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ABSTRACT 

 

Semi-Analytical Solutions of One-Dimensional Multispecies Reactive Transport in a 

Permeable Reactive Barrier-Aquifer System. (May 2011) 

John Michael Mieles, B.S., University of Rochester 

Chair of Advisory Committee: Dr. Hongbin Zhan 

 

At many sites it has become apparent that most chemicals of concern (COCs) in 

groundwater are persistent and not effectively treated by conventional remediation 

methods.  In recent years, the permeable reactive barrier (PRB) technology has proven to 

be more cost-efficient in the long-run and capable of rapidly reducing COC 

concentrations by up to several orders of magnitude.  In its simplest form, the PRB is a 

vertically emplaced rectangular porous medium in which impacted groundwater 

passively enters a narrow treatment zone.  In the treatment zone dissolved COCs are 

rapidly degraded as they come in contact with the reactive material.  As a result, the 

effluent groundwater contains significantly lower solute concentrations as it re-enters the 

aquifer and flows towards the plane of compliance (POC).  Effective implementation of 

the PRB relies on accurate site characterization to identify the existing COCs, their 

interactions, and their required residence time in the PRB and aquifer.  Ensuring 

adequate residence time in the PRB-aquifer system allows COCs to react longer, hence 

improving the probability that regulatory concentrations are achieved at the POC. 

In this study, the Park and Zhan solution technique is used to derive steady-state 
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analytical and transient semi-analytical solutions to multispecies reactive transport in a 

permeable reactive barrier-aquifer (dual domain) system.  The advantage of the dual 

domain model is that it can account for the potential existence of natural degradation in 

the aquifer, when designing the required PRB thickness.  Also, like the single-species 

Park and Zhan solution, the solutions presented here were derived using the total mass 

flux (third-type) boundary condition in PRB-aquifer system.  The study focuses 

primarily on the steady-state analytical solutions of the tetrachloroethylene (PCE) serial 

degradation pathway and secondly on the analytical solutions of the parallel degradation 

pathway.   

Lastly, the solutions in this study are not restricted solely to the PRB-aquifer 

model.  They can also be applied to other types of dual domain systems with distinct 

flow and transport properties, and up to four other species reacting in serial or parallel 

degradation pathways.  Although the solutions are long, the results of this study are 

novel in that the solutions provide improved modeling flexibility.  For example: 1) every 

species can have unique first-order reaction rates and unique retardation factors, 2) 

higher order daughter species can be modeled solely as byproducts by neglecting their 

input concentrations, 3) entire segments of the parallel degradation pathway can be 

neglected depending on the desired degradation pathway model, and 4) converging 

multi-parent reactions can be modeled.  As part of the study, separate Excel spreadsheet 

programs were created to facilitate prompt application of the steady-state analytical 

solutions, for both the serial and parallel degradation pathways.  The spreadsheet 

programs are included as supplementary material.   
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1. INTRODUCTION 

At many sites it has become apparent that most chemicals of concern (COCs) in 

groundwater are persistent and not effectively treated by conventional, large-scale 

remediation methods.  In recent years, the permeable reactive barrier (PRB) technology 

has proven to be more cost-efficient in the long-run and capable of rapidly reducing 

COC concentrations by up to several orders of magnitude.  The purpose of a PRB is not 

to treat large areas of an impacted aquifer, but rather to manage plume concentrations as 

groundwater flows away from the source-area.  In its simplest form, the PRB is a 

vertically emplaced rectangular porous medium in which influent groundwater passively 

enters a narrow treatment zone.  As the groundwater flows through the treatment zone, 

the dissolved COCs come in contact with the reactive material and are rapidly degraded 

[EPA, 1998].  The effluent groundwater contains significantly lower concentrations as it 

re-enters the aquifer and flows towards the plane of compliance (POC), as illustrated in 

Figure 1.  It should be noted that effective implementation of the PRB relies on accurate 

site characterization to identify the existing COCs, their interactions, and their required 

residence time in the PRB and aquifer.  Ensuring adequate residence time in the PRB-

aquifer system allows COCs to react longer, hence improving the probability that 

regulatory or target concentrations are achieved at the POC.  Therefore, minimizing 

performance uncertainties (such as inadequate barrier thickness) in the preliminary 

design phase is critical in avoiding underperformance of the PRB.     

 

 
 

This thesis follows the style of Water Resources Research. 
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Figure 1: Schematic of installed PRB, solute plume, and aquifer.  The x axis is along the 

groundwater flow direction and the PRB is of thickness –B.  The PRB-aquifer interface is located 

at x=0 and xcomp is the plane of compliance (Cp), which could be a property boundary or a 

predetermined location where solute concentrations must achieve a target concentration.  Figure 

adapted from Park and Zhan [2009]. 
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To address design uncertainties, prior research has focused primarily on better 

understanding 1) the geochemistry of the PRB material [Johnson et al., 1996; Tratnyek et 

al., 1997; Roberts et al., 1996; Arnold and Roberts, 2000; Allen-King et al., 1997], 2) 

flow characteristics [Gupta and Fox, 1999], and 3) the minimum PRB thickness as 

determined from current design equations [Eykholt, 1997; Rabideau et al., 2005; Park 

and Zhan, 2009].  The one-dimensional design equations presented by Eykholt [1997], 

Rabideau et al. [2005], and Park and Zhan [2009] utilize the advection-dispersion 

equation (ADE) with first-order reaction ��� as the governing equation(s) but differ 

primarily in their application of the boundary conditions.  For example, the two 

equations of Eykholt [1997] were derived using van Genuchten’s [1981] analytical 

solutions of the ADE with a first-type boundary condition ��0, �� = �	
 at the influent 

face of the PRB and a semi-infinite boundary condition 
��
�
 �∞, �� = 0 at the effluent face 

of the PRB, with and without dispersion.  The two solutions of Rabideau et al. [2005] 

were derived using the Sun et al. [1999] transformation procedure: the first assumed a 

third-type influent boundary condition and semi-infinite effluent condition, while the 

second solution assumed a first-type influent condition and finite concentration gradient  

��
�
 ��, �� = 0 effluent condition.  The solutions of Eykholt [1997] and the second 

solution of Rabideau et al. [2005] tend to overestimate mass in the PRB system 

(particularly at early time) by assuming that the concentration gradient across the 

influent boundary is initially zero [Wexler, 1992; van Genuchten and Parker, 1984].  

However, the second solution of Rabideau et al. [2005] with a finite PRB width forces a 

zero concentration gradient at �, hence it is useful in that it yields the largest PRB width 
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[Park and Zhan, 2009].  Alternatively, the first solution of Rabideau et al. [2005] with 

the third-type or total flux influent condition [Kreft and Zuber, 1978] is more accurate; 

however, it incorrectly implies that PRBs have large thicknesses with the semi-infinite 

effluent condition.  Additionally, the Eykholt [1997] and Rabideau et al. [2005] design 

equations are of limited use because they are unable to account for the entirely distinct 

flow and chemical processes occurring in the downgradient aquifer.  For example, solute 

degradation in the PRB is typically induced by a strong abiotic reaction while the 

reaction in the aquifer tends to be a weaker biologically driven (natural) attenuation 

[EPA, 1998].  As such, these solutions are unable to model the solute concentration at 

the downgradient POC, which is typically in the aquifer. 

Both the first solution of Rabideau et al. [2005] and the Park and Zhan [2009] 

solution consider the influent dissolved solute to be well mixed and therefore described 

completely by the advective mass flux condition or flowing concentration flux [Kreft and 

Zuber, 1978].  Which upon entering the PRB is subject to both advective and dispersive 

flux or total mass flux [Kreft and Zuber, 1978]; hence the third-type boundary condition 

is more physically sound and tends to conserve mass [van Genuchten and Parker, 1984] 

when applied to the ADE, without reaction.  The difference between the solutions is that 

Park and Zhan [2009] assume a finite PRB width, maintain flux and concentration 

continuity at the PRB-aquifer interface, and assign a separate governing equation to the 

aquifer, which permits modeling solute concentrations at the POC.  The Park and Zhan 

[2009] solution, however, is currently limited to one reactive species in the PRB-aquifer 

system.  Most groundwater plumes have multiple chemicals present and many plumes 
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have reactive solutes which decay to produce daughter chemicals.  A common example 

is tetrachloroethylene (PCE) which degrades to produce trichloroethylene (TCE), which 

in turn degrades to dichloroethylene (DCE), with vinyl chloride (VC) as the final 

chlorinated daughter product.  Given this limitation, the objective of this study is to 

expand the Park and Zhan [2009] model to handle multispecies reactive transport in the 

PRB-aquifer system.  The results will focus on the closed-form steady-state analytical 

solutions of the aquifer, but it is noted that the transient semi-analytical solutions can be 

extracted from the derivations with little effort and programmed into a numerical 

inversion algorithm.  Lastly, due to the length of the solutions, an extensive appendix 

and two Excel programs are separately attached.  The Excel spreadsheets are 

preprogrammed with the steady-state analytical solutions of the serial and parallel 

degradation pathways. 
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2.  MODEL DEVELOPMENT – SERIAL DEGRADATION SOLUTIONS 

Figure 1, adapted from Park and Zhan [2009], is a schematic diagram illustrating 

the modeled assumption of one-dimensional solute transport perpendicular to the 

installed PRB and downgradient aquifer.  As seen, the PRB is continuous (slab-shaped) 

and fully submerged with the upgradient and downgradient surfaces positioned normal 

to the x-axis, the direction of groundwater flow.  The thickness of the PRB is �, with the 

PRB-aquifer interface at � = 0 representing the coordinate system origin, and xcomp 

representing a predetermined location where solute concentrations must achieve a 

regulatory limit; i.e., the POC.  Although the PRB-aquifer interface exhibits a common 

specific discharge ���, the PRB has higher porosity than the adjacent aquifer, and as 

such pore water velocity is lower in the PRB [Gavaskar et al., 2000].   It should also be 

noted that the PRB and aquifer have distinct first-order reaction rates and dispersivities; 

and that subsequent uses of �� actually represent an observed first-order reaction rate 

������� that was properly normalized to the iron surface area concentration in the PRB 

(see Section 3).  Furthermore, note that in a one-dimensional flow and transport model 

transverse dispersion is neglected; this is a conservative assumption since transverse 

dispersion dilutes the effluent concentration.  Lastly, note that the PRB’s ability to 

induce rapid degradation is key to its design.  Therefore, when examining the results of 

this study one should focus on the large difference between the first-order reaction of the 

PRB and the aquifer. 

For the PRB-aquifer system modeled here, the governing equation of the first 

parent species in the PRB is   
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��	 ������ = ℒ���	� − ��	��	 ,     ℒ���	� = �� �����
�
� − �� ����

�
  ,      (1) 

where the subscript “B” denotes the PRB, ℒ is the advection-dispersion operator, and 

� = 1.  For subsequent daughter species the governing equation in the PRB is    

��	 ������ = ℒ���	� − ��	��	 + "	��	#$��	#$ ,     (2) 

where � = 2, 3, ∙∙∙	, ) represent the species chain reaction in Figure 2, DB is the 

longitudinal dispersion coefficient [L
2
T

-1
], �� is the groundwater flow velocity [LT

-1
], 

RBi is the species-dependent retardation factor for linear sorption [-], ��	 is the species 

concentration [ML
-3

], ��	 is the species-dependent first-order reaction rate constant  [T
-

1
], "	 is the stoichiometric yield factor [-] (see Appendix A), x is the spatial variable 

along the flow direction [L], and t is time [T].  All parameters in Eqs. (1) and (2) pertain 

to the PRB region; i.e., the distance −� < � < 0.  At the influent face of the PRB, the 

solute concentration can be a function of time such that 

+)��� ����
�
 − ���	,-
.#� = −��	�/��� ,      (3) 

where )� is the porosity of the PRB and �	�/ is the influent concentration immediately 

up-stream of the PRB, which can be constant or a temporally variable function.  The 

derivations presented below assume �	�/ is transient, however, all steady-state results 

convert �	�/ to a constant input concentration.  Notice that the left-hand side of Eq. (3) 

represents total mass flux within the PRB while the right-hand side represents the 

flowing flux entering the PRB.  This third-type boundary condition is typically used for 

laboratory columns with porous media, however, it is reasonable to treat the PRB as 

analogous to a large-scale column.  Another intuitive description of Eq. (3) states simply 
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Figure 2: Conceptual view of the serial degradation pathway of PCE.  Y – denotes the 

stoichiometric yield of the daughter product from the parent chemical. 

Hydrogenolysis Pathway of PCE Decay 
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that �		
0
.#�1 is less than �		
 due to the loss of mass by dispersion upon entering the 

PRB [Danckwerts, 1952].   

