bulk 

sedimentation rates calculated from both age models indicate low accumulation rates at 

Shatsky Rise during the study interval (<2.1 g/cm2/kyr), consistent with an oligotrophic 

pelagic setting. However, the sediment accumulation rates determined by Marcantonio 

et al. [2009] display a larger range and are temporally more variable than those 

calculated using linear sedimentation rates (Figure 3-2a). The difference is likely due to 

the fact that the 3HeET proxy estimates the “instantaneous” vertical rain rate of sediment 

for each sample analyzed while sedimentation rates based on the other method are 

smoothed due to interpolation between widely spaced age tie-points [Marcantonio et al., 

2009]. The range of variability in the 3HeET derived sediment accumulation rates 

encompasses that found using the orbital tie-point LSR model, therefore we used the  
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Figure 3-2. Comparison of bulk sedimentation rates and sedimentary dust using different 
proxies. a) Bulk sediment MARs calculated using 3HeET constant flux proxy [Marcantonio et 
al., 2009] and interpolated LSRs [Woodard et al., 2011]. b) ~800 kyr record of bulk 
sedimentary concentrations of [232Th] (this study), calculated [4Hecrustal] [Marcantonio et al., 
2009] and the extracted non-dissolvable mineral component [Woodard et al., 2011]. c) 
Comparison of terrigenous sedimentary content determined from measured [232Th] and the 
extracted “dust” record [Woodard et al., 2011]. d) 232Th -based dust flux determined using 
3HeET constant flux MARs [Marcantonio et al., 2009]. XRF Fe content is plotted for reference 
[Westerhold et al., 2008]; peaks 71-79 correspond to 100 kyr eccentricity cycles.
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3HeET derived bulk sediment MARs (Appendix C) for determination of Th-based dust 

accumulation and to compare dust fluxes in to the central subtropical Pacific during the 

early Paleogene with other records. When 3HeET based MARs were unavailable for a 

specific sample, we estimated bulk sedimentation rates by linear interpolation between 

3HeET tie points. 

 

Results 

 Bulk sediment Th concentrations range from 59 to 420 ppb (Table 3-1) and 

average 151 (±71, s.d.) ppb. The variations in sedimentary Th content are similar to 

changes in extracted dust (Woodard et al., 2011) and crustal 4He concentrations 

[Marcantonio et al., 2009] (Figure 3-2b). The Th-based sedimentary dust content ranges 

from 0.6 to 3.9 wt percent after normalization to average upper continental crust 

(assuming that all sedimentary Th is wind-blown terrigenous material). These 

percentages are slightly higher than those determined using “traditional” chemical 

extraction (0.2 – 2.7%; Woodard et al. [2011]) although the pattern of variation is 

similar (Figure 3-2c). The Th-based dust flux averages 11.0 ±5.9 (s.d.) mg/cm2/kyr over 

the entire interval and ranges from 2.4 – 39.6 mg/cm2/kyr. In general dust fluxes exhibit 

2 to 3-fold fluctuations about the mean. The maximum dust flux occurs as an isolated 

point early in the record (~234 rmcd) and is nearly double other dust flux maxima 

observed in the record. 

 232Th concentrations of the refractory extracted “dust” samples average 4.20 ppm 

(±0.57, s.d.; Table 3-2). The biogenic sedimentary component (weak acid dissolvable) 
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comprises the majority of the sediments by weight, but contains low Th concentrations 

(< 10 ppb, N=3). We find that ~98-99% of the total sediment is “biogenic” in the three 

samples analyzed. Th concentrations in the HH leachate were high (average 38.7 ppm, 

N=2). The HH leachable material comprised less than 0.25% of the bulk sediment. 

 

Discussion 

Comparison of Different Dust Proxies 

The Site 1209 bulk sediment Th concentration record provides an opportunity to 

evaluate the use of Th concentrations as a proxy for eolian dust accumulation during the 

early Paleogene.  For the first time we can compare records of all three dust proxies 

generated from the same sedimentary section in order to assess the fidelity of these tools.  

The three records demonstrate similar trends, particularly in the lower portion of 

the sedimentary sequence in which the sampling resolution is comparably high (Figure 

3-2b).  While the similarity between the 232Th and 4Hecrustal patterns is not surprising 

given the genetic relationship between the two nuclides, the coincidence of all three is 

significant and supports the use of these techniques in early Paleogene sedimentary 

sequences. 

 Although the dust proxy records show similar patterns of variation, the 232Th-

based estimate of sedimentary dust content (normalized to average upper continental 

crust) is roughly 40-60% higher than that determined using the “traditional” chemical 

extraction (Figure 3-2c). There are two potential reasons for the difference in 

reconstructed dust content. The first is that the “traditional” dust record is biased toward 
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low values because of sediment loss during the chemical extraction. Small losses can 

significantly impact the calculated flux, especially in carbonate-rich sediments where the 

lithologic component is < 5% [Hovan, 1995; Zeigler et al., 2007a]. The repeated 

washing and decanting involved in the traditional method of “dust” extraction can lead 

to errors of ±10-15% in the sedimentary dust content [Rea and Janecek, 1981; Hovan et 

al, 1991]. However, if this were the case, we would expect that samples containing 

lower percentages of dust to be most affected by systematic losses of sediment during 

extraction, resulting in a greater discrepancy between the 232Th -based and “traditional” 

records for low content values. But there is no consistent pattern of discrepancies 

between the two techniques in the data (Figure 3-2c).  

Alternatively, the 232Th concentration of bulk sediment may overestimate the 

fraction of terrigenous sediment that accumulates on the seafloor. While the majority of 

the 232Th measured in the sediment is derived from the continents, it is not necessarily 

bound in detrital minerals. Elevated concentrations of dissolved 232Th have been 

observed in the upper ocean and in remote regions (such as the central Pacific) are 

attributed to dissolution of eolian dust [Hiroseand sugimura, 1987; Tsunogai et al., 

1994; Guo et al., 1995; Clegg and Whitfield, 1991].  Dissolved thorium is rapidly 

scavenged by particulates in the water column and transported to the seafloor where it is 

incorporated into the sediments. Therefore the bulk sediment 232Th content may 

represent the total eolian dust flux to the sea surface, not only what is preserved at the 

seafloor but also that fraction that dissolves in the water column.  The traditionally 

extracted “dust” represents only the non-dissolvable mineral fraction stored in the 
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sedimentary record.  This assertion is supported by our data regarding how Th is 

partitioned within the sediments and explored further in the following sections. 

 

Evaluating Potential Non-eolian and Diagenetic Contributions to Extracted “Dust” 

One reason for exploring independent proxies for dust accumulation, particularly 

for older geologic intervals, is that  limited evidence exists which suggests  the 

traditionally extracted dust fraction may be influenced by volcanic or authigenic 

contributions. Chemical isolation of the non-dissolvable mineral fraction (dust) does not 

remove volcanics or clay minerals formed authigenically. The coherence of the 232Th 

and traditionally extracted dust records from ODP Site 1209 suggest that both proxies 

reflect the same process – accumulation of eolian dust.  

On the basis of the combined 232Th and traditionally extracted dust records, we 

can rule out significant volcanic contributions at Shatsky Rise.  Basaltic material 

contains over an order of magnitude less 232Th than upper continental crust [Taylor and 

McLennan, 1985], thus the presence of typical volcanic ash would increase apparent 

“dust” content while diluting the 232Th signal which is not observed in the records 

(Figure 3-2c).  Furthermore, the remote location of Shatsky Rise during the early 

Paleogene renders contamination by volcanic ash unlikely. Geochemical studies of 

recent sediments deposited in the central North Pacific confirm >85% of extracted 

“dust” is of continental origin indicating that volcanic material is not effectively 

transported large distances across the ocean [Olivarez et al., 1991; Weber et al., 1996]. 

Shatsky Rise also was far from active ocean spreading centers during our study interval 
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[Rea and Dixon, 1983].  

The new 232Th data combined with the 4Hecrustal data also rule out a significant 

authigenic component to the Shatsky Rise dust fraction.  Recent geochemical analyses 

by Zeigler et al. [2007a,b] identified a significant contribution of authigenic mineral 

phases in “dust” extracted using the traditional technique from carbonate-rich North 

Pacific sediments (ODP Site 1215), calling into question the use of traditional methods 

to reconstruct dust fluxes in material older than 50 Myr. REE profiles of the extracted 

dust exhibited a negative Ce anomaly similar to that observed in seawater, and they 

posited that this signal reflected the predominance of authigenic minerals in the dust 

fraction  (although the authigenic mineral phase carrying the seawater signature was not 

identified). If the extracted dust fraction were dominated by authigenic minerals, such 

mineralogy would have had significantly lower 232Th concentrations, hence lower 232Th -

based flux estimates.  Furthermore, widespread alteration of the reconstructed dust flux 

at other pelagic locations is unlikely for the following reasons. 1) The formation of large 

quantities of authigenic alumino-silicates requires a source of mobile silica [Mackin and 

Aller, 1984; Michalopoulos and Aller, 2004; MacKenzie and Kump, 1995]. Sources 

include biogenic amorphous silica or volcanic glass, both of which are readily leached 

and can react with available Al, Mg and Fe to form clay minerals. The early Paleogene 

sediments deposited at Shatsky Rise and other locations used in contemporaneous dust 

reconstructions [e.g., Rea, 1994] contained no significant traces of siliceous microfossils 

[Bralower et al., 2002] and insignificant amounts of volcanic glass. 2) XRD analysis of 

the extracted dust from Shatsky Rise indicates a mineral assemblage associated with 
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weathered continental crust: quartz, feldspar and kaolinite [Woodard et al., 2011]. 3) 4He 

cannot be incorporated into minerals by adsorption on surfaces, particle scavenging or 

biogenic uptake; rather it “grows” into minerals by alpha decay of U and Th [Patterson 

et al., 1999; Farley, 1995]. Additionally, the typical path length for a 4He particle during 

alpha recoil is 10-30 μm [Farley et al., 1996], much greater than the average grain size 

of the “dust” extracted from the sediments [Woodard et al., 2011]. Therefore, 

precipitation of authigenic minerals would contribute mass to the extracted “dust” 

component of the sediment without adding any 4He.  

The evidence cited above for minimal authigenic contributions to the dust 

fraction in pelagic sediments can be reconciled with the findings of Ziegler et al. 

[2007a].  We argue that the geochemical evidence cited by Ziegler et al. [2007a] was 

influenced by selection of a sedimentary section that was subject to a more complex 

diagenetic history.  The carbonate-rich sedimentary sequence at Site 1215 is much more 

condensed than at Site 1209 due to carbonate dissolution as the region thermally 

subsided over time and passed through the lysocline and eventually below the CCD. In 

addition, the carbonate-rich sequence at Site 1215 is directly overlain by pelagic red 

clays containing metaliferous deposits related to hydrothermal plume accumulation 

[Ruhlin and Owen, 1986; Zeigler et al., 2007b]. Mobile silica and metal elements from 

these plume deposits may have provided material for mineral formation and contributed 

to the geochemical signatures of the unidentified authigenic phases observed in the older 

sediments at Site 1215.  

The coherent relationship between sedimentary 232Th and crustal 4He 
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concentrations indicates that the terrigenous sedimentary fraction was not impacted by 

diagenetic alteration. While both elements are introduced to the ocean in association 

with terrigenous materials, they are present in different phases and therefore are subject 

to different oceanic processes. 4He exists as a gas and is implanted into a mineral’s 

crystalline lattice. The minerals are subsequently weathered to a grain size small enough 

to be capable of long-distance eolian transport [Farley, 1995; Patterson et al., 1999]. In 

deep sea sediments the majority of 4He is stored by trace minerals (e.g. zircon, sphene, 

igneous apatite) which comprise a very small proportion of the eolian dust load [Martel 

et al., 1990; Patterson et al, 1999]. A long term record of 4Hecrustal in marine sediments 

indicates that these minerals retain their original 4He signature over a period of at least 

70 Myr [Farley, 1995]. Th-rich detrital mineral phases certainly contribute to the 

sedimentary Th content, yet seawater also contains a Th load which is delivered to the 

deep ocean via scavenging, primarily by colloidal particles which are incorporated into 

larger aggregates and rapidly transported to the deep sea [Honeyman and Santschi, 1989; 

Roy-Barman, 2009]. More than 50% of the 232Th present in modern pelagic ocean 

sediments may exist in this sorbed phase and rather than locked in mineral lattices 

[Robinson et al., 2008; Roy-Barman et al., 1996]. Early diagenetic reactions at the 

sediment water interface often remobilize trace metals and could drive variations in 

232Th content by releasing adsorbed Th to the overlying water column. Low pore water 

concentrations [Somayaju and Church, 1973] combined with relatively high particle 

reactivity provide convincing evidence that 232Th has limited mobility in the sedimentary 

column [Antal, 1966; Bernat and Goldberg, 1969]. The coherence of our 232Th data with 
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4Hecrustal records, in addition to the coherence with the traditionally extracted dust, argues 

against significant remobilization of Th due to sedimentary diagenesis. 

