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ABSTRACT 

 

Transparent and Conductive Carbon Nanotube Multilayer Thin Films Suitable as an 

Indium Tin Oxide Replacement. (May 2011) 

        Yong Tae Park, B.S., Korea Advanced Institute of Science and Technology; 

           M.S., Pohang University of Science and Technology 

Chair of Advisory Committee: Dr. Jaime C. Grunlan 

 

Transparent electrodes made from metal oxides suffer from poor flexibility and 

durability. Highly transparent and electrically conductive thin films based on carbon 

nanotubes (CNTs) were assembled as a potential indium tin oxide (ITO) replacement 

using layer-by-layer (LbL) assembly. The ultimate objective of this dissertation work is 

to produce CNT-based assemblies with sheet resistance below 100 Ω/sq and visible light 

transmission greater than 85%. The alternate deposition of positively charged 

poly(diallyldimethylammonium chloride) [PDDA] and CNTs stabilized with negatively 

charged deoxycholate (DOC) exhibit linear film growth and thin film properties can be 

precisely tuned. Ellipsometry, quartz crystal microbalance, and UV-vis were used to 

measure the growth of these films as a function of PDDA-CNT bilayers deposited, while 

TEM, SEM, and AFM were used to visualize the nanostructure of these films.  

Following a literature review describing potential ITO substitutes and LbL 

technology, the influence of CNT type on optoelectronic performance of LbL assemblies 

is described. Three different types of nanotubes were investigated: (1) multiwalled 
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carbon nanotubes (MWNTs), (2) few-walled carbon nanotubes (FWNT), and (3) 

purified single-walled carbon nanotubes (SWNTs). SWNTs produced the most 

transparent (>85% visible light transmittance) and electrically conductive (148 S/cm, 

1.62 kΩ/sq) 20-bilayer films with a 41.6 nm thickness, while MWNT-based films are 

much thicker and more opaque. A 20-bilayer PDDA/(MWNT+DOC) film is 

approximately 103 nm thick, with a conductivity of 36 S/cm and  a transmittance of 30%.  

In an effort to improve both transparency and electrical conductivity, heat and 

acid treatments were studied. Heating films to 300 °C reduced sheet resistance to 701 

Ω/sq (618 S/cm conductivity, 38.4 nm thickness), with no change in transparency, owing 

to the removal of insulating component in the film. Despite improving conductivity, 

heating is not compatible with most plastic substrates, so acid doping was investigated as 

an alternate means to enhance properties. Exposing SWNT-based assemblies to HNO3 

vapor reduced sheet resistance of a 10 BL film to 227 Ω/sq. Replacing SWNTs with 

double walled carbon nanotubes (DWNTs) provided further reduction in sheet resistance 

due to the greater metallic of DWNT. A 5 BL DWNT film exhibited the lowest 104 Ω/sq 

sheet resistance (4200 S/cm conductivity, 22.9 nm thickness) with 84% transmittance 

after nitric acid treatment. DWNT-based assemblies maintained their low sheet 

resistance after repeated bending and also showed electrochemical stability relative to 

ITO. This work demonstrates the excellent optoelectronic performance, mechanical 

flexibility, and electrochemical stability of CNT-based assemblies, which are potentially 

useful as flexible transparent electrodes for a variety of flexible electronics. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

Transparent electrode alternatives to metal oxides are desired because of 

increasing demand for flexible and robust optoelectronic devices that include solar cells, 

touch screens, and flexible displays. Metal oxides such as cadmium oxide, indium oxide, 

and indium tin oxide (ITO) have been widely used for more than a half century as 

transparent electrodes.1 ITO thin films are the most prominent electrodes due to low 

electrical resistance and high visible light transmittance,2-4 but these ceramic films have 

limited flexibility that leads to cracking, and adhesion problems that are made worse by 

the thermal mismatch with polymer substrates during deposition.3-8 Intrinsically 

conductive polymers (ICPs), such as poly(3,4-ethylenedioxythiophene) [PEDOT], have 

been studied as transparent electrode alternatives, but they suffer from low transparency 

and photo-oxidative degradation.9,10 Carbon nanotube (CNT) thin films offer a promising 

alternative to these brittle conductive oxides and low transparency ICPs. 

Intense study has followed the discovery of carbon nanotubes (CNTs)11-13 because 

of their impressive electrical,14 thermal,15 mechanical,16 structural,17 and chemical 

properties.18 Recently, CNT-based thin films have been investigated as components in 

electronic devices, including high mobility transistors,19,20 sensors,21,22 solar and fuel 

cells,23,24 integrated circuits,25,26 and transparent conductive thin films.27,28 For electronic 

 
____________ 
This dissertation follows the style of The Journal of Physical Chemistry C. 



 2 

devices, such as touch screens and flexible displays, it is desirable for electrodes to 

exhibit high transparency and electrical conductivity (≥ 85% transmittance and ≤ 1 kΩ/sq 

sheet resistance).27 CNT thin films are an interesting alternative to existing transparent 

conductive layers, such as brittle and chemically unstable indium tin oxide,6,29 low 

conductivity antimony tin oxide/polymer,30 and low transparency poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) [PEDOT-PSS].31 Several methods for 

preparation of CNT thin films have been introduced in recent years, such as vacuum 

filtration,32-34 transfer printing onto various substrates,35-37 spin coating,38 dip-coating,39 

direct CVD growth,40 air-spraying/brushing,27,34,41 rod coating,42 electrophoretic 

deposition,43 and more typical CNT/polymer composites.44 Despite their promise, these 

techniques have some disadvantages with regard to film quality, electrical performance, 

and  processing complexity.45  

Many of the processing and performance issues associated with nanotube films 

can be circumvented using a technique known as layer-by-layer (LbL) assembly, which 

has been extensively used in recent years to produce multifunctional thin films in a 

controlled manner.46-49 LbL assembly typically produces thin films through electrostatic 

interactions, by alternately exposing a substrate to positively and negatively-charged 

materials in aqueous solutions, as shown in Figure 1.1. Film thickness is determined by 

the number of deposition cycles, in which each positive and negative pair deposited is 

referred to as a bilayer (BL). Additionally, LbL deposition is compatible with most 

substrates, such as plastic films (e.g., polyethylene terephthalate (PET), polystyrene (PS), 

and polypropylene), glass slides, silicon wafers, and fibers. A variety of functional thin 

films have been produced using the LbL technique, including antimicrobial,50,51 gas  
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Figure 1.1. Schematic of the LbL process for making conductive thin films that involves 
dipping a substrate in cationic PDDA and anionically-stabilized CNT mixtures, followed 
by rinsing with water and drying with filtered air. These steps generate one bilayer (BL) 
and are repeated to grow a film with a given number of bilayers. 
 

 

 

barrier,52,53 sensing,54 flame retardant,55 electrochromics,56 drug delivery,57 and 

electrically conductive.58-64 Conductive assemblies made with carbon nanotubes can 

exhibit ITO-like transparency and sheet resistance,60 making then an important topic of 

study. 

 

1.2 Objectives and Dissertation Outline 

The present work focuses on improving the transparency and conductivity of 

nanotube thin films by alternately depositing CNTs, stabilized with a negatively charged 
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surfactant, with a transparent polycation using layer-by-layer assembly. The ultimate goal 

is to develop high conductivity and transparent thin films capable of replacing ITO. The 

influence of heat treatment, acid treatment, and film composition on transparency and 

sheet resistance of these assemblies is examined. The ability to tailor thin film resistance 

can be potentially useful for anti-static films33,44 and EMI shielding,37,42 in addition to 

transparent, flexible electrodes. An overview of this research is shown schematically in 

Figure 1.2. The key objectives are:  

1. To fabricate transparent and conductive nanotube-based thin films with ITO 

replacement performance, using the LbL technique. 

2. To evaluate and understand the microstructure and optoelectronic properties 

of CNT-based LbL assemblies as a function of the number of bilayers, CNT 

type, and the type of post treatment (heat treatment, acid treatment, etc.). 

 

 

 
 
Figure 1.2. Overview of the carbon nanotube-based electrode research described in this 
dissertation. 
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3. To confirm the super flexibility and electrochemical stability of CNT-based 

LbL assemblies arelative to ITO thin films. 

 

Chapter II is a literature review of transparent conductive thin films and LbL 

assembly. A thorough background of the current technology with regard to transparent 

and conductive thin films is provided. The LbL assembly basics, along with a survey of 

the functionality achieved with these thin films, is the second part of this chapter. 

Chapter III describes the influence of CNT type on transparency and electrical 

conductivity of LbL thin films. Three different types of nanotubes are compared: (1) 

multi-walled carbon nanotubes (MWNTs), (2) few-walled carbon nanotubes (FWNTs), 

and (3) single-walled carbon nanotubes (SWNTs). In this chapter, a solution of 

poly(diallyldimethylammonium chloride) [PDDA] and aqueous suspensions of nanotubes 

stabilized by deoxycholate (DOC) were used to fabricate LbL assemblies. Optoelectronic 

performance is characterized, along with film growth, component concentration, 

microstructure, and surface morphology. 

Chapter IV examines the heating effect on optoelectronic performance of CNT-

based LbL thin films. Thermogravimetric analysis (TGA) was performed on each 

component of these assemblies, and the fully assembled CNT thin film, in order to 

choose a suitable temperature range for heat treatment. The influence of different 

temperatures and times on sheet resistance and transparency is described. Changes in 

sheet resistance and optical transmittance were measured before and after heating, along 

with film thickness and microstructure.  
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Chapter V evaluates acid treatment of these CNT-based thin films. This treatment 

was applied to decrease sheet resistance to ITO level. The optoelectronic behavior was 

characterized before and after acid treatment, using various acid types and time. 

Additionally, this chapter demonstrates the bending performance of CNT- and ITO-

coated plastic films. Cyclic voltammetry was also used to compare the electrochemical 

stability of these two electrode materials. 

Chapter VI provides the conclusions for this work and future research directions. 

This work establishes CNT-based LbL thin films as a legitimate candidate for ITO 

replacement. CNT thin films were as conductive and transparent as ITO coatings. 

Moreover, these films exhibit better bending performance and electrochemical stability. 

Future work will focus on improving these films by other experiments and examining 

their use as electric applications including antistatic films, EMI shielding, and flexible 

antennas. 

In Appendix A, a study of electrochromic thin film assemblies that switch from 

transparent to dark blue in their oxidized and reduced states, respectively, is described. 

These films were generated by alternately depositing tungstate anions with cationic 

poly(4-vinylpyridine-co-styrene) [PVP-S]. In an effort to decrease switching time, ITO 

nanoparticles were incorporated into these tungstate-based assemblies. ITO allows these 

films to maintain electrical conductivity in both states, which is the source of this faster 

and more stable switching. 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Transparent and Conductive Thin Films 

Transparent electrodes continue to be studied because of increasing demand for 

optoelectronics, such as photodiodes for solar cells and electronic displays (e.g., touch 

screens and light-emitting diodes). For these electronic devices, transporting electrons to 

and from the electrode layer is required. In many cases, this electrode must transmit 

visible light because it is applied directly onto the surface of a transparent substrate. 

Therefore, it is desirable for electrodes to exhibit high transparency and electrical 

conductivity, especially for display applications. Various materials have achieved a 

combination of conductivity and transparency to satisfy the needs of these optoelectronic 

applications. Table 1.1 summarizes the advantages and disadvantages of the various 

types of transparent electrodes discussed in the following sections.65  

  

2.1.1 Metal Thin Films 

One group of transparent electrodes is thin films of metals such as silver (Ag), 

gold (Au) or copper (Cu). Since first being prepared by vapor deposition on an 

amorphous substrate in 1969, these metal thin films have been investigated with film 

thicknesses from 10 to 150 nm.66 Unfortunately, these films are soft, porous, catalytically 

active, chemically reactive, and sometimes poorly adherent to substrates. Metal thin film 

electrical resistivity is quite low (< 3.0 × 10-6 Ω·cm) and thickness dependent, and optical  
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Table 1.1: Summary of Various Types of Transparent Electrodes and Their 
Potential Applications (reproduced from [65]) 
 

 advantages disadvantages applications 
 
carbon 
nanotube 

 
highly flexible 
neutral color 
low haze 
low reflection 
can be doped 
solution processable 
cheap in bulk 
chemically stable 
 

 
relatively high sheet 
resistance for solar cell 
and large-scale display 
applications 

 
touch screen 
EPD 
flexible OLED 
LCD 
IR device 
EC, EL display 

    
graphene flexible, neutral color  

potentially low cost, continuous 
improvement of conductivity 

can be doped 
potentially solution processable 
low surface roughness 

relatively high sheet 
resistance for solar cell 
and large-scale display 
applications 

touch screen 
flexible OLED 
 

    
metal nanowire 
or thin film 
(i.e., Ag or Au)  

low sheet resistance 
large light scattering 
mechanically flexible 
surfactant-free processing 
solution processable 
 

relatively high haze value 
high surface roughness 
poor chemical stability 

mainly solar cells 

    
PEDOT flexible 

mature 
solution processable 

relative high sheet 
resistance 

chemically sensitive  
color 
 

surface modification 
for nanowire or 
nanotube network 
electrode 

    
ITO, IZO mature 

low sheet resistance 
high transparency 
solution processed ITO particle 

or ITO nanowires are under 
study 

costly 
poor mechanical properties 
high reflection 

optoelectronic 
devices on rigid 
substrates 
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properties are also thickness dependent, but not sufficient for transparent applications.67 

The metal deposition on the substrate starts from metallic nuclei, so electrical conduction 

is only possible for films that exceed the level where large-scale coalescence begins 

(Figure 2.1(a)).66 Further deposition is needed to create a continuous metal film with 

stable resistivity. Figure 2.1(b) shows resistivity data for evaporated Au films before and 

after annealing at 350 °C for 15 to 30 min.68 The resistivity of the as-deposited film drops 

sharply with increasing thickness and reaches a minimum value of ~ 3.0 × 10-6 Ω·cm 

beyond a 150 nm thickness. After heat treatment, resistivity generally decreases, 

especially at small thickness, and approaches the bulk value. This resistivity is much 

smaller than the lowest resistivity of doped metal oxide- or fully organic-based 

conductive thin films described in the next sections. 

 

 
 
Figure 2.1. (a) Survey of growth stages, structures, and thickness scales for Au thin 
films deposited on glass by conventional evaporation and ion-assisted evaporation   
(reproduced from [66]).  (b) Thickness-dependent electrical resistivity of Au films on 
two different substrates, in as-deposited state and after annealing at 350 °C (arrow: the 
resistivity of bulk Au, reproduced from [68]). 
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Figure 2.2(a) shows the typical transmittance and reflectance of evaporated Ag 

thin films for the wavelength range from 350 to 1,600 nm.69 The 6 nm thick film is in the 

irregular metal islands regime, but the reflectance shows metallic behavior at t > 9 nm. 

For these films, the transmittance is < 55% at 500 nm, which is too low to use them as 

transparent electrodes for optoelectronic applications. Several techniques have achieved 

lower resistivity at small thickness.70 Transmittance, however, has been reported to be 

difficult to increase to sufficient values for optoelectronics. Although several methods 

have been introduced on Au and Ag films in order to tailor the transmittance, they are not 

satisfactory for most optoelectronic applications. Recently, a remarkable increase in light 

transmittance was introduced through metallic sub-wavelength hole arrays. The influence 

of 250 nm diameter nanoholes on transmittance through Au films is shown in Figure 

2.2(b).71 Water-soluble Au nanoparticles have also been utilized to produce patterned, 

 

 
 
Figure 2.2. (a) Transmittance and reflectance of Ag films with different thicknesses on 
glass substrates (reproduced from [69]).  (b) Transmittance of Au films with the sub-
wavelength holes, which lead to extraordinary transmittance in a band centered at 615 
nm (reproduced from [71]). 
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nanostructured conductive films.72 These films achieved very high transparency, but also 

had very high resistivity 108
−109 Ω·cm. Multilayer coatings have achieved high 

transmittance, using one or several dielectric layers with high refractive index species 

(e.g., TiO2 or ZnO),73,74 but these layers may have an undesired doping effect. Figure 2.3 

illustrates the increase in transmittance of TiO2/Ag/TiO2 films and improvement of 

optoelectronic property in ZnO/Ag/ZnO films.  

 

2.1.2 Doped Transition Metal Oxide Thin Films 

Doped, wide-bandgap transition metal oxide semiconductors are another class of 

transparent electrode materials. Inspired by the behavior of cadmium oxide in 1951, this 

group of materials (primarily In2O3, SnO2 or ZnO) have been widely investigated due to 

 
 
Figure 2.3. (a) Transmittance and reflectance of TiO2/Ag/TiO2 coatings (reproduced 
from [73]).  (b) Sheet resistance and maximum transmittance as a function of Ag 
thickness in ZnO(20 nm)/Ag/ZnO(20 nm) coatings (reproduced from [74]). 
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their high electrical conductivity and optical transmittance.1 These studies ultimately lead 

to the development of doped In2O3:Sn (also known as indium tin oxide or ITO), which 

has excellent electrical and optical properties.75 These films are hard, dense, strongly 

adherent to glass, and chemically inert, relative to metal thin films. Most common oxide 

semiconductor materials, such as ZnO:Al,76 SnO2:Sb,77 ZnOx,78 and ITO,79-81 have very 

low resistivity (< 5 × 10-4 Ω·cm). Most current optoelectronic devices use these doped 

metal oxide materials. ITO remains the most widely used and studied oxide, along with 

SnO2:F and ZnO:Al, for transparent electrodes. Flat panel displays use ITO as a front 

electrode,82,83 and ITO layers can be directly coated on flexible, transparent plastic 

substrates.84 Figure 2.4 shows that ITO on PET can achieve a resistivity of 5 × 10−4 

Ω·cm and an average visible light transmittance of 80%, when applied by RF magnetron 

sputtering.79 

 

 
 
Figure 2.4. Optical transmission and resistivity as a function of (a) ITO film thickness 
and (b) sputtering power (at 100 nm film thickness) (reproduced from [79]). 
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Despite having low sheet resistance and high transparency, ITO thin films are not 

ideal for flexible displays due to their brittleness.3-5 Additionally, the difference in 

thermal expansion coefficient and elastic properties of ITO films and polymer substrates 

results in large mechanical stresses.4 Flexing an ITO coated PET film causes stress cracks 

that reduce its electrical conductivity. Several studies have examined the effect of 

deflection on the electrical resistivity of ITO on a PET or polycarbonate (PC) substrate, 

focusing on the relationship between cracking and electrical properties.6,7,85 These studies 

show that cracks are initiated at a strain of 1.28%, when films are stretched, and at a 

curvature of 10 cm, when films are bent. Figure 2.5(a) shows a plot of the film thickness 

as a function of resistivity, revealing that as the thickness of the film increases, so does 

sensitivity to bending. Figure 2.5(b) shows that average visible light transmittance also 

diminishes with bending, for a 200 nm-thick ITO film, due to widespread cracks. 