Since groundwater exiting the PRB enters a medium with entirely different 

chemical and flow processes a separate ADE is required.  Therefore, the governing 

equations of multi-species reactive transport in the down-gradient aquifer are  

�2	 ��3��� = ℒ��2	� − �2	�2	 , ℒ��2	� = �2 ���3�
�
� − �2 ��3�

�
     (4) 

�2	 ��3��� = ℒ��2	� − �2	�2	 + "	�2	#$�2	#$ ,      (5) 

where DL is the longitudinal dispersion coefficient [L
2
T

-1
], �2 is the groundwater 

velocity [LT
-1

], �2	 is the species-dependent retardation factor [-], �2	 is the species-

dependent first-order reaction rate [T
-1

], "	 is again the stoichiometric yield factor [-] 

(equivalent in both media), and �2	 is the species concentration [ML
-3

].  Note that Eqs. 

(4) and (5) – denoted with subscript “L” – pertain to the aquifer region 0 < � < ∞, but 

only Eq. (5) governs the transport of daughter species.  It is noted that groundwater flow 

velocities in the PRB and the aquifer can be determined from a common specific 

discharge such that ��)� = �2)2 = �, where )� and )2 are the porosities of the PRB 

and the aquifer, respectively.  Additionally, the model assumes the PRB and aquifer 

are initially free of contamination, thus the initial condition is ��	�� = 0� = �2	�� =
0� = 0.  Lastly, since the PRB-aquifer interface physically represents the transition 

between two types of porous media the proper boundary conditions to maintain at � = 0 

are the continuity of solute concentration and the continuity of total mass flux; i.e., 

��	|
.5 = �2	|
.5 ,         (6) 
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+)��� ����
�
 − ���	,-
.5 =	+)2�2 ��3�

�
 − ��2	,-
.5 ,    (7)     

and at the positive infinity limit of the aquifer a no-flux boundary condition is assumed 

��3�
�
 -
.6 = 0 .          (8) 

To facilitate computation, the following dimensionless parameters are 

introduced:  

��7	 = ���
�8  , �7	 = �3�

�8  , �7 = 

� , �7 = 7�

�� � , ��7 = 9��
7�  , �27 = 93�

7�  , �7 = :�
7� 

, ; = 73
7� , ��7	 = ��

7� ��	 , �27	 =
��
7� �2	 , < = 
3


� , and = = ��
7� >  (9) 

where the subscript “D” denotes a dimensionless term, B the PRB thickness [L], ? the 

Laplace variable [T
-1

], and �@ the solubility [ML
-3

] of the first species which serves 

simply as a reference concentration.  An alternative reference concentration can be used 

if desired.  Applying the dimensionless parameters defined in Eq. (9) and the Laplace 

transform to Eqs. (1), (2), (4), and (5) results in the following governing equations: 

A���B�
A
B� − ��7 A��B�

A
B − ���	= + ��7	���7	 = 0 ,     (10) 

A���B�
A
B� − ��7 A��B�

A
B − ���	= + ��7	���7	 = −"	��7	#$��7	#$ ,   (11) 

; A��3B�
A
B� − �27 A�3B�

A
B − ��2	= + �27	��27	 = 0 ,     (12) 

; A��3B�
A
B� − �27 A�3B�

A
B − ��2	= + �27	��27	 = −"	�27	#$�27	#$ ,   (13) 

where the overbar denotes the Laplace domain and p is the dimensionless Laplace 

variable corresponding to dimensionless time �7.  Notice that the Laplace transform 

procedure eliminated the time dependency of the original partial differential equations 
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(PDEs).  The resulting equations are second order linear (homogeneous and 

nonhomogeneous) ordinary differential equations (ODEs), which depend only on the 

distance from the source concentration [Nagle et al., 2000].  For example, if in Eqs. (11) 

and (13) i is the fourth species then i-1 denotes species three, which carries the solutions 

of species one and two.  Applying Eq. (9) and the Laplace transform to the boundary 

conditions yields 

+A��B�A
B − ��7��7	,-
B.#$ = −��7�7	�/ ,      (14) 

��7	0
B.5 = �27	0
B.5 ,        (15) 

+A��B�A
B − �7��7	,-
B.5 =	+<; A�3B�
A
B − �7�27	,-
B.5 ,    (16) 

A�3B�
A
B -


B.6
= 0 .         (17) 

From Park and Zhan [2009], the general solution of Eqs. (10) and (12) in the 

Laplace domain are  

��7	 = C�= +9�B
BD , EFC�=�G7	�7� + HC�=�−G7	�7�I ,    (18) 

�27	 = JC�= +93B#DKB�
DL �7, ,        (19) 

where  G7	�=� = M��7D 4⁄ + ��	= + ��7		 and P7	�=� = M�27D 4⁄ + ;��2	= + �27	�	, 
and undetermined coefficients a, b, and c depend on the boundary conditions.  Note that 

Eq. (19) neglects the positive root of the characteristic equation because solute 

concentrations far from the PRB must be zero, in accordance with boundary condition 

(17).  After applying the boundary conditions, the semi-analytical solution of Eq. (19) 

for species � = 1 is     
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�3B�
�B��/�Q�

= 2G7	��7R7	C�= +93B#DKB�
DL �7 + 9�B

D , ,      (20) 

where R7	 = 1 E�G7	��7 + 2<P7	G7	�JS>ℎ�G7	� + �<P7	��7 + 2G7	D�>�)ℎ�G7	�I⁄ .  

The complete derivation of Eq. (20) is included in Park and Zhan [2009].  Note that the 

transient analytical solution of Eq. (20) can be inverted numerically to yield the solution 

in real-time domain.  The steady-state analytical solution, however, can be determined 

by letting = → 0 (equivalent to �7 → ∞), applying the final value theorem 

lim�→6 Y��� = limQ→5 =Z�=� [Dyke, 1999], and assigning a constant influent 

concentration so that �7	�/�=� → �7	�/ =⁄ .  The resulting steady-state aquifer solution of 

Eq. (20) is 

�27	 = 2G57	��7R57	�7	�/C�= +93B#DK[B�
DL �7 + 9�B

D , ,     (21) 

where R57		now incorporates G57	 = M��7D 4⁄ + ��7		 and P57	 = M�27D 4⁄ + ;�27	 .  
The PRB solution is not included here, but is presented in Park and Zhan [2009].  Notice 

that the PRB solution – although necessary for derivational purposes – is not the end 

goal.  Ultimately, the designer desires to know the solute concentration at the location of 

the selected POC for a selected PRB thickness.  Only the aquifer solution provides this 

flexibility. 

For design purposes Eq. (21) is converted to its dimensional form   

�2	 = 2G	��R	�	�/C�= +93#D73K�
D73 � + 9��

D7�, ,      (22) 

where R	 = 1 E�G	�� + 2�2<P	G	�JS>ℎ��G	� + �<;P	�� + 2��G	D�>�)ℎ��G	�I⁄ , and 

where G	 = \��D 4��D⁄ + ��	 ��⁄   and	P	 = \�2D 4�2D⁄ + �2	 �2⁄  .  As noted by Park 
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and Zhan [2009], Eq. (22) can be used to determine the species concentration at the 

downgradient POC given a PRB of thickness B.  In its present form Eq. (22) cannot be 

rearranged to explicitly solve for B, however, assuming the strong first-order reaction in 

a PRB dominates over dispersion, then	��	 ≫ 	�� and �G	 ≫ 1. This in turn simplifies 

the hyperbolic function such that JS>ℎ��G	� ≈ >�)ℎ��G	� ≈ C�= ��G	� 2⁄  and therefore 

R	 = 2 C�=��G	��G	�� + 2�2<P	G	 + <;P	�� + 2��G	D�⁄ .  The updated form of Eq. 

(22) (not presented here for brevity) can now be rearranged to solve explicitly for the 

required PRB thickness _�`a:b given a maximum target concentration to be achieved at 

the POC, hence:   

�`a: = D7�
9�#D7�c� de) f

��gh3
���/

i + j	 − + 93
D73 − P	, �k�lQm ,     (23) 

where �k�lQ is the distance to the POC from the PRB-aquifer interface and                 

j	 = e)��G	�� + 2�2<P	G	 + <;P	�� + 2��G	D� 4��G	⁄ �, as defined by Park and Zhan 

[2009].  Utilizing van Genuchten’s [1981] solution, Eykholt and Sivavec [1995] and 

Eykholt [1997] presented a similar design equation,  

�`a: = D7�
9�#D7�c� e) f

��gh3
���/

i .        (24) 

Eq. (24) arises from applying a first-type boundary condition ��0, �� = �		
 at the 

influent face of the PRB and a semi-infinite boundary condition 
��
�
 �∞, �� = 0 at the 

effluent face of the PRB.  Although Eq. (24) is convenient, it cannot account for the 

reaction in the aquifer and it is derived with the assumption that PRBs have large 

thicknesses.  Site data compiled by Gavaskar et al. [2000] indicates most PRBs are 1-2 

meters thick.  Lastly, it is emphasized that Eqs. (23) and (24) apply only to the special 
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case when i=1.   

For the case when � = 2, Eq. (13) becomes 

; A��3B�
A
B� − �27 A�3B�

A
B − ��2D= + �27D��27D = −"D�27$�27$ ,    (25) 

where �27$ is Eq. (20) but presented in the slightly different form of  

�27$ = 2G7$��7C�= +9�BD , R7$�7$�/C�= +93B#DKBn
DL �7,.    (26) 

Hence the particular solution of Eq. (25) is of the form �27D = op2C�= +93B#DKBn
DL �7,, 

where op2 is the coefficient for the aquifer that satisfies the homogeneous part of Eq. 

(25); i.e.,  

op2 = −2G7$"D��7C�= +9�BD ,qR7$�7$�/  ,      (27) 

where q�=� = r3Bn
�s3n#s3��Qtr3Bn#r3B�  is a dimensionless ratio of the reactivities in the 

aquifer.  Therefore, the general solution of Eq. (25) is comprised of the complementary 

and particular solution such that:  

�27D = uC�= +93B#DKB�
DL �7, − 2G7$"D��7C�= +9�BD ,qR7$�7$�/C�= +93B#DKBn

DL �7,, 

where u depends on the boundary conditions.  Performing an analogous procedure for 

the PRB gives    

op� = "D��7C�= +9�BD , �<P7$ − G7$�q�R7$�7$�/ ,      (29) 

�v� = −"D��7C�= +9�BD , �G7$ + <P7$�q�R7$�7$�/ ,     (30) 

where q��=� = r�Bn
�s�n#s���Qtr�Bn#r�B� .  Coefficients op� and �v� are defined and derived 

in Eqs. (S1) through (S11) of Appendix A.  Notice that they pertain to the particular 

(28) 
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solution of the PRB when � = 2 and must satisfy the homogenous part of Eq. (S1).  

Therefore, the general solution of the PRB when i=2 is 

��7D = jexp f��7 + 2G7D
2 �7i +zexp f��7 − 2G7D

2 �7i +	 

"D��7C�= +9�BD , �<P7$ − G7$�q�R7$�7$�/exp +9�BtDcBnD �7, −"D��7C�= +9�BD , �G7$ +

<P7$�q�R7$�7$�/ exp +9�B#DcBnD �7,        (31) 

where j and z depend on the boundary conditions.  After applying the boundary 

conditions to Eqs. (28) and (31) and determining u, the steady-state analytical solution 

of species i=2 in dimensional form is  

�2D = {2GD��RD�D�/ + Dcn|"29��}#}��L�Kn#K���$#~���n
c�t|LK� �$�/ + 2"2���$�/�GDq�RD +

G$�q − q��R$�� C�= +93#D73K�
D73 � + 9��

D7�, − 2G$"2��qR$�$�/C�= +93#D73Kn
D73 � + 9��

D7�, 

where � is the distance to the POC from the PRB-aquifer interface, 	�D = RDGD��� −
2��GD�C�=�−�GD� is dimensionless, q = �2$ ��2$ − �2D�⁄  is also dimensionless, and 

q� is of equivalent form to q but with the reactivities of the PRB.  Notice that 

retardation values are eliminated when = → 0, meaning retardation has no effect at 

steady-state conditions.  It should also be noted that if �$�/ is zero, Eq. (32) reverts to the 

form of Eq. (22) for a single species; this supports the validity of Eq. (32).   

The procedures outlined above were used to derive the steady-state analytical 

solution of species three and four.  For species i=3 the steady-state solution in 

dimensional form is  

 

(32) 
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�2� = �2G���R����/ + �����#���
c�t|LK�

EG� + <;PD − <;�PD − P����I�j + z� +
������c�t|LK��

c�t|LK�
�1 − ���� + Dcn�����9��n|L�$#~���n�/

c�t|LK�
E�P$ − P���	��q� − �q� +

�PD − P����q − q��I + 2G�"������R��D�/ + 2"��"D���$�/EG$R$�	��q� − �q + �q −

�q�� − G�R�q��	�� − ���I� 	C�= +93#D73K�
D73 � + 9��

D7�, − "���uC�= +93#D73K�
D73 � + 9��

D7�, +

2G$"��"D���qR$�$�/C�= +93#D73Kn
D73 � + 9��

D7�, ,     (33) 

where j, z	and u were defined for species two, �� = R�G���� − 2��G��C�=�−�G��, 
� = �2D ��2D − �2��⁄ ,  � = �2D ��2$ − �2��⁄ , and �� and �� pertain to the PRB.  Also,   

� = Dcn|��9��}#}��L�Kn#K���n
c�t|LK� �$�/ .       (34) 

Notice that the branching ratio � (gamma) must equal one if serial degradation is 

assumed since no parallel daughter products are produced [Tratnyek et al., 1997; 

Clement, 2001].   

