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ABSTRACT

Practical Aspects of the Implementation of Reduced-Order

Models Based on Proper Orthogonal Decomposition. (May 2011)

Thomas Andrew Brenner, B.S.E., University of Michigan

Chair of Advisory Committee: Dr. Paul G. A. Cizmas

This work presents a number of the practical aspects of developing reduced-order

models (ROMs) based on proper orthogonal decomposition (POD). ROMS are derived

and implemented for multiphase flow, quasi-2D nozzle flow and 2D inviscid channel

flow. Results are presented verifying the ROMs against existing full-order models

(FOM).

POD is a method for separating snapshots of a flow field that varies in both time

and space into spatial basis functions and time coefficients. The partial differential

equations that govern fluid flow can then be projected onto these basis functions,

generating a system of ordinary differential equations where the unknowns are the

time coefficients. This results in the reduction of the number of equations to be solved

from hundreds of thousands, or more, to hundreds or less.

A ROM is implemented for three-dimensional and non-isothermal multiphase

flows. The derivation of the ROM is presented. Results are compared against the

FOM and show that the ROM agrees with the FOM.

While implementing the ROM for multiphase flow, moving discontinuities were

found to be a major challenge when they appeared in the void fraction around gas

bubbles. A point-mode POD approach is proposed and shown to have promise. A

simple test case for moving discontinuities, the first order wave equation, is used to

test an augmentation method for capturing the discontinuity exactly. This approach
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is shown to remove the unphysical oscillations that appear around the discontinuity

in traditional approaches.

A ROM for quasi-2D inviscid nozzle flow is constructed and the results are com-

pared to a FOM. This ROM is used to test two approaches, POD-Analytical and

POD-Discretized. The stability of each approach is assessed and the results are used

in the implementation of a ROM for the Navier-Stokes equations.

A ROM for a Navier-Stokes solver is derived and implemented using the results

of the nozzle flow case. Results are compared to the FOM for channel flow with a

bump. The computational speed-up of the ROM is discussed.

Two studies are presented with practical aspects of the implementation of POD-

based ROMs. The first shows the effect of the snapshot sampling on the accuracy

of the POD basis functions. The second shows that for multiphase flow, the cross-

coupling between field variables should not be included when computing the POD

basis functions.
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δ(x) Dirac delta measure
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εm Average least-square truncation error
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ψ General scalar

Ω Control volume

ℵ General field variable
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∗ Conjugate

′ Spatial derivative

n Time step

o Old values

pm Point mode

q State variable

ρ Density

T Temperature
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av Average
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max Maximum
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P Center of cell

rel Relative

s Solids

ss General snapshot

tot Total
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CHAPTER I

INTRODUCTION∗

A. Statement of the Problem

The objective of this research was to further the understanding of the practical as-

pects arising in the implementation of reduced-order models (ROMs) based on proper

orthogonal decomposition (POD). An effort was made to identify the ideal sampling

time of the snapshots for which the proper orthogonal decomposition is performed.

The best definition for the inner product used in the POD method was studied to

determine if a coupled or a split approach produces less error.

Another objective of this research was to develop methods for properly capturing

moving discontinuities. These moving discontinuities are present in the gas velocity

fields in the form of shocks and, in multiphase flow, exist in the void fraction at the

edge of bubbles. Traditional POD implementations suffer from unphysical Gibbs’

oscillations near these moving discontinuities. This research augmented the POD

basis functions to capture the discontinuity exactly.

An existing two-dimensional reduced-order model for multiphase flow, ODEx,

was extended to model a third spatial dimension. This includes deriving and pro-

gramming a reduced form of the z-direction conservation of momentum equations for

the gas and solids phases. The existing model was also updated to include fluxes

through the top and bottom faces of the control volume.

The journal model is Journal of Computational Physics.

∗Part of this chapter is reprinted with permission from “Practical Aspects of the
Implementation of Proper Orthogonal Decomposition”by T.A. Brenner, P.G.A. Ciz-
mas, T.J. O’Brien and R.W. Breault, 47th AIAA Aerospace Sciences Meeting, Or-
lando, FL, 2009. Copyright 2009 by the authors.
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Using the methods developed up to this point, ROMs for the Euler and Navier-

Stokes equations were derived and implemented in a finite volume solver for turbo-

machinery flow. To prepare for this, and to answer key questions about the best

approach to use, a ROM for flow through a nozzle, modeled using the quasi-2D Euler

equations, was also derived and implemented. In particular, two approaches for de-

riving a ROM were compared. In the first approach, POD-Analytical (POD-A), the

governing equations were projected onto the POD basis functions and the resulting

system was discretized. The second approach, POD-Discretized (POD-D), used the

discretized governing equations in the projection onto the POD basis functions.

B. Background

Recent advances in computer hardware have led to a wide range of new possibilities

in the computational simulation of fluid flow. Despite these advances, some flows

contain sufficient complexity to make numerical simulation a challenge. High-fidelity,

low cost models for these flows are a necessity for both design and control, and are a

major area of current and future research.

ROMs have come into wide use in the simulation of fluid flows. The dominant

spatial characteristics of the flow are identified and the weighting coefficients of these

modes are then computed instead of solving the governing equations at many grid

points [1]. When coupled with a suitable projection method, this allows for a re-

duction in the degrees of freedom of a problem from tens of thousands or more to

hundreds or less. The POD method identifies the dominant spatial structures in an

ensemble of observations, providing the optimal modes for a ROM [2].

Early attempts to model fluid flows with ROMs focused on solving for small

perturbations around a steady nonlinear flow field [3, 4, 5, 6, 7]. Subsequently, eigen-
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functions of the Stokes’ operator were used to generate modes for the ROM [8]. More

recently, the validity of these methods has been extended through the application of

POD [9, 10, 11].

Multiphase flow in fluidized beds is an example of a flow that contains suffi-

cient complexity to make variable interaction difficult to assess. POD has been used

to identify the dominant spatial features of one such flow [12]. A ROM based on

POD has been implemented to reduce the computational time needed to simulate a

two-dimensional isothermal multiphase flow at minimum fluidization [13]. Various

acceleration methods have been developed to make the ROM for this problem more

efficient [14]

Interpolation methods have been used to calculate the temporal weighting func-

tions [15] and to enhance the robustness of the ROM for parameter changes [16]. The

estimation of error in POD-based ROMs has been assessed to determine the regions of

validity for POD [17]. Specific error estimates have been given for POD-based ROMs

for the Navier-Stokes equations [18] and random fuzzy variables have been used to

quantify error propagation through POD-based ROMs [19].

The effect of projecting partial differential equations (PDEs) with stable numer-

ical solution methods onto truncated bases has been carefully considered [20]. The

stability requirements of the Runge-Kutta integration of the ODEs resulting from the

Galerkin projection of the Navier-Stokes equations onto a suitable basis has been es-

tablished [21]. Further, the stability of the POD-based ROM for the linearized Euler

equations, including the effect of the boundary conditions, has been analyzed [22].

Stabilization schemes have been developed to improve the accuracy of POD-based

ROMs [23, 24, 25]. Spectral viscosity methods have been used to correct long-term

errors due to dissipative PDEs [26]. The addition of shift-modes has been used to

improve the accuracy of models in transient flow regimes [27].
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Reviews of POD-based ROMs have been presented [28, 29]. Specifically, POD

based ROMs have been used to model rocket nozzles for flow control [30] and for

modeling airfoil cascades in the frequency domain [31]. Models have been presented

for deforming grids both with [32] and without multi-POD [33] as well as for flow

over heaving [34] and deforming airfoils [35].

POD-based ROMs have been implemented for modeling aero-icing [36] as well as

to study flow-fields for use in particle modeling [37]. Steady supersonic flow has been

predictively modeled [38]. A finite element approach for solving Burgers’ equation has

also been reduced using POD [39]. Recently, adaptive POD has been developed and

applied to the reaction/diffusion equations to model chemical reactions [40] and the

transition to turbulence around a NACA 0012 airfoil has been modeled and analyzed

using a POD-based ROM [41].

POD has been used extensively to analyze the low-dimensional characteristics

of experimental data [42, 43] and computational simulations [44, 45]. The effect of

spatial grid [46] and time step [47] refinement has been assessed. The challenges

inherent to applying POD to problems with moving discontinuities have been consid-

ered [48]. Non-POD ROMs for moving discontinuities have been developed [49]. Very

recently, methods for augmenting the POD basis [50] and adding artificial viscosity

to POD-based ROMs have been proposed for modeling moving discontinuities [51].

POD-based ROMs have also been used to model non-isothermal flows [52] and

methods have been devised to properly couple the energy variable [53]. They have

been put to practical use in modeling the temperature field in glass furnaces [54] and,

when used as part of a multi-scale model, heat transfer in computer data centers [55].

Recently, a genetic algorithm has been used to replace the Galerkin projection in

the POD-based ROM to improve robustness and more easily incorporate boundary

conditions [56].
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Various modifications to traditional POD have been proposed. These include

episodic POD [57] which seeks to improve the performance of POD-based ROMs for

problems with strong periodicity. Local POD plus Galerkin projection [58] updates

the POD manifold periodically to reduce error while using a coarser projection to

speed computation.

POD has been used outside of fluid modeling for data analysis and processing.

It has been used to identify the basis functions that best model U.S. Supreme Court

decisions [59]. POD has been used in image processing, including the effects of missing

pixels or gappy data [60]. More recently, POD has been used to analyze fundamental

characteristics of vehicle classes for design [61].

C. Original Contributions

The ROMs presented herein for multiphase flow are a continuation of previous work [62,

63, 64]. The ROM for non-isothermal multiphase flow was developed in conjunction

with Richardson and Fontenot. The author contributed to the implementation of the

computational algorithm and the development of the validation case. The author

derived the ROM for three-dimensional flow and collaborated with Fontenot on its

implementation and the development of a validation case.

To the best of the author’s knowledge, this dissertation represents the first sys-

tematic study of the differences between the POD-A and POD-D approaches for

ROMs. The augmentation of the POD bases with discontinuity modes is also orig-

inal work, as is the development of point-mode POD. The author also developed a

full-order model (FOM) for the transport equation and implemented a FOM for the

quasi-2D Euler equations.

Presented herein is a novel study of the best placement in time of the snapshots
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used to compute POD basis functions for a minimum fluidization study. Also, the

author conducted a study comparing coupled POD to split POD. Although the differ-

ences between the two approaches are discussed in the literature, this is, to the best

of the author’s knowledge, the first study comparing the error in the two approaches.

Finally, the author has derived and implemented the first stage of a ROM for

the in-house implicit finite-volume solver UNS3D. Validation results are presented for

a 2D channel with a bump. Plans for continuing the development of this ROM are

discussed.

D. Outline of Dissertation

Chapter II presents the POD method and describes its use in reduced-order model-

ing. Chapter III describes the governing equations and full-order model for multiphase

flow, then derives the reduced-order models for non-isothermal and three-dimensional

multiphase flows and shows validation results for both ROMs. Next, Chapter IV

discusses the problems inherent to POD-based ROMs for flows with moving discon-

tinuities. Point mode POD is proposed and illustrated for multiphase flow. A simple

model problem is given, two ROMs are derived using mode augmentation and val-

idation results are presented. Chapter V describes flow through a nozzle modelling

using the quasi-2D Euler equations. Two ROMs are developed for this problem and

are subsequently used to evaluate the stability of contrasting methods, POD-A and

POD-D. Chapter VI presents the progress made in implementing a ROM for the

Navier-Stokes solver, UNS3D. Preliminary validation results are shown for a two-

dimensional channel with a bump. Chapter VII discusses some practical aspects of

the implementation of POD-based ROMs, including snapshot distribution and the

best form of the autocorrelation matrix. Studies are conducted to evaluate various
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snapshot distributions and to compare split and coupled approaches for the autocor-

relation matrix. Finally, Chapter VIII presents conclusions and future work to be

completed.
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CHAPTER II

REDUCED-ORDER MODELING BASED ON PROPER ORTHOGONAL

DECOMPOSITION∗

This chapter begins with a discussion of the POD method and its extension, the

method of snapshots. Next, an example is given to demonstrate the process of deriving

a ROM based on POD. Two approaches for deriving a ROM, POD-A and POD-D, are

introduced and the advantages of each are discussed. Finally, a method for computing

reference solutions for time coefficients is derived.

A. Proper Orthogonal Decomposition

Proper orthogonal decomposition is a procedure for extracting spatial basis functions

from data that are dependent on both time and space. Consider a set of discrete

snapshots of a transient function u(x, t), represented by u(x, ti) for i = 1, . . . ,M .

