
1 

 

 

 

 
FIRE REGIMES AND SUCCESSIONAL DYNAMICS OF PINE AND OAK 

FORESTS IN THE CENTRAL APPALACHIAN MOUNTAINS 

 

 

A Dissertation 

by 

SERENA ROSE ALDRICH  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

May 2011 

 

 

Major Subject: Geography 

 

  



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fire Regimes and Successional Dynamics of Pine and Oak Forests in the Central 

Appalachian Mountains 

Copyright 2011 Serena Rose Aldrich  

 



3 

 

 

 

FIRE REGIMES AND SUCCESSIONAL DYNAMICS OF PINE AND OAK  

FORESTS IN THE CENTRAL APPALACHIAN MOUNTAINS 

 

A Dissertation 

by 

SERENA ROSE ALDRICH  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Chair of Committee,  Charles W. Lafon 
Committee Members, David M. Cairns 
 Robert N. Coulson 
 Mark G. Tjoelker 
Head of Department, Vatche P. Tchakerian 

 

May 2011 

 

Major Subject: Geography 

 



iii 

 

ABSTRACT 

 

Fire Regimes and Successional Dynamics of Pine and Oak Forests in the Central 
 

 Appalachian Mountains. (May 2011) 
 

Serena Rose Aldrich, B.S., East Central University; M.S., Oklahoma State University 

Chair of Advisory Committee: Dr. Charles W. Lafon 

 

The role of fire in determining the structure and composition of many forested 

ecosystems is well documented (e.g. North American boreal forests; piñon-juniper 

woodlands of the western US). Fire is also believed to be important in temperate forests 

of eastern North America, but the processes acting here are less clear, particularly in 

xerophytic forests dominated by yellow pine (Pinus, subgenus Diploxylon Koehne) and 

oak (Quercus L.). In this study, I use dendroecological techniques to investigate fire 

history and vegetation dynamics of mixed pine-oak forests in the central Appalachian 

Mountains of Virginia. The study addresses three objectives: (1) develop a lengthy fire 

chronology to document fire history beginning in the late presettlement era and 

extending throughout the period of European settlement, industrialization and modern 

fire exclusion; (2) explore fire-climate relationships; and (3) investigate vegetation 

dynamics in relation to fire occurrence. 

The study was conducted on three study sites within the George Washington 

National Forest. I used fire-scarred cross-sections from yellow pine trees to document 

fire history. Fire-climate relationships were investigated for each study site individually 
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and all sites combined using superposed epoch analysis (SEA).  Fire-history information 

was coupled with dendroecological data on age structure to explore stand development 

in relation to fire occurrence. Results of fire history analysis reveal a long history of 

frequent fire with little temporal variation despite changes in land use history. Mean fire 

intervals (MFI) ranged from 3.7–17.4 years. The most important change in the fire 

regime was the initiation of fire suppression in the early twentieth century. Results of 

SEA show that periodic droughts may be important drivers of fire activity. Drought the 

year of fire was important at two of the three study sites and when all sites were 

combined. Results of age structure indicate that vegetation development was clearly 

influenced by fire. Frequent burning maintained populations of yellow pine throughout 

the period of study until fire suppression allowed fire-sensitive hardwood trees and 

shrubs to establish. It is clear from this study that continued fire suppression will likely 

result in fire-tolerant pines and oaks being replaced by more mesophytic trees and 

shrubs.   
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CHAPTER I 

INTRODUCTION* 

 

 Fire is an important ecological process controlling vegetation development in 

many ecosystems (Bond & Keeley, 2005). The role of fire in determining the structure 

and composition of many forested ecosystems is well documented, e.g. North American 

boreal forests (Johnson, 1992); piñon (Pinus edulis)-juniper (Juniperus spp.) woodlands 

of the western United States (Romme et al., 2009). Fire is believed to be important in the 

development of temperate forests of eastern North America as well (van Lear & 

Waldrop, 1989; Delcourt & Delcourt, 1997; Williams, 1998; Harrod et al., 2000; van 

Lear & Brose, 2002), but the processes acting here are less clear, particularly in forests 

dominated by pine and oak (Abrams, 1992; Williams 1998; Parker et al., 2001; Lafon, 

2010). Xerophytic forests dominated by yellow pine (Pinus, subgenus Diploxylon 

Koehne) and oak (Quercus L.) in particular, rely on fire for regeneration and 

maintenance. However, fire exclusion during the twentieth century led to declines in the 

abundance of fire-tolerant pines and oaks and subsequent increases in hardwood trees 

and shrubs that are more sensitive to fire (Harmon 1982; van Lear & Waldrop 1989;  

Sutherland et al., 1995; Harrod et al., 1998, 2000; Williams, 1998; Elliott et al., 1999; 

Nowacki & Abrams, 2008). Additionally, increased stand densities resulting from 
 
 
___________ 
This dissertation follows the style of Journal of Biogeography. 

*Part of this chapter is reprinted with permission from “Three centuries of fire in montane pine–oak stands 
on a temperate forest landscape”, by Aldrich, S.R., Lafon, C.W., Grissino-Mayer, H.D., DeWeese, G.G., 
and Hoss, J.A. 2010. Applied Vegetation Science, 13, 36–46. Copyright 2010 by John Wiley and Sons. 
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decades of fire exclusion have made the stands more vulnerable to attack by native and 

exotic insects and pathogens (Lafon & Kutac, 2003; Waldron et al., 2007). 

 The widespread lack of oak regeneration and the decline of endemic, fire-

dependent species such as Table Mountain pine (Pinus pungens Lamb.) in the central 

Appalachian Mountains are of concern to resource managers because of the importance 

of these species for wildlife habitat and biodiversity. Federal, state and private land 

managers increasingly use prescribed fire to attempt to restore fire-dependent 

ecosystems. However, such burning programs are limited by a lack of information about 

the fire regimes that maintained the communities historically, or about vegetation 

responses to changing fire regimes (Williams, 1998; Elliott et al., 1999; van Lear, 2000; 

Welch et al., 2000). Dendroecological techniques based on tree-ring analysis can be used 

to characterize historic fire regimes of forested ecosystems (Baisan & Swetnam, 1990; 

Abrams et al., 1995; Grissino-Mayer & Swetnam, 1997; van Lear, 2000; Shumway et 

al., 2001; Schuler & McClain, 2003) and to provide quantitative information necessary 

for the reintroduction of fire. 

 Fire is increasingly recognized as one of the most important processes missing 

from forests of the eastern US (Abrams, 1992; Waldrop et al., 2003; Spetich, 2004).  

However, the frequency and severity of prescribed fire necessary for restoring 

xerophytic pine and oak ecosystems remains unclear (Welch et al., 2000; van Lear & 

Brose, 2002; Waldrop et al., 2002; Schuler & McClain, 2003). The dominant trees have 

adaptations to stand-replacing fires (e.g., serotinous cones) as well as mild surface burns 

(e.g., thick bark; prolific sprouting) (Sutherland et al., 1995; Williams, 1998; Lafon & 
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Kutac, 2003; Waldrop et al., 2003). Early research suggested that periodic stand-

replacing fires were necessary for maintaining Table Mountain pine-pitch pine (Pinus 

rigida) stands (Zobel, 1969; Groeschl et al., 1992; Turrill, 1998; Elliot et al., 1999). 

More recent research suggests that frequent low-severity fires are sufficient to maintain 

the overstory, maintain the seed source and reduce the litter layer allowing successful 

Table Mountain pine regeneration (Waldrop et al., 2003). However, the contrasting 

studies coupled with physiological adaptations to various fire-intensities suggest that 

mixed pine–oak stands were possibly maintained by a mixed-severity regime of frequent 

surface fires and occasional crown fires (Randles et al., 2002). 

 Several paleoecological studies used sediment pollen and charcoal to reveal that 

fire was prevalent in eastern forests (Clark & Royall, 1996; Delcourt et al., 1998; Welch, 

1999; Lynch & Clark, 2002; Fesenmyer & Christensen, 2010), but the dendroecological 

dating of fire scars on trees offers the best direct evidence for the regular occurrence of 

fire (Shumway et al., 2001; Dey, 2002). Until recently, few fire history studies using 

fire-scarred trees have been published for the Appalachian region (Fig. 1.1). Most of 

these studies were small; consisting of single sites with < 50 fire-scarred trees (see Table 

1.1). Mann et al., (1994) reconstructed a lengthy fire history of a rare, unlogged, 

hemlock-pine forest in Vermont (Fig. 1.1). Interpretations of fire-scar and tree 

germination data revealed 50 year intervals of increased fire frequency that recurred 
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Figure 1.1 Locations of previously published fire history studies in eastern North 
America. (1) Mann et al., 1994; (2) Shumway et al., 2001; (3) Schuler & McClain, 2003; 
(4) Hoss et al., 2008; (5) Sutherland et al., 1995; (6) McEwan et al., 2007; (7) Guyette et 
al., 2003 (8) Harmon, 1982. 
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every 100–200 years and coincided with increased fuel accumulation and summer 

drought. Although the fire-intervals reported here were not derived by standard 

dendroecological methods, this study is notable in that it highlights a long history of 

relatively frequent fire in an area of New England where fire is generally not accepted as 

an important component of forest dynamics (see Table 1.1).  

Investigations of relationships between fire and anthropogenic activity in oak 

barrens of southern Indiana (Fig. 1.1; Guyette et al., 2003) reveal a frequent fire regime 

(Table 1.1) and suggest that the temporal variability of the regime was closely associated 

with changes in human population density, settlement patterns and migration. For 

example, a particularly long fire-free interval in the early portion of the record 

corresponded with emigration of Native American populations from the region. 

Conversely, increasing fire frequency during the latter half of the record was attributed 

to European settlement along the Ohio River (Guyette et al., 2003). It is important to 

note that in this study, the authors derived fire-intervals by standard dendroecological 

techniques, but also included the pith-to-first scar as a fire interval, which could inflate 

the length of the fire-free interval. 

Two fire history studies conducted in oak stands of Maryland and West Virginia 

revealed fire-intervals of 7.6–17.1 years (Fig. 1.1; Table 1.1; Shumway et al., 2001; 

Schuler & McClain, 2003). Harmon (1982) collected 43 cross sections from 26 stands in 

a 9100 ha area of the western portion of the Great Smoky Mountain National Park (Fig. 

1.1). Harmon’s study revealed that fire occurred across various topographic positions 
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(e.g. aspect, slope, elevation) of the study area at an average interval of 12.7 years, with 

greatest frequency at lower elevations (see Table 1.1).   

 
Table 1.1. List of published fire history studies in the eastern United States. Studies 
marked with one asterisk indicate fire-intervals derived using non-standard 
dendroecological protocols. Studies marked with two asterisks contained multiple study 
sites, each with relatively few fire-scarred samples. The data reported in the Sample Size 
column reflect total specimens collected. 
 
 

Fire History Study Location 
Sample 

Size 
Length of 

Chronology 

Fire 
Interval(s) 

(Years) 

1 *Mann et al., 1994 Vermont 32 1504–1851 18.3±14.4 
2 Shumway et al., 2001 Maryland 20 1615–1958 7.6 
3 Schuler & McClain, 2003 West Virginia 17 1895–2002 14.8–17.1 
4 Hoss et al., 2008 Virginia 73 1765–1993 2.2–18.4 
5 Sutherland et al., 1995 Virginia 14 1895–2002 9–11 
6 **McEwan et al., 2007 Ohio, Kentucky 225 1875–1954 2.1–12.2 
7 *Guyette et al., 2003 Indiana 27 1656–1992 8.4 
8 Harmon, 1982 North Carolina, Tennessee 43 1856–1940 12.7 

 

 

 Recent work by McEwan et al. (2007) in mixed-oak forests of the Allegheny and 

Cumberland Plateaus (Fig. 1.1) report mean fire intervals over a 67-year period ranging 

from 2 to 12.2 years (Table 1.1). This study encompassed nine study sites within a 240 

km latitudinal gradient. Fire was widespread and frequent throughout the study area and 

played an important role in the establishment and development of the current mixed-oak 

overstory (McEwan et al., 2007).  

Two fire-history studies are particularly important for elucidating fire-regimes of 

the Appalachian region. In two Table Mountain pine stands on Brush Mountain, Virginia 

(Fig 1.1), Sutherland et al., (1995) reported that fires burned approximately every 10 
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years (see Table 1.1). Stand age structure revealed the establishment of two distinct 

cohorts whose establishment dates coincided with major fire events. This was a small 

study conducted during the 1995 North American Dendroecological Fieldweek 

(NADEF) and was the forerunner of my dissertation research.  

Hoss et al., (2008) investigated the fire-history of an oak-dominated forest on 

Peters Mountain, in Giles County, Virginia (Fig. 1.1). Fire-intervals ranged from 2–18 

years (see Table 1.1) and exhibited little temporal variability regardless of increasing 

anthropogenic activity in the area. Despite the number of specimens collected (73), some 

fires were only recorded by a few trees indicating the occurrence of small-extent fires; 

however, there was evidence of larger, more widespread fires that occurred at longer 

intervals (11–13 years). The results of age structure analysis indicated that the 

establishment and maintenance of the dominant tree species is directly related to the fire 

frequency at the site. These findings are particularly important because they are 

consistent with the fire-oak hypothesis (Abrams, 1992) that states historically, oaks were 

perpetuated by fire. In addition to providing information about historic fire frequency, 

the studies by Sutherland et al. (1995) and Hoss et al. (2008) also reveal the influence of 

modern fire suppression on species composition and structure by demonstrating that 

relatively shade-tolerant, but fire-intolerant, tree species encroached after the cessation 

of frequent burning.  

Some chronologies (e.g. Harmon, 1982; Schuler & McClain 2003; McEwan et 

al.,  2007) are restricted to the post-settlement era (mid- or late-19th  to 20th  centuries); 

however they provide valuable information about the role of fire and changing land use 
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on forests that were believed to have originated during this period (Aldrich et al., 2010). 

The role of fire prior to the period of capital intensive logging and mining is less clear, 

but is important because resource managers commonly use presettlement conditions as 

baseline conditions for restoration targets (Aldrich et al. 2010). Chronologies reported 

by Mann et al., (1994), Shumway et al. (2001) and Guyette et al., (2003) extend fire 

history research beyond the presettlement era, but it is clear that more extensive 

investigations of fire history are needed if past fire regimes of the Appalachian region 

are to be characterized adequately. 

 

Purpose of the Study 

 In this study, I use dendroecological techniques to investigate fire history and 

vegetation dynamics of mixed pine-oak forests in the central Appalachian Mountains of 

Virginia. The study addresses three main objectives: (A) develop a lengthy fire 

chronology to document fire history beginning in the late presettlement era and 

extending throughout the period of European settlement, industrialization and modern 

fire exclusion; (B) explore fire-climate relationships; and (C) investigate vegetation 

dynamics in relation to fire occurrence. 

Fire History 

 Human land use is thought to have exerted a strong control on fire regimes of 

temperate forests (Pyne, 1982; Delcourt et al., 1986; Abrams, 1992; Lynch & Clark, 

2002; Guyette et al., 2002; Aldrich et al., 2010). These forests have been affected 

heavily by agricultural clearing, settlement, mining, logging, fire protection and other 
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human influences (Williams, 1998; Nowacki & Abrams, 2008). Pyne (1982) argued that 

European forests burned frequently under extensive human land uses such as agricultural 

expansion, but declined with shifts to intensive sedentary agriculture and industrial 

forestry. Until recently, however, the history and role of fire in eastern North American 

forests received relatively little attention (Brose et al., 2001). Consequently, past fire 

regimes are not well known, particularly for periods before the late 1800s. I address the 

following questions to investigate the fire history of three central Appalachian Mountain 

landscapes through multiple land use episodes: 

A. How common were fires on the presettlement landscape? 

B. Did the frequency of fire rise as the extent of human land use increased from 

presettlement to early European settlement to widespread extractive industrial 

activities (iron mining/smelting and logging)? 

C. Did the frequency of fire decline in association with fire protection during the 

20th century?  

Fire-climate Interactions 

 Climate influences fire activity by controlling fuel accumulation and moisture 

content (Kitzberger et al., 1997; Lafon et al., 2005). Investigations of the short- and 

long-term fluctuations in climate and variations in fire activity demonstrate that climate 

strongly influences patterns of burning (Lafon et al. 2005). In many dry forests and 

shrublands of the western US, fire activity is greatest when unusually wet years that 

promote the accumulation of fine fuels are followed by subsequent drought (Kitzberger 

et al., 1997; Grissino-Mayer et al., 2004; Lafon et al. 2005).  
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 In more humid climates, wet periods prior to the year of drought may not be 

necessary for the accumulation of fine fuels because wetter conditions support heavy 

fuel loads every year (Kitzberger et al. 1997; Lafon et al., 2005). In these environments, 

drought during the year of fire may to be the climatic factor of most significance, 

particularly for fire episodes in which multiple fires burn synchronously throughout a 

region (Lafon et al., 2005). 

 Here, I investigate relationships between interannual variations in fire activity 

and climatic variability. I use Superposed Epoch Analysis (SEA) to address the 

following questions:   

(1) Are interannual variations in fire activity related to climatic cycles of wetness 

and drought? 

(2)  Do region-wide fire episodes, recorded at multiple study sites, coincide with 

drought years? 

Vegetation Dynamics 

 It is increasingly recognized that many presettlement forests in the eastern US 

were influenced by a fire regime that resulted in vegetation types dependent on frequent 

burning for regeneration and maintenance (van Lear & Waldrop, 1989; Frost, 1998; 

Elliott et al., 1999; van Lear, 2004; Brose et al., 2005). This region has a high diversity 

of species with a wide range of strategies for persisting under different disturbance 

regimes, including fire (Nowacki & Abrams, 2008). It is generally accepted that 

widespread and prolonged fire exclusion has led to unprecedented ecological changes in 

fire-adapted ecosystems (Nowacki & Abrams, 2008), and many studies have 
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documented these changes (Heinselman, 1973; Abrams & Nowacki, 1992; Wolf, 2004; 

DeWeese, 2007; Hoss et al., 2008; Aldrich et al., 2010).  Modern forests are denser than 

presettlement forests and increased shading has favored the establishment of an 

abundance of shade-tolerant, fire-sensitive plants. Nowacki & Abrams (2008) 

hypothesize that over time, these species create cooler, wetter, and less flammable 

microenvironmental conditions that continually favor mesophytic species over 

xerophytic species. The documented shift in fire regimes resulting from fire control 

practices in the 20th century offers an opportunity to investigate the role of fire in 

controlling vegetation composition and structure under contrasting fire regimes. 

Specifically I ask: 

(1) How do the dominant tree species (pine and oak) with different persistence 

strategies (e.g. fire resistance via thick bark; resilience via sprouting) respond to 

changes in fire regimes? 

(2) In the absence of fire, is there an observed shift from fire-resistant, xerophytic 

trees to a community with a high diversity of mesophytic trees and shrubs? 
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Organization of Dissertation 

 This dissertation consists of six chapters. Chapter II is the literature review 

structured around the main objectives of the study. In it, I first summarize what is known 

about anthropogenic activity on historic fire regimes from the Archaic Period (8000–

2800 BP) through the early 20th century. Second, I provide a discussion on basic 

relationships between fire and climate then compare and contrast what is known about 

fire-climate interactions in the western US with what is known in the eastern US. The 

final portion of this chapter highlights the ecological role of fire on vegetation 

community function and structure in the context of plant persistence strategies and 

species diversity. Chapter III describes the physical setting of the study area as well as 

land use history specific to each study site. This chapter also delineates the field, 

laboratory and statistical methods used in this study. Chapter IV provides the results of 

the study, and Chapter V discusses these findings in the context of fire history, fire-

climate interactions and vegetation dynamics. Chapter VI sets forth my conclusions and 

their implications for resource management and future research.  
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CHAPTER II  

REVIEW OF LITERATURE 

 

Anthropogenic Influence on Fire Regimes in Eastern North America 

American Indians 

 Indians in the eastern US burned for a variety of reasons. The frequency, 

intensity and location of burning varied spatially and temporally depending on what 

resources were being managed (Moeller, 1996; Fritz, 2000; Hammett, 1992).  It is 

believed the earliest hunter-gathers (12500–9500 BP) in North America used fire 

primarily for hunting megafauna (mastodon, bison and caribou), but they also may have 

used fire to clear the forest understory to facilitate nut collecting and the growth of 

pioneer plant species (Bonnicksen, 2000; Fowler & Konopik, 2007; Nowacki & Abrams, 

2008).    