For species i=4 the steady-state solution in dimensional form is 

�2� = �2G���R����/ + ����#���
c�t|LK�

EG� + <;P� − <;�P� − P����I�� + �� + �����c�t|LK��
c�t|LK�

�1 −

���� + �����L
c�t|LK� Ω� �j + z� + �����2����c�t|LK���~�#$�

c�t|LK� � + Dcn�������9�|L�n�$#~��
c�t|LK� Ω� �$�/ +

2G�"�����R����/ + 2G�"�"������R���� − ����D�/ + 2"�"��"D��Ω��$�/� C�= +93#D73K�
D73 � +

9��
D7�, − "���C�= +93#D73K�

D73 � + 9��
D7�, + "�"����uC�= +93#D73K�

D73 � + 9��
D7�, −

2G$"�"��"D���q�R$�$�/C�= +93#D73Kn
D73 � + 9��

D7�, ,      (35) 

where �� = R�G���� − 2��G��C�=�−�G��, � = �2� ��2� − �2��⁄ , � = �2� ��2D − �2��⁄  

, � = �2� ��2$ − �2��	⁄ , and ��, ��, and �� pertain to the PRB; and �, �, and � are large 
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terms pertaining to species three (see Appendix A).  Additionally, the following are 

defined for species four: 

� = ���|��#���;�K�#K��
c�t|LK�

�j + z� + ������c�t|LK��
c�t|LK� � + Dcn�����9�|;�n

c�t|LK� �$�/E�P$ −
P���	��q� − �q� + �PD − P����q − q��I ,      (36) 

Ω� = ����� − ��� +c�L + <PD − θ�PD − P��μ�, + ���� − �� +θ�P� − P��μ� − c�
L − <P�, 

           (37) 

Ω� = �P$ − P���	�q� − ��q���� + ���PD − P���q� −q� + ��P� − P��_q��	�� − �� − q�	� − ��b 
           (38) 

Ω� = G$R$_	��q��� −��� + �q�� − �� + ��q − q���� − ��b + G�R�q�_����� − ��� +
����� − ���b           (39) 

It should also be noted that Eqs. (32), (33), and (35) cannot be solved explicitly for B, 

hence a coded program or spreadsheet is the most efficient way to utilize the steady-state 

solutions.  Also the denominators of q, q�, �, ��, �, ��, �, ��, �, ��, �, and �� cannot 

be zero in order for the equations to be defined; i.e., in the case when interspecies 

reaction rate factors equal each other.  This restriction, however, does not apply to the 

transient solutions, unless the interspecies retardation factors equal each other.  Detailed 

derivations of species 2, 3, and 4 are provided in Appendix A. 
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3.  COMPARISON OF THE SERIAL DEGRADATION SOLUTIONS & VMOD 

In this section the steady-state analytical solutions presented above are compared 

to the sequential decay reaction module in the RT3D v2.5 transport engine of Visual 

MODFLOW (VMOD) 2009.  In applying the above equations it is reminded that the 

transport and flow parameters assigned to the aquifer depend on accurate site 

characterization while the transport parameters assigned to the PRB are determined 

using the normalization method proposed by Johnson et al. [1996] and subsequently 

adopted by the EPA [1998].  A brief review of the normalization method is provided 

below. 

In an extensive review of prior studies on dechlorination by zero-valent iron 

(ZVI), Johnson et al. [1996] demonstrated that observed first-order reaction rates ������ 
of any one chemical varied by up to three orders of magnitude.  To reduce this apparent 

variability Johnson et al. [1996] expanded the first-order rate (R) model to account for 

the amount of available metal in the reaction and normalized the reaction rates to the 

iron surface area concentration ����; i.e,      

� = −�@�F��l�, or            

� = −�@����           (40) 

where �@� is the specific reaction rate constant [L
 
hr

-1
m

-2
], F� is the specific surface area 

[m
2
g

-1
] determined by the Brunauer, Emmett, and Teller (BET) gas adsorption method, 

�l is the iron mass per solution volume or mass concentration [g L
-1

], and �� is the iron 

surface area per solution volume or surface area concentration [m
2
L

-1
].  Therefore, 

���� = �@��� where �@� is a species-specific rate constant that is determined from the 
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linear regression of ���� and ��.  By repeating this procedure on individual chemicals, 

Johnson et al. [1996] provided a list of more rigorously derived �@� values exhibiting 

differences of one order of magnitude, instead of three orders of magnitude.  The list of 

�@� constants were not differentiated between column and batch tests.  For the purpose 

of modeling, all subsequent uses of � imply ���� was properly derived from �@�. 

To compare the multispecies steady-state analytical solutions with a numerical 

solution required creating both a spreadsheet program and a finite-difference grid in 

VMOD to simulate the degradation of PCE → TCE → DCE → VC.  The finite-difference 

grid modeled one-dimensional flow along a 20 m long domain, of which the first 0.5 m 

was assigned as the thickness (B) of the upgradient PBR zone.  The domain also 

consisted of a 10 m upgradient head, a 9.9 m downgradient head, and a 5 m width.  

Other flow parameters assigned to the domain included an aquifer effective porosity (nL) 

of 0.3, a PRB hydraulic conductivity (kB) of 60 m/d, and an aquifer hydraulic 

conductivity (kL) of 20 m/d.  Using the above flow parameters discharge is   = ¡2o� = 

5 m
3
/d.  Note that since PRBs are thin, relative to the adjacent aquifer, their effect on the 

large-scale conductivity of the site is insignificant.  Therefore, the discharge value of 5 

m
3
/d is an acceptable approximation.  Also, according to the VMOD geometric multigrid 

(GMG) flow solver, the seepage velocity in the aquifer is 3.38E-01 m/d.  This value can 

also be confirmed analytically by using the above parameters; i.e., �2 = ¡2� )2⁄ = 0.33 

m/d.  Additionally, since specific discharge at the PRB-aquifer interface is uniform, the 

seepage velocity in a PRB with effective porosity of )� =0.5 is �� = �2)2 )�⁄ = 0.2 

m/d.  This value also agrees with the numerical output of 2.03E-01 m/d.  It should be 
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noted that although the aquifer conductivity modeled is elevated it was essential in 

facilitating the convergence of the RT3D engine to steady-state concentrations within a 

reasonable time limit.  Table 1 illustrates the portion of the attached spreadsheet program 

where the flow parameters (including dispersivity) are designated and others (such as 

dispersion) are calculated. 

 

 

 

 

 

 

The transport parameters such as yield, reaction rate, and influent concentration 

of each species are presented in Table 2 as they would be entered into the spreadsheet 

program.  At this stage all necessary information is defined and the program 

conveniently calculates all other constants utilized in the steady-state analytical solutio- 

Domain Parameters PRB Parameters Aquifer Parameters 

θ (-) 0.6 ne-B (-) 0.5 ne-L (-) 0.3 

  
 

Breq (m)  0.5 x (m) 0 

width (m) 5   
 

  
 

hupgrad (m) 10   
 

  
 

hdowngrad (m) 9.9   
 

  
 

L (m) 20   
 

  
 

Grad (-) 0.005   
 

  
 

  
 

kB (m day-1) 60 kL (m day-1) 20 

  
 

uB (m day-1) 0.20 uL (m day-1) 0.33 

Q (m3 day-1) 5   
 

  
 

  
 

αB (m) 0.05 αL (m) 2 

δ (-) 66.67 DB (m2 day-1) 0.01 DL (m
2 day-1) 0.67 

Table 1: Modeled Flow Parameters 
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Species 1 

E1 (day) 1.53E-05 λB1 (day
-1

) 2.0 λL1 (day
-1

) 0.2 

  
 

ν1 (m
-1

) 1.73E+01 ω1 (m
-1

) 6.02E-01 

Species 2 

E2 (day) 8.16E-05 λB2 (day
-1

) 1.2 λL2 (day
-1

) 0.05 

Y2 (-) 0.792 ν2 (m
-1

) 1.48E+01 ω2 (m
-1

) 3.71E-01 

  
 

HB (-) 2.50E+00 HL (-) 1.33E+00 

Species 3 

E3 (day) 1.05E-04 λB3 (day
-1

) 1.1 λL3 (day
-1

) 0.03 

Y3 (-) 0.738 ν3 (m
-1

) 1.45E+01 ω3 (m
-1

) 3.28E-01 

γbranch (-) 1 IB (-) 1.20E+01 IL (-) 2.50E+00 

    JB (-) 1.33E+00 JL (-) 2.94E-01 

Species 4 

E4 (day) 1.65E-04 λB4 (day
-1

) 0.9 λL4 (day
-1

) 0.02 

Y4 (-) 0.644 ν4 (m
-1

) 1.38E+01 ω4 (m
-1

) 3.04E-01 

    KB (-) 5.50E+00 KL (-) 3.00E+00 

    LB (-) 3.67E+00 LL (-) 1.00E+00 

    MB (-) 1.00E+00 ML (-) 1.67E-01 

C1in (mg L
-1
) 10     CL1 (mg L

-1
) 1.58E-01 

C2in (mg L
-1
) 15     CL2 (mg L

-1
) 2.14E+00 

C3in (mg L
-1
) 5     CL3 (mg L

-1
) 3.80E+00 

C4in (mg L
-1
) 3     CL4 (mg L

-1
) 3.92E+00 

 

 

 

ns.  For example, in this scenario the PRB reaction rate constants of species 1, 2, 3, and 4 

are 2 d
-1

, 1.2 d
-1

, 1.1 d
-1

, and 0.9 d
-1 

while in the aquifer the weaker reaction rates are 0.2 

d
-1

, 0.05 d
-1

, 0.03 d
-1
, and 0.02 d

-1
.  The trend of decreasing reaction rates is intended to 

simulate the decreasing dechlorination potential of each subsequent daughter species in 

the aquifer [Wiedemeier et al., 1999] and in the PRB [Matheson and Tratnyek, 1994].   

After inputting the reaction rate constants the programs calculate the values of G	, P	, R	, 

Table 2: Modeled Transport Parameters 
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and the dimensionless ratios of the reactivities.  Lastly, the user inputs the pertinent 

stoichiometric yields and influent concentrations of each species. The programs then 

calculate the concentration of each species at the designated POC (the � in Table 1), 

which is downgradient of the PRB-aquifer interface.   

The results of the RT3D numerical solution were exported and the concentration 

distribution of each species was plotted along with select concentration points from the 

steady-state analytical solutions of this study.  As seen in Figures 3 and 4, the two 

methods agree particularly well in the aquifer zone where the discrete concentration 

points coincide with the lines representing the numerical solution.  Two additional sets of 

figures comparing the analytical solutions with VMOD are included in Appendix B. 

 Applying the spreadsheet programs in a real scenario is straightforward; the 

designer inputs the site gradient and the conductivity of the aquifer (or groundwater 

velocity only), the porosity and dispersivity of each medium, and the distance ���	to the 

downgradient POC.  The transport parameters required include the reaction rate 

constants, stoichiometric yields, and influent concentrations.  To determine �`a:, the 

designer increases the value of  � until all species meet the required concentration at the 

POC; alternatively, the Microsoft Excel tool Goal Seek performs the same function.  A 

minimum input value of �`a:= 0.5 is recommended for goal seek to return a non-

negative width.  It is worthwhile to note that these equations can be applied to any other 

four species reacting in a serial chain reaction and to other types of dual domain systems. 

For example, the equations can also be used for two adjacent aquifer zones where an 

oxidizing zone transitions into a reducing zone.  As another example, if the reaction 
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involves only three species, then both "� and ���/ are zero, and so on if only two species 

react.  Overall, the multi-species steady-state analytical solutions presented in this study 

can be quickly implemented using the spreadsheet programs which are cost-effective 

compared to the standard numerical program, hence the solutions are useful as PRB 

design equations.   