These observations are assumed to form a linear, finite-dimensional Hilbert space L2

on a spatial domain D. The basis functions {ϕk(x)} are computed such that the

reconstruction

u(x, ti) =
M∑

k=1

αk(ti)ϕk(x), i = 1, . . . ,M (2.1)

is optimal in the sense that the average least-square truncation error

εm =

〈∥∥∥∥∥u(x, ti)−
m∑

k=1

αk(ti)ϕk(x)

∥∥∥∥∥
2〉

(2.2)

∗Part of this chapter is reprinted with permission from “Practical Aspects of the
Implementation of Proper Orthogonal Decomposition”by T.A. Brenner, P.G.A. Ciz-
mas, T.J. O’Brien and R.W. Breault, 47th AIAA Aerospace Sciences Meeting, Or-
lando, FL, 2009. Copyright 2009 by the authors.
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is a minimum for any given number m ≤M . Herein || · || denotes the L2-norm given

by ||f || = (f, f)
1
2 , where (, ) denotes the Euclidean inner product. 〈 · 〉 denotes an

ensemble average over the number of observations, 〈f〉 =
∑M

i=1 f(x, ti)/M.

This optimization problem is equivalent to the eigenvalue problem [2]∫
D

〈u(x)u∗(y)〉ϕ(y)dy = λϕ(x) (2.3)

which is a homogeneous Fredholm integral equation of the second kind [65].

Then, the optimal basis functions can be calculated as the eigenfunctions of the

kernel of the integral equation (2.3). In the finite-dimensional case this reduces to

finding the eigenvectors of the autocorrelation matrix defined by

R(x,y) =
M∑
i=1

u(x, ti)u
T (y, ti)/M. (2.4)

Holmes et al. [2] showed that the POD basis functions are optimal using the

following approach. Again consider some ensemble of scalar fields, {uk}, u = u(x).

For the work presented herein, the scalar fields will be parameterized by time, i.e.

uk(x) = u(x, tk), but other parameterizations are possible and relatively common.

The inner product is defined as

(f ,g) =

∫
f(x)g∗(x)dx.

The goal is then to compute the set of basis functions, {ϕ(x)} that maximizes

the projection of u onto ϕ. That is

max
ϕ∈L2

〈|(u, ϕ)|2〉
||ϕ||2

.

This is equivalent to maximizing 〈|(u, ϕ)|2〉 subject to the constraint ‖ϕ‖2 = 1. To
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solve this problem, define the functional

J [ϕ] = 〈|(u, ϕ)|2〉 − λ(‖ϕ‖2 − 1).

The derivative of this functional vanishes at the extrema for any variation, ϕ+ δψ ∈

L2, δ ∈ R:

d

dδ
J [ϕ+ δψ]|δ=0 = 0

or

d

dδ
[〈(u, ϕ+ δψ)(ϕ,u)〉 − λ(ϕ+ δψ, ϕ+ δψ)]|δ=0 = 0.

If the real part is set to zero,

〈(u, ψ)(ϕ,u)〉 − λ(ϕ, ψ) = 0.

Expanding this inner product,〈∫
u(x)ψ∗(x)dx

∫
φ(x′)u∗(x′)dx′

〉
− λ

∫
φ(x)ψ∗(x)dx = 0.

Then, noting that the 〈·〉 operator commutes with the integrals,∫ [∫
〈u(x)u∗(x′)〉ϕ(x′)dx′ − λϕ(x)

]
ψ∗(x)dx = 0.

But, ψ(x) is arbitrary so ∫
〈u(x)u∗(x′)〉ϕ(x′)dx′ = λϕ(x).

As above, this is the Fredholm integral of the second kind and the optimal basis that

we are seeking is given by the eigenfunctions of

R(x,x′) = 〈u(x)u∗(x′)〉.

In the finite dimensional case, this is equivalent to the finding the eigenvectors
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of the tensor product matrix

R = 〈u⊗ u∗〉.

B. Method of Snapshots

The method of snapshots [66] provides an efficient method for computing the POD

basis functions when the spatial dimension of the snapshots, N , exceeds the total

number of snapshots, M . The snapshots, ui ≡ u(x, ti), and the POD basis functions,

ϕk, span the same linear space and can therefore be expressed as a linear combination

where

ϕk =
M∑
i=1

vk
i ui k = 1, . . . ,M. (2.5)

Substituting (2.5) into the eigenvalue problem Rλ = ϕλ gives a new eigenvalue prob-

lem

Cv = λv

where Cij = 1
M

(ui,uj) and C ∈ RM ×RM . Once the eigenvectors of C are computed,

the POD basis functions are given by (2.5). Herein this method was used in the

software package PODDEC, due to Cizmas and Palacios [10], to compute the POD

basis functions.

C. Example of a Reduced-Order Model based on Proper Orthogonal Decomposition

To illustrate the process by which a ROM is constructed, consider a simple linear

partial differential equation

∂u

∂t
= D(u) (2.6)
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where D is some linear differential operator and u is some scalar field that varies in

both time and space. The POD approximation for u is

u(x, t) = ū(x) +
M∑

j=1

αj(t)ϕj(x) =
M∑

j=0

αj(t)ϕj(x) (2.7)

where ū(x) is the time average of u. For convenience in notation, ϕ0(x) ≡ ū(x) and

α0(t) ≡ 1. Substituting (2.7) into (2.6) and projecting the resulting equation onto the

k-th POD basis function, ϕk, generates a system of k ordinary differential differential

equations (
m∑

j=1

dαj(ti)

dt
ϕj(x), ϕk(x)

)
=

(
D
( m∑

j=0

αj(ti)ϕj(x)
)
, ϕk(x)

)
.

Using the orthogonality of the POD basis functions, this can be simplified further to

find

dαk

dt
= Fk(α1, . . . , αm), k ∈ [1,m] (2.8)

where Fk is some operator consisting of the projection of the spatial derivatives of

POD basis functions onto POD basis functions. The orthogonality of the POD basis

functions can be expressed as

(ϕi, ϕj) = δij =


1 i = j

0 i 6= j

Eq. (2.8) can then be integrated with some suitable ordinary differential equation

(ODE) solver.

D. Comparison of Implementation Approaches: POD-A vs. POD-D

In the preceding example the POD approximation was substituted directly into a

PDE and projected onto the POD basis functions, resulting in a system of ODEs.
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The evaluation of the spatial derivatives and the integration of the ODEs were not

addressed. Herein this approach will be referred to as POD-A, for POD-Analytical.

A second approach exists where instead of a PDE, the governing equation is

expressed as a system of discretized equations. An example would be the system of

equations obtained by applying a finite difference or finite volume discretization to a

PDE. Substituting the POD approximation into this system of equations results in a

system of algebraic equations where the time coefficients are the unknown quantities.

Projecting this new system of equations onto the POD basis functions then results in

a much smaller system of algebraic equations. This approach will be demonstrated

in the derivation of a ROM for multiphase flow and will be referred to as POD-D, for

POD-Discretized.

E. Reference Solution: Projection of Snapshots

A method is needed to compare the snapshots of the field variables computed using

the FOM to the time coefficients computed using the ROM. Recall that a snapshot of

a generic field variable u at time tss can be expressed using the POD approximation

u(x, tss) = ϕ0(x) +
m∑

j=1

αj(tss)ϕj(x). (2.9)

Then, projecting both sides of (2.9) onto the POD basis functions

(
u(x, tss)− φ0(x), ϕk(x)

)
=
( m∑

j=1

αj(tss)ϕj(x), ϕk(x)
)
.

Taking advantage of the orthogonality of the POD basis functions,

αk(tss) =
(
u(x, tss)− φ0(x), ϕk(x)

)
(2.10)
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The projection equation (2.10) provides a method for computing the best-case time

coefficients directly from the snapshots used to generate the POD basis functions.

This is very useful for evaluating validation results for ROMs and will be used exten-

sively herein.
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CHAPTER III

MULTIPHASE FLOW∗

This chapter begins with the hydrodynamic model used to represent multiphase flow.

A computational algorithm for solving this model is then described, followed by the

presentation of a reduced-order model for the non-isothermal form of this algorithm.

A section is devoted to describing the model problem used the validate the non-

isothermal ROM. Next a ROM for three-dimensional multiphase flow is derived. Fi-

nally, the three-dimensional model problem used to validate the 3D ROM is given.

A. Physical Model

The fluidized bed was modeled using a two-phase hydrodynamic model [67]. The

governing equations were based on the laws of mass, momentum and energy conser-

vation. In this model, the gas- and solids-phase mass balance equations are given

by

∂

∂t
(εmρm) +∇ · (εmρm~vm) = 0 (3.1)

where m denotes the phase, either gas or solids, ρ is the density, ε is the volume

fraction, and ~v is the velocity vector.

The gas- and solids-phase momentum balance equations are given by

∂

∂t
(εmρm~vm) +∇ · (εmρm~vm~vm) = −εm∇pg +∇ · Sm + Fgs(~vs − ~vg) + εmρm~g. (3.2)

Here the first two terms of the right hand side represent the normal and shear surface

∗Part of this chapter is reprinted with permission from “Practical Aspects of the
Implementation of Proper Orthogonal Decomposition”by T.A. Brenner, P.G.A. Ciz-
mas, T.J. O’Brien and R.W. Breault, 47th AIAA Aerospace Sciences Meeting, Or-
lando, FL, 2009. Copyright 2009 by the authors.
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forces, respectively. The third term is the contribution of the drag force on the solids

and the fourth term is the body force due to gravity.

The gas-phase energy balance equation is

εgρgCpg

(∂Tg

∂t
+ ~vg · ∇Tg

)
= −∇ · ~qg + γg(Ts − Tg)−∆Hg + γRg(T

4
Rg − T 4

g ) (3.3)

and the solids-phase energy balance equation is given by

εsρsCps

(∂Ts

∂t
+ ~vs · ∇Ts

)
= −∇ · ~qs + γs(Ts − Tg)−∆Hs + γRs(T

4
Rs − T 4

s ), (3.4)

where ~qm is the conductive heat flux, ∆Hm is the heat of reaction and γRm is the heat

transfer coefficient. The constant pressure specific heat coefficients for the gas- and

solids-phases are Cpg and Cps, respectively.

B. Full-Order Model: MFIX

The full-order model refers to the numerical model used to solve these governing

equations and generate the database of snapshots used by the POD method. The

FOM was developed at the Department of Energy’s National Energy Technology

Laboratory and the implementation is the Multiphase Flow with Interface eXchanges

(MFIX) code [67]. For isothermal cases, this code solves a discretized version of (3.2)

and uses correction algorithms that satisfy (3.1) to calculate the gas pressure and

solids volume fraction. For non-isothermal cases, discretized versions of (3.3) and (3.4)

are also solved.

The solutions of these equations were collected throughout the time domain to

form a database of snapshots for both the isothermal and non-isothermal cases. For

the isothermal case, snapshots of six field variables were captured: x- and y-direction

gas and solids velocities, gas pressure, and void fraction (ε = εg = 1 − εs). For the
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non-isothermal case, the gas and solids temperature fields were also collected.

C. Reduced-Order Model for Non-Isothermal Flow

Previous work has presented the derivation of a ROM for two-dimensional isothermal

flow in fluidized beds [13, 14]. This section presents the derivation of a ROM for the

gas and solids energy balance equations to be used in conjunction with the previously

developed models for x- and y-direction gas and solids velocities, void fraction, and

gas pressure.

The energy balance equations (3.3) and (3.4) can be written in the general form

of transport equations. That is, the discretized transport equation for a scalar ψ can

be written as [68, p. 18, Eq. 3.12]

aP (ψ)P =
∑
nb

anb(ψ)nb + bP , (3.5)

where p and nb denote the cell center and neighbor cell centers, respectively. For the

energy balance equation ψ = T`, where ` denotes the phase, either gas or solids. The

coefficients of the discretized energy balance equation are

aT`
E = De −

(ξT
` )e

2
(ε`ρ`)E(Cp` + Cp`E)(u`)eAe (3.6)

aT`
W = Dw +

(ξ̄T
` )w

2
(ε`ρ`)W (Cp` + Cp`E)(u`)wAw (3.7)

aT`
N = Dn −

(ξT
` )n

2
(ε`ρ`)N(Cp` + Cp`N)(v`)nAn (3.8)

aT`
S = Ds +

(ξ̄T
` )s

2
(ε`ρ`)S(Cp` + Cp`N)(v`)sAs (3.9)

aT`
p = −

(∑
nb

(aT
` )nb +

(ρo
`)Cp` 4 V

∆t
+ γRm(T o

` )3
)

(3.10)

bT`
p = −

((ρo
`)Cp` 4 V

4t
(T o

` )−4HRm 4 V + SRC` 4 V
)

(3.11)

(SRC`)p = γRm(T 4
Rm + 3(T o

` )4)− 4γRm(T o
` )3T` (3.12)
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In (3.6)-(3.12), ` denotes the phase index (g or s). The subscripts E, W , N

and S denote the cell centers of the East, West, North and South neighbor cells,

respectively. The subscripts e, w, n and s denote the East, West, North and South

face of the cell, respectively. The diffusion terms, Df , where f is the face of the cell,

are modeled as [68, p. 19, Eq. 3.23]

Df =
K`fAf

4xf

.