 

Paleoclimatic Implications of the 232Th -based Dust Fluxes  

The average dust flux calculated using bulk sediment 232Th concentrations is 

more than double that determined using the traditional “dust” extraction method, 11.1 

mg/cm2/kyr vs 5.1 mg/cm2/kyr [Woodard et al., 2011]. Even so, our record indicates 

dust flux to the central Pacific was at least 4 times lower during the study interval 58 Ma 

than during the late Quaternary. The dust flux calculated for core-top sediments from 

nearby DSDP Site 463 (21°21N, 174°40E) is ~41 mg/cm2/kyr [Rea and Janecek, 1981]. 

This value is comparable to modern dust fluxes to the central subtropical N. Pacific 

average 50-100mg/cm2/kyr [e.g. Jickells et al., 2005], 5 to 10x greater than during the 

study interval. The overall lower average dust fluxes reconstructed for the early 

Paleogene are likely related to a relatively more humid atmosphere characteristic of 

global greenhouse climate [Rea et al., 1985; Rea, 1994]. However, if by analogy the 

atmospheric dust flux during the early Paleogene was a function of source region aridity 

and the prevalence of strong winds as indicated by high-resolution Quaternary records 

[e.g. Rea,1994 and references therein; McGee et al., 2010], then variations in dust mass 

accumulation in deep sea sediments deposited during greenhouse climate intervals must 

reflect environmental changes large enough to impact the supply of dust available for 

entrainment and transport.  

The Th-based dust fluxes vary significantly over the ~800 kyr record. The 
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highest amplitude variations are observed in the lower half of the record where dust flux 

maxima are as much as 8 times minima values (Figure 3-2d). Peaks in dust accumulation 

tend to coincide with increased sedimentary Fe content. Exceptions to this pattern are 

most evident at ~231 rmcd, where an inverse relationship is observed, and at ~233.35 

rmcd where a large increase in dust flux is not mimicked in the Fe record. The general 

agreement between our Th-based dust flux record and eccentricity cycles, identified 

using the sedimentary Fe [Westerhold et al., 2008], implies a connection between orbital 

changes in solar insolation and some aspect of dust production and/or entrainment. 

Environmental changes driven by orbitally paced insolation variations are well 

documented for the late Neogene glacial-interglacial cycles [e.g. Zachos et al., 2001 and 

references therein]. Our early Paleogene record implies a similar response to orbital 

forcing ~58 Ma, assuming the variations in dust accumulation are driven by changes in 

the hydrologic cycle and/or frequency of large wind storms.  The connection between 

variations in dust accumulation and orbital parameters lies in the amount and distribution 

of solar energy received by the Earth directly impacting annual seasonality and 

meridional temperatures gradients [Palike, 2005].  

Increases in dust accumulation generally coincide with eccentricity maxima 

[Marcantonio et al., 2009; Woodard et al., 2011; this study]. Peak eccentricity would 

cause greater seasonal contrasts and steepened meridional temperature gradients [Palike, 

2005; Berger and Loutre, 2002], both of which promote dust generation. Seasonality in 

tropical to sub-tropical regions typically is based on moisture, thus enhanced seasonality 

would lead to a more pronounced dry season, potentially increasing dust production. 



 64

Steepened meridional temperature gradients drive differences in atmospheric pressure 

resulting in stronger winds and the development of more large low-pressure systems, the 

meteorological mechanism responsible for long range dust transport [Pye, 1987; McGee 

et al., 2010]. Changes in surface temperature and pressure gradients would likely 

influence rainfall patterns as well.  Regardless of the precise mechanism responsible for 

enhanced dust generation/accumulation during eccentricity maxima, the new 232Th data 

confirm previous assertions that orbitally forced changes in solar insolation caused 

variations in dust accumulation during the early Paleogene greenhouse. 

 

Dust Sources Inferred From 4Hecrustal /232Th Ratios 

Linear relationships between sedimentary 4Hecrustal and 232Th concentrations have 

been used to validate 232Th fluxes as a proxy for eolian dust accumulation [Anderson et 

al., 2006; McGee et al., 2007] and as indicators of dust provenance [e.g. Winckler et al., 

2008]. Such work is based on the assumption is that the 4Hecrustal /232Th ratio will 

increase with the age of the source rock due to the production of  4He by the radioactive 

decay of U and Th. Thus, dust weathered from areas comprised of old cratonic bedrock 

will have high 4Hecrustal /232Th ratios relative to that supplied from younger or more 

volcanic-bearing source regions. A recent study of late Neogene sediments spanning an 

equatorial transect in Pacific Ocean produced three linear 4Hecrustal /232Th relationships 

and indicated a west to east decrease in 4Hecrustal /232Th ratios [Winckler et al., 2008]. 

This gradient was interpreted to reflect a change in the source of terrigenous sediment 

supply. Dust deposited from 160°E to 140°W reflected an older crustal source, 
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presumably Asian loess, while at 110°W, the source was significantly younger crust, 

probably from South America [Winckler et al., 2008].  

The relationship between the Site 1209 4Hecrustal and 232Th abundances indicates 

two distinct linear correlations (R2 > 0.9) suggesting at least two source regions that 

supplied dust to Shatsky Rise ~58 Ma (Figure 3-3a). While 4Hecrustal /232Th ratios do not 

absolutely or uniquely identify dust provenance, the data suggest relatively old 

continental sources of dust. Source rocks accumulate 4He over time as the result of 

radiogenic production, The relatively high 4Hecrustal /232Th ratios suggest source rocks 

with a long enough history to accumulate 4He. Variations in the provenance indicated by 

the 4Hecrustal /232Th ratios likely reflect the competing influence of the differerent dust 

sources.  

One possible scenario to explain the changes in dust provenance invokes a main 

continental dust source represented by the high 4Hecrustal /232Th endmember which is 

periodically diluted by particles with low 4Hecrustal /232Th ratios. Dust reaching Shatsky 

Rise ~58 Ma would most likely be carried by the northeast trade winds, assuming a wind 

regime similar to the modern. Source regions to the east include North and Central 

America and northern Africa. We consider northern Africa a potential dust source 

because it is comprised of relatively old cratonic rock and vegetation models indicate it 

was likely sparse savannah and shrubland at the time [Sewall et al., 2000], rendering it a 

prime region for dust production. In addition, the Panamanian gateway was open during 

the Paleogene and the Atlantic Ocean was narrower [Cande and Kent, 1995], making 

long distance transport of dust to the central Pacific more likely. Thus, dust from  
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Figure 3-3. 232Th-4Hecrustal source plot. a) Sedimentary 4Hecrustal [Marcantonio et al, 2009] 
plotted against 232Th concentrations. Two distinct linear trends suggest dust was supplied to 
by “older” (blue) and “younger” (pink) continental sources. Faded lines [modified from 
Winckler et al, 2008] represent Quaternary dust from the eastern equatorial Pacific (EEP, 
ODP Site 849), central equatorial Pacific (CEP, TTN013-PC72) and western equatorial 
Pacific (WEP, ODP Site 806). b) 232Th-based dust flux record with source variations 
indicated by color. Changes in dust source do not appear related to eccentricity changes 
identified by sedimentary Fe content [Westerhold et al., 2008].
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northern Africa may have been the main source of the ”old” dust component in our  

record. This is because material sourced from the Caribbean and North/Central America 

likely would have been derived from arc volcanism which was active throughout the 

early Cenozoic [Meschede and Frisch, 1998; Mitchell and Blissett, 1999]. Magmas with 

andesitic compositions are common for Paleogene age ignimbrites and contain on 

average 4.8 ppm 232Th [Taylor and McLennan, 1995] but virtually no 4He [Marcantonio 

et al., 1995]. Sporadic additions of andesitic material generated by arc volcanism could 

dilute the African dust, thus lowering the sedimentary 4Hecrustal /232Th ratios. 

The above scenario is supported by the observation that changes in 4Hecrustal/232Th 

ratios (ie. switch from ”older” to ”younger” source) are not cyclic and do not correspond 

to orbitally-paced changes in dust accumulation (Figure 3-3b). This indicates variations 

in orbital forcing were probably not responsible for the changes observed in dust source. 

It is therefore reasonable to assume that generally random additions of andesitic material 

generated by arc volcanism and unrelated to climate could account for the lowered 

4Hecrustal /232Th ratios.  

It is also important to consider a potential dust source to the west of Shatsky Rise 

during the early Paleogene.  Today expansive loess deposits in Asia yield such vast 

quantities of dust that material entrained in westerly winds is transported over the entire 

North Pacific Ocean, where it comprises the majority of the eolian component of deep 

sea sediments as far south as the equator [Nakai et al., 1993; Rea, 1994]. If an analogous 

large dust-producing regions existed in Asia during the Paleogene, then it could have 

impacted the study site. Comparison of our record with equatorial Pacific sediments 
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deposited over the last 500 kyrs, indicates the “younger” of our dust sources is similar to 

the “older” (Asian) source identified by Winckler et al, [2008] (Figure 3-3a). If we 

assume that the lower 4Hecrustal /232Th ratio represents an Asian dust source, then the 

higher ratios must reflect a source region dominated by older rocks. The paleolocation of 

Site 1209 at ~15-20°N was near what is the modern boundary between the westerlies 

and the northeastern trade winds. Migration of this boundary could have caused 

variations in the relative amounts of Asian dust reaching the central subtropical North 

Pacific, allowing proportionally more “old” dust supplied from Africa by the trade winds 

to accumulate at Site 1209.  However, this interpretation is at odds with long-term 

records of dust provenance based on REE and radiogenic isotope geochemistry [Kyte et 

al., 1993; Pettke et al., 2002; Hyeong et al., 2005].  

The εNd composition of eolian dust from Site LL44-GPC3 (just east of Site 

1209) indicates two sources of dust to the central Pacific during the early Cenozoic - 

older terrigenous material from Asia (εNd = -10) and younger volcanic material form the 

Americas (εNd >-5 ) [Kyte et al., 1993; Pettke et al., 2002]. The variations in dust 

provenance are interpreted to reflect the paleo-location of the inter-tropical convergence 

zone (ITCZ) [Pettke et al., 2002; Hyeong et al., 2005]. Enhanced precipitation along the 

ITCZ forms an effective barrier to dust transport between hemispheres [Rea, 1994]. If 

the ITCZ was pushed north to 20-30ºN latitude during the early Paleogene then subtle 

fluctuations in its position would determine whether dust reaching the subtropical Pacific 

was supplied from the Asia, the Americas [e.g. Pettke et al., 2002; Hyeong et al., 2005] 

or Africa. Our 4He crustal/232Th record indicates little influence of young volcanic 
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material, thus it is unlikely that the dust source variations relate to changes in the ITCZ 

as suggested by Pettke et al. [2002] and Hyeong et al. [2005]. However, we cannot rule 

out the possibility that the ITCZ was located north of Shatsky Rise, 58 Ma. In this case, 

the “older” component of dust would have to have been supplied from the Southern 

Hemisphere or from Africa with varying additions of relatively younger material from 

South/Central America. Australia may have been such an “older” dust source. Today 

Australia is hyper-arid and deflated of fine-grained material capable of long range eolian 

transport, but during the early Paleogene greenhouse the continent experienced a warm 

temperate climate with seasonally arid conditions in the north [Martin, 2006], making it 

a potentially important dust source region. 

 

Mass Balance: Th Distribution in the Sediments 

Although we have limited data, it is possible to construct a general mass balance 

to explain how Th is distributed in the sediments. The total Th content of the sediment is 

represented by: 

 

[232Th]total = ƒB[232Th]B +  ƒHH[ 232Th]HH + ƒR[ 232Th]R 

  when   ƒB +  ƒHH + ƒR = 1 

 

 

B, HH and R represent the biogenic, HH leachable oxy-hydroxide and refractory non-

dissolvable mineral components of the sediments, ƒ is the estimated fractional 

percentage and [232Th] is the average Th concentration of component (x). By assuming 

the average Th content of each of the sedimentary fractions (biogenic, HH leachable and 
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refractory) given in Table 3-2 is representative of the entire sedimentary column and 

generally estimating average sedimentary percentages of each component to be 98.8% 

(weak acid dissolvable biogenics), 0.2% (HH leachable) and 1.0% (refractory minerals), 

we calculate the total sedimentary 232Th concentration to be 128 ppb. This agrees well 

with the average measured bulk sediment 232Th of 151 ppb and confirms that our 

estimated averages adequately reflect the relative inputs of each of the different 

sedimentary components.  

 Figure 3-4 illustrates how the total measured 232Th is distributed among the three 

sedimentary fractions. The majority of the 232Th is contained in the HH leachable (61%) 

and refractory mineral (33%) sediment fractions even though on average they account 

for less than 1.5% of the total sediment mass. Only 6% of the 232Th resides in the 

biogenic fraction. This agrees with other studies that find very low 232Th concentrations 

in biogenic carbonates [Delaney and Boyle, 1983; Robinson et al., 2004, 2008; Adkins et 

al., 1998] Furthermore, Robinson et al [2008] found 30-50% of the total 232Th in modern 

deep sea sediments is present as adsorbed species rather than lattice bound in detrital 

mineral grains. They suggest that measurement of adsorbed and total 232Th may be used 

quantify dissolved and total detrital fluxes to the ocean. This has significant potential as 

a paleoceanographic tool to estimate eolian inputs of micro-nutrients, which limit 

primary production in some oceanic regions. However, to make use of this tool, we must 

confirm that the 232Th we measured was derived from dissolution of dust at the sea 

surface directly above and has not been added by lateral transport or boundary 

scavenging. 
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Figure 3-4. Distribution of Th among different sediment fractions. Biogenic (yellow), HH 
leachable oxy-hydroxides (orange) and refractory non-dissolvable mineral phases (red). The 
traditional extracted “dust” record, plotted in black [Woodard et al., 2011], compares in 
magnitude to the dust content estimated using the average [232Th] contributed by the 
refractory extracted “dust”. 