Once the barrier width is calculated the required mass of reactive material in the 

PRB is currently determined using the EPA [1998] mass estimation calculation, which is 

fundamentally derived from Eq. (24) without dispersion.  For example, if dispersion is 

neglected Eq. (24) becomes the common plug flow reactor equation      

�`a: = − 9�
r¢£¤ e) +

�gh3
��/ , = − 9�

r8¥�¤¦§ e) +�gh3
��/ , = − 9� ©̈

r8¥�¤ª8 e) +
�gh3
��/ , ,  (41) 

where �@ is the mass of the solid iron grains and «¬ is the solution volume in the PRB, 

as discussed above.  In the case of a continuous PRB, the total volume is simply 

«­ = �`a:o, where o is the designed area of the PRB normal to the groundwater flow 

direction.  Also, ) = «¬ «­⁄  is the PRB porosity, assuming installation in the saturated 

zone where the volume of air is negligible.  Therefore,	«¬ = )�`a:o and (41) becomes,  

�@ = − 9�
�
r8¥�¤ e) +

�gh3
��/ , ⇒ ª8

� = − 9�

r8¥�¤ e) +

�gh3
��/ , ,      (42)   

where Eq. (42) is the exact EPA [1998] mass estimation formula and �@ o⁄  is the iron 

mass per unit area.  In this study, an alternative mass estimation calculation is derived.  

The alternative calculation relies on first determining �`a: from the attached 

multispecies-reactive transport spreadsheet programs and subsequently utilizing the 

relationship 
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 «­ = �`a:o = «¬ + «� ,        (43) 

where «� is the volume of iron solids and the volume of air is neglected.  Substituting the 

iron grain (or particle) density �¯ = �� «�⁄  and iron mass concentration �l = �� «¬⁄  

into Eq. (43) yields  

ª8
� = �`a: ¦°¦§

¦°t¦§ = �`a:)�l , or simply       

ª8
� = �`a:�� ,          (44) 

where �� = �� «­⁄  is the dry bulk density of ZVI, of which several values are reported 

by Gavaskar et al. [2000] and the EPA [1998].  According to the EPA, ZVI bulk density 

is typically 2.56 g/cm
3
.  As an example of Eq. (44), the continuous PRB installed in the 

U.S. Coast Guard (USCG) Support Center near Elizabeth City, North Carolina was 

designed with a reactive cell height of 5.5 m, length of 46 m, thickness of 0.6 m, and 450 

tons (408,233 kg) of granular iron [EPA, 1999].  Based on this data 
ª8

��±²³ = �� = 2.69 

g/cm
3
, which is well within the normal range of reported iron bulk densities.  Therefore, 

Eq. (44) can be used to estimate �@ o⁄  once �`a: and �� are known.  Lastly, PRBs tend 

to be designed with a factor of safety applied to �`a: [Eykholt, 1997] and a reaction rate 

correction adjustment factor due to lower subsurface temperatures [Gavaskar et al., 

2000].  Note that Eqs. (44) and (40) provide the necessary flexibility to incorporate the 

factor of safety and the reaction rate adjustment. 
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4.  MODEL DEVELOPMENT – PARALLEL DEGRADATION SOLUTIONS 

Several authors including Wiedemeier et al. [1999] have noted the parallel 

pathway by which TCE degrades to simultaneously produce 1,1-DCE, cis-1,2-DCE, and 

trans-1,2-DCE.  In practice, however, these isomers are typically lumped together into 

one species.  It is important to note that in reality each DCE isomer may have a unique 

reaction rate and therefore acquire mass and contribute mass at a different rate.   The 

hydrogenolysis degradation model of PCE → TCE → DCE isomers → VC is the 

sequential replacement of one chlorine atom with one hydrogen atom in which VC 

acquires mass from convergent multi-parent reactions; i.e., the three DCE isomers 

degrade to VC.  In examining the abiotic reaction between the common chlorinated 

ethylenes and ZVI, Roberts et al. [1996] and Arnold and Roberts [2000] expanded the 

hydrogenolysis model to include a separate z-elimination pathway in which PCE → 

dichloroacetylene → chloroacetylene → acytelene.  Degradation in this expanded model 

is a highly complex network of various multi-parent and multi-daughter reactions where 

even the hydrogenolysis pathway and the z-elimination (or chlorinated acetylene) 

pathway exchange mass.  Complexity of this level is not practical for the purpose of 

analytical modeling; hence this study considers the degradation network illustrated in 

Figure 5 to be a reasonable simplification.  The absence of the dichloroacetylene 

intermediary from Figure 5 is justified since it tends to react very rapidly with ZVI 

[Roberts et al., 1996; Arnold and Roberts, 2000].  After considering the model in Figure 

5, the PRB and aquifer governing equations of species 1 and 2 are unchanged [Rodiguin  

and Rodiguina, 1964].  However, the governing equations of species DCE1 (SP31), 
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  Figure 5: Conceptual view of the parallel degradation pathway of PCE.  Y – denotes the 

stoichiometric yield of the daughter product from the parent chemical.  γ – gamma denotes the 

branch factor.  Note: the sum of all branch factors should equal 1 to appropriately account for 

mass. 
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DCE2 (SP32), DCE3 (SP33), and chloroacetylene (SP5) are revised as follows:  

���	 ������� = ℒ����	� − ���	���	 + ��	"�	��D��D ,     (45) 

��´ ���µ
�� = ℒ���´� − ��´��´ + �´"´��D��D ,     (46) 

for the PRB, and for the aquifer: 

�2�	 ��3���� = ℒ��2�	� − �2�	�2�	 + ��	"�	�2D�2D ,     (47) 

�2´ ��3µ
�� = ℒ��2´� − �2´�2´ + �´"´�2D�2D ,      (48) 

where � is a counter from 1 to 3 and � is the branching ratio previously defined, which is 

now less than one for each species but should satisfy ��$ + ��D + ��� + �´ = 1 

[Clement, 2001].  With the exception of the branching ratio not equaling 1, Eqs. (45) 

through (48) are equivalent in form to Eqs. (2) and (5) of the serial degradation scenario 

�=3; therefore, the steady-state analytical solution to Eqs. (45) and (47) is equivalent in 

form to Eq. (33), where j, z	and u are unchanged.  As seen in Table 3, the major 

difference arises in the values of the dimensionless reactivity ratios; i.e., ��	 =
�2D ��2D − �2�	�⁄ , ��	 = �2D ��2$ − �2�	�⁄ , where ���	 and ���	 pertain to the PRB.  

Similarly, the steady-state dimensional forms of G and P are G�	 = \��D 4��D⁄ + ���	 ��⁄   

and 	P�	 = \�2D 4�2D⁄ + �2�	 �2⁄   where � is the counter defined above.  (The same 

analyses apply to �́ , �́ , ��´, ��´, G´, and P´ which pertain to species 5.) 
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The current version of RT3D preprogrammed in VMOD does not include this 

type of parallel multispecies degradation model. To formally compare the analytical 

solutions of Eqs. (45)-(48) with a numerical model requires creating a program in the 

user-defined RT3D reaction module programmed by Clement et al. [1998].  This study 

presents an alternative method of testing the validity of the (parallel degradation) 

solutions that is based on the conservation of total concentration between the serial and 

parallel chains.  For example, if each of the four branch factors equals 0.25 and all inter-

Species 3-1 (1,1-DCE) 

E3-1 (day) 1.05E-04 λB3-1 (day
 -1

) 1.10 λL3-1 (day
-1

) 0.03 

Y3-1 (-) 0.738 ν3-1 (m
-1

) 1.45E+01 ω3-1 (m
-1

) 3.28E-01 

γ3-1  (-) 0.25 IB3-1 (-) 1.20E+01 IL3-1 (-) 2.50E+00 

 

JB3-1 (-) 1.33E+00 JL3-1 (-) 2.94E-01 

Species 3-2 (Cis-1,2-DCE) 

E3-2 (day) 1.05E-04 λB3-2 (day
-1

) 1.10 λL3-2 (day
-1

) 0.03 

Y3-2 (-) 0.738 ν3-2 (m
-1

) 1.45E+01 ω3-2 (m
-1

) 3.28E-01 

γ3-2  (-) 0.25 IB3-2 (-) 1.20E+01 IL3-2 (-) 2.50E+00 

 

JB3-2 (-) 1.33E+00 JL3-2 (-) 2.94E-01 

Species 3-3 (Trans-1,2-DCE) 

E3-3 (day) 1.05E-04 λB3-3 (day
-1

) 1.10 λL3-3 (day
-1

) 0.03 

Y3-3 (-) 0.738 ν3-3 (m
-1

) 1.45E+01 ω3-3 (m
-1

) 3.28E-01 

γ3-3  (-) 0.25 IB3-3 (-) 1.20E+01 IL3-3 (-) 2.50E+00 

 

JB3-3 (-) 1.33E+00 JL3-3 (-) 2.94E-01 

Species 5 (Chloroacetylene) 

E5 (day) 1.05E-04 λB5 (day
-1

) 1.10 λL5 (day
-1

) 0.03 

Y5 (-) 0.460 ν5 (m
-1

) 1.45E+01 ω5 (m
-1

) 3.28E-01 

γ5  (-) 0.25 IB5 (-) 1.20E+01 IL5 (-) 2.50E+00 

 

JB5 (-) 1.33E+00 JL5 (-) 2.94E-01 

Table 3: Modeled Transport Parameters of SP3i and SP5  
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species stoichiometric yields and first-order reaction rates are equal (as designated in 

Table 3), then SP3i and SP5 gain and lose moles at the same rate.  That is, SP3i and SP5 

react (degrade) at the same rate.  Therefore, it is expected that 1) at a selected POC SP3i 

and SP5 exhibit identical concentrations and 2) the total of their summed concentrations 

is equal to one effective SP3 concentration.  This effective SP3 concentration should 

exactly equal the SP3 concentration from the serial degradation pathway (discussed in 

Section 2).  A final assumption (which facilitates this test but is not required) is to treat 

SP3i, SP5, and SP3 as daughter products of weathered TCE; i.e., their influent 

concentrations are zero.  This test was performed on several discrete points and with 

several decay constants and found to be exactly as predicted.  Additionally, it should be 

pointed out that the spreadsheet program is sufficiently flexible to model only the 

parallel hydrogenolysis pathway by neglecting the z-elimination pathway altogether.  

Such an assumption is conservative in dealing with the chlorinated ethylenes and can be 

accomplished simply by letting "´, �´�/, and �¶�/ equal zero and assuring that ��$ +
��D + ��� = 1.  However, caution should be taken in establishing this assumption as the 

norm.  Chlorinated acetylenes are reported to be toxic [Roberts et al., 1996].  Although 

they degrade rapidly in laboratory studies [Roberts et al., 1996; Arnold and Roberts, 

2000], it is uncertain to what extent they accumulate as PRB effluents in the field. 

The next chemical in Figure 5, SP4, gains mass from convergent multiparent 

reactions.  In this case the updated governing equations of SP4 are: 

 ��� ����
�� = ℒ����� − ������ + "�$���$���$ + "�D���D���D + "���������� , (49) 

�2� ��3�
�� = ℒ��2�� − �2��2� + "�$�2�$�2�$ + "�D�2�D�2�D + "���2���2�� , (50) 
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[Rodiguin and Rodiguina, 1964] where "�$, "�D, and "�� are generally distinctive 

stoichiometric yields, but in this case they are equivalent due to the DCE isomers.   

Applying the dimensionless parameters in Eq. (9) and the Laplace transform to Eqs. (49) 

and (50) gives  

A���B�
A
B� − ��7 A��B�

A
B − ����= + ��7����7� = −"�$��7�$��7�$ − "�D��7�D��7�D −

"����7����7�� ,         (51) 

; A��3B�
A
B� − �27 A�3B�

A
B − ��2�= + �27���27� = −"�$�27�$�27�$−"�D�27�D�27�D −	   

"���27���27�� .           (52) 

Recall that in the case of the serial degradation pathway, the steady-state analytical 

solution of SP4 was presented as Eq. (35).  Also recall that in the serial degradation 

pathway, the boundary conditions were applied once.  After comparing the right-hand 

side of Eqs. (11) and (13) with the right-hand side of Eqs. (51)-(52), it becomes apparent 

that the general procedure used to determine Eq. (35) can also be used to solve Eqs. 

(51)-(52), with a slight variation.  To solve Eqs. (51)-(52), the boundary conditions are 

now applied two additional times to the two additional terms on the right-hand side; i.e., 

the terms associated with �7�D and �7��.  This realization allows one to quickly deduce 

the analytical solution of SP4 for the parallel degradation pathway and avoid the very 

long derivation required to manually solve Eqs. (51)-(52).  Therefore, the solution to a 

daughter product that results from a convergent multi-parent reaction can be determined 

by applying the boundary conditions once to each additional term on the right-hand side.  

Inevitably, this procedure results in additional terms that are (at every algebraic step) 

added to the derivation, resulting in a much longer analytical solution.  The resulting 
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steady-state analytical solution of SP4 is particularly long and is included in Appendix 

A.  

  To test the validity of this solution, the concentration conservation technique 

introduced above is revisited.  In this case the following are assumed: let �´ (or "´� and 

��	�/equal zero, let all "�	 equal each other, let ��$ = ��D = ��� = 1 3⁄ , and let all 

stoichiometric yields and first-order reaction rates pertaining to SP3� equal each other.  