The K`f flux terms are given in the MFIX Numerical Technique [68, p. 17, Eq. 3.6

& 3.7]. ξ, ε, ρ, and Cp are the convection weighting factor, gas void fraction, density

and constant pressure specific heat, respectively. u` and v` are the gas and solids

velocities in the x- and y-direction. A is the area of a cell face and the infinitesimal

cell volume is represented by 4V . The superscript o denotes “old” variables, that

is, variables from the previous time step. Herein the radiation source term, SRC`, is

assumed to be zero.

The temperature T` is approximated using the POD basis functions and time

coefficients as

T`(x, tk) ∼= ϕT`
0 (x) +

mT`∑
j=1

αT`
j (tk)ϕ

T`
j (x). (3.13)

Substituting (3.13) into (3.5) yields

ap

(
ϕT`

0 (x)+
mT`∑
j=1

αT`
j (tk)ϕ

T`
j (x)

)
=
∑
nb

anb

(
ϕT`

0,nb(x)+
mT`∑
j=1

αT`
j (tk)ϕ

T`
j,nb(x)

)
+bP . (3.14)

Projecting (3.14) onto the POD basis functions using a Galerkin projection gives the

system of equations

ÃT`αT` = B̃T` (3.15)
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where

ÃT`
ij =

(
aT`

P ϕ
T`
j (x)−

∑
nb

aT`
nbϕ

T`
j,nb(x), ϕT`

i (x)
)

(3.16)

and

B̃T`
i =

(
bT`
P +

∑
nb

aT`
nbϕ

T`
0,nb(x)− aT`

P ϕ
T`
0 (x), ϕT`

i (x)
)

(3.17)

The dimensions of ÃT` and B̃T` are mT` ×mT` and mT` × 1, respectively.

D. Model Problem

A two-dimensional non-isothermal fluidized bed at minimum fluidization [69] was used

to verify the reduced-order model for non-isothermal flow. The geometry is shown

in Fig. 1. Background gas is injected along the bottom of the bed at v2 = 1 cm/s.

After t = 0.2 s, a central jet is introduced at v1 = 12.6 cm/s and the combined flow

is simulated for the remainder of the first second. The first 0.2 s were considered

start-up transience and, as a result, only the final 0.8 s were considered for the model

verification.

The bed is initially at 297 K and the distributed inlet flow is also at 297 K.

The central jet, however, is at 450 K. The parameters for this test case are given in

Table I.
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Figure 1: Geometry and boundary conditions for the two-dimensional fluidized bed.

E. Non-Isothermal Flow Results

The non-isothermal test case was simulated using the FOM and 320 snapshots of

each field variable were collected. The POD basis functions were computed using

the method of snapshots and a split approach. The ROM was then used to simulate

the problem at the same reference conditions using the mode-set given in Table II.

The relatively large number of modes needed to compute the gas temperature was

due to the gas temperature still being in a transient regime in the temporal domain

considered.

Figure 2 shows the cumulative energy captured by the basis functions of the eight

field variables in the non-isothermal model problem. The cumulative energy is the
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summation of the relative energy captured by each POD mode. The relative energy

of the k-th POD mode is defined as λk/
∑M

i=1 λi where λk is the eigenvalue associated

with the k-th POD mode in (2.3).

Figure 2: Cumulative energy spectrum for non-isothermal model problem.

Figures 3 and 4 compare the gas and solids temperature fields computed using

the FOM and ROM at t = 1 s and Figs. 5 and 6 show the same fields in greater detail

around the jet inlet. The agreement is very good. This agreement is also evident in

Figs. 7 and 8 which compare the time coefficients for the first two POD modes for gas

and solids temperature computed with the ROM to the time coefficients computed

by projecting the snapshots directly onto the POD basis functions using (2.10).
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(a)

(b)

Figure 3: Contour plots at t = 1.0 s for: (a) gas temperature, FOM, (b) gas temper-

ature, ROM.
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(a)

(b)

Figure 4: Contour plots at t = 1.0 s for: (a) solids temperature, FOM, (b) solids

temperature, ROM.
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(a)

(b)

Figure 5: Contour plots showing the region around the jet inlet at t = 1.0 s for: (a)

gas temperature, FOM, (b) gas temperature, ROM.
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(a)

(b)

Figure 6: Contour plots showing the region around the jet inlet at t = 1.0 s for: (a)

solids temperature, FOM, (b) solids temperature, ROM.
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(a)

(b)

Figure 7: Comparison of time coefficients for gas temperature: (a) α
Tg

1 , and (b) α
Tg

2 .
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(a)

(b)

Figure 8: Comparison of time coefficients for solids temperature: (a) αTs
1 , and (b)

αTs
2 .
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Table I: Parameters of a non-isothermal fluidized bed [69].

Parameter Description Value

xlength Length of the domain in x-direction 25.4 cm

ylength Length of the domain in y-direction 76.5 cm

imax Number of cells in x-direction 108

jmax Number of cells in y-direction 124

v1 Jet gas inflow velocity 12.6 cm/s

v2 Distributed gas inflow velocity 1.0 cm/s

ps Static gas pressure at outlet 1.01 × 106 g/(cm·s2)

Tg0 Initial gas temperature 297 K

Ts0 Initial solids temperature 297 K

Tg1 Jet gas inlet temperature 450 K

Tg2 Distributed gas inlet temperature 297 K

µg0 Gas viscosity 1.8 × 10−4 g/(cm·s)

tstart Start time 0 s

tstop Stop time 1 s

4t Initial time step 1.0 × 10−4 s

ρso Constant solids density 1.0 g/cm3

Dp Solids particle diameter 0.5 mm

hs0 Initial packed bed height 38.25 cm

Cpg0 Initial gas phase specific heat 0.25 cal/gK

Cps0 Initial solids phase specific heat 0.310713 cal/gK

ε∗g Packed bed void fraction 0.40
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Table II: Number of modes used in the non-isothermal case.

Field variable Symbol No. of modes

Gas pressure mpg 2

Void fraction mεg 7

u gas velocity mug 2

v gas velocity mvg 5

u solids velocity mus 8

v solids velocity mvs 6

Gas temperature mTg 12

Solids temperature mTs 3
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F. Reduced-Order Model for Three-Dimensional Flow

MFIX models the z−direction gas and solids velocities as

aw`
p w` +

∑
nb

aw`
nbw` = bw`

p (3.18)

where the aw`
nb , a

w`
p , bw`

p coefficients are defined in the MFIX Numerical Technique

document [68, pp. 15-21] and ` represents the phase, either gas or solids. The

velocity can then be approximated using the POD basis functions as

w`(x, t) = ϕw`
0 (x) +

mw`∑
j=1

αw`
j (t)ϕw`

j (x), (3.19)

where mw` is the number of z-direction velocity modes kept in the approximation.

Substituting (3.19) into (3.18), projecting the result onto the POD basis functions,

and collecting the time coefficient terms on the left hand side of the equation,

Ãw`αw` = B̃w` ,

where

Ãw`
ij =

((
aw`

p φ
w`
j +

∑
nb

aw`
nbφ

w`
j,nb

)
, φw`

i

)
,

B̃w`
i = (bw`

p − aw`
p −

∑
nb

aw`
nbφ

w`
0,nb, φ

w`
i ).

The dimensions of Ã and B̃ are mw` ×mw` and mw` × 1, respectively. Eq. (3.20) was

implemented in ODEx for both the gas and solids phases. This equation was solved

immediately after the x- and y-direction conservation of momentum equations for

the gas and solids phases, respectively. The solution methodology was the same as

for the x- and y-direction conservation of momentum equations as described in Yuan

[62] and Richardson [63]. The solution algorithms for the other field variables were

updated to include flux terms through the top and bottom of the control volume.
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G. 3D Results

A three-dimensional test case was developed to test the ROM. This test case used the

parameters specified in Table III and the geometry shown in Fig. 1 was extruded in the

z-direction. For this case the central jet was a slot oriented in the z-direction. MFIX

was used to model the flow and PODDEC was used to extract the basis functions. The

time coefficients computed using ODEx with the number of modes given in Table IV

are shown in Figs. 9-16 where they are compared to the best-case time coefficients

computed using the projection method given by (2.10). The agreement is generally

very good.
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(a)

(b)

Figure 9: Time history of the first two time coefficients for void fraction in the 3D

case: (a) α
εg

1 , and (b) α
εg

2 .
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(a)

(b)

Figure 10: Time history of the first two time coefficients for gas pressure in the 3D

case: (a) α
pg

1 , and (b) α
pg

2 .
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(a)

(b)

Figure 11: Time history of the first two time coefficients for x-direction gas velocity

in the 3D case: (a) α
ug

1 , and (b) α
ug

2 .
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(a)

(b)

Figure 12: Time history of the first two time coefficients for x-direction solids velocity

in the 3D case: (a) αus
1 , and (b) αus

2 .
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(a)

(b)

Figure 13: Time history of the first two time coefficients for y-direction gas velocity

in the 3D case: (a) α
vg

1 , and (b) α
vg

2 .
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(a)

(b)

Figure 14: Time history of the first two time coefficients for y-direction solids velocity

in the 3D case: (a) αvs
1 , and (b) αvs

2 .
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(a)

(b)

Figure 15: Time history of the first two time coefficients for z-direction gas velocity

in the 3D case: (a) α
wg

1 , and (b) α
wg

2 .
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(a)

(b)

Figure 16: Time history of the first two time coefficients for z-direction solids velocity

in the 3D case: (a) αws
1 , and (b) αws

2 .
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Table III: Isothermal case parameters.

Parameter Description Value

xlength Length of the domain in x-direction 25.4 cm

ylength Length of the domain in y-direction 76.5 cm

imax Number of cells in x-direction 108

jmax Number of cells in y-direction 124

v1 Jet gas inflow velocity 12.6 cm/s

v2 Distributed gas inflow velocity 1.0 cm/s

ps Static gas pressure at outlet 1.01× 106 g/(cm s2)

Tg0 Gas temperature 297 K

µg0 Gas viscosity 1.8× 10−4 g/(cm s)

tstart Start time 0 s

tstop Stop time 1 s

4t Initial time step 1.0× 10−4 s

ρso Constant solids density 1.0 g/cm3

Dp Solids particle diameter 0.5 mm

hs0 Initial packed bed height 38.25 cm

ε∗g Packed bed void fraction 0.40
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Table IV: Number of modes used in the three-dimensional case.

Field variable Symbol No. of modes

Gas pressure mpg 2

Void fraction mεg 7

u gas velocity mug 2

v gas velocity mvg 6

w gas velocity mwg 2

u solids velocity mus 9

v solids velocity mvs 9

w solids velocity mws 9
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CHAPTER IV

MOVING DISCONTINUITIES∗

Flows with moving discontinuities cause the current POD approximation to produce

poor results. In the usual POD method, the time average is subtracted from the

data prior to computing the POD modes. This average mode captures any stationary

discontinuities in the data. Moving discontinuities, however, are approximated as the

superposition of modes of increasing frequency. This approximation is susceptible to

dispersion errors that result in the well known Gibbs phenomenon of non-physical

oscillations about the discontinuity.

Two common examples of moving discontinuities in flows that are challenging

for POD-based ROMs are: (i) moving shocks and (ii) gas bubbles in multiphase flow.

For flows with moving shocks, a solution of domain decomposition was proposed

where the FOM was used in regions where a shock is possible and a ROM was used

everywhere else [48].

In multiphase flow, gas bubbles represent moving discontinuities and the resulting

oscillations can cause non-physical values for the void fraction. These spurious values

for the void fraction can then cascade through the other field variables and lead to

divergence of the computation. In multiphase flow, bubbles can exist in most of the

physical domain, rendering the domain decomposition approach impractical. The

work presented herein seeks to augment the POD bases with non-orthogonal modes

that capture the moving discontinuities exactly and prevent the Gibbs phenomenon

from occurring.

∗Part of this chapter is reprinted with permission from “Augmented Proper Or-
thogonal Decomposition for Problems with Moving Discontinuities”by T.A. Brenner,
R.L. Fontenot, P.G.A. Cizmas, T.J. O’Brien and R.W. Breault, 2010. Powder Tech-
nology, 203, 78-85, Copyright 2010 by Elsevier B.V.
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First, bubbling multiphase flow is discussed and examples are presented showing

the problems that ROMs encounter with moving discontinuities. Then, point mode

POD is described and tested for an isothermal multiphase flow example. The next

section is devoted to developing a very simple model problem for testing augmentation

methods. A FOM is derived for the simple model problem, followed by a POD-A

ROM. Next the method by which the reference solution was computed is described

and the form of the discontinuity modes is discussed. Finally, results showing the

effectiveness of the augmentation process are presented.

