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ABSTRACT 

 
Removing of Formation Damage and Enhancement of Formation Productivity Using 

Environmentally Friendly Chemicals. (May 2011) 

Mohamed Ahmed Nasr Eldin Mahmoud, B.S.; M.S., Suez Canal University 

Chair of Advisory Committee: Dr. Hisham A. Nasr-El-Din 

 

Matrix acidizing is used in carbonate formations to create wormholes that connect the formation 

to the wellbore. Hydrochloric acid, organic acids, or mixtures of these acids are typically used in 

matrix acidizing treatments of carbonate reservoirs. However, the use of these acids in deep 

wells has some major drawbacks including high and uncontrolled reaction rate and corrosion to 

well tubulars, especially those made of chrome-based tubulars (Cr-13 and duplex steel), and 

these problems become severe at high temperatures. Hydrochloric acid (HCl) and its based 

fluids have a major drawback in stimulating shallow (low fracture gradient) formations as they 

may cause face dissolution (formation surface washout) if injected at low rates. The objective of 

stimulation of sandstone reservoirs is to remove the damage caused to the production zone 

during drilling or completion operations. Many problems may occur during sandstone acidizing 

with Hydrochloric/Hydrofluoric acids (HCl/HF) mud acid. Among those problems: decomposition 

of clays in HCl acids, precipitation of fluosilicates, the presence of carbonate can cause the 

precipitation of calcium fluorides, silica-gel filming, colloidal silica-gel precipitation, and mixing 

between various stages of the treatment. To overcome problems associated with strong acids, 

chelating agents were introduced and used in the field. However, major concerns with most of 

these chemicals are their limited dissolving power and negative environmental impact. 

 Glutamic acid diacetic acid (GLDA) a newly developed environmentally friendly chelate was 

examined as stand-alone stimulation fluid in deep oil and gas wells. In this study we used GLDA 

to stimulate carbonate cores (calcite and dolomite). GLDA was also used to stimulate and 

remove the damage from different sandstone cores containing different compositions of clay 

minerals. Carbonate cores (calcite and dolomite) of 6 and 20 in. length and 1.5 in. diameter were 

used in the coreflood experiments. Coreflood experiments were run at temperatures ranging 

from 180 to 300
o
F. Ethylene diamine tetra acetic acid (EDTA), hydroxyl ethylethylene 

diaminetriacetic acid (HEDTA), and GLDA were used to stimulate and remove the damage from 

different sandstone cores at high temperatures. X-ray Computed Topography (CT) scans were 

used to determine the effectiveness of these fluids in stimulation calcite and dolomite cores and 



iv 
 

removing the damage from sandstone cores. The sandstone cores used in this study contain 

from 1 to 18 wt% illite (swellable and migratable clay mineral). 

 GLDA was found to be highly effective in creating wormholes over a wide range of pH (1.7-

13) in calcite cores. Increasing temperature enhanced the reaction rate, more calcite was 

dissolved, and larger wormholes were formed for different pH with smaller volumes of GLDA 

solutions. GLDA has a prolonged activity and leads to a decreased surface spending 

resulting in face dissolution and therefore acts deeper in the formation. In addition, 

GLDA was very effective in creating wormholes in the dolomite core as it is a good chelate for 

magnesium. Coreflood experiments showed that at high pH values (pH =11) GLDA, HEDTA, and 

EDTA were almost the same in increasing the permeability of both Berea and Bandera 

sandstone cores. GLDA, HEDTA, and EDTA were compatible with Bandera sandstone cores 

which contains 10 wt% Illite. The weight loss from the core was highest in case of HEDTA and 

lowest in case of GLDA at pH 11. At low pH values (pH =4) 0.6M GLDA performed better than 

0.6M HEDTA in the coreflood experiments. The permeability ratio (final/initial) for Bandera 

sandstone cores was 2 in the case of GLDA and 1.2 in the case of HEDTA at pH of 4 and 300
o
F. 

At high pH HEDTA was the best chelating agent to stimulate different sandstone cores, and at 

low pH GLDA was the best one. For Berea sandstone cores EDTA at high pH of 11 was the best 

in increasing the permeability of the core at 300
o
F.  

The low pH GLDA based fluid has been especially designed for high temperature oil well 

stimulation in carbonate and sandstone rock. Extensive studies have proved that GLDA 

effectively created wormholes in carbonate cores, is gentle to most types of casing including Cr-

based tubular, has a high thermal stability and gives no unwanted interactions with carbonate or 

sandstone formations. These unique properties ensure that it can be safely used under extreme 

conditions for which the current technologies do not give optimal results. Furthermore, this 

stimulation fluid contributes to a sustainable future as it based on readily biodegradable GLDA 

that is made from natural and renewable raw material.  
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NOMENCLATURE 

 

a constant based on core type, dimensionless 

A cross section area of the core, cm
2
 

[Ca
2+

] calcium concentration, ppm 

CE50 half maximal effective concentration, is a measure of drug's potency 

CHCl HCl concentration, kmole/m
3
 

Co initial GLDA concentration, M 

CTa CT number of air 

CTar CT number of core saturated with air 

Ctip GLDA concentration at the tip, M 

CTw CT number of water 

CTwr CT number of core saturated with water 

D(H
+
) diffusion of hydrogen ions, cm

2
/s 

dcore core diameter, in. 

De effective diffusion coefficient for reactants and products, cm
2
/s 

Df formation depth, ft 

dp pore diameter, m 

dwh wormhole diameter, in. 

Ef reaction rate constant, kmole HCl/[m
2
.s(kmole HCl/m3 acid soln) ] 

Ef
0
 reaction rate constant, cm

3m-3
/(mole m

-1
.s) 

FPI productivity improvement factor, dimensionless 

gfr formation fracture gradient, psi/ft 

h reservoir thickness, ft 

Ja productivity index after the treatment, bbl/day/psi 

Ja0 productivity index before the treatment, bbl/day/psi 

k rock permeability, md 

KCp mass transfer coefficient for products, cm/s 

KcR mass transfer coefficient for reactants, cm/s 

kd permeability of damaged zone, md 

Keq reaction equilibrium constant, dimensionless 

kfinal final permeability after the treatment, md 

kinitial initial permeability before the treatment, md 

Ks surface reaction rate constant, cm/s 

kt Permeability of treated zone, md 
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Lcore core length, in. 

LGLDA GLDA invasion length, in. 

LD50 median lethal dose 

Log Pwo it is a measure of portioning coefficient (log of the ratio solute with octanol and 

solute with water) 

LogKCa-GLDA stability constant of GLDA with calcium and it equals 5.9 

LogKMg-GLDA stability constant of GLDA with magnesium and it equals 5.2 

lp pore length, cm 

Lradial length of radial core, cm 

Lwh wormhole length, cm 

m reaction order, dimensionless 

M factor depends on the sandstone core type, = 3 

[Mg
2+

] magnesium concentration, ppm 

MWCaCO3 molecular weight of calcite, lbmole 

MWGLDA molecular weight of GLDA, lbmole 

n factor depends on the sandstone core type, = 1 

NAC acid capacity number 

Nac, GLDA acid capacity number for the GLDA, dimensionless 

NDa Damköhler number, dimensionless 

NDa(mt) Damköhler number based on mass transfer, dimensionless 

NDa(opt) optimum Damköhler number, dimensionless, dimensionless 

NDa(rxn) Damköhler number based on reaction rate, i.e., reaction rate limited, 

dimensionless 

NOAEL the maximum concentration of a substance that is found to have no adverse 

effects upon the test subject, mg/kg body weight/day 

NOEC no adverse effect concentration 

Npe Peclet number, dimensionless 

pe initial reservoir pressure, psi 

pr reservoir pressure, psi 

PV pore volumes of the fluid used 

PVbt pore volume required to create wormholes along the core length, PV 

pwf wellbore flowing pressure, psi 

q flow rate, cm
3
/s 

Q injection rate, cm
3
/min 

qcore optimum injection rate from coreflood, cm
3
/min 



ix 
 

qlinear flow rate in linear coreflood, cm
3
/min 

qo oil production rate, bbl/day 

Qopt optimum injection rate, cm
3
/min 

qradial injection rate required in the field based on radial cores, cm
3
/min 

qT total injection rate, cm
3
/min 

qw injection rate in the field, bbl/min 

R universal gas constant, = 8.314 J/(mole.
o
K) 

rcore core radius, in. 

rD total dissolution rate, mol/cm
2
/s 

re reservoir drainage radius, ft 

rGLDA radius of penetration required to penetrated by GLDA, ft 

rH dissolution rate due to hydrogen ion attack, mol/cm
2
/s 

rHCl reaction rate of HCl with dolomite, kmole dolomite/m
2
.s 

rHmY dissolution rate due to chelation, mol/cm
2
/s 

Rlinear linear coreflood radius, cm 

rmax maximum pore radius, cm 

rt treated radius, ft 

rw radius of the wellbore, ft 

S skin damage, dimensionless 

T Temperature, 
o
C 

Tr reaction temperature, 
o
K 

Umax maximum injection flux that can be used for acidizing, cm/s 

Uopt optimum flux, cm/s 

VCaCO3 volume of calcite dissolved by the GLDA, ft
3
 

VGLDA volume of GLDA required to create wormholes, ft
3
 

vi interstitial velocity, cm/min 

vi,opt optimum interstitial velocity, cm/min 

vi,tip interstitial velocity at the wormhole tip, cm/min 

vwh wormholing rate, cm/min 

X volumetric dissolving power, ft
3
 CaCO3/ft

3
 acid 

E activation energy, J/mole 

E/R constant = 11.32 x 103 
o
K for the reaction of HCl with dolomite 

p pressure drop across the core, psi 

pinitial initial pressure drop across the core during injecting water, psi 

pmax maximum pressure drop across the core, psi 
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pGLDA pressure drop due to flowing GLDA inside the core, psi 

pw pressure drop due to flowing water inside the core, psi 

pwh pressure drop across the wormhole, psi 

max maximum change in core porosity after treatment by GLDA, = 0.08 

reaction order 

CaCO3 stoichiometric coefficient of CaCO3 

GLDA stoichiometric coefficient of GLDA 

gravimetric dissolving power, lbmole CaCO3/lbmole acid 

o oil formation volume factor, bbl/stb 

core porosity, fraction 

f core porosity after the treatment, fraction 

i core porosity before the treatment, fraction 

overall dissolution rate, cm/s 

fluid viscosity, cP 

GLDA GLDA solution viscosity, cP 

stoichiometric molar ratio of products to reactants 

CaCO3 calcite density, g/cm
3
 

GLDA GLDA density, g/cm
3
 

rock rock density, g/cm
3
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CHAPTER I 

INTRODUCTION: THE IMPORTANCE OF RESEARCH 

Carbonate Matrix Acidizing 

Formation damage may be defined as any impairment of well productivity or injectivity due to 

plugging within the wellbore, in perforation, in formation pores adjacent to the wellbore or 

fractures communicating with the wellbore. Almost all wells are damaged, the problem is to 

determine the degree of damage, location, probable causes of damage and approaches to 

alleviate any serious damage.  

 Formation damage may be indicated by well tests, pressure build up and draw down tests, 

comparison with offset well, careful analysis of production history. 

 If multiple zones are open in a single completion, PLT (Production logging Techniques) 

runs in a flowing well will often show some permeable zones to be contributing little or nothing to 

the production. A reservoir study may be required to differentiate between: 

 Production decline due to gradual formation damage 

 Decline due to loss in reservoir pressure, comparison with offset well may not be 

sufficient to detect gradual damage because all of wells may be subjected to the 

same damaging mechanisms. 

In a relatively high permeability well with skin damage, reservoir pressure may be measured 

in the well, and it may stabilize within few hours. If reservoir the permeability is low, days or 

weeks may be required to stabilize the reservoir pressure. Under these conditions, it may be 

difficult to determine ‗skin‘ damage. Skin damage calculation using pressure build up and draw 

down analysis are carried out in many areas prior to planning well stimulation.    

Once mechanical pseudo skin effects are identified, positive skin effects can be attributed to 

formation damage. Formation damage is typically categorized by the mechanism of its creation 

as either natural or induced. Natural damages are those that occur primarily as a result of 

producing the reservoir fluid. Induced damages are the result of an external operation that was 

performed on the well such as a drilling, well completion, workover, stimulation treatment or 

injection operation. In addition, some completion operations, induced damages or design 

problems may trigger the natural damaging mechanisms.  
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Natural damages include: 

 Fines migration 

 Swelling clays 

 Water-formed scales 

 Organic deposits such as paraffins or asphaltenes 

 Mixed organic/inorganic deposits 

 Emulsions. 

Induced Damages Include: 

 Plugging by entrained particles such as solids or polymers in injected fluids 

 Wettability changes caused by the injected fluids. 

Carbonate Matrix Acidizing has been carried out for several years using hydrochloric acid-

based stimulation fluids in various concentrations. At high temperatures HCl does not produce 

acceptable stimulation results because of its fast reaction in the near wellbore area, low acid 

penetration, and surface dissolution (Huang et al. 2003). 

 Williams et al. (1979) recommended that carbonate acidizing treatments should be carried 

out at the highest possible injection rate without fracturing the reservoir rock (q i,max). Wang et al. 

(1993) discovered an optimum acid injection rate to obtain breakthrough during acid treatments 

for carbonate cores in linear coreflood using a minimum acid volume. The optimum acid injection 

rate was found to be a function of the rock composition and reaction temperature as well as the 

pore size distribution of the reservoir rock. A problem occurs if the required optimum injection 

rate is greater than the maximum acid injection rate. In this case HCl cannot be used because it 

will cause face dissolution if used at low injection rates, or will fracture the formation if used at 

high injection rates. Therefore stimulation fluids other than HCl-based fluids such as chelating 

agents need to be used to achieve deep and uniform penetration and eliminate face dissolution 

problems. 

 Another problem encountered during stimulation using HCl-based fluids is the high 

corrosion rate of these fluids to the well tubulars. Well tubulars are often made of low-carbon 

steel and may contain rust. HCl will dissolve the rust and produce a significant amount of iron, 

which in turn will precipitate and cause formation damage. Corrosion becomes more severe at 

high temperatures, and special additives are needed to compensate for the loss in corrosion 

inhibition at higher temperatures. The cost of these additives exceeds 5% of the treatment cost 

(Fredd 1998). Also the excessive use of corrosion inhibitors may cause other problems, as the 

corrosion inhibitor may adsorb on the reservoir rock and change its wettability, especially in low 

permeability reservoirs (Schechter 1992). 
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 Chelating agents have the ability to complex metal ions by surrounding them with one or 

more ring structures. The process of chelation results in the formation of a metal-chelate 

complex with high stability. For example, ethylenediaminetetraacetic acid (EDTA) compounds 

are capable of forming stable chelates with di- and trivalent metals like Fe and Ca (Martell and 

Calvin 1952). 

 Fredd and Fogler (1997; 1998a; 1999) investigated the use of EDTA and DTPA to stimulate 

calcium carbonate cores. They performed linear coreflood experiments using Texas cream chalk 

and Indiana limestone cores of 1.5 in. diameter and 2.5, 4, or 5 in. length. The porosity range of 

these cores was between 15 and 20 vol%, and the permeability range was 0.8 to 2 md. They 

used 0.25M EDTA of pH 4.0, 8.8, and 13.0 with a flow rate of 0.3 cm
3
/min. The maximum 

wormhole obtained was at pH 4 with a minimum pore volume required to breakthrough the core 

(PV = 4.8), whereas at pH 13, a PV of 12.7 was used to breakthrough the core and form a 

wormhole. Fredd and Fogler (1999) concluded that, the EDTA can effectively wormhole in 

limestone, even when injected at moderate or non-acidic pH values (4 to 13) and at low flow 

rates where HCl is not effective. The dissolution mechanism involves chelation of calcium ions 

and does not require conventional acid attack. The ability to stimulate under acidic conditions 

combined with the ability to chelate metal ions provides multiple benefits in using EDTA. 

 Fredd and Fogler (1998b) studied the influence of transport and reaction on wormhole 

formation during the reaction of chelating agents with calcium carbonate cores. They studied the 

effect of the Damköhler number (NDa) on the pore volume consumed by the chelating agent to 

breakthrough the core. The Damköhler number, NDa, can be defined as the ratio of the net rate 

of dissolution by acid to the rate of convective transport of acid. When the dissolution is mass 

transfer limited the Damköhler number in this case will be mass transfer limited Damköhler 

number (NDa(mt)) and can be determined from the following equation: 

 

 ………………………………………………………………… (1) 

 

where; De is the effective diffusion coefficient, Q is the injection rate, and a is a constant and 

depends on the carbonate core. When the net rate of dissolution is reaction rate limited, the 

Damköhler number, NDa(rxn), is given by: 

 

 ……………………………………………………………... (2) 

 

where; Ks is the surface reaction rate constant, lp is the pore length, and dp is the pore diameter. 
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 Fredd and Fogler (1998c) showed that DTPA (at pH 4.3) and EDTA (at pH 13 and 4) exhibit 

an optimum Damköhler number where the number of pore volumes to breakthrough the core 

was minimized. 

 Fredd and Fogler (1998c) studied the effect of NaCl and KCl on the rate of dissolution of 

calcite by EDTA.  They observed that the rate of dissolution increased as the ionic strength was 

increased with adding KCl. In contrast the rate with EDTA was observed to decrease as the 

NaCl concentration was increased from 0 to 0.7M. 

 Frenier et al. (2001 and 2003) examined chelating agents with a hydroxyl group to 

determine their acid solubility and ability to complex iron and calcium under oilfield conditions. 

Fig. 1 shows the chemical structure of the chelating agents that are used in the oil field industry. 

Dissolution tests were performed using calcite and gypsum in a slurry reactor for 10-24 hrs. The 

dissolved calcium ion was determined using ICP.  Corrosion tests were run in a high pressure 

autoclave. The results showed that hydroxyethyliminodiacetic acid (HEIDA) is a very effective 

complexing agent for Fe
3+

 in HCl acid solutions. It has a high-capacity to dissolve calcite, 

gypsum, and fines clean-up. The environmental impact of HEIDA is less than that of EDTA, as 

HEIDA is more biodegradable than EDTA (for HEIDA more than 90% was degraded within two 

weeks, however in the case of EDTA, less than 5 % was degraded within 28 days) (Frenier et al. 

2003). 

 Huang et al. (2003) tested 10 wt% solutions of acetic acid, Na4EDTA and long-chained 

carboxylic acid (LCA) using Indiana limestone cores of 1 in. diameter and 4 in. length. These 

cores have porosities of nearly 15 vol% and permeabilities of 2 to 3 md. The dissolving power of 

10 wt% LCA was measured to be 0.45 lb/gal at room temperature. They performed core flow 

tests at 250
o
F at different flow rates to determine the optimum injection rate to breakthrough the 

core will minimum pore volume. All the three chemicals used formed wormholes in the tested 

cores. 
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Ethylenediaminetetraacetic acid (EDTA) 
 

Hydroxyethylethylenediaminetriacetic acid (HEDTA) 

  
 

Nitrilotriacetic acid (NTA) 
 

Ethanoldiglycinic acid (EDG) or 
Hydroxyethyliminodiacetic acid (HEIDA) 

  
 

Diethylenetriaminepentaacetic acid (DTPA) 
 

L-Glutamic acid, N, N-diacetic acid (GLDA) 

 

 
Fig. 1—Structures of chelating agents commonly used in the oil industry. GLDA is the new chelate 

tested in the present study. 

 

 
Most of the current chelates have low biodegrability and some of them have very low 

solubility in 15 wt% HCl solutions. LePage et al. (2010) introduced a new environmentally 

friendly chelate:  L-glutamic acid, N, N-diacetic acid or GLDA, which is manufactured from L-

glutamic acid (MSG- Mono-Sodium Glutamate). They compared the new chelate (GLDA) with 

other chelates, including EDTA, hydroxyethylethylenediaminetriacetic acid (HEDTA), 

nitrilotriacetic acid (NTA) and ethanoldiglycinic acid (EDG). GLDA was very effective in 

dissolving calcium carbonate compared to other chelates and organic acids. In their results they 

showed that one gallon of 20 wt% GLDA dissolved up to 1.5 lb calcium carbonate, whereas one 

gallon of 15 wt% HCl can dissolve 1.8 lb calcium carbonate. GLDA has better solubility in HCl 

over a wide pH range, unlike other chelates. Regarding environmental, safety and health issues, 

GLDA has favorable environmental characteristics as it is readily biodegradable. 
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Major challenges associated with conventional stimulation fluids include the corrosive 

nature of these fluids on well tubulars particularly at high temperatures (Wang et al. 2009) and 

their inability to treat heterogeneous formations without employing diversion techniques. 

Additionally, highly reactive conventional acids tend to preferentially flow to the higher permeable 

zones in heterogeneous formations. The diversion and reaction of injected acid into areas of 

highly permeable zones created increased flow and reaction in these zones. This occurs at the 

expense of bypassing the low permeable zones leading to inefficient stimulation of the target low 

permeability or damaged intervals. This is also true for matrix acidizing of long open-hole 

horizontal wells and extended reach wells. The success of conventional matrix acidizing in 

carbonate reservoir with HCl is often limited because of the optimal injection rate would exceed 

the fracture gradient of the formation (Haung et al. 2000). 

Different acid systems have been used to reduce the problems associated with HCl such as 

rapid acid spending and face dissolution at low injection rates. Acid systems based on weak 

acids, like formic and acetic have a low concentration of H
+
 in comparison to HCl and will react 

with calcium carbonate at a slower rate than HCl (Abrams et al. 1983). Retarded acid systems 

can also be employed to reduce the reaction rate of HCl with carbonate formations. One such 

system employed HCl emulsified in an oil phase that reduces acid diffusion to the carbonate 

surface and allows for deeper penetration of the live acid (Hoefiner and Fogler 1985). Foamed 

acids have also been employed in a retarded acid system during stimulation of carbonate 

formation, as the foam will lower the liquid saturation and thus increase the convection rate for 

the same injection rate. The foam also will lower the liquid permeability and decreases the 

amount of live acid that leaks-off from the primary channel (Bernadiner et al. 1992). Acetic and 

formic acids suffer from having a low solubility of calcium salts formed and cannot be used at 

high acid concentrations (Economides and Kenneth 2000) in addition to corrosion problems at 

high temperatures (Huang et al. 2002). 
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Optimum Injection Rate for Different Stimulation Fluids 

Several studies investigated the optimum conditions for wormhole formation during carbonate 

acidizing using hydrochloric acid (HCl). They have shown that the dissolution pattern created 

can be characterized as being one of the following types (Haung et al. 1997, Fredd 2000a, 

Robert and Crowe 2000, and Fredd 2000b):  

1. compact or face dissolution in which most of the acid is spent near the rock face;  

2. conical wormholes;  

3. dominant wormholes;  

4. ramified wormholes; and  

5. uniform dissolution  

 The transition from dissolution structure 1 to 5 is commonly observed as the injection rate is 

increased. At low injection rates, the reactant is consumed on the inlet flow face of the core, 

resulting in face dissolution or complete dissolution of the core starting from the inlet flow face. 

The face dissolution structure consumed large volumes of reactant and provides negligible 

depths of live acid penetration. At slightly higher injection rates, the acid or the treating fluid can 

penetrate into the porous medium and enlarge flow channels. At intermediate injection rates, the 

acid is transported to the tip of the evolving flow channel, where subsequent consumption 

propagates the channel and eventually leads to the formation of a dominant wormhole. At high 

injection rates, the dissolution channels become more highly branched or ramified as the fluid is 

forced into smaller pores. At very high injection rates, uniform dissolution is observed as the acid 

is transported to the most pores in the medium. 

 The type of dissolution structure was found to have a significant effect on the volume of 

acid required to obtain a given penetration depth of wormhole. This effect was investigated by 

Fredd and Fogler (1998a, 1999). Fredd and Fogler (1999) studied the dependence of the 

number of pore volumes to breakthrough, PVbt, on the injection rate for the dissolution of 

limestone by various stimulation fluids. The fluids that they investigated were: DTPA 

(Diethylenetriaminepentaacetic acid), EDTA (Ethylenediaminetetraacetic acid), acetic acid, and 

HCl. All the fluids exhibited an optimum injection rate at which the number of pore volumes 

required to breakthrough is the minimum and dominant wormhole channels are formed. The 

number of pore volumes to breakthrough increased to the left and right of the minimum due to 

the formation of conical wormhole and ramified wormholes, respectively. The optimum injection 

rate corresponds to conditions at which a minimum volume of fluid is required to achieve a given 

depth of wormhole penetration. Hence, it represents the most effective and optimum conditions 

for matrix stimulation. They found these conditions at an optimum Damköhler number of 0.29.  
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 Haung et al. (1997) stated that the optimal acidizing conditions of a given formation can be 

determined by the following optimum Damköhler number; 

 

………………………………………………. (3) 

   

where; NDa(opt) is the optimum Damköhler number to form wormholes, rmax is the maximum pore 

radius; k is the rock permeability, and lp is the average pore length. 

 The optimal Damköhler number is fixed for a given formation and depends on the largest 

pore size naturally occurring (Huang et al. 2000). Also, we can relate the optimal acid injection 

rate to the optimal Damköhler number by the following relation: 

 

 ……………………………………….  (4) 

 

where; Uopt is the optimal flux to form wormholes, Ef
0
 is the reaction rate constant, C0 is the initial 

acid concentration, m is the reaction order, E is the activation energy, R is the universal gas 

constant, and Tr is the absolute temperature of the reservoir. 

Matrix acidizing under field conditions limits the flow rate to values that cause the bottom 

hole treating pressure to stay below the fracture initiation pressure and the surface pressure 

below the maximum allowable surface pressure because of equipments limitations (Glasbern et 

al. 2009). Therefore, the maximum flux that we can use during the acidizing treatment can be 

determined using Eq. 5: 

 

…….……………….. (5) 

 

where; Umax is the maximum injection flux that can be used for acidizing (cm/hr), k is the 

formation permeability (md), gfr is the formation fracture gradient (psi/ft), D is the formation depth 

(ft), pr is the reservoir pressure (psi), rw is the wellbore radius (ft), re is the reservoir drainage 

radius (ft) and S is the skin damage, dimensionless. 

 Wang et al. (1993) and Fredd and Fogler (1999) identified an optimum injection rate during 

carbonate acidizing by hydrochloric acid (HCl). This injection rate is the rate at which the 

minimum amount (minimum pore volume) of acid needed to form uniform wormholes. The 

optimum rate was found to be a function of rock mineralogy (dolomite or calcite), acid 
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concentration, and temperature, but the most important factor was rock mineralogy. 

Temperature was found to have a strong effect on the HCl optimum injection rate and the 

optimum injection rate increased with increasing the temperature. 

 Hill et al. (1995) found an optimum injection rate that results in the least amount of acid to 

breakthrough the core and create wormholes. At injection rates above and below the optimum 

injection rate, the amount of acid required to break through the core was greater than that at the 

optimum rate. 

Diversion in Stimulation Treatments 

Zerhboub et al. (1994) studied the use of foam as a diverting agent in matrix acidizing. Using of 

foam is a complicated process as it requires mutual solvent to clean the near-wellbore from oil 

as the oil may destroy the foam. It requires preflush containing surfactant before injecting the 

foam pill. The well should be shut in after injecting the foam; also, a surfactant should be added 

to the treating fluid to prevent interaction between acid and foam. 

 Wang et al. (2009) introduced a nonaggressive fluid to stimulate carbonate reservoirs. The 

corrosion rate of this fluid is very small compared to HCl and because of its nonreactive nature, it 

can be used to stimulate heterogeneous reservoirs without using diverting agents. Parallel 

coreflood experiments showed that the fluid was able to stimulate both high and low permeability 

cores without using diverting agents. 

A good diversion was obtained using the VES-based system in stimulation of carbonate 

reservoirs. The diversion ability was evidenced by the increase in the down hole pressure during 

the injection of the diverter and the change in bottom hole injection temperature (Zeiler et al. 

2006). 

 Al-Ghamdi et al. (2009, 2010) did a parallel coreflood on two calcite cores using 15 wt% 

straight HCl and surfactant-based HCl. Flowing 15 wt% HCl into two different cores with different 

permeabilities. The acid flowed predominantly into the high permeability core rather than the low 

permeability core. Surfactant-based acid only worked with low permeability contrast (1.7 

permeability ratio) and did not work for high ratios at different rates. 

 Yu et al. (2009, 2010) studied the retention of surfactant form the surfactant-based acid 

following the coreflood experiments at different shear rates. More than 60 wt% of the surfactant 

was retained in the core after the coreflood treatments in all the treatments they did. At low shear 

rates the surfactant retention reached more than 85 wt% inside the core. To remove the retained 

surfactant they used mutual solvent (ethylene glycol monobutyl ether). Two pore volumes of 

mutual solvent were injected at 1.5 cm
3
/min and only 21.2 wt% of the retained surfactant was 

recovered. 
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 Chang et al. (2001) used viscoelastic surfactant (VES) to stimulate calcite cores. They used 

three cores with different permeabilities to simulate the formation heterogeneity. The VES-based 

acid only broke through the core with the higher permeability in the three experiments they did, 

although the permeability contrast between the three cores was not high (2:1:1, 1:3:1, 1:1.5:1). 

 Taylor et al. (2003) used the Viscoelastic surfactant to stimulate three calcite cores with 

permeability ratio of 1:3:1.5. The acid only broke through the higher permeability cores and 

increased the permeabilities of the other cores. 

 Gomaa et al. (2009) studied the use of in-situ gelled acid based on polymer to acidize 

calcite cores. They found that the polymer has a very good ability in diversion but the after 

acidizing they observed a polymer residue around the wormholes. They confirmed the presence 

of polymer inside the core using a CT scan study. The system they used in the coreflood 

experiments included breaker and with the presence of the breaker in the system the polymer 

was trapped inside the core. 

 Taylor and Nasr-El-Din (2002) used the in-situ gelled acid based on polymer to stimulate 

calcium carbonate cores. They found that the in-situ gelled acids reduced the permeability of low 

permeability carbonate rock. Polymer was the source of damage and the cross-linker was 

retained in the cores during the coreflood treatment. 

Nasr-El-Din et al. (2001) used the emulsified acid system to stimulate deep carbonate sour 

gas reservoirs. Emulsified acid was successfully used to acid fracture eleven vertical wells in 

deep sour gas reservoirs. No operational problems were encountered during mixing or pumping 

the emulsified acid. Substantial increases in gas production were obtained from emulsified acid 

treatments. Temperature stable emulsified acid systems provide incremental conductivity at 

lengths greater than 150 ft and temperatures in excess of 275°F. 

Effect of Reservoir Fluid Type on the Stimulation of Calcite by HCl 

Shukla et al. (2003) investigated the effect of injecting nitrogen, decane, and alternate 

nitrogen/acid injection on the creation of wormholes for Texas Cream Chalk using 15 wt% HCl at 

room temperature and 50
o
C. Their experimental results showed that injecting nitrogen inert gas 

ahead of the acid enhanced the performance of HCl. Injecting nitrogen decreased the amount of 

acid needed to propagate a wormhole through the 6-in. Texas Cream carbonate core. The 

volume of acid required to breakthrough the core was decreased by factor of 1.5 to 3 times and 

the wormholes were narrower and less branched than those created in water saturated cores 

without gas injection. The injected gas reduced the fluid loss from the wormhole, which in turn 

resulted from the reduced relative permeability to water in the gas saturated matrix. They found 

that saturating the cores by decane (oil) gave results similar to the gas. The decane increased 
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the wormhole propagation efficiency due to the lower relative permeability in matrix to acid 

solution. Injecting gas alternated with the acid decreased the efficiency of acidizing due to the 

presence of gas in the wormhole blocked the transport of acid, caused more branching of the 

wormhole, and more volume was required to create wormholes (Shukla et al. 2006). 

 Gidley et al. (1996) showed that displacing the crude oil in the formation with CO2 in the 

zone to be acidized reduces the interaction between spent acid and oil in the formation. This 

process eliminated the need to treat the spent acid returns in the produced oil. 

Stimulation of Dolomite Reservoirs 

Chelating agents have been used as stand-alone stimulation fluids to stimulate calcite 

formations. Fredd and Fogler (1998a) tested the use of different chelating agents‘ formulas 

reaction with calcium carbonate cores and the ability of these chemicals to form wormholes.  

0.25M DTPA (pH = 4.3) and 0.25M EDTA (pH = 4 & 13) have been used to create wormholes in 

calcite cores. The core permeability ratio (final value/original value) reached at least 100 after 

the test but with different pore volumes for each chemical. The efficiency of the chelating agents 

at low injection rates is consistent with the dependence of wormhole structure on the Damköhler 

number and relatively low diffusion coefficients of DTPA and EDTA compared to of HCl. 

 The dissolution of dolomite by chelating agents has not been thoroughly investigated. 

Preliminary experiments with EDTA at ambient temperature reveal no significant dolomite 

dissolution. The dissolution mechanism is probably inhibited by the low stability of the 

magnesium chelate at that temperature (Fredd 2000a). 

 The kinetics of dissolution of dolomite by HCl is completely different than that of HCl with 

calcite. The reaction of HCl with dolomite can be written as follows: 

 

………………...  (6) 

 

The dissolving power of various acids with both calcite and dolomite are listed in Table 1 

(Schechter 1992). The dissolution power of different acids to dolomite is less than calcite. The 

dissolution of dolomite by HCl depends on the temperature and the reaction rate equation can 

be written as follows: 

 

 …………………..………………………………………………….  (7) 

 

 ……………………………….....………………………………  (8) 



12 
 

 

CHCl in kmole/m
3
, rHCl in kmole dolomite/m

2
s. The kinetics constants for the reaction models of 

HCl with both calcite and dolomite are listed in Table 2 (Schechter 1992). 

Hill et al. (1993) stated that the wormhole penetration formed during matrix acidizing by HCl 

was much less in dolomite formations than calcite formations at the same conditions (Hill et al. 

1993). The effect of temperature on the pore volumes required for breakthrough in dolomite 

cores at different rates is shown in Fig. 2 (Hill and Schechter 2000). The wormhole radius for the 

same conditions was much less in dolomite than limestone due to the difference in reaction rate 

between HCl and both dolomite and calcite.  

 

 

   Table 1—DISSOLVING POWER FOR DOLOMITE AND 
CALCITE BY DIFFERENT ACIDS 

Acid HCl Formic Acetic 

lb dolomite/lb acid 1.27 1.00 0.77 

lb calcite/lb acid 1.37 1.09 0.83 

 
 
 
 
 

Table 2—CONSTANTS IN HCl-MINERAL REACTION KINETICS MODEL 

Mineral 0

fE , 

)/( 32 solutionacidmHClkmolessm

kmolesHCl  
R

E
, 

o
K 

 

    
Calcite  
(CaCO3) 

0.63 7.314 x 10
7
 7.55 x 10

3 

 
Dolomite 
(CaMg(CO3)2) 

r

r

T

T
3

4

1092.11

1032.6
 

4.48 x 10
5
 7.9 x 10

3
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Fig. 2—Effect of temperature on the variation of volumes to breakthrough with the injection rate for 
dolomite (after Hill and Schechter 2000). 

