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ABSTRACT

A Prescription for Partial Synchrony. (May 2011)

Srikanth Sastry, B. Tech., Calicut University, India

Co–Chairs of Advisory Committee: Dr. Jennifer L. Welch
Dr. Scott M. Pike

Algorithms in message-passing distributed systems often require partial synchrony to

tolerate crash failures. Informally, partial synchrony refers to systems where timing

bounds on communication and computation may exist, but the knowledge of such

bounds is limited. Traditionally, the foundation for the theory of partial synchrony

has been real time: a time base measured by counting events external to the system,

like the vibrations of Cesium atoms or piezoelectric crystals.

Unfortunately, algorithms that are correct relative to many real-time based mod-

els of partial synchrony may not behave correctly in empirical distributed systems.

For example, a set of popular theoretical models, which we callM∗, assume (eventual)

upper bounds on message delay and relative process speeds, regardless of message size

and absolute process speeds. Empirical systems with bounded channel capacity and

bandwidth cannot realize such assumptions either natively, or through algorithmic

constructions. Consequently, empirical deployment of the manyM∗-based algorithms

risks anomalous behavior.

As a result, we argue that real time is the wrong basis for such a theory. Instead,

the appropriate foundation for partial synchrony is fairness: a time base measured

by counting events internal to the system, like the steps executed by the processes.

By way of example, we redefineM∗ models with fairness-based bounds and provide

algorithmic techniques to implement fairness-basedM∗ models on a significant subset
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of the empirical systems. The proposed techniques use failure detectors — system

services that provide hints about process crashes — as intermediaries that preserve

the fairness constraints native to empirical systems. In effect, algorithms that are

correct inM∗ models are now proved correct in such empirical systems as well.

Demonstrating our results requires solving three open problems. (1) We propose

the first unified mathematical framework based on Timed I/O Automata to specify

empirical systems, partially synchronous systems, and algorithms that execute within

the aforementioned systems. (2) We show that crash tolerance capabilities of popular

distributed systems can be denominated exclusively through fairness constraints. (3)

We specify exemplar system models that identify the set of weakest system models to

implement popular failure detectors.
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CHAPTER I

INTRODUCTION

They didn’t care if it worked in fact, because they were already sure it

wouldn’t work in theory.

Here Comes Everybody, 2008

–Clay Shirkey

Tolerating process crashes in distributed systems often requires some temporal con-

straints on computation and communication [41]. Consequently, efforts to design

crash-fault tolerant algorithms entails assuming certain bounds on process speeds

and message delays in distributed systems. These system-model assumptions may be

simplifying to aid algorithm design, or they may be empirically verifiable to aid al-

gorithm deployment (in empirical systems). Ideally, we would like these assumptions

to be both, so that the algorithms may be easily designed and deployed. Unfortu-

nately, in most of the research in distributed computing to date, the system-model

assumptions either favor simplicity or verifiability, but not both. Often, simplistic

idealized models are favored by theoreticians whose primary goal is to determine

the relative solvability of problems and complexity analysis of solutions to problems,

whereas verifiable models are favored by practitioners whose primary goal is to build

and deploy distributed systems that solve the problems at hand. Not surprisingly,

this phenomenon has cleaved the results in the theory of distributed computing from

the results in practical distributed systems. This dissertation addresses the aforemen-

tioned apparent disconnect between theory and practice in distributed computing.

Historically, such disconnects have been observed, documented, and opined upon

The journal model is Distributed Computing.



2

for over 25 years. In the book Distributed Systems [64], first published in 1993,

Schenider noted an apparent tension within the distributed systems community be-

tween the advocates for ‘modeling and analysis’ and the advocates for ‘experimental

observations’. He attributed this tension to the nascency of distributed systems as

a discipline. He argued that this tension is inevitable in young disciplines and often

“masquerades as a dichotomy between ‘theory’ and ‘practice’.” Schenider stated [64, p.

18]: “Practitioners complain that they learn little from theory. Theoreticians com-

plain that practitioners are not addressing the right problem.”

A decade later, in 2003, Fischer and Merritt, in their survey paper “Appraising

Two Decades of Distributed Computing Theory Research” [44] confirmed the persis-

tence of this disconnect between theory and practice. They contended that it was

primarily due to “a lack of sufficient generality and realism in models, methods, and

results” [44]. They explained that the general (and often idealized) models fail to

account for significant aspects of empirical systems, whereas more specific models are

difficult to apply (with respect to developing algorithms and protocols).

It has been close to two decades since Schenider’s observations in [64] and over

eight years since Fischer and Merritt’s exposition in [44] and (except for a few iso-

lated cases like Paxos algorithms [56] and their implementations) the disconnect, or

dichotomy, between theory and practice continues to persist to this day. So the natu-

ral follow-up questions are: “Is this disconnect inherent to the discipline of distributed

computing? If not, then how can the theory and practice of distributed systems be

reconciled?”

This dissertation reviews this disconnect within the purview of crash faults in

message-passing systems and, within the same purview, bridges a gap between the

theoretical results and the practical challenges of fault-tolerant distributed computing.

Specifically, we develop methodological and algorithmic techniques that demonstrate
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the applicability of classic (theoretically significant) temporally-constrained models

of distributed computing, and the algorithms designed for these models, on empirical

distributed systems.

The remainder of this chapter provides an overview of the motivation, goals,

scope, and methodology of this dissertation.

I.1. Motivation

Classic temporally-constrained distributed system models, also called partially syn-

chronous models [35], make certain simplifying assumptions about computation and

communication that are, at first glance, antithetical to the observed behavior of em-

pirical systems. For instance, the partially synchronous models described in [20,33,35]

assume that communication is (eventually) reliable. It is a remarkably simplifying

assumption that provides theoreticians with a significant advantage. It allows them

to focus on the intellectual challenges inherent to the problem being solved and de-

velop algorithmic techniques specific to the problem itself, rather than conflate issues

of messages loss with the challenges of specific problems. In fact, such simplifying

assumptions, which have become a commonplace in the theory of distributed com-

puting, are motivated by the advantages they confer through separations of concerns

similar to the one described above.

This approach has helped theoreticians identify the boundaries of solvability of

problems such as consensus [65], atomic commit [57], mutual exclusion [30], and

clock synchronization [55]1 in the presence of uncertainty precipitated by faults such

as process crashes [77], arbitrary (Byzantine) process behavior [65], and recoverable

state corruption [34]. Despite the apparent infidelity of such system models to em-

1All of problems referenced in this dissertation are described in Appendix A.
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pirical systems, these results have had a lasting impact on how distributed systems

are designed and implemented. For instance, triple modular redundancy is no longer

assumed to be sufficient in distributed systems for single-fault masking thanks to the

result in [65], and tolerance to node crashes in empirical distributed systems neces-

sarily entails guarantees on communication delay and processor speeds as established

by [42]. The Paxos algorithm [56] to solve the consensus problem deserves a special

mention here. Paxos has emerged as a popular choice for solving consensus and other

related problems in massively distributed server farms [18,52,80,81].

Despite the advantages of making such simplifying assumptions and the signif-

icant impact of the lower bounds and impossibility results from this approach, the

applicability of the algorithms thus developed remains limited in empirical systems

(except for the Paxos algorithm that was mentioned earlier). There are several rea-

sons for such limited applicability. Next, we discuss three important reasons that this

dissertation addresses.

The first reason, noted in [44], is insufficient realism in system models adopted

in developing the theory of distributed systems. On the one hand, the idealized

system models used in theory often establish overly pessimistic bounds on solvability

of problems and do not reflect the capabilities of empirical systems; consequently,

the impossibility results from theory do not provide the necessary insight for solving

these problems in empirical systems. On the other hand, these idealized assumptions

on system models (for instance, the assumption about eventually reliable channels

discussed earlier) are invalidated in empirical systems thereby making the theoretical

results that depend on these assumptions irrelevant.

The second reason, explained in [18], is the non-static nature of systems. Often,

theoretical system models assume a static systems that are ‘well behaved’ insofar as

there exist hard real-time bounds on message delays and process speeds that hold
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eternally. In reality, empirical systems do not satisfy such static properties. Even

‘relatively well-behaved’ empirical systems experience periods of unbounded commu-

nication delays and low throughout especially during during periods of unexpectedly

high workloads or external denial-of-service attacks.

The third reason, discussed in [18, 44], is that of fault ranges. The algorithms

proposed and discussed in the theory of distributed computing tolerate different kinds

of faults. But empirical systems are required to tolerate a wider range of faults.

Algorithms that can tolerate a wide variety of faults often provide overly pessimistic

bounds, as discussed earlier, and algorithms with more realistic bounds simply lack the

fault tolerance capability over the range of faults experienced by empirical systems.

I.2. Scope and research goal

The task of developing methodologies and techniques for designing algorithms that

address the issue of theoretical correctness and practical deployment for all families

of problems subject to all varieties of common fault types in all empirical systems is

well beyond the scope of a doctoral dissertation; therefore, we limit the scope of our

investigation to the following.

I.2.1. Scope

This dissertation focuses on one computation-fault type, one communication-fault

type, and a specific set of empirical systems. The computation-fault type is crash

faults, and the communication-fault type is arbitrary message delay and loss. A

process in a distributed system is said to have crashed if it ceases execution without

warning and never recovers. A message said to be late if it is delivered after the

expected time of arrival; a message (after being sent) is lost if it is never delivered.
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Empirical and anecdotal evidence suggests that in ‘real-world’ distributed systems, a

significant subset of messages may be arbitrarily late (or lost).

Crash faults and message delay/loss are natural fault classes. They are realistic

and benign. Admittedly, empirical systems are subject to many more common fault

types; however, to tolerate all the common fault classes in empirical systems, it is

necessary to tolerate at least crashes, message delay and loss. Additionally, there

are existing techniques that can translate algorithms tolerant of simple crash failures

into ones tolerant of more severe failures (e.g. [13]). Therefore, tolerating these faults

provides a reasonable starting point.

The list of empirical distributed systems is too diverse for any single family of

system models to describe all of them adequately. We restrict our investigation to a

set of distributed system models that share sufficiently common properties and can

be abstracted by a single family of system models. Briefly, we consider systems that

satisfy the following properties:

1. The absolute process speeds may be unbounded.

2. The exists an upper bound on relative process speeds that is potentially un-

known.

3. Processes may crash at any time.

4. The communication links may lose an infinite subset of messages sent.

5. An infinite subset of messages sent on the communication links may be delayed

for arbitrary durations

6. An infinite number of messages sent on the communication links are delivered

within some (potentially unknown) bound on message delay, and such messages

are not too sparsely distributed over time,
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I.2.2. Research goal

In the context of crash faults and message delay and loss, the goal of the dissertation

is to develop methodologies and techniques for designing crash-tolerant algorithms

that can be shown to be correct in theory and deployable in the empirical systems

described previously. The methodology adopted in this dissertation is motivated by

two highly desirable properties for the results in this dissertation.

The first property is backward compatibility. In additional to being a realistic

fault type, crash faults are also one of the most popular fault types in distributed

computing literature. There is a rich body of results spanning over 25 years that

focuses on tolerating crash faults in distributed system models. There exist several

solutions to problems like consensus, atomic commit, mutual exclusion,2 and such

that tolerate crash faults in idealized system models. The methodology proposed in

this dissertation ensures that many of these existing solutions which have been proven

correct in their respective (idealized) system models continue to behave correctly in

the empirical systems as well.

The second property is preserving the separation of concerns discussed in Sec-

tion I.1. If the results in this dissertation were to sacrifice the simplifying assumptions

in the system model specifications, then these results would not gather adopters in

the theory of distributed computing. Hence, we would like to preserve the advantages

offered by simplified assumptions in idealized system models while dispensing with

the disadvantages associated with practical deployment of the algorithms developed

for these system models.

The aforedescribed properties inform and motivate the methodology adopted by

this dissertation. We discuss this methodology next.

2Each of these problems is described in Appendix A.
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I.3. Methodology

The methodology followed in this research is to implement the idealized system models

favored by theoreticians as an overlay system on top of the empirical systems. The

primary tasks in this methodology is to eliminate the computation and communication

uncertainty present in empirical systems but absent in the idealized system models

while preserving the temporal bounds on computation and communication that are

arguably present in the empirical systems and guaranteed by the idealized system

model. By implementing these idealized system models in existing empirical systems,

we address the issues of both backward compatibility and separation of concerns

described in Section I.2.2.

None of the known techniques to extract idealized communication properties such

as eventual reliable communication focus on preserving the temporal guarantees in

communication and communication. Therefore, in order to implement such idealized

system models, we need a mechanism to encapsulate the temporal guarantees satisfied

by empirical systems so that they may be reintroduced into the idealized system

model that is implemented. One such mechanism is provided by the unreliable failure

detector oracles [20]. These failure detector oracles are believed to encapsulate the

‘timeliness’ properties of the underlying (empirical) systems.

In summary, we start with real-time based system models that (arguably) de-

scribe empirical systems adequately enough to construct appropriate failure detector

oracles. Then, all the necessary idealized properties of the overlay system, except for

the temporal guarantees, are implemented on top of the empirical system. Subse-

quently, the failure detector oracles are used to ‘inject’ the temporal guarantees that

the idealized system models are required to satisfy.
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I.4. Organization

Next, in Chapter II we provide the background for all the technical concepts intro-

duced in this chapter and provide an overview of the existing literature on these

concepts. In Chapter III, we explore various distributed system models, examine

the characteristics of idealized partially-synchronous models that are favored by al-

gorithm designers and yet render these models incongruent with empirical systems,

and provide a precise specification for a non-trivial subset of empirical distributed

systems. In Chapter IV, we describe the methodology used to implement the ideal-

ized partially synchronous models on top of the empirical distributed system model

described in Chapter III. Chapter V provides the formal framework for specifying

distributed system models and algorithms. Failure detectors are specified within this

formal framework in Chapter VI. In Chapter VII idealized models of partial syn-

chrony are constructed using failure detectors, and the construction is shown to be

optimal with respect to relative solvability; we show that to implement the popular

M∗ system models, the eventually perfect failure detector ♦P is necessary and suf-

ficient. In Chapter VIII, we implement ♦P on empirical systems, thus showing that

theM∗ models can be implemented on top of empirical systems through ♦P . Finally,

we present the conclusion of this dissertation, discuss the significance of the results,

and outline future work in Chapter IX.
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CHAPTER II

BACKGROUND AND RELATED WORK

Dante can be understood only within the context of Italian thought, and

Faust would be unthinkable if divorced from its German background; but

both are part of our common cultural heritage.

Nobel Lecture, 29th June 1927

–Gustave Stresemann

This chapter provides an overview of the theoretical background associated with tol-

erating crash faults in distributed systems. Section II.1 introduces the two comple-

mentary approaches to crash-fault tolerance: partial synchrony and failure detector.

Since we use failure detectors extensively in this dissertation, we focus our discussion

on failure detectors. We discuss the notion of ‘stronger’ and ‘weaker’ failure detectors

in Section II.2. We extend this notion of ‘stronger’ and ‘weaker’ to enable comparing

failure detectors with classic problems in distributed computing in Section II.3. Then,

we review implementations of popular failure detectors in various system models in

Section II.4, and finally, we discuss some open questions that this dissertation answers

in Section II.5.

II.1. Tolerating process crashes

A seminal breakthrough on crash fault tolerance was presented in [42] which showed

that in an asynchronous system where process speeds and message delays are uncon-

strained, consensus1 cannot be solved in the presence of crash faults. In simplistic

1Informally, in consensus, all processes start with an (independent) input value
and are required to agree on a common output value. For a detailed description of
the problem, see Appendix A.



11

terms, if processes can be arbitrarily slow and messages can take arbitrary amounts

of time, then it is impossible to reliably distinguish a crashed process from a slow pro-

cess, and consequently algorithms executing in such a systems cannot tolerate crash

faults while solving consensus. Later, this impossibility was extended from consensus

to many non-trivial and ‘interesting’ problems in distributed computing (for example,

mutual exclusion, the dining philosophers problem, and process renaming) [41]. It

was clear that in order to tolerate crash faults, algorithms would have to assume,

either explicitly or implicitly, some non-trivial temporal bounds on computation and

communication. Naturally, these bounds have to be guaranteed by the underlying dis-

tributed system. This insight was explored by two orthogonal, but complementary,

approaches: partial synchrony [35] and failure detector [20]. While partial synchrony

explored the possibility of associating explicit bounds on process speeds and message

delay, failure detectors explored the possibility of encoding such temporal bounds

implicitly in the form of external oracles augmenting an asynchronous system. The

remainder of this section describes both approaches and related work in detail.

II.1.1. Partial synchrony

Briefly put, partial synchrony refers to distributed systems where timing bounds

on communication and computation may exist, but knowledge of such bounds is

limited [35]. These system models appeal to the intuition of distributed systems being

‘somewhat timely’. This ‘timeliness’ property helps algorithms distinguish between

a crashed process from a slow process, thus circumventing impossibility results for

fault-tolerant distributed consensus [42] and other problems [41] in pure asynchrony.

The paper [35] which introduced partial synchrony introduced the so-calledM-

models of partial synchrony which are still widely used and studied today. The

M-models of partial synchrony assert the existence of two constants which can vary
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from run to run: an upper bound ∆ on the maximum delay of any message, and an

upper bound Φ on relative process speeds. In theM1 version of this model, ∆ and

Φ always hold, but are unknown. In theM2 version, ∆ and Φ are known, but only

hold after some unknown global stabilization time (GST).2 Subsequently, [20] defined

a composite model called M3 for which ∆ and Φ exist, but both are unknown and

only hold after some unknown GST. Like M2, some versions of M3 permit finite

message loss prior to GST. During the remainder of this dissertation, we will refer to

the foregoing three M-models collectively as M∗, and furthermore, since the three

models inM∗ are shown to be equivalent [16], we demonstrate our results relative to

M2. The popularity of theM∗ models among theoreticians is unsurprising. They are

idealized distributed system models that captures the empirical observation and the

intuitive notion that in practically deployed systems, messages are somewhat timely,

and process speeds do not change arbitrarily, and yet are simple enough to admit

solutions to many non-trivial problems in crash-prone distributed systems.