The physical representation of these assumptions is that SP4 gains the same amount of 

moles from each SP3� isomer at the same rate.  In this case, the SP3� variants again 

mimic one effective SP3 chemical.  Therefore, the SP4 concentration from the parallel 

degradation pathway should exactly equal the SP4 concentration from the serial 

degradation pathway.   This test was performed on several discrete points and with 

several decay constants and also found to be exactly as predicted.  Table 4 below 

presents the modified inputs of SP4 in the case of the parallel degradation reaction.  As 

seen in Table 4, the rate at which SP4 degrades is unchanged from the serial degradation 

model; i.e., the values of G� and P� do not change from Table 2 to Table 4.  However, the 

additional terms on the right-hand-side of Eqs. (49) and (50) require that the analytical 

solution of SP4 account for potentially different rates of mass contribution from each of 

the three DCE isomers.  Hence ��	, ��	, and ��	 are defined for the aquifer and ���	, 
���	, and ���	 pertain to the PRB, where � is the counter from 1 to 3. 
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Species 4 (VC) 

E4 (day) 1.65E-04 λB4 (day -1) 0.90 λL4 (day -1) 0.02 

Y4/3-1 (-) 0.644 ν4 (m
-1) 1.38E+01 ω4 (m

-1) 3.04E-01 

Y4/3-2 (-) 0.644 KB3-1 (-) 5.50E+00 KL3-1 (-) 3.00E+00 

Y4/3-3 (-) 0.644 LB3-1 (-) 3.67E+00 LL3-1 (-) 1.00E+00 

    MB3-1 (-) 1.00E+00 ML3-1 (-) 1.67E-01 

            

    KB3-2 (-) 5.50E+00 KL3-2 (-) 3.00E+00 

    LB3-2 (-) 3.67E+00 LL3-2 (-) 1.00E+00 

    MB3-2 (-) 1.00E+00 ML3-2 (-) 1.67E-01 

            

    KB3-3 (-) 5.50E+00 KL3-3 (-) 3.00E+00 

    LB3-3 (-) 3.67E+00 LL3-3 (-) 1.00E+00 

    MB3-3 (-) 1.00E+00 ML3-3 (-) 1.67E-01 

 

 

 

The final chemical in Figure 5, SP6, results only from the degradation of 

Chloroacetylene, hence its governing equations are: 

��¶ ���·
�� = ℒ���¶� − ��¶��¶ + "¶��´��´      (53) 

�2¶ ��3·
�� = ℒ��2¶� − �2¶�2¶ + "¶�2´�2´      (54) 

Notice that Eqs. (53) and (54) are equivalent in form to Eqs. (2) and (5) of the serial 

degradation scenario �=4.  Therefore, the steady-state analytical solution of SP6 can be 

validated by treating the z-elimination pathway as the sole serial degradation pathway 

and neglecting the hydrogenolysis pathway.  That is, let ��	 (or "�	� 	= 0, �´ = 1, allow 

"´ and "¶ to equal "� and "� (respectively), and assign the same reaction rates of SP4 

Table 4: Modeled Transport Parameters of SP4 
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from Table 2 to SP6.  In this case, the SP6 analytical solution is validated if SP6 exactly 

matches the concentration of SP4 in the serial degradation section of this study.  This 

final test was performed on several discrete points and with several decay constants and 

found to be exactly as predicted.    
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5.  SUMMARY AND CONCLUSIONS 

In this study, the Park and Zhan [2009] solution technique is used to derive 

steady-state analytical and transient semi-analytical solutions to multispecies reactive 

transport in a PRB-aquifer (dual domain) system.  The study focuses primarily on the 

steady-state analytical solutions of the PCE serial degradation pathway and secondly on 

the analytical solutions of the parallel degradation pathway.  These solutions are not 

restricted solely to the PRB-aquifer model since they can also be applied to other types 

of dual domain systems with distinct flow and transport properties and up to four other 

decaying species.  Like the single-species Park and Zhan [2009] solution, these 

additional solutions maintain flux and concentration continuity at the PRB-aquifer 

interface and account for the potential existence of natural degradation in the 

downgradient aquifer.  Degradation in the aquifer can be incorporated into the solutions 

when considering the required PRB thickness so that all species involved in the 

degradation pathway achieve the regulatory limits at the POC.  

In addition to the study, spreadsheet programs and appendices are included to 

facilitate review of the derivations and prompt application of the steady-state solutions.  

It is noted that the solution technique results in long equations, particularly in the parallel 

decay network, but at this expense the solutions provide increased modeling flexibility.  

For example: every species can have unique reaction rates, higher order daughter species 

can be modeled solely as byproducts by neglecting their input concentrations, segments 

of the parallel degradation pathway can be neglected depending on the desired 

degradation model, and converging multi-parent reactions can be modeled.  Additionally, 
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it should be noted that although the transient semi-analytical solutions are not reviewed 

here, they can be deduced from the derivations provided in Appendix A.  However, a 

numerical inversion program is needed to obtain a solution in the time domain.   

Lastly, the transient solutions have the additional flexibility to incorporate 

species-specific distribution coefficients ��¸	� and medium-dependent bulk densities; 

therefore, retardation factors can vary from species to species and also vary due to a 

change in medium, even if the species is the same.  The ability to model with differing 

retardation factors is an additional benefit of these solutions since differing retardation 

factors are not possible in the Sun et al. [2004] solution technique and both species-

specific retardation factors and convergent reactions are not possible in the Sun et al. 

[1999] solution.  
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APPENDIX A 

 

The derivational details of each species are provided here in supplementary 

equations for the case of both the serial degradation pathway and the parallel degradation 

pathway.  Some procedures that are repeated for all species were omitted in the 

derivation of higher order daughter species.  Therefore, a more detailed derivation is 

provided for species 2.  Lastly, the semi-analytical solution of species 1 (SP1) – or more 

generally the homogeneous (complementary) solution – is not included here, see Park 

and Zhan [2009] for the full derivation.   

Serial Degradation Pathway 

This section provides the derivational details of SP2, SP3, and SP4 from Figure 

2.  

Species 2: 

The governing equations of species 2 (SP2) can be inferred from Eqs. (2) and (5) 

when � = 2.  After applying the dimensionless parameters in Eq. (9) and the Laplace 

transform, the governing equations become Eqs. (11) and (13) for � = 2.  Therefore the 

general solution of the PRB and aquifer are: 

 

��7D = jexp f��7 + 2G7D
2 �7i +zexp f��7 − 2G7D

2 �7i + op�C�= f��7 + 2G7$
2 �7i

+ �v� 	exp f��7 − 2G7$
2 �7i 

�27D = uC�= +93B#DKB�
DL �7, + op2C�= +93B#DKBn

DL �7,.     (S2)  

Notice that the last two terms in Eq. (S1) and the last term in Eq. (S2) represent the 

particular solutions, hence it is assumed that 

(S1) 
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��7DQ�`� = op�C�= +���+2G�12 ��, + �º� 	exp +���−2G�12 ��,,    (S3) 

�27DQ�`� = op2C�= +93B#DKBn
DL �7,,       (S4) 

where the coefficients op�, �v�, and op2 must satisfy their respective homogeneous 

solution, therefore:  

A��B�»¼±½
A
B = op� +���+2G�12 , C�= +���+2G�12 ��, + �º� 	+���−2G�12 , exp +���−2G�12 ��,, (S5) 

A���B�»¼±½
A
B� = op� +���+2G�12 ,2 C�= +���+2G�12 ��, + �º� 	+���−2G�12 ,2 exp +���−2G�12 ��,. (S6) 

To determine op�:  

op� +9�BtDcBnD ,D C�= +9�BtDcBnD �7, − op��� +9�BtDcBnD , C�= +9�BtDcBnD �7, − op����D= +
��7D�C�= +9�BtDcBnD �7, = −"D��7C�= +9�BD , �G7$ − <P7$���7$R7$�7$�/C�= +9�BtDcBnD �7,,  

           (S7) 

which simplifies to 

op� = ��9�Ba
Q+¾�B� ,�|KBn#cBn�r�Bn�Bn
+¾�B1�¿Bn� ,�#9�+¾�B1�¿Bn� ,#�s��Qtr�B��

�7$�/ =
��9�Ba
Q+¾�B� ,�|KBn#cBn�r�Bn�Bn

�s�n#s���Qtr�Bn#r�B� �7$�/, 

           (S8) 

where the stoichiometric yield "	 is the molecular weight of the daughter divided by the 

molecular weight of the parent product [Clement et al., 1998]; i.e., one parent does not 

exactly yield one daughter product.  Therefore, the purpose of the stoichiometric yield is 

to conserve molar concentrations as species react in the model.  Also, at this point it is 

beneficial to define a dimensionless ratio of the reactivities, let 

q��=� = ��7$ E���$ − ��D�= + ��7$ − ��7DI⁄ , therefore  

op� = "D��7C�= +9�BD , �<P7$ − G7$�q�R7$�7$�/.     (S9) 
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Repeating the procedure outlined from Eqs. (S5)-(S9) for �v�, and op2 gives  

�v� = −"D��7C�= +9�BD , �G7$ + <P7$�q�R7$�7$�/ ,    (S10) 

op2 = −2G7$"D��7C�= +9�BD ,qR7$�7$�/ ,      (S11) 

where G7	, P7	, and R7	 were defined previously in this study and where q�=� is similar 

to q��=� but pertains to the aquifer as defined below Eq. (27).  With the coefficients op�, 

�v�, and op2 known, Eqs. (S1) and (S2) may now be solved for the unkowns j, z, and u 

utilizing the transformed boundary conditions of Eqs. (14)-(16).  It is noted that the 

subscript “�” is henceforth dropped for convenience, the derivation remains 

dimensionless unless otherwise noted.  Applying boundary condition (14) to Eq. (S1) 

gives 

j��� − 2GD�C�=�−GD� + z��� + 2GD�C�=�GD� − 2"Dq�C�= +9�D , ���$�/ =
2C�= +9�D , ���D�/.         (S12) 

Also, applying boundary condition (15) to Eqs. (S1)-(S2) and solving for u gives 

u = j + z + 2G$"DC�= +9�D , ��R$�q − q���$�/.     (S13) 

Lastly, applying boundary condition (16) to Eqs. (S1)-(S2) and solving for j gives 

j = z c�#|K�
c�t|K� +

Dcn|��a
Q+¾�� ,9��n�}#}���Kn#K��
c�t|K� �$�/.    (S14) 

Inserting Eq. (S14) into Eq. (S12) allows Eq. (S12) to be solved explicitly for z; i.e.,  

z = ��C�= +9�D , �GD + <PD�RD�D�/ − G$<"DC�= +9�D , ��R$RD�q − q���P$ −
PD���� − 2GD�C�=�−GD��$�/ + "Dq�C�= +9�D , ���GD + <PD�RD�$�/.  (S15) 

Inserting Eq. (S15) into Eq. (S14) yields the explicit solution of j 
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j = ��C�= +9�D , �GD − <PD�RD�D�/ +
cn|��a
Q+¾�� ,9��n�}#}���Kn#K��

c�t|K� �$�/E2 −
RD��� − 2GD��GD − <PD�C�=�−GD�I + "Dq�C�= +9�D , ���GD − <PD�RD�$�/,  (S16) 

therefore,   

j + z = 2GD��C�= +9�D , RD�D�/ +
Dcn|��a
Q+¾�� ,9��n�}#}���Kn#K���$#~��

c�t|K� �$�/ +
2GD"Dq�C�= +9�D , ��RD�$�/ ,        (S17) 

where �D = RDGD��� − 2GD�C�=�−GD� is in its dimensionless form.  With j and z 

known, Eq. (S1) is now fully determined in the Laplace domain.  However, in practice 

Eq. (S2) is the equation of interest.  Therefore, inserting Eq. (S17) into Eq. (S13) gives  

u = 2GD��C�= +9�D ,RD�D�/ +
Dcn|��a
Q+¾�� ,9��n�}#}���Kn#K���$#~��

c�t|K� �$�/ +  

2"DC�= +9�D , ��EGDRDq� + G$R$�q − q��I�$�/ ,     (S18) 

which in turn is inserted into Eq. (S2) to give the dimensionless transient solution in the 

Laplace domain; i.e.,     

�27D = {2GD��RD�D�/ + Dcn|��9��n�}#}���Kn#K���$#~��
c�t|K� �$�/ + 2"2��EG2q�R2 +

G1�q − q��R1I�1�)ÀC�= +��−2P2
2; � + ��

2 , − 2G$"D��qR$�$�/C�= +93#DKn
DL � + ��

2 ,. (S19)

  

This semi-analytical solution can be dimensionalized using Eq. (9) and 

numerically inverted to obtain a concentration value in the time domain, however, this is 

beyond the scope of this study. The steady-state analytical solution can be determined by 

letting = → 0, applying the final value theorem, and assigning a constant influent 

concentration so that �7	�/�=� → �7	�/ =⁄ ; i.e.,  

lim�B→6 �27D = limQ→5 = �{2G5D��R5D ���/
Q + Dc[n|��9��[n�}#}���K[n#K[���$#~[��

c[�t|K[�
�n�/
Q +
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2"D��EG5Dq�R5D + G5$�q − q��R5$I �n�/Q � C�= +93#DK[�
DL � + 9�

D , −
2G5$"D��qR5$ �n�/

Q C�= +93#DK[n
DL � + 9�

D ,� ,      (S20) 

where = in the denominator cancel out and 

 G5	 = M��D 4⁄ + ��	  and P5	 = M�2D 4⁄ + ;�2	 ,     (S21) 

R5	 = 1 E�G5	�� + 2<P5	G5	�JS>ℎ�G5	� + �<P5	�� + 2G5	D�>�)ℎ�G5	�I⁄ ,  (S22) 

q = �2$ ��2$ − �2D�⁄  and q� = ��$ ���$ − ��D�⁄ ,      (S23) 

result from letting = → 0.  Also, note that � = 1 or 2 in Eqs. (S21)-(S23) and C�= +9�D , 
was combined with C�= +93#DK[�

DL �,.  Dimensionalizing Eq. (S20) gives the steady-state 

analytical solution, see Eq. (32). 