 

 Our conversion of bulk sediment Th concentrations to dust fluxes relies on 

normalization of the measured sedimentary 232Th content to 10.7 ppm (average upper 

continental crustal value given by Taylor and McLennan [1985]), but the refractory non-

dissolvable minerals extracted from the sediments contains only an average Th 

concentration of 4.2 ppm. This would imply that the refractory material is comprised of 

<50% terrigenous material or that there is significantly less 232Th in the extracted “dust” 

than previously assumed. We already have discounted the possibility of substantial 

volcanic or authigenic contributions to the extracted “dust” based on 232Th 

considerations, however these arguments are based on the assumed upper crustal 232Th 

concentration and therefore are circular for the problem at hand. But analysis of the Nd 

isotopic composition of the extracted dust provides an independent check on the origin 
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of the dust minerals.  The average Nd isotopic composition of the extracted “dust”, 

expressed in epsilon notation, is -11.2, which indicates a continental source as opposed 

to typical reconstructed ~58 Ma seawater values for Site 1209 which average ~-3.2 

[Thomas, 2004] (See Chapter 4 for a thorough discussion). Any significant authigenic 

component would have increased the Nd isotopic composition of the dust fraction due to 

the large difference between contemporaneous detrital and seawater compositions.  

Therefore, we must consider mechanisms that might impart lower than expected 232Th 

concentrations in the terrigenous material comprising the extracted “dust”.  

One possibility is that the more humid climate of the “greenhouse” world 

enhanced chemical weathering on land during the early Cenozoic, causing the detrital 

minerals formed to reflect a more altered geochemical signature. Cole et al. (2009) 

observed 232Th concentrations of only 6-7 ppm in dust extracted from sediments 

deposited at ODP Site 658 during the African Humid Period, 12 ka. They determined the 

dust was in fact derived from the Saharan region and enhanced chemical weathering at 

the source altered the geochemical signature [Cole et al., 2009]. Climate models [Huber 

et al., 2000; Shellito et al., 2003; Sewall et al., 2000], the presence of vast Paleocene age 

coal deposits [Ross and Ross, 1984; Shah et al., 1993; Retallak et al., 1996] and overall 

lower dust fluxes [Rea., 1994; Woodard et al., 2011] indicate the Early Paleogene was 

substantially more humid than any time during the recent geologic past. Thus, intense 

chemical weathering of soil and sediments in dust source regions may result in removal 

of Th from the mineral lattice causing the low 232Th concentrations observed in the 

refractory component of our record. 
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 Alternatively, the extracted dust may contain significantly less 232Th than 

“typical” upper continental crust because the detrital mineral assemblage preserved in 

the sediments is biased toward Th-poor minerals. For example, quartz is abundant in 

continental rocks, contains virtually no Th, survives chemical weathering and is stable in 

seawater [Sevier, 1962; Leinen et al., 1986; Patterson et al., 1999]. Other minerals such 

as feldspars are subject to intense chemical weathering and convert to clays, which are 

more susceptible to dissolution/leaching in seawater due to their larger surface area and 

cation exchange capacity [Carroll, 1958]. The XRD data indicate the presence of both 

clay minerals and feldspar in our extracted “dust”, but the results are not quantitative. 

While much semi-quantitative work has been done to show that the seafloor mineral 

assemblages reflect that of mineral aerosols being transported above [e.g. Johnson, 

1979; Merrill et al., 1994; Leinen and Heath, 1981], the absolute quantification of each 

mineral type and proportional relationship to the minerals comprising aerosols’ source 

remains largely undetermined [e.g. Johnson, 1979]. Therefore, the selective preservation 

of Th-poor minerals in excess of the proportion found in typical continental source 

material might explain the discrepancy between the 232Th of the extracted refractory 

“dust” component and the accepted value for upper continental crust. This mechanism 

could release 232Th from the crystalline lattice and make it available to adsorb to the 

outside of particles where it may be incorporated into oxy-hydroxide coatings. 

An extension of our mass balance equation can be used to consider validity of the 

theory presented above. If we assume that the Th contained in both the refractory and 
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HH leachable fraction is related to terrigenous dust in the sediments, then the total Th in 

the dust can be expressed as: 

 
[232Th]dust = ƒHH[ 232Th]HH + ƒR[ 232Th]R 

  ƒ dust 

where,   ƒdust = ƒHH + ƒR 

 

 

 

Solving this equation using the average measured Th concentrations and the assumed 

sedimentary percentages of the HH leachable and refractory non-dissolvable mineral 

fractions yields a dust 232Th concentration of 10 ppm, remarkably similar to the average 

232Th content of upper continental crust (10.7 ppm). The agreement between our 

calculated dust Th concentration and the expected value based on average upper 

continental crust argues for syndeposition of 232Th contained detrital particles and that 

which has been released by dissolution and subsequently stored in HH leachable oxy-

hydroxide coatings. The linear relationship between the sedimentary [4Hecrustal] and 

[232Th] corroborates this finding. Although stored in separate sedimentary fractions, the 

232Th signal preserved in the sediments is indicative of the total 232Th input by eolian 

deposition to the ocean above. Furthermore, if we consider only the lattice bound 232Th 

(i.e. 33% of the bulk sediment 232Th) as representative of “dust” preserved in the 

sediment, our 232Th-based record of sedimentary dust content becomes remarkably 

similar in magnitude to the dust record determined by traditional chemical extraction, 

especially for the latter part of the record (Figure 3-4 , [Woodard et al., 2011]). 
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 Our finding that nearly the entire 232Th signal attributable to detrital inputs is 

associated with refractory minerals and their oxy-hydroxide coatings agrees with modern 

studies of the marine Th cycle. Roy-Barman et al. [1996] found distinct differences 

between profiles of dissolved 232Th and other Th isotopes. The differences were 

attributed to the fact that the source of 232Th to the ocean is solely in conjunction with 

continental material while other Th isotopes are produced in situ by the radioactive 

decay of their parent isotopes (e.g. U or Pa). Modeling suggests that much of the 232Th 

which appears dissolved (passes through a 0.2 μm filter) is not “truly in solution” rather 

it is present on very fine particles [Roy-Barman et al., 1996; Roy-Barman, 2009]. If 

232Th released from detrital particles is stored on colloids, then a kinetic relationship 

between particles and colloids might generate an “apparent equilibrium” between 

dissolved and particulate 232Th [Honeyman and Santschi, 1989]. Coagulation of colloids 

into larger aggregates would then be a viable mechanism for transport of 232Th to the 

deep sea. Our findings support the idea that, regardless of its phase, the majority of 232Th 

in the ocean is never really “free” to behave as a dissolved species, but remains 

intimately associated with the particles from which it was derived. 

 We recognize that further study is needed to more clearly address how 232Th is 

stored in the sediments. In order to use 232Th content of different sedimentary fractions 

as indicators of total and dissolved oceanic dust fluxes, it is important to confirm 

significant migration of lattice bound Th to the oxy-hydroxide coatings does not occur in 

the sedimentary column post-depositionally. 
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Conclusions 

 Our records indicate that dust fluxes to Shatsky Rise, 58 Ma, varied on orbital 

timescales. Sedimentary 232Th concentrations provide an independent estimate of dust 

fluxes to deep sea sediments of early Cenozoic age. The 232Th-based dust fluxes show a 

similar pattern of variation as those determined using the traditional chemical extraction 

method, but are higher overall. It appears the majority of the sedimentary Th load is 

present as a sorbed species in the oxy-hydroxide leachable sedimentary fraction. 

However, coherence between sedimentary 232Th and crustal 4He contents suggests 

syndeposition of both the lattice-bound and dissolved Th. Therefore, 232Th-based 

estimates may represent the total dust flux to the sea surface, that which dissolves, plus 

that which settles to the seafloor and accumulates in the sedimentary record. 
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CHAPTER IV  

PROVENANCE OF CENTRAL PACIFIC DUST, 58 MA 

 

Introduction 

 Eolian dust extracted from deep-sea sediments provides a proxy record of 

continental climate and atmospheric circulation. Temporal changes in the marine dust 

record reflect the response of dust source areas to vegetation and humidity changes as 

well as the pattern of prevailing winds delivering the dust to the ocean’s surface. 

Increased dust accumulation rates are typically interpreted to reflect a change in aridity 

of the dust source region [e.g. Rea, 1994] and/or the prevalence of strong winds [McGee 

et al., 2010]. These variables are climatically linked - changes in the distribution of heat 

across Earth’s surface may alter the positioning of major wind belts and precipitation 

patterns, thus influencing both the production and transport of mineral aerosols.  In 

addition, these variations are paced by orbital climate cycles, implying a connection 

between solar insolation and dust production [e.g. Hovan et al., 1989; Rea et al., 1994; 

Kutzbach, 1989; Winckler et al., 2008; Woodard et al., 2011]. However, a change in the 

source of dust may also cause variations in eolian accumulation rates, making 

knowledge of dust provenance important to accurately reconstruct the impact of climate 

change on the environment.  

Radiogenic isotopes have been used extensively to “fingerprint” the eolian 

component of deep-sea sediments and determine provenance. Rocks and their 

constituent minerals often acquire unique isotopic compositions of Sr and Nd due to 
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fractionation of the parent nuclide from the radiogenic daughter due to differences in 

elemental compatibility.  As crust is formed, 86Sr and 144Nd, as well as 87Rb and 147Sm 

(the parent isotopes of 87Sr and 143Nd), are partitioned differently between the solid and 

melt [Faure and Mensing, 2005]. Early differentiation of the Earth caused Nd and Rb to 

concentrate in the crust (more incompatible) while Sm and Sr were enriched in the 

residual mantle (less incompatible). Subsequent decay of 87Rb and 147Sm to 87Sr and 

143Nd generated two isotopically distinct reservoirs: the mantle, characterized by low 

87Sr/86Sr and high 143Nd/144Nd, and continental crust with high 87Sr/86Sr and low 

143Nd/144Nd. Oceanic crust is generated along mid-ocean ridges through volcanism 

driven by mantle convection and therefore has a mantle-like Sr-Nd isotopic composition. 

Isotopic variations in continental crust arise due to the age, degree of melting, and 

lithology, giving rise to different regions with unique isotopic signatures. By measuring 

the isotopic signature of eolian dust extracted from seafloor sediments it may be possible 

to identify the continental terrane from which that material was derived.  

This technique has been used successfully to identify the major regions supplying 

dust to the world’s oceans. Today northern Africa, Asia, the Middle East and Patagonia 

are the dominant dust sources to the North Atlantic, North Pacific, Indian and Southern 

Oceans, respectively [Grousett and Biscaye, 2005]. Seasonal variability in dust source 

has been identified in the Arabian Sea, and is related to the Southwest monsoon [Pease 

et al., 1998], but bioturbation and compaction processes average out these short-term 

variations in longer geologic records.  
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Radiogenic isotope analyses of glacial-interglacial dust suggest variations in dust 

source on orbital timescales [e.g. Pokras and Mix, 1985; Sun et al., 2008; Revel-Rolland, 

2006]. Dust deposited in East Antarctica was supplied primarily from Patagonia during 

glacial periods and Australia was a potentially dominant source during interglacials 

based on changes in dust εNd(0) from >-5, characteristic of S. America, to  -5 to -15,  

values similar to eastern Australia and New Zealand [Revel-Rolland et al., 2006]. These 

variations are attributed to the influence of changing continental conditions on dust 

production rather than changes in dust transport.  

Long-term records of dust provenance derived from the pelagic clay sequence of 

North Pacific core GPC-3 suggest Asia has been a source of dust to the northern Pacific 

Ocean for most of the Cenozoic [Kyte et al., 1993; Nakai et al., 1993; Jones et al., 1994; 

Pettke et al., 2000; 2002]. However, Pettke et al. (2002) document variations in the 

radiogenic isotopic composition of early Cenozoic dust from GPC-3 and interpret these 

as shifts in the dust source from an older continental source (radiogenic Pb and Sr with 

unradiogenic Nd) to a younger volcanic source (unradiogenic Sr and Pb with radiogenic 

Nd). The younger source is interpreted as a mixture of Central American continental 

dust and arc volcanics delivered via the southern hemisphere trade winds.  Such a 

scenario could only have been possible if the Intertropical Convergence Zone (ITCZ) 

was located further north than its modern position because the ITCZ make is an effective 

barrier to inter-hemispheric dust transport. Unfortunately stratigraphic age control in this 

very low accumulation red clay sequence is insufficient to resolve the timing of these 

dust source variations in relation to orbitally-forced climate change.  
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To investigate the potential connection between climate, dust source region and 

paleowinds during the early Cenozoic, we generated a high resolution record of Nd and 

Sr isotopes using eolian material extracted from 58 Ma, carbonate rich sediments 

deposited on Shatsky Rise, northwest Pacific Ocean (ODP Site 1209).  In addition, we 

analyzed the Nd isotopic composition of fossil fish debris and the Sr isotopic 

composition of planktonic foraminifera to reconstruct contemporaneous seawater values.  