A. Bubbling Multiphase Flow

Moving discontinuities in the void fraction occur at the boundary of bubbles in multi-

phase flow. When the void fraction is approximated with POD, unphysical oscillations

appear in the reconstruction near the bubble boundaries. These oscillations result in

void fractions greater than one, which cause the algorithm implemented in ODEx to

diverge.

To see this in practice, consider the test case described in Table V with the

geometry shown in Fig. 1. Snapshots were captured every 0.0025 seconds, starting at

1.0 s and ending at 2.0 s. This time domain was selected to capture a flow that was

fully developed.

Once the snapshots were used to compute the POD basis functions, shown in

Figs. 17 and 18, the snapshots were then projected directly onto the basis functions to

compute the best-case values for the time coefficients. These ’exact’ time coefficients

were then used to reconstruct the solution at t = 1.5s. Figures 19 and 20 show

this reconstruction for a range of total modes. Note that unphysical values for void

fraction, greater than one or less than the minimum packed bed fraction of 0.4, are
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Table V: Parameters of a bubbling fluidized bed [69, p. 156].

Parameter Description Units

xlength Length of the domain in x-direction cm 40.0

ylength Length of the domain in y-direction cm 76.5

imax Number of cells in x-direction - 108

jmax Number of cells in y-direction - 124

v1, v2 Gas inflow velocities cm/s 577.0, 53.6

pgs Static pressure at outlet g/cm/s2 1.01e6

Tg0 Gas temperature K 297

µg0 Gas viscosity g/cm/s 1.8e−4

tstart Start time s 0.0

tstop Stop time s 5.0

ρs Particle density g/cm3 2.42

Dp Particle diameter cm 0.08

hs0 Initial height of packed bed cm 29.2

ε∗g Initial void fraction of packed bed - 0.4

shown as gaps, or white spaces, in the contour plot data.

It is clear that it is possible to capture almost all of the structures in the flow

using only 8 modes. The main effect of continuing to add modes is to eliminate the

unphysical regions of the flow. However, even with 40 modes, unphysical regions still

exist in the reconstruction. It seems likely that a more efficient means of capturing

moving discontinuities exists.

When the POD basis functions were computed, it was noticed that certain basis
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(a) (b)

(c) (d)

Figure 17: Contour plots of void fraction basis functions: (a) ϕ
εg

0 , (b) ϕ
εg

1 , (c) ϕ
εg

2 , (d)

ϕ
εg

3 .
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(a) (b)

(c) (d)

Figure 18: Contour plots of void fraction basis functions: (a) ϕ
εg

4 , (b) ϕ
εg

5 , (c) ϕ
εg

6 , (d)

ϕ
εg

7 .
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(a) (b)

(c) (d)

Figure 19: Contour plots of void fraction, εg, at t = 1.5 s for: (a) FOM, (b) POD

reconstruction with 4 modes, (c) POD reconstruction with 8 modes, (d) POD recon-

struction with 16 modes.
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(a) (b)

(c) (d)

Figure 20: Contour plots of void fraction, εg, at t = 1.5 s for: (a) FOM, (b) POD

reconstruction with 20 modes, (c) POD reconstruction with 36 modes, (d) POD

reconstruction with 40 modes.
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functions for the void fraction resembled a bubble at different locations in the spatial

domain. For an example, see ϕ
εg

4 and ϕ
εg

5 in Fig. 18. The time coefficients associated

with these basis functions were then computed using the projection method and are

shown in Figs. 21 and 22 as a function of time. As these time coefficients were strongly

periodic, a Fourier transform was performed to analyze the effect of the basis function

in the frequency domain. The resulting frequencies are shown in Figs. 23 and 24.

Figure 21: Fourth time coefficient for void fraction.

These results show that the time coefficients associated with basis functions that

have bubble-like structures have a dominant frequency of 7 Hz. It is possible to

qualitatively determine the bubbling frequency in the fluidized bed by generating an
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Figure 22: Fifth time coefficient for void fraction.

animation of the flow and counting the number of bubbles that are formed. This

method shows that approximately seven bubbles are formed between t = 1.0 s and

t = 2.0 s. Therefore, we conclude that it is possible to determine the bubbling

frequency of the flow by applying Fourier analysis to the time coefficients of the

POD. Furthermore, for this test case, the fourth and fifth POD modes capture the

structure of a bubble.
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Figure 23: Fourier transform of fourth time coefficient for void fraction.

B. Point Mode POD

One method for adapting the POD method to solve for moving discontinuities is the

point-mode method. In this approach, a collection of point modes are added to the

set of POD basis functions. Point modes are defined as having a value of one for a

single cell in the computational mesh and are zero everywhere else. If the POD basis

functions are then set equal to zero in the cells for which point modes are used, the

computational domain will be automatically decomposed into areas where the ROM

is solved and areas where the FOM is solved.

To see this, consider the discretized x−direction conservation of momentum equa-
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Figure 24: Fourier transform of fifth time coefficient for void fraction.

tion:

ap(ug)p +
∑
nb

anb(ug)nb = bp. (4.1)

The x−direction gas velocity can be approximated as

ug(x, t) = ϕ0(x) +
n∑

j=1

ϕj(x)αj(t) +
n+m∑

j=n+1

ϕpm
j (x)αpm

j (t), (4.2)

where ϕj represents a POD basis function and ϕpm
j is a point mode. The collection
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of POD and point modes is then defined as {ψ} where

ψj =


ϕj 0 ≤ j ≤ n

ϕp
j n+ 1 ≤ j ≤ n+m

Note that the POD basis functions that are included in this collection of modes

have been masked, that is set to zero, at the spatial points where point modes exist.

Substituting (4.2) into (4.1), using a Galerkin projection to project the resulting

equation onto {ψ}, and rearranging, the system of equations to be solved for the time

coefficients can be expressed as

Aijαj = bi.

Here

Aij =
(
ap(ψj)p +

∑
nb

anb(ψj)nb, ψi

)
and

bi =
(
bp −

∑
nb

anb(ψ0)nb − ap(ψ0)p, ψi

)
.

Consider a point mode, ϕpm
j defined at a point xp. This point mode will have

a time coefficient, αpm
j . The point mode is orthogonal to every other mode in the

set {ψ} so, using the x-direction conservation of momentum equation from ODEx,

equation for αpm
j is

axp
p α

pm +
∑
nb

a
xp

nb

n+m∑
j=0

(ψj)nbαj = bxp
p

where a
xp
p , a

xp

nb and b
xp
p are the coefficients from the discretized momentum equation

for the point xp. Recognizing that

(ug)nb ≈
n+m∑
j=0

(ψj)nbαj
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regardless of whether the neighbor cell is a point-mode cell or a POD mode cell, then

axp
p α

pm +
∑
nb

a
xp

nb(ug)nb = bxp
p .

Clearly αpm(tk) is an approximation for ug(xp, tk).

To demonstrate this, 12 point modes were defined for ug and used in a test case

whose parameters are given in Table III. The geometry for this case is shown in Fig. 1.

The point modes were placed in a block, just above the jet inlet. A zoomed view of

the average mode, ϕ0, is shown in Fig. 25 both before and after masking. Fig. 26

indicates the location of two of the point modes. Finally, Fig. 27 compares the time

history of the x−direction gas velocity computed with MFIX at these two points to

the time history of the time coefficients associated with the two point modes. Good

agreement is observed, considering the relatively small variation in the velocity in this

simple test case.

The logical next step is to apply this method to the ROM for void fraction.

Unfortunately, as ODEx is currently written, the time coefficient associated with a

point mode would approximate the void fraction correction, while the ROM is solving

for the void fraction itself. An additional modification is needed, either reducing an

equation that models the void fraction directly, or developing an algorithm that allows

the void fraction to be modeled in some region and the void fraction correction in

others. This is a possible topic for future development.

C. Simple Model Problem for Augmentation Methods

The simplest model for a moving discontinuity is the first-order wave, or transport,

equation

∂u

∂t
+ c

∂u

∂x
= 0. (4.3)
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(a)

(b)

Figure 25: Contour plots of the average mode for ug: (a) unmasked, and (b) masked.
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(a)

(b)

Figure 26: Contour plots indicating the location of two point modes: (a) φpm
10 , and

(b) φpm
18 .
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(a)

(b)

Figure 27: Time histories for ug at two points in the flow, compared to: (a) αpm
10 , and

(b) αpm
18 .
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The wave equation models an initial velocity distribution that propagates with veloc-

ity c. This model was selected for the ease of predicting the location of the discon-

tinuity, which simplifies the calculation of the discontinuity modes used to augment

the POD basis functions in the ROM. At a given time t, the discontinuity location,

xs, is given by

xs = ct+ xs,0

where xs,0 is the initial location of the discontinuity.

The first-order wave equation has a number of exact solutions, but for this prob-

lem a simple quadratic polynomial solution given by

u(x, t) = a+ b(x− ct) + d(x− ct)2

was used. A discontinuity was added to the initial condition at time t = 0 through

superposition according to

u(x, t = 0) =

 a+ bx+ dx2 + 1 x ≤ xs,0.

a+ bx+ dx2 x > xs,0.

D. Full-Order Model

Using a first-order forward difference in time and a first-order backward difference in

space, (4.3) was discretized as

un+1
i − un

i

∆t
+ c

un
i − un

i−1

∆x
= 0 (4.4)

where un+1
i := u(xi, t

n+1), un
i := u(xi, t

n), un
i−1 := u(xi−1, t

n), and ∆x and ∆t were

constant over the integration interval. Rearranging (4.4),

un+1
i = un

i +
c∆t

∆x
(un

i − un
i−1). (4.5)
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Using (4.5), the solution, un+1
i , was then computed over the desired time interval and

a snapshot was collected at every time step. The time step size was computed using

the CFL condition such that

∆t ≤ ∆x

c
.

Here, ∆x was determined by evenly spacing 100 grid points over the interval 0 ≤ x ≤ 1.

The propagation speed was c = 0.5. One time unit was simulated, resulting in the

collection of 50 snapshots.

E. Reduced-Order Model: POD-A

Recall that in (2.1), with the average mode ϕ0, a function u(x, t) can be approximated

as,

u(x, tk) = ϕ0(x) +
m∑

j=1

αj(tk)ϕj(x).

A series of discontinuity modes, denoted by ψ, can be added to the approximation so

that

u(x, tk) = ϕ0(x) +
m∑

j=1

αj(tk)ϕj(x) +
ma∑
`=1

β`(tk)ψ`(x, tk),

where β` are the time coefficients associated with the discontinuity modes ψ`. Sub-

stituting this approximation into (4.3) gives

∂

∂t
(

m∑
j=0

ϕj(x)αj(tk) +
ma∑
`=1

ψ`(x, tk)β`(tk))

+ c
∂

∂x

( m∑
j=0

ϕj(x)αj(tk) +
ma∑
`=1

ψ`(x, tk)β`(tk)
)

= 0
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or

m∑
j=1

α̇j(tk)ϕj(x) +
ma∑
`=1

β̇`(tk)ψ`(x, tk) +
ma∑
`=1

β`(tk)ψ̇`(x, tk)

+ c
m∑

j=0

αj(tk)ϕ
′
j(x) +

ma∑
`=1

β`(tk)ψ
′
`(x, tk) = 0 (4.6)

where the notation u̇ := ∂u
∂t

and u′ := ∂u
∂x

is used for derivatives. Projecting (4.6) onto

the augmented set of basis functions using a Galerkin projection, a system of ODEs

is obtained given by

[A]


α̇

β̇

+ [B]


α

β

+ {d} = {0}, (4.7)

with [A] ∈ Rm+ma ×Rm+ma , {α} ∈ Rm, {β} ∈ Rma and {d} ∈ Rm+ma . The elements

of the [A] and [B] matrices and the {d} vector are

Aij =



(ϕj, ϕi) = δji i = 1, . . . ,m j = 1, . . . ,m

(ϕj, ψi) i = m+ 1, . . . ,m+ma j = 1, . . . ,m

(ψj, ϕi) i = 1, . . . ,m j = m+ 1, . . . ,m+ma

(ψj, ψi) i = m+ 1, . . . ,m+ma j = m+ 1, . . . ,m+ma

Bij =



c(ϕ′j, ϕi) i = 1, . . . ,m j = 1, . . . ,m

c(ϕ′j, ψi) i = m+ 1, . . . ,m+ma j = 1, . . . ,m

(ψ̇j + cψ′
j, ϕi) i = 1, . . . ,m j = m+ 1, . . . ,m+ma

(ψ̇j + cψ′
j, ψi) i = m+ 1, . . . ,m+ma j = m+ 1, . . . ,m+ma

and

di =

 c(ϕ0, ϕi) i = 1, . . . ,m

c(ϕ0, ψi) i = m+ 1, . . . ,m+ma
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Note that the discontinuity modes, ψ`, are defined as having unit value on one

side of a discontinuity and are zero on the other side. The modes are therefore

discontinuous and the spatial derivative, ψ′
`, is the Dirac measure, δ(x), centered at

the shock location. Then for j = m+ 1, . . . ,m+ma, by definition

(cψ′
j, ϕi) = (c · δ(xsj

), ϕi) = cϕi(xsj
) i = 1, . . . ,m

(cψ′
j, ψi) = (c · δ(xsj

), ψi) = cψi(xsj
) i = m+ 1, . . . ,m+ma

where xsj
is the location of the discontinuity in the jth discontinuity mode. Therefore,

Bij =



c(ϕ′j, ϕi) i = 1, . . . ,m j = 1, . . . ,m

c(ϕ′j, ψi) i = m+ 1, . . . ,m+ma j = 1, . . . ,m

(ψ̇j, ϕi) + cϕi(xsj
) i = 1, . . . ,m j = m+ 1, . . . ,m+ma

(ψ̇j, ψi) + cψi(xsj
) i = m+ 1, . . . ,m+ma j = m+ 1, . . . ,m+ma

Note that for the simple test case considered, only one discontinuity mode was used,

i.e., ma = 1. An adaptive Runge-Kutta-Fehlberg method [70] was then used to solve

the system of ODEs given by (4.7).