Since the introduction of M∗ in [35], several models of partial synchrony have

been proposed. Many such models can classified based on whether they were proposed

to solve a problem or to describe an existing empirical systems.

II.1.1.1. Partial synchrony for solving problems

The M∗ models were proposed to solve fault-tolerant agreement problems in in-

stances where at least a majority of processes were guaranteed to be correct (not

crashed) [33, 35]. To date, several variants of theM∗ models have been proposed to

solve these agreement problems. Note that the M∗ models did not impose a lower

bound on process speeds and message delays. In contrast [9, 70] proposed partially-

2Some versions of M2 permit messages to be lost prior to GST; other versions
assume (likeM1) that links are always reliable.
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synchronous system models that, in addition to the assumptions made in the M∗

models, imposed both upper and lower bounds on process speeds for solving consen-

sus. The temporal bounds on the above system models are ‘uniform’ in the sense

that the bounds on message delay apply to all communication links and bounds on

process speeds apply to all processes. However, to achieve consensus, such uniform

temporal bounds are not necessary. One of the first partially-synchronous system

models to consider non-uniform temporal bounds was proposed in [7] in which all

processes execute in lock-step synchrony and there exists some correct process whose

outgoing links are eventually timely; that is, eventually there is an upper bound on

the message delay on these links.

Subsequent investigations into sufficient partial synchrony to solve consensus

and other agreement problems focused on restricted fault environments where no

more than f < n/2 processes crash (where n is the total number of processes).

Two seemingly incomparable system models were proposed in [61] and [6] to solve

consensus in such restricted fault environments. The system model proposed in [61]

guarantees that eventually some correct process has f bidirectional timely links at all

times. Note that the set of f timely links need not be fixed and may vary throughout

the execution. Independently, it was shown in [6] that consensus can be solved in

systems where some f outgoing links at some correct process are eventually timely.

These two results were superseded by [51] which showed that consensus can be solved

in an even weaker system where eventually some correct process has f timely outgoing

links and the set of f timely links can vary throughout the execution.

All of the above system models focused on weakening the real-time constraints

on communication and computation in the pursuit of the ‘weakest’ model to solve

agreement problems. The motivation for this pursuit is straightforward. ‘Weaker’

system models have less stringent constraints on communication and computation.
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Therefore, ‘weaker’ models are more general and algorithms that behave correctly

in such weak models behave correctly in a larger set of empirical models, and thus

the pursuit of the ‘weakest’ system models to solve consensus provides us with an

algorithm that will solve consensus in a maximal set of empirical systems.

An independent course of investigation on the ‘weakest’ system model to solve

agreement problems pursued a time-free path in which system-model properties were

divorced from real-time based bounds on communication and computation. Instead,

these models focused on the relative ordering of messages and computational steps.

The first such system model was proposed in [63] for systems consisting of n processes

with at most f crash faults. Executions in the system model in [63] progress in

“rounds” (the notion of a round is local to each process, not global), and processes

send messages to all other processes in each round. A round terminates at a process

when the process has received messages from n − f processes for that round. The

model stipulates that there exists some correct process i such that eventually some

fixed subset consisting of f processes receive a message from i in each of their rounds.

Subsequently, a weaker system model (and weakest-to-date) was proposed in [8] which

permits this subset consisting of f processes to vary over time, as long as (eventually)

at all times such a subset exists.

Note that the above system models were proposed to solve a specific problem:

consensus. The particulars of these system models do not take the behavior of em-

pirical systems into account. In contrast, there is a significant body of work which

focuses on modeling various empirical systems. We review such system models next.

II.1.1.2. Partial synchrony for empirical systems

One of the first models of partial synchrony that focused on fidelity to empirical

systems is the timed asynchronous distributed system model (or, for short, the timed
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model) [27]. The timed model assumes that all the problem specifications prescribe

a real-time deadline for progress, communication among processes is unreliable, pro-

cesses may crash, and all processes have access to clocks with bounded drift rate.

Additionally, the timed model assumes that the system may behave like an asyn-

chronous system with unbounded message delay, message loss, and process speeds,

infinitely often; however, there are ‘good’ periods of sufficient duration in which com-

putation and communication is ‘timely’ so that the various system services can make

sufficient progress to deliver the necessary outputs to the user. The results in [27]

claim that this model describes a distributed system built with a network of work-

stations and provide actual measurements of message delay, message loss, process

scheduling delays, and hardware clock drifts as evidence for the fidelity of the timed

model to an empirical system built from networked workstations. Subsequently, it

was shown that such systems could build ‘almost’ synchronous systems [38]. The

timed model, although very useful in analyzing a locally connected network of work-

station, fails to describe larger, more complex and heterogeneous distributed systems

that our research is interested in understanding.

When subject to denial-of-service attacks, the distributed system of networked

workstations are no longer described by the timed model, instead [40] claims that they

are described by the so called finite average response time model (or, for short, FAR).

The FAR model assumes that there exists an upper bound on absolute process speeds

and, while delay experienced by an individual message may be unbounded, the average

delay experienced by all messages is bounded. Unfortunately, the communication

reliability is assumed to be stubborn [48] (which guarantees delivery of a message if it

is the only message on transit), and, to our knowledge, this communication reliability

property is unrealistic for many empirical systems (with, perhaps, the exception of

collision-prone broadcast networks like wireless networks and Ethernet).



16

Not unlike the efforts to develop system models to solve consensus, there has

been an independent investigation into time-free system models to describe empirical

systems. Two such prominent time-free system models are the Θ-model [50] and the

asynchronous bounded cycle (ABC) model [73]. Both models were developed to de-

scribe tightly coupled distributed systems consisting of multiple processors connected

by a common bus.

The Θ-model was one of the first time-free system models used to describe an

empirical system. The models bounds the ratio Θ of the end-to-end communication

delay of messages that are simultaneously in transit. The variant of the Θ-model

where Θ is known was shown to be sufficient to achieve lockstep execution3 and solve

clock synchronization4 with bounded precision and accuracy [83]. Subsequently [50]

showed that the solutions in this model can be transferred to empirical systems and

the solution, despite being time-free, exhibits behavior consistent with real-time based

algorithms. However, if Θ is unknown, then [84] showed that the Θ-model can imple-

ment eventual lockstep execution and clock synchronization with bounded precision,

but synchronization accuracy could not be guaranteed in the presence of arbitrary

number of process crashes [84].

An apparently weaker alternative for the Θ-model is explored in [73] with the

ABC model. The ABC model imposes a restriction on the ratio of the number

of messages that can be exchanged between pairs of processes in certain “relevant”

segments of an asynchronous execution. The results from [73] showed that the ABC

model is strong enough to implement eventual lockstep execution, and furthermore,

algorithms that are correct in the Θ-model, where the value of Θ is unknown, behave

3Lockstep execution is defined in Section III.1.2.
4See Appendix A for detailed description of the clock synchronization problem.
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correctly in the ABC model as well.

The analysis on system models like the timed model, the FAR model, the Θ-

model, and the ABC model all focus on modeling a specific deployment of empirical

systems and are not known to be general enough to serve as an abstract model for a

sufficiently large group of empirical system. This dissertation proposes such a model

in Section III.1.4.2.

An alternate mechanism to tolerate crash faults is failure detectors.

II.1.2. Failure detectors

Failure detectors [20] may be viewed as unreliable distributed system services, or or-

acles, that provide (potentially incorrect) information about process crashes in the

system. Each process has access to a local failure detector module which applications

can query locally. These failure detectors can make mistakes and provide incorrect

information about processes crashes by either failing to suspect crashed processes or

(falsely) suspecting correct processes. Despite such mistakes, when certain classes

of failure detectors are provided as system services to processes in an asynchronous

systems, many classic problems that are otherwise not solvable in crash-prone asyn-

chronous systems become solvable.

A significant benefit of failure-detector-based algorithms is that they achieve an

essential separation of concerns between abstract detection properties and concrete

detection mechanisms. To be implemented in practice, most failure detector classes

require some degree of partial or even full synchrony. The timing assumptions and

mechanisms for fault detection, however, are encapsulated by the failure detector

itself. Since failure-detector-based algorithms depend only on the assertional proper-

ties of detection, they are effectively decoupled from the underlying implementation

mechanisms, network timing parameters, and reliability assumptions.
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The canonical investigation into unreliable failure detector oracles [20] proposed

eight failure detectors5 among which three failure detectors gained a significant pop-

ularity: eventually strong failure detector (♦S), eventually perfect failure detector

(♦P), and perfect failure detector (P). Briefly, the eventually strong failure detector

(♦S) guarantees that every crashed process is eventually and permanently suspected

by all correct processes, and some correct process is eventually and permanently

trusted by all correct process. The eventually perfect failure detector (♦P) guaran-

tees that every crashed process is eventually and permanently suspected by all correct

processes, and all correct processes are eventually and permanently trusted by all cor-

rect processes. The perfect failure detector (P) guarantees that all crashed processes

are eventually and permanently suspected by all correct processes, and no process is

suspected before it crashes.

Observe that ♦P provides more reliable information than ♦S; ♦S may suspect

a correct process permanently at all processes, but ♦P is required to stop suspecting

correct processes at all processes. Hence, ♦S is said to be weaker than ♦P . Similarly,

since ♦P may wrongfully suspect a correct process (albeit for only a finite duration

and only finitely many times), but P never suspects a process that is not crashed, ♦P

is weaker than P . Thus, some failure detector classes may be ordered based on their

relative ‘strength’. This notion of stronger and weaker failure detector will become

clear after we see some explicit examples of problems solvable by failure detectors

next.

The eventually strong failure detector, ♦S, is arguably one of most popular

failure detector. It was shown in [20, 49] that ♦S is powerful enough to solve many

problems including consensus, leader election, terminating reliable broadcast, and

5These failure detectors are discussed in detail in Chapter VI. For now, an informal
description of a few suffices.
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atomic commit in crash-prone asynchronous systems where at least a majority (more

than half) of the processes are correct. Subsequently, an equivalent failure detector Ω

was introduced in [19] to solve consensus. The Ω oracle, when queried, outputs a single

process ID; Ω guarantees that after some (potentially unknown) time the outputs at

all correct processes at all times is the process ID of some unique correct process.

Although Ω provides outputs that are different from ♦S, both failure detectors provide

the same information about process crashes [19].

We claimed earlier that ♦S is weaker than ♦P . To show that ♦P is, in fact,

stronger than ♦S, we are required to show that ♦P can solve all the problems solv-

able by ♦S, and that there exist problems that can be solved by ♦P but remain

unsolvable by ♦S. The former task is straightforward because all outputs of ♦P are

valid outputs of ♦S as well. For the latter, the separation in solvability between ♦S

and ♦P failure detectors was provided in [66] through the dining philosophers prob-

lem. The results in [66] showed that any ♦S-based solution to the dining philosophers

problems cannot guarantee any progress by the neighbors as well as the neighbors of

neighbors of a crashed process. However, with ♦P , it is possible to ensure that all

the processes that are not immediate neighbors of a crashed process make progress6.

In fact, ♦P was shown to be powerful enough to solve many more problems that are

unsolvable with ♦S: stable leader election [4], quiescent reliable communication [3],

wait-free non-blocking contention management [47], wait-free eventual weak exclu-

sion [69], crash-locality-1 dining philosophers [68], and wait-free eventually k-bounded

schedulers under eventual weak exclusion [78]7.

Similarly, we know that P is stronger than ♦P because we can implement per-

6This variant of dining philosophers problem is called crash locality-1 dining.
7The problems in this list are described in Appendix A.
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petual lockstep execution of processes with P which is impossible with ♦P whereas

all problems solvable by ♦P are also solvable by P because every output of P is also

a valid output of ♦P .

II.2. Comparing failure detectors

The previous section provided an ostensive description for comparing failure detectors

based on the notion of “weaker” and “stronger”. In this section, we discuss such com-

parisons in detail. Unlike partial synchrony, which lacks a precise notion of “weaker”

and “stronger” system models, failure detectors have a precise notion of what it means

for a failure detector (say) D1 to be weaker (or stronger) than a failure detector (say)

D2.

A failure detector D1 is said to be weaker than a failure detector D2 if all the

problems solvable by D1 are solvable by D2. By definition, if D1 is weaker than D2,

then D2 is stronger than D1. Based on this definition, it is easy to see that ♦S is

weaker than ♦P , and ♦P is weaker than P . It is also obvious that ♦S is weaker than

Ω. However, for D1 to be strictly weaker than D2, it is necessary that (in addition to

D1 being weaker than D2) there exist some problem that is solvable by D2 but not

solvable by D1; an analogous definition of strictly stronger holds. Again, from Section

II.1.2 we know that ♦S is strictly weaker than ♦P , and ♦P is strictly weaker than

P . However, ♦S is not strictly weaker than Ω. If D1 is weaker than, but not strictly

weaker than, D2, then D1 is said to be equivalent to D2. Therefore, ♦S is equivalent

to Ω. In fact, if D1 and D2 are equivalent, then all the problems solvable by D1 are

solvable by D2, and vice versa.

Thus far, we have established the “[strictly] stronger than” and “[strictly] weaker

than” relations between failure detectors. This allows us to ask the following question:
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“given that a failure detector D1 can solve a problem A, does there exist a failure

detector D2 that is strictly weaker than D1 and yet solve A?” This question motivates

the need for comparing a failure detector D with problem A and establish the notion

of the “weakest failure detector” for a problem A. We discuss such comparisons next.

II.3. Comparing failure detectors with problems

The Ω failure detector (which is equivalent to ♦S) was introduced in [19] and shown

to be the weakest failure detector to solve consensus in asynchronous systems where a

majority of the processes are guaranteed to be correct. Similarly, [28] introduced the

quorum failure detector8 Σ and showed that (Ω,Σ) together are the weakest to solve

consensus in asynchronous systems where an arbitrary number of processes may crash.

Next, [29] showed that the trusting failure detector9 T is the weakest failure detector

to solve crash-locality 0 dining philosophers problem in asynchronous systems with a

majority of correct processes, and [15] showed that (T ,Σl) (where Σl is a variant of

the quorum failure detector in which only outputs at live processes are required to

have non-empty intersections) together are the weakest to solve the same problem in

environments with an arbitrary number of process crashes. All of the above results

use the same methodology (introduced in [19]) to establish their respective results.

8The quorum failure detector outputs a set of trusted processes when queried. The
quorum failure detector guarantees that eventually, the outputs of the failure detector
will contain only correct processes, and for every pair of processes (x, y) and every
pair of times (t1, t2), the output of the failure detector at x at time t1 and the output
of the failure detector at y at time t2 have a non-empty intersection.

9The trusting failure detector T guarantees that every crashed process is eventually
and permanently suspected by all correct processes, every correct process is eventually
and permanently trusted by all correct processes, and if a process that was trusted in
past is suspected, then that process is guaranteed to have crashed. In other words, T
may make a mistake by falsely suspecting a correct process continuously for a finite
period of time from the beginning. However, once a process is trusted by T , then
suspicion by T implies knowledge (and not just suspicion) of crash.
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We describe this methodology next.

In order to show that a failure detector D is the weakest to solve a problem A,

we have to demonstrate two results: (1) the problem A is solvable in an asynchronous

system augmented with D, and (2) any failure detector D′ that solves A is stronger

than D. Demonstrating the first result is methodologically straightforward; the task is

accomplished by developing an algorithm that queriesD to solveA in an asynchronous

system. The second result can be demonstrated as follows.

For the purpose of contradiction, let there exist a failure detector D′ which is

strictly weaker thanD and yet can also solveA. If, using a black-box solution toA, we

construct failure detector D, then we argue the following. By hypodissertation, D′ can

implement A, but (by construction) A can, in turn, implement D. By transitivity,

D′ can also implement D. Therefore, D′ can solve all the problem solvable by D.

Hence, D′ cannot be strictly weaker than D. Thus, we establish the contradiction

and conclude that D is, in fact, the weakest failure detector to solve A.

Thus, demonstrating that D is the weakest failure detector to solve A involves

two action items: (1) demonstrate that D can solve A, and (2) demonstrate that A

can solve D.

This methodology has been used to show other weakest failure detector results

such as: ♦P is the weakest to solve wait-free contention management [47], wait-free

eventual weak exclusion [76], and wait-free eventually-fair mutual exclusion [79].

Thus far, we have established comparisons between failure detectors, comparisons

between a failure detector and a problem, and we have seen existing results that

show how failure detectors can be used to solve problems otherwise unsolvable in

asynchronous systems subject to crash faults. However, all these results risk practical

irrelevance unless we can establish realistic implementations of failure detectors, which

we explore next.



23

II.4. Failure detector implementations

Recall that many problems in distributed computing are unsolvable in crash-prone

asynchronous message passing systems. However, if the system is partially syn-

chronous (that is, it guarantees appropriate temporal bounds on computation and

communication) then many such problems become solvable despite process crashes.

Alternatively, if the asynchronous system is augmented with appropriate failure de-

tectors, then the same problems become solvable (in the presence of process crashes).

From the above three results we know that most failure detectors cannot be im-

plemented in asynchronous systems. To be implemented in practice, most failure

detector classes require some degree of partial or even full synchrony.

Recall from Section II.1.1 that system models with less stringent constraints on

communication and computation are said to be ‘weaker’ with less ‘synchronism’. Also

recall that ‘weaker’ system models are less restrictive and hence algorithms that be-

have correctly in such weak models behave correctly in a larger set of empirical models.

Consequently, there has been a significant body of research focusing on increasingly

weaker models of communication and computation for implementing failure detectors

in empirical systems. This section reviews the results from such research.

A significant amount of the aforementioned body of research focuses on ♦S (or

Ω), and ♦P .10 We discuss the results related to each of the above failure detectors in

separate subsections.