Our data indicate that the extracted dust fraction was not influenced by any authigenic 

(seawater-derived) contribution, confirming the use of extracted dust to investigate 

ancient eolian sedimentation and provenance.  The combined Sr-Nd isotopic 

composition of the dust is best explained by a primary supply of dust from North Africa 

with periodic inputs of Central American arc volcanic material. 

 

Site Selection and Methods 

 Shatsky Rise presents an ideal location for this study. Due to its remote 

paleogeographic location in the central sub-tropical Pacific gyre (~15-20ºN latitude), 

wind is the most likely transport mechanism for terrigenous material to the site. Early 

Paleogene age sediments recovered from ODP Site 1209 contain globally correlative 

lithologic cycles (variations in carbonate content) with orbital periodicities [Röhl et al., 

2004]. These cycles, identified using sedimentary Fe content, provide a basis for the 

astronomically tuned timescale for the Paleocene [Westerhold et al., 2008], making it 

possible to investigate the impact of orbitally forced insolation changes on deep-sea 

sediment lithology and chemistry during a greenhouse climate interval. 
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We determined the Nd and Sr isotopic composition of 44 “dust” samples as well 

as 19 fish debris (Nd) and eight foraminiferal (Sr) samples, spanning eight consecutive 

eccentricity cycles, representing ~800 kyr of time some 58 Ma. These samples represent 

a subset of those studied as part of a larger project investigating orbital variations in dust 

flux and grain size [Woodard et al., 2011; Chapters 2 & 3] and sediment accumulation 

rates using the extra-terrestrial (ET) 3He constant flux proxy [Marcantonio et al., 2009]. 

We have previously reported sedimentary dust accumulation rates, carbonate content, 

232Th  concentrations, helium isotopic composition and abundances as well as two 

possible sedimentation models, one derived from age tie-point linear sedimentation rates 

[Westerhold et al., 2008; Laskar et al., 2004], and the other based on sedimentary 3HeET 

[Marcantonio et al., 2009] (See Chapters 2 & 3). The results of the aforementioned 

studies indicate both bulk sediment and dust mass accumulation rates varied on orbital 

timescales.  

The “dust” component was separated from the bulk sediment using the traditional 

chemical extraction technique [Janecek and Rea, 1981; Clemens and Prell, 1991; 

Hovan, 1995] and subsequently dissolved using concentrated HF + HNO3+HCl. It 

should be noted that extracted “dust” is operationally defined as the non-dissolvable 

aluminosilicate sedimentary fraction and as such may contain materials from 

volcanogenic or authigenic sources [e.g. Weber et al., 1996; Olivarez et al., 1991]. Fish 

debris and foraminiferal tests were hand picked from the >63 μm and >250 μm 

sedimentary fractions, respectively. Fish debris was cleaned using an established 

oxidative/reductive cleaning protocol [e.g. Boyle and Keigwin, 1985] and dissolved in 
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2N HNO3. Foraminiferal tests were sonicated in ethanol and purified water, then 

dissolved using buffered acetic acid [DePaolo et al., 1983]. Radiogenic isotopes were 

separated using two-stage column chemistry. RE Spec cation exchange resin was used to 

obtain bulk REE and Sr splits. The Sr was further purified using Sr Spec cation 

exchange resin in 100 μL Teflon columns. Nd was separated from the REE split by 

chromatographic separation using methyllactic acid in quartz glass columns. Isotopes 

were analyzed via thermal ionization mass spectrometry (TIMS) in the R. Ken Williams 

Radiogenic Isotope Geosciences Laboratory at Texas A&M. Sr was loaded in ~2 μL 

0.0035M H3PO4
 on single rhenium filaments between 0.5 μL aliquots of TaF. Nd was 

loaded in ~1 μL 2N HCL on double rhenium filaments and analyzed as a metal. Within 

run normalization factors were 0.1194 for 86Sr/88Sr and 0.7219 for 146Nd/142Nd. Machine 

performance was monitored by running Sr standard NBS 987 (87Sr/86Sr = 0.710245) and 

Nd standard JNdi-1 (143Nd/144Nd = 0.512103459). External machine reproducibility 

based on the above standards was 29 ppm (2 standard deviations) for Sr and 13 ppm (2 

s.d.) for Nd. All reported errors are 2 standard errors of the sample mean and reflect in-

run precision. 

 Dust Nd isotopic compositions are normalized to the bulk earth (DePaolo and 

Wasserburg, 1976), in this case 143Nd/144NdCHUR(0) = 0.512638, and expressed as εNd(0):  

εNd(0) = ( [143Nd/144Nd]Sample(0) - 1) * 10000 [143Nd/144Nd]CHUR(0) 
 

Seawater Nd isotopic compositions are given as εNd(t), reflecting values corrected for 

ingrowth of 143Nd due to 147Sm decay after deposition. The correction uses an average 
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Table 4-1. Radiogenic Isotope Data for Site 1209 Dust 



 84

age of 58 million years and a 147Sm/144Nd ratio of 0.103, the average value based on 

previous analyses of Paleogene sediment from Shatsky Rise [Thomas, 2004]. 

 

Results 

The average isotopic compositions of extracted “dust” are -11.2 (±1.8, 2 s.d.) and 

0.71047 (±0.00603, 2 s.d.) for εNd(0) and 87Sr/86Sr, respectively (Table 4-1, Figure 4-1). 

Dust εNd(0) values exhibit a small range –12.3 to –9.9 except for one anomalous point at 

233.50 rmcd with εNd(0) = -7.3. This value is significantly more radiogenic than any 

other dust εNd(0) measured.  Furthermore, analysis of sample 12-6, 79-81cm (233.49 

rmcd) which overlaps with the same core interval yielded an εNd(0) value of -11.7. 

Therefore we believe the anomalously radiogenic value reflects incomplete oxide or fish 

debris removal during silicate extraction and we do not discuss this analysis further. In 

general there is very little overall change in dust Nd isotopic composition over the 

interval. Values are more variable lower in the record with a slight decrease up core. 

Dust 87Sr/86Sr ratios vary widely, from 0.70828 to 0.71919. Dust Sr isotopes 

show a slight trend toward more radiogenic values and increasing variability in the 

younger portion of the record. The εNd(t) of fish debris varied by ~1 epsilon unit, ranging 

from –4.0 to -2.9 and averaging -3.4 (±0.5, 2 s.d.) (Figure 4-1; Table 4-2). The 87Sr/86Sr 

of the forams averages 0.70779 (±0.00002, 2 s.d.), with a slight decrease up core (Figure 

4-1, Table 4-2). 
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Figure 4-1. Compiled radiogenic isotope data for Shatsky Rise Site 1209. Nd isotopic 
compositions of extracted dust (brown circles) and fish debris (dk blue diamonds) along with 
87Sr/86Sr of extracted dust (red squares) and foraminiferal tests (light blue triangles). Dust 
mass accumulation rates (dotted black line, Woodard et al., 2011) and sedimentary Fe 
content (solid black line, Westerhold et al., 2008) are plotted for reference. Eccentricty 
peaks 71-79 from the orbital calibration of Paleocene time [Westerhold et al., 2008] are 
labeled and highlighted by alternating yellow and white bands.  

 
 

Discussion 

Seawater vs. Dust Signals 

In all cases the Sr isotopes of the dust are more radiogenic than coeval seawater 

while εNd(t) are significantly less radiogenic (Figure 4-1). The Sr isotopic composition of 

seawater is controlled by changes in continental runoff and weathering (radiogenic) 

and/or rates of hydrothermalism (unradiogenic). Sr has a long seawater residence time 
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(~2 Myr), thus open marine waters are isotopically homogenous with respect to Sr. The 

seawater 87Sr/86Sr shows little variation, as expected for an element with a seawater 

residence time longer than our record (< 1Myr). The average Sr seawater value is similar 

to 87Sr/86Sr ratio for ~58 Ma seawater (0.070778) predicted by the LOWESS model of 

McArthur et al., 2001, indicating our foraminferal calcite record reflects seawater. The 

slight trend toward more radiogenic values in younger sediments is consistent with the 

global (albeit sparse) Sr isotope curve for the late Paleocene [Denison et al., 1993; 

McArthur et al., 2001]. 

Table 4-2. Radiogenic Isotope Data for 58 Ma Biogenics from Site 1209 

 
Neodymium is supplied to the oceans via riverine discharge and acquires the 

isotopic composition of the rocks being drained [Piepgras and Wasserburg, 1980]. Due 
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to its short seawater residence time (~350-600 yrs) relative to oceanic mixing (~1500 

yrs), the Nd isotopic compositions deep and intermediate water masses reflect the 

surface waters where they formed and subsequent alteration through mixing with other 

water masses [Goldstein and Jacobsen, 1988; Piepgras and Wasserburg, 1987; Jeandel 

et al., 2007; Arsouze et al., 2007; Tachikawa et al., 1999]. The seawater εNd(t) values 

fluctuate by ~0.5 epsilon units about the average of -3.4. Temporal changes in deep 

water Nd isotopic composition may result from either restructuring of deep ocean 

circulation patterns or changes in the Nd composition draining into the area of deep 

water formation. Previous work suggests a bimodal production of deep water in the 

Pacific ocean during the early Paleogene (~65-50 Ma) with deep water masses forming 

in both the Southern Ocean (εNd(0) =-5) and the North Pacific (εNd(t) = -3) [Thomas, 

2004; Thomas et al., 2008]. Our εNd(t) record indicates deep water at Shatsky Rise was 

primarily sourced from the North Pacific, 58 Ma,  in agreement with Thomas [2004]. 

The fluctuations in εNd(t) may reflect competing influence of the two deep water masses, 

as periodic increases in Southern deepwater component could account for the less 

radiogenic 143Nd/144Nd signatures we measured. Variations in thermohaline circulation 

on glacial-interglacial timescales during the Pleistocene caused 1 to 2 epsilon unit shifts 

in Atlantic deep water εNd(t) [Rutberg et al., 2000]. However, the variations we observe 

are smaller and do not correlate with changes in either sedimentary carbonate or Fe 

content (used in astronomical calibration of Paleocene time, Westerhold et al. [ 2008]) 

implying no connection to orbitally-forced climate change (Figure 4-1).  Thus, they may 
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simply result from periodic increases in radiogenic inputs to North Pacific surface 

waters. 

Nd and Sr associated with eolian inputs at the sea surface have a minimal impact 

on the radiogenic isotope composition of marine waters [Jones et al., 1994; Ling et al., 

2005], yet authigenic minerals precipitated from seawater sometimes contaminate the 

eolian component extracted from marine sediments [e.g. Zeigler et al., 2007a]. 

Authigenic minerals acquire the Nd and Sr isotopic signatures of the water from which 

they formed and, if present in our extracted eolian material, might overprint the true 

“dust” values. Thus we can use the Nd and Sr isotopic composition of seawater 

reconstructed from fish teeth and forams to assess the potential for authigenic mineral 

contamination.  

The unradiogenic εNd(0) signature of the extracted “dust” indicates it was derived 

from older continental sources. The average Nd isotopic value, -11.2, is less radiogenic 

than the modern dust source to the N. Pacific Ocean, Asian loess (εNd(0)= -10) [Jones et 

al., 1994; Grousset and Biscaye, 2005]. This may indicate a different and older source of 

dust to the subtropical Pacific  ~58 Ma. However, the dust composition varies by >2 

epsilon units with values reaching as high as -9.9 and low as -12.3.  The dust Nd 

variations are greater in the lower part of the record (Figure 4-1). Above 231.75 rmcd the 

εNd(0) becomes less variable averaging -11.6 (±0.4, 2 s.d.).  

232Th  and crustal 4He data for the same sedimentary interval suggest at least two 

sources of dust to Shatsky Rise ~58 Ma, one from continental material older than that 

derived from Asia today and another similar to or younger than the Asian source (see 
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Chapter 3). In general, the “younger” source indicated by 232Th and crustal 4He ratios is 

more prevalent earlier in the record when we observed higher amplitude variations in our 

dust εNd(0) composition (Figure 4-1).  Periodic inputs of material derived from a younger 

dust source would contribute more radiogenic Nd to the sediments and is consistent with 

the higher 143Nd/144Nd values recorded by the dust. 

 The “dust” 87Sr/86Sr record shows a pattern opposite to the εNd(0) with relatively 

stable unradiogenic values in the lower portion of the record followed by high amplitude 

variations beginning as low as ~232.7 rmcd.  There are two explanations for the apparent 

decoupling of the extracted dust Sr and Nd isotopic compositions.  The first involves the 

potential contribution of another mineral component to the extracted “dust.” In 

particular, barite (BaSO4) (both authigenic and biogenic) is highly refractory in oxic 

sediments and forms directly from seawater.  Barite Sr concentrations are 800-1200 ppm 

[Martin et al., 1995] more than double that of average continental crust (350 ppm, 

Taylor and McLennan, [1985]). Thus, contaminant barite in the extracted “dust” might 

overprint the terrestrial Sr isotopic signature with that of coeval seawater. Marine barite 

contains lower Nd concentrations than continental material, minimizing any potential 

impact on the “dust” εNd(0) value [Martin et al., 1995].  

