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ABSTRACT 

 

A Cholinergic Sensory-motor Circuit Controls the Male Copulation Behavior  

In C. elegans. (May 2011) 

Yishi Liu, B.S., Huazhong Agricultural University 

Chair of Advisory Committee: Dr. L. Rene Garcia 

 

The nervous system coordinates a sequence of muscle movements to give rise to 

animal behaviors. In complex invertebrates or lab-studied vertebrates, due to the large 

number of cells in their nervous systems and the complexities of their behaviors, it is 

difficult to address how circuits process information to direct each motor output of the 

behavior. In this dissertation, I used the Caenorhabditis elegans male copulation 

behavior as a model to address how a compact circuit coordinates different behavioral 

programs.  

Insertion of a male copulatory organ into a suitable mate is a conserved 

behavioral step for most terrestrial mating. However, the detailed molecular and cellular 

mechanisms for this distinct social interaction have not been elucidated in any animal. 

During mating, the C. elegans male cloaca is positioned over the hermaphrodite‟s vulva 

as he attempts to insert his copulatory spicules repetitively. Rhythmic spicule thrusts 

cease when insertion is sensed. Circuit components consisting of sensory/motor neurons 

and sex muscles for these steps have been previously identified, but it was unclear how 

their outputs are integrated to generate a coordinated behavior. 
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Here, I delineate cellular and molecular mechanisms that transduce sensory 

information into coordinated behavioral programs during male mating. I show that 

contraction of the male oblique muscles is required to sustain genital contact between the 

sexes. These muscles are innervated by the cholinergic postcloacal sensilla (p.c.s.) 

sensory/motor neurons. The ionotropic AChRs that contain either the ACR-16 or the 

UNC-29 subunit mediate synaptic transmission at these neuromuscular junctions; and a 

Gαq–coupled muscarinic AChR, GAR-3, is likely to function presynaptically to enhance 

the ionotropic AChRs-mediated synaptic transmission. For spicules to rhythmically 

thrust during genital contact, activity of the oblique muscles and the gubernacular 

muscles is transmitted to the spicule protractor muscles instantaneously via gap junctions 

and causes shallow protractor contractions. The rhythmic protractor contractions 

eventually switch to sustained contraction, as the SPC sensory-motor neurons integrate 

information of spicule position at the vulva with inputs from the hook and cloacal 

sensilla. The ERG-like K+ channel, UNC-103 is likely to set a threshold requirement for 

integration of these inputs, so that sustained spicule protraction is not stimulated by 

fewer inputs.  
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NOMENCLATURE 

 

ACh acetylcholine 

p.c.s. postcloacal sensilla 

AChR                          acetylcholine receptor 

nAChR nicotinic acetylcholine receptor  

mAChR                       muscarinic acetylcholine receptor 

EC50 effective concentration to cause response in 50% of the population 

EC90 effective concentration to cause response in 90% of the population 

LEV levamisole 

oxo M oxotremorine M 

lf loss of function mutant 

o mutant that has no functional protein of the gene 

male sex muscles        male-specific muscles that are likely to regulate male mating 

L-AChR                      levamisole-sensitive ionotropic AChR 

prc                               protraction constitutive 
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CHAPTER I 

INTRODUCTION  

 

How can an organism behave in order to respond properly to its environment and 

internal needs using a repertoire of genes? The capability of the nervous system to 

generate a specific behavior largely depends on the structure of circuits and the 

connectivity of each pair of excitable cells. Gene products define the circuit structure 

and eventually function in the context of such a network to give rise to the behavioral 

output. 

My interest, as part of my graduate studies, is to address the following question: 

How does the nervous system recruit various gene products and diverse functional 

connections to generate and modulate innate animal behaviors? Specifically, I wanted to 

study a behavior that is likely to be regulated by a simple circuit, where the function of a 

single cell can be assigned and the genes expressed on each cell can be studied; while at 

the same time, the animal‟s behavior is complex enough that sensory information needs 

to be integrated and motor outputs need to be coordinated by the circuit. I can then place 

these gene functions into a context of specific circuit structure and understand how the 

behavioral pattern is generated by a combination of molecules and functional 

connections.  

 
 
 
 
_____________ 
This dissertation follows the style of Journal of Neuroscience. 
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C. elegans as a model organism to study neural basis of behavior  

 

My study uses C. elegans as a model organism. This nematode has two sexes, 

hermaphrodites and males. The hermaphrodite nervous system contains 302 neurons; the 

male has 383 neurons (Sulston et al., 1980; White et al., 1986). This compact nervous 

system encodes a variety of general behaviors, such as feeding, locomotion, defecation 

and sensory modalities in both sexes, as well as sex-specific behaviors, such as the 

hermaphrodite egg-laying and the male mating behavior (Bargmann, 2006; Barr and 

Garcia, 2006; Branicky and Hekimi, 2006; Goodman, 2006; Rankin, 2006; Schafer, 

2006; Mori et al., 2007; Zhang et al., 2008b; Sengupta and Samuel, 2009; Sokolowski). 

The circuits controlling these behaviors are comprised of a few neurons and muscles, 

which can be multifunctional in sensing, processing and producing signals.  

Various genetic and surgical manipulations can be done readily in C. elegans to 

study their behaviors. Genetic mutants with specific defective phenotypes can be easily 

obtained through mutagenesis as a way to study genes that regulate the traits. The 

nervous system has a predictable cell lineage, so that individual neurons can be 

recognized and laser-ablated to assess their functions in regulating behavior. Optogenetic 

technology tools have become available recently to stimulate or suppress excitable cells 

using high-energy light at any time (Nagel et al., 2005). Genetically encoded Ca2+ 

sensors are used to monitor cell activities in behaving animals (Nakai et al., 2001). 

Lastly, the wiring of the hermaphrodite nervous system and the male-specific circuits 

has been reconstructed to reveal physical connections between excitable cells (White et 
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al., 1986)(S.W. Emmons, personal communication, 2010). With these tools and 

information, it is possible to address how gene products shape cell physiology, 

determine circuit function, and eventually give rise to behavior, within a single model 

organism.  

 

Neural basis for mating behavior in various organisms  

 

The behavior I study is the C. elegans male mating behavior. As a motivated 

stereotyped behavior, male mating is under regulation of a hard-wired behavioral circuit 

and is also subjected to modulatory mechanisms that fine tune the behavioral output 

according to external environment and internal state of the animal.  

The neural basis of mating behavior has been studied in a variety of organisms, 

including rodents, birds, leeches, fruit flies and nematodes, where the studies are mostly 

focused on male mating (except for leeches, which are simultaneous hermaphrodites), 

since the behavioral responses of females/hermaphrodites are not as obvious (Ball and 

Balthazart, 2004; Barr and Garcia, 2006; Hull et al., 2006; Villella and Hall, 2008; 

Wagenaar et al., 2010).  

Vertebrate studies heavily focus on the neuroendocrine mechanisms that regulate 

the male sexual behavior, partly because identification of the sites of action of sex 

steroid hormones in the brain provides an easier path to identify neural circuits that 

regulate the mating behavior in the highly complex central nervous system (Balthazart 

and Ball, 2007; Hull and Dominguez, 2007). Using conventional methods, such as 
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lesions, measures of cellular activity through detecting immediate early gene expression 

and electrophysiological stimulation and recordings, distinct brain regions that control 

different aspects of male sexual behavior have been identified (Ball and Balthazart, 

2004; Hull et al., 2006; Balthazart and Ball, 2007; Hull and Dominguez, 2007). In rats, it 

is demonstrated that the chemical cues sensed by the main olfactory system and the 

vomeronasal system are the most important sensations for males to initiate mating, 

though other sensory inputs, such as touch sensation and visual cues, also play a role. 

The chemosensory information is processed in the medial amygdala, and, coupled with 

the somatosensory information from the genitals, is sent to the medial preoptic area, 

where signals from all sensory systems get integrated and then facilitate the sexual 

behavior by releasing neurotransmitters, such as dopamine. The gonadal hormones are 

considered as influencing sexual behavior via regulating neurotransmitter release and 

recycle in these chemosensory pathways (Hull and Dominguez, 2006, 2007). Similar 

progress has been made in birds, where the basolateral amygdala is considered to 

regulate the appetitive phase of sexual behavior, also referred as courtship; whereas, the 

pre-optic area has been identified as a main area for controlling the final phase of sexual 

behavior, which is copulation (Ball and Balthazart, 2004; Balthazart and Ball, 2007; 

Fusani, 2008). Nonetheless, identification of neural pathways that receive sensory 

information and process it into motor output using conventional methods is not easy in 

vertebrates and is limited in resolution, even though progress has been made through the 

use of novel tracing techniques (for example, transneuronal tracers expressed in certain 

neuron population travel to neurons that are postsynaptic and/or postsynaptic to these 
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neurons; GFP-expressing pseudorabies virus injected into a certain region of brain infect 

the neurons that are presynaptic to this region)(Boehm et al., 2005; Yoon et al., 2005).  

Many intriguing aspects of the vertebrate sexual behavior have been studied 

based on knowledge of how the nervous system regulates the behavior, such as effects of 

aging, sexual preference and previous sexual experience (Hull et al., 2006; Mak et al., 

2007; Sakuma, 2008; Wu et al., 2009). After the motivation phases (courtship and 

copulation), the male sexual behavior is inhibited as a result of copulation. This satiation 

aspect of the behavior has also been studied, to identify neurotransmitters, hormones, 

and brain areas involved in inhibition of mating after satiety (Lorrain et al., 1999; 

Phillips-Farfan and Fernandez-Guasti, 2009).These aspects make sexual behavior 

neurobiology a particularly interesting field, but it also demands more insight into how 

the behavior is generated and modulated by the nervous system.  

Due to the extreme complexity of vertebrate brains, it remains a daunting task to 

dissect the molecular components of all the circuits that regulate sexual behavior in 

rodents or birds. This complexity also limits studies that are interested in the dynamics 

and plasticity of the circuits. In the near future, insight into how genes and signaling 

pathways, which are recruited by defined nervous system structures, give rise to a 

coordinated behavior mostly likely will come from studies on genetically tractable 

organisms with simpler nervous systems, such as Drosophila melanogaster and 

Caenorhabditis elegans.  

In D. melanogaster, studies of mating behavior have primarily focused on the 

motivated phase, which is courtship. The male courtship starts when a male orients 
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towards and follows the female. He taps her with his forelegs, vibrates one of his wings 

to produce a courtship song, and licks her genitalia. Finally, he copulates with her by 

curling his abdomen and thrusting his genitalia towards her. This sequence of motor 

outputs prior to copulation is mostly a fixed pattern (Sturtevant, 1915; Crossley and 

Zuill, 1970). Just like in vertebrates, sensory modalities required for the males to initiate 

courtship have been studied most intensively (Hall, 1994; Yamamoto and Nakano, 

1999). This is probably because mutations that affect specific sensations are more 

readily found and characterized from a mutagenesis screen of mating defects. In 

contrast, less is known about how sensory information is relayed and processed in 

deeper layers of the nervous system and eventually translated into motor outputs. Two 

major approaches have been employed to map functional brain structures involved in 

regulating the courtship behavior: 1) analyzing sex mosaics, in which the sexual identity 

of a specific population of neurons is switched to the opposite sex by expressing sex-

specific forms of the transformer (tra) gene, for example, by turning specific subsets of 

male neurons into female identity using the GAL-4 enhancer-trap method (Brand and 

Perrimon, 1993; Kaiser, 1993), the anterior suboesophageal ganglion for the first time 

was indicated to control male copulation (Ferveur and Greenspan, 1998); and 2) 

molecular genetic disruption of neuronal functions, which involves expressing RNAi of 

a certain master regulatory gene, or expressing dominant alleles of genes that can 

suppress neural activity in a subset of cells in the brain (Broughton et al., 2004; Manoli 

and Baker, 2004). These are powerful tools that have revealed the roles of different 

regions of the Drosophila brain in regulating courtship. However, these tools are both 
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limited by the fidelity and resolution of the enhancer-trap expression patterns (Villella 

and Hall, 2008).  

The study of a single gene, fruitless (fru), has provided great insight into how 

Drosophila courtship is regulated by the nervous system. This gene encodes a 

transcription factor, which is demonstrated to be necessary and sufficient for a fly brain 

(male or female) to generate male mating behavior (Manoli et al., 2005). The fact that 

fru is essential for execution of all steps in courtship (from initial encounter to final 

sperm transferring), indicates that the cells where it is expressed must play a certain role 

in these behavioral steps (Manoli et al., 2006). Consistent with this idea, fru is expressed 

in peripheral sensory systems (olfactory, visual, gustatory, auditory, and tactile), all of 

which have been shown to be involved in initiating the courtship behavior. It is also 

expressed in about 2000 neurons in the fly‟s central nervous system (CNS). These 

neurons form clusters throughout the brain, including areas that have been implicated in 

courtship regulation. Therefore, the fru-expressing cells are likely to regulate different 

aspects of the courtship (Manoli et al., 2005; Stockinger et al., 2005). Though it seems 

that most of the male neurons that express fruitless have counterparts in the females, and 

these neurons are wired in a similar way in both sexes, a study has been carried out to 

find subsets of these neurons that are sex-specific or dimorphic, as an approach to 

determine the roles of subsets of fru-expressing neurons in generating courtship patterns 

(Kimura et al., 2005; Stockinger et al., 2005; Yu and Dickson, 2006). Nonetheless, 

specific functions are yet to be assigned to different fru-expressing neurons as a way to 

map the circuitry of courtship in a better resolution.  
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Using fru-based genetic tools and other neurogenetic approaches, a couple of 

regions of the CNS have been found to control courtship; for example, the antennal lobes 

facilitate partner recognition; a cluster of cells in the dorsal lateral brain promotes the 

initiation of courtship; the dorsal posterior brain is involved in multiple steps, including 

initiation, following, tapping and wing extension; and the posterior midbrain is important 

to generating licking and copulation (Billeter et al., 2006; Villella and Hall, 2008). 

However, it still remains unknown how information is processed in these regions so that 

the original sensory cues can be interpreted into motor outputs that are coordinated 

sequentially or simultaneously.  

 

C. elegans male mating behavior  

 

With striking similarity to the stereotyped copulation in rodents and fruit flies, 

the C. elegans male mating is a complex multi-step behavior (Fig. 1, adapted from Liu 

and Sternberg, 1995). A male starts mating when his tail contacts any part of the 

hermaphrodite cuticle. As major sensory organs required for initiation of mating are 

located in the male tail, he uses his tail to scan the hermaphrodite cuticle searching for 

the vulva. During searching, his tail is closely sealed to the hermaphrodite cuticle with 

the ventral side facing the hermaphrodite, as he moves backwardly. Once he locates his 

cloaca at the hermaphrodite vulva, he maintains his tail position at the vulva, and thrusts 

his bilateral pair of copulatory organ, spicules, rapidly (7-11 Hz) towards the vulval slit. 

A male who performs better in maintaining prolonged and precise contact between his 
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cloaca and his mate‟s vulva is more likely to insert his spicules into the vulval slits. If a 

male loses contact with the vulva prior to spicule insertion, he resumes backward 

locomotion to locate the vulva again. About 31 seconds after successful spicule 

insertion, the male ejaculates sperm into the hermaphrodite uterus. The spicules get 

retracted after sperm transfer (Liu and Sternberg, 1995; Garcia et al., 2001; Schindelman 

et al., 2006). The C. elegans hermaphrodites produce both ovum and sperm, so they do 

not need to mate in order to reproduce. Probably as a result, they do not participate in 

mating and even attempt to escape from the males.  

The C. elegans male has 89 sex-specific neurons and 41 male-specific muscle 

cells (called “male sex muscles”) located in the male tail. These cells are presumably 

used to facilitate different aspects of the male mating behavior (Sulston et al., 1980; 

Portman, 2007). Previous studies have revealed the roles of a couple of male-specific 

muscles and neurons in regulating different substeps of the behavior. 

The initial contact with hermaphrodites, referred as “response behavior”, is 

mediated by nine pairs of finger-like sensory structures located in the male tail, called 

rays (Fig. 2A,B). Each ray contains a structural cell (Rnst) and dendrites from two 

neurons, RnA and RnB. These neurons sense the hermaphrodite cuticle and promote 

backward locomotion of the male, so his tail can scan along the hermaphrodite, 

searching for the vulva (Fig. 1A)(Liu and Sternberg, 1995; Barr and Sternberg, 1999; 

Barr and Garcia, 2006). The ray RnB neurons (except for ray 6) are ciliated and are 
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Figure 1. Steps of C. elegans male mating. 
A. The male (the upper one) moves backward and uses his tail to scan the dorsal side of 
the hermaphrodite (the lower one) cuticle, searching for the vulva.  
B. Once the male reaches the end of the hermaphrodite, he turns his tail to the ventral 
side of the cuticle and continues scanning. 
C. Once his tail senses the vulva, he stops the backward locomotion and places his tail 
over the vulva. At the mean time, his copulatory spicules rapidly prod at the vulva slit, 
until they get inserted. 
D. A few seconds after spicule insertion, sperm gets transferred.  
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considered sensory neurons, while the RnA neurons are not ciliated and their tips are 

held inside of the ray cuticles (Sulston et al., 1980). These neurons form both chemical  

and electrical connections onto each other, and also send extensive connections to the  

other components of the male-specific circuit (Male Wiring Project). However, it is  

unknown what kind of cues are sensed by them and how these sensory inputs get  

processed by the circuit to regulate mating.  

 

 

 
Figure 2. Male tail morphology and anatomy.   
A. DIC image of the male tail (lateral view). Distinct structures are labeled.  
B. DIC image of the male tail (dorsal view). Distinct structures are labeled.  
C. Cutaway representation of neurons and muscles involved in spicule movements.  
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During vulva searching, upon reaching an end of the hermaphrodite (at the head 

or the tail), the male curls his tail ventrally to make a sharp turn, in order to approach the 

other side of her (Fig. 1B). This substep is referred as “turning behavior”. A subset of 

rays and the male-specific ventral cord neurons (CP1-CP6) are thought to facilitate this 

behavior, as males that had disrupted function in these cells either as a result of laser-

ablation or genetic mutations displayed defective turning behavior (Loer and Kenyon, 

1993; Liu and Sternberg, 1995). The CP neurons have synapses to the male-specific 

diagonal muscles located at the male tail, and it is suggested that these neurons promote 

tight ventral curl of the male tail via activating these muscles (Loer and Kenyon, 1993).  

The male locates the vulva via mechanosensation (characteristic surface) and 

chemosensation (secreted chemical cues)(Barr and Garcia, 2006). These are mediated by 

two types of sensilla, the hook sensillum and the postcloacal sensilla (p.c.s.), located 

anterior and posterior to the cloacal opening, respectively (Fig. 2B). The hook sensillum 

contains two neurons (HOA and HOB) and they probably sense both chemosensory and 

mechanosensory cues (Fig. 2C)(Barr and Garcia, 2006). It is proposed that they sense 

the general area of vulva, and promote rhythmic spicule thrusts. Males that had the hook 

structure precursor cells ablated could not sense the area of vulva and passed the vulva 

repeatedly while scanning the cuticle. These males, however, periodically thrust their 

spicules at random areas of the hermaphrodite cuticle, suggesting that the p.c.s. can 

promote spicule thrusts independently (Liu and Sternberg, 1995; Barr and Sternberg, 

1999; Garcia et al., 2001). The p.c.s. contains three pairs of neurons, PCAs, PCBs, and 

PCCs (Fig. 2C). Evidence suggests that they sense the precise location of the vulva, and 
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also induce shallow spicule thrusts. Males with these neurons ablated could stop in the 

general vulva vicinity but not precisely over it, and they displayed brief spicule prodding 

behavior when they transiently passed the vulva, probably as a result of hook sensillum 

activity. When the hook sensillum and the p.c.s. neurons were all ablated, the males 

showed neither spicule activity nor vulva recognition at all when they passed over the 

vulva (Liu and Sternberg, 1995; Garcia et al., 2001). This data together suggests that 

these sensory organs facilitate different aspects of vulva location behavior: the general 

area recognition and precise location; however, they can partially compensate for each 

other.  

Vulva location and spicule prodding eventually result in prolonged spicule 

protraction once the vulva slit is breached, leading to vulva penetration (Liu and 

Sternberg, 1995). Each copulatory spicule contains sensory dendrites from two sensory 

neurons (SPD and SPV) and their supporting cells (socket cells and sheath cells), 

wrapped with spicule cuticle. The cell bodies of SPD and SPV are outside of the spicules 

and are located in the cloacal ganglia (Sulston et al., 1980)(Fig. 2C). Behavior defects 

were analyzed after laser-ablation of these cells, in order to assess their function in 

regulating male mating. The SPV neurons are suggested to regulate the timing of sperm 

ejaculation, as ablating these cells resulted in males that could perform most steps of 

mating but could not transfer sperms. In contrast, the SPD neurons are more likely to 

facilitate spicule insertion, even though they do not innervate the spicule protractors (Liu 

and Sternberg, 1995)(Male Wiring Project).  
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Spicule movements are caused by the contraction of two muscles that are 

attached to it: the dorsal protractor and the ventral protractor (Fig. 2C). Contraction 

of these muscles can either cause the spicule to rapidly thrust shallowly, or to fully 

protrude out of the cloacal opening, probably depending on different contractile states of 

these muscles. In addition, two retractor muscles, which are also attached to the spicule, 

hold the spicule inside of the male tail when the protractors are relaxed (Fig. 2C)(Sulston 

et al., 1980; Lints and Hall, 2009). In addition to muscles that are physically attached to 

the spicules, a sexually dimorphic muscle called anal depressor also facilitates spicule 

protraction. Although ablating this muscle alone does not obviously affect spicule 

insertion during male mating, it significantly exacerbates defective spicule protraction 

caused by ablation of neurons that innervate the spicule protractors (Garcia et al., 2001; 

Garcia and Sternberg, 2003). 

The neurotransmitter acetylcholine (ACh) has been shown to cause contraction 

of the spicule protractor muscles. Application of ACh agonists or excess of endogenous 

ACh, can cause males to fully protract their spicules, mimicking the spicule insertion 

behavior during mating. The endogenous ACh that induces sustained protractor 

contraction comes from a pair of cholinergic neurons, the SPCs (Fig. 2C). Laser-ablation 

of these neurons resulted in males that fail to insert their spicules during mating. These 

neurons have sensory endings attached to the dorsal protractor muscles, and they directly 

synapse both dorsal and ventral protractors as well as the anal depressor muscle. It has 

been shown that ACh released from these neurons can cause prolonged spicule 
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protraction, probably via activating the ionotropic acetylcholine receptors (AChRs) on 

the spicule protractor muscles (Garcia et al., 2001).  

Interestingly, even though it has been suggested that, the hook sensillum neurons 

and the p.c.s. neurons can independently initiate rapid spicule thrusts at the vulva and 

two of the p.c.s. neurons (PCB and PCC) can secret ACh, none of these neurons makes 

synapse to the spicule protractors, indicating that they indirectly command muscle 

contraction via other circuit components (Sulston et al., 1980; Garcia et al., 2001)(Male 

Wiring Project). The p.c.s. neurons seem to also play a role in prolonged spicule 

protraction as ablating these neurons further impairs the SPC-ablated males‟ response to 

endogenous ACh. However, it is not clear how these neurons exert their function in 

these aspects of mating behavior (Garcia et al., 2001).  

For most of the neurons mentioned above, their functions in regulating male 

mating are determined based on behavioral defects resulting from laser-ablating these 

neurons in behaving males. It is not known how they command their postsynaptic 

partners to execute specific steps of mating. The “copulation circuit” that facilitates the 

spicule movements (rapid shallow thrusts and prolonged full protraction) probably is the 

part of male-specific circuit that has been studied most. However, the functional 

structure of the copulation circuit is still far from being fully understood. In other words, 

it is not known how sensory information is processed and integrated to eventually 

command different types of muscle contractions, how the circuit coordinates these motor 

outputs in a proper sequence, and what molecules shape the synaptic transmission in this 
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circuit to support the functional connectivity. In this dissertation, I will address these 

questions.  

 

Study various aspects of behavioral regulation using the C. elegans male mating as 

a model 

 

The complexity of C. elegans male mating behavior provides great potential for 

studying various aspects of behavioral regulation, which will be elaborated in the next 

few paragraphs. However, the relative lack of understanding of the organization of the 

male circuits is incompatible with the fact that much attention has already been drawn to 

study different aspects of the behavior. For example, neurons and muscles in these 

circuits must be under modulation of various environmental and internal factors; 

however, without an understanding of how excitable cells in the circuit are used to 

generate and regulate behavior, it is difficult to interpret defective phenotypes caused by 

disrupting molecular components of the modulatory mechanisms. Therefore, studying 

the basic operational logic of the copulation circuit will elucidate the neural substrates 

for various study topics, such as modulatory mechanisms of behavior, evolutionary basis 

of different behavioral patterns in reproduction between closely related nematode 

species, and behavioral differences caused by sex dimorphism.  
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Modulation of sex muscle excitability by external environmental and internal 

metabolic changes 

 

The C. elegans male mating behavior is a motivated behavior, and it is subjected 

to modulation by external environment and internal metabolic conditions. It has been 

shown that both chemosensory and mechanosensory perception of food, food ingestion, 

and the aging process can affect a male‟s ability to mate (Gruninger et al., 2006; 

Gruninger, 2008; Gruninger et al., 2008; Garcia, 2010). A question arises from these 

observations: what molecular signaling pathways are recruited by these factors to 

modulate the copulation circuit activity? 

For signaling pathways that are susceptive to these factors, one of the ways for 

them to affect mating behavior is to modulate the spicule protractor muscles excitability. 

Starvation-induced suppression of sex muscle excitability has been studied in the 

greatest detail. In these studies, a null allele of the ERG-like K+ channel gene, unc-

103(0), causes ~30% of the males to spontaneously protract their spicules constitutively 

in the absence of hermaphrodite cues (“prc” phenotype for “protraction constitutive”), 

probably due to elevated protractor muscle excitability (Garcia and Sternberg, 2003). 

This “prc” phenotype can be suppressed by overnight starvation, or by mutations that 

interfere with pharyngeal muscle function, suggesting a hard-wired link between food 

availability and mating behavior (Gruninger et al., 2006). It was found that the sex 

muscle excitability is modulated via both food sensation and ingestion, since presence of 

non-digestible bacteria food, which still releases chemical odors, can partially suppress 
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the “prc” phenotype in unc-103(0) males. The odors of food are sensed by the 

chemosensory neuron, AWC, in the male head. This neuron is constitutively active in 

the absence of food. Active AWC down-regulates muscle excitability via the insulin-like 

receptor, DAF-2, on these muscles. Activated DAF-2 receptor has been well studied for 

its role in regulating life-span, developmentally arrested dauer stage and fat storage 

(Vowels and Thomas, 1992; Kenyon et al., 1993; Kimura et al., 1997). In these cases, it 

inhibits the FOXO transcription factor DAF-16 from entering the nucleus, and therefore 

upregulates regulates transcription of downstream genes (Vanfleteren and Braeckman, 

1999; Mukhopadhyay et al., 2006; Braeckman and Vanfleteren, 2007). However, DAF-

16 is not required for DAF-2 to suppress sex muscle excitability, instead, DAF-2 acts 

through PLC-γ to activate downstream CaMKII signaling in the male sex muscles 

(Gruninger et al., 2008). The activated CaMKII, during starvation, upregulates activity 

of the ether-a-go-go (EAG) K+ channel EGL-2 (Weinshenker et al., 1999), and thus 

lower the sex muscles excitability (LeBoeuf et al., 2007).  