10The popularity of ♦S and ♦P is not just incidental. Recall that despite appar-
ently weak guarantees on crash fault detection, ♦S has been shown to solve consensus
and other related problems [20], and ♦P has been shown to solve problems including
dining philosophers [68, 69], stable leader election [4], quiescent reliable communica-
tion [3], and contention management [47].
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II.4.1. Implementing ♦S

The first practically feasible implementation of a failure detector was proposed in [20]

which demonstrated that theM∗ models with unknown and eventual bounds on rel-

ative process speeds and message delay possess sufficient ‘synchronism’ to implement

♦P , and since ♦P is strictly stronger than ♦S, the above result applies to ♦S as

well. Subsequently, the system models described in Section II.1.1.1 were shown to be

sufficient to implement ♦S. We briefly revisit these models.

It was shown in [5, 7] that ♦S can be implemented in a system model where

all processes execute in lock-step synchrony and there exists some correct process

whose outgoing links eventually timely; that is, eventually there is an upper bound

on the message delay on these links. Subsequently, focus shifted to the weakest

system model to implement ♦S (or the failure detector Ω [19] which is equivalent to

♦S) in environments where up to f processes may crash for some known f . Results

in [61] showed that Ω (and hence, ♦S) can be implemented in system models where

eventually some correct process has f bidirectional links at all times. Note that

the set of f timely links need not be fixed and may vary throughout the execution.

Independently, it was shown in [6] that Ω can be implemented in systems where

some f outgoing links at some correct process is eventually timely. These two results

were superseded by [51] which showed the Ω can be implemented in systems where

eventually some correct process has f timely outgoing links and the set of f timely

links can vary throughout the execution.

II.4.2. Implementing ♦P

Recall that in [20], ♦P was implemented in theM∗ models with unknown and even-

tual bounds on relative process speeds and message delay over all communication



25

links. In [4], the system model was weakened to permit arbitrary message delay on

all links except the links to/from some correct process which are required to be even-

tually timely. Independently, [58] provided an alternate system model, weaker than

M∗, to implement ♦P in which relative processes speeds are eventually bounded and

only some subset of the links that form a virtual ring of correct processes are required

to be eventually timely. Subsequently it was shown in [39, 40] that it is sufficient

if there is some upper bound on the average transmission delay of messages in the

system with an unknown upper bound on absolute process speed. Note that none of

these system models permit infinite message loss. In fact, to the best of our knowl-

edge, there is no proposed system model that permits an infinite subset of messages

to be lost or arbitrarily delayed and yet is sufficient to implement ♦P .

II.4.3. On the weakest system models

As is evident from the above results, there has been a concerted effort to identify

the ‘weakest’ system models to implement the various failure detectors that solve

relevant problems in crash-prone distributed systems. This effort is motivated, in

part, by the conjecture that axiomatic properties of a failure detector codify the

temporal guarantees provided by an ‘equivalent’ partially synchronous system. Many

recent results on the weakest system models for failure detectors have met with limited

success partly because the proposed system models assume real-time based bounds

on communication (and possibly computation too), whereas failure detectors do not

encapsulate real time.

II.4.3.1. Failure detectors and real time

In order to understand why failure detectors do not encapsulate real time, for the

sake of the following argument, let us assume that the outputs of the failure detector
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contain information concerning the real-time properties of the underlying partially

synchronous system. Such information can be either (1) explicitly embedded in the

output of the failure detector itself, or (2) implicitly expressed by guaranteeing certain

real-time bounds on the delay between a crash and its suspicion, the delay between a

false suspicion and the subsequent correction, and so on (cf. [24]). Next, we see why

failure-detector based algorithms cannot use this information to advantage.

Consider the system model assumptions within which failure detectors operate.

Failure detectors are augmented to asynchronous systems: systems where process

speeds and message delays can vary arbitrarily, and processes do not have access to

(global or local) clocks. Since algorithms executing in asynchronous systems do not

have access to a clock, the algorithms cannot take advantage of any explicit real-time

information embedded in the failure detector output.

If failure detectors that provide real-time information implicitly, algorithms could

still not use it to advantage. Note that (1) the real-time duration between two consec-

utive steps by a process is unbounded in asynchronous systems, and (2) the failure-

detector based algorithm is required to behave correctly in executions where the

failure detector is queried increasingly infrequently. Therefore, a process may not

query the failure detector throughout the duration that the failure detector output

changes with real-time bounds on suspicion and trust accuracy. The algorithm is not

guaranteed to query the failure detector within any bounded duration of time, and

the algorithm could potentially ‘miss’ all the ‘timely’ changes in the outputs of the

failure detectors. Hence, the algorithm cannot make use of any implicit information

expressed in the real-time bounds on the changes in the failure detector output.

Hence, failure detector can, at best, quarantine the real-time based properties of

the underlying partially synchronous systems; failure detectors do not encapsulate or

codify real-time information in a usable manner. For a more detailed analysis of the
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properties of failure detectors in relation to partial synchrony and real time, see [23].

II.4.3.2. Fairness-based system models

Since failure detectors do not encapsulate real-time, the focus on the so-called ‘weak-

est’ system models for implementing failure detectors moved away from real-time

based systems to the so-called fairness-based system models. These models do not

impose real-time based bounds on computation and communication. Instead, the

temporal bounds on computation and communication are expressed as bounds on the

relative ordering of computation and communication events in the systems. These

time-free models are better explained with the examples provided below.

The first fairness-based system model was proposed in [63] for implementing

♦S. The system model consists of n processes with at most f crash faults in which

executions progress in “rounds” (the notion of a round is local to each process, not

global), and processes send messages to all other processes in each round. A round

terminates at a process when the process has received messages from n− f processes

for that round. The model guarantees that there exists some correct process i such

that eventually some fixed subset consisting of f processes receive a message from i

in each of their rounds. Subsequently, a weaker system model (and weakest-to-date)

was proposed in [8] which permits this subset consisting of f processes to vary over

time, as long as (eventually) at all times such a subset exists.

For implementing ♦P , the weakest fairness-based message passing model known

to date are sufficient for implementing ♦P in environments with at least two correct

processes are the Θ-model [50] and the ABC model [73]. Recall that the Θ-model

bounds the ratio of the end-to-end communication delay of messages that are si-

multaneously in transit, while the ABC model imposes a restriction on the ratio of

the number of messages that can be exchanged between pairs of processes in certain
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“relevant” segments of an asynchronous execution.

Note that all the above proposed system models, while claiming to be weak-

est to-date to implement their respective failure detectors, do not claim to be the

weakest to do so. The closest result to the ‘weakest’ message-passing system model

to implement ♦S, ♦P , and other eventually accurate failure detectors is [16] which

follows an approach intermediate between the real-time-based and fairness-based ap-

proaches. The results in [16] demonstrate that with respect to solvability ♦S, ♦P ,

and other failure detectors are “equivalent” to various partially synchronous models.

The authors of [16] are aware that their transformations do not preserve bounds on

real-time message delay. They claim that the bounds on message delay is preserved in

a ‘relativistic’ sense (in the extended technical report [17]), but they do not expound

on the interpretation of the term ‘relativistic’.

II.5. Open questions

The state of the art in partial synchrony and failure detectors leave several open

questions. In section outlines the specific open questions that are addressed and

resolved by this dissertation.

The first open question is the issue of fidelity and relevance of the idealized models

of partial synchrony favored by theoreticians and algorithm designers. We will see in

Section III.2 that the primary reason for lack of fidelity between the idealized models

and empirical systems is that the temporal constraints in these idealized models are

denominated in real-time units. The results in this dissertation demonstrate that

adopting a fairness-based specification of temporal constraints allows us to establish

the fidelity of the idealized partially-synchronous models with empirical systems.

The second open question is the issue of the ‘weakest’ system models to im-
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plement various failure detectors. As noted earlier, while there has been significant

work on determining the ‘weakest’ system models to implement ♦S and ♦P , existing

results provide only a proximate specification for such system models. In this disser-

tation, we argue that the reason for this apparent lack of success in determining such

models is that the so-called ‘weakest to-date’ system models the temporal constrains

on communication and computation is denominated in real-time and not fairness. If

we adopt a fairness-based approach to specifying partial synchrony, then establishing

the weakest system models for implementing ♦S and ♦P becomes straightforward,

and we demonstrate such weakest system models in this dissertation. As a corollary,

we show that failure detectors encapsulate fairness in the ordering of computation

and communication events, and not the real-time constraints (if any) guaranteed by

the partially synchronous system.

However, in order to understand the basis for these open questions and issues, we

must first understand the nature of distributed system models and partial synchrony,

which is discussed in the next chapter.
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CHAPTER III

DISTRIBUTED SYSTEM MODELS

A theory has only the alternative of being right or wrong. A model has a

third possibility: it may be right, but irrelevant.

–Manfred Eigen [36]

This chapter provides an informal, but detailed, understanding of the distributed

system models used in solving problems in message passing systems. We start with a

description of three families of distributed system models: asynchrony, full synchrony,

and partial synchrony. We invest a lot of the chapter on partial synchrony because

partially synchronous models are believed to approximate the behavior of empirical

systems. Based on the observed behavior of a non-trivial set of empirical systems,

we propose a distributed system model that we believe describes empirical systems

adequately. Then we argue why the idealized partially synchronous models, while

popular in the theory of distributed systems, fail to adequately describe empirical

systems.

III.1. Distributed system model classes

Various distributed system models are specified by imposing temporal bounds, varying

in nature and degree, on the behavior of the processes and communication links in

a system. These bounds may be absolute (specified in real time units) or relative

(specified by the number of events of some particular type). First, we describe these

constraints and use them to describe the different distributed system model classes.

Formal definitions of these distributed system models is provided are Chapter V.



31

III.1.1. Temporal constraints

Temporal constraints in distributed systems are of two types: computational and

communicational. Computational constraints restrict the behavior of the processes

whereas communicational constraints restrict the behavior of communication links.

We explore the nature of these constraints next.

III.1.1.1. Computational constraints

Computational constraints dictate the frequency with which processes execute the

steps of their algorithms. This frequency may change with respect to real time, or

relative to the number of steps executed by other processes. There are many variations

of such computational constraints. Below are informal definitions of the constraints

employed in this dissertation:

• Lower Bound on Absolute Process Speed. Process i has a lower bound l

on absolute process speed if i executes one step at least once every l time units.

• Upper Bound on Absolute Process Speed. Process i has an upper bound

u on absolute process speed if i executes at most one step every u time units.

• Bounded Relative Process Speeds. A system is said have a bound Φ

on relative process speeds if, in the duration that any process executes two

consecutive steps, every process that is not crashed executes no more than Φ

steps.

III.1.1.2. Communicational constraints

Communicational constraints dictate the delay experienced by messages while in tran-

sit. Like computational constraints, there are many variations of communicational
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constraints. Below is an incomplete list of such variants:

• Fair-Lossy Channels. This is the weakest communicational constraint we

consider. It simply states that if an infinite number of messages are sent from

process i to process j, then an infinite subset of these messages are delivered

to j, a message is delivered only after it has been sent, and messages may not

be duplicated or corrupted. An infinite subset of messages may be arbitrarily

delayed or even dropped.

• Reliable Channels. Such channels deliver messages without loss, duplication,

fabrication, or corruption. Note that reliable channels are a subset of fair-lossy

channels.

• Correct-Restricted Reliable Channels. (or Correct-reliable Channels, for

short) Such channels are a variant of reliable channels that behave as reliable

channels only if the sender and the recipient do not crash.1 Otherwise, the

channels may behave as fair-lossy channels.

• Bounded-Delay Channels. These channels are reliable channels with the ad-

ditional constraint that message delay never exceeds some bound ∆. Depending

on the variant of the bounded-delay channel, the bound ∆ may or may not be

known.

Distributed system models may be arranged in a hierarchy ordered by the afore-

mentioned temporal constraints on communication and computation. Next, we de-

1The concept of “correct restrictedness” was first introduced in [46] to describe
problems whose specifications impose restrictions on the behavior of correct processes,
but not on the behavior of faulty processes. Similarly, here we impose restriction on
the behavior of channels connecting correct processes, but not on the behavior of
channels connecting faulty processes.
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scribe the end-points of this hierarchy and delve into the many models that occupy

the space in between.

III.1.2. Synchronous system model

The strongest system model in the aforementioned hierarchy is synchrony. A syn-

chronous system model guarantees that channels are always reliable, there exists a

known bound Φ on relative process speeds, and there exists a known bound ∆ on

message delay. The knowledge of Φ and ∆ enables algorithms in synchrony to use

these value of these bounds to advantage. The strength of synchrony in solving dis-

tributed problems in the presence of faults is demonstrated in its ability to implement

the so-called lockstep execution.

In a lockstep execution, processes execute their computational steps in rounds.

All processes share a common view of the round. In each round, each process receives

all the messages sent to it in the previous round, executes a single computational step,

and sends at most one message to each process in the system. In effect, lock-step

execution ensures that a message sent by a correct process in a given round is reliably

delivered in the next round. Hence, the failure to receive an expected message, or the

receipt of an unexpected message, during a given round is indicative of a fault in the

system. Specifically, the sender of the putative message is faulty.

Such a strong fault detection mechanism enables synchronous systems to deploy

fault-tolerant solutions to many distributed problems [10,60]. But unfortunately, the

strong guarantees provided by synchronous systems is not reflected in the guarantees

provided in many empirical distributed systems. Consequently, distributed algorithms

designed for synchronous systems are not guaranteed to behave correctly in empirical

systems.

Since the focus of this dissertation is to solve problems in empirical systems, we
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are forced to consider weaker model from the hierarchy of distributed system model.

We explore the other end of this hierarchy, the asynchronous system model, next.

III.1.3. Asynchronous system model

In contrast, the asynchronous system model is the weakest system model in the afore-

mentioned hierarchy. The only temporal guarantee that asynchrony provides is that

eventually every correct process executes another step and channels are fair-lossy.

Apart from the aforementioned restriction, there are no temporal bounds on absolute

process speeds, relative process speeds, or message delays.

It is well known that reliable channels can be constructed using unreliable chan-

nels [1–3, 11, 37]. Therefore, it could be argued that by replacing fair-lossy channels

with reliable channels, we get an equivalent specification for the asynchronous system

model. However, the results from [37] clarify that the results from [1, 2, 11, 37] are

valid only in fault-free executions. Therefore, in the presence of process crashes, imple-

menting reliable channels on top of fair-lossy channels becomes impossible. However,

the results from [3] inform us that, while reliable communication may be impossible,

it is possible to implement correct-reliable channels using fair-lossy channels. Conse-

quently, in this dissertation we define an asynchronous system model as a system in

which every correct process executes infinitely many steps and channels are correct-

reliable.

The absence of temporal guarantees makes asynchrony an attractive candidate

for modeling empirical systems. Since algorithms designed for asynchrony cannot

assume the existence of any guarantees on communication and computation, these

algorithms execute correctly in any system that provides stronger temporal guarantees

than asynchrony. Specifically, these algorithms, when deployed in empirical systems,

are guaranteed to behave correctly.
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However, a significant drawback of this approach is that such asynchronous algo-

rithms have extremely limited crash-fault tolerance capabilities. In fact, asynchrony is

too weak to solve many problems even under the relatively benign fault environment

that permits no more than one process crash [41].

Since the focus of this dissertation is to solve these problems in the presence

of crash faults, we look to other distributed system models: models whose temporal

guarantees are not so strong that they fail to model empirical systems and yet not

so weak that they fail to permit crash-fault tolerant solutions. Such models are

collectively said to be partially synchronous.

III.1.4. Partial synchrony

Informally, partial synchrony refers to the multitude of system models that occupy

the landscape between synchrony and asynchrony. These are system models that pro-

vide temporal guarantees on communication and computation. But these guarantees

and/or their knowledge may be imprecise or unknown. This section describes the

different partially synchronous system models.

Partial synchrony was introduced in [35]2 with the precise intention to circumvent

the impossibility of (crash) fault-tolerant consensus in asynchrony [42] by consider-

ing system models stronger than pure asynchrony. Although originally aimed at

solving consensus, partial synchrony has since become a cornerstone for developing

crash-tolerant algorithms for a variety of problems (an incomplete list is available in

Appendix A).

This dissertation explores partial synchrony of two kinds: fairness based, and

2This paper won the prestigious Edsger W. Dijkstra Prize in 2007, which is
“awarded for an outstanding paper on the principles of distributed computing, whose
significance and impact on the theory and/or practice of distributed computing has
been evident for at least a decade." [82].
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real-time based. We briefly explain the distinction between them before explor-

ing fairness-based models in Section III.1.4.1 and real-time based models in Sec-

tion III.1.4.2. Informally, fairness is a measure of the number of steps executed by

one process relative either to the number of steps taken by another process or relative

to the duration for which a message is in transit. Fairness-based partially-synchronous

systems provide temporal guarantees on computation and communication relative to

other computation and communication events. For instance, the bound on relative

process speeds described in Section III.1.1.1 is a classic example of a fairness-based

constraint. Another example of such fairness-based constraint is the Θ-model [83]

which states that for all times t, there exists a bound Θ on the ratio of the end-to-end

delay of all messages in transit system-wide between correct processes at time t.

In contrast, real-time based partially-synchronous systems provide temporal

guarantees with respect to an external global time base that ticks or progresses in-

dependently of the events and actions within the distributed system. Examples of

such real-time based constraints include bounds on absolute process speeds defined

in Section III.1.1.1 and bounded-delay channels specified in Section III.1.1.2.

III.1.4.1. Fairness-based partial synchrony

As mentioned earlier, fairness-based partially synchronous systems restrict the process

speeds and message delays based on the occurrence of certain actions in executions

of the system. Such system models are fairly popular, and several fairness-based

partially-synchronous system models have been proposed in the literature (e.g.,. [33,

35,73,83]).

Computational fairness. Here we introduce the notion of a proc-fair process. A

process x is said to be k-proc-fair (where k is a non-negative integer), if, for all

processes y in the system, in all intervals of time in which y takes exactly k+ 1 steps,
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and x is not crashed at any instance in that duration, then x executes at least one

step.

Similarly, a process x is said to be eventually k-proc-fair, if there exists a time

after which x is k-proc-fair; that is, there exists a time after which, for all processes

y in the system, in all intervals of time in which y takes exactly k + 1 steps, and x is

not crashed at any instance in that duration, then x executes at least one step.