 During the Archaic Period (8000–2800 BP), Indians probably used fire to create a 

variety of habitats to attract game; create ecotones that appealed to white-tailed deer 

(Odocoileus virginianus) (Delcourt et al., 1986); maintain open woodlands and savannas 

for early-successional wildlife species (Brose et al., 2001). Fire was also important in 

maintaining the prairies that sustained great herds of American bison (Bison bison) 

(Lorimer, 2001). Low-intensity fires were used to facilitate hunting by driving or 

encircling game (Brose et al., 2001; Abrams & Nowacki, 2008). 

 The Woodland (2800–1300 BP) and Mississippian (1300–400 BP) Periods were 

characterized by a mixture of agricultural and hunter–gather societies (Woodcock & 
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Wells, 1994). The cultural transition from mobile, hunting–gathering groups to settled 

communities that relied more heavily on plants as foodstuffs prompted modifications in 

the use of fire as a management tool (Woodcock & Wells, 1994; Fowler & Konopik, 

2007). Growing populations required more and more land to be cleared for villages, 

political centers and agricultural fields. Fire was likely used to prepare planting sites for 

agriculture, maintain habitats for mast and fruit producing trees and prepare seedbeds for 

domesticated species (Fowler & Konopik, 2007; Abrams & Nowacki, 2008). 

  There is general agreement about the use of fire by American Indians prior to 

European contact; however, considerable uncertainty still exists about the extent to 

which this use altered the North American landscape (Pyne, 1982; Russell, 1983; Loope 

& Anderton, 1998; Patterson & Sassaman, 1988; Denevan, 1992; Clark & Royall, 1996; 

Bonnicksen, 2000). Early scholars and popular writers portrayed pre-Columbian North 

America as a “wild” or “pristine” landscape largely untouched by human hands (Butzer, 

1992; Denevan, 1992; McCann, 1999). Under this scenario, American Indians were 

described as “environmentally unobtrusive” (Moeller, 1996), living in harmony with 

nature (Butzer, 1992; Briggs et al. 2006). More recently, however, this idea has been 

challenged in a growing body of historical, anthropological, and paleoecological 

evidence that suggests that Indian use of fire had more widespread impacts on the 

landscape than previously thought (Day, 1953; Pyne, 1982; Patterson & Sassaman, 

1988; Denevan, 1992; McCann, 1999; Bonnicksen, 2000; Keeley, 2002; Williams, 2002; 

Briggs et al.. 2006; Kay, 2007).   
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 A combination of direct (historical records) and indirect (archeological, 

paleoecological) methods can be used to help evaluate the impact of American Indians 

(Meyers & Peroni, 1983; Russell, 1983; Patterson & Sassaman, 1988; Briggs et al., 

2006; Fowler & Konopik, 2007). Historical documents written by early European 

explorers provide important descriptions of Native American landscapes (Hammett, 

1992). The information gleaned from these texts describes a mosaic of vegetation types 

and suggests that aboriginal burning practices may have influenced ecosystems to 

various degrees not only in the eastern US but other regions of North America as well 

(Hammett, 1992; Parshall & Foster, 2002; Fowler & Konopik, 2007). Many of these 

writings mention fire directly. For example, William Bartram (1791), describing his time 

spent with the Creek Indians in Florida, noted the appearance of great vultures that 

“seldom appear but when the deserts are set on fire (which happens almost every day 

throughout the year, in some part or other, by the Indians, for the purpose of rousing the 

game, as also by the lightning)”. In this passage, the term “deserts” is used to describe a 

wilderness or deserted place (in this case, grassland or savanna) as Bartram continues his 

narrative “when they are seen at a distance soaring on the wing, gathering from every 

quarter, and gradually approaching the burnt plains, where they alight upon the ground 

yet smoking with hot embers; they gather up the roasted serpents, frogs and lizards; 

filling their sacks with them”. Others provide indirect evidence of fire in their 

description of landscapes that may have been maintained by fire (Fowler & Konopik, 

2007). For example, Garcilaso de la Vega, a member of the De Soto Expedition to North 

America in the 16th century, writes that they saw “a great quantity of oaks and extensive 
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grazing lands” on their five day journey from the northwest corner of South Carolina 

over the mountains into the Tennessee River Valley (Rostlund, 1957). 

 Despite many written accounts describing widespread Indian use of fire, Emily 

Russell (1983) concluded that no strong evidence exists to suggest that Indians 

purposely burned large areas of the landscape creating the open woods observed by early 

European travelers. Russell (1983) maintained that there is little direct historic evidence 

to support the case for widespread aboriginal burning, and that the existing accounts are 

either unreliable or unspecific in location and/or extent of Indian burning. She further 

contends that some writers’ motives may have been biased toward economic or religious 

self-interests (Russell, 1983).   

 Myers & Peroni (1983) argue that historical documents have limited applicability 

when used as the sole resource in determining aboriginal fire patterns and that drawing 

conclusions from these documents alone ignores a large body of both archeological and 

ecological literature illustrating global use of fire by aboriginals. Archeological data can 

provide the depth of time necessary to explore relationships between human land use and 

ecosystem structure beyond the bounds of written historical documents (Meyers & 

Peroni, 1983; Briggs et al., 2006).  

 Archeological data are used to reconstruct the physical setting and cultural 

histories of past civilizations. Plant and animal macro-remains (e.g. seeds, charcoal, 

plant food debris, bones, fish scales and exoskeletons) found at excavation sites are used 

to document population locations and densities, and concomitant shifts in subsistence 

patterns that can influence vegetation patterns and fire regimes (Myers & Peroni, 1983). 



17 

 

For example, the excavation of a complex of interconnected rockshelters in eastern 

Kentucky revealed diagnostic artifacts (projectile points and pottery shards) dating from 

the Middle Archaic through Late Woodland Period that document an 8000 year 

occupational history of the area (Delcourt et al., 1998). Ethnobotanical remains retrieved 

from the sites indicate the occupants practiced animal husbandry and domestication of 

native plants during the latter portion of occupation (Delcourt et al., 1998).   

 In addition to archeological data, paleoecological methods (pollen and charcoal 

analysis) can provide the range of spatial and temporal resolution to help elucidate the 

role of aboriginals in influencing the composition and structure of vegetation on the pre-

Columbian landscape (Russell et al., 1993; Clark et al., 1996; Delcourt & Delcourt, 

1998; Foster et al., 2002). Lynch & Clark (2002) used pollen and charcoal analyses to 

assess long-term fire-vegetation patterns and examine the effects of Indian and European 

settlement on forests of the Appalachian Mountain regions of Maryland, Virginia and 

North Carolina. Over the past 20000 years, accumulation of charcoal at all sites 

confirmed that fire was present on the landscape, but its ecological role and importance 

varied among sites and throughout time. The heterogeneity of fire in these forests 

indicates that fire as a disturbance agent was discontinuous, and may at times have 

facilitated the dominance of oak. Charcoal accumulation increased at all study sites after 

European settlement, underscoring the importance of fire as a disturbance factor during 

this time. At some sites, the increase occurred during the shift from forest to pasture in 

the late 18th  and 19th centuries, while at other sites, fire was more important during the 

logging period of the 1880s to 1920s (Lynch & Clark, 2002). 
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 In the southern Appalachian Mountains, Delcourt & Delcourt (1997; 1998) and 

Delcourt et al. (1998) used paleoecological and archeological data to evaluate the 

importance of human impacts on vegetation over the past 3000 years. Increases in local 

fire frequency corresponded with changes in Native American activities from hunting 

and gathering toward a more agrarian lifestyle. Delcourt & Delcourt (1997) argued that 

these activities created and maintained a heterogeneous mosaic of different vegetation 

types across the landscape, including oak and chestnut forests in the uplands, fire-

adapted pine on ridge tops and disturbance-adapted hardwoods occupying abandoned 

agricultural fields (see also Hammett, 1992). The temporal concurrence of pre-

Columbian occupation, domestication of native plants and increased fire activity 

underscores the importance of aboriginal activities in structuring vegetation composition 

in the region, especially considering that lightning ignitions are relatively infrequent in 

the Appalachian Mountains (Delcourt & Delcourt, 1998; Kay, 2007; Abrams & 

Nowacki, 2008).  

 It is becoming more accepted that in many areas, frequent, low-intensity fires 

were important in structuring plant communities (Kay, 2007), and few deny the 

historical relationship between humans and fire (Brose et al., 2001; Abrams & Nowacki, 

2008). It is the contention of many, however, that the importance of Native American 

burning varied over time and space (Hammett, 1992; Foster et al., 2002). For example, 

in New England, Parshall & Foster (2002) collected paleoecological data from 18 lakes 

across the region, representing a variety of vegetation types and landforms, to 

reconstruct the past distribution of fire and to investigate the possible drivers of fire 
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activity. The authors maintain that the major factor influencing the distribution of fire 

across the region was climate, particularly the number of growing degree days. Other 

factors that may have exerted control over local fire regimes included landforms, 

firebreaks and prevailing winds. The distribution of presettlement fire broadly 

corresponded with Native American populations, with higher fire activity corresponding 

to higher population sizes along the coast and inland waterways, although there is no 

evidence to support the assertion that intentional burning by American Indians affected 

the distribution of vegetation across New England (Parshall & Foster, 2002).  

 Keeley (2002) evaluated the importance of aboriginal burning on vegetation 

distribution in the coastal ranges of central and southern California. Historically, the 

coastal ranges of California were regions of high Indian populations and low frequency 

of lightning-ignited fires. The landscape was dominated by shrubs that offered few 

resources for humans, and natural fire frequencies were inadequate to maintain a more 

habitable environment. Keeley hypothesized that Native American burning was 

necessary to supplement the natural fire regime, allowing for the creation of a landscape 

bearing a mixture of shrubland and grasslands.  

 Vale (1998, 2000) argued that large portions of North America were relatively 

unaffected by aboriginal burning during the presettlement period and that in drier 

regions of the American West, fire regimes were dominated by lightning-ignited fires. 

He claims any additional burning done by Indians probably altered vegetation only in the 

immediate vicinity of villages, but did not affect the regional landscape. He does 

concede, however, that aboriginal burning was probably more important in the more 



20 

 

humid eastern portions of the continent where lightning ignitions are less important 

(Vale, 2000). 

 Kay (2007) and others (Sauer, 1950; Day, 1953; Lorimer, 2001; Keeley, 2002) 

cite several ecological examples that suggest aboriginal burning not only structured a 

wide range of plant communities all across North America, but created many of the 

vegetation associations once thought to be natural. Some of the most compelling 

evidence comes from the temperate forests in the eastern United States (Kay, 2007). 

During the past 8000– 10000 years, much of this region was dominated by fire-tolerant, 

early- to mid-successional species such as oaks, chestnut and pine. Since European 

settlement and subsequent reduction in fire frequency, these species have been replaced 

by late-successional, fire-intolerant trees such as black gum and maple.  

European Settlers 

 Brose et al. (2001) argued that the cultural transition from aboriginal habitation 

to European settlement (mid 1500s–early1700s) did little to alter the regime of frequent, 

low-intensity fires because early settlers adopted the Indian model of burning, thus 

preserving the historical fire regime. A few writers, however, contend that during this 

transitory period, the decline of Native American populations significantly decreased the 

frequency of burning. Subsequently, many of the open, park-like landscapes created and 

maintained by Indian burning returned to a more forested landscape (Denevan, 1992; 

Williams, 2002; Fowler & Konopik, 2007; Hicks, 2000).  

 Initially, European settlement progressed slowly. By 1638, only about 30000 

Europeans occupied North America (Denevan, 1992). By 1750, there were 
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approximately 1.3 million Europeans, mainly occupying the coastal area from New 

England to northern Florida (Denevan, 1992). Westward progress was relatively slow 

into the 1700s due to the lack of efficient region-wide transportation systems (Denevan, 

1992; Hicks, 2000). 

 In the central and southern Appalachian Mountains, European settlement began 

in the early- to mid-1700s in the Shenandoah Valley, and settlement farther from the 

main valleys occurred in the late 1700s (Williams, 1998). Many early settlers were 

subsistence farmers, their burning practices a combination of European traditions and 

techniques learned from American Indians (Pyne, 1982; Hicks, 2000). As with their 

predecessors, settlers’ use of fire probably varied from place to place, depending on the 

desired management effect (Hammett, 1992). Initially, human impacts were 

concentrated along waterways and in valleys, but between 1750 and 1850, increasing 

population pressure forced the expansion of agricultural and timber harvesting activities 

into more remote areas (Denevan, 1992).  

 The era of extractive industrial activity (1850–1930) had extensive logging and 

mining activity that probably led to a marked increase in fire frequency and intensity 

over much of the Appalachian region (Harmon, 1982; Williams & Johnson, 1990; 

Abrams & Nowacki, 1992; Williams, 1998; Brose et al. 2001; Schuler & McClain, 

2003). The development of extensive railroad systems facilitated logging in areas 

previously inaccessible due to steep terrain. Commercial logging practices were highly 

destructive, resulting in widespread erosion on steep sites. The dried slash, or left-over 

logging debris, provided fuel for wide-spread, intense fires. The steam engines that 
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powered the locomotives were a primary ignition source, especially during periods of 

drought (Pyne, 1982; Williams, 1998; Brose et al., 2001; Fowler & Konopik, 2007). 

 In response to the widespread destruction of eastern forests due to massive 

wildfires, Gifford Pinchot, founder of the United States Forest Service (USFS), led a 

nationwide conservation effort to identify wildfire as an undesirable, destructive force 

that must be controlled (Brose et al., 2001). The Weeks Act of 1911 established federal 

forests under the supervision of the newly created USFS, and fire prevention became a 

top priority (Brose et al., 2001). Fire-prevention legislation also created fire wardens at 

state and local levels in addition to nationwide education efforts to inform the public 

about the danger and prevention of wildfire (Brose et al., 2001). The Smokey Bear anti-

fire campaign instituted in 1944 became one of the most influential advertising 

campaigns in history, educating generations of Americans of the dangers of wildfire 

(Brose et al., 2001). Early fire prevention efforts were so successful that between 1930 

and 1960 the total area consumed by fire decreased from 50 million acres to about 5 

million acres (Brose et al., 2001).  

 The elimination of frequent, high-intensity fires that characterized the industrial 

era allowed for the development of hardwood forests, which previously were constrained 

by frequent and/or severe fire. Management practices were unfavorable to xerophytic 

pine and oak forests that rely on the frequent occurrence of fire for regeneration and 

maintenance (Whittaker, 1956; Zobel, 1969; Abrams, 1992; Agee, 1998; Brose et al., 

2001).  As a result, there have been considerable changes in canopy composition and 

structure in many eastern forests as the abundance of fire-tolerant pine and oak species 
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declined and fire-sensitive hardwood trees and shrubs flourished (Harmon, 1982; van 

Lear & Waldrop, 1989; Abrams, 1992; Sutherland et al., 1995; Harrod et al., 1998; 

Williams, 1998).  For example, Harmon (1982) reported that xeric slopes and ridges in 

western portions of the Great Smoky Mountains National Park experienced a frequent 

fire rotation (10–40 years) between 1856 and 1940. Because of changing land use prior 

to establishment of the park in 1934 and the beginning of fire suppression activities in 

the 1940s, fire rotation increased to over 2000 years. Consequently, between the 1930s 

and 1990s, mean density and basal area of canopy trees doubled, abundance of shade-

intolerant trees such as pines and oaks declined, and shade-tolerant species increased 

(Harrod et al., 2000).  

 

Fire-climate Interactions 

 Fire regimes (i.e. established patterns of frequency, intensity, severity, and 

seasonality) in any given area are partly a function of interactions among climate-related 

factors, such as fuel production, fuel moisture, ignition frequency and short-term 

weather patterns (Grissino-Mayer & Swetnam, 2000; Lafon et al., 2005; Bond & 

Keeley, 2005). Long-term climate affects fuel accumulation by influencing primary 

productivity and decomposition, while short-term weather patterns such as daily 

variations in precipitation, temperature, humidity and wind affect fuel moisture and fire 

spread (Lafon et al., 2005; Petersen & Drewa, 2006; Meyn et al., 2007).   

 In North America, a growing interest in recreating historic fire regimes and 

understanding the drivers of wildland fire have led to a number of studies on fire-climate 
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relationships. Many of these studies have focused on regions in the western US (e.g. 

Grissino-Mayer & Swetnam, 2000; Heyerdahl et al., 2001; Brown, 2006), although a 

few have investigated eastern North America  - e.g. Florida (Prestemon et al., 2002), 

Mississippi (Dixon et al., 2008) and the central Appalachian Mountains (Lafon et al., 

2005; Lafon & Grissino-Mayer, 2007). These investigations reveal that patterns of 

burning are strongly influenced by climate, even in areas where fire regimes were 

historically dominated by anthropogenic ignitions (Lafon et al.; 2005). Recent studies 

have revealed some general patterns of fire-climate relationships (e.g. Baker, 2003; 

Schoennagel et al., 2004; Meyn et al., 2007; Littell et al., 2009): (1) in humid climates, 

fuel moisture is the primary limitation on fire ignition and spread, thus fire activity is 

most extensive during periods of drought; 2) in dry climates fire activity is often highest 

when drought years follow unusually wet years that promote the accumulation of fine 

fuels; and (3) oscillations between wet years that promote fuel production, and dry years 

that favor burning. 

 In the humid Southeast, fire-climate relationships are not as well documented as 

in the western US, but existing studies indicate that the relationships seem to follow the 

first pattern, i.e., wet periods prior to the year of drought may not be necessary for the 

accumulation of fine fuels because wetter conditions support heavy fuel loads every 

year. In these environments, drought during the year of fire may to be the climatic factor 

of most significance, particularly for fire episodes in which multiple fires burn 

synchronously throughout a region (Lafon et al., 2005). Fire history studies on drier sites 

in the Appalachian Mountains (Harmon, 1982; Sutherland et al., 1995; Shumway et al., 
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2001; Armbrister, 2002; Schuler & McClain, 2003) suggest that historically, surface 

fires burned at intervals of about 5–15 years, and many appear to have been associated 

with drought (Lafon et al., 2005). 

 Lafon et al. (2005) used records of wildland fire during 1970–2003 to examine 

contemporary fire-climate relations in the central Appalachian Mountains. Of particular 

interest to my study are findings related to seasonal patterns of fire occurrence and 

interannual variations in fire activity with respect to climatic cycles of wetness and 

drought. The study found that the occurrence of fire varies seasonally with weather and 

fuel conditions. Fire activity is highest during fall and spring and lowest during the 

winter and summer months. Fall burning coincides with the peak of fine fuel 

accumulation and optimal weather conditions that are more conducive for fire activity 

(i.e. low precipitation, high temperatures, high winds and low humidity). Human 

ignitions are more important during this time of year because of reduced thunderstorm 

and lightning activity in the region (Lafon et al., 2005). Cold temperatures during the 

winter months prevent the decay of fine fuels on the landscape, thus providing ample 

fuel for burning with the return of warmer temperatures and increased thunderstorm 

activity in the spring. Although lightning ignitions peak during late spring and early 

summer, the increased moisture content of new vegetative growth, higher humidity 

levels and declining wind speed suppresses fire activity (Lafon et al., 2005).   

 The identification of seasonal patterns of fire activity has important implications 

for interpreting dendroecological analysis of fire history studies. For example, in two 

Table Mountain pine stands in Western Virginia, Sutherland et al. (1995) found that 



26 

 

most fires that occurred during the period of study (1798–1944) were dormant-season 

burns that occurred either during the spring or fall. While it is not possible to identify the 

ignition source through dendroecological techniques, it can be inferred from the 

seasonality of the burns that most of the fires were probably ignited by humans (Lafon et 

al., 2005).  

 Fire activity also varied annually, both in terms of anthropogenic and natural 

ignitions, which was shown to be related to variations in climate. For example, spring 

anthropogenic fire activity was highest during years with a dry winter and spring. For 

natural fires, dry conditions were important throughout the year, especially late spring 

and summer. On the other hand, fall anthropogenic fire activity was related to summer 

and fall moisture levels (Lafon et al., 2005).  

 

Vegetation Dynamics 

 Many environmental factors influence the structure, composition and functioning 

of plant communities. Over the past 50 years, the recognition of fire as an evolutionary 

force in forest ecosystems has been increasing (Attiwill, 1994). Likewise, the use of 

plant functional traits as a method of assessing vegetation responses to fire as a 

disturbance has become more prevalent (Diaz et al., 1999). Vegetation communities that 

have evolved with a long history of disturbance exhibit certain morphological and 

physiological characteristics that enable them to persist, compete, and regenerate under 

specific disturbance regimes (Diaz et al.,1999; Pausas et al., 2004) and many have 

several features in common (Grime, 1977). The most common of these traits is the 
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tendency for certain plants to complete their lifecycles relatively quickly (i.e. annual, bi-

annual or short-lived perennials) to take advantage of intermittent opportunities for 

favorable growth. In these plants, a large proportion of energy is directed into copious 

seed production, instead of vegetative development, increasing the likelihood of 

reproduction before the next disturbance occurs. Another common characteristic is the 

ability of seeds to remain viable in the soil for long periods and germinate rapidly when 

exposed to light or high temperatures (Grime, 1977).  