 

 
 
Figure 2.5. Effect of the number of deflection cycles on (a) the film resistivity and (b) 
the average visible light transmittance for samples of varying thickness (reproduced from 
[3]). 
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2.1.3 Fully Organic Conductive Thin Films 

2.1.3.1 Polymeric Organic Conductive Films  

Since their discovery in 1977,86 intrinsically conductive polymers (ICPs) have 

been heavily studied because of their unique properties.31,87 Many ICPs have been 

applied to electronic devices. Poly(3,4-ethylenedioxythiophene) [PEDOT] is the most 

widely used ICP due to its relatively high electrical conductivity and photo-oxidative 

stability, especially when applied from its water-based complex with poly(styrene 

sulfonate) [PSS].31 Figure 2.6(a) shows the optoelectronic performance of a PEDOT–

PSS coating, indicating good (but not great) sheet resistance (ρ ≈ 1.6 × 10-3 Ω·cm) 

relative to ITO. ICPs have been evaluated as antistatic coatings (Figure 2.6(b)), 

transparent conductors (Figure 2.6(c)),31 electrochromic materials,88 light emitting 

diodes,89 and transistors.90 Photo-oxidative degradation is a key drawback for all ICPs, 

including PEDOT,9,10 due to their conjugated backbones (i.e., alternating double and 

single bonds). Although ICPs have many advantages, their visible light transmittance and 

noticeable color is not suitable for most optoelectronic applications. 
 

 
 

Figure 2.6. (a) Sheet resistance and transparency of PEDOT–PSS relative to ITO.  (b) 
Antistatic coating for cathode ray tubes to prevent dust attraction.  (c) Schematic 
structure of an inorganic electroluminescent device with the traditional ITO layer 
replaced by a PEDOT–PSS layer (reproduced from [31]). 
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 2.1.3.2 Carbon Nanotube-based Thin Films  

Carbon nanotube-based thin films are a more recent alternative to existing 

transparent conductive layers. Single-walled carbon nanotubes, consisting of one layer of 

the hexagonal graphite lattice rolled to form a seamless cylinder with a radius up to a few 

nanometers,13 are especially promising. Figure 2.7 illustrates four methods [vacuum 

filtration (a),91 air-spraying (b),92 transfer printing (c),37 and rod coating (d),42] for 

preparing CNT thin films. Spin coating, dip-coating, direct CVD growth, and 

electrophoretic deposition have also been used to make these films.38-40,43 Figure 2.8 

shows an AFM image and optoelectronic behavior of carbon nanotube films prepared by 

transfer printing. These CNT thin films show good optoelectronic performance, with 

values in the middle of the range of commercial ITO-coated PET, which typically has 

50–200 Ω/sq sheet resistance and ~ 83% T at 550 nm. Although transfer printing is one 

of the best methods for producing CNT thin films, there has been difficulty with scale-up, 

breakage of the film during transfer, and comparatively brittle final films.45 These 

challenges have opened the door for the use of LbL assembly to produce these important 

CNT films. 
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Figure 2.7. Illustration of several methods for carbon nanotube film fabrication: (a) 
vacuum filtration, (b) air-spraying, (c) transfer printing, and (d) rod coating (reproduced 
from [91], [92], [37], and [42], respectively). 
 

 

 
 

Figure 2.8. (a) AFM image of a nanotube film with RS = 200 Ω/sq on a glass slide and 
film thickness of 25 nm.  (b) Optoelectronic behavior (transmittance at 550 nm vs. sheet 
resistance) of nanotube films with different thickness on PET substrates. The bold line 
shows the performance of commercially available ITO films on PET substrates. The 
inset shows transmittance of a nanotube film with RS = 120 Ω/sq. (reproduced from 
[36]). 
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2.2 Layer-by-Layer Assembly  

2.2.1 From Langmuir-Blodgett to Layer-by-Layer Assembly 

Many material studies in the last three decades have investigated nano-scale 

composites with metallic, inorganic, organic, polymeric, and biological components. 

These nanocomposites make it possible to create synergy by combining two or more 

materials of desired properties, but it is also known that it is difficult to develop methods 

to tailor nano-scale assemblies. Moreover, polymer thin films have been increasingly 

explored for well-defined surfaces and interfaces in recent years. These polymer thin 

films are formed on substrates, due to balanced interactions between substrate, polymer 

(or its precursor), and other components. It is possible to consecutively deposit single 

molecular layers and to form multilayers on a substrate. In order to prepare uniform and 

homogeneous thin films, several nanofabrication methods have been developed, such as 

chemical vapor deposition, electron beam induced deposition, colloidal methods, and 

molecular beam epitaxy.93 Many of these approaches have disadvantages; among these 

are high operating costs to use these techniques and limitation of the range of organic 

materials, particularly in the combination of organic and inorganic materials.47  

The Langmuir-Blodgett (LB) technique involves the deposition of self-assembled 

amphiphilic monolayers onto a substrate from a water surface. This methodology has 

been used to fabricate (with angstrom precision) controlled nanostructure films since the 

1930‟s.
94 The LB technique, however, has limitations with respect to substrate size and 

applying non-amphiphilic material. There are also issues with film quality and stability.95 

These limitations are too severe to be useful for practical applications. In an effort to 

overcome the challenges associated with LB films, the LbL method was developed by 
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alternating substrate exposure to oppositely charged polyelectrolytes.49,95 Any charged 

nano-scale objects, such as molecular aggregates, clusters, or colloids, are also suitable 

for this deposition method. Furthermore, the LbL process is largely independent of the 

nature, size, and topology of the substrate. This is a classic bottom-up nanofabrication 

technique that has grown in popularity for the past 20 years, due to its simplicity and 

versatility. 

 

2.2.2 Introduction to Layer-by-Layer Assembly 

2.2.2.1 Mechanism and Process  

Uncertainty remains about the driving force for LbL assembly, although it is 

widely accepted that the multilayer buildup depends on the electrostatic attraction 

between oppositely charged molecules and the entropy gain from small counterions 

entering the water.49 This simple process, shown in Figure 1.1, results in polycation-

polyanion deposition on a charged substrate. When the strong electrostatic attraction 

occurs between a charged substrate and oppositely charged molecules in solution, 

overcompensation of the original surface charge, due to the adsorption of molecules, 

induces charge reversal on the new surface. When the substrate is exposed to a second 

solution, oppositely charged molecules are again attracted to the surface. Repetition of 

adsorption cycles with polyanions and polycations (or other charged ingredients) leads to 

LbL growth of multifunctional films (Figure 2.9).48 The driving force for LbL assembly 

is not limited to electrostatic attractions. Many kinds of physicochemical interactions 

have been used to assemble films. Metal–phosphate interactions,96,97 hydrogen 

bonding,98,99 weak electrostatic interactions with the aid of strong π–π interaction,100,101 
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various biochemical interactions,102,103 charge transfer interactions,104 and sol-gel 

reactions105 have all been successfully used to generate these thin films.  

Multilayer structures composed of polyions or other charged molecular or 

colloidal objects (or both) are grown as shown schematically in Figures 1.1 and 2.9. Film 

deposition on a substrate can be carried out manually or with an automated device, which 

may provide better control.106 In most cases, dipping into one solution, rinsing, dipping 

into the other solution, and rinsing again makes one cycle, yielding one bilayer. 

Excessive molecules from solution adhering to the surface are removed by the rinsing. 

This cycle is repeated until the desired number of bilayers has been deposited. 

  

 
 
Figure 2.9. Schematic of the electrostatic layer-by-layer self-assembly process 
(reproduced from [48]). 
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2.2.2.2 Advantages of LbL Thin Films  

One of the major advantages of LbL assemblies is the ability to incorporate 

several different materials into precise levels within sub-micron films. In principle, there 

is no limitation to the number of ingredients within LbL films. In addition to 

conventional polyelectrolytes, various functional materials have been assembled by 

electrostatic LbL assembly. These unconventional ingredients include biomaterials, 

especially DNA107 and proteins,108 and charged substances like colloidal 

nanoparticles,109,110 metal oxides,9,111 clay,52,112 nanosheets,113,114 and nanotubes.60,61,115 

Photonic crystals have been built by altering the size of quantum dots (QDs) in 

successive layers,116 which highlights the power of this technique. Figures 2.10(a) and 

(b) show a graded LbL film on a glass slide made with PDDA and four different size 

thioglycolic acid-stabilized CdTe QDs with green, yellow, orange, and red 

luminescence.116 Figure 2.10(c) illustrates the LbL assembly procedure for biologically 

active semiconductor QD (CdTe)-labeled microsphere bioconjugates on 925 nm diameter 

PS beads.117 Additionally, there are no restrictions with respect to size, shape, and 

topology of substrate. Assemblies have been grown on fibers, foams, metals, glasses, 

semiconductors, and numerous polymer films (PET, PS, and polydimethylsiloxane 

(PDMS), etc.).9,52,60,61,108-115,118 The conformal nature of this coating process typically 

results in uniform coating of every three dimensional surface of a fiber,112,119 a core, 117,120 

or a pore121 (Figure 2.11). 
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Figure 2.10. (a) Cross-sectional confocal microscopy image of a graded PDDA/CdTe 
film made of 10 BLs of four different size CdTe QDs (green, yellow, orange, and red; 
total 40 BLs).  (b) TEM cross-section of a graded film made from 5 BLs of green, 
yellow, and red QDs (reproduced from [116]).  (c) Illustration of the LbL procedure used 
to prepare CdTe QD-microsphere bioconjugates (reproduced from [117]). 
 
 
 

 
 
Figure 2.11. LbL coatings on the surfaces of (a) a patterned PDMS stamp, (b) fibers, and 
(c) polycarbonate porous membrane templates (reproduced from [118], [112], and [121], 
respectively).  (d) The nanotubes prepared in the membranes with 400 nm diameter 
pores via the LbL process of (c).  
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2.2.2.3 Characteristics of Layer-by-Layer Films 

In addition to the versatile spectrum of LbL assemblies, operating parameters add 

to the versatility of film characteristics for each assembly. Parameters affecting LbL film 

growth include surface charge of the substrate, concentration of the solution, pH of the 

solution, deposition time, rinsing, drying, stacking sequence, humidity, temperature, etc. 

The first layer is adsorbed by a charged substrate in conjunction with oppositely charged 

polyions. Therefore, the total amount of at least the first bilayer (up to 5 bilayers) 

depends on the substrate and its surface treatment (Figure 2.12(a)).122 The concentration 

of polyelectrolyte also affects LbL assembly. There is a lower concentration limit below 

which films will not grow.122,123 Adjusting pH can induce changes in the charge density 

of a polyelectrolyte, resulting in an increase or decrease in film thickness. Greater charge 

density of the polyelectrolyte will produce thinner films,52,112 while lower charge density 

will result in thicker films.124  

Figure 2.12(b) shows the thickness as a function of bilayers deposited for films 

made with clay and different pH of polyethylenimine (PEI).52 PEI is highly charged at 

low pH, suggesting uncoiled rod-like conformation of its chain, which results in thinner 

deposition. The influence of deposition time on film growth also has been studied using 

LbL assembly.122,125,126 Especially in particle-containing LbL assemblies, longer 

deposition time can produce thicker LbL thin films. Figure 2.12(c) shows a proposed 

mechanism for clay/polyelectrolyte assemblies with different deposition time. Smaller 

particle-based LbL assembly exhibits a greater change in thickness with deposition 

time.125 Rinsing is typically used to remove excess material, which can be essential for 

nanoparticles with low charge.127 The drying produces denser LbL assemblies, as well as 
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improved smoothness of the films, as shown in Figure 2.12(d).46,128 Additionally, the 

influence of stacking sequence,129 humidity,130 and operating temperature131,132 on LbL 

assemblies have been widely investigated. All of these parameters result in a combined 

effect, so precise control of parameters should be chosen for the optimal films. 

 

 

 
 
 
Figure 2.12. (a) Thickness as a function of the number of layers deposited for a 
PSS/PDDA multilayer on a silicon wafer (reproduced from [122]).  (b) Thickness as a 
function of bilayers deposited for films made with clay and polyethylenimine. 
(reproduced from [52]).  (c) Proposed film growth mechanism for BPEI/MMT and 
BPEI/LAP with different deposition times. (reproduced from [125]). (d) X-ray 
reflectivity spectra of three LbL films dried with different methods. Film 1 was dried by 
spinning after each dipping step. Film 2 was prepared like 1, but was immersed in water 
and dried in air after the film build-up was completed. Film 3 was dried in air after each 
dipping step (reproduced from [128]). 
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2.2.3 Particle-Based Layer-by-Layer Assemblies 

As mentioned above, many types of charged molecules and nanoparticles have 

expanded the LbL spectrum. Many nanoparticles make use of stabilizers to impart the 

surface charge needed for effective LbL assembly.52,107-116 These particles often require 

additional strong interactions to reduce the minimum charge required, such as π-π 

stacking for organic dyes,101 aggregate deposition for inorganic colloids,111,133 and 

introduction of charged inorganic platelets like montmorillonite (MMT) clay, which 

behave as rigid polyelectrolytes, because of their natural surface charge.52,112 The most 

common materials used for LbL assembly are polymers. Polymeric LbL is much less 

dependent on the substrate, or the substrate charge density, than films made with smaller 

molecules.134 Useful all nanoparticle-based LbL assemblies (Figure 2.13) have been 

successfully produced,135,136 but nanoparticle-polymer assemblies are more commonly 

used.107-116 

 

 
 
Figure 2.13. (a) LbL assembly with TiO2 and SiO2 nanoparticles used (reproduced from 
[135]).  (b) AFM images of all-silica nanoparticle multilayers at pH 2 after 1, 2, and 3 
deposition cycles (reproduced from [136]). 
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CNT-based LbL assemblies are a good example of a polymer-particle system 

widely studied to fabricate transparent electrodes. Several groups have prepared CNT-

based thin films using the LbL method: oxidized individual SWNTs and PEI (denoted as 

[PEI/SWNTox]n where n is the number of BLs),58 [PANI/ SWNTox],58  [(PEI/PAA)(PEI/ 

SWNTox)5]n,59 [PVA/(SWNT+PSS)]n,60 [PVA/PSS]3[PVA/(CNT+PSS)]n,61 [(PDDA/ 

PAA)/(SWNT/PAA)]n with surface-modified SWNTs by an amphiphilic copolymer,62 

negatively and positively functionalized MWNT,63 [PDDA/(SWNT+naphthalene)]n and 

[(SWNT+pyrene)/PSS)]n,64 where PANI, PAA, and PVA are polyaniline, poly(acrylic 

acid), and poly(vinyl alcohol), respectively (Figure 2.14). Few studies  have examined 

the influence of nanotube type on transparency and conductivity,61 or methods to improve 

these values in CNT LbL films.137 The present dissertation explores methods to improve 

the transparency and electrical conductivity of these potential ITO replacement materials. 

 

 
 

Figure 2.14. SEM morphology of (a) [(PVA/PSS)3(PVA/SWNT-PSS)15], (b) [(PVA/ 
PSS)3(PVA/TWNT-PSS)25], and (c) [(PVA/PSS)3(PVA/MWNT-PSS)17] (reproduced 
from [61]).  (d) MWNT thin film assembled with positively and negatively charged 
MWNTs (reproduced from [63]).  (e) Electrical conductivity of [PVA/(SWNT+PSS)]n as 
a function of the number of bilayers (reproduced from [60]). 
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CHAPTER III 

INFLUENCE OF CARBON NANOTUBE TYPE ON  

TRANSPARENCY AND ELECTRICAL CONDUCTIVITY  

OF THIN FILM ASSEMBLIES* 

 

3.1 Introduction 

 Chapter III is focused on evaluating nanotube thin film transparency and 

electrical conductivity by alternately depositing various types of CNTs, stabilized with a 

negatively charged surfactant, with a polycation using LbL assembly. CNTs have 

impressive electrical properties, which have prompted significant effort to utilize them as 

electrodes, especially in flexible electronic devices. For these devices, it is desirable for 

electrodes to exhibit high visible light transparency and low sheet resistance. Although 

CNT thin films have been generated by several methods,32-34 they tend to exhibit 

problems related to fabrication and final properties. LbL assembly is a powerful coating 

technique, widely used to deposit multifunctional layers in a homogeneous and controlled 

manner.46-49 Several groups have prepared CNT-based thin films using the LbL 

method,58-64 but no study has reported the influence of nanotube type on optoelectronic 

performance of surfactant-stabilized CNT thin films. 

In this chapter, layer-by-layer assembly was used to generate transparent, highly 

conductive thin films containing carbon nanotubes. Three different types of nanotubes 

were used: (1) MWNTs, (2) a mixture of single, di-, and triwalled nanotubes, also known 

as FWNTs, and (3) purified SWNTs. Thin films, less than 100 nm thick, were created by 

____________ 
* Reprinted with permission from “High electrical conductivity and transparency in deoxycholate-stabilized 
carbon nanotube thin films” by Yong Tae Park etc., J. Phys. Chem. C 2010, 114, 6325-6333. ©2010 ACS. 
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alternately exposing a substrate to positively and negatively charged solutions. 

Poly(diallyldimethylammonium chloride) [PDDA] was used as the cationic layer, in 

conjunction with deoxycholate (DOC), as a negatively-charged nanotube stabilizer, to 

deposit these various types of CNTs. DOC is known to be an effective dispersing agent 

for CNTs in water.
138,139

 As a result, CNT damage from severe chemical or mechanical 

dispersion, such as oxidation or ultrasonic treatments, can be avoided.
138

 Although other 

methods for making CNT transparent conductive thin films have been previously 

reported,
27,28,32,33,35-45

 only LbL assembly allows for film thickness and composition to be 

precisely tailored at the nanometer level under ambient conditions. The deposition 

sequence outlined in Figure 1.1 was used to assemble films denoted as 

[PDDA/(CNT+DOC)]n, where n is the number of bilayers deposited. Films with sheet 

resistance below 2 kΩ/sq (electrical conductivity (σ) > 150 S/cm with thickness ~ 40 nm) 

and transparency greater than 85% were deposited, with larger diameter nanotubes 

generating thicker and less transparent films. This combination of simple processing, 

high conductivity, and high transparency should make these films very attractive for a 

variety of flexible electronics applications. 

 

3.2 Experimental 

3.2.1 Materials 

MWNTs (12–15 nm outer and 4 nm inner diameters and 1+ μm length, C ≥ 95 

wt%) were provided by Bayer MaterialScience (Leverkusen, Germany). A mixture of 

single, di-, and triwalled carbon nanotubes (XM grade), referred to as FWNTs in this 

work, and purified SWNTs (1 nm diameter and 0.1–1 μm length, C ≥85 wt%) were 
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purchased from Unidym Inc. (Menlo Park, CA). PDDA, with a molecular weight of 

100,000-200,000 g/mol, and sodium deoxycholate (DOC, C24H39NaO4, ≥98%) were 

purchased from Aldrich (St. Louis, MO). Sulfuric acid (H2SO4, 98%), hydrogen peroxide 

(H2O2, 30%), methanol (99.8%), acetone (99.5%), and hydrochloric acid (HCl, 37%) 

were also purchased from Aldrich and used as received. 

 

3.2.2 Layer-by-Layer Assembly 

A cationic 0.25 wt% PDDA aqueous solution was prepared by dissolving in 18.2 

MΩ deionized water. The anionic solution was prepared by dissolving 0.05 wt% CNTs in 

deionized water containing 2 wt% DOC, followed by mild sonication for 20 min to 

remove large CNT bundles and impurities. All solutions were used without altering pH. 