 

 
 Using rotating disk, different dolomite cores reacted differently with HCl at the same 

temperature (180
o
F). Different dolomites may have drastically different kinetics. Five dolomite 

samples were tested, two of them showed solubility of 80% in HCl and the others showed 

solubility greater than 90% (Anderson 1991).  

Nasr-El-Din et al. (2001) used acid-in-diesel emulsified acid to stimulate deep dolomite 

reservoirs using core plugs of permeability less than 10 md at 250
o
F. The acid created deep 

wormholes which significantly increased the permeability of the treated cores. The reactivity of 

the average limestone and dolomite are the same at 200
o
F. At 100

o
F, the reactivity of an 

average limestone is about twice that of the average dolomite (Gdanski 2005). 

Gdanski (2005) showed that the reactivity of the average limestone and dolomite are the 

same at 200
o
F. At 100

o
F, the reactivity of an average limestone is about twice that of the 

average dolomite. 

Lund et al. (1973 and 1975) studied the dissolution of both calcite and dolomite by HCl 

using the rotating disk instrument. Their work showed that at 25 ºC, the dissolution of calcite is 
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mass transfer limited even at high disk rotational speeds, while at -15.6 ºC, both mass transfer 

and surface reaction rates limit the dissolution rate. In contrast, Lund et al. (1975) showed that 

the dissolution of dolomite was surface reaction rate limited at 25 ºC even at low disk rotational 

speeds. As the temperature was increased to 100 ºC, the dissolution process approached 

diffusion limitation even at relatively high rotational speeds. 

Taylor et al. (2003) used the rotating disk instrument to measure acid dissolution rates, 

reaction rates of reservoir rock from a deep Dolomitic gas reservoir. Measurements are made 

from room temperature up to 85 ºC at rotational speeds of 100 to 1000 rpm and acid 

concentrations of 0.05 to 5N HCl (0.2 to 17 wt%). The results showed how acid dissolution rates 

change as the reservoir rock varied from 3 to 100 wt% dolomite. It was found that the reactivity 

of the rock varied from values expected for pure calcite marble to those expected for pure 

dolomite marble. At grain densities near 2.72 g/cm
3
 (expected for pure calcite), rock dissolution 

rates varied by more than an order of magnitude due to rock mineralogy. At grain densities near 

2.83 g/cm
3
 (expected for pure dolomite) rock dissolution rates were higher than that observed 

with pure dolomitic marble. Reaction rates depended on mineralogy and the presence of trace 

components such as clays. 

The rate of dolomite dissolution is slow compared to marble at 25
o
C; the dissolution rate for 

both minerals is rapid at 100
o
C. The dissolution of marble in HCl is diffusion limited at 

temperatures above 0
o
C. The dissolution of dolomite is surface reaction limited at low 

temperature and mass transfer limited at higher temperatures (Lund et al. 1973). The following 

rate expressions were found to describe the rate of dissolution of dolomite in HCl: 

 

At 25
o
C         ………………………………………………  (9) 

 

   At 50
o
C       …………………………………….………...  (10) 

 

At 100
o
C     …….………………………………..……….. (11) 

 

where: CHCl is the HCl concentration, moles HCl/cm
3
, and rHCl   is dissolution rate, mole 

HCl/cm
2
/s. 
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Stimulation of Sandstone Reservoirs 

The objective of stimulation of sandstone reservoirs is to remove the damage caused to the 

production zone during drilling or completion processes. Sandstone acidizing consists of three 

main stages of sandstone acidizing: 

 a preflush, normally of hydrochloric acid,  

 a mud-acid stage of hydrochloric and hydrofluoric, and  

 an after flush that may be hydrochloric acid   

 The amount of mud acid required to remove the damage can be determined through the 

experience within a given area. Oil and gas wells respond differently to the amount of mud used 

in the treatment. They recommended displacing the oil zone with CO2 to reduce the interaction 

between spent acid and oil during the acid treatment process. This process reduces the need to 

treat spent acid returns and allows the use of large mud-acid treatment for deeper acid 

penetration (Gidley et al. 1996). 

Many problems may occur during sandstone acidizing with HCl/HF mud acid. Among those 

problems: decomposition of clays in HCl acids, precipitation of fluosilicates, the presence of 

carbonate can cause the precipitation of calcium fluorides (CaF2), silica-gel filming, colloidal 

silica-gel precipitation, and mixing between various stages of the treatment (Gdanski and 

Shuchart 1998). 

Bryant and Buller (1990) noticed during using HCl acid in sandstone acidizing that the 

migration of amorphous silica (hydrated silica) and mineral fragments occurred. Their study 

indicates damage normally occurs during the HCl treatment. Aluminum is preferentially leached 

during the dissolution of kaolinite in HCl. The structure of kaolinite is layered (made up of sheets) 

in which acid attacks preferentially at the edge. In turn this may cause fines migration and 

formation damage (Hartman et al. 2006). Magnesium and Aluminum could have been leached 

from the crystalline lattice during dissolution in 15 wt% HCl (Kline and Fogler 1981). 

Quartz reacts relatively slowly with HF, whereas aluminosilicates (clay minerals, feldspar, 

and mica) reacts relatively rapidly (Li et al 1998). The primary reaction is: 

 

 …………………………………………. (13) 

 

 ………………….. (14) 
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Feldspar dissolution by HF acid:  

 

 .…………… (15) 

                 

Secondary reaction:  

HF with aluminosilicates is the reaction of fluoslilic acid derived from the primary reaction with an 

aluminosilicates to form hydrated silica gel. 

 

…. (16) 

                  

and 

 

………. (17) 

 

Dissolving the silicon in aluminosilicates results in an amorphous silica gel film. In addition, the 

silica in SiF6
2-

 also precipitates as silica gel. 

Tertiary reaction: 

The tertiary reaction of HF with aluminosilicates involves the further reduction of the F/Al 

ratio in dissolved aluminum fluoride species. The reaction extracts aluminum out of 

aluminosilicates and leaves silica gel in the matrix. 

The reaction with K-feldspar will be: 

 

 ………..…….. (18) 

 

The reaction will continue reducing Al/F ratio in the spent HF until the remaining HCl is 

consumed. 

 Mud acid cannot be used in sandstone with high calcite concentration. Calcite reacts very 

quickly and completely with HCl acid, but in the presence of HF, the reaction proceeds (Martin 

2004). 

 

 …………..…………….………………………. (19)     

 

CaF2 has very low solubility. Preflushing the near-wellbore with HCl minimized this problem. 
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The reaction products of fluosilicic acid and fluoaluminic acid are readily soluble in water, 

but their potassium, sodium, and calcium salts are partially insoluble. The salts are formed by 

the following reaction: 

 

 ……………………………………………………………… (20) 

 

 …………………………………………………………… (21) 

 

 ………………….………………………………………… (22) 

 

Calcium, potassium, and sodium ions should not be mixed with either spent or unspent HF. 

Formation water, which contains calcium chloride, potassium chloride, and sodium chloride 

should be avoided. The only compatible salt solution with HF is ammonium chloride. Ferric 

hydroxide forms when acid spends and pH rises. Sources of ferric iron include some minerals, 

such as chlorite, siderite, and hematite, and tubing rust. Problems of stimulating high-

temperature sandstone reservoirs with HCl are: 

 sand deconsolidation 

 clay destabilization 

 tubular corrosion 

Al-Anazi et al. (2000) used different HF acid formulas to stimulate water injectors. The used 

retarded HF acid system based on AlCl3. The examined cores contained a large amount of K-

feldspar. Therefore, it is not recommended to use retarded HF acid based on fluoboric acid to 

stimulate water injector in this field. The reservoir cores had high content of iron, therefore, there 

is a need to add iron control agent to the injected acids. A preflush of 5wt% ammonium chloride 

solution was effective in enhancing the final permeability after RHF stimulation. It appears that 

this preflush displaced sodium and potassium from the core and minimized precipitation of 

fluosilicates. A multi-stage stimulation treatment was designed to remove formation damage to 

enhance wells injectivity in the new developed field. The recommended treatment was 

successfully applied in the field. 

There are several minerals that may precipitate during an acidizing treatment such as: 

i. Fluorides: Calcium fluoride (fluorite), CaF2, has a very low solubility and, 

consequently, a high potential for precipitation. However, calcium fluoride 

precipitation can be virtually eliminated if an adequate HCl pre-flush is used to 

remove carbonates from the near-wellbore region prior to injecting HF. Aluminum 
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fluoride (fluellite), AlF3, is another potentially damaging precipitate. Precipitation of 

AlF3 occurs at high HF/HCl ratios or when the HF concentration exceeds 4 wt%. 

ii. Fluorosilicate and Fluoroaluminate Salts: K2SiF6, Na2SiF6, N3AlF6, and K3AlF6 salts 

are all contingent precipitates. They contended that high HF concentrations favor the 

precipitation of these minerals, thus, they are more likely to occur during the initial 

phases of dissolution. 

iii.  Colloidal Silica: Colloidal silica, Si(OH)4, is perhaps the most important precipitating 

mineral in sandstone acidizing. Several coreflood experiments have produced 

evidence of the precipitation of Si(OH)4. In addition, several acidizing models have 

demonstrated significant colloidal silica precipitation. As reservoir minerals are 

dissolved, aluminum and silica compete for the available fluorine. Aluminum has the 

greater affinity for fluorine; thus when the level of free fluorine is reduced, silica 

precipitates in the form of Si(OH)4. 

iv. Iron Compounds: Sandstone reservoirs commonly contain iron bearing minerals 

such as siderite, ankerite, pyrite, and chlorite. In the presence of HCl, however, iron 

compounds are unlikely to precipitate. Iron compounds can become a real possibility 

in carbonates, where there is enough carbonate material present to cause the HCl 

acid to spend itself completely. This condition is rarely found in sandstones, and, 

therefore, does not pose much of a problem in sandstone acidization (Quinn et al 

2000). 

 HF can dissolve carbonates, clays, feldspar, micas, and quartz. The primary reason to use 

HF acid is to remove clays. If carbonates are encountered in sandstone, these should be 

removed with a preflush of HCl to avoid CaF2 precipitation. Table 3 shows the solubility of the 

different mineral types in mud acid (Allen and Roberts 1993). 
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Table 3—SOLUBILITY OF DIFFERENT MINERALS IN HCl, AND HCl/HF ACIDS 

Mineral 

Solubility 

HCl HCl/HF 

Quartz No solubility 

No solubility 

No solubility 

No solubility 

No solubility 

Very low 

Feldspars Low to moderate 

Kaolinite High 

High 

High 

High 

Illite 

Smectite 

Chlorite Low to moderate 

Calcite High 

High 

High , CaF2 is ppt. 

High , CaF2 is ppt. Dolomite 

 
 
 

Reaction rate of HF with sand and clays depends on the ratio of the surface area of the 

rock to volume of acid in sandstone. The fluosilicic acids produced by the reaction of HF on sand 

and clay will react with Na, K, and Ca producing an insoluble ppt. We should use ammonium 

chloride solution as a preflush or postflush in HF treatment. Chlorite which contain Fe
++

, so that 

HCl can leach Fe
++

 from chlorite leaving an amorphous silica residue.  

Productivity Improvement Factor  

The success of a given treatment, i.e., the improvement or degradation in well performance, can 

be measured by the productivity improvement factor (FPI), which is defined as the ratio of post- 

and pre-stimulation productivity: 

 

 ……………………..………………………………………………... (23) 

 

where Ja and Ja
0
 are the initial and final productivity indices. 

Clay Minerals 

Clay minerals are extremely small, platy-shaped materials that may be present in sedimentary 

rocks as packs of crystals. The maximum dimension of a typical clay particle is less than 0.005 

mm. The clay minerals can be classified into three main groups: (1) Kaolinite group, (2) Smectite 

(or Montmorillonite) group, and (3) Illite group. In addition, there is mixed-layer clay minerals 
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formed from several of these three basic groups. Table 4 indicates the chemical structure of the 

different types of clay minerals (Civan 2000). The interactions of the clay minerals with aqueous 

solutions are the primary culprit for the damage of petroleum-bearing formations. The rock-fluid 

interactions in sedimentary formations can be classified in two groups: (1) chemical reactions 

resulting from the contact of rock minerals with incompatible fluids, and (2) physical processes 

caused by excessive flow rates and pressure gradients.  

 

 

Table 4—CHEMICAL STRUCTURE AND SURFACE AREA OF CLAY MINERALS 

Mineral Chemical Structure Surface area, m
2
/g 

Illite K1-1.5Al4[Si7-6.5Al1-1.5O20](OH)4 100 

Kaolinite Al4[Si4O4](OH)8 20 

Chlorite (Mg, Al, Fe)12[(Si, Al)8O20](OH)16 100 

 
 
 

Properties and damage processes of the three clay groups can be classified as follows: 

i. KAOLINITE has a two-layer structure, K
+
 exchange cation, and a small Base Exchange 

capacity, and is basically non-swelling clay but will easily disperse and move. Kaolinite 

plates are thought to be some of the more common migratory clays. Damage from fines 

is located in the near wellbore area within a 3-55 ft radius. Damage also can occur in a 

gravel pack (silicate and aluminosilicate). Kaolinite can adsorb some water; the 

adsorbed water is held tightly to the clay surfaces. 

ii. Montmorillonite (Smectite) has a three-layer structure, a large Base Exchange capacity 

of 90 to 150 meq/l00g and will readily adsorb Na
+
, all leading to a high degree of 

swelling and dispersion. Smectite and Smectite mixtures swells by taking water into its 

structure. It can increase its volume up to 600%, significantly reducing permeability, 

creating impermeable barrier to flow. The removal of these clays can be accomplished 

during HF treatment if the depth of penetration was small. If it the depth of penetration 

was large, the best treatment is to fracture the well to bypass the damage. 

iii. Illites are interlayered. Therefore, illites combine the worst characteristics of the 

dispersible and the swellable clays. The illites are most difficult to stabilize. Also, this 

type of clay can swell, because it adsorbs water. Osmotic swelling results from 

concentration imbalances between the ions held at the exchange sites on the clays and 

the solute content of the contacting fluid, Fig. 3. 
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Fig. 3—Forms of clay minerals inside the sandstone formation (Civan 2000). 

 

 
 Amaefule et al. (1988) stated that rock-fluid interactions in sedimentary formations can be 

classified in two groups: (1) chemical reactions resulting from the contact of rock minerals with 

incompatible fluids, and (2) physical processes caused by excessive flow rates and pressure 

gradients. Illites are interlayered, Fig. 4. Therefore, illites combine the worst characteristics of 

the dispersible and the swellable clays. The illites are most difficult to stabilize. 
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Fig. 4—Schematic description of the crystal structure of illite (Civan 2000). 

 

 
Flowing HCl in cores containing illite and chlorite (high surface area, Table 4, Ezzat 1990 

and Welton 1984) caused the pressure drop to increase due to the clay reaction product 

migration, formation of reaction product and/or increase in the viscosity. Illite and chlorite are 

attacked by HCl to produce an amorphous silica gel residue i.e. the aluminum layer extracted. 

The alumina layer if attacked, it will weaken the clay structure and make it more sensitive to fluid 

flow (Thomas et al. 2001). Thomas et al. (2001) showed that HCl has degraded Illite and chlorite 

in the tested cores from actual producing sandstone reservoirs. Degradation of Illite and chlorite 

led to potential core damage. Treating the actual reservoir cores by mud acid caused fines 

migration during the overflush. 

Chelating Agents in Sandstone Stimulation 

Parkinson et al. (2010) studied the use of chelating agents to stimulate sandstone formations 

with high calcite content.  Pinda formation in West Africa has a wide range of carbonate content 

(varying from 2% to nearly 100%) and formation temperature is 300
o
F. This field was treated 

using 7.5 wt% HCl with foam, a sequence of job failures was noticed, with constant problems of 

tubular corrosion. Na3HEDTA at pH 4 was tested using Berea sandstone cores and was 

compared with mud acid (9 wt% HCl + 1 wt% HF). The results showed that Na3HEDTA was 

more effective in stimulating Berea core than mud acid and HCl. 
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 The coreflood tests were conducted at 290
o
F, 2,000-psi confining pressure, and 500-psi 

backpressure with a flow rate range (0.5 to 5 ml/min). Using 0.8 wt% HF with the Chelant 

deconsolidated the treated core at the injection face of the core plug due to the increased 

concentration of HF.  After the coreflood experiments they performed Na3HEDTA was decided to 

be used alone in the field treatment. 

The old stimulation fluid was 7.5 wt% HCl with corrosion inhibitors, surfactants, iron-control 

agent, and mutual solvent. The use of this system caused several corrosion-related coiled-tubing 

failures. HEDTA with 0.2 wt% corrosion inhibitor was used instead of 5 wt% with the 7.5 wt%-

HCl and HEDTA showed less corrosion rate than HCl. After treating 6 wells in this filed the 

production rate from the six wells was increased from 2,881 BOPD (Pre-job production) to 4,531 

BOPD (One year post-job production). 

Ali et al. (2008) showed that low pH solutions of HEDTA (pH = 4) were capable of 

stimulating carbonate and sandstone formations at high temperatures. Because of reduced 

reaction rates and corrosion rates, these fluids effectively stimulated high temperature reservoirs 

without the damage to the well tubulars and formation integrity that is commonly caused by 

strong mineral acids. 

High temperature sandstone acidizing is challenging due to the very fast reaction rates and 

instability of clays at these temperatures. Gdanski and Scuchart (1998) have shown that 

essentially all clays are unstable in HCl above 300
o
F. The ideal stimulation fluid would remove 

the near-wellbore damage without depositing precipitates in the formation, and preventing well 

production declines due to solids movements.  

Ali et al (2002) stimulated Berea sandstone cores Na3HEDTA and it gave results better 

than HCl. EDTA performed better than HCl in actual formations, because the formation is 

sensitive to HCl because of some silt and fines will react with low pH solution to form precipitates 

and reduce the final permeability. Wells treated with EDTA fluid produced an average of 1.84 

MMscf/d more gas after the treatments. This benefit was approximately twice that observed in 

wells in the area treated with conventional sandstone stimulation fluids. EDTA was used to 

remove the calcium carbonate scale from the sandstone reservoirs caused by the drilling fluid 

and removed the damage caused during the drilling operations (Tyler et al. 1985). 

HCl leached the metal aluminum from the clay or feldspar. EDTA or HEDTA removed only 

calcium from the core. HEDTA removed essentially calcium containing minerals (Calcite, 

dolomite, Ca-feldspar, etc..) and small amount of aluminosilicates. Removing aluminum may 

cause fines migration for the clay minerals. Damage was noticed after treatment of wells using 

HCl but not after Chelant treatments (Shaughnessy and Kline 1982). If the reservoir pressure 

was not high, the damage may be permanent, as the precipitates may never be produced back. 
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Frenier et al. (2004, 2000) showed that HEDTA removed the calcium, magnesium, and iron 

carbonate minerals without inducing damage through clay degradation and precipitated 

byproducts. Chelating agents were able to stimulate high temperature sandstone formations in 

the field; they removed the scale and stimulate the high-temperature wells. 

Objectives 

HCl-based fluids have been used in the oil industry long time ago. Using HCl in stimulation is not 

favorable in the following cases: high temperature reservoirs, illitic sandstone reservoirs, wells 

completed with Cr-13 tubing, sandstone with high percentage of calcite, and acid-sensitive 

crudes bearing formations. HCl can cause damage to sandstone reservoirs if its illite content is 

high. Therefore, the objectives of this study are to: 

i. Study the ability of GLDA to dissolve calcite over a wide range of pH and comparing 

this to other chemicals such EDTA, HEDTA, and HEIDA. The thermal stability of 

GLDA at high temperature will be investigated. 

ii. Investigate the ability of GLDA to form wormholes or channels in 20-in. and 6-in. 

calcite cores (high and low permeability). 

iii. Study the factors affecting the wormhole formation in calcite cores by GLDA. 

iv. Study the effect of reservoirs fluid type on the stimulation of calcite cores by GLDA 

and HEDTA chelating agents. 

v. Developing analytical model to predict the flow of GLDA in calcite cores. 

vi. Determine the effectiveness of GLDA in stimulating dolomite cores. 

vii. Study the possibility of using GLDA as a stand-alone stimulation fluid for sandstone 

cores and in combination with HF acid to remove the damage from sandstone cores.   
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CHAPTER II 

EVALUATION OF A NEW ENVIRONMENTALLY FRIENDLY CHELATING 

AGENT FOR HIGH-TEMPERATURE APPLICATIONS 

Introduction 

Most of the current chelates have low biodegradability and some of them have very low solubility 

in 15 wt% HCl solutions. LePage et al. (2010) introduced a new environmentally friendly chelate:  

L-glutamic acid, N, N-diacetic acid or GLDA, which is manufactured from L-glutamic acid (MSG- 

Mono-Sodium Glutamate). They compared the new chelate (GLDA) with other chelates, 

including EDTA, hydroxyethylethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA) 

and ethanoldiglycinic acid (EDG). GLDA was very effective in dissolving calcium carbonate 

compared to other chelates and organic acids. In their results they showed that one gallon of 20 

wt% GLDA dissolved up to 1.5 lb calcium carbonate, whereas one gallon of 15 wt% HCl can 

dissolve 1.8 lb calcium carbonate. Unlike other chelates, GLDA has better solubility in HCl over a 

wide pH range. Regarding environmental, safety and health issues, GLDA has favorable 

environmental characteristics as it is readily biodegradable.  

 All previous studies done using chelating agents as a stand-alone stimulation fluid were 

based on short core samples (maximum 5 in. length). No previous work considered measuring 

the concentration of the chelate in the coreflood effluent. Therefore, the objectives of this part 

are to: (1) examine the ability of GLDA to dissolve calcite over a wide range of pH values using a 

slurry reactor and rotating disk, and comparing this with EDTA, EDG and HEDTA, (2) determine 

the ability of GLDA to form wormholes in long calcium carbonate cores, (3) analyze the core 

effluent samples to understand the reaction of GLDA with calcite, (4) study the thermal stability 

of GLDA, and (5) address the environmental characteristics of GLDA. 

Experimental Work 

 Materials 

HEDTA (hydroxyethylethylenediaminetriacetic acid), GLDA (L-Glutamic acid N,N-diacetic acid), 

and EDG (ethanoldiglycinic acid, also known as HEIDA: hydroxyethyliminodiacetic acid) were 

obtained from AkzoNobel. The concentration of chelating agents used was 0.6M prepared from 

original solutions with different concentrations. Sodium chloride, calcium chloride and ferric 

chloride reagents were obtained from VWR International. Calcium carbonate cores (1.5 in. in 

diameter and 20 in. in length) were used in the coreflood experiments have a permeability range 
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of 3 to 10 md (Edward limestone). The viscosity of different GLDA solutions with different 

calcium concentrations was measured using a capillary tube viscometer (Ubbelhold type). 

 The rotating disk core samples were cut from blocks of Pink Dessert limestone with a 

diameter of 3.81 cm (1.5 in.) and a thickness of 2.54 cm (1 in.). The procedure reported by Fredd 

and Fogler (1998b) was followed as follows: one surface of each sample was first polished with 

sand paper then soaked in 0.1N HCl for 30 to 40 minutes then rinsed thoroughly with deionized 

water before reaction. This method ensures good reproducibility and eliminates problems 

associated with preparing the disk surfaces. 0.6M GLDA solutions at pH values of 1.7, 3.8, and 

13 were prepared by dilution from an initial solution of 40wt% that was supplied from AkzoNobel. 

De-ionized water was used to prepare the GLDA solutions.  

 Dissolution of Calcite by Chelates 

A slurry reactor was used to determine the ability of different chelates to dissolve calcium 

carbonate, Fig. 5. Portions of pink desert limestone cores were ground and particles of 30 mesh 

size were oven dried before use. GLDA/calcite slurries with a molar ratio of 1.5 were put in the 

reaction flask at 180
o
F; samples were removed at set time periods.   Samples taken for testing 

from the slurry reactor were filtered using 70 m filter paper. The clear filtrate was analyzed for 

the total calcium concentration using atomic absorbance spectrometer (AAnalyst 700-flame type) 

immediately after the test at room temperature. The chelating ability of the different chelates was 

calculated by the determination of the free calcium ion using an ion selective electrode (370 

PerpHecT meter) and then subtracting the free calcium from the total calcium. Also, the total 

chelate concentration was determined using an iron potentionmetric titration method at pH 3. 

The pH of the samples was determined using PerpHecT Ross Electrode, and the density of 

samples was determined using DMA 35N densimeter. The effect of different parameters on the 

reaction of GLDA with calcite included: pH, sodium chloride and calcium chloride. To study the 

effect of sodium chloride and calcium chloride on the GLDA performance, 5 wt% salt solutions 

were prepared using sodium chloride or calcium chloride. All GLDA solutions were prepared 

using deionized water with total dissolved solids (TDS) of 20 ppm.  
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Fig. 5—Slurry reactor (modified after Frenier 2001). 

 

 

 Rotating Disk Experiments 

Rotating disk apparatus RDR-100 (Core Lab Instruments (CLI) & Temco), shown in Fig. 6, was 

used to perform the reaction rate measurements. The instrument consists mainly of two 

chambers; one is a ―reactor‖ vessel and the second is a reservoir‖ vessel. Both vessels were 

flushed with inert gas (nitrogen) before starting the experiment. Calcite disks were fixed in the 

core holder assembly in the reactor vessel using heat-shrinkable Teflon tubing. Reaction fluid 

was then poured in the reservoir vessel and both were heated up to the desired temperatures. 

Compressed N2 was applied to pressurize the reservoir vessel to a pressure that was sufficient 

to transfer the acid to the reactor vessel and results in a reactor pressure above 1000 psig. 

Pressure greater than 1000 psig is necessary in the reaction vessel to ensure that the evolved 

CO2 is kept in solution and does not affect the system hydrodynamic and the dissolution rate. 

The rotational speed was then set up to the selected value and the time was recorded starting 

the moment at which the valve between the reservoir and the reactor vessels was opened. 

Samples, each of approximately 2 ml, were withdrawn periodically up to 20 minutes for 

measuring the calcium concentration in the samples as function of time using Perkin-Elmer 

atomic absorption. Corrections were made to account for the change in volume of reaction 

medium due to sample withdrawing. A new core sample was used for each experiment. The 

initial surface area ( ) of the sample was used to determine the initial dissolution 

rate.  
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Fig. 6—Rotating disk apparatus. 

 

 

 Thermal Stability Tests 

The thermal stability of the chelates was determined by heating 10 ml of a 0.6M chelate solution 

in a 100 ml Teflon pressure vessel for 6 hours at 177°C (350°F) using a temperature controlled 

microwave resulting in a pressure of  350 psi. The thermal stability was measured in one series 

to avoid possible differences in the heating profile. The stability was calculated from the chelate 

concentration before and after heating as determined by complexometric-potentiometric end-

point titration using a ferric chloride solution (LePage et al. 2010).  A similar set of experiments 

was conducted at 400
o
F and 400 psi for 24 hours.   

 Coreflood Tests 

Fig. 7 shows a schematic diagram for the coreflood. A back pressure of 1,000 psi was 

necessary to keep CO2 in solution. The backpressure must be kept constant and it is desired to 

be 300 - 400 psi less than the overburden pressure. One Mity-Mite back pressure regulator 

model S91-W was installed on the upstream line. The pressure in the line controls the effluent 

flow and exerted the resistance for the purpose described above, maintaining constant pressure 

upstream; the pressure was the same as the nitrogen pressure. An Enerpac hand hydraulic 

pump was used to apply the required overburden pressure on the core. The pressure drop 
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across the core was sensed with a set of FOXBORO differential pressure transducers, models, 

IDP10-A26E21F-M1. There were two gauges installed with ranges 0-300 psi, and 0-1500 psi. 

Then the pressure drop across the core was monitored through the lab view software. Coreflood 

tests were run at different flow rates using different GLDA formulas at high temperatures. The 

temperature of the acidizing process must be maintained fairly constant to ensure the reliability 

of the results; therefore, two temperature controllers were used. The temperature of the 

preheated fluids coming from the accumulators was controlled by compact bench top CSC32 

series, which has 4-digit display, 0.1° resolution with an accuracy of ± 0.25% full scale ± 1°C. It 

uses a type K thermocouple and two Outputs (5 A 120 Vac SSR). The coreflood tests were done 

at 200, 220, and 300
o
F.  Before running the coreflood test, the core was first saturated with water 

and the pore volume was calculated. Computer tomographic scans were performed before and 

after the treatment to determine the propagation of the wormhole after the chemical treatment.  

 

 

 

 
Fig. 7—Coreflood setup. 
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 Lab view software was used to monitor the pressure drop across the core during the 

treatment and determine the core permeability before and after the treatment by using Darcy‘s 

equation for laminar, linear, and steady-state flow of Newtonian fluids in porous media: 

 

 ……………………………………………… (24) 

 

where k is the core permeability, md, q is the flow rate, cm
3

 is the fluid viscosity, cP, Lcore 

p is the pressure drop across the core, psi and dcore is the core diameter, 

in. 

Results and Discussion 

 Dissolution of Calcite by GLDA: Effect of GLDA pH  

Fig. 8 shows the effect of the initial pH value on the calcium concentration for the samples 

collected during the reaction of GLDA with calcite.  As noted by the concentration of calcium, the 

total calcite dissolved increased as the pH was decreased. This means that the acid portion of 

the chelating agent was participating in the calcium carbonate dissolution. A similar trend for the 

effect of initial pH on calcite dissolution by HEDTA was obtained by Frenier (2001). GLDA/calcite 

slurries at a 1.5 molar ratio were put in the reaction flask at 180
o
F. To maintain a constant molar 

ratio between the calcite and GLDA, each sample was collected from a single test to keep a 

constant GLDA/ calcite molar ratio. As shown in Fig. 8 the total calcium concentration increased 

with time until reaching a plateau value after 3 hours (equilibrium). The same behavior was 

noticed at all pH values. The total calcium concentration decreased as GLDA pH value was 

increased. There are two reaction regimes; at low pH the acidic dissolution prevails, whereas at 

high pH CaCO3 is removed by complexation of calcium with the chelate. The reaction rate is 

primarily driven by the acidic dissolution. At low pH the reaction is fast and it slows down with 

increasing pH (Fredd and Fogler 1998c). 
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Fig. 8—Dissolution of calcite using 20 wt% GLDA at different initial pH values at 180
o
F. 

 

 
  Fig. 9 shows the complexed calcium concentrations at different pH values of GLDA at 

180
o
F. The maximum amount of chelated calcium was noted at pH 13 where no free calcium 

remained. At high pH the dissolution mechanism was only by the chelation reaction. As the pH 

decreased the chelating ability decreased and free calcium concentration increased.  At low pH 

the dissolution mechanism was due to both chelation and acid dissolution (mass transfer). The 

highest free calcium concentration was obtained with GLDA-calcium solutions at pH = 1.7. 

Fig. 10 and Table 5 show the effect of the initial pH value on the calcite dissolution using 

0.6M GLDA solutions. There was an S-shaped relationship between the ratio of 

complexed/maximum complexed calcium and equilibrium pH of the GLDA solutions. The 

maximum complexed calcium was obtained at pH of 13. As the pH increased the ratio became 

closer to 1, meaning less free calcium exists in solution at high pH. At low pH the ratio was very 

small as there was small amount of chelated calcium compared to the total calcium 

concentration. At low pH 1.7, the GLDA exists principally in an acid form and does not chelate 

Ca effectively because hydrogen ions occupy the carboxylic acid groups. As the pH increased, 

GLDA reached a maximum chelating ability as it becomes fully deprotonated. 
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Fig. 9—Concentration of complexed calcium as a reaction of initial pH and time at 180
o
F. 

 

 

 

 
 
 
 
 
 
 
 

 
Table 5—EFFECT OF pH ON THE CHELATION OF GLDA AT 180

o
F 

 

Initial 
pH 

Final 
pH 

Total Ca, ppm Chelated Ca, ppm Chelated Ca/ Maximum Ca 

1.7 2.5 23600 4000 0.36 

3.0 4.3 19730 4630 0.41 

8.0 6.5 15200 9000 0.80 

13 12.8 11200 11200 1.00 
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Fig. 10—Effect of initial pH on the chelating ability of 20 wt% GLDA at 180
o
F. 

 

 
 Effect of Simple Inorganic Salts 

Fig. 11 shows the effect of adding 5 wt% NaCl on the dissolved calcium concentration for the 

samples that were collected from the reactor during the reaction of GLDA at different pH with 

calcite at 180
o
F. The addition of 5 wt% NaCl to 0.6M GLDA at pH 1.7 significantly accelerated 

the reaction as the equilibrium calcium concentration was reached after 10 minutes, whereas 

without NaCl it took 4 hours to reach this concentration. The calcium concentration was nearly 

the same in both cases. This acceleration was attributed to the increase in the ionic strength. 

Finally, it was found that sodium chloride did not affect the performance of GLDA of pH 13. The 

increase in calcium concentration as a result of adding sodium chloride also was observed by 

Willey (2004) during the dissolution of calcium sulfate by EDTA.  

 The addition of 5 wt% sodium chloride, 0.9M, will increase the ionic strength by 0.9M. Also, 

Willey (2004) stated that, there is a direct relation between the solution ionic strength and 

calcium solubility in solution, in other words, as the solution ionic strength increases the calcium 

solubility in that solution will increase. 
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Fig. 11—Effect of 5 wt% NaCl on 0.6M GLDA reaction with calcite at 180

o
F. 

 

 
Fig. 12 shows the effect of adding 5 wt% calcium chloride on the calcium concentration for 

the samples that were collected from the reactor during the reaction of GLDA of different pH with 

calcite at 180
o
F. For GLDA at pH = 1.7, it is shown that there was a small effect on the net 

calcium concentration (total dissolved calcium – calcium from 5 wt% CaCl2). The calcium 

concentration increased slightly in the first two hours, as the GLDA chelated small amounts from 

the calcium in solution after that the concentration was almost the same for the two cases (with 

and without calcium chloride).  In case of the pH 13, GLDA chelated all the calcium in solution 

from the calcium chloride and did not react with the calcite. The weight of the crushed calcium 

carbonate sample was the same before and after the test. The reaction at high pH was due to 

chelation only and there was no calcite dissolution as there was no H
+
. The existence of calcium 

chloride in solution affects the reaction of GLDA (pH 13) with calcite greatly; it can completely 

hinder the reaction, as it is easier for the GLDA to chelate the calcium in solution rather than to 

chelate the calcium from the calcium carbonate. From Fig. 12 the amount of chelated calcium 

was the same during the whole test time and it was equal to the amount of calcium in the 5 wt% 

CaCl2.  
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Fig. 12—Effect of 5 wt% CaCl2 on GLDA reaction with calcite at 180
o
F. 