 Noble & Slatyer (1980) developed qualitative models of vegetation dynamics for 

communities subject to recurrent disturbance. These models are based on vital attributes, 

or life history traits defined relative to specific disturbance types. Three main groups of 

vital attributes were identified: (1) the method of species arrival or persistence at the site 

during and after the disturbance; (2) the ability to establish and grow to maturity 

following a disturbance event; and (3) the time taken for the species to reach critical life 

stages.   

 Rowe (1983) incorporated portions of Noble & Slatyer’s vital attribute models in 

a characterization of plant adaptations to fire. However, in Rowe’s conceptualization, 

traits favoring invasion, seed storage, and regrowth are more important in fire-prone 

areas than those favoring competition. This is especially important in environments that 

experience frequent disturbance, because competition between species may not have 

adequate time to develop before another disturbance occurs (Lloret et al., 2005).  

 In Rowe’s (1983) assessment, vegetation responses to fire are classified 

according to their ‘mode of persistence’. Two broad categories are identified based on 
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the primary mode of propagation (i.e., disseminule-based or vegetative-based) and 

further demarcated by mode of regeneration and fire-tolerance characteristics. According 

to this model, plants with disseminule-based strategies are identified as ‘invaders’, 

‘evaders’ or avoiders’. Invaders are characterized by their ability to produce large 

numbers of short-lived propagules that quickly invade an area following fire. These 

species are shade-intolerant and exhibit rapid growth. Evaders have relatively long-lived 

propagules that are either stored in the canopy or lie dormant in the soil until triggered to 

germinate by high temperatures. Evaders fall into two distinct categories; shade-

intolerant, early-successional ephemerals (annuals, bi-annuals) and semi-tolerant to 

shade-tolerant perennials that can persist into later successional stages, thus contributing 

to the seed bank for longer periods. Avoiders are late-successional, shade-tolerant 

species that exhibit few adaptations to fire and are important components of more mesic 

ecosystems dominated by long fire cycles. Some avoiders require modification of the 

ecosystem (humus accumulation or shade) before they can invade and colonize an area. 

 Plants that persist vegetatively under burning are classified as either ‘resisters’ or 

‘endurers’. Resisters are species whose above-ground parts can survive low-severity 

fires.  Many members of the genus Pinus exhibit fire-resistant characteristics that protect 

against surface fire (thick bark) and reduce the likelihood that fire will reach the canopy  

(self-pruning branches) (Schwilk & Ackerly, 2001). Endurers are plants whose 

underground parts survive fire and regenerate from stem bases, roots, or rhizomes. These 

species can possess either shade-intolerant or tolerant characteristics. The shade-

intolerant members of this group are early-successional species that require recurrent fire 
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for regeneration and maintenance. Shade-tolerant members of this group are able to 

persist in the absence of disturbance. Endurers are differentiated from tolerant-sprouting 

avoiders in that they establish immediately after a fire. In contrast, tolerant-sprouting 

avoiders establish later in the successional sequence (Rowe, 1983). 

 It is important to note that some species may exhibit more than one persistence 

strategy, thus may not fit exclusively into any one of the five categories (Rowe, 1983).  

For example, in a study comparing characteristics and recovery rates of tundra 

vegetation following fire in northwestern Alaska, Racine et al. (1987) found it difficult 

to place bluejoint grass (Calamagrostis canadensis) and fireweed (Chamerion 

angustifolium) into a single category because plants exhibiting both disseminule-based 

and vegetative-based forms of propagation were found on burned areas following fire. 

Recognition that various combinations of plant functional traits can lead to differential 

success under changing fire histories may have important implications for long-term 

vegetation dynamics (Pausas et al., 2004).  

 In ecosystems with a long history of frequent fire, slight alterations in the fire 

regime may only lead to minor changes in relative abundance of the dominant tree 

species. However, if the fire regime is drastically altered, it is likely that some species 

with strategies that allow them to persist in fire-prone areas will be filtered out and 

others with different persistence strategies would be able to establish and thrive (Diaz et 

al., 1999).  

 Nowacki & Abrams (2008) hypothesized that the abrupt and enduring shift in 

fire regimes in the early 20th century has led to a number of ecological changes in fire-
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prone ecosystems throughout the US. In the absence of fire, environmental conditions in 

closed-canopy forests have shifted to favor shade-tolerant, fire-sensitive, mesic species 

over their xerophytic, fire-adapted competitors. Over time, ‘mesophication’ (the 

escalation of mesic, microenvironmental conditions; Nowacki & Abrams, 2008) impedes 

fire activity by producing dense shading that promotes moist, cool microclimates and 

fuels not conducive to burning. This cycle is reinforced by positive feedback loops that 

sustain environmental conditions impeding the establishment and regeneration of fire-

dependent species.  

 The theory of alternative stable states provides a good framework for 

characterizing the mesophication process (Nowacki & Abrams 2008). According to this 

theory, a community may exist in a number of different locally stable states until a 

disturbance event triggers a switch to a new stable state. In fire-adapted ecosystems, 

much of the vegetation is so dependent on periodic fire that the absence of fire may be 

the perturbation that causes a change in states (Nowacki & Abrams, 2008). For example, 

periodic fire apparently maintained the tallgrass prairies of North America for millennia 

(Sauer, 1950; Evans et al., 1989; Collins, 1990), however, long-term fire suppression 

transformed much of the once continuous prairies to deciduous forests and now only 

scattered remnants remain (Evans et al. 1989; Bock & Bock, 1998).   

 The shift in species composition from xerophytic, shade-intolerant species to 

shade-tolerant, fire-sensitive species in the absence of fire occurs more rapidly on more 

productive sites (Smith & Huston, 1989; Nowacki & Abrams, 2008). On less productive, 
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xeric sites, the shift to mesophytic communities occurs more slowly because mesophytic 

species cannot easily invade dry sites (Nowacki & Abrams, 2008). 

 In the mixed oak-pine forests of the eastern US, xerophytic oak and pine species 

are increasingly being replaced by late-successional mesophytic species such as red 

maple (Acer rubrum), sugar maple (Acer saccharum), beech (Fagus spp.), and blackgum 

(Nyssa sylvatica) (Abrams, 1992; Brose et al., 2001). As stand density increases and the 

understory becomes more shaded, insolation and wind speeds decrease, and relative 

humidity increases resulting in a cooler and moister understory. These conditions, 

coupled with less flammable leaf litter of mesophytic species, limit fire activity and 

intensify the mesophication process. In many of these communities, stand-level tree 

diversity has increased, at least temporarily, as previously fire-restricted tree species 

have recruited into the canopy. However, as xerophytic species are increasingly 

excluded through gap-phase replacement, it is possible that overall tree species diversity 

will decline and forests will move toward dominance by a few highly shade-tolerant 

species (Loehle, 2000, Nowacki & Abrams 2008). 
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CHAPTER III 

METHODS∗ 

 

Study Area 

Topography and Soils 

 The study was conducted in the George Washington National Forest (GWNF), 

located in portions of the Ridge and Valley and the northern Blue Ridge physiographic 

provinces of Virginia. The Ridge and Valley is characterized by a series of parallel, 

folded and faulted, narrow ridges that rise above the intervening valleys.  Most of the 

Ridge and Valley lies at elevations below 900 m (3000 ft); but elevations of the ridges 

rise to elevations of 1200–1400 m (4000–4600 ft) (McNab & Avers, 1994; Fleming et 

al., 2006).   

 Shallow, rocky soils are typical on the steep slopes and ridges underlain by more 

resistant sandstone, quartzite and shale; while deep, loamy soils are found at lower 

elevations and coves that have substrates of less resistant limestone, dolomite and shale 

(Daniels, 2006). The Great Valley of Virginia is the largest limestone valley along the 

eastern edge of the Atlantic coast. The valley soils are composed of limestone and 

carbonate-rich shale that have weathered into deep productive soils. These limestone  

valleys support some of the most intensive row-crop and animal production agriculture 
 

                                                 
∗ Part of this chapter is reprinted with permission from “Three centuries of fire in montane pine–oak 
stands on a temperate forest landscape”, by Aldrich, S.R., Lafon, C.W., Grissino-Mayer, H.D., DeWeese, 
G.G., and Hoss, J.A. 2010. Applied Vegetation Science, 13: 36–46. Copyright 2010 by John Wiley and 
Sons. 
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 in the Mid-Atlantic region (Daniels, 2006). The soils have a mesic temperature regime 

(mean annual soil temperature between 8°C and 15°C) and mostly udic moisture regime 

(soils anticipated to be moist within 90 days of the summer solstice and dry conditions 

typically do not persist for more than 60 consecutive days) (McNab & Avers 1994, Soil 

Survey Staff, 2010).  

 The Blue Ridge forms the eastern portion of Virginia’s mountain region. The 

northern Blue Ridge (north of the Roanoke Gap) is a rugged region with steep slopes and 

a narrow (8–16 km; 5–10 mi) ridge (McNab & Avers, 1994). Elevation ranges from 

457–1280 m (1500–4200 ft). The broad mountains of this region are characterized by 

narrow, irregularly weathered series of peaks underlain by resistant granites and 

metabasalts (McNab & Avers, 1994). The topography of the Blue Ridge varies from 

gentle to steep sloping side ridges and steep-sided, rugged hollows. Boulders and 

bedrock outcrops are common on upper slopes, but not extensive. The mountain peaks 

are incised by numerous gaps, saddles and wide alluvial valleys (Tolley, 1983). In 

general, most of the Blue Ridge is steep and rocky and not well suited for agricultural 

production; however, localized areas have soils that are moderately deep and of medium 

texture suitable for intensive forage and row-crop-based animal production (McNab & 

Avers 1994; Daniels 2006).  The soils have a mesic temperature regime, and udic 

moisture regime (McNab & Avers 1994). 

Climate 

 The central Appalachian Mountains are characterized by a humid continental 

climate, with pronounced seasonal variations in temperature and precipitation (Bailey, 
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1978). Periodic droughts and wet spells may influence fire activity on interannual time 

scales, while the topographic complexity of the Appalachian Mountains contributes to 

climatic variability that may influence fine-scale spatial patterns of fire (Lafon et al., 

2005). Much of the precipitation west of the Ridge and Valley is obstructed by the 

Allegheny Mountains while the precipitation from the east is blocked by the Blue Ridge 

Mountains (Fleming et al., 2006). Thus, strong gradients exist between the relatively dry 

interior of the Ridge and Valley, with mean annual precipitation of 850–950 mm, and 

the Blue Ridge, where mean annual precipitation exceeds 1270 mm (Terwilliger, 1991; 

National Climatic Data Center, 2000, Lafon et al., 2005). The region receives 

precipitation throughout the year, but it is more pronounced during the warmer months. 

In the western portions of the region, precipitation peaks during the summer months and 

in the Blue Ridge, in the fall (Lafon et al., 2005; Lafon & Grissino-Mayer, 2007). 

Vegetation 

 Variations in topography and climate contribute to spatial heterogeneity in 

vegetation in the region. Early classifications characterized much of the natural 

vegetation of the Ridge and Valley as oak-chestnut forests (Braun, 1950); however after 

the introduction of the chestnut blight (Cryphonectria parasitica) and subsequent decline 

of the American chestnut (Castanea dentata), oak forests came to dominate the 

landscape (Kuchler, 1964; Abrams, 1992; Stephenson et al., 1993). These forests occupy 

a broad range of submesic to subxeric sites, while yellow pine stands containing pitch 

pine and Table Mountain pine, a fire-dependent species, are found along xeric ridge tops 

and west-facing slopes (Whittaker, 1956; Zobel, 1969; McNab & Avers, 1994). 
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Mesophytic forests are confined to ravines, coves, and high elevations (Whittaker, 1956; 

Zobel, 1969; McNabb & Avers, 1994; Williams, 1998).  

 Kuchler (1964) classified the natural vegetation of the Blue Ridge as 

Appalachian oak forest, southeastern spruce (Picea spp.)-fir (Abies spp.) forest and 

northern hardwoods. Mesophytic species such as tulip poplar (Liriodendron tulipifera) 

and red maple dominate the valleys and moist slopes. Black oak (Quercus velutina), 

white oak (Quercus alba), and chestnut oak (Quercus montana) dominate the drier 

mountain slopes, while pitch pine and Table Mountain pine occupy the driest, exposed 

ridge tops and west-facing slopes (McNab & Avers, 1994). White pine (Pinus strobus) is 

found in parts of the Blue Ridge escarpment and the Ridge and Valley. High-elevation 

mesic sites are occupied by northern hardwoods (e.g. sugar maple, American basswood 

(Tilia americana) and drier sites are dominated by northern red oak (Quercus rubra). 

Evergreen spruce-fir forest and associated species occur at elevations above 1800 m 

(5900 ft) (McNab & Avers, 1994). 

 

Land Use History 

American Indian 

 Archeologists have distinguished four broad phases to describe changes in Native 

American culture over time in the southeastern U.S. (MacCord, 1999).  The Paleo-Indian 

(c. 9500 BP–c. 8000 BP), Archaic (c. 8000 BP–1000 BP) and Woodland (1000 BP–

1607AD) eras all distinguish themselves with unique cultural attributes based on 

similarities in artifacts, subsistence, and settlement patterns (Gardner, 1981; Sarvis, 
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2000). The Historic Period varies according to dates of first contact with European 

explorers. For example in Florida, the Historic Period began with the arrival of Ponce de 

Leon in 1513 AD. The Historic Period in Virginia began in 1607 when European settlers 

arrived on Jamestown Island (MacCord, 1999). 

 The Paleo-Indian era was characterized by groups of nomadic people that 

exhibited hunter-gatherer subsistence patterns and social structure. Numerous Paleo-

Indian sites are reported throughout Virginia and their size and structure vary with 

region. The Flint Run Complex excavated in the northern Shenandoah River valley at 

the boundary of the Blue Ridge and the Ridge and Valley produced a quarry-centered 

settlement pattern (Gardner, 1981). This complex featured four functionally different, 

yet interconnected site types including quarry, reduction station, base camp and 

maintenance camp. An additional excavation revealed a series of short-term base camps 

probably occupied by groups leaving or coming to the quarry complex. A similar, albeit 

larger, more intricate pattern of quarry-based complexes was identified in an area that 

extended across the Piedmont and Coastal Plain from east of the Blue Ridge to the 

eastern shore of the Chesapeake Bay and from northern North Carolina to the James 

River (Gardner, 1981). In southwestern Virginia, there is no evidence of large Paleo-

Indian settlements or complex gathering places as described in northern and southeastern 

Virginia, but rather, data suggest that people gathered in smaller groups that traveled 

throughout the region (Sarvis, 2000).  

 During the Archaic Period, people were not as dependent on hunting as their 

primary means of gathering food and began to establish a less nomadic lifestyle that 
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included the increased use of plants as a food source. Settlement patterns during the 

middle Archaic period (c. 3000 BP), became more cyclical to correspond with seasonally 

available resources (Sarvis, 2000). The more substantial base camps were located in the 

floodplains, along the foothills or interior coves and valleys of mountains. These sites 

were located in close proximity to river junctions and outcrops of raw materials. Smaller, 

more transient camps were established in the mountains and only briefly occupied in the 

process of moving across the upland ridges (Geier, 1981).  

 Toward the end of the Archaic and the beginning of the Woodland Period (c. 

1000 BP) more complex settlement patterns and cultural development began to occur. 

Base camps and associated hunting camps and chipping stations were still common in 

the foothills and mountains (Geier, 1981), but decreased in number as exploitation of 

resources along rivers and adjacent floodplains become more important during the Early 

and Middle Woodland Periods (Gardner, 1981). During the Middle Woodlands Period, 

semi-permanent settlements sprang up on floodplains as Indians began to increasingly 

engage in intensive horticulture that required a more sedentary lifestyle (Gardner, 1981; 

MacCord, 1999). Changes in settlement and subsistence patterns during the Middle- to 

Late- Woodland periods, and subsequent population increases initiated profound 

changes in culture and society (MacCord, 1999; Sarvis, 2000). Sites reflecting Late 

Woodland culture are found throughout Virginia and the eastern US. These sites ranged 

in size from hamlets (single family dwellings) to larger, more complex excavations 

revealing palisaded villages. These hamlets are characteristic of settlement in the 

Piedmont, eastern shore of Virginia and the western shore of the Chesapeake Bay. 
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Numerous palisaded village sites have been excavated in the Ridge and Valley of 

southwestern Virginia (MacCord, 1999).  

 By the end of the Woodland era, much of the Middle Atlantic (i.e. inner 

Piedmont, Blue Ridge, Ridge and Valley, and eastern Appalachian Plateau) was 

apparently devoid of Indians except for the occasional transient group (Gardner, 1981). 

Historians and anthropologists believe the most likely scenario for the widespread 

depopulation of eastern North America was disease introduced by European explorers as 

early as 1539 when Hernando De Soto landed near Tampa Bay Florida (Walker & 

Miller, 1992; Whitney, 1994; Mann, 2005). Some anthropologists believe the origin of 

contagion was not De Soto’s army, but the swine he brought with him as a food source 

(Mann, 2005).   

 Another theory for this phenomenon is that the increasing participation in the fur 

trade transformed the Indian way of life from a self-sufficient, bartering economy to a 

quasi-market condition, marked by increasing dependence on a foreign entity for their 

existence. This situation may have initiated political alliances that strained inter-Indian 

relationships (Walker & Miller, 1992). Activities during the French and Indian war 

(1750–1760) further reduced aboriginal populations and slowed rates of in-migration 

into the region (Gardner, 1981). 

Early European Settlement 

 Human population numbers slowly rebounded with the influx of European 

settlers into the region in the mid 1700s. The early Euro-Americans relied on subsistence 

farming and free-range livestock grazing for their primary means of support (Whitney, 
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1994).  Clearing land for agriculture was a slow and arduous process, often taking one or 

two generations to completely clear an entire tract of land (Whitney, 1994). Farmers 

used various means to prepare the land for planting. Trees were cut down or girdled, the 

roots dug up and hardwood stumps left to decay then dug out. The remaining slash or 

debris was burned and the ash tilled into the soil (Whitney, 1994). 

 As population increased and a market and cash economy became more 

important, hamlets and towns developed along expanding transportation networks 

(Gardner, 1981).  By the early 1800s, much of the valley floor was used for agriculture, 

industry, or human habitation. The mountains increasingly became the focus of 

specialized activities such as lumbering, charcoal burning and mining (Gardner, 1981, 

Geier, 1981; Williams, 1998).  Initially, only a small number of light industrial facilities 

and small-scale extractive industries (i.e. mills and iron works) were needed to provide 

products for local markets (Gardner, 1981; Whitney, 1994; Mann, 2005). Saw mills were 

usually the first manufacturing facility to be built in a new town. These were small-scale, 

low-capacity operations that typically produced less than 2000 board feet per day of 

timber (Whitney, 1994). Whitney (1994) notes more wood was used to provide fuel for 

domestic use (heating and cooking) than was used for building material.  

Period of Extractive Industry 

 Virginia has a long history of iron manufacturing. Iron production involved 

transforming iron oxide into pig iron (alloy of iron and carbon). Cold blast furnaces 

supplied the high temperatures needed for the conversion, and charcoal provided fuel for 

the process. The production of charcoal was time-, labor- and resource-intensive, 
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requiring 100–400 bushels of charcoal to produce one ton of pig iron (Whitney, 1994).  

Whisonant (1998) reports that each of the furnaces in Wythe County in southwest 

Virginia consumed on average 750 bushels of charcoal and 12 tons of iron ore to 

produce 5 tons of pig iron every 24 hours.   

  Historical records indicate that Jamestown colonists first mined iron ore in 1609.  

Archeologists unearthed the remains of a small charcoal iron furnace near Richmond 

that dates to 1619 (Whisonant, 1998). These were modest operations that produced 

agricultural tools, household implements and construction materials for local distribution 

(Gardner, 1981). The first large-scale production of pig iron took place near 

Fredericksburg in the early 1700s. Together, the Germanna and Massaponax furnaces 

produced 1200 tons of cast iron by the year 1732. The expansion of iron works began in 

earnest with the passage of the British Iron Act of 1750, which made the importation of 

pig iron into England duty free (Gordon, 1996). By the early 1800s, almost every county 

in Virginia, west of the Blue Ridge, had at least one charcoal furnace in blast. This trend 

continued into the mid-1800s with 45 furnaces and forges erected in the Ridge and 

Valley between 1826 and 1850 (Whisonant, 1998). Until the mid 1800s, the lack of 

overland transportation networks limited the construction of mills and iron works to 

streams and rivers, or within hauling distance of water transportation (Whitney, 1994). 