Fused quartz slides (Structure Probe Inc., West Chester, PA) were prepared by immersing 

them into a piranha solution (7:3 mixture of H2SO4 and H2O2) and sonicating for 30 min, 

followed by thoroughly rinsing with deionized water and drying with filtered air.140 

Single-side polished (1 0 0) silicon wafers (University Wafer, South Boston, MA) were 

cut to size, rinsed with ethanol-acetone (1:1), followed by deionized water, and finally 

dried with filtered air.141 PET (trade name ST505 by DuPont Teijin, Tekra Corp., New 

Berlin, WI) and PS (trade name ST311125 by Goodfellow Cambridge Ltd., Cambridge, 

UK) substrates were cut to size, followed by rinsing with methanol, then deionized water, 

and drying with filtered air. The quartz crystals were cleaned with an oxygen plasma 

etcher prior to use. The cleaned polymer substrates were then corona treated with a BD-

20C Corona Treater (Electro-Technic Products Inc., Chicago, IL). Corona treatment is 

used to oxidize the surface of the polymers, which helps the polycationic species to better 
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adhere.142 Clean substrates were first immersed into the PDDA solution for 5 min, 

followed by rinsing with deionized water and drying with filtered air. Immersion into the 

DOC-stabilized CNT suspension for 5 min came next, followed by rinsing and drying. 

These four steps comprise one cycle, yielding one BL. For each subsequent cycle, the 

immersion time for both aqueous mixtures was reduced to one minute and repeated to 

deposit the desired number of BLs. Following deposition, all films were stored in a dry 

box for a minimum of 12 h prior to testing. 

 

3.2.3 Characterization of Film Growth 

Thickness measurements were performed on silicon wafers. A PHE-101 Discrete 

Wavelength Ellipsometer (Microphonics, Allentown, PA) was used at a fixed wavelength 

of 632.8 nm and an angle of 65°. An F20 Reflectometer (Filmetrics Inc., San Diego, CA) 

was also used to confirm the thickness with the same refractive index as that used in 

ellipsometry. The weight of each deposited layer was measured with a Maxtek (East 

Syracuse, NY) Research Quartz Crystal Microbalance (QCM) and 5 MHz gold-electrode 

quartz crystals. Absorbance and transmittance of deposited films on fused quartz slides 

were measured between 250 and 850 nm with a USB2000 UV-Vis spectrometer (Ocean 

Optics, Dunedin, FL). All absorbance values in the text are for one-side coating (i.e., 

absorbance from 2 sides was halved). TGA was performed with a Q50 Analyzer (TA 

Instruments, New Castle, DE). Each sample was run under air or nitrogen gas from room 

temperature to 800 °C, at a heating rate of 20 °C/min. TGA was used to determine 

nanotube concentration using a previously established procedure.60 
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3.2.4 Microscopic Imaging 

Thin film cross sections were imaged with a JEOL 1200 EX TEM (JEOL USA 

Inc., Peabody, MA) with an operating voltage of 100 kV. TEM specimens were 

embedded in an epoxy resin comprised of Araldite 502 modified bisphenol A and Quetol 

651 ethylene glycol diglycidyl ether, along with dodecenyl succinic anhydride hardener 

(2:1:1 mole ratio) and benzyldimethylamine accelerator (0.2 ml per 10 g of total epoxy 

resin), which were all purchased from Electron Microscopy Sciences (Hatfield, PA). The 

specimens were sectioned down to ~ 90 nm with a Reichert-Jung Ultracut E 7017014 and 

placed on 300 mesh nickel grids to dry prior to imaging. Surface images were obtained 

with a Quanta 600 FE-SEM (FEI Co., Hillsboro, OR) at an operating voltage of 10 kV. 

 

3.2.5 Electrical Property Characterization 

Sheet resistance was measured using a Signatone Pro4 Four-Point Probe (Gilroy, 

CA) with 0.4 mm probe tip diameter and 1.0 mm tip spacing, E3644A DC Power Supply 

(Agilent Technologies Inc., Santa Clara, CA), and a Digital Multimeter (Keithley 

Instruments, Cleveland, OH). Voltage and current values were collected in LabVIEW 

using a SCB-68 I/O connecter (National Instruments Inc., Austin, TX). Correction factors 

were also tabulated because the dimensions of the substrate influence sheet resistance: 

   RS=(V/I)CF1CF2      (1) 

where RS is the sheet resistance, V is the voltage, I is the current, CF1 is the correction 

factor based on the ratio between substrate diameter and probe tip spacing, and CF2 is the 

correction factor based on the ratio between thickness and probe tip spacing.143 
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3.3 Results and Discussion 

3.3.1 Growth of Carbon Nanotube Assemblies 

Film thickness was measured using ellipsometry after every two 

PDDA/(CNT+DOC) bilayers were deposited on a Si wafer. All three CNT systems 

exhibit linear growth, as shown in Figure 3.1(a). These growth trends confirm successful 

combination of PDDA and CNT within the film and constant composition up to 20 BLs. 

In addition, Table 3.1 shows that SWNT-based films grow much thinner than FWNT and 

MWNT, suggesting that the film thickness depends on the radial size of the CNT. Much 

thicker growth than 4.9 nm per bilayer may be expected from the MWNT-based films, 

but each measurement is an average thickness over an area containing many nanotubes 

that have empty areas between them. Furthermore, subsequent layers likely settle into 

some of these thinner areas left from a prior deposition step. 

 

 

 
Figure 3.1. (a) Film thickness of three types of [PDDA/(CNT+DOC)]20 thin films as a 
function of the number of bilayers deposited, as determined by ellipsometry.  (b) Film 
thickness of a [PDDA/(SWNT+DOC)]20 thin film as a function of the number of bilayers 
deposited. The inset is the film thickness from 10 to 15 BLs, where a half bilayer 
corresponds to PDDA deposition. 
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TABLE 3.1: Growth, Density, and Composition of PDDA/(CNT+DOC) Assemblies  

LbL System 
thickness per 

BL (nm) 
density 
(g/cm3) 

PDDA 
(wt%) 

CNT+DOC 
(wt%) 

PDDA/(MWNT+DOC) 4.86 1.63 9.3 90.7 

PDDA/(FWNT+DOC) 2.73 1.37 9.7 90.3 

PDDA/(SWNT+DOC) 1.85 2.12 9.5 90.5 

 

Figure 3.2(a) shows the mass growth of these three CNT systems, as measured 

by QCM. Similar to the ellipsometric film thickness, film mass increases linearly with 

bilayers deposited, suggesting constant composition during growth. The amounts of 

PDDA and SWNT+DOC adsorbed onto the quartz crystal in each deposition cycle were 

estimated to be 0.037 and 0.35 µg/cm2, respectively, as shown in Figure 3.2(b) and 

Table 3.1. With the average thickness of each PDDA/(CNT+DOC) system from 

ellipsometry, QCM mass data allows the density of each film, as well as composition, to 

be calculated (see Table 3.1). The [PDDA/(SWNT+DOC)]20 film appears to have the 

highest density, while having a similar CNT concentration as the other two systems, 

suggesting that the PDDA/(SWNT+DOC) system has a more tightly packed 

nanostructure. The [PDDA/(FWNT+DOC)]20 films likely produced the lowest density 

due to reduced bundling relative to the SWNT system, which resulted in greater spacing 

between neighboring nanotubes (This assertion is supported by the surface images of 2-

bilayer films shown in Figure 3.6). Additionally, for all three systems, the concentrations 

of CNT layers were over 90 wt% of the entire 20 BL thin films. This value is somewhat 

misleading, however, because nanotube deposition is accompanied by a large fraction of 

DOC stabilizer. 
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Figure 3.2. (a) Mass growth of three types of [PDDA/(CNT+DOC)]20 thin films as a 
function of the number of bilayers deposited, as measured by QCM.  (b) Mass growth of 
a [PDDA/(SWNT+DOC)]20 thin film as a function of the number of bilayers deposited. 
The inset is the mass change from 10 to 15 BLs, where a half bilayer corresponds to 
PDDA deposition. 

 

Uncertainty remains about how to accurately measure CNT concentration in these 

nanocomposite thin films, but TGA provides a reasonable option. The first step in this 

process is to obtain characteristic peaks for each component of these assemblies (MWNT, 

FWNT, SWNT, PDDA, and DOC), obtained by subtracting the graph obtained under 

nitrogen (unreactive) from the graph obtained under air (reactive).60 Figure 3.3 shows 

these graphs and corresponding characteristic peaks. These peaks are the result of 

differences in the degradation rate between the two gas environments. As shown in Table 

3.2, MWNT, FWNT, and SWNT have characteristic peaks at 795, 725, and 620 °C 

(TC_CNT), respectively, and these values do not overlap with the characteristic peaks of 

PDDA and DOC. Commercial CNTs are generally composed of „crystalline‟ and 

amorphous carbons and some metallic catalyst. Metallic catalyst has the same high 

temperature behavior under air and nitrogen gas. Amorphous carbon has a lower 

degradation temperature than the crystalline carbon (i.e., the carbon nanotube itself), 

suggesting that the nanotube concentration can be estimated from the height of its own 
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Figure 3.3. Thermogravimetry of each component of CNT-based LbL films and three 

types of LbL films ((a) PDDA, (b) DOC, (c) MWNT, (d) [PDDA/(MWNT+DOC)], (e) 

FWNT, (f) [PDDA/(FWNT+DOC)], (g) SWNT, and (h) [PDDA/(SWNT+DOC)]) under 

dried air and nitrogen gas, respectively. The difference between the air and nitrogen 

curves is also plotted to reveal the characteristic peak for a given material. 
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TABLE 3.2: Characteristic Temperature of Each CNT and CNT Composition in 
PDDA/(CNT+DOC) Assemblies  

LbL System TC_CNT (°C) WC_CNT (%) WC_LbL/CNT (%) CNT (%) 

PDDA/(MWNT+DOC) 795 73.7 14.5 19.7 

PDDA/(FWNT+DOC) 725 80.3 14.8 18.4 

PDDA/(SWNT+DOC) 620 63.5 7.8 12.3 

 

. 

characteristic peak, which is only the result of nanotubes and catalyst.  Therefore, the 

CNT concentration (expressed in wt%) in a given assembly is calculated by taking the 

characteristic peak wt% from TGA of the assembly, multiplying by 100, and finally 

dividing by the characteristic peak wt% from TGA of the  neat nanotube.  For example, 

the SWNT-based LbL assembly contains 12.3 wt% nanotube (plus some catalyst 

impurity), which was obtained by dividing 780 by 63.5. It is noteworthy that the 

[PDDA/(SWNT+DOC)]20 film density is larger than PDDA or SWNT individually, but 

very close to their sum (ρSWNT ≈ 1.3 g/cm3 and ρPDDA ≈ 1.1 g/cm3). Thin films do not 

necessarily have densities that match their bulk values, so this apparent discrepancy may 

result from a highly ordered structure in the assembly. When thickness is measured after 

every deposited layer, thickness increases after deposition of SWNT, while it decreases 

slightly after each PDDA layer. Mass, however, increases after deposition of PDDA 

(Figure 3.2(b)), which suggests PDDA is penetrating into the underlying CNT layer. 

Each freshly deposited PDDA layer likely attracts CNTs in deeper layers to make denser, 

thinner films. 
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Figure 3.4. (a) Optical images of glass vials containing a 0.25 wt% PDDA aqueous 
solution and 0.05 wt% MWNT, FWNT, SWNT aqueous solutions stabilized by 2.0 wt% 
DOC. [PDDA/(CNT+DOC)]20 coatings on both sides of (b) quartz and (c) PS substrates 
with (i) MWNT, (ii) FWNT, and (iii) SWNT. 
 

Figure 3.4 shows vials of the aqueous deposition mixtures and three 

[PDDA/(CNT+DOC)]20 thin films prepared on both sides of fused quartz slides and PS 

films. To the naked eye, all three solutions are too dark to see through after mild 

ultrasonication, but after depositing 20 bilayers on transparent substrates, only the 

MWNT coating is relatively opaque. In contrast, the SWNT coating is highly transparent 

and the FWNT is intermediate between MWNT and SWNT, as expected based upon tube 

diameter. The CNT coatings on PS are highly flexible thin films with no reduction of 

optical and electrical performance with repeated bending. The films shown in Figure 

3.4(c) are 2 cm × 5 cm, but they could potentially be scaled up for large area, flexible 

electronics by replacing dipping with spraying.15 

 

3.3.2 Structural Characterization 

TEM micrographs of [PDDA/(MWNT+DOC)]20 and [PDDA/(SWNT+DOC)]20 

cross-sections are shown in Figure 3.5. TEM is primarily used to visualize film structure, 

which in this case shows a highly inter-diffused nanostructure. In TEM cross-sections, 
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dark and light grey areas are CNT-rich and PDDA-rich regions, respectively, and the 

darkest black spots in the SWNT system are catalyst impurities from high-pressure CO 

conversion (HiPCO) process. Although not the goal of these images, they verify the 104 

nm thickness of a [PDDA/(MWNT+DOC)]20 film measured by ellipsometry and the 12 

nm diameter of an individual MWNT stated by the manufacturer. In the PDDA/(MWNT+ 

 

 

Figure 3.5. TEM cross-sections of a [PDDA/(MWNT+DOC)]20 thin film at (a) low and 
(b) high magnifications. Cross-sections of a [PDDA/(SWNT+DOC)]20 thin film are also 
shown at the same (c) low and (d) high magnifications. 
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DOC) system, several white regions are observed, indicating a looser, nano-porous 

structure due to inefficient packing of the thicker nanotubes. These open nano-structures 

account for the lower film densities that were measured using QCM in Section 3.3.1. This 

nanoporous structure of the MWNT thin film is further confirmed in the SEM and TEM 

surface images in Figures 3.6 and 3.7. Additionally, MWNTs are interwoven between 

each other in the matrix, resulting in a three-dimensional network. As a result, many 

electrical connections between layers give the film high conductivity even with only 2 

BLs. 

Figure 3.6 shows TEM surface images of 2 BL assemblies containing each of the 

three types of nanotubes. The surfaces of these CNT-based assemblies were also 

analyzed using SEM, as shown in Figure 3.7. In all cases, a homogeneous network of 

CNTs is observed. Addition of DOC for the exfoliation of individual CNTs aids the 

uniform distribution in the matrix that ultimately forms a three-dimensional network due 

to their polymer-like entanglements.  CNT contacts within this network offer the pathway 

for electron transport through the film. The outer diameters of MWNTs used here are less 

than 13 nm, but the average thickness of each BL in a [PDDA/(MWNT+DOC)]20 thin 

film is 4.9 nm. In the beginning of the LbL process, MWNTs are randomly deposited in 

the first layer. Next, gaps in the MWNT layer are filled with PDDA, but the polymer 

does not deposit thick enough to smooth out the surface. When the next MWNT layer is 

deposited, it is believed that the tubes populate the gaps left behind by the prior layer. In 

contrast, growth of a [PDDA/(SWNT+DOC)]20 film proceeds at 1.85 nm per BL even 

though an individual SWNT has a diameter near 1 nm. This suggests SWNTs deposit 

more uniformly (i.e. fewer gaps in each layer) and may not be completely exfoliated. 
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Figure 3.6. TEM surface images of (a) [PDDA/(MWNT+DOC)]2, (b) [PDDA/(FWNT 
+DOC)]2, and (c) [PDDA/(SWNT+DOC)]2 assemblies on Formvar grids. 
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Figure 3.7. SEM surface images of (a) [PDDA/(MWNT+DOC)]20, (b) [PDDA/(FWNT 

+DOC)]20, and (c) [PDDA/(SWNT+DOC)]20 assemblies on PS film. 
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These surface images further support the suggestion that PDDA infiltrates into, 

and adsorbs onto, each underlying CNT layer. TEM and SEM images provide 

complementary information because each reveals structural differences, having been 

deposited on formvar grids and PS film, respectively. In addition, SEM images (Figure 

3.7) show that all of the 20 BL thin films deposit uniformly onto the substrates, but larger 

nanotubes give the PDDA/(MWNT+DOC) system a somewhat rougher surface than the 

other two systems. The 20 BL PDDA/(MWNT+DOC) films have a greater roughness 

than PDDA/(SWNT+DOC) due to larger nanotube size and complexity of the three-

dimensional structure. Figure 3.6(b) clearly shows greater space between nanotubes and 

what appears to be reduced bundle size in the FWNT thin films, whereas Figure 3.6(c) 

reveals relatively heavy bundling in the SWNT thin film. The FWNT films have greater 

spacing between and less bundling amongst the nanotubes, thus they produce films with 

greater thickness (Figure 3.1(b)) despite depositing comparable mass relative to SWNT 

(Figure 3.2(b)), which results in lower film density than SWNT (see Table 3.1). 

Although the resolution is not as good, Figure 3.7 reveals many of these same 

observations using SEM of 20 BL film surfaces. Some of the thicker spots in the middle 

of Figure 3.7(b) could be due to accumulation of PDDA after adsorption that obscures 

underlying CNT bundles. 

 

3.3.3 Optoelectronic Behavior 

Figure 3.8 shows the absorbance spectra of the three [PDDA/(CNT+DOC)]20 

films between 200 and 850 nm, as well as changes in absorbance at 550 nm as a function 

of the number of bilayers deposited. The concentration of CNTs in a given film is almost 
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constant, irrespective of the number of bilayers deposited, as shown in the QCM 

measurements (Figure 3.3). Therefore, the increasing absorbance of the 

PDDA/(CNT+DOC) systems with the number of bilayers deposited is due to increasing 

film thickness. The [PDDA/(SWNT+DOC)]20 film has over 85% transmittance across the 

entire visible light spectrum. Transmittance is over 97% with only two bilayers. As 

expected, transparency of these CNT assemblies decreases as the tube diameter increases. 

The PDDA/(FWNT+DOC) system has 69 and 95% transmittance (at 550 nm) with 2 and 

20 bilayers, respectively. The 20 BL MWNT-based coating has only 30% transmittance, 

but this increases to 90% with two bilayers. 

 

 
 
Figure 3.8. (a) Absorbance of PDDA/(CNT+DOC) assemblies on quartz slides from 200 
to 850 nm. The inset is absorbance spectra of a PDDA/(SWNT+DOC) measured in 2 BL 
step up to 20 BLs.  (b) Absorbance of the same thin films at 550 nm, as a function of the 
number of BLs deposited, is also shown. 

 

 

Sheet resistance of these thin films was measured with a four-point probe system. 

Figure 3.9(a) shows decreasing sheet resistance of [PDDA/(CNT+DOC)]n (n = 2–20) 

thin films as a function of the number of bilayers deposited. Thicker films have a more  
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Figure 3.9. (a) Sheet resistance of [PDDA/(CNT+DOC)]n thin films as a function of the 
number of bilayers deposited on PS film.  (b) Electrical conductivity of the same systems 
as a function of the number of bilayers deposited, using the data in (a) multiplied by 
ellipsometric film thickness (Figure 3.1). 

 

 

continuous three-dimensional CNT network that provides more efficient electron 

transport. Electrical conductivity of these films (Figure 3.9(b)) was obtained by taking 

the inverse of the product of the sheet resistance in Figure 3.9(a) and ellipsometric film 

thickness from Figure 3.1(a). [PDDA/(SWNT+DOC)]20 thin films achieve conductivity 

as high as 148 S/cm (41.6 nm thick with a sheet resistance of 1.62 kΩ/sq) and 40 S/cm 

with just two BLs. [PDDA/(MWNT+DOC)]n thin films have conductivity of 36 (n = 20) 

and 44 (n = 2) S/cm. With greater numbers of layers, the intrinsic nanotube conductivity 

becomes more important and this causes SWNT-based assemblies to exhibit significantly 

greater electrical conductivity. Although these conductivities are lower than some SWNT 

films made by vacuum filtration (6700 S/cm),28 transfer printing (750−2000 S/cm),36 

direct CVD (2026 S/cm),40  and spraying (5500 S/cm),41 they are high relative to 

vertically oriented SWNT electrodes (115 S/cm),144 SWNT/polymer composites (2 

S/cm),44 and other LbL thin films with anionic polymer-wrapped SWNTs and polycations 
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(50 S/cm with 87% transmittance)60 and anionic and cationic functionalized MWNTs 

after H2 heat treatment (10 S/cm).63 It is likely that heat treatment would further improve 

the conductivity of the present assemblies.60,61 

Polymer composites containing CNTs become electrical conductive when the 

CNT concentration is above the percolation threshold, which is the critical concentration 

necessary to form an electrical network with connection amongst conductive particles 

throughout the polymer matrix (causing the material to convert from an insulator to a 

conductor).145 Beyond the percolation threshold, a gradual increase of electrical 

conductivity has been reported in polymer/SWNT LbL thin films,60,63 as well as in bulk 

SWNT-polymer composites,146,147 due to an increase of electron transport when the 

density of continuous intersecting pathways  in the matrix are increased. In the SWNT 

thin film, the conductivity gradually increases from 40 to 150 S/cm as the number of 

bilayers increases to 20, but not dramatically like above and below percolation. This 

suggests that the PDDA/(SWNT+DOC) system has a CNT concentration over the 

percolation threshold and the density of intersecting pathways increases as the network 

transitions from two to three-dimensional. In contrast to the SWNT thin films, the 

MWNT films have constant conductivity, but essentially decrease from 44 to 36 S/cm. 