 

        

Fig. 13 shows a comparison between 0.6 M GLDA (pH = 11), 0.6 M HEDTA (pH = 11), 

0.6M EDTA (pH =11), and 0.6 M EDG (pH = 11) at 180
o
F. Chelate/calcite with 1.5 molar ratio 

was put in the reaction flask at 180
o
F. The ability of GLDA to dissolve calcite was almost the 

same like HEDTA (with two nitrogen atoms) but was greater than EDG (also like GLDA with only 

one nitrogen atom). Comparing GLDA with EDTA, EDTA dissolved more calcium than GLDA. 

GLDA is a good calcite dissolver compared to other chelating agents; in addition it is safer to use 

than EDG and more readily biodegradable than HEDTA and EDTA.  
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Fig. 13—Comparison between 0.6M GLDA (pH = 11), 0.6M HEDTA (pH = 11), 0.6M EDTA (pH = 11) 
and 0.6M EDG (pH = 11) at 180

o
F. 

 

 
Effect of Disk Rotational Speed and pH  

In general, increasing the rotating disk rotational speed has a positive effect on the rate of 

dissolution in case the reaction is mainly controlled by the mass transport process or controlled 

by both mass transport and surface reaction together. Fig. 14 shows the behavior of the reaction 

between GLDA and calcite (Pink dessert limestone) for a range of disk rotational speeds of 100-

1800 rpm at 200
o
F. Increasing the disk rotational speed from 100 to 1000 rpm increased the rate 

of dissolution 4 times at pH of 1.7 and 3 times at pH of 13. On the other hand increasing the pH 

of the reacting solution from 1.7 to 13 has significantly reduced the rate of dissolution. The 

reaction at pH (3.8, and 13) become less dependent on the disk rotational speed which indicates 

that at these pH values the kinetics of the surface reaction play a role in the overall rate. Fredd 

and Fogler (1998c) have reported a surface kinetic limited reaction of calcite with 0.25M EDTA at 

pH 12 and a mass and reaction limits at pH of 4. However, all the reaction experiments in their 

work were performed at room temperature (21 ± 2
o
C).  
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Fig. 14—Rate of calcite dissolution by 0.6M GLDA at 200
o
F. 

 

 
Effect of Temperature on the Calcite Dissolution Rate  

Increasing the temperature increased the overall rate of dissolution. Fig. 15 shows the measured 

rate of reaction as a function of the disk rotational speed for two different temperatures at 80 and 

200
o
F. At 1000 rpm, the rate of reaction at 200

o
F was 6 times the reaction at 80

o
F. This 

difference becomes more noticeable at higher rpm. The reaction rate at 1800 rpm and 200
o
F is 

almost one order of magnitude higher than the reaction at 80
o
F (27

o
C). GLDA dissolved more 

calcite at higher temperatures and this indicated the effectiveness of GLDA to be used at high 

temperatures without the fear of thermal degradation. Fig. 16 shows the rate of calcite 

dissolution by GLDA (0.6M and pH 3 .8) in a wide range of temperature from 80
o
F to 300

o
F at a 

constant rotary speed of 1000 rpm. 
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Fig. 15—Effect of temperature on the rate of dissolution of calcite by 0.6M GLDA of pH 3.8. 
 

 

 

Fig. 16—Effect of temperature on the dissolution rate of calcite by 0.6M GLDA of pH 3.8 at 1000 rpm. 
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 Thermal Stability Tests 

Previous results (LePage et al. 2010) on the thermal stability of GLDA showed that it is 

comparable to the thermal stability of HEDTA. The results presented in Fig. 17 demonstrate that 

the thermal stability of GLDA is influenced favorably in high ionic strength solutions like seawater 

and brines. Once applied in downhole stimulation of carbonate rock, GLDA will be complexed to 

calcium giving adequately thermally stable Ca-GLDA solutions. Fig. 18 shows the thermal 

stability of different GLDA solution with an initial concentration of 0.6M at 400
o
F. GLDA solutions 

were heated up to 400
o
F for 24 hrs in a hot rolling oven. There is slight difference for thermal 

stability than before at high ionic strength solutions the thermal stability still high. The increased 

thermal stability at high ionic strength solutions or in the presence of NaCl was believed due to 

addition of NaCl will increase the ion strength which can lower the activity of the ions leading to 

changes in the pKa‘s. From the experiments we know that the initial pH has a strong influence 

on the thermal stability of the solution so it makes sense that changes in the pKa will have an 

effect on the thermal stability.  On a molecular scale this means that the presence of protons on 

the reactive sites will ―block‖ the degeneration reaction. The presence of an excess Na
+
 might 

lead to the formation of more stable ion pairs, like (GLDA-Na3)- (so sodium and GLDA are not 

completely dissociated). Again this might block the most reactive sites. 

 

 

 

Fig. 17—Thermal stability of different GLDA solutions (0.6M) at 350
o
F after 6 hrs. 
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Fig. 18—Thermal stability of different GLDA solutions (0.6M) at 400
o
F after 24 hrs. 

 

 
 Coreflood Experiments 

Table 6 gives the data for the coreflood experiments that were performed using the setup shown 

in Fig. 7.  Figs. 19 to 22 show the pressure drop across the core during the GLDA for the four 

coreflood experiments. The pressure drop initially increased during the introduction of GLDA and 

then decreased until the GLDA penetrated through the core (start of wormhole formation). The 

increase in the pressure drop can be attributed to the increased viscosity and density of the 

reacted GLDA solution. The viscosity and density measurements of GLDA (pH 1.7) with different 

concentrations of calcium at room temperature are reported in Table 7 (the viscosity in this table 

for GLDA-Ca complex only, i.e. there is no free calcium only complexed calcium from calcium 

chloride solutions).  As the amount of soluble calcium increased the viscosity of the solution is 

also increased and in turn the pressure drop across the core increased. During the reaction of 

GLDA with calcite the wormholes began to form and the pressure drop should begin to 

decrease, but the propagation rate of the wormhole was very small. As wormhole formation 

progressed the overall pressure drop rose more slowly until it began to decrease.   
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Table 6—DATA FOR COREFLOOD EXPERIMENTS 

Parameter Test #1 Test #2 Test #3 Test # 4 

Flow rate, cm
3
/min 2 3 2 3 

Temperature, 
o
F 200 220 300 300 

Core length, in. 20 20 20 20 

Core diameter, in. 1.5 1.5 1.5 1.5 

Initial core permeability, md 6.1 10.2 4.45 5 

Porosity, vol% 19.7 20 18.2 17.3 

Confining pressure, psi 2200 2200 2500 2500 

Back pressure, psi 1100 1100 1100 1100 

Core pore volume, cm
3
 108 109.3 100 95 

Injected chelate concentration, wt% 20 20 20 20 

pH of chelate solution 1.7 1.7 1.7 1.7 

Core permeability after the test, md 130 275 Large wormholes 

Pore volume to breakthrough (PVbt) 2.1 3.2 1.4 1.68 

 

 

 

 

Table 7—DENSIY AND VISCOSITY OF 20 WT% GLDA (PH = 1.7) SOLUTIONS WITH 
DIFFERENT CALCIUM CONCENTRATIONS AT 77

o
F 

Calcium Concentration, ppm Density, g/cm
3
 Viscosity, cP 

0.0000 1.13 2.52 

10,000 1.15 2.80 

20,000 1.17 3.23 

30,000 1.18 3.57 

40,000 1.20 3.80 

50,000 1.22 4.20 
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Fig. 19—Pressure drop across the core at 2 cm
3
/min & 200

o
F for 20 wt% GLDA with pH = 1.7. 

 
 

 

Fig. 20—Pressure drop across the core at 3 cm
3
/min, 220

o
F for 20 wt% GLDA with pH = 1.7. 
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Fig. 21—Pressure drop across the core at 2 cm
3
/min & 300

o
F for 20 wt% GLDA at pH 1.7. 

 
 

 

 

Fig. 22—Pressure drop across the core at 3 cm
3
/min & 300

o
F for 20 wt% GLDA at pH 1.7. 
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 Figs. 23 - 26 show the calcium and the GLDA concentration for the coreflood tests. From 

these figures the calcium and GLDA concentrations reached a maximum at the GLDA 

breakthrough and started to decrease after the formation of wormholes. Introduction of de-

ionized water further reduced the concentrations of calcium and GLDA until they reached the 

minimum value. The chelant concentration for the two coreflood tests reached a plateau value of 

19 wt% for both tests at 200 and 220
o
F which was 95% of the original concentration. At 300

o
F, 

the concentration of GLDA in the coreflood effluent reached an average value of 18.5 wt% with a 

thermal stability of 93% at 2 cm
3
/min, and reached an average of 18.8 wt% with 94% thermal 

stability at 3 cm
3
/min. This indicated GLDA has a very good thermal stability during coreflood 

tests in good agreement with separate thermal stability test data (the GLDA that was used in this 

study is H3NaGLDA blended with HCl to get pH of 1.7, so there was NaCl in solution , as HCl 

kicked the sodium out). The amount of GLDA required to breakthrough the core was reduced 

from 2.1 PV at 200
o
F to 1.4 PV at 300

o
F at a flow rate of 2 cm

3
/min. Increasing the temperature 

by 100
o
F saved 0.7 PV from the GLDA at 2 cm

3
/min. The same scenario in the case of 3 

cm
3
/min as the temperature was increased from 220 to 300

o
F, the pore volume required to 

breakthrough the core was reduced from 3.2 to 1.68 PV. GLDA performed better at 2 cm
3
/min 

because the increase in contact time allowed GLDA to react more with calcite. At 300
o
F the 

amount of dissolved calcium at 2 cm
3
/min reached a maximum value of 58,000 ppm and 53,000 

ppm in the case of 3 cm
3
/min. 

Fig. 27 shows the 2D CT scan for the cores after the coreflood test with GLDA. The 

wormhole formation after the treatment is indicated by the black color. Fig. 28 shows the 3D CT 

scan for the cores after the treatment. The wormhole has greater diameter in case of 3 cm
3
/min 

and 220
o
F, as there was more calcium (dissolved) in the effluent samples than the 2 cm

3
/min 

and 200
o
F. The amount of calcium that was dissolved at 2 cm

3
/min was 7 g and 11.5 g for 3 

cm
3
/min. Fig. 29 shows the core inlet and outlet after the coreflood at 300

o
F. The wormhole 

formed at 2 cm
2
/min was larger than that at 3 cm

3
/min. This meant that GLDA performed better 

at low rates due to the increased contact time with core allowed more reaction of GLDA with 

calcite. There was no face dissolution or washouts at both rates. 
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Fig. 23—Total calcium concentration & GLDA concentration in the core effluent samples at flow rate 
of 2 cm3/min & 200

o
F for 20 wt% GLDA with pH = 1.7. 

 
 

 

Fig. 24—Total calcium concentration & GLDA concentration in the core effluent samples at flow rate 
of 3 cm

3
/min & 220

o
F for 20 wt% GLDA with pH = 1.7. 
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Fig. 25—Total calcium concentration & GLDA concentration in the core effluent samples at a flow 
rate of 2 cm

3
/min & 300oF for 20 wt% GLDA at pH 1.7. 

 
 
 

 

 

Fig. 26—Total calcium concentration & GLDA concentration in the core effluent samples at a flow 
rate of 3 cm

3
/min & 300

o
F for 20 wt% GLDA at pH 1.7. 
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(a) 

 

 
 

(b) 
 

Fig. 27—A cross-sectional area for each slice along the core length after treatment for: (a) 2 
cm

3
/min & 200

o
F; (b) 3 cm

3
 /min & 220

o
F. 
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(a)                                                            (b)       

 

Fig. 28—3D CT scan after the coreflood test for: (a) 2 cm
3
/min & 200

o
F; (b) 3 cm

3
/min & 220

o
F. 

 
 

 
              (a)                                                              (b) 

 
Fig. 29—Inlet and outlet core faces after the coreflood experiments with 20 wt% GLDA of pH = 1.7 at 

300
o
F for (a) flow rate = 2 cm

3
/min, (b) flow rate = 3 cm

3
/min. 
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 Biodegradability of GLDA 

GLDA based on naturally occurring raw materials, is seen as a good basis for microorganisms to 

feed upon. Indeed, this is confirmed by the results obtained in several biodegradability studies 

that were performed with GLDA, see Table 8.  

 In a ready biodegradability test, i.e. the Closed Bottle test (OECD 301D), carried out in 

compliance with the principles of Good Laboratory Practice, GLDA was biodegraded > 60% at 

day 28 (Fig. 30). Hence this product should be classified as readily biodegradable. The 

biodegradation percentage in excess of 60% also demonstrates that GLDA is ultimately 

biodegradable (Van Ginkel et al. 2005). A test simulating conventional activated sludge 

treatment (OECD 303A) was performed. In this test biodegradation was followed by specific 

analysis of GLDA and by monitoring the change of dissolved organic carbon present in the 

effluent. At temperatures of 10 and 20 C, almost complete removal of GLDA was obtained. 

Consequently, GLDA will be removed almost completely under conditions prevailing in 

conventional activated sludge plants. 

 

 

Table 8—THE BIODEGRADABILITY OF GLDA 

Biodegradability studies Method 

 
Result 

Ready Biodegradability  
 

OECD 301D > 60% at day 14 (readily and ultimately 

biodegradable) 

Ready Biodegradability  
 

OECD 301D > 76% at day 28 (readily and ultimately 

biodegradable) 

Simulation test-aerobic sewage 

treatment; A activated sludge units 

OECD 303A > 80% 
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Fig. 30—Biodegradability of GLDA in OECD 301D in time.  
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Conclusions 

L-glutamic acid diacetic acid (GLDA), a newly developed environmentally friendly chelate, was 

examined as an effective fluid for matrix treatments in deep oil and gas wells. Based on the 

results obtained, the following conclusions can be drawn:  

1. GLDA had a very good ability to dissolve calcium from carbonate rock in a wide pH 

range by a combination of acid dissolution and chelation. The calcite dissolution 

increased with decreasing pH as a result of the contribution of the acid dissolution 

process. Under more alkaline conditions chelation became the dominant dissolution 

process. 

2. The addition of 5 wt% sodium chloride did not affect the GLDA performance at pH 13, 

but significantly accelerated the reaction at pH 1.7. 

3. The addition of 5 wt% calcium chloride stopped the reaction of GLDA with calcite at pH 

13. GLDA chelated all the calcium in solution and did not react with calcium carbonate. 

4. Compared to other chelating agents, GLDA dissolved more calcium than EDG but less 

than HEDTA at high pH values. 

5. GLDA of pH = 1.7 was able to form wormholes at 2 and 3 cm
3
/min through the 1.5 inch 

diameter core. 

6. GLDA was found to be thermally stable at temperatures up to 350
o
F. 

7. GLDA is readily biodegradable and environmentally friendly. 
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CHAPTER III 

EFFECTIVE STIMULATION FLUID FOR DEEP CARBONATE RESERVOIRS: 

A COREFLOOD STUDY 

Introduction 

A recently introduced chelating agent was examined to stimulate deep carbonate reservoirs. 

This chelating agent can be used at very low injection rates to avoid fracturing the target zone 

during the treatment, which may occur if HCl is used at high flow rates. The chelating agent used 

in part of the study was glutamic acid-N,N-diacetic acid (GLDA). Two sets of calcium carbonate 

cores were used one with 1.5 in. diameter and 20 in. length and the other set was 1.5 in. 

diameter and 6 in. length. Calcium carbonate cores such as Indiana limestone cores were used 

in this study. A dolomite core 1.5 in. diameter and 6 in. length was used to investigate the ability 

of this chelating agent to stimulate dolomite cores. The cores were treated with GLDA at various 

pH (1.7-13) and temperatures (180-300
o
F). The concentrations of dissolved calcium, and GLDA 

in the core effluent were measured for material balance determination. GLDA was compared 

with HCl and other chelants used in stimulation such as HEDTA, LCA, and acetic acid. 

GLDA was found to be highly effective in creating wormholes over a wide range of pH (1.7-

13) in calcite cores. Increasing temperature enhanced the reaction rate, more calcite was 

dissolved, and larger wormholes were formed for different pH with smaller volumes of GLDA 

solutions. GLDA was found to be equally effective in creating wormholes in short and long cores. 

GLDA at low pH values was found to be more effective than HEDTA, in addition GLDA has one 

nitrogen atom, therefore, and it is more biodegradable than HEDTA with two nitrogen atoms. 

In this part, GLDA solutions were used to stimulate carbonate cores. The objectives of this 

part of the study are to: (1) study the effect of the pH of GLDA solutions on the formation of 

wormholes in calcite cores, (2) determine the effect of temperature on the amount of GLDA 

required to create wormholes, (3) assess the effect of the core length on the propagation of 

GLDA in calcite cores, (4) study the effect of initial core permeability on the process of 

dissolution of calcite by GLDA, (5) determine the optimum GLDA concentration, and (6) compare 

GLDA with HCl and other chelating agents that are used in stimulation. 
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Experimental Studies 

 Materials 

Indiana limestone cores with a permeability range of 0.5 to 5 md, and Pink Desert limestone with 

high permeability were used. The core samples were cut in cylindrical shape with a 1.5 in. 

diameter and lengths of 6 and 20 in. Indiana limestone is a calcite cemented grain stone made 

up of fossil fragments and oolites with gray color. Indiana limestone samples in the XRD 

indicated that this rock type was made up predominantly of calcite (99 wt %). The permeability of 

the Indiana limestone cores ranged from 0.5 to 5 md and the porosity ranged from 0.12 to 0.22. 

The high permeability set of cores were cut from Pink Desert limestone outcrops. The color of 

Pink Desert cores was light pink, there was no bedding and depositional structure visible in the 

original depositional texture. The calcite was the cementing material and matrix at the same 

time. The permeability of the cores that were used in this study ranged from 35 to 120 md and 

the porosity ranged from 0.17 to 0.23. 

GLDA solutions at a concentration of 20 wt% and pH values of 1.7, 3 and 13 were prepared 

from original solutions that were obtained from AkzoNobel. De-ionized water (TDS = 20 ppm) 

was used to prepare the 20 wt% GLDA solutions. The viscosity of different 20 wt% GLDA 

solutions with different calcium concentrations (at pH of 1.7, 3 and 13) was measured using a 

capillary tube viscometer (Ubbelhold type). The total calcium concentration was determined 

using atomic absorbance spectrometer (AAnalyst 700-flame type) immediately after the test. The 

GLDA solutions with different calcium concentrations were prepared using di-hydrated calcium 

chloride from VWR International. The free calcium concentration was determined using a 

calcium ion selective electrode (370 PerpHecT meter). The concentration of GLDA after the 

coreflood experiment was determined by complexometric-potentiometric end-point titration using 

a ferric chloride solution at pH = 3. 

 Coreflood Experiments   

The coreflood set-up shown in Fig. 7 was used to perform the coreflood experiments in this part. 

Results and Discussion 

Effect of pH Values of GLDA Solutions  

Coreflood experiments with GLDA fluids of different pH (1.7-13) were run using the coreflood 

set-up shown in Fig. 7. Table 9 gives the data for the 6 in. long cores for different pH levels of 20 

wt% GLDA solutions. Six coreflood tests were run, two for each pH at 180 and 250
o
F. The 

different pH values represent different forms of GLDA: pH = 1.7 (H4GLDA-acid form with a 
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molecular weight of 263), pH = 3 (NaH3GLDA with a molecular weight of 285), and pH = 13 

(Na4GLDA-salt form with a molecular weight of 351). For each coreflood experiment, the 

pressure drop across the core was plotted using lab-view software. Samples of the coreflood 

effluent were analyzed for total and chelated calcium concentrations. The concentration of GLDA 

in the effluent samples was also measured to determine its stability, as well as density and pH. 

 

 

Table 9—DATA FOR 6 in. COREFLOOD EXPERIMENTS 

Exp.# pH 
, 

vol% 
Kinitial  Kfinal Kfinal/Kinitial 

Q, 
cm

3
/min 

PVbt Ca, g T, 
o
F 

          

1 1.7 13.5 2.00 350 175 2 3.65 5.93 180 

2 1.7 10.5 0.65 180 277 2 2.30 6.84 250 

3 1.7 11.3 0.55 250 450 2 1.65 7.25 300 

4 3.0 15.8 1.00 120 120 2 3.80 5.85 180 

5 3.0 14.1 2.73 400 147 2 2.65 6.45 250 

6 3.0 13.5 1.25 310 250 2 2.00 6.74 300 

7 13 10.3 0.35 11.6 33 2 18.0 2.51 180 

8 13 12.1 0.66 31.7 48 2 14.0 3.21 250 

9 13 12.4 1.45 85 59 2 8.50 3.53 300 

 
 
 
 Fig. 31 shows the pressure drop across the core during the coreflood experiment for 20 

wt% GLDA at pH = 1.7 at 2 cm
3
/min and 180

o
F. The pressure drop initially increased during the 

introduction of GLDA and then decreased until the GLDA penetrated through the core. The 

increase in the pressure drop can be attributed to the increased viscosity of the reacted GLDA 

solution. The viscosity and density measurements of GLDA (pH = 1.7) with different 

concentrations of calcium at room temperature are reported in Table 10 (the viscosity in this 

table for GLDA-Ca complex only, i.e. there is no free calcium only complexed calcium from 

calcium chloride solutions). As the calcite was dissolved and calcium concentration of the GLDA 

fluid increased and so did the viscosity of the fluid. At the same time during the reaction of GLDA 

with calcite wormholes were formed and the pressure drop was then expected to decrease. The 

net result on whether the pressure drop was increasing, stabilizing or decreasing depends on the 

extent of dissolution in the length of the core. It was noted that as soon as the calcium started to 

come out of the core the pressure drop started to decrease. This was due to increased 
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permeability caused by wormholing begun to dominate over the increased viscosity of the GLDA 

fluid. 

 

 

Table 10—DENSITY AND VISCOSITY MEASUREMENTS OF 20 WT% GLDA (pH = 1.7, 3, AND 13) 
SOLUTIONS WITH DIFFERENT CALCIUM CONCENTRATIONS AT ROOM TEMPERATURE 

Ca, ppm pH = 1.7 pH = 3 pH = 13 

 g/cm
3
        g/cm

3
 g/cm

3
         g/cm

3
 g/cm

3
        g/cm

3
 

0 1.132 2.52 1.125 3.20 1.126 1.88 

5000 — — 1.133 3.87 1.134 2.25 

10,000 1.151 2.80 1.143 4.65 1.142 2.63 

15,000 — — — — 1.150 3.15 

20,000 1.173 3.23 1.160 5.56 — — 

30,000 1.182 3.57 1.168 6.49 — — 

40,000 1.202 3.80 — — — — 

50,000 1.223 4.20 — — — — 
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Fig. 31— Pressure drop across the core at a flow rate of 2 cm
3
/min & 180

o
F for 20 wt% GLDA with 

pH = 1.7. 
 
 

Fig. 32 shows the total calcium concentration, chelated calcium concentration and the 

GLDA concentration in the core effluent samples. The total calcium concentration reached a 

maximum value of 45,000 ppm indicating the effectiveness of GLDA to dissolve calcite under 

these conditions. At an effluent pH of 4.5 nearly 30% of the total dissolved calcium was found to 

be complexed by GLDA. The amount of chelated or complexed calcium was determined by 

subtracting the free calcium concentration from the total calcium concentration. The 

concentration of GLDA in the core effluent samples after the coreflood test reached the 20 wt% 

injection concentration indicating the stability of GLDA during the coreflood treatment. 
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Fig. 32—Total and complexed calcium concentration & GLDA concentration in the core effluent 
samples at a flow rate of 2 cm

3
/min & 180

o
F for 20 wt% GLDA with pH = 1.7. 

 

 
 Fig. 33 shows the density and pH of the coreflood effluent samples for the same 

experiment. As calcium and GLDA breakthrough at PV = 1 the density of the effluent samples 

increased due to the presence of calcium ions in solution. The pH stabilized at a value around 

4.5 because of the buffering effect of CO2. At low pH, the theoretical reaction between calcium 

carbonate and a polycarboxylic acid is dictated by H
+
 according to Eq. 25: 

 

……………………………  (25) 

 

where H4Y is a tetracarboxylic acid.  
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Fig. 33—Core effluent samples pH and density at a flow rate of 2 cm
3
/min & 180

o
F for 20 wt% GLDA 

with pH = 1.7. 

 

 
A similar behavior in the coreflood experiment was observed with the 20 wt% GLDA 

solution at pH = 3. Fig. 34 shows the pressure drop across the core during the flooding 

experiment. As before the pressure drop increased across the core, but in this case the ration of 

maximum pressure to initial pressure ( pmax/ pinitial) was greater than that in case of pH 1.7. The 

ratio of maximum pressure drop to initial pressure drop in the case of GLDA at pH 3 was 3.2 and 

it was 2.7 for pH 1.7. The increase in the pressure drop is attributed to the viscosity of GLDA at 

pH 3 at room temperature was greater than the viscosity of GLDA at pH of 1.7 as shown in 

Table 10. 
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Fig. 34—Pressure drop across the core at a flow rate of 2 cm
3
/min & 180

o
F for 20 wt% GLDA at pH 3. 

 

 
  Fig. 35 shows the total calcium concentration, chelated calcium concentration and the 

GLDA concentration in the core effluent samples for these conditions. In this case the total 

calcium concentration reached a maximum value of 35,000 ppm, which was less than that 

observed at pH = 1.7. The effluent pH = 5.2 resulted in 40% of calcium being chelated by GLDA, 

versus 30% at pH = 1.7. Again the GLDA concentration after the coreflood effluent approached 

the 20 wt% showing a good stability of the GLDA chelate under these conditions. 

Fig. 36 shows the density and pH for the coreflood effluent samples for 20 wt% GLDA 

solution (pH = 3) at 2 cm
3
/min and 180

o
F. The density of the GLDA solution increased to its 

maximum value (1.16 g/cm
3
) after the GLDA broke through the core. The effluent pH ranged 

from pH 5 to 5.5 being greater than the pH 4.5 observed when pH = 1.7 GLDA fluid was used. 

The pH in this case was greater than that when pH = 1.7 was used because the amount of 

hydrogen attack to the calcite was lower with the GLDA of pH 3 than that with GLDA of pH 1.7 

and the amount of evolved CO2 was less than that evolved when the GLDA of pH = 1.7 was 

used.  
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Fig. 35—Total and complexed calcium concentration & GLDA concentration in the core effluent 
samples at a flow rate of 2 cm

3
/min & 180

o
F for 20 wt% GLDA at pH 3. 

 

 

Fig. 36—Core effluent samples pH and density at a flow rate of 2 cm
3
/min & 180

o
F for 20 wt% GLDA 

at pH 3. 
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Fig. 37 shows the pressure drop across the core during the coreflood experiment for 20 

wt% GLDA solutions at pH 13 at 2 cm
3
/min and 180

o
F. The behavior of the pressure drop after 

starting the injection of this fluid was somewhat different than that observed with fluids at pH 1.7 

and 3. The increase in the pressure drop at pH 13 was small compared to the lower pH fluids. 

The pressure drop reached 1,050 psi after ~ 3 PV and then began to slowly decrease. This can 

be attributed to the viscosity of 20 wt% GLDA, pH = 13 is smaller than that in case of pH = 1.7 

and 3, Table 10. From Fig. 38 the maximum amount of dissolved calcium in the case of 20 wt% 

GLDA of pH = 13 was 10,000 ppm, the viscosity slightly increased, therefore, the increase in the 

pressure drop was not large. Also, the total calcium dissolved equaled to the amount of chelated 

calcium because in this case the dissolution mechanism was due to chelation only. This can be 

confirmed by Fig. 39, in which the pH of the core effluent samples was 12.5 to 13. In this case, 

there was no CO2 to buffer the solution. Also, the density of the effluent samples was smaller 

compared with that in case of pH = 1.7 and pH = 3 as there was lower calcium concentration in 

the effluent samples. 

 

 

 

Fig. 37—Pressure drop across the core at a flow rate of 2 cm
3
/min & 180

o
F for 20 wt% GLDA at pH 

13. 
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Fig. 38—Total calcium and GLDA concentrations in the core effluent samples at a flow rate of 2 
cm

3
/min & 180

o
F for 20 wt% GLDA at pH 13. 

 

 

 

Fig. 39—Core effluent samples pH and density at a flow rate of 2 cm
3
/min & 180

o
F for 20 wt% GLDA 

at pH 13. 
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Figs. 40 - 42 summarize the effect of the pH of the GLDA solutions on the dissolution of 

calcite and wormhole formation in calcium carbonate cores. The volume of 20 wt% GLDA 

required to form wormholes increased as the pH was increased. Specifically the volume of fluid 

required at pH = 1.7, 3 and 13 was 3.65, 3.8 and 18 PV, respectively. We can conclude that the 

acid form of GLDA (pH = 1.7) was more effective in dissolving calcite than at pH = 13. It was 

more effective in terms of the volume of GLDA required to breakthrough the core was less in 

case of GLDA at pH 1.7.The enhanced dissolution of calcite at pH = 1.7 was due to the H
+
 

attack, but was due nearly entirely to chelation at pH = 13. Therefore the reaction was very slow 

at pH = 13 and it took this large PV to form wormholes.  

The influence of chelating agents on the rate of calcite dissolution is highly dependent upon 

the pH of the solution. For aminopolycarboxylic acids, these variations are due primarily to 

changes in ionic species involved at the surface reaction (Fredd and Fogler 1998c). The form of 

the ionic species is dictated by a series of dissociation reactions, which for a chelating agent with 

four carboxylic acid groups like GLDA are: 

 

…….…..…………..……..………………………………….. (26) 

 

…….………………………….………………………..…. (27) 

 

……...….………………….…………………………….…. (28) 

 

………...…….………………….……………………………… (29)
 

 

where HmY
m-n

 represents the chelating agent molecule, m is the number of acidic protons, and n 

is number of carboxylic acid groups, i.e. 4.  

On the high pH side the reaction is primarily driven by the chelation process, which 

generally has a much lower reaction rate than the acid dissolution process and gives 1:1 ratio 

between the chelate and calcium ions: 

 

………………………………………………… (30) 

 

In the intermediate pH range both processes will participate in the overall dissolution 

process. As pH increased from 1.7 to 13, the GLDA successively deprotonated from H4Y to Y
4-

 

thereby losing the ability to donate H
+
 ions as pH increased. The reaction rate of GLDA at high 

pH was dominated by chelation and was expected to be significantly slower than at low pH. Fig. 
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42 shows the amount of dissolved calcium was maximum at pH 1.7 but minimum at pH 13. At 

pH 1.7 GLDA was predominantly in the form of H4Y. At pH 13, GLDA successively deprotonated 

to the Y
4
. The dissolution of calcite at high pH (pH =13) was due to complexation only. 

 

 

 
 
Fig. 40—Effect of 20 wt% GLDA solution pH on the pore volume to breakthrough the core at a flow 

rate of 2 cm
3
/min at 180, 250, and 300

o
F. 
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Fig. 41—Effect of 20 wt% GLDA solution pH on the ratio between final and initial permeability of the 
core at a flow rate of 2 cm

3
/min at 180, 250, and 300

o
F. 

  
 
 

 

Fig. 42—Effect of 20 wt% GLDA solution pH on the amount of calcium dissolved from the core at a 
flow rate of 2 cm

3
/min at 180, 250, and 300

o
FEffect of Temperature. 
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Similar coreflooding experiments were performed at 250 and 300
o
F. Higher temperatures 

enhanced calcite dissolution by GLDA at all pHs examined. Figs. 40 to 42 show the effect of 

increasing temperature on the performance of GLDA. As the temperature was increased from 

180 to 300
o
F, the volume of GLDA required to form wormholes decreased to 1.65, 2 and 8.5 PV 

for pH = 1.7, 3, and 13, respectively. This indicated that GLDA was very effective at wormhole 

creation at high temperatures and required less pore volume than at low temperatures. The 

amount of dissolved calcium increased by 1.32, 0.89, and 1.02 g for pH = 1.7, 3 and 13, 

respectively as the temperature was increased from 180 to 300
o
F. The permeability ratio 

attained its highest value at 300
o
F and pH = 1.7.  

GLDA solution at pH = 3 was very effective in creating wormholes at 180, 250,
 
and 300

o
F 

compared with other chelating agents. The amount of 20 wt% GLDA at pH = 3 required to 

breakthrough the core was 3.8 and 2.65 PV at 180
 
and 250

o
F, respectively at a flow rate of 2 

cm
3
/min. Our results are in agreement with the same trends obtained for other chelates such as 

20 wt% Na3HEDTA (pH = 2.5) (Frenier et al. 2001).    Therefore, GLDA at pH 3 was found to be 

very effective and required less volume to create wormholes through the cores. Fig. 43 shows 

the core inlet and outlet faces after the coreflood treatments for three different cores with 20 wt% 

GLDA at 2 cm
3
/min for different GLDA pH (1.7, 3, and 13). The wormhole had the maximum 

diameter at pH of 1.7 and there were very small wormholes in case of pH 13. 

 

 

 
Fig. 43—Inlet and outlet core faces after the coreflood experiments with 20 wt% GLDA at 2 cm

3
/min 

at 300
o
F for (a) pH = 1.7, (b) pH = 3, and (c) pH = 13. 
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 Stimulation of Long Calcite Cores 

GLDA solutions of pH = 1.7 were also used to create wormholes in long calcium carbonate cores 

of 20 in. length.  Table 11 gives the data for three coreflood experiments using 20 in. long cores. 

Fig. 44 shows the 3D pictures for the wormholes formed after the coreflood experiments. GLDA 

was equally effective in creating wormholes in long cores and short cores. Three different 

injected rates were used in the coreflood experiments. Wormholes were formed at the three 

different rates. There was only one dominant wormhole in the three coreflood experiments at 

200
o
F. Generally at the three injection rates, the volume of GLDA required to create wormholes 

was less for long cores (20 in.) compared to that for short cores (6 in.).  This can be attributed to 

the increased contact time due to the increased pore volume of the long core. 

To investigate the effect of core length on the volume of GLDA required to breakthrough the 

core, two coreflood experiments were performed at pH 1.7 at a flow rate of 2 cm
3
/min at 250

o
F. 