 

Species 3: 

The governing equations of species 3 (SP3) can be inferred from Eqs. (2) and (5) 

when � = 3.  After applying the dimensionless parameters in Eq. (9) and the Laplace 

transform the governing equations become Eqs. (11) and (13) for � = 3.  For the purpose 

of efficiency, it is beneficial at this point to include the branch ratio � = 1 in the 

governing Eqs. (11) and (13), therefore:  

A���B�
A
B� − ��7 A��B�

A
B − ����= + ��7����7� = −"����7D��7D ,   (S24) 

; A��3B�
A
B� − �27 A�3B�

A
B − ��2�= + �27���27� = −"���27D�27D.   (S25) 

The general solutions of Eqs. (S24) and (S25) are: 
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��7� = �exp f��7 + 2G7�
2 �7i + �exp f��7 − 2G7�

2 �7i + op�C�= f��7 + 2G7D
2 �7i

+ �v� 	exp f��7 − 2G7D
2 �7i + �p�C�= f��7 + 2G7$

2 �7i + �º� 	exp f��7 − 2G7$
2 �7i 

           (S26) 

�27� = �C�= +93B#DKB�
DL �7, + op2C�= +93B#DKB�

DL �7, + �v2C�= +93B#DKBn
DL �7, (S27)  

where �, � (iota), and � (zeta) are the new unknowns to solve for.  For convenience the 

subscript “D” is again dropped until the dimensionalizing procedure.   As before, each 

coefficient op�, �v�,  �p�, �º�, op2, and �v2 must satisfy its respective homogeneous solution, 

hence:  

op� = −"3���j  and  �v� = −"3���z ,       (S28) 

�p� = "3�"2��C�= +��2 , �G1 − <P1���q�R1�1�)  and 

�º� = "3�"2��C�= +��2 , �G1 + <P1���q�R1�1�)     (S29) 

op2 = −"3��u  and  �v2 = 2G1"3�"2��C�= +��2 , �qR1�1�)    (S30) 

where j, z, and u are Eqs. (S15), (S16), and (S18) and 

� = �2D E��2D − �2��= + �2D − �2�I⁄  and � = �2D E��2$ − �2��= + �2$ − �2�I⁄ .  Note 

that �� and �� are of equivalent form but pertain to the PRB.  Applying boundary 

condition (14) gives 

���� − 2G��C�=�−G�� + ���� + 2G��C�=�G�� + "����j�2GD − ���C�=�−GD� −
"����z��� + 2GD�C�=�GD� + 2"��"D��C�= +9�D , ��q��$�/ = 2C�= +9�D , �����/, (S31) 

which is inconvenient due to the presence of large terms j and z.  However, Eq. (S31) 

can be simplified further by letting  j = Â + � such that 

� = Dcn|��a
Q+¾�� ,9��n�}#}���Kn#K��
c�t|K� �$�/ ,      (S32) 
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Â = ��C�= +��2 , �GD − <PD�RD�D�/	

− G$<"DC�= +��2 ,��R$RD�q − q���P$ − PD���� − 2GD��GD − <PD�C�=�−GD�
GD + <PD

�$�/ + 

 "Dq�C�= +9�D ,���GD − <PD�RD�$�/ ,      (S33) 

z = ��C�= +��2 , �GD + <PD�RD�D�/

− G$<"DC�= +��2 ,��R$RD�q − q���P$ − PD���� − 2GD��GD + <PD�C�=�−GD�
GD + <PD

�$�/ +	
											"Dq�C�= +9�D ,���GD + <PD�RD�$�/.      (S34) 

Notice that Eqs. (S33) and (S34) are equivalent, with the exception of the numerator 

terms �GD − <PD� and �GD + <PD�.  These numerator terms can be factored out along 

with RD, hence Â = �GD − <PD�RDÃ and z = �GD + <PD�RDÃ where 

Ã = ��C�= +��2 ,�D�/ −
G$<"DC�= +��2 ,��R$�q − q���P$ − PD���� − 2GD�C�=�−GD�

GD + <PD
�$�/

+ "Dq�C�= +��2 ,���$�/ , 
therefore Eq. (S31) becomes 

���� − 2G��C�=�−G�� + ���� + 2G��C�=�G�� − 2"����Ã +
"�����2GD − ���C�=�−GD�� + 2"��"D��C�= +9�D , ��q��$�/ = 2C�= +9�D , �����/.

           (S36) 

Note that expanding Ã and � allows for two large terms to cancel, such that   

���� − 2G��C�=�−G�� + ���� + 2G��C�=�G�� − 2"����C�= +9�D , ���D�/ +
2"��"D��C�= +9�D ,q��	�� − ����$�/ = 2C�= +9�D , �����/ ,    (S37)  

replaces Eq. (S36).  The procedure outlined from Eqs. (S32)-(S37) applies to all 

subsequent daughter species but for brevity is omitted below.  Applying boundary 

condition (15) gives 

(S35) 
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� + � − "�����j + z� + 2G$"����"Dq���C�= +9�D ,R$�$�/ = � − "���u +
2G$"���"Dq��C�= +9�D , R$�$�/  ,       (S38) 

where u is Eq. (S13).  Inserting Eq. (S13) into Eq. (S38) and solving for � yields  

� = � + � + "���� − ����j + z� + 2G$"��"D��C�= +9�D , R$E	��q� − �q + ��q −
q��I�$�/.           (S39) 

Lastly, applying boundary condition (16) gives 

��G� + <P�� + ��<P� − G�� + "����GD�z − j� = "��<EPD� − P��� − ���I�j + z� +
2G$"��"D��C�= +9�D , <R$�$�/EPD��q − q�� − P$�	�q − ��q�� − P��	��q� − �q +
�q − �q��I ,          (S40) 

where �z − j� is also inconvenient since it was not previously defined.  This time using 

j = Â̂ + � where Â̂ = �GD − <PD�Ã̂  and z = �GD + <PD�Ã̂  where 

Ã̂ = ��C�= +9�D , RD�D�/ −
cn|��a
Q+¾�� ,9��n���}#}���Kn#K���9�#Dc��a
Q�#c��

c�t|K� �$�/ + 

"Dq�C�= +9�D , ��RD�$�/,        (S41) 

and inserting 0 = "����<PD� − "����<PD� in the left-hand-side of Eq. (S40) allows 

"����GD�z − j�+"����<PD� − "����<PD�  →  "����<PDE2GDÃ̂I + "����<PD� −
"�����GD + <PD��  →  ÅÆÇÈÉÊËÌ�Í + Î� − ÅÆÇÈÉ�ÏÌ + ÊËÌ�Ð 

which replaces the third term in Eq. (S40) and is more convenient to work with.  

Therefore, Eq. (S40) becomes 

� = �	 c�#|K�
c�t|K� +

���|��#����K�#K��
c�t|K�

�j + z� + ������c�t|K��
c�t|K� � +  

Dcn�����a
Q+¾�� ,9�|�n
c�t|K� �$�/E�P$ − P���	��q� − �q� + �PD − P���	�q − �q��I.  (S42) 

Inserting Eq. (S42) into Eq. (S37) allows Eq. (S37) to be solved explicitly for �; i.e., 
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� = 	��C�= +9�D , �G� + <P��R����/ − $
D"��<�� − ����PD −P����� − 2G��R�C�=�−G���j +

z� − $
D"�����GD + <PD���� − 2G��R�C�=�−G��� − G$"��"DC�= +9�D ,��<R$�$�/E�P$ −

P���	��q� − �q� + �PD − P����q − q��I��� − 2G��R�C�=�−G�� + "����C�= +9�D ,���G� +
<P��R��D�/ − "��"DC�= +9�D ,��q�R��	�� − 	����G� + <P���$�/ .   (S43) 

Inserting Eq. (S43) into Eq. (S42) yields the explicit solution of �; i.e., 

� = 	��C�= +9�D , �G� − <P��R����/ + $
D
���|��#����K�#K��

c�t|K�
E2 − R���� − 2G���G� −

<P��C�=�−G��I�j + z� + $
D
������c�t|K��

c�t|K�
E2 − R���� − 2G���G� − <P��C�=�−G��I� +

cn�����a
Q+¾�� ,9�|�n
c�t|K� �$�/E�P$ −P���	��q� − �q� + �PD − P����q − q��IE2 − R���� −

2G���G� − <P��C�=�−G��I + "����C�= +9�D ,��R��G� − <P���D�/ −
"��"DC�= +9�D ,��q�R��	�� − 	����G� − <P���$�/ ,     (S44) 

therefore, 

� + � = 2G���C�= +9�D ,R����/ + ���|��#����K�#K���$#~��
c�t|K�

�j + z� + ������c�t|K���$#~��
c�t|K� � +

Dcn�����a
Q+¾�� ,9�|�n�$#~��
c�t|K� �$�/E�P$ − P���	��q� − �q� + �PD −P����q − q��I +

2G�"����C�= +9�D ,��R��D�/ − 2G�"��"DC�= +9�D ,��q�R��	�� − 	����$�/   (S45) 

where �� = R�G���� − 2G��C�=�−G�� is in its dimensionless form.  Inserting Eq. (S45) 

into Eq. (S39) yields �; i.e.,  

� = 2G���C�= +9�D ,R��3�) + �����#���
c�t|K�

EG� + <PD − <�PD − P����I�j + z� +
������c�t|K���$#~��

c�t|K� � + Dcn�����9�a
Q+¾�� ,�n|�$#~��
c�t|K� �1�)E�P$ − P���	��q� − �q� +

�PD − P����q − q��I + 2G�"������C�= +9�D , R��2�) +
2"��"D��C�= +9�D ,�1�)EG$R$�	��q� − �q + �q − �q�� − G�R�q��	�� − ���I . (S46) 

The steady-state analytical solution �2� (see Eq. (33)) can be determined by 
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letting �7	�/�=� → �7	�/ =⁄  and = → 0 for all applicable terms, applying the final value 

theorem, combining the two types of exponential terms, dimensionalizing Eq. (S46) and 

Eq. (S27), and inserting Eq. (S46) into Eq. (S27).  