Nevertheless, the spicule protractor muscles are just one of the sites of action for 

modulating male copulation. Molecules, such as CaMKII and UNC-103, are also 

expressed in neurons in the male copulation circuit (LeBoeuf et al., 2007; Gruninger et 

al., 2008). This suggests the neuronal components of the circuit can be also under 

regulation of the signaling pathways reviewed above, and so are other muscles. 

Consistent with this idea, to rescue the “prc” phenotype in mutant males that carry a 

loss-of-function allele of the CaMKII gene, CaMKII function needs to be restored not 

only to the male sex muscles but also to other muscles. This suggests that the CaMKII 
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signaling is also utilized in other muscles to regulate male mating (LeBoeuf et al., 2007). 

In C. elegans, measuring neuronal or muscular activity directly via electrophysiological 

methods requires expertise due to the small size of the worm and their neurons (Francis 

and Maricq, 2006). Therefore, most studies of behavioral regulation are conducted in 

behaving animals without invasive measurement. However, it is an intimidating task to 

study modulatory signaling targeted to those circuit components without knowing the 

behavioral output of their activities. With the understanding of how these neurons 

regulate the behavior revealed in this dissertation, modulation of the circuit at the 

different levels can be studied.  

 

Different reproductive behavioral patterns between closely-related nematode species  

 

The comparative analysis of C. elegans and the two nematode species that are 

closely related to it, C. remanei and C. briggsae, provides a great opportunity to study 

conserved molecular mechanisms that regulate neural development and behaviors of 

these animals. More importantly, comparative analysis between closely related nematode 

species also allows for an understanding of how diverged physiology underpins 

functional changes among these species through evolution (Coghlan et al., 2006). 

Molecular genetics has been well studied in C. elegans, and it has also started to be 

studied in the other two species (Lin et al., 2009; Seetharaman et al., 2010; Zhao et al., 

2010). In addition, all three genomes have been sequenced and at least partially 

annotated, and they appear to be very similar (Stein et al., 2003; Hillier et al., 2007; 
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Barriere et al., 2009). These advantages enable us to explore how proteins evolve among 

species to build diverse functional structures or determine distinct physiology of the 

neuronal circuits and eventually give rise to diverged behavioral patterns.  

With most studies currently focusing on diversity of gene families and functional 

molecules among these species, less is known about how neuronal circuits evolve to 

generate different patterns of behavior (Robertson and Thomas, 2006; Artieri et al., 

2008; Haerty et al., 2008; Srinivasan et al., 2008). All these species are morphologically 

identical, have identical habitat, and display similar behaviors. Surprisingly, males from 

different species have diverged mating behavior, probably due to the different 

reproductive needs of individual species. The males of the hermaphroditic species C. 

briggsae mate in a way similar to C. elegans, which has been described earlier. C. 

remanei is a gonochoristic species, in which the females need to mate with the males to 

have progeny. Therefore, as the females have to mate with males to reproduce, they are 

behaviorally receptive of males‟ attempts to mate. Once a C. remanei male locates a 

female‟s vulva with his tail, the female instantaneously stops locomotion, defecation, 

and pharyngeal pumping, and her vulva slit widens. The soporific behavior and vulva 

dilation displayed by the female is likely induced by factors secreted by the male, and 

this enables the male to insert his spicules immediately and then transfer sperm. Except 

for being more efficient in spicule insertion, the C. remanei males execute all other steps 

of mating similarly to the C. elegans males. Interestingly, when these males were set to 

mate with non-receptive hermaphrodites from the other species, they could not sustain 

vulva contact once they failed to insert in the first attempt (Garcia et al., 2007). This 
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indicates that the C. remanei males might not have the ability to stay in contact with 

vulva without spicules being inserted as an anchor. When C. elegans evolved 

independently from the gonochoristic ancestors (Braendle and Felix, 2006), the 

hermaphrodites lost the mechanism to respond to the male factor and became 

uncooperative to the males. It is possible that to adapt to the situation, the male then 

adopted a strategy to maintain prolonged vulva contact. Better understanding of the 

molecular and cellular mechanisms that regulate each step of the C. elegans male mating 

will enable us to study what changes, on the molecular and cellular level, are necessary 

to occur in the nervous system for new patterns of behavior to emerge.  

 

Genetic control of sex differences in C. elegans behavior 

 

Like D. melanogaster, C. elegans has been used as a model organism to study 

sex differences in nervous system structure and function (Portman, 2007). Different from 

vertebrates, where the sexual differentiation heavily relies on the gonadal steroid 

hormones, the C. elegans sex difference is cell-autonomously regulated by the master 

gene tra-1 (Hodgkin, 1986). tra-1 encodes a transcription factors and is turned on in 

hermaphrodites and off in males, as a result of a signaling cascade that assesses the sex 

chromosome-to-autosome ratio (Zarkower and Hodgkin, 1992; Portman, 2007). Previous 

research has shown that nearly all sexually dimorphic cell fates are determined by tra-1. 

Several downstream effector molecules have been identified to determine the cell-

lineage, programmed cell death, and development of sex-specific tissues (Hunter and 
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Wood, 1990; Portman, 2007). However, it remains largely unknown what signaling 

hierarchy links tra-1 to sex-specific behaviors.  

Mating is the major sex-specific behavior for C. elegans males. It is an ultimate 

result of sex-specific differentiation of the nervous system. The male has 89 sex-specific 

neurons, which are probably responsible for generating the mating behavior (Sulston et 

al., 1980). A couple of genes have been identified as downstream effectors of tra-1 to 

regulate the sexual phenotype of the male-specific nervous system (Portman, 2007). For 

example, DM-domain genes, such as mab-23, mab-3 and dmd-3, have been shown to 

regulate development of the male-specific tissues (rays, sex muscles, male tail 

hypodermis) that are obviously required for male mating (Shen and Hodgkin, 1988; 

Lints and Emmons, 2002; Mason et al., 2008). However, sex difference is not limited to 

differences in morphology or structural development that are obvious under the 

microscope. Differences also exist in mechanisms that determine the circuit physiology 

or define the connectivity between excitable cells (Lee and Portman, 2007). To 

understand the mechanisms that determine this type of difference, an understanding of 

how molecular mechanisms shape physiology of the functional components of the male 

circuitry and how that gives rise to behavior is required.  

 

Dissertation objectives 

 

The objective of this dissertation is to elucidate cellular and molecular 

components that are necessary for a neuromuscular circuit to generate complex motor 
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behavior for an animal to reproduce. The circuit studied is the cholinergic C. elegans 

male copulation circuit. This dissertation will address how activities of different male-

specific neurons and muscles generate distinct and coordinated behavioral patterns to 

facilitate male copulation. It will also showcase that, with the newly gained knowledge 

of functional circuit connectivity, a G-protein coupled signaling pathway which I 

uncovered in an earlier study, can be put into a better context to modulate the behavior. 

This work will provide fundamental knowledge about the behavioral circuit connectivity 

and organization, which will serve as the backbone for future study of functional 

molecules that regulate the circuit physiology and shape the pattern of male mating 

behavior in C. elegans.  

In Chapter II, detailed materials and methods that are used in experiments 

performed in Chapters III, IV and V are provided. In Chapter III, I demonstrate that the 

male mating is optimized by a modulatory signaling pathway. This pathway, mediated 

by the G-protein-coupled mAChR GAR-3, enhances excitability of the male copulation 

circuit. As a result of activating this pathway, the ionotropic AChR signaling in the 

circuit is upregulated before and during mating. Hence, loss of GAR-3 function results in 

males that have reduced efficiency of mating. In Chapter IV, I explore the role of 

ionotropic AChRs in the copulation circuit, in addition to their previously-described role 

in promoting spicule protraction. I find the LEV-sensitive AChR and the α7-like 

ionotropic AChR are used to mediate neurotransmission between the postcloacal sensilla 

(p.c.s.) neurons and posterior male tail muscles. Contraction of these muscles is required 

for the male to maintain his tail position at the hermaphrodite‟s vulva. In Chapter V, I 
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address the mechanism the circuit employs to regulate the bistable states of the spicule 

protractor muscles, rapid shallow contraction and prolonged full contraction. I 

demonstrate that rapid shallow protractor contraction is induced by the p.c.s. neurons, 

however, not via direct synaptic transmission. The activated posterior male tail muscles 

relay signal molecules to the protractors through gap junctions, and then cause 

regenerative Ca2+ current to induce protractor contractions. I also determine that for the 

protractor muscles to switch to prolonged full contraction, the copulation circuit needs to 

integrate multiple sensory signals, including precise contact between a male‟s cloaca and 

a hermaphrodite‟s vulva and partial penetration of the vulva slit. An ERG-like K+ 

channel UNC-103 is utilized by the circuit to maintain the lower circuit excitability, so 

that presence of fewer signals results in lower probability of spicule protraction. 

 

 

 

 

 

 

 

 

 

 

 



25 
 

CHAPTER II 

EXPERIMENTAL PROCEDURES*  

 

Strains 

All strains were grown at 20°C on nematode growth media (NGM) plates seeded 

with E. Coli OP50 (Brenner, 1974). Pharmacological and behavioral assays were 

conducted between 21-23°C. All males contained him-5(e1490) on linkage group 

V(LGV) (Hodgkin et al., 1979). Additional alleles used were: unc-29(e193) (Lewis et 

al., 1980a; Kim et al., 2001), unc-38(sy576) (Garcia et al., 2001), egl-30(ad805) 

(Brundage et al., 1996), egl-30(tg26gf) (Doi and Iwasaki, 2002), unc-29(e1072) (Lewis 

et al., 1980a), unc-73(ce362) (Williams et al., 2007) on LGI; unc-103(n1213) (Park and 

Horvitz, 1986), pha-1(e2123) (Schnabel and Schnabel, 1990), unc-64(e246) (Brenner, 

1974) on LGIII; cha-1(p1152) on LGIV (Rand and Russell, 1984); unc-17(e245) 

(Brenner, 1974), egl-8(n488) (Miller et al., 1999) on LGV, acr-16(ok789) and gar-

3(gk305) on LGV were generated by the C. elegans Gene Knockout Consortium; unc-

9(e101) (Brenner, 1974) and lite-1(ce314) on LGX (Edwards et al., 2008). Alleles used 

in this dissertation are summarized in Table A-2.  

 

 
 
 
 
_____________________ 
* Part of this chapter is reprinted with permission from “G{alpha}q-Coupled Muscarinic 
Acetylcholine Receptors Enhance Nicotinic Acetylcholine Receptor Signaling in Caenorhabditis 
elegans Mating Behavior” by Liu Y, LeBoeuf B, Garcia LR, 2007, Journal of Neuroscience, 27, 
1411 – 1421. Copyright © 2007 by Society for Neuroscience. 
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The sy576 mutation in unc-38 creates a C to T missense mutation that causes the 

sequence ttgttcccgtttgat to change to tggttcctgtttgat.  The proline to leucine change 

occurs in the di-cysteine loop of the protein. This allele was isolated by Dr. Rene Garcia. 

 

Behavior assays 

 

Assay for spontaneous spicule protraction (Prc) phenotype 

Males at the L4 larval stage were separated from hermaphrodites and put onto a 

fresh NGM agar plate containing E. coli OP50. ~20 hrs later, adult virgin males were 

scored for spontaneous spicule protraction. Males with spicules partially or fully 

protracted for more than 10 seconds were scored positive for the Prc phenotype.   

 

Observation of behaviors on Oxo M plates 

0.5 ml of 100 mM Oxo M was applied on top of NGM plates containing an E. 

coli OP50 lawn. When the drug had soaked into the agar, 5-10 virgin adult males were 

placed onto the OP50 lawn. Behaviors were then observed with a Zeiss Stemi SV 11 

microscope. 

 

Mating potency assay  

Males were separated from hermaphrodites at the L4 stage and put onto a fresh 

OP50-containing NGM plate. The next day, each male was put onto an individual plate 
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containing a “mating lawn” of OP50 with one free-moving pha-1(e2123) hermaphrodite. 

25 µl of a saturated OP50 culture was seeded on each plate the previous night. Males 

and hermaphrodites were incubated together for 4 hours at 20°C, after which the males 

were picked off. Hermaphrodites were then incubated at 25°C, and their progeny was 

scored three days later. Homozygotes of pha-1(e2123) cannot survive beyond the L1 

stage at 25°C (Schnabel and Schnabel, 1990).  Plates with L2 or older progeny indicated 

that cross fertilization occurred. The percentage of males that can sire progeny within 4 

hours was recorded for each strain. The wild-type potency was arbitrarily set to 100%, 

and mating potency of mutants was calculated proportional to the wild type. 

 

Mating observation 

L4 males and unc-64(e246) L4 hermaphrodites were picked onto separate plates 

14 hrs before observation. To make the bacterial lawn used for mating observations, I 

grew OP50 in LB at 37ºC overnight without aeration, concentrated 1 ml of culture via 

centrifugation and resuspended the bacterial pellet in 20 μl of LB. I then placed ~10 μl of 

the concentrated bacteria onto the center of the NGM agar plate. After the excess liquid 

soaked into the agar, I placed 15-30 young adult (1-day into the adulthood) unc-64(e246) 

hermaphrodites and one virgin adult male onto the lawn. Male mating behavior was 

observed with a Zeiss Stemi SV 11 microscope.  

I recorded how long the male spent performing each step of mating behavior 

using a computer and a time recording Visual Basic Macro written in Microsoft® Excel, 

which was provided by Dr. Rene Garcia: 



28 
 

Sub Macrotimerecorder() 
     
Dim row As Integer 
Dim InputVal As String 
 
InputVal = "" 
row = 1 
Sheets("Sheet1").Activate 
Columns("A:B").Select 
Selection.ClearContents 
 
Do While (InputVal <> "E") 
InputVal = InputBox("Enter S, 1, 2, or E") 
If InputVal = "e" Then 
   InputVal = "E" 
   End If 
If InputVal = "s" Then 
   InputVal = "S" 
   End If 
    Cells(row, 1).Value = InputVal 
    Cells(row, 2).Formula = "=NOW()" 
    Cells(row, 2).Select 
    Selection.Copy 
    Cells(row, 2).Select 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
    Application.CutCopyMode = False 
    row = row + 1 
    
Loop 
End Sub 
 

I measured the duration and number of times a male: backed along the length of 

hermaphrodite searching for the vulva, located and rhythmically prod the vulva with his 

spicules, moved off the vulva or fully inserted his spicules, ejaculated, retracted his 

spicules and moved off the hermaphrodite. After the male finished mating, I removed 

both the male and his hermaphrodite mate. A fresh virgin male was used for each 

observation.  
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 Vulval contact assay 

Males and hermaphrodites were separated from each other at the L4 stage, and 

put onto separate OP50-containing plates. The next day, 20-30 paralyzed hermaphrodites 

were put on a mating lawn. One male was then put onto the mating lawn and observed 

with a Zeiss Stemi SV 11 microscope. For the vulval contact assay in Chapter IV and V, 

the male behavior was video recorded once he started scanning the hermaphrodite with 

his tail. 1-day-old adult unc-64(lf) hermaphrodites were used to pair with the male. 

Recordings were stopped 5 minutes later or when the male inserted his spicules 

(whichever happened first). I recorded how long a male spent performing each step of 

mating behavior using the aforementioned time recording Visual Basic Macro.  

The vulvas of hermaphrodites at this age were not dilated due to extended egg-

laying, thus, the vast majority of the males tested in this work could not penetrate the 

vulva for the duration of the first vulval contact (77.3% of wild type, n=66; 78.9% of 

unc-29(lf) locomotion-restored males, n=19; 92.3% of acr-16(0) males, n=13; 87.5% of 

unc-29(lf);acr-16(0) locomotion-restored males, n=32; 100% of the SPC-ablated males, 

n=11). Therefore, the average duration of vulval contact of an individual male was 

averaged from multiple vulval contacts, and the efficiency of spicule insertion was not 

likely to affect our measurements of vulval contact duration. Multiple males were 

analyzed for each strain or treatment. Wild-type males/non-operated males were always 

observed in parallel with mutant males/operated males as control. Statistic comparisons 

were only conducted between male samples that were observed in parallel, since the 
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wild-type behavior can vary on a day-to-day basis. Comparison between two samples 

was done by using the Mann-Whitney non-parametric test.  

 

Sperm release  

The behavior of males was filmed and the duration of sperm “release” was 

recorded as described earlier. As defined by a previous study, sperm “release” refers to 

the process when sperm leaves the seminal vesicle and is release from the vas deferens 

(Schindelman et al., 2006).  

 

Pharmacology 

 

 Levamisole (LEV) (ICN Biomedicals, Aurora, OH) was prepared in distilled 

water and stored at -20°C. 400 µl of LEV solution at various concentrations was added 

to a Pyrex Spot Plate (nine 1 ml volume depressions), and ~5-10 virgin males were put 

into the drug. I observed these males for 3 minutes under a Leica MZ 7.5 

stereomicroscope. A male was considered sensitive to the drug if he fully protracted his 

spicules for > 5 seconds. Fresh drug was used after ~30 virgin males were assayed. 

Comparisons were made by using the Fisher‟s exact test.  

Oxotremorine M (oxo M) (Sigma-Aldrich, St. Louis, MO) was prepared and 

applied using the same methods as LEV. A male was considered sensitive to the drug if 

he protracted his spicules within a 10-minute observation window, since males respond 

to oxo M not as rapid as to LEV. 
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Plasmids  

 

Expression pattern of gar-3, acr-16, unc-6, unc-38, unc-29 and acr-18 

Primer sequences are provided in Table A-1. A 6 kb of DNA upstream of gar-3 

ATG was PCR amplified, using primers ATTB1gar-3Aup and ATTB2gar-3Adwn 

(Table A-1), to analyze the gar-3 expression pattern driven by the promoter Pgar-3A as 

reported by Steger and Avery (Steger and Avery, 2004). A 5.3 kb region upstream of the 

acr-16 ATG was PCR amplified with the following primers: ATTB1acr-16 and 

ATTB2acr-16 (Table A-1). A 2.4 kb region upstream of the unc-63 ATG, plus the first 

three codons, was PCR amplified with the following primers: attb1unc-63 and unc-

63attb2 (Table A-1).  A 4.3 kb genomic region that contained 1.2 kb upstream of the 

unc-38 ATG and all unc-38 introns and exons up to the stop codon was PCR amplified 

with the following primers: attb1unc-38fus and Attb2unc-38fusnew (Table A-1). A 2.2 

kb genomic region that contained a 1.3 kb region upstream of the unc-29 ATG and part 

of the unc-29 genomic sequence up to the end of the second exon was PCR amplified 

with the following primers: ATTB1Punc-29 and ATTB2Punc-29 (Table A-1). A 2.3 kb 

genomic region that contained 1.2 kb upstream of the unc-29 ATG and all unc-29 introns 

and exons up to the stop codon was PCR amplified with the following primers: 

ATTB1Punc-29 and ATTB2U29lstex (Table A-1). A 6.2 kb region upstream of the acr-

18 ATG was PCR amplified with the following primers: ATTB1acr-18 and ATTB2acr-

18noatg (Table A-1).   
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All these PCR primers contained Gateway ATTB sites, which allowed the gar-

3A, gar-3B, acr-16, unc-63, unc-38, unc-29 and acr-18 PCR products to be recombined, 

using BP clonase (Invitrogen), into the low copy number Gateway entry vector pDG15, 

to generate pLR56, pLR98, pLR149, pLR125, pYL21 (includes the partial unc-29 gene), 

pLR198 (includes the full-length unc-29 gene) and pLR162, respectively. In order to 

place the acetylcholine receptor sequences in front of YFP, pLR98, pLR149, pLR125, 

pYL21 and pLR198 were then individually recombined with the YFP destination vector 

pGW322YFP (Reiner et al., 2006) using LR clonase (Invitrogen) to make the plasmids 

pLR59, pLR106, pLR152, pLR127, pYL22 and pLR199, respectively. pGW322YFP and 

pDG15 have been described in previous studies (Gruninger et al., 2006; Reiner et al., 

2006). pLR56, pLR59, pLR98, pLR106, pLR125, pLR127, pLR149, pLR152, pLR162, 

pLR198, and pLR199 were constructed by Dr. Rene Garcia and Dr. Daisy Gualberto.  

To test if the sequence Pgar-3B was sufficient to facilitate the transcription of 

gar-3, 3.5 kb DNA upstream of the gar-3 isoform Y40H4A.1a.1 5‟ UTR was amplified 

using primers Gar3upstrmRv and Dwngar3B (Table A-1). The Pgar-3B promoter was 

blunt-end cloned into the SmaI site of the YFP-containing plasmid pSX322 (Reiner et 

al., 2006) to generate pYL1.  

 

Rescue using gar-3 genomic sequence driven by the hsp16-2 promoter 

To drive gar-3 expression using the heat shock promoter hsp16-2, the Gateway 

Conversion Reading frame Cassette C.1 (Invitrogen) was cloned into the EcoRV site of 

the heat shock promoter vector pPD49.78 (courtesy of A. Fire, Stanford University 
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School of Medicine, Stanford, CA) (Addgene plasmid 1447, Addgene, Cambridge, MA) 

to generate the Gateway destination vector pTG14. This construct was made by Dr. 

Todd Gruninger, a former member in the lab. Primers ATTB1GAR-3strt and 

ATTB2Gar-3end (Table A-1) were used to amplify 4.9 kb of gar-3 genomic DNA and 

flank the DNA with attB sites. Using BP clonase, the PCR product was recombined into 

pDG15 to generate pYL3. gar-3 was then recombined from pYL3 into pTG14, using LR 

clonase, to generate pYL4.  

 

Rescue using gar-3 genomic sequence driven by gar-3 endogenous promoters  

A 4.9 kb genomic gar-3-containing sequence from the ATG to last asparagine 

codon was PCR amplified via primers Gar3xbaF and Gar3avrR (Table A-1). To fuse the 

C-terminal end of GAR-3 to YFP, the PCR product was cut with XbaI and AvrII, and 

then cloned into the XbaI site of the YFP-containing plasmid pSX322 to generate pYL5. 

To add different promoters in front of gar-3::YFP, pYL5 was cut with XbaI and ligated 

to the Gateway Vector Conversion Reading frame Cassette C.1 (Invitrogen) to generate 

the Gateway destination vector pYL6. To generate Pgar-3A: gar-3::YFP, the gar-3 

promoter Pgar-3A contained on pLR56 was recombined into pYL6, using LR clonase, 

to generate pYL8. To construct Pgar-3B: gar-3::YFP, the 3.5 kb gar-3 promoter Pgar-

3B was PCR amplified via primers ATTB1gar-3Bup and ATTB2gar-3Bdwn (Table A-1) 

and then recombined into plasmid pDG15, using BP clonase, to generate the entry clone 

pLR57. pLR57 was then recombined with pYL6, using LR Clonase, to generate pYL9.  
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Rescue by tissue-specific gar-3 expression 

Entry clones pLR21 and pLR28 contain the 5.4 kb unc-103 promoter Punc-103E 

and the 5 kb unc-103 promoter Punc-103F, respectively (Reiner et al., 2006). The unc-

103 promoters were recombined from pLR21 and pLR28 into the Gateway destination 

vector pYL6 to generate pYL10 and pYL11.  

 

Cell specific expression of unc-29 cDNA 

A SL2-accepting trans-splice site was inserted between the unc-29 cDNA 

(including the stop codon) and the GFP gene to use GFP flourescence as a proxy for 

unc-29 expression. The intergenic region between gpd-2 and gpd-3, containing a SL2-

accepting trans-splice site, was PCR amplified with the following primers: igrgpd3 and 

gpd2igr. This region was then cloned into the SmaI site of pPD95.69 (Addgene plasmid 

1491) to generate pJP1. pJP1 was generated by Jodi L. Bollinger, a former member in 

the lab. pJP1 was cut with HindIII and ApaI and then cloned into the HindIII/AvaI sites 

of pBR322 to generate pDG4, which contains the SL2 site in front of the GFP gene. The 

unc-29 cDNA was then PCR amplified from a cDNA library using the primers Func-29 

and unc-29R. The unc-29 cDNA was cloned into the BamHI site of pDG4 to generate 

pDG5. pDG5 was then cut with XbaI, blunt-ended and then ligated with the Gateway 

Vector Conversion Reading frame Cassette C.1 (Invitrogen) to generate pYL16. The 

acr-8 and the lev-11 promoter regions were recombined into the entry vector pDG15 to 

generate pLR92 and pLR22, respectively (Gruninger et al., 2006; Gruninger et al., 
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2007). Then I recombined the promoter sequences in pLR92 and pLR22 into pYL16 

using LR clonase (Invitrogen) to generate pYL18 and pYL20, respectively.  

 

Cell specific expression of ChR2 

To put a Gateway destination cassette situated in front of ChR2, a Pmyo-

3::ChR2(gf)::YFP plasmid (a gift from Dr. Gottschalk, Goethe University Frankfurt) 

(Nagel et al., 2005) was cut with HindIII and BamHI, blunt-ended and then ligated with 

the Gateway Vector Conversion Reading frame Cassette C.1 (Invitrogen) to generate 

pZL5 (made by Dr. Robyn Lints). A TGA stop codon 50 nucleotides downstream of the 

XbaI site was changed to GGA to generate pLR167. To express ChR2 from the promoter 

region of acr-18, unc-103 (promoter E and F), lev-11 and gar-3 (promoter B), pLR162, 

pLR21, pLR28, pLR22 and pLR57 were subsequently recombined with pLR167 to make 

pLR165, pLR176, pYL41, pLR178 and pLR183, respectively. Construction of pLR21, 

pLR22, pLR28 and pLR57 have been described previously (Reiner et al., 2006; LeBoeuf 

et al., 2007; Liu et al., 2007; Gruninger et al., 2008).  

 

Transgenics 

 

Plasmids were co-injected with pBX1 (Ppha-1:pha-1) (50 ng/µl) (except for 

pLR59 and pYL1, pBX1 was injected at 100 ng/μl) into strains that contained the pha-

1(e2123) allele (Granato et al., 1994). The F1s and their progenies that could survive 

beyond the L2 stage were kept as transgenic animals, as the pha-1(e2123) phenotype 
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was rescued by pBX1. For strains that did not have the pha-1(e2123) allele, GFP or YFP 

encoded on one of the injected plasmids was used to identify transgenic animals. For all 

injections, pUC-18 was used to make the final concentration of DNA to 200 ng/µl.  

The expression constructs pLR59, pYL1, pLR106, pLR152, pLR127, pLR199 

and pYL22 were injected at 50 ng/µl into the pha-1(e2123); him-5(e1490); lite-1(ce314) 

hermaphrodites. Multiple male-specific muscles are located within a small region of the 

male tail. Sometimes it is difficult to differentiate these muscles when the majority of 

them are expressing YFP. The expression of pLR165 (Pacr-18:ChR2::YFP) was located 

on the plasma membrane and the ER, making it easier to visualize muscle expression in 

the male tail (Fig. A-1). 

To express the genomic DNA of gar-3 gene by the heat shock promoter hsp16-2, 

an injection mixture containing pYL4 (25 ng/μl), pBX1 (100 ng/μl) and pUC18 (75 

ng/μl) was injected into pha-1(e2123); him-5 (e1490) gar-3(gk305). Three lines were 

obtained; all transgenic lines were rescued upon heat shock. One of these lines, pha-

1(e2123); him-5 (e1490) gar-3(gk305); rgEx65 was further analyzed.  