The rapid growth of urban areas increased the demand for lumber and the need for more 

cost-effective means of transport (Whitney, 1994). During the Civil War, Virginia iron 

was used to make weaponry for the Confederacy, but repeated assaults on ironworks in 

strategic locations drastically reduced production capacity. The 1870s and 1880s 
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characterized the height of iron manufacturing in Virginia as charcoal furnaces were 

rebuilt and systematically converted to burn coke, thus reducing the demand on the 

forest for charcoal. These modifications increased productivity to over 90000 tons of ore 

per year. Despite the short boom in iron production most small furnaces could not 

compete with larger, more efficient operations in the Lake Superior region and were 

abandoned.  The iron industry continued to decline despite newly discovered sources of 

iron ore in the early 1900s and by 1930s virtually disappeared from the Virginia 

landscape (Whisonant, 1998). 

 Improved band saw technology in the mid-1800s and especially the late-1800s 

made it possible to generate larger quantities of timber (Whitney, 1994; Brose et al., 

2001). Steam engines and the development of gear-driven locomotives facilitated the 

expansion of logging railroads into previously inaccessible areas, made it possible to 

move vast quantities of valuable timber throughout the eastern US (Whitney, 1994; 

Williams, 1998). Commercial logging between 1880 and 1930 was so intensive that in 

many areas forest cover was completely removed. Logging produced large quantities of 

woody debris or slash that was easily ignitable, especially during periods of drought. The 

combined effects of canopy removal and intense fires set the stage for massive, 

widespread erosion (Whitney, 1994; Williams, 1998; Brose et al., 2001, Fowler & 

Konopik, 2007).  

Era of Fire Suppression and Protection 

 Beginning in the 1920s, comprehensive conservation programs were 

implemented in an effort to reverse the damage caused by decades of destructive land 



42 

 

use practices. Federal and state agencies purchased millions of acres of abandoned, 

degraded forest lands that had been cut or burned over. Today, large tracts of land are 

still owned and managed by the U.S. Forest Service, National Park Service and various 

conservation organizations (Whitney, 1994; Williams, 1998; Brose et al., 2001). 

 

Description and Location of Study Sites 

 The three study sites are located throughout the central Appalachian Mountains 

to facilitate regional-scale comparisons of spatial variability in fire regimes and 

vegetation dynamics (Fig. 3.1). Suitable sites for sampling were identified on the basis 

of (1) multiple neighboring pine stands with intervening oak forests, (2) sufficient 

evidence of past fire (40 pine trees or snags samples exhibiting multiple fire scars), (3) 

minimal anthropogenic disturbance that might obscure the fire record and (4) ease of 

accessibility. Because the pine stands are interspersed among the oak stands, I was able 

to use the fire history recorded by the fire-scarred pines to characterize the fire regimes 

of the surrounding oak forests as well. 

Mill Mountain 

 The study site is on the northwest side of Mill Mountain (37°53′ N, 79°38′ W) in 

Bath County, Virginia (Fig. 3.2) with elevations ranging from 690–900 m. Small streams 

dissect the mountainside, with alternating drainages and spurs aligned southeast to 

northwest. Mill Mountain is in the Ridge and Valley physiographic province. Annual 

precipitation averages 1090 mm at Hot Springs, Virginia, 20 km to the northwest at 680 

m elevation (National Climatic Data Center, 2002). Mean monthly temperatures are 



 

 

 

 

 

 

 

 

 

Figure 3.1 Location of study sites, Virginia, USA.

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.2 Mill Mountain study site showing the locations of stands A
sampled for fire history only. 

Location of study sites, Virginia, USA. 

Mill Mountain study site showing the locations of stands A–D. Stand C was 
sampled for fire history only. Oak stands were not sampled at Mill Mountain.
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D. Stand C was 
Oak stands were not sampled at Mill Mountain. 
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 between -1°C and 22°C.  The vegetation cover is representative of central Appalachian 

landscapes, with the typical oak-dominated forest matrix covering most of the landscape, 

the mesophytic tree species confined to valleys and lower slopes, and the xerophytic 

pine–oak stands situated on narrow ridgetops and west-facing slopes. These xerophytic 

stands are dominated by yellow pines, particularly the Appalachian endemic Table 

Mountain pine, along with pitch pine, chestnut oak, and northern red oak (Williams, 

1998). These trees are relatively shade-intolerant and have adaptations to fire such as 

thick bark and, in Table Mountain pine, serotinous cones. A dense hardwood understory 

is dominated by black gum, red maple and mountain laurel (Kalmia latifolia). 

 Native Americans lived along the Cowpasture River and other rivers in Bath 

County, but the area was apparently a hinterland without large permanent populations or 

well-developed agriculture (Geier & Boyer, 1982). The sites were abandoned by the 

1600s, concurrent with depopulation throughout western Virginia a century or more in 

advance of European settlement (Egloff & Woodward, 2006), but hunting, trading and 

raiding parties continued to travel through western Virginia in the 1700s. European 

settlement began along the Cowpasture River southwest of the study site c. 1745 

(Morton, 1917). Mill Mountain is within a rugged area occupied by few humans in the 

past (Morton, 1917) or today. Land records (GWNF headquarters) indicate that original 

land grants on Mill Mountain were made c. 1795–1825. Scattered settlement may have 

occurred during that period. Of potential importance for fire history is that iron furnaces 

operated near Longdale, 9 km from the study site, from 1827 to 1925, consuming 

hardwood timber to produce charcoal until conversion to coke in 1874 (Russ et al., 
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1995). By the 1870s–1880s, furnaces and associated settlements extended along 

Simpson Creek to within about 4 km of the study site, but the settlements were 

abandoned after iron production ceased (Russ et al., 1995). A railroad was constructed 

along Pads Creek in 1857 (Morton, 1917) and continues operation. Logging occurred 

along South Fork Pads Creek in 1927–1928. In 1937, the United States Forest Service 

(USFS) purchased a 10526 ha area containing Mill Mountain. The land records mention 

repeated burning in the past and describe a specific fire that burned much of Mill 

Mountain in 1930. Fire records for 1970 to present contain no wildfires for the study site 

since 1970 (USDA Forest Service, 1998). A prescribed fire conducted on 27 March 2001 

affected part of the study area (stand D, Steve Smestad, GWNF, personal 

communication). It was a mild burn that consumed fine fuels and top-killed some 

understory plants, but appeared to have little influence on larger saplings or overstory 

trees. 

Kelley Mountain 

 The Kelley Mountain study area is located in Augusta County, Virginia 

(37º55′N, 79º2′W), and is within the Blue Ridge province (Fig. 3.3). Kelley Mountain 

has relatively flat ridge tops with steeply sloping ridges and hollows (Tolley, 1983). 

Elevations range from 930–1010 m. Annual precipitation averages 938 mm at Staunton, 

Virginia, 24 km to the north at 450 m elevation (National Climatic Data Center, 2002). 

Mean monthly temperatures are between 1°C and 22°C.  

 The pine stands contain a mixture of yellow pines and hardwoods, mainly Table 

Mountain pine, pitch pine, chestnut oak, and black gum; however white pine is present  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 Kelley Mountain study site showing the location of stands A
pine stands are indicated by 
was sampled for fire history only.
 
 
as well. The intervening hardwood stands contain primarily 

Black gum, pignut hickory (

comprise the understory vegetation and

There is abundant evidence of aboriginal occupation in the area during the Early

Archaic and Woodland periods (8000

conducted during 1979 and 1980 revealed activity along Mill Creek (1 km southeast of 

the study site) and along the base of an expansive alluvial fan that extends to the South 

River (5 km north of study site). A number of base

sites and reduction stations have been identified in the upland regions of nearby 

Kennedy Ridge, northwest of Kelley Mountain. These sites are located on relatively flat 

areas near spring heads or upland swamps and bo

Kelley Mountain study site showing the location of stands A–H. Locations of 
ine stands are indicated by  and locations of oak stands are denoted by 

was sampled for fire history only. 

as well. The intervening hardwood stands contain primarily chestnut oak and black

Black gum, pignut hickory (Carya glabra) and striped maple (Acer pensylvanicum

comprise the understory vegetation and mountain laurel dominates the dense shrub layer. 

There is abundant evidence of aboriginal occupation in the area during the Early

Archaic and Woodland periods (8000–2800 BP; 2800–1300 BP). Cultural surveys 

conducted during 1979 and 1980 revealed activity along Mill Creek (1 km southeast of 

the study site) and along the base of an expansive alluvial fan that extends to the South 

River (5 km north of study site). A number of base camps, limited activity camps, quarry 

sites and reduction stations have been identified in the upland regions of nearby 

Kennedy Ridge, northwest of Kelley Mountain. These sites are located on relatively flat 

areas near spring heads or upland swamps and bogs. It is possible the camps were only 
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dominates the dense shrub layer.  

There is abundant evidence of aboriginal occupation in the area during the Early- Late 

). Cultural surveys 

conducted during 1979 and 1980 revealed activity along Mill Creek (1 km southeast of 

the study site) and along the base of an expansive alluvial fan that extends to the South 

camps, limited activity camps, quarry 

sites and reduction stations have been identified in the upland regions of nearby 

Kennedy Ridge, northwest of Kelley Mountain. These sites are located on relatively flat 

gs. It is possible the camps were only 
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seasonally occupied (late summer through fall) to take advantage of maturing nuts and 

berries and to replenish lithic resources (Tolley, 1983). 

 Euro-American settlement began in the area that is now Augusta County in the 

early 1730s, and the county itself was officially recognized in 1745. Staunton, the county 

seat, was founded in 1761 (Peyton, 1953). Peyton (1953) reports a “Great influx of 

population into the valley” in the early 1730s. By the late 1700s, the population of 

Augusta County was over 10000 (Peyton, 1953). Although the population of Augusta 

County grew rapidly throughout the century, it appears settlement near the study area 

remained sparse as the first original land grants were not issued until 1796 and 1797, 

decades after the main valley was settled (GWNF land records).  

 Both manganese and iron have been mined extensively in Augusta County. The 

facility with the most potential to impact the study site was the Mt. Torry Furnace (6.4 

km to the north). The furnace was built in 1800 and operated until it was destroyed in 

1864 during the Civil War. It was rebuilt shortly thereafter and continued in operation 

until 1885. Other mines or furnaces that may have impacted the site are located near 

Stuarts’s Draft and Waynesboro in Augusta County and the Lyndhurst-Vesuvius mining 

district, in Rockbridge County, near the border of Augusta County (Watson et al., 1907). 

 The study site is located on three different tracts purchased by the USFS. KMA 

and KMH are located within a tract acquired by the USFS from the city of Staunton in 

1923 and 1924. Just prior to acquisition, land records (GWNF headquarters) report that 

chestnut and oak was present on the upper slopes. The ridges contained chestnut oak, 

northern red oak and Virginia pine (Pinus Virginiana) with a dense growth of shrub oak 
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(Quercus spp.) in the understory. Most of the merchantable timber had been removed by 

repeated cutting and frequent, severe fire, but excellent timber remained in the hollows.   

KMB and KME are part of 329 ha tract acquired by the USFS in 1924. Originally, the 

upper slopes supported stands of mixed oaks, chestnut and yellow pine. Ridges 

contained low-grade chestnut oak, northern red oak and pitch pine. Scrub oak and 

mountain laurel were present in the understory. The entire tract was heavily affected by 

multiple disturbances, i.e. logging, fire and ice.   

 The tract containing KMF and KMG was acquired in 1923 and 1924. This tract 

apparently never was logged, but had been subjected to repeated, severe fires that 

reduced the young growth to a stunted condition. Scrub oak was the predominant species 

on the ridges and upper slopes. All yellow pine in the vicinity reportedly were killed 

during a southern pine beetle (Dendroctonus frontalis Zimmermann) outbreak that 

occurred c. 1886, however, small pines likely survived because numerous studies 

indicate that only the large pines are vulnerable to attacks by southern pine beetle. 

Reddish Knob 

  The study site is located just above the Briery Branch Dam in southwestern 

Rockingham County, Virginia (38º26′N, 79º9′W), and is in the Ridge and Valley 

physiographic province (Fig. 3.4). Annual precipitation averages 903 mm at Dale 

Enterprise, Augusta County, Virginia, 22 km to the northeast at 427 m elevation 

(National Climatic Data Center, 2002). Mean monthly temperatures range from 1°C to 

22°C. Yellow pine forests occupy southwest-facing slopes of spurs along the north side 

of Wolf Ridge, while the intervening oak forests inhabit the alternating, southeast-facing 
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slopes. Elevations of these sites range from 630–900 m. The pine stands are comprised 

of Table Mountain pine and pitch pine in the overstory, with black gum and red maple in 

the understory. The shrub layer is thick with mountain laurel and mountain fetterbush 

(Pieris floribunda (Pursh) Benth. & Hook. F.). Chestnut oak is the dominant overstory 

species in the oak stands, along with a small component of northern red oak and red oak. 

Black gum, red maple and pignut hickory make up a large portion of the understory 

species.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4 Reddish Knob study site showing the location of stands A–G. Locations of 
pine stands are indicated by   and locations of oak stands are denoted by  . Stand D 
was sampled for fire history only. 
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 There is little indication of aboriginal occupation in the vicinity of the study site, 

with the exception of a prehistoric camp along Wolf Run Creek, approximately 3 km 

from the study site (Nash, 1991). Euro-American settlement began in the region in the 

1720s. Most early settlement occurred in the eastern portions of what is now 

Rockingham County. The earliest land grants (c. 1750) were issued for lands situated  

along the Shenandoah River near the present day towns of Port Republic and The 

Grottoes.  Rockingham County was formed in 1777 (Wayland, 1912).  

 The study site is located in a remote region of the county that was apparently 

never heavily populated (Sherwood, 2010). The issuance of land grants in the vicinity 

began in 1772, although settlement along Briery Branch did not occur until around 1796 

(GWNF Headquarters). Original land grants on Wolf Ridge were issued in 1832 and 

1847. The Forest Service acquired the tracts in 1916. Land records (GWNF 

Headquarters) indicate no agriculture in the vicinity, but cattle grazing was extensive in 

the area and there may have been some logging in the Little River and Briery Branch 

basins. Iron and coal was mined at a number of areas in the county (McCreath, 1884; 

Wayland, 1912); however, none of these sites were in close enough proximity to the 

study site to have had an effect on the fire regime. 

 Vegetation at the time of USFS acquisition is described as good timber 

containing a variety of hardwood species and both white and yellow pine. Frequent fire 

had rendered ridge tops and western exposures bare of timber, leaving only a ground 

cover of pitch pine and scrub oak. The area was affected by southern pine beetles in the 

late 1880s.  
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Field Methods 

Aerial photographs taken prior to leaf out of deciduous trees, combined with 

information from USFS personnel, were used to identify potential sample sites. These 

sites were then intensively surveyed for the presence of living pine trees or remnant pine 

wood (i.e. stumps, snags or logs) containing multiple fire scars. During 2003–2006 field 

seasons, full or partial cross-sections were cut from living and dead Table Mountain pine 

and pitch pine trees with basal fire scars in four adjacent pine stands at each study site 

(Arno & Sneck, 1977). 

 To characterize age structure and tree species composition, we established one 50 

m × 20 m plot in three of the four pine stands and one 50 m × 20 m plot in each of the 

three intervening oak stands at each site. Two cores were extracted from opposite sides 

at the base of each living tree with stem diameter at breast height (DBH, measured at 

1.37 m) ≥ 5 cm, and the species and DBH were recorded. Saplings (height ≥ 50 cm, 

DBH < 5 cm) were identified and counted, but not cored. However, branch nodes were 

counted to estimate the age of pine saplings (Pfeffer, 2005). Seedlings (height < 50 cm) 

of all tree species in a 10 m × 20 m subplot in each quadrat were inventoried. Twenty 

cross-sections were cut from the largest mountain laurel shrubs in each stand to estimate 

when shrub establishment began. 

 

Laboratory Methods 

 Prior to surfacing, increment cores were mounted on wooden core mounts with 

the tracheids aligned vertically (Stokes & Smiley, 1968). Some of the larger fire-scarred 
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samples were re-sectioned with a band saw to search for hidden fire scars. Fragile cross-

sections were mounted on plywood to provide stabilization when sanded. Increment 

cores, pine cross-sections and mountain laurel cross-sections were surfaced with a belt 

sander using progressively finer abrasive belts (ANSI 40-grit [500–595 µm] to 400-grit 

[20.6–23.6 µm] until the cellular structure of the wood was easily visible under standard 

magnification (Orvis & Grissino-Mayer, 2002).  

 The tree rings of all increment cores and cross-sections were crossdated visually 

and assigned a calendar year using established techniques of comparing patterns of 

narrow and wide annual rings between samples (Stokes & Smiley, 1968; Fritts, 1976). 

Crossdating is possible because trees over a wide geographic area often respond 

similarly to broad-scale climatic and environmental variability (Stokes & Smiley, 1968; 

Fritts, 1976). These patterns are also observable in remnant trees and wood fragments, 

thus crossdating can be used to accurately assign calendar dates to non-living trees 

(Fritts, 1976). The tree-rings were then measured to the nearest 0.001mm using a 

Velmex measuring system and J2X measurement software.  

 The tree-ring measurements were entered into the software program COFECHA 

to verify the crossdating and measurement accuracy (Holmes, 1983; Grissino-Mayer, 

2001a). COFECHA can also be used to aid in dating samples that are difficult to 

crossdate visually. Correlation analysis was performed on each tree-ring series using 

overlapping 40-year segments lagged by 20 years. Segments falling below the critical 

correlation coefficient of 0.37, representing the 99% confidence level, were flagged for 

reinspection and I made dating or measurement corrections as required. 



53 

 

 A master tree-ring chronology was developed from pine cores and cross-sections 

with the longest tree-ring record to aid in dating samples with no pith or bark date 

(Dieterich & Swetnam, 1984). For cores and cross-sections that did not intersect the pith, 

tree age was estimated from the width and curvature of the innermost rings (Applequist, 

1958). 

 After the cross-sections were assigned calendar years, the fire scars were dated to 

the year of scar formation. Fire seasonality was estimated by noting the position of the 

fire scar within the annual ring (Baisan & Swetnam 1990). Seasonal designations include 

(1) dormant, occurring between the latewood of one ring and the earlywood of the next; 

(2) earlywood, occurring within the first third of the earlywood; (3) latewood, occurring 

in the latewood band and (4) undetermined, seasonality of scar cannot be determined.  

Fire history information (fire dates, seasonality, inner/pith and outer/bark dates) were 

then entered into the fire-history analysis software FHX2 for graphing and statistical 

analysis (Grissino-Mayer, 2001b).   

 To obtain an estimate of age for the mountain laurel samples, the rings were 

counted, but not crossdated. Mountain laurel is difficult to crossdate because ring 

boundaries are not always expressed clearly and it is often not possible to identify the 

boundary between the outermost ring and the bark. 

 

  



54 

 

Data Analysis 

Fire History 

 I used the Weibull Median Interval (WMI) and the widely used Mean Fire 

Interval (MFI) to characterize central tendency in the fire return intervals. Lower and 

Upper Exceedance Intervals (LEI and UEI) were calculated to characterize the range of 

historical variability within the Weibull-modeled distribution. Specifically, 75% of the 

fire intervals are expected to fall between the LEI and UEI. In consideration of 

uncertainties inherent in fire-scar analyses (Baker & Ehle, 2001; van Horne & Fule´, 

2006) five different estimates of WMI, MFI, LEI and UEI were obtained, each of which 

has advantages and disadvantages. (1) The point fire interval was calculated from the 

fire intervals recorded by individual samples and is an estimate of fire frequency at any 

point on the landscape. In its calculation, FHX2 analyses only the intervals covered by 

‘‘recorder’’ years (i.e. years following the initial scar on a tree) (Grissino-Mayer, 

2001b). The initial wound makes the tree more susceptible to subsequent scarring. Also, 

tree rings formed after a tree has healed completely over a wound, or during a period in 

which some of the scars may be obscured by decay or removal by subsequent fires, are 

not considered recorder rings (Grissino-Mayer, 2001b). The designation of recorder 

years is a standard and necessary practice (Grissino-Mayer et al., 2004) to ensure that 

MFI and other calculations are based on periods when data are available. Limiting the 

analysis to intervals covered by recorder years prevents the bias that could result from 

including intervals that appear to have been fire-free for a long time simply because the 

scars were removed or the tree was not susceptible to scarring. Nonetheless, the point 
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fire interval likely overestimates fire interval length because trees are imperfect 

recorders of all the fires that burn them even if they are functioning as recorders. (2) The 

stand-level composite fire interval was calculated using all fires recorded by all trees in a 

stand. Generally, non-recording intervals of one tree are covered by recording intervals 

of other trees; therefore FHX2 uses all the composite fire intervals to estimate fire 

frequency (i.e. no fire scar on any tree is excluded from analysis). Compositing the fire 

records from multiple trees reduces the likelihood of missing a fire. However, some fires 

might be missed because of the limited number of fire-scarred trees in each stand, 

causing the fire interval to be overestimated. (3) The combined stand composite fire 

interval was based on all fires recorded by all trees in all stands. This is a standard 

analysis conducted to minimize the likelihood of missing a fire, but it could 

underestimate fire interval if some of the fires did not burn the entire study area. It 

provided the most complete record of fire activity in the study area and was useful for 

investigating temporal trends in burning. (4) The filtered composite fire interval for all 

stands combined was based only on ‘‘major’’ fires recorded by at least two trees and ≥ 

25% of all recorder trees; such fires may have been more extensive or severe than others. 