This slightly reduced conductivity with more layers may be due to weakened bonding 

amongst these relatively large nanotubes and increased porosity. These differences of two 

systems in conductivity, the gradual increase versus the steady state, can be explained by 

the nanostructure of two systems (Figures 3.5–3.7). SWNTs are largely deposited 

parallel to the substrate and generate a more two-dimensional structure, especially at low 

bilayer numbers. As more layers are deposited, the density of intersecting pathways can 
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increase due to interconnection between SWNTs in upper and lower layers. In the 

MWNT films, relatively homogeneous three-dimensional networks are formed from the 

beginning, due to greater rigidity (from larger radius) that would not allow the tubes to 

fully lay down on the substrate. This produces a highly interconnected three-dimensional 

network with just two bilayers. 

Figure 3.10 compares the performance of the PDDA/(CNT+DOC) films studied 

here with other transparent SWNT films, by highlighting transparency as a function of 

sheet resistance. [PDDA/(SWNT+DOC)]20 thin films have better transparency and lower 

sheet resistance (87% transmittance and 1.62 kΩ/sq) than spin-coated SWNT/polymer 

composites,44 spin-coated Boron-doped SWNT,38 electrophoretically deposited 

SWNTs,43 sprayed SWNTs,27 and vacuum filtered SWNTs.32,33 Additionally, these 

PDDA/(SWNT+DOC) films exhibit the lowest sheet resistance of any LbL assembly 

recipe in the absence of thermal annealing.58,60-63 This is believed to be due to the 

relatively mild dispersion conditions used (i.e., 20 min of sonication in aqueous 

deoxycholate solution), which results in stable dispersion with relatively little damage to 

the nanotubes. Most LbL recipes use a polymer stabilizer and/or hours (or even days) of 

sonication60 and/or oxidation treatment, usually with strong acid,58,59,61,63 to achieve 

sufficient dispersion. Long sonication time and oxidative treatments is known to shorten 

nanotube length and damage the conjugated sidewalls,148-152 both of which result in 

reduced composite electrical conductivity. Additionally, the relatively large size of the 

polymer molecules likely creates an insulating barrier between neighboring tubes that 

further increases resistance. The dispersion/exfoliation of nanotubes with DOC requires 
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no oxidation step and it is assumed the small molecule size allows for more intimate 

contact between neighboring tubes. 

 

 
 
Figure 3.10. Comparison of the optoelectronic performance of [PDDA/(CNT+DOC)]n 
thin films with other transparent and conductive SWNT thin films. 

 

 

Some other SWNT thin films exhibit better performance using transfer 

printing36,37 and rod coating,42 but these films are susceptible to breakage when 

transferred to a substrate.45 Although not the focus of the present study, the 

[PDDA/(SWNT+DOC)]20 film was annealed at 300 oC for five minutes, which resulted 

in a sheet resistance of 0.7 kΩ/sq and 85% transparency. This combination of low 

resistance and high transparency is the best ever reported for an LbL-produced carbon 

nanotube thin film and is competitive with the best films produced using any other 

technique. The required sheet resistance is 0.1 kΩ/sq for electromagnetic interference 

(EMI) shielding, 0.1 to 1 kΩ/sq for displays, and around 1000 kΩ/sq for electrostatic 
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dissipation (ESD) (combined with 85% visible light transmittance for transparent 

applications).27 Therefore, the CNT assemblies studied here are potential candidates for 

ESD and possibly some flexible display applications. 

 

3.4 Conclusions 

Highly transparent and electrically conductive thin films were assembled layer-

by-layer using CNTs stabilized with negatively-charged deoxycholate and positively-

charged PDDA. Alternate substrate exposure to PDDA and CNT-DOC aqueous mixtures 

generated thin films that grow in a linear fashion as a function of bilayers deposited, as 

demonstrated with visible light absorbance, ellipsometry, and QCM (i.e., mass). Optical 

and electrical performance of these CNT-based assemblies showed that SWNTs produced 

thinner and smoother films, with higher transparency and electrical conductivity, than 

comparable MWNT-based films. Even after 20-bilayers of deposition, these films are 

only 41.6 nm thick and contain approximately 12 wt% SWNT. Multi-walled nanotubes 

achieved low sheet resistance (< 100 kΩ/sq) with fewer bilayers, but the films are more 

opaque and have lower electrical conductivity relative to SWNT-based assemblies 

beyond two bilayers. The larger, stiffer MWNTs generate thicker assemblies and produce 

a stronger three-dimensional network that accounts for these differences. The 

conductivity of [PDDA/(SWNT+DOC)]20 is higher than most other SWNT-polymer 

composites, at 148 S/cm (RS = 1.62 kΩ/sq) with greater than 85% visible light 

transmittance. These nanotube-based thin films are among the most conductive and 

transparent currently reported in the literature, especially after annealing at 300 °C, which 

generates SWNT-based films with sheet resistance below 1 kΩ/sq and visible light 
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transmittance above 85%. Additionally, LbL assembly is a simple and convenient process 

relative to most competitive techniques. This study lays the groundwork for future studies 

to improve optoelectronic performance of transparent conductive thin film assemblies, 

which is likely to include the removal of PDDA following deposition (with heat or 

solvent). Even in their present state, these films could be useful for a variety of flexible 

electronics applications. 
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CHAPTER IV 

HEATING CARBON NANOTUBE ASSEMBLIES FOR  

REDUCED SHEET RESISTANCE‡ 

 

4.1 Introduction 

In Chapter III, LbL assembly was used to generate transparent, highly conductive 

thin films, less than 100 nm thick, containing carbon nanotubes. Three different types of 

nanotubes were used to evaluate their influence on transparency and conductivity.115 

SWNTs produced the most transparent (>85% visible light transmittance) and electrically 

conductive (~ 1.62 kΩ/sq) 20-bilayer films, with a 41.6 nm thickness. Unfortunately, a 

sheet resistance of 0.1 kΩ/sq is required for EMI shielding and many flexible electrodes 

(combined with 85% T for transparent applications).27 This means a greater reduction in 

sheet resistance is needed to make these transparent CNT-based LbL films suitable for 

these applications. Heating these films, to remove some insulating polymer, is one 

method to reduce sheet resistance.153  

In this chapter, transparent electrodes were assembled using layer-by-layer 

assembly with PDDA as the polycation and DOC-stabilized SWNT as the negatively 

charged layers (same system as Chapter III). Even though LbL assembly was previously 

used to produce a variety of SWNT-based assemblies,60,61,115,137 the films described here 

show enhanced transparency and electrical conductivity through heat treatment, resulting 

in the best combination of properties ever reported for LbL thin films (% T = 82.3% and 

____________ 
‡ Reprinted with permission from “Heating and acid doping thin film carbon nanotube assemblies for high 

transparency and low sheet resistance” by Yong Tae Park, Aaron Y. Ham, and Jaime C. Grunlan, J. Mater. 

Chem. 2011, 21, 363-368. ©2010 Royal Society of Chemistry. 
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RS = 701 Ω/sq for a 20 BL film with a thickness of 38.4 nm). Ellipsometry, quartz crystal 

microbalance, and UV-vis were used to measure the linear growth of these films as a 

function of the number of BLs deposited, while TEM and SEM were used to visualize the 

morphology of these films. Films with a small number of BLs are potentially useful for 

anti-static films, while adding more BLs produces transparent, flexible electrodes that 

could potentially act as an ITO alternative. 

 

4.2 Experimental 

4.2.1 Materials 

All materials used here are identical to those described in Chapter III (see Section 

3.2.1). 

 

4.2.2 Layer-by-Layer Assembly and Heat Treatment 

The LbL assembly procedure was the same as that described in Chapter III (see 

Section 3.2.2). Following deposition and drying, teat treatment was performed at 300, 

350 and 400 °C in a furnace purged with nitrogen gas, followed by drying overnight in a 

dry box. 

 

4.2.3 Thin Film Characterization and Microscopic Imaging 

The film characterization and microscopic imaging procedure were the same as 

that described in Chapter III (see Sections 3.2.3−3.2.5). 
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4.3 Results and Discussion 

4.3.1 Influence of Deoxycholate on Carbon Nanotube Assemblies 

In practical applications of CNTs, their low solubility in solvents prevents high 

quality and wide versatility in the various fields. Especially, in the LbL process, the 

availability of use of CNTs depends on the ability to yield high quality dispersions with 

individual CNTs and a minimum of CNT bundles. To introduce CNTs into LbL 

assembly, the synthetic anionic surfactant, deoxycholate (DOC), was used to create 

negatively charged solution. DOC, one of the best surfactant for dispersion of individual 

nanotube,
138,139

 has a charged polar tail which prevents aggregation of CNTs to provide a 

solvation shell and by the repulsive Coulomb force between DOC-attached CNTs. 

Examples of the DOC-stabilized CNT solutions used for LbL assembly are shown in 

Figure 4.1. After 2 months from sonication, these solutions remained well dispersed and 

LbL films with these solutions had the same properties as those with as-sonicated CNT 

solutions, suggesting that DOC accomplished stable dispersion of nanotubes. 

 

 
 

Figure 4.1. (a) Photograph of 0.05 wt% SWNT only solution and (0.05 wt% SWNT+1 
wt% DOC) solution after 1 hour from sonication.  (b) Photograph of (0.05 wt% SWNT+1 
wt% DOC) and (0.05 wt% DWNT+1 wt% DOC) solutions after 2 months from 
sonication. 
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In an effort to optimize DOC concentration, four types of aqueous 0.05 wt% 

SWNT suspensions with (a) 0.5, (b) 1, (c) 2, and (d) 4 wt% DOC, were prepared. 

[PDDA/(SWNT+DOC)]20 films were prepared with each suspension for comparison with 

a 0.05 wt% PDDA solution as the positively charged component. Figure 4.2 shows the 

normalized properties of ellipsometric thickness, UV-vis absorbance, and electrical 

conductivity, based on values of SWNT assemblies prepared with the 1.0 wt% DOC 

solution, which had the highest of all three values amongst the four DOC concentrations. 

The 2 wt% DOC film exhibited less than 2% difference in thickness and absorbance, and 

10% in electrical conductivity from the 1 wt% DOC film. On the other hand, the 

conductivity of other two samples was approximately half that of the 1 wt% DOC film. In 

the case of 0.5 wt% DOC, thickness and absorbance are also very low compared to 1 

wt% DOC films, which suggests that a lack of DOC harms SWNT dispersion in solution 

and results in poor deposition of SWNT layers. Although the 4 wt% DOC film shows 

similar thickness and absorbance data to 2 wt%, conductivity is much lower, suggesting 

that an excessive amount of DOC interferes with SWNT connections. Additionally, for 

the thin films with the same material and composition, the absorbance is linearly 

proportional to their thickness (from the Beer–Lambert law).
154

 This means that the 

similar level of thickness and absorbance in the 1 and 2 wt% DOC films indicates that 

they have a similar composition with regard to PDDA and DOC-stabilized SWNT. In 

contrast, the 0.5 wt% DOC film has a much lower level of absorbance than thickness, 

indicating a lower concentration of the light absorbing material (i.e., SWNT). Based on 

these results, 0.25 wt% PDDA/(0.05 wt% SWNT+1 wt% DOC) has chosen as the recipe 

for further study. 
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Figure 4.2. Comparison of the ellipsometric 20BL thickness, UV-vis absorbance at 550 
nm, and electrical conductivity of four different films. These [PDDA/(SWNT+DOC)]20 
films were fabricated with four different concentrations of DOC.  

 

 

4.3.2 Growth of SWNT Assemblies 

Figure 4.3(a) shows an image of a series of SWNT-based assemblies deposited 

on both sides of PS film, denoted as [PDDA/(SWNT+DOC)]n, where n is the number of 

bilayers deposited. The film in Figure 4.3(b) is a 7.5 cm × 7.5 cm piece of PS coated 

with a [PDDA/(SWNT+DOC)]20 (i.e., 20 BL) film that is 40 nm thick. This relatively 

large film demonstrates the potential for scale-up, because film size is limited only by the 

substrate dimension. Furthermore, this [PDDA/(SWNT+DOC)]20 film exhibits 82% 

transmittance at 550 nm and over 80% across the entire visible light spectrum as shown 

in Figure 4.4. A TEM micrograph of this film‟s cross-section, which illustrates a highly 

inter-diffused nanostructure, is shown in Figure 4.3(c). The uniform distribution of 

SWNTs in the matrix is due to the effectiveness of DOC as a stabilizer for SWNTs.138,139 
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In addition to highlighting thin film structure, the TEM image verifies the 38.4 nm 

thickness of a [PDDA/(SWNT+DOC)]20 film, measured independently by ellipsometry.  

 

 
 

Figure 4.3. (a) Photograph of [PDDA/(SWNT+DOC)]n (n = 4–20) assemblies on both 
sides of PS film.  (b) Optical image of a [PDDA/(SWNT+DOC)]20 coating on both sides 
of the 7.5 × 7.5 cm PS film.  (c) TEM cross-section of a [PDDA/(SWNT + DOC)]20 thin 
film. 
 

 

 
 
Figure 4.4. (a) Absorbance and (b) transmittance spectra of [PDDA/(SWNT+DOC)]n 
thin films, measured in 2 BL step up to 20 BLs. The dotted line is of [PDDA/(SWNT+ 
DOC)]20 after 300 ºC heating for 5 min. 
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Surfaces of these SWNT-based assemblies were analyzed using SEM, as shown 

in Figure 4.5. The [PDDA/(SWNT+DOC)]20 surface shows a homogeneous network of 

SWNTs in Figure 4.5(a). DOC exfoliation of individual SWNTs in water ultimately 

forms a uniform distribution in the thin film. SWNT contacts within this network offer a 

pathway for electron transport through the film, as shown in these SEM images (as well 

as in the TEM image in Figure 4.3(c)). Growth of this film proceeds at 1.9 nm per BL, 

which suggests very uniform deposition of highly individualized SWNTs. 

 

 
 

Figure 4.5. SEM surface images of [PDDA/(SWNT+DOC)]20 (on a silicon wafer) (a) 
before heat treatment and (b) after heating at 300 °C for 10 min.  
 

 

 

Linear growth of these nanotube-based thin films up to 20 BLs was observed 

using several complementary techniques (ellipsometry for thickness, QCM for mass, and 

UV-vis for absorbance), as shown in Figure 4.6(a). The constant concentration of 

SWNTs in every bilayer, determined with QCM, supports the assumption that the 

increasing absorbance of [PDDA/(SWNT+DOC)]n is due to increasing film thickness. 
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Linear growth also confirms successful combination of positively and negatively charged 

components and constant composition up to 20 BLs. In Figure 4.6(b), however, steadily 

increasing mass appears in contrast to slightly decreasing thickness with each polycation 

deposition (at half BLs). The believed mechanism for this behavior involves each PDDA 

layer‟s penetration into the SWNT layers below, resulting in denser and thinner films due 

to strong electrostatic interactions amongst the oppositely charged layers. TGA and QCM 

were performed on the PDDA/(SWNT+DOC) system, which indicates a SWNT 

concentration of 12.3 wt% and density of 2.04 g/cm3 in the 20 BL film (7.81 µg/cm2 mass 

and 38.4 nm thickness). This density is larger than PDDA or SWNT individually (ρSWNT 

≈ 1.3 g/cm3 and ρPDDA ≈ 1.1 g/cm3), which is believed to be the result of a highly ordered 

structure with extensive interpenetration between the deposited layers. 

 

 

 
 
Figure 4.6. (a) Growth of PDDA/(SWNT+DOC) thin films as a function of the number 
of bilayers deposited. Film thickness was obtained by ellipsometry, mass by QCM, and 
absorbance (at 550 nm) by UV-vis (inset), respectively.  (b) Thickness and mass change 
from 10 to 15 BLs, where a half bilayer corresponds to PDDA deposition.  
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Figure 4.7. (a) Optoelectronic performance and (b) electrical conductivity of 
[PDDA/(SWNT+DOC)]n thin films as a function of the number of bilayers deposited to 
20 BL are also shown. 
 

 

 

Sheet resistance of these thin films was measured with a four-point probe system. 

Figure 4.7(a) shows the optoelectronic characteristics of [PDDA/(SWNT+DOC)]n (n = 

2–20) as a function of the number of BLs deposited. Decreasing sheet resistance and 

transmittance are observed as the number of BLs increases. Electrical conductivity of 

these films (Figure 4.7(b)) was calculated as the inverse of the product of sheet 

resistance and ellipsometric film thickness. [PDDA/(SWNT+DOC)]20 thin films on glass 

slides achieve a conductivity as high as 160 S/cm (38.4 nm thick with a sheet resistance 

of 1.62 kΩ/sq) and exhibit 2.2 S/cm (4.9 nm thick with a sheet resistance of 912 kΩ/sq) 

with only two BLs. This relatively high conductivity is aided by thin PDDA deposition 

and relatively mild dispersion conditions used for the nanotubes. Long sonication time, 

for hours or even days, is known to shorten nanotube length and damage the conjugated 

sidewalls,149 resulting in reduced electrical conductivity. The gradual increase from 2 to 



 58 

160 S/cm suggests that the PDDA/(SWNT+DOC) system has a SWNT concentration 

over the percolation threshold and the density of intersecting pathways increases as the 

network transitions from two to three-dimensional. As more layers are deposited, the 

density of intersecting pathways increases due to interconnection between SWNTs in 

upper and lower layers. Despite this relatively low sheet resistance (< 2 kΩ/sq at 20 BL), 

a reasonable ITO replacement requires even lower values (< 1 kΩ/sq). 

 

4.3.3 Electrical Properties after Heat Treatment 

Although PDDA and DOC produce uniform dispersion and deposition of 

SWNTs, they also create insulating connections. Furthermore, the relatively large size of 

the polymer molecules likely creates an insulating barrier between nanotubes in 

neighboring layers that further increases resistance. Heating these films to degrade the 

amount of insulating material is one method to further increase electrical conductivity. 

PDDA has a lower degradation temperature (300 °C) than DOC (> 450 °C) and SWNT 

(> 500 °C), as determined by TGA (in Figure 4.8). Heating thin film assemblies between 

300 and 400 ºC, under a nitrogen atmosphere, can exclusively target decomposition of 

PDDA. With the polymer significantly degraded, more intimate contact between 

neighboring tubes is possible. Figure 4.5(b) shows more exposed individual SWNTs on 

the [PDDA/(SWNT+DOC)]20 surface due to PDDA decomposition by heating, compared 

with Figure 4.5(a).  
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Figure 4.8. Thermogravimetry of the components of the PDDA/(SWNT+DOC) system 
and a fully assembled film under a nitrogen atmosphere. 
 