We argue that it is unlikely that the presence of marine barite impacted the 

overall values and trends in the extracted dust Sr record.  While a contribution from 

marine barite could explain the apparent convergence of “dust” values and 

contemporaneous seawater values in the lower portion of the record, such an influence 

should be seen throughout the short record.  The marine barite contribution could not 
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have merely disappeared suddenly at 233 rmcd.   Thus we favor the alternative 

explanation which involves fractionation of the Sr from Nd during weathering and 

transport. 

The degree of physical versus chemical weathering on land can cause large 

temporal shifts in the 87Sr/86Sr of marine sediments [Colin et al., 2006; Jung et al., 

2004]. Mica and K-feldspar minerals are generally enriched in radiogenic Sr and are 

highly susceptible to chemical weathering. Preferential breakdown of these minerals 

releases radiogenic Sr which is removed from the source rock (hence dust) due to its 

high solubility. In contrast, rare earth elements such as Nd are relatively immobile and 

experience little isotopic fractionation during weathering.  The differing susceptibility to 

mobility during weathering may explain the relatively small changes in Nd isotopic 

composition in the extracted dust versus the large range in Sr values (~2 epsilon unit 

range in Nd is small compared to the ~0.011 range in Sr values). In addition, the range in 

[Rb]/[Sr] ratios in continental rocks is much greater than [Sm]/[Nd] [Dickin, 2005], 

making it likely that that the differences in the Sr isotopic ratios of the source rocks were 

initially much larger than those of Nd. 

Decoupling of detrital sediment Sr and Nd isotope values may indicate periods of 

more intense chemical weathering.  For example, radiogenic isotope analyses of 

sediments from ODP site 658C off the west coast of North Africa record a shift toward 

lower Sr isotopic values in the non-dissolvable mineral component but invariant Nd 

isotope values, which corresponds to the African Humid Period ~12 ka [Cole et al., 

2009]. The lower, more nonradiogenic Sr values in our record may be the result of 
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intense chemical weathering and preferential removal of Sr enriched mineral phases in 

the dust’s source region [e.g. Jung et al., 2004]. Many regions likely experienced 

enhanced chemical weathering during the early Paleogene greenhouse due to a more 

humid global climate and overall warmer temperatures [e.g. Zachos et al., 2008; Wing, 

2003]. However, it is interesting to note that dust accumulation rates spanning the same 

sedimentary interval vary on orbital timescales, implying a connection between climate 

and dust production [Woodard et al., 2011]. While the data presented here indicate 

temporal variations in the Nd and Sr isotopic composition of the dust, there is no 

correlation between dust accumulation (or overall sediment lithology based on the Fe 

content) and the radiogenic isotopic composition of that same dust. Thus it is unlikely 

that orbitally driven changes in climate and weathering controlled the dust’s 

geochemical signature.  As an alternative explanation, we consider the potential 

influence of changes in the dust source regions on the dust isotopic composition 

recorded at Shatsky Rise. 

 

Dust Provenance 

 The combined 87Sr/86Sr and εNd(0) data indicates a relatively old continental 

source (Figure 4-2).  The dust analyzed from Site 1209 plots in domain ‘C’ identified in 

a compilation of Sr-Nd isotopic composition of worldwide aerosols, loess and sand 

deposits by Grousset and Biscaye [2005]. Domain C describes most of the current major 

dust source regions and is not uniquely diagnostic. The Site 1209 dust data overlap with 
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the South Africa/Australia, Asia and North Africa domains on the Sr-Nd isotope plot 

(Figure 4-2). 

 
 
 
 
 

Figure 4-2. Sr-Nd isotope source plot for dust. Site 1209 “dust” (red triangles) plotted with 
worldwide aerosols, loess and sand deposits from Grousset and Biscaye, [2005]. Grey lines 
separate dust sources into domains A-D [Grousett and Biscaye, 2005]. 

Though hyperarid and deflated of dust today, Australia was potentially a 

significant source of atmospheric dust during the early Cenozoic. Paleoclimate 

reconstructions suggest northeastern Australia was dry with occasional wet periods, 

which may have recharged floodplains with fine-grained material capable of eolian 
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transport [Martin, 2006].  Dust accumulation rates at Shatsky Rise were low at 58 Ma, 

implying either small source regions or long transport distances [Woodard et al., 2011]. 

Yet, in order for Australia to be a plausible source region, it must have produced large 

amounts of dust (similar to Asia today) and Shatsky Rise must have been located south 

of the ITCZ (thus allowing transport of atmospheric aerosols to the northern hemisphere, 

Figure 4-3a). This scenario is reasonable given the hypothesized paleoposition of the 

ITCZ was ~23°N prior to ~40 Ma [Pettke et al., 2002]. 

The Site 1209 dust Sr-Nd isotope range falls outside the mixing envelope 

between Asian loess and an average volcanic end-member (Figure 4-4). Therefore, Asia 

would have been a possible source region only if the extracted “dust” contains a non-

eolian component with high unradiogenic in Sr concentrations and negligible Nd (e.g. 

barite as discussed above) or was generated in a regions with different average Sr-Nd 

compositions than Asian dust sources today. Asian loess fields are dominant suppliers of 

dust to the North Pacific today [e.g. Rea, 1994 and references therein]. These deposits 

were generated in large deserts during intensification of the Himalayan uplift and are 

relatively young, <22 Myrs old [Guo et al., 2002; Whalley et al., 1982]. Thus, modern 

Asian loess fields could not have been the dust source to Shatsky Rise  ~58 Ma. 

Paleontological and mineralogical evidence, however, suggest a semi-arid belt spanned 

much of Asia during the Paleocene, providing conditions conducive to dust production 

[Guo et al., 2008]. An Asian dust source constrains the paleolocation of Shatsky Rise to 

north of the ITCZ (Figure 4-3b), in conflict with other studies which use dust 



 94

geochemistry from nearby site GPC-3 to argue that the ITCZ was pushed northward to 

~23°N during the early Paleogene [Kyte et al., 1993; Pettke et al., 2002]. If the dust in 

 

 
 
 
 
 

Figure 4-3. Potential dust sources and transport pathways to Site 1209, 58 Ma. If a) the 
ITCZ were pushed northward to ~25°N (Australia (tan) or Africa (grey)), b) the ITCZ position 
was similar to modern (Asia (tan) or Africa (grey)). Paleogeographic reconstruction is from 
Blakey [NAU Geology] with the position of westerlies and trade winds indicated by red 
arrows. Paleolocation of Shatsky Rise (Site 1209) is indicated by light blue star. 
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our record was generated in Asia, it implies an atmospheric circulation pattern similar to 

that today, where dust is transported over the northern Pacifc via the westerlies, sinks 

through the troposphere where it is entrained in the northeast trade winds and transported 

back across the Pacific at lower latitudes [Duce et al., 1980]. We consider this a 

possibility, but do not have enough data to fully evaluate the likelihood of Asia as a dust 

source region.

 
 
 
 
 

Figure 4-4. Sr-Nd isotope source plot for Shatsky Rise, North Africa and Asia. Dust from 
Shatsky Rise (red) is plotted with data from potential sources in North Africa (white) [Grousset 
et al., 1992; 1998] and Asia (gold) [Biscaye, 1997; Chen et al., 2007; Nakai et al., 1993; Lui et 
al., 1994; Gallet et al., 1996; Jahn et al., 2001; Grousset and Biscaye, 2005]. Mixing 
envelopes are defined between a generic volcanic end-member (grey diamond) and African 
(dashed line) and Asian (dotted line) sources. Average Sr-Nd isotopic composition of Pacific 
deep watermass, 58 Ma, is plotted for reference (blue). 
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We favor the possibility of Africa as a source region for dust to Shatsky Rise. 

Paleo-environmental reconstructions of North Africa indicate a semi-arid to arid climate 

and grassland vegetation during the Paleogene [Jacobs et al., 1999; Zaier et al., 1998], 

conditions conducive to dust production. Assuming atmospheric circulation patterns 

similar to modern, dust supplied to the central North Pacific (Shatsky Rise) would be 

transported via the trade winds. The lack of a land bridge between the North and South 

American continents would have allowed winds to cross from the Atlantic to the Pacific 

unimpeded [Hovan, 1995]. This scenario of dust transport to Shatsky Rise precludes 

determination of the ITCZ’s paleo-location because the both the northern and southern 

hemisphere trades provide a westward flow of air capable of bringing dust from a source 

located east of ODP Site 1209 (Figure 4-3a,b). The presence of a shale-like component, 

possibly derived from Africa, has been identified in Paleogene age sediments from 

nearby site GPC-3 using elemental geochemistry and mineral assemblages [Kyte et al., 

1993; Leinen and Heath, 1981]. 

Dust derived from the Saharan region of Africa is a primary component of 

mineral aerosol being deposited in the Caribbean today [Prospero et al., 1970; Muhs et 

al., 1990]. The central Atlantic Ocean wasn’t as wide during the Paleocene, making the 

transport distance from Africa shorter. The Sr-Nd composition of Site 1209 dust falls 

within a mixing envelope between North Africa and a volcanic end member (Figure 4-

3).  Additions of younger volcanic material from South/Central America to African dust 

during transport via the trade winds would explain shifts toward more radiogenic εNd(0) 

and less radiogenic 87Sr/86Sr at Site 1209.  The Central American region experienced 
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active tectonism and arc volcanism throughout the Mesozoic and early Cenozoic. The 

erupted magmas were both basaltic and andesitic with diverse geochemical compositions 

[Kerr et al., 2002]. An andesitic eolian component has been identified in Paleogene age 

sediments from the Pacific [Kyte et al., 1993]. Material from Central America may 

provide the “younger” component in dust to Shatsky Rise as suggested by 232Th and He 

isotopes [Marcantonio et al., 2009; Chapter 3]. A primary supply of dust from North 

Africa with periodic inputs of Central American arc volcanic material of variable Sr-Nd 

isotopic composition explains the lack of cyclicity in the timing of changes in dust 

source since volcanic eruptions are not driven by climate. 

 

Conclusions 

 The Nd and Sr isotopic composition of extracted “dust” from Shatsky Rise, ODP 

Site 1209 indicates a relatively old continental dust source. In all cases the seawater 

εNd(0) was more radiogenic and 87Sr/86Sr less radiogenic than the dust. This implies little 

contamination of the “dust” isotopic signal by authigenic minerals. Unradiogenic dust 

87Sr/86Sr values may be the result of enhanced chemical weathering in the dust source 

region due to an overall warmer and more humid global climate. With our limited data 

we cannot positively identify the source region supplying dust to Shatsky Rise. Potential 

dust sources include Australia, Asia and North Africa. Transport of dust from North 

Africa by the trade winds seems plausible. Periodic additions of andesitic material from 

active arc-volcanism in the Caribbean may account for radiogenic increases in dust 



 98

εNd(0) observed in our record. Future analyses of Pb isotopes in the extracted “dust” may 

help determine source regions. 
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CHAPTER V 

RADIOGENIC ISOTOPE COMPOSITION OF CARBONIFEROUS SEAWATER 

FROM NORTH AMERICAN EPICONTINENTAL SEAS 

 

Introduction 

The Carboniferous Period (359-299 Ma) marks a critical time in Earth’s 

history when a series of tectonic and biological events conspired to cause a shift in the 

mean climate state from a global “greenhouse” to an “icehouse”. The climate transition 

is characterized by a major reorganization of tectonic plates resulting in the closure of 

the Rheic, a circum-equatorial ocean connecting the Paleo-Tethys Ocean with 

Panthalassa, as two large landmasses, Laurussia (of which North America is a part) and 

Gondwana collided to form the Pangean supercontinent (Figure 5-1). Coincident with 

this tectonism there is evidence for widespread glaciation in the southern hemisphere, 

large tropical/sub-tropical coal deposits indicating fundamental changes in carbon 

cycling, and a likely restructuring of ocean circulation and weathering patterns.  

 Near field records indicate glaciation in Gondwana began in the late Devonian to 

early Mississippian [Isbell et al., 2003] and after a brief repose, became more 

widespread throughout the mid- to late-Carboniferous and into the early Permian 

[Frakes et al, 1992; Crowley and Baum, 1991, Gulbranson et al., 2010]. The appearance 

and disappearance of glaciogenic deposits in South America [Gulbranson, 2010; Caputo 

et al., 2008; Isbell et al., 2003], Australia [Fielding et al, 2008a,b] and South Africa 

[Stollhofen et al., 2008] document multiple episodes of ice sheet development in the 
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Southern Hemisphere. The impact of glacial advance and retreat appears as cyclothems 

in far field sedimentary records from the paleotropics (North America, Europe and Asia) 

 
Figure 5-1. Paleogeographic reconstructions of Carboniferous North America. Approximate 
locations of study sites are highlighted for the Mississippian (~340 Ma) and Pennsylvanian 
(~300 Ma) [modified from Blakey, NAU Gelogy]. 
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indicating low latitudes were subject to rhythmic high order sea level fluctuations 

[Heckel, 2002; Wright and Vanstone, 2001].   