By disregarding potentially small-extent fires, filtering offers a more conservative and 

possibly more reliable estimate of fire frequency. (5) The area-wide fire interval (Fisher 

et al., 1987) was based solely on widespread fires recorded in all four stands, if the year 

of the fire was a recorder year in all stands. For fire years that were recorder years in 

only two or three stands, an area-wide fire was one that scarred trees in all of those 

stands. I did not consider fires that occurred when only one stand had recorder years. 
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Temporal Variations in Fire Intervals 

 To investigate temporal trends in burning, I calculated the mean number of fire 

scars per recording tree per decade (sensu Hoss et al., 2008). This method permits a 

comparison across decades with different sample sizes of recording trees. I used 

correlation analysis (Zar, 1999) to determine if the mean number of scars per recording 

tree changed over time. 

Fire-climate Relationships 

 I used Superposed Epoch Analysis (SEA), which is available in FHX2, to 

investigate relationships between interannual variations in fire activity and climatic 

variability (Baisan & Swetnam, 1990; Swetnam, 1993; Grissino-Mayer & Swetnam, 

2000; Grissino-Mayer, 2001b). SEA evaluates climatic conditions (e.g. precipitation or 

temperature) prior to and during fire years by first stacking the fire event years, setting 

them to year zero, then calculating the average climate conditions prior to, and during 

individual fire years (Grissino-Mayer, 2001b; Grissino-Mayer, 1995). SEA uses Monte 

Carlo techniques to establish confidence intervals of observed departures from the mean 

(Veblen, 2003). Fire occurrence was compared with proxy climate indices reconstructed 

from tree rings to see if precipitation was significantly different from average before (t - 

6), and during (t = 0) the fire event. For the proxy climate indices, I used a tree-ring 

reconstruction of summer (June-August) Palmer Drought Severity Index (PDSI), Grid 

247, from western Virginia available for download from the National Climatic Data 

Center (NCDC, 2002). Grid 247 is part of a gridded network of PDSI reconstructions 

covering most of North America. The network was generated from 835 tree-ring 
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chronologies, some extending back 2000 years. Each of the 286 grid points cover 2.5° × 

2.5° (Cook et al., 2004). The temporal coverage of Grid 247 is 1612 years (367–1979) 

and contains up to 30 tree-ring chronologies; however only nine chronologies were used 

in the reconstruction from 1638–1930 (Cook et al., 2004). 

 PDSI, developed by Palmer (1965), is widely used to examine spatial and 

temporal characteristics of drought as well as the severity of drought across the United 

States (Alley, 1984; Cook et al., 2004). PDSI values are calculated from instrumental 

measurements of precipitation, temperature, and available soil moisture (Alley, 1984). 

Values range from -6 to +6, with negative values indicating dry conditions and positive 

values indicating wet conditions. Values greater than or less than four indicate extreme 

climatic conditions (Meldahl et al., 1999). A disadvantage of using the PDSI to 

investigate fire–climate relationships is the temporal limitation imposed by the use of 

instrumental records to derive PDSI values. However, tree-ring reconstructions of past 

climates are widely used to augment the instrumental record and extend the evaluation of 

drought variability (Woodhouse & Overpeck, 1998; Quiring, 2004; Cook et al., 2007). 

I conducted SEA on three different fire event data sets per site: (1) all fires (AF) 

recorded by all trees at each study site; (2) major fires (MF) recorded by at least two 

trees and ≥ 25% of all recorder trees and (3) area-wide (AW) analysis including fires that 

occurred on at least two of the three study sites. I also performed analysis on subsets of 

the above data based on seasonality of the fires: dormant-season fire years (DS); 

growing-season fire years (GS); and years with fires recorded with any season (AS).  
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 I used simple linear correlation to examine the relationship between fire activity 

and mean reconstructed decadal PDSI for each study area. Additionally, I calculated 

region-level fire activity by averaging mean number of fire scars per recording tree per 

decade across all three study areas then used simple linear correlation to examine the 

relationship between fire activity and mean reconstructed decadal PDSI. 

Vegetation Dynamics 

 Tree age and DBH were graphed to portray stand age and size structure. For 

cores that did not intersect the pith, tree age was estimated from the width and curvature 

of the innermost rings (Applequist, 1958). Because the age structure histograms were 

created using 10-year age classes, trees with >10 years added were excluded.  

 Also, ‘‘moderate releases’’ and ‘‘major releases’’ (Lorimer & Frelich, 1989) 

were identified in the ring-width measurements from all the pine and hardwood cores to 

detect growth increases that could signal major fires or other canopy-thinning 

disturbances that may have promoted tree establishment. A moderate release was an 

abrupt ring-width increase (≥ 50% increase in a year, relative to the mean for the 

previous 10 years) that was sustained for a decade (i.e. the mean ring width for the 

decade following the increase was > 50% more than that of the previous decade). A 

major release had a threshold of 100% increase in ring width relative to the previous 

decade. 

 Stem density and basal area were calculated to determine the current species 

composition of the pine and oak stands. Finally, ages of mountain laurel stems were 

graphed to portray establishment dates. Since I was only interested in estimating the 
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beginning of shrub establishment relative to fire history, I did not attempt to characterize 

the age structure of the shrub population, thus the graphs portray only the establishment 

dates of the largest, and presumably oldest shrubs.  
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CHAPTER IV 

RESULTS∗ 

 

Fire History 

 The fire history reconstructions for this study were based on 231 fire-scars 

collected from the three study sites. I was able to assign fire dates to 1114 scars, which 

revealed 164 fire dates. The length of the fire chronologies varied between sites and 

ranged from 318 to 416 years (Table 4.1).  

 

Table 4.1 Summary of fire history data by site. 

Site 
Length of 

Chronology 

Number 
of 

Specimens 

Number 
of Scars 

Number 
of Fire 
Dates 

Inner 
Ring 

Outer 
Ring 

First 
Fire 
Scar 

Last 
Fire 
Scar 

Mill 
Mountain 

318 63 201 43 1637 2003 1704 1930 

Kelley 
Mountain 

416 92 495 62 1598 2005 1638 1921 

Reddish 
Knob 

356 76 418 55 1670 2005 1671 1913 

Total  231 1114 164     
 

 
  Fire history charts for each site illustrate a regime of frequent fires (Figs. 4.1–

4.6)  including many widespread fires that affected all of the stands at each site (Fig. 

4.7). For scarred trees that could be aged (i.e., had an intact pith), mean age at initial  

                                                 
∗ Part of this chapter is reprinted with permission from “Three centuries of fire in montane pine–oak stands 
on a temperate forest landscape”, by Aldrich, S.R., Lafon, C.W., Grissino-Mayer, H.D., DeWeese, G.G., 
and Hoss, J.A. 2010. Applied Vegetation Science, 13: 36–46. Copyright 2010 by John Wiley and Sons. 



61 

 

scarring was 16.6 years (range 4–70 years) at the height of the cross-section. Mean 

diameter (excluding bark) at initial scarring was 5.9 cm (range 0.6–21.5 cm) (Table 4.2).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 Unfiltered fire chronology for Mill Mountain showing the record of fire scars 
for each tree, 1704–2003. Horizontal lines indicate the time spanned by each tree, and 
short vertical bars represent dated fire scars. 
  

 



62 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2 Filtered fire chronology for Mill Mountain. The filtered composite fire 
interval for all stands combined based only on “major” fires recorded by at least two 
trees and ≥ 25% of all recorder trees. Horizontal lines indicate the time spanned by each 
tree, and short vertical bars represent dated fire scars. 
  

 



63 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 Unfiltered fire chronology for Kelley Mountain showing the record of fire 
scars for each tree, 1598–2005. Horizontal lines indicate the time spanned by each tree, 
and short vertical bars represent dated fire scars. 
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Figure 4.4 Filtered fire chronology for Kelley Mountain. The filtered composite fire 
interval for all stands combined based only on “major” fires recorded by at least two 
trees and ≥ 25% of all recorder trees. Horizontal lines indicate the time spanned by each 
tree, and short vertical bars represent dated fire scars. 
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Figure 4.5 Unfiltered fire chronology for Reddish Knob showing the record of fire scars 
for each tree, 1670–2005. Horizontal lines indicate the time spanned by each tree, and 
short vertical bars represent dated fire scars. 
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Figure 4.6 Filtered fire chronology for Reddish Knob. The filtered composite fire 
interval for all stands combined based only on “major” fires recorded by at least two 
trees and ≥ 25% of all recorder trees. Horizontal lines indicate the time spanned by each 
tree, and short vertical bars represent dated fire scars. 
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Figure 4.7 The area-wide fire interval for (A) Mill Mountain; (B) Kelley Mountain; and 
(C) Reddish Knob based on widespread fires recorded in all four stands, if the year of 
the fire was a recorded year in all stands. For fire years that were recorder years in only 
two or three stands, an area-wide fire was one that scarred trees in all of those stands. 
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B

C



68 

 

Table 4.2 Mean age and diameter of cross-sections at initial scarring. 
 

Site Mean Age (years) Mean Diameter (cm) 
Mill Mountain  19.7 (Range 7–70); n = 38 6.1 (Range 0.6–12.1); n = 37 
Kelley Mountain  12.6 (Range 5–33); n = 40 5.1 (Range 1.6–10.8); n = 33 
Reddish Knob  12.8 (Range 4–33); n = 37 5.6 (Range 1.6–10.8); n = 31 
All Sites 16.6 (Range 4–70); n = 115 5.9 (Range 0.6–12.1); n = 101 

 

 

Fires occurred regularly from the beginning of each fire chronology until the early 1900s 

(Fig. 4.8); correlation analysis indicated that the number of fires per decade did not 

change during this time (Mill Mountain r = 0.205, P = 0.336, df = 22; Kelley Mountain r 

= 0.033, P = 0.865, df = 27; Reddish Knob r = 0.073, P = 0.718, df = 23). One post-1930 

scar was observed on Mill Mountain: a dormant-season scar caused by a prescribed burn 

of 2001. One specimen from Reddish Knob recorded four post-1930 fire-scars: one in 

1963 of undetermined seasonality; one dormant season scar in 1970; and two early 

season scars in 1980 and 1985. Because I am interested in the pre-suppression fire-

regime, I excluded fire-intervals from the correlation and fire interval analyses that 

followed the last major fire event at each site. For the period beginning in the first year 

with two or more scarred trees (Grissino-Mayer et al., 2004) and ending with the last 

major fire event, the various analyses yielded MFI and WMI estimates of 3.7–17.4 years 

(Tables 4.3A–C).  
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Figure 4.8 Decadal fire activity for (A) Mill Mountain; (B) Kelley Mountain; (C) 
Reddish Knob: and (D) Region-level. Gaps in the data are decades with no recorder trees 
available for calculation.

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

Decade

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

M
ea

n
 N

um
b

e
r 

o
f F

ire
 S

ca
rs

p
e

r 
R

e
co

rd
in

g 
T

re
e

 p
er

 D
ec

a
d

e

Decade

A

B

C

D

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

Decade

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

M
ea

n
 N

um
b

e
r 

o
f F

ire
 S

ca
rs

p
e

r 
R

e
co

rd
in

g 
T

re
e

 p
er

 D
ec

a
d

e

Decade

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

Decade

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

Decade

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

0.0

0.5

1.0

1.5

2.0

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

M
ea

n
 N

um
b

e
r 

o
f F

ire
 S

ca
rs

p
e

r 
R

e
co

rd
in

g 
T

re
e

 p
er

 D
ec

a
d

e

Decade

A

B

C

D



 

 

70 

Table 4.3A. Fire interval calculations for Mill Mountain. Abbreviations: MFI = mean fire interval; WMI = Weibull median 
interval; SD = standard deviation; LEI = lower exceedance level; UEI = upper exceedance level. 
 

Mill Mountain 
 

MFI 
 

 
WMI 

 
SD 

 
LEI 

 

 
UEI 

 

 
Range 

 

Number of 
intervals 

Years 
covered 

 

Point fire interval (n=63) 

Stand-level composite fire interval 

Stand A (n=17) 

Stand B (n=19) 

Stand C (n=14) 

Stand D (n=13) 

Combined-stand composite fire interval 

Filtered composite fire interval 

Area-wide fire interval  

 

11.1 

 

7.3 

11.9 

15.9 

8.3 

5.4 

7.8 

18.8 

 

10.2 

 

6.6 

10.0 

11.7 

8.1 

5.1 

7.5 

17.4 

 

6.7 

 

5.0 

9.7 

19.4 

3.9 

2.9 

3.9 

11.7 

 

4.1 

 

2.4 

3.0 

2.5 

4.2 

2.2 

3.6 

7.0 

 

18.8 

 

12.9 

22.0 

32.4 

12.6 

8.8 

12.4 

32.0 

 

2–48 

 

2–26 

3–39 

4–59 

4–16 

2–14 

2–17 

6–39 

 

82 

 

26 

16 

7 

7 

38 

26 

12 

 

1726–1930 

 

1740–1930 

1740–1930 

1819–1930 

1872–1930 

1726–1930 

1726–1930 

1704–1930 
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Table 4.3B. Fire interval calculations for Kelley Mountain. Abbreviations: MFI = mean fire interval; WMI = Weibull median 
interval; SD = standard deviation; LEI = lower exceedance level; UEI = upper exceedance level. 
 
 

Kelley Mountain 
 

MFI 
 

 
WMI 

 
SD 

 
LEI 

 

 
UEI 

 

 
Range 

 

Number of 
intervals 

Years 
covered 

 

Point fire interval (n=92) 

Stand-level composite fire interval 

Stand A (n=27) 

Stand B (n=37) 

Stand C (n=17) 

Stand D (n=10) 

Combined-stand composite fire interval 

Filtered composite fire interval  

Area-wide fire interval  

 

 

7.1 

 

5.5 

6.3 

5.7 

6.7 

3.9 

5.8 

7.8 

 

7.0 

 

5.3 

5.5 

5.3 

6.2 

3.7 

5.5 

7.0 

 

3.1 

 

2.3 

5.2 

3.3 

4.3 

1.9 

3.1 

3.6 

 

3.6 

 

2.8 

1.8 

2.2 

2.4 

1.8 

2.5 

3.8 

 

10.9 

 

8.2 

11.6 

9.5 

12.0 

6.2 

9.4 

12.1 

 

3–16 

 

3–12 

1–29 

2–13 

2–16 

2–11 

2–15 

2–16 

 

84 

 

25 

28 

32 

27 

50 

34 

25 

 

1725–1921 

 

1785–1921 

1745–1921 

1740–1921 

1740–1921 

1725–1921 

1725–1921 

1725–1921 
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Table 4.3C. Fire interval calculations for Reddish Knob. Abbreviations: MFI = mean fire interval; WMI = Weibull median 
interval; SD = standard deviation; LEI = lower exceedance level; UEI = upper exceedance level. 
 

Reddish Knob 
 

MFI 
 

 
WMI 

 

 
SD 

 

 
LEI 

 

 
UEI 

 

 
Range 

 

Number of 
intervals 

Years covered 

 

Point fire interval (n=76) 

Stand-level composite fire interval 

Stand A (n=13) 

Stand B (n=32) 

Stand C (n=7) 

Stand D (n=21) 

Combined-stand composite fire interval 

Filtered composite fire interval 

Area-wide fire interval 

 

 

12.5 

 

9.5 

6.5 

9.6 

7.1 

4.8 

8.2 

8.8 

 

11.3 

 

9.1 

5.8 

8.6 

6.2 

4.6 

7.4 

8.0 

 

6.5 

 

5.0 

4.7 

6.3 

5.5 

2.6 

5.6 

5.7 

 

4.9 

 

4.3 

2.0 

3.2 

2.0 

2.0 

2.7 

3.0 

 

19.8 

 

15.0 

11.7 

16.8 

13.1 

8.0 

14.4 

15.0 

 

2–34 

 

4–20 

2–19 

2–19 

2–23 

2–13 

2–26 

2–20 

 

70 

 

25 

30 

14 

28 

49 

29 

27 

 

1676–1913 

 

1676–1913 

1718–1913 

1725–1913 

1714–1913 

1676–1913 

1676–1913 

1676–1913 
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 I was able to determine the seasonality of 66% of the fire scars at Mill Mountain, 

52.3% at Kelley Mountain, and 29.7% at Reddish Knob. Most of the scars were in the 

dormant position, but others occurred in the earlywood and latewood (Table 4.4). 

 

Table 4.4 Seasonality of fire scars per study site.  Seasonal designations include: (1) 
dormant, occurring between the latewood of one ring and the earlywood of the next (2) 
early, occurring within the first third of the earlywood, (3) middle, occurring within the 
second or last third of the earlywood, (4) late, occurring in the latewood band and (5) 
undetermined, seasonality of scar cannot be determined.   
 

Site 
% With 

Seasonality 
% Seasonality 
Undetermined 

Dormant 
Season 

Early 
Season 

Middle 
Season 

Late 
Season 

Mill 
Mountain 

65.4 34.6 89.6 9.7 0 0.7 

Kelley 
Mountain 

52.3 47.7 86.1 10.0 3.9 0 

Reddish 
Knob 

29.7 70.3 56.5 20.2 16.9 6.4 

 
 

Fire-climate Interactions 

 Analysis of fire events on Mill Mountain showed significant relationships at 

either p < 0.05 or p < 0.025 with negative PDSI values during the year of  fire (t=0) in 

analysis of major fire events (MF), area-wide fire events (AW) and corresponding 

seasonality (Fig. 4.9). For Kelley Mountain, SEA indicated significant relationships (p < 

0.025) three years prior to the fire event (t–3) for dormant season (ds) fires in all fire 

events (AF) and MF categories and one year prior to the fire event (t–1) for growing 

season (gs) fires in the AF and MF category (Fig. 4.10). Analysis for Reddish Knob 
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showed significant relationships (p < 0.025) with negative PDSI during the year of the 

fire event (t=0) in the AF and AW categories (all seasons [as]) and significant 

relationships (p < 0.05) with negative PDSI during the year of the fire event (t = 0) in the 

MF/as category (Fig. 4.11). Region-wide analysis revealed statistically significant 

relationships with negative PDSI values for growing season burns (Fig. 4.12). Trends in 

fire activity and variations in moisture variability indicate that in general, fires were 

more numerous during periods in which PDSI values were negative (Fig. 4.13). 