 

 

Figures 4.9(a) and (b) show the sheet resistance and electrical conductivity, 

respectively, after heating at various temperatures for increasing time periods. The sheet 

resistance of [PDDA/(SWNT+DOC)]20 was most significantly reduced by heating for 

short times (≤ 5 min) and lower temperatures (< 350 ºC). For 5 min at 300 ºC, sheet 

resistance decreases more than 52% (to 701 Ω/sq). In the case of heating more than 10 

min at 400 (or even 350 ºC), however, it is believed that some modest damage of SWNTs 

causes the observed increase in sheet resistance. It is at 300 ºC where the best 

compromise between removal of insulating barriers and minimal harm to nanotubes is 

achieved. It should also be noted that heat treatment can also reduce film thickness. 
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Figure 4.9. (a) Sheet resistance and (b) electrical conductivity of [PDDA/(SWNT+ 
DOC)]20 thin films after 300, 350, and 400 °C heating, for 1 to 20 min. 
 

 

 

 Heating at 300 ºC for 10 min produced conductivity as high as 634 S/cm (19.2 

nm thick with a sheet resistance of 822 Ω/sq) partly due to a 49% decrease in film 

thickness. Figure 4.10 shows the normalized sheet resistance and thickness after heating. 

Sheet resistance generally decreases after heat treatment, but excessive heating causes an 

increase in resistance due to damage of the SWNT network. Heating at 300 ºC for 5–10 

min provides the lowest resistance, while 20 min heating results in the highest value. In 
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the cases of 350 and 400 ºC, more than 10 min of heating made the sheet resistance 

higher than the original untreated value. As expected, thickness gradually decreases for 

all three heating temperatures, as a function of exposure time up to 20 min, down to some 

plateau at the value of 0.43. For 1 min heating, the decrease in film thickness is 12% at 

300 ºC and around 30% at 400 ºC, but there is no difference in thickness among all three 

heating temperatures beyond 5 min (40%, 50%, and 57% for 5, 10, and 20 min heating, 

respectively), suggesting that PDDA can be effectively degraded within the first 10 

minutes.  

 

 
 
Figure 4.10. Normalized thickness and sheet resistance after heat treatment. White and 
grey colors mean before and after heating, respectively. 
 
 

 

UV-vis absorption measurements show there is little change of transmittance 

regardless of heat treatment, as shown in Figure 4.4, which is presumably because the 

amount of nanotube remains constant. The transmittance after 300 ºC heating for 5 min is 
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82.1% (at 550 nm) and averages over 80% (from 500 to 800 nm). This combination of 

low resistance and high transparency makes these post treated [PDDA/(SWNT+DOC)]20 

films are more conductive than any other LbL-produced SWNT thin films ever reported 

and are competitive with the best SWNT-based films produced using any other technique 

when accounting for transparency and flexibility. The sheet resistance and transmittance 

criteria for various optoelectronic applications suggest these SWNT assemblies are 

potential candidates for electrostatic dissipation and some flexible display applications.27  

 

4.4 Conclusions 

Highly transparent and electrically conductive thin films were assembled using 

the layer-by-layer method. Alternate substrate exposure to aqueous mixtures of 

positively-charged PDDA and SWNTs stabilized with negatively-charged DOC produced 

thin films that grow in a linear fashion as a function of the number of bilayers deposited 

(evidenced by visible light absorbance, ellipsometric thickness, and mass). 

[PDDA/(SWNT+DOC)]20 films have a 38.4 nm thickness, 160 S/cm conductivity (RS = 

1.62 kΩ/sq), 82% visible light transmittance, and contain 12 wt% SWNT. Post heating 

this film for 10 min at 300 ºC resulted in a 54% lower resistance and raised the bulk 

conductivity by 4 times. These improvements are largely due to the removal of PDDA by 

heating to provide more intimate nanotube connections. With visible light transmittance 

>82% and sheet resistance of 701 Ω/sq, this SWNT-based thin film is a flexible 

transparent electrode capable of replacing ITO in some optoelectronic applications. Acid 

treatment further reduces sheet resistance of these films, as described in Chapter II. 
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CHAPTER V 

ACID TREATMENT OF CARBON NANOTUBE ASSEMBLIES  

FOR REDUCED SHEET RESISTANCE 

 

5.1 Introduction 

In Chapter IV, SWNT-based assemblies were shown to exhibit low sheet 

resistance and high transparency through heat treatment (% T = 82.3% and Rs = 701 Ω/sq 

for a 20 BL film with a thickness of 38.4 nm).115 This low sheet resistance was partly due 

to the removal of insulating polymer, which provided more intimate nanotube 

connections. Unfortunately, heating beyond 300 ºC  is not practical for the polymer 

substrates typically used to produce flexible electronics. Exposing nanotube films to 

strong acid has been shown to enhance conductivity and this can be done at relatively low 

temperature. Although the mechanism of acid treatment for CNT-based assemblies is still 

uncertain, the increase in electrical conductivity has been attributed to acid anion 

doping155,156 and removal of surfactant.41,157 In the case of doping, strong acidic anions 

penetrate the thin carbon nanotube network, creating an acidic anion layer around 

individual nanotubes that act as a highly dense charge-transfer complex.155 Other studies 

have reported large improvements in electrical conductivity of the CNT-based thin film 

with acid treatment due to removal of surfactant.41 This acid treatment can be done in the 

vapor phase at temperatures below 100 ºC , making this more amenable to polymer films. 

This chapter examines the influence of acid treatment on the optoelectronic 

performance of these nanotube-based thin films. For each film studied, optoelectronic 

behavior was characterized before and after acid treatment, using various acid types 
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(nitric, sulfuric, and hydrochloric acids) and time. The results are compared to other 

systems using sulfuric acid,41,42,137,155,156,158 nitric acid,32,42,156,158-160 and thionyl chloride 

doping.32,161 Replacing SWNT with double-walled carbon nanotubes (DWNT) provided 

further reduction in sheet resistance due to the greater metallic and longer average length 

of DWNT.162,163 A 5 BL assembly, containing double-walled carbon nanotubes (DWNTs), 

exhibits a significant reduction in sheet resistance, from 309 to 112 Ω/sq, after two 

minutes of exposure to HNO3 vapor. This film is highly flexible and electrochemically 

stable, making it a potential alternative for ITO. Transparent electrodes made from metal 

oxides suffer from poor flexibility and durability.3,65 After 100 bending cycles, the CNT 

LbL films exhibit the same resistance, but the resistance of ITO-coated PET increases 

two orders of magnitude. In addition to mechanical stability, cyclic voltammetry was 

used to evaluate the electrochemical stability of these transparent electrodes. This 

combination of optoelectronic performance, mechanical flexibility, and electrochemical 

stability make this a suitable candidate for replacing ITO. 

 

5.2 Experimental 

5.2.1 Materials 

As-produced CNTs have largely various properties due to different types of wall, 

diameters, lengths, chiralities, and impurities (amorphous carbon, metal catalyst, etc.) 

which depend on the manufactures. Selection of CNTs is the key factor for high 

performance of transparent conductive CNT thin films. One of CNTs used in this study is 

purified electric arc (EA) SWNTs (P2-SWNT, individual tube: average 0.5–3 µm length 

and 1.4 nm diameter, C ≥ 90 wt%) synthesized using Ni/Y catalysts from Carbon 
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Solutions, Inc. (Riverside, CA). The other is high-pressure CO conversion (HiPCO) 

DWNTs (XB type, + 1 µm length and ~ 3.0 nm diameter, C ≥ 90 wt%) purchased from 

Continental Carbon Nanotechnologies, Inc. (Houston, TX). Fuming sulfuric acid (oleum, 

H2SO4·(SO3)x, 20% free SO3 basis), fuming nitric acid (HNO3, 99.5%), and fuming 

hydrochloric acid (HCl, 37%) were purchased from Sigma-Aldrich (Milwaukee, WI) for 

acid treatment. All chemicals were used as received. A 100 Ω/sq ITO-coated PET sheet 

was purchased from Sigma-Aldrich and cut to size to measure the optical transmittance 

and the change in sheet resistance during bending cycles. All other materials used here 

are identical to those described in Chapter III (see Section 3.2.1). 

 

5.2.2 Layer-by-Layer Assembly and Acid Treatment 

 The LbL assembly procedure is described in detail in Chapter III (see Section 

3.2.2). Assembled CNT films were held in a saturated acid vapor environment, as 

illustrated in Figure 5.1. Three types of acids (fuming sulfuric, nitric, and hydrochloric 

acids) in the petri dishes were maintained at 70 °C with a water bath (caution: dangerous 

oxidizing agents). After 2 to 30 min vapor treatment, the CNT films were rinsed with 

deionized water and dried with filtered air. 

 

 
 
Figure 5.1. (a) Schematic of acid treatment apparatus and (b) picture of actual apparatus 
without cover. 
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5.2.3 Thin Film Characterization  

Film characterization and microscopic imaging were the same as that described in 

Chapter III (see Sections 3.2.3−3.2.5). The Fourier-transform infrared (FT-IR) spectra 

were obtained from a ALPHA FTIR spectrometer (Bruker Optics, Billerica, MA). Energy 

dispersive X-ray (EDX) analysis was carried out using the Oxford EDX system 

associated with FE-SEM and equipped with X-ray mapping. An Epsilon 851 

electrochemical workstation (BASi Instrumentation, West Lafayette, IN) was used for 

electrochemical characterization. A CNT- or ITO-coated PET electrode, a platinum wire, 

and an Ag/AgCl (3M KCl) electrode were used as the working, counter, and reference 

electrodes, respectively. These measurements were performed at ambient temperature 

(22±2 °C) in 0.1 M Na2SO4 solution that had been purged with N2 gas for more than 20 

min prior to measurement. Cyclic voltammetry was performed between −0.2 and 0.8 V at 

a scan rate of 100 mV/s. 

 

5.3 Results and Discussion 

5.3.1 Growth and Microstructure of Carbon Nanotube Assemblies before and after Acid 

Treatment 

Figure 5.2 shows the linear growth of this LbL assembly of cationic PDDA and 

anionic DOC-stabilized double-walled carbon nanotubes up to 10 BLs, denoted as 

[PDDA/(DWNT+DOC)]n, where n is the number of bilayers deposited. Ellipsometric 

thickness was obtained by depositing these thin films on silicon wafers. The average 

thickness of one DWNT-containing bilayer is 4.4 nm, which is much thicker than an 

individual thickness of double-walled carbon nanotube (1.5−3 nm), suggesting that 

stabilizing surfactant (DOC) and PDDA fully enveloped the DWNT network deposited. 
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In agreement with film thickness, the graph of optical absorbance confirms that these 

CNT-based LbL assemblies grow linearly up to 10 BL. A [PDDA/(DWNT+DOC)]5 film 

on PET is highly transparent, with 84.2% transmittance at 550 nm, which is comparable 

to ITO-coated PET (84.6% T at 550 nm), as shown in Figure 5.3. These complementary 

ellipsometry and UV-vis results further suggest a constant concentration of DWNTs and 

polymer in every bilayer, which is in agreement with the PDDA/(SWNT+DOC) system 

described in Chapter IV. 

 

 
 
Figure 5.2. Thickness of PDDA/(DWNT+DOC) thin films as a function of the number of 
bilayers deposited. The solid lines are linear curve fits. Transmittance was calculated 
from absorbance data. White points with black outlines are values after 20 min of 
exposure to nitric acid vapor. 
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Figure 5.3. (a) Photograph of a 100 Ω/sq single side ITO-coated PET and a 5 BL DWNT 
assembly (103 Ω/sq) on both sides of PET.  (b) Transmittance spectra of a ITO-coated 
PET and [PDDA/(DWNT+DOC)]n (n = 1−5) on PET. Absorbance of the LbL thin films, 
coated on both sides of PET was divided by two to produce the data shown in (b). The 
dotted lines are transmittance of [PDDA/(DWNT+DOC)]5 after sulfuric, nitric, and 
hydrochloric acid treatment. 

 

 

Figure 5.2 shows there is very little change in thickness and absorbance 

following acid vapor exposure. Previous studies indicated that swelling of CNT networks 

(increase in CNT spacing) occurred with acid doping due to denser layers of acidic 

anions around the individual nanotubes.155,159 In spite of this swelling effect, some CNT 

thin films have shown a significant decrease in thickness following acid doping. For 

example, a sprayed SWNT film was reported to have undergone a 25% thickness 

reduction due to the removal of bulky surfactant.41 The minimal reduction of thickness 

for the present LbL assemblies suggests a minimum amount of surfactant associated with 

CNT during deposition. In some LbL systems, CNT assemblies with a polymeric 

stabilizer showed more than 30% thickness reduction after sulfuric acid treatment,137 

suggesting that these films contained an excessive amount of polymer. 
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SEM surface images of [PDDA/(DWNT+DOC)]6 films before and after nitric 

acid treatment are shown in Figure 5.4. What appears to be a bundled DWNT network is 

more clearly seen following acid treatment (Figure 5.4(b)). DOC exfoliation of 

individual DWNTs in deionized water ultimately results in a uniform distribution on the 

substrates.
138,139

 During deposition, the nanotubes bundle somewhat due to their high 

concentration in the deposited film, which creates a strong network and high electrical 

conductivity. Before treatment (Figure 5.4(a)), the surface of the film was covered by an 

insulating layer (polymer and/or surfactant) that made the DWNT network difficult to 

observe. After nitric acid treatment for 20 min, a homogeneous DWNT network was 

exposed due to removal of PDDA and DOC (Figure 5.4(b)). This removal of insulating 

materials enables more direct contacts between the highly conductive nanotubes. It is also 

believed that HNO3 enhances conductivity through the formation of a charge-transfer 

complex between DWNTs and NO3
−
 layers around the individual nanotubes, which 

promote bundling into thicker nanotube ropes and improved alignment of these 

ropes.
155,159,161

 TEM cross-sectional micrographs (Figures 5.4(c) and (d)) illustrate a 

highly inter-diffused nanostructure, indicating that dark and light grey areas are DWNT-

rich and PDDA-rich regions, respectively, and the darkest black dots are catalyst 

impurities from the HIPCO process. In addition to highlighting thin film structure, the 

TEM images verify the inner diameter of an individual DWNT (~ 3 nm) and the lack of 

little change in the [PDDA/(DWNT+DOC)]10 film thickness by nitric acid treatment. 
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Figure 5.4. SEM surface images of [PDDA/(DWNT+DOC)]6 on PET (a) before and (b) 
after 20 min exposure to nitric acid vapor. TEM cross-sections of 
[PDDA/(DWNT+DOC)]10 (a) before and (b) after 20 min treatment with nitric acid. 
 

 

5.3.2 Optoelectronic Performance of Carbon Nanotube Assemblies 

Sheet resistance of [PDDA/(DWNT+DOC)]n and [PDDA/(EA-SWNT+DOC)]n 

assemblies on PET was measured and plotted as a function of their visible light 

transmittance, which decreased with increasing the number of BLs deposited, as shown in 

Figure 5.5(a). Sheet resistance significantly decreases with increasing the number of BLs, 

along with a gradual decrease in %T. [PDDA/(DWNT+DOC)]10 thin films achieve sheet 
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resistance as low as 127 Ω/sq (with 67.2% transmittance) at 10 bilayers and 1180 Ω/sq 

(with 93.5% T) for just two BLs. The PDDA/(EA-SWNT+DOC) system exhibits the 

same optoelectronic trend, with higher sheet resistance than, and similar transmittance to, 

the DWNT system. This reduction in sheet resistance is due to increased connectivity of 

the nanotube network.115 A 5 BL PDDA/(DWNT+DOC) film has the best optoelectronic 

performance of 309 Ω/sq with 84.2% transmittance, which meets the criteria for touch 

screens (500 Ω/sq, 85% T).
27

 

 

 

 
 

Figure 5.5. (a) Optoelectronic performance and (b) electrical conductivity as a function 
of thickness for the [PDDA/(EA-SWNT+DOC)]n and [PDDA/(DWNT+DOC)]n systems. 



 72 

Electrical conductivity of these films, shown in Figure 5.5(b), was obtained by 

multiplying the inverse of sheet resistance by ellipsometric film thickness. The gradual 

increase from 909 to 1810 S/cm, for the PDDA/(DWNT+DOC) system, suggests an 

increase in the density of intersecting pathways for electron transport (due to 

interconnection between DWNTs in upper and lower layers) as the nanotube network 

transitions from two to three-dimensional with increasing layers. The DWNT-based 

assembly‟s conductivity is expected to converge on a constant value beyond 10 bilayers, 

much like the EA-SWNT film. The PDDA/(EA-SWNT+DOC) system also shows a 

gradual increase in conductivity up to 10 BLs and then levels off at ~ 1050 S/cm. This 

behavior matches the previous study of CNT types described in Chapter III. The 

conductivity of 1810 S/cm is low relative to a vacuum filtered SWNT film (6700 S/cm)28 

and sprayed SWNT film (5500 S/cm),41 but it is higher than other CNT-based LbL 

assemblies.60,61,63 This relatively high conductivity is due to thin PDDA and DWNT 

deposition and relatively mild sonication used for the individual nanotubes. Acid 

treatment further improves the conductivity of the present assemblies, making them 

comparable to the highest conductivity CNT films. 

 

5.3.3 Influence of Acid Treatment on Sheet Resistance 

Even when SWNT is replaced by DWNT, the sheet resistance of as-assembled 

nanotube films is higher than the requirement for replacing the best ITO. It is believed 

that excessive polymer and surfactant disrupt connections between CNTs. Several studies 

have reported the improvements in electrical conductivity of SWNTs with acid 

treatment,41,42,137,155 but the combination of heat and acid treatments on the transparency 
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and electrical conductivity of CNT assemblies has never been examined, especially when 

using surfactant-stabilized SWNTs. This combination of two treatments results in greater 

electrical conductivity for a thin film prepared using the LbL method. As previously 

mentioned, strong acidic anions form a charge-transfer complex around individual CNTs. 

Additionally, similar to previous surfactant/CNT thin films,41,157,160 strong acids remove 

the insulating materials from these PDDA/(CNT+DOC) films.  

In Figure 5.6, nitric acid treatment is shown to dramatically reduce the sheet 

resistance of PDDA/(HiPCO-SWNT+DOC) assemblies on glass slides, regardless of 

whether prior heat treatment had been performed. These are the same SWNT assemblies 

described in Chapter III. An unheated 20 BL thin film achieves a resistance of 324 Ω/sq 

following nitric acid treatment. When nitric acid treatment follows heating for 5 min at 

300 ºC, resistance drops to 303 Ω/sq. Moreover, the combined effect of heat and acid 

treatments results in a film that is an order of magnitude more conductive than it was 

prior to the post treatments. The conductivity of a [PDDA/(HiPCO-SWNT+DOC)]20 film 

reaches 1430 S/cm (23 nm thick with a sheet resistance of 303 Ω/sq) after 300 ºC heating 

for 5 min and nitric acid treatment. This conductivity is much higher than that of a heated 

20 BL film prior to acid treatment (618 S/cm) and LbL thin films with anionic polymer-

wrapped SWNTs and polycations (< 50 S/cm).60,61 Although some SWNT films made by 

vacuum filtration (6700 S/cm)28 and direct CVD (2026 S/cm)40 have higher 

conductivities than the present LbL films, they do not exhibit high transparency (< 70% 

T), which precludes them from use in optoelectronic devices.  
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Figure 5.6. (a) Sheet resistance and (b) electrical conductivity of [PDDA/(HiPCO-
SWNT+DOC)]20 thin films after 300, 350, and 400 °C heat treatment for 5 min and nitric 
acid treatment. The values after heat treatment are from Figure 4.9 in Chapter IV. 