F. Reference Solution

A set of time coefficients were calculated directly by projecting the snapshots onto

the basis functions [10]. This gave the best case solution for the flow at reference

conditions. The POD approximation

ua(x, tk) =
m∑

j=0

αj(tk)ϕj(x) +
ma∑
`=1

β`(tk)ψ`(x, tk)
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was then projected onto the augmented set of basis functions using a Galerkin pro-

jection such that

(ua − ϕ0, ϕi) = (
∑m

j=1 αjϕj +
∑ma

`=1 β`ψ`, ϕi) i = 1, . . . ,m

(ua − ϕ0, ψi) = (
∑m

j=1 αjϕj +
∑ma

`=1 β`ψ`, ψi) i = m+ 1, . . . ,m+ma.

It is possible for the discontinuity modes to not be orthogonal to the POD bases. As

a result the system does not decouple and the time coefficients are found by solving

the system

[AE]


α

β

 = {bE}

where, using i and j to denote the modes,

AEij =



(ϕj, ϕi) = δji i = 1, . . . ,m j = 1, . . . ,m

(ϕj, ψi) i = m+ 1, . . . ,m+ma j = 1, . . . ,m

(ψj, ϕi) i = 1, . . . ,m j = m+ 1, . . . ,m+ma

(ψj, ψi) i = m+ 1, . . . ,m+ma j = m+ 1, . . . ,m+ma

and

bEi =

 (ua − ϕ0, ϕi) i = 1, . . . ,m

(ua − ϕ0, ψi) i = m+ 1, . . . ,ma.

G. Discontinuity Modes

Up to this point, very little has been said about the structure of the discontinuity

modes. Note that the POD basis functions do not span the entire space because

the set of basis functions was truncated and the highest-order modes discarded. The

discontinuity modes must be linearly independent of the POD basis functions and it

was therefore necessary to test the augmented set of basis functions to check whether

the discontinuity modes, {ψ} could be expressed as a linear combination of ϕi, i ∈
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[0,m].

To ensure this linear independence, the discontinuity modes were appended to

the matrix of basis functions at every time step and the singular value decomposition

was computed. If the smallest singular value of this matrix was less than an error

tolerance, the corresponding discontinuity mode was not linearly independent and

was therefore not needed in the calculation.

For simplicity, herein each discontinuity mode was a simple step function with a

value of one upstream of the discontinuity and zero downstream of the discontinuity.

For the simple test case considered in this paper, only one discontinuity was present

at any time and its location was always known, so only one discontinuity mode was

needed. In practice, a number of discontinuity modes could have been used, each

representing a possible location for the discontinuity. Since each discontinuity mode

in this collection was constant in time, ψ̇` was assumed to be zero.

H. Results

The velocity profile for the first-order wave equation case is shown in Fig. 28 at t = 1.0

for the FOM, the non-augmented reduced-order model and the augmented reduced-

order model. The non-augmented ROM used 20 modes while the augmented ROM

used only two modes. In the augmented case, the discontinuity was removed prior to

computing the POD modes, as it is captured by the discontinuity mode. Figure 29

shows the time average and first four POD modes used by the non-augmented ROM.

The non-augmented ROM shows the Gibbs phenomenon while the augmented ROM

does not have oscillations present.

Figs. 30 and 31 show the first two time coefficients, respectively, computed using

the ROM with a discontinuity mode, compared to the results obtained by projecting
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Figure 28: Velocity profile for the one-dimensional wave equation model problem at

t = 1.0 for full-order model, reduced-order model with 20 modes and no discontinuity

mode, and reduced-order model with 2 modes, including a discontinuity mode.
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Figure 29: Time average and first four POD modes for the first order wave equation

model problem.

the snapshots directly onto the basis functions. Note that for this problem, the second

mode time coefficient is the discontinuity mode time coefficient.

The computed time coefficients show excellent agreement with the reference so-

lution. This is further reinforced by the lack of Gibbs oscillations in the solution

of the augmented POD method. The additional computations created by the non-

orthogonality of the modes are more than accounted for by the reduction in modes

from 20 to 2 when the augmented ROM is compared to the traditional ROM. As an

additional benefit, the solution computed using the augmented ROM is not degraded

by numerical dissipation around the discontinuity as the FOM is.
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Figure 30: First mode time coefficient for the one-dimensional wave equation model

problem computed using the augmented ROM and compared to a reference computed

by projecting the snapshots onto the basis functions.

Figure 31: Time coefficient for discontinuity mode for the one-dimensional wave equa-

tion model problem computed using the augmented ROM and compared to a reference

computed by projecting the snapshots onto the basis functions.
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CHAPTER V

NOZZLE FLOW

In preparation for implementation of a ROM for a Navier-Stokes solver, an inter-

mediate ROM was created for the quasi-2D Euler equations. This ROM was used

to evaluate two approaches, POD-A and POD-D, to determine which approach was

best. The next section describes the quasi-2D Euler equations for nozzle flow. After

that, the FOM used to solve this model is discussed. Then, the approaches for the

POD-A and POD-D ROMs are described and the ROMs are derived. Results are pre-

sented comparing the two approaches. Finally, the stability for the two approaches

is discussed are efforts are made to increase the stability of the model.

A. Physical Model

A quasi-2D inviscid model was used to compare the POD-A and POD-D approaches.

The test case used was a subsonic flow through a convergent-divergent nozzle. A

full-order model was constructed using a MacCormack scheme as described by An-

derson [71]. The conservation of mass, momentum, and energy equations, expressed

in non-dimensional, non-conservative, differential form, were

∂ρ

∂t
= −ρ∂V

∂x
− ρV

∂(lnA)

∂x
− V

∂ρ

∂x
, (5.1)

∂V

∂t
= −V ∂V

∂x
− 1

γ

(∂T
∂x

+
T

ρ

∂ρ

∂x

)
, (5.2)

and

∂T

∂t
= −V ∂T

∂x
− (γ − 1)T

[∂V
∂x

+ V
∂(lnA)

∂x

]
. (5.3)

Here ρ, V, T and A are the density, velocity, temperature and cross-sectional area,

respectively.
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B. Full-Order Model

An adaptation of a finite-difference method was used to construct a FOM for quasi-

2D nozzle flow. This method was taken from Anderson [71] and was a MacCormack

predictor-corrector technique. This method is summarized below.

1. Using first-order forward finite-differences to approximate the spatial deriva-

tives, compute values for ∂ρ
∂t

, ∂V
∂t

and ∂T
∂t

based on the field variables at the

current time step.

2. Compute predicted values for ρ, V , and T at the next time step according to

ℵ̄t+∆t
i = ℵt

i + (∂ℵ
∂t

)t
i∆t, where ℵ is any of the field variables.

3. Using first-order rearward finite differences to approximate the spatial deriva-

tives, compute values for ∂̄ρ
∂t

, ∂̄V
∂t

and ∂̄T
∂t

based on the predicted field variables

at the next time step.

4. Compute the average time derivative according to (∂ℵ
∂t

)av = 1
2
[(∂ℵ

∂t
)t
i + ( ∂̄ℵ

∂t
)t+∆t
i ]

5. Finally, ℵt+∆t
i = ℵt

i + (∂ℵ
∂t

)av∆t.

The time step, ∆t, was selected using a CFL condition to compute the ideal local

time step for each node and then using the smallest computed value as the global

time step, ensuring time accuracy.

Since discontinuities can cause serious problems in POD-based ROMs, a strictly

subsonic test case was used to evaluate the ROMs. Both the inlet and outlet boundary

conditions were therefore subsonic. At the inlet a constant density and temperature

were assumed and the velocity was extrapolated from inside the domain. At the

outlet a pressure is specified. The temperature and velocity are then extrapolated
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from the interior and the outlet density is computed using the equation of state.

Linear density, temperature and velocity profiles were assumed for initial conditions.

The cross-sectional area of the nozzle was given by

A =


1 + 2.2(x− 1.5)2 0 ≤ x ≤ 1.5

1 + 0.2223(x− 1.5)2 1.5 ≤ x ≤ 3.0

where all quantities are non-dimensional. The back pressure was 93% of the stagna-

tion pressure. The linear initial conditions were

ρ = 1.0− 0.023x,

T = 1.0− 0.009333x

and

V = 0.05 + 0.11x.

Approximately 100 s of flow were simulated which was sufficient to reach a steady

state.

C. Reduced-Order Model

1. POD-D Method

The state variables are approximated as

ρ(x, tk) = ϕρ
0(x) +

mρ∑
j=1

ϕρ
j (x)αρ

j (tk), (5.4)

V (x, tk) = ϕV
0 (x) +

mV∑
j=1

ϕV
j (x)αV

j (tk), (5.5)
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and

T (x, tk) = ϕT
0 (x) +

mT∑
j=1

ϕT
j (x)αT

j (tk). (5.6)

Here the basis functions, ϕρ, ϕV , and ϕT are known. The time coefficients are com-

puted using the MacCormack scheme described below.

1. αρ
j (tn), αV

j (tn), and αT
j (tn) are known.

2. ρ(xi, tn), V (xi, tn) and T (xi, tn) are reconstructed from (5.4)-(5.6).

3. An initial guess for the time derivative for each time coefficient is computed

according to
(

∂αℵk
∂t

)tn
=

((
∂ℵ
∂t

)tn

i
, φℵk(xi)

)
where ℵ is any field variable and ∂ℵ

∂t

is computed using (5.1)-(5.3).

4. (ᾱℵk)tn+∆t = (αℵk)tn + ∆t
(

∂αℵk
∂t

)tn
.

5. ρ̄(xi, tn+∆t), V̄ (xi, tn+∆t) and T̄ (xi, tn+∆t) are reconstructed from (5.4)-(5.6)

using (ᾱℵk)tn+∆t in place of αℵj (tn).

6. An updated guess for the time derivative for each time coefficient is computed

according to
(

∂ᾱℵk
∂t

)tn+∆t

=

((
∂ℵ̄
∂t

)tn+∆t

i
, φℵk(xi)

)
.

7. The average time derivative for each time coefficient is computed according to(
∂αℵk
∂t

)tn

av
= 1

2

((
∂αℵk
∂t

)tn
+
(

∂ᾱℵk
∂t

)tn+∆t
)

.

8. Finally,
(
αℵk

)tn+∆t

=
(
αℵk

)tn
+ ∆t

(
∂αℵk
∂t

)tn

av
.