Note that while other processes may be ‘fair’ with respect to a proc-fair process i,

process i need not be ‘fair’ with respect to other processes; i.e., a proc-fair process may

execute an unbounded number of steps in the duration between two consecutive steps

of a non-proc-fair process. This is an important distinction between computational

fairness and bounded relative process speeds defined in [33, 35]. Bounded relative

process speeds may be viewed as a special case of computational fairness where every

process is (eventually) k-proc-fair.

Communicational fairness. Here we introduce the notion of a com-fair process.

A process x is said to be d-com-fair (where d is a non-negative integer) if, for each

process y in the system, while a message m is in transit from x to y, either (1) y takes

no more than d steps, or (2) x is crashed3.

Similarly, a process x is said to be eventually d-com-fair (where d is a non-negative

integer) if there exists a time after which x is d-com-fair; that is, there exists a time

after which, for each process y in the system, while a message m is in transit from x

to y, either (1) y takes no more than d steps, or (2) x is crashed

Informally, if x is a d-com-fair process, then all the outgoing links from x are

‘timely’. Note that the outgoing links from x are ‘timely’ only for as long as x is live;

if x crashes while a message m from x to (say) y is in transit, then the recipient y may

3Note that the condition (b) states that the sender (not the recipient) of message
m is crashed.
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take an arbitrary number of steps before m is delivered, or m may even be dropped.

Another point of interest is that in the traditional models of partial synchrony [33,

35] bounds on message delay are measured as the number of steps executed by the

sender; the liveness of the recipient is irrelevant to the bound on message delay. We

model message delay (communicational fairness) differently for the two important

reasons.

First, the traditional models of partial synchrony assume that relative process

speeds are bounded. Consequently, if some live process executes a bounded number

of steps while a message is in transit, then all processes execute a bounded number of

steps while a message is in transit. Hence, asserting the existence of a bound on the

number of steps executed by the sender while a message is in transit is equivalent to

asserting the existence of a bound on the number of steps executed by the recipient

while the message is in transit. However, in our case, computational fairness is not a

symmetric property. Consequently, measuring and bounding message delay is subtler

under our proposed fairness framework.

Second, we denominate message delay (communicational fairness) as the number

of steps taken by the recipient because the notion of a message being timely or late

is relevant only to the recipient of the message and not the sender. Furthermore,

we bound the number of steps taken by the recipient only while the sender is live

because: while the sender is not crashed, it can successfully maintain an operational

communication link with the recipient, and the link can ensure that messages are

delivered before the recipient takes ‘too many steps’. However, if the sender crashes,

then the link is no longer guaranteed to stay operational, and hence, no guarantees

can be provided on message delay and delivery.

Fairness-based partially-synchronous system models. The above-described

notions of com-fairness and proc-fairness can be combined to specify the following
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four partially-synchronous system models:

1. All Fair (AF) is an asynchronous system with the following restriction on fair-

ness: all processes are both k-proc-fair and d-com-fair, for known k and d.

2. Some Fair (SF) model is an asynchronous system with the following restriction

on fairness: some correct process x is both k-proc-fair and d-com-fair, for known

k and d.

3. Eventually All Fair (♦AF) is an asynchronous system with the following re-

striction on fairness: there exists some (potentially unknown) time after which

all processes are both k-proc-fair and d-com-fair, for known k and d. That is,

eventually the system behaves like AF .

4. Eventually Some Fair (♦SF) is an asynchronous system with the following

restriction on fairness: there exists a (potentially unknown) time after which

some correct process x is both k-proc-fair and d-com-fair, for known k and d.

That is, eventually the system behaves like SF .

III.1.4.2. Real-time based partial synchrony

As mentioned earlier, real-time based partially-synchronous systems provide tempo-

ral guarantees on communication and computation with respect to an external global

time base (real time) that ticks or progresses independently of the events and ac-

tions within the distributed system. Real-time based systems are particularly useful

in modeling empirical distributed systems owing to the latter’s specification with

respect to real time. Examples of such real-time based models have already been

discussed in Section II.1.1.2, and hence, will not be repeated here. However, recall

that Section II.1.1.2 concluded that the models are not general enough to serve as an
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abstract model for a sufficiently large group of empirical systems. We address this

issue by specifying a new system model that describes a significant subset of empirical

systems based on their real-time constraints.

The empirical distributed systems are one of two types: physical systems and

overlay systems. Informally, physical systems are essentially the communication and

processor infrastructure at the lowest physical (hardware) level4. Overlay systems are

distributed (software) architectures built on top of physical systems5.

It should be noted that the list of empirical distributed systems is too diverse for

any single family of system models to describe all of them adequately. Since one of

the goals of the dissertation is to abstract multiple distributed systems into a single

family of system models, we limit the collection of distributed systems to a subset

that shares sufficiently common properties and can be abstracted by a single family

of system models. We do so by first considering a subset of physical systems which

satisfies a given set of properties and include all overlay systems that satisfy the same

properties.

The physical systems under consideration satisfy the following properties:

Computational constraints. The system consists of a finite fixed set of processes.

Processes may crash at any time without warning and never recover. While absolute

process speeds of correct processes may be arbitrary, but finite, the ratio of process

speeds is always bounded above; that is, there exists an upper bound (that is po-

tentially unknown) on relative process speeds. Additionally, all processes have local

real-time clocks that are not necessarily synchronized, but they can approximately

4Examples of physical systems are multi-core processors, network hardware infras-
tructure, and tightly and loosely coupled computing clusters.

5Examples of overlay systems include the Internet, distributed operating systems,
distributed databases, and Grid computing applications.
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measure intervals of real time with an (unknown) upper bound ρ on the drift rate.

Communication constraints. Communication links transport messages between

the processes they connect. These links are assumed to be point-to-point links. That

is, communication links connect exactly two processes with each other. The links are

also assumed to be fair lossy with some additional constraints on message loss and

delay, which are described next.

While messages might be lost in empirical communication links, the operational

parameters of the system dictate that such behavior is limited to some proper subset

of messages sent on the links. Furthermore, in empirical systems, a significant subset

of messages are delivered reliably and ‘on time’, and such timely messages are ‘not

too sparse’. The notions of ‘on time’ and ‘not too sparse’ merit explanation.

Being ‘on time’. In empirical distributed systems, communication interfaces often

have hardcoded real-time bounds on the expected duration for a message to be deliv-

ered and an acknowledgment received at the sender. If the acknowledgment does not

arrive within that duration, the message is assumed to be undelivered and is resent.

In reality, the maximum delay experienced by an ‘on-time’ message depends on pa-

rameters like link bandwidth, signal propagation delay, and queuing delays. The link

bandwidth and signal propagation delay on a link are determined by the hardware

and are usually static6. Queuing delay depends on the number of messages in transit

in the system. Often, priority-based routing is used to ensure that some subset of the

messages (usually, control messages) in transit experiences little or no queuing delay.

For the purposes of our characterization of communication links, such high-priority

messages may be considered to be ‘on time’ messages as well. Consequently, accept-

6In a well maintained and administered system hardware upgrades may increase
the link bandwidth and decrease the propagation delay. These changes serve to
decrease the delay of messages, and hence do not result in an otherwise ‘on time’
message being late.
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able delay of a message to be ‘on-time’ is a moving target whose value depends on all

the aforementioned parameters. While the value of the target may be unknown and

variable, it nevertheless exists. Based on the above arguments, we characterize the

notion of being ‘on time’ as follows: the average message delay of all ‘on time’ mes-

sages sent within every bounded window of time (the size of this window, although

fixed, can vary from hours to days to weeks, and need not be known a priori) does

not exceed some unknown real-time value δ.

Being ‘not too sparse’. It is not uncommon to observe ‘on time’ messages in

empirical distributed systems. In other words, if an ‘on time’ message is witnessed at

time t, then it will not be too long after t that another ‘on time’ message is witnessed.

However, the maximum gap between two consecutive ‘on time’ messages is not fixed

and varies depending on various factors like channel capacity, network congestion,

denial-of-service attacks, unplanned outages, and so on. But in short, the maximum

gap between ‘on time’ messages is smaller during ‘good periods’ and larger during ‘bad

periods’. Also, transitions between ‘good’ and ‘bad’ periods are not instantaneous;

there is always a transient period between good and bad periods. Finally, the ‘good

periods’ are not too far apart; that is, ‘bad periods’ are relatively short-lived and

bounded in duration. Based on the above observations, we can characterize the

notion of ‘on time’ messages being ‘not too sparse’ as follows: the average number of

arbitrarily delayed or dropped messages over every fixed window of time (the size of

this window, although fixed, can vary from hours to days to weeks, depending on the

empirical system and the deployed environment, and need not be known a priori)

does not exceed some unknown positive integer r.

Typically the size of the windows described above are large enough to encompass

the ‘good’, ‘bad’, and transient periods, as well periods of high and low system loads.

ADD channels. The aforementioned constraints introduce a new communication
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channel model called Average Delay/Drop (ADD) Channels7. Intuitively, ADD chan-

nels combine the message-loss property of fair-lossy channels with the timeliness of

bounded-delay channels. These channels can be viewed as fair-lossy channels with

additional constraints on message delays of some subset of messages. All messages

sent on an ADD channel can be logically partitioned into two disjoint sets: privileged

and non-privileged. ADD channels provide no guarantees on delivery or delay of non-

privileged messages. As such, infinitely many messages may be arbitrarily delayed

or even dropped. By contrast, ADD channels provide the following guarantees for

privileged messages:

1. If a process i sends infinitely many messages to a correct process j on an ADD

channel, then some infinite subset of those messages will be privileged. All such

privileged messages will be delivered reliably to j.

2. There exists an unknown window size w ∈ IN+, an unknown message delay

δ ∈ IR+, and an unknown message ratio r ∈ IN+, such that for every interval of

time I in which exactly w privileged messages are sent on the channel:

(a) The average delay of the w privileged messages is at most δ.

(b) The average number of non-privileged messages sent between any consec-

utive pair of privileged messages in I is at most r.

Intuitively, privileged messages are delivered reliably and are neither too late

nor too sparse. Privileged and non-privileged messages can be interleaved. These

constraints on privileged messages can be simplified as follows. The unknown window

size w and the unknown bound δ on average privileged delay actually induce an

7The specification of ADD channels as a communication channel model for empir-
ical systems is published at [74].
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unknown bound on the absolute delay of privileged messages; specifically, no privileged

message can be delayed more than w × δ = ∆ time units. Similarly, the unknown

window size w and the unknown bound r on average message ratio actually induce

an unknown bound on the maximum number of non-privileged messages which can

be sent between any consecutive pair of privileged messages; specifically, at most

w × r = R non-privileged messages can be sent between any consecutive pair of

privileged messages.

The foregoing observations yield a simplified specification of the timeliness and

reliability properties of ADD channels:

1. If a process i sends infinitely many messages to a correct process j on an ADD

channel, then some infinite subset of those messages will be privileged. All such

privileged messages will be delivered reliably to j.

2. There exist two unknown bounds ∆ ∈ R+ and R ∈ N+ such that:

(a) The absolute delay of all privileged messages is at most ∆.

(b) The maximum number of non-privileged messages sent between any con-

secutive pair of privileged messages is R.

III.2. The M∗ models: a critique

Although there are many problem-specific partially synchronous system models men-

tioned in Section II.1.1.1, for the many algorithms presented in each of these models

to be of practical relevance, it is important that these system models possess jus-

tifiable fidelity to empirical systems so that the algorithms are deployable in the

target empirical systems (albeit with some modifications). Note that all the models

from Section II.1.1.1 are derived by weakening the M∗ models introduced in [35].
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Therefore, all the algorithms in these models work correctly in the M∗ models as

well. Therefore, to understand the practical relevance of these algorithms, we first

investigate the practical relevance of theM∗ models.

Before proceeding to determining the practical relevance of theM∗ models, we

have to first determine if theM∗ models are real-time based system models or fairness-

based system models.

III.2.1. Real time versus fairness based interpretation

Interestingly, the classification of the M∗ models of partial synchrony introduced

in [35] as either fairness based or real-time based is a subject of justifiable debate.

Recall that theM∗ models assert the existence of an upper bound ∆ on the maximum

delay of messages and an upper bound Φ on relative process speeds.

The debate on whether theM-models are real-time based or fairness based arises

from the interpretation of ∆ and Φ, which depends on the interpretation of the term

real time in [35] which is defined as follows: “...there is a real-time clock outside the

system that measures time in discrete numbered steps. At each tick of real time

some processors [sic]8 take one step of their protocol.” We first present two possible

interpretations of the term real time and then derive the possible interpretations of

∆ and Φ. In order to distinguish the vernacular notion of real time from the term

real time defined in [35], we will refer to the former as Newtonian time and the latter

as real time.

The term real time in [35] can be interpreted in two different ways: (1) at each

tick of real time zero or more processes take exactly one step of their protocols, or (2)

at each tick of real time at least one process takes exactly one step of its protocols.

8The term processor in [35] refers to the entity that is defined as a process in this
dissertation.
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Both interpretations imply that a process cannot take more than one step at each tick

of real time, but the first interpretation permits real-time ticks where no process takes

a step whereas the second interpretation prohibits such behavior. This is a subtle,

but significant, difference between the interpretations and underpins the nature of

real time, process speeds, and message delay as elucidated next.

The first interpretation allows real time to tick independently of whether or not

processes take steps, and thus permits real time to be identical to Newtonian time.

This allows processes to take decelerate arbitrarily with respect to real time as well

as Newtonian time. However, it does not allow processes to accelerate arbitrarily.

Since no more than 1 step can be taken per real-time tick, absolute process speeds is

bounded above by 1 step per Newtonian-time unit. Thus, constraints on computation

are inextricably linked to the progression of Newtonian time.

Similarly, the bound ∆ on message delay now applies to both real time and

Newtonian time. Consequently, process acceleration and deceleration do not affect

the maximum Newtonian time delay that can be experienced by a message. Thus,

constraints on communication are inextricably linked to the progression of Newtonian

time.

Evidently, the first interpretation of real time in [35] argues that theM∗-models

are (Newtonian-time, or what we call) real-time based models of partial synchrony.

The second interpretation mandates a process-driven progression of real time.

That is, real time does not move forward until a process executes a step. An extremal

consequence of such an interpretation is that if all but one process in the system crash,

then real time moves at the rate at which the solitary process takes steps; that is,

the solitary process executes at the rate of 1 step per real-time tick regardless of the

Newtonian time duration between two consecutive steps by that process. In other

words, real time moves at a different rate from Newtonian time.
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Within the purview of this interpretation, the bound Φ on relative process speeds

requires that “in any contiguous subinterval I containing Φ real-time steps, every cor-

rect processor [sic] must take at least one step.” [35] That is, processes may accelerate

and/or decelerate arbitrarily with respect to Newtonian time, but at every instant of

Newtonian time, the ratio of the speeds of the fastest process to the slowest process

is guaranteed to not exceed Φ. Thus, constraints on computation are decoupled from

Newtonian time completely.

Similarly, consider the bound ∆ on message delay which requires that, given an

interval I of real time, “if message m is placed in pj’s buffer by some Send(m, pj) at a

time s1 in I, and if pj executes a receive(pj) at a time s2 in I with s2 ≥ s1+∆, thenm

must be delivered to pj at time s2 or earlier.” [35] Intuitively, it says that if a process pi

sends a messagem to pj at real time s1, then pj is guaranteed to receive it by real time

s1 + ∆ or the earliest real time past s1 + ∆ when pj takes a step in which it receives

messages. The bound ∆ on message delay applies only when ∆ denotes real time

duration, not Newtonian time duration. For example, suppose pi and pj take steps at

the rate of 1 step per Newtonian time unit, and the bound on message delay is ∆ real

time units. Then a message sent from pi to pj will be delivered within ∆ real-time

units and ∆ Newtonian-time units as long as the process speeds of pi and pj remain

unchanged. However, if pi sends a message to pj and immediately pi and pj change

their speeds to 1 step per k Newtonian-time units, then the bound on message delay

is still ∆ in real-time units, but it now becomes k×∆ in Newtonian-time units. That

is, as processes execute faster, messages must be delivered sooner, and as processes

slow down, message may be delivered later. Thus, much like computation, constraints

on communication are decoupled from Newtonian time completely.

It can be verified that this interpretation is equivalent to the ♦AF system model

specified in Section III.1.4.1.
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Both interpretations yield plausible and reasonable, but different and irreconcil-

able, models of partial synchrony.

A point of clarification: henceforth the term real time will refer to Newtonian

time.

III.2.2. Real-time based M∗ and empirical systems

We explore the fidelity of M∗ models to empirical systems while adopting the real-

time based interpretationM∗ models. Although theM∗ models are intuitively seen

as an idealized formalization of empirical system behavior with ‘somewhat timely’

computation and ‘somewhat timely’ communication, the exact subset (or even a non-

trivial sound subset) of empirical systems modeled byM∗, to my knowledge, is un-

determined. In order forM∗ to be a viable candidate as a prescribed system model

which can be built on empirical systems, it is imperative thatM∗ models either have

high fidelity to the empirical systems, or be constructible on top of the empirical

systems.

This section illustrates the inability of (real-time based)M∗ to describe empirical

systems or the systems constructible on top of empirical systems.

III.2.2.1. Absolute process speed

The definitions ofM∗ directly couple real time with absolute process speed. The defi-

nitions ofM∗ state that real time is measured in discrete integer numbered steps, and

that a process can execute at most one atomic step at each time tick. This forces a de

facto upper bound on the absolute process speed viz., one atomic step per real-time

tick. However, historically, we have seen process speeds increase continually. It is

unclear whether assuming such a de facto upper bound on absolute process speed will

have implications for systems whose processors are continually upgraded to higher
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speeds. Ideally, system model specifications should be able to model systems whose

process speeds may increase infinitely often as the systems are upgraded. Unfortu-

nately, currentM∗ models fail to model such continual increases in absolute process

speed.