 

 

The changes in sheet resistance and thickness of LbL films due to heat and acid 

treatments are summarized in Figure 5.7. Reduction of sheet resistance with acid 

treatment is greater than heat treatment, becoming as much as 82 % lower than that of 

untreated 20 BL films. Much like the DWNT films in Section 5.3.1, acid treatment alone 

does not alter film thickness, so white and black (a) and grey and black rectangles (c, g, 

k, and m) have the same values in Figure 5.7. This suggests that LbL assembly 

minimizes the amount of surfactant associated with SWNT during deposition (i.e., there 

is little excess surfactant within the conductive thin films). Additionally, annealing of 

acid treated films increases the sheet resistance, suggesting that the acid doping can be 

reversed with heat (c" and k" in Figure 5.7). If both treatments are used, the proper order 

is heat followed by acid treatment.  
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Figure 5.7. Normalized thickness and sheet resistance of [PDDA/(HiPCO-
SWNT+DOC)]20 thin films after post-treatments, such as only nitric acid treatment (a), 
heat treatment (b–m), heat and acid treatments (c, g, k, m), and annealing after heat and 
acid treatments (c", k"). Rectangles and circles mean thickness and sheet resistance, 
respectively. White, grey, black, and gradient colors are samples before heat treatment, 
after heat treatment, after acid treatment, and after annealing, respectively. 

 

 

Most prior acid treatment studies have been performed with dip treatment (i.e., 

immersing the films into a strong acid bath).160 Dip treating makes PET substrates brittle 

or even causes shrinkage. Moreover, dip treated CNT thin films readily de-adhere from 

substrates during rinsing. This instability due to acid treatment has been reported in 

multiple studies.158,160 In the present study, acid treatment involved exposing films to 

vapor by heating the acid in a 70 °C water bath. Figure 5.8 shows sheet resistance of 

DWNT assemblies after acid treatment with nitric, hydrochloric, or sulfuric acid for 

increasing time periods. Nitric acid (b−m in Figure 5.8) dramatically reduced the sheet 

resistance of as-assembled 5 BL PDDA/(DWNT+DOC) thin films, from 309 to 107 Ω/sq, 

after a 10 min acid exposure. Acid type plays a significant role in reducing sheet 

resistance. Nitric acid treatment provides the lowest resistance, while hydrochloric and 
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sulfuric acids result in values that are nearly double that of HNO3. Uncertainty remains 

about why nitric acid is the most effective dopant, although it can be reasonably assumed 

that it is related to the intensity of doping of individual nanotubes and degradation of the 

surrounding insulating material. Dipped films have shown that H2SO4 is a stronger 

dopant than HNO3 (and much more than HCl).156,158 The use of vapor treatment in the 

present work is a significant difference. In dip treatment, the amount of acidic anions is 

that of the solution, while the vapor pressure is a more important factor for vapor 

treatment. The vapor pressure is 2, 8, and 167 mm Hg at room temperature for fuming 

H2SO4, HNO3, and HCl, respectively.164 The size of the sulfate anion is bigger than the 

nitrate anion and much more than the chloride. Additionally, it‟s been suggested that 

removal of insulating surfactant is more important than classical doping for these acid 

treatments.41 Nitric acid more effectively removes residual surfactant than sulfuric acid. 

 

 
 
Figure 5.8. Sheet resistance of [PDDA/(DWNT+DOC)]5 after acid treatment for 2 to 20 
min with nitric acid, hydrochloric acid, and sulfuric acid, respectively. (a) is the sheet 
resistance of an as-assembled 5 BL DWNT thin film. 
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To understand the effect of each acid treatment, CNT LbL films were 

characterized by EDX, FT-IR, and SEM. Figure 5.9 shows the EDX analysis, which 

shows the composition of each thin film. Before acid treatment, 5 BL DWNT films were 

composed of 93.4 wt% carbon and 2.76 wt% oxygen. The content of carbon increased, 

and that of oxygen decreased, after each acid treatment. Table 5.1 summarizes these 

changes. Nitric acid treatment for 20 min resulted in a 0.89% increase in carbon content 

(by weight) and a 29.7% decrease in oxygen content. There were 0.51% and 0.12% 

increase and 17.1% and only 4.0% decrease after hydrochloric and sulfuric acid 

treatments, respectively. This result suggests that PDDA and DOC molecules are more 

effectively removed by nitric acid vapor than other two acids.  

 

 
 
Figure 5.9. EDX spectrum of [PDDA/(DWNT+DOC)]5 before acid treatment. Platinum 
was from ~ 10 nm thin coating for SEM images. The inset contains spectra of the 5BL 
DWNT films after 20 min nitric acid and sulfuric acid treatments, respectively.  
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Table 5.1. Carbon and Oxygen Contents in DWNT and EA-SWNT Films before and 
after Acid Treatment 

 

System 
Acid 

Treatment 

C Content 

(wt%) 

C Increase 

(%) 

O Content 

(wt%) 

O Decrease 

(%) 

[PDDA/(DWNT+DOC)]5 

No 93.4 - 2.76 - 

2 min HNO3 93.6 0.16 2.53 5.6 

5 min HNO3 94.0 0.63 2.09 22.0 

20 min HNO3 94.2 0.89 1.96 29.7 

20 min HCl 93.8 0.51 2.29 17.1 

20 min H2SO4 93.5 0.12 2.65 4.0 

[PDDA/(EA-

SWNT+DOC)]10 

No 97.0 - 2.97 - 

20 min HNO3 98.4 1.41 1.60 46.1 

 

 

The DWNT networks after each acid treatment were also characterized by SEM 

(Figure 5.10). 20 min nitric acid treatment exposes a homogeneous DWNT network, 

while more hazy DWNT networks are observed after 20 min hydrochloric and sulfuric 

acid treatments due to less removal of insulating molecules. EDX and SEM together 

suggest that the removal of insulating material is the main factor in resistance reduction 

of DWNT-based assemblies, rather than acid doping effect. Nitric acid seems to be the 

most effective at degrading PDDA and DOC, despite having a lower vapor pressure than 

HCl. The low solution concentration of hydrochloric acid (37%) may account for this 

discrepancy.  
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Figure 5.10. SEM surface images of [PDDA/(DWNT+DOC)]5 on PET (a) before and 
after (b) 20 min HNO3, (c) 20 min HCl, and (d) 20 min H2SO4 treatments, respectively.  

 

 

Figure 5.11 shows the effect of nitric acid treatment on [PDDA/(EA-

SWNT+DOC)]5, [PDDA/(DWNT+DOC)]5, and [PDDA/(DWNT+DOC)]10 as a function 

of exposure time (from 2 to 20 min). In just two minutes, all three films exhibit a 

remarkable decrease in sheet resistance. Further acid treatment, however, results in only a 

modest decrease in sheet resistance, relative to the first 2 min, especially beyond five 

minutes of exposure. 20 min nitric acid treatment did not achieve significantly lower 
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sheet resistance than a 10 min treatment. It is likely that any insulating material present is 

degraded very quickly due to the very thin nature of these films (< 50 nm).  

 

 
 
Figure 5.11. Sheet resistance of [PDDA/(EA-SWNT+DOC)]5, [PDDA/(DWNT+DOC)]5, 
and [PDDA/(DWNT+DOC)]10 as a function of nitric acid treatment time. 

 

 

To better understand the compositional changes due to nitric acid treatment, FT-

IR analysis of [PDDA/(DWNT+DOC)]25 films was performed, as shown in Figure 

5.12(a). The FT-IR spectrum of the film before nitric acid treatment is similar to that of 

the (PDDA+MWNT) nanocomposite film in a previous study, providing the peak 

assignments of PDDA and the (PDDA+MWNT) film.165,166 Those absorbance peaks at 

3386, 2928, and 2864 cm−1 in the [PDDA/(DWNT+DOC)]25 film were also observed in 

the (PDDA+MWNT) film. The 3386 cm−1 peak is attributed to a strong O−H stretching 
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vibration due to DOC. As expected, this peak disappeared from the spectrum after nitric 

acid treatment, along with a decrease in the intensity of the peaks at 2928 and 2864 cm−1, 

both attributed to CH stretching from PDDA and DOC. Additionally, the C=O of 

carboxylic groups on DOC exhibits a sharp band at 1715 cm−1 before acid treatment, but 

this became a broad band centered at 1695 cm−1 afterward, which indicates that this 

vibration band is changed due to PDDA and DOC removal. FT-IR spectra after nitric 

acid treatment, from 2 to 20 min, did not show any significant differences, indicating 

removal of insulating materials due to nitric acid vapor was largely completed in the first 

two minutes. As a complementary result, EDX (Figure 5.12(b)) shows no significant 

decrease in oxygen concentration from 5 to 20 min exposure. As shown in Table 5.1, 

nitric acid treatment for 5 min caused a 22.0% decrease in oxygen content, which is 

almost the same after 20 min. FT-IR and EDX analyses suggest that the penetration of 

acid vapors through the film is nearly instantaneous. Furthermore, the SEM surface 

images in Figure 5.13 support this assertion by showing that most insulating materials 

were removed after 2 min exposure to nitric acid vapor (and a 5 min treatment exhibited 

the same DWNT network as a 20 min treatment). Additionally, acid treating beyond 10 

min produced no additional improvement for DWNT films and an increased sheet 

resistance for SWNT films. It is believed that some modest damage of CNTs occurs due 

to excessive acid treatment (e.g., sidewall oxidation),152 causing the observed increase in 

sheet resistance.159  

 



 82 

 
 

 
 
Figure 5.12. (a) FT-IR spectra of [PDDA/(DWNT+DOC)]25 before and after nitric acid 
treatment, from 2 to 20 min. These spectra are magnified and overlaid with arbitrary 
offset for clarity.  (b) EDX spectra of the [PDDA/(DWNT+DOC)]5 before and after nitric 
acid treatment, from 2 to 20 min exposure time. 
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Figure 5.13. SEM surface images of [PDDA/(DWNT+DOC)]5 on PET (a) before and (b) 
after  2 min, (c) 5 min, and (d) 20 min HNO3 exposure, respectively. 

 

 

In addition to exposure time, CNT type shows a different trend of sheet resistance 

by nitric acid treatment. In the first five minutes, the 5 BL EA-SWNT film exhibits an 

order of magnitude decrease in sheet resistance, while the 5 BL DWNT film decreases by 

only a factor of three. A 10 BL DWNT film exhibits the same trend in sheet resistance as 

the 5 BL DWNT film. EDX analysis, in Figure 5.14 and Table 5.1, helps to explain this 
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trend by revealing a 46.1% decrease in oxygen weight of the 10 BL EA-SWNT film and 

more than a 29.7% decrease in the 5 BL DWNT film, suggesting more significant 

removal of insulating materials from the SWNT films. EA-SWNT films likely contain 

more insulating material than DWNT, in as-deposited assemblies, due to enhanced 

surface area (smaller diameter tubes and greater exfoliation). The SEM surface images in 

Figure 5.15 support this idea by showing blurrier SWNT film surface than DWNT 

(Figure 5.13(a)) before acid treatment.  

 

 

 
 
Figure 5.14. EDX spectra of [PDDA/(EA-SWNT+DOC)]10 before and after 20 min nitric 
acid treatment. These spectra are magnified to emphasize oxygen content. 
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Figure 5.15. SEM surface images of [PDDA/(EA-SWNT+DOC)]10 on PET (a) before 
and (b) after 20 min exposure to nitric acid vapor. 

 

 

Three thin films, [PDDA/(EA-SWNT+DOC)]5, [PDDA/(DWNT+DOC)]5, and 

[PDDA/(DWNT+DOC)]10, achieved 227, 107, and 43 Ω/sq sheet resistance, respectively, 

after 10 min exposure to HNO3 vapor. These values are low enough to use for many 

optoelectronic applications. Optical transmittance of these films is 86.8%, 84.0%, and 

67.1% T, respectively, as shown in Figure 5.16. The influence of acid treatment on the 

optoelectronic performance of several other CNT-based LbL films is also included in 

Figure 5.16, which highlights sheet resistance and transmittance. Sheet resistance of 

SWNT films, due to nitric acid treatment, is consistently reduced by a factor of five in 

this study and others,
137,153

 regardless of number of bilayers, while that of DWNT films 

was reduced by a factor of three. DWNT films with more than five bilayers exhibit sheet 

resistance below 100 Ω/sq, which is the lowest currently reported in the literature. This 

value is comparable with the best SWNT-based films produced using any other 

techniques and is competitive with high transparency (~ 85% T) ITO coatings.
41

 The 
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transmittance of the 5 BL DWNT film (> 80%) is unaltered by the acid treatment, as 

shown in Figure 5.3. This optoelectronic performance demonstrates the ability of LbL 

assemblies to achieve high transparency and low sheet resistance. Taking the inverse of 

the product of sheet resistance and thickness shows that the electrical conductivity of 5 

BL and 10 BL DWNT films reaches 4100 and 5300 S/cm, respectively, after nitric acid 

treatment for 10 min. This conductivity is higher than most CNT films made by any 

method, except for vacuum filtration whose films are too low transparency (~70%) for 

use as ITO replacement.
28 

 

 

 
 
Figure 5.16. Optoelectronic performance of several CNT LbL systems before and after 
acid treatment. Points with the black outline are values of as-assembled LbL films and 
those with no outline are acid-treated LbL films. 
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5.3.4 Mechanical and Electrochemical Stability of Carbon Nanotube Assemblies 

The bending stability of electrodes is becoming more important as flexible 

electronic applications continue to grow. Nitric acid-treated DWNT LbL films were 

compared to a commercial 100 Ω/sq ITO-coated PET sheet during a number of bending 

cycles, as shown in Figure 5.17. These films were repeatedly bent to a 1.0 cm radius of 

curvature (inset of Figure 5.17), with sheet resistance measured at the center of each 

specimen after each bend. DWNT films maintained constant resistance up to 100 bending 

cycles. In contrast, the ITO-coated PET exhibited a two order of magnitude increase in 

sheet resistance after 100 bending cycles. ITO and other metal oxide semiconductors 

readily crack due to their ceramic brittleness, while DWNT LbL films have polymeric 

behavior, which is ductile enough to withstand severe bending strain. This exceptional 

mechanical stability in LbL films can potentially be useful for flexible electronics. 

 

 
 
Figure 5.17. Sheet resistance as a function of bending cycles (to 1 cm radius of 
curvature) for 5 BL DWNT and 100 Ω/sq ITO-coated PET films. RSo indicates the value 
prior to any bending. 
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Figure 5.18 compares cyclic voltammograms (CV) of HNO3-treated 5 BL 

DWNT film and an ITO film (both on PET). The potential was cycled between –0.2 and 

0.8 V vs. an Ag/AgCl reference electrode, with a scan rate of 100 mV/s, in 0.1 M Na2SO4 

aqueous solution. ITO shows oxidation-reduction (redox) peaks at 0.1 and 0.3 V, 

respectively, indicating that ITO undergoes chemical changes under these 

potentiodynamic stresses. Similar peaks were found in a previous study of ITO coated 

glass.167 A relatively large peak-to-peak separation of 0.2 V (between 0.1 and 0.3 V) is 

due to the physical transformation (irreversible change) occurring in the ITO film during 

electrochemical cycling. The DWNT LbL films have no redox peaks, suggesting they are 

electrochemically stable in this potential range. 

 

 
 
Figure 5.18. Cyclic voltammograms of a [PDDA/(DWNT+DOC)]5 thin film on PET and 
a commercial 100 Ω/sq ITO-coated PET. Measurements were made in 0.1 M Na2SO4, at 
room temperature, with a scan rate of 100 mV/s. 
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Figure 5.19. (a) Cyclic voltammograms of [PDDA/(DWNT+DOC)]n assemblies 
deposited on PET.  (b) Integrated charge density of each film, as a function of film 
thickness, was calculated from cyclic voltammograms and electrode area. 
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Cyclic voltammograms of nitric acid-treated DWNT films were also collected as 

a function of the number of BLs deposited, as shown in Figure 5.19(a). These 

rectangular shaped curves are indicative of capacitive behavior found in carbon 

materials.63 These voltammograms show little change before and after acid treatment, 

which suggests there is no chemical damage of individual nanotubes. Integrated charge 

density from adsorbed and desorbed ions on the DWNT film was calculated by 

integrating these CV curves with potential differentials. Figure 5.19(b) shows the linear 

increase in charge density as a function of the film thickness. This thickness-dependent 

electrochemical behavior demonstrates the tailorability of electrochemical behavior in 

these LbL assemblies by varying the number of BLs. 

 

5.4 Conclusions 

Highly transparent thin film electrodes were assembled through the alternate 

exposure of flexible substrates to aqueous mixtures of positively-charged PDDA and 

CNTs, stabilized with negatively-charged DOC, using the layer-by-layer method. 

Double-walled carbon nanotubes were substituted for SWNTs to achieve lower sheet 

resistance in these flexible transparent electrodes. The film growth is linear as a function 

of the number of DWNT bilayers deposited. DWNT thin films exhibit a significant 

increase in electrical conductivity after exposure to nitric acid vapor. Strong acid dopes 

the individual nanotubes and removes insulating material (polymer and surfactant). 

Additionally, these DWNT LbL coatings on PET substrates have excellent flexibility 

without any loss of conductivity after 100 bending cycles, unlike ITO. The sheet 

resistance, transparency, mechanical flexibility, and electrochemical stability of these 
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CNT-based LbL assemblies meet the criteria for ITO replacement in most electronics 

applications. 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

 

The ultimate goal of this research is to fabricate transparent and flexible carbon 

nanotube-based electrodes that could serve as an ITO replacement. Layer-by-layer 

assembly was used to generate highly dense nanotube networks. A series of studies were 

performed to obtain thin films with the lowest sheet resistance and highest transparency. 

Four types of CNTs, along with heat and acid treatments, were evaluated in an effort to 

achieve a sheet resistance below 100 Ω/sq and visible light transmittance greater than 

85%. The three stages of this work, described in Chapters III – V, and some ideas about 

the next steps are described here. 

 

6.1 Influence of Carbon Nanotube Type on Optoelectronic Performance 

Layer-by-layer assembly, with PDDA and CNT+DOC aqueous mixtures, 

generated highly transparent and electrically conductive thin films that linearly grow as a 

function of the number of bilayers deposited. SWNT, FWNT, and MWNT were the types 

of nanotubes compared. Optical transmittance and sheet resistance of these CNT 

assemblies showed that SWNTs produced thinner and smoother films, with higher 

transparency and electrical conductivity, than comparable MWNT-based films. SWNTs 

produced the most transparent (> 85% visible light transmittance) and electrically 

conductive (148 S/cm, 1.62 kΩ/sq) 20-bilayer films, with a 41.6 nm thickness. With just 

two bilayers of PDDA/(SWNT+DOC), these films have an electrical conductivity of 40 

S/cm (3.8 nm thickness with 65 kΩ/sq) and transmittance greater than 97% at 550 nm. 
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This study demonstrates the ability of the LbL technique to produce highly transparent 

and conductive nanotube-based thin films. 