2. POD-A Method

In the POD-A Method, (5.4)-(5.6) are substituted into (5.1)-(5.3) and the right hand

sides of the resulting equations are then projected onto {φρ(x)}, {φV (x)} and {φT (x)},
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respectively, to form the nonlinear operator f(α) in the non-linear system of ODEs

α̇ = f(α) (5.7)

where

α =


αρ

αV

αT



f =


fρ

fV

fT



fρ
k =

(
−(ϕρ

0+
mρ∑
i=1

αρ
iϕ

ρ
i )(
dϕv

0

dx
+

mV∑
j=1

αV
j

dϕV
j

dx
)−(ϕρ

0+
mρ∑
i=1

αρ
iϕ

ρ
i )(ϕ

V
0 +

mV∑
i=1

αV
i ϕ

V
i )
d(lnA)

dx

− (ϕV
0 +

mV∑
i=1

αV
i ϕ

V
i )(

dϕρ
0

dx
+

mρ∑
j=1

αρ
j

dϕρ
j

dx
), ϕρ

k

)
,

fV
k =

(
− (ϕV

0 +
mV∑
i=1

αV
i ϕ

V
i )(

dϕv
0

dx
+

mV∑
j=1

αV
j

dϕV
j

dx
)− 1

γ
(
dϕT

0

dx
+

mT∑
i=1

αT
i

dϕT
i

dx

+
ϕT

0 +
∑mT

i=1 α
T
i ϕ

T
i

ϕρ
0 +

∑mρ

i=1 α
ρ
iϕ

ρ
i

(
dϕρ

0

dx
+

mρ∑
j=1

αρ
j

dϕρ
j

dx
)), ϕV

k

)
,

and

fT
k =

(
− (ϕV

0 +
mV∑
i=1

αV
i ϕ

V
i )(

dϕT
0

dx
+

mT∑
i=1

αT
i

dϕT
i

dx
)

− (γ − 1)(ϕT
0 +

mT∑
i=1

αT
i ϕ

T
i )
[
(
dϕv

0

dx
+

mV∑
j=1

αV
j

dϕV
j

dx
) + (ϕV

0 +
mV∑
i=1

αV
i ϕ

V
i )
d(lnA)

dx

]
, ϕT

k

)
.
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The system (5.7) is then integrated using a 4th-order Runge-Kutta-Fehlberg

routine [70].

D. Stability

The FOM was used to simulate about 100 seconds of flow. During this interval,

1000 snapshots were collected and PODDEC was used to compute the POD basis

functions. Figs. 32-34 show the time average and first four basis functions for ρ, V ,

and T , respectively.

Figure 32: Time average and first four modes for density in a subsonic nozzle.

The first POD-A based ROM used a Runge-Kutta-Fehlberg integration method,

but this implementation proved unstable. Figs. 35-37 show the first time coefficient

for density, velocity and temperature, respectively, computed using both the POD-A

and POD-D methods for the simplest test case, a quasi-2D subsonic nozzle iterating to
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Figure 33: Time average and first four modes for velocity in a subsonic nozzle.

Figure 34: Time average and first four modes for temperature in a subsonic nozzle.



74

a steady state. Snapshots of the FOM were projected onto the POD basis functions to

generate a reference solution. During the computation the POD-A method diverged.

Figure 35: First time coefficient for density in the nozzle case.

The Jacobian of the ODE generated using the POD-A method was computed

during integration to give a measure of the stability of the system according to

Jij =
∂fi

∂αj

.

Fig. 38 shows the maximum real component of the eigenvalues of the Jacobian matrix.

When the largest real component of the eigenvalues of the Jacobian matrix exceeds

one, the system becomes stiff and the calculation is unstable. In order to integrate

the stiff system more accurately, several ODE solvers for stiff systems were tested.

The best results were obtained using the DVODE routine [72].

This was, unfortunately, only half of the problem. POD-based ROMs also tend
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Figure 36: First time coefficient for velocity in the nozzle case.

Figure 37: First time coefficient for temperature in the nozzle case.
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to become unstable as the time coefficients approach a steady state. A second test

case was implemented where an unsteady source term was added to the conservation

of energy equation to force an oscillation in the flow. This gave the flow two distinct

regimes; a transient regime where the flow is dominated by the transition from the

initial condition to a periodic regime and the periodic regime where the flow is dom-

inated by the oscillations in the energy equation. An interesting area for future work

lies in properly capturing the transition from the early transience to the periodic flow.

Figure 38: Maximum real component of the eigenvalues of the Jacobian matrix for

the quasi-2D Euler equations for a nozzle flow test case.

Figs. 39-41 show the first time coefficients for density, velocity and temperature,

respectively, as a result of integrating the governing ODEs for just the transient region

using POD basis functions computed from the snapshots of the transient region.

Figs. 42-44 show the first time coefficients for density, velocity and temperature,

respectively, as a result of integrating the governing ODEs for just the periodic region.
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Figure 39: First time coefficient for density in the transient region case.

Figure 40: First time coefficient for velocity in the transient region case.
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Figure 41: First time coefficient for temperature in the transient region case.

Here all the initial transience has died out.

The POD-D model required considerably less effort to stabilize and produced a

solver that was stable throughout the temporal domain regardless of flow regime. As

a result, it was decided that the POD-D method should be used to derive a ROM for

use with UNS3D. This process is described in the next chapter.
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Figure 42: First time coefficient for density in the periodic region case.

Figure 43: First time coefficient for velocity in the periodic region case.
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Figure 44: First time coefficient for temperature in the periodic region case.
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CHAPTER VI

RANS SOLVER

The final goal of the current research is to implement a ROM for use with the in-house

flow solver UNS3D. The first step in this implementation is a 2D inviscid ROM. The

next section gives the physical model for fluid flow and notes the simplifications that

will be made to obtain a 2D inviscid model. Next, the FOM, UNS3D, is discussed.

Then the ROM that has been implemented is derived. Finally, verification results for

the ROM are given and the current computational speed-up is discussed.

A. Physical Model

Fluid flow is governed by the conservation of mass, momentum and energy. In three-

dimensions, for viscous flow, these conservation principles become the set of partial

differential equations

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= J (6.1)

where

U =



ρ

ρu

ρv

ρw

ρE


, F =



ρu

ρu2 + p− τxx

ρuv − τxy

ρuw − τxz

ρEu+ pu− k ∂T
∂x
− uτxx − vτxy − wτxz,
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G =



ρv

ρuv − τyx

ρv2 + p− τyy

ρvw − τyz

ρEv + pv − k ∂T
∂y
− uτyx − vτyy − wτyz,



H =



ρw

ρuw − τzx

ρvw − τzy

ρw2 + p− τzz

ρEw + pw − k ∂T
∂z
− uτzx − vτzy − wτzz,


and

J =



0

ρfx

ρfy

ρfz

ρ(ufx + vfy + wfz) + ρq̇.


.

In practice, an inviscid test case will be used, meaning that the shear stress

terms, τ in the above system of equations, will be neglected. In addition no source

terms or body forces will be present so J = 0

Since U is conservative, using the conservative variables for the POD basis func-

tions will allow the time derivative to be simplified using the orthogonality of the

basis functions. As a result, ρ, ρu, ρv, ρw, and ρE were captured as snapshots and

basis functions were computed.
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B. Full-Order Model: UNS3D

The integral form of the Navier-Stokes written in conservative variables is

∂

∂t

∫
Ω

UdΩ +

∮
S

F · ndS = 0. (6.2)

Here the control volume, Ω, is assumed to be stationary (non-rotational) and no

source terms are present.

UNS3D solves a finite-volume discretization of the integral form of the conserva-

tive Navier-Stokes equations. This is expressed as

Ωi

∆ti
∆qi =

nedges(i)∑
j=1

FijSij = Resi (6.3)

Past work has used UNS3D to simulate flow through turbomachinery [73] and

for aeroelastic simulations [74]. UNS3D has also been used to solve acoustic problems

in cavity flow [75]. Currently it is being adapted to allow for parallel computations

and to simulate flow around wind turbines.

C. Reduced-Order Model: UNS3DROM

If the discretization is constant in time, i.e., the mesh is stationary, (6.3) can be

rearranged and becomes

∆qi =
∆ti
Ωi

nedges(i)∑
j=1

FijSij = R̃esi. (6.4)

This is a very convenient form for reduction. For this problem the POD approximation

is

q(xi, tk) = ϕq
0(xi) +

mq∑
j=1

ϕq
j(xi)α

q
j(tk). (6.5)
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Substituting (6.5) into (6.4) gives the system,

mq∑
j=1

ϕq
j(xi)∆α

q
j =

∆ti
Ωi

nedges(i)∑
j=1

FijSij = R̃esi. (6.6)

This system is then projected onto the collection of POD basis functions, {φq}, re-

sulting the system of ordinary differential equations

∆αq
` =

(
R̃esi, φ

q
`

)
(6.7)

where the orthogonality of the POD modes is used to simplify the left hand side.

D. Test Case: Channel with a Bump

To validate the ROM, a simple test case was selected consisting of a bump in a two-

dimensional channel. The flow was subsonic and the channel was discretized using

an inviscid mesh of 8100 nodes. The geometry and mesh for this test case are shown

in Fig. 45. The flow parameters used for both the FOM and the ROM are given

in the table on page 94. The FOM was used to simulate 10,000 time steps which

corresponded to 0.13 s of physical time. During this interval, 100 snapshots were

collected and used to compute the POD basis functions. In the ROM, 10 modes were

used to model each field variable.

E. Results

Figures 46-49 show comparisons between the time coefficients obtained by projecting

the snapshots of the FOM onto the basis functions to the time coefficients computed

by integrating the ROM. Figures 50-53 show the time average mode, ϕ0, and the first

and second POD modes for each of the four field variables.
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Figure 45: Inviscid mesh for channel with a bump.
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(a)

(b)

Figure 46: Comparison of time coefficients computed by projecting FOM snapshots

directly on POD basis functions against time coefficient computed using the ROM

for: (a) first density time coefficient and (b) second density time coefficient.
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(a)

(b)

Figure 47: Comparison of time coefficients computed by projecting FOM snapshots

directly on POD basis functions against time coefficient computed using the ROM for:

(a) first x-direction momentum time coefficient and (b) second x-direction momentum

time coefficient.
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(a)

(b)

Figure 48: Comparison of time coefficients computed by projecting FOM snapshots

directly on POD basis functions against time coefficient computed using the ROM for:

(a) first y-direction momentum time coefficient and (b) second y-direction momentum

time coefficient.
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(a)

(b)

Figure 49: Comparison of time coefficients computed by projecting FOM snapshots

directly on POD basis functions against time coefficient computed using the ROM

for: (a) first energy time coefficient and (b) second energy time coefficient.



90

(a)

(b)

(c)

Figure 50: POD modes for density, ρ: (a) time average mode for density, φρ
0, (b) first

density POD mode, φρ
1, and (c) second density POD mode, φρ

2.
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(a)

(b)

(c)

Figure 51: POD modes for x-direction momentum, ρu: (a) time average mode, φρu
0 ,

(b) first POD mode, φρu
1 , and (c) second POD mode, φρu

2 .
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(a)

(b)

(c)

Figure 52: POD modes for y-direction momentum, ρv: (a) time average mode, φρv
0 ,

(b) first POD mode, φρv
1 , and (c) second POD mode, φρv

2 .
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(a)

(b)

(c)

Figure 53: POD modes for energy, ρE: (a) time average mode, φρE
0 , (b) first POD

mode, φρE
1 , and (c) second POD mode, φρE

2 .
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Table VI: Parameters of a channel with a bump.

Parameter Description Units

xlength Length of the domain in x-direction - 3.0 c

ylength Length of the domain in y-direction - 1.0 c

c Length of bump m 1.0

nnode Number of nodes in grid - 8100

ncell Number of cells in grid - 5162

ptot Total pressure Pa 101325

pback Back pressure Pa 79439.2

Ttot Total temperature K 289

u0 Inlet Mach number - 0.6
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Figures 54-57 show the final solution for the four field variables computed by

the FOM and ROM. Table VII summarizes the computational speed-up obtained for

this ROM. The data used to compute the POD modes were generated with a CFL

number of one. Through trial and error, it was found that the maximum CFL number

allowable for this test case without divergence occurring was six. Also through trial

and error, the ROM was found to converge with a maximum CFL number of fifteen.

The computational speed-up factor of the ROM compared to the FOM with a CFL

number of one was 8.1, while compared to the FOM with a CFL number of six was

1.35.

Table VII: Summary of the computational speed-up for UNS3DROM.

Method FOM (1) FOM (6) ROM

CFL number 1 6 15

Total physical time simulated 0.13 s 0.76 s 0.95 s

CPU time 992 s 999 s 922 s

CPU/Physical 7826 1309 966

These results show that further development of a ROM using a POD-D approach

for UNS3D is worthwhile. The current formulation relies entirely on the larger time

step for its computational speed-up. The next step is to use the orthogonality of the

POD modes to simplify the computation of the projection of the residual on the right-

hand side of the governing set of ODEs. This remains to be done and is discussed

further in the final chapter.
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(a)

(b)

Figure 54: Contour plot of density at the steady state for: (a) FOM and (b) ROM.
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(a)

(b)

Figure 55: Contour plot of x-direction velocity at the steady state for: (a) FOM and

(b) ROM.
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(a)

(b)

Figure 56: Contour plot of y-direction velocity at the steady state for: (a) FOM and

(b) ROM.
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(a)

(b)

Figure 57: Contour plot of pressure at the steady state for: (a) FOM and (b) ROM.
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CHAPTER VII

POD IMPLEMENTATION ASPECTS∗

While implementing ROMs for various flow solvers, a number of practical aspects

were addressed. Of particular interest were the best spacing of the snapshot used

to compute the POD basis functions in time and the degree of coupling between

field variables to consider when computing the POD basis functions. The next sec-

tion presents a study used to evaluate several time sampling strategies for snapshots.