To express the genomic DNA of gar-3 gene by its own endogenous promoter 

Pgar-3A, an injection mixture containing pYL8 (20 ng/μl), pBX1 (100 ng/μl) and 

pUC18 (80 ng/μl) was injected into pha-1(e2123); him-5 (e1490) gar-3(gk305).  Three 

transgenic lines were obtained, and the line that contained rgEx90 [Pgar-3A::gar-

3::YFP] was further analyzed. To express the genomic DNA of gar-3 gene by its own 

endogenous promoter Pgar-3B, an injection mixture containing pYL9 (50 ng/μl), pBX1 

(100 ng/μl) and pUC18 (50 ng/μl) was also injected into pha-1(e2123); him-5 (e1490) 
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gar-3(gk305). The him-5 (e1490) gar-3(gk305); pha-1(e2123); rgEx92 [Pgar-3B::gar-

3::YFP] transgenic line expressed brightly fluorescing GAR-3::YFP. When assayed with 

50 mM Oxo M, this line was rescued for Oxo M sensitivity. However, after 3- 4 

generations, YFP expression became faint and disappeared eventually. Reducing pYL9 

concentration to 10 ng/μl and 1 ng/μl in the injection mixture didn‟t solve this problem. I 

speculated that the reduced YFP expression might be due to silencing of repetitive 

transgene arrays. Thus I used PvuII-digested C. elegans genomic DNA (50 ng/μl) as the 

carrier DNA to coinject with pYL9 (50 ng/μl) and pBX1 (100 ng/μl). 15 lines were 

obtained and YFP expression in all of them was stable. The line him-5 (e1490) gar-

3(gk305); pha-1(e2123); rgEx107 was further analyzed. Interestingly, when pYL8 and 

pYL9 were coinjected at 30 ng/μl, expression from both constructs was stable, even 

when PvuII-digested C. elegans genomic DNA was not used as a carrier. Presumably, 

some sequence in pYL8 can reduce the silencing of pYL9. 

To express the gar-3 gene using other tissue-specific promoters, 50 ng/μl of 

pYL10 and pYL11 plasmids were injected separately with pBX1 (100 ng/μl) and pUC18 

(50 ng/μl) to generate the extrachromosomal arrays rgEx94 (containing Punc-103E::gar-

3::YFP) and rgEx95(containing Punc-103E::gar-3::YFP). 

To rescue the locomotion defects of unc-29(lf) males, pYL18 (70 ng/μl) and 

pYL20 (20 ng/μl) were injected into unc-29(e193); him-5(e1490) or unc-29(e193); acr-

16(ok789) him-5(e1490) hermaphrodites. To express G-CaMP and DsRed 

simultaneously in the male-specific muscles and express ChR2 in the oblique-

gubernacular muscle group, pLR135 (20 ng/µl), pLR136 (50 ng/µl) and pLR165 
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(100ng/µl), were injected into the pha-1(e2123); him-5(e1490); lite-1(ce314) 

hermaphrodites by Todd Gruninger. pLR35(Punc103E::G-CaMP) and pLR36(Punc-

103E::DsRed) are described elsewhere (Gruninger et al., 2008). To express ChR2 in 

specific tissues, pLR176 (50 ng/µl), pLR178 (50 ng/µl), pLR183 (100 ng/μl) and pYL41 

(150 ng/μl) were injected into the pha-1(e2123); him-5(e1490); lite-1(ce314) 

hermaphrodites.  

The transgenic line xuEx[Punc-38::YFP + lin-15(+)]; lin-15(n765ts) was a gift 

from Dr. Shawn Xu (Life Sciences Institute, University of Michigan). Plasmids 

containing the unc-38 promoter::YFP construct (100 ng/μl) and the lin-15 gene (40 ng/μl) 

were co-injected into lin-15(n765ts) hermaphrodites. The unc-38 promoter::YFP 

plasmid is a transcriptional fusion that contains YFP expressed from 1.1 kb DNA 

upstream of the first ATG of unc-38.  

 

Laser ablation 

 

Cell ablations were done using the standard protocol (Bargmann and Avery, 

1995). The operation was conducted using a Spectra-Physics VSL-337ND-S Nitrogen 

Laser (Mountain View, Ca) attached to an Olympus BX51 microscope. L2 worms were 

operated on 5% agar pads containing 0.5 mM NaN3, and L4 males were operated on 5% 

agar pads containing 2 mM NaN3. For each operated animal, a control animal was 

placed on the same agar pad for the same amount of time to rule out the possibility that 

behavioral changes are due to the anesthetic pads. Ablation of the PCA and PCB neurons 
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was done by Brigitte LeBoeuf, and she also collected the data to produce the vulval 

contact profiles of these animals.  

 

Optical stimulation and detection of repetitive spicule thrusts 

 

lite-1(ce314) males that expressed Pacr-18:ChR2::YFP were used. At L4 stage, 

males were transferred onto NGM plates with OP50 supplemented with all-trans retinal. 

Males with the same transgenes were also placed onto NGM plates with regular OP50 as 

control. All-trans retinal-containing plates were prepared the day before by spreading 

OP50 culture that contained 50 μM all-trans retinal (A.G. Scientific). 

 The next day, the males were immobilized on 10% agarose (in H2O) pad 

containing 0.5 µl of 0.1 µm diameter polystyrene microspheres, and covered with a 

coverglass (Fang-Yen et al., 2009). Sequences of DIC images of the male tails were 

recorded under an Olympus BX51 microscope. A Dual View Simultaneous Imaging 

Systems by Photometrics (Surrey, BC) was used and adjusted to split the image signal, 

so that DIC image could be recorded in one field of view (field 1),  and simultaneously, 

fluorescent signals could be recorded in the other field with a dimmer DIC image (field 

2)(Fig. A-2). Multiple blue light pulses were applied manually to each male tested. Once 

the blue light was turned on, the YFP fluorescent signal was detected in field 2 and this 

was used to indicate the timing of light stimulation in our recording (Fig. A-2). An ROI 

was placed in the DIC image in field 1 at the base of one spicule (Fig. A-2). During 

spicule thrusts, light refractivity of the region defined by the ROI changed, resulting in 
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changes in the standard deviation of the pixel intensity within this ROI (SDEV) (Fig. A-

2). Therefore, the value of SDEV throughout the image sequence was used to indicate 

the displacement of spicule.  

 

Optical stimulation and Ca
2+ imaging 

 

Strains used to image Ca2+ transient contained lite-1(ce314). Muscular Ca2+ 

transients were measured by detecting changes in fluorescence intensity of G-CaMP. 

The red fluorescent protein DsRed was expressed in the same set of cells as G-CaMP. 

Since the fluorescence intensity of DsRed does not change in response to light 

stimulation, it was used as an internal control. ChR2 is expressed in the gubernacular-

oblique muscle group. DsRed and G-CaMP signals were recorded separately, but 

simultaneously via the Dual View Simultaneous Imaging Systems with an OI-11-EM 

filter by Photometrics (Surrey, BC). To record G-CaMP and DsRed, the transgenetic 

males were placed on agar pads without NaN3, and were observed under an Olympus 

BX51 microscope using a 40× objective. The images were recorded using a Hamamatsu 

ImagEM Electron multiplier (EM) CCD camera. Series of pictures were taken at the 

speed of ~25 frames per second for 1 minute after the blue light was turned on. To 

record Ca2+ changes, each transgenic male was separated from hermaphrodites at the 

mid-L4 larval stage, and grown on OP50 lawns overnight. The adult male was recorded 

for the first time with non-functional ChR2, to obtain the baseline ratio of G-

CaMP/DsRed intensity (R0). This ratio does not change within a short period, since G-
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CaMP and DsRed expression were under control of the same promoter. Afterwards, they 

were incubated on OP50 lawns that contain all-trans retinal for 30 minutes and then 

reimaged under blue light. 

 

Laser stimulation and Ca
2+ imaging 

 

Laser stimulation of muscles was slightly modified from a previous study (Reiner 

et al., 1995). 18 -24 hr adult males containing G-CaMP and DsRed in their muscles were 

put on a 10% agarose (in H2O) pad containing 0.5 µl of 0.1 µm diameter polystyrene 

microspheres, and covered with a coverslip (Fang-Yen et al., 2009). The minimum 

output of a Spectra-Physics VSL-337ND-S Nitrogen Laser was adjusted to induce 

muscle contraction. The laser was aimed at the gubernaculum erector or a posterior body 

wall muscle, and one to ten pulses were applied to induce the muscles to contract. G-

CaMP and DsRed fluorescence changes were then measured in the gubernaculum and 

body wall muscles, as well as the anal depressor and protractor muscles.    

 

Analysis of Ca
2+

 imaging data 

 

The Hamamatsu SimplePCI (version 6.6.0.0.) software was used to analyze the 

movies. The region-of-interest (ROI) that covers the spicule protractor and anal 

depressor muscles was defined manually for both G-CaMP and DsRed, and an ROI was 

picked far away from the male as the background region for both channels. All ROIs had 
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the same shape and area (by using the “ROI clone” tool), and the “mean grey” of the 

ROIs was calculated for each frame as the fluorescence intensity. The intensity of the 

background region ROI was subtracted from the sample region ROI to exclude 

background fluorescence from other sources. 

The intensity of DsRed does not change in response to Ca2+ transients. The 

average intensity of the DsRed was calculated through the image sequence 

(DsRedaverage). The intensity of DsRed for each frame (DsRedn) deviates from the 

“DsRedaverage” only because of photo bleaching and/or changes in muscle shape, which 

should contribute to G-CaMP signal change as well. To cancel out these Ca2+-unrelated 

changes in G-CaMP signals, the intensity of G-CaMP in each frame (G-CaMPn) was 

then normalized by using the equation of “G-CaMPnormalized n= G-CaMPn × DsRedaverage 

/DsRedn”.  

         For the baseline recording before all-trans retinal incubation, a ratio of “G-CaMPnormalized 

n/DsRedaverage” for each frame was calculated (R0 n), and the average of this ratio within 

the first 2-4 seconds of recording (R0) was used as the baseline signal. 

For the second recording after all-trans retinal incubation, the ratio of “G-

CaMPnormalized n/DsRedaverage” for each frame was also calculated (Rn). Finally, the Ca2+ 

level change (∆R/R0) for this male was then calculated by “(Rn - R0)/R0×100%”. This 

ratio is comparable to the ∆F/F0 ratio used in other literature, except for that a G-

CaMP/DsRed ratio is used instead of merely the G-CaMP intensity. The ratio ∆R/R0 was 

plotted over time as “corrected G-CaMP fold change trace for stimulated recording”.  
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The maximum fold change (max. ∆R/R0) throughout the frame sequence was then 

calculated. Finally, the “max. ∆R/R0” was used as the maximal Ca
2+ level change for 

each male, and was plotted and compared between treatments groups using the Mann-

Whitney non-parametric test.  

 

Optical stimulation and continuous Ca
2+

 imaging  

 

A demonstration unit of the Mosaic Imaging System (Andor™ Technology) was 

used to image G-CaMP and DsRed in the protractor muscles before, during and after 

light-stimulation of the gubernacular-oblique muscle group. The image sequences were 

taken at a rate of ~72 frames/second. Males that expressed Pacr-18:ChR2::YFP, Punc-

103E:G-CaMP and Punc-103E:DsRed were used in this assay. Males were immobilized 

by using the 10% agarose pad and polystyrene microspheres described earlier. Only the 

region of protractors was illuminated and monitored in the first 100 frames of images 

(~1.4 seconds). Then, a region containing the gubernacular-oblique muscles was 

subsequently stimulated with blue light for 1000 frames of recording (~14 seconds). The 

protractors were continuously monitored during this period, and were recorded for 

another 500 frames (~6.9 seconds) after the end of gubernacular-oblique stimulation. 

The Ca2+ level change (∆R/R0) was then calculated by “(Rn - R0)/ R0×100%”. Rn and R0 

were determined using methods described earlier. For some males, periodic spicule 

movements were seen before stimulation of the gubernacular muscles, due to pressure 

applied on the male tail by the coverglass.  
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RNA interference 

 

RNAi was induced by feeding worms bacteria producing double stranded RNA 

to the target genes. Bacteria containing the target genes were obtained from the C. 

elegans ORF-RNAi library (Rual et al., 2004). Bacteria with the L4440 double-T7 

vector but with no target gene was used as the negative control. Bacteria were grown and 

induced by IPTG using a standard protocol (Kamath et al., 2001). L4 males were 

transferred to plates spotted with the bacteria that express dsRNA and were incubated for 

~20 hours. The adult males then were assayed for their response to light stimulation. The 

target gene sequences in the bacteria were verified by PCR amplification and sequencing 

using the universal primers (Rual et al., 2004). 

 

Injection of carbenoxolone and tubocurarine 

 

Males that expressed Pacr-18:ChR2::YFP, Punc-103E:G-CaMP and Punc-

103E:DsRed were injected with the drugs. Carbenoxolone disodium salt (CBX) and (+)-

Tubocurarine were purchased from Sigma-Aldrich (St. Louis, MO). Solution of CBX or 

tubocurarine was injected into the males using the same procedure as DNA 

microinjection. Males were imaged to obtain the baseline G-CaMP/DsRed ratio, and 

then were incubated on OP50 supplemented with all-trans retinal for 30 minutes. Drug 

or water was injected right after the incubation. These males were allowed to recover on 

OP50 supplemented with all-trans retinal for 1 hour, before they were imaged again to 
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assess light-induced changes in the G-CaMP/DsRed ratio. For the injection needle not to 

stimulate any muscles or neurons in the male tail, one injection pulse was done at 1/3 of 

body length away from the posterior end of the male, the other was done in the anterior 

half of the male. A series of different concentrations of solution were injected for each 

drug to determine the proper concentration for our measurements. 7.5 mM or higher of 

CBX was found completely to suppress the light-induced repetitive spicule thrusts as 

well as the locomotion (Fig. A-3). Upon light stimulation, the G-CaMP signal then was 

measured in males that were injected with 7.5 mM CBX. The effects of different 

concentrations of tubocurarine were evaluated, and 7.5 mM or higher of tubocurarine 

was found to completely suppress the worm‟s locomotion. 10 mM of tubocurarine then 

was injected for the recordings.  

 

Assay for blue light induced behaviors 

 

All strains used in this assay contained the lite-1(ce314) allele. At L4, males 

expressing the respective transgenes were transferred onto NGM plates with OP50 

supplemented with all-trans retinal, which was prepared in the same way as described. 

Males with the same transgenes were also placed onto NGM plates with regular OP50 as 

control.  

In the assay for light-induced sustained spicule protractor contraction, the SPC, 

PCA and PCB neurons were laser ablated in males at the mid-L4 larval stage. To remove 

hook associated cells, P10.p and P9.p were ablated at the L2 stage. The Plev-
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11:ChR2::YFP expressing males were assayed for light-evoked behavior on 5% agar 

pads without NaN3. All other strains were assayed for light-evoked behavior on fresh all-

trans retinal-supplemented OP50 plates, and their control males were assayed on 

standard OP50 plates. The behavior was observed using an Olympus SZX16 microscope 

and recorded using a Hamamatsu ImagEM Electron multiplier (EM) CCD camera. 

Males were illuminated with blue light from the EXFO X-Cite®120PC Q Fluorescence 

Illumination System, filtered with the SZX2-FGFPA GFP filter (Ex460-495/Em510-

550). Males were filmed in the absence of blue light for the first few seconds and then 

blue light was manually turned on for ~10 seconds. Males that protracted their spicules 

in response to illumination for more than 5 seconds were counted as sustained spicule 

protraction positive.  

The unc-103(0) males occasionally protrude their spicules in the absence of 

mating stimulation. Eventually, ~30% of the virgin adult males that are separated from 

hermaphrodites will protract their spicules permanently. I used males whose spicules 

were not permanently protracted for the blue light stimulation assay. To rule out the 

possibility that spicule protraction scored was a result of spontaneous activity of the 

spicule circuit instead of light-stimulated activity, only males that retracted their spicules 

once the light was turned off were counted as positive for light-induced spicule 

protraction.  

To determine the percentage of males that display rapid spicule thrusts upon blue 

light stimulation for the unc-9(lf) mutant and innexin RNAi strains, males were placed 

on 5% agar pads without NaN3, and observed under the Olympus BX51 microscope. The 
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blue light was manually turned on for ~5 seconds and the males that displayed repetitive 

spicule thrusts during this period were counted as positive. 
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CHAPTER III 

A MUSCARINIC ACETYLCHOLINE RECEPTOR ENHANCES THE NICOTINIC 

ACETYLCHOLINE RECEPTOR SIGNALING IN MALE MATING* 

 

 

Gαq and synaptic transmission are required for ACh agonist-induced spicule 

protraction 

 

The molecular mechanism of fast transmission required for prolonged spicule 

protractor contraction has been studied in great detail from previous work. The 

cholinergic SPC neurons are required for the prolonged spicule protraction, as ablation 

of these neurons resulted in males that could not insert their spicules during mating 

while all other behavioral steps appeared intact (Garcia et al., 2001). The C. elegans 

nervous system has been reconstructed from electromicroscopy images of serial sections 

of the worm body. Thus, physical connections between any two excitable cells in the 

worms are known (White et al., 1986). According to the reconstruction, the SPC neurons 

have chemical synapses directly onto the spicule protractor muscles (Sulston et al., 

1980). When applied with a cholinesterase inhibitor aldicarb, the wild-type males 

protracted their spicules within 500 seconds, as a result of the spontaneously-released  

 
______________________ 
* Data reported in this chapter is reprinted with permission from “G{alpha}q-Coupled 
Muscarinic Acetylcholine Receptors Enhance Nicotinic Acetylcholine Receptor Signaling in 
Caenorhabditis elegans Mating Behavior” by Liu Y, LeBoeuf B, Garcia LR, 2007, Journal of 

Neuroscience, 27, 1411 – 1421. Copyright © 2007 by Society for Neuroscience. 
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endogenous acetylcholine (ACh) accumulating at the synapses. Loss-of-function 

mutations that abolish cholinergic neurotransmission nearly eliminated males‟ response 

to aldicarb. Similarly, the SPC-ablated males took significantly longer time to protract 

spicules in aldicarb, suggesting that the SPC neurons secrete ACh to cause spicule 

protraction (Garcia et al., 2001). Ablating the postcloacal sensilla (p.c.s.) neurons also 

reduced males‟ response to aldicarb, indicating that these neurons contribute to spicule 

protraction as well (Garcia et al., 2001). However, there is no evidence showing any of 

these neurons innervate the protractors (Sulston et al., 1980)(S.W. Emmons, personal 

communication, 2006).  

The fast cholinergic synaptic transmission that causes muscles to contract is 

mediated by the ionotropic nicotinic acetylcholine receptors (nAChRs) (Changeux et al., 

1970; Peper et al., 1982). These channels are pentamers containing five subunits (Numa 

et al., 1983; Changeux et al., 1984). Opening of the channel allows cations to flow into 

the cytosol to activate voltage-gated Ca2+ channels and cause membrane depolarization 

(Peper et al., 1982). To gain an understanding of what types of ionotropic AChRs are 

expressed on the protractors to induce prolong spicule protraction, different ACh 

agonists were applied to the males to determine which ones can induce this behavior. In 

C. elegans, an ionotropic AChR can be a heteromeric receptor formed by five different α 

and non-α subunits; or it can be a homomeric receptor formed by five identical α 

subunits (Jones and Sattelle, 2004). It was found that levamisole (LEV), an 

anthelminthic used to treat parasitic worm infections, can cause prolonged spicule 

protraction, and its action requires a heteromeric ionotropic AChR that contains the 
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UNC-38 α subunit and the UNC-29 non-α subunit. It was suggested that LEV induces 

spicule protraction via direct activating ionotropic AChRs on the protractor muscles, as 

expressing functional unc-38 on these muscles restored the LEV sensitivity to the unc-38 

loss-of-function (lf) mutant males (Garcia et al., 2001). Consistent with this finding, I 

obtained the unc-38 gene expression pattern in the male, by expressing YFP using the 

unc-38 promoter. It was expressed in the spicule protractor muscles, the anal depressor 

muscle, and the body wall muscles, but not in any neurons associated with the spicule 

activities (Fig. 3A, B). 

 
 
 

 

Figure 3. Male tail expression of unc-38 and gar-3 promoters.  
A. Fluorescence images of the right lateral tail region of an adult male expressing the 
unc-38 promoter:YFP construct.  
B. Early L4 male expressing the unc-38 promoter:YFP construct.  
C. Adult male expressing the Pgar-3:YFP construct.  
D. Late L4 male expressing the Pgar-3:YFP construct. Scale bar, 10 μm.  
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Interestingly, it was shown in a previous study that the heterotrimeric G-protein 

Gαq, encoded by the gene egl-30, also facilitates the LEV-induced spicule protraction 

(Garcia et al., 2001). I revisited this observation, and confirmed that for males carrying 

the egl-30(ad805) loss-of-function (lf) allele, it takes 12-fold higher concentration of 

LEV to cause 50% of the population to protract their spicules, compared to the wild type 

(Fig. 4). G-proteins are usually coupled to the metabotropic receptors on the cell 

membrane, but not the ionotropic receptors, such as L-AChR. In neurons, the Gαq–

mediated signaling pathway plays an important role in regulating neurotransmitter 

release (Lackner et al., 1999; Bastiani et al., 2003; Bastiani and Mendel, 2006). 

Therefore, I hypothesized that neurotransmission from presynaptic neurons facilitates 

the LEV-induced spicule protraction.  

To test this hypothesis, I asked if mutations that disrupt synaptic transmission 

would reduce males‟ response to LEV. The unc-64 gene encodes the C. elegans syntaxin 

that is required for synaptic vesicle release, and cha-1 encodes the choline 

acetyltransferase that is used to synthesize ACh (Alfonso et al., 1994; Ogawa et al., 

1998). I assayed mutant males that contain the unc-64(e246) loss-of-function allele, as 

well as mutant males that have the cha-1(p1152) loss-of-function allele, for their 

sensitivity to LEV. When applied with 1 μM LEV, 79% of the wild-type males 

protracted their spicules (n=85), whereas only 5% of the unc-64(lf) males (n=20, 

p<0.0001) and the cha-1(lf) males (n=20, p<0.0001) responded to the LEV (Fig. 4). This 

supports that synaptic transmission is required for wild-type LEV sensitivity.  
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Figure 4. LEV-induced spicule protraction requires GAR-3/Gαq signaling and 
cholinergic synaptic transmission. 
The number above or within the bars are the percentage of males that protracted spicules 
in the LEV. The numbers below the bars are the number of males tested.  

 

 

The SPC neurons are required for spicule insertion and they make synapse to the 

protractor muscles (Sulston et al., 1980; Garcia et al., 2001)(Male Wiring Project). I then 

tested if synaptic transmission between the SPCs and the protractors facilitates LEV-

induced spicule protraction. I laser-ablated the SPC neurons in males when they were at 

the L4 larval stage, and found that when they became adults, only 22.2% of the operated 

males protracted their spicules in 1 μM LEV (n=18), compared to 60% of the control 

intact males (n=25, p<0.028). This, together with the data I showed previously, indicates 

that Gαq signaling facilitates LEV-sensitive AChR-induced protractor muscle 

contraction, via upregulating the cholinergic synaptic transmission between the SPC 

neurons and the protractor muscles.  
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A Gαq-coupled mAChR, GAR-3, is required for LEV-induced spicule protraction 

 

Loss of Gαq function results in abolished synaptic transmission, whereas a gain-

of-function mutation of egl-30 results in increased ACh release (Lackner et al., 1999; 

Doi and Iwasaki, 2002). I reasoned that an egl-30(tg26) gain-of-function (gf) allele 

should increase the incidence of spicule protraction, since the spontaneous ACh 

secretion is upregulated in the mutant worms (Lackner et al., 1999). Indeed, 76% of the 

egl-30(gf) males protract their spicules spontaneously (“prc” phenotype) in absence of 

any agonists (n=97, Table 1).  

To verify whether the “prc” phenotype of the egl-30(gf) males is a result of 

increased cholinergic synaptic transmission, I assayed the egl-30(gf);unc-64(lf) and the 

egl-30(gf);unc-17(e245) double mutants. The unc-17(e245) loss-of-function allele 

affects the synaptic vesicle acetylcholine transporter gene (Alfonso et al., 1993). I found 

both double mutants displayed less incidence of spontaneous spicule protraction (Table 

1), suggesting that hyperactivated Gαq causes spicule protractor contraction via 

upregulating ACh release. Therefore, I conclude that the Gαq signaling is utilized by the 

spicule circuit to promote spicule protraction.  

 
 
Table 1. Suppression of the egl-30(tg26)-induced Prc phenotype 

Genotype 
 

% males protracted 
spontaneously 

n 
 

p-value 
 

egl-30(tg26gf) 76 97  
wild type 7 100 <.0001 
egl-30(tg26gf); unc-64(e246) 22 275 <.0001 
egl-30(tg26gf); unc-17(e245) 15 27 <.0001 

p-values calculated using Fischer‟s exact test, relative to egl-30(tg26gf).  
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In C. elegans, Gαq/egl-30 is expressed in many excitable cells (Lackner et al., 

1999; Bastiani et al., 2003), and it is coupled to various types of membrane receptors to 

regulate cell physiology in response to different intercellular signals (Bany et al., 2003; 

Bastiani et al., 2003; Moghal et al., 2003; Bastiani and Mendel, 2006). To study how 

Gαq/egl-30 signaling specifically regulates the spicule activity, I asked what receptor is 

coupled to Gαq in the spicule circuit. In a previous study, ACh agonists could induce 

spicule protraction, whereas agonists of other major neurotransmitters did not (Garcia et 

al., 2001). I hypothesized that muscarinic acetylcholine receptors (mAChRs), which are 

G protein-coupled metabotropic ACh receptors, could be coupled to Gαq to promote 

spicule protraction. To test this hypothesis, I asked if mAChRs agonist can induce 

spicule protraction, similarly to the egl-30(gf) mutation. Arecoline is a mAChR agonist 

that has been reported to activate Gαq signaling in C. elegans to modulate the pharyngeal 

pumping behavior (Brundage et al., 1996). This drug is also able to induce spicule 

protraction. However, functional Gαq is not required for this behavioral response (Garcia 

et al., 2001), suggesting that arecoline also stimulates Gαq-independent signaling to 

promote spicule protraction. Instead, I used another agonist, oxotremorine M (oxo M), 

which has been used as a non-specific mAChRs agonist in the mammalian system 

(Freedman et al., 1988; Kaneda et al., 1993; Tayebati et al., 1999; Mistry et al., 2005). I 

found this drug could induce spicule protraction in wild-type males (Fig. 5). In contrast 

to arecoline, oxo M acts specifically through the Gαq signaling to induce spicule 

protraction. In 50 mM oxo M that can cause 90% of the wild-type males to protracted 

their spicules (EC90) (n=72), only 7% of the egl-30(lf) males protracted their spicules 
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(Table 2, n=30, p<0.0001). This suggests that oxo M is a Gαq-specific agonist in the C. 

elegans spicule circuit.  

 
 

 

Figure 5. Dose-response of wild-type males to oxotremorine M. 
Numbers on the X-axis represent the concentrations of Oxo M at which the wild-type 
males were treated. Numbers on the Y-axis represent the percentage of males that 
protracted their spicules within 10 min. Black squares represent the percentage of males 
that protracted their spicules.  About 30 males were assayed for each drug concentration.  