III.2.2.2. Message loss

The M∗ models assume that channels are eventually reliable: there exists a time

after which every message sent to a correct process is eventually delivered. However,

message loss occurs in physical systems due to various (uncontrolled) factors such as,

traffic congestion, signal collision, electro-magnetic interference, high signal-to-noise

ratio, and misrouting of messages; insofar as these factors are not controlled, they can

precipitate message loss infinitely often, thus undermining communication reliability

for an infinite suffix. In fact, message loss occurs infinitely often in many empirical

overlay systems, even when the network is stable and operating as specified. Consider

the following examples:

• In broadcast systems (like Ethernet), message loss results from collisions. Al-

though broadcast communication protocols employ collision avoidance tech-

niques, these techniques can minimize collisions, but not prevent them alto-

gether. Therefore, when multiple processes attempt to send messages infinitely

often, there is a non-zero probability of message collision occurring infinitely

often, and hence potentially infinite message loss.

• In protocols like TCP, message loss is essential for congestion control and main-

taining fairness in bandwidth allocation. In TCP, a process floods the network

with messages until the sending process begins to timeout on acknowledgments.

These timeouts are interpreted as congestion due to bandwidth hogging. There-
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fore, the sending process reduces the rate of message transmission. In any net-

work of significant size, multiple processes can have concurrent TCP sessions

infinitely often, and hence can lose messages infinitely often.

Thus, message loss can occur infinitely often even in well-tuned physical and overlay

systems. Therefore, unlike M∗, partially synchronous models that capture the be-

havior of the physical systems characterized in Section III.1.4.2 have to accommodate

some form of infinite message loss.

Note that there are overlay systems constructible on top of message-lossy empir-

ical systems that provide reliable communication. However, such overlay systems do

not guarantee bounds on message delay (as discussed next in Section III.2.4).

III.2.3. Message size

The definitions ofM∗ assume real-time upper bounds on message delay, but do not

restrict message size. This implies that algorithms can send messages of unbounded

size and the system guarantees a bounded real-time message delay. However, consider

the observed behavior in empirical systems. In many empirical systems, the time

taken to transmit a message of size 2k units is typically twice the time it takes to

transmit a message of size k units. In fact, every communication link in empirical

systems specifies the maximum data transfer rate that the link can achieve. For

example, a Gigbit-Ethernet interface can transmit no more than 1 Gigabit per second.

Therefore, sending messages of unbounded size on communication links which have

a bounded bandwidth cannot yield an upper bound on message delay. Based on the

above argument, we cannot expect empirical systems to satisfy an unconditional upper

bound on message delay (especially when message size increases without bound).

They may, at best, guarantee upper bounds on message delay that are proportional
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to the message size.

III.2.4. Communication reliability and message delay

Recall that the definitions ofM∗ assume reliable communication and upper bounds on

message delay. As discussed earlier, many empirical systems do not guarantee reliable

communication natively. However, reliable communication may be simulated on top

of empirical systems which inherently lose messages. All known implementations of

reliable communication on top of unreliable channels (cf. [1,2,12]) retransmit messages

sufficiently many times to ensure the delivery of at least one copy of each message.

Deterministic techniques of message retransmission to achieve communication

reliability have a potential problem of message duplication. If a process p sends

multiple copies of a message mi to process q, then after q receives the first copy to

message mi, process q is expected to discard all additional copies of mi it may receive

in the future. However, if process p subsequently sends multiple copies of another

message mj which is incidentally identical to mi, then when q receives copies of mj,

process q has no way of distinguishing a copy of mi from a copy of mj. Since the

protocol to implement reliable communication is deterministic, process q has to take

the same decision when it receives a copy of mi and when it receives a copy of mj

because they are identical. If process q discards copies of mi and mj, then process p

will never be able to successfully transmit mj. On the other hand, if q accepts copies

of mi and mj, then q may receive more than two distinct messages with identical

payload when process p sent only two such distinct messages.

In order to circumvent the above problem of message duplicity, the retransmis-

sion techniques for achieving reliable communication resort to tagging each distinct

message with a unique identifier (usually a sequence number). These unique identi-

fiers enable the recipient to distinguish copies of an older message from a new message
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with identical payload. However, since the sending process has no way of reliably de-

termining if all the copies of a given message have either already been received by

the recipient or dropped by the channel, the sending process cannot reuse the unique

identifiers. Consequently, if two processes send messages to each other infinitely often,

the unique identifiers grow without bound. Such unbounded growth in the unique

identifiers results in unbounded message sizes. However, from the earlier discussion

in Section III.2.3, we know that empirical systems cannot be expected to satisfy an

upper-bound on message delay if the message size is unbounded. Therefore, tech-

niques that achieve reliable communication on top of unreliable channels suffer from

the potential tradeoff of losing the timeliness of the communication. Consequently,

empirical systems which inherently lose messages at the physical level cannot simul-

taneously achieve theM∗ behavior of reliable communication and a real-time upper

bound on message delay.

III.2.4.1. Channel capacity

The definitions ofM∗ make no explicit mention of channel capacity. However, channel

capacity has a significant impact on message reliability, message delay, and relative

process speeds in empirical systems. In fact, empirical systems with finite channel

capacity and processes running at different speeds cannot be modeled byM∗.

All empirical systems have finite channel capacity. Channel capacity, however,

could be bounded, or unbounded. We now explore the system behavior under both

assumptions.

First, assuming that channel capacity is bounded, we analyze the system behavior

with respect to message delay and reliability. From the definitions ofM∗, we know

that the model allows processes to run at different speeds while maintaining their

relative process speeds. Consider an instance of an empirical system with bounded
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channel capacity where a process p is running faster than a process q. Let process

p send a message to q every k time units, and let process q (being slower than p)

consume a message every 2k time units. Let the channel capacity be C messages. Let

the system start execution at time t = 0 with empty channels. Clearly, at time t = 2k,

p would have sent 2 messages whereas q would have consumed just 1. Therefore, at

the end of time 2k, the channel contains 1 message in transit. The number of messages

in transit increases by 1 every 2k time units. Therefore, at time 2k × C, there at C

messages in transit, and the channel is now full. At time 2k×C + 1, process p sends

another message. However, since the channel is already full, some message has to be

dropped. Since p sends messages faster than q consumes them, messages will have

to be dropped infinitely often. This implies that in systems with bounded channel

capacity, if faster processes are allowed to send messages at any time, then channel

reliability cannot be guaranteed.

Alternatively, if the sender could be blocked from sending when the channel is

full, then it may be possible to guarantee channel reliability and timeliness even when

processes run at different rates. However, empirical systems support asynchronous

sends and buffer messages until delivered. Therefore, for M∗ to model empirical

systems, it cannot block the sender. Consequently, empirical systems with bounded

channel capacity and processes running at different speeds cannot be modeled by

M∗
9.

9It can be argued that ‘ping-pong’ style protocols — where processes defer send-
ing the next message until an ack for the previous message has been received —
may be used to send and receive messages in order to guarantee message reliabil-
ity in systems with bounded channel capacity. Such ‘ping-pong’ transactions act as
flow control mechanisms to maintain a bounded number of messages in transit, thus
guaranteeing zero message loss in channels that are reliable with bounded channel
capacity (provided the bound on the channel capacity is sufficient). However, such
‘ping-pong’ protocols cannot be used in defense of M∗ system models because not
all applications are designed to work under such communication mechanisms. The
specification of M∗ does not restrict communication behavior to such ‘ping-pong’
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Now consider empirical systems with unbounded channel capacity; that is, at

any given time the channels can accommodate a finite, but unbounded, number of

messages. Revisiting the example in the previous paragraph, except that the channel

capacity is unbounded, we see the following: Since the channel is never full, messages

need not be dropped. However, note that after 2k×C time units, there are c messages

in transit. Among the C messages in transit, some message will experience a delay

of at least 2k×C time units (because q consumes only 1 message per 2k time units).

Therefore, among the messages in transit at time t, some message experiences a delay

of at least t time units. In other words, over the lifetime of the network, there exists

no upper bound on message delay10. Therefore, any empirical system with unbounded

capacity with processes running at different speeds cannot be modeled byM∗.

III.2.4.2. Final analysis

Based on the above preliminary illustrations, we can conclude that real-time based

M∗ models do not model empirical systems, or any systems constructible on top of

existing empirical systems. Therefore, in order to build idealized models of partial

synchrony à la M∗, our only remain option is to viewM∗ and its derivative models

as fairness-based models of partial synchrony11.

based communication, hence the applications designed for M∗ models need not be
designed to work under a ‘ping-pong’ protocol. Therefore, the ‘ping-pong’ protocols
have limited applicability underM∗, and hence are not a viable defense forM∗.

10Note that the alternative is to block the sender, but we have already established
that empirical systems do not block the sender, and hence cannot be used as a defense
to achieve the upper bound on message delay.

11Recall that the system model ♦AF is identical to a fairness-based interpretation
ofM∗.
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III.2.5. Fairness-based M∗ and empirical systems

It is fairly straightforward to show that the fairness-based interpretation ofM∗ cannot

describe any empirical systems. For instance, the fairness-based interpretation allows

a message to take an arbitrary amount of real time as long as the recipient does not

execute too many steps. In empirical systems, message delays are specified in real-

time units, and it is unreasonable to expect communication to change depending on

process speeds.

However, when we consider systems implementable on top of empirical systems,

fairness-basedM∗ appears to be a viable candidate system model. This dissertation

pursues this possibility to its logical conclusion. That is, we construct fairness-based

M∗ models on top of empirical systems. The methodology used to achieve this is

described in the following chapter.
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CHAPTER IV

METHODOLOGY

You know my method. It is founded upon the observation of trifles.

The Boscombe Valley Mystery, 1892
The Adventures of Sherlock Holmes

–Sir Arthur Conan Doyle

In Chapter I, we discussed the limited impact of algorithms and results for idealized

models of partial synchrony on deploying empirical distributed systems. In Chap-

ter III, we saw how one of the reasons for such limited impact is that these idealized

models are often specified with real-time based temporal constraints on computation

and communication, and such real-time based partially synchronous models do not

model empirical systems, or any systems constructible on top of existing empirical

systems. However, fairness-based partial synchrony does not seem to suffer from such

issues. Therefore, a reasonable conjecture is that while real-time based models of

partial synchrony may be unrealizable on empirical systems, fairness-based models

of partial synchrony can be implemented on top of empirical systems. This chapter

provides the methodology used in this dissertation to establish the aforementioned

conjecture.

Our first task is to define what it means to implement a system model on top

of a distributed system. By borrowing the concepts from the virtualization commu-

nity, we define implementingM∗ system models to mean creating a virtual execution

environment which satisfies the properties of (fairness-based) M∗. Such a virtual

environment consists of correct-reliable communication channels and eventually fair

schedulers (both of which are described next). Briefly, the methodology involves im-

plementing correct-reliable communication channels and the scheduler by employing
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an appropriate failure detector in an otherwise asynchronous environment, and then

implementing the appropriate failure detector in empirical systems.

IV.1. Correct-reliable communication channels.

The constructions of reliable communication from [1–3,11,37] may be used to imple-

ment a correct-reliable communication channel on top of empirical systems. However,

theM∗ specification also requires an upper bound on the number of steps executed

by the recipient of a message while the message is in transit (until the sender crashes).

In order to guarantee such an upper bound, the scheduler (described next) sends mes-

sages on these correct-reliable channels only when the recipient process requests for

messages, and stall the recipient process until all pending messages are received. Such

a ‘pull’ mechanism for communication ensures that the steps taken by the recipient

process is bounded for the duration that each message is in transit. However, if a

message is sent from a process that has crashed, then the recipient need not wait to

receive these pending messages.

IV.2. Scheduler

The scheduler forms the basic execution infrastructure of the virtualM∗ environment.

The role of the scheduler is to schedule processes such that the bound Φ on relative

process speeds and the upper bound ∆ on message delay is maintained. The scheduler

should be able to guarantee these bounds despite process crashes in the underlying

system model. Essentially, the above requirement translates to each process (say)

i in the system establishing local synchronization points in time every Φ steps and

ensuring that between any two consecutive synchronization points at process i, every

process that is not crashed has executed at least one step. If not, process i waits
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Fig. 1 The combination of constructions to implement M∗ on top of the empirical

system model.

until every process that is not crashed has executed at least one step. Similarly, every

time the scheduled application at process i sends a message to process j, process i

establishes a synchronization point at j such that the application at j stalls after

taking ∆ steps if the message from i has not arrived at j. If i crashes before the

message is delivered at j, then j is required to not continue stalling. In order to

determine the set of crashed processes on whom process i need not wait to execute

steps, we employ a failure detector.
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IV.3. Failure detectors

Recall that a failure detector is a distributed oracle that can be queried for (potentially

unreliable) information about process crashes. Failure detectors will be employed

by the scheduler implementation. A particular failure detector of interest is the

eventually perfect failure detector ♦P .

The eventually perfect failure detector (♦P), mentioned earlier, can give arbi-

trarily unreliable information about process crashes for a finite duration. However,

eventually it provides perfect information about crash faults forever. We show that

♦P is necessary and sufficient to implement the M∗ system models. Therefore, in

order to implement M∗ on top of empirical system, we need to implement ♦P on

empirical systems, which completes the set of algorithmic transformations necessary

to implementM∗ models on top of empirical systems.

The combination of constructions described in this chapter are shown in Fig. 1.

The ♦P failure detector construction is described in Chapter VIII, and the virtual

M∗ system model is constructed in Chapter VII.
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CHAPTER V

FORMAL FRAMEWORK AND MODELING

He who would do good to another, must do it in Minute Particulars,

General Good is the plea of the scoundrel, hypocrite, and flatterer:

For Art & Science cannot exist but in minutely organized Particulars,

And not in generalizing Demonstrations of the Rational Power.

Jerusalem: The Emanation of The Giant Albion, 1820

–William Blake

This chapter presents the theoretical framework that will be used for definitions,

specifications, analysis, algorithms, and proofs in the remainder of this dissertation.

First, we start with informal descriptions of various terms and components within

timed I/O automata (TIOA) model in Section V.2. Subsequently, we define the

TIOA that constitute a distributed system: processes, protocols, program actions,

schedulers, communication links, and fault environment in Section V.3. Then, we

specify constraints on a TIOA that models the system behavior of a distributed system

in Section V.4. Finally, we define various models of distributed systems specified as

various restrictions on admissible system behavior in Sections V.5.

V.1. Motivation

There is a strong need to characterize failure detectors and partial synchrony within

a theoretically-consistent formal framework, and unfortunately, such a framework is

currently lacking. All existing frameworks either characterize partial synchrony or

failure detectors in isolation, but not both. In this section, we will review existing

theoretical frameworks that characterize partial synchrony, failure detectors, algo-
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rithms that use failure detectors, or implementations of failure detectors. We will see

how all the existing approaches are deficient, and finally, provide an overview of the

new framework proposed in this chapter.

V.1.1. Existing frameworks

The first formal framework to characterize partial synchrony was proposed in [33,35].

In this framework, every process executes a single sequential thread of execution

subject to the constraints imposed by the system model. This mechanism works

well for executing a single algorithm to solve (say) consensus or failure detection,

but the framework does not extend to the possibility or the mechanics of executing

multiple threads of execution where each thread may either be subject to partial

synchrony or subject to asynchrony. Recall that in failure-detector based system

models, the process is assumed to have access to a failure detector module which

is (ostensibly) implemented in partial synchrony, but the application that employs

the failure detector executes within an asynchronous environment. Therefore, the

framework in [33,35] is inadequate for the purpose of this dissertation.

The first formal framework to consider failure detectors was proposed in [20].

The framework assumed the existence of a failure-detector module at each process in

an asynchronous system with reliable channels. The definition of an execution in this

framework depends on (1) the times at which processes crash, (2) the outputs of the

failure detector, and (3) the algorithm being executed. While this framework over-

comes the issue of multiple threads of execution within a single process, the framework

is silent on the actual implementation of the failure detector itself. Furthermore, the

framework mandates that a failure detector provide an output at every instant of

time and respond to a query instantaneously. However, no practical implementation

of a failure detector can (1) provide an output at each time instant, and (2) have
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zero latency between query and response. Other issues with the framework in [20]

have been explored in [23]. The exposition in [23] illustrates how the requirement

of valid outputs at every instant of time and an instantaneous response to a query

makes it impossible for an arbitrary failure detector to be reflexive; that is, it is not

always possible for a failure detector output to be repeated by a simple asynchronous

algorithm and yet maintain correctness. Briefly, the problem is as follows: since the

algorithms that query a failure detector execute under asynchrony, these algorithms

could ‘miss’ a set of changes in the output of failure detector between times (say) t and

t′ if the algorithm does not take any steps between t and t′. Furthermore, note that

[t, t′] could encompass an unbounded duration of time. Therefore, failure detectors D

whose specifications require some real-time sensitive change in their output (like, for

instance, instantaneous suspicion of a crashed process) cannot be implemented even

in systems augmented by D.

The issue of failure detectors’ irreflexivity and the issue of implementability of

failure detectors is addressed in [53]. The system model framework in [53] by Jayanti

et al. (henceforth called the Jayanti framework) augments the traditional failure-

detector framework in [20] with input and output queues for algorithms to interact

with the ‘external world’. Thus, the definition of an execution is augmented and

depends on (1) the times at which processes crash, (2) the outputs of the failure

detector, (3) the contents of the input queue at each process, and (4) the algorithm

being executed. The failure detectors are made reflexive by allowing the duration

between a query and its response to be non-zero. Thus, the framework disallows

failure detectors D whose specifications require some real-time sensitive change in

their output (like, for instance, instantaneous suspicion of a crashed process). The

issue of implementability of failure detectors is addressed by essentially multiplexing

the actions of the failure detector implementation and the applications querying the
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failure detector. Every query to the failure detector is treated as an addition to

the input queue of failure detector.1 A similar multiplexing is claimed to permit

applications and the failure detector to share the same communication channels.