Results are presented comparing the POD approximation error of the various ap-

proaches. After that, the method used to compute the autocorrelation matrix whose

eigenvectors are the POD basis functions is discussed. A method for coupling the field

variables when computing the autocorrelation matrix is compared to a split approach

that considers each variable individually. The error in the POD approximation is

computed and the approaches are compared.

A. Snapshot Distribution

The literature makes no claim as to the optimal distribution of snapshots, but the

important dynamics of the flow must be contained in the snapshot ensemble if they are

to be captured by the basis functions. Examining (2.2), the least-square truncation

error, εm, is a function of ti. The task then becomes finding a set of values for ti

that minimizes εm for a given number of snapshots. Park and Lee [9] first proposed

collecting snapshots more frequently during transient periods, but no attempt was

made to quantify the error in this method or to compare it to an evenly spaced

∗Part of this chapter is reprinted with permission from “Practical Aspects of the
Implementation of Proper Orthogonal Decomposition”by T.A. Brenner, P.G.A. Ciz-
mas, T.J. O’Brien and R.W. Breault, 47th AIAA Aerospace Sciences Meeting, Or-
lando, FL, 2009 by the authors.
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ensemble.

Two studies were carried out herein to assess the effect of time sampling of

snapshots on POD error. In the first, several snapshot databases were generated by

collecting snapshots at a constant rate. The time between snapshots ranged from 0.1

s to 0.001 s, depending on the set. In total, ten sets were collected. These sets are

listed in the table on page 106.

POD was performed on each snapshot database generated and the reconstructed

solution was compared with a reference solution, u(x, ti), consisting of a snapshot

database containing 4823 snapshots. This reference solution represented the output

of the FOM at every time step. It is therefore reasonable to assume that the 4823

snapshot database captures all of the relevant flow dynamics. The error for each

snapshot database is then defined by (2.2) and the number of modes used in the

reconstruction for each variable is given by Table VIII. For this snapshot distribution

study, the αk(ti) terms in (2.2) were calculated using a projection method, given by

αk(ti) = (u(x, ti), ϕk(x)), i = 1, . . . ,M. (7.1)

In the second study, the snapshots were redistributed so that the snapshot fre-

quency was increased during transient periods, while keeping the total number of

snapshots approximately constant. The solution computed from the reconstruction

of these data was then compared with the reference solution, again using (2.2). The

increase in snapshot frequency during transience was accomplished in two ways. In

the first case, two sampling rates were used: a larger constant sampling rate in the

transient period and a smaller constant sampling rate in the quasi-steady period.

Fig. 58 shows the time between snapshots as a function of the physical time and

refers to this case as the step method. Park and Lee [9] have implemented a step

method with five steps but given the two distinct regions present in the test case used
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Table VIII: Number of modes used for isothermal flow and their symbols.

Field variable Symbol No. of modes

Gas pressure mpg 2

Void fraction mεg 7

u gas velocity mug 2

v gas velocity mvg 5

u solids velocity mus 8

v solids velocity mvs 6

herein [14] two steps were deemed sufficient.

In the second case, referred to as the continuous method, a logarithmic function

was used to give a continuously varying sampling rate, with snapshots collected less

frequently as the simulation progressed.

To obtain this logarithmic distribution, the FOM was run to generate an evenly

spaced snapshot database with 320 realizations. The flow was then simulated using

the ROM and the relationship between physical time, t, and CPU time, tcpu was

captured. This relationship is shown in Fig. 59 and is assumed to be a measure of

the time scale of the transport phenomena. Therefore, these data were selected as a

useful measure of the complexity of the flow and a logarithmic function was found to

approximate CPU time as a function of physical time. The function was expressed

by

tcpu(t) = 588.14 ln(t) + 1071.0.

This equation was then divided by a constant factor to produce a sampling method

that gathered approximately 200 snapshots. The sampling times were given
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Figure 58: Time between snapshots as a function of physical time, t, for method 1:

constant dt on each interval, and method 2: continuously varying dt.
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Figure 59: Relationship between physical time and CPU time in ROM: (a) as mea-

sured and (b) as a logarithmic function fit to the data.
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iteratively as

ti+1 = ti + dt(ti),

where

dt(ti) = 0.00419 ln(ti) + 0.00763.

Snapshot collection started at t = 0.2 s and continued until t = 1.0 s, resulting in the

collection of 197 snapshots. Fig. 58 shows the time sampling of the snapshots given

by this iterative process, where it is referred to as the continuous method. Once the

snapshots were collected, POD was performed and the error was computed for each

field variable using (2.2).

The errors computed using (2.2) for the snapshot distribution study are given

in Table IX. To obtain these error values, the solution was reconstructed using the

number of modes given in Table VIII. The reconstructed solutions were linearly inter-

polated in time to find values of the field variables at the proper time for comparison

with the reference solution at all 4283 time locations.

As Table IX shows, the error tended to decrease as additional snapshots were

collected and added to the computation of the basis functions. Note that the case

with 200 snapshots has been presented out of sequence for easier comparison with the

two unevenly distributed cases.

In the unevenly distributed cases, where the snapshots were collected more fre-

quently in the areas of flow transience, the errors improved drastically as compared

to snapshots that were evenly spaced with a similar number of snapshots collected.

In the study, the best results for gas pressure were obtained using a logarithmic dis-

tribution of 197 snapshots. These results were generally better than even the case

where 800 evenly distributed snapshots were used.

Using a distribution that was constant in the transient region and another, less
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Table IX: POD reconstruction error for various snapshot distributions.

Time between No. of Error, ε

snapshots, dt [s] snapshots ug vg us vs εg pg

0.1 8 0.166 48.628 4.324E-003 0.584 5.737E-006 3.424E+006

0.075 12 0.167 30.761 5.840E-003 0.518 5.305E-006 1.977E+006

0.05 16 0.166 58.420 6.459E-003 0.558 3.204E-006 3.978E+006

0.025 32 0.163 21.339 6.328E-003 0.478 6.342E-006 1.240E+006

0.01 80 0.161 14.513 1.539E-003 0.195 4.507E-007 6.779E+005

0.0075 108 0.160 1.165 5.346E-004 1.149E-002 1.438E-008 3.883E+004

0.005 160 0.161 1.709 1.052E-003 1.401E-002 1.578E-008 9.977E+004

0.0025 320 0.160 0.812 3.675E-004 2.059E-003 2.014E-009 9.807E+003

0.001 800 0.160 0.247 1.315E-004 1.937E-004 1.781E-009 1.287E+003

0.004 200 0.161 0.981 1.533E-003 9.015E-003 4.617E-009 4.406E+004

0.0015 and 0.0065 202 0.165 0.261 1.968E-004 2.488E-004 1.911E-008 1.456E+003

varied from 9.2E-4 to 0.0075 197 0.165 0.241 1.439E-004 3.525E-004 3.372E-008 1.254E+003
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frequent, constant distribution in the quasi-steady region produced results that were

nearly as good as the logarithmic distribution. This second approach is easier in

practice, as the function that gave the logarithmic distribution in time required a curve

fit to data calculated with the ROM and was therefore not known a priori. Thus, the

method using different constant sampling rates at different times is recommended.

B. Composition of the Autocorrelation Matrix

At least two approaches exist for computing the autocorrelation matrix. A study was

performed to evaluate two approaches for our test case. The two approaches explored

herein were a coupled approach and a split approach.

Several coupled approaches have been developed. Kirby et al. [76] have proposed

a simple coupling method by concatenating the field variables into a single vector-

valued state variable. Lumley and Poje [77] derived a scaling factor for each variable

to couple terms with different dimensions in compressible flows. This approach has

been applied to fluid simulation [78, 79, 80, 81, 82, 53] and the analysis of experimental

results [83] and is a more sophisticated coupled approach.

In the split approach, POD is performed on each field variable separately. No

attempt is made to capture the coupling between the field variables when computing

the POD modes. Unfortunately, no data have been presented comparing the POD

reconstruction error for a coupled approach and a split approach.

For our coupled approach, we have chosen to concatenate the field variables into

a single variable that was used to compute a single autocorrelation matrix. To avoid

the large differences between the magnitude of various components of the state vector,

u, the data have been normalized by the maximum value of each component. That
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is

ℵ̃ =
ℵ

ℵmax

where ℵ represents any component of the state vector,

ũ(x, ti) =



ũg(x, ti)

ṽg(x, ti)

ũs(x, ti)

ṽs(x, ti)

ε̃g(x, ti)

p̃g(x, ti)


.

This normalization step was necessary to provide an autocorrelation matrix with a

more favorable condition number. In practice, without normalization, the pressure

data are six orders of magnitude larger than the void fraction data, leading to an

eigenvalue problem that is impossible to solve accurately.

The concatenated variable was then substituted into (2.4) and the coupled au-

tocorrelation matrix, Rc ∈ R6n × R6n, was given by

Rc =



R11 R12 . . . R1N

R21 R22 . . . R2N

...
...

. . .
...

RN1 RN2 . . . RNN
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where the submatrix Rij ∈ R6 × R6 was given by

Rij =



〈p̃gi ∗ p̃gj〉 〈ε̃gi ∗ p̃gj〉 〈ũgi ∗ p̃gj〉 〈ṽgi ∗ p̃gj〉 〈ũsi ∗ p̃gj〉 〈ṽsi ∗ p̃gj〉

〈p̃gi ∗ ε̃gj〉 〈ε̃gi ∗ ε̃gj〉 〈ũgi ∗ ε̃gj〉 〈ṽgi ∗ ε̃gj〉 〈ũsi ∗ ε̃gj〉 〈ṽsi ∗ ε̃gj〉

〈p̃gi ∗ ũgj〉 〈ε̃gi ∗ ũgj〉 〈ũgi ∗ ũgj〉 〈ṽgi ∗ ũgj〉 〈ũsi ∗ ũgj〉 〈ṽsi ∗ ũgj〉

〈p̃gi ∗ ṽgj〉 〈ε̃gi ∗ ṽgj〉 〈ũgi ∗ ṽgj〉 〈ṽgi ∗ ṽgj〉 〈ũsi ∗ ṽgj〉 〈ṽsi ∗ ṽgj〉

〈p̃gi ∗ ũsj〉 〈ε̃gi ∗ ũsj〉 〈ũgi ∗ ũsj〉 〈ṽgi ∗ ũsj〉 〈ũsi ∗ ũsj〉 〈ṽsi ∗ ũsj〉

〈p̃gi ∗ ṽsj〉 〈ε̃gi ∗ ṽsj〉 〈ũgi ∗ ṽsj〉 〈ṽgi ∗ ṽsj〉 〈ũsi ∗ ṽsj〉 〈ṽsi ∗ ṽsj〉


with i, j = 1, . . . , N . The notation 〈ℵi ∗ ℵj〉 is defined as

〈ℵi ∗ ℵj〉 =
1

M

M∑
k=1

ℵ(xi, tk)ℵ(xj, tk)

where ℵ is any field variable, N is the number of nodes and M is the number of

snapshots.

In practice, the method of snapshots was used to compute the POD basis func-

tions. To obtain an equivalent coupling, the inner product used to compute the

autocorrelation matrix C in the method of snapshots is

(ũ(x, ti), ũ(x, ti)) =

∫
D

(
ũg(x, ti)ũg(x, tj) + ṽg(x, ti)ṽg(x, tj) + ũs(x, ti)ũs(x, tj)

+ ṽs(x, ti)ṽs(x, tj) + ε̃g(x, ti)ε̃g(x, tj) + p̃g(x, ti)p̃g(x, tj)
)
dx. (7.2)

In the split approach, a separate C was computed for each field variable. This is

analogous to computing an autocorrelation matrix with the off-diagonal sub-matrices
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set to zero, or

Rs =



R〈pg∗pg〉 0 0 0 0 0

0 R〈εg∗εg〉 0 0 0 0

0 0 R〈ug∗ug〉 0 0 0

0 0 0 R〈vg∗vg〉 0 0

0 0 0 0 R〈us∗us〉 0

0 0 0 0 0 R〈vs∗vs〉


where

R〈ℵ∗ℵ〉 =

∑M
i=1 ℵ(x, ti)ℵT (y, ti)

M

and, Rs ∈ R6n × R6n.

A set of basis functions was calculated for each of the two approaches. The

solutions were then reconstructed using (2.1), where the time coefficients were calcu-

lated using the projection method given by (7.1). The errors for each approach, as

given by (2.2), were then compared to determine the better method. The results are

presented in Table X. Also given is a relative error, defined as εrel = ε/ℵmax.

As Table X shows, the POD reconstruction error was larger for the coupled

approach than for the split approach for each variable—sometimes significantly so.

For the gas and solids velocities the difference in error between the two methods is

only about an order of magnitude. Both the gas pressure and void fraction, however,

show a five order of magnitude difference in their error.