 
 
 

 
To determine if oxo M causes spicule protraction via upregulating the cholinergic 

synaptic transmission, I tested the unc-64(lf) and unc-17(lf) mutant males for their ability 

to protract spicules in oxo M at the EC90 concentration. Only 43% of unc-64(lf) males 

(n=30, p<0.0001) and 33% of unc-17(lf) males (n=30, p<0.0001) protracted their 

spicules in the drug (Table 2), suggesting that intact ACh secretion is required for the 

wild-type response to oxo M. In addition, the unc-38(lf) unc-29(lf) double mutant males 

also had decreased incidence of spicule protraction in the drug: only 58% of them  
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Table 2. Efficiency of oxotremorine M- induced spicule protraction  

Genotype 
 

% males  
protracted 

in 50mM Oxo M 

n 
 

ap-value 
 

wild type 86 72   
unc-64(lf) 43 30 <0.0001 
unc-17(lf) 33 30 <0.0001 
egl-30(lf) 7 30 <0.0001 
egl-8(lf) 65 40 0.015 
unc-38(lf) unc-29(lf) 58 31 0.0037 
gar-3(lf) 4 50 <0.0001 
unc-73(lf) 37 35 <0.0001 
unc-73(lf);egl-8(lf) 12 75 <0.0001 
SPC-ablated wild type 11 19 <0.0001 
PCB-ablated wild type 30 20 <0.0001 
SPC- and PCB-ablated wild type 28 67 <0.0001 
b
gar-3(lf) 3 34  

bwild type 63 87 <0.001 
b
gar-3(lf); rgEx90(Pgar-3A::gar-3 (+)) 10 20  

b
gar-3(lf); rgEx92(Pgar-3B::gar-3 (+)) 62.5 32 <.0001 

b
gar-3(lf); rgEx99(Pgar-3A + Pgar-

3B::gar-3 (+)) 89 38 <.0001 
b
gar-3(lf); rgEx94(Punc-103E::gar-3 (+)) 92 13 <.0001 

b
gar-3(lf); rgEx95(Punc-103F::gar-3 (+)) 97 29 <.0001 

bgar-3(lf); rgEx65(Phsp-16-2::gar-3 (+)   
  - heat shock 9 32  
  + heat shock 100 22 <.0001 

ap-values were calculated using Fischer‟s exact test. Non-transgenic males were 
compared to non-operated wild type. Males that contained pha-1(e2123) were compared 
to pha-1(e2123);gar-3(lf).  
 

 

protracted spicules in the EC90 concentration of oxo M (Table 2; n=31, p<0.0001). The 

unc-38 and unc-29 genes encode different subunits in the same LEV-sensitive AChR (L-

AChR) (Ballivet et al., 1996; Fleming et al., 1997; Richmond and Jorgensen, 1999; 

Garcia et al., 2001; Rayes et al., 2007). This indicates that increased synaptic 
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transmission promotes spicule protractor contraction partly through activating the L-

AChR on the protractor muscles.  

Three mAChRs genes are found in C. elegans, GAR-1, GAR-2 and GAR-3. 

They all have similar amino acid sequences as the known mammalian mAChRs M1, M2, 

M3, M4 and M5 (Hwang et al., 1999; Lee et al., 1999; Lee et al., 2000). Interestingly, in 

contrast to mammalian mAChRs, only GAR-3 was shown to be sensitive to oxo M, but 

not GAR-1 and GAR-2. Based on cell culture studies, GAR-3 is coupled to Gαq to 

activate downstream effector pLCβ (Hwang et al., 1999; Lee et al., 1999; Lee et al., 

2000; Park et al., 2000; Park et al., 2003; Park et al., 2006). The gar-3(gk305) allele 

contains a deletion that removes two exons of the gene and generates a premature stop 

codon in front of the last exon (http://www.wormbase.org; stable release WS160) (Fig. 

6). I found that similar to the egl-30(lf) mutant, only 4% of the gar-3(lf) males protracted 

their spicules in oxo M at the EC90 concentration (Table 2). It suggests that in C. 

elegans, oxo M is a GAR-3-specific agonist in inducing spicule protraction; in addition, 

oxo M-activated GAR-3 is coupled to Gαq to activate downstream effectors. Consistent 

with this, the gar-3(lf) males also displayed decreased sensitivity to LEV, similar to the 

egl-30(lf) animals. Compared to wild type, the LEV EC50 concentration of gar-3(lf) 

males was six times greater (Fig. 4). Therefore, via studying the mAChR GAR-3‟s role 

in the spicule circuit, I can study how Gαq-signaling is used to regulate the spicule 

activities. 

To rule out the possibility that the gar-3(lf) mutation causes oxo M resistance by 

disrupting development of the excitable cells required for spicule protraction, I asked if 

http://www.wormbase.org/
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expressing gar-3 transiently in adult gar-3(lf) mutant animals could restore their oxo M 

sensitivity. I expressed the gar-3 transcript in adult animals using the hsp-16-2 heat 

shock promoter (Stringham et al., 1992). Since development of neurons and muscles that 

are used for spicule insertion occurs during the L3 and L4 larval stages, the transient 

expression should not be able to rescue any possible developmental defect. I heat-

shocked the adult gar-3(lf) males that carried the transgene at 32°C for three hours to 

induce gar-3 expression, and found that 100% of these males protracted their spicules in 

50 mM oxo M (EC90) (Table 2; n=22, p<0.0001). In contrast, only 9% of the control 

males respond to the drug (Table; n=32). This suggests that the Gαq-coupled GAR-3 

signaling is used to give rise to animal behavior.  

Interestingly, spicule protraction is not the only behavior that is regulated by the 

GAR-3(mAChR)/Gαq signaling, other aspects of the male mating are also sensitive to 

oxo M stimulation. Within five to ten minutes of being placed on NGM agar plates 

containing 5 mM oxo M, 100% of the wild-type males (n=20) displayed behaviors that 

are normally seen during mating with hermaphrodites. These males initiated backward 

movements more often when they were crawling, and had a higher tendency to touch 

themselves or other males using their tails. Additionally, males produced spontaneous 

dorsal or ventral tail curling and displayed spicule protraction behavior. In contrast, the 

oxo M-induced behaviors were totally absent in the gar-3(lf) males (n=20). This 

indicates that the GAR-3(mAChR)/Gαq signaling also functions in other components in 

the circuit that regulates male mating. To my surprise, wild-type hermaphrodites did not 

show any detectable behavioral change under the same condition, suggesting that the 
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male-specific circuit is more sensitive to oxo M stimulation. This might be due to 

differences in GAR-3 receptor membrane expression levels, or due to the intrinsic 

physiological differences between the male circuit and hermaphrodite circuit.  

 

 

 

Figure 6. Locations of the gar-3 promoters and the gk305 deletion.  
The genomic position of gar-3 is indicated on top; scale bar in kilobases. Two promoters 
used in this study, Pgar-3A and Pgar-3B, are also depicted. Four transcriptional isoforms 
of gar-3 are also shown (adapted from Hwang, et al. 1999, and Wormbase website, 
stable release WS160, 2006). Open boxes are exons, grey boxes are UTRs and lines are 
introns; arrows and arrows merged with grey boxes depict the translation directions. The 
deletion in the gar-3(lf) allele is indicated by a double arrowed line, and the positions of 
putative transmembrane domains (I-VII) are indicated with horizontal lines (adapted 
from Park et al., 2003). 
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GAR-3 promotes spicule protraction through phospholipase Cβ and Trio Rho-GEF 

 

Phospholipase Cß (PLCβ) is a downstream effector of activated Gαq. It 

hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into diacyl glycerol (DAG) and 

inositol triphosphate (IP3) (Makhlouf and Murthy, 1997; Singer et al., 1997). These 

downstream effectors can directly activate synaptic transmission or muscle contraction 

(Zhou et al., 1994; Hilfiker and Augustine, 1999; Yawo, 1999; An et al., 2002; Hubbard 

and Hepler, 2006). In C. elegans, PLCβ is encoded by the egl-8 gene (Lackner et al., 

1999). Together with itr-1, which encodes the IP3 receptor, egl-8 was demonstrated to 

be required for LEV-induced spicule protraction (Gower et al., 2005). To determine if 

PLCβ transduces the GAR-3(mAChR)/Gαq signal in response to 50 mM oxo M 

stimulation, I used egl-8(n488) (Miller et al., 1999), an allele of PLCβ that deletes exons 

10 and 11 and disrupts the reading frame before Y catalytic domain. I found that 

compared to 86% of wild-type males (n=72), 65% of egl-8(lf) males protracted their 

spicules in the drug (Table 2; n=40, p=0.015). This result suggests that GAR-3(mAChR) 

promotes spicule protraction partially via activating the PLCβ signaling. In addition, the 

egl-8(lf) mutant males were also resistant to LEV. In 2µM LEV (EC90), only 42% of the 

mutant males protracted their spicules (n=50), compared to 88% of the wild type (n=40). 

This indicates that PLCβ, as a downstream effector of the GAR-3(mAChR)/Gαq 

pathway, is required for wild-type LEV dose response. 

However, greater than half of egl-8(lf) males responded to oxo M, as compared 

to 7% of egl-30(lf) males with reduced Gαq activity. Therefore, GAR-3(mAChR)/Gαq 
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signaling promotes spicule protraction through other pathways in addition to IP3-DAG 

signaling. This is not surprising since other Gαq- regulated behaviors in C. elegans, such 

as locomotion and egg-laying behavior, have also been suggested to be regulated by a 

putative EGL-8(PLCβ)-independent pathway {Charlier, 2006 #43;Bastiani, 2003 

#207;Miller, 1999 #189;Charlier, 2006 #43}. Recently, trio, which contains a Rho-

specific guanine-nucleotide exchange factor (GEF) domain, has been suggested to be a 

downstream effector of Gαq (Rojas et al., 2007). It was found that in parallel with PLCβ, 

trio also regulates locomotion in C. elegans (Williams et al., 2007). To determine 

whether trio is also a downstream effector of the GAR-3(mAChR)/Gαq signaling in 

regulating spicule activity, I asked if trio loss-of-function mutant males also have 

reduced oxo M sensitivity. Trio is encoded by the unc-73 gene, and unc-73(ce362) is a 

loss-of-function allele in which the Rho-GEF domain is disrupted (Williams et al., 

2007). In 50mM oxo M (EC90), 37% of the unc-73(lf) males protracted their spicules 

(Table 2; n=35, p<0.0001). I then made the unc-73(lf);egl-8(lf) double mutant, and found 

only 12% of the males responded to 50 mM oxo M (Table 2; n=75, p<0.0001). This 

suggests that the GAR-3(mAChR)/Gαq signaling promotes spicule protraction via both 

phospholipase Cβ and Trio Rho-GEF. Nevertheless, given Rho is a small GTPase that 

has an important role in regulating cell cytoskeleton organization as well as other 

cellular processes (Bishop and Hall, 2000), the possibility that trio Rho-GEF is essential 

for normal cell physiology which is required for oxo M-induced spicule protraction has 

not been ruled out.  
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GAR-3(mAChR) is expressed in the circuit that regulates male spicule insertion  

To determine where GAR-3(mAChR)/Gαq signaling functions to regulate spicule 

protraction, I checked the expression pattern of the gar-3 gene. Previous study by Stager 

and Avery (2004) has reported that gar-3 is expressed in pharyngeal muscles and the I3 

neuron, along with other extrapharyngeal neurons. They determined this by using 6 kb of 

DNA sequence upstream of the gar-3 start codon as promoter to drive GFP expression 

(Steger and Avery, 2004). When I used the same 6 kb sequence (I referred it as the Pgar-

3A promoter) to drive YFP expression (Fig. 6), in addition to what has been reported 

before, I found it was expressed in the body wall muscles, the male diagonal muscles, 

and one of the neurons in the male ray 8. However, no expression was found in cells that 

are closely related to the spicule protraction behavior.  

According to cDNA expression tag data listed on www.wormbase.org, there is an 

alternative 5‟UTR located ~10 kb upstream of the gar-3 start codon (Hwang et al., 

1999)(http://www.wormbase.org; stable release WS160). It is possible that sequence 

upstream to this UTR can also be used as promoter region to drive gar-3 expression. To 

test this, I fused 3.5 kb of sequence (Pgar-3B) upstream of the gar-3 isoform 

Y40H4A.1a.a to the YFP gene (Fig. 6). I found that this construct is expressed in the 

SPC sensory-motor neurons, the PCA and PCB p.c.s. neurons, the male spicule 

protractor muscles, the anal depressor muscle, the VD and DD ventral cord neurons, 

some tail and nerve ring neurons, and the body wall muscles (Fig. 3C, D). Among these 

cells, the SPC, PCA and PCB neurons and the spicule protractor muscles have been 

shown to regulate spicule protraction behavior (Garcia et al., 2001). In hermaphrodite, 

http://www.wormbase.org/
http://www.wormbase.org/
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this construct is expressed in the same set of cells, except for those specific to males 

(Fig. A-4). 

 

 

 
Figure 7. Native and heterologous expression of the gar-3::YFP translational fusion 
protein.  
A. DIC and B. fluorescence images of the left lateral tail region of a mid L4 male 
expressing both Pgar-3A:gar-3::YFP and Pgar-3B:gar-3::YFP. Nuclei of the neurons 
are labeled with arrows. In panel B, positions of these neurons are indicated with circles, 
and localizations of GAR-3::YFP on the cell membranes are denoted by arrows.  
C. DIC and D. fluorescence images of left lateral tail region of an adult male expressing 
Punc-103E:gar-3::YFP.  
E. Merged DIC and fluorescence and F. fluorescence images of left lateral tail region of 
a mid L4 male expressing the Punc-103F:gar-3::YFP. In panel E. nuclei of neurons are 
labeled with arrows. GAR-3::YFP localization on cell membranes can be seen as white 
puncta. In panel F,  neuronal positions are indicated with circles, and localizations of 
GAR-3::YFP on the cell membranes are denoted by arrows. Scale bar is 10 μm. 
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GAR-3 on both neurons and muscles facilitates spicule protraction 

 

To determine which cells GAR-3(mAChR) functions in to regulate the spicule 

protraction behavior, I fused YFP to the last codon of the gar-3 gene, and used different 

promoters to drive its expression. Using YFP, the fusion protein expression could be 

visualized and was found on the membranes and neuron processes (Fig. 7A, B). The oxo 

M sensitivity of the gar-3(lf) males could only be restored when I used the Pgar-3B to 

drive the fusion protein expression, but not Pgar-3A (Table 2). This supported that GAR-

3(mAChR) functions in the SPC, PCA, and PCB neurons and the spicule protractor 

muscle to regulate spicule activity.  

The cholinergic SPC neurons directly synapse the spicule protractor muscles, 

whereas it was proposed previously that the p.c.s. neurons PCA and PCB might control 

protractor contraction through indirect connection (for example, through chemical or 

electrical connections to the SPC). To further determine whether GAR-3(mAChR)/Gαq 

signaling functions in the presynaptic cells or the postsynaptic cells to promote spicule 

protraction, I expressed the gar-3::YFP fusion protein under control of the Punc-103E 

and Punc-103F promoters (Gruninger et al., 2006; Reiner et al., 2006). The Punc-103E 

promoter expresses in the protractor muscles but not in any neurons that innervate them 

(Fig. 7C, D). The Punc-103F promoter expresses in the SPC, PCA, and PCB neurons 

(Fig. 7E, F). I found the gar-3:YFP fusion protein expressed by either promoter could 

restore gar-3(lf) males‟ ability to protract their spicules in 50 mM oxo M (Table 2). 92% 

of the gar-3(lf) males that expressed gar-3 in sex muscles protracted spicules (n=13), 
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and 97% of the ones that expressed gar-3 in spicule-associated neurons did it (n=29). In 

addition, laser-ablating the SPC and the PCB neurons restored oxo M resistance to the 

gar-3(lf) males that expressed Punc-103F:gar-3::YFP (none of the males protracted 

spicules in 50 mM oxo M, n=7, p<0.0001), but not to the males that expressed Punc-

103E:gar-3::YFP (62.5% of males protracted spicules in 50 mM oxo M, n=8, p>0.05). 

These suggest that GAR-3(mAChR) that expressed in both presynaptic cells and 

postsynaptic cells contributes to promote spicule protraction. The oxo M sensitivity was 

fully restored using either muscle-expressed GAR-3 or neuron-expressed GAR-3, 

possibly because both constructs were over-expressed.  

Similarly, overexpressing the gar-3 gene in either male sex muscles or the 

spicule-related neurons using the Punc-103E and Punc-103F promoter, respectively, 

restored the gar-3(0) mutant males‟ LEV sensitivity. In 1µM LEV, in contrast to the 

gar-3(0) mutant males, 82% of the males that expressed gar-3 in sex muscles protracted 

their spicules (n=28, p<0.05), and so did 75% of the males that had gar-3 overexpressed 

in the spicule-related neurons (n=24, p<0.05). This, again, suggests that both presynaptic 

and postsynaptic GAR-3(mAChR), when overexpressed, facilitate the spicule circuit 

activity.  

In gar-3(lf) males, the ability of muscle-expressed GAR-3(mAChR) to rescue 

oxo M sensitivity suggested that the drug can by-pass the presynaptic neurons and 

directly induce muscle contraction. However, this contradicts the earlier result that 

cholinergic synaptic transmission was required for oxo M-induced spicule protraction, 

since the unc-64(lf) and unc-17(lf) mutant males had reduced oxo M sensitivity. I 
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reasoned that although over-expressed GAR-3(mAChR) on the protractors can by-pass 

the neuron function, endogenous level of GAR-3 receptors on the muscles might not be 

sufficient to mediate oxo M-promoted behavior. To test this hypothesis, I ablated the 

gar-3-expressing cholinergic SPC and PCB neurons, either individually or in 

combination, in the wild-type males, and asked if loss of these neurons impairs 

sensitivity to oxo M. 11% of the SPC-ablated males (n=19, p<0.0001), 30% of PCB-

ablated males (n=20, p<0.0001) and 28% of double-ablated males (n=67, p<0.0001 vs. 

intact males; p=0.14 vs. SPC-ablated males) responded to the agonist with spicule 

protraction (Table 2). This data suggests that in the absence of SPC and PCB, 

endogenous levels of muscular GAR-3(mAChR) are not sufficient to mediate oxo M-

induced spicule protraction. In addition, ablation of SPC and PCB neurons in gar-3(lf) 

males that had GAR-3(mAChR) over-expressed on the protractors still resulted in ~88% 

(n=8) of transgenic males protracting their spicules in the drug, confirming that when 

over-expressed, muscular GAR-3 is sufficient to promote spicule protraction.  

 

Loss of GAR-3 function results in males that have defect in penetrating the vulva 

during mating 

 

My molecular, mutational and pharmacological studies suggested that a GAR-

3(mAChR)/Gαq pathway functions on spicule-related neurons and muscles to enhance 

the behavioral output of the ionotropic AChRs signaling and promote spicule 

protraction. However, I did not know how this signaling pathway was used by the male 
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to regulate his behavior. To answer this question, I asked if the gar-3(lf) mutant males 

had any behavioral defect during mating. I found that these males could execute every 

steps of mating without obvious behavioral defect (data not shown). I reasoned that, like 

a lot of Gαq-mediated signaling, the GAR-3(mAChR) signaling might play a modulatory 

role in regulating behavior, thus the male behavior needed to be examined more 

carefully.  

The gar-3 gene is expressed in two of the p.c.s. neurons, which were suggested 

to regulate the rhythmic shallow spicule thrusts at the vulva (Garcia et al., 2001). To 

address if GAR-3 functions in these neurons to modulate this behavior, I asked if gar-

3(lf) males had defective spicule prodding behavior. Mutant males that lacked a 

ryanodine Ca2+ channel have been shown to have impaired spicule prodding behavior, 

and that the frequency of repetitive thrusts of these males was much lower than the wild 

type (Garcia et al., 2001). However, the gar-3(lf) males display similar frequency of 

thrusts (6.2 +/-compared 1.2 contractions/sec) compared to wild type (5.8 +/- 0.7 

contractions/sec; p=0.6), suggesting the spicule circuit does not require the GAR-

3(mAChR) signaling to regulate the muscle contraction-relaxation cycle.  

The vulva of a young adult hermaphrodite (~18hr after molt) is difficult for 

males to breach, so the males need to sustain their tail position at the vulva in order to 

repetitively attempt to insert spicules (Garcia et al., 2001). I found that if the 

hermaphrodite vulva was not breached instantaneously, the gar-3(lf) males moved off 

the vulva rather than sustaining their attempts to penetrate the vulva. In a 10 min assay, I 

counted the number of times a male made contact with the hermaphrodite‟s vulva using 
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his tail until he completely inserted spicules or the 10 minutes ran out. I found that wild-

type males moved on and off the vulva on average 6.3 times (n=26), whereas the gar-

3(lf) males (n=29) moved on and off the vulva on average 17.5 times (p<0.001) during 

their spicule insertion attempts (Fig. 8). This phenotype could be a result of the males‟ 

defect in inserting their spicules efficiently, or defect in sustaining vulva contact, or due 

to a combination of both. This suggests that when the task of breaching the vulva is 

prolonged, GAR-3(mAChR) is required for the integrated function of the postcloacal 

sensilla neurons, the SPC neurons and the protractor muscles, which facilitates spicule 

insertion attempts and the vulva location behavior.  

 
 

 

Figure 8. The gar-3(lf) males employ more spicule insertion attempts to achieve vulva 
penetration. Spots represent the total number of vulval stops (insertion attempts) 
employed by individual males. 26 wild-type males and 29 gar-3(lf) males were assayed. 
The horizontal bar indicates the sample median. The p-value was calculated using the 
Mann-Whitney test.  
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Chapter summary 
 

In Chapter III, I demonstrated a GAR-3(mAChR)-mediated signaling pathway 

that is coupled to Gαq to facilitate the insertion of C. elegans male copulatory spicules 

into the hermaphrodite‟s vulva. When treated with a GAR-3-specific mAChR agonist, 

oxo M, wild-type males protracted their spicules. Using this drug-induced behavior as 

readout, I have been able to identify molecules that are involved in this signaling 

pathway by testing mutant males‟ responses to oxo M. I found that PLCβ and trio Rho-

GEF are likely to function downstream of Gαq in the spicule circuit. Both of them have 

been reported to regulate synaptic transmission (Steven et al., 2005; Williams et al., 

2007). Consistent with that, expressing GAR-3 in neurons that regulate spicule activities 

restored oxo M sensitivity in the gar-3(lf) mutant males. This suggests that the GAR-

3(mAChR)/Gαq signaling upregulates synaptic transmission in the male spicule circuit. 

As the muscular ionotropic AChRs are also required for oxo M-induced spicule 

protraction, it is likely that increased cholinergic synaptic transmission promotes spicule 

protraction via activating ionotropic AChRs on the protractor muscles.  

The role of endogenous GAR-3(mAChR) is probably to facilitate spicule 

insertion during mating, as the gar-3(lf) mutant males could not insert their spicules as 

efficiently as the wild type, when paired with hermaphrodites. I propose that the GAR-

3(mAChR)/Gαq signaling is likely to promote spicule protraction by enhancing the 

behavioral output of the postsynaptic ionotropic AChRs signaling in the protractor 

muscles. A previous study has suggested that spicule protraction is a behavioral output 

of endogenous ACh activating ionotropic AChRs on the spicule protractor muscles. It 
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was also shown that exogenous ACh agonists (nicotine, arecoline and LEV) could mimic 

the effect of ACh to induce spicule protraction. Here I found that both GAR-3(mAChR) 

and Gαq were required for postsynaptic ionotropic AChR-mediated spicule protraction, 

and so was the cholinergic synaptic transmission between the spicule-related neurons 

and the protractor muscles. This indicates a scenario that before or during mating, the 

presynaptic neuron function, which is regulated by the GAR-3(mAChR)/Gαq signaling, 

facilitates spicule insertion by enhancing the postsynaptic ionotropic AChRs motor 

output.  
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CHAPTER IV 

CHOLINERGIC NEUROTRANSMISSION FACILITATES MALE.S CONTACT 

WITH HERMAPHRODITE DURING COPULATION 

 

 

Males utilize ionotropic AChRs to maintain contact with the hermaphrodite vulva 

during mating 

 

When a C. elegans male initiates contact with a hermaphrodite as an attempt to 

mate, the hermaphrodite moves away. For the sperm-carrying hermaphrodites, mating is 

not required for reproduction. Thus, an essential step for the male to successfully mate is 

to sustain precise contact between his cloaca opening and the hermaphrodite‟s vulva so 

that he has enough time to insert his spicules.  

In the last chapter, I showed that mutant males, lacking of a muscarinic 

acetylcholine receptor (mAChR) GAR-3, are less efficient in inserting their spicules into 

the hermaphrodite‟s vulva during mating, compared to the wild type. The mutant males 

need to take more vulval encounters before they can penetrate the vulva slit with their 

spicules (Fig. 8). This defect could be a result of either the male being less proficient in 

maintaining contact between his cloaca and the hermaphrodite‟s vulva, or delayed 

spicule insertion, or both. This mAChR is expressed in the cholinergic spicule-related 

neurons, PCB and SPC, to enhance ACh secretion from these neurons (Liu et al., 2007). 

ACh secreted from the SPC neurons activates ionotropic ACh receptors on the spicule 
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protractor muscles to induce muscle contraction, which results in tonic spicule 

protraction (Garcia et al., 2001). It has been shown that the LEV-sensitive ACh receptor 

(L-AChR), which contains three α subunits, UNC-38, UNC-63, and LEV-8, and two 

non-α subunits, UNC-29 and LEV-1, is required for the ACh agonist-induced spicule 

protraction (Ballivet et al., 1996; Fleming et al., 1997; Richmond and Jorgensen, 1999; 

Garcia et al., 2001; Rayes et al., 2007). I speculated that the ionotropic ACh receptors in 

the cells of the spicule circuit can also be used to sustain precise vulval contact behavior; 

therefore in the gar-3 deletion mutant, reduced cholinergic synaptic transmission 

between the spicule-related neurons and the sex muscles resulted in defective vulval 

contact. 

To address whether ionotropic AChRs are required for other steps of male 

mating, I asked how well mutant males that lack functional L-AChR can mate, compared 

to the wild type. I used mutant males containing the unc-29(e193) allele, which has a 

missense mutation that changes a proline into serine at amino acid 258, within the 

hypothetic first transmembrane domain of the UNC-29 non-α subunit (Lewis et al., 

1980a; Lewis et al., 1980b; Kim et al., 2001). To verify if the unc-29(e193) mutant 

males are deficient for the L-AChR in the spicule protraction circuit, I asked if the 

mutant males protract their spicules in response to LEV. The effective concentration of 

LEV that can induce prolonged protraction in 90% of the males (EC90) is 2μM (Garcia et 

al., 2001). I found that at this concentration, none of the mutant males protracted their 

spicules (n=47), compared to 88% of the wild type (n=57, p<0.0001), suggesting that 

there is no functional L-AChR in the spicule circuit. However, as unc-29 is also 
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expressed in the body wall muscles to regulate locomotion, the unc-29(e193) allele 

causes worms to have severe uncoordinated locomotion (Richmond and Jorgensen, 

1999). Therefore, unc-29(lf) males are challenged to move backward along the 

hermaphrodite during mating. I then used the upstream region of the acr-8 gene to 

express unc-29 cDNA (Pacr-8:unc-29cDNA::SL2::GFP) in the body wall muscles but 

not in the spicule-related sex muscles in the mutant males (LeBoeuf et al., 2007). This 

restored the wild-type locomotion to these males, but it still left the spicule circuit 

deficient for the L-AChR function. Indeed, compared to the unc-29(lf) mutant, the 

transgenic males were still resistant to LEV; 6% of them protracted spicules in 2μM 

LEV (n=35, p=0.18). To assess the mating potency of the locomotion-restored unc-29(lf) 

males, I paired each male with a free-moving hermaphrodite on a small bacterial food-

lawn for four hours. I found that the transgenic males can sire progeny with 83% of the 

wild-type efficiency (Fig. 9; n=38, p>0.05). This indicates that although the L-AChR is 

used for ACh-agonist-induced spicule protraction, other receptors might compensate for 

its function in unc-29(lf) males during mating.  