Correlation analysis of PDSI with fire occurrence revealed statistically significant 

relationships at Mill Mountain, but not the other two sites or at the regional-level (Mill 

Mountain r = -0.441,  P = 0.031, df = 22; Kelley Mountain r = 0.028, P = 0.883, df = 28; 

Reddish Knob r = -0.054, P = 0.808, df = 24; Region-level r = -0.032, P = 0.891, df = 

19).   
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Figure 4.9 Results from superposed epoch analysis (SEA) for fire years represented by: All Fire Events (AF); Major Fire Events (MF); and Area-Wide Fire Events (AW) for Mill Mountain. Data is further divided 
according to seasonality of fire events: (A) All Seasons (as); (B) Dormant Season (ds); and (C) Growing Season (gs). Bars marked with ** indicate years for which actual moisture values vary significantly (p < 0.025) 
from simulated values. Bars marked with * indicate years for which actual moisture values vary significantly (p < 0.05) from simulated values. 
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Figure 4.10 Results from superposed epoch analysis (SEA) for fire years represented by: All Fire Events (AF); Major Fire Events (MF); and Area-Wide Fire Events (AW) for Kelley Mountain. Data is further divided 
according to seasonality of fire events: (A) All Seasons (as); (B) Dormant Season (ds); and (C) Growing Season (gs). Bars marked with ** indicate years for which actual moisture values vary significantly (p < 0.025) 
from simulated values. Bars marked with * indicate years for which actual moisture values vary significantly (p < 0.05) from simulated values. 
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Figure 4.11 Results from superposed epoch analysis (SEA) for fire years represented by: All Fire Events (AF); Major Fire Events (MF); and Area-Wide Fire Events (AW) for Reddish Knob. Data is further divided 
according to seasonality of fire events: (A) All Seasons (as); (B) Dormant Season (ds); and (C) Growing Season (gs). Bars marked with ** indicate years for which actual moisture values vary significantly (p < 0.025) 
from simulated values. Bars marked with * indicate years for which actual moisture values vary significantly (p < 0.05) from simulated values. 
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Figure 4.12 Previous and current year moisture conditions for fires represented by 
region-wide fire events. Data is further divided according to seasonality of fire events 
(A) all seasons; (B) dormant season (C) growing season burns. Bars marked with ** 
indicate years for which actual moisture values vary significantly (p > 0.025) from 
simulated values. Bars marked with * indicate years for which actual moisture values 
vary significantly (p > 0.05) from simulated values. 
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Figure 4.13 Comparison of fire activity and PDSI (A) Mill Mountain (B) Kelley 
Mountain (C) Reddish Knob and (D) Regional-level.  
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Vegetation Dynamics 

Mill Mountain 

Pine Stands 

 Pine establishment dates peaked on Mill Mountain during the 1900s–1920s for 

stands A and B, but in the 1870s–1880s for stand D (Fig. 4.14a). Cross-sections reveal 

earlier pine establishment, especially in the 1730s (Fig. 4.14b). Note that only fire-

scarred cross-sections were collected from stand C; no plot was established. Table 

Mountain pine was the most abundant overstory species although pitch pine and Virginia 

pine was present as well (Table 4.5). Table Mountain pine was the only yellow pine 

species represented in the sapling and seedling inventory (Table 4.6). 

 Most hardwood trees were established during the 1920s–1940s (Fig. 4.14c, d) but 

some, chestnut oak and northern red oak were older. Chestnut oak was the dominant 

hardwood species in terms of basal area, but black gum, a non-oak hardwood species, 

was most abundant in terms of stem density (refer back to Table 4.5). Hardwood 

saplings and seedlings were more abundant in the understory than yellow pines. 

Mountain laurel established during the 1930s (Fig. 4.14e).



81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.14 Mill Mountain tree establishment dates for trees cored in plots (A, C, D); (B) fire-scarred pines with intact pith and (E) mountain laurel shrubs. Asterisks indicate that one or more stems was a sapling 
aged by node-counting. 
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Table 4.5 Basal area and tree density for each study site. Oak stands on Mill Mountain were not sampled due to a prescribed burn in 2005 that affected the stands. 

 
 
 

 Mill Mountain Kelley Mountain Reddish Knob 

 Pine Stands Pine Stands Oak Stands Pine Stands Oak Stands 

Species 
 
 

Basal Area 
(m2 ha-1) 

 

 
Tree 

Density 
(stems ha-1) 

 

Basal Area 
(m2 ha-1) 

 

 
Tree 

Density 
(stems ha-1) 

 

Basal Area 
(m2 ha-1) 

 

 
Tree 

Density 
(stems ha-1) 

 

Basal Area 
(m2 h-1) 

 

 
Tree 

Density 
(stems ha-1) 

 

Basal Area 
(m2 ha-1) 

 

 
Tree 

Density 
(stems ha-1) 

 

P. pungens 10.94 229.77 13.6 389.6 0.6 10.0 13.4 409.6 0.1 3.3 

P. rigida 2.03 36.63 0.9 49.9 0.2 3.3 7.0 183.2 0.3 6.7 

P. strobus   0.9 83.2 2.4 46.6     

P. virginiana 0.38 6.66  3.3 1.6 36.6     

Q. alba     2.3 16.7     

Q. coccinea 3.1 99.9  3.3   0.3 13.3 1.2 13.3 

Q. montana 7.84 159.84 8.5 326.3 69.9 702.6 0.9 16.7 13.7 203.1 

Q. rubra 0.46 23.31   23.3 3.9   4.4 46.6 

Q. velutina 0.53 19.98   3.3 0.2   2.7 26.6 

A. rubrum 0.02 3.33     0.7 93.2 1.6 139.9 

A. saccharum         0.2 20.0 

C. glabra 0.01 3.33   1.5 53.3   2.1 146.5 

N. sylvatica 1.79 276.39 1.6 219.8 4.1 109.9 3.6 492.8 0.9 123.2 

S. albidum    13.3       

Total 27.10 859.14 25.6 1095.6 86.8 1005.7 25.9 1208.8 27.2 729.3 
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Table 4.6 Sapling and seedling density for pine and oak stands at each site. No oak stands were sampled at Mill Mountain due to a prescribed burn conducted in 2005 that affected the site. 
  

 Mill Mountain Kelley Mountain Reddish Knob 

 Pine Stands Pine Stands Oak Stands Pine Stands Oak Stands 

Species 
Saplings 
Density 

(stems ha-1) 

Seedlings 
Density 

(stems ha-1) 

Saplings 
Density 

(stems ha-1) 

Seedlings 
Density 

(stems ha-1) 

Saplings 
Density 

(stems ha-1) 

Seedlings 
Density 

(stems ha-1) 

Saplings 
Density  

(stems ha-1) 

Seedlings 
Density 

(stems ha-1) 

Saplings 
Density 

(stems ha-1) 

Seedlings 
Density 

(stems ha-1) 

P. pungens 33.3 66.7 93.3 116.7 26.7 16.7     

P. rigida   3.3        

P. strobus  16.7 30.7 16.7 40.0      

P. virginiana   0.3 33.3 3.3 116.7     

Q. alba  83.3 0.3 16.7 110.0 350.0     

Q. coccinea 56.7 650.0 15.3  10.0 16.7 3.3   183.3 

Q. montana 3.3 216.7 2.7 533.3 473.3 1800.0  133.3 266.7 1716.7 

Q. rubra  416.7 0.7 16.7 273.3 800.0 30.0 950.0 53.3 1133.3 

Q. velutina 13.3 166.7 1.0   133.3 20.0 116.7 100.0 666.7 

A. pensylvanicum     56.7  3.3 2966.7 263.3 1450.0 

A. rubrum 130.0 1250.0 65.0 733.3 483.3 3783.3 83.3 5533.3 243.3 6383.3 

A. saccharum         3.3 283.3 

C. anifolia   86.7 233.3       

C. dentata 30.0  6.7    3.3    

C. glabra       10.0  20.0 316.7 

L. tulipifera          3.3 

N. sylvatica 73.3 416.7 377.7 783.3 43.3 116.7 27.3 83.3 10.0 383.3 

R. pseudoacacia   0.7  93.3 16,7 1.7  3.3  

S. albidum 3.3 983.3 2.3 816.7 10.0 2416.7  50.0  33.3 

T.  canadensis       3.3  70.0  

. 
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Kelley Mountain 

Pine Stands 

 The peak establishment period for yellow pines on Kelley Mountain began the 

decade following the last major fire event in 1921, although establishment also occurred 

earlier (Fig. 4.15a, b). Note that only fire-scarred cross-sections were collected from 

stand D; no plot was established. Most white pine establishment occurred in the latter 

part of the 20th century (Fig. 4.15c). Most of the hardwood species established in the 

1920s, but a few oaks were older (Figs. 4.15d, e). Table Mountain pine was the most 

abundant yellow pine in the overstory and most of the yellow pine saplings and 

seedlings were Table Mountain pine. The overstory hardwood component of the pine 

stands consisted primarily of chestnut oak and black gum (refer back to Table 4.5). 

Black gum and chestnut oak were the most abundant hardwood saplings. Sassafras 

(Sassafras albidum), black gum, and red maple seedlings were all abundant in the 

understory (refer back to Table 4.6). Mountain laurel began to establish in the 1920s in 

stand B, the 1930s in stands C and D, and the 1950s in stand A (Fig. 4.15f).   

Oak Stands 

 Most hardwood trees established during the 1920s–1940s (Fig. 4.16a, b).There is 

a small pine component in these stands, most of which are yellow pine (Fig. 4.16c, d) 

was the most abundant oak species in the overstory, and black gum was the most 

abundant non-oak species (refer back to Table 4.5). Most hardwood saplings and 

seedlings were non-oak species primarily red maple, sassafras, and black gum. 
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Figure 4.15 Kelley Mountain pine stand tree establishment dates for trees cored in plots (A, C, D, E); (B) fire-scarred pines with intact pith and (F) mountain laurel shrubs. Asterisks indicate that one or more stems 
was a sapling aged by node-counting
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Figure 4.16 Kelley Mountain oak stand tree establishment dates for trees cored in plots (A, B, C, D).
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Reddish Knob 

Pine Stands 

 Yellow pine cores show establishment beginning in the 1860s with peak 

establishment occurring during the decade of the 1920s, particularly in stand A (Fig. 

4.17a). Cross-sections record yellow pine establishment on Reddish Knob beginning in 

the mid 1600s with other pulses occurring during the periods 1690–1710; 1780–1790 

and again from 1860–1880 (Fig. 4.17b). Note that only fire-scarred cross-sections were 

collected from stand D; no plot was established. The pine stands contained only two 

yellow pine species, Table Mountain pine and pitch pine (refer back to Table 4.5) and no 

yellow pine saplings or seedlings were recorded in any of the plots (refer back to Table 

4.6). Hardwood establishment, both oak and non-oak species, began in the 1910s in 

stands A, B and C (Fig.4.17c, d). Black gum was the most abundant hardwood in the 

overstory, and red maple was the most abundant non-oak species in both sapling and 

seedling classes. Mountain laurel established in stands A and C during the 1910s and in 

stand B in the 1920s (Fig. 4.17e).   

Oak Stands 

 Oak species established beginning in the late 1800s with a peak occurring in the 

decade of 1910 (Fig. 4.18a). Non-oak species began to establish in the 1900s and 

reached peak establishment in the 1910s (Fig.4.18b). Chestnut oak and northern red oak 

were the only oak species recorded and pignut hickory was the most abundant non-oak 

species (refer to Table 4.5). The sapling and seedling layers were dominated by red 

maple (refer back to Table 4.6). 
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Figure 4.17 Reddish Knob pine stand tree establishment dates for trees cored in plots (A C, D); (B) fire-scarred pines with intact pith and (E) mountain laurel shrubs. Asterisks indicate that one or more stems was a 
sapling aged by node-counting.
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Figure 4.18 Reddish Knob oak stand tree establishment dates for trees cored in plots (A, 
B, C). 
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Radial Growth Releases 

 The peak decades for radial growth releases (in pine and hardwood cores 

combined) on Mill Mountain were the 1890s, 1960s, and 1980s (Fig. 4.19a). Oak stands 

were not sampled at Mill Mountain because of a prescribed burn in 2005 that affected 

the stands. On Kelley Mountain, radial growth releases peaked during the 1890s, 1930s, 

and 1960s (Fig. 4.19b). Reddish Knob radial growth releases peaked in the 1930s and 

1960s Fig. 4.19c). 
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Figure 4.19  Percent of all trees (including pines and hardwoods) showing moderate and 
major release patterns each decade. (A) Mill Mountain 1880–1990 (period with ≥ 10 
trees available to analyze; (B) Kelley Mountain 1880–1990; and (C) Reddish Knob 
1880–1990. 
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CHAPTER V 

DISCUSSION∗ 

 

Fire History 

 Results of fire history analyses provide evidence of a long history of frequent fire 

at all study sites in the past. The composite fire intervals reported here are shorter than 

intervals reported in similar studies of Appalachian pine stands (Harmon, 1982 [12.7 

yrs]; Sutherland et al., 1995 [10 yrs]; Armbrister, 2002 [7.5 yrs]), however, this could be 

a function of sample size. Larger sample sizes would reduce the probability of missing 

smaller fires that may have only scarred a few trees in the stand (Kou & Baker, 2006). 

For example, some fire history studies in oak stands in the region had larger sample sizes 

and reported fire intervals closer to what I report here (Shumway et al., 2001 [7.6 yrs]; 

McEwan, 2007 [2.1–12.2 yrs]; Hoss et al., 2008 [2.5 yrs]). Even the more conservative 

fire interval estimates from this study reflect a frequent fire regime (i.e., < 25 year 

interval; Pyne et al., 1996). Point fire intervals based on individual samples rather than 

the composite of all samples offer another useful, albeit conservative, estimate of fire 

frequency for any point on the landscape (van Horne & Fule´, 2006; Hoss et al., 2008). 

Estimates of the point MFI indicate that fires burned somewhere on the landscape at 

intervals of approximately 7.1–12.5 years. The short interval for area-wide fires is 

consistent with the hypothesis (Harrod et al., 2000) that historically, large-extent fires 

                                                 
∗ Part of this chapter is reprinted with permission from “Three centuries of fire in montane pine–oak stands 
on a temperate forest landscape”, by Aldrich, S.R., Lafon, C.W., Grissino-Mayer, H.D., DeWeese, G.G., 
and Hoss, J.A. 2010. Applied Vegetation Science, 13: 36–46. Copyright 2010 by John Wiley and Sons. 



93 
 

 

were common in xerophytic Appalachian forests and maintained open stands of highly 

flammable, grassy understories.  Frequent burning would have limited fuel  

accumulation, thus supporting a regime dominated by low- to moderate-severity surface 

burns. In fact, the young age and small diameter of trees at initial scarring suggests that 

most fires were not intense (Aldrich et al., 2010). 

 High fire frequency at Kelley Mountain was not unexpected because of the 

history of anthropogenic activity in the area after European settlement in the late 1700s. 

However, the high number of fires occurring prior to European settlement was 

surprising. For example, many samples had fire scars dating well before the first land 

grants were issued in the area, and one sample contained fire scars dating back to 1629. 

The frequency of fire at Mill Mountain and Reddish Knob, especially during the 1700s, 

was unexpected because of the remoteness of these sites. This pattern may be explained, 

in part, by lightning ignitions (Aldrich et al., 2010). While anthropogenic ignitions 

dominate many fire regimes in humid, temperate forests (e.g., Guyette et al., 2002; 

Lafon & Grissino-Mayer, 2007), recent work suggests that lightning ignitions are an 

important component of fire regimes in the Appalachian Mountains (Cohen et al., 2007; 

Lafon & Grissino-Mayer, 2007). Both the Blue Ridge and the Ridge and Valley 

provinces are subject to thunderstorms generated by terrain-forced convection that 

occurs in association with high pressure conditions, but this is more pronounced in the 

Blue Ridge. The combination of high pressure that dries out fuel with increased 

lightning activity would elevate the importance of lightning in areas thought to be too 

humid for lightning ignitions (Lafon & Grissino-Mayer, 2007). This phenomenon may 
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also explain high presettlement fire frequency reported in other Appalachian fire 

chronologies (Mann et al., 1994; Shumway et al., 2001). 

 Large fire size also may have contributed to high fire frequency. If large-extent 

fires were common, a relatively low density of ignitions by humans and/or lightning 

would be needed to maintain frequent burning (Harrod et al., 2000). Large extent fires 

were not expected on this rugged landscape, but the frequent area-wide fires suggest that 

it was common for fires to spread across the hardwood-covered terrain and burn multiple 

pine stands (Aldrich et al., 2010). The occurrence of large fires despite topographic 

barriers may be a function of high fire frequency. Harrod et al. (2000) hypothesized that 

frequent burning maintained open stands with contiguous fine fuels that would have 

diminished the effects of topography to the spread of fire, particularly in drought years. 

The spread of these large-extent fires into the more moist sites may have been important 

in maintaining oak abundance. 

 

Temporal Changes in Fire Frequency 

 I expected to see an increase in fire frequency during the middle 1800s through 

the early 1900s concomitant with increasing industrial activity. However, little temporal 

variability is evident despite these dramatic changes on the surrounding landscape and 

variations in sample size between sites. A similar pattern was observed for an 

Appalachian oak forest in Maryland (Shumway et al., 2001), but contrasts with the 

historic fire regime of the Ozark Plateau in the central U.S., where fire intervals for oak 

and pine forests declined in association with increases in human population density 
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(Guyette et al., 2002; 2006). This suggests that on the most remote areas (Mill Mountain 

and Reddish Knob), the stability of the fire-return interval could relate to several factors 

other than anthropogenic ignitions: (1) lightning activity (Aldrich et al., 2010); (2) 

obstruction if fire spread from human settlements because of topographic roughness (cf. 

Guyette et al., 2002; Signell & Abrams, 2006) and (3) fuel moisture or fuel recovery 

rate, which could limit fire spread and mitigate temporal variability even if ignition rate 

increased (Guyette et al., 2002) and (4) large fire size. The stability of the fire regime at 

Kelley Mountain is likely a combination of fuel characteristics and ample ignition 

sources (both natural and anthropogenic). 

 The only pronounced temporal change in fire frequency was the cessation of 

burning that coincided with USFS acquisition and the advent of effective fire control 

(Aldrich et al., 2010). This change, evident at all three locations, was clearly associated 

with alterations in human activity and represented a complete break with the previous 

record of frequent fire. For example, the time since last fire on Reddish Knob is 92 

years, over 19 times the length of the composite fire interval for 1676–1913. Kelley 

Mountain and Mill Mountain show similar trends (Kelley Mountain, 83 years; Mill 

Mountain, 71 years).  

 

Fire-climate Interactions 

 The results of the regional-scale fire-climate analyses were what I had expected 

to observe at this scale of study. In general, relationships between fire activity and 

climate often only emerge at larger spatial scales and over longer time periods (Swetnam 
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& Brown, 2010) due to influences of governing mechanisms (e.g. climate, fuel, 

topography, fire regime properties) that vary according to scale (Falk et al., 2007). At 

small spatial and temporal scales, fire behavior is a function of fuel (type, moisture, and 

continuity), local weather conditions (air temperature, humidity, and wind speed) and 

microtopography (Barton, 1999; Falk et al., 2007). At broader scales, fire occurrence 

and behavior is influenced by other factors such as stand-level vegetation, 

macrotopography, seasonal weather and synoptic climate (Falk et al., 2007). As such, 

the results of my site-level fire-climate analysis were unexpected. Fire activity was 

found to be strongly correlated with negative PDSI values during the year of drought 

(t=0) at both Mill Mountain and Reddish Knob, but the relationship was more 

pronounced at Mill Mountain, particularly for dormant season major fire and area-wide 

fire events. The strength of this correlation at Mill Mountain may have been augmented 

by several years of above-average precipitation prior to the year of fire that might have 

limited fire activity and accentuated the production of fuel, thus allowing for more 

intense, wide-spread fires in particularly dry years. Likewise, the relative isolation of the 

site from anthropogenic activity may have been a factor as well. 

 Correlation analysis did not reveal a statistically significant fire-climate 

relationship at Reddish Knob, even though SEA revealed significant relationships 

between fire occurrence and year of drought (t=0) in the all season category at all scales 

of study (all fire events, major fire events, and area-wide fire events). The strength of the 

fire-climate correlation could be influenced by anthropogenic ignitions in the region that 
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may have somewhat subdued the strength of the climate signal. Nonetheless, SEA does 

provide evidence of a pattern between fire activity and drought at this site as well. 

 The equivocal results reported by SEA for Kelley Mountain was the pattern that I 

expected to see. Superposed Epoch Analysis showed fire activity was strongly correlated 

with negative PDSI values three years prior to the fire year (t-3) during the dormant 

season of the AF and MF analysis, and one year prior to fire (t-1) during the growing 

season in all three analyses. It appears that Kelley Mountain was greatly impacted by 

human activity, more than Mill Mountain or Reddish Knob, and fires were frequent, 

regardless of above- or below-average precipitation. Similar patterns were observed in 

mixed-oak forests in southern Ohio by Sutherland (1997) and McCarthy et al. (2001), 

and a mixed-oak forest in eastern West Virginia (Schuler & McClain, 2003). As in these 

studies, the ambiguous results obtained for Kelley Mountain may be a function of high 

fire frequency due to human activity in the area, which could obscure the climate signal. 

For example, in a fire-prone Madrean forest in the lower Rhyolite Canyon of southeast 

Arizona, Barton et al. (2001) found a similar lack of correlation between below-average 

precipitation and fire activity. The study site was located in close proximity to areas 

supporting high populations of indigenous peoples during the 19th century. Human-

ignited fires associated with this habitation may have attributed to the high fire 

frequency that would obscure the connection between natural climate patterns and fire 

activity. Similarly, in a study conducted in the Boston Mountains of Arkansas, Guyette 

et al. (2006) found that the relationship between fire and climate was stronger during 
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periods of low population density and that fire frequency was influenced more by 

anthropogenic activity than climate during periods of high population density.  