In the case of the void fraction this difference is not very significant. The void

fraction can be expressed as

εg(x, ti) = ϕ
εg

0 (x) +
M∑

k=1

α
εg

k (ti)ϕ
εg

k (x), i = 1, . . . ,M.

The ϕ
εg

0 (x) term is the time-average of the solution and is identical for both ap-
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Table X: POD reconstruction error for coupled and split approaches.

Variable Error

εcoupled εsplit εcoupled
rel εsplit

rel

pg 1.245E+006 57.91 1.230 5.72E-005

εg 1.012E-005 5.891E-010 1.012E-005 5.891E-010

ug 1.305E-002 5.081E-003 9.758E-004 3.799E-004

vg 1.380 8.980E-003 8.944E-002 5.820E-004

us 4.251E-005 4.833E-006 3.271E-004 3.719E-005

vs 2.248E-004 4.866E-005 1.613E-003 3.491E-004

proaches. This time-average is always positive and less than one. The error calculated

for the coupled approach was five orders of magnitude smaller than this average and

the error for the split approach was ten orders of magnitude less. In both approaches

the error is small enough to be considered insignificant.

For the gas pressure, however, the difference in error is significant. The error

in the coupled approach is on the same order as ϕ
pg

0 (∼ 106) while the error in the

split approach is only on the order of 10. The difference in error between the two

approaches is therefore quite significant. Clearly the split approach is superior for

this test case.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

This chapter presents the conclusions drawn from the results given in the preceding

chapters. The next steps needed to continue this work are summarized. Topics for

future study are discussed.

A. Conclusions

Despite advances in both computing hardware and computational algorithms, the

simulation of certain fluid flows remains too complex for use in design and control.

Ongoing research into ROMs shows promise for providing high-fidelity solutions at

a fraction of the computational cost of the FOM. Many ROMs use spatial modes to

transform PDEs into ODEs. Proper orthogonal decomposition has been shown to

provide the optimal basis functions for these ROMs.

The research presented is a combination of the application of ROMs to novel

problems and solutions to practical aspects arising in the implementation of these

ROMs.

Previous work has constructed a ROM for two-dimensional isothermal multiphase

flow. This ROM has been extended to include three-dimensional flows and non-

isothermal flows. Validation results are presented for a minimum fluidization test

case. These results show good agreement with the FOM at reference conditions.

While constructing the ROM for multiphase flow, difficulties arose in the simu-

lation of bubbling flow. Bubbles are modeled as moving discontinuities in the void

fraction. These moving discontinuities led to unphysical approximations for the void

fraction in the ROM.

A method for augmenting the POD bases with point modes was proposed. In this
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method, modes with value one at a single point were added to the collection of POD

basis functions, which were masked at this point, to better capture discontinuities.

Results were shown for a simple test case where point modes were used for the gas

velocity, showing that the original solution was recovered.

A simple test problem with a single moving discontinuity was developed, using

the transport, or one-dimensional wave, equation. This is the simplest model for which

moving discontinuities are possible. Both a FOM and ROM were constructed for this

problem. The ROM contained a shock mode which contained a discontinuity that

was allowed to move in time to match the location of the discontinuity in the FOM.

This approach was shown to remove the unphysical oscillations usually contained in

POD-based ROMs for problems with moving discontinuities.

The difference between two approaches to deriving POD-based ROMs, POD-

A and POD-D, were discussed and the approaches were compared. In the POD-A

approach, the POD approximations are substituted into the governing PDEs prior

to discretization. The differential terms are then transferred directly to the modes

and time coefficients, prior to the Galerkin projection. This gives added flexibility

to the ROM and allows greater freedom when choosing the integration scheme and

the method for approximating spatial derivatives. In the POD-D approach, the POD

approximations are substituted into the discretized form of the governing PDEs and

the resulting algebraic equations are projected onto the POD basis functions using

a Galerkin projection. This results in the ROM mimicking the integration strategy

and approximation for the spatial derivatives used by the FOM. It seems in practice

that this approach produces ROMs that are more likely to be stable than the POD-A

approach.

A quasi-2D subsonic nozzle flow problem was selected to test the practical dif-

ferences between the POD-A and POD-D approaches. A FOM based on the Mac-
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Cormack scheme was implemented for this problem. ROMs were then derived and

constructed using both the POD-A and POD-D approaches. The stability of each

model was tested and the POD-D method was judged to be both more straightfor-

ward to implement and less likely to suffer from stability problems, manifested in this

case by a stiff system of equations in the POD-A approach.

A POD-D approach was used to construct a ROM for two-dimensional inviscid

flow. This ROM was based on the in-house finite-volume solver UNS3D. A simple test

case consisting of a channel with a bump was used to validate the ROM. Excellent

agreement was shown with the FOM for this case. An overall decrease in the compu-

tational time required to solve this problem was shown using the ROM as compared

to the FOM.

Finally, two practical aspects of the implementation of ROMs were discussed.

The first was the best placement in time of the snapshots from which the POD basis

functions were computed. Using a multiphase flow test case, a decrease in the POD

approximation error was achieved by clustering the snapshots at times of greater

flow complexity. The second practical aspect was the form of the autocorrelation

matrix used to compute the POD basis functions. Two approaches were evaluated:

split and coupled. In the split approach, basis functions were computed for the field

variables individually. In the coupled problem, the cross-correlation terms between

field variables were considered. For the multiphase flow case considered, the POD

approximation error was shown to be less when using the split approach. This was

somewhat unexpected and may have been due to the way in which the variables

were coupled. The proper coupling of void fraction terms remains an topic for future

research.
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B. Future Work

A number of topics remain for future exploration. Further development is needed

for the point mode POD method and the general augmentation method for solving

problems with moving discontinuities. The development of a ROM for UNS3D is

ongoing and each new POD implementation brings new practical problems to be

solved.

1. Point Mode POD

Although point mode POD was shown to be effective for recovering the correction

solution when applied to the gas velocity in multiphase flow, it remains to be im-

plemented to the computation of the void fraction. The current algorithm solves for

void fraction corrections, instead of void fraction itself. In order to implement point

modes, a new algorithm is needed to solve for void fraction directly. This remains a

topic for future study.

2. Augmentation with Discontinuity Modes

The augmentation of the POD bases with discontinuity modes was shown to be

effective for a simple one-dimensional problem. Further work is needed to generalize

this process to two- and three-dimensions. Also, methods are needed to compose

proper shock modes for cases where the location and shape of the discontinuities are

unknown.

3. ROM for UNS3D

The initial implementation of a ROM for UNS3D was for an inviscid, two-dimensional

problem using an explicit solver. The next step is to extend the ROM to include



116

three-dimensional and viscous flow. After that, an implicit solver will need to be

implemented. Also, the current implementation reconstructs the field variables, then

computes the residual, then projects that residual onto the POD basis functions.

This is very inefficient. A greater speed-up is achievable by pre-projecting the basis

functions contained within the residual, taking advantage of the orthogonality of the

modes, to build a subroutine that computes the ∆α terms directly from the time

coefficients, making the reconstruction of the field variables unnecessary.

4. Practical Aspects of POD

In the snapshot distribution study, an effort was made to identify a measure of com-

plexity for the flow considered and base the snapshot sampling on this measure. This

measure, however, was rather arbitrary. Further work is needed to identify the op-

timal placement of the snapshots in time, as opposed to the trial and error method

developed here.

Further work is also needed to develop a dimensionally-correct method for cou-

pling the void fraction to the other field variables in the computation of the POD

basis functions when using a coupled approach for composing the autocorrelation

matrix. A proper method for coupling the variables used in the POD-based ROM

for UNS3D is also needed. Finally, this coupling method needs to be tested against

a split approach for the UNS3D variables.
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[60] R. Everson, L. Sirovich, Karhunen-Loève procedure for gappy data, J. Opt. Soc.

Am. A 12 (8) (1995) 1657–1664.

[61] S. Orsborn, P. Boatwright, J. Cagan, Identifying product shape relationships

using principal component analysis, Res. Eng. Des. 18 (2008) 163–180.

[62] T. Yuan, Reduced order modeling for transport phenomena based on proper

orthogonal decomposition, Master’s Thesis, Texas A&M University, College Sta-

tion, TX, December 2003.



124

[63] B. R. Richardson, A reduced-order model based on proper orthogonal decompo-

sition for two-phase flow non-isothermal transport phenomena, Master’s Thesis,

Texas A&M University, College Station, TX, December 2007.

[64] R. L. Fontenot, Advances in reduced-order modeling based on proper orthogo-

nal decomposition for single and two-phase flows, Master’s Thesis, Texas A&M

University, College Station, TX, December 2010.

[65] L. V. Kantorovich, V. I. Krylov, Approximate Methods of Higher Analysis, In-

terscience Publishers, Inc., New York, 1964.

[66] L. Sirovich, Turbulence and the dynamics of coherent structures, parts I-III,

Quart. Appl. Math. XLV (3) (1987) 561–590.

[67] M. Syamlal, W. Rogers, T. J. O’Brien, MFIX documentation theory guide, Tech.

Rep. DOE/METC-94/1004, DOE/METC, 1994.

[68] M. Syamlal, MFIX documentation numerical technique, Tech. Rep. DE-AC21-

95MC31346, EG&G Technical Services of West Virginia, 1998.

[69] D. Gidaspow, Multiphase Flow and Fluidization, Continuum and Kinetic Theory

Descriptions, Academic Press, San Diego, 1994.

[70] E. Fehlberg, Low-order classical Runge-Kutta formulas with stepsize control and

their application to some heat transfer problems, Tech. Rep. NASA-TR-R-315,

NASA, USA, 1969.

[71] J. D. Anderson, Computational Fluid Dynamics: The Basics with Applications,

McGraw-Hill, New York, 1995.

[72] P. N. Brown, G. D. Byrne, A. C. Hindmarsh, VODE: A variable coefficient ODE

solver, SIAM J. Sci. Stat. Comput. 10 (5) (1989) 1038–1051.



125

[73] K. S. Kim, Three-dimensional hybrid grid generator and unstructured flow solver

for compressors and turbines, Ph.D. Dissertation, Texas A&M University, College

Station, TX, December 2003.

[74] J. I. Gargoloff, A numerical method for fully nonlinear aeroelastic analysis, Ph.D.

Dissertation, Texas A&M University, College Station, TX, May 2007.

[75] D. Liliedahl, P. G. A. Cizmas, Prediction of fluid instabilities in hole-pattern

stator seals, in: 47th AIAA Aerospace Sciences Meeting, AIAA Paper 2009-0786,

Orlando, FL, 2009.

[76] M. Kirby, J. P. Boris, L. Sirovich, A proper orthogonal decomposition of a sim-

ulated supersonic shear layer, Int. J. Numer. Meth. Fl. 10 (1990) 411–428.

[77] J. L. Lumley, A. Poje, Low-dimensional models for flows with density fluctua-

tions, Phys. Fluids 9 (7) (1997) 2023–2031.

[78] L. S. Ukeiley, J. M. Seiner, S. Arunajatesan, N. Sinha, S. Dash, Low-dimensional

description of resonating cavity flow, in: Fluids 2000, Denver, CO, 2000.

[79] L. S. Ukeiley, C. Kannepalli, S. Arunajatesan, Low-dimensional description of

variable density flows, in: 39th AIAA Aerospace Sciences Meeting and Exhibit,

Reno, NV, 2001.

[80] C. W. Rowley, T. Colonius, R.M.Murray, Dynamical models for control of cavity

oscillations, in: 7th AIAA/CEAS Aeroacoustics Conference, Maastricht, The

Netherlands, 2001.

[81] L. Ukeiley, C. Kannepalli, S. Arunajatesan, Development of low dimensional

models for control of compressible flows, in: 41st IEEE Conference on Decision

and Control, Las Vegas, NV, 2002.



126

[82] T. Colonius, C. W. Rowley, J. B. Freund, R. M. Murray, On the choice of norm

for modeling compressible flow dynamics at reduced-order using the POD, in:

41st IEEE Conference on Decision and Control, Las Vegas, NV, 2002.

[83] M. Tutkun, P. B. V. Johansson, W. K. George, Three-component vectorial proper

orthogonal decomposition of axisymmetric wake behind a disk, AIAA J. 46 (5)

(2008) 1118–1134.



127

VITA

Thomas Andrew Brenner is a native of Ovid, Michigan. In April, 2005 he earned

a Bachelor of Science in Engineering in aerospace engineering from the University of

Michigan.

Tom began his doctoral studies at Texas A&M University in June of 2006. His re-

search interests include computational fluid dynamics and reduced-order models based

on proper orthogonal decomposition. Tom can be contacted by email at thomasbren-

ner@gmail.com or by mail at: Department of Aerospace Engineering, c/o Dr. Paul

Cizmas, Texas A&M University, H.R. Bright Building, Ross Street - TAMU 3141,

College Station, TX 77843-3141.