Next, I asked which other ionotropic AChRs could be functioning in the male 

spicule circuit. It has been reported that the homomeric nAChR formed by the α7-like 

nAChR subunits ACR-16 function in parallel with the L-AChR in the C. elegans 

locomotion circuit (Ballivet et al., 1996; Touroutine et al., 2005). Thus, I asked if ACR-

16 is also functioning during the male mating behavior. In the 4-hour mating potency 

assay, males that contain the acr-16(ok789) deletion allele could achieve 88% of wild-

type mating potency (Fig. 9; n= 41, p>0.05), suggesting that like the L-AChR, the ACR-
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16 nAChR is not essential for the male potency. I reasoned that if the L-AChR and the 

ACR-16 containing nAChR are required for mating, but they are interchangeable, then a 

severe mating defect can only be seen in the unc-29(e193);acr-16(ok789) double mutant. 

The double mutant had more severe locomotion defect than the unc-29(lf) worms, but 

could be rescued by restoring unc-29 in the body wall muscles using the construct of 

Pacr-8:unc-29cDNA::SL2::GFP, since the acr-16(lf) worms have wild-type locomotion 

(Ballivet et al., 1996; Touroutine et al., 2005). As I predicted, the unc-29(lf);acr-16(lf) 

males could only achieve 15% of wild-type mating potency in the 4-hour assay (Fig. 9; 

n=33, p<0.05). I then concluded that both the L-AChR and the ACR-16 ionotropic 

AChR are used in the male mating behavior, and when one receptor is non-functional, 

the other can compensate. 

To understand which aspect of mating requires the function of the L-AChR and 

the ACR-16-containning nAChR, I observed mating behavior of the locomotion-restored 

double mutant males. I paired the males with genetically paralyzed unc-64(lf) 

hermaphrodites, so each step of mating could be easily video recorded and accurately 

analyzed. During a 5 minute observation window, the majority of the males I assayed 

made multiple contacts with the hermaphrodites‟ vulva before they inserted their 

spicules or until the observation period ended. I noticed that once the transgenic double 

mutant males located vulva with their tails, they fell off the vulva more frequently than 

the wild type. When I measured the average vulval contact duration for these males, they 

could maintain the contact for half the time of wild-type males (Fig. 9; p=0.004). I 

further asked if the defect in sustaining vulval contact was due to loss of functional L-  
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Figure 9. Ionotropic AChRs-mediated synaptic transmission is required for prolonged 
vulva contact. 
A. Relative mating potency of mutant males normalized to wild type. The numbers of 
males assayed for each strain are listed within the bars. The number for wild type is an 
accumulated number. Asterisks (***) indicate the p value<0.0001, calculated using the 
Fisher‟s exact test.  
B. Profiles of average duration of vulva contact. The spots represent the average duration 
of vulva contact of individual males. The horizontal bar indicates the sample median. 
Asterisks (**) indicate the p value<0.005, calculated using the Mann-Whiney test. 
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AChR, the ACR-16 nAChR or both. Neither the unc-29(e193) mutant males nor the acr-

16(ok789) mutant males had obvious vulval contact defect (Fig. 9), suggesting that these 

genes are used redundantly to maintain vulval contact.  

Interestingly, the vulval contact defect of the unc-29(lf);acr-16(lf) double mutant 

did not seem to severely affect mating potency of the mutant males when they mated 

with the paralyzed hermaphrodites, since eventually 48.5% of mutant males inserted 

their spicules into the hermaphrodite‟s vulva during mating (n=33), which was not 

statistically different from the 69.7% of the wild type (n=33, p>0.05). However, when 

mated with free-moving hermaphrodites, this difference is likely to be amplified by the 

fact that the hermaphrodites can escape, so if a male loses contact with the vulva it is 

difficult for him to locate the vulva again. Consistent with this idea, only 10% of the 

wild-type males could impregnate the free-moving hermaphrodites within 10 minutes 

(n=20), as maintaining contact with a moving object is challenging for wild-type males. 

 

The unc-29 and acr-16 genes are expressed in the male-specific muscles 

 

To determine where the L-AChR and the ACR-16-containing AChR function in 

the male to facilitate the vulval contact behavior, I asked where these receptors are 

expressed in the male tail. I injected a YFP expression construct that contains 5.3 kb 

DNA sequence upstream of the acr-16 first ATG. In adult males, this construct was 

expressed in the body wall muscles and some male-specific muscles, including the anal 

depressor, the spicule protractors, the gubernacular erector and retractor muscles, and the 
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anterior oblique muscles (Fig. 10A-D). However, it was not seen in any of the neurons 

that regulate the spicule activities.  

The unc-29 gene encodes a L-AChR non-α subunit. Formation of a functional 

channel requires all five subunits: the α subunits encoded by unc-38, unc-63 and lev-8, 

and the non-α subunits encoded by unc-29 and lev-1 (Ballivet et al., 1996; Fleming et al., 

1997; Richmond and Jorgensen, 1999; Garcia et al., 2001; Rayes et al., 2007). In 

Chapter III, I examined the expression pattern of the unc-38 gene by expressing YFP 

driven by the 1.1 kb sequence upstream of the unc-38 first ATG. It was expressed in the 

male spicule protractor muscles and the body wall muscles, but not in any spicule-

related neurons. To verify this result, I fused a 2.2 kb sequence, which includes 1.3 kb 

sequence upstream of the unc-29 start codon and the genomic sequence of the gene up to 

the second intron, to the YFP gene (Punc-29:YFP). Similar to the unc-38 expression 

construct, this construct expressed the YFP in the spicule protractors, the anal depressor 

muscle and the body wall muscles. It was also expressed in some ventral cord neurons 

and head neurons (Fig. A-1).  

Nonetheless, the non-coding regions inside of a gene can sometimes also be 

important to determine the gene‟s expression pattern (Blanchette and Tompa, 2002; 

Okkema and Krause, 2005). I asked if this could be the case for unc-29. The 1.3 kb 

sequence upstream of the first exon of unc-29, along with the whole unc-29 genomic 

sequence, was fused to the YFP gene. I found that adding the genomic sequence 

extended the expression pattern to the male-specific gubernacular erector and retractor 

muscles and the anterior oblique muscles, but still not any spicule-related neurons (Fig. 
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10E-H). Therefore, acr-16 and unc-29 are both expressed on the male-specific muscles 

in the male tail.  

 

 

 
Figure 10. Male tail expression of acr-16 and unc-29.  
A-D. Fluorescence images of the tail region of adult males expressing the Pacr-16:YFP 

construct. Expression can be seen in the gubernacular erector (GER), gubernacular 
retractor (GRT), anterior oblique (AOB), dorsal spicule protractor (DSP), ventral spicule 
protractor (VSP), and anal depressor (ADEP) muscles. Scale bar, 20μm. 
E-H. Fluorescence images of the tail region of adult males expressing the Punc-29:unc-

29::YFP construct. Expression can be seen in the gubernacular erector (GER), 
gubernacular retractor (GRT), anterior oblique (AOB), dorsal spicule protractor (DSP), 
ventral spicule protractor (VSP), and anal depressor (ADEP) muscles. Scale bar, 20μm. 

The dotted lines depict the outline of the mail tail. 
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 I also asked if unc-38 is also expressed in these muscles to form functional 

receptor with unc-29. Using an unc-38 promoter-genomic DNA fusion construct to drive 

YFP expression, I found that it was expressed in every male-specific muscle (including 

the anal depressor, the spicule protractors and retractors, the diagonal muscles, the 

gubernacular muscles, the oblique muscles and the sphincter), and surprisingly, the SPC 

neurons (Fig. A-1). Similarly, another L-AChR α subunit-encoding gene, unc-63, was 

also found expressed in these cells. The 2.4 kb sequence upstream of unc-63 start codon, 

including the first three codons, was fused to the YFP gene. This construct was 

expressed in every male-specific muscle and also in the SPC neurons (Fig. A-1).  

The expression patterns of unc-38 and unc-63 indicate that these α subunits can 

form a nAChR on the SPC neurons independent of unc-29. Indeed, a recent study has 

reported a LEV-insensitive nAChR in C. elegans ventral cord cholinergic motor neurons 

(Jospin et al., 2009). This receptor is formed by the UNC-38, UNC-63 and ACR-12 α 

subunits and the ACR-2 and ACR-3 non-α subunits. Consistent with this, the acr-12 

promoter-genomic DNA fusion construct is also expressed in the SPC neurons, 

indicating that these neurons have the functional LEV-insensitive nAChR (Fig. A-1). 

Therefore, in this study, by using the unc-29(lf) allele, I only disrupted the function of 

the L-AChR in the male-specific muscles, but not the nAChR on the spicule neurons.  
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The postcloacal sensilla neurons are required for maintaining the male tail position 

at the vulva 

 

Both acr-16 and unc-29 were determined to express specifically in the male sex 

muscles, and loss of their functions in these muscles interfered with the male‟s ability to 

stay in contact with the hermaphrodite‟s vulva. I hypothesized that, in the male 

copulation circuit, certain neuromuscular junctions are important for maintaining vulval 

contact. The cholinergic synaptic transmission at these neuromuscular junctions is 

impaired in the unc-29(lf);acr-16(lf) double mutant males, so they could not sustain their 

tail position at the vulva.  

To address which neurons in the male tail regulate the vulval contact behavior, I 

asked what neurons synapse the acr-16- and unc-29-expressing muscles, by studying the 

connections of the male-specific nervous system. I noticed that the spicule protractors 

are innervated by the SPC neurons, and the anterior oblique muscles (left/right), the 

gubernacular erector (L/R) and retractor (L/R) muscles are innervated by the postcloacal 

sensilla (p.c.s.) neurons (Fig. 11; S. W. Emmons, personal communication, 2010). I then 

asked if ablating these neurons would affect the male‟s ability to stay with the vulva.  
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Figure 11. Circuit diagram of cells that control spicule motion.  
Gubernacular erector (GER), gubernacular retractor (GRT), anterior oblique (AOB), 
posterior oblique (POB), dorsal spicule protractor (DSP), ventral spicule protractor 
(VSP) and anal depressor (ADP). Abbreviated cartoon of limited connections between 
left and right pairs of neurons and muscles discussed in this work [adapted from (Sulston 
et al., 1980), and the Male Wiring Project]. Refer to (Male Wiring Project, Albert 
Einstein College of Medicine, 
http://worms.aecom.yu.edu/pages/male_wiring_project.htm) for a more complete list of 
connections to other cells in the male. Arrows and bars indicate chemical synapses and 
gap junctions, respectively. Bi-directional arrows refer to cells that make reciprocal 
chemical synapses. Bi-directional arrows embedded in bars refer to cells that make gap 
junctions in addition to reciprocal chemical synapses. The green circles refer to 
cholinergic neurons. 
 
 

 

The p.c.s. neurons have been suggested to sense the precise position of the 

hermaphrodite‟s vulva. Males that had one pair of these neurons ablated but the other 

two pairs intact could still locate the vulva (Liu and Sternberg, 1995). However, males 

with zero or only one pair of the p.c.s. neurons will generally pass over the vulva without 

http://worms.aecom.yu.edu/pages/male_wiring_project.htm
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stopping, even though they can sense the general area of the vulva using the hook 

sensillum neurons (Liu and Sternberg, 1995; Barr and Sternberg, 1999). Although these 

neurons have been shown to sense the vulva, it has not been determined if they also 

function to maintain contact between the male‟s cloaca and the hermaphrodite‟s vulva. 

To address this question, I ablated each individual pair of these neurons in males at the 

L4 larval stage and observed their mating behavior when they became adults. Consistent 

with what was reported before, the operated males could locate the vulva without any 

difficulty. However, when I quantified the average time each operated male could 

sustain vulval contact, I found that similar to the unc-29(lf);acr-16(lf) mutant males, the 

operated males with any pair of the p.c.s. neurons ablated had reduced duration of vulval 

contact (Fig. 12A). This suggests that each pair of the p.c.s. neurons continues 

contributing to the male‟s ability to sustain vulval contact after the initial recognition of 

vulva. Among the p.c.s. neurons, the PCBs and PCCs are cholinergic. Therefore, it is 

possible that they synapse the postsynaptic muscles and activate ionotropic AChRs on 

these muscles to exert their function in mating.  

Prolonged spicule protraction has been shown to require the cholinergic SPC 

neurons. Males that had the SPCs ablated failed to insert their spicules during mating 

(Sulston et al., 1980; Garcia et al., 2001). However, I found ablation of these neurons did 

not reduce the duration of vulval contact; instead, the operation enabled the males to stay 

even longer over the vulva (Fig. 12B). This increase in duration is not a result of failure 

to insert spicules, as majority of the intact control males I observed inserted their 

spicules after a couple of times of vulval contacts and multiple contacts were recorded  
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Figure 12. The postcloacal sensilla (p.c.s.) neurons and the oblique muscles facilitate 
prolonged vulval contact.  
A-C. The spots represent the average vulval contact duration for each individual male. 
The horizontal bar indicates the sample median. Ablated males are compared to control 
males that mate with the same group of hermaphrodites. 
Asterisks (**) indicate the p value <0.005, (*) indicates the p value <0.05 calculated 
using the Mann-Whitney non-parametric test.  
D. Ablation of gubernacular muscles increases the duration of sperm release. Asterisk 
(*) indicates the p value <0.05 calculated using the Mann-Whitney non-parametric test. 
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for the operated males as well. In addition, ablating the SPC neurons could reverse the 

vulval contact deficiency caused by ablation of one pair of the p.c.s. neurons (PCCs) 

(Fig. 12A). Therefore, I reasoned that, though not required for sustaining vulval contact, 

the SPC neurons might be used to delimit the duration of this step of mating, which 

eventually could also enhance the efficiency of male mating.  

 

The oblique muscles are used to prolong vulval contact 

 

To address whether the p.c.s. neurons prolong the male vulval contact via 

activating ionotropic AChRs on the oblique muscles and the gubernacular muscles, I 

ablated these muscles and explored if the operation affects males‟ ability to stay in 

contact with the vulva. The anterior and posterior oblique muscles lie dorsal-ventrally at 

each side of the male tail, posterior to the spicules. These muscles contain a single 

sarcomere oriented dorsoventrally, so it was suggested when they contract they generate 

a downward force to change the posture of the male tail (Lints and Hall, 2009). I ablated 

these muscles in males at the L4 larval stage and observed their mating behavior with 

paralyzed hermaphrodites when they became adults. Like the unc-29(lf);acr-16(lf) males 

and p.c.s.-ablated males, these males could not maintain their vulval contact as  well as 

the intact control males (Fig. 12C), but they could perform other behavioral steps prior 

to vulval contact well. The residual vulval contact displayed by the operated males was 

largely due to the hermaphrodites being paralyzed. When I paired these males with free-

moving hermaphrodites, the average duration of vulval contact dropped to 2 seconds 
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(n=3). This data suggests that the oblique muscles postsynaptic to the p.c.s. neurons are 

utilized by the copulation circuit to prolong vulval contact. In addition, based on these 

muscles‟ position and their shapes in the male tail, I propose that they facilitate the 

contact via applying force between the male cloaca and the hermaphrodite‟s vulva.  

Ablating the gubernacular muscles, on the other hand, did not affect males‟ 

ability to stay in contact with the vulva (Fig. 12C). However, strikingly, the gubernacular 

muscle-ablated males showed difficulty in sperm transfer (Fig. 12D). In intact males, 

after sperms left the seminal vesicle, the gametes were briefly held at the distal end of 

the vas deferens for two to four seconds, before they were released out of the cloaca (Liu 

and Sternberg, 1995; Schindelman et al., 2006). However, for the gubernacular muscle-

ablated males, the sperm was held in the vas deferens for a much longer period, and 

sometimes the gametes failed to drain out before the male retracted spicules. The 

gubernaculum is a cuticle structure that lies posterior to the spicules, and it is thought to 

help guide the extension of the spicules through the male cloaca. The gubernacular 

erector and retractor muscles attach the gubernaculum to the body wall (Sulston et al., 

1980; Lints and Hall, 2009). I speculate that gubernacular muscle contraction not only 

moves the gubernaculum, but also lifts the adjacent tissues that are on top of the opening 

of vas deferens. As a result, the lumen of the distal vas deferens is accessible to the 

cloacal opening, and sperm get released.  
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The L-AChR functions on the male sex muscles to facilitate vulval contact 

 

The previous data suggest that the cholinergic p.c.s. neurons innervate the 

oblique muscles to prolong the contact between the male tail and the hermaphrodite 

vulva, and it is likely that the unc-29(lf);acr-16(lf) double mutant males could not 

sustain vulval contact due to impaired cholinergic synaptic transmission at the 

neuromuscular junctions. However, unc-29 is also expressed in the head neurons and 

some of the ventral cord neurons, thus it is also possible that the L-AChR on these 

neurons also contribute to the behavior. To address this, I restored the functional L-

AChR to the male-specific muscles and the body wall muscles in the unc-29(lf);acr-

16(lf) double mutant males, by expressing the unc-29 cDNA under the 3.5 kb promoter 

region of the tropomyosin gene lev-11 (Plev-11:unc-29cDNA::SL2::GFP)(Gruninger et 

al., 2006). Compared to the locomotion-restored unc-29(lf);acr-16(lf) males that had 

unc-29 restored only in the body wall muscles, these males could sustain significantly 

longer vulval contact (Fig. 13). This suggests that the L-AChR on the male sex muscles 

is used to facilitate vulval contact.  
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Figure 13. Rescuing unc-29 in the male sex muscles reverses the vulva contact defect of 
the unc-29(e193);acr-16(ok789) males. The spots represent the average duration of 
vulva contact of individual males. The horizontal bar indicates the sample median. 
Asterisk (*) indicates the p value<0.05, calculated using the Mann-Whitney test. 
 
 
 
Chapter summary 

 

In this chapter, I addressed the neuromuscular circuit used for the male to sustain 

precise contact between his cloaca and the hermaphrodite‟s vulva during mating. I 

noticed that the unc-29(lf);acr-16(lf) double mutant males, which did  not have the 

functional L-AChR and the ACR-16-containing nAChR, could not maintain their tail 

position at the vulva as well as the wild type. I hypothesized that reducing the functions 

of these ionotropic AChRs disrupts the synaptic transmission between certain cellular 
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components of the copulation circuit, and these cellular components are used to promote 

vulval contact. To narrow down the possible postsynaptic cells, I examined the 

expression patterns of unc-29 and acr-16 genes. However, using the upstream sequence 

of unc-29 as a promoter to drive YFP expression, did not give me the complete 

expression pattern of this gene. Instead, I fused both the upstream sequence of unc-29 

and its genomic sequence to the YFP gene. I found it was expressed in male-specific 

muscles that are used for prolonged spicule protraction, such as the spicule protractors 

and the anal depressor muscle, and it was also expressed in other male tail muscles, such 

as the oblique muscles and the gubernacular muscles, whose functions had not been 

studied before.   

The chemical and electrical connections between any two excitable cells in the 

male tail have been revealed by the Male Wiring Project. By studying these connections, 

I noticed that the spicule protractors are innervated by the SPC cholinergic neurons, and 

the oblique muscles and the gubernacular muscles are synapsed by the p.c.s. neurons. I 

then asked if any of these neurons are used in maintaining vulval contact. By quantifying 

the contact durations of the males who were ablated with these neurons, I determined 

that each individual pair of the p.c.s. neurons was required for the wild-type vulval 

contact behavior, whereas the SPC neurons was not. I then further determined the 

oblique muscles that are postsynaptic to the p.c.s. neurons are required for vulval 

contact, but not the gubernacular muscles. The data suggests a model where the 

cholinergic p.c.s. neurons, after they sense the vulva, release ACh to activate the 

ionotropic AChRs on the oblique muscles, and contraction of the oblique muscles is 
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likely to apply a force between the male tail and the hermaphrodite cuticle, in order to 

cease the backward searching of the male. This model was further supported by the fact 

that, when I restored functional L-AChR to the male-specific muscles in the unc-

29(lf);acr-16(lf) double mutant males, it reversed their deficiency in maintaining vulval 

contact.  
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CHAPTER V 

THE BISTABLE STATE OF THE SPICULE MUSCLE CONTRACTION IS 

REGULATED BY THE NEURONAL INPUTS OF THE COPULATION CIRCUIT 

 

 

The gubernacular-oblique muscle group activity directly induces repetitive 

protractor muscle contractions 

 

In Chapter IV, I showed that for a C. elegans male to maintain his tail position at 

the hermaphrodite‟s vulva, the p.c.s. neurons need to sense the vulva, and secrete 

neurotransmitter ACh to activate ionotropic AChRs (L-AChR and ACR-16 nAChR) on 

the postsynaptic oblique muscles. Activation of ionotropic AChRs causes these muscles 

to contract and the contraction applies a force against the hermaphrodite cuticle, which 

keeps the male at the desired position. Interestingly, it was reported in a previous study, 

and also observed by myself and others, that once a male locats the vulva, his spicules 

start to rhythmically prod at the vulva; whereas when he loses the vulval contact, the 

spicule thrusts immediately stops (Garcia et al., 2001). These two motor outputs of the 

male nervous system, vulval contact and rhythmic shallow spicule thrusts, are correlated 

with each other. This implied that the two behavioral steps are under regulation of a 

common mechanism.  

It was showed in a previous study that the rhythmic spicule prodding behavior at 

the vulva is a result of repetitive spicule protractor contraction, and it is triggered by the 
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p.c.s. neuron activity (Sulston et al., 1980; Garcia et al., 2001). However, what remains 

unclear is how the p.c.s. neurons signal the protractor muscles, since these neurons have 

no chemical or electrical connection to the protractors to activate them directly (Sulston 

et al., 1980)(Male Wiring Project).  

To answer the question „how does information from the p.c.s. neurons relayed to 

the protractors to cause spicule thrusts‟, I studied the male circuit connections to 

determine if any neurons or muscles can bridge the physical connection between these 

cellular components. I found that if only one neuron or one muscle cell is allowed to 

connect them, there were only a few options. The p.c.s. neurons have chemical synapses 

and electrical junctions to the SPC neurons, which directly innervate the spicule 

protractors and the anal depressor, which is a sex-dimorphic muscle connected to the 

spicule protractor via gap junctions and is considered to have an accessory role in 

promoting spicule protraction (Garcia et al., 2001; Garcia and Sternberg, 2003). 

However, in a previous study, laser-ablation of the SPC neurons did not affect the 

frequency of spicule prodding at the vulva (Garcia et al., 2001), and my data also 

showed that this operation did not negatively affect the duration of vulval contacts. 

Therefore, the p.c.s. neurons must command the protractors via other cells.  

Gap junction structures exist between the spicule protractors and the anal 

depressor muscle (Male Wiring Project). Since gap junctions are low-resistance channels 

that bridge two cells and allow ions to pass directly, the cytoplasm of these cells are 

connected and cell activities can be synchronized by exchanging electric current 

(Bennett et al., 1991; Bennett and Zukin, 2004). Similarly, the gubernacular muscles 
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(retractor) and the oblique muscles (anterior/posterior) are also connected by gap 

junctions (Fig. 11; Male Wiring Project), and they are innervated by the same group of 

presynaptic neurons, the p.c.s. neurons. Therefore I refer these muscles as the 

“gubernacular-oblique muscle group”. Interestingly, gap junction structures are found to 

connect the protractor-anal depressor muscles that promote spicule movements and the 

gubernacular-oblique muscle group that is innervated by the p.c.s. neurons (Fig. 11). I 

hypothesized that through these gap junctions, ions or other signal molecules can pass 

from the gubernacular-oblique muscles to the protractor-anal depressor muscles to 

induce Ca2+ currents. Therefore when the p.c.s. neurons sense the vulva, they activate the 

gubernacular-oblique muscles and induce rhythmic shallow contractions of the spicule 

protractor muscles.  

To test this hypothesis, I asked if I directly activate the gubernacular-oblique 

muscles without activating their presynaptic neurons, would this induce rhythmic 

contractions of the protractors. I also asked if Ca2+ currents can be observed immediately 

in the protractor-anal depressor muscles upon this stimulation, since muscle contractions 

are coupled to Ca2+ level increases in the cytosol. To depolarize the gubernacular-

oblique muscle group at any desired time, I expressed a light-gated cation channel, 

Channelrhodopsin-2 (ChR2), exclusively on these muscles. Originally found in algae, 

this channel opens when it is illuminated by the blue light and allows cations, including 

Na+, K+, H+ and Ca2+,  to pass, therefore causing strong, rapid and sustained (up to 1 

minute) membrane depolarization in C. elegans cells (Nagel et al., 2003; Nagel et al., 

2005). I used the 6.2 kb region upstream of the acr-18 gene as the promoter to drive 
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transcription of ChR2::YFP fusion construct in multiple cells including the gubernacular 

muscles (erector/retractor) and the posterior oblique muscles (Fig. A-1). Photoactivation 

of the ChR2 requires the presence of all-trans retinal (Nagel et al., 2003). When ChR2 

was expressed and activated by growing males in the presence of all-trans retinal, the 

blue excitation light caused the spicule protractors to contract repetitively. When a 

sequence of blue light pulses were applied, rhythmic spicule thrusts were induced 

correspondingly and coupled to the light stimulation (Fig. 14A; Fig. A-5; see 

Experimental procedures). In contrast, blue light pulses failed to induce any spicule 

movement in males that express ChR2 but grew in the absence of all-trans retinal (Fig. 

14A).   

 

 

 

Figure 14. Stimulation of the gubernacular-oblique muscle group induces repetitive 
spicule thrusts and Ca2+ transients in the spicule protractor-anal depressor muscles.  
A. Displacement of the spicule during and between brief blue light pulses. The grey 
regions indicate the time periods of blue light pulses. An image sequence of the male tail 
was captured for ~30 seconds when light pulses were applied repetitively. A region of 
interest (ROI) was placed at the base of a spicule, and the standard deviation of the pixel 
intensity within the ROI was obtained to indicate spicule displacement (see 
Experimental procedures).  A representative trace for males that expressed active ChR2 
(in the presence of all-trans retinal) is shown in the upper panel; a representative trace 
for males that expressed inactive ChR2 (in the absence of all-trans retinal) is shown in 
the lower panel. a.u. arbitrary units.  
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Figure 14 continued. 
B. Raw fluorescence and corrected intensity traces for a representative male. Upper 
panel: raw fluorescence intensity traces in the protractor without gubernacular-oblique 
muscle stimulation for the baseline recording (with inactive ChR2), and during 
stimulation of active ChR2 on the gubernacular-oblique muscle group. Fluorescence 
intensity for both G-CaMP and DsRed channels are plotted, as well as the background 
fluorescence intensity for each channel. The periods that the light stimuli were applied 
are indicated by grey bars; the numbers on the X-axis indicate the time points since the 
onset of the most recent light stimulus; the 30 minute incubation is indicated on the X-
axis. a.u. arbitrary units. Lower panel: corrected G-CaMP fold change trace during light 
stimulation.  
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Figure 14 continued. 
C. Maximal G-CaMP intensity changes in the protractors during light stimulation. The 
number of males assayed for each operation is listed at the bottom of each bar. The 
numbers below the top of the bars indicate the mean of maximal G-CaMP intensity 
changes of the population. Error bars indicate the standard error of the mean. Asterisk 
(***) indicate the p value <0.0005, (*) indicates the p value <0.05, calculated using the 
Mann-Whitney non-parametric test.  
D. Average G-CaMP intensity changes before, during and after a pulse of blue light 
stimulation. The blue arrow indicates the beginning of light stimulation, the red arrow 
indicates the onset of G-CaMP intensity increase, and the black arrow indicates the end 
of light stimulation. The trace in red represents males with active ChR2. Males without 
active ChR2 are represented by the blue trace. The grey region around each curve 
represents the standard error of the mean. 4 males were measured for each trace.  
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Figure 14 continued. 
E. Averaged G-CaMP intensity traces in the anal depressor muscle (ADP), the 
gubernacular erector (GER) and a posterior body wall muscle (BW), upon laser 
microbeam stimulation of the gubernacular erector muscle or a body wall muscle in the 
male tail. Traces represent averaged G-CaMP fluorescence in specific muscles. The grey 
region around each trace represents the standard error of the mean. Left panel, the 
gubernacular erector on one side of the males was stimulated by a laser microbeam. The 
energy of the laser was adjusted to the lowest level that could elicit Ca2+

 transients in the 
muscles. N=10 males. Right panel, a body wall muscle that has no gap junction to the 
protractor-anal depressor muscle group was stimulated by a laser microbeam. Ca2+

 

transients in the gubernacular erector and the anal depressor muscles were detected by 
using G-CaMP. Stimulation of the posterior body wall muscle failed to induce Ca2+

 

transients in the anal depressor muscle, indicating that in the left panel, Ca2+
 transients in 

the anal depressor muscle were not caused by non-specific laser damage in the male tail. 
N=11 males.  
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Figure 14 continued. 
F. Effects of innexin mutant, RNAi of innexins and SPC ablation on ChR2-induced 
spicule thrusts. The unc-9(lf) males were compared to the wild type. The innexin RNAi 
strains with a wild-type genetic background were compared to the one that was fed with 
empty vector. The innexin RNAi strains with an unc-9(lf) genetic background were 
compared to the unc-9(lf) that was fed with empty vector-containing bacteria. The SPC-
ablated wild type was compared to un-operated wild type. The numbers above the bars 
show the percentage of males that displayed rapid spicule thrusts upon light stimulation. 
The number of males assayed for each strain is listed within the bar. Asterisks (***) 
indicate the p value <0.0001, using the Fisher‟s exact test. 
 