Unfortunately, the Jayanti framework is not sufficiently detailed to eliminate

ambiguity and undesirable side effects of certain permissible, but undesirable, be-

havior of algorithms within the framework. Additionally, the framework can be too

restrictive to permit unrestrained asynchrony among applications querying the failure

detector. We explain these issues next. The Jayanti framework states that the failure

detector algorithm and other application algorithms are multiplexed ‘fairly’, but no

formal definition of such fair multiplexing is mentioned. A round-robin scheduling of

steps of each application (including the failure detector) is provided as an illustrative

example. Therefore, despite a partially synchronous system model’s guarantees on

computation, an ‘insufficiently fair’ scheduler that multiplexes actions of various algo-

rithms could deny the failure detector algorithm the necessary guarantees to behave

correctly. On the other hand, if round-robin scheduling is accepted as the defini-

tion of a ‘fair’ schedule, then the system behavior, when restricted to applications, is

no longer completely asynchronous. Round-robin scheduling ensures all applications

execute steps at approximately the same rate. If the underlying system is partially

synchronous, then the execution of each application is partially synchronous as well.

Therefore, the Jayanti framework could potentially be too restrictive to model asyn-

chronous systems augmented with failure detectors.

The multiplexing of messages from various applications also introduces similar is-

sues in the Jayanti framework. If the failure detector application sends messages less

1Recall that the input and output queues are used by the failure-detector algorithm
to interact with the ‘external world’, and, in this case, the ‘external world’ are the
applications querying the failure detector.
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frequently than other applications, then other applications could potentially flood

the channels with their messages, and thus increase the delay experienced by the

failure detector messages. Such inflation in message delay beyond the guarantees

provided by the underlying system model could compromise the correctness of the

failure detectors. This issue becomes more acute if we assume that the underly-

ing system model permits message loss. Traditional system model assumptions for

failure-detector based algorithm includes reliable communication. There are several

mechanisms available to implement reliable communication on top of unreliable chan-

nels [1–3,11,37]. However, all such mechanisms involve repeated message retransmis-

sions that potentially increase the end-to-end delay experienced by each message.

While this is not problematic for the applications themselves, the correctness of fail-

ure detectors depends crucially on message delay. Therefore, such multiplexing of

messages from multiple applications introduces non-trivial issues that have not been

addressed in the Jayanti framework.

We overcome the above issues by introducing a new system model framework

that is based on Timed I/O Automata and ensure that the specifications guarantee

that these issues do not occur within the proposed framework.

V.1.2. Overview of the proposed Timed I/O Automata framework

Timed I/O Automata (TIOA) [54] is a mathematical framework for specifying dis-

tributed systems whose behavior is constrained by the duration of real time that

elapses between events within the system. In TIOA, every entity within a distributed

system is a (possibly infinite) state automaton with input and output actions which

interface with other entities within the system. For instance, each process is an au-

tomaton, and each communication link is an automaton. The process automaton

interfaces with the communication-link automaton with the actions send and receive
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which send and receive messages, respectively. The process automaton sends a mes-

sage by invoking its output action send with triggers the input action send of the

communication-link automaton. Similarly, the process automaton receives a mes-

sage when its input action receive is triggered by the output action receive of the

communication-link automaton.

A process automaton contains multiple protocols. The algorithms that solve vari-

ous problems are executed within these protocols. Each process has a control protocol

whose executions are constrained by the partial synchrony of the underlying system

model. All other protocols, called application protocols, execute without any tim-

ing constraints, and hence are completely asynchronous. Failure detector algorithms,

which require partial synchrony to behave correctly, are typically executed within

a control protocol, and all other applications which query the failure detector are

executed within application protocols. While such a structure addresses the issues

associated with managing concurrent threads of execution, one thread for each al-

gorithm, the issue of multiplexing messages from multiple applications still remains,

and the latter is addressed next.

The messages sent by all the application protocols are stored locally within the

control protocol of a process. The control protocol periodically dequeues one message

from each application protocol to a specific recipient, concatenates them together with

its own message (typically a failure detector message) to that recipient, and sends out

a single composite message on the communication link. When such a composite mes-

sage is received by the control protocol at the recipient process, the message is split

into its constituent messages for each protocol, and these messages are enqueued into

their respective protocols’ message buffers to be processed by the respective appli-

cation or failure detector. This mechanism ensures that a failure detector message

is never delayed due to application protocol traffic, thus the communication bounds
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guaranteed by the underlying system model are preserved for failure detector traffic as

well. For applications that require reliable communication, the application protocol

may implement reliable communication using one the many algorithms available for

implementing reliable communication on top of unreliable channels [1–3,11,37] with-

out affecting the communication delay experienced by the failure detector protocol.

The failure detector updates its suspicion information by updating a local variable

called suspectList, and this updating is assumed to happen instantaneously. Thus the

latest output of the failure detector is available at each time instant. The application

protocols can read this variable at any time through the actions query and response

which is assumed to take zero time.

The proposed framework addresses all the issues of existing frameworks for

failure-detector based systems within partially synchronous systems. Before provid-

ing a detailed description of this framework, we provide a detailed overview of Timed

I/O Automata next, and follow it up with the framework description in Section V.3.

V.2. Timed I/O Automata

Recall that timed I/O Automata (TIOA) is a mathematical framework for specifying

distributed systems whose behavior is constrained by the duration of real time that

elapses between events within the system. For a complete and formal description of

the theory of TIOA, see [54]. An informal description follows.

V.2.1. Definitions

A TIOA is a state machine that consists of a set of variables V which determine

the state of the automaton, a set of discrete actions A which change the state of

the automaton by changing the value of (some) variables, and a set of trajectories T
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which model the continuous change in the values of (some) variables over intervals of

time.

V.2.1.1. Time

In TIOA, a unidirectional time axis T is modeled by a subgroup of (IR,+) — the real

numbers with addition. An interval of time J is a nonempty, convex subset of T .

V.2.1.2. Variables

Variables may be discrete or analog. The values of discrete variables are typically ma-

nipulated by actions, whereas the values of analog variables are typically manipulated

by evolution functions (i.e, by passage of time). Examples of discrete variables in-

clude variables that store information like user input, messages in-transit, and such.

Examples of analog variables include variables that store local clock values, global

time values, and such. The set of variables is denoted V.

V.2.1.3. States

The state of an automaton is uniquely determined by the values of the variables in

the set V. The set of all possible valuations of V (denoted val(V)) represents the

state space Q of the automaton. The size of this state space may be finite or even

infinite. Some subset of Q is denoted Θ, the start states. Intuitively, the state of an

automaton upon initialization is a member of Θ.

V.2.1.4. Actions

Actions cause instantaneous changes in the values of a set of variables V (and conse-

quently, change the state of the automaton). A TIOA has a fixed set of actions. An

action may change the state of the automaton only when the action is enabled. Every
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action a has a predicate on the state of the automaton called a precondition (denoted

a.prec(s) where s is the state of the automaton) which determines if a is enabled or

not. If the precondition evaluates to true, then the corresponding action (a) is said

to be enabled. The effect of executing action a in state s is to change the state of the

automaton to a new state s′ (which may be the same as s) denoted a.eff(s).

Actions are partitioned into two sets: external and internal. An automaton inter-

acts with other automata through external actions. For example, a TIOA modeling a

processor interacts with the TIOA modeling a communication link through external

actions send and receive which send and receive messages, respectively. An internal

action changes the state of the automaton but does not interact with other automata.

External actions are further partitioned into two sets: input and output. Input

actions ‘receive’ information from the ‘outside world’, that is, from other automata

(for example, the receive action at a processor), and output actions ‘send’ information

to the ‘outside world’ (for example, the send action at a processor). While the pre-

conditions associated with internal and output actions may be arbitrary predicates

on the state of the automaton, the precondition associated with input actions must

be true; that is, input actions are always enabled.

V.2.1.5. Trajectories

Trajectories may be viewed as functions that map intervals T of time to val(V ′) where

V ′ ⊆ V. If V ′ is the empty set for a trajectory over an interval T , then the trajectory

simply denotes the passage of time over the interval T . If the interval T is [t, t] (for

t ∈ T), then the trajectory is called a point trajectory for the values V ′ and it denotes

an instantaneous change in the values of the variables in V ′. Given a trajectory τi,

the state of the automaton at the start of τi is called the first valuation of τi and is

denoted τi.fval. The time associated with τi.fval is denoted τi.ftime. If τi is closed
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and spans a finite interval of time then the state of the automaton at the end of τi is

called the last valuation of τi and is denoted τi.lval. The time associated with τi.lval

is denoted τi.ltime. As a corollary, note that if the interval T associated with τi is

finite, then T = [τi.ftime, τi.ltime]. Let T denote the set of trajectories over the

valuation of the set V ; that is, let T denote the set of trajectories over Q — the state

space of the automaton. In addition, we assume that for all times t ∈ T, the point

trajectories for all states in Q over all intervals [t, t] are in T .

V.2.1.6. Executions

The behavior of a TIOA is described by executions. An execution α of a TIOA is a

sequence of alternating trajectories and actions of the form α = τ0a1τ1a2τ2 . . ., with

the following properties:

1. τ0.fstate ∈ Θ. That is, τ0.fstate is a start state.

2. Each τi is a trajectory in T .

3. If i < j, then τi.ltime ≤ τj.ftime.

4. If τi is not the last trajectory in α, then:

(a) τi.ltime = τi+1.ftime, and

(b) ai+1.pre(τi.lstate) = true and ai+1.eff(τi.lstate) = τi+1.fstate — that is,

action ai+1 is enabled and executed at time τi.ltime and the state of the

automaton changes instantaneously from τi.lstate to τi+1.fstate.

5. If τi is the last trajectory, then τi.ltime =∞. We consider only infinite execu-

tions.
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6. Let a be an action specified in the TIOA. If ∀i ∈ IN : ai 6= a, then @j ∈ IN

such that ∀k ≥ j,∀t ∈ τk : a.pre(τ.fstate) = true where dom(τ) = [t, t] (and,

by assumption τ ∈ T ). That is, every continuously enabled action is eventually

executed. There exists no action a such that a is eventually and continuously

enabled in some suffix of α and is never executed. This property is also called

weak fairness.

V.2.2. Operations

Three important operations on TIOA are composition, hiding, and restriction. Com-

position allows us to combine multiple TIOA into a single TIOA, and hiding allows

us to replace certain input and output actions of the constituent TIOA with an in-

ternal action in the composite TIOA. Restriction allows us to project an execution of

a TIOA on a subset of actions and variables. Restriction can be used in conjunction

with the composition operation to analyze the behavior of a single TIOA in isolation

while it is composed with other TIOA. We describe these three operations in this

section.

V.2.2.1. Composition

As mentioned earlier, composition allows a complex automaton to be constructed

by multiple simpler automata. For example, the entire distributed system can be

represented as a single TIOA by composing the process TIOA for each process and

the system model TIOA consisting of a scheduler and the communication links. The

composition operation among a set of automata Aset = {A1,A2, . . . ,An} identifies

each action ai such that ai is an unique output action of some automaton Ak ∈ Aset,

and ai is an output action of the automata in Aai ⊂ Aset (where Aai 6= ∅) . When

Ak executes its output action ai, the automata in Aai execute their input action ai.
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V.2.2.2. Hiding

As mentioned earlier, hiding operations allow us to reclassify external actions of

constituent automata as an internal action of the composed automaton. Given two

automata A1 and A2 that are composed to form an automaton A, the automaton

A is equivalent to an automaton B where B is identical to A except that: every

pair of actions (ai, ai), one from A1 and another from A2, that are ‘composed’ by

the composition operator are replaced by a single internal action a′ with the same

precondition as the output action ai (note that the precondition of the input action

ai is simply true).

V.2.2.3. Restriction

Restriction is a projection operator with respect to set of actions A′ and a set of

variables V ′. Given an execution α of a TIOA, let A′ be a subset of the actions of the

TIOA and V ′ be a subset of the variables in the TIOA. An (A′, V ′)-restricted execution

of α is obtained by first projecting all the trajectories of α on the variables in V ′,

then removing all the actions not in A′, and finally concatenating all the adjacent

trajectories.

V.2.3. Special kind of TIOA

We define a special kind of TIOA for the automata that are only nominally timed.

That is, such automata are not constrained by passage of time, but only constrained

by the ordering of actions within the automaton. Such automata are said to be timing-

independent and are defined as follows: A timed automaton is said to be timing-

independent if and only if all of its state variables are discrete and its set of trajectories

is exactly the set of constant-valued functions over [0, t) for all t ∈ R∪{∞}. That is,
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the state of the system does not change simply through passage of time, it changes

only when an action is executed.

With timing-independent automata, since all trajectories are constant-value func-

tions, for every finite trajectory τ , we have τ.fstate = τ.lstate. Therefore, all execu-

tions of a timing-independent TIOA can be replaced with runs consisting of alternat-

ing sequences of states and actions such that for every execution α = τ0a1τ1a2τ2 . . .

there exists a run αrun = s0a1s1a2s2 . . . where si = τi.fstate.

V.3. Constituents of a distributed system

This section defines the constituting elements of a distributed system and their model-

ing as TIOA. A distributed system has multiple constituent components: step sched-

uler, communication schedulers, and processes. Informally, step schedulers dictate

when processes can execute certain critical actions (called program actions), and com-

munication schedulers dictate when processes can send messages to other processes

and receive messages from other processes within the system. A detailed specification

of the aforementioned terms follows.

V.3.1. Step scheduler and communication scheduler

The step scheduler and communications scheduler are modeled as a single TIOA [54,

60] M (called, simply as, scheduler). However, for ease of understanding, we describe

the step scheduler separately and independently from communication scheduler.2

2Note that we could alternatively specify step scheduler and the communication
scheduler as separate TIOA and then compose them to form M , but this is laborious
and ultimately wasteful because in the entire dissertation we treat a system model as
a single entity.
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V.3.1.1. Step scheduler

The step scheduler triggers a process to perform a specific operation through an

output action takeStep. The step scheduler has a different takeStep action for each

process. The behavior of a process when the scheduler invokes the output action

takeStep is discussed later in Section V.3.2. The step scheduler may impose con-

straints on the relative ordering of invocations of takeStep for various processes in

the system. For instance, the step scheduler could constrain the sequence of invoca-

tions of takeStep for various processes such that between two consecutive executions

of takeStep for each process i, the step scheduler is guaranteed to invoke takeStep

for each process in the system no more than (say) Φ times. Such a step scheduler is

said to impose an upper bound Φ on relative process speeds. The step scheduler is

guaranteed to invoke takeStep for each process infinitely often, except if the process

is crashed; crashed processes are discussed in Section V.3.3.

V.3.1.2. Communication scheduler

Processes communicate with each other through communication links. The communi-

cation scheduler takes receipt of the messages to be sent to other processes, transports

them through communication links, and determines when messages may be delivered

to the recipient processes. Each pair of processes (i, j) are assumed to be connected

by two unidirectional communication links that send and receive messages between i

and j in both directions. Process i sends a message to process j by invoking its out-

put action send(i,j). The output action send(i,j) is also the input action send(i,j) for

the system model’s communication scheduler. The communication scheduler trans-

ports that message from i to j through the respective communication link between i

and j. The message is delivered to j through the communication scheduler’s output
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Fig. 2 Schematic of the Timed I/O Automata framework for a message-passing

distributed system.

action receive. The scheduler M ’s output action receive(j,i) is also j’s input action

receive(j,i), and the message is delivered to j.

The communication scheduler may satisfy some constraints on reliability and

temporal guarantees for communication. For instance, the scheduler may guarantee

that every message sent on a communication link is delivered, but there may be an

arbitrary time between a send and its corresponding receive action. Alternatively, the

scheduler may guarantee that some subset of the messages sent on a communication

link are received within some bounded delay. That is, for some subset of messages,

there exists an upper bound on the duration between the send and the corresponding

receive action while other messages may be arbitrarily delayed or dropped.

A schematic illustrating the interaction between the TIOA components of a

message-passing distributed system is shown in Fig. 2.
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V.3.2. Processes

The system has a fixed set Π = {p1, p2, . . . , pn} of n processes. A process within

a system is modeled by a TIOA [54, 60]. Typically, and in this dissertation, pro-

cesses perform multiple tasks concurrently. These tasks may include crash fault de-

tection(cf. [20]), consensus(cf. [43]), reliable communication (cf. [3]), mutual exclu-

sion [30], and such. In order to model each of these tasks separately within a single

process, we assume that each process executes a fixed set ρ = {r0, r1, r2, . . . , rm} of

one or more protocols concurrently. Each protocol corresponds to a single task of the

kind mentioned earlier and is modeled as a TIOA as well. Consequently, a process

TIOA may be viewed as the composition of its constituent protocol TIOA.

Although there are many protocols within a process, only one protocol can inter-

act with communication links (via the scheduler)3. Consequently, among the many

protocols within a process, we designate one protocol to be the control protocol, and

it is denoted r0. All other protocols are called application protocols. The control pro-

tocol acts as a gateway between application protocols and the scheduler M. While

application protocols’ actions are unconstrained by the scheduler, the control proto-

col may execute certain actions (including sending messages on the communication

links) only when permitted by the scheduler; that is, the control protocol performs

certain actions (these actions are the takeStep actions and will be discussed later)

only in response to the step scheduler’s takeStep action. Also, all the messages sent

and received by application protocols are handled by the control protocol which, in

turn, interfaces with the communication links through the send and receive actions.

The structure of a protocol TIOA is as follows. Each protocol has two local

3In empirical systems, this task is performed by the network layer protocol.
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message buffer queues called send buffer and receive buffer.4 Any message that the

protocol wants to send to another process is placed in the send buffer, and all the

messages received from another process are retrieved from the receive buffer. A pro-

tocol also has at least two external actions: send and receive. The send action is an

output action that sends a message from the local send buffer either to the control

protocol (at that process) or to the communication link to be delivered to its counter-

part protocol automaton at another process. Similarly, the receive action is an input

action that receives a message from either the control protocol (at that process) or

the communication link and places the message in its local receive buffer.

Since the control protocol acts as a gateway between application protocols and

the communication scheduler, we label the send and receive actions for the application

protocol differently from the send and receive actions for the control protocol. In

the case of application protocols, the send output action is labeled rSend and the

receive input action is labeled rReceive. Again, since the control protocol acts as a

gateway between application protocols and the communication scheduler, the action

rSend becomes an input action, and the action rReceive becomes an output action,

to the control protocol. In the case of the control protocol, the send output action

is labeled send and the receive input action is labeled receive. The send action at the

control protocol becomes an input action for the communication scheduler, and the

receive action at the control protocol becomes an output action for the communication

scheduler.