 

Species 4: 

The governing equations of species 4 (SP4) in the Laplace domain are   

A���B�
A
B� − ��7 A��B�

A
B − ����= + ��7����7� = −"���7���7� ,   (S47) 

; A��3B�
A
B� − �27 A�3B�

A
B − ��2�= + �27���27� = −"��27��27�.   (S48) 

The  general  solutions  of  Eqs.  (S47)  and  (S48)  are: 

��7� = Ñexp f��7 + 2G7�
2 �7i + Òexp f��7 − 2G7�

2 �7i + op�C�= f��7 + 2G7�
2 �7i

+ �v� exp f��7 − 2G7�
2 �7i + �p�C�= f��7 + 2G7D

2 �7i + �º� exp f��7 − 2G7D
2 �7i

+ Rv�C�= f��7 + 2G7$
2 �7i + Yv� exp f��7 − 2G7$

2 �7i 

�27� = ÓC�= f�27 − 2P7�
2; �7i + op2C�= f�27 − 2P7�

2; �7i + �v2C�= f�27 − 2P7D
2; �7i

+ �p2C�= f�27 − 2P7$
2; �7i 

where Ñ (kappa), Ò (xi), and Ó (rho variant) are the new unknowns to solve for.  As before, 

the subscript “D” is dropped and each coefficient op, �v , �p, �º, Rv, and Yv must satisfy its 

respective homogeneous solution, therefore:  

op� = −"4���   and   �v� = −"4���          (S51) 

�p� = "4"3�����j   and   �º� = "4"3�����z      (S52) 

Rv� = −"4"3�"2q�������C�= +��2 , �G$ − <P$�R1�1�)  and 

(S49) 

(S50) 
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Yv� = −"4"3�"2q�������C�= +��2 , �G$ + <P$�R1�1�)    (S53) 

op2 = −"4��               (S54) 

�v2 = "4"3���u         (S55) 

�p2 = −2G1"4"3�"2q����C�= +��2 ,R1�1�)      (S56) 

where j, z, �, and � are Eqs. (S16), (S15), (S44), and (S43), respectively; and u and � 

are Eqs. (S18) and (S46), respectively. In addition, � = �2� E��2� − �2��= + �2� − �2�I⁄ , 

� = �2� E��2D − �2��= + �2D − �2�I⁄ , and � = �2� E��2$ − �2��= + �2$ − �2�I⁄ , while ��, 

��, and �� pertain to the PRB.  Applying boundary condition (14) to Eq. (S49) gives 

Ñ��� − 2G��C�=�−G�� + Ò��� + 2G��C�=�G�� − 2"�����C�= +9�D , ���/ +
2"�"������C�= +9�D , ��� − ����D�/ + 2"�"��"Dq���C�= +9�D , �$�/E����� − ��� +
����� −���I = 2C�= +9�D , �����/ .       (S57) 

Note that Eq. (S57) is the result of repeating the procedure outlined from Eq. (S32) to 

(S37) twice.  In this process eight large terms cancel out but a new term (similar in 

purpose to � from SP3) is introduced; i.e.,  

� = �����#���|�K�#K��
c�t|K�

�j + z� + ������c�t|K��
c�t|K� � + Dcn�����9�a
Q+¾�� ,�n|

c�t|K� �$�/E�P$ −
P���	��q� − �q� + �PD − P����q − q��I.      (S58) 

Applying boundary condition (15) and solving for Ó gives 

Ó = Ñ + Ò + "��� − ����� + �� + "�"��E����� − �� − ��� − ��I�j + z� +   

2G$"�"��"D��C�= +9�D , R$E	��q��� −��� − �q�� −�� + ��q − q���� − ��I�$�/.

           (S59)   
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Lastly, applying the boundary condition (16) and repeating the procedure outlined from 

Eqs. (S40) to (S42) twice gives 

Ñ = Ò	 c�#|K�
c�t|K� +

��|��#����K�#K��
c�t|K�

�� + �� + �����c�t|K��
c�t|K� � + �����|

c�t|K�
E�PD − P������� −

��� − ��P� − P����� − ��I�j + z� − �����2����c�t|K��
c�t|K� � +

Dcn�������a
Q+¾�� ,9�|�n
c�t|K� Ω� �$�/ ,       (S60) 

where Ω�  is  

Ω� = �P$ − P���	�q� − 	��q���� + ���PD − P���q� −q� + ��P� − P��_q��	�� − �� −
q�	� − ��b ,          (S61) 

and Ω�  is defined below.  Inserting Eqs. (S60) into (S57) allows Eq. (S57) to be solved 

explicitly for Ò; i.e., 

Ò = 	��C�= +9�D , �G� + <P��R����/ − $
D"�<�� − ����P� − P����� − 2G��R�C�=�−G���� +

�� − $
D"����G� + <P����� − 2G��R�C�=�−G��� − $

D"�"��R�<��� − 2G��C�=�−G��E�PD −
P������� − ��� − ��P� − P���	�� − ��I�j + z� + $

D"�"�������GD + <PD���� −
2G��R�C�=�−G��� − G$"�"��"DC�= +9�D ,��R$R�<��� − 2G��C�=�−G��Ω� �$�/ +  

"���C�= +9�D ,���G� + <P��R����/ − "�"��C�= +9�D ,����R���� − 	����G� + <P���D�/ −
"�"��"DC�= +9�D ,��q�R��G� + <P��E���� + 	���	�� − 	��� − ����I�$�/ .  (S62) 

Inserting Eq. (S62) into Eq. (S60) yields the explicit solution of Ñ 

Ñ = 	��C�= +9�D , �G� − <P��R����/ − $
D"�<�� − ����P� − P����� − 2G��R�C�=�−G���� +

�� �c�#|K��
�c�t|K��−

$
D"����G� + <P����� − 2G��R�C�=�−G��� �c�#|K��

�c�t|K��−
$
D"�"��R�<��� −

2G��C�=�−G��E�PD − P������� − ��� − ��P� − P����� − ��I�j + z� �c�#|K��
�c�t|K��+  

$
D"�"�������GD + <PD���� − 2G��R�C�=�−G��� �c�#|K��

�c�t|K��−
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G$"�"��"DC�= +9�D ,��R$R�<��� − 2G��C�=�−G��Ω� �$�/ �c�#|K��
�c�t|K��+ "���C�= +9�D ,���G� −

<P��R����/ − "�"��C�= +9�D ,����R���� − 	����G� − <P���D�/ −
"�"��"DC�= +9�D ,��q�R��G� − <P��E���� + 	���	�� − 	��� − ����I�$�/ +
��|��#����K�#K��

c�t|K�
�� + �� + �����c�t|K��

c�t|K� � + �����|
c�t|K�

E�PD −P������� − ��� − ��P� −

P����� − ��I�j + z� − �����2����c�t|K��
c�t|K� � + Dcn�������a
Q+¾�� ,9�|�n

c�t|K� Ω� �$�/ .  (S63) 

Therefore, 

Ñ + Ò =
	2G���C�= +9�D , R����/ + ��|��#����K�#K���$#~��

c�t|K�
�� + �� + �����c�t|K���$#~��

c�t|K� � +
�����|�$#~��

c�t|K�
E�PD − P������� − ��� − ��P� − P���	�� − ��I�j + z� +

�����2����c�t|K���~�#$�
c�t|K� � + Dcn�������a
Q+¾�� ,9��n|�$#~��

c�t|K� Ω� �$�/ +
2G�"�C�= +9�D , ����R����/ + 2G�"�"��C�= +9�D , ����R���� − ����D�/ −
2G�"�"��"DC�= +9�D , ��q�R�E���� + 	���	�� − 	��� − ����I�$�/ ,  (S64) 

where �� = R�G���� − 2G��C�=�−G�� is in its dimensionless form.  Inserting Eq. (S64) 

into Eq. (S59) yields Ó; i.e.,  

Ó = 2G���C�= +9�D , R����/ + ����#���
c�t|K�

EG� + <P� − <�P� − P����I�� + �� +  

�����c�t|K���$#~��
c�t|K� � + �����

c�t|K�Ω� �j + z� + �����2����c�t|K���~�#$�
c�t|K� � +

Dcn�������a
Q+¾�� ,9��n|�$#~��
c�t|K� Ω� �$�/ + 2G�"���C�= +9�D , ��R����/ +

2G�"�"��C�= +9�D , ����R���� − ����D�/ + 2"�"��"DC�= +9�D , ��Ω��$�/ ,  (S65) 

where 

Ω� = ����� − ����G� + <PD − θ�PD − P��μ�� + ���� − ���θ�P� − P��μ� − G� −
<P��,            (S66) 
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Ω� = G$R$_	��q��� −��� + �q�� − �� + ��q − q���� − ��b + G�R�q�_����� −
��� + ����� − ���b ,         (S67) 

are in their dimensionless form and Ω�  is defined by Eq. (S61).  The steady-state 

analytical solution of �2� (see Eqs. (35)-(39)) can be determined by letting �7	�/�=� →
�7	�/ =⁄  and = → 0, applying the final value theorem, combining the two types of 

exponential terms, dimensionalizing Eqs. (S65) and (S50), and inserting Eq. (S65) into 

Eq. (S50). 

 

Parallel Degradation Pathway 

This section provides the derivational details of SP3�, SP5, SP4, and SP6 if the 

degradation scenario of Figure 5 is assumed.  

Species 3� and 5: 

The governing equations of the parallel daughter products SP31, SP32, SP33, 

and SP5 are Eqs. (45) through (48).  Applying the dimensionless parameters in Eq. (9) 

and the Laplace transform gives the following general solutions: 

 ��7�Ô = ��	exp +9�BtDcB�ÕD �7, + ��	exp +9�B#DcB�ÕD �7, + op��	C�= +9�BtDcB�D �7, + 

�v��	 	exp +9�B#DcB�D �7, + �p��	C�= +9�BtDcBnD �7, + �º��	 	exp +9�B#DcBnD �7,  (S68) 

�27�	 = ��	C�= +93B#DKB��
DL �7, + op2�	C�= +93B#DKB�

DL �7, + �v2�	C�= +93B#DKBn
DL �7,

           (S69) 

��7´ = �´exp +9�BtDcBµD �7, + �´exp +9�B#DcBµD �7, + op�´C�= +9�BtDcB�D �7, +  

�v�´ 	exp +9�B#DcB�D �7, + �p�´C�= +9�BtDcBnD �7, + �º�´ 	exp +9�B#DcBnD �7,  

           (S70)
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�27´ = �´C�= +93B#DKBµ
DL �7, + op2´C�= +93B#DKB�

DL �7, + �v2´C�= +93B#DKBn
DL �7, 

           (S71)  

where � is a counter from 1 to 3, G7�	�=� = M��7D 4⁄ + ���	= + ��7�		, P7�	�=� =
M�27D 4⁄ + ;��2�	= + �27�	� .  Note that ��	, ��	, ��	 and �´, �´, �´ are the new 

unknowns to solve for and that each governing equation is solved separately.  Dropping 

the subscript “D” and solving for coefficients op, �v , �p, and �º gives:  

op��	 = −"3��3���3�j   and   �v��	 = −"3��3���3�z ,     (S72) 

�p��	 = "3��3�"2��C�= +��2 , �G1 − <P1���3�q�R1�1�)  and 

�º��	 = "3��3�"2��C�= +��2 , �G1 + <P1���3�q�R1�1�) ,    (S73) 

op2�	 = −"3��3��3�u  and  �v2�	 = 2G1"3��3�"2��C�= +��2 , �3�qR1�1�) ,  (S74) 

where ��	 = �2D E��2D − �2�	�= + �2D − �2�	I⁄ , ��	 = �2D E��2$ − �2�	�= + �2$ − �2�	I⁄ , 

and ���	 and ���	 are of equivalent form but pertain to the PRB.  (The same analyses 

apply to �́ , �́ , ��´, ��´, G´, and P´).  The procedure to solve for �2�	 and �2´ is exactly 

as that of �2� described above.  It should be noted that ��	�/ and �´�/ can be set to zero 

such that SP3� and SP5 are effectively treated as byproducts of weathered TCE, 

however, this is not required and differing input concentrations may be used.   Lastly, to 

appropriately account for mass ensure that ��$ + ��D + ��� + �´ = 1 if all parallel 

species are considered. 

 

Species 4: 

As seen in Eqs. (51) and (52) the governing equations of SP4 in a parallel 

degradation network need to account for mass contributed by all SP3�, hence Eqs. (51) 

and (52) carry the solutions of the parallel daughter products SP31, SP32, and SP33.  As 



55 

 

such the general solutions are 

��7� = ÑC�= +9�BtDcB�D �7, + ÒC�= +9�B#DcB�D �7, +C�= +9�BD �7,∑ op��	C�=�G7�Ô�7� +�	.$
�v��	 C�=�−G7�Ô�7� + �p��	C�=�G7D�7� + �º��	 C�=�−G7D�7� + Rv��	C�=�G7$�7� +
Yv��	 exp�−G7$�7�,         (S75) 

�27� = ÓC�= +93B#DKB�
DL �7, + C�= +93BDL �7,∑ op2�	C�= +#KB��

L �7, + �v2�	C�= +#KB�
L �7,�	.$ +  

+�p2�	C�= +#KBn
L �7,,         (S76) 

It can be seen that the procedure to derive the analytical solution of Eqs. (S75) and (S76) 

is likely to be very long and tedious.  Fortunately, governing equations with the right-

hand-side consisting only of "�$��7�$��7�$ and "�$�27�$�27�$ were solved above with 

general solutions (S49) and (S59), and with Eq. (35) as the steady-state analytical 

solution.  After comparing Eqs. (S49) and (S50) with Eqs. (S75) and (S76) it becomes 

apparent that the procedure to arrive at Eq. (35) can be repeated at every algebraic step 

two additional times.  This procedure allows one to quickly deduce the form of the 

solution to SP4, without performing the long derivation.  Therefore, as before the 

subscript “D” is dropped and it can be inferred that each coefficient op�	, �v�	, �p�	, �º�	, Rv�	, 
and Yv�	 must satisfy its respective homogeneous solution, such that  

op��	 = −"4���3��3�   and   �v��	 = −"4���3��3� ,       (S77) 

�p��	 = "4�"3��3���3���3�j   and   �º��	 = "4�"3��3���3���3�z,    (S78) 

Rv��	 = −"4�"3��3�"2q���3���3���C�= +��2 , �G$ − <P$�R1�1�) ,  

and  Yv��	 = −"4�"3��3�"2q���3���3���C�= +��2 , �G$ + <P$�R1�1�) ,   (S79) 

op2�	 = −"4��3��3� ,             (S80) 

�v2�	 = "4�"3��3��3��3�u,        (S81) 

�p2�	 = −2G1"4�"3��3�"2q�3��3���C�= +��2 ,R1�1�) ,     (S82) 
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where ��	 = �2�	 E��2�	 − �2��= + �2�	 − �2�I,⁄ 	 ��	 = �2�	 E��2D − �2��= + �2D − �2�I⁄ , 
��	 = �2�	 E��2$ − �2��= + �2$ − �2�I⁄ , and ���	, ���	, and ���	 pertain to the PRB.  