 Natural processes may have acted to influence the fire regime of Kelley 

Mountain as well, thus making the climate signal more difficult to detect. One of these is 

the natural flammability of the area. In an investigation of contemporary patterns of fire 

occurrence in the central Appalachian Mountains, Lafon & Grissino-Mayer (2007) found 

that climatically, the Blue Ridge (the location of the Kelley Mountain site) is more fire-

prone than the Ridge and Valley (the location of Mill Mountain and Reddish Knob 

sites). While the amount of precipitation each area receives annually is relatively 

equivalent, the seasonality of the precipitation is distributed differently. For example, in 

non-drought years, precipitation in the Ridge and Valley is more evenly distributed 

throughout the year, thus limiting prolonged periods of dry weather that would favor fire 

activity (Lafon & Grissino-Mayer, 2007). Conversely, the precipitation regime of the 

Blue Ridge is characterized by less frequent precipitation events that deliver heavy 

rainfall. This would lead to longer dry periods that may increase the flammability and 

probability of ignition in the area. In fact, Lafon & Grissino-Mayer, (2007) found that 

the peak of the natural fires in the Blue Ridge coincides with the period of lower 

precipitation levels.  

Because of the ‘noise’ introduced by site-specific processes operating at local 

spatial scales, it is useful to examine fire-climate relationships at regional scales and 

over longer time periods (Brose et al., 2001; Swetnam & Brown, 2010). For example the 

effects of climate on fire activity can be inferred by broad-scale synchrony (or 
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asynchrony) of fire events among widely dispersed regions. Many studies in the western 

US have been successful in elucidating these relationships by using a network of sites 

distributed across mountain ranges or regions (e.g., Swetnam & Betancourt, 1998; 

Veblen et al., 1999; Brown & Sheppard, 2001; Sibold & Veblen, 2006; Brown, 2006; 

Kitzberger et al., 1997; Swetnam & Brown, 2010), but little work has been done in the 

southeastern US. I plan to combine my region-wide fire chronology with chronologies 

developed by DeWeese (2007) and Hoss et al. (2008) in an effort to expand the spatial 

and temporal scale of analysis for the central Appalachian region.  

 

Vegetation Dynamics 

 Woody species that exist in fire-prone environments can be differentiated by 

their ability to resist fire (i.e., surviving relatively unharmed) or to endure fire (i.e., 

sprouting after top-kill) (Rowe, 1983; Lloret & Vila, 2003). Of particular relevance to 

this study is the hypothesis that the fire regime may control the balance of pine and oak 

wherever they coexist in fire-prone environments (Barton, 1999). Under this hypothesis, 

pines are predicted to be favored under a regime of moderate fire frequency and 

intensity, while oaks should benefit from a regime of lower fire frequency and intensity.  

 Investigation of age structure, basal area, and stem density in the pine stands 

suggests that pines were more successful under frequent burning than oaks. The 

polymodal establishment pattern of pines suggests they may have been able to take 

advantage of regeneration opportunities provided by occasional severe fires that may 

have opened the canopy and reduced understory vegetation. Table Mountain pines 
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produce serotinous cones at an early age that would allow for continuous seedling 

germination under a regime of frequent fire. The seedlings grow quickly and once 

established are able to resist mortality from frequent, mild surface burns because of their 

thick, protective bark.   

 While both Table Mountain pine and pitch pine have specific traits that aid in 

their persistence on fire-prone landscapes, pitch pine in this study was less favored. Both 

species produce cones at an early age, but production of cones in pitch pine is less 

regular and seed production more variable than in Table Mountain pine. Also pitch pine 

seeds do not remain viable in the seed bank (1 year; Gucker, 2007) as long as Table 

Mountain pine seed (5–9 years; Della-Bianca, 1990; Reeves, 2007). Even though pitch 

pine can sprout post-fire, the sprouts grow more slowly than seedlings, especially in 

trees that have been exposed to repeat burning (Gucker, 2007). In areas with shallow 

soil, which is characteristic of these study sites, high-severity fires may kill or damage 

pitch pine roots by heating the mineral soil (Gucker, 2007). Thus frequent burning may 

have gradually filtered out pitch pine and promoted Table Mountain pine.  

 The pulses of pine establishment in the 1880s and 1890s (Kelley Mountain and 

Reddish Knob) and the 1900s (Mill Mountain) may have been the result of severe fires, 

but other disturbances such as insect outbreaks, storms and droughts are common in the 

Appalachian region as well (White, 1987; Lorimer, 2001; Waldron et al., 2007; Aldrich 

et al. 2010). It is likely the pines established as a result of a combination of disturbances. 

For example, extensive insect outbreaks (apparently southern pine beetle) were reported 

in Bath County c. 1895–1900 (Mill Mountain; Morton, 1917); Augusta County c. 1880 
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(Kelley Mountain; GWNF land record files) and Rockingham County c 1890 (Reddish 

Knob; GWNF land record files). The development of the current overstory likely reflects 

the influence of multiple interacting disturbance agents, but fire appears to be the most 

important (Lafon & Kutac, 2003; Aldrich et al., 2010). In the absence of fire, canopy 

gaps created by occasional insect outbreaks or storms will not be enough to perpetuate 

pine recruitment because of the dense hardwood understory (Aldrich et al., 2010). In 

fact, at Mill Mountain, disturbances in the 1930s, 1960s and 1980s (implied by growth 

releases) during the era of fire exclusion were not followed by pine establishment. 

Consequently, as the overstory pines senesce and die, there may not be sufficient young 

pines in the understory to replace them (Aldrich et al., 2010). This is especially 

important at Reddish Knob where no Table Mountain pine seedlings or saplings were 

found in the plots during sampling. 

 In contrast to the establishment patterns observed for the pines under frequent 

fire, age structure suggests that chestnut oak established within a relatively narrow 

window of time and maintained a low presence in the pine stands until fire exclusion 

allowed their abundance to increase. This is consistent with the hypothesis of Barton 

(1999) and Abrams (1992) that oaks fare better under a regime of low-intensity fire at a 

lower frequency. Chestnut oak is relatively fire-resistant at maturity compared to other 

oaks in the region (e.g. northern red oak, black oak and white oak [Carey, 1992]), and 

requires a fire-free interval of about 14 years to generate sufficient bark thickness to 

survive low-intensity surface fires (Carey, 1992). Thus, the fire intervals reported in this 

study would be sufficient to suppress the establishment of chestnut oak regardless of its 
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ability to sprout prolifically after top-kill. In the decades immediately following the last 

fire, the abundance of chestnut oak increased. That the oaks were able to respond so 

quickly after the elimination of fire suggest that seedlings and sprouts were already 

present in the understory, and the reduced frequency of fire provided an environment 

conducive to their maturation (Carey, 1992; Barton, 1999). Barton (1999) predicted that 

a decline in fire frequency should favor oaks because lack of fire increases canopy cover 

and litter depth, preventing successful seedling recruitment in pines. At the same time, 

prolific basal and lateral sprouting would lead to increased abundance of oak (Barton, 

1999). However, complete removal of fire has resulted in the regeneration failure of oaks 

as well as pines and this pattern is clearly evident in the age structure graphs. In mature 

stands with dense overstory/understory vegetation, oak seedlings are often numerous, 

but too small to compete with taller saplings of other species (Lorimer et al., 1994; van 

Lear, 2004). Canopy gaps created by occasional disturbances do not usually benefit oak 

regeneration in these stands because overstory removal facilitates the release and spread 

of faster growing, shade tolerant species. Consequently, oak species are being replaced 

on good quality sites (Abrams, 1992; Lorimer et al., 1994; van Lear, 2004; Signell et al., 

2005). 

 Chestnut oak dominates the east-facing slopes of Kelley Mountain and Reddish 

Knob and apparently was more successful than pines in these stands, even under a 

regime of frequent fire. The fire regime of the intervening chestnut oak stands was 

similar in frequency to those of the pine stands (as indicated by frequent, area-wide fires 

that burned through oak stands were recorded in all pine stands), but may have been less 
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intense because of the potentially moister microsite conditions on the east-facing slopes. 

As in the pine-dominated stands, frequent fire would encourage sprouting and maintain 

conditions favorable for seedling establishment, but lower fire intensity may have 

allowed more oak seedlings and sprouts to survive over time.  

 The paucity of oak establishment in both the pine and oak stands prior to the 

mid- to late-1800s must be interpreted with care because much of the oak on Kelley 

Mountain and Reddish Knob was removed by logging. Likewise, many of the chestnut 

oak sampled were undatable because of sapwood decay and are not included in the age 

structure analysis. However, because oak forests have dominated much of the eastern 

forest from the early Holocene (Braun, 1950; Abrams, 1992; Whitney, 1994) it is likely 

that oak existed on these sites, at least the east-facing slopes, during presettlement times.  

 It is generally accepted that the abrupt shift in fire regimes in the twentieth 

century has led to altered vegetation composition and structure throughout the US 

(Nowacki & Abrams, 2008), and many studies have documented these changes (e.g. 

Heinselman, 1973; Abrams & Nowacki, 1992; Wolf, 2004; DeWeese, 2007; Hoss et al., 

2008; Aldrich et al., 2010). In this study, the large pulse of tree and shrub establishment 

in the 1900s is unique in the age structure and not observed in the past when the 

disturbance regime was dominated by frequent fire. Fire-sensitive species such as black 

gum and red maple were not evident in the age structure graphs until the 1900s, but were 

probably present on more mesic sites (riparian areas, coves) and later invaded the stands 

(Abrams & McCay, 1996; Abrams, 2003; Signell & Abrams, 2006); or they may have 

been present in the understory, but were relegated to small-scale rocky features that 
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served as refugia from fire (Signell & Abrams, 2006). The “interface” (Barton, 1999) 

between the period of high fire frequency and the beginning of fire exclusion provided 

optimal conditions for the establishment of not only pine and oak, but other woody 

species as well. Similar patterns were noted in several Table Mountain pine stands 

(DeWeese, 2007) and a chestnut oak-dominated stand (Hoss et al., 2008) in the central 

Appalachian Mountains of Virginia.  

 Nowacki & Abrams (2008) argued that fire suppression initially leads to 

increases in stand-level richness as a new suite of tree species recruits into tree-size 

classes, but over time this pattern likely will reverse itself as older pine and oak are 

replaced by shade-tolerant species through gap-phase replacement. This trend is clearly 

evident on all of the study sites and is consistent with the predictions of the Dynamic 

Equilibrium Model (Huston, 1979), which states that species diversity depends on the 

balance between rates of competitive displacement and frequency of disturbance. In low-

productivity communities (e.g. xerophytic Appalachian pine stands) that experience high 

frequencies of disturbance, diversity should be low because not all species are able to 

recover from high rates of population reduction. But a decline in disturbance frequency 

should promote higher species diversity on these sites, consistent with the successional 

trends suggested by my results.  

 The large pulse of tree recruitment in the 1900s coupled with the removal of fire 

has led to forests that are denser than in presettlement time. Calculations of basal area 

and stem density are indicative of stands with a high density of trees of small diameter. 

Many of these are hardwood stems characteristic of forests that do not experience 
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periodic fire. While I have no presettlement reference conditions with which to compare 

the density of these stands, this pattern is consistent with findings of Nowacki & Abrams 

(2008) that state modern forests are denser than presettlement forests and much of the 

increase is in trees of small diameter classes. 

 The increase of mountain laurel in the 1920s and 1930s added to the overall 

density of the pine stands. Mountain laurel likely was present in the understory prior to 

the 1900s, but frequent burning probably prevented it from becoming abundant (Clinton 

et al., 1993). Mountain laurel is common on a variety of landscapes in the eastern US 

and it is believed to have increased in abundance in the recent past as a result of canopy 

disturbance (loss of the American chestnut, gypsy moth (Lymantria dispar) defoliation, 

and logging) and fire suppression. Mountain laurel is moderately shade-tolerant but 

grows best in open areas. It is also a prolific sprouter that is able to quickly take 

advantage of canopy gaps created by disturbance. These characteristics make mountain 

laurel an important competitor against slower growing pine and oak species in areas with 

infrequent fire. Some studies of Kalmia species in boreal forests suggest that allelopathic 

properties of the shrubs may contribute to conifer regeneration failure (Mallik, 2003), 

however, studies in the eastern US (Swift et al., 1993) suggest that pine and oak 

regeneration failure in stands with a dense mountain laurel component is due to 

increased shading in the understory that prohibits established seedlings from recruiting 

into the overstory. In stands containing abundant populations of mountain laurel, species 

that are able to survive in shaded conditions are more likely to recruit into the overstory 

(Clinton et al., 2003). A study documenting the regeneration history of Table Mountain 
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pine-pitch pine stands in Georgia (Brose et al., 2002) suggested that regeneration of all 

tree species, regardless of their shade tolerance, ceased after large numbers of mountain 

laurel established. Brose et al. (2002) predicted these stands would eventually convert 

from Table Mountain pine-pitch pine forests to mountain laurel thickets if the shrub is 

not controlled. Studies of prescribed burns in pine and oak stands have shown that 

mountain laurel responds well to fire and may regain its dominance in the understory 

within a few years of a single burn treatment (Ducey et al., 1996; Elliott et al., 1999). 

Multiple-burn treatments have shown equivocal results in controlling the abundance of 

mountain laurel (cf. Clinton et al., 1993; Moser et al., 1996; Arthur et al., 1998), but 

prescribed burns in combination with mechanical treatments may be more successful 

(Swift et al., 1993; Clinton & Vose, 2000). 

 Shifts from conifer forests to ericaceous heathlands have been documented in 

other ecosystems. For example in some nutrient-poor conifer forests with dense 

ericaceous shrub understories, the combination of (1) suppression of natural high-

severity fires (2) rapid regeneration of shrubs following canopy opening by logging or 

low-severity fires and (3) habitat degradation due to allelopathic properties of the shrubs 

has led to the replacement of dominant species from conifers to ericaceous shrubs 

(Mallik, 1995; 2003). 

 A possible consequence of increasing stand densities is a phenomenon called 

‘mesophication’, whereby dense shading not only inhibits the success of shade-intolerant 

species, but may lead to microenvironmental changes in the understory that can reduce 

the flammability of the system (Nowacki & Abrams, 2008). Dense shading promotes 
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moister, cooler microclimates which favor mesophytic species. The mesophytic species, 

in turn, produce less flammable fuels that decay quickly in the moist understory, further 

reducing the flammability of the system. This cycle is reinforced by positive feedback 

cycle in which conditions continually improve for mesophytic species and deteriorate for 

xerophytic species (Nowacki & Abrams, 2008).  

 This trend is likely to continue as long as fire is excluded from these systems, 

and may not be easily reversed with the reintroduction of fire (Nowacki & Abrams, 

2008). Vegetation changes due to mesophication occur more quickly and are more 

difficult to reverse on more productive sites because plants that are adapted to low 

resource conditions (i.e., xerophytic pine and oak) do not compete as well on productive 

sites as plants adapted to high resource conditions (i.e., mesophytic hardwoods and 

shrubs; Smith & Huston, 1989; Nowacki & Abrams, 2008). Conversely, on less 

productive xeric sites, these changes generally occur more slowly because plants adapted 

to high resource levels cannot compete as well when resources are limited (Smith & 

Huston, 1989). However, the shift from xerophytic to mesophytic species may be 

accelerated on resource-poor landscapes if the understory contains a high number of 

mesophytic species and a limited pool of fire-adapted replacement species (Smith & 

Huston, 1989; Nowacki & Abrams, 2008).  
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CHAPTER VI 

CONCLUSIONS AND IMPLICATIONS∗ 

 

 Fire scar evidence is consistent with the view that burning occurred frequently in 

forest ecosystems of eastern North America, even before European settlement. Fire was 

a common and widespread occurrence at all three study sites, even at Mill Mountain, 

which was more isolated from human influence. Fire frequency remained relatively 

constant despite changes in land use until the beginning of fire exclusion in the early 

20th century.  

 Results of SEA provide evidence that periodic droughts may be important drivers 

of fire activity. Drought the year of fire was important on both Mill Mountain and 

Reddish Knob, regardless of the proximity of the sites to anthropogenic activity. Other 

dendroecological studies of eastern forests (Schuler & McClain, 2003; McEwan et al., 

2007) report more equivocal results of fire-climate relationships and suggest that high 

frequency of fire in areas of high anthropogenic activity may obscure the climate signal. 

Investigations of contemporary fire regimes of the central Appalachian Mountains 

(Lafon et al., 2005) show a strong relationship between climate and fire, particularly in 

terms in drought. More research is needed to disentangle the effects of climate from 

human activity on the fire regime.  

                                                 
∗ Part of this chapter is reprinted with permission from “Three centuries of fire in montane pine–oak stands 
on a temperate forest landscape”, by Aldrich, S.R., Lafon, C.W., Grissino-Mayer, H.D., DeWeese, G.G., 
and Hoss, J.A. 2010. Applied Vegetation Science, 13: 36–46. Copyright 2010 by John Wiley and Sons. 
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 Vegetation development clearly was influenced by fire. The results presented 

here are consistent with a polycyclic fire regime of frequent surface fires that maintained 

open understory conditions in the montane pine stands, and occasional more severe fires  

that contributed to pine recruitment episodes. The intervening oak stands experienced 

the same fire frequency as the pine stands, but the fires may have been less intense, 

favoring oak over pine. There is little evidence that industrial disturbances altered the 

past fire regime or vegetation at Mill Mountain; however, these disturbances may have 

been more important on Kelley Mountain and Reddish Knob especially for the present 

composition of the forests.   

 It is clear from this study and others in the eastern US that the xerophytic 

composition of these forests is shifting from fire-tolerant pines and oaks to more mesic, 

fire-intolerant hardwoods and shrubs. Restoration efforts that include prescribed burning 

are being implemented to curtail these shifts, but much still needs to be learned for these 

efforts to be successful. This study provides direct evidence of a long history of frequent 

fire in xerophytic Appalachian forests and changes in vegetation structure and 

composition in the context of multiple land-use episodes. The presettlement origin of the 

yellow pine stands and widespread oak regeneration failure coupled with the history of 

frequent fire and near complete removal of fire in recent decades make these forests an 

important conservation priority.  

 Even though it is increasingly clear that fire is an important missing component 

in contemporary forests, reintroducing fire into these systems will not necessarily 

produce an immediate shift to vegetation conditions of the past. A potential obstacle is 
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the dense hardwood understory that developed as a consequence of fire exclusion 

(Aldrich et al., 2010) that may change the way these forests respond to fire (Turrill, 

1998). In the past, fire may have maintained open understories, but today prescribed 

burns can actually increase mid- and understory densities (Turrill, 1998). For example, 

several studies (Elliott et al., 1999; Waldrop & Brose, 1999; Welch et al., 2000) of post-

fire regeneration after single prescribed burns in Appalachian pine stands show that pine 

seedling density increased, but the seedling density of unwanted hardwoods also 

increased, and at greater rates due to their superior sprouting ability. Studies in some oak 

stands (McGee et al., 1995; Kuddes-Fischer & Arthur, 2002; Gilbert et al., 2003) show 

that the application of single prescribed fires were of little benefit to oak regeneration, in 

part because fire has been absent from these stands so long that fire-sensitive species 

have grown large enough to survive moderate surface fires (Signell & Abrams, 2006). 

Likewise, individual canopy-opening disturbances can accelerate shifts in vegetation 

composition if sufficient numbers of shade-tolerant species are present in the understory 

prior to the disturbance (Lorimer et al., 1994; Signell et al., 2005). Similarly, in certain 

stands where ericaceous shrubs such as mountain laurel dominate the understory, 

individual disturbances may facilitate conversion from forests to heathland (Mallik, 

1995).  

 Repeated burning over several years at intervals similar to those reported here, 

combined with mechanical or chemical thinning may be necessary to control the 

hardwood/shrub component and reduce litter accumulations (Lorimer et al., 1994; Brose 

& van Lear, 1998; Elliott et al., 1999; Welch et al., 2000; van Lear, 2004; Brose et al., 
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2005). Signell et al. (2005) report increased success when prescribed burns are preceded 

by mechanical thinning. Thinning of understory vegetation provides the opportunity for 

oaks to establish, and then prescribed fires are applied to stimulate sprouting. It is urgent 

that such actions take place in the near future while mature seed-producing trees and 

flammable xerophytic vegetation remain (Nowacki & Abrams, 2008). 