 

To detect Ca2+ level changes in the protractor-anal depressor muscles of intact 

males, I expressed a fluorescent Ca2+ indicator, called G-CaMP, using one of the unc-

103 promoter region (Punc-103E) (Nakai et al., 2001; Reiner et al., 2006; Gruninger et 

al., 2008). A red fluorescent protein DsRed, whose intensity does not change with Ca2+ 

level, was also expressed in the same set of cells under the same promoter region as an 

internal control (Pacr-18:ChR2::YFP + Punc-103E:G-CaMP + Punc-103E:DsRed) 
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(Matz et al., 1999; Baird et al., 2000; Gruninger et al., 2008). The excitation spectrum of 

G-CaMP overlaps with ChR2 (Nakai et al., 2001; Zhang et al., 2008a). To determine the 

baseline of the G-CaMP/DsRed intensity ratio in the protractor-anal depressor muscles 

(in the absence of ChR2-mediated gubernacular-oblique muscle activation), males were 

first imaged under the blue excitation light prior to exposure to all-trans retinal. 

Afterwards, they were incubated on plates that contained all-trans retinal for 30 minutes 

and then reimaged again under the blue light. 30 minutes of incubation was sufficient to 

activate ChR2 for light stimulation (Fig. A-6). In the presence of all-trans retinal, I 

observed Ca2+ transients in correlation with light-induced contractions that caused 

muscle length changes (Fig. 14B, C; see Experimental procedures). In contrast, ChR2-

expressing males that grew in the absence of all-trans retinal, did not display spicule 

thrusts or had Ca2+ transients in the protractor muscles (data not shown, n=30)   

The Pacr-18 promoter region also drove transcription of ChR2::YFP in the HOA 

hook sensillum neuron (Fig. A-1). As described in a previous study, the hook neurons 

could also induce transient rhythmic spicule prodding behavior at the vulva independent 

of the p.c.s. neurons (Garcia et al., 2001). I then asked if the light-induced spicule 

protractor contractions and Ca2+ currents were results of activation of the HOA. I laser-

ablated the hook sensillum precursor cells P10.p in the late L2 larval stage, so the adult 

males lack the whole sensillum structure. Similarly to the intact animals, the blue light 

still induce protractor contractions and Ca2+ currents in these males with a magnitude 

that was slightly, but not significantly, lower than the intact animals (Fig. 14C). This 
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suggests that under this experimental condition, HOA is not the major contributor for the 

Ca2+ currents recorded in the protractor-anal depressor muscles.  

To determine whether the rhythmic contractions of the protractor-anal depressor 

muscles and the Ca2+currents in these muscles were indeed a result of gubernacular-

oblique muscle activity, I laser-ablated these muscles (the gubernacular erectors and 

retractors, the anterior and posterior obliques) in the L4 larval stage and asked if the 

males still display light-induced behaviors when they became adults. I found that the 

repetitive contractions of the protractor-anal depressor muscles were impaired, and the 

Ca2+ currents were greatly reduced in these males (Fig. 14C, p<0.001). I reasoned that 

although not eliminating the cells, ablating cell nuclei at the L4 larval stage severely 

impaired the physiology of these muscle cells and reduced the amount of ChR2 proteins 

on the remaining cell membranes. Thus, the cell corpses that remained after the 

operation could not be activated sufficiently to pass ions or signal molecules to the 

protractor-anal depressor muscles, and therefore no Ca2+currents could be detected. In 

addition, the remaining activity I observed in the protractor-anal depressor muscles 

could also be due to the activation of the male-specific sphincter muscle and the spicule 

retractor muscles. In addition to the gubernacular-oblique muscle group, the upstream 

region of acr-18 also drives transcription in these muscles (Fig. A-1). These muscles are 

also connected to the protractor-anal depressor muscles through electrical junctions 

(Male Wiring Project). Therefore, ChR2 expressed on these muscles might depolarize 

them and then contribute to the remaining activity of the protractor-anal depressor 

muscles. However, in an intact male, the sphincter and spicule retractor muscles are not 
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likely to be the major facilitators of the rhythmic spicule prodding behavior. Instead, 

their activities are more likely to be a result of activation of other male sex muscles, as 

they lack innervations from male-specific neurons (Male Wiring Project). I therefore 

conclude that activities of the gubernacular-oblique muscles can be relayed to the spicule 

protractor-anal depressor muscles probably through gap junction structures to induce 

rhythmic protractor contractions. In this way, when the p.c.s. neurons activate the 

gubernacular and oblique muscles to maintain male tail contact with the hermaphrodite‟s 

vulva, they also initiate the spicule prodding behavior. 

Difference in the G-CaMP/DsRed intensity ratio under light stimulation when 

males were and were not incubated on all-trans retinal demonstrated that direct 

stimulating the gubernacular-oblique muscles could induce the anal depressor-protractor 

muscles activities. However, the temporal correlation between gubernacular-oblique 

muscle group depolarization and protractor-anal depressor muscle activities still needed 

to be determined. One way to assess the temporal correlation is to monitor Ca2+  levels 

continuously in the protractor muscles before, during and after a brief pulse of blue light 

stimulation of the gubernacular-oblique muscles. Using a Mosaic Imaging System 

(Andor™ Technology), I excited multiple regions simultaneously or sequentially 

without optically stimulating the whole field of view. I found that Ca2+  levels elevated 

gradually in the protractor muscles upon light-activation of the gubernacular-oblique 

muscles, and declined rapidly after the stimulation (Fig. 14D; see Experimental 

procedures). Alternatively, I stimulated the gubernacular erector muscles using a laser-

induced muscle contraction method (Reiner et al., 1995). In males that had no ChR2 
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expressed, abrupt release of internal Ca2+  stores in the gubernacular erector muscle,  via 

irradiating the muscle with a low-energy laser microbeam (440 nm), also elicited Ca2+  

transients in the protractor-anal depressor muscles, causing rapid muscle contraction 

(Fig. 14E; see Experimental procedures). These results therefore suggest that activities 

of the gubernacular-oblique muscle group, initiated by the p.c.s. neurons, can be 

transmitted to the spicule protractor muscles directly, probably through gap junctions.  

 

Gap junctions are required for information transmission from the gubernacular-

oblique muscle group to the protractor muscles 

 

To determine if gap junctions mediate the activity transmission between the 

gubernacular-oblique muscles and the protractor-anal depressor muscles, I asked 

whether the “muscle-induced muscle contraction” phenomenon could be suppressed by 

application of a gap junction inhibitor. I used Carbenoxolone (CBX), which has been 

shown to inhibit innexin function in invertebrates (Davidson and Baumgarten, 1988; 

Schneider and Stengl, 2006; Bao et al., 2007).I found that application of this drug 

reduced the light-induced Ca2+ transients in the protractor-anal depressor muscles (Fig. 

14C), as well as the repetitive muscle contractions (data not shown). To the contrary, 

application of tubocurarine, which blocks both nicotine-sensitive and LEV-sensitive 

AChRs (Raizen et al., 1995; Ballivet et al., 1996; Fleming et al., 1997; Richmond and 

Jorgensen, 1999; Sattelle et al., 2002) and cause the males to be paralyzed, did not have 

an effect on either repetitive protractor contractions or Ca2+ transients in response to 
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light stimulation (Fig. 14C). These together indicate that functional gap junctions, 

instead of cholinergic synaptic transmission, are required for the gubernacular-oblique 

muscles activities to be relayed to the spicule protractor muscles.  

To identify the innexin(s) that is important to the coupling of male sex muscles, I 

first determined innexin genes that are expressed in these muscles. The C. elegans 

genome encodes 25 innexin proteins. A high-resolution expression map of all innexins 

has been reported in the C. elegans hermaphrodite, and five innexins are expressed in the 

hermaphrodite sex muscles: inx-3, inx-8, inx-9 inx-14 and unc-9 (Altun et al., 2009). In 

addition, inx-11 was reported to be expressed in these muscles as well in another study 

(Starich et al., 2001). The hermaphrodite sex muscles are derived from the M-lineage, 

same as the male sex muscles (Sulston and Horvitz, 1977); hence, it is possible that these 

genes are also expressed in the male sex muscles. I inspected these genes‟ expression 

patterns in males by checking GFP expression under the control of their promoter 

regions (Altun et al., 2009). I found that unc-9 and inx-14 are expressed in multiple 

male-specific sex muscles and the sexually dimorphic anal depressor muscle. In 

addition, unc-9 is also expressed in the SPC and the PCB neurons in the male tail (Fig. 

A-7).  

To test if these innexins are used to transmit signals among the male sex muscles, 

I asked if the light-induced rapid thrusts of the spicules are affected when these genes are 

mutated or knocked-down by RNA interference (RNAi). Males that carry the unc-

9(e101) loss-of-function allele have uncoordinated locomotion (Brenner, 1974), 

probably due to inhibited electrical coupling among body wall muscles, as well as 
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neuronal UNC-9 deficiency (Liu et al., 2006). I found that when ChR2 was expressed in 

the gubernacular-oblique muscles in these males, in the presence of all-trans retinal, 

only 47.1% of the males responded to the blue light with repetitive spicule thrusts (n=51, 

p<0.0001), compared to 100% of the wild type (n=19; Fig. 14F). To the contrary, light-

induced spicule thrusts were not affected by RNAi of inx-3, inx-9, inx-11 or inx-14. In 

addition, RNAi of these genes in the unc-9(e101) genetic background did not result in 

further inhibition of the behavior (Fig. 14F). In theory, the reduced spicule thrusts can be 

resulted from a deficiency of UNC-9 in the SPC and PCB neurons. I addressed this 

possibility by first asking if these neurons are required for blue light-induced spicule 

thrusts. I reasoned that the PCB neurons do not make synapse or gap junction to the 

protractors; as a result, for the PCBs to mediate the “muscle-induced muscle 

contraction” phenomenon, they have to send signals through the SPC neurons, which 

innervate the protractors. Therefore, I can test whether the PCB and SPC neurons are 

required for the “muscle-induced muscle contraction” phenomenon by asking if light-

stimulated gubernacular-oblique muscle activity can still induce spicule thrusts when the 

SPC neurons are ablated. I found that ablation of the SPC neurons did not have an effect 

(Fig. 14F), suggesting that neither pair of these neurons is required and therefore a 

deficiency of UNC-9 in these neurons is not likely to cause reduced light-induced 

spicule thrusts. Taken together, these data suggest that the UNC-9 innexin is used in 

some of the gap junctions that mediate the direct signal transmission from the 

gubernacular-oblique muscles to the protractor-anal depressor muscles. Identification of 

additional gap junction subunits awaits further study. 
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The SPC neurons are necessary but not sufficient to trigger sustained protractor 

contraction 

 

At the vulva, the rhythmic shallow spicule thrusts cease when prolonged spicule 

protraction occurs. It remains unknown what mechanism underlines the switch between 

these two states of the protractor muscle contractions (rhythmic and prolonged). A 

previous study has shown that the cholinergic SPC neurons are required for rhythmic 

contractions to switch to the prolonged contraction (Garcia et al., 2001). I hypothesized 

that during rhythmic contractions, when ionotropic AChRs on the protractors are 

activated by ACh secreted by the SPC neurons, stronger depolarization then induces 

prolonged spicule protraction. If this is the case, depolarizing the protractor muscles 

directly by light-activated ChR2 should, in theory, cause prolonged spicule protraction.  

To test this theory, I expressed ChR2 in all muscles, using the Plev-11 promoter 

(Plev-11:ChR2::YFP) (Gruninger et al., 2006). When grown on all-trans retinal, all 

transgenic males displayed strong body wall muscle contraction in response to the blue 

light as a result of activation of the body wall muscle ChR2. However, only 5% of the 

males showed tonic contraction of the protractor muscles (n=20; Fig. 15). The rest of the 

population responded to the blue light with shallow repetitive protractor contractions 

with the tips of their spicules slightly protruding from the cloacal opening. Similarly, 

when I expressed ChR2 only in all the male-specific sex muscles, using the Punc-103E 

promoter (Punc-103E:ChR2::YFP), only 18% of these males fully protracted their  
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Figure 15. Simulation of ChR2 in different spicule circuit components. 
A. Before illumination, the male that expresses Pgar-3:ChR2::YFP holds his spicules 
(arrow head) inside of his tail. The blue light induces sustained spicule (arrow head) 
protraction of this male.  
B. Sustained spicule protraction induced by simulation of ChR2 in different circuit 
components. The numbers on the vertical axis represent the percentage of males that 
protraction their spicules when different circuit components are activated by light-
stimulated ChR2. The numbers above the bars are the actual percentage of males that 
protracted in response to light. The numbers of males assayed for each strain are listed 
within the bars. Asterisks (***) indicate the p value<0.0001, (**) indicate the p 

value<0.001, calculated using the Fisher‟s exact test. 
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spicules (n=17; Fig. 15). Light could only induce repetitive shallow protractor 

contractions in the rest of these males. Given that ChR2 was functioning, and was 

sufficient to depolarize the body wall muscles, I reasoned there might be some negative 

regulatory molecules on the protractor keeping these muscles from contracting tonically, 

and it is likely that the SPC neurons activity is still required for rhythmic contractions to 

transform into tonic contraction.  

To address if negative regulator molecules suppress the protractors from fully 

contracting, I introduced a null allele of the unc-103 gene into the Punc-

103E:ChR2::YFP-expressing males. The unc-103 gene encodes an ERG-like K+ 

channels. The human ERG K+ channels have been studied mostly in cardiac muscles for 

its role in regulating rhythmicity (Vandenberg et al., 2001; Sanguinetti and Tristani-

Firouzi, 2006). Mutations in this gene result in inherited long QT syndrome (Curran et 

al., 1995; Pond and Nerbonne, 2001). In C. elegans, UNC-103 K+ channels are 

considered to negatively regulate the cell excitability, and unc-103 deletion males 

spontaneously protract their spicules in the absence of mating stimulation (Garcia and 

Sternberg, 2003; Reiner et al., 2006). About 94% of the unc-103(0) males that had ChR2 

expressed in their sex muscles responded to the blue light with tonic protracted spicules 

(n=16; Fig. 15). This suggests that the functional UNC-103 K+ channel on the protractor 

muscles is used prevent depolarized spicule protractors from tonically contracting, when 

the SPC neurons are not activated.  

To address whether in wild-type males, activation of the SPC neurons can 

transform the protractor rhythmic contractions into tonic contraction, I expressed ChR2 
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in the SPC neurons in addition to the sex muscles by using the promoter region of the 

unc-63 gene (Punc-63) described in Chapter IV. About 57% of the males that expressed 

the Punc-63:ChR2::YFP construct fully protracted their spicules under the blue light, 

significantly higher than 18% of the Punc-103E:ChR2:YFP males (n=30, p=0.0139). In 

addition, I used the Pgar-3B promoter region described in Chapter III, to express ChR2 

in the SPC neurons and two of the p.c.s. neurons (PCA and PCB), in addition to the 

spicule protractors and the anal depressor muscle (Pgar-3B:ChR2::YFP). I found 75% of 

the males that expressed this construct protracted their spicules under the blue light 

(n=64, p<0.0001; Fig. 15). Ablation of the PCA and PCB neurons did not significantly 

affect the light-induced spicule protraction (Fig. 15; n=23), suggesting that although 

solely depolarizing the protractor muscles does not cause these muscles to tonically 

contract, activation of the SPC neurons together with the muscle activity induces the 

sustained contraction. Consistent with this, when I laser-ablated the SPC neurons in 

these transgenic males, I found the percentage of males could tonically protract spicules 

under the blue light reduced to 20% (Fig. 15; n=20), indicating an essential role of the 

SPC neurons in making the switch.  

 

Signals from the p.c.s. and hook sensillum are integrated to promote sustained 

spicule protraction 

 

If activation of the p.c.s. neurons induces rhythmic spicule protractor contraction, 

and activation of the SPC neurons switches the contractile state to tonic contraction, then 
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artificially activating these neurons using light-activated ChR2 should cause sustained 

spicule protraction. Using a Pacr-12 promoter that was described in Chapter IV, I 

expressed ChR2 in the SPC and one of the p.c.s. neurons (Pacr-12:ChR2::YFP). Only 

39% of the transgenic males protracted their spicules under the blue light (n=23). I 

reasoned that since only one of the three p.c.s. neurons were stimulated, this might not 

be as efficient as activating all three neurons.  

I then used one of the unc-103 gene promoter regions (Punc-103F) to express 

ChR2 in the PCA, PCB, and SPC neurons (Reiner et al., 2006). Since males that had 

either two of the p.c.s. neurons could still prod their spicules at the vulva and eventually 

insert their spicules, I expected more males that expressed the Punc-103F:ChR2::YFP 

construct to protract their spicules under light. To my surprise, only 19% of the Punc-

103F:ChR2::YFP expressing males showed sustained spicule protraction in response to 

the blue light (Fig. 15; n=36). When I preselected males that displayed a very high 

expression of Punc-103F:ChR2::YFP, 65% of these biased males displayed spicule 

protraction after light stimulation (Fig. 15; n=37). Ablation of the PCA and PCB neurons 

reduced the percentage of males that responded to the light to 20% (Fig. 15; n=20, 

p=0.002), indicating that in the absence of PCA and PCB, activation of SPC alone is not 

sufficient to induce tonic muscle contraction.  

The low efficiency of Punc-103F:ChR2::YFP-induced spicule protraction in 

unbiased males suggested that, the spicule-prodding/protraction neurons have intrinsic 

properties, which to overcome, require high levels of ChR2 stimulation. When the Punc-

103F:ChR2::YFP construct was introduced into the unc-103(0) males, 77.6% of the 
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population fully protracted their spicules in response to the blue light (n=94, Fig. 15). 

The unc-103 gene is expressed in both spicule-associated neurons and the male sex 

muscles (Gruniner et al., 2006; Reiner et al., 2006). I found that restoring functional 

UNC-103 in the sex muscles could reestablish these males‟ resistance to light-

stimulation; however, expressing unc-103 in the spicule-associated neurons can also 

restore some resistance to light stimulation (Fig. 15; n=26, p<0.0001). Thus in wild type, 

the UNC-103 channel likely regulates the excitability threshold of neurons, in addition to 

muscles. 

However, this still does not address the question, „why do p.c.s. and SPC neurons 

promote spicule insertion at the vulva, but not efficiently under artificial non-mating 

conditions?‟ The male copulation is a complex behavior. Multiple sensory inputs 

probably need to be integrated for the behavior to be executed coordinately, whereas for 

the Punc-103F:ChR2::YFP-induced behavior, only the SPC, PCA, and PCB neurons are 

activated. I hypothesized that activities of these neurons were attenuated by other 

neurons, and this attenuation would be removed when the vulva is sensed. It was 

reported in previous research that the hook sensillum could sense the vulval signal and 

induce the spicule prodding behavior. When the hook sensillum precursor cell, P10.p is 

laser-ablated, the operated males no longer sense the general area of the vulva, but 

instead randomly prod the cuticle of the hermaphrodite with their spicules (Liu and 

Sternberg, 1995). This suggests that in intact males, the cells derived from P10.p 

attenuate spicule protractor activity until the male circuit senses the vulva. The P10.p 

precursor cell gives rise to the hook structural cells, HOA and HOB sensory neurons, 
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and the PVZ motor neuron. The PVZ does not directly synapse the spicule-relevant 

neurons, but the HOA and HOB neurons make direct chemical and electrical 

connections to the p.c.s. and SPC neurons (Male Wiring Project). Thus, it is possible that 

HOA and HOB negatively regulate spicule activity until the vulva is sensed.  

Laser-ablation of the hook sensillum precursor cell P10.p resulted in 54% of the 

un-biased males (Fig. 15; n=26), and 87% of the high-expressing males (Fig. 15; n=23), 

to protracted their spicules under the blue light. The incidence of ChR2-induced 

protraction was higher for the operated males than the non-operated males, in both cases. 

Though for biased Punc-103F:ChR2::YFP high-expressing males, the increase was not 

statistically different over the already high protracting non-ablated males (p=0.08), the 

difference was statistically significant (p=0.004) for the un-biased males. Interestingly, 

under the blue light, ChR2 was not expressed in the hook sensillum to activate it. This 

indicates that the hook neurons are active to attenuate the activities of the SPC, PCA, 

and PCB neurons in the absence of the vulva signal.  

 

Chapter summary 

 

In this Chapter, I identified the cellular mechanisms that underlie the bi-stable 

state of the spicule protractor muscle contraction (rhythmic shallow contractions and 

prolonged contraction). It has been suggested in a previous study that the rhythmic 

contractions are induced by the p.c.s. neurons and the sustained contraction requires the 

SPC cholinergic neurons (Garcia et al., 2001). Since the protractors are only innervated 
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by the SPC, but not the p.c.s. neurons, it remained unknown what neuronal mechanism 

the circuit uses to give rise to two distinct types of muscle contractions.  

Guided by the physical connections of the male circuit revealed by the Male 

Wiring Project, I explored functional connections that are important for generating these 

motor outputs. In a carefully designed experimental set, I found that selectively 

depolarizing the gubernacular-oblique muscle group, which is innervated by the p.c.s. 

neurons, could instantaneously induce repetitive shallow spicule thrusts and Ca2+ 

currents in the protractor muscles. Given the gubernacular-oblique muscle group is 

connected to the protractors via gap junctions, this suggests that for the p.c.s. neurons to 

induce rhythmic protractor contraction, they activate the gubernacular-oblique muscles, 

and the activity then is relayed to the protractors via gap junctions.  

I also demonstrated that for the male circuit to switch from rhythmic spicule 

protraction to prolonged spicule protraction, multiple sensory inputs need to be 

integrated by the nervous system. By expressing the light-gated cation channel ChR2 in 

specific circuit components, in conjunction with laser-ablation of a particular set of cells, 

I could ask which sensory neurons are necessary and sufficient to promote prolonged 

spicule protraction. I found that for the circuit to give rise to sustained protractor 

contraction most efficiently, the p.c.s. neurons and the SPC neurons need to be activated, 

and the hook sensillum neurons need to be inactivated. This suggests a scenario that 

before the males locate the vulva, the hook neurons are active to suppress spicule 

activity until they recognize the vulva and remove the inhibition. The vulva signal also 

activates the p.c.s. neurons to induce the spicule prodding behavior, until partial 
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penetration of vulva triggers the SPC neurons, whose activity in conjunction with the 

continuing p.c.s. activities then promote the sustained spicule insertion.  
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CHAPTER VI 

SUMMARY OF EXPERIMENTS AND DISCUSSION* 

 

 

Summary of experimental results 

 

The C. elegans males utilize a couple of neurons and muscles to accomplish the 

reproductive behavior with stereotyped but complex motor patterns. The purpose of this 

study was to elucidate the cellular and molecular mechanisms the male circuit uses to 

give rise to different motor outputs and coordinate them into a coherent behavioral 

sequence. My study demonstrated that by taking advantage of different types of circuit 

connections and diverse receptor types, the cholinergic copulation circuit regulates both 

the rhythmic spicule thrusts and the sustained spicule insertion, and coordinate these two 

motor outputs to facilitate the mating success.  

I found that once the postcloacal sensilla (p.c.s.) neurons recognize the vulva, 

they continuously function to maintain the precise male tail position over the vulval slit. 

Two of the three p.c.s. neurons are cholinergic, and they are likely to facilitate the male 

vulval contact through innervating the posterior male tail muscles by activating the L-

AChR and the ACR-16 nAChR on these muscles. Additionally, I found that the activity 

 
______________________ 
* Part of this chapter is reprinted with permission from “G{alpha}q-Coupled Muscarinic 
Acetylcholine Receptors Enhance Nicotinic Acetylcholine Receptor Signaling in Caenorhabditis 
elegans Mating Behavior” by Liu Y, LeBoeuf B, Garcia LR, 2007, Journal of Neuroscience, 27, 
1411 – 1421. Copyright © 2007 by Society for Neuroscience. 
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of the oblique muscles and the gubernacular muscles, which are connected via gap 

junctions, can be conducted to the spicule protractor muscles instantaneously to induce 

Ca2+ currents and shallow rhythmic contractions of these muscles. Gap junction 

structures are also found to connect the gubernacular-oblique muscles with the spicule 

protractors. This suggests that the p.c.s. neurons probably trigger rhythmic spicule 

thrusts by utilizing the electrical junctions between these muscles.  

The switch from rhythmic spicule prodding to tonic spicule insertion is under 

strict regulation. When I asked which neurons activities were necessary and sufficient to 

cause sustained spicule protraction, I found that although the SPC is the ultimate trigger 

of the behavioral change, this behavior also requires the activities of the p.c.s. neurons. 

In addition, it requires the hook sensillum, which senses the vulva, to be inactive. By 

integrating all these sensory cues, the circuit can control the timing of the spicule 

insertion to insure the success.  

Understanding the basic operational logic of the copulation circuit is likely to 

help us to address questions such as how modulatory signaling pathways influence the 

circuit activity. In the first part of this study, I demonstrated that a Gαq-coupled mAChR-

mediated signaling pathway is used to facilitate the male mating efficiency, probably via 

enhancing the motor output of the ionotropic AChRs-mediated synaptic transmission. 

The ionotropic AChRs were only known to promote the sustained spicule protraction 

(Garcia et al., 2001). Therefore it was not obvious why the mutant males, which had 

abolished mAChR signaling, could eventually penetrate the vulva during mating, but 

they could not accomplish it as efficiently as the wild type. Having an understanding of 
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how ionotropic AChRs are utilized to facilitate the male vulval contact put this finding 

into a better context. It is possible that by enhancing the ionotropic AChRs signaling in 

the oblique muscles as well as in the protractors, the Gαq/ mAChR signaling pathway 

facilitates the male vulval contact so that the males can insert their spicules more 

efficiently.  