Geochemical records derived from sediments deposited in tropical/sub-tropical 

epicontinental seas are commonly used to understand links between tectonics, carbon 

cycling and climate [Fielding et al., 2008a] Positive excursions in the δ18O and δ13C of 

well-preserved marine carbonates from N. America, Russia and Europe coincide with 

the onset of the major phase of glaciation during the mid-Carboniferous [e.g. Popp et al., 

1986; Bruckshen et al., 1999; Mii et al., 1999; 2001; Grossman et al., 2002]. These 

records have been used to link global cooling and ice build-up with decreased 

atmospheric CO2 levels caused by the burial of organic matter [Berner and Kothalava, 

2001; Royer et al., 2004]. Enhanced continental weathering rates inferred from a shift 

toward more radiogenic 87Sr/86Sr values during the late Mississippian are thought to 

reflect initiation of the Alleghanian-Variscan orogeny and the closure of the Rheic 

Ocean, potentially restructuring atmospheric and oceanic circulation patterns and 

facilitating Southern Hemisphere ice build-up by driving moisture poleward [Smith and 

Read, 2000; Saltzman et al., 2003]. However, interpreting geochemical records from 

epicontinental seaways in terms of the global ocean-climate system assumes they reflect 

the chemistry of well-mixed ocean water and have been little influenced by regional 

environmental processes.  

We investigate the extent to which the Carboniferous North American 

epicontinental seas recorded global open-ocean conditions using radiogenic isotope 

tracers with different seawater residence times. In modern oceans, Neodymium (Nd) has 
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a residence time of ~350-600 yrs [Tachikawa et al., 1999; Arsouze et al., 2007], 

relatively short compared to whole ocean mixing (>1000 yrs). The Nd isotopic 

composition (143Nd/144Nd) of oceanic surface waters reflects the age and composition of 

material weathered and drained into a given region, thus seawater 143Nd/144Nd is a useful 

tracer of mixing between basins. In contrast, Strontium (Sr) has a long oceanic residence 

time of 2-5 Myrs [Ritcher and Turekian, 1993; Taylor and McLennan, 1985]. Thus, 

seawater exhibits a globally homogenous 87Sr/86Sr signature that varies through geologic 

time depending on the relative inputs of Sr from continental (radiogenic) and 

hydrothermal (unradiogenic) sources. Biogenic apatite (e.g. fish teeth, scales and 

conodonts) acquires high concentrations of Nd at the seafloor postmortem and reliably 

records 143Nd/144Nd ratio of the water bathing the seafloor [Staudigel et al., 1985; Wright 

et al., 2002]. Sr is incorporated into organisms’ bones and teeth by substituting for 

calcium during growth [Schmitz et al., 1991; Martin and Scher, 2004]. To constrain the 

degree of geochemical coupling between the epicontinental sea and the open ocean, we 

measured Nd and Sr isotopes in biogenic apatite spanning a transect across the North 

American paleotropics from the continental interior (US Midcontinent and Midland 

Basins) west to Arrow Canyon and the Mixteco Terrane (most oceanic) (Figure 5-1). 

 

Geologic Setting and Samples 

Patlanoaya 

 Paleozoic deposits of the Mixteco terrane are exposed in San Salvador 

Patlanoaya in south-central Mexico. A succession of Carboniferous age marine 
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sedimentary rocks (Patlanoaya Formation) rests atop a small remnant of Paleozoic age 

oceanic crust, a Pre-Mississippian ophiolite of the Acatlan complex [Ortega-Gutierrez et 

al., 1994]. The complex is the only vestige of Rheic Ocean seafloor the remainder of 

which was subducted ~360-345 Ma during the assembly of the Pangaean supercontinent 

[Nance et al., 2007]. The sedimentary sequence consists of argillaceous and calcareous 

sandstones containing abundant brachiopod molds followed by red-green shales with 

black chert interbeds. Above are several sequences of fossiliferous limestones, some 

bearing chert nodules or interbedded with shales and mudstones. Paleontological studies 

suggest the formation is of early Mississippian to Permian in age [Vachard et al., 2000; 

2002; Caridriot et al., 2002]. However there are several depositional hiatuses, and the 

mid-Carboniferous boundary is not well defined [Vachard et al., 2000]. Samples were 

collected from the upper limestones which are Kasimovian to Lower Permian in age. 

These rocks contain abundant brachiopods, gastropods, bryzoans and crinoids, many of 

which have been replaced by silica, as well as the remains of fish and several types of 

conodonts [Caridroit et al., 2002; Deryke-Khatir et al., 2005]. Sedimentary structures 

indicate a shallow depositional environment periodically subject to reworking by storms 

and/or turbidity currents [El Albani et al., 2005; Deryke-Khatir et al., 2005]. 

 

Arrow Canyon, Bird Spring Shelf 

 Arrow Canyon, located in eastern Nevada, was named the Global Stratotype 

Section and Point (GSSP) for the Mid-Carboniferous Boundary in 1995 due to  
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its nearly complete exposure of relatively undeformed Carboniferous age strata [Lane, 

1999; Richards et al., 2002]. During the late Paleozoic, Arrow Canyon was located near 

the equator and flooded by a shallow sea that extended along the entire western margin 

of the present day US and Canada [Poole and Sandburg, 1991]. A foreland basin, 

created by successive uplifts during the late Devonian-early Mississippian Antler 

Orogeny to the west and north [Saleeby et al., 1994], allowed for accumulation of thick 

muddy carbonate sediments. We collected samples from the Indian Springs (late-

Mississippian) and Bird Spring Formations (Mid-Carboniferous boundary to Gzhelian). 

The sedimentary succession is primarily shallow marine carbonates with abundant 

invertebrate fossils and chert nodules. Muddy interbeds and paleokarst surfaces are 

observed near the Mississippian-Pennsylvanian boundary, and indicate the paleo-

environment was subjected to multiple episodes of sea level rise and fall [Bishop et al., 

2009; Barnett and Wright, 2008; Richards et al., 2002]. 

 

US Midcontinent 

 The Midwestern United States contains extensive marine and terrestrial 

sedimentary deposits of Carboniferous age. Tectonic pressures related to successive 

orogenic events of the Paleozoic lead to downwarping of the central North America 

craton and the development of a broad epieric seaway [Rankin, 1994]. The structural 

pressures created several separate deeper basins (e.g. Midcontinent Basin, Illinois Basin 

and Appalachian Basin), which were connected during sea level highstands and 

periodically separated during lowstands. Evidence of high order eustatic change during 
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the Carboniferous manifests as rhythmic variations in sediment accumulation or 

cyclothems, spanning the entire mid-continental interior [e.g. Heckel, 1986]. The 

cyclothems consist of four basic members representing various stages of marine 

transgression/regression: 1) a thin transgressive limestone that rests atop a paleosol or 

nearshore shale, 2) a “core” black/dark grey shale deposited in an offshore environment 

within a physically stratified water column, 3) a regressive limestone with abundant 

invertabrate fossils grading into peritidal facies, 4) nearshore shale or mudstone 

deposited during the final stages of regression that is sometimes topped by a paleosol 

and/or coal indicating complete subaerial exposure or the development of peat swamps 

[Heckel, 2002; 2008]. The cycles are best developed during the mid- to late- 

Pennsylvanian, where they also appear in sedimentary records from Europe and China 

[Heckel, 2002; Davies and Gibling, 2010], and have been described extensively by 

Heckel et al, [1989], [1990], [2008]; Wright and Vanstone, [2001] and Cecil et al., 

[2003]. Our samples include Mississippian and Pennsylvanian age limestones and shales 

deposited in the Mid-continent and Illinois basins during fully marine conditions. 

 

Eastern Shelf of the Midland Basin 

 The Midland Basin located in west Texas developed as structural basin western 

edge of the Ouachita orogen during the continental collison which marks the closure of 

the Rheic ocean [Miall and Blakey, 2008].  The basin experienced marine sedimentation 

throughout the Carboniferous. The deepest part of the basin records nearly continuous 

deposition of offshore shale, however, cyclothem deposits of late-Pennsylvanian age 
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have been identified along the basin’s eastern shelf [Heckel, 1994, 2008]. These 

cyclothems correlate with those of the US midcontinent, indicating the region 

experienced significant sea level fluctuations [Adlis et al., 1988; Boardman et al., 1989; 

Heckel et al., 1991]. We analyzed conodonts extracted from upper Pennsylvanian 

(Gzhelian) shales (Necessity and Wayland cycles) deposited on the eastern shelf of the 

Midland Basin. 

 

Methods 

Rock samples (~2-3 kg) were washed and/or trimmed to remove contamination, 

then broken into cobble-sized pieces. Carbonates were dissolved in a 2-3% acetic acid or 

1% formic acid solution buffered with ~1 g sodium triphosphate, pH >4 [Feldman et al., 

1989; Jeppsson et al., 1999]. Black shales were soaked in dilute hydrogen peroxide. The 

sediment fines (~500-88 μm fraction) were collected every two days, rinsed and dried at 

50°C. The sediments were further separated into light and heavy mineral fractions using 

low viscosity polytungstate (LVPT,  ρ = ~2.83 g/cc) [after Krukowski, 1988]. 

Approximately 15 – 20 cc of sediment + 100 g LVPT were mixed in a 50 cc tube, then 

centrifuged at 2500 rpm for 20 minutes to aid density separation. The heavy mineral 

fraction was isolated by freezing the tip of the centrifuge tube in liquid nitrogen and 

pouring off the LVPT + light minerals. The heavy fraction was rinsed repeatedly with 

distilled water to remove any traces of chemical. Biogenic apatite fragments (conodonts, 

phosphatic brachiopods, fish teeth debris) were hand-picked picked from the heavy 

fraction under a binocular microscope.  
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 Picked material was divided into separate samples: conodont elements (c), fish 

teeth (t), fish debris (d) and phosphatic brachiopods (b), weighing ~70 –150 μg each. 

Samples were gently sonicated 2x in ultra-pure Milli-Q water, 3x in ethanol and then 

cleaned following the oxidative-reductive protocol refined by Boyle and Keigwin [1985]. 

Organic material and pyrite were removed by heating samples to 80°C for 10 minutes in 

an oxidizing solution of 0.1% H2O2 buffered with 0.1N NaOH. Samples were rinsed 3x 

with MQ then subjected to a hydrazine, citric acid, NH4OH reducing solution for 30 

minutes at 80°C. A final dilute acid leach to remove any remaining surface 

contamination was applied before samples were dissolved in HNO3. 

 The dissolved samples were run through two sets of column procedures to isolate 

the Nd and Sr. RE Spec cation exchange resin was used to obtain bulk REE and Sr splits. 

The Sr was further purified using Sr Spec cation exchange resin with HNO3. Nd was 

separated from the REE split by chromatographic separation using methyllactic acid in 

quartz glass columns. Isotopes were analyzed via thermal ionization mass spectrometry 

(TIMS) in the R. Ken Williams Radiogenic Isotope Geosciences Laboratory at Texas 

A&M. Sr was loaded in ~2 μL 0.0035M H3PO4
 on single rhenium filaments between 0.5 

μL aliquots of TaF. Nd was loaded in ~1 μL 2N HCL on double rhenium filaments and 

analyzed as a metal. Within run normalization factors were 0.1194 for 86Sr/88Sr and 

0.7219 for 146Nd/142Nd. Machine performance was monitored by running Sr standard 

NBS 987 (87Sr/86Sr = 0.710245) and Nd standard JNdi-1 (143Nd/144Nd = 0.512103459). 

External machine reproducibility based on the above standards was 29 ppm (2 s.d.) for 
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Sr and 17 ppm (2 s.d.) for Nd. All errors given in Table 5-1 are 2 S.E. of the sample 

mean and reflect in-run precision. 

 We report initial Nd isotopic values, thought to reflect seawater composition 
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Table 5-1. Sr and Nd Isotopic Data for CarboniferousBiogenic Apatite 
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Table 5-1. continued 

 

during the Carboniferous, in epsilon notation (εNd(t)) calculated using the estimated 

stratigraphic age of the sample (see Table 5-1): 

 

εNd(t) = [143Nd/144Nd]Sample(t) - 1 * 10000 [143Nd/144Nd]CHUR(t) 
 

where [143Nd/144Nd]sample(t) and [143Nd/144Nd]CHUR(t) are the 143Nd/144Nd measured on the 

sample and that of the chondritic uniform reservoir (CHUR, present value 143Nd/144Nd = 

0.512638) corrected for the ingrowth of 143Nd due to the decay of 147Sm since the time of 

deposition (t): 

 
[147Sm/144Nd](t) = [147Sm/144Nd](sample, CHUR) (eλt -1) 

 

where, λ is the radioactive decay constant for 147Sm to 143Nd (6.54 x 10-12), the 

[147Sm/144Nd](CHUR) = 0.1967 and a [147Sm/144Nd] ratio of 0.144 is assumed for our 
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samples which represents an average literature value for Paleozoic age conodonts from 

North America [Keto and Jacobsen, 1988; Holmden et al, 1996, 1998]. 