The pore volume of the 20 in. core was 95 cm
3
 and the pore volume of the 6 in. core was 25 

cm
3
. The pore volume of the long core was more than three times the short one. In turn, the 

contact time of GLDA with the long core will be higher than that with the short core at the same 

flow rate. The pore volumes required to breakthrough the core in case of the 20 in. core was 2 

PV and that for the 6 in. core was 2.45 at the same conditions. The decrease in the number of 

pore volumes in the long cores was due to the increased contact time. The same scenario was 

repeated at pH 3, two coreflood experiments were performed at a flow rate of 1 cm
3
/min at 

250
o
F. The pore volumes required to breakthrough the core in case of the 20 in. long core was 

1.6 PV and that for the 6 in. core was 2.3. The pore volume of the 20 in. core was also more 

than three times that of the 6 in. core. This meant that GLDA performed better with the long 

cores than short cores. The performance of GLDA at pH 3 with 20 in. cores was better than that 

at pH 1.7. The reduction in pore volumes required 0.7 PV and 0.45 PV at pH 3 and 1.7, 

respectively. Finally, increasing the core length at any rate will be better for the GLDA to create 

wormholes and it allowed more time for reaction. GLDA was not degraded during the coreflood 

experiments and its concentration was almost the same after the coreflood so it can penetrate 

deep and bypass the damaged zone if injected for long time. 
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Table 11—COREFLOOD DATA FOR 20 IN. LONG CALCITE CORES 

Parameter Exp.#1 Exp.#2 Exp.#3 

Flow rate, cm
3
/min 1 2 3 

Initial pH of GLDA solution 1.7 1.7 1.7 

Temperature, 
o
F 200 200 200 

Initial core permeability, md 1.2 6.1 5.2 

Porosity, vol % 12.5 19.7 18.5 

Final core permeability, md 650 130 150 

Pore volume to breakthrough, PVbt 3.52 2.1 2.96 

 
 
 

   
(a) (b) (c) 

 

Fig. 44—3D CT scan after the coreflood test for: (a) 1 cm
3
/min, (b) 2 cm

3
/min, and (c) 3 cm

3
/min, for 

GLDA at pH 1.7 & 200
o
F. 
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 Effect of GLDA Concentration  

Various concentrations of GLDA: 10, 15, 20, and 30 wt% were studied at pH 1.7 and 3. Table 12 

has listed the outcome of the coreflood experiments performed to study the effect of GLDA 

concentration on the volume of GLDA required to form wormholes. Fig 45 shows the effect of 

GLDA solution concentration on the pore volumes of GLDA necessary to breakthrough the core 

at 2 cm
3
/min and 250

o
F. For higher concentrations the reaction rate decreased because of the 

reduced fluid activity caused by the retarding effects of the dissolved reaction products and the 

increased GLDA viscosity. Similar trends were obtained by Mostofizadeh and Economides 

(1994). They used different concentrations of HCl 4, 15 and 30 wt. % to stimulate calcite cores. 

They found that 15 wt. % HCl performed better than 4 and 30 wt% HCl. At 30 wt% GLDA 

solution concentration the volume required to breakthrough the core was 3.85 and 4 PV at pH 

1.7 and 3, respectively. The lower the concentration the higher the pore volume required to 

breakthrough the core, at 10 wt% GLDA solutions the volume of GLDA required to create 

wormholes increased to 5.85 and 7.35 PV for pH values of 1.7 and 3, respectively. The optimum 

concentration at which the lowest volume of GLDA needed to create wormholes was at 20 wt% 

for both pH values. Fig. 46 shows the amount of maximum dissolved calcium in the coreflood 

effluent samples at different concentrations of GLDA solutions.  At a flow rate of 2 cm
3
/min and 

250
o
F the maximum dissolved calcium was at 20 wt% concentration indicating that this is the 

optimum concentration that should be used to obtain the highest rate of calcite dissolution. At 

concentrations greater or less than 20 wt% GLDA the dissolution process was less effective. 

From Fig. 46 the reaction of GLDA at pH 3 with calcite was not reduced by the same magnitude 

as it was at pH 1.7. GLDA at pH 1.7  resulted in more calcium dissolved which then increased 

the fluid‘s viscosity and thus likely retarded the reaction more than GLDA at pH 3, which has 

lower dissolution ability compared to that at pH 1.7 (Mahmoud et al. 2010b). 
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Table 12—COREFLOOD DATA FOR THE EFFECT OF GLDA CONCENTRATION AT DIFFERENT pH 
VALUES 

GLDA solution 
concentration, 

wt% 
Temperature, 

o
F 

Flow rate, 
cm

3
/min 

Initial pH of GLDA solution 

1.7 3 

Maximum 
Ca

2+
, ppm 

PVbt 
Maximum 
Ca

2+
, ppm 

PVbt 

10 250 2 32000 5.85 18000 7.35 

15 250 2 35000 3.10 25000 3.55 

20 250 2 45000 2.30 32000 2.65 

30 250 2 24000 4.50 28000 4.00 

 
 
  
 

 

Fig. 45—Effect of GLDA concentration on the volume of 20 wt% GLDA solutions required to form 
wormholes at a flow rate of 2 cm

3
/min and 250

o
F. 
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Fig. 46—Effect of GLDA concentration on the amount of calcium dissolved in the coreflood effluent 
at a flow rate of 2 cm

3
/min and 250

o
F. 

 

 
 Effect of Initial Core Permeability 

The effect of core permeability was obvious in the amount of calcium dissolved and the pore 

volumes required to breakthrough in case of high and low core permeability. At the same 

conditions, the amount of dissolved calcium was greater in case of high permeability cores than 

with low permeability cores. In turn, the pore volumes required to breakthrough the core was 

greater in case of high permeability than cores with low permeability. Porosity and permeability 

were greater in the Pink Desert set of cores than in Indiana limestone set. The optimum flow rate 

for the lesser permeable Pink Desert cores was 3 cm
3
/min. The optimum injection rate for the 

Indiana limestone cores was less than 2 cm
3
/min, and the behavior of flow rate and PVbt was 

different than in case of Pink Desert cores as shown in Tables 13 and 14. Increasing the core 

permeability increased the area-to-volume ratio (Mostofizadeh and Economides 1994) and the 

volume of GLDA required to breakthrough the core in the high permeability cores was greater 

than that required for low permeability cores. 

Rock typing which is (k/ )
0.5

 (Permadi and Susilo 2009) was calculated for each set of 

cores. It was found that the rock typing was greater in the case of Pink Desert set of cores than 

Indiana limestone set. The higher the rock typing the higher the dissolved calcium under the 
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same conditions.  Tables 13 and 14 show the rock properties for high and low permeability cores 

with the typing factor for each set of samples. For example, at 1 cm
3
/min for a Pink Desert core 

the typing factor was 20.85 and the amount of dissolved calcium was 7.53 g, whereas for 

Indiana limestone cores with a typing factor of 2.58 the amount of dissolved calcium was 6.05 g. 

 

 

Table 13—COREFLOOD DATA FOR PINK DESERT CORES, 20 WT% GLDA OF pH 1.7 AT 180
o
F 

Exp.# Ki, md Kf, md Kf/Ki 
q, 

cm
3
/min 

, 
fraction 

PVbt Ca, gm 
Typing 
factor 

1 120 1000 8.33 0.75 0.20 4.35 8.20 24.50 

2 100 1500 15.0 1.00 0.23 4.25 7.53 20.85 

3 50 990 19.8 2.00 0.20 3.95 6.65 15.81 

4 36 820 23.1 3.00 0.19 3.75 6.23 13.76 

5 50 890 17.8 5.00 0.22 5.00 5.74 15.07 

6 50 655 13.1 6.00 0.22 5.55 5.23 15.07 

7 55 570 10.4 7.50 0.20 6.20 5.10 16.58 

8 56 430 7.68 10.0 0.21 8.00 4.85 16.33 

 
 
 

Table 14—COREFLOOD DATA FOR INDIANA LIMESTONE CORES, 20 WT% GLDA OF pH 1.7 AT 
180

o
F 

Exp.# Ki, md Kf, md Kf/Ki 
q, 

cm
3
/min 

, 
fraction 

PVbt Ca, gm 
Typing 
factor 

1 2.00 300 150 0.50 0.14 3.15 6.35 3.78 

2 1.80 280 156 0.75 0.15 2.95 6.25 3.46 

3 1.00 250 250 1.00 0.15 2.85 6.05 2.58 

4 2.00 350 175 2.00 0.14 3.00 5.95 3.78 

5 5.50 450 82 3.00 0.13 3.20 5.23 6.50 

6 5.20 300 58 5.00 0.15 4.50 5.15 5.89 

7 3.70 200 54 7.50 0.10 6.50 4.10 6.08 
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 Comparing GLDA with HCl and Other Chelates 

The 0.6M GLDA at pH 3 was compared with other chelates such as 0.6M HEDTA at pH 4 and 

0.6M HEDTA at pH 2.5 at 2 cm
3
/min and 250

o
F. The pore volumes required to breakthrough the 

calcite cores at these conditions were 3.3, 6, and 9.5 PV for the 0.6M GLDA at pH 3, 0.6M 

HEDTA at pH 4, and 0.6M HEDTA at pH 2.5, respectively. Therefore, the GLDA performance 

was better than HEDTA. The problem with HEDTA there is its low biodegradability and low 

thermal stability at low pH values while GLDA is readily biodegradable and thermally stable 

(LePage et al. 2010).  

Fig. 47 shows a comparison between 0.6M GLDA/pH 1.7, 0.6M GLDA/pH 3, 0.6M 

GLDA/pH 3.8, 0.6M HEDTA/pH 4, 0.6M HEDTA/pH 2.5, 10 wt% long chain carboxylic acid 

(LCA), and 10 wt% acetic acid at 250
o
F and 2 cm

3
/min. GLDA at pH values 1.7 and 3, and 3.8 

outperformed all the other chelants in terms in volume used to create wormholes and 

breakthrough the core. Another interesting result in this figure, decreasing the pH value for 

GLDA from 3.8 to 1.7 enhanced the performance of GLDA in creating wormholes with less pore 

volume. On the other hand, for HEDTA decreasing the pH value from 4 to 2.5 diminished the 

performance of HEDTA at the same coreflood conditions. For 0.6M HEDTA at pH 4, 7 PV were 

required to breakthrough the core, whereas at pH 2.5, 11 PV were required to breakthrough the 

core. This means GLDA performed better at low pH values than HEDTA in the coreflood 

experiments under the same conditions. 
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Fig. 47—Comparison between GLDA and other chelating agents used in stimulation. 

 

 
Fig. 48 shows a comparison between the wormhole for a calcite core treated by 15 wt% 

HCl and 20 wt% GLDA at pH 1.7. The coreflood experiments were both performed at 2 cm
3
/min. 

The 20 wt% GLDA was tested at 200
o
F while the 15 wt% HCl was tested at room temperature. 

There was no face dissolution in the core that was treated by GLDA and the wormhole was 

constant in diameter along the core length but the washout is clearly shown in the case of 15 

wt% HCl even when injected at room temperature. The wormhole diameter decreased as the 

HCl penetrates through the core in case of 15 wt% HCl and the width of the wormhole 

decreased to one quarter of its original width. The width of wormhole was almost the same from 

the core inlet to the core outlet in case of 20 wt% GLDA. The pore volumes required to 

breakthrough the core were 1.8 and 2.1 in case of 15 wt% HCl at room temperature and 20 wt% 

GLDA solutions at 200
o
F, respectively, Fig. 48. 
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Fig. 48—3D Images for the wormholes formed by (a) 20 wt% GLDA at pH 1.7, 2 cm
3
/min and 200

o
F, 

and (b) 15 wt% HCl at 2 cm
3
/min and 72

o
F. 
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Conclusions  

In this part, the effectiveness of GLDA solutions to stimulate carbonate cores was tested at 

various pH levels and temperatures. Tests were conducted on calcite (6 in. and 20 in.) and 

dolomite (6 in.) cores.  GLDA was compared with other commercial chelants like HEDTA, acetic 

acid, and LCA. The following are the conclusions that were drawn from this study: 

1. The 20 wt% GLDA fluids of pH 1.7 and 3 were very effective in dissolving calcite and 

creating wormholes. 

2. The higher the pH the lower the reaction rate with calcite and the more pore volumes 

required to create wormhole. 

3. Unlike HCl, GLDA fluids at pH 1.7 and 3 created dominant wormholes with fewer pore 

volumes at low rates without face dissolution or washout. This was noted up to 300
o
F. 

Therefore, low pump rate can be used without the fear of face dissolution. 

4. High temperatures increased the reaction rate of GLDA with calcite and decreased the 

number of pore volumes to create wormholes. 

5. GLDA was effective in creating wormholes in short (6 in.) and long (20 in.) calcium 

carbonate cores. 

6. Initial core permeability was found to have a strong effect on the reaction of GLDA with 

calcite. The higher the permeability, the higher the volume of GLDA required to create 

wormholes. 

7. Comparing GLDA to other chelates, GLDA was the most effective at low pH values (1.7, 

3, and 3.8) under the same coreflood conditions. 
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CHAPTER IV 

OPTIMUM INJECTION RATE OF A NEW CHELATE THAT CAN BE USED TO 

STIMULATE CARBONATE RESERVOIRS 

Introduction 

Different chelating agents were used as alternatives for HCl in matrix acidizing to create 

wormholes in carbonate formations. Previous studies demonstrated the use of 

ethylenediaminetetraacetic acid (EDTA), hydroxy ethylenediaminetriaacetic (HEDTA) and 

glutamic acid-N,N- diacetic acid (GLDA) as stand-alone stimulation fluids to stimulate carbonate 

reservoirs. The main problem of using EDTA and HEDTA is their low biodegradability. 

 GLDA was introduced as a stand-alone stimulation fluid for deep carbonate reservoirs 

where HCl can cause corrosion and face dissolution problems. In this study, calcite cores, 1.5 in. 

diameter with 6 or 20 in. length were used to determine the optimum conditions where the GLDA 

can breakthrough the core and form wormholes. GLDA solutions of pH values of 1.7, 3, and 3.8 

were used. The optimum conditions of injection rate and pH were determined using coreflood 

experiments. Damköhler number was determined using the wormhole length and diameter from 

the CT scan 3D and 2D images. GLDA also was used to stimulate parallel cores with different 

permeability ratios (up to 6.25). The effect of adding 5 wt% sodium chloride on the GLDA 

performance in the coreflood experiments was investigated. 

 GLDA was found to be very effective in creating wormholes at pH = 1.7, 3, and 3.8, different 

injection rates, and temperatures up to 300
o
F. Increasing the temperature increased the reaction 

rate and less volume of GLDA was required to breakthrough the core and form wormholes. 

Unlike HCl, there was no face dissolution or washout in the cores even at low injection rates (0.5 

cm
3
/min). An optimum injection rate and Damköhler number were found at which the pore 

volume required to create wormholes was the minimal. GLDA at pH 1.7 and 3 created 

wormholes with a small number of pore volumes (at 1 cm
3
/min GLDA at pH 1.7 required 1.5 PV 

at 300
o
F, and at pH 3 it required 1.8 PV). Compared to acetic acid and long chain carboxylic 

acid, the volume of GLDA at pH 3 required to create wormholes was less than that required in 

the case of acetic acid, and long chain carboxylic acid at the same conditions. GLDA was found 

to be effective in stimulating parallel cores up to 6.25 permeability contrast (final 

permeability/initial permeability). Adding sodium chloride to GLDA stabilized the solution at 

300
o
F and performed better in the coreflood experiments. 
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 The objectives of this part are to: (1) determine the optimum injection rate for the GLDA at 

different pH values, (2) determine the rate of dissolution of GLDA with calcite using rotating disk, 

(3) determine the effect of temperature on the optimum injection rate, (4) assess the ability of 

GLDA to stimulate parallel cores without adding diverting agents at different permeability ratios 

(1.45, 1.8, and 6.25), and (5) study the effect of adding sodium chloride on GLDA performance 

during the coreflood experiments. 

Experimental Studies 

 Materials 

Indiana limestone with permeability of 0.5 to 5 md and Desert Pink limestone with an average 

permeability of 100 md were used in all experiments. The core samples were cut in cylindrical 

shape with dimensions of 1.5 in. diameter and 6, 20 in. length. 

GLDA solutions of different pH (1.7, 3, and 3.8) were prepared from original solutions that 

were obtained from AkzoNobel. De-ionized water (TDS < 20 ppm) was used to prepare the 20 

wt% GLDA solutions. The 20 wt% GLDA was prepared from stock solution of 40 wt%. 

Parallel Coreflood Experiments 

The setup shown in Fig. 7 was used to conduct the parallel coreflood experiments. Two new 

cores were used in each experiment, the core permeability was measured using de-ionized 

water. Permeability ratios (high permeability core/low permeability core) of 1.45, 1.8, and 6.25 

were used in the coreflood experiments. The experiments were run at different injection rates 

and 200
o
F. GLDA solutions with concentration of 20 wt% and pH 3.8 were used in these 

experiments. The collected samples from the coreflood effluent were analyzed for injection rate 

by dividing the collected volume from the effluent for each core by time. The total calcium 

concentration was measured using the atomic absorption (AAnalyst 700). The injection of GLDA 

solutions continued until the wormholes breakthrough the two cores.  

Damköhler Number Calculations 

Damköhler number can be determined using Eq. 31(Fredd and Fogler 1999): 

 

…………………………….……………………………………… (31) 

where; dwh is the diameter of wormhole, cm, Lwh is the length of wormhole, cm, q is the flow rate, 

cm
3
/s, is the overall dissolution rate constant, cm/s. 



79 
 

The overall dissolution rate constant,  can be determined using Eq. 32 (Fredd and Fogler 

1999): 

 

  ……………………….…..………………………………. (32) 

 

where; kcR and kcP are the mass-transfer coefficients for reactants and products, respectively, ks 

is the surface reaction rate constant,  is the stoicheomteric ratio of products to reactants, and 

Keq is the reaction-equilibrium constant. 

The mass transfer coefficients for reactants and products can be determined from Levich‘s 

solution for laminar flow in a tube as follows (Levich 1962): 

 

  …………….………………………………. (33) 

 

where; De,i is the effective diffusion coefficient for reactants and products. 

The diffusion coefficient for the GLDA will be assumed the same as EDTA, which is 6 x 10
-6

 

cm
2
/s. also we will assume the diffusion coefficient for the reactants is the same for products. 

The surface reaction rate constant, ks, will be assumed the same as the EDTA (pH = 4) which is 

1.4 x 10
-4

 cm/s. The reaction equilibrium constant was assumed the same as that of EDTA (pH = 

4) which is 1 x 10
10

. The length and diameter of the wormholes can be determined from the CT 

scan 3D images. To justify the use of the constants of EDTA for GLDA we did a dissolution test 

in a small slurry reactor using 30 mesh crushed calcite with 0.25M EDTA (pH 4) and 0.6M GLDA 

(pH 1.7). In the first 30 min of the test we got a calcium concentration of 25,000 ppm total 

calcium at 180
o
F for both EDTA and GLDA. Therefore it is reliable to consider the reaction rate 

of GLDA at pH 1.7 is close to that of EDTA at pH 4. 

The optimum injection rate can be scaled to the field injection rate using the following 

equation (Mostofizadeh and Economides 1994): 

 

 …………………………………………… (34) 

 

where; qw is the injection rate required in the field, bbl/min, rw is the well radius, in. hf is the 

formation thickness, ft, qcore is the optimum injection rate from the coreflood test, cm
3
/min,  rcore is 

the core radius, in., Lcore is the core length, in. 
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The injection rate required in the field to stimulate certain formations based on radial 

coreflood experiments can be determined as follows (Frick et al. 1994): 

 

……………………………………………………. (35) 

 

where; qradial is the injection rate in a radial core, qlinear is the injection rate in a linear coreflood, rw 

is the well radius, Lradial is the length of radial core, and Rlinear is the radius of linear core. 

Results and Discussion  

Optimum Injection Rate for Different pH Values (6-in. Cores) 

The optimum injection rate for different stimulation fluids has been determined by many 

investigators. The importance of identifying the optimum injection rate is to achieve the 

maximum penetration of the stimulation fluid through the treated zone. The volume of the 

stimulation fluid required to create deep, uniform wormholes is minimum at the optimum injection 

rate, therefore, it is necessary to determine the optimum injection rate for the new stimulation 

fluid (GLDA). 

GLDA exhibited an optimum injection rate at different pH values. Fig. 49 shows the 

optimum injection rate for 20 wt% GLDA at pH 1.7 at different temperatures using Indiana 

limestone cores at 1 cm
3
/min. The pore volume at breakthrough (PVbt) at the optimum rate was 

2.85 PV at 180
o
F, at injection rates below the optimum, for example at 0.5 cm

3
/min, the PVbt was 

3.15 PV at the same temperature. At injection rates greater than the optimum, for example at 7.5 

cm
3
/min, the PVbt was 6.5 PV. A similar trend was obtained for EDTA by Fredd and Fogler 

(1998a) and Huang et al. (2003). The optimum injection rate of 1 cm
3
/min for GLDA at pH 1.7 

allows the use of GLDA in low fracture pressure formations where HCl can cause face 

dissolution. The trend for GLDA was different from that for HCl, at low injection rates HCl caused 

face dissolution and required higher volumes to create wormholes. GLDA when injected at low 

injection rates did not require this large pore volume as HCl did. Low injection rates in the case 

of GLDA allow more time for reaction and dissolved larger amounts of calcite than at high 

injection rates. The reaction rate of GLDA is slower compared to HCl, therefore, injecting GLDA 

at low injection rates allowed more time for the reaction and in turn less volume of the fluid was 

required to create wormholes. 
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At injection rates below the optimum, the pore volume required to breakthrough the core 

was higher than that at the optimum. At low injection rates GLDA formed more than one 

wormhole in the core inlet and in the first one inch of the core, but only one wormhole penetrated 

through the core. There was one dominating wormhole that penetrated through the core, the 

other wormholes did not penetrate through the core and they consumed more volumes of GLDA. 

At the optimum injection rate there was one dominating wormhole, therefore, the pore volume 

required to create this wormhole was minimum. At injection rates greater than the optimum, the 

pore volume required to create wormholes was greater than that at the optimum rate. At higher 

injection rates the increase in the pore volume was greater compared to the increase in pore 

volume for injection rates below the optimum one. At higher injection rates, there was not 

enough time for the GLDA to react with the rock and GLDA was able to dissolve just small 

amounts of the rock. To form a dominant wormhole more volumes of GLDA were required to 

compensate for the decrease in contact time. From the CT scan images at 4 cm
3
/min, the 

wormhole diameter was smaller compared to that at 2 cm
3
/min. The wormhole diameter for 

cores have an average permeability of 5 md, was 6 mm at 2 cm
3
/min and 3 mm at 4 cm

3
/min at 

250
o
F. 

GLDA has several advantages over HCl in that decreasing the rate below the optimum rate, 

for example at 0.5 cm
3
/min, did not create face dissolution as HCl did, but it consumed 0.3 PV of 

GLDA more than that at the optimum rate at 180
o
F. Decreasing the injection rate below the 

optimum injection rate in the case of HCl increased the pore volume to breakthrough by an order 

of magnitude (Wang et al. 1993). 
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Fig. 49—Pore volume to breakthrough with 20 wt% GLDA solutions at pH 1.7 at various 
temperatures using Indiana limestone cores. 

 

 
Fig. 50 shows the optimum injection rate for 20 wt% GLDA solutions at pH 3. The optimum 

injection rate is not clearly obvious for GLDA at pH 3. A range from 0.5 to 2 cm
3
/min existed for 

the optimum injection rate because the difference in PVbt was small at the three rates 0.5, 1, and 

2 cm
3
/min. The pore volumes to breakthrough were 3.26, 3.11, and 3.35 PV at 0.5, 1, and 2 

cm
3
/min, respectively. Although the difference was small in this range, the minimum was 1 

cm
3
/min, therefore, we can conclude that for the 20 wt% GLDA at pH 3, the optimum injection 

rate range from 0.5 to 2 cm
3
/min. Also, the ratio between the final and initial core permeabilities 

was maximum at 1 cm
3
/min. Decreasing the injection rate below the optimum, 0.5 cm

3
/min, did 

not increase the PVbt significantly as GLDA at pH 3 did because the reaction rate of GLDA at pH 

1.7 was faster than that at pH 3 (Mahmoud et al. 2010c).  
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Fig. 50—Pore volumes to breakthrough with 20 wt% GLDA solutions, pH 3 at various temperatures 
using Indiana limestone cores. 

 

 
Fig. 51 shows the optimum injection rate for Pink Desert calcite cores using 20 wt% GLDA 

at pH 1.7 at 180, 250, and 300
o
F. The optimum injection rate was 3 cm

3
/min. The optimum 

injection rate for Pink Desert was greater than that for Indiana limestone cores at the same 

conditions. The increase in the optimum injection rate for the Pink Desert high permeability cores 

was attributed to the increase in area-to-volume ratio. Increasing the core permeability increases 

the pore size and in turn the area of contact between the rock and the fluid will increase. The 

relationship between the pore diameter and rock permeability can be determined using Eq. 36 

(Permadi and Susilo 2009): 

 

………………………………………………………….. (36) 

 

where; dp is the average pore diameter, microns, k is the rock permeability, md, and

porosity, volume fraction. 

 In turn more GLDA was required to form wormholes at the same conditions. More calcite 

was dissolved in the high permeability cores; therefore more pore volumes were required to 

create wormholes. The pore volume to breakthrough in case of Pink Desert cores was higher 
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than that for Indiana limestone cores at the optimum injection rate. The pore volume to 

breakthrough at 2 cm
3
/min and 300

o
F for the Pink Desert core was 3 PV and that for the Indiana 

core at the same conditions was 1.75 PV. 

 

 

 

Fig. 51—Pore volumes to breakthrough with 20 wt% GLDA solutions, pH 1.7 at various 
temperatures using Pink Desert limestone cores. 

 

 

 Effect of Core Length  

Investigating the effect of core length on the volume of the fluid required to form wormholes is 

important, because when we inject the fluid into the formation we need the maximum penetration 

for this fluid to bypass the damaged zone. In this study, we are the first to study the effect of core 

length on the propagation of a chelating agent inside the calcite cores. 

Fig. 52 shows the volume of GLDA for 6 and 20 in. at different injection rates. Indiana 

limestone cores treated by 20 wt% GLDA at pH 3 and 250
o
F. The 20-in. cores gave a trend 

similar to the 6-in. cores, both cores almost have the same range for the optimum injection rate. 

The pore volume of the long cores was more than three times that of the short cores, therefore, 

the contact time for GLDA with calcite was higher in the long cores than in the short cores. At 2 

cm
3
/min the pore volume of the 6 in. core was 20 cm

3
, and the pore volume of the 20 in. core 

was 70 cm
3
. Increasing the contact time in the case of long cores allowed GLDA to dissolve 
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more calcite than that in short cores. Moreover, the volume of the fluid required to penetrate 

through the core and form wormholes was less in the case of the 20 in. cores compared to the 6 

in. cores. At injection rate of 2 cm
3
/min the volume of GLDA to breakthrough the core was 1.6 PV 

in the 20-in. core, and 2.60 PV in the 6-in. core. Therefore, soaking GLDA through the damaged 

zone will dissolve more calcite and minimize the volume required to bypass the damage. 

Another factor affecting the volume of GLDA required to breakthrough the 20-in. core was the 

diffusion coefficient of GLDA.  

In the long calcite cores the average calcium concentration in the coreflood effluent was 

43,000 ppm after injecting one pore volume of the fluid. The average calcium concentration in 

the 6-in. cores at the same conditions for the same pH value was 25,000 ppm. The increased 

calcium concentration in the case of long cores decreased the diffusion of GLDA, and reduced 

the pore volume required to breakthrough the core. 

The relation between the calcium concentration and diffusion coefficient was introduced by 

Conway et al. (1999). This relation can be given by the following equation: 

 

 

 

                  …………………………………………………… (37) 

 

Increasing the calcium concentration in the case of long cores increased the viscosity of the 

GLDA solution and in turn the fluid diffusion decreased. The wormholes formed in the 20-in 

cores had smaller diameters than those in the 6-in. cores at the same conditions of injection rate, 

temperature, pH, and initial permeability. 
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Fig. 52—Volume to breakthrough with 20 wt% GLDA solutions, pH 3 at 250
o
F for 20 in. and 6 in. 

length Indiana limestone cores. 

 

 
These results can be better explained by the core Peclet number, Npe, which can be defined 

as follows: 

 

……………………………………………………………... (38) 

 

where; v is the frontal advance velocity = q/(A ) is the injection rate, cm
3
/s, A is the cross 

sectional area, cm
2
,  is the porosity, volume fraction, Lcore is the core length, cm, and Dl is the 

longitudinal dispersion coefficient, cm
2
/s. 

The velocity and the dispersion coefficients are the same for the short and long cores, 

therefore, the core Peclet number for the long 20-in. core was 3.3 times that of the short 6-in. 

core.  Increasing the core Peclet number will minimize the dispersion and diffusion of the fluid in 

the porous media (Binder and Vampa 1989), and in turn less volume of the fluid was required to 

create wormholes. These effects were due to the reduced diffusion rates in the bulk solution, 

also we can attribute that to the reduced fluid loss from the main wormhole in the case of long 

cores (Hoefiner and Fogler 1985). 
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Effect of Temperature on the Optimum Injection Rate 

It is important to investigate the effect of temperature on the performance of the stimulation fluid 

when injected at high temperatures. The injection rate should be adjusted according to the 

temperature of the formation because for fluids such as HCl and EDTA, the optimum injection 

rate changed with temperature (Wang et al. 1993 and Fredd and Fogler 1999).Figs. 49 to 51 

show the optimum injection rate at different pH values and temperatures. Increasing the 

temperature from 180 to 300
o
F did not affect the optimum injection rate (the calcium 

concentration in the coreflood effluent was increased with temperature) at different pH values. 

The optimum injection rate remained the same but increasing the temperature increased the 

reaction rate and reduced the pore volume required to breakthrough the core. Increasing the 

temperature during stimulation of calcite cores by HCl increased both the optimum injection rate, 

and the pore volume to breakthrough (Wang et al. 1993). The optimum injection rate for EDTA 

increased by increasing the temperature from 72 to 175
o
F, but the pore volume to breakthrough 

decreased by increasing the temperature (Fredd and Fogler 1999). In the case of GLDA at pH 

1.7,  increasing the temperature from 180 to 300
o
F decreased the pore volumes required to form 

wormholes from 2.85 to 1.6 PV for Indiana limestone cores and the optimum rate did not change 

from 1 cm
3
/min. The same scenario was repeated at pH 3 as shown in Fig. 50. Increasing the 

temperature at pH 3 enhanced the reaction of GLDA with calcite and decreased the pore 

volumes required to breakthrough the core. Fig. 51 shows the optimum injection rate at different 

temperature, the increase in temperature did not change the optimum injection rate for Pink 

Desert cores, which remained constant at 3 cm
3
/min. Increasing the temperature decreased the 

pore volumes to breakthrough at 3 cm
3
/min from 3.75 to 3.1 cm

3
/min. Unlike HCl and EDTA, 

GLDA at different pH values has a fixed optimum injection rate, and this rate was not affected by 

increasing the temperature from 180 to 300
o
F.   

Calculation of the Damköhler Number 

The creation of wormholes in calcite cores using HCl, EDTA, and acetic acid was found to be 

dependent on the Damköhler number. There was a strong function between the fluid volume 

required to create wormholes and the Damköhler number (Fredd and Fogler 1999). 

The Damköhler number was calculated using Eq. 31 based on the final wormhole 

dimensions. The average wormhole diameter was measured from the CT scan. The wormhole 

diameter was determined for each slice from the 2D image for each core and then the average 

wormhole diameter was determined by averaging the wormhole diameters in the scanned slices. 

Fig. 53 shows the 3D wormhole images for the Pink Desert cores that were treated by 20 wt% 

GLDA solutions of pH = 1.7 at 180
o
F. The Damköhler numbers at different injection rates were 
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calculated using Eqs. 31-33. The same was done for long calcite cores (20 in.), the Damköhler 

number was calculated based on the diameter from the CT 3D images for the 20-in. cores, Fig. 

54. The optimum Damköhler number for Pink Desert cores was 0.275 at 3 cm
3
/min and 0.280 for 

the 20-in. Indiana limestone cores. At this rate, the pore volumes required to breakthrough the 

core and create wormhole was the minimum. Using Eq. 34 to scale this optimum injection rate to 

the field with a formation thickness of 100 ft and 0.328 ft wellbore radius, the optimum injection 

rate was 0.5 bbl/min. The optimum injection rate can be predetermined from the optimum 

Damköhler number by first calculating the optimum injection velocity using Eq. 39 (Glasbern et 

al. 2009): 

 

……………………..……………………………………….. (39) 

 

where; Uopt is the optimum injection velocity, cm/s, De is the diffusion coefficient of the 

product/reactants, cm
2
/s, Lcore is the core sample length, cm, and dcore is the core diameter, cm. 

The optimum injection rate can be determined using Eq. 40: 

 

 …………………….…………………………………. (40) 

 

where; Qopt is the optimum injection rate, cm
3
/min.  
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Fig. 53—3D CT scans for 6-in. Pink Desert cores at 180
o
F using 20 wt% GLDA at pH =1.7. 

 

 

Fig. 54—3D CT scan after the coreflood experiments for 20-in. Indiana limestone cores at 200
o
F 

using 20 wt% GLDA at pH =1.7. 
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Fig. 55 shows the dependence of the wormhole structure on the inverse of Damköhler 

number. The number of pore volume to breakthrough was plotted versus 1/Damköhler number 

for 20 wt% GLDA of pH 1.7 at 180
o
F. There was a similar trend like the injection rate with pore 

volume in this case, Fig. 51. Increasing the Damköhler number means high dissolution rate and 

low pore volumes required to breakthrough the core. At low Damköhler numbers the dissolution 

capacity was lower and the volume required to beakthrough increased. The wormhole structure 

was more dominant at high Damköhler numbers compared to that at low Damköhler numbers.  

For the 6 in. core length and 1.5 in. diameter, the optimum injection velocity was 3.8 x 10
-3

 cm/s 

and the optimum injection rate was 2.6 cm
3
/min. The optimum injection velocity and optimum 

injection rate were calculated from Eqs. 39 and 40, respectively using an optimum Damköhler 

number of 0.29. 

 

 

 

Fig. 55—Dependence of the number of pore volumes to breakthrough on the inverse of Damköhler 
number for Pink Desert cores, 20 wt% GLDA of pH = 1.7 at 180

o
F. 
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 Pore Volumes to Breakthrough for Different Stimulation Fluids 

Fig. 56 shows a comparison between 20 wt% GLDA at pH 3 and 10 wt% long chain carboxylic 

acid (LCA), 10 wt% acetic acid (Huang et al. 2003) at 250
o
F. GLDA outperformed LCA and 

acetic acid, as the pore volume to breakthrough was lower than those for LCA and acetic acid. 

Decreasing the injection rate increased the pore volumes required to breakthrough the core in 

both LCA and acetic acid and did not affect GLDA. 

 

 

 
 

Fig. 56—Pore volume to breakthrough as a function of injection rate at 250
o
F. 

 

 
Fig. 57 shows the 2D CT scan images for the 6-in. pink desert calcite cores treated by 15 

wt% HCl and 20 wt% GLDA at pH 1.7 at 200
o
F and a injection rate of 1 cm

3
/min. Face 

dissolution was obvious in case the 15 wt% HCl but there was no face dissolution in the case of 

20 wt% GLDA. The core initial permeability was 55 md in case of HCl coreflood and it was 58 

md in case of GLDA. The wormhole diameter decreased in case of 15 wt% HCl as the wormhole 

penetrated through the core. The wormhole in the case of 20 wt% GLDA had had a constant 

diameter through the entire core length. 
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Fig. 57—Difference in wormhole pattern between HCl and GLDA at 1 cm
3
/min and 200

o
F. 