 

The cholinergic neuromuscular junctions between the postcloacal sensilla neurons 

and the oblique muscles are used to maintain the male tail position at the vulva  

 

The C. elegans males copulate with the opposite sex, hermaphrodites, by 

inserting their copulatory spicules into the hermaphrodites‟ vulvas to facilitate sperm 

transfer (Liu and Sternberg, 1995). The males cannot penetrate the hermaphrodite‟s 

vulva immediately, unless the hermaphrodite has experienced extended egg-laying and 

her vulva is dilated (the hermaphrodites with dilated vulvas are usually 2 days into their 

adulthood or older). Instead, the males prod their spicules at the vulva rhythmically, as 

an attempt to breach the slit, and then partial spicule insertion is sensed by the SPC 

spicule neurons to trigger full spicule protraction (Garcia et al., 2001). When a male 

attempts to mate, the hermaphrodite tries to move away, since for the sperm-carrying 

hermaphrodite, mating is not required for reproduction. Thus, an essential step for the 

males to successfully mate is to sustain precise contact between their cloaca opening and 

the hermaphrodite‟s vulva, so that their insertion attempt is prolonged for them to 

penetrate the vulva.  
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The first step to achieve vulval contact is to recognize the vulva, or to localize it. 

This requires the combined functions of two sensory organs of the male, a bilateral set of 

postcloacal sensilla, which contains three pairs of sensory-motor neurons (PCA, PCB 

and PCC), and the hook sensillum that contains the HOA and HOB sensory neurons. It 

was suggested that the p.c.s. neurons might be mechanosensory, as their sensory endings 

are encased in cuticle; whereas the HOA and HOB might be both mechanosensory and 

chemosensory, since their sensory endings are opened to the environment (Sulston et al., 

1980). Males that lost function of all p.c.s. neurons after laser-ablation of these neurons 

could stop at the general area of the vulva, but could not position their tail precisely over 

the vulva slit and insert their spicules(Liu and Sternberg, 1995; Garcia et al., 2001). In 

contrast, males that did not have the functional hook sensillum displayed reduced 

efficiency in recognize the vulva; however, these males could still locate the vulva and 

insert spicules at a lower efficiency (Liu and Sternberg, 1995; Barr and Sternberg, 1999; 

Yu et al., 2003; Jauregui and Barr, 2005; Peden and Barr, 2005; Bae et al., 2008). 

In this study, males that had any pair of the p.c.s. neurons laser-ablated could 

localize the vulva, suggesting that males can utilize any two pairs of these neurons to 

position their tail at the vulva. However, if males that lack any pair of the p.c.s. neurons 

could not insert their spicules immediately, they moved off the vulva sooner than the 

intact animals. This suggests that after the initial recognition, these neurons are 

continuously used to maintain the male‟s position over the hermaphrodite‟s vulva.  

Mutant males that lack the functional L-AChR and ACR-16 nAChR showed 

similar vulval contact defect as the single pair p.c.s. neuron-ablated males. These 
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receptors are both expressed on a couple of male-specific sex muscles, including the 

spicule protractors, the gubernacular muscles and the oblique muscles. Among these 

muscles, the gubernacular and the oblique muscles are innervated by the cholinergic 

p.c.s. neurons (PCB and PCC), as well as the non-cholinergic p.c.s. neurons (PCAs) 

(Male Wiring Project) (Garcia et al., 2001). Therefore, it is possible that the maintenance 

of male tail position at the vulva is regulated by direct synaptic transmission between the 

p.c.s. neurons and these male-specific muscles (Fig. 16). This is supported by the fact 

that the oblique muscle-ablated males could not maintain their tail position at the vulva 

as well as intact animals. In addition, it is further supported by the fact that restoring 

functional L-AChR back to the male sex muscles reversed the vulval contact defect in 

the ionotropic AChRs double mutant males. The oblique muscles lie dorsal-ventrally at 

the male tail slightly posterior to the cloacal opening, and they are attached to the body 

wall. When they contract, the posterior tail region curls ventrally, probably as a result of 

their dorsal-ventral oriented single sarcomeres (Lints and Hall, 2009). I speculate that 

when males are moving backward along the hermaphrodite cuticle, changes in their tail 

curvature might redirect the force of the tail from lateral scanning to downward pressing 

(Fig. 16), therefore stabilizing the male at the vulva.  

The gubernacular muscles, also innervated by the p.c.s. neurons, are not required 

for prolonged vulval contact. However, they seem to facilitate sperm transfer, as ablating 

these muscles resulted in males that could not efficiently release their sperms after 

spicule insertion. The gubernacular muscles are attached to the gubernaculum, a cuticle 

structure locates adjacent to the spicules. I reason that when these muscles contract, they  
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Figure 16. Model of the coupling of prolonged vulval contact with rhythmic protractor 
contractions.  
Muscle abbreviations: DSP: dorsal spicule protractor; VSP: ventral spicule protractor; 
ADP: anal depressor; GER: gubernacular erector; GRT: gubernacular retractor; AOB: 
anterior oblique; POB: posterior oblique;  
Cartoon depicting changes in male tail muscles upon vulval contact. Upper panel depicts 
the relative locations of the male sex muscles and the electrical junctions between them. 
The lower panel depicts the shortening of the AOB and POB muscles causing a 
curvature in the posterior male tail (red arrow) upon chemical stimulation from the PCA, 
PCB and PCC neurons. Stimulated GER muscles relay their signals to the spicule 
protractor muscles causing rhythmic contractions (blue arrow). 
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not only lift the gubernaculum, but also lift other adjacent tissues to allow sperm in the 

distal vas deferens to drain out.  

 
 
The p.c.s. neurons coordinate both vulval contact and rhythmic spicule shallow 

thrusts simultaneously via gap junctions 

 

For wild-type males, contact with the vulva and rhythmic spicule shallow thrusts 

always occur simultaneously. Since I rarely observed either behavior happens 

independently, I speculated they must share some common neuronal regulation 

mechanisms. The rhythmic spicule thrusts are results of repetitive protractor muscles 

contractions. My results showed that activity in the oblique and gubernacular muscles 

can be relayed instantaneously to the anal depressor muscle and the protractor muscles to 

induce Ca2+ currents and cause repetitive contraction of these muscles. The intercellular 

communication is likely mediated by the electrical couplings between these two clusters 

of muscles (Male Wiring Project; Fig.s 11, 14 and 16). Therefore, by utilizing gap 

junctions in the circuit, two different motor outputs are coordinated to occur 

simultaneously. Since vulva penetration requires both precise vulval contact and 

repetitive spicules thrusts at the vulva slit, the circuit maximizes the incidence of success 

by adopting these two motor patterns.  

Although connected by gap junctions, different motor outputs are generated 

separately by the gubernacular-oblique muscle group and the anal depressor-protractor 

muscle group. I observed that, when males rhythmically prodded their spicules at the 
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vulva, they maintained a stable tail curvature. This suggests that the oblique muscles do 

not undergo high frequency contractions like the protractors. I speculate that this can be 

a result of either of two mechanisms: 1) ion current, such as Ca2+, is directly conducted 

from the oblique-gubernacular muscle group to the protractors, however, it causes 

rhythmic contraction instead of tonic contraction of the protractors because of the 

specific property of the muscle motor proteins; 2) the signal molecules that pass from the 

oblique-gubernacular muscle group to the protractors via gap junctions, induce 

regenerative Ca2+ current in these muscles to cause rhythmic contractions. I favor the 

later, since it is consistent with the observation from a previous study that the ryanodine 

receptor Ca2+ channel gene unc-68 is required for the rhythmic protractor contraction, 

but not the sustained contraction (Garcia et al., 2001).   

In adult C. elegans, gap junctions are distributed extensively throughout the 

nervous system. Based on serial transmission electronic microscopy images and gap 

junction protein expression patterns, the gap junction structures are not limited between 

neurons or between muscles, but also connect neuron and muscle cells (White et al., 

1986)(Male Wiring Project). These electrical connections probably play important roles 

in regulating animal behaviors. The C. elegans gap junctions have been reported to 

mediate Ca2+ current propagation throughout the intestine cells and the body wall 

muscles, and a few studies also indicate their roles in synchronizing neuron activities 

(Liu et al., 2006; Chen et al., 2007; Peters et al., 2007; Macosko et al., 2009). However, 

the functional importance of the majority of gap junctions in the C. elegans nervous 

system remains largely unknown.  
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The understanding of how the p.c.s. neurons promote prolonged vulval contact 

and rhythmic spicule thrusts will enable us to ask what cellular and molecular changes 

occur between closely related nematode species for them to have different behavioral 

patterns during mating. The cells in the C. remanei male tail form almost exactly the 

same patterns as the cells in the C. elegans male tail. However, unlike in C. elegans, the 

equivalent cells of the cholinergic p.c.s. neurons in C. remanei do not induce rhythmic 

protractor muscle contractions. Instead, they sense the vulva then induce sustained 

spicule protraction immediately (Garcia et al., 2007). Like in C. elegans, the C. remanei 

spicule circuit also utilizes ACh and ionotropic AChRs to promote sustained spicule 

protractor contraction (Garcia unpublished data). These observations raise the question 

whether the equivalent cells of the p.c.s. neurons in C. remanei could synapse directly to 

the spicule protractors to induce immediate spicule insertion in response to the vulva?  In 

addition, one can ask if the patterns of spicule activity that is featured by the 

hermaphroditic species can be induced by just rewiring synapses from the p.c.s. neurons 

to the gubernacular-oblique muscle group. Answers to these questions will help us to 

understand whether and how differences in circuit connectivity contribute to diverged 

behavioral patterns between closely-related species. In C. elegans, it has been 

demonstrated that the patterns of neuronal connectivity can be regulated by a few genes 

(Hallam and Jin, 1998; Hallam et al., 2002). It is possible when a species evolves from 

its ancestor, changes in a few key genes that determine the circuit connections can 

dramatically change the behavioral patterns. 
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Sustained protractor muscle contraction requires integration of multiple sensory 

inputs 

 

The core spicule circuit (the SPC neurons, the p.c.s. neurons and the spicule 

protractor muscles) is connected to other parts of the nervous system via extensive 

synapses and gap junctions (Male Wiring Project). Thus it is likely that activities in other 

behavioral circuits can cause non-specific activities (noise) in the spicule circuit when 

the male is not exposed to stimulation that induces the mating behavior.  

I found that the circuit uses a “coincidence detector”-like mechanism to prevent 

the males from protracting their spicules into non-vulval orifices, or from responding to 

random environmental stimuli. In other words, the male protracts his spicules only if 

multiple signals indicate that he is in good contact with the vulva and ready to penetrate 

it. I uncovered this mechanism by using the light-gated cation channel channelrhodopsin 

(ChR2) to selectively activate different components of the male circuit. Activation of 

excitatory cells by ChR2 is not equivalent to the activation caused by synaptic 

transmission or electrical junctions in behaving animals, but these experiments enable us 

to see the capability of the spicule circuit to respond to various inputs with differential 

behavior outputs.  

I found that at least three input signals have to be integrated by the protractor 

muscles for them to fully contract with the highest probability: removal of the negative 

input from the pre-cloacal sensillum neurons (HOA and HOB) in response to vulva 

contact; continuous activity of the p.c.s. neurons, which indicates the male tail is still 
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over the vulva; and activation of the positive input from the SPC cholinergic 

proprioceptive sensory-motor neurons, which directly synapse the protractors (Fig. 17). 

Among these, it is interesting that in the absence of vulva signal, the hook neurons 

suppress the spicule protractor activity. This suggests these neurons are constitutively 

active until the vulval signal suppresses their activity and releases the negative 

regulation from these neurons. At the same time, the p.c.s. neurons are also stimulated  

 

                     

 

Figure 17. Integration of multiple sensory inputs is required to trigger tonic spicule full 
protraction.  
The SPC neurons have sensory ending-like dendrites attached to the dorsal spicule 
protractor muscles. The hook neurons send their sensory processes to the hook structure 
anterior to the cloacal opening. The p.c.s. neurons send sensory ending to the post-
cloacal area. Activation of the SPC neurons and the p.c.s. neurons facilitates tonic 
spicule protraction, whereas the hood neurons constitutively inhibit spicule protractor 
activity until they sense the vulva.  
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by the vulval signal. They secrete neurotransmitters, such as ACh, to induce rhythmic 

spicule thrusts. Eventually, partial spicule penetration triggers the SPC neuron activity, 

through their proprioceptive sensory endings, to release ACh onto the protractor 

muscles. ACh-activated nAChR on these muscles acts additively with the intracellular 

regenerative Ca2+ currents to switch the oscillating contractions to the tonic contraction.  

The male copulation circuit has a high threshold to be stimulated, so only when 

all sensory inputs are detected “coincidently”, will the circuit respond maximally to give 

rise to spicule protraction. I propose that the ERG-like K+ channel UNC-103 is used by 

the circuit to set up such a high threshold. My results showed that when functional UNC-

103 is absent from the circuit, the “coincidence detector” mechanism collapses, and the 

circuit then respond to stimulus that is not normally sufficient to induce spicule 

protraction in intact animals. This also helps to explain why the unc-103(0) mutant 

males display a fictive mating behavior spontaneously in the absence of hermaphrodite, 

and why during mating, they attempt to prematurely protract spicules at the 

hermaphrodite vulva before partial penetration is achieved (Garcia and Sternberg, 2003).  

The unc-103 gene is also expressed in a number of cells in C. elegans, including 

the body wall muscles and the ventral cord neurons that regulate the locomotion 

behavior, as well as the intestinal muscles that control defecation. Interestingly, in 

contrast to the spicule protraction defect, the unc-103(0) mutant worms, males or 

hermaphrodites, have no obvious or slight behavioral defects in most of behaviors, 

including locomotion and defecation (Garcia and Sternberg, 2003; Reiner et al., 2006). 

However, the unc-103(0) mutant hermaphrodites have obvious hyper active egg laying 
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behavior under non-optimal conditions (Reiner et al., 2006). This suggests that the UNC-

103 function is required in circuits that regulate the reproductive behaviors to suppress 

the circuit excitability. I infer that for the reproductive behaviors, since the timing of the 

behavior needs to be more strictly regulated, the high threshold set up by the UNC-103 

K+ channel insures that only when multiple inputs are present the behavior occurs.  

The model I just described showcases how the C. elegans nervous system uses 

simple cellular and molecular mechanisms to coordinate behavioral sequences. These 

mechanisms are likely to share common principles with what is underpinning behavioral 

coordination of more complex organisms. For example, in vertebrates, it has been 

suggested that the low excitability of the striatal neurons play an important role in 

prevent unintended locomotion. The central pattern generators in the spinal cord 

generate the locomotion (Grillner and Jessell, 2009). These networks remain silent, as 

they are tonically inhibited by the pallidum region of the basal ganglia. This inhibition 

can be removed when the pallidum receives inhibitory input from the striatum. The 

striatum has a low excitability due to the inward rectifier K+ current (Nisenbaum and 

Wilson, 1995; Mermelstein et al., 1998; Kreitzer and Malenka, 2008). Therefore, the 

striatum only gets activated when it receive strong activation from the thalamus or the 

cortex, where relevant sensory inputs are integrated. Using this mechanism, the animal 

adapts its locomotion properly in response to environmental conditions (Grillner et al., 

2008).  
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A Gαq/mAChR signaling pathway facilitates the male mating efficiency via 

enhancing the ionotropic AChRs-mediated synaptic transmission 

 

Activities of the male copulation circuit are not only under modulation of 

negative regulators, such as UNC-103, but also under control of positive regulators, such 

as the GAR-3 mAChR.  

In virgin males, ACh secreted from the SPC neurons and the PCB neurons is 

required for the wild-type dose-response to LEV. As showed in Chapters III and IV, the 

LEV-sensitive nAChR (L-AChR) is only expressed on the male sex muscles that are 

postsynaptic to these neurons. This indicates that, though these muscles are capable of 

expressing functional L-AChR in the absence of presynaptic neurons, either the 

abundance or the signaling capacity of these L-AChR receptors must be modulated by 

their presynaptic partners.  

I found that a signaling pathway mediated by the Gαq-coupled mAChR, GAR-3, 

is required for the wild-type behavioral response to LEV. Mutations in genes that encode 

GAR-3, Gαq and their downstream effector PLCβ, result in males that do not protract 

their spicules in LEV as well as the wild type. The Gαq/PLCβ signaling has been shown 

in the C. elegans and other organisms to regulate secretion of neurotransmitter from the 

presynaptic cells. I found that though Gαq is broadly expressed in every cell of the 

worm, GAR-3 is only expressed in a small set of cells, including the SPC, PCB and PCC 

neurons that regulate the male mating. It is also expressed in the spicule protractor 

muscles, however, at a much lower level. Therefore, the major site of action of GAR-3 
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signaling is likely to be the spicule-related neurons, and it facilitates the ionotropic 

AChRs singling probably through upregulating neurotransmitter release from these cells.  

The role of the GAR-3 signaling in regulating synaptic transmission is also 

suggested by results of the following experiments. When I applied a GAR-3-specific 

agonist, oxo M, to wild-type males, the hyperactivated GAR-3 signaling caused these 

males to protract their spicules. Oxo M-induced spicule protraction requires the SPC and 

PCB neurons, cholinergic synaptic transmission and the L-AChR on the spicule 

protractor muscles. This indicates that the neuronal GAR-3/Gαq signaling is 

hyperactivated by oxo M to induce spicule protraction, probably through upregulating 

ACh release from these neurons. Consistently, restoring the gar-3 gene back to spicule-

related neurons fully rescued the oxo M sensitivity in the gar-3(0) mutant males.  

GAR-3 is also expressed in the spicule protractors at a very low level. When the 

gar-3 gene was overexpressed in the male sex muscles it restored the gar-3(0) mutant 

males‟ ability to protract their spicules in oxo M and LEV. This suggests that when 

overexpressed, the GAR-3 mAChR on the sex muscles can hyperactivate its downstream 

effectors in the muscle cells to cause muscle contraction. These effectors, though not 

directly causing spicule protraction under physiological conditions, might facilitate 

muscle contraction in parallel with the neuronal GAR-3/Gαq signaling.  

The GAR-3 mAChR is not sensitive to LEV. Interestingly, active GAR-3 

receptor is required for LEV to induce spicule protraction in virgin males at the wild-

type efficiency. This indicates that GAR-3 is activated in animals that are not exposed to 

agonists or hermaphrodite. This raises a question: in the virgin males I essayed, when do 



128 
 

postsynaptic cells in the spicule circuit become exposed to secreted acetylcholine? I 

favor the idea that before and between periods of copulation, the neurons in the spicule 

circuit release small amounts of neurotransmitters that are partially regulated by the 

GAR-3(mAChR)/Gαq pathway. Therefore the postsynaptic or presynaptic GAR-3 is then 

activated by the spontaneously released ACh (Fig. 18).  

Spontaneous neurotransmitter release has been observed at the neuromuscular 

junctions in other organisms, such as frogs, flies, and rodents, and was first observed in 

the frog neuromuscular junction (Fatt and Katz, 1952). In absence of stimulation, pre-

synaptic cells spontaneously secrete ACh at a low frequency to activate ACh receptors 

on postsynaptic cells, causing miniature membrane depolarization. In C. elegans, the 

miniature postsynaptic potential has been measured at the body wall muscle 

neuromuscular junction. Gαq signaling in the ventral cord motor neurons were found to 

contribute to the miniature postsynaptic current (Richmond and Jorgensen, 1999). Here I 

hypothesize that this general phenomenon of background level of ACh release also 

occurs in the spicule circuit, and it is partly regulated by the GAR-3/Gαq signaling. 

Others have previously shown that spontaneous neurotransmitter release can regulate the 

clustering of receptors on postsynaptic cells (Saitoe et al., 2001). In the spicule 

protraction circuit, a similar mechanism might be occurring. GAR-3(mAChR)/Gαq 

might define the cholinergic sensitivity of the postsynaptic cells either by regulating the 

number or clustering of ionotropic AChRs, activating a facilitator of the nAChR 

signaling, or by inhibiting mechanisms that reduce the cell excitability.  
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Figure 18. Model of GAR-3-mediated cell interaction.  
Prior to mating, activated GAR-3(mAChR)/Gαq on the SPC and PCB neurons promotes 
low levels of acetylcholine release. The low level release of acetylcholine also indirectly 
results in an increased sensitivity of postsynaptic nAChR signaling potential on the 
spicule protractor muscle cells, and possibly also in the SPC and PCB neurons. 

 

 

 

The gar-3(0) mutant males that lack the mAChR/Gαq-mediated signaling have 

mild behavioral defect when their tails locate the hermaphrodite vulva (Fig. 8). Their 

phenotype can either be explained by lack of efficiency to insert spicules, or by poor 

ability to maintain their tail position at the vulva. I hypothesized the cholinergic synaptic 

transmission between the spicule-related neurons and their postsynaptic cells was one of 

the sources of signals that attenuate male backward locomotion during vulva searching. 

Therefore, the gar-3(0) mutant males mating defect might be attributable to decreased 

ACh secretion from these neurons (Fig. 18). In Chapter IV, I demonstrate that the 

cholinergic synaptic transmission between the p.c.s. neurons and the oblique muscles 

mediated by ionotropic AChRs is important for males to maintain their tail position at 
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the vulva. Therefore, it is likely that the GAR-3 signaling facilitate the male mating at 

least partially via enhancing the ionotropic AChRs-mediated synaptic transmission at 

this specific site.  

 

Future directions 

 

The goal of this dissertation is to understand the functional structure of the C. 

elegans male copulation circuit, and how featured molecules shape the distinct 

physiology of the circuit components in order to give rise to a coordinated motor 

behavior that is important for reproduction. My study demonstrated that the C. elegans 

male utilizes a compact circuit to achieve vulval contact and spicule insertion during 

mating. After initial recognition of the vulva, the p.c.s. sensory-motor neurons are 

continuously stimulated by the vulval signal and innervate the oblique muscles via 

cholinergic synaptic transmission. The oblique muscle contraction then facilitates the 

contact between the male tail and the hermaphrodite‟s vulva. A modulatory signaling 

mediated by the GAR-3/mAChR and its downstream effector Gαq might be used to 

enhance synaptic transmission between the p.c.s. neurons and these muscles, therefore 

positively regulating the vulval contact behavior. Activities of the oblique muscle as well 

as the gubernacular muscles can be relayed to the spicule protractor muscles to induce 

Ca2+ currents and promote rhythmic spicule thrusts at the vulva. The signal molecules 

are considered to be conducted from the oblique-gubernacular muscle group 

instantaneously to the protractors through gap junctions to induce Ca2+ currents in the 
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protractors. For the protractors to switch from rhythmic shallow contraction to tonic full 

contraction, activation of the SPC sensory-motor neurons is required in addition to the 

already-activated p.c.s. neurons. Additionally, the hook sensillum neurons inhibit the 

spicule activity until they sense the vulva signal. Therefore, multiple sensory inputs are 

integrated for the circuit to decide when is proper to fully insert the spicules.  

Understanding this basic operational logic of the copulation circuit enable us to 

study functional molecules that are recruited by the circuit to generate different motor 

outputs, as well as modulatory mechanisms that fine-tune the circuit activity under 

different internal and environmental conditions. The following are some questions that 

will need to be addressed to further our understanding of cellular and molecular 

regulation of complex animal behavior: 1) how are different functional gap junctions 

utilized by the copulation circuit to mediate its physiological function; 2) what neural 

mechanism is mediating the inhibitory effect of the hook sensillum.  

 

How are different functional gap junctions utilized by the copulation circuit to 

mediate its physiological function?  

 

In adult worms, gap junction structures broadly exist in the male-specific nervous 

system as well as the hermaphrodite nervous system, and a large number of neurons in 

C. elegans are connected to other neurons or muscles via gap junctions (Male Wiring 

Project)(Sulston et al., 1980; White et al., 1986; Altun et al., 2009). Although gap 

junctions have been vastly considered as passive channels that allow molecules of 
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certain sizes to pass (such as ions, signal molecules), they seem not to simply connect 

two cells and equalize their membrane potential in C. elegans, otherwise neurons and 

muscles of the C. elegans would be activated simultaneously given the extensive gap 

junction structures that connect them. It is possible that gap junctions formed by 

different subunits (called connexins) have distinct properties to allow different 

molecules to pass, so different pairs of excitatory cells connected by different gap 

junctions are electrically coupled differentially; or the conductance varies under various 

physiological conditions, therefore the exchange of small molecules only occurs between 

a specific pair of cells in a particular behavioral context.  

C. elegans has long been used as a model organism to study neural regulation of 

behavior; however, very little has been studied to understand the roles of different gap 

junctions in regulating behavior, compared to the effort that has been put to understand 

chemical synapse or extra-synaptic signal transduction. Among 25 genes that encode the 

C. elegans innexins (the invertebrate version of connexins), only a few have been 

assigned a function in regulating behavior. The INX-16 innexins on the intestine cells 

couple these cells, so Ca2+ waves can be passed through the intestine to promote 

defecation (Peters et al., 2007). INX-6 and EAT-5 innexins are involved in electrical 

coupling of the pharyngeal muscles to regulate the feeding behavior (Starich et al., 1996; 

Li et al., 2003). The UNC-9 innexin is used to electrically couple ventral cord neurons to 

facilitate wild-type locomotion, and it probably plays a similar role in coupling body 

wall muscles in regulating the same behavior (Liu et al., 2006; Chen et al., 2007). 
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My work suggests that certain signal molecule can be passed from the 

gubernacular-oblique muscle group to the protractor-anal depressor muscle group, 

probably through gap junctions, to induce regenerated Ca2+ currents. These gap junctions 

thus play important roles in regulating the bistable states of the protract muscle 

contraction and also in synchronizing the vulval contact behavior and rhythmic spicule 

thrusts. More interestingly, the two groups of muscles connected by these junctions 

display different contractile states when the channels are open and allow molecules to 

pass through. It would be interesting to determine what property of these gap junctions 

gives rise to this phenomenon. What we will learn from this then is likely to be applied 

to a more general population of electrical junctions in C. elegans.  

A gap junction is formed by two hemichannels from each of the cells that are 

connected by the junction, and each hemichannels contains six subunits, called 

connexins in vertebrates and innexins in invertebrates. The C. elegans genome encodes 

25 innexin proteins. Analyzing the expression patterns of all 25 innexin genes in C. 

elegans males is the first step to determine which types of gap junctions are used in the 

copulation circuit. The transcriptional innexin-GFP fusion markers have been made to 

survey the expression patterns of all possible gap junction types in C. elegans 

hermaphrodites (Altun et al., 2009). Examining a small portion of these markers in 

males has shown that both unc-14 and unc-9 are expressed in the spicule circuit. 

Conducting a thorough survey of all innexins should reveal more players in the circuit. 

In addition, innexin gene genomic sequence-GFP fusion constructs can be further made 

to provide a more accurate innexin expression map.  
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My result suggests that the UNC-9 innexin is used to form the gap junctions 

between the gubernacular-oblique muscles and the protractor-anal depressor muscles. 

However, as the unc-9(lf) males still displayed residual light-induced spicule thrusts, 

there must be other innexin/innexins utilized by the spicule circuit to form gap junctions. 

Though RNAi of several other innexin genes did not affect the light-induced spicule 

thrusts, it could be a consequence of inefficiency of RNAi. The knock-out alleles have 

been made for large number of genes in C. elegans, including many innexin genes, and 

requests can be made to the C. elegans Gene Knockout Consortium to knock out specific 

genes. Therefore, by carefully checking phenotypes of these innexin knockout mutants, 

one would determine all innexins used in the spicule circuit.  