 

Results 

 Conodont εNd(t) values for all samples analyzed ranged from -11.4 to -4.6 (Table 

5-1). Nd isotope values of co-occurring conodonts, fish teeth and debris and phosphatic 

brachiopods (e.g., those fractions picked from the same sample) agree within 0.5 epsilon 

units, with one exception (Figure 5-2). The εNd(t) of phosphatic brachiopods and 

conodonts from sample AC08-5 differ by >1 epsilon unit. Regardless of the magnitude 

in Nd isotopic composition among the different apatite components, no systematic offset 

in εNd(t) exists among the different materials analyzed. Thus we apply average εNd(t) 

values from the different fractions in the interpretation of the data. 

The Arrow Canyon samples exhibit the largest Nd isotopic range, from -11.4 to -

5.7. The record shows high frequency variations in εNd(t) with an overall trend toward 

nonradiogenic values from the Upper Mississippian to Middle Pennsylvanian (Figure 5-

3; Table 5-1). The εNd(t) values for Patlanoaya, US Midcontinent and Midland Basin 

were more radiogenic, ranging from -7.8 to -4.6. Tournaisian and upper Moscovian age 

conodonts from Jacob’s Creek Shale and Alum Cave Limestone in the US Midcontinent 

recorded the most radiogenic εNd(t) values, -4.6 and -4.8 respectively.  

             Conodont Sr isotopic data from the sections investigated varied significantly. The 

87Sr/86Sr values of the Patlanoaya samples are the most radiogenic, ranging from 

0.70918 to 0.71051 (N=7). The 87Sr/86Sr composition of Arrow Canyon samples, 
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Figure 5-2. Comparison of Nd isotope records from different types of biogenic apatite. Splits 
were picked from the same disaggregated rock sample. Most samples show good agreement 
between conodont apatite and fish teeth/debris. 
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0.70792 to 0.70927 (N=20), overlaps slightly with the least radiogenic (lowest) values 

from Patlanoaya and includes the entire 87Sr/86Sr range measured on conodonts from the 

US Midcontinent (0.70825 to 0.7088, N=4). Furthermore, the Sr isotopic ratios of the 

conodont fractions are less radiogenic than fish teeth and debris, averaging 0.708423 

±0.00029, s.d. (conodonts) versus 0.708828 ±0.00018, s.d. (fish). This difference is 

similar in magnitude to the intersite differences in Sr isotopic composition. 

 

Assessing the Preservation of the Biogenic Apatite Radiogenic Isotope Signals  

The most reliable record of seawater 87Sr/86Sr for the Carboniferous derives from 

analyses of well-preserved biogenic calcite – primarily brachiopod shells – deposited in 

the epicontinental seas of North America, Europe and Russia [e.g. Bruckshen et al., 

1999; McArthur, 2009]. Recent work by Brand et al. [2009] confirms that these values 

match the 87Sr/86Sr of biogenic calcite from “open ocean” sites in Japan and South 

China. The majority of the biogenic apatite 87Sr/86Sr values we report are significantly 

higher than the accepted contemporaneous seawater value, and in fact, the majority of 

the new data exceed the maximum seawater 87Sr/86Sr value for the entire Carboniferous 

(0.70845; Figure 5-4). While several samples seem to have preserved the seawater 

signal, the divergence of the majority of our data from the global trend likely reflects 

alteration of the original Sr signal.  

The original seawater Sr isotope signal in biogenic apatite is susceptible to late 

diagenetic alteration, particularly fish teeth, scales and phosphatic shells [Cummins and 
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Figure 5-3. Carboniferous εNd(t) of North American epicontinental seas. Dotted grey line traces variations in εNd(t) at Arrow Canyon; pale 
blue line traces all other εNd(t) values obtained in this study. Where multiple analyses of one sample were performed, the average value is 
plotted. White crosses are data from Utah, Nevada, Wyoming, Missouri, New York and Alabama [Keto and Jacobsen, 1987; Shaw and 
Wasserburg, 1984 and Wright et al., 1984] Ages of literature data have been adjusted to that of Gradstein et al. [2004]. 
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Figure 5-4. Carboniferous global marine Sr isotope curve. New Sr isotopic data (this study) 
plotted with the secular Sr isotopic curve from Bruckshen [1999] and the compiled global marine 
Sr curve [McArthur, 2009]. Sr values used in the global curve were obtained from best-
preserved marine calcite from Europe, North America and the Urals (see figure for references). 

 
 

Elderfield, 1994; Bertram et al., 1992; Martin and Scher, 2004]. Indeed, all of fish teeth 

and debris samples we analyzed yielded 87Sr/86Sr values more radiogenic than coeval 

seawater (Table 5-1). However, some of the conodont 87Sr/86Sr from the US 

midcontinent and Arrow Canyon fall on the Carboniferous Sr seawater curve assembled 

from the best-preserved epicontinental samples (Figure 5-4). Conodonts may preserve 

the original 87Sr/86Sr signal depending on the thermal history of their host rock. The 

conodont color alteration index (CAI) reflects the extent to which conodonts have 

undergone late diagenetic thermal heating [e.g. Rejebian et al., 1987], and only 
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Figure 5-5. Crossplot of εNd(t) and 87Sr/86Sr. Grey bar indicates range of seawater 87Sr/86Sr for 
the entire Carboniferous. Trend toward more radiogenic Sr likely reflects diagenetic alteration 
but εNd(t) values appear uninfluenced by diagenesis. 

 
conodonts with low CAI values (<2.5) appear to reliably preserve the seawater Sr 

isotopic composition [e.g. Bertram et al., 1992]. Our conodont samples from the US 

Midcontinent have CAI of ~2, indicating good preservation, while conodonts from 

Arrow Canyon and Patlanoaya are typically 3 or higher and probably reflect alteration 
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due to the longer and more complex burial and tectonic history of the developing 

cordillera along western N. America. 

 The over-printing of the primary seawater 87Sr/86Sr by exchange with 

groundwater or country rock bearing a higher 87Sr/86Sr composition due to late 

diagenetic heating, makes it difficult to use Sr to infer interbasinal changes in marine 

residence times, continental weathering or hydrothermalism. However, the relationship 

between the Sr and Nd isotopes suggests the Nd isotopic composition of our samples 

was not affected by post depositional alteration.  Altered samples (CAI ≥ 3) show a 

distinct trend toward more radiogenic Sr values. Typically crustal rocks with radiogenic 

Sr isotopic ratios contain unradiogenic 143Nd/144Nd because Sm and Sr are more 

incompatible leading to elevated Nd and Rb concentrations in differentiated upper 

continental crust. Therefore, the diagenetic source of radiogenic Sr should be 

accompanied by unradiogenic Nd, yet there is no systematic decrease in εNd(t) coincident 

with the 87Sr/86Sr increase (Figure 5-5).  The 87Sr/86Sr broadly defines two groups within 

our samples (i.e. Patlanoaya and the rest) except for one data point. One conodont 

sample from Arrow Canyon contains relatively radiogenic εNd(t) and unradiogenic 

87Sr/86Sr compared with the other samples (Figure 5-5). We note, however, that this 

sample is mid-Mississippian in age whereas the other samples date from the Mid-

Carboniferous boundary to late Pennsylvanian, and is likely recording significantly 

different seawater chemistry prior to the initiation of the Alleghenian-Variscan orogeny.  

Therefore, we assume little alteration of the primary Nd isotopic signal and interpret the 
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εNd(t) of our samples to reflect that of the overlying seawater during or shortly after 

deposition.  

 

Carboniferous Record of Nd Isotopes in North American Epicontinental Seas 

 One advantage of using tracers with relatively short seawater residence times 

(e.g. Nd) is that basins with seawater recharge rates less than the residence time of the 

tracer will develop geochemical gradients reflecting the composition of weathered 

materials input from the surrounding watershed. The εNd(t) of seawater is determined by 

the combination of inputs of radiogenic Nd derived from young, mantle-derived material 

and older felsic materials with unradiogenic 143Nd/144Nd. Therefore, we would expect to 

see temporal and geographic differences in the reconstructed εNd(t) signatures of the 

basins comprising the North American epicontinental seaway related to water circulation 

patterns and communication with the open ocean.  Our discussion of the Nd isotopic 

composition of the epicontinental basins here focuses on the potential interactions 

between the epicontinental seas and the fully marine open ocean end-members.  Thus we 

use “open ocean” to refer to the deep ocean basins floored by oceanic crust to distinguish 

these provinces from the more shallow and restricted epicontinental seas.  

Prior to its closure, the Rheic Ocean would likely have contributed open ocean 

waters to the N. American epicontinental basins. We assume the waters of the Rheic 

would have had a fairly radiogenic εNd(t) due to numerous subduction zones and arc 

magmatism.  Furthermore, the Rheic was genetically related to the Iapetus Ocean 

[Murphy et al., 2010]. Early Paleozoic reconstructions indicate Iapetus seawater εNd(t) 
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was ~-5 to -7 [Keto and Jacobsen, 1987, 1988]. Our combined εNd(t) data (Figure 5-3) 

indicate early-mid Mississippian εNd(t) averaging ~-5.1 and decreasing to ~-7 through 

the late Mississippian, followed by high amplitude fluctuations to values as low as -11 

across the M-P boundary before returning to more radiogenic values (~-5.5 to -7.5) in 

the late Pennsylvanian/Permian. Previous studies of conodont εNd(t) from eastern North 

America to the midcontinent also indicate relatively radiogenic values in the early 

Mississipppian (Figure 5-3) [Shaw and Wasserburg, 1985; Wright and Shaw, 1984; Keto 

and Jacobsen, 1988].  

The trend toward unradiogenic εNd(t) coincides with a major sea level regression 

[Saunders and Ramsbottom, 1986; Wright and Vanstone, 2001] and suggests restricted 

mixing of seawater in the shallow epicontinental seas with the relatively radiogenic open 

Rheic ocean coincident with the expansion of Gonwandan ice sheets at the M-P 

boundary. Weathering of older cratonic material into the North American epicontinental 

basins during sea level lowstands combined with periodic flushing by waters from the 

Rheic ocean driven by glacio-eustasy could account for the variations in our εNd(t) 

record over the second half of the Carboniferous. This implies that variations in mixing 

occur on Milankovitch timescales. The higher amplitude fluctuations observed for 

Arrow Canyon may merely be an artifact of data density, since we have few data points 

for the interior US continent spanning the same interval.  

 We would expect differences in εNd(t) to develop between the various North 

American basins as falling sea level restricted circulation and increased basinal residence 

times. The cyclothems, which dominate the lithology of Late Carboniferous rocks from 
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the North American epicontinental seas, are evidence of high order sea level changes 

[e.g. Heckel, 2002 and references therein]. However, the limited Nd isotope data from 

the upper Pennsylvanian/lower Permian US Midcontinent, Midland Basin and 

Patlanoaya all indicate similar and relatively high εNd(t) values. Due to its location along 

the edge of the Rheic Ocean, εNd(t) values from Patlanoaya likely record changes in the 

open ocean endmember. Therefore variations in the Nd isotopic composition of the 

Rheic Ocean controlled the seawater composition of the epicontinental basins. On the 

other hand, the similarities might also reflect the proximity of the locations to sources of 

radiogenic eNd(t). Arc volcanism along the subducting edge of the Rheic Ocean would 

contribute to higher eNd(t) values recorded at Patlanoaya, while erosion of the uplifting 

Ouachita mountains shed moderately radiogenic Nd into the restricted Midcontinent 

basins [Gleason et al., 1994]. The one εNd(t) value for the Midcontinent during this 

interval is slightly less radiogenic (-7.8), suggesting a possible geochemical gradient 

extending out from continental interior, but more analyses are needed to confirm or deny 

this trend. It is important to note that the lack of a strong geochemical gradient from the 

continental interior to Patlanoaya may simply relate to our sampling strategy.  Nearly all 

of the Midland Basin and Midcontinent samples come from shales deposited during sea 

level highstand when the continental interior was more likely to be influenced by 

transgressive open ocean waters. 

 

εNd(t) as an Indicator of Glacio-eustasy, Bird Spring Shelf, Arrow Canyon, NV 

The Mid-Carboniferous boundary is marked by major sea level regression, which 
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appears as a prominent unconformity in many shallow shelf records from around the 

world [Saunders and Ramsbottom, 1986; Rygel et al., 2008]. The Nd isotope record at 

Arrow Canyon is characterized by relatively stable εNd(t) values of ~-6.9 ±0.8, 1s.d. 

(N=5) leading up to the M-P boundary.  These transition to generally less radiogenic but 

more variable values  (~-8.6 ±1.4, 1 s.d.; N=16) across the boundary and into the early 

Pennsylvanian (Figures 5-5 and 5-6). Although deposition at Arrow Canyon was nearly 

continuous (the basis for its selection as the mid-Carboniferous GSSP) [Lane et al., 

1999; Richards et al., 2001], a series of sedimentological indicators, including exposure 

surfaces, root traces and paleosols, imply the region experienced a number of glacio-

eustatic sealevel changes [e.g. Richards et al., 2001; Barnett and Wright, 2008; Bishop 

et al., 2009].  