 

 
 Factors Affecting the Wormhole 

Fig. 58 shows the effect of temperature on the wormhole size at injection rate of 2 cm
3
/min and 

at pH 3. The permeabilities of the two cores were close in values at 0.45 and 0.5 md. As 

temperature was increased from 200 to 300
o
F, the wormhole diameter increased. The wormhole 

size at 200
o
F was less than 1.5 mm but it reached more than 5 mm at 300

o
F. Increasing the 

temperature by 100
o
F increased the wormhole size more than three times, indicating the 

effectiveness of GLDA in creating large wormholes at high temperatures. At 200
o
F the cross 

section of wormholes was almost uniform circle; as the temperature was increased to 300
o
F, the 

shape of wormholes cross section started to change from circular to irregular shapes and more 

than one wormhole was formed. At 300
o
F GLDA reacted with the rock and created many 

wormholes. 
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kinitial = 0.45 md, q = 2 cm

3
/min @ T = 200

o
F, pH 3 kinitial = 0.5 md, q = 2 cm

3
/min @ T = 300

o
F, pH 3 

 
Fig. 58—Effect of temperature on the wormhole size. Large wormholes were created at 300

o
F 

because of the higher reaction rate. 

 

 
 Fig. 59 shows the effect of the injection rate on the wormhole size. Fixing other parameters, 

the effect of injection rate on the wormholes shape and size was studied. At 2 cm
3
/min the 

wormholes formed by 20 wt% GLDA at pH 3 were larger than that at 4 cm
3
/min. Increasing the 

injection rate from 2 to 4 cm
3
/min decreased the contact time between GLDA and calcite, which 

in turn reduced the reaction time. At 2 cm
3
/min injection rate, more than one wormhole with 

irregular shape was formed.  At 4 cm
3
/min the wormholes started to take regular rounded shapes 

but smaller sizes than that at 2 cm
3
/min. 

 Fig. 60 shows the effect of initial core permeability on the wormhole size. Two cores with 

permeabilities of 0.45 and 4.7 md were selected at 2 cm
3
/min and 200

o
F using 20 wt% GLDA at 

pH 3. The wormhole size of the high permeability core (4.7 md) was larger than that of the low 

permeability core (0.45 md) at the same conditions. As the core permeability increased, the 

area-to-volume ratio increased and the surface area exposed to the reaction increased. In turn 

bigger wormholes were formed at high permeability than at low permeability. Increasing the core 

permeability also increased the amount of GLDA required to form wormholes at the same 

conditions. The pore volumes required to form the smaller size wormholes in the low 

permeability core (0.45 md) at 2 cm
3
/min and 200

o
F were 2.65 PV. The pore volumes to create 

bigger wormholes in the case of the high permeability core (4.7 md) were 3.35 PV at the same 

conditions. 
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kinitial = 5 md, q = 2 cm

3
/min @ T = 200

o
F, pH 3 kinitial = 5.2 md, q = 4 cm

3
/min @ T = 200

o
F, pH 3 

 

Fig. 59—Effect of injection rate on the wormhole size. At low rate bigger wormholes were created 
due to the increased contact time allowed more calcite to be dissolved. 

 

 

 

 

 

  
kinitial = 0.45 md, q = 2 cm

3
/min @ T = 200

o
F, pH 3 kinitial = 4.7 md, q = 2 cm

3
/min @ T = 200

o
F, pH 3 

 

Fig. 60—Effect of initial permeability on the wormhole size. High permeability allowed more time for 
reaction and created large wormholes. 
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Fig. 61 shows the effect of GLDA pH on the wormhole size. Mahmoud et al. (2010a) 

investigated the chemical reaction of GLDA with calcite at different pH values. At low pH (1.7) 

the reaction of GLDA with calcite was attributed to the hydrogen ion attack and at higher pH (13) 

the reaction was complexation only. A minor difference between the wormhole sizes in 1.7 and 3 

pH values was noticed. At pH of 3 GLDA has 3 hydrogen ions in the carboxylic groups and it has 

also hydrogen attack. Increasing GLDA pH from 1.7 to 3 did not create noticeable changes in the 

wormhole shape and size. Extra pore volume of 0.1 PV was required to create the wormhole at 

pH 3. The pore volumes to breakthrough at 2 cm
3
/min and 200

o
F in case of GLDA at pH 3 was 

3.55 PV and was 3.45 PV at pH 1.7 at the same conditions.  

 

 

  
kinitial = 0.8 md, q = 2 cm

3
/min @ T = 200

o
F, pH 1.7 kinitial = 0.75 md, q = 2 cm

3
/min @ T = 200

o
F, pH 3 

 

Fig. 61—Effect of 20 wt% GLDA solution initial pH on the wormhole size. There was a small 
difference in the wormhole size in both cases. 

 

 
 Effect of NaCl on the Performance of GLDA During Coreflood 

GLDA solutions with a concentration of 20 wt% at pH 3.8 were used and NaCl concentration of 5 

wt% was used. Two coreflood experiments were performed using the prepared solutions at 

injection rate of 2 cm
3
/min and 300

o
F. Fig. 62 shows the total calcium concentration for the two 

coreflood experiments. The wormhole broke through the core at 3 PV and 3.5 PV for 20 wt% 

GLDA without NaCl and with 5 wt% NaCl respectively. Adding 5 wt% NaCl enhanced the 

performance of GLDA and saved 0.5 PV. The calcium concentration reached a maximum of 

25,000 ppm in case of GLDA with 5 wt% NaCl, and 17,000 ppm in case of GLDA without NaCl. 
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The presence of sodium chloride enhanced the thermal stability of the GLDA at 300
o
F 

(Mahmoud et al. 2010d). 

 

 

 

Fig. 62—Effect of NaCl on GLDA (20 wt%, pH =3) performance during coreflood experiments at 2 

cm
3
/min and 300

o
F. 

 

 
Fig. 63 shows the effect of adding 5 wt% NaCl on the wormhole shape and size. The 

coreflood experiments were run using 20 wt% GLDA at pH 3.8 at injection rate of 2 cm
3
/min, and 

300
o
F. The core initial permeability was 3 md for the GLDA without NaCl, and it was 3.2 md for 

the GLDA with 5 wt% NaCl. Adding 5 wt% NaCl enhanced the reaction of GLDA with calcite 

through increasing its thermal stability. The wormhole that was created in the case of adding 5 

wt% NaCl had a larger diameter than that created without adding NaCl (NaCl increased the 

thermal stability of GLDA (Mahmoud et al. 2010d), and at 300
o
F the reaction rate was high, so 

the GLDA reacted with the rock more to create irregular shape wormholes). Fredd and Fogler 

(1998b) investigated the effect of adding sodium chloride to EDTA in the rotating disk 

experiments. They found that increasing the sodium chloride concentration from 0 to 0.7M (~4.1 

wt%), the reaction rate of EDTA with calcite decreased by about 25%. The decrease in the 
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reaction rate was attributed to the association of Na
+
 with EDTA and transport of Na-EDTA 

complexes. 

 

 

  
20 wt% GLDA, pH = 3.8 20 wt% GLDA, pH = 3.8 + 5 wt% NaCl 

 

Fig. 63—Effect of NaCl on the wormhole shape and size. Coreflood experiments were run using 20 
wt% GLDA at pH 3.8, 2 cm

3
/min, and 300

o
F using 6-in. cores. 

 

 
 Parallel Coreflood 

The low-reactive nature of GLDA in addition to the build in its viscosity after complexing calcium 

can be invested in stimulating parallel cores with low permeability contrast. The viscosity of 

GLDA increased during the reaction of GLDA with calcite due to the calcium complexation, the 

viscosity relationship with the calcium concentration of GLDA at pH 3.8 at room temperature can 

be given by Eq. 41: 

 

  ……………………………………..………………….  (41) 

 

where; [Ca] is the calcium concentration, ppm, and  is the viscosity of GLDA solution, cP. 

 We got equation 41 by measuring the viscosity of GLDA at pH 3.8 at different calcium 

concentrations starting from 0 up to 60,000 ppm and the relationship was linear. The first 

experiment was performed at 3 cm
3
/min and 200

o
F. Fig. 64 shows the distribution of the 

injection rate for the two cores during the coreflood experiment. Before switching to 20 wt% 

GLDA the injection rate ratio between the high permeability and low permeability core was near 
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the permeability ratio which was 1.45. The distribution of the injection rate before switching to 

GLDA can be determined analytically using Eq. 42: 

 

 …………………………………….……………………………  (42) 

 
 

 

Fig. 64—Distribution of the total injection rate (3 cm
3
/min) into cores 1 and 2; 20 wt% GLDA at pH 

3.8; and 200
o
F. 

 

 
The total injection rate while injecting water through the core should be the summation of 

the injection rates from the two cores; QT = Q1 + Q2. Before switching to GLDA, the total injection 

rate coming out from the two cores was almost 3 cm
3
/min, the same as the total injection rate, 

and the ratio was almost the same as the permeability ratio. After switching to GLDA, the ratio 

was not the same like injecting water. Due to the build in viscosity as the reaction proceeded 

with the high permeability core, the fluid diverted itself to the lower permeability one. The 

increase in viscosity forced the GLDA to injection in both the high permeability and low 

permeability cores at the same time. In this experiment the wormhole broke through the two 

cores at the same time. The injection came from the two cores until the breakthrough of the 
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wormhole, then the injection rate in the high permeability core increased and decreased because 

of the increase in viscosity after the reaction with calcite. 

Fig. 65 shows the total calcium concentration in the effluent samples from the two cores. 

The GLDA broke through the two cores at the same time after the injection of one pore volume. 

The calcium concentration reached a maximum of 32,500 ppm in the two cores, indicating equal 

reaction rate in both cores. The calcium concentration remained constant in the effluent of the 

two cores until the wormhole breakthrough. 

 

 

 

Fig. 65—Total calcium concentration in the effluent of cores 1 and 2; 20 wt% GLDA at pH 3.8; 3 
cm

3
/min and 200

o
F. 

 

 
Fig. 66 shows the injection rate distribution for 1.8 permeability ratio cores at 2 cm

3
/min and 

200
o
F. The same scenario repeated here, although the permeability ratio was higher than the 

first experiment, there was a flow coming from the two cores. The injection distribution in the 

effluent from the two cores indicated a good ability of GLDA to stimulate different permeability 

contrasts. The injection rate in the low permeability core increased from the average value of 0.7 

cm
3
/min to an average value of 0.85 cm

3
/min after injecting GLDA through the two cores. This 

meant that GLDA at pH 3.8 was able to divert the injection from the high permeability core to the 

low permeability one without adding diverting agents. No cross-linker or breaker was required as 
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in the case of polymer-based acids, or mutual solvent as in the case of surfactant-based acids. 

GLDA was able to divert the injection in the low permeability core in a 1.8 permeability ratio 

injection, where polymer-based acid can cause damage and filter out on the face of these cores. 

 

 

 

Fig. 66—Distribution of injection rate in cores 1 and 2; 20 wt% GLDA at pH 3.8; 2 cm
3
/min and 200

o
F. 

 

 
Fig. 67 shows the calcium concentration in the effluent samples for the two cores reaching 

similar results to the first experiment. The injection rate and temperature were the same and the 

only difference in this case is that the permeability ratio increased from 1.45 to 1.8. GLDA broke 

through the two cores at the same time and the calcium concentration stabilized at a maximum 

value of 32,500 ppm for the two core effluent samples. 

 

 

 



101 
 

 

 

Fig. 67—Distribution of total calcium concentration in each core; 20 wt% GLDA at pH 3.8; 2 cm
3
/min 

and 200
o
F. 

 

 
Fig. 68 shows the 3D CT scan images for the wormholes created during the parallel 

coreflood experiment at 2 cm
3
/min and 200

o
F. The permeability ratio between the two cores was 

1.8. The wormholes propagated 100% of the total core length in both cores and the 

breakthrough occurred in both cores in the same time. The 3D CT scan images showed the 

effectiveness of GLDA in stimulation two cores with different permeabilities without using 

chemical diverters. 
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Fig. 68—3D images for the wormholes created in each core during the parallel coreflood 
experiment. 

 

 
Two more coreflood experiment were performed using two sets of cores, the first set one of 

permeability of 50 md and the other one had a permeability of 8 md (permeability ratio = 6.25). 

The second set of cores had cores with permeabilities 50 and 15 md (permeability ratio = 3.33). 

GLDA at pH of 3.8 and 20 wt% was used to stimulate both cores in the parallel coreflood at 

200
o
F. GLDA broke through the two cores at the same time proportionally according to the ratio 

between core permeabilities. The amount of calcite dissolved in the core in 50 md permeability 

was 10.8 g, and it was 3.1 g in the 8 md permeability core. AT permeability contrast of 6.25 (50 

and 8 md) GLDA showed good results in both cores and wormholes formed in the two cores. 

The permeability of the 50 md core increased to 850 md, and the permeability of the 8 md 

increased to 365 md after the coreflood experiment at injection rate of 2 cm
3
/min as shown in 

Table 15. The 20 wt% GLDA at pH 3.8 also formed wormholes in the cores that had 3.33 

permeability contrast (50 and 15 md) in the same time, but the wormhole diameter for the 50 md 

core was greater than that for the 15 md core, Fig. 69. 

 



103 
 

 

Table 15—SUMMARY OF PARALLEL COREFLOOD EXPERIMENTS 

Exp. # 
Permeability 

contrast 
Kinitial , Core #1 Kinitial , Core #2 Kfinal , Core #1 Kfinal , Core #2 

1 6.25 50.0 8.0 850 365 

2 3.33 50.0 15.0 910 425 

3 1.80 5.40 3.0 1300 1150 

4 1.45 7.25 5.0 1100 760 

 
 
 
 

 
 

 

 
 

Fig. 69—3D images for the wormholes created in each core during the parallel coreflood 
experiment. 
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Conclusions 

Coreflood tests were conducted using calcite cores, GLDA solutions of pH values 1.7, 3, and 

3.8. Cores of 6 and 20 in. length were used based on the results obtained, the following 

conclusions can be drawn: 

1. There was an optimum rate for the GLDA to create wormholes at different pH values.  

2. The optimum injection rate was not affected by increasing temperature from 180 to 

300
o
F.  

3. Increasing the core length from 6 to 20 in. decreased the volume of GLDA required to 

create wormholes due to the increased Peclet number. 

4. There was a relationship between the creation of wormholes in calcite cores using 

GLDA and the inverse of Damköhler number. 

5. GLDA was able to stimulate parallel calcite cores at low permeability contrast (up to 

6.25). 

6. GLDA at pH 3 outperformed 10 wt% acetic acid and long chain carboxylic acid at high 

temperatures. 

7. Adding 5 wt% NaCl to GLDA enhanced the performance of GLDA of pH 3.8 during the 

coreflood experiments. Less volume of GLDA was required in case of adding 5 wt% 

NaCl. 
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CHAPTER V 

EFFECT OF RESERVOIR FLUID TYPE ON THE STIMULATION OF CALCITE 

CORES USING CHELATING AGENTS 

Introduction 

Different fluids have been introduced in the oil industry to be used as alternatives to HCl. 

Chelating agents such as EDTA (ethylene diamine tetraacetic acid), HEDTA (hydroxyl ethylene 

diamine triacetic acid), and GLDA (glutamicacid-N,N-diacetic acid) have been introduced to be 

used as stand-alone stimulation fluids. These fluids can be used to stimulate water injectors, oil, 

or gas producers, therefore, the effect of the type of reservoir fluid on the stimulation process 

should be investigated. 

In this part of the study, 0.6M of GLDA, EDTA, and HEDTA were used in the coreflood 

experiments on carbonate rocks at 300
o
F. The cores were saturated with water, oil, or gas to 

determine the effect of reservoir fluid type on the performance of the chelating agents with the 

carbonate cores. The effect of using 10 vol% mutual solvent (ethylene-glycol-monobutyl-ether) in 

the preflush on the stimulation process was examined. An analytical model for the reaction of 

GLDA with calcite was developed to predict the propagation of GLDA in carbonate cores. 

The results showed that GLDA performed better in the oil-saturated cores due to the 

reduced diffusion.  GLDA at pH of 4 stimulated calcite cores better than HEDTA at 300
o
F and at 

different injection rates. The results obtained with carbonate cores saturated with nitrogen gas 

were almost similar to those obtained when the cores were saturated with water. The analytical 

model results showed good match with the experimental results, therefore, this model can be 

used to predict the performance of the chelating agent in carbonate stimulation. This model can 

be used to predict the volume of the fluid required to create wormholes in the reservoir with 

certain length and diameter. The volume of the fluid from the model and experimental results 

showed a good match. The pressure performance during the treatment also can be predicted 

using the developed model. 

The objectives of the current study are to: (1) study the wormholing and dissolving capacity 

of the 20 wt% GLDA at pH 1.7, (2) investigate the effect of saturating the cores with actual crude 

oil on the creation of wormholes, (3) compare the optimum injection rate of HEDTA and GLDA at 

300
o
F using Indiana limestone cores, (4) determine the best  chelating agent that can be used to 

stimulate oil-saturated cores, and (5) identify the effect of flushing the oil-saturated cores by 10 

vol% mutual solvent on the stimulation of carbonate cores by chelating agents. 
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Experimental Studies 

 Materials 

The chelating agents that were used in this study were GLDA, HEDTA, and EDTA of 

concentration 0.6M prepared from an initial stock concentration of 40 wt%. Calcium carbonate 

cores such as Pink Desert limestone, Austin Chalk, and Indiana limestone cores of 6 in. length 

and 1.5 in. diameter were used in the coreflood experiments. The crude oil used in this study has 

a composition that showed in Table 16. The API and specific gravities of the used oil were 27.5 

and 0.89. The mutual solvent used in this study was ethylene glycol mono butyl ether of 10 vol% 

concentration. 

 

 

 

Table 16—COMPOSITION OF CRUDE OIL 

Component Volume % 

  
Hexane 5.07% 
Cyclopentane, methyl- 1.39% 
Cyclohexane 5.42% 
Hexane, 3-methyl- 1.69% 
Heptane 3.78% 
Cyclohexane, methyl- 4.62% 
Octane 4.99% 
p-Xylene 7.67% 
Nonane 5.55% 
Decane 4.86% 
Undecane 4.23% 
Dodecane 4.45% 
Undecane, 2,6-dimethyl- 1.49% 
Tridecane 4.12% 
Tetradecane 3.31% 
Pentadecane 3.65% 
Hexadecane 2.94% 
Heptadecane 2.80% 
Octadecane 2.01% 
Nonadecane 2.28% 
Eicosane 2.16% 
Heneicosane 2.10% 
Docosane 3.60% 
Pyrene 10.63% 
Octacosane 2.01% 
Hentriacontane 1.43% 
Hexacosane 1.73% 
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Experimental Procedures 

A complete description for the coreflood set-up that was used in this study was given in Fig. 7. 

The following are the procedures that we followed in the coreflood experiments: 

1. The core was first dried in the oven at 200
o
F, then take the dry weight of the core. 

2. The core was vacuumed and saturated with de-ionized water using the Hassler core 

holder, using back pressure of 500 psi and 1500 psi overburden, then take the weight of 

saturated core and determine the pore volume. 

3. Saturating the core by oil was performed using the coreflood, the oil was injected into 

the core at 0.5 cm
3
/min to insure proper displacement of water for the Pink Desert cores 

and 0.1 cm
3
/min for the Indiana limestone cores. Three pore volume of oil were injected 

into the core in each core. 

4. The oil and residual water saturations were determined. 

5. The core was heated up to 300
o
F for 3 hrs to ensure the stabilization of temperature. 

6. GLDA, HEDTA, and EDTA at pH 4 and 0.6M concentrations were used to stimulate the 

oil-saturated calcite core at 300
o
F. 

7. The same chelant were used to stimulate water-saturated cores to compare with that 

saturated with oil. 

8. GLDA, HEDTA, and EDTA were injected until the wormhole breakthrough. 

9. In the second set of the experiments three pore volume of 10 vol% mutual solvent were 

injected into the oil-saturated cores to remove the oil followed by the injection of 0.6M 

chelating agent. 

10. For gas experiments nitrogen gas was used. The core was first saturated by de-ionized 

water and heated up to 300
o
F until stabilization then the core was flooded by nitrogen 

gas until no more water coming out from the core. 

11. The nitrogen gas injection continues until no more water coming out from the core, the 

back pressure in this case was 1000 psi and the nitrogen injection pressure was kept 

constant as the same that for water before switching to nitrogen. 

12. The effluent samples collected were analyzed for calcium using the AAalyst 700. 

 

Analytical Model 

The dissolving power of the 20 wt%-GLDA at pH 1.7 will be determined in this part. To determine 

the dissolving power of GLDA we have to know the stoichiometric equation of the GLDA with 

calcite which can be given as follows: 

 



108 
 

………. (43)                                                    

 

From this equation we can conclude that one mole of H4GLDA can dissolve two moles of calcite. 

The gravimetric dissolving power ( ) of 100 wt% GLDA can be determined using Eq. 44 (Hill et 

al. 1993): 

 

…………………………………………………………… (44)                                                                                                                   

 
where; MWCaCO3 is the molecular weight of the calcium carbonate = 100.09 lbmole, MWGLDA is 

the molecular weight of the acid GLDA = 263 lbmole, CaCO3 is the stoichiometric coefficient of 

CaCO3 = 2, and GLDA is the stoichiometric coefficient of GLDA = 1. The gravimetric dissolving 

power for 100 wt% H4GLDA ( 100) is 0.755 lbmole CaCO3/lbmole GLDA, and that for the 20 wt% 

GLDA ( 20) is 0.151 lbmole CaCO3/lbmole GLDA. 

 The volumetric dissolving power (X) which is the volume of mineral dissolved by a given 

volume of GLDA can be determined from Eq. 45 (Hill et al. 1993): 

 

……………………..…….………………………………………… (45)                                                                                                                                      

 
Fig. 70 shows the gravimetric and volumetric dissolving power for GLDA at pH 1.7 at 

different concentrations. The relations between both volumetric and gravimetric dissolving 

powers with the GLDA concentration were almost linear relationship. 
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Fig. 70—Volumetric and gravimetric dissolving powers for different GLDA concentrations, pH = 1.7. 

 

 
The volumetric dissolving power of the 20 wt%-GLDA at pH 1.7 is 0.0631 ft

3
 CaCO3/ft

3
 20 

wt%-GLDA. If we need to penetrate the formation with a one foot penetration depth the volume 

of GLDA required can be determined using the volumetric dissolving power and the following 

equations: 

 

………………………………………………………………….. (46) 

 

……………….………..…………… (47) 

                                                                                                  
 
where; VGLDA is the volume of GLDA required to dissolve VCaCO3 volume of calcite, X is the 

volumetric dissolving power of GLDA, rGLDA is the radius from the wellbore to be acidized, rw is 

the wellbore radius,  is the formation porosity, and xCaCO3 is the volume fraction of calcite in the 

formation. 
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A coreflood experiment was run using Indiana limestone core of 20 in. length and 1.5 in. 

diameter, the core had a porosity of 20 vol%. The coreflood experiment was run at an optimum 

injection rate of 2 cm
3
/min and 250

o
F the amount of the dissolved calcite was 30 g which is 2.5 

wt% of the total core weight. The volume of the dissolved calcite from the 20-in. Indiana core 

was 11.1 cm
3
 which was 2 vol% of the total volume of the core (579 cm

3
). At 250

o
F and at the 

optimum injection rate the volume of GLDA required to penetrate 3 ft inside a formation has 

characteristics like the Indiana core that we used in our experiment in a 0.328 ft radius well can 

be determined using Eqs. 46 and 47.  The volume of calcite to be dissolved from Eq. 47 will be 

0.55 ft
3
/ft. The volume of GLDA required to create wormholes through the formation at the 

mentioned conditions will be 8.7 ft
3
/ft of formation thickness or it will be 65 gal GLDA/ft. 

The volumetric model developed by Hill et al. (1993) can be used to predict the volume of 

GLDA required to create wormholes. The following equation can be used: 

 

 ……………………………..……………………….. (48)  

                                                                                                                      
 

Using the volumetric model the amount of GLDA required to create channels through 3.328 

ft radius from the wellbore was 13.8 ft
3
/ft or 103 gal GLDA/ft of formation thickness. Fig. 71 

shows the volume of GLDA required to create wormholes through the formation at different 

temperatures and different injection rates using the volumetric model, Eq. 48. The prediction in 

Fig. 71 was done for 3 ft penetration for the GLDA from the wellbore (rw = 0.328 ft) and a 

formation porosity of 0.20. At low injection rates the volume of the fluid required to penetrate 3 ft 

inside the formation was lower than that at higher injection rates. It is better for GLDA to be 

injected at low injection rates to use less volume of the fluids.  
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Fig. 71—Volume per foot of 20 wt% GLDA at pH 1.7 required to penetrate 3 ft into a 20%  porous 
formation at different temperatures. 

 

 
The acid capacity number (Nac) which is the volume of the rock dissolved per the volume of 

the acid present for GLDA at pH of 1.7 can be determined using Eq. 49 (Hill et al. 1993): 

 

 …………………………………………….. (49) 

                                                                                              
 

where;  is the formation porosity,  is the gravimetric dissolving power, GLDA, is the GLDA 

density, g/cm
3
, rock, is the rock density, g/cm

3
, and X is the volumetric dissolving power. 

The acid capacity number for 20 wt% H4GLDA in a calcite formation of 20 vol% porosity will 

be 0.0158. 

Different models can be used to determine the wormholing rate (vwh) during carbonate 

acidizing, Buijse and Glasbern (2005) developed the following semi-empirical equation: 

 

…..…………………………….. (50)                                                                                         
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where; vi.opt is the optimum interstitial velocity = Qopt/(A ), Qopt is the optimum injection rate, 

cm
3
/min, A is the cross sectional area, cm

2
,  is the porosity, vi is the interstitial velocity, cm/min 

= Q/(A ), and PVbt is the pore volume to breakthrough. 

Hung et al. (1989) related the wormhole growth rate (vwh) to the acid capacity number by 

the following equation: 

 

  …………….…………...……………………………. (51) 

                                                                                                                              

where; C0 and Ctip are the injection acid concentration, and the actual acid concentration at the 

tip of the wormhole. In the case of GLDA acid the concentration is constant inside the wormhole 

because it is not consumable we measured the concentration of H4GLDA in the effluent sample 

and it was close to 20 wt%, therefore Eq. 51 can be written in the following form: 

 

 ………………..….…………………………………………… (52)                                                                                                                                      

 
The interstitial velocity at the tip of wormhole (vi,tip) can be determined as follows (Furui et 

al. 2010): 

 

………….…….……………………………………………... (53)                                                                                                                                   

 

where; dcore is the core diameter, cm, and dwh is the wormhole diameter, cm. 

The wormholing rate can be determined also by combining equations 52 and 53 to give the 

following equation: 

 

……..…………………………………………………...  (54)                                                                                                                           
 

 
Substituting the interstitial velocity in terms of flow rate and core diameter in Eq. 54, the 

wormhole growth rate can be written as follows:  

 

…………….…….………………………………………….. (55)
 

 

The pore volume to breakthrough (PVbt) can be determined from the wormholing rate and 

interstitial velocity as follows (Buijse and Glsabern 2005): 
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…………………..…….…………………………………………….. (56)                                                                                                                                                                                                                                                                      

 
Table 17 and Fig. 72 show the actual and predicted pore volume to breakthrough using Eq. 

56. There was a good match showing the validity of the derived equation to be used as an 

effective tool to predict the PVbt based on fluid velocity and wormholing rate during the treatment 

of carbonate cores using GLDA. From Eq. 56, the PVbt is function of injection rate, acid capacity 

number, wormhole size, core size, and core porosity. Table 17 shows the predicted PVbt at for 

different Indiana limestone cores at different injection rates. 

 

 

Table 17—PREDICTED AND CATUAL VALUES FOR THE PVbt  USING GLDA 

Experiment number Actual PVbt, PV Predicted PVbt, PV 

1 6.85 6.64 

2 10.5 11.62 

3 3.35 3.65 

4 3.20 4.15 

5 5.22 5.81 

6 8.00 9.13 

7 3.10 4.15 

8 3.40 3.32 

9 3.65 4.20 

10 3.40 3.85 

11 3.22 2.99 

12 3.10 3.65 
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Fig. 72—Prediction of the PVbt from Equation 56 and the PVbt from the actual experimental data 
showing good match. 

 

 

 Prediction of the Pressure Drop Across the Core 

The pressure drop across the core can be predicted using Darcy‘s equation for linear 

incompressible flow. The viscosity of the GLDA solutions with different calcium concentrations 

were measured at different temperatures up to 70
o
C. The calcium concentration in the coreflood 

effluent samples was measured and constructed versus pore volume. The viscosity that was 

used in predicting the pressure drop was that of the solutions in the coreflood effluent. The 

viscosity of the effluent samples can be determined also from the correlation obtained from Fig. 

73 and extrapolated to the required temperature. The viscosity in this figure was determined by 

preparing different GLDA solution with a total calcium concentration shown in the figure. The 

H4GLDA first was neutralized by crushed calcite then the calcium concentration was increased to 

the required value by adding calcium chloride. The following equations will be used to predict the 

pressure drop across the core: 

1. The pressure drop in the region that the calcium concentration increased from zero to 

the maximum value (viscosity-build up region) can be determined as follows: 
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 …………………………………………………………..... (57)                                                                                                                   

 

2. The pressure drop in the second region in which the fluid has its maximum viscosity and 

constant until the wormhole breakthrough can be determined as follows: 

 

  .………….. (58)                                                                                           

 

where; Q is the injection rate, cm
3
/min, GLDA is the GLDA viscosity, cP and can be determined 

from Fig. 73 , LGLDA is the invaded length of GLDA, Lcore is the core length, in., k is the initial core 

permeability, md, dcore is the core diameter, in., Lwh is the wormhole length, in.,  is the 

pressure drop across the wormhole, psi,  is the pressure drop in the region invaded by 

the GLDA-Ca complex solution, psi, and  is the pressure drop in the water region, psi. 

 

 

 

Fig. 73—Relationship between the GLDA viscosity and solution temperature at different calcium 
concentration for 20 wt% GLDA at pH 1.7. These data were constructed using capillary tube 

viscometer. 
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The assumptions included in predicting the pressure drop are: 

1. Pressure drop across the wormhole is zero. 

2. The wormhole formation is linear with time. 

3. The viscosity of GLDA increased linearly with time until the GLDA breakthrough the core 

( GLDA-max) after that the GLDA viscosity is constant until the wormhole breakthrough and 

depends on the calcium concentration. 

4. The relation between the GLDA viscosity and temperature can be given from Fig. 73 

and can be extrapolated for temperature higher than 70
o
C. 

5. There is no effect for the CO2 at back pressure of 1000 psi or the CO2 is soluble in 

GLDA solutions at 1000 psi back pressure. 

6. GLDA-Ca complex has a constant viscosity and does not react with the rock ahead of 

the fresh GLDA entering the core, so the rock permeability is constant. 

 Model Validation 

The model was used to predict the pressure drop across a 6 in. Indiana limestone core at 180
o
F 

and injection rate of 2 cm
3
/min treated by GLDA at pH 1.7. The calcium concentration for the 

coreflood effluent samples is shown in Fig. 74 showing average calcium concentration of 42,000 

ppm. At that calcium concentration we can choose the correlation for viscosity from Fig. 73 or we 

can use the measured value of the viscosity. Using Equations 57 and 58 the pressure drop 

across the core can be determined. Fig. 75 shows the actual and the predicted pressure drop 

across the core for this case. There was a good match between the predicted and the actual 

pressure drop confirming the validity of the developed model to predict the pressure drop during 

treatment of the core using GLDA solutions. The pressure drop across the core also was 

predicted for an Indiana limestone core treated by 20 wt% GLDA of pH 1.7 at 220
o
F and 3 

cm
3
/min. The actual and predicted pressure data are shown in Fig. 76 showing validity for the 

developed model to be used to predict the pressure drop across the core at different GLDA pH 

values. The calcium concentration in the coreflood effluent for the pressure drop data in Fig. 75 

was measured and had an average value of 43,000 ppm from the GLDA breakthrough until the 

wormhole breakthrough. The viscosity of the 43,000 ppm Ca-GLDA solutions can be determined 

from Fig. 73 by interpolation. Assuming that the GLDA-Ca complex is not reactive with the rock 

is a reasonable assumption because we prepared a solution of 50,000 ppm GLDA-Ca by putting 

crushed calcite in H4GLDA solution until equilibrium and we add calcium chloride solution until 

the total calcium concentration reached 50,000 ppm. After that the solution was stirred with a 

crushed calcite in the slurry reactor for two hours. Then the solution was removed from the 

reactor and filtered using 70 m filter paper and was analyzed for the total and free calcium. The 



117 
 

total calcium was the same which was 50,000 ppm, and this means that the GLDA solution did 

not touch the crushed calcite, i.e., there was no reaction. 

 

 

 

Fig. 74—Calcium concentration in the coreflood effluent for a calcite core treated by 20 wt% GLDA 
of pH 1.7 at 180

o
F. The calcium concentration was constant after injecting 1.2 PV until the wormhole 

breakthrough. 
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Fig. 75—Actual and predicted pressure drop across the core for a calcite core treated by 20 wt% 
GLDA of pH 1.7 at 2 cm

3
/min and 180

o
F. There was a good match between the actual and predicted 

profiles showing a good validation for the developed model. 

 
 

 
Fig. 76—Actual and predicted pressure drop across the core for a calcite core treated by 20 wt% 

GLDA of pH 1.7 at 3 cm
3
/min and 220

o
F. There was a good match between the actual and predicted 

profiles showing a good validation for the developed model. 
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Results and Discussion of the Experimental Part 

 Stimulation of Indiana Cores (Water Saturated) by GLDA and HEDTA  

Indiana limestone cores with average permeability of 1 md and average porosity of 13 vol% were 

used in this study. The coreflood experiments were run using 0.6M GLDA at pH 4 at 

temperatures of 200 and 300
o
F. The experiments were run at different injection rates from 1 to 5 

cm
3
/min. The maximum final core permeability was at 2 cm

3
/min but the minimum pore volume 

to breakthrough (PVbt) was at 3 cm
3
/min. At low injection rates below the optimum GLDA at pH 4 

created more than one wormhole in the core inlet and there was one dominant wormhole. Fig. 