From here on the boundary conditions (14), (15), and (16) are applied to Eqs. (S75) and 

(S76) in the same manner as they were for the serial degradation pathway.  Therefore, 

the difference in working with a daughter product resulting from a convergent multi-

parent reaction is that the boundary conditions are also applied to the two additional 

terms in the right-hand-side of Eqs. (51) and (52).  This results in a significantly longer 

solution of SP4.  Based on these analyses, the dimensional steady-state form of Ó is: 

Ó = 2G���R����/ + ∑ �������#�����
c�t|LK�

EG� + <;P�	 − <;�P�	 − P����I���	 + ��	� +�	.$   

��������c��t|LK����$#~��
c�t|LK� ��	 + ���������L

c�t|LK� Ω� �	�j + z� + ���������2��������c�t|LK���~�#$�
c�t|LK� � +

Dcn�����������9��n|L�$#~��
c�t|LK� Ω� �	�$�/ + 2G�"�	���	��R���	�/ +

2G�"�	"�	��	�����	R�����	 − ���	��D�/ + 2"�	"�	��	"D��Ω��	�$�/ ,  (S83) 

in which C�= +9�D , has been factored out of all applicable terms of Eq. (S83) and 

combined with the exponential in Eq. (S89).  From Eq. (S83) the following are defined:  

��	 + ��	 =
2G�	��R�	��	�/ + ������|����#�����L�K�#K����$#~���

c��t|LK��
�j + z� + �����������c�t|LK���$#~���

c��t|LK�� � +
Dcn��������9�|�nL�$#~���

c��t|LK�� �$�/E�P$ − P�	��	���	q� − ��	q� + �PD − P�	���	�q − q��I +
2G�Ô"�	��	���	��R�	�D�/ − 2G�Ô"�	��	"D��q�R�	�	���	 − 	���	��$�/ ,   (S84) 

��	 =
����������#�����|L�K�#K���

c��t|LK��
�j + z� + �����������c�t|LK��

c��t|LK��
� + Dcn��������9��n|L

c��t|LK��
�$�/E�P$ −

P�	��	���	q� − ��	q� + �PD − P�	���	�q − q��I ,     (S85) 

Ω� �	 = ����	���	 − ��	��	� +c�L + <PD − θ�PD − P��μ�, + ��	����	 − ��	� +θ�P�	 −
P��μ� − c�

L − <P�	, ,         (S86) 
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Ω� �	 = �P$ − P���	��	q��	 − ���	q����	� + ��	��	�PD − P���q� − q� +
��	�P�	 − P��_q��	���	 − ��	� − q�	��	 − ��	�b ,     (S87) 

Ω��	 = G$R$ +	���	q����	 −���	� + ��	q���	 − ��	� + ��	�q − q�����	 − ��	�, +
G�R�q�_���	����	 − ���	� + ���	����	 − ���	�b ,     (S88) 

where G�	, P�	, ��	, ���	, ��	, and ���	 were defined above in SP3� but in Eqs. (S83)-(S88) they 

are in their steady-state dimensional form.  With Ó completely defined the steady-state analytical 

solution of �2� (in dimensional form) can now be determined; i.e.,   

�2� = ÓC�= +93#D73K�
D73 � + 9��

D7�, − E∑ "�	��	��	C�=�−P�	���	.$ IC�= + 93
D73 � +

9��
D7�, +

uE∑ "�	"�	��	��	��	�	.$ I +93#D73K�
D73 � + 9��

D7�, −
2G$"D��qR$�$�/E∑ "�	"�	��		��	��	�	.$ IC�= +93#D73Kn

D73 � + 9��
D7�, ,   (S89) 

where Ó is Eq. (S83), u is the dimensional steady-state version of (S18), and ��	 is 

��	 = 2G�	��R�	��	�/ +
"�	��	���	 − ���	�
G�	 + <;P�	

EG�	 + <;PD − <;�PD − P�	���	I�j + z� + 

�����������c�t|LK���$#~���
c��t|LK��

� + Dcn��������9��n|L�$#~���
c��t|LK��

�$�/E�P$ − P�	��	���	q� − ��	q� +
�PD − P�	���	�q − q��I + 2G�	"�	��	���	��R�	�D�/ + 2"�	��	"D���$�/×G$R$_	���	q� −
��	q + ��	�q − q��b − G�	R�	q��	���	 − ���	�À ,     (S90) 

where ��	 = R�	G�	��� − 2��G�	�C�=�−�G�	�, and � and j + z are all in their 

respective steady-state dimensional forms. 

Species 6: 

The governing equations of SP6 are Eqs. (53) and (54).  Applying the 

dimensionless parameters in Eq. (9) and the Laplace transform gives the following 

general solutions: 
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��7¶ = Ñ¶exp +9�BtDcB·D �7, +Ò¶exp +9�B#DcB·D �7, + op�C�= +9�BtDcBµD �7, +
�v� exp +9�B#DcBµD �7, + �p�C�= +9�BtDcB�D �7, + �º� exp +9�B#DcB�D �7, +
Rv�C�= +9�BtDcBnD �7, + Yv� exp +9�B#DcBnD �7,      (S91) 

�27¶ = Ó¶C�= f�27 − 2P7¶
2; �7i + op2C�= f�27 − 2P7´

2; �7i + �v2C�= f�27 − 2P7D
2; �7i

+ �p2C�= f�27 − 2P7$
2; �7i 

The subscript “D” is dropped and each coefficient op, �v , �p, �º, Rv, and Yv must satisfy its 

respective homogeneous solution, therefore:  

op� = −"6��5�5   and   �v� = −"6��5�5 ,        (S93) 

�p� = "6"5�5��5��5j   and   �º� = "6"5�5��5��5z,     (S94) 

Rv� = −"6"5�5"2q���5��5��C�= +��2 , �G$ − <P$�R1�1�) ,  

and  Yv� = −"6"5�5"2q���5��5��C�= +��2 , �G$ + <P$�R1�1�) ,   (S95) 

op2 = −"6�5�5 ,              (S96) 

�v2 = "6"5�5�5�5u ,         (S97) 

�p2 = −2G1"6"5�5"2q�5�5��C�= +��2 ,R1�1�)  ,     (S98) 

where �´ = �2´ E��2´ − �2¶�= + �2´ − �2¶I⁄ 	 , �´ = �2´ E��2D − �2¶�= + �2D − �2¶I⁄ , 

�´ = �2´ E��2$ − �2¶�= + �2$ − �2¶I⁄ , and ��´, ��´, and ��´ pertain to the PRB.  

Also, �́ = �2D E��2D − �2´�= + �2D − �2´I⁄ , �́ = �2D E��2$ − �2´�= + �2$ − �2´I⁄ , 

where ��´ and ��´ pertain to the PRB.  From here on the derivation procedure is 

equivalent to SP4 of the serial degradation scenario.  Applying boundary condition (14) 

to Eq. (S91) gives 

(S92) 
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Ñ¶��� − 2G¶�C�=�−G¶� + Ò¶��� + 2G¶�C�=�G¶� − 2"¶��´��C�= +9�D , �´�/ +
2"¶"´�´��´��C�= +9�D , ���´ − ��´��D�/ + 2"¶"´�´"Dq���C�= +9�D , �$�/E��´���´ −
��´� + ��´���´ −��´�I = 2C�= +9�D , ���¶�/ ,     (S99) 

Applying boundary condition (15) and solving for Ó¶ gives 

Ó¶ = Ñ¶ + Ò¶ + "¶��´ − ��´���´ + �´� + "¶"´�´E��´���´ − �´� − �́ ��´ −�´�I�j +
z� + 2G$"¶"´�´"D��C�= +9�D ,R$E	��´q���´ −��´� − �́ q��´ −�´� + �́ �q −
q����´ − �´�I�$�/ .                               (S100) 

 Lastly, applying the boundary condition (16) and repeating the procedure outlined from 

Eqs. (S40) to (S42) twice gives 

Ñ¶ = Ò¶ 	c·#|K·
c·t|K· +

�·|��µ#��µ��Kµ#K·�
c·t|K·

��´ + �´� + �·��µ�cµt|Kµ�
c·t|K· �´ + �·�µ�µ|

c·t|K·
E�PD −

P¶����´��´ − �´�́ � − �´�P´ − P¶��	��´ − �́ �I�j + z� − �·�µ�µ2�µ��µ�c�t|K��
c·t|K· � +

Dcn�·�µ�µ��a
Q+¾�� ,9�|�n
c·t|K· Ω� ´�$�/ ,                         (S101) 

After solving for Ñ¶, Ò¶, and Ó¶ the (dimensional) steady-state analytical solution �2¶ can 

be determined; i.e.,  

�2¶ =
�2G¶��R¶�¶�/ + �·��µ#��µ�

c·t|LK·
EG¶ + <;P´ − <;�P´ − P¶��¶I��´ + �´� +

�·��µ�cµt|LKµ��$#~·�
c·t|LK· �´ + �·�µ�µL

c·t|LK· Ω� ´�j + z� + �·�µ�µ2�µ��µ�c�t|LK���~·#$�
c·t|LK· � +

Dcn�·�µ�µ��9��n|L�$#~·�
c·t|LK· Ω� ´�$�/ + 2G¶"¶��´��R¶�´�/ + 2G¶"¶"´�´����´R¶���´ − ��´��D�/ +

2"¶"´�´"D��Ω�´�$�/� C�= +93#D73K·
D73 � + 9��

D7�, − "¶�´�´C�= +93#D73Kµ
D73 � + 9��

D7�, +
"¶"´�´�´�´uC�= +93#D73K�

D73 � + 9��
D7�, − 2G$"¶"´�´"D��q�´�´R$�$�/C�= +93#D73Kn

D73 � + 9��
D7�, ,

           (S102) 
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where �¶ = R¶G¶��� − 2��G¶�C�=�−�G¶� and where �´ + �´, �´, Ω� ´, Ω� ´, Ω�´, and �´ are 

Eqs. (S84), (S85), (S86), (S87), (S88), and (S90) in which subscript “5” replaces all “3�” 
subscripts and subscript “6” replaces all “4” subscripts where applicable.  
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APPENDIX B 

 

Two additional sets of figures comparing the analytical solutions with VMOD are 

presented below.  In addition, the tables below present the transport parameters used to 

generate the figures.  Note that other parameters such as discharge, gradient, 

conductivity, porosity, groundwater seepage velocity, and stoichiometric yields did not 

change from that of Table 1 and are not included in Tables B-1 and B-2. 

 

 

 

 

 

 

 

Table B-1 

Breq (m) 1 

αB (m) 0.1 

αL (m) 2 

λB1 (day-1) 1.5 

λL1 (day-1) 0.15 

λB2 (day-1) 1.8 

λL2 (day-1) 0.2 

λB3 (day-1) 0.5 

λL3 (day-1) 0.03 

λB4 (day-1) 1 

λL4 (day-1) 0.05 

C1in (mg L-1) 10 

C2in (mg L-1) 5 

C3in (mg L-1) 8 

C4in (mg L-1) 2 



62 

 

 
 

 
 

0.001

0.01

0.1

1

10

0.01 0.1 1 10

C
o
n
c
e
n
tr
a
ti
o
n
 (
m
g
/L
)

Distance (m)

Figure B-1A: Comparison of the analytical solutions & VMOD: 
PCE & TCE

VMOD-PCE Analy-PCE
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Aquifer zonePRB zone

0.1

1

10

0.01 0.1 1 10

C
o
n
c
e
n
tr
a
ti
o
n
 (
m
g
/L
)

Distance (m)

Figure B-1B: Comparison of the analytical solutions & VMOD: 
DCE & VC
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VMOD-VC Analy-VC

PRB zone Aquifer zone
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Table B-2 

Breq (m) 1.5 

αB (m) 0.15 

αL (m) 2 

λB1 (day-1) 1.3 

λL1 (day-1) 0.25 

λB2 (day-1) 0.9 

λL2 (day-1) 0.09 

λB3 (day-1) 1.1 

λL3 (day-1) 0.15 

λB4 (day-1) 0.6 

λL4 (day-1) 0.03 

C1in (mg L-1) 8 

C2in (mg L-1) 6 

C3in (mg L-1) 2 

C4in (mg L-1) 3 
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Figure B-2A: Comparison of the analytical solutions & VMOD: 
PCE & TCE
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Figure B-2B: Comparison of the analytical solutions & VMOD: 
DCE & VC
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