Apart from the send and receive actions, each protocol also has an action labeled

4Note that these message buffers are a part of the protocol’s local state. They
may be viewed as local variables that store messages. Also, the names of these
variables differ between application protocols and control protocols. The names of
these variables are explained in Sections V.3.2.1 and V.3.2.2 for control protocols and
application protocols, respectively.
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takeStep. The action takeStep is an internal action in application protocols. In the

control protocol for, say, a process i, the action takeStep is an input action which is

executed with the output action takeStep by the step scheduler for process i. Note that

takeStep actions are executed only while the hosting process is not crashed (we discuss

process crashes in detail in Section V.3.3). In the case of application protocols, every

application protocol has an input action crash which is invoked when the hosting

process crashes. Upon being invoked, crash disables the program action takeStep

permanently. In the case of control protocols, since takeStep is an input action,

takeStep cannot be disabled. Consequently, in order to model the control protocol at

a crashed process not executing its program action, the step scheduler stops invoking

the action takeStep to cease a crashed process from taking control-protocol program

actions.

Recall that the step scheduler and communication scheduler are modeled as a

single TIOA denoted (simply as) scheduler. For the rest of this dissertation, we will

not longer refer to step scheduler or communication scheduler in isolation. Instead,

we simply refer to them together as the scheduler.

The TIOA schematic for the constituent protocols within a process is shown

in Fig. 3. A detailed description of the structure of control protocols, application

protocols, and program actions follows.

V.3.2.1. Control protocols

Recall that a control protocol acts as a gateway between application protocols, and

the system scheduler and communication links. Hence, it contains the minimal set of

variables and actions shown in Algorithms 1–2, and these variables and actions are

described in this section.

The control protocol maintains two arrays of message buffers: rSendBuff and
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Fig. 3 Schematic of the TIOA for a process consisting of multiple protocols (ignoring

process crashes).

rReceiveBuff. All message buffers are modeled as unbounded-size FIFO queues. The

message buffer rSendBuff[r,j] in the control protocol of process i contains the mes-

sages that protocol r (at process i) has sent to (protocol r at) process j. Similarly,

the message buffer rReceiveBuff[r,j] in the control protocol of process i contains the

messages for protocol r (at process i) sent from (protocol r at) process j, and yet

to be delivered to protocol r. These message buffers are manipulated by the input

actions rSend and receive, and the output actions rReceive and send.

Note that we make no assumptions about the contents of messages sent and

received by the control protocol. This is denoted in Algorithm 1 by declaring each

instance of message msg to be of arbitrary Type.

The action rSend(msg,r,j) enqueues the message msg from protocol r to process j in

the message buffer rSendBuff[r,j]. The action send(msg,i,j) at process i (1) dequeues one

message from each message buffer rSendBuff[r,j] corresponding to protocol r’s messages
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to process j, (2) appends these messages together (with markers and identifiers so

that the individual messages may be retrieved by the recipient) to construct msg and

sends msg to j (through the communication links). Such a message is received by the

control protocol at j through the action receive(msg,j,i) which, in turn, retrieved the

individual messages within msg and for each individual message m′ sent by protocol r,

m′ is added to rReceiveBuff[r,i] message buffer. Every protocol r at j take receipt of a

message m′ through the action rReceive(m′,r,i) in which protocol r receives a message

m′ from i by dequeuing m′ from rReceiveBuff[r,i].

We also define aliases sendBuffer[j] and receiveBuffer[j] for rSendBuff[r0, j] and

rReceiveBuff[r0, j] for reasons described later in Section V.3.2.2.

Apart from the above actions, the control protocol also has the input action

takeStep which enables the control protocol to take a program action. After executing

a program action, the control protocol immediately invokes the action send for all

processes j to ensure that messages are promptly sent over the communication links.

When a process crashes, the scheduler stops executing the action takeStep for the

crashed process. Consequently, upon crashing, the control protocol stops executing

its program action and ceases to send messages over the communication links.

While the above description outlines the minimal variables and actions of the

control protocol, it is permissible for control protocols to have additional actions and

variables that enable the control protocol to interact with the application protocols.

In fact, this dissertation augments control protocols with specific actions and variables

to enable such interaction.

V.3.2.2. Application protocols

As mentioned earlier, an application protocol consists of an input action receive, an

output action send, and an internal action takeStep (which executes the program
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Algorithm 1 Signature for minimal states and actions of a control protocol automa-

ton. For descriptions of the automaton, see Sections V.3.2.1 and V.3.2.3.

automaton controlProtocol(i: pIndex) Control Protocol for process i
type pIndex = enumeration of p1,p2,...,pn where Π = {p1, p2, . . . , pn}
type rIndex = enumeration of r0, r1, r2,. . .,rm where ρ = {r0, r1, r2, . . . , rm}

and r0 refers to the control protocol itself

signature
input rSend(msg: Type, r : rIndex\{r0}, j: pIndex)

//Procotol r sends message msg to process j
output send(msg: Type, i: pIndex, j : rIndex)

//Sends message msg from process i to process j
output rReceive(msg: Type, r : rIndex\{r0}, j: pIndex)

//Delivers message msg to protocol r from process j
input receive (msg: Type, i : pIndex, j : pIndex)

//Process i receives message msg from process j
input takeStep( i : pIndex) //Scheduler enables process i to take a step

states
now: Real ← 0 //Current time
rSendBuff: Array[ rIndex , pIndex, Queue[Type]] ← constant(∅)

//Messages sent by protocols
rReceiveBuff : Array[ rIndex , pIndex, Queue[Type]] ← constant(∅)

//Messages received for protocols
pause: Array[pIndex, Boolean] ← constant(false) //Device to stop time evolution

aliases
sendBuffer [ j ] ≡ rSendBuff[r0,j]
receiveBuffer [ j ] ≡ rReceiveBuff[r0,j]
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Algorithm 2 Minimal state transitions for the control protocol automaton. For

descriptions of the automaton, see Sections V.3.2.1 and V.3.2.3.

transitions for automaton controlProtocol(i: pIndex)
input rSend(msg, r, j )
effect
enqueue msg in rSendBuff[r , j ]

output send(msg,i, j )
precondition
(pause[ j ] = true) ∧ (msg = join(∀r∈ ρ: 〈(front rSendBuff[r,j]) else ⊥,r〉))

//Dequeue one message from each protocol send buffer (or ⊥, if
//the buffer is empty) and join them together to form message m

effect
∀r∈ ρ: dequeue from rSendBuff[r,j]
pause[ j ] ← false

output rReceive(msg, r , j )
precondition
msg = ((front rReceiveBuff [ r , j ]) else ⊥)
effect
dequeue msg from rReceiveBuff[r, j ]

input receive (msg, i , j )
effect
∀r∈ ρ: enqueue m′ in rReceiveBuff[r,j] where 〈m′,r〉 is in msg

input takeStep( i )
effect
execute an enabled program action
∀j∈ Π::pause[j] ← true

trajectories
stop when
∃j∈ Π::pause[j] = true //Pause time to send msgs immediately after a program action
evolve
d(now) = 1 //Time evolves at the rate of 1 time unit per real-time unit
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actions). In this section, we describe the structure of an application protocol in

detail. An application protocol TIOA contains the variables and actions shown in

Algorithm 3. The application protocol maintains two message buffers: sBuffer and

rBuffer. The message buffer rBuffer[j] in an application protocol r of process i contains

the messages that protocol r (at process i) has sent to (protocol r at) process j.

Similarly, the message buffer rBuffer[j] in an application protocol r of process i contains

the messages for protocol r (at process i) sent from (protocol r at) process j, and

delivered to protocol r. These message buffers are manipulated by the actions rSend

and rReceive which interface with the control protocol. The output action rSend(m,r,j)

dequeues the message m from the message buffer sBuffer[j] and sends it to the control

protocol. The input action rReceive(m,r,j) receives a messagem sent by (protocol r at)

process j delivered by the control protocol. The message buffers sBuffer and rBuffer

are also manipulated by the when the latter sends messages to j by adding them to

sBuffer[j] and receives messages from j by de-queuing a message from rBuffer[j].

Similar to the control protocol, we make no assumptions about the contents

of the messages sent and received by the application protocols. This is denoted in

Algorithm 3 by declaring each instance of message msg to be of arbitrary Type.

The input action crash(i,r) is invoked when process i crashes (process crashes are

discussed in Section V.3.3). Upon being invoked, crash(i,r) sets the variable live to

false which disables the program at the protocol, thus effectively ceasing operations

at the protocol.

Like control protocols, it is permissible for application protocols to have addi-

tional actions and variables that enable the application protocol to interact with the

control protocol and other application protocols. Again, this dissertation augments

application protocols with specific actions and variables to enable such interaction.
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Algorithm 3 Application protocol automaton framework. For description of the

automaton, see Sections V.3.2.2 and V.3.2.3.

automaton applicationProtocol(r: rIndex , i : pIndex) //App. Protocol r at process i
type pIndex = enumeration of p1,p2,...,pn where Π = {p1, p2, . . . , pn}
type rIndex = enumeration of r0, r1, r2,. . .,rm where ρ = {r0, r1, r2, . . . , rm}

and r0 refers to the control protocol itself
signature
output rSend(msg: Type, r: rIndex , j : pIndex) //sends message msg to process j
input rReceive(msg: Type, r : rIndex , j : pIndex) //Delivers msg sent by process j
internal takeStep() //Executes a program action
input crash( i : pIndex, r : rIndex) //Disables program actions
states
now: Real ← 0 //Current time
sBuffer : Array[pIndex, Queue[Type]] ← constant(∅) //Messages to be sent
rBuffer : Array[pIndex, Queue[Type]] ← constant(∅) //Messages received
live : Boolean ← true //Set to false upon crashing
aliases
sendMsg(m,j) ≡ enqueue m in sBuffer[j]
receiveMsg(m,j) ≡ dequeue m from rBuffer[j]
transitions
output rSend(m, r, j )
precondition
m = ((front sBuffer [ j ]) else ⊥)
effect
dequeue m from sBuffer[j]

input rReceive(m, r , j )
effect
enqueue m in rBuffer [ j ]

input crash( i , r)
effect
live ← false

internal takeStep()
precondition
live = true

effect
execute an enabled program action

trajectories
evolve
d(now) = 1
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V.3.2.3. Program actions

Recall that every protocol automaton has a special action takeStep. When takeStep

is invoked, the protocol executes the state transition specified by its program action.

A program action is a sequence of guarded commands [32]; a guarded command is

a pair 〈guard〉 → 〈command〉 consisting of a predicate on the local state (the guard)

followed by a finite sequence of executable statements (the command). A guarded

command is enabled when its guard is true. Upon being selected for execution, an

enabled command is executed atomically (without interleaving any other operations).

Since several guarded commands may be enabled simultaneously, the order of exe-

cution is non-deterministic. However, an enabled guarded command is selected for

execution subject to weak fairness which states that a continuously enabled guarded

command must be eventually selected for execution.

Each guarded command retrieves at most one message sent from each process

j from its local receive buffer for j, manipulates other local variables, and sends at

most one message to each process j in the system by adding them to its local send

buffer for j.

While all other actions within a protocol perform the functions of coordinating

the interaction with the scheduler, communication links, and other processes and

protocols in the system, the program action is responsible for performing the actual

sequence of operations necessary for the distributed system to solve a given problem.

In the vernacular, program actions contain the code necessary for the distributed

system to accomplish its ‘actual purpose’, or to ‘get the job done’.

Although the behavior of program actions in control protocols and application

protocols is semantically identical, they are syntactically different. The local send

buffer for j at the program action in a control protocol is rSendBuff[r0,j] whereas the
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local send buffer for j at the program action in an application protocol is sBuffer[j].

Similarly, the local receive buffer for j at the program action in a control proto-

col is rReceiveBuff[r0,j] whereas the localsend buffer for j at the program action in

an application protocol is rBuffer[j]. In order to establish a syntactic similarity for

program actions at all protocols, we introduce the following aliases: sendBuffer and

receiveBuffer.

In control protocols, sendBuffer[j] is an alias for rSendBuff[r0,j], whereas in appli-

cation protocols, sendBuffer[j] is an alias for sBuffer[j]. Similarly, receiveBuffer[j] aliases

to rReceiveBuff[r0,j] in control protocols and to rBuffer[j] in application protocols.

Based on the description of control protocol, application protocols, and program

actions, the interaction among the three entities is illustrated in Fig. 4.

V.3.3. Fault environment

In this dissertation, we assume that processes can fail only by crashing. A crash

fault occurs when a process ceases execution without warning and never recovers [26].

We represent crash faults as a TIOA faultPattern that, in order to crash process i,

invokes an output action crash(i) to the modelM and to process i (and its constituent

protocols). When crash is invoked at M , the scheduler stops invoking the action

takeStep, thus permanently ceasing all program actions at the control protocol at

i, and the communication links could potentially delay or drop messages to and/or

from i. When crash is invoked at process i, all the program actions at all application

protocols in i are disabled. Ideally, a crash fault at process i is expected to cease all

actions (input, output, and internal actions) at process i completely. Note that while

ceasing to invoke the action takeStep halts the program actions of the control protocol,

it does not halt the input and internal actions of the control protocol, and while the

action crash at process i halts the program actions of all application protocols, it
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Algorithm 4 Fault pattern automaton.

automaton faultPattern(f: Integer ) //No more than f processes crash
type pIndex = enumeration of p1,p2,...,pn where Π = {p1, p2, . . . , pn}
type rIndex = enumeration of r0, r1, r2,. . .,rm where ρ = {r0, r1, r2, . . . , rm}

signature
output crash(i : pIndex [, r : rIndex ]) //Crashes a process at the appropriate time

states
now: Real ← 0 //Current time
crashNum: Integer ∈ [0, f] //Non-deterministic choice of the total number of crashes
crashList : Set[pIndex] ⊂ Π ∧ |crashList| = crashNum //Set of faulty processes
crashTimes: Array[pIndex, Real] ← non−determinstic times //The fault pattern
crashStatus : Array[pIndex, Boolean] ← constant(false)

//If true, crash events have been sent

transitions
output crash(i [, r ]) //Crash process i and inform the scheduler
precondition
(crashTimes[i ] = now)∧ (i∈crashList) ∧ (crashStatus[i] = false)
effect
crashStatus [ i ] ← true //Send crash event

trajectories
stop when
∃i∈ Π:(crashTimes[i] = now) ∧ (¬crashStatus[i])) //Process i to be crashed
evolve
d(now) = 1
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Fig. 4 Interaction between the control protocol automaton and an application pro-

tocol automaton at a process i. See Sections V.3.2.1, V.3.2.2, V.3.2.3,and V.3.3 for

detailed descriptions.

does not halt the input and other internal actions of the application protocols. This

leaves open the issue of whether later inputs to process i are ignored, or cause the

same changes to the state of process i that they would if i has not crashed (that is,

there were additional invocations of the action takeStep at i), or cause some other

state changes. These distinctions become irrelevant as long as the effects of these

state changes are never communicated to any other processes5. However, in order to

5A similar modeling approach is advocated in [60, p. 251].
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simplify analysis, we simply assume that after a process i has crashed, no actions are

executed at i.

A TIOA that specifies the aforedescribed fault environment is given in Algo-

rithm 4. The automaton faultPattern generates a fault environment in which at most

f processes (among n) crash.

Fig. 5 TIOA schematic for a message-passing distributed system subject to process

crashes.

The TIOA schematic of a distributed system model is shown in Fig. 5.
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V.4. Executions of a distributed system

Recall that an execution of a TIOA is a sequence of trajectories and states of the

form α = τ0a1τ1a2 . . . with additional restrictions described in Section V.2.1.6. The

additional restrictions imposed by the semantics of the scheduler, communication

links, processes, and the fault environment (as specified in Sections V.3.1, V.3.2,

and V.3.3) are summarized below:

• For each i ≥ 1, if ai is an action at process x, then for all j ≤ i the fault

environment automaton must not have executed crash(x) in action aj.

• For each i ≥ 1, if action ai is a program action executed by protocol r at process

y, and ai sends a message m to process z by en-queuing m in sendBuffer[z], then:

– There exists j > i such that action aj is the output action rSend(m′, r, z′)

executed by r at y where m′ = m and z′ = z.

– There exists k > j such that action ak is the output action send(m′′, y, z′′)

executed by the control protocol at y where m′′ contains 〈m,r〉 and z′′ = z.

That is, the control protocol does not lose any messages while sending them on

behalf of itself or the application protocols.

• For each i ≥ 1, if action ai at is receive(m,y,z) executed by the communication

link automaton, then:

– There exists j > i such that action aj is the output action rReceive(m′, r, z′)

executed by the control process at y where m contains 〈m′, r〉 and z′ = z.

– There exists k > i such that action ak is a program action executed by

protocol r at y, and ak de-queues m′′ from receiveBuffer[z′′] where m′′ =

m′ and z′′ = z.
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That is, the control protocol does not lose any messages while receiving them

on behalf of itself or the application protocols.

Thus an execution of the TIOA formed by the composition of the scheduler,

processes (which, in turn, is formed by the composition of a control protocol and

potentially multiple application protocols), and fault pattern TIOAs is said to be an

execution of the system.

V.4.1. Protocol-restricted executions and runs

Recall from Section V.3.2.3 that it is the execution of the commands within program

actions that ensures that distributed systems can solve certain problems. Conse-

quently, while analyzing the correctness of a distributed algorithm (or protocol), we

focus on the sequence of program actions executed in the system. Specifically, we

focus on the program actions of a specific protocol that is expected to satisfy the

specifications of a given problem. In order to facilitate the analysis of such problems

and algorithms, we introduce protocol-restricted variants of executions and runs.

Let α be an execution of a distributed system. Let ai.r denote the program action

of protocol r at process i. Let Vi.r denote the set of variables accessed by the program

action of protocol r at process i. We define A′r = {aj.r|∀j ∈ Π}, and V ′r = ∪∀j∈ΠVj.r.