77 shows the pore volume of GLDA required to create wormholes through the core as a function 

of injection rate. At 1 cm
3
/min the pore volume to breakthrough was 4.2 PV at 300

o
F compared 

to 3.35 PV at 3 cm
3
/min, considering the 3 cm

3
/min the optimum injection rate for 0.6M GLDA at 

pH 4. At injection rates lower than the optimum, 0.5, and 1 cm
3
/min, there were more than one 

wormhole in the first few slices as shown in the 2D CT scan images in Table 18. Therefore more 

volumes of GLDA were required to create those non-dominant wormholes, and there was only 

one dominant wormhole at that rate. In the case of HEDTA the wormhole diameter was bigger 

than that in the case of GLDA showing uncontrolled reaction at low rates. The PVbt at low 

injection rates, 0.5, and 1 cm
3
/min, was smaller in the case of GLDA compared to that in the 

case of HEDTA showing a good controlled reaction of GLDA even at low injection rates. At 

injection rate of 0.5 cm
3
/min there was clear face dissolution in the case of 0.6M HEDTA at 

300
o
F as shown in Table 18. At injection rates greater than the optimum, 5 cm

3
/min, the pore 

volume to breakthrough was 5.22 PV. At this rate only one dominant wormhole was formed from 

the core inlet face to the outlet face, and the wormhole size was smaller compared to that 

formed at the optimum injection rate (3 cm
3
/min), Table 18. At injection rates higher than the 

optimum the amount of dissolved calcium was small compared to that at the optimum because 

at higher rates the reaction time for GLDA with the rock was smaller. Increasing temperature 

from 200 to 300
o
F increased the reaction rate of the 0.6M GLDA with calcite and decreased the 

pore volume to breakthrough at different injection rates. The decrease in the pore volume to 

breakthrough with increasing the temperature from 200 to 300
o
F was not high meaning a 

controlled reaction rate even at high temperatures. 

 

 

 

 



120 
 

Table 18—COREFLOOD SUMMARY FOR INDIANA LIMESTONE TREATED BY 0.6M GLDA and 0.6M 
HEDTA at pH 4 and 300

o
F 

Q, 
cm

3
/min 

PVbt, 
GLDA 

PVbt, 
HEDTA 

2D CT Scan Images 
GLDA 

2D CT Scan Images 
HEDTA 

 
 
 

0.5 

 
 
 

4.5 

 
 
 

12.5 

  

 
 
 

1 

 
 
 

4.2 

 
 
 

10.50 

  

 
 
 

3 

 
 
 

3.35 

 
 
 

3.20 

  

 
 
 

5 

 
 
 

5.22 

 
 
 

8.00 
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Fig. 77—Relationship between the pore volume to breakthrough the core and injection rate of 0.6M 
GLDA (pH = 4) at different temperatures using 6-in.Indiana limestone cores. 

 

 
Fig. 78 shows the coreflood results of the stimulation of 6-in. Indiana limestone cores by 

0.6M HEDTA of pH 4 at 200 and 300
o
F. Results similar to that obtained with the 0.6M GLDA at 

pH 4 were obtained here. The optimum injection rate for the 0.6M HEDTA was 3 cm
3
/min at 

300
o
F and almost the same at 200

o
F. Increasing the temperature from 200 to 300

o
F enhanced 

the reaction rate of the 0.6M HEDTA with calcite and less volume of the fluid was required to 

create wormholes at different injection rates. The degree of concavity in the case of HEDTA in 

the curves at different temperatures was higher than that in the case of GLDA. This can be 

attributed to at the injection rates lower than the optimum HEDTA required more volumes to 

create wormholes. Fig. 79 shows the difference of 0.6M GLDA and 0.6M HEDTA at different 

injection rates and 300
o
F at pH 4. At the optimum range from 2 to 3 cm

3
/min the performance of 

the two chelating agents was almost the same in terms of the required pore volume to 

breakthrough the core (PVbt). At injection rates below and above that range there was a 

noticeable difference between GLDA and HEDTA. At injection rates higher than the optimum 

GLDA has a more controlled reaction with calcite than HEDTA. The PVbt for the 0.6 M HEDTA 

increased from 3.2 PV at 3 cm
3
/min to 10.5 PV at 1 cm

3
/min (almost increased three times), 

while for the 0.6M GLDA the PVbt increased from 3.35 PV at 3 cm
3
/min to 4.2 PV at 1 cm

3
/min. 
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As shown in Table 18, the 2D images for HEDTA at 1 cm
3
/min showed a big wormhole 

compared to that created by GLDA at the same conditions. This big wormhole created by 

HEDTA required a lot of volume to be created as it required three times the volume required at 

the optimum rate (3 cm
3
/min). The wormhole created by HEDTA at 1 cm

3
/min was not dominant 

as in the last three slices which is one tenth of the core length (0.6 in.) we could not see the 

wormhole because it was very thin. Most of the volume of HEDTA was consumed in enlarging 

the existed wormhole rather than creating a dominant wormhole. At injection rate of 3 cm
3
/min 

(optimum injection rate) the wormhole diameter was the same for both 0.6M HEDTA and 0.6M 

GLDA.  

 

 

 

Fig. 78—Relationship between the pore volume to breakthrough the core and injection rate of 0.6M 
HEDTA (pH = 4) at different temperatures using 6-in.Indiana limestone cores. 
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Fig. 79—Comparison between 0.6M GLDA and 0.6M HEDTA chelating agents at 300
o
F and pH 4. 

 

 
 Stimulation of Pink Desert (High Permeability-Water Saturated) Calcite 

Cores by Different Chelating Agents 

Three different chelating agents of 0.6M concentration and pH 4 were used to stimulate water-

saturated Pink Deseret limestone cores. The cores had an average permeability of 95 md and 

average porosity of 25 vol%. The cores used in the coreflood experiments have 1.5 in. diameter 

and 6 in. length. The coreflood experiments were run at 300
o
F and 5 cm

3
/min. Fig. 80 shows the 

volume of 0.6M GLDA, EDTA, and HEDTA required to create channels along the total core 

length. The volume required to breakthrough the core (PVbt) was 4, 6, and 9.5 for 0.6M GLDA, 

0.6M HEDTA, and 0.6M EDTA respectively. The 0.6M GLDA performed better than HEDTA and 

EDTA at pH of 4 in the high permeability Pink Desert calcite cores. The enhanced performance 

of GLDA at low pH value can be attributed to its higher solubility (Fig. 81) and higher thermal 

stability at low pH values compared to EDTA and HEDTA (Jim et al. 2010). The 0.6M HEDTA 

created wormholes with diameter bigger than that created by the 0.6M GLDA at the same 

conditions, therefore, the PVbt in the case of HEDTA was higher than that for GLDA. More 

volume of HEDTA was required just to enlarge the wormhole from the core inlet to the core 

outlet. In the case of the 0.6M EDTA the pore volume of EDTA required to breakthrough the core 
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was high because of the solubility of EDTA. The prepared solutions of GLDA, HEDTA, and 

EDTA were left for 3 hours after the preparation, the EDTA precipitated a white precipitate and 

for both HEDTA and GLDA there was no precipitate meaning a good solubility at 0.6M 

concentration. 

 

 

 

Fig. 80—Pore volumes required to create wormholes for different chelating agents using Pink 
Desert calcite cores at 300

o
F. The cores were saturated by de-ionized water. 
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Fig. 81—Solutions of GLDA, HEDTA, and EDTA at pH of 4 showing low solubility of EDTA at pH 4 
after 10 hours. 

 

 
Stimulation of Oil-Saturated Indiana Cores by GLDA and HEDTA 

In this part the effect of saturating the Indiana cores by oil was studied at 300
o
F. The cores were 

saturated first by water and then flushed by oil at 0.1 cm
3
/min, three pore volume of oil were 

injected into the core after that the cores were soaked in the oven at 200
o
F for 24 hours and 15 

days. Table 19 shows the results of the coreflood experiments for the Indiana cores saturated 

with water and oil treated by 0.6M GLDA and 0.6M HEDTA at an injection rate of 2 cm
3
/min and 

300
o
F. The Indiana core that was treated by 0.6M GLDA at pH 4 had a pore volume of 22 cm

3
 

and the residual water after flushing the core by oil was 5 cm
3
 (Swr = 0.227). After soaking the 

core for 15 days and then flush the core by water at 300
o
F and 2 cm

3
/min only 6 cm

3
 of the oil 

was recovered and the volume of residual oil was 10 cm
3
 (Sor = 0.46), this is high fraction of the 

pore volume indicating an oil-wet core. The pore volume to breakthrough (PVbt) for the Indiana 

cores that was treated by GLDA was 3.65 PV for the oil-saturated core, and 3.10 PV for the oil-

saturated core. The presence of oil in the core reduced the PVbt for the cores treated by 0.6M 

GLDA at pH of 4, thus the GLDA performance was enhanced in the oil-saturated cores by 

creating a dominant wormhole. The enhancement in the performance can be attributed to the 

reduced fluid diffusion in the presence of oil. The 2D CT scan images showed that the wormhole 

diameter was not affected by saturating the core by oil or water. The Indiana core saturated by 
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oil that was treated by 0.6M HEDTA at pH 4 required the same PV as the water-saturated core 

to breakthrough the core. The PVbt for both the oil and water-saturated core was 3.4 PV. As 

shown in Table 19 the 0.6M HEDTA at pH 4 was able to create wormholes in both oil and water 

saturated cores with the same volume, which meant that the oil has no effect on the 

performance of HEDTA in the coreflood experiment at 300
o
F. 

The effect of soaking time of the Indiana oil-saturated cores was studied by soaking the 

core for 24 hours, and 15 days. The pore volume of the Indiana core that was soaked for one 

day was also 22 cm
3
, the core was saturated by the same procedures and the same type of oil 

as that soaked for 15 days. The oil saturation after flushing the core by 25 PV water at 2 cm
3
/min 

was 0.227 compared to 0.455 for the 15 days-soaked core. The Sor of 0.227 indicated a water-

wet core. The pore volume required to create wormholes was 3.22 PV for the core that was 

soaked for 24 hours and 3.10 PV for the 15 days-soaked cores. Soaking the oil-saturated core 

for long time increased the amount of the residual oil saturation and decreased the volume of the 

fluid required to create wormholes. Table 20 shows the summary of the effect of soaking time on 

the performance of GLDA with oil-saturated cores. The wormhole diameter was bigger in the 

case of 15 days-soaked core indicating that GLDA performed better in the oil-wet cores than the 

water-wet cores.    

 

 

Table 19—EFFECT OF SATURATING THE CORE BY OIL ON THE PERFORMANCE OF 0.6M 
GLDA AND 0.6 HEDTA AT 300

o
F, pH 4 and 2 cm

3
/min 

 

Reservoir fluid type Oil-Saturated Core Water-Saturated Core 

 
 
 
2D CT scan images, 
GLDA 

  

 
 
 
2D CT scan images, 
HEDTA 

  

PVbt, GLDA, PV 3.10 3.65 

PVbt, HEDTA, PV 3.40 3.40 
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Table 20—EFFECT OF SOAKING TIME ON THE WORMHOLE CREATION USING INDIANA-OIL 
SATURATED CORES TREATED BY 0.6M GLDA AT pH 4 , 2 cm

3
/min, AND 300

o
F 

Soaking time, days 2D CT scan images PVbt, PV Residual oil saturation (Sor) 

 
 
 

1 

 

 
 
 

3.22 

 
 
 

0.23 

 
 
 

15 

 

 
 
 

3.10 

 
 
 

0.46 

 

 

Effect of Gas 

In this part the effect of stimulation of gas saturated cores by GLDA and HEDTA was studied. 

The Indiana limestone cores were first saturated by water and then flushed by nitrogen gas until 

no more water coming out from the core. The coreflood experiments of the gas-saturated 

Indiana limestone cores were run using 0.6M GLDA and 0.6M HEDTA at pH 4, and 300
o
F at 

different injection rates. Table 21 shows the results of the Indiana limestone cores treated by 

0.6M GLDA and 0.6M HEDTA at 300
o
F at 2 cm

3
/min. There was a small difference between the 

PVbt in the case of water-saturated and gas-saturated cores. There was a small increase in the 

PVbt in the case of gas-saturated cores in both cases, GLDA and HEDTA.  
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Table 21—EFFECT OF SATURATING THE CORE BY GAS ON THE PERFORMANCE OF 0.6M 
GLDA AND 0.6 HEDTA AT 300

o
F, pH 4 and 2 cm

3
/min 

Reservoir fluid type Gas-Saturated Core Water-Saturated Core 

 
 
 
2D CT scan images, GLDA 

  

 
 
 
2D CT scan images, 
HEDTA 

  

PVbt, GLDA, PV 3.83 3.65 
PVbt, HEDTA, PV 3.80 3.40 

 

 

Fig. 82 shows the total calcium concentration in the coreflood effluent for Indiana limestone 

cores treated by 0.6M GLDA of pH 4 at 2 cm
3
/min and 300

o
F. The calcium concentration was 

slightly higher in the case of water-saturated core than that in the gas-saturated core by 1000 

ppm. Figs. 83 and 84 show the relationship between the PVbt and injection rate for 0.6M GLDA 

and 0.6M HEDTA using water and gas-saturated cores at 300
o
F. Generally we can conclude that 

saturating the core by nitrogen gas did not affect the performance of 0.6M GLDA and 0.6M 

HEDTA at pH 4 with the Indiana limestone cores. 
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Fig. 82—Effect of gas on the amount of calcium concentration during the coreflood experiment for 
Indiana limestone cores treated by 0.6M GLDA at 2 cm

3
/min and 300

o
F. 

 

 

 

Fig. 83—Effect of gas on the PVbt during the coreflood experiment for Indiana limestone cores 
treated by 0.6M GLDA (pH = 4) at 300

o
F. 
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Fig. 84—Effect of gas on the PVbt during the coreflood experiment for Indiana limestone cores 
treated by 0.6M HEDTA (pH = 4) at 300

o
F. 

 

 
 Stimulation of Pink Desert (High Permeability-Oil Saturated) Calcite Cores 

by Different Chelating Agents 

The effect of saturating the Pink Desert cores by oil and water on the performance of GLDA, 

HEDTA, and EDTA was studied in this part. The solutions of 0.6M EDTA, GLDA, and HEDTA of 

pH 4 at 5 cm
3
/min and 300

o
F were used in the coreflood experiments. Fig. 85 shows a 

comparison between the three chelants, the PVbt was the lowest in the case of 0.6M GLDA (3.8 

PV), the PVbt in the case of HEDTA was 5.5 PV and wormholes with bigger diameter were 

created than that in the case of GLDA. 0.6M EDTA solution was prepared from 40 wt% solution 

of initial pH 11 using HCl and used immediately in the coreflood experiment after preparation. 

The PVbt in the case of EDTA was 9 PV because of the lower solubility and the lower thermal 

stability of the low pH solutions of EDTA (Jim et al 2010). 
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Fig. 85—Pore volumes required to create wormholes for different chelating agents using Pink 
Desert calcite cores at 300

o
F. The cores were saturated by crude oil and soaked for 15 days in the 

oven at 200
o
F. 

 

 
The coreflood experiments were repeated using oil-saturated cores with the three chelating 

agents used above. Similar results were obtained but with slightly lower PVbt. The PVbt 

decreased from 4, 6, and 9.5 PV in the case of water-saturated cores to 3.8, 5.5, and 9 PV in the 

case of oil-saturated cores for 0.6M GLDA, HEDTA, and EDTA at pH 4 and 300
o
F. The average 

permeability of the used cores was 50 md. The oil-saturated cores were flushed by 3 PV 10% 

mutual solvent to remove the oil from the core at 300
o
F and after that the core was flowed by 

chelating agent. In this case we almost got the same results as in Fig. 78, indicating that the 3 

PV 10 vol% mutual solvent removed almost all the oil inside the core, Fig. 86. 
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Fig. 86—Effect of flushing the oil-cores by mutual solvent on the volume of the fluid required to 
create wormholes for different chelating agents. 

 

 
Fig. 87 shows the total calcium concentration in the coreflood effluent samples for the Pink 

Desert cores treated by EDAT, GLDA, and HEDTA of 0.6M concentration and pH 4. The highest 

calcium concentration was obtained in the case of GLDA and HEDAT at an average value of 

27,500 ppm and the lowest was obtained in the case of EDTA at an average value of 13,000 

ppm because of the lower solubility of the EDTA at low pH values. 
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Fig. 87—Different coreflood stages showing the effect of flushing the cores by mutual solvent on 
the amount of calcium in the coreflood effluent. 

 

 
Conclusions 

In this paper the effect of saturating the calcite core by water, oil, and gas on the performance of 

GLDA, HEDTA, and EDTA was studied at 300
o
F. Analytical model was developed to predict the 

propagation of GLDA in calcite cores and showed good results. The following are the 

conclusions that were drawn from this study: 

1. The analytical model results showed good match with the experimental data indicated 

the validity of this model. 

2. GLDA performed better than HEDTA at low injection rates (0.5 and 1 cm
3
/min) and 

performed the same at the optimum injection rates (2 and 3 cm
3
/min). 

3.  Saturating the core by oil enhanced the performance of the chelating agents in both 

high and low permeability cores. 

4. Chelating agents performance did not change during saturating the cores by nitrogen 

gas. 

5. GLDA at low pH values performed better than HEDTA and EDTA at high temperatu 
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CHAPTER VI 

EFFECT OF LITHOLOGY ON THE FLOW OF CHELATING AGENTS IN 

POROUS MEDIA DURING MATRIX ACID TREATMENTS 

Introduction 

Chelating agents such as GLDA, EDTA, and HEDTA have been used to stimulate calcite cores 

as alternatives to HCl. HCl based stimulation fluids are very corrosive at high temperatures and 

should be loaded with many additives to reduce corrosion problems. GLDA chelating agent was 

used to stimulate calcium carbonate cores up to temperature of 300
o
F and at low rates without 

any face dissolution problems. The dissolution of dolomite by chelating agents has not been 

thoroughly investigated. Preliminary experiments with EDTA at ambient temperature revealed no 

significant dolomite dissolution. The dissolution mechanism is probably inhibited by the low 

stability of the magnesium chelate at that temperature. 

In this part we will investigate the ability of GLDA (glutamic-N,N-diaacetic acid) to stimulate 

dolomite cores as well as calcite cores. GLDA of different pH (1.7, 3 and 13) was used for this 

study. Dolomite and Indiana limestone cores with dimensions of 1.5 in. diameter and 6 in. length 

were used. The coreflood experiments were run at different flow rates and different temperatures 

to determine the optimum rate that the GLDA can create wormholes in both dolomite and calcite 

cores. Complete fluid analysis for the coreflood effluent was done to study the reaction of GLDA 

with both dolomite and calcite. 

GLDA was very effective in stimulating both dolomite and calcite cores at different pH over 

a wide range of temperatures (180, 250 and 300
o
F). There was an optimum injection rate at 

which the amount of GLDA needed to create wormholes was minimum. Also, GLDA effectively 

chelated magnesium and calcium from dolomite cores. GLDA was stable up to temperatures of 

300
o
F and the concentration of GLDA after the treatment was the same as that before the 

treatment, further confirming thermal stability of GLDA at this temperature. 

The objective of this part of the study is to:  

(1) evaluate the use of GLDA as a stand-alone stimulation fluid for dolomite reservoirs, (2) the 

effect of GLDA initial pH value on wormhole creation and permeability increase, (3) analyze the 

coreflood effluent to show the thermal stability and the amount of dissolved calcium and 

magnesium, and (4) compare the performance of GLDA in both dolomite and calcite cores. 
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Experimental Studies 

 Materials 

Dolomite cores with permeability range of 50 to 100 md were used in the coreflood experiments. 

The core samples were cut in a cylindrical form with dimensions of 1.5 in. diameter of 6 and 20 

in. lengths. 

Different pH values (1.7, 3, 3.8, and 13) of 20 wt% GLDA solutions were prepared from 

original solutions that were obtained from AkzoNobel. De-ionized water (TDS < 20 ppm) was 

used to prepare the 20 wt% GLDA solutions.  

Dissolution of Dolomite by GLDA 

A slurry reactor (Fig. 5) was used to determine the ability of GLDA to dissolve dolomite. 

Complete description for the reactor was given in Chapter II.  Portions of Silurian dolomite cores 

were ground and particles of 20 mesh size were oven dried before use. GLDA/dolomite slurries 

with a molar ratio of 2 were put in the reaction flask at 125, and 180
o
F; samples were removed at 

set time periods.   Samples taken for testing from the slurry reactor were filtered using 70 m 

filter paper. The clear filtrate was analyzed for both calcium and magnesium concentrations 

using atomic absorbance spectrometer (AAnalyst 700-flame type) immediately after the test. To 

study the effect of sodium chloride on the GLDA performance, 5 wt% salt solutions were 

prepared using sodium chloride. All GLDA solutions were prepared using de-ionized water with 

total dissolved solids (TDS) of 20 ppm. 

Characteristics of Core Samples 

Silurian dolomite cores were used in this study. The core permeability ranged 50 to 100 md and 

average porosity of 20%. The dolomite cores were scanned before the coreflood experiments 

and cores with fractures were excluded and were not used in the study. The coreflood set up 

(Fig. 7) and the procedure to conduct coreflood experiments were given in Chapter II. 

Results and Discussion 

Effect of GLDA pH Value on the Dolomite Dissolution 

Fig. 88 shows the effect of initial pH value of 20 wt% GLDA solutions (pH 1.7 and 13) on the 

dolomite dissolution process at 180
o
F. GLDA at pH 1.7 dissolved more calcium and magnesium 

than GLDA at pH 13. The total calcium and magnesium concentrations stabilized at 11,500 and 

6,600 ppm respectively at pH 1.7. GLDA at pH 13 dissolved less calcium and magnesium, the 

total calcium and magnesium concentration reached maximum values at 1,500 and 800 ppm 
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respectively. The calcium and magnesium concentrations were higher at pH 1.7 than that at pH 

13, because of the dissolution at low pH was due to both complexation and hydrogen ion attack 

(four hydrogen in the carboxylic groups-H4GLDA). The reaction at high pH was due to 

complexation only (no hydrogen in the carboxylic groups-Na4GLDA). A complete explanation for 

the process of GLDA reaction with calcite at different pH values was given by Mahmoud et al. 

(2010a). 

According to the stoichiometric reaction in Eq. 59, the molar ratio of calcium/magnesium 

should be 1. Molar ratio of 1 should be attained in the case of HCl, but here GLDA has more 

affinity for calcium than magnesium.  

 

………………...  (59) 

 

The stability constant of GLDA with calcium is 5.9, and with magnesium is 5.2. Thus GLDA 

tends to prefer Calcium over Magnesium. The dissolution at pH 1.7 is predominantly due to 

hydrogen ion attack, in which GLDA reacts as acid; therefore the molar ratio should be close to 

1. The calcium/magnesium molar ratio at pH 1.7 was 1.045, because the reaction was due to 

complexation and hydrogen ion attack (12.5 % complexation and 87.5% hydrogen ion attack, 

Mahmoud et al. 2010a). The part of complexation contributing in the reaction gave the affinity of 

GLDA to calcium more than magnesium; therefore, the molar ratio was slightly higher than 1. 

The reaction at GLDA of pH 13 was due to complexation only; therefore, the calcium/magnesium 

molar ratio should be more than 1 and close to the ratio of Ca-GLDA stability constant/Mg-GLDA 

stability constant. The ratio between stability constants for calcium and magnesium was 5.9/5.2 

= 1.13. The calcium magnesium molar ratio at pH 13 was 1.125 which was close to 1.13. 
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Fig. 88—Effect of initial pH value of GLDA on dolomite dissolution at 180
o
F. 

 

 

Effect of Salts  

Fig. 89 shows the effect of adding 5 wt% NaCl to 20 wt% GLDA at pH 3.8 on the dolomite 

dissolution at 180
o
F. Adding sodium chloride to the GLDA solution increased the amount of 

dissolved magnesium and calcium by 400 ppm only. This can be attributed to that at 180
o
F, 

GLDA at pH 3.8 did not degraded and still thermally stable. Adding 5 wt% NaCl enhanced the 

thermal stability, and kept the concentration of GLDA constant at 20 wt%. Without adding salt, 

after heating GLDA to 180
o
F the concentration was measured after heating and it was 19 wt%. 

The amount of calcium and magnesium dissolved when adding 5 wt% NaCl was 400 ppm 

greater than that when no salt was added. 
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Fig. 89—Effect of salt on dolomite dissolution by GLDA (pH = 3.8) at 180
o
F. 

 

 

Comparison between Calcite and Dolomite Dissolution by GLDA 

Fig. 90 shows the calcite dissolution by 20 wt% GLDA at pH 1.7 and 13 at 180
o
F. At the same 

conditions the amount of dissolved calcium from calcite was greater than both the amount of 

calcium and magnesium dissolved from dolomite. The calcium concentration in case of calcite 

stabilized at 22,000 ppm, which was greater than the amounts of both calcium (11,500 ppm) and 

magnesium (6,600 ppm) that were dissolved from dolomite at the same conditions. As discussed 

in literature the reaction rate of HCl with calcite was greater than with dolomite at temperatures 

below 200
o
F, the same applied here for GLDA. The reaction of GLDA with dolomite produced 

less amount of cations than that produced in the case of calcite at the same temperature. 
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Fig. 90—Calcite dissolution by 20 wt% GLDA at 180
o
F. 

 

 

Effect of Temperature on Dolomite Dissolution by GLDA 

Fig. 91 shows the effect of increasing the temperature from 125 to 180
o
F on the amount of 

dissolved calcium and magnesium by 20 wt% GLDA at pH 3.8. Lund et al. (1973) showed that 

increasing the temperature during the reaction of HCl with dolomite increased the reaction rate 

by orders of magnitude. The reaction of GLDA with dolomite at 180
o
F produced more calcium 

and magnesium than at 125
o
F. Increasing the temperature from 125 to 180

 o
F increased the 

amount of dissolved calcium from 4,200 to 6,150 ppm, and increased the amount of dissolved 

magnesium from 2,250 to 3,350 ppm. Increasing the tempearture from 125 to 180
o
F increased 

the amount of dissolved calcium and magnesium by more than 30%. GLDA reaction with 

dolomite was similar to that of HCl with dolomite as the reaction increased with increasing the 

temperature. 
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Fig. 91—Effect of temperature on dolomite dissolution by 20 wt% GLDA at pH 3.8. 

 

 

Optimum Injection Rate in the Coreflood  

Fig. 92 shows the volume of GLDA required to create wormholes as a function of injection rate 

for 20 wt% GLDA at pH 3 and 200
o
F. Increasing the injection rate from 1 to 9 cm

3
/min resulted in 

increase in the pore volume required to create wormholes from 7.8 to 15.5 PV. The optimum 

injection rate for 1N HCl at 70
o
C (158

o
F) was well defined at 3.8 cm

3
/min (Hill and Schechter 

2000). In case of both calcite and dolomite GLDA performed better at low injection rates than at 

high injection rates. This can be attributed to the increased time of reaction allowed more 

calcium and magnesium to be dissolved. From this figure, the reaction of GLDA with dolomite 

was lower than that with calcite, because of the volume required to create wormholes was high 

in the case of dolomite than calcite. The PVbt in the case of dolomite was almost twice that for 

calcite at 200
o
F. Injecting GLDA at injection rates above this rate resulted in sharp increase in 

the pore volumes required to breakthrough the core. Injecting GLDA at low rates allowed more 

contact time between the fluid and dolomite and enhanced the dissolution process.  
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Fig. 92—Optimum injection rate for GLDA at pH 3 at 200
o
F. 

 

 

Effect of GLDA pH Value on the Coreflood Experiments 

Coreflood experiments were run using 20 wt% GLDA solutions at 5 cm
3
/min and 300

o
F to 

investigate the effect of GLDA initial pH value on the creation of wormholes during the coreflood 

experiments. Coreflood experiments were run at GLDA initial pH values of 1.7, 3, 3.8, 11, and 

13. 

Fig. 93 shows the calcium and magnesium concentrations at pH 1.7. Seven pore volumes 

were injected to breakthrough the core, and the core permeability was increased from 75 to 785 

md (kfinal/kinitial = 10). The amount of calcium reached a maximum value at 18,000 ppm and the 

magnesium reached a maximum value at 12,500 ppm.  
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Fig. 93—Effluent analysis for GLDA at pH 1.7 and 5 cm
3
/min at 300

o
F. 

 

 
Fig. 94 shows image profile for a slice from the dolomite core before the coreflood 

experiments. In this image there was no fractures, no vugs, and this applied for all slices taken 

from this core. The CT number had an average value of 2,500 before the coreflood experiments. 

Fig. 95a shows the 2D CT scan image after the coreflood experiment. There are a lot of 

wormholes formed after injecting the core by GLDA. Twenty slices were imaged by the CT scan 

tomography, and there was at least one wormhole in each slice indicating the effectiveness of 

GLDA to create wormholes in dolomite cores at low pH. 
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Fig. 94—Image profile for a slice of dolomite core before the coreflood experiment.  

 
 
 
 
 
 
 
 

  
(a) injection rate = 5 cm

3
/min (b) injection rate = 2 cm

3
/min 

 

Fig. 95—2D CT scan images after the coreflood experiment at 300
o
F, GLDA pH = 1.7. 
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Fig. 96 shows the calcium and magnesium concentrations for the same previous conditions 

(1.7 pH and 300
o
F) but at lower flow rate (2 cm

3
/min). Lowering the injection rate from 5 to 2 

cm
3
/min increased the amount of calcium and magnesium in the effluent samples.  The calcium 

concentration increased from 18,000 to 25,000 ppm after decreasing the injection rate from 5 to 

2 cm
3
/min. The same applied for magnesium concentration it increased from 12,500 to 14,500 

ppm after decreasing the injection rate. Fig. 95b shows the 2D CT scan images for the core after 

the coreflood experiment at 2 cm
3
/min. The wormholes number increased due to decreasing the 

injection rate. The core permeability increased from initial permeability of 50 md before the 

coreflood experiment to a final permeability of 730 md after the experiment (kfinal/kinitial = 15). 

 

 

 

Fig. 96— Effluent analysis for GLDA at pH 1.7 and 2 cm
3
/min at 300

o
F. 

 

 
Fig. 97 shows the coreflood effluent analysis for calcium and magnesium. The coreflood 

experiment was performed using 20 wt% GLDA at pH 3 at 5 cm
3
/min, and 300

o
F. The 

performance of the GLDA at pH 3 was close to GLDA at pH 1.7 at the same conditions of 

injection rate. The calcium concentration reached a maximum value of 16,400 ppm (it was 

18,000 ppm in case of GLDA at pH 1.7), and the magnesium concentration reached a maximum 
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value of 9,500 ppm (it was 12,500 ppm in case of GLDA at pH 1.7). The difference in the ability 

of GLDA at pH 3, and 1.7 to dissolve dolomite and produce calcium and magnesium was small. 

This can be attributed to that the structure of GLDA at pH 3 still contains three hydrogen atoms 

in the carboxylic groups (H3NaGLDA), which also, can act as acid. The core permeability 

increased from 55 to 490 md with kfinal/kinitial = 9. 

 

 

 

Fig. 97—Effluent analysis for GLDA at pH 3 and 5 cm
3
/min at 300

o
F. 

 

 
Fig. 98 shows the total concentrations of calcium and magnesium in the coreflood effluent 

samples. The coreflood experiments shown in Fig. 98 were performed using 20 wt% GLDA at 

pH 13 at injection rate of 2 and 5 cm
3
/min, and 300

o
F. At injection rate of 5 cm

3
/min the calcium 

concentration reached a maximum value at 1,900 ppm (compared to 18,000 ppm at pH 1.7). 

GLDA at pH 13 has no hydrogen (Na4GLDA) and the reaction was due to complexation only. 

The same for magnesium concentration it reached its maximum value at 950 ppm (compared to 

12,500 at pH 1.7). GLDA at pH 13 had low efficiency in stimulating dolomite cores compared 

with GLDA at pH 1.7, and 3. Decreasing the injection rate from 5 to 2 cm
3
/min allowed more time 

for complexation and more calcium and magnesium were complexed. The calcium concentration 

reached 2,150 ppm and the magnesium concentration increased from 950 at 5 cm
3
/min to 1,150 
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ppm at 2 cm
3
/min. The core permeability increased from 65 to 110 md at 5 cm

3
/min (kfinal/kinitial = 

1.7), while it increased from 85 to 168 md at 2 cm
3
/min (kfinal/kinitial = 2.0). Decreasing the injection 

rate from 5 to 2 cm
3
/min, enhanced the complexation of calcium and magnesium by GLDA at pH 

13, and it also enhanced the permeability increase. There was no wormholes in this case, we 

just investigated the effect of injecting 7.5 PV on enhancement the permeability of the dolomite 

core. 

 

 

 

Fig. 98—Effluent analysis for GLDA at pH 13 and injection rates of 5, and 2 cm
3
/min at 300

o
F. 

 

 

Thermal Stability of GLDA  

The coreflood effluent samples were analyzed for the GLDA concentration. The effluent analysis 

for GLDA concentration showed a high thermal stability at high pH values (11&13), the 

concentration before and after the coreflood experiments was 20 wt%. The GLDA at pH 11 and 

13 showed high thermal stability after the coreflood experiments performed at 300
o
F. GLDA at 

pH 1.7 used in the coreflood experiments was GLDA at pH 3 blend with HCl to get pH of 1.7, the 

analysis in the coreflood effluent samples after the coreflood experiments showed a 

concentration of 19 wt%. The initial concentration was 20 wt%; therefore, GLDA at pH 1.7 
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showed thermal stability of 95% at 300
o
F in the coreflood experiments. GLDA at pH 3 and 3.8 

also, showed a good thermal stability, as the average samples concentration in the coreflood 

effluent was 19 wt% showing a 95% thermal stability at 300
o
F in the coreflood experiments. 

Effect of GLDA pH value on the Ca/Mg Molar Ratio  

Coreflood experiments were performed using 20 wt% GLDA at five pH values (1.7, 3, 3.8, 11, 

and 13). The coreflood experiments were run at 5 cm
3
/min and 300

o
F. Table 22 shows the total 

amounts of calcium and magnesium that were dissolved during the coreflood experiments. Fig. 

99 shows the calcium magnesium molar ratios for the samples collected after the coreflood 

experiments. The amount of the dissolved calcium and magnesium were the highest at pH 1.7, 

because GLDA at pH 1.7 reacts with dolomite with both hydrogen donation and complexation. 

The amount of the dissolved calcium and magnesium was the lowest at pH 13 because the 

reaction of GLDA with dolomite was due to complexation only and there was no hydrogen 

donation.  

The calcium/magnesium molar ratio was the lowest at pH 1.7 and was 1.055 which is closer 

to 1. GLDA at pH 1.7 performed close to HCl at which the calcium/magnesium ratio should be 1.  

The calcium/magnesium molar ratio increased as the GLDA initial pH value increased, it reached 

its maximum value of 1.137 at pH 13. As the GLDA pH value increased the reaction due to 

complexation increased, and reached maximum at pH 13. The calcium/magnesium molar ratio at 

pH 13 (1.137) was close to the ratio between Ca-GLDA stability constant and Mg-GLDA stability 

constant (5.9/5.2 = 1.135).   

 

 

Table 22—CALCIUM/MAGNESIUM MOLAR RATIO DURING THE COREFLOOD 
EXPERIMENTS 

GLDA Initial 
pH Value 

Amount of 
calcium 

Dissolved, g 

Amount of Magnesium 
Dissolved, g 

Calcium/Magnesium 
Molar Ratio 

1.7 3.780 2.150 1.055 

3 2.050 1.160 1.062 

3.8 1.053 0.577 1.092 

11 0.650 0.347 1.125 

13 0.531 0.280 1.137 
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Fig. 99—Calcium/magnesium molar ratio for the coreflood effluent samples at 5 cm
3
/min and 300

o
F 

at different 20 wt% GLDA solutions pH. 