The beginning of the shift toward unradiogenic εNd(t) values approximately 

coincides with, or possibly slightly leads, a negative δ13C excursion in bulk carbonate 

from Arrow Canyon (Figure 5-6). The light carbon isotope values reflect diagenetic 

alteration by groundwater due to prolonged periods of subareal exposure during glacio-

eustatic regression [Saltzman, 2005]. The lowest εNd(t) values appear to correlate with 

reported glacio-eustatic cycle boundaries, e.g. ravinement surfaces or marine sequences 

bounding paleosols (Figure 5-6). The prominent decreases in Nd isotopic composition 

occur in fossils extracted from: 1) a fossiliferous limestone overlain by grey-orange 

mudstone with rootlets [Barnett and Wright, 2008], 2) a limestone topped by a 

paleokarst surface ~2.5 m below the mid-Carboniferous (Chesterian-Morrowan) 

boundary [Bishop et al., 2009], and 3) a limestone bed ~ 3m above which directly 
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Figure 5-6. Mid-Carboniferous εNd(t) record for Arrow Canyon. High order transgressive-
regressive cycles boundaries are interpreted from lithology. Stratigraphic column modified from 
Barnett and Wright [2008]. “A” numbers refer to Amoco tags placed 1.5m apart on the outcrop. 
Two unradiogenic values from samples taken well above the boundary are not shown.  
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overlies a green-brown shale containing root traces [personal observation, SCW 2008; 

Barnett and Wright, 2008]. The decrease in Nd isotope values near exposure surfaces 

implies glacio-eustatic sea level fall restricted basin circulation and/or enhanced 

contributions from an unradiogenic Nd source. The εNd(t) returns to more radiogenic 

values (~-7) in deposits between these intervals which we interpret to reflect flooding of 

North American craton with Rheic Ocean water as sea levels rose.  

There are a number of sources of unradiogenic Nd to Arrow Canyon (Figure 5-7, 

Table 5-2). Deposition at Arrow Canyon occurred in a foreland basin at the foot of the 

emerging Antler highlands to the west during the Carboniferous. Tectonic evidence 

suggests the Antler orogeny occurred as a siliciclastic wedge that was emplaced along 

the passive margin of western North America [Saleeby et al., 1994]. Nd isotopic 

analyses indicate a range of εNd(t) values for the Antler Highlands ~ -5 to -11 [Smith and 

Gehrels, 1992a,b].  Weathering of the least radiogenic material from these ranges could 

have produced the trend toward decreased εNd(t) we observe. However, it is also likely 

that enhanced weathering of the transcontinental arch was the source of unradiogenic 

material. The transcontinental arch is an extension of the Canadian Shield stretching 

across North America from the present day western Great Lakes region to Arizona. The 

arch is comprised of unradiogenic Precambrian basement, εNd(t) = -13 to -22 [Patchett et 

al., 1999; Fanton et al., 2002; Haidl et al., 2003].  Runoff from the arch contributed the 

unradiogenic Nd composition of North American epicontinenal seas earlier in the 

Paleozoic [Holmden et al., 1998]. During the Devonian and early Carboniferous this 

feature was submerged and accumulated carbonates, but there is evidence of shoaling in 
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Figure 5-7. Detrital sources to North American epicontinental seas. Locations and εNd(t) of 
potential detrital sources are highlighted. Refer to Table 5-2 for εNd(t) data and references. Late 
Mississippian (~325Ma) paleoreconstruction [modified from Blakey, NAU Geology]. 

 
the late Mississippian and the emergence of continental clastic source areas [Carlson, 

1999]. The lack of early Pennsylvanian sediments across the central western US 

indicates uplift, due to tectonic pressures to the east and south, exposed the 

Transcontinental Arch to extensive erosion [Carlson, 1999].  

Our data are insufficient to investigate whether variations in εNd(t) of the waters 



124 
 

Table 5-2. Detrital Sources to North American Epicontinental Seas

 
bathing Arrow Canyon correlated to the glacio-eustatic cycles of the Upper 

Pennsylvanian. However, the least radiogenic values in our new record (εNd(t)<-10) 
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derive from mid-Bashkirian limestones that form part of a larger regressive sequence 

[Briggs et al., 2005]. An even more unradiogenic value, -12.5, is reported for one mid-

Pennsylvanian sample from the Morgan formation in the Uinta Mountains of Utah [Keto 

and Jacobsen, 1988]. It is reasonable to assume a genetic connection between the waters 

of the Uintas and Arrow Canyon since a shallow seaway west of the Transcontinental 

Arch connected the entire region. An influx of unradiogenic waters draining old cratonic 

basement combined with increased basinal residence times (due to restricted circulation 

which initiated at the M-P boundary and continued throughout the Pennsylvanian) is a 

plausible explanation for the decreased εNd(t) in our record. 

We must also consider the possibility that wholesale changes in the seawater 

source to Arrow Canyon produced the changes in the Nd isotopic composition, rather 

than variations in weathering or basinal residence times. Major restructuring of ocean 

circulation due to the closure of the tropical oceanic gateway between Panthalassa and 

the Paleotethys is indicated by a divergence in the magnitude of the mid-Carboniferous 

marine carbonate δ13C excursion from North American epicontinental seas and those of 

Europe and Russia [Mii et al., 1999, 2001; Grossman et al., 2008; Bruckshen et al., 

1999; Popp et al., 1986]. The divergence of the εNd(t) values at Arrow Canyon from the 

other locations indicate a change in circulation in North America at the same time 

(Figure 5-3). It is possible that the source of open ocean water feeding the basin at 

Arrow Canyon changed due to the combined influence of tectonic pressures as the 

Antler Mountains were uplifted, the Rheic Ocean closed and sea level fell.  

The Nd isotopic composition of Panthalassa is poorly constrained during the 
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Carboniferous, but studies of Ordovician age conodonts and phosphatic brachiopods 

from North America and Baltica indicate an εNd(t) of -10 to -20 for the early Paleozoic 

[Keto and Jacobsen, 1987]. Our Patlanoaya εNd(t) values suggest the waters of the Rheic 

were radiogenic probably related to active subduction volcanism. Fresh, young material 

composed of volcanic glasses and Fe-rich minerals are readily weathered, controlling the 

composition of the Rheic. Panthalassa, however, was a vast global ocean and likely less 

influenced by inputs of radiogenic Nd due to its large volume. Some lateral transport and 

mixing of radiogenic waters almost certainly occurred along the Panthalassa-Rheic 

boundary. Due to the spin of the Earth and east to west progression of Alleghenian-

Variscan and Ouachita orogenies, surface waters from the Rheic would likely have 

flowed westward toward Panthalassa. The boundary between the two oceans was located 

south of the equator [Scotese and McKerrow, 1990], making it likely that the radiogenic 

signal derived from Rheic seawater would have propagated southward in Panthalassa 

due to the Coriolis Effect. Thus, incursion of Panthalassic waters with an unradiogenic 

Nd signature along the western margin of North America could explain the change in 

εNd(t) observed at Arrow Canyon. Tectonic loading from the obducting Antler Highlands 

may have created connections between the western US basins and Panthalassa. During 

sea level regression and low stands, these connections would allow seawater in the 

region to be sourced from Panthalassa to the west, while restricting communication with 

the remnant Rheic Ocean and epicontinental basins to the south and east. Transgression 

would restore connections with the interior basins driving εNd(t) values up. In this 

scenario, the more radiogenic εNd(t) signal preserved in the interior basins of North 
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America and at Patlanoaya reflects their proximity to radiogenic sources of Nd. 

Therefore, restricted circulation between the basins and Rheic during times of regression 

would have had little effect on the Nd iotopic composition of the interior waters.  

 

Paleoclimatic Implications 

 Our εNd(t) records implies decoupling of North American epieric seaways from 

the open ocean (Panthalassa) by the latest Mississippian. The Arrow Canyon εNd(t) 

record indicates that the epicontinental seas of the western US were periodically 

separated from the rest of the North American epieric basins and received unradiogenic 

inputs of Nd (Figure 5-3), a trend that continues at least through the early to middle 

Pennsylvanian. εNd(t) values for the US Midcontinent, Midland Basin and Patlanoaya all 

fall within the same broad range (~-5 to -8) during the Carboniferous, implying a similar 

marine source – probably the closing Rheic Ocean. The upper Pennsylvanian (Gzhelian) 

εNd(t) values of the Midcontinent are slightly lower than values from Midland Basin and 

Patlanoaya suggesting the development of a geochemical gradient. 

Comparison of our εNd(t) record with marine carbonate δ18O and δ13C reveals a 

correspondence between decreasing εNd(t) at Arrow Canyon across the M-P boundary 

and positive δ18O and δ13C excursions in brachiopod calcite [e.g. Popp et al., 1986; Mii 

et al., 1999, 2001; Bruckshen et al., 1999; Grossman et al., 1993] which are typically 

used to link global icehouse conditions to organic carbon burial and atmospheric CO2 

levels [Berner and Kothavala, 2001; Royer et al., 2004]. While these records can be 

explained in terms of a global shift to an icehouse climate, they are likely recording the 
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response of regional marine environments to the climate rather than the mechanisms 

driving global climate change. Future detailed studies are needed to fully understand the 

extent to which these systems were decoupled from the open ocean and unravel the 

connection between climate and shallow marine environments. 
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CHAPTER VI 

CONCLUSIONS 

 

The dust accumulation record from Shatsky Rise suggests that source regions 

supplying dust to the tropical North Pacific, 58 Ma, may have experienced amplified 

wet-dry cycles corresponding with orbital eccentricity maxima. The dust flux record is 

corroborated by sedimentary 232Th data, an independent proxy for eolian material. 

Overall dust fluxes, were substantially less than modern due to a more humid 

atmosphere and/or fewer/smaller dust source regions during the early Paleogene. 

However, the relative response of dust supply to orbital forcing during the last major 

interval of greenhouse climate was comparable to that during the Pleistocene implying 

changes in solar insolation exert a primary control over global climate regardless of 

overall climate state.  

The recorded dust changes likely contributed to the orbitally-paced lithologic 

cycles by diluting the accumulating calcium carbonate, but changes in dust flux can 

account for only a fraction of the total carbonate change. Therefore, some other 

mechanism controlling carbonate preservation at the seafloor must also have responded 

to orbital forcing and account for the remaining difference in carbonate content. 

The Nd and Sr isotopic composition of extracted “dust” from Shatsky Rise, ODP 

Site 1209 indicates a relatively old continental dust source. There appear to be at least 

two source regions. Potential dust sources include Australia, Asia and North Africa. 

Transport of dust from North Africa by the trade winds seems plausible. Periodic 
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additions of andesitic material from active arc-volcanism in the Caribbean may account 

for radiogenic increases in dust εNd(0) observed in our record. Pb isotopes may help to 

more positively determine dust provenance. 

 The Carboniferous εNd(t) record derived from biogenic apatite implies 

decoupling of N. American epieric seaways from the open ocean (Panthalassa) by the 

latest Mississippian. The record from Arrow Canyon indicates that the epicontinental 

seas of the western US were periodically separated from the rest of the N. American 

epieric basins and received unradiogenic inputs of Nd. The onset of glaciation and 

subsequent eustatic changes influenced circulation in the epicontinental seas, however 

these environments appear to record the regional response to climate change rather than 

mechanisms driving climate. Additional studies are needed to fully understand the extent 

to which these systems were decoupled from the open ocean and unravel the connection 

between climate and shallow marine environments.  
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APPENDIX A 

 
Comparison of 232Th-derived dust fluxes using two sedimentation models. 
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APPENDIX B 

 

Average grain size distribution for extracted “dust” from Shatsky Rise, ODP Site 1209 
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APPENDIX C 

 

Alternate sedimentation rates and age model based on 3HeET from Marcantonio et al. 

[2009] 

Depth (rmcd) 3HeET-based LSR* Age (kyr)** 
229.93 0.28 57924.1 
230.01 0.58 57952.6 
230.07 0.27 57962.9 
230.07 0.27 ---- 
230.16 0.75 57995.9 
230.25 1.05 58007.9 
230.34 0.44 58016.4 
230.43 0.37 58036.9 
230.43 0.417 ---- 
230.57 0.60 58075.0 
230.72 0.41 58100.2 
230.87 0.31 58136.3 
231.01 0.20 58181.3 
231.07 0.38 58210.8 
231.07 0.32 ---- 
231.14 0.46 58232.6 
231.21 0.51 58247.8 
231.27 0.551 58259.6 
231.27 0.621 ---- 
231.31 0.681 58266.8 
231.51 0.35 58296.1 
231.63 0.66 58330.4 
231.75 0.35 58348.6 
231.95 1.05 58406.2 
232.16 1.08 58426.2 
232.38 1.04 58446.6 
232.56 0.32 58463.8 
232.56 0.42 ---- 
232.65 0.58 58491.7 
232.73 0.61 58505.4 
232.81 0.77 58518.6 
232.82 0.95 58519.9 
232.84 0.57 58522.0 
232.91 0.41 58534.3 
232.95 0.97 58544.0 
232.95 0.79 ---- 
233.1 0.24 58563.0 
233.24 1.68 58621.3 
233.39 1.76 58630.2 
233.42 1.09 58631.9 
233.42 0.68 ---- 
233.6 0.82 58658.4 
233.69 1.38 58669.3 
233.8 0.61 58677.3 
233.89 1.27 58692.1 
233.99 0.25 58700.0 
233.99 0.31 ---- 
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