 Understanding disturbance history is important for explaining contemporary 

vegetation patterns and guiding restoration efforts (Signell & Abrams, 2006; Aldrich et 

al. 2010). The importance of fire as a disturbance agent in humid temperate forests is 

increasingly becoming apparent and often incorporated into management prescriptions, 

especially in ecosystems where land use changes have diminished the historic role of fire 

(White, 1987; Brose et al., 2001; Nowacki & Abrams, 2008; Aldrich et al., 2010). 

Dendroecological studies, such as this one, that incorporate fire history, climate-fire 

relationships and vegetation dynamics provide a foundation on which to build effective 

management prescriptions. This study provides not only site-specific evidence, but also 

elucidates broader regional trends in burning and vegetation responses to fire. The fire 

chronologies developed for this study are among the longest and most thorough from 

eastern North America and are consistent with the view that burning was a frequent and 

important disturbance agent in eastern North America from presettlement times until the 

implementation of fire protection (Aldrich et al., 2010).  
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APPENDIX A 
 

STANDARD TREE-RING CHRONOLOGY TABLES 
 
A1. Standard tree-ring chronology for Mill Mountain. These values are the tree-ring 
indices for each year in the chronology. The indices are displayed without the decimal 
points, but the actual value can be obtained by dividing the numbers by 100. The mean 
value for all indices is 1.0. Each line represents one decade of indices and the decades 
are shown in the lefthand column. The numbers across the top of the table are the last 
numbers of the decade year for each decade. This is called the“Tucson format” and is the 
internationally accepted format of the World Data Center for Paleoclimatology. 
 

Year 0 1 2 3 4 5 6 7 8 9 
1687        2125 2113 2065 
1690 1985 1237 1157 1244 1625 1053 538 574 284 644 
1700 548 404 658 650 907 1070 1565 1243 684 1058 
1710 1060 950 698 711 937 959 1297 1066 1019 726 
1720 661 780 529 568 671 708 523 603 617 724 
1730 1150 1168 914 1044 1053 941 984 814 1019 1345 
1740 657 545 761 913 1029 1049 793 1020 859 1296 
1750 1633 1332 872 1043 1196 694 1376 1062 732 1008 
1760 1389 1132 849 901 1085 1002 1135 1073 945 1227 
1770 994 1314 908 1119 992 1154 1088 727 1344 1022 
1780 612 806 676 953 878 884 956 904 964 878 
1790 851 842 852 1011 1044 840 960 767 827 770 
1800 1092 1233 1380 1096 911 920 767 1295 1439 1470 
1810 1294 1356 1063 1092 1300 1408 1077 1484 1363 1027 
1820 1130 1069 861 834 811 977 831 969 987 1076 
1830 816 846 1164 876 985 963 879 683 666 792 
1840 1038 1050 1189 947 874 633 800 831 877 898 
1850 924 1280 1085 982 1252 1191 722 880 987 1195 
1860 1371 1497 1181 982 799 917 779 1019 845 827 
1870 761 728 605 779 719 754 974 821 1119 769 
1880 997 760 1299 1010 1151 725 1190 875 1171 1315 
1890 1095 854 915 851 821 593 764 1008 1192 1103 
1900 943 1118 1200 1416 981 924 1099 1179 1463 910 
1910 958 938 1349 1538 1057 1093 1485 1014 1168 944 
1920 1010 887 997 871 1235 931 1006 1381 1437 1667 
1930 670 896 718 1102 826 1256 838 1131 1140 1062 
1940 992 664 819 879 456 967 1030 1162 1540 1429 
1950 1275 1216 791 883 814 991 931 829 922 723 
1960 680 934 820 936 1111 988 695 1318 1156 989 
1970 735 752 763 940 1330 1021 1208 1122 844 581 
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A1. Standard tree-ring chronology for Mill Mountain (continued). 
 

Year 0 1 2 3 4 5 6 7 8 9 
1980 726 874 823 698 872 993 751 775 927 1213 
1990 1213 1289 818 926 1193 1251 1201 1282 1002 775 
2000 1409 1043 975 1004 1819      
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 A2 Standard tree-ring chronology for Kelley Mountain. 
 

Year 0 1 2 3 4 5 6 7 8 9 
1602   677 536 832 885 754 690 1011 826 
1610 1071 1251 1202 1298 1484 841 1291 1797 1211 1069 
1620 808 1499 1419 1402 1132 793 904 599 547 580 
1630 947 856 812 1536 1420 658 554 507 1497 1637 
1640 1372 1595 807 1259 1321 1153 1302 997 713 1039 
1650 732 1165 761 895 1008 901 959 999 1008 1290 
1660 1921 1144 1625 1070 1046 1161 1046 1422 1685 1077 
1670 930 623 361 418 401 419 805 1090 964 1190 
1680 731 663 748 921 1008 1022 1091 999 1259 712 
1690 898 379 306 836 1242 1372 1643 1509 1191 829 
1700 1413 1126 1085 1068 992 917 880 680 464 1077 
1710 1311 778 1177 1324 612 986 1139 911 1038 1015 
1720 986 1001 916 675 919 814 879 905 1388 1020 
1730 923 685 769 790 1024 821 931 842 1083 1115 
1740 544 757 831 896 1007 1209 1188 1429 1161 1480 
1750 1457 1253 1009 1332 1341 648 1223 1018 871 1100 
1760 1580 1294 856 887 1067 715 1070 1106 1091 832 
1770 1238 1020 620 921 619 538 687 659 970 990 
1780 820 1063 802 1248 881 616 917 942 1159 1101 
1790 1032 824 838 1106 1268 1103 1383 770 885 914 
1800 1188 1073 1330 967 850 927 791 1121 1175 1421 
1810 1190 1121 1060 723 1312 1294 1035 1371 1349 863 
1820 660 810 891 888 761 954 1197 1164 782 1336 
1830 1164 1196 1130 1185 1241 1276 1117 807 953 726 
1840 1036 804 1062 734 950 219 566 716 800 780 
1850 936 723 816 925 1393 515 431 627 913 790 
1860 816 1070 1224 778 622 1069 730 1025 774 699 
1870 887 1186 1029 1299 1282 1183 1585 1483 1676 1109 
1880 1188 822 1445 970 1140 620 593 321 619 1326 
1890 1101 1067 1025 1481 1293 958 604 887 1115 910 
1900 977 1091 1204 1326 1051 1129 1043 851 1202 1052 
1910 914 688 1108 1352 839 818 947 662 965 1009 
1920 1128 796 1046 695 1050 655 853 1011 1292 1706 
1930 883 1226 823 1203 1038 1104 1001 1067 1154 1231 
1940 956 736 801 773 664 790 832 1259 1408 1446 
1950 1605 1426 968 882 1149 945 1004 917 800 725 
1960 884 1001 898 913 758 780 475 1042 974 935 
1970 802 726 703 832 1335 1226 1006 792 918 766 
1980 812 1023 987 874 1207 1055 572 636 812 943 
1990 1263 1320 763 1054 1484 1225 1225 1549 1367 917 
2000 1263 1026 878 903 1170 951     
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A3 Standard tree-ring chronology for Reddish Knob. 
 
Year 0 1 2 3 4 5 6 7 8 9 
1671  1258 798 860 1106 1115 1252 1980 1490 1191 
1680 1281 1332 1310 1118 1156 901 1117 1420 351 202 
1690 335 738 643 986 1407 1027 806 1078 1042 1050 
1700 1084 1068 1210 985 1010 1078 1152 1116 1137 1189 
1710 1183 1008 794 780 637 635 705 600 800 759 
1720 623 806 766 917 686 749 611 804 953 1172 
1730 1353 1243 1119 1155 1119 1039 1314 646 912 1296 
1740 903 876 1216 974 1295 1419 1044 1228 786 923 
1750 1039 1032 767 828 879 598 1348 961 909 1199 
1760 1333 1085 771 1161 1304 1024 1378 1247 1171 1352 
1770 1199 1021 748 1191 979 1311 1441 1162 1802 1180 
1780 576 854 691 672 561 706 930 815 894 796 
1790 764 703 867 1062 1113 1077 1026 911 877 949 
1800 1109 870 538 473 712 923 865 1220 1300 1201 
1810 1137 1412 1114 1057 1532 1501 1204 1158 1198 886 
1820 829 586 720 581 802 851 991 1147 1165 1206 
1830 905 1065 1301 1004 1035 1078 1021 950 784 675 
1840 1019 922 1269 809 999 586 678 785 859 794 
1850 783 1044 1055 979 1013 815 757 944 1062 710 
1860 947 1134 1068 923 716 888 1002 953 722 772 
1870 795 776 894 1138 972 885 985 907 1110 659 
1880 728 789 1145 1009 1134 807 1242 1061 1086 1349 
1890 1237 1326 1160 974 962 849 888 983 910 829 
1900 734 840 879 1080 916 894 1137 1473 1381 1065 
1910 1129 774 1464 1263 855 902 1291 941 1217 927 
1920 1024 898 901 986 1239 1120 1168 1353 1351 1639 
1930 827 1072 681 972 1145 1217 760 1064 1377 1152 
1940 911 850 871 882 513 970 1189 1028 1391 1422 
1950 1139 1346 903 859 814 1125 1029 1032 1040 792 
1960 628 649 813 991 1190 708 592 1035 981 754 
1970 950 790 803 900 1158 961 1329 737 1175 815 
1980 911 1080 958 703 887 1148 803 740 842 1312 
1990 926 1596 782 661 1050 1128 1092 1360 1440 825 
2000 1897 1210 906 900 1471      
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APPENDIX B 
 

STATISTICAL DESCRIPTIONS TABLES 
 
B1 Statistical descriptions of each ring-width series in the Mill Mountain chronology.  
 

No. of Correlation with 

Series Interval Years Master Mean Sensitivity 

1 MMA020A 1909 2003 95 0.743 0.279 

2 MMA026B 1918 2003 86 0.700 0.286 

3 MMA047 1905 2003 99 0.678 0.273 

4 MMA050 1909 2003 95 0.708 0.284 

5 MMA062 1907 2003 97 0.699 0.296 

6 MMB051A 1914 2004 91 0.768 0.267 

7 MMB064 1921 2004 84 0.682 0.283 

8 MMB068 1919 2004 86 0.770 0.284 

9 MMD017A 1877 2004 128 0.657 0.340 

10 MMD023B 1899 2004 106 0.759 0.252 

11 MMD043 1884 2004 121 0.615 0.280 

12 MMD079 1881 2004 124 0.602 0.305 

13 MMD080B 1894 2004 111 0.601 0.316 

14 MMD099A 1851 1980 130 0.682 0.294 

15 MMD100A 1855 2004 150 0.554 0.314 

16 RKX001B 1840 2003 164 0.592 0.313 

17 RKX010B 1862 2003 142 0.511 0.265 

18 RKX014 1869 1995 127 0.679 0.273 

19 RKX016 1869 2003 135 0.525 0.310 

20 RKX017 1883 2003 121 0.637 0.273 

21 XMMA100 1779 1917 139 0.466 0.266 

22 XMMA101 1800 1919 120 0.547 0.333 

23 XMMA102B 1760 1891 132 0.553 0.266 

24 XMMA105 1777 1859 83 0.379 0.336 

25 XMMA108 1760 1850 91 0.472 0.278 

26 XMMA115A 1713 1845 133 0.560 0.278 

27 XMMA116A 1790 1990 201 0.590 0.299 

28 XMMA117 1751 1837 87 0.429 0.253 

29 XMMA118A 1750 1879 130 0.477 0.266 

30 XMMA119B 1748 1828 81 0.596 0.318 

31 XMMA121 1732 1803 72 0.530 0.343 

32 XMMB101 1732 1779 48 0.700 0.314 
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B1 Statistical descriptions of each ring-width series in the Mill Mountain chronology 
(continued). 

 

No. of Correlation with 

Series Interval Years Master Mean Sensitivity 

33 XMMB105A 1732 1808 77 0.611 0.287 

34 XMMB106 1734 1867 134 0.537 0.299 

35 XMMB113B 1734 1860 127 0.541 0.248 

36 XMMB117 1687 1894 208 0.412 0.267 

37 XMMB119A 1762 1897 136 0.491 0.221 

38 XMMB120 1733 1846 114 0.544 0.286 

39 XMMB123A 1744 1897 154 0.494 0.241 

40 XMMB124 1760 1817 58 0.644 0.335 

41 XMMD107 1738 1794 57 0.488 0.287 

              

Total: 1713–2003   4674 0.582 0.286 
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 B2 Statistical descriptions of each ring-width series in the Kelley Mountain chronology. 
 

        No. of Correlation with   

Series Interval Years Master Mean Sensitivity 

1 KMA137A 1890 2005 116 0.740 0.321 

2 KMA143A 1879 1915 37 0.693 0.361 

3 KMA151A 1858 1940 83 0.652 0.304 

4 KMA154B 1864 1970 107 0.600 0.397 

5 kma159b 1938 2002 65 0.701 0.328 

6 KMA161B 1867 1957 91 0.741 0.378 

7 KMB001B 1894 2005 112 0.612 0.297 

8 KMB009B 1886 2005 120 0.638 0.232 

9 KMB020A 1925 2005 81 0.801 0.259 

10 KMB028A 1896 2005 110 0.689 0.232 

11 KMB078B 1888 2005 118 0.645 0.301 

12 KMB102B 1890 2005 116 0.660 0.310 

13 KMB109B 1883 2002 120 0.616 0.261 

14 KMB111A 1865 2005 141 0.506 0.227 

15 KMC006B 1931 2005 75 0.649 0.270 

16 KMC019B 1904 2005 102 0.644 0.344 

17 XKMA 1810 1920 111 0.695 0.357 

18 XKMA101A 1825 1908 84 0.553 0.396 

19 XKMA104B 1813 1940 128 0.717 0.333 

20 XKMA106 1864 1997 134 0.617 0.359 

21 XKMA108A 1714 1784 71 0.431 0.338 

22 XKMA108B 1793 1908 116 0.614 0.407 

23 XKMA111 1815 1897 83 0.629 0.338 

24 XKMA112A 1776 1920 145 0.509 0.363 

25 XKMA114B 1835 1924 90 0.660 0.387 

26 XKMA116B 1812 1910 99 0.648 0.439 

27 XKMA118A 1777 1852 76 0.612 0.334 

28 XKMA119A 1824 1931 108 0.639 0.319 

29 XKMA121 1814 1945 132 0.639 0.334 

30 XKMA127 1753 1863 111 0.616 0.302 

31 XKMA129A 1829 1950 122 0.522 0.420 

32 XKMA501A 1730 1842 113 0.504 0.379 

33 XKMA502A 1741 1800 60 0.562 0.258 

34 XKMB130B 1869 2005 137 0.502 0.273 

35 XKMB136 1810 1883 74 0.433 0.393 
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B2 Statistical descriptions of each ring-width series in the Kelley Mountain chronology 
(continued). 
 
 

        No. of Correlation with   

Series Interval Years Master Mean Sensitivity 

36 XKMB137 1833 2005 173 0.611 0.277 

37 XKMB139 1840 1970 131 0.573 0.329 

38 XKMB143 1891 1980 90 0.660 0.294 

39 XKMC109A 1602 1793 192 0.526 0.269 

40 XKMC114 1735 1800 66 0.509 0.308 

41 XKMC115 1754 1823 70 0.684 0.319 

42 XKMC118 1734 1814 81 0.611 0.376 

43 XKMD103 1930 2005 76 0.706 0.268 

44 XKMD104B 1735 1837 103 0.521 0.267 

45 XKMD105B 1737 1766 30 0.533 0.299 

46 XKMD107 1734 1819 86 0.548 0.316 

47 XKMD108A 1739 1821 83 0.603 0.290 

48 XKMD113A 1676 1709 34 0.613 0.205 

              

Total:  1602–2005 4803 0.611 0.320 
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 B3 Statistical descriptions of each ring-width series in the Reddish Knob chronology. 
 

        No. of Correlation with   

Series Interval Years Master Mean Sensitivity 

1 RKA028A 1881 2003 123 0.579 0.326 

2 RKA053 1885 2003 119 0.729 0.298 

3 RKA102 1880 1964 85 0.650 0.222 

4 RKA201 1885 2003 119 0.639 0.342 

5 RKA205 1883 2004 122 0.702 0.279 

6 RKA234B 1884 2004 121 0.583 0.307 

7 RKB003A 1884 2003 120 0.729 0.306 

8 RKB009A 1883 2003 121 0.559 0.330 

9 RKB023B 1867 1960 94 0.711 0.373 

10 RKB029B 1873 1958 86 0.529 0.274 

11 RKB030B 1886 2003 118 0.693 0.318 

12 RKB031B 1886 1960 75 0.692 0.287 

13 RKB042 1898 2003 106 0.718 0.316 

14 RKB210A 1892 2004 113 0.639 0.314 

15 RKB260B 1879 2003 125 0.657 0.226 

16 RKC003A 1889 2004 116 0.782 0.361 

17 RKC009B 1886 2004 119 0.614 0.308 

18 RKC035B 1892 1970 79 0.700 0.389 

19 RKC118B 1890 1980 91 0.602 0.315 

20 XRKA100 1700 1789 90 0.527 0.293 

21 XRKA108 1869 2003 135 0.560 0.313 

22 XRKA113 1672 1855 184 0.510 0.292 

23 XRKA115A 1725 1781 57 0.572 0.296 

24 XRKA136 1754 1779 26 0.667 0.313 

25 XRKB101 1671 1801 131 0.559 0.323 

26 XRKB105 1746 1783 38 0.634 0.272 

27 XRKB107 1884 1950 67 0.400 0.321 

28 XRKB108 1887 1940 54 0.519 0.308 

29 XRKB111 1726 1782 57 0.691 0.322 

30 XRKB114A 1722 1803 82 0.435 0.385 

31 XRKB115 1794 1854 61 0.630 0.311 

32 XRKB123 1735 1893 159 0.529 0.339 

33 XRKB124 1800 1930 131 0.557 0.262 

34 XRKB125A 1701 1800 100 0.600 0.359 

35 XRKB125B 1800 1970 171 0.537 0.296 
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B3 Statistical descriptions of each ring-width series in the Reddish Knob chronology 
(continued). 
 
 

        No. of Correlation with   

Series Interval Years Master Mean Sensitivity 

36 XRKB126 1806 1990 185 0.635 0.271 

37 XRKB127A 1793 1840 48 0.575 0.335 

38 XRKB127B 1850 2003 154 0.498 0.311 

39 XRKB128 1786 1950 165 0.629 0.301 

40 XRKB129 1789 1900 112 0.583 0.324 

41 XRKB131 1699 1970 272 0.537 0.317 

42 XRKB132 1810 1930 121 0.614 0.271 

43 XRKB135 1694 1790 97 0.488 0.384 

44 XRKB136 1698 1800 103 0.618 0.263 

45 XRKB140 1789 1840 52 0.469 0.287 

46 XRKC101 1754 1857 104 0.586 0.273 

47 XRKC102 1726 1800 75 0.636 0.292 

48 XRKC103 1698 1827 130 0.590 0.266 

49 XRKC104B 1755 1864 110 0.633 0.302 

50 XRKC105 1700 1787 88 0.651 0.314 

51 XRKC110 1700 1760 61 0.640 0.349 

52 XRKC111A 1699 1775 77 0.616 0.315 

53 XRKC111B 1757 1801 45 0.522 0.298 

54 XRKD102 1708 1860 153 0.565 0.273 

55 XRKD108 1729 1800 72 0.615 0.357 

56 XRKD110 1764 1800 37 0.657 0.317 

57 XRKD111 1679 1744 66 0.666 0.303 

58 XRKD112 1710 1779 70 0.498 0.258 

59 XRKD113 1701 1848 148 0.577 0.334 

60 XRKD116A 1695 1815 121 0.497 0.336 

61 XRKD116B 1830 1885 56 0.509 0.298 

62 XRKD122 1708 1768 61 0.519 0.304 

63 XRKD128 1679 1719 41 0.466 0.433 

64 XRKD138 1757 1833 77 0.578 0.248 

65 XRKD139 1739 1863 125 0.488 0.294 

66 XRK001 1718 1789 72 0.653 0.320 

67 XRK002 1710 1870 161 0.608 0.308 

              

Total: 1671–2003 6854 0.594 0.308 



141 
 

 

VITA 

 

Name: Serena Rose Aldrich 

Address: Department of Geography, Texas A&M University 
                              Room 810, Eller O&M Building, College Station, Texas 77843-3147                                                                 
                              Phone: 979-845-7141 
 
Email Address: serena@neo.tamu.edu 
 
Education: B.S., Cartography, East Central University, 2001 
 M.S., Geography, Oklahoma State University, 2003 
 Ph.D., Geography, Texas A&M University, 2011 