 

 
Conclusions 

In this part GLDA was used to stimulate dolomite cores at high temperatures. GLDA was 

effective in stimulating both dolomite and calcite cores. The following are the conclusions that 

were drawn from this part of the study: 

1. GLDA reaction with calcite was higher than that with dolomite at 180
o
F. 

2. GLDA at different pH values (1.7, 3, 3.8, 11, and 13) effectively stimulated dolomite 

cores as it chelated both calcium and magnesium. 

3. Unlike HCl, GLDA has no well-defined optimum injection rate with dolomite. Decreasing 

the rate enhanced the dissolution and decreased the volume required to create 

wormholes. 

4. GLDA was thermally stable during the coreflood experiments up to 300
o
F. 

5. The calcium/magnesium molar ratio was the lowest and close to 1 at pH 1.7 (1.055), and 

was the highest and close to Log KCa-GLDA/Log KMg-GLDA (1.135) at pH 13 which was 

1.137. 
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CHAPTER VII 

SANDSTONE ACIDIZING USING A NEW CLASS OF CHELATING AGENTS 

Introduction 

The objective of stimulation of sandstone reservoirs is to remove the damage caused to the 

production zone during drilling or completion processes. Many problems may occur during 

sandstone acidizing with HCl/HF mud acid. Among those problems: decomposition of clays in 

HCl acids, precipitation of fluosilicates, precipitation of aluminum fluorides, silica-gel filming, 

colloidal silica-gel precipitation, and mixing between various stages of the treatment. 

 In this part of the study GLDA was used to stimulate sandstone cores. Berea sandstone 

cores were used in this study. Different GLDA solution pH values (1.7, 3, 3.8, 11, and 13) were 

used. The sandstone cores were scanned before and after the treatment to investigate the effect 

of GLDA on the core using the CT scan. The effluent samples were analyzed for calcium, 

magnesium, aluminum, and iron using the ICP to show the ability of GLDA on the complexation 

of these ions. Coreflood experiments were run at temperatures ranged from 200 to 300
o
F and 

the concentration of GLDA was determined after the treatment. The effect of flow rate, volume of 

GLDA, and GLDA pH was investigated on the Berea sandstone cores. Different correlations 

were used to determine the core permeability after the treatment, and the correlation that gave 

the minimum error was determined. 

GLDA showed a strong ability in chelating calcium, magnesium, and iron, but chelated 

small amounts of the aluminum ions from the sandstone cores. At 300
o
F GLDA at different pH 

values was able to enhance the core permeability. Decreasing the injection rate from 5 to 2 

cm
3
/min increased the contact time between the fluid and the rock and increased the amount of 

dissolved ions.  X-ray CT scan showed a porosity increase after the treatments. The 

concentration of GLDA after the coreflood experiment was almost the same before the treatment 

showing a high thermal stability up to 300
o
F in the coreflood experiment. Lambert correlation 

was found to be the best correlation to predict for the core permeability after treating Berea 

sandstone cores by 20 wt% GLDA solutions. 

In this part, GLDA chelating agent will be tested on sandstone cores, therefore, the 

objective of this part is to: (1) assess the use of GLDA chelating agent in stimulating Berea 

sandstone cores, (2) study the effect of initial GLDA pH value, injection rate, volume of GLDA, 

and temperature on the permeability enhancement of Berea cores, (3) use the CT scan to 

evaluate the use of GLDA to stimulate Berea sandstone cores, and (4) find the best correlation 

that can be used to determine the core permeability treated by GLDA. 
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Experimental Studies 

 Materials 

GLDA Chelating agent was used in this part of the study was supplied from AkzoNobel. The 

original concentration of the chemical was 40 wt% at the different pH values. A concentration of 

0.6M GLDA was used at different pH values. Core plugs were cut in a cylindrical form from 

Berea sandstone blocks of dimensions 9 x 9 x 9 in. The XRD results for the Berea sandstone 

cores are listed in Table 23.  

 

 

Table 23—MINERAL COMPOSITION FOR DIFFERENT SANDSTONE CORES 

Mineral Wt% 

Quartz 86 

Dolomite 1 

Calcite 2 

Feldspar 3 

Kaolinite 5 

Illite 1 

Chlorite 2 

 
 
 

Experimental Procedure 

Coreflood experiment were performed using the set up shown in Fig. 7, the core was first loaded 

into a Hassler sleeve core holder at an overburden pressure of 2,000 psig and temperatures up 

to 300°F. The core was subjected to vacuum for an hour. Then, it was saturated with injection 

water until the brine permeability became constant. The brine used in the experiments was 5 

wt% NaCl. A 1000 psi back pressure was applied in the coreflood experiments to achieve good 

saturation and displacement of the fluid and to keep CO2 in solution. The pore volume of the 

core was determined after saturating the core by dividing the difference between the saturated 

core and dry core by the brine density (1.034 g/cm
3
 at 22

o
C). The cores were CT-scanned dry, 

saturated with 5 wt% NaCl, and after the treatment. Before flooding the cores by chelating agent 

solution, the core was heated-up to the test temperature for at least three hours to ensure the 

stabilization of the core and fluid temperatures. The effluent samples were collected in all the 

coreflood experiments to analyze for calcium, magnesium, iron, aluminum, and silicon using the 

ICP. 
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Results and Discussions 

Using GLDA to Stimulate Berea Sandstone Cores 

The first coreflood experiment was run using 0.6M GLDA at pH 3.8 at 300
o
Fand 5 cm

3
/min. 

GLDA was able to chelate calcium, magnesium, iron, and small amount of aluminum from the 

sandstone core, Fig. 100. GLDA start to react with the minerals in Berea core such as calcite, 

dolomite, chlorite, etc, and chelated calcium, magnesium, iron, and aluminum. The concentration 

of calcium, magnesium, iron, and aluminum started to increase after injecting one pore volume 

of GLDA. Injecting 7 PV of GLDA at 300
o
F increased the core permeability from an initial value 

of 95 to 145 md. The amount of ions that were chelated or dissolved by the 0.6M GLDA were 

1.98, 1.93, 0.7, and 0.135 g of calcium, iron, magnesium, and aluminum respectively. Figs. 101 

and 102 show the CT scan results for a slice of the Berea core before and after the treatment by 

GLDA. The CT number decreased from an average initial value of 1720 to an average value of 

1610 confirming the effectiveness of GLDA in stimulating the Berea sandstone core. 

 

 

 

Fig. 100—Analysis of the coreflood effluent samples for Berea sandstone cores treated by 0.6M 
GLDA at pH 3.8, 300

o
F, and 5 cm

3
/min. 
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Fig. 101—2D image for a slice of saturated Berea sandstone core before the treatment showing 
average CT number of 1720. 

 
 
 

 
 

 
 

Fig. 102—2D image for a slice of saturated Berea sandstone core after the treatment showing 
average CT number of 1610.  
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Effect of GLDA pH Value on the Permeability Ratio of Berea Cores 

Fig. 103 shows the effect of initial pH value of 0.6M GLDA on the Berea sandstone cores at a 

flow rate of 5 cm
3
/min and 300

o
F. Five pH values of 0.6M GLDA were used, namely: 1.7, 3, 3.8, 

11, and 13. All the GLDA solutions used increased the permeability of Berea sandstone cores 

indicating the compatibility of all pH values of the GLDA solutions with the clays found in the 

Berea sandstone cores. Table 24 shows the rock properties of the five coreflood experiments 

were run at the same conditions and the volume of injected GLDA in all experiments was 7 PV. 

GLDA at pH 1.7 was able to double the permeability of the Berea sandstone core, increasing the 

pH from 1.7 to 13 decreased the efficiency of GLDA, but still there was an increase in the 

permeability ratio. GLDA at high pH did not cause  precipitations inside the core, CT scan 

images for cores treated by GLDA at different pH value showed a decrease in the CT number 

and there was no anomalies in the images which means there was no precipitation even at high 

pH values (11and 13). GLDA at pH 11 and 13 almost performed the same during the coreflood 

experiments as it increased the permeability with the same ratio (Kfinal/Kinitial = 1.16). Table 25 

shows the increase in the average CT number for different cores treated by different pH values 

using 0.6M GLDA at 300
o
F and 5 cm

3
/min. The decrease in CT number was the maximum at pH 

1.7 as it decreased from 1720 to an average value of 1510. Increasing the pH value from 1.7 to 

13 reduced the decrease in the CT number as it decreased from 1735 to 1705 at pH 13. The 

results from the CT number in Table 25 confirmed the results obtained in Fig. 102 showing a 

strong relation between the final core permeability and the CT number of the Berea sandstone 

cores. 

 

 

 

Table 24—EFFECT OF INITIAL pH VALUE OF 0.6M GLDA SOLUTIONS ON THE 
PERMEABILITY RATIO FOR BEREA SANDSTONE CORES AT 5 cm

3
/min AND 300

o
F 

pH kinitial, md kfinal, md 
kfinal/kinitial 

 

1.70 82 165 2.01 

3.00 82 160 1.95 

3.80 95 145 1.54 

11.0 95 110 1.16 

13.0 95 110 1.16 
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Table 25—EFFECT OF INITIAL pH VALUE OF 0.6M GLDA SOLUTIONS ON THE AVERAGE CT 
NUMBER FOR BEREA SANDSTONE CORES AT 5 cm

3
/min AND 300

o
F 

Initial 
pH 

Slice Image Slice Profile 
CT no. 
before 

CT no. after 

 
 
 

1.70 

  

 
 
 

1725 

 
 
 

1510 

 
 
 

3.00 

 
 

 
 
 

1715 

 
 
 

1540 

 
 
 

3.80 

  

 
 
 

1720 

 
 
 

1610 

 
 
 

11.0 

  

 
 
 

1750 

 
 
 

1710 

 
 
 

13.0 

  

 
 
 

1735 

 
 
 

1705 
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Fig. 103—Effect of the initial pH value of GLDA on the permeability ratio for Berea sandstone cores 
treated at 300

o
F and 5 cm

3
/min using 0.6M GLDA. 

 

 
 Effect of Injection Rate on the Permeability Ratio of Berea Cores 

Fig. 104 shows the effect of injection rate of 0.6M GLDA at pH 3.8 on the permeability ratio of 

Berea sandstone cores. Three coreflood experiments with three different injection rates were 

performed. The injection rates used are 2, 5, and 8 cm
3
/min, and the injected GLDA volume was 

constant in the three coreflood experiments, i.e., 7 PV were injected in each experiment. The 

core permeability increased in the three experiments at the three injection rates. The maximum 

increase in the core permeability was attained at the lowest injection rate, 2 cm
3
/min, in which 

the contact time between the GLDA and the Berea core was increased and allowed more time 

for reaction. At 2 cm
3
/min the GLDA solution dissolved more calcium, magnesium, and iron than 

at 8 cm
3
/min. The permeability ratio was 1.86, 1.54, and 1.2 at injection rates of 2, 5, and 8 

cm
3
/min respectively. From these results we recommend that GLDA should be injected at low 

injection rate to attain the maximum possible increase in permeability for the treated sandstone 

formations. At all injection rates there was no fines migration or any disturbance in the pressure 

performance indicating the compatibility of GLDA with clays (kaolinite, chlorite, and illite) existed 

in the Berea sandstone cores. 
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Fig. 104—Effect of injection rate on the permeability ratio for Berea sandstone cores treated at 
300

o
F and 5 cm

3
/min using 0.6M GLDA at pH 3.8. 

 

 
Effect of the Injected Volume of GLDA on the Permeability Ratio  

Fig. 105 shows the effect of injected volume of 0.6M GLDA at pH 3.8 on the permeability ratio of 

Berea sandstone cores. All the coreflood experiments were performed at 5 cm
3
/min, and 300

o
F. 

Different pore volumes of GLDA were injected through the Berea sandstone cores, namely; 1.5, 

4.5, 7, and 10 PV. The relation between the permeability ratio (Kfinal/Kinitial) and injected volume of 

GLDA was a second degree polynomial. Injecting 10 PV of 0.6M GLDA (pH = 3.8) at 5 cm
3
/min 

and 300
o
F increased the core permeability more than twice (Kfinal/Kinitial = 2.16). 

 Fig. 106 shows the amount of dissolved ions as a function of the injected volume of GLDA 

at the same previous conditions. Generally we can say that the ability of GLDA to chelate iron 

was greater than its ability to chelate calcium and magnesium. This can be attributed to the 

stability constant of GLDA with iron (LogKFe-GLDA = 11.7) is greater than the stability constant of 

GLDA with calcium (LogKCa-GLDA = 5.9). The amount of iron was greater than that of calcium at 

the different injected PV of GLDA. Injecting more volume of GLDA through the Berea sandstone 

cores while other factors are constant increased the amount of dissolved calcium, iron, and 

magnesium in the coreflood effluent samples. The molar ratio of calcium to magnesium was 
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greater than unity here because there are two sources for calcium calcite and dolomite and the 

sources of magnesium are dolomite and chlorite. It was easy for GLDA to chelate calcium from 

calcite and dolomite rather than to chelate magnesium from chlorite.  

 

 

 
 
Fig. 105—Effect of the injected volume of GLDA on the permeability ratio for Berea sandstone cores 

treated at 300
o
F and 5 cm

3
/min using 0.6M GLDA at pH 3.8. 
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Fig. 106—Effect of the injected volume of GLDA on the amount of dissolved cations for Berea 
sandstone cores treated using 0.6M GLDA at pH 3.8 and 5 cm

3
/min. 

 

 
 Effect of Temperature on the Stimulation of Berea Sandstone Cores  

Fig. 107 shows the results of the three coreflood experiments performed at 200, 250, and 300
o
F 

using 0.6M GLDA at pH 3.8 and at injection rate of 5 cm
3
/min. The effect of increasing 

temperature from 200 to 300
o
F on the permeability ratio of the Berea cores was small. 

Increasing the temperature increased the reaction rate of GLDA and increased the amount of 

dissolved calcium, iron, and magnesium as shown in Fig. 108. Increasing the temperature 

increased the reaction rate of GLDA with calcite, dolomite, and chlorite minerals in the Berea 

sandstone core.  

From the coreflood experiments we can summarize the order of the factors that affecting 

the permeability ratio of the Berea sandstone cores using 0.6M GLDA. We can put the factors in 

order as follows from the highest to the lowest effect; volume of GLDA (PV), GLDA pH, injection 

rate, and temperature. Unlike the reaction of GLDA with calcite the most important factor was the 

temperature because it enhanced the reaction rate of GLDA with calcite (Mahmoud et al. 

2010a). In Berea sandstone cores the calcite concentration is very small (1 to 2 wt%), therefore, 

the effect of temperature will be smaller compared to that in case of calcite cores. Increasing the 
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temperature from 200 to 300
o
F at the same conditions increased the average calcium 

concentration from 7000 to 8000 ppm. This can be attributed to the smaller concentration of 

calcite and dolomite minerals in the Berea sandstone cores used in this study. The calcium 

concentration in the effluent analysis came from the dissolution of dolomite and calcite minerals 

by GLDA. Increasing the temperature from 200 to 300
o
F increased the reaction rate of GLDA 

with calcite more than dolomite, therefore, the total increase in calcium concentration was 

smaller compared to that in case of the reaction of GLDA with calcite. Increasing the 

temperature from 200 to 300
o
F during the calcite coreflood experiment of GLDA at pH 3.8 and 5 

cm
3
/min, increased the average calcium concentration from 15,000 to 20,000 ppm. 

 

 

 
 

Fig. 107—Effect of temperature on the permeability ratio of Berea sandstone cores treated using 
0.6M GLDA at pH 3.8 and 5 cm

3
/min. 
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Fig. 108—Effect of temperature on the amount of dissolved cations for Berea sandstone cores 

treated at 5 cm
3
/min using 0.6M GLDA at pH 3.8. 

 

 
 Improvement in Skin Damage and Production Rate Using GLDA  

The skin damage in sandstone reservoirs can be determined using Eq. 61 (Hill et al. 1993): 

 

………………….…..……….………………………………. (61) 

 

where; S = skin effect due to damage, kd = damaged zone permeability, md, kt = treated zone 

permeability, md, rt = damaged radius, assume = 6 in., and rw is the well radius, assume = 3 in.  

Using Eq. 61 assuming the damaged length to be the core length, 6 in., and the well radius 

is 3 in., the skin damage can be determined at GLDA pH values of 1.7, 3, 3.8, 11, and 13. 
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The production rate of an oil well can be determined using Eq. 62 (Hill et al. 1993): 

 

…………………………..…………………….…………… (62) 

 
where; qo= oil production rate, bbl/day, k = formation permeability after treatment, Darcy, pe = 

average reservoir pressure, psi, pwf = wellbore flowing pressure, psi,  = oil viscosity, cP, o = oil 

formation volume factor, bbl/stb, and S = skin damage, dimensionless. The effect of GLDA initial 

pH value can be showed by assuming a producing oil well from a layer with a thickness of 100 ft, 

draw down pressure (pe – pwf) of 1500 psi, oil viscosity of 5 cP, oil formation volume factor of 

1.15 bbl/stb, and ln(re/rw) = 8. 

Fig. 109 shows the production rate and skin damage as a function of the initial pH of 0.6M 

GLDA at 300
o
F and 5 cm

3
/min. The maximum production rate and the least skin damage were 

attained at GLDA of pH 1.7. GLDA at low pH values (1.7, 3, and 3.8) enhanced the production 

rate and removed the damage better than GLDA at high pH values (11 and 13). 

 

 

 
 

Fig. 109—Effect of initial pH value of 0.6M GLDA on skin damage and oil production rate for Berea 
sandstone cores treated at 300

o
F and 5 cm

3
/min. 
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 Permeability Prediction for Berea Cores Treated by GLDA 

Three different correlations were used to predict the permeability of the Berea sandstone cores 

treated by 0.6M GLDA at 300
o
F and 5 cm

3
/min. Fifteen cores were selected and scanned dry, 

and saturated after treatment by GLDA using the CT scan tomography. The core porosity was 

determined after the treatment from the CT scan using Eq. 62 (Izeg and Demiral 2005): 

 

……………………………………………………………. (62) 

 

where; CTwr = CT number of water saturated rock, CTar = CT number of air saturated rock, CTw = 

CT number of water, = 0, CTa = CT number of air, = -1000. 

After calculating the final porosity, the final core permeability can be predicted by one of the 

following correlations (Hill et al. 1993): 

 

Lambert correlation, …………….……............................. (63) 

 

Lund and Fogler,   ……………………………………….…. (64) 

 

Labrid,  ………………..…………..…………….……………. (65) 

 

Where: kf = permeability after the treatment, md, ki = core initial permeability, md, f = final 

porosity, fraction, i = initial porosity, fraction, max = 0.08, M= 1, and n = 3. 

Table 26 shows the CT number calculation for the fifteen Berea sandstone cores including 

the actual final permeability and the predicted permeability from the CT number. Fig. 110 shows 

the predicted permeability versus the actual measured permeability for Berea sandstone cores 

treated by 0.6M GLDA at pH 3.8 at a temperature of 300
o
F and injection rate of 5 cm

3
/min. 

Lambert correlation, Eq. 63, gave the best results in predicting the core permeability after 

treatment by GLDA with an average error of 10% error. Labrid correlation gave 18% average 

error and Lund and Fogler correlation gave 70% average error in predicting the core permeability 

after the treatment. 
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Table 26—PERMEABILITY PREDICTION  FOR BEREA SANDSTONE CORES AT 5 cm
3
/min AND 

300
o
F USING 0.6M GLDA at pH 3.8 

Core 
no. i ki, md Kf, md CTwr CTar f kf, Eq. 63 kf, Eq. 64 kf, Eq. 65 

1 0.200 105 153 1760 1550 0.210 166 268 122 

2 0.195 110 165 1786 1580 0.206 182 309 130 

3 0.18 85 110 1790 1600 0.190 134 217 100 

4 0.192 90 105 1768 1570 0.198 118 158 99 

5 0.184 86 108 1756 1565 0.191 118 166 96 

6 0.21 110 155 1772 1550 0.222 190 339 130 

7 0.215 110 160 1856 1630 0.226 182 309 128 

8 0.205 95 120 1859 1645 0.214 142 217 108 

9 0.185 85 145 1710 1520 0.190 105 132 92 

10 0.182 80 150 1737 1540 0.197 159 326 101 

11 0.194 95 145 1769 1564 0.205 157 266 112 

12 0.186 85 150 1708 1510 0.198 147 262 103 

13 0.195 90 130 1811 1610 0.201 118 158 99 

14 0.205 102 132 1863 1650 0.213 147 216 114 

15 0.214 98 110 1848 1630 0.218 118 143 104 

 
 

 

 
Fig. 110—Permeability prediction of Berea sandstone cores treated by 0.6M GLDA at pH 3.8, 300

o
F, 

and 5 cm
3
/min using Lambert correlation. 
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Conclusions 

In this part of the study 0.6M GLDA chelating agent with different initial pH values (1.7, 3, 3.8, 

11, and 13) was used to stimulate Berea sandstone cores at temperatures up to 300
o
F. The 

following are the conclusions that were drawn from this study: 

1. GLDA initial pH value was found to have a strong effect on the permeability ration 

increase for Berea sandstone cores. 

2. The lower the injection rate the more the contact time of GLDA with the rock, more 

cations were dissolved at low rates than at high injection rates. 

3. Increasing temperature from 200 to 300
o
F enhanced the reaction rate and increased the 

core permeability. 

4. CT scans showed decrease in the CT number for different pH values. The best 

conditions were obtained at pH 1.7. 

5. Lambert correlation was found to be the best correlation to predict the core permeability 

after treating Berea cores by 0.6M GLDA at pH 3.8, 300
o
F, and 5 cm

3
/min. 
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CHAPTER VIII 

NOVEL ENVIRONMENTALLY FRIENDLY FLUIDS TO REMOVE 

CARBONATE MINERALS FROM DEEP SANDSTONE FORMATIONS 

Introduction 

Carbonate minerals are present in sandstone formations. These minerals are either introduced 

to the formation during drilling/completion operations or naturally present in the rock. There is a 

need to remove these carbonates to enhance the well performance. This especially true if there 

is a need to use HF-based fluids to prevent the precipitation of calcium fluorides and calcium 

fluosilicstes. 

 In this part of the study, GLDA (glutamicacid-N,N-diaceticacid) a new environmentally 

friendly chelate was used to remove carbonate minerals from sandstone formations. We also 

compared its performance with available chelates like EDTA (Ethylenediaminetetraacetic acid) 

and HEDTA (hydroxyethylenediaminetriacetic acid). Berea (8 wt% clays) and Bandera (14 wt% 

clays) sandstone cores were used in the coreflood experiments. The concentration of the 

chelates used was 0.6M at pH values of 11 and 4. The coreflood experiments were run at a flow 

rate of 5 cm
3
/min and at a temperature of 300

o
F. 

 Coreflood experiments showed that at high pH values (pH =11) GLDA, HEDTA, and EDTA 

were almost the same in increasing the permeability of both Berea and Bandera sandstone 

cores. GLDA, HEDTA, and EDTA were compatible with Bandera sandstone cores. The weight 

loss from the core was the highest in the case of HEDTA and the lowest in the case of GLDA at 

pH 11. At pH 4 the 0.6M-GLDA performed better than 0.6M HEDTA in the coreflood 

experiments. The permeability ratio (final/initial) for Bandera sandstone cores was 2 in the case 

of GLDA and 1.2 in the case of HEDTA at pH of 4 and 300
o
F. At pH 11, HEDTA was the best 

chelating agent to stimulate Bandera sandstone cores and at pH 4, GLDA was the best one. For 

Berea sandstone cores EDTA at pH of 11 was the best in increasing the permeability of the core 

at 300
o
F.  

 The objective of this part of the study is to (1) determine the compatibility of EDTA, HEDTA, 

and GLDA with both Berea and Bandera sandstone cores at pH of 11, (2) Determine the 

compatibility of HEDTA and GLDA at pH of 4 with both Berea and Bandera cores, and (3) 

Indentify the best chelating agent that can be used to stimulate both Berea and Bandera 

sandstone core at pH values of 11, and 4. 
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Experimental Studies 

 Materials 

Chelating agents used in this study were GLDA, HEDTA, and EDTA, and were supplied from 

AkzoNobel. The original concentration of the chemicals was 40 wt% at the different pH values. 

The concentration of different chelants that was used in the coreflood experiments was 0.6M. 

Core plugs were cut in a cylindrical form from sandstone blocks of dimensions 9 x 9 x 9 in. The 

XRD results for the different sandstone cores Berea, and Bandera are listed in Table 27. The 

Bandera sandstone cores contains 10 wt% Illite which may cause fines migration, 16 wt% 

dolomite, and 12 wt% Ca-feldspar which are big sources of calcium.  

 

 

Table 27—MINERAL COMPOSITION FOR DIFFERENT SANDSTONE CORES 

Mineral Berea Bandera 

Quartz 86 57 

Dolomite 1 16 

Calcite 2 -- 

Feldspar 3 -- 

Kaolinite 5 3 

Illite 1 10 

Chlorite 2 1 

Plagioclase -- 12 

 

 

Experimental Procedures 

The coreflood set-up used in this part was completely explained in Chapter II, Fig. 7. In each 

coreflood experiment, the core was first loaded into a Hassler sleeve core holder at an 

overburden pressure of 2,500 psig and temperatures up to 300°F. The core was subjected to 

vacuum for an hour. Then, it was saturated with injection water until the brine permeability 

became constant. The brine used in the experiments was 5 wt% NaCl. A 1000 psi back pressure 

was applied in the coreflood experiments to achieve good saturation and displacement of the 

fluid and to keep CO2 in solution. The pore volume of the core was determined after saturating 

the core by dividing the difference between the saturated core and dry core by the brine density 

(1.034 g/cm
3
 at 22

o
C). The cores were CT-scanned dry, saturated with 5 wt% NaCl, and after 
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the treatment. Before flooding the cores by chelating agent solution, the core was heated-up to 

the test temperature for at least three hours to ensure the stabilization of the core and fluid 

temperatures. The effluent samples were collected in all the coreflood experiments to analyze for 

calcium, magnesium, and iron using the ICP. The final core permeability was measured in the 

reverse direction (flow back or production direction) 24 hrs after the experiment. The final core 

permeability was also measured using brine of 5 wt% NaCl by injecting at least 20 PV to ensure 

the pressure stabilization and good core saturation. The final permeability was measured at 

three different injection rates 2, 5, and 7 cm
3
/min and then the average value was taken. 

Results and Discussion 

Stimulating Berea Sandstone Cores with High pH Fluids 

In this part Berea sandstone cores were treated using 0.6M of EDTA, HEDTA, and GLDA at 

300
o
F. The compatibility of each chelant will be shown and the permeability increase also, will be 

investigated. 

 Coreflood experiments were performed on the Berea sandstone cores at 5 cm
3
/min and 

300
o
F using 0.6M GLDA, 0.6M EDTA, and 0.6M HEDTA at pH 11. From the pressure drop 

performance across the core, the three fluids were compatible with the Berea sandstone cores. 

Fig. 111 shows the normalized pressure drop across the core ( p/ pinitial) for EDTA, GLDA, and 

HEDTA. The three chelating agents are compatible with Berea sandstone, and the increase in 

the pressure drop across the core was due to the increase in viscosity of the fluid inside the 

core. The viscosity increase was due to the complexation of different cations from the sandstone 

core such as calcium, iron, magnesium, and aluminum. The normalized pressure drop across 

the core was almost the same for the three fluids until 2 PV. After 2 PV the normalized pressure 

drop for EDTA was greater than that for GLDA and HEDTA. This indicates after injecting 2 PV of 

EDTA inside the Berea sandstone core more calcium and magnesium were dissolved and that 

affected the cementing materials of the core and may start fines migration but it was small. 

 Fig. 112 shows the permeability ratio (kfinal/kinitial) for the Berea sandstone core treated by 

0.6M chelate at 300
o
F and 5cm

3
/min. At high pH value (11) the 0.6M-EDTA performed better as 

the increase in permeability was 1.2. GLDA and HEDTA almost performed the same at pH 11 in 

the coreflood experiment using Berea sandstone cores, the permeability ration was 1.16, and 

1.14 for 0.6M GLDA , and 0.6M HEDTA respectively. We can conclude that at high pH values 

and at the conditions we did the coreflood experiments, EDTA is the best chelating agents that 

can be used to stimulate Berea sandstone cores at 300
o
F. 

 Fig. 113 shows the amount of dissolved calcium, iron, and magnesium for the coreflood 

experiments performed using 0.6M of EDTA, HEDTA, and GLDA at 300
o
F and at injection rate of 
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5 cm
3
/min. EDTA at pH of 11 was the best chelating agent in chelating calcium, iron, and 

magnesium. At high pH (11), GLDA was the lowest chelating agent in chelating calcium, iron, 

and magnesium.  

 

 

 

Fig. 111—Pressure drop across the core during the coreflood experiment for 0.6M GLDA, 0.6M 
HEDTA, and 0.6M EDTA at 300

o
F and 5 cm

3
/min using Berea sandstone cores. 
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Fig. 112—Permeability ratio for the Berea sandstone cores treated by 0.6M chelate (pH =11) at 300
o
F 

and 5 cm
3
/min. 

 
 

 

Fig. 113—Amount of different cations, calcium, iron, and magnesium, in the coreflood effluent for 
Berea cores treated by 0.6M chelate (pH =11) at 300

o
F and 5 cm

3
/min. EDTA was the most powerful 

chelants among the three chelants. 
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At high pH values, the three chelating agents have high thermal stability (Jim et al. 2010), 

therefore, the ability of chelating agent to chelate depends on the stability constant of the 

chelating agent with each cation. The stability constant for EDTA, HEDTA, and GLDA with 

calcium, iron, and magnesium are listed in Table 28 (Martell and Smith 2003). The stability 

constants were the highest for EDTA, and then for HEDTA and was the least for GLDA. The 

experimental results of the analysis of the coreflood effluent samples confirmed that EDTA was 

the best chelating agent in chelating calcium, iron, and magnesium. The core weight loss shown 

in Fig. 114 showed that the maximum weight loss of the core was attained in the case of 0.6M 

EDTA at pH 11. The weight loss of the core was 7.25, 5.25, and 4.25 g for EDTA, HEDTA, and 

GLDA respectively. 

 

 

Table 28—STABILITY CONSTANT FOR EDTA, HEDTA, AND GLDA CHELATING AGENTS 

Chelating Agent Log (stability constant) 

  

 Ca
2+

 Fe
3+

 Mg
2+

 

    
EDTA 10.7 25.0 8.83 

HEDTA 8.4 19.8 7.00 

GLDA 5.9 11.7 5.20 

 

 
 
 
 

 
 
 
 
. 
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Fig. 114—Weight loss of the core, Berea sandstone, after the coreflood experiments using 0.6M 
chelates (pH = 11) at 300

o
F and 5 cm

3
/min. The core weight loss was highest for the core treated by 

0.6M EDTA. 

 

 
 Stimulating Bandera Sandstone Cores with High pH Fluids 

Fig. 115 shows the normalized pressure drop across the core for Bandera sandstone cores 

treated by 0.6M of EDTA, HEDTA, and GLDA at 300
o
F and 5 cm

3
/min. The three chelants 

almost were compatible with the Bandera sandstone core which contains 10 wt% illite. EDTA 

and HEDTA were more compatible than GLDA with Bandera sandstone at pH of 11. The 

pressure drop across the core started to decrease after injecting 2 PV for the three chelants and 

continued decreasing until 7.5 PV. Although, the amount of dissolved cations was the highest in 

the case of EDTA, the normalized pressure drop across the core was the least showing a good 

compatibility of EDTA with illitic-sandstone cores at pH of 11. 

 Fig. 116 shows the pressure drop across the core for Bandera sandstone core treated by 

15 wt% HCl at 300
o
F, and 5 cm

3
/min. The initial pressure drop across the core was 400 psi and 

the initial core permeability was 4.1 md. After injecting the 15 wt%-HCl, the pressure drop across 

the core started to increase gradually showing fines migration inside the core. Due to the high 

content of Illite in this core, HCl was incompatible with the Illite and caused fines migration. The 

core was left for 24 hrs and after that the permeability was measured using brine (5 wt% NaCl) in 
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the production direction, the pressure stabilized at 920 psi and the final core permeability was 

0.85 md. The permeability ratio (kfinal/kinitial) was 0.21 showing a bad compatibility between HCl 

and iliitic-sandstone. Comparing the performance of HCl with the chelating agents we can 

conclude that EDTA, HEDTA, and GLDA were compatible with the illitic-sandstone cores and 

increased the permeability by ratios of 1.41, 1.45, and 1.37 respectively as shown in Fig. 117.  

 

 

 

Fig. 115—Pressure drop across the core during the coreflood experiment for 0.6M GLDA, 0.6M 
HEDTA, and 0.6M EDTA at 300

o
F and 5 cm

3
/min using Bandera sandstone cores. 
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Fig. 116—Pressure drop across the core for 15 wt% HCl at 300
o
F and 5 cm

3
/min using Berea 

sandstone cores. The 15 wt% HCl was not compatible with the illite as it caused fines migration and 
damaged the core. 

 
 

 

Fig. 117—Permeability ratio for the Bandera sandstone cores treated by 0.6M chelate (pH =11) at 
300

o
F and 5 cm

3
/min. 
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 Fig. 118 shows the amount of dissolved calcium, iron, and magnesium for the coreflood 

experiments performed using 0.6M of EDTA, HEDTA, and GLDA at 300
o
F and at injection rate of 

5 cm
3
/min for Bandera sandstone cores. Bandera sandstone contains 16 wt% dolomite, and 12 

wt% calcium-feldspar, therefore, EDTA and HEDTA were able to chelate more calcium than that 

they chelated in the Berea sandstone cores. The amount of chelated iron was less than that 

chelated in the case of Berea sandstone cores for the three chelants because chlorite content for 

Berea core is greater than that for Bandera cores, Table 27. For Bandera illitic-sandstone cores 

the best chelating agent based on the coreflood experiments we performed was HEDTA. The 

total amount of chelated calcium, iron, and magnesium was the highest for HEDTA, and then 

EDTA and was the minimum for GLDA. Also, the weight loss of the core, Fig. 119, confirmed 

that HEDTA and EDTA were better than GLDA in chelating calcium, iron, and magnesium from 

illitic-sandstone cores at high pH values at 300
o
F. 

 

 

 
 

Fig. 118—Amount of different cations, calcium, iron, and magnesium, in the coreflood effluent for 
Bandera cores treated by 0.6M chelate (pH =11) at 300

o
F and 5 cm

3
/min. HEDTA was the most 

powerful chelants among the three chelants. 
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Fig. 119—Weight loss of the core, Bandera sandstone, after the coreflood experiments using 0.6M 
chelates (pH = 11) at 300

o
F and 5 cm

3
/min. The core weight loss was highest for the core treated by 

0.6M EDTA. 