Gap junctions are formed by hemichannels from both cells that are coupled. The 

innexin genes that are expressed on both groups of sex muscles are candidates to form 

the functional electrical junctions that contribute to the rhythmic spicule thrusts. 

Nonetheless, it has been suggested recently that in C. elegans, heterotypic gap junction 

channels might be formed by two homomeric hemichannels that contains different sets 

of innexins (Starich et al., 2009). Therefore, any innexins expressed on either group of 

muscles should be tested for their roles in mediating rhythmic spicule thrusts. By 

studying phenotypes of mutants of interest, in conjunction with cell-specific rescuing of 

individual innexin gene in the corresponding mutant males, the innexin/innexins that 

form our favorite gap junctions could be determined.  

Gap junction structures also exist among other components of the male 

copulation circuit. For example, the SPC neurons and the p.c.s. neurons are connected to 
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one another; the male sex muscles are also connected via gap junctions (Fig. 11). Given 

that these cells have distinct functions during male mating and are activated under 

different circumstances, this raises questions such as, what signals are passed through 

these gap junctions and what are their roles in regulating the mating behavior? Since we 

now have a better understanding of how different cellular components interact to give 

rise to distinct behavioral patterns during mating, and we can measure cell activity via 

monitoring the Ca2+ current in behaving males, it is possible to analyze defective 

phenotypes of mutant males that have defective gap junctions, even when the defects are 

not obvious. This study will further our understanding of how various types of gap 

junctions mediate different cell-cell interactions, and how these interactions shape the 

patterns of the behavior.  

 

What neurotransmitter and its receptors are mediating the inhibitory effect of the 

hook sensillum? 

 

In Chapter V, I‟ve shown that removal of the hook sensillum structure enhanced 

light-induced tonic spicule protraction. In this assay, the males were separated from 

hermaphrodites and the SPC and p.c.s. neurons were stimulated by light-activated ChR2. 

This indicates that the hook neurons HOA and/or HOB are active in absence of the 

vulval signal and are suppressing the spicule activity, and that this suppression is 

probably released when the male locates the vulva. Consistent with this, a previous study 

has shown, and it was also observed by me, that when ablated with the hook neurons, the 
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adult males occasionally display spicule prodding behavior at random places along the 

hermaphrodite cuticle during mating (Garcia et al., 2001). This suggests that the 

activated hook neurons not only suppress prolonged spicule protraction but also inhibit 

rhythmic spicule thrusts. Nonetheless, it is not known through what neural mechanism 

the hook neurons exert their suppression to the spicules.  

HOA and HOB do not have any chemical synapse or electrical junction to the 

spicule protractors or any other male sex muscles. Instead, the HOB neuron has intensive 

chemical synapses and gap junctions to the CP5 and CP6 male-specific ventral-cord 

motor neurons, which innervate the spicule protractor muscles and the oblique muscles. 

In addition, both HOA and HOB have large numbers of chemical synapses and gap 

junctions to the spicule-related neurons (SPC and p.c.s. neurons) (Male Wiring Project). 

I hypothesize that the inhibitory signaling can be relayed from the hook neurons through 

either the ventral-cord neurons or the spicule-related neurons to suppress spicule 

activity.  

To ask if the CP5 and CP6 neurons act as interneurons to transmit the inhibitory 

signal to the protractors, these neurons could be laser-ablated in males that express ChR2 

in the SPC neurons and the p.c.s. neurons (by expressing the Punc-103F:ChR2::YFP 

construct described in Chapter V). If ablating these neurons results in males that display 

higher incidence of light-induced spicule protraction, similarly to those that had hook 

sensillum ablated (Chapter V), it then suggests that the hook sensillum neurons suppress 

spicule activity via these motor neurons. It remains ambiguous which neurotransmitters 

are secreted by the hook sensillum neurons, and they could be excitatory or inhibitory. 
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The CP5 and CP6 have been suggested in a previous study to release serotonin, and 

therefore activate receptors on the male-specific diagonal muscles at the male tail to 

facilitate ventral turning of the male tail during mating (Loer and Kenyon, 1993). Data 

from our lab (Correa unpublished data) shows that serotonin can inhibit ACh agonist-

induced spicule protraction in wild-type males. These observations indicate that CP5 and 

CP6 might negatively regulate spicule activity, and that they are activated by the hook 

neurons in absence of the vulval signal. Four serotonin receptors have been described 

and cloned in C. elegans, and five more putative receptors that are highly homologous to 

human 5-HT receptors have been identified (Olde and McCombie, 1997; Hamdan et al., 

1999; Ranganathan et al., 2000; Hobson et al., 2003; Carre-Pierrat et al., 2006; Hobson 

et al., 2006). By analyzing their expression pattern in the male circuit and mutant 

phenotypes, the receptors that are mediate the inhibitory synaptic transmission between 

the CP motor neurons and the protractor muscles could be determined.  

The HOA and HOB neurons might also suppress spicule protraction via down-

regulating activities of the spicule-related neurons. In Chapter V, I showed that when I 

preselected males that displayed very high expression of Punc-103F:ChR2::YFP, these 

males displayed higher incidence of light-induced spicule protraction compared to the 

un-biased males. This suggests that by altering the abundance of ChR2 on the cell 

membrane, the spicule-related neurons can be depolarized at different levels. In C. 

elegans, it seems that electrical signals can either be propagated passively or 

regeneratively in an all-or-none fashion, depending on the neuron types. Due to the lack 

of voltage-gated Na+ channel, C. elegans neurons are thought to not be able to generate 
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classic action potentials (Bargmann, 1998), and lack of regenerative action potential has 

been indicated in both sensory neuron type and interneuron type(Goodman et al., 1998). 

Nonetheless, a recent study has shown that regenerative plateau potentials can be 

recorded in a motor neuron (Mellem et al., 2008; Lockery and Goodman, 2009). In 

addition, the C. elegans ventral cord motor neurons have been shown to release 

neurotransmitter in a graded fashion (more neurotransmitter released when neurons are 

more depolarized)(Liu et al., 2009). Therefore, it is possible that the suppression from 

the hook neurons prevents the spicule-related neurons from being more depolarized, and 

as a result these neurons release less ACh as a result. To find out if hook neurons 

directly suppress activities of the spicule-related neurons, ChR2 could be exclusively 

expressed in the hook neurons, and the Ca2+ current indicator G-CaMP could be 

expressed in the SPC and the p.c.s. neurons to ask whether light-activated hook neurons 

would suppress activities of the spicule-related neurons. As hook neurons have chemical 

synapses and electrical junctions to the spicule-related neurons, they could exert their 

inhibitory function via both types of connections.  

 

Conclusion 

 

C. elegans has been used as a model organism for genetic studies of nervous 

system function in regulating animal behavior. Mutations that affect various aspects of 

animal behavior can be easily obtained from mutagenesis screening, and genes that are 

affected can be determined conveniently. This allows many discoveries of novel 
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signaling pathways that are important for regulating behaviors, and also provides an in 

vivo system to test molecular mechanisms that have been suggested in cell culture 

studies. To give rise to complex motor patterns, a behavioral circuit needs to integrate 

multiple sensory inputs, transform them into simultaneous or sequential contractions in 

different muscle types, and continue or cease a certain motor output according to real-

time monitoring of environmental or internal conditions. Understand the basic 

operational logic of the behavioral circuit and its functional connections will help us to 

design mutagenesis screens aimed to understand more specific aspects of the behavior. It 

will also expedite our understanding of different molecules in regulating behaviors, and 

will provide frame work to study how environmental and internal conditions exert their 

modulation to behavior via diverse molecular signaling pathways. 

The C. elegans male spicule insertion behavior can be viewed as a simple motor 

behavior. However, evidence has shown that it is under strict regulation of multiple 

positive/negative cellular and molecular mechanisms. These mechanisms are probably 

selected through evolution and are used to ensure the male functions properly under 

various conditions and throughout his life history. Obtaining a thorough understanding 

of how C. elegans males sire their progeny will eventually help us to understand how 

animal behaviors are shaped and evolved, and this understanding will shed a light on 

where the human brain is evolved from.  
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APPENDIX A 
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Figure A-1. Expression of nAChR genes in the male tail. 
Muscle abbreviations: DSP: dorsal spicule protractor; VSP: ventral spicule protractor; 
DSR: dorsal spicule retractor; VSR: ventral spicule retractor; ADEP: anal depressor; 
GER: gubernacular erector; GRT: gubernacular retractor; AOB: anterior oblique; POB: 
posterior oblique; SPH: sphincter;  
A-D. Expression of Punc-29:YFP (yellow) and Pgar-3:CFP (cyan) imaged from the tail 
of a same L4 larval male. The two images are merged to show that unc-29 is not 
expressed in the SPC neurons where gar-3 is expressing (C). The normarscky image of 
the tail is also shown (D). 
E, F. Expression of Punc-29:YFP in the male tail.  
G-J. Expression of Punc-63:YFP in the male tail.  
K-N. Expression of Punc-38:unc-38::YFP in the male tail. 
O, P. Expression of Pacr-12:acr-12::YFP in the male tail. 
Q-S. Expression of Pacr-18:ChR2::YFP in the male tail.  
T-V. Expression of Pacr-18:ChR2::YFP (yellow) and Ppkd-2:CFP (cyan) imaged from 
the tail of a same adult male. The two images are merged to show that acr-18 is 
expressed in the HOA neuron that is next to the HOB neuron where gar-3 is expressing 
(V). 
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Figure A-2. Brief blue light pulses induce rapid repetitive spicule thrusts (method). 
Red boxes depict the region of interest (ROI) and are numbered. ROI 1 is used to detect 
the spicule displacement, and ROI 2 is to indicate the timing of blue light stimulation. 
A. A representative frame taken when the blue light was off. The pixel intensity in ROI 2 
was low. 
B. A representative frame taken when the blue light was on. The pixel intensity in ROI 2 
was high. 
C. The standard deviation of the pixel intensity within ROI 1 (SDEV) was measured and 
plotted as a function of time (black trace). Changes in the SDEV indicate displacement 
of the spicule during and between the periods of light stimulation. The green trace 
presents the maximal pixel intensity in ROI 2 as a function of time. The increases 
indicate pulses of the blue light (see Materials and Methods). The grey regions also 
indicate the time periods of light stimulation. Panel a, b, c and d are representative 
frames of field 1 taken during and between blue light pulses, and changes in refraction of 
the ROI 1 region are indicated. The time points when these frames were taken are 
indicated in the ROI 1 SDEV trace (black). a.u. arbitrary units. 
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Figure A-3. Carbenoxolone inhibition of blue light-induced repetitive spicule thrusts. 
CBX was injected at the concentration of 1 mM, 2.5 mM, 5 mM, 7.5 mM and 10 mM, to 
differentially suppress light-induced repetitive spicule thrusts in males that express Pacr-

18:ChR2::YFP, Punc-103E:G-CaMP and Punc-103E:DsRed. ~10 males were assayed at 
each concentration. The X-axis plots concentration of the CBX, and the Y-axis plots the 
percentage of males that still displayed light-induced spicule thrusts. A log(agonist) vs. 
Normalized response-variable slope curve is fit to the data to estimate the minimal 
concentration of CBX that can inhibit light-induced spicule thrusts in the majority of the 
males.  
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Figure A-4. gar-3 expression patterns under promoter Pgar-3B in the male and 
hermaphrodite. 
The male is in the upper panel and the hermaphrodite is in the lower panel.  
In cells that are common between male and hermaphrodite, the gar-3 expression pattern 
is similar. However, in males, it is expressed in many male-specific muscles and neurons 
(not shown here), and in hermaphrodites, it is expressed in the hermaphrodite-specific 
vulva muscles.  
 
 
 
 
 
 
 
 
 



162 
 

 

Figure A-5. Brief blue light pulses induce rapid repetitive spicule thrusts (traces of 

individual males). 

Traces represent responses of individual males to blue light pulses. The method used is 

described in Figure A-2. Black traces indicate displacement of the spicules during and 

between brief blue light pulses. The green traces indicate pulses of the blue light. The 

grey regions also indicate the time periods of light stimulation. (A-C) Three males that 

expressed active Pacr-18:ChR2::YFP, in the presence of all-trans retinal. (D-F) Three 

males that expressed inactive Pacr-18:ChR2::YFP, in the absence of all-trans retinal.  
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Figure A-6. Correlation between the period of incubation on retinal and the efficiency of 
light-induced behavior.  
To minimize possible change in the G-CaMP/DeRed intensity ratio during incubation 
with retinal, I determined the minimal period of incubation that is sufficient to elicit 
ChR2-induced behavior. I used males that expressed Pgar-3b:ChR2::YFP and males that 
expressed Pacr-18:ChR2::YFP. I allowed these males to be incubated on the retinal-
containing plates for 0 min, 15 min, 30 min, 60 min and overnight. I then determined the 
percentage of the male population that protracted their spicules upon blue light 
stimulation for the Pgar-3b:ChR2::YFP males (upper panel), and determined the 
percentage of the male population that displayed rapid spicule thrusts upon light 
stimulation for males that expressed Pacr-18:ChR2::YFP (lower panel). I found in both 
cases, 30 min of incubation was sufficient to induce ChR2-elicited behavior and the 
efficiency was not significantly different from overnight incubation. The number of 
males assayed for each strain is listed within each bar (for 0 min, the number is above 
the X-axis). The number above the bar refers to the percentage of males displayed light-
induced behavior. Asterisk (*) indicates the p value <0.05, (**) indicate the p value 
<0.001, (***) indicate the p value <0.0001,using the Fisher‟s exact test. 
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Figure A-7. Male tail expression of unc-9 and inx-14.  
Muscle abbreviations: DSP: dorsal spicule protractor; ADP: anal depressor; GER: 
gubernacular erector; GRT: gubernacular retractor; AOB: anterior oblique; POB: 
posterior oblique. 
A-H. Expression of unc-9 in the adult male tail (B, D, F and H), and the corresponding 
DIC images of the male tail (A, C, E and G, respectively).  
I-N. Expression of inx-14 in the adult male tail (J, L and N), and the corresponding DIC 
images of the male tail (I, K and M, respectively).  
All images were taken at 100×. Scale bar, 20 µm. The expression pattern was obtained 
by using transcriptional GFP fusion constructs (Altun et al., 2009). 
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Table A-1. Primers used in this study. 

Primer name Primer sequence 

ATTB1gar-3Aup GGGGACAAGTTTGTACAAAAAAGCAGGCTCATAAGCA

TCATGAGCAACAT 

ATTB2gar-3Adwn  GGGGACCACTTTGTACAAGAAAGCTGGGTCGATTAAT

AAATGTGCAGGAG 

attb1acr-16 GGGGACAAGTTTGTACAAAAAAGCAGGCTGTGGAGCT

GAAGCCTGGGACCGATTGGT 

attb2acr-16 GGGGACCACTTTGTACAAGAAAGCTGGGTTACGGACA

TGAGAATCAGGGAAAGAAAAGCA 

attb1unc-63 GGGGAAGTTTGTACAAAAAAGCAGGCTGCAAGGCTTC

TATATACACTACGCATATC 

unc-63attb2 GGGGACCACTTTGTACAAGAAAGCTGGGTAACCGTGG

TCATTTGGTCCCATTAACCTG 

attb1unc-38fus GGGGACAAGTTTGTACAAAAAAGCAGGCTGGCGGAGG

AGTGCTGTTGGGAGCCAT 

Attb2unc-38fusnew GGGGACCACTTTGTACAAGAAAGCTGGGTTGAAACTA

ATTGGATTAGCAGATAAATTGG 

ATTB1Punc-29 

 

GGGGACAAGTTTGTACAAAAAAGCAGGCTGGATCGAG

AAGGATGGTTCTCAGTTACACC 

ATTB2Punc-29 GGGGACCACTTTGTACAAGAAAGCTGGGTACTGAATG

AGAGAATTATA 

ATTB2U29lstex GGGGACCACTTTGTACAAGAAAGCTGGGTAGGGAATA

TTGGATGCTGTATCGTATTTCT 

ATTB1ACR-18 GGGGACAAGTTTGTACAAAAAAGCAGGCTGCAGAGAA

TAATGGACAAAGACTAGGGTCTC 

ATTB2acr-18noatg GGGGACCACTTTGTACAAGAAAGCTGGGATATGGATA

AATCAGTATCTGCAAAAGATATC 
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Table A-1. continued  

Primer name Primer sequence 

Func-29 ATGAGGACCAACCGACTATCATGG 

unc29R TCAG GGAATATTGGATGCTGTATCG 

Igrgpd3 TCC TGAATTAAAATTAGAAG 

Gpd2igr CAACAGAGTTGTTGATCTCATCTC 

Gar3upstrmRv  CATAAGCATCATGAGCAACATCTCCACTTCTCGTGAGC 

Dwngar3B GATTAATAAATGTGCAGGAGGAGTAATAATGGTGTATGT 

ATTB1GAR-3strt GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCAGTCCT 

CTTCGTTGGG GAATGCTGATGATCCTCGAT 

ATTB2Gar-3end  GGGGACCACTTTGTACAAGAAAGCTGGGTCTAGTTGCGT

CGGACATATCCCTGATTCATTGTGGGAC 

ATTB1gar-3Bup  GGGGACAAGTTTGTACAAAAAAGCAGGCTGGTTGTTGTC

ACAGATTGTCT 

ATTB2gar-3Bdwn  GGGGACCACTTTGTACAAGAAAGCTGGGTCCCTCTCGTCT

GTGGTGATCC 

Gar3xbaF  GGGGTCTAGAATGCAGTCCTCTTCGTTGGGGAATGCTG 

Gar3avrR  GGGGCCTAGGGTTGCGTCGGACATATCCCTGATTCATTG 
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Table A-2. Mutant alleles used in this study. 

Gene 

name 

Protein encoded Allele 

name 

Type of 

mutation 

him-5 unknown; when mutated results in an increased 

frequency of X chromosome nondisjunction 

e1490 lf 

unc-29  L-AChR non-α subunit e193 lf 

unc-29 L-AChR non-α subunit e1072 lf 

unc38 L-AChR α subunit sy576 lf 

egl-30 Gαq ad805 lf 

egl-30 Gαq tg26 gf 

unc73 Trio ce362 lf 

unc-103 ERG-like K+ channel n1213 null 

pha-1 a novel protein that contains a DUF1114 domain 

of unknown function; when mutated results in 

temperature sensitive lethal 

e2123 lf 

unc-64 syntaxin e246 lf 

egl-8 PLCβ n488 lf 

gar-3 mAChR  gk305 null 

acr-16 α7-like nAChR subunit ok789 null 

lite-1 an ultraviolet light receptor ce314 lf 

unc-17 synaptic vesicle ACh transporter e245 lf 

cha-1 choline acetyltransferase  p1152 lf 

unc-9 innexin e101 lf 
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APPENDIX B 

 MUSCULAR IONOTROPIC ACETYLCHOLINE RECEPTORS THAT ARE 

REQUIRED FOR ACETYLCHOLINE-INDUCED SPICULE PROTRACTION 

 

It has been showed in a previous study that ACh induces male spicule protraction 

via activating the LEV-sensitive ionotropic AChR (L-AChR) on the spicule protractor 

muscles. However, other ionotropic AChRs have also been indicated to mediate this 

behavior, as the unc-38(sy576) unc-29(e193) mutant males that have no functional L-

AChR still protracted their spicules in nicotine (NIC), a less specific ionotropic AChRs 

agonist (Garcia et al., 2001). My data suggests that the ACR-16 containing nAChR is 

functioning in parallel with the L-AChR in the gubernacular-oblique muscle group to 

mediate the fast synaptic transmission. As the acr-16 gene is also expressed in the 

spicule protractor muscles, it is possible that the ACR-16 nAChR also contribute to 

ACh-induced spicule protraction.  

To determine whether endogenous ACh promote sustained protractor contraction 

via activating ACR-16, I asked if the acr-16(ok789) loss-of-function mutant males had 

decreased sensitivity to ACh agonists. For NIC-induced spicule protraction, the acr-

16(lf) mutation by itself did not affect male‟s response to various concentrations of the 

drug, similarly to the unc-38(lf) unc-29(lf) mutations (Figure B-1)(the original data used 

to produce this figure are summarized in Table B-1). However, mutant males that lost 

function of both receptors did not protract their spicules at all, even in very high 

concentration of NIC (10 mM). This suggests that, the L-AChR and ACR-16 are 
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interchangeable in mediating NIC-induced spicule protraction; however, when these 

receptors are depleted from the neuromuscular junctions, there is no receptor can be 

activated by NIC to promote spicule protraction. This data also indicates that both 

receptors can be activated by NIC to cause muscle contraction.  

It is possible that on the protractor muscles there are receptors that can be 

stimulated by endogenous ACh but not NIC. To test this possibility, I first asked if 

another ACh agonist, arecoline (ARE), can still cause the unc-38(lf) unc-29(lf); acr-

16(lf) triple mutant males to protract their spicules. In previous studies, ARE has been 

shown to activate a mAChRs-mediated Gαq signaling in the pharynx, and it can also 

induce spicule protraction through a Gαq-independent pathway (Brundage et al., 1996; 

Garcia et al., 2001). The EC90 concentration of ARE for the wild-type males is 1 mM 

(Garcia et al., 2001). In contrast, the triple mutant males did not protract spicules at all at 

this concentration (0%, n=11), and only 7% of these males protracted spicules in 10 mM 

ARE (n=15). Similarly, these mutant males did not respond to the cholinesterase 

inhibitor aldicarb either. In 5 mM aldicarb, only 5% of these males fully protracted their 

spicules (n=40), compared to 100% of the wild type (n=18, p<0.0001). This suggests 

that endogenous ACh promotes sustained spicule protraction in males via activating the 

L-AChR and ACR-16-containing nAChR on the spicule protractor muscles.  

Interestingly, when applied with oxo M at the EC90 concentration, 12.7% of the 

unc-38(lf) unc-29(lf); acr-16(lf) males could still protract their spicules (n=205). There 

are two possible explanations: 1) activation of GAR-3(mAChR) in the spicule protractor 

muscles can cause muscle contraction autonomously; 2) oxo M activates GAR-3 in the 
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spicule-related neurons (SPC, PCA and PCB) to promote the activities of these neurons. 

These neurons then secrete neurotransmitters in addition to ACh, and activate their 

receptors on the protractors to induce spicule protraction.   

 

 
Figure B-1. NIC sensitivity analysis of ionotropic ACh receptor mutants.  
For each strain of males, their responses to NIC were tested at multiple concentrations. 
The Y-axis depicts the percentage of males protracted their spicules in response to the 
drug. NIC concentrations are in μM.  
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Table B-1. NIC sensitivity analysis of ionotropic ACh receptor mutants 

concentration 
in µM 

WT acr-16(lf) unc-38(lf) unc-29(lf) unc38(lf) unc-29(lf);  
acr-16(lf) 

1 32 (50)    

5 51 (28)  77.8 (18)*  

10 56.7 (30)  76.5 (17)*  

50  63.3 (30)   

100 86.7 (30)  100 (19)*  

250  55.2 (29)  0.0 (20)** 

500 100 (17)    

1000  100 (17)   

10000 100 (5)   2.7 (37)** 

 
* Comparison was made with WT, and no significant difference can be found using the 
Fisher‟s Exact Test.  
**p<0.0001, compared to WT, Fisher‟s Exact Test. 
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APPENDIX C 

A MUSCARINIC ACETYLHCOLINE RECEPTOR GAR-2 NEGATIVELY 

REGULATE THE LEV-INDUCED SPICULE PROTRACTION 

 

My data showed that oxo M can induce spicule protraction in wild-type males, 

and this agonist-induced behavior is fully suppressed in the gar-3(lf) mutant males. This 

data suggests that oxo M only activates the GAR-3 mAChR to cause protractor 

contraction. Oxo M has been used as a non-selective mAChRs agonist in the mammalian 

system, and it can activate both excitatory and inhibitory mAChRs (Freedman et al., 

1988; Kaneda et al., 1993; Tayebati et al., 1999; Mistry et al., 2005). It is possible that 

when applied at a high concentration, this agonist can also activate other mAChRs in C. 

elegans, even though it has been shown that these receptors are not sensitive to low 

concentration of oxotremorine (Lee et al., 1999; Lee et al., 2000). To test this possibility, 

I asked if high concentrations of oxo M could suppress LEV-induced spicule protraction 

in the gar-3(lf) mutant males. In 1 µM LEV, 96% of the gar-3(lf) males protracted their 

spicules (n=23), however, in a solution with final concentration of 1 µM LEV and 50 

mM oxo M, only 46% of the gar-3(lf) males responded (n=28, p=0.0002). This suggests 

that the negative effect the 50 mM oxo M had on LEV stimulation is independent of 

GAR-3. When I tested the loss-of-function mutant of another mAChR, GAR-2, in the 

same assay, I found oxo M no longer suppresses LEV-induced spicule activity. 97% of 

the gar-2(ok520) males responded to 1 µM LEV (n=29), and 94% of these males 

responded to a mixed solution of 1 µM LEV and 50 mM oxo M (n=34, p=1.0). This 
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suggests that at the concentration of 50 mM, oxo M can suppress LEV-induced spicule 

activity via activating GAR-2 mAChRs.  

GAR-2 has been shown to couple to Go to act as an inhibitory autoreceptor in the 

motor neurons (Lee et al., 2000; Bany et al., 2003; Dittman and Kaplan, 2008). My data 

indicates that a similar signaling pathway might also be used in the spicule circuit to fine 

tune the circuit activity. Oxo M is probably not a good agonist for GAR-2. Its negative 

effect could only been detected at a high concentration: 94% of wild-type males 

protracted spicules in 0.5 μM LEV (n=18), and 94% protracted in a mixed solution with 

0.5 μM LEV and 10 mM oxo M (n=17, p=1.000). However, my result suggests a 

possible scenario that the endogenous GAR-2, once being activated, can negatively 

modulate the male copulation.  
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APPENDIX D  

THE CP5 AND CP6 NEURONS DO NOT SUPPRESS THE SPICULE ACTIVITY 

IN THE ABSENCE OF VULVAL SIGNAL 

 

In this dissertation, I have shown that the hook sensillum negatively regulates the 

ChR2-induced spicule activity. In the absence of vulval signal, the hook sensillum is 

probably active and suppresses the spicule protractors activity until it eventually senses 

the vulva and gets inactivated. The hook sensillum neurons, HOA and HOB, do not 

innervate the protractor muscles directly. Instead, these neurons make intensive chemical 

synapses and electrical junctions to the SPC neurons, the p.c.s. neurons, and the male-

specific ventral cord neurons CP5 and CP6, which directly innervate either the spicule 

protractor muscles or the gubernacular-oblique muscles (Male Wiring Project).   

To determine whether the hook sensillum suppresses spicule activity via the CP5 

and CP6 neurons, I laser-ablated these neurons when the males were at the early L4 

stage (~37 hrs post-embryo) and asked if the operation would affect the tendency of 

males to protract their spicules. The CP neurons have been shown to secret serotonin, 

which activates the diagonal muscles in the male tail to induce tail curling presumably 

during the “turning behavior” (Loer and Kenyon, 1993). Serotonin can also inhibit 

animal motor programs such as locomotion and defecation, via activating serotonin-

gated chloride channel or G-protein coupled receptors (Segalat et al., 1995; Ranganathan 

et al., 2000). Therefore, in the absence of vulval signals, the CP neurons might be active 

to suppress protractor activity, or inactive so they cannot stimulate the protractors. I 
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found that in wild-type males, ablation of these neurons does not affect males‟ 

sensitivity to LEV, which induces spicule protraction via activating receptors on the 

protractor muscles. In 2 µM LEV, 47.1% of the operated males protracted their spicules 

(n=34, p=0.435), not significantly different from 58.3% of the intact males (n=24).  
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