 

6.2 Heat Treatment for Reducing Sheet Resistance 

The PDDA/(SWNT+DOC) system produced transparent (> 85% visible light 

transmittance) and electrically conductive (Rs = 1.62 Ω/sq) 20-bilayer films. Heating this 

film to 300 °C for 5 min decreased sheet resistance to 701 Ω/sq (618 S/cm conductivity), 

with no change in transparency, owing to the removal of insulating PDDA and DOC. 

Heating at 350 and 400 °C actually increased sheet resistance in less than five minutes 

due to weakened films and possible degradation (e.g., oxidation) of the nanotubes.  

 

6.3 Acid Treatment for Reducing Sheet Resistance 

Transparent electrodes made from metal oxides suffer from poor flexibility and 

durability. The influence of strong acids on optoelectronic properties of CNT thin films 

was investigated. The strong acidic anions largely removed insulating PDDA and DOC, 

much like heating. Unlike heating, acid doping can be performed without harming the 

underlying plastic substrate. Replacing SWNT with DWNT brought out further reduction 

in sheet resistance due to the greater metallic of DWNT. DWNT-based 5 BL assemblies 

exhibit 104 Ω/sq sheet resistance (4200 S/cm conductivity with 22.9 nm thickness) and 

84% light transmittance at 550 nm, following nitric acid exposure. These same films are 

highly flexible and electrochemically stable, making them a real alternative for ITO 

replacement.  
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6.4 Future Research Plan 

Transparent conductive electrodes have been studied for more than half a century 

and many types have been used in commercial electronic applications. These are essential 

for the next generation of optoelectronic devices, which are required to be lightweight, 

flexible, cheap, and compatible with large-scale manufacturing.168 Recently, increasing 

demand for flexible and robust optoelectronic devices is driving the need for alternatives 

to metal oxides. ITO is the most widely used material for transparent electrodes, but it is 

brittle and becoming increasingly expensive. The work in this dissertation showed that 

layer-by-layer assembly, with carbon nanotubes as the conducting material, could 

potentially resolve this problem. It may be possible to further reduce sheet resistance, and 

improve transparency of these films, by incorporating graphene. Additionally, these 

carbon-based thin films will need to be evaluated in actual devices. These two topics of 

future work are described in more detail below. 

 

6.4.1 Graphene-Based Layer-by-Layer Transparent Electrodes  

Carbon nanomaterials, including carbon nanotubes, carbon fibers, and graphene, 

have generated great interest because of their unique properties. Graphene, a single layer 

of carbon lattice, was the subject of the most recent Nobel Prize in Physics.169 Intense 

study has followed a simple exfoliation study of graphene (by Novoselov and co-workers 

in 2004) because of its remarkable electrical, chemical, and mechanical properties.170-173 

A requirement for high-end application of graphene in electronics and photonics is tight 

control over lateral size, layer thickness homogeneity, and purity.171 Currently, the most 

promising methods for large scale production of graphene are based on the exfoliation 
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and reduction of graphene oxide.172,173 Graphene oxide (GO), whose structure is shown in 

Figure 6.1a, is the product of chemical exfoliation of graphite. Although GO has been 

known to disperse well in water, and in organic solvents after chemical modification,172 it 

has low electrical conductivity and is thermally unstable. Many methods have been 

reported to reduce GO back to graphene, using either chemical or thermal treatments.173  

 

 

Figure 6.1. (a) Graphene oxide structure. (b)  Deposition of graphene oxide sheet by dip 
coating and an SEM image of deposited graphene oxide pieces (reproduced from [172]).  
(c) Photo reduction lithography approach for fabrication of patterns on (PDDA/Graphene 
Oxide/PDDA/TiO)20 LbL thin films (reproduced from [180]).  (d) Schematic illustration 
of a reduced graphene oxide field-effect transistor for biosensing applications 
(reproduced from [183]). 

 

 

Current research shows strong potential for graphene as a transparent 

conductor.
168,174,175

 Graphene-based thin films have been investigated with several 

fabrication methods, including conventional polymer/graphene composites,173 vacuum 
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filtration,176 and dip coating with a graphene sheet floated on an air-liquid interface 

(Figure 6.1b).172,177 Unfortunately, these films have not met the requirement for 

transparent electrodes (i.e., low transparency and high sheet resistance). Layer-by-layer 

assembly of graphene has also been investigated.178-182 Additionally, these films have 

been applied to several kinds of electronic devices, such as micro-patterning and 

biosensing highlighted in Figures 6.1c and d.180,183 At this point, only mechanical 

properties of these thin films are shown to be impressive. The insulating polymer 

molecules in these LbL assemblies prohibit them from exhibiting the low sheet resistance 

(< 100 Ω/sq) necessary for transparent electrodes.  

Building upon the doping procedure developed in Chapter V, it is believed that 

graphene-based assemblies, with or without CNTs, could achieve very low sheet 

resistance. Thin films containing both CNT and graphene may eliminate the current 

problem of insulating polymer hindering the electrical contact between graphene sheets. 

A previous study of CNT/graphene nanocomposite thin films, prepared by vacuum 

filtration, showed good optoelectronic performance (100 Ω/sq and 80% light 

transmittance).176 An LbL assembly with MWNT and reduced GO was also reported 

recently,182 but the properties were not good enough for ITO replacement. Replacing 

MWNT with DWNT could likely dramatically improve these films. Much like with 

DWNT-only assemblies, graphene assemblies would be studied with regard to number of 

bilayers, doping acid and exposure time, and influence of nanotubes used in combination. 

In theory, graphene should be more conductive and transparent than DWNT, but 

connectivity may be an issue.  
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6.4.2 Electronic Devices with Layer-by-Layer Assemblies 

Random networks of CNTs have shown promise for use in the field of transparent 

and flexible electronics.184,185 Although these networks lose the electrical properties of 

individual nanotubes, when metallic percolation pathways can be formed, these networks 

exhibit impressive characteristics. A variety of deposition techniques have been 

developed, but only a few can be readily scaled up. With more work, these CNT-based 

devices can be used as transparent displays in the next generation of hand-held 

electronics. Transparent electrodes are useful for flat touch panel displays (FPDs),82 high 

mobility thin film field-effect transistors (TF-FETs),19,185 photovoltaics,23,70 and organic 

light-emitting diodes (OLEDs).5,37 Most of these devices currently use ITO, although this 

material has several disadvantages.82 At present, CNT- or graphene-based electrodes are 

being heavily investigated for use in these optoelectronic applications. High conductivity, 

transparency, carrier mobility, flexibility, robustness, and environmental resistance, as 

shown in this dissertation, indicate that LbL assemblies are ready for proof of concept in 

these types of electronic devices. 

Future work would include building several electronic devices using LbL 

assembly and evaluating their performance. Carbon–based conductive polymer 

composite multilayer thin films have already been fabricated by LbL assembly and 

shown to be useful for smart sensing (Figure 6.2(a)).186 Sensitivity and selectivity 

towards types of vapors will be measured and characterized as a function of composition 

and number of bilayers deposited. Also, transparent capacitors and transistors could be 

investigated using CNT assemblies in place of ITO or other metal oxides, like those 

shown in Figure 6.2(b).185 The optically and electrically outstanding electrodes in this 
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study will advance the electronic performances of current capacitors and TF-FETs. In 

addition, tailorability of their electronic properties will be expected due to the precise 

tailorability of composition and thickness of LbL assembly. 

 

 
 
Figure 6.2. (a) An image of a series of SWNT-based assemblies deposited on vapor 
sensing electrodes (reproduced from [186]). (b) Metal oxide-based transparent transistors. 
An ITO lower layer as a gate, an aluminum–titanium oxide (ATO) upper layer as the gate 
dielectric, and a ZnO channel layer on a glass substrate (reproduced from [185]).  
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APPENDIX A 

FAST SWITCHING ELECTROCHROMISM FROM COLLOIDAL 

INDIUM TIN OXIDE IN TUNGSTATE-BASED 

THIN FILM ASSEMBLIES* 

 

A.1 Introduction 

As the name suggests, electrochromism involves a color change with the 

application of an electrical potential. In many cases, electrochromism is reversible upon 

application of the electrical potential in reverse direction and, in most cases, occurs by 

reduction-oxidation (redox) reactions.1-4 Non-redox electrochromism is also possible for 

some polarizable molecules that exhibit a spectroscopic shift with the application of a 

strong electric field, known as the Stark effect.5,6 Devices that make use of 

electrochromic technology include smart windows,7,8 helmet visors,9,10 electrochromic 

mirrors,11,12 and displays.13,14 Especially for windows and displays, it is desirable for the 

electrochromic species to exhibit high contrast (i.e., large transmittance difference 

between colorless and colored states) and fast switching speed between states. Inorganic 

oxides are known to exhibit good contrast, but they typically require more than 60 

seconds to switch states.15 The present study focuses on improving the switching speed of 

tungstate (WO4
2-) by depositing it as a thin film with a polycation and electrically 

conductive indium tin oxide (ITO) nanoparticles. 

Tungsten oxide has been studied for decades because of its unique 

electrochemical and electrochromic properties.16-18 The driving force of color change in 

tungsten oxide (WO3 or WO4
2-) is a chemically reversible interaction with electrons and 

____________ 
* Reprinted with permission from “Fast switching electrochromism from colloidal indium tin oxide in 
tungstate-based thin film assemblies” by Yong Tae Park and Jaime C. Grunlan, Electrochim. Acta 2010, 
55, 3257–3267. ©2010 Elsevier Ltd. 
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cations, such as H+ or Li+, during coloration and bleaching.11,19 In tungstate 

electrochromism, fully reversible redox coloration is generated by polarization at the 

cathode, where electrons penetrate into the oxide. At the same time, cations migrate 

toward anionic WO4
2- to generate MxWO4 (M = H, Li or Na), tinting the film a deep blue. 

In crystalline WO3 films, the optical properties are based on ionized impurity scattering 

of free electrons.20 Uncertainty remains about the coloration mechanism of amorphous 

WO3 films, although it is widely accepted that the color change depends on the 

W6+ ↔ W5+ redox reaction.21 In the oxidized state (W6+), WO3 is light yellow, while it is 

blue in the reduced state (W5+). Several methods for preparation of WO3 thin films have 

been introduced since the first report of WO3 as an electrochromic material including 

thermal evaporation,22 chemical vapor deposition,23 sputtering,24 electrodeposition,25 sol-

gel by spin coating,26 dip-coating,27 and spray pyrolysis.28 A technique known as layer-

by-layer (LbL) is studied here as a means of tailoring the contrast and switching speed of 

tungstate-based thin films. 

The LbL method produces thin films by harnessing electrostatic interactions 

through alternately exposing a substrate to positively and negatively-charged aqueous 

solutions.29,30 Each positive and negative pair deposited is referred to as a bilayer (BL). 

This cycle is repeated to add the desired number of BLs. A variety of functional thin 

films have been produced using the LbL technique, including antimicrobials,31,32 gas 

barriers,33,34 sensors,35,36 membranes for fuel cells,37-39 drug delivery,40-42 field-effect 

transistors,43,44 and electrically conductive coatings.45,46 Additionally, many 

electrochromic thin films have been prepared using the LbL method with poly(3,4-

ethylenedioxythiophene),47 Ruthenium Purple,48 Prussian Blue,49 poly(aniline-N-
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butylsulfonate)s,50 and viologen.51 The tungstate anion goes through an analogous color 

change to WO3 and can be deposited using LbL methodology. 

In this study, electrochromic thin film assemblies were prepared using WO4
2- 

alternated with poly(4-vinylpyridine-co-styrene) (PVP-S) and/or poly(diallyldimethyl 

ammonium chloride) (PDDA). Although other methods for making tungsten oxide 

electrochromic thin films have been previously reported.22-28 LbL assembly allows for 

film composition to be tailored throughout the thickness at the nanometer level. Figure 

A.1 highlights the three different recipes studied here in an effort to improve contrast 

ratio of WO4
2- based thin films and increase switching speed. Addition of colloidal ITO 

to selected layers (Figure A.1(c)) dramatically reduces switching time (from over 60 

down to 14 seconds) and stabilizes contrast over several switching cycles.  

 

 

Figure A.1. Schematic of the LbL process. The three recipes studied here are each 
represented by their own schematic: (a) PVP-S/WO4

2−, (b) (PVP-S+ITO)/WO4
2−, and (c) 

PVP-S/WO4
2−/(PDDA+ITO)/WO4

2− quad-layer (QL). 
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A.2 Experimental 

A.2.1 Materials 

PVP-S (4-vinylpyridine:styrene, 9:1 mole fraction) with a molecular weight of 

100 000 g/mol, PDDA with a molecular weight of 100 000−200 000 g/mol, sodium 

tungstate dihydrate (Na2WO4·2H2O, 99.995%), and lithium chloride (LiCl, 99%) were 

purchased from Aldrich (Milwaukee, WI). Colloidal ITO (99.5%, In2O3:SnO2 90:10 

wt%) with a particle size of 17−28 nm was purchased from Alfa Aesar (Ward Hill, MA). 

Dichloromethane (99.9%), methanol (99.8%), acetone (99.5%), hydrochloric acid (HCl, 

37%) were used as received from Aldrich. A 0.25 wt% PVP-S cationic aqueous solution 

was prepared by dissolving in 18.2 MΩ deionized water. The anionic solution was 

prepared by dissolving 1 wt% tungstate in deionized water. Where noted, 0.2 wt% ITO 

added 0.2 wt% PVP-S aqueous solution was used as cationic mixture instead of only 0.25 

wt% PVP-S. A 0.02 wt% PDDA aqueous solution containing 1 wt% ITO was used as the 

second cationic mixture for quad-layer (QL) films. An aqueous 0.1M LiCl solution was 

used as the electrolyte for electrochromic measurements. All solutions were adjusted to 

pH 2.5 using 1M HCl. ITO-glass slides (2.5 cm × 7.5 cm, 4−10 Ω/sq, Delta Technologies, 

Stillwater, MN) were cleaned by bath ultrasonication in a series of solvents: 

dichloromethane, methanol, acetone, and deionized water for 15 min each, followed by a 

5 min oxygen plasma etch with a Harrick PDC 32G (Harrick Plasma, Ithaca, NY).52 

Fused quartz glass slides (Structure Probe Inc., West Chester, PA) were prepared using a 

piranha treatment by immersing slides into a piranha solution after ultrasonicating for 30 

min, followed by thoroughly rinsing with deionized water and drying with filtered air.53 

Single side polished (1 0 0) silicon wafers (University Wafer, South Boston, MA) were 
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cut to size, rinsed with ethanol-acetone (1:1), followed by deionized water, and finally 

dried with filtered air.54 Polystyrene (PS) film (tradename ST311125 by Goodfellow 

Cambridge Ltd., Cambridge, UK) substrates were cut to size, followed by rinsing with 

methanol, then deionized water, and drying with filtered air. The cleaned polymer 

substrates were then corona treated with a BD-20C Corona Treater (Electro-Technic 

Products Inc., Chicago, IL). Corona treatment is used to oxidize the surface of the 

polymers, which aids adhesion of deposited layers.55 

 

A.2.2 Layer-by-Layer Assembly 

PVP-S/WO4
2- assemblies were built according to the procedure shown in Figure 

A.1. Clean substrates were first immersed in a 0.25 wt% aqueous PVP-S solution for 5 

min, followed by rinsing with deionized water and drying with filtered air. Immersion 

into the 1.0 wt% WO4
2- aqueous solution for 5 min came next, followed by rinsing and 

drying. These four steps are one cycle, yielding one bilayer. For each subsequent cycle, 

the immersion time for both solutions was reduced to one minute and repeated to deposit 

the desired number of BLs. Quad-layers required two more deposition steps for each full 

QL. Immersion into a (0.02 wt% PDDA+1 wt% ITO) aqueous solution for 5 min with 

rinsing and drying was followed by immersion into the 1.0 wt% WO4
2- aqueous solution 

for 1 min with rinsing and drying. Immersion time for all solutions was reduced to one 

minute beginning with the second cycle. Following deposition, all films were stored in a 

dry box for a minimum of 12 hours prior to testing. 
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A.2.3 Characterization of Film Growth 

Thickness measurements were performed with an ellipsometer and/or a 

profilometer on silicon wafers and glass slides, respectively. A PHE-101 Discrete 

Wavelength Ellipsometer (Microphonics, Allentown, PA) was used at a wavelength of 

632.8 nm and an angle of 65°. Thicker films were analyzed with a Dektak 3 Stylus 

Profilometer (Neutronix-Quintel, Morgan Hill, CA) on fused quartz glass slides. A 12.5 

μm stylus tip and 50 mg force were used to avoid damaging the film. An F20 

reflectometer (Filmetrics Inc., San Diego, CA) was also used to confirm the thickness 

with the refractive index acquired from ellipsometry. Weight of each deposited layer was 

measured with a Maxtek (East Syracuse, NY) research quartz crystal microbalance 

(QCM) and 5 MHz gold-electrode quartz crystals. The quartz crystals were cleaned with 

an oxygen plasma etcher. Absorbance and transmittance of deposited films were 

measured between 250 and 850 nm with a USB2000 UV-Vis spectrometer (Ocean Optics, 

Dunedin, FL). To measure light absorbance of PVP-S films, PVP-S thin films were 

deposited on quartz slides with a WS-650 spin coater (Laurell Technologies, North Wales, 

PA) at 3500 rpm. 

 

A.2.4 Imaging 

Thin film cross sections were imaged with a JEOL 1200 EX TEM (JEOL USA 

Inc., Peabody, MA) with an operating voltage of 100 kV. For TEM specimens, the films 

on PS substrates were embedded in epoxy resin comprised of Araldite 502 modified 

bisphenol A and Quetol 651 ethylene glycol diglycidyl ether along with dodecenyl 

succinic anhydride hardener and benzyldimethylamine accelerator, which were purchased 
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from Electron Microscopy Sciences (Hatfield, PA). The specimens were sectioned down 

to 90 nm with a Reichert-Jung Ultracut E 7017014 and placed on nickel grids to dry prior 

to imaging. Atomic force microscope (AFM) images were obtained with a Nanosurf 

easyScan 2 (Nanoscience Instruments, Inc., Phoenix, AZ) in dynamic mode with an 

ACL-A cantilever tip.  

 

A.2.5 Electrochemical Measurements 

An Epsilon 851 cyclic voltammeter (BASi Instrumentation, West Lafayette, IN) 

was used for electrochemical characterization. ITO-coated glass slides were used as the 

working electrode, a platinum wire (0.35 mm diameter from BASi Instrumentation) as 

the counter electrode, and AgCl/Ag (3M KCl) as the reference electrode. These 

measurements were performed with a 4 cm2 working electrode at ambient temperature 

(22±2 °C) in a aqueous 0.1M LiCl solution (pH = 2.5) that had been bubbled with N2 gas 

for more than 20 minutes prior to measurement. Cyclic voltammetry was performed 

between two potential limits at scan rates of 25, 50, 100, and 200 mV/s. Electrochromic 

characterization was done in-situ with UV-Vis measurements in conjunction with 

changes in electrical potential. Absorbance was measured with the same UV-Vis 

spectrometer and potential control was provided by an E3646A Agilent power supply 

(Santa Clara, CA). The films deposited on ITO glass slides were immersed in 0.1M LiCl 

electrolyte, along with platinum foil (99.99%, 0.127 mm thickness from Aldrich) as a 

counter electrode. 
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A.3 Results and Discussion 

A.3.1 Growth of Tungstate Assemblies 

Film growth of the PVP-S/WO4
2- assembly onto a Si wafer was analyzed using 

ellipsometry, as shown in Figure A.2. The PVP-S/WO4
2- system increases linearly in 

thickness, by approximately 2.0 nm per BL, using a fixed refractive index of 1.65. This 

linear growth signifies the successful combination of PVP-S and WO4
2- within the film. 