 

 
 Stimulating Berea Sandstone Cores with Low pH Fluids 

The low pH of the same chelating agents that were used before at high pH (HEDTA, and GLDA) 

will be investigated on Berea sandstone core to determine the compatibility of those chelants 

with the Berea sandstone core at 300
o
F and 5 cm

3
/min. 

Fig. 120 shows the normalized pressure drop across the core for 0.6M HEDTA (pH = 4), 

and 0.6M GLDA (pH = 4) at 300
o
F and 5 cm

3
/min using Berea sandstone cores. Both chelants 

almost have the same trend. After injecting 2 PV GLDA was more compatible than HEDTA, and 

after injecting 5 PV, the normalized pressure drop was the same for the two chelants. Based on 

these result we can conclude that both HEDTA and GLDA at pH 4 are compatible with the Berea 

sandstone core. 

Fig. 121 shows the permeability ratio for both 0.6M HEDTA, and 0.6M GLDA at pH of 4. 

The permeability ratio was 1.74 for GLDA and 1.24 for GLDA showing a good ability of GLDA in 

stimulating Berea sandstone cores at low pH. The amount of dissolved calcium was 1.98 g for 

GLDA and was 1.5 g for HEDTA as shown in Fig. 122. GLDA at low pH was able to dissolve 

more weight of the core than HEDTA. The weight loss of the core was 4.95 g for GLDA and 4.71 

g for HEDTA, Fig. 123. 
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Fig. 120—Pressure drop across the core during the coreflood experiment for 0.6M GLDA (pH = 4), 
and 0.6M HEDTA (pH = 4), at 300

o
F and 5 cm

3
/min using Berea sandstone cores. 

 
 

 
 
Fig. 121—Permeability ratio for the Berea sandstone cores treated by 0.6M chelate (pH =4) at 300

o
F 

and 5 cm
3
/min. 
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Fig. 122—Amount of different cations, calcium, iron, and magnesium, in the coreflood effluent for 
Berea cores treated by 0.6M chelate (pH = 4) at 300

o
F and 5 cm

3
/min. 

 
 

 

Fig. 123—Weight loss of the core, Berea sandstone, after the coreflood experiments using 0.6M 
chelates (pH = 4) at 300

o
F and 5 cm

3
/min. GLDA performed better than HEDTA at low pH. 
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Stimulating Bandera Sandstone Cores with Low pH Fluids 

Fig. 124 shows the normalized pressure drop across the core for 0.6M HEDTA (pH = 4), and 

0.6M GLDA (pH = 4) at 300
o
F and 5 cm

3
/min using Bandera sandstone cores. Both HEDTA and 

GLDA were compatible with the illitic-sandstone Bandera core. The normalized pressure drop 

started to decrease after injecting 3PV of both fluids. Unlike HCl, both HEDTA and GLDA at pH 4 

were found to be compatible with Bandera sandstone cores. 

Fig. 125 shows the permeability ratio for HEDTA and GLDA. The permeability ratio for 

GLDA was 1.96, and it was 1.17 for HEDTA. GLDA dissolved more calcium than HEDTA at pH 

of 4 and enhanced the Bandera core permeability better than HEDTA. The amount of calcium 

was 2.1 g in case of GLDA, and it was 1.67 g for HEDTA ad shown in Fig. 126.  

GLDA at low pH value (4) performed better than HEDTA in both Berea and Bandera 

sandstone cores at 300
o
F. GLDA at pH of 4 increased the core permeability 1.4 times that 

HEDTA did with Berea sandstone cores, and 1.7 times the permeability increase attained with 

HEDTA in the case of Bandera sandstone cores. 

 

 

 
 

Fig. 124—Pressure drop across the core during the coreflood experiment for 0.6M GLDA (pH = 4), 
and 0.6M HEDTA (pH = 4), at 300

o
F and 5 cm

3
/min using Bandera sandstone cores. 
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Fig. 125—Permeability ratio for the Bandera sandstone cores treated by 0.6M chelate (pH =4) at 
300

o
F and 5 cm

3
/min. 

 
 

 
 

Fig. 126—Amount of different cations, calcium, iron, and magnesium, in the coreflood effluent for 
Bandera cores treated by 0.6M chelate (pH = 4) at 300

o
F and 5 cm

3
/min. 
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Conclusions 

Different chelating agents were studied using the coreflood experiments at 300
o
F and at a flow 

rate of 5 cm
3
/min. The chelating agents that were tested in this part were EDTA, HEDTA, and 

GLDA at pH of 11, and HEDTA, and GLDA at pH of 4. A concentration of 0.6M was used in all 

the coreflood experiments using Berea and Bandera sandstone cores. The following are the 

conclusions that were drawn from this part: 

1. EDTA, HEDTA, and GLDA were compatible with both Berea and Bandera illitic-

sandstone cores at pH values of 11, and 4. 

2. EDTA at pH 11 was the best chelating agent in enhancing the permeability of Berea 

sandstone cores. 

3. HEDTA at pH 11 was the best chelating agent in increasing the permeability of Bandera 

illitic-sandstone cores. 

4. GLDA at pH 4 outperformed HEDTA in stimulating both Berea and Bandera illitic-

sandstone cores. 
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CHAPTER IX 

REMOVING THE DAMAGE AND STIMULATION OF ILLITIC-SANDSTONE 

RESERVOIRS USING COMPATIBLE FLUIDS 

Introduction 

Illitic-sandstone reservoirs are very sensitive to HCl based fluids. When HCl touch illitic-

sandstone it breaks down and causes fines migration and cause formation damage. The 

migration of fines through the porous media will block the pores, reduce permeability and 

decrease the production rate of oil and gas wells. 

 Alternative fluids to HCl/HF mud acids were introduced to stimulate and remove the 

damage from illitic-sandstone reservoirs. Those fluids are based on chelating agents such as 

EDTA (ethylenediamine tetra acetic acid), HEDTA (hydroxyl ethylenediamine tri acetic acid), and 

GLDA (glutamic acid-N,N-diacetic acid). In this study sandstone cores with different illite content 

were examined. Illite content of 1, 10, 14, and 18 wt% of the sandstone cores were used in the 

coreflood experiment at 300
o
F. Different combinations of GLDA/HF were tested to get the 

optimum ratio of GLDA/HF to be used in removing the damage from the sandstone cores. The 

core permeability was measured before and after the treatment to determine the effectiveness of 

each fluid in removing the damage and stimulation of sandstone cores. CT scan was used to 

scan the cores before and after the treatment to locate the damage caused by HCl/HF acids in 

the illitic cores. Different stages of preflush and postflush were used to determine the optimum 

volume for each stage to yield the maximum core permeability after the treatment. 

 Our results showed that 15 wt% HCl caused severe damage to sandstone cores with 

different illite content. GLDA, HEDTA, and EDTA showed a good compatibility with the illitic-

sandstone cores at 300
o
F. Permeability measurements showed that GLDA performed better 

than HEDTA and EDTA at pH of 4. The optimum ratio of GLDA/HF concentration was found to 

be 20wt% GLDA/1wt% HF which gives the maximum increase in core permeability. The three 

fluids tested in this study showed good compatibility with illite so they can be used to stimulate or 

remove the damage from illitic-sandstone reservoirs alone or in combination with HF acid.  

 The objectives of this part of the study are to: (1) stimulate different illite content sandstone 

cores with EDTA, HEDTA, and GLDA chelating agents, (2) removing the damage caused by 

calcium carbonate weighted drilling fluid using HEDTA and GLDA chelating agents, (3) 

determine the optimum GLDA/HF ratio to obtain the maximum possible enhancement in 
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permeability, and (4) identify the volume of required preflush of GLDA to prevent the precipitation 

during injecting the main flush.  

Experimental Studies  

 Materials 

Chelating agents used in this part of the study were GLDA, HEDTA, and EDTA, and were 

supplied from AkzoNobel. The original concentration of the chemicals was 40 wt% at the 

different pH values. The concentration of different chelants that was used in the coreflood 

experiments was 0.6M. Core plugs were cut in a cylindrical form from sandstone blocks of 

dimensions 9 x 9 x 9 in. The XRD results for the different sandstone cores Berea, Bandera, 

Socito, and Kentucky are listed in Table 29. The drilling fluid that was used to damage the 

sandstone cores has a composition that was listed in Table 30. 

 

 

Table 29—MINERAL COMPOSITION FOR DIFFERENT SANDSTONE CORES 

Mineral Berea Bandera Kentucky Scioto 

Quartz 87 57 66 70 

Dolomite 1 16 -- -- 

Calcite 2 -- -- -- 

Feldspar 3 -- 2 2 

Kaolinite 5 3 Tr Tr 

Illite 1 10 14 18 

Chlorite 1 1 -- 4 

Plagioclase -- 12 17 5 
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Table 30—DRILLING FLUID COMPOSITION ON LAB SCALE 

Material Quantity Units 

Distilled Water 308 cc 

Defoamer 0.33 cc 

XC-polymer 1.20 g 

Biocide 0.17 cc 

Starch 2.00 g 

KCl 97.6 g 

KOH 0.50 cc 

Sodium sulfite 0.25 g 

CaCO3 (Coarser) 7.99 g 

Lubricant 7.00 cc 

 

 

Results and Discussion 

Stimulation of Berea Sandstone Using GLDA/HF Solutions 

Berea and Bandera sandstone cores of 6 in. length and 1.5 in. diameter were used in the 

coreflood experiments using the set up shown in Fig. 7. The first coreflood experiment was run 

using Berea sandstone core at 300
o
F and 5 cm

3
/min using 20 wt% GLDA at pH 3.8. The initial 

permeability of the treated core was 95 md and the final permeability after the treatment was 155 

with 1.63 improvement factor (kfinal/kinitial). The core permeability was increased from 95 to 155 

md after injecting 8.7 PV of GLDA into the Berea sandstone core and the average calcium 

concentration was 7,000 ppm. The same conditions were repeated using Berea sandstone and 

mixture of 20 wt% GLDA + 3 wt% HF at the same temperature and flow rate. Fig. 127 shows the 

total calcium concentration in the coreflood effluent samples, the calcium concentration dropped 

to an average value of 4,000 ppm when GLDA+HF was used without preflushing the core. The 

source of calcium in Berea sandstone core is calcite and dolomite, and the fluosilic acid from the 

secondary reaction of HF with quartz with the calcium will precipitate calcium fluosilicates 

(CaSiF6) inside the core and cause formation damage. The precipitation of CaSiF6 reduced the 

total calcium concentration in the coreflood effluent samples. The decreased average calcium 

concentration in the effluent samples also, can be attributed to the precipitation of calcium 

fluoride (CaF2). The core permeability was 85 md and dropped to 40 md after the treatment by 

GLDA + HF. There many scenarios could be contributing to this damage besides the calcium 

fluosilicates and calcium fluorides such as sodium fluosilicates (Na2SiF6) and potassium 
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fluosilicates (K2SiF6). The sources of sodium and potassium in the Berea sandstone core are the 

feldspars present in the core. These results confirmed the necessity of preflushing the core 

before HF treatment even if the amount of calcium in the core was low (3 wt% calcite and 

dolomite). 

 

 

 

Fig. 127—Total calcium concentration in the coreflood effluent samples showing the damage 
caused by HF. The decreased calcium concentration means the precipitation of CaSiF6 or CaF2. 

 

 
 CT scan was used to scan the core before and after the treatment to check for the core 

porosity. Fig. 128 showed the 2D CT scan for the first coreflood experiment (Berea sandstone 

cores treated by 20 wt% GLDA at pH 3.8, 300
o
F and 5 cm

3
/min). The CT number for the core 

before the treatment had an average value of 1720 and after the treatment it was 1600. The 

decrease in the CT number indicated an increase in the core porosity after the treatment. Fig. 

129 shows the 2D CT scans for the Berea sandstone cores treated by 20 wt% GLDA at pH 3.8 + 

3 wt% HF at 300
o
F and 5 cm

3
/min. The images showed an increase in the CT number from 1750 

to 2000 indicating decrease in the core porosity due to precipitations. 
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Fig. 128—2D CT scans showing decrease in the CT number after the treatment from 1720 to 1610. 
The reduction in CT number indicated increase in the core porosity. Berea sandstone core treated 

by 20 wt% GLDA at pH 3.8, T = 300
o
F, and 5 cm

3
/min. 

 

 

 
 

 
 

Fig. 129—2D CT scans showing increase in the CT number after the treatment from 1750 to 2000. 
The increase in CT number indicated decrease in the core porosity. Berea sandstone core treated 

by 20 wt% GLDA + 3 wt% HF at pH 3.8, T = 300
o
F, and 5 cm

3
/min. 
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 Effect of HF Concentration on the Stimulation of Berea Sandstone Cores 

Using GLDA/HF 

Different coreflood experiments were run using Berea sandstone cores to determine the 

optimum GLDA/HF ratio to give the maximum increase in the core permeability after the 

treatment. The coreflood experiments were run at 300
o
F and 5 cm

3
/min and all the cores were 

flushed by 10 PV 20 wt% GLDA at pH 3.8 (preflush). Fig. 130 shows the relationship between 

the permeability ratio (kfinal/kinitial) and the GLDA/HF concentration. The permeability increase was 

the maximum when 20 wt% GLDA injected alone without HF acid because there was no 

precipitations. Adding HF produced fluosilic acid and precipitated calcium, sodium, and 

potassium fluosilicate or calcium fluoride. The lower the HF concentration, the lower the fluosilic 

acid and the lower the precipitation. The maximum permeability increase was obtained at HF 

concentration of 1 wt% and it was 1.65. Decreasing the HF concentration to 1 wt% yielded 

permeability ratio increase less than the GLDA alone. From these results we can conclude that if 

the damage in the sandstone reservoir was due to carbonates it is better to use GLDA without 

HF , but if there was silicates among the damaging materials we can use 20 wt% GLDA+ 1 wt% 

HF. In all experiments the main flush was 4 PV of GLDA + HF. 

 

 

 
 

Fig. 130—Relationship between GLDA/HF concentration and the permeability ratio of Berea 
sandstone core at 5 cm

3
/min and 300

o
F. GLDA pH = 3.8. 
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Effect of Preflush on the Stimulation of Berea and Bandera Sandstone 

Using GLDA/HF 

The presence of carbonate minerals in the sandstone cores required flushing the core to remove 

these minerals to minimize the calcium fluosilicates or fluorides precipitations inside the core. 

Fig. 131 shows the effect of flushing the Berea sandstone core by 10 PV 20 wt% GLDA at pH 

3.8. The calcium concentration before in the preflush just before switching to 20 wt% GLDA + 3 

wt% HF was 5,000 ppm, it dropped to 3,500 ppm after switching to the main flush (20 wt% 

GLDA + 3 wt% HF). Comparing this to fig. 127 at which the calcium concentration dropped from 

7,000 to 4,000 ppm indicating high precipitation of calcium. In this case it is still there is 

precipitation but lower than before in the case where there was no preflush.  The coreflood 

experiment was run at 300
o
F and 5 cm

3
/min and the core permeability was increased from an 

initial value of 85 md to 110 md (kfinal/kinitial = 1.3). The permeability ratio when there was no 

preflush was 0.47 compared to 1.3 in the case of 10 PV GLDA preflush. Flushing the core by 10 

PV GLDA at pH 3.8 during the treatment of Berea sandstone core by GLDA+HF increased the 

permeability ratio from 0.47 (damage) to 1.3. The calcium concentration decreased after 

switching to the main flush due to the precipitations and the magnesium and iron concentration 

started to increase due to the reaction of HF with clays and chlorite. HF was able to produce 

18,000 ppm iron and 8,000 ppm magnesium from clays and chlorite. 

 Fig. 132 shows the stimulation of Bandera (illitic-sandstone) core by 20 wt% GLLDA at pH 

3.8 + 3 wt% HF at 300
o
F and 5 cm

3
/min. The core was flushed first by 5.2 PV 20 wt% GLDA at 

pH 3.8. In the preflush stage the calcium concentration was 23,000 ppm, this is high calcium 

concentration because of this core has 16 wt% dolomite and 12 wt% calcium feldspar. The 

calcium concentration dropped to 14,000 ppm after switching to GLDA+HF due to precipitation. 

The iron concentration increased from 17,000  to 35,000 ppm after switching to the main flush 

due to the reaction of HF with chlorite and clays. The amount of illite in this core was 10 wt%, 

therefore, the amount of produced iron was greater in this core compared to Berea sandstone (1 

wt% illite). The core permeability after the treatment was increased from 3.2 to 3.5 md.  
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Fig. 131—Different stages of GLDA/HF treatment for Berea sandstone core at 300

o
F and 5 cm

3
/min. 

 

 

 

 
 

Fig. 132—Effect of preflush, main flush, and post flush on the stimulation of Bandera (illitic-
sandstone) by 20 wt% GLDA + 3 wt% HF. T = 300

o
F and q = 5 cm

3
/min. 
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 Several coreflood experiments were run using Bandera sandstone cores and 20 wt% GLDA 

(pH 3.8) + 3 wt% HF at 300
o
F and 5 cm

3
/min at a constant post flush volume of 10 PV 20 wt% 

GLDA at pH 3.8 and constant main flush volume of 4 PV. Fig. 133 shows the effect of preflush 

volume of GLDA on the permeability ratio of Bandera sandstone cores. The greater the volume 

of the preflush the higher the permeability increase of the core. When no preflush was used the 

permeability ratio was 0.4 (damage) increasing the preflush volume increased the permeability 

ratio up to 1.68 when 10 PV preflush was used. Bnadera sandstone has abundance sources of 

calcium (16 wt% dolomite and 12 wt% calcium feldspar), therefore it is necessary to remove the 

calcium as much as we can from the core to avoid t precipitations and damaging the core. 

 

 

 

Fig. 133—Effect of GLDA preflush volume on the permeability ratio of Bandera sandstone core at 

300
o
F and 5 cm

3
/min. 

 

 
 Fines Migration by HCl 

A coreflood experiment was run using illitic sandstone Bandera core and 15 wt% HCl at 80
o
F 

and 5 cm
3
/min. The initial core permeability was 4.1 md after flowing the 15 wt% HCl in the illitic 

core it caused fines migration and damaged the core. The pressure drop increased from an 

initial value of 400 psi during flowing 5 wt% NaCl brine solution to 1500 psi after flowing HCl, 
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Fig. 134 The pressure drop increased gradually with the pore volume with a gradient of 440 

psi/PV indicating fines migration and blocking the pore throats and permeability throughout the 

core. After injecting HCl the core was flowed back using 5 wt% NaCl brine solution until the 

pressure drop across the core stabilized. The core permeability after the flowing back was 0.85 

md showing the damage caused by HCl. 

 

 

 

Fig. 134—Pressure drop across the core for 15 wt% HCl at 80
o
F and 5 cm

3
/min using Berea 

sandstone cores. The 15 wt% HCl was not compatible with the Illite as it caused fines migration and 

damaged the core. 

 

 
 Fig. 135 shows the 2D CT scan for a slice from the Bandera illitic-sandstone cores before 

and after flowing HCl inside the core. The CT number after saturating the core by brine was 

around 1800, after flowing HCl inside the core we observed fluctuation in the CT number 

between 1700 and 1850 and there was a change in the color of the slice. The core was 

saturated after flowing HCl for 24 hours under vacuum and then the Hassler core holder was 

used to saturate the core with a back pressure of 1000 psi to insure good core saturation. The 

scan after saturation for the treated core showed difference in CT number in the all slices taken 

along the core length showing blocking or redistribution of the clays inside the core. 
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CT no fluctuating between 1700 and 1850 and the 

distribution of clays changed after injecting 15 wt% HCl 
CT no. = 1800 before fines migration 

 
Fig. 135—2D CT scans showing the effect of injecting 15 wt% into the illitic sandstone core, 

showing fines migration through the color difference in the slice. 

 

 
 Removing the Damage Caused by Drilling Fluid 

The drilling fluid showed in Table 30 was used to damage Berea sandstone cores. The cores 

were saturated by 5 wt% NaCl brine and then the drilling fluid was injected through the core. 

Two coreflood experiments were performed to compare GLDA and HEDTA in removing the 

damage from the sandstone core. The first coreflood was run using Berea sandstone core of an 

initial permeability of 102 md, the core was damaged by the drilling fluid and then the core was 

flowed back using brine and the flow back permeability after damage was 25 md. HEDTA 

solution of 0.6M concentration at pH 4 was used to remove the damage from the core at 300
o
F 

and 5 cm
3
/min. The pore volume of the injected HEDTA was 6.2 PV after that the core was left to 

cool down and after 24 hours the core permeability was measured in the production direction 

(flow back) and it was 84 md, Fig. 136. The amount of cations that were removed by HEDTA 

was 1.68 g calcium, 1.7 g iron, and 0.8 g magnesium. 
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Fig. 136—Different stages of the coreflood for removing the damage of the Berea sandstone core 
using 0.6M HEDTA at pH 4, T = 300

o
F and flow rate = 5 cm

3
/min. 

 

 
 The second coreflood experiment was conducted at the same conditions using 0.6M GLDA 

at pH 4. This experiment was run at the same conditions of temperature and flow rate as the 

previous experiment. The damaged core permeability after the flow back was 10 md, in this case 

we got more damage than the previous case. After heating the core the 0.6M GLDA at pH 4 was 

injected into the core to remove the damage caused by the drilling fluid. The core permeability 

after flowing back the core after 24 hours was 86 md, Fig 137. The amount of dissolved calcium 

was 1.55 g, the iron was 1.1 g, and the magnesium was 0.55 g after injecting 6.5 PV GLDA into 

the core. 
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Fig. 137—Different stages of the coreflood for removing the damage of the Berea sandstone core 
using 0.6M GLDA at pH 4, T = 300

o
F and flow rate = 5 cm

3
/min. 

 

 
Figs. 138 and 139 show the ability of HEDTA and GLDA to remove the damage from the 

Berea sandstone cores damaged by calcium carbonate-weighted drilling fluid. GLDA and 

HEDTA retained the damaged core permeability to its original permeability after injecting almost 

the same concentration (0.6M), the same pH (4) and the same pore volume (~6). The retained 

permeability almost was 0.83 in the two cases (GLDA and HEDTA), but GLDA increased the 

damaged core permeability from 10 to 86 md (8.6 times), and HEDTA increased the damaged 

core permeability from 25 to 85 md (3.6 times). GLDA performed better than HEDTA at the same 

conditions in removing the damage of Berea sandstone cores. 
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Fig. 138—Retained permeability (kretained/kinitial) for the Berea sandstone cores using GLDA and 
HEDTA. Almost the two chelants did the same in retaining the core permeability. 

 

 
 

 Fig. 139—Ability of GLDA and HEDTA in increasing the core permeability from the damaged 
permeability by the drilling fluid to the final core permeability. GLDA enhanced the permeability of 

the core better than HEDTA. 

 

 

 



195 
 

 Stimulation of Scioto Cores and Kentucky Cores 

In this part we tested sandstone cores with higher illite content, Scioto sandstone with 18 wt% 

illite and Kentucky sandstone with 14 wt% illite. GLDA of 0.6M and pH 3.8 was used in the 

coreflood experiment at 300
o
F. Scioto sandstone core was used in the coreflood experiment at 

injection rate of 1 cm
3
/min the core had an initial permeability of 0.2 md and initial porosity of 

0.13. Injecting 4 PV GLDA into the core yielded the following amounts of cations: 1.44 g iron, 

0.06 magnesium, and 0.015 g calcium.  The amount of dissolved iron was high because of the 

chlorite content in this core was 4 wt%. In this core there was no much sources of calcium, there 

was no calcite or dolomite, but there was small amount of calcium feldspar. The GLDA at pH 3.8 

was compatible with the illitic-sandstone core and increased the core permeability from 0.2 to 

0.35 md. Fig. 140 shows the pressure drop across the core and it is obvious that there was no 

fines migration as injecting more than 4 PV did not cause appreciable increase in the pressure 

drop like HCl did in Bandera core just with 10 wt% illite. GLDA was compatible with illite content 

up to 18 wt%. 

 

 

 

Fig. 140—Pressure drop across the Scioto sandstone core treated by 0.6M GLDA of pH 3.8 at 300
o
F 

and 1 cm
3
/min. There was compatibility between the GLDA and the core as the increase in the 

pressure drop just was due to the difference in viscosity of GLDA and brine. 
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 Another coreflood experiment was performed using Kentucky core with 14 wt% illite 

content. GLDA (0.6M) was injected into the core at 0.5 cm
3
/min at 300

o
F, the initial core 

permeability was 0.1 md and the initial porosity was 0.08. Four pore volumes were injected into 

the core, the core permeability increased from 0.1 to 0.16 md and the GLDA at pH 3.8 was 

compatible with the illitic-sandstone Kentucky core at 300
o
F. The amounts of cations in the 

coreflood effluent were as follows: 0.3 g calcium, 0.05 g iron, and 0.04 g magnesium. There was 

more calcium than in the case of Scioto core because the amount of calcium feldspar in the 

Kentucky core was 17 wt%. 

Conclusions 

Different sandstone cores with different illite content were used in the coreflood experiment to 

show the computability of GLDA with the illite mineral inside those cores. GLDA and HEDTA 

were compared in terms of removing the damage from the sandstone cores. The following are 

the conclusions that were drawn from this study: 

1. GLDA stimulated the Berea sandstone cores better than GLDA/HF mixture. 

2. Preflushing the core by GLDA minimized the damage caused by HF acid in the main 

flush. 

3. GLDA was compatible with the sandstone cores with different illite content up to 18 wt% 

illite. 

4. GLDA removed the damage from the sandstone core better than HEDTA. 

5. HCl acid was not compatible with the illitic sandstone Bandera core and damaged the 

core. 
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CHAPTER X 

CONCLUSIONS AND RECOMMENDATIONS 

 

The objective of this work was to evaluate the use of a newly developed environmentally friendly 

fluid, L-glutamic-N,N-diacetic acid (GLDA),  as a stand-alone stimulation fluid for carbonate and 

sandstone reservoirs. In Chapter I we showed the problems associated with HCl and other 

stimulation fluids such as corrosion of well tubular at high temperatures. Numerous additives 

were required to reduce the corrosion problems at high temperatures. There are some reservoirs 

have low fracture pressure, and to avoid formation fracture during the acidizing treatments HCl 

should be injected at low injection rates. Injecting HCl at low injection rates caused face 

dissolution and washout problems and did not bypass the damaged zone. In turn, after the 

treatment there will be still a positive skin which means no increase in the production rate. Using 

HCl/HF mud acid in high calcite content sandstone reservoirs caused damage and precipitations 

of fluorides and fluosilicates. Mud acid also can cause problems in illitic-sandstone reservoirs 

due to the fines migration. 

In Chapter II, we studied the ability of GLDA to dissolved calcite over a wide range of pH 

(1.7 to 13). We found that GLDA was effective at low pH values because of the presence of 

hydrogen ions increased the reaction rate of GLDA with calcite. At high pH there was no 

hydrogen, therefore, the reaction was low and was due to complexation mechanism only. 

Rotating disk was used to compare the rate of dissolution of GLDA at different pH values. GLDA 

at pH 1.7 had higher  dissolution rate than pH 13. Thermal stability tests were performed at high 

temperatures for long time, and GLDA was found to be thermally stable up to 400
o
F and 24 

hours. GLDA was found to be thermally stable in high ionic strength solutions such as sea water 

and sodium chloride solutions. In this part the coreflood experiments showed that GLDA was 

effective in creating wormholes at pH 1.7. 

 In Chapter III, several coreflood experiments were performed at different pH values, 

injection rates, and temperatures. GLDA at pH of 1.7 and 3 was more effective than that at pH of 

13 in creating wormholes at different temperatures and injection rates. The optimum GLDA 

concentration in the coreflood experiments was found to be 20 wt%. GLDA was compared to 

HEDAT, acetic acid, and LCA, GLDA outperformed all those fluids in terms of volume required to 

create wormholes at high temperatures. 

In Chapter IV, the optimum conditions of wormhole formation in calcite cores using GLDA 

were studied. Optimum injection rate existed at different pH values and at different temperatures 

in the coreflood experiments. Different factors affected the wormhole formation such as: rock 

permeability, injection rate, pH value, and temperature. The higher the rock permeability, the 
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higher the surface area and the higher the dissolved calcite. GLDA performed better at low 

injection rates because of the increased contact time with the rock which allowed for more time 

of reaction between GLDA and calcite cores. GLDA at low pH created bigger wormholes than at 

higher pH. At low injection rates there was no face dissolution observed in the core in the case of 

GLDA compared to 15 wt% HCl. Adding sodium chloride to GLDA enhanced its performance in 

the coreflood experiment due to the enhanced of thermal stability at high temperature. GLDA 

was able to stimulate low permeability contrast parallel cores due to the build in viscosity and low 

reactive nature of GLDA. 

The effect of reservoir fluid type water, oil, or gas on the stimulation of calcite cores by 

GLDA was studied in Chapter V. The results showed that GLDA performed better in the oil-

saturated cores due to the reduced diffusion.  GLDA at pH of 4 stimulated calcite cores better 

than HEDTA at 300
o
F and at different injection rates. The results obtained with carbonate cores 

saturated with nitrogen gas were almost similar to those obtained when the cores were saturated 

with water. In this part analytical model was developed to predict the performance of GLDA in 

calcite cores. This model can be used to predict the pressure drop across the core, the only 

factor that was found to control the pressure drop was the viscosity. GLDA viscosity was 

measured at different temperatures and calcium concentrations, and the correlations from the 

measurements were used in the prediction of the pressure drop. Coreflood experiments showed 

that at low pH values, GLDA was the best chelating agent to stimulate calcite cores compared to 

HEDAT and EDTA. 

GLDA was very effective in stimulating dolomite cores at different pH over a wide range of 

temperatures (180, 250 and 300
o
F), Chapter VI. There was an optimum injection rate at which 

the amount of GLDA needed to create wormholes was minimum. Also, GLDA effectively 

chelated magnesium and calcium from dolomite cores. GLDA was stable up to temperatures of 

300
o
F and the concentration of GLDA after the treatment was the same as that before the 

treatment, further confirming thermal stability of GLDA at this temperature. 

In Chapter VII, GLDA showed a strong ability in chelating calcium, magnesium, iron, and 

aluminum ions from the sandstone cores. At 300
o
F GLDA at different pH values was able to 

enhance the core permeability. Decreasing the injection rate from 5 to 2 cm
3
/min increased the 

contact time between the fluid and the rock and increased the amount of dissolved ions.  X-ray 

CT scan showed a porosity increase after the treatments. The concentration of GLDA after the 

coreflood experiment was almost the same before the treatment showing a high thermal stability 

up to 300
o
F in the coreflood experiment. Lambert correlation was found to be the best correlation 

to predict for the core permeability after treating Berea sandstone cores by 20 wt% GLDA 

solutions. GLDA was compatible with all clay types found in Berea sandstone cores. 
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In Chapter VIII, Coreflood experiments showed that at high pH values (pH =11) GLDA, 

HEDTA, and EDTA were almost the same in increasing the permeability of both Berea and 

Bandera sandstone cores. GLDA, HEDTA, and EDTA were compatible with Bandera sandstone 

cores. The weight loss from the core was highest in case of HEDTA and lowest in case of GLDA 

at pH 11. At pH 4 the 0.6M-GLDA performed better than 0.6M HEDTA in the coreflood 

experiments. The permeability ratio (final/initial) for Bandera sandstone cores was 2 in the case 

of GLDA and 1.2 in the case of HEDTA at pH of 4 and 300
o
F. At pH 11, HEDTA was the best 

chelating agent to stimulate Bandera sandstone cores and at pH 4, GLDA was the best one. For 

Berea sandstone cores EDTA at pH of 11 was the best in increasing the permeability of the core 

at 300
o
F.  

In the last part of this study, Chapter IX, alternative fluids to HCl/HF mud acids were 

introduced to stimulate and remove the damage from illitic-sandstone reservoirs. Those fluids 

are EDTA (ethylenediamine tetra acetic acid), HEDTA (hydroxyl ethylenediamine tri acetic acid), 

and GLDA (glutamic acid-N,N-diacetic acid). In this Chapter, sandstone cores with different illite 

content were examined. Illite content of 1, 10, 14, and 18 wt% of the sandstone cores were used 

in the coreflood experiment at 300
o
F. Different combinations of GLDA/HF were tested to get the 

optimum ratio of GLDA/HF to be used in removing the damage from the sandstone cores to 

reduce the precipitates by HF acid. The core permeability was measured before and after the 

treatment to determine the effectiveness of each fluid in removing the damage and stimulation of 

sandstone cores. CT scan was used to scan the cores before and after the treatment to locate 

the damage caused by HCl/HF acids in the illitic cores. Different stages of preflush and postflush 

were used to determine the optimum volume for each stage to yield the maximum core 

permeability after the treatment. 

 Our results showed that 15 wt% HCl caused severe damage to sandstone cores with 

different illite content. GLDA, HEDTA, and EDTA showed a good compatibility with the illitic-

sandstone cores at 300
o
F. Permeability measurements showed that GLDA performed better 

than HEDTA and EDTA at pH of 4. The optimum ratio of GLDA/HF concentration was found to 

be 20wt% GLDA/1wt% HF which gives the maximum increase in core permeability compared 

with the 20 wt% GLDA. The three fluids tested in this study showed good compatibility with illite 

so they can be used to stimulate or remove the damage from illitic-sandstone reservoirs alone or 

in combination with HF acid.  
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Having studied GLDA as a stand-alone stimulation fluid, we recommend the following: 

i. GLDA should be used to stimulate carbonate reservoirs in wells completed with cr-

13 tubing because the use of HCl will cause severe damage to the well 

completion. 

ii. For high temperature reservoirs (> 300
o
F) HCl if used will cause severe damage to 

the well completion (casing, and production tubing), therefore low corrosive fluids 

should be used such as GLDA. 

iii. GLDA is an effective stimulation fluid for carbonate reservoirs and should be used 

in the case of environmental issues because it is biodegradable and 

environmental friendly, and can be considered as a hot, green fluid. 

iv. In the case of face dissolution or washout problems where HCl had to be injected 

at low injection rates because of the fracture issues, GLDA can be used effectively 

in those reservoirs at very low injection rates. 

v. GLDA is a very good solution to stimulate illitic-sandstone reservoirs, because it 

was compatible with illite in the sandstone core. 

vi. If the calcite content in the sandstone reservoir is high, GLDA should be used and 

GLDA can be used to remove the damage caused by calcium carbonate filter 

cake. 

 

 

The following list provides some topics for future research: 

i. Reaction kinetics of GLDA with calcite should be examined deeply to determine the 

type of reaction and the diffusion coefficient at different pH values. The effect of 

salts, corrosion inhibitors, etc., on the dissolution rate should be investigated. 

ii. Corrosion rates at different pH values and temperatures should be studied and 

selecting the suitable type and concentration of the corrosion inhibitors. 

iii.  Stability and compatibility of GLDA with different salts and surfactant should be 

investigated. 
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