Some LbL assemblies containing two electroactive species have shown exponential 

growth,56 but the continuous linear growth observed here suggests a constant level of 

deposition of both species up to at least 50 BLs. Thickness increase after each deposition 

of PVP-S is nearly the same as that of WO4
2-, as shown in the inset in Figure A.2. 

 

 

 

Figure A.2. Film thickness as a function of the number of PVP-S/WO4
2- BLs deposited, 

as determined by ellipsometry. The thickness increase from 15 to 20 BLs is shown in the 
inset. Half bilayers correspond to PVP-S deposition. 
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Using a QCM, the amounts of PVP-S and WO4
2- adsorbed onto the crystal in each 

deposition cycle was estimated to be 0.38 and 1.27 µg/cm2, respectively, as shown in 

Figure A.3. This trend is not surprising based upon the thickness data in Figure A.2, 

which shows that both ingredients contribute similarly. Generally, tungsten oxide has a 

much greater density (7.16 g/cm3)57 than polymers included in PVP-S and should 

therefore contribute greater weight per layer. Assuming that each BL has an average 

thickness of 2 nm, this data yields a PVP-S/WO4
2- film density of 8.25 g/cm

3
. This 

density is larger than either that of PVP-S or tungsten oxide individually, but is close to 

their sum. Thin films do not necessarily have densities that match their bulk values, so 

this apparent discrepancy may simply be the result of a more ordered structure, with 

reduced free volume, in the assembly. It is likely that WO4
2- penetrates into, and adsorbs 

onto, an underlying PVP-S layer to form a PVP-S/WO4
2- complex. 

 

 

Figure A.3. Mass growth as a function of the number of PVP-S/WO4
2- BLs deposited, as 

measured with QCM. The inset is the mass change from 30 to 35 BLs. Half bilayers 
correspond to PVP-S deposition. 
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A 50 BL PVP-S/WO4
2- film on a fused quartz slide exhibits transmittance peaks 

at 246 and 391 nm, as shown in Figure A.4. In a hydrated tungsten oxide thin film, a 

transmittance peak appears at 390 nm,15 which suggests the presence of WO4
2- into the 

thin film assembly without any alteration of electronic structure. Additionally, the 

maximum light absorption of a quartz slide, coated only with PVP-S, occurs below 200 

nm (inset of Figure A.4) and creates no reduction of the WO4
2- electrochromic 

performance. Figure A.5 shows the absorbance spectra of PVP-S/WO4
2- films in the 

region of 200 to 850 nm as well as change of absorbance at 250 nm as a function of the 

number of bilayers deposited. The concentration of WO4
2- in the PVP-S/WO4

2- film is 

almost constant, irrespective of the number of bilayers measured, as shown in the QCM 

measurements (Figure A.3). Therefore, the difference in absorbance of the PVP-S/WO4
2- 

Figure A.4. Spectral absorbance (i) and transmittance (ii) of a 50 BL PVP-S/WO4
2- film 

produced on a fused quartz slide. The inset is the absorbance of a 145 nm PVP-S film that 
was spun coat on a quartz slide. 
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film with increasing number of BLs is due to increasing film thickness, according to the 

Beer-Lambert Law:58 

        (1) 

where  is the concentration,  is the molar absorptivity, and  is the film thickness. Using 

UV-Vis absorbance and the reported molar absorptivity for sodium tungstate (Na2WO4) 

(  = 6400 dm3/mol/cm at 200 nm wavelength),59 the molar amount of WO4
2- absorbed 

onto a quartz slide was estimated to be 4.51 × 10-9 mol/cm2, or 1.12 µg/cm2 per BL, 

which is similar to the value obtained using QCM (1.27 µg/cm2). It has also been 

suggested that the concentration of WO4
2- in the PVP-S/WO4

2- film is approximately 

constant irrespective of the substrate used.60 

 

 

 

Figure A.5. Absorbance spectra of a quartz slide (i) and n BLs of PVP-S/WO4
2-, with n =  

5 (ii) to 50 (iii), and every 5 BL step in between. The inset is absorbance at 250 nm as a 
function of the number of BLs deposited. 
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In an effort to improve electrochromic performance (see Section A.3.4), ITO was 

added to these tungstate-based thin films. In the first attempt to enhance its electrical 

conductivity and switching speed, ITO nanoparticles were added to the PVP-S deposition 

solution. An alternate recipe involved 30 QL films of PVP-S/WO4
2-/(PDDA+ITO)/WO4

2- 

for the same purpose (improved electrical conductivity and fast color switching). Film 

thickness and mass growth of ITO-added systems are shown in Figure A.6. (PVP-

S+ITO)/WO4
2- BL and PVP-S/WO4

2-/(PDDA+ITO)/WO4
2- QL systems exhibit a 

reduction of 2.94% and 8.88% of film thickness respectively, whereas film mass 

decreases by 61.9% and 58.4% relative to the PVP-S/WO4
2- system (Figures A.2 and 

A.3). These results suggest that the addition of ITO particles generates lower density 

films. It may be that colloidal ITO disrupts the WO4
2- structure in these films. 

 

 

 

Figure A.6. Film thickness and mass growth as a function of the number of (a) (PVP-
S+ITO)/WO4

2- BLs and (b) PVP-S/WO4
2-/(PDDA+ITO)/WO4

2- QLs, as determined by 
ellipsometry and QCM. Half bilayers correspond to PVP-S deposition. 
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A.3.2 Structural Characterization 

TEM micrographs of a 60 BL PVP-S/WO4
2- cross-section are shown in Figure 

A.7(a). In these images, the darker areas are WO4
2--rich regions and the lighter grey is 

PVP-S. Although not the goal of these images, they confirm the 120 nm thickness 

measured via ellipsometry and reflectometry. TEM is primarily used to visualize film 

structure, which in this case shows a highly inter-diffused nanostructure. These TEM 

images further support the suggestion, made in Section 3.1, that WO4
2- penetrates into 

and adsorbs onto each underlying PVP-S layer. TEM cross-sections of 60 BL (PVP-

S+ITO)/WO4
2- and 30 QL PVP-S/WO4

2-/(PDDA+ITO)/WO4
2- films are shown in 

Figures A.7(b) and (c), respectively. In these images, the darkest black spots are ITO 

particles and darker and lighter grey areas are WO4
2--rich regions and PVP-S, 

respectively. In these two systems, several white regions are observed, indicating a looser, 

nano-porous structure due to the addition of ITO. These more open nano-structures 

contribute to the lower film densities of ITO-added systems that were measured using 

QCM in Section A.3.1. Also, addition of ITO particles gives these films a rougher surface 

 
 

 
 
Figure A.7. TEM cross-sections of (a) a 60 BL PVP-S/WO4

2- film, (b) a 60 BL (PVP-
S+ITO)/WO4

2- film, and (c) a 30 QL PVP-S/WO4
2-/PDDA+ITO/WO4

2- film. 



 128 

than the PVP-S/WO4
2- system. This surface roughness was analyzed using atomic force 

microscopy. 

The surfaces of tungstate-based assemblies were analyzed using AFM in Figure 

A.8. PVP-S/WO4
2-, (PVP-S+ITO)/WO4

2-, and PVP-S/WO4
2-/(PDDA+ITO)/WO4

2- films 

(deposited onto silicon wafers) reveal structural differences. ITO addition generates 

greater roughness, with the range of surface height nearly doubled with the inclusion of 

0.2 wt% ITO (Figure A.8(b)). The area roughness of a 50 BL PVP-S/WO4
2- is 5.5 nm, 

 
 
Figure A.8. AFM height images of (a) 50 BL PVP-S/WO4

2-, (b) 50 BL (PVP-S+ 
ITO)/WO4

2-, and (c) 25 QL PVP-S/WO4
2-/(PDDA+ITO)/WO4

2- film surfaces on silicon 
wafers. 
 
 

 
 
Figure A.9. TEM surface images of (a) 5 BL PVP-S/WO4

2-, (b) 5 BL (PVP-S+ 
ITO)/WO4

2-, and (c) 3 QL PVP-S/WO4
2-/(PDDA+ITO)/WO4

2-  films on formvar grids. 
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whereas 50 BL (PVP-S+ITO)/WO4
2- and 25 QL PVP-S/WO4

2-/(PDDA+ITO)/WO4
2- 

films are 7.7 and 17.1 nm, respectively. Figure A.9 shows TEM surface images of the 

each system. The darker areas are WO4
2- and the lighter grey is PVP-S. Black dots in 

Figures A.9(b) and (c) are ITO. These images show greater ITO aggregation with higher 

concentration, which produces greater surface roughness. ITO aggregation forms a 

network within the interior of the PVP-S/WO4
2/(PDDA+ITO)/WO4

2- system, whereas 

ITO particles are isolated from each other (i.e., no network) in the (PVP-S+ITO)/WO4
2- 

system. ITO could not be added beyond 0.2 wt% in PVP-S due to the high viscosity 

generated, which prevents uniform layer-by-layer deposition.  This is further evidence of 

the strong attraction between ITO and PVP-S that ultimate reduces ITO’s ability to 

enhance electrical conductivity in these thin films. Additionally, Figure A.9(c) shows 

interpenetration of WO4
2- molecules with ITO in the polymer matrix. 

 

A.3.3 Cyclic Voltammetry 

Figure A.10 shows the cyclic voltammograms (CV) for a PVP-S/WO4
2- 60 BL 

film deposited on an ITO coated glass electrode, illustrating the reduction process (and 

accompanying lithium ion insertion) via the negative current and oxidation via the 

positive current. Tests were run between 0.5 and –2.0 V vs. an AgCl/Ag reference 

electrode with 25, 50, 100, and 200 mV/s scan rates, in 0.1M LiCl aqueous solution 

electrolyte (pH = 2.5). During the reduction scan, the CV profile exhibits a peak near –

1.0 V, which is the first reduction (WO4
2- → WO4

3-). The PVP-S/WO4
2- thin film keeps a 

deep blue color between –1.0 to –1.3 V, but this changes to pale yellow beyond –1.3 V 

due to the second reduction, suggesting conversion to tungsten bronze (i.e., WO3
2-). The 
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current density peaks are proportional to the square root of the scan rate for both 

oxidation and reduction scans (inset in Figure A.10), suggesting that the current during 

the redox process is limited by the diffusion of lithium ions to the electrode surface as 

described by the Cottrell equation:61  

     (2) 

where  is the current,  is the number of electrons to reduce or oxidize one molecule of 

the material,  is the Faraday constant,  is the area of the planar electrode,  is the 

initial concentration of tungstate species,  is the diffusion coefficient, and  is time. 

Furthermore,  is used in place of . Therefore, linearity of current 

density peaks as a function of square root of the scan rate suggests a diffusion-controlled 

 
 
Figure A.10. Cyclic voltammetry of a 60 BL PVP-S/WO4

2- film on an ITO-coated glass 
slide at 25, 50, 100, and 200 mV/s scan rates in an aqueous 0.1M LiCl electrolyte (pH = 
2.5) with an AgCl/Ag reference electrode. Linear dependence of peak current density of a 
60 BL PVP-S/WO4

2- film as a function of the square root of the scan rate is shown in the 
inset. 
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system. In a prior study,51 a diffusion-controlled LbL film provided the maximum 

contrast possible for an electrochromic species, whereas the LbL film which was not 

diffusion-controlled, but rather surface-controlled (peaks increased linearly with the scan 

rate), produced charge trapping and film degradation.47,49,56 

The cyclic voltammograms of the other two systems are shown in Figure A.11. In 

the (PVP-S+ITO)/WO4
2- system, the CV profile shows the same trend as the PVP-

S/WO4
2- system (Figure A.10), exhibiting the peak between –1.0 and –1.5 V and 

increasing beyond the first peak during the reduction scan. In the PVP-S/WO4
2-

/(PDDA+ITO)/WO4
2- system, however, the peaks during both reduction and oxidation 

scans are not as pronounced as the other two systems. Both ITO-containing systems also 

exhibit linear dependence of peak current density on the square root of the scan rate. 

 

 

 
 
Figure A.11. Cyclic voltammetry of (a) a 60 BL (PVP-S+ITO)/WO4

2- film at 25, 50, 100, 
and 200 mV/s scan rates  and (b) a 30 QL PVP-S/WO4

2-/(PDDA+ITO)/WO4
2- film at 50, 

100, and 200 mV/s scan rates on ITO-coated glass slides with a AgCl/Ag reference 
electrode, in an aqueous 0.1M LiCl electrolyte (pH = 2.5). The insets highlight the linear 
dependence of peak current density of each film on the square root of the scan rate. 
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A.3.4 Electrochromic Behavior 

Electrochromic behavior was investigated for 60 BL PVP-S/WO4
2- using UV-Vis 

absorption measurements made during application of different potentials. Figure A.12(a) 

shows the absorption spectra of a 60 BL PVP-S/WO4
2- film at +2.0, 0, and –1.0 V applied 

potentials. Absorbance increases as the potential becomes more cathodic, which 

corresponds to greater reduction of the initial WO4
2- species. Beginning at +2.0 V (the 

oxidized state), the film is completely transparent. There is no change in absorbance 

between +2.0 and 0 V, but absorbance increases significantly from 0 to –1.0 V, as the 

tungstate is reduced. The maximum absorbance change appears at approximately 750 nm. 

Figure A.12(b) shows absorbance change at 750 nm in the PVP-S/WO4
2- system during 

repeated potential steps with 60 seconds time interval. The inset shows the change in the 

percent transmittance (% T) at this wavelength. When studying electrochromic 

performance, the key properties are contrast (i.e., difference of % T between dark and 

bleached states) and response time. High contrast and fast response are the goal. Optical 

 

 
 
Figure A.12. (a) Absorption spectra of a 60 BL PVP-S/WO4

2- film at +2.0, 0, and –1.0 V 
applied potentials. (b) Absorbance at 750 nm as a function of time during repeated 
potential steps. The inset is the transmittance plot of this same film during the same time 
interval. 
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switching measurements were conducted by switching the electric potential between +2.0 

(oxidized state) and –1.0 V (reduced state). Each switching cycle was two minutes long. 

The contrast of the first switching cycle is 25.2%, while at the fourth cycle it is 17.7% 

because tungstate coloration in the reduced state decreases with progressively with 

cycling. Switching time was determined as the time required to reach 90 % of the full 

change in absorbance (during reduction in the first cycle) after applying or switching the 

potential during each cycle. PVP-S/WO4
2- took 24 seconds to reach full coloration at the 

first cycle using this methodology, while switching time increased to over 60 seconds 

after the second cycle. 

The addition of ITO nanoparticles to the PVP-S was done in an effort to enhance 

the film’s electrical conductivity and improve switching speed. The absorption spectra of 

a 60 BL (PVP-S+ITO)/WO4
2- film is shown in Figure A.13(a), which appears very 

similar to the 60 BL PVP-S/WO4
2- film (Figure A.12(a)). Figure A.13(b) shows 

absorbance changes at 750 nm, in this film made with 0.2 wt% ITO in PVP-S, by 

switching the same electrical potential (+2.0 ↔ –1.0 V) as with the PVP-S/WO4
2- system. 

The inset is the change in % T at 750 nm. With the addition of 0.2 wt% ITO, the contrast 

remains relatively constant (23−24 %) through four switching cycles, which was an 

improvement over the system that had no ITO. The system without ITO exhibits 

significant degradation with multiple cycles (see Figure A.12(b)). It is important to note 

that the switching time was not enough to fully oxidize or reduce during the potential 

switching because the response time of the ITO-based system is slower than that of the 

PVP-S/WO4
2-system without ITO. It is likely that PVP-S interacts too strongly with ITO 

to allow it to form a good conductive network. 
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In an alternate attempt to improve thin film conductivity, PDDA was used for 

layers containing ITO (in every other BL). Figure A.14(a) shows absorption spectra of 

the 30 QL PVP-S/WO4
2-/(PDDA+ITO)/WO4

2- film, from +2.0 to –3.0 V with step size 

0.5 V. Even with 1 wt% ITO added to PDDA in every other BL, 30 QL films were 

colorless in their deposited state. Beginning at +2.0 V, the film is in its transparent 

oxidized state. There is no change in absorbance between +2.0 and –1.0 V, but as the 

electrode potential becomes more cathodic, absorbance increases with the largest change 

between –1.5 to –2.0 V. A lack of peak in CV, as seen in Figure A.11(b), suggests no 

reduction between –1.0 to –1.5 V, which is in contrast to the other two systems that had 

an optical change in this same range of electrical potential. Typical absorbance change of 

the PVP-S/WO4
2-/(PDDA+ITO)/WO4

2- film (at 750 nm) during repeated potential step 

cycles of 0 ↔ –2.5 V is illustrated in Figure A.14(b). The inset shows the change in % T 

at 750 nm. The contrast is constant at approximately 20% through four switching cycles. 

 
 
Figure A.13. (a) Absorption spectra for a 60 BL (PVP-S+ITO)/WO4

2- film at applied 
potentials from +2.0 to –1.0 V in 0.5 V steps. (b) Absorbance changes at 750 nm during 
repeated potential steps. 
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This behavior is almost the same as the PVP-S/WO4
2- system, but there is a constant level 

of coloration in the quadlayer system. This reproducibility of the optical response 

demonstrates the electrochromic stability of the self-assembled PVP-S/WO4
2-

/(PDDA+ITO)/WO4
2- films. Moreover, this system fully oxidizes and reduces, unlike the 

system with ITO added directly PVP-S (Figure A.12(b)) because of faster redox change. 

Therefore, the PVP-S/WO4
2-/(PDDA+ITO)/WO4

2- system exhibits faster optical 

switching. Switching time of this system is a constant 14 seconds regardless of the 

number of cycles. 

The relatively fast switching speed of polymer-WO4
2- thin films is due to fast 

lithium ion migration and easy electron movement to WO4
2- surfaces embedded in the 

film. Analysis of film growth and mass increase (See Section A.3.1) shows lower density 

in the ITO-added systems. Also, the TEM images (Figure A.7) reveal a looser film 

structure due to addition of ITO particles. Therefore, the lower density film construction 

 
 
Figure A.14. (a) Absorption spectra for a 30 QL PVP-S/WO4

2-/(PDDA+ITO)/WO4
2- film 

at applied potentials from +2.0 to –3.0 V in 0.5 V steps. (b) Absorbance changes at 750 
nm during repeated potential steps. 
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of ITO-added systems should offer faster lithium ion migration and the network of ITO 

particles, combined with their integration with WO4
2- molecules, appears to provide 

faster electron movement than the initial PVP-S/WO4
2- system. 

 

A.4 Conclusions 

Electrochromic thin films were prepared using layer-by-layer assembly of sodium 

tungstate, colloidal ITO and polyelectrolytes (PVP-S and PDDA). Performance of these 

WO4
2--based thin films was studied with UV-Vis and cyclic voltammetry. These systems 

exhibit reversible color change between a transparent oxidized state and deep blue 

reduced state. The introduction of ITO nanoparticles to every other bilayer was shown to 

decrease the time to change color (i.e., switch) due to improved electrical conductivity. 

Using PDDA as a stabilizer for ITO, as a substitute for PVP-S in every other BL, 

produced fast switching and more stable contrast. Strong interaction between PVP-S and 

ITO prevented direct combination of these two ingredients from producing improved 

switching speed and electrochromic stability. The use of an electrically conductive 

particle to speed switching and improve stability could potentially be used in a variety of 

electrochromic systems. This study sets a precedent for future studies to improve 

electrochromic performance of thin film assemblies. 
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