The (A′r, V
′
r )-restriction of α is called the r-restricted execution α|r of α.

If an r-restricted execution α|r is timing independent, then the corresponding

run is said to be an r-restricted run.

Such r-restricted definitions allow us to focus our analysis on the execution of

program actions of a specific protocol, and hence, on the execution of a specific dis-

tributed application. When discussing and analyzing specific distributed applications,

the prefix “r-restricted” may be dropped from terms in future chapter to favor brevity.
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All such shorthand notations will be explicitly stated in the beginning of each chapter.

V.5. Distributed system models

This section revisits the distributed system models from Section III.1 and specifies

the models within the TIOA framework. We start with the formal specification

of temporal constraints on computation and communication from Section III.1.1 in

Sects. V.5.1 and V.5.2. Then we specify fairness-based partially synchronous system

models from Section III.1.4.1 within the TIOA framework in Section V.5.4, and finally

specify the empirical system model from Section III.1.4.2 within the TIOA framework

in Section V.5.5

V.5.1. Revisiting computational constraints

Recall from Section III.1.1.1 that computational constraints dictate the frequency

with which processes execute the steps of their algorithms. Within the TIOA frame-

work, it translates to the frequency with which the control protocols at different

processes execute their program actions. Since the program actions of control pro-

tocols are invoked by the scheduler, the computational constraints in effect dictate

the frequency with which schedulers can invoke takeStep for a process i either with

respect to real time, or relative to invocations of takeStep for processes other than i.

There are many variations of such computational constraints. Below are definitions

of the constraints employed in this dissertation:

• Lower Bound on Absolute Process Speeds. Process i has a lower bound

l on absolute process speed if i executes its control-protocol program action at

least once every l time units. That is, a system is said to have a lower bound

l on absolute process speed of a process i if and only if the following is true.
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In each execution α = τ0a1τ1a2 . . . of the system, consider the subsequence

ac(1)ac(2) . . . of α that contains all the instances of takeStep(i) invoked by the

scheduler. Then τc(1).ftime ≤ l, and for every pair of actions (ac(i), ac(i+1)),

τc(i+1).ftime− τc(i).ftime ≤ l.

• Upper Bound on Absolute Process Speeds. Process i has an upper bound

u on absolute process speed if i executes its control-protocol program action at

most once every u time units. That is, a system is said to have an upper bound

u on absolute process speed of a process i if and only if the following is true.

In each execution α = τ0a1τ1a2 . . . of the system, consider the subsequence

ac(1)ac(2)... . . . of α that contain all the instances of takeStep(i) invoked by the

scheduler. Then τc(1).ftime ≥ u, and for every pair of actions (ac(i), ac(i+1)),

τc(i+1).ftime− τc(i).ftime ≥ u.

• Bounded Relative Process Speeds. A system is said have a bound Φ on

relative process speeds if every process that is not crashed executes its control-

protocol program action at least once in a duration where all other processes

(that have not crashed) execute their control-protocol program action Φ + 1

times. That is, a system is said to have a bound Φ on relative process speeds

if and only if the following is true. In each execution α = τ0a1τ1a2 . . . of the

system, consider the control-protocol-restricted execution α|r0 of α. Note that

every action in α|r0 is a control-protocol program action, and hence, corresponds

to an invocation of takeStep by the scheduler. Consider every segment that ends

with a program action by i and contains exactly Φ + 1 instances of takeStep(i)

for some process i. Let the last action of the segment be aφ. Every such segment

consists of at least one instance of takeStep(j) for every process j that is not

crashed until time τφ.ftime.
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V.5.2. Revisiting communicational constraints

Recall that communicational constraints dictate the delay experienced by messages

while in transit. Within the TIOA framework, it translates to the duration between

invocations of action send(m,i,j) and action receive(m,i,j) for given m, i, and j. For-

mally, communicational constraints may be viewed as properties of a function L that

maps instances of the actions of form send(m,i,j) to instances of actions of the form

receive(m,i,j) in an execution α of the system. Below are the formal definitions of

communicational constraints from Section III.1.1.2:

• Fair-Lossy Channels. A channel L from process i to process j is said to

be fair-lossy if and only if the following are true in each every execution α =

τ0a1τ1a2 . . . of the system. Consider a (partial) function L that maps actions of

the form send(m,i,j) in α to actions of the form receive(m′,j′,i′) in α:

– If the domain of L is an infinite set, then the range of L is an infinite set

as well. That is, if an infinite number of messages are sent, then an infinite

number of messages are received.

– The function L is 1-1 (one-to-one) and may be partial but the inverse

function L−1 is total. That is, messages cannot be fabricated and every

received message is associated with a unique message that was sent.

– Let x be an action in α of the form send(m,i,j) that is in the domain of L,

and let y be an action in α of the form receive (m′,j′,i′) that is in the range

of L. Let tx be the time associated with x and ty be the time associated

with y in α. If L(x) = y, then tx ≤ ty, m = m′, i = i′, and j = j′. That is,

no message is delivered before it is sent, messages are not misrouted, and

messages are not corrupted.
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• Reliable Channels. Recall that reliable channels do not lose any messages.

More precisely, a channel L from process i to process j is said to be reliable if

the function L that maps actions of the form send(m,i,j) in α to actions of the

form receive(m′,j′,i′) in α satisfies the following properties:

– L satisfies the properties of a fair-lossy channel

– L is an onto function. That is, every message sent to j is delivered.6

• Correct-Reliable Channels. Recall that correct-reliable channels behave

as reliable channels only if the sender and the recipient do not crash. More

precisely, a channel L from process i to process j is said to be reliable if the

function L that maps actions of the form send(m,i,j) in α to actions of the form

receive(m′,j′,i′) in α satisfies the following properties:

– L satisfies the properties of a fair-lossy channel

– L is a total function over the set of actions of the form send(m,i,j) for pairs

of processes i and j such that actions crash(i) and crash(j) do not occur

in α. That is, if the sender and the recipient do not crash, then every

message sent to j is delivered.

• Bounded-Delay Channels. Recall that bounded-delay channels are reliable

channels where message delay never exceeds some bound ∆. More precisely, a

channel L from process i to process j is said to be a bounded-delay channel if

the function L that maps actions of the form send(m,i,j) in α to actions of the

form receive(m′,j′,i′) in α satisfies the following properties:

– L satisfies the properties of a reliable channel

6Note that if j is crashed, then j will not process this message. However, a reliable
channel still guarantees the delivery of the message.
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– There exists a positive integer ∆ such that for every action x in α that con-

tains send(m,i,j), and every action y = L(x) in α that contains receive(m,

j,i), the following is true. If tx be the time associated with x and ty be the

time associated with y in α, then ty − tx ≤ ∆

V.5.3. Asynchronous system model

Recall that asynchronous system model guarantees that every correct process executes

infinitely many steps and communication channels are correct-reliable. Apart from the

aforementioned restriction, there are no temporal bounds on absolute process speeds,

relative process speeds, or message delays. The TIOA for such an asynchronous

system is given in Algorithms 5–6.

Algorithm 5 TIOA for the asynchronous system model (signature and states).

automaton asynchronousSystem()
type Packet = tuple of message: Type, sent : Real, deadline : Integer
type Index = enumeration of p1,p2,...,pn
signature
output takeStep(i : Index) //Enable process i to take a step
input crash( i : Index) //Process i is crashed
input send(m: M, sender: Index, receiver : Index) //Send message
output receive(m: M, receiver : Index, sender : Index) //Receive message
states
now: Real ← 0 //Current time
crashSet : Set[Index] ← ∅ //The set of crashed processes
transit : Array[Index, Index, Set[Packet ]] ← ∅ //Correct-reliable, link

V.5.4. Fairness-based partial synchrony

As mentioned earlier, fairness-based partially synchronous systems restrict the process

speeds and message delays based on the occurrence of certain actions in executions

of the system. We revisit the terms from Section III.1.4.1 and define them with the
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Algorithm 6 TIOA for the asynchronous system model (state transitions).

transitions for automaton asynchronousSystem()
output takeStep(i)
precondition
( i /∈ crashSet) //Process i is not crashed
effect

//Nothing. Just let process i execute its control-protocol program action
input crash( i : Index)
effect
crashSet ← crashSet ∪ {i}

input send(m, s, r) //The message sent is to be reliably delivered if r is correct
effect
if (s ∈ crashSet ∨ r ∈ crashSet) //If either sender or recipient is crashed
non-deterministically choose deadline (time) //Unbounded message delay or dropped
if (deadline 6=∞) then transit[s, r ] ← transit [ s , r ] ∪ {[m, now, deadline]}
else drop the message
else //Both sender and recipient are live
non-deterministically choose deadline (time) such that
deadline 6=∞ //Unbounded, but finite message delay
transit [ s , r ] ← transit [ s , r ] ∪ {[m, now, deadline]}

output receive(m, r , s) //Receive a message
precondition
∃p ∈ transit[s, r ]:: (p.message = m)
effect
transit [ s , r ] ← transit [ s , r]\{p}

trajectories
evolve
d(now) = 1
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formal TIOA framework.

V.5.4.1. Proc-fairness

A process x is said to be k-proc-fair (where k is a non-negative integer) in an execution

α, if and only if the following is true. For all processes y in the system, in every interval

of time in which y executes its control-protocol program action exactly k+ 1 times in

α, and x is not crashed at any instance in that duration, then x executes its control-

protocol program action at least once in the same interval in α. Similarly, a process

x is said to be eventually k-proc-fair in α, if and only if the following is true. There

exists a (potentially unknown) time tgst after which, for all processes y in the system,

in all intervals of time (that begin after tgst) in which y executes its control-protocol

program action exactly k+ 1 times in α, and x is not crashed at any instance in that

duration, x executes its control-protocol program action at least once in the same

interval in α; that is, x is k-proc-fair in α from time tgst onwards.

V.5.4.2. Com-fairness

A process x is said to be d-com-fair (where d is a non-negative integer) in an execution

α if and only if the following is true. For each process y in the system, while a message

m is in transit from x to y in α, either (1) y executes its control-protocol program

action no more than d times, or (2) x is crashed. Similarly, a process x is said to

be eventually d-com-fair (where d is a non-negative integer) in α if and only if the

following is true. There exists a (potentially unknown) time tgst such that, for each

process y in the system, while a message m that is sent after time tgst is in transit

from x to y, either (1) y executes its control-protocol program action no more than d

times, or (2) x is crashed. That is, x is d-com-fair from time tgst onwards.

In the case of both proc-fairness and com-fairness, although the constraint is
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on the execution of control-protocol program action at all processes, note that the

control-protocol program action is executed in the input action takeStep at each con-

trol protocol, and the execution of takeStep at a control protocol is determined by

the execution of takeStep by the scheduler. Therefore, the constraints imposed by

proc-fairness and com-fairness are, in fact, restrictions imposed upon a scheduler.

Based on the definition of proc-fairness and com-fairness, the fairness-based

partially-synchronous system models from Section III.1.4.1 are restated next.

V.5.4.3. Fairness-based partially-synchronous system models

1. All Fair (AF) is an asynchronous system subject to the following constraint:

in all executions, all processes are both k-proc-fair and d-com-fair, for known k

and d.

2. Some Fair (SF) model is an asynchronous system subject to the following

constraint: in each execution, some correct process x is both k-proc-fair and

d-com-fair, for known k and d.

3. Eventually All Fair (♦AF) is an asynchronous system subject to the following

constraint: in each execution, all processes are both eventually k-proc-fair and

eventually d-com-fair.That is, eventually the system behaves like AF . Recall

that this system model is identical to the M2 model from the M∗ system

models. Since the M∗ models (and specifically the M2 model) are of specific

interest to us in this dissertation, the TIOA specification for M∗ (in fact, the

M2 variant) is given in Algorithms 7–8.

4. Eventually Some Fair (♦SF) is an asynchronous system subject to the following

constraint: in each execution, some correct process x is both eventually k-proc-

fair and eventually d-com-fair, for known k and d. That is, eventually the system
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behaves like SF .

Algorithm 7 TIOA for the fairness-basedM∗ system models (signature and states).

automatonM∗System(Phi, Delta)
type Packet = tuple of message: M, sent: Real, deadline : Integer
type Index = enumeration of p1,p2,...,pn
signature
output takeStep(i : Index) //Enable process i to take a step
input crash( i : Index) //Process i is crashed
input send(m: M, sender: Index, receiver : Index) //Send message
output receive(m: M, receiver : Index, sender : Index) //Receive message
internal reset () //Reset the count for number of steps by each process
states
now: Real ← 0 //Current time
Phi: Integer //Known bound on relative process speeds
Delta: Integer //Known bound on message delay
GST: Real ← random(R) //Unknown global stabilization time
stepCount: Array[Index, Integer ] ← constant(0) //Steps by each process since reset
totalCount: Array[Index, Integer ] ← constant(0) //Total no. of steps by a process
crashSet : Set[Index] ← ∅ //The set of crashed processes
transit : Array[Index, Index, Set[Packet ]] ← ∅ //Communication link

V.5.5. Empirical system model

Recall that the empirical system model from Section III.1.4.2 satisfies the following

properties:

• There exists an unknown upper bound on relative process speeds. This property

has already been formally specified in Section V.5.1.

• All processes have local real-time clocks that are not necessarily synchronized,

but they can approximately measure intervals of real time with an (unknown)

upper bound D on the drift rate. This will be described in Section VIII.4

when the local clock will be used to solve the problem of process celeration (see

Chapter VIII for details).
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Algorithm 8 TIOA for the fairness-basedM∗ system models (state transitions).

transitions for automatonM∗System(Phi, Delta)
output takeStep(i)
precondition
( i /∈ crashSet) ∧ //Process i is not crashed, and
(((stepCount[ i ] < Phi) ∧ //i has taken fewer than Phi steps since last reset and
∀j ∈ Π, ∃p: Packet p ∈ transit[j,i] ∧ (p.deadline = totalCount[i]))
∨ (now < GST)) //no message is past deadline, or it is prior to GST
effect
stepCount[ i ] ← stepCount[i] + 1 //Account for process i taking another step
totalCount[ i ] ← totalCount[i] +1 //Update number of steps taken by i

internal reset ()
precondition
(∀i ∈ Π−crashSet: stepCount[i] 6=0) //If all live processes have taken
effect //at least one step since last reset()
∀i: Index stepCount[ i ] ← 0 //Reset counters

input crash( i : Index)
effect
crashSet ← crashSet ∪ {i}

input send(m, s, r) //The message sent is to be reliably delivered if r is correct
effect
if (now < GST) //If before GST
non-deterministically choose deadline (time) such that
deadline > totalCount[r ] //Unbounded message delay or dropped
if (deadline 6=∞) then transit[s, r ] ← transit [ s , r ] ∪ {[m, now, deadline]}
else drop the message
else //At or after GST
choose deadline such that //Delay not exceeding Delta
(totalCount[ r]+Delta ≥ deadline > totalCount[r])
transit [ s , r ] ← transit [ s , r ] ∪ {[m, now, deadline]}

output receive(m, r , s) //Receive a message
precondition
∃p ∈ transit[s, r ]: ∀p′ ∈ transit[s, r]\{p}: (p.message = m)
effect
transit [ s , r ] ← transit [ s , r]\{p}

trajectories
evolve
d(now) = 1
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• Every pair of processes are connected to each other via ADD channels. We

provide a formal specification of the ADD channels next.

Algorithm 9 TIOA for the empirical system TIOA (signature and states).

automaton empiricalSystem()
type Packet = tuple of message: M, sent: Real, deadline : Real
type MsgClassification = enumeration of privileged, unprivileged
type Index = enumeration of p1,p2,...,pn where Π = {p1, p2, . . . , pn}

signature
input send(m: M, sender: Index, receiver : Index)
output receive(m: M, receiver : Index, sender : Index)
output takeStep(i : Index) //Enable process i to take a step
internal reset () //Reset the count for number of steps by each process
input crash( i : Index) //Process i is crashed

states
transit : Array[Index, Index, Set[Packet ]] ← ∅ //Timely, but unreliable, link
now: Real ← 0 //Current time
∆: Real ← random(R) //Bound on message delay for privileged messages
R: Integer ← random(N) + 1 //No. of consecutive unprivileged messages
sparsity : Integer ← R //No. of msgs since the last privileged message
MsgClassification : coinflip //A coin
Phi: Integer //Bound on relative process speeds
stepCount: Array[Index, Integer ] ← constant(0) //Number of steps by each process
crashSet : Set[Index] ← ∅ //The set of crashed processes

ADD channel properties can be specified as restrictions on executions of the

system as follows. A channel L from process i to process j is an ADD channel if the

following are true in each every execution α = τ0a1τ1a2 . . . of the system:

• L is fair lossy.

• If i and j are correct and there are an infinite number of actions of the form

send(m,i,j) in α (for fixed i and j, but various values of m), then the set of

(infinite) number of actions of the form send(m,i,j) can be partitioned into two
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sets privileged and non-privileged, and there exist ∆ ∈ N+ and R ∈ N+ such

that:

1. The set privileged contains an infinite number of actions.

2. For every action ax in privileged (and time tx associated with ax) which

contains send(mx,i,j), there exists an action ay (and time ty associated with

ay) in α such that ay contains receive(my, j, i), mx = my, and 0 < ty− tx ≤

∆.

3. Let a0 be an action in privileged and let t0 be the time associated with a0:

(1) there exists at least one action a1 in privileged such that t1 ≤ t0 + R

where t1 is the time associated with a1, and (2) if t0 > R, then there exists

at least one action a−1 in privileged such that t−1 ≥ t0 − R where t−1 is

the time associated with a−1.

A Timed I/O Automaton that specifies the aforedescribed properties of the ADD

channel and bounded relative process speeds in empirical systems is given in Algo-

rithms 9–10.

V.6. Application protocols as TIOA

Note the apparent asymmetry in the effect of computational and communicational

constraints in the behavior of protocols within a distributed system model. Specif-

ically, computational constraints in a distributed system model affect the program

actions only in the control protocol and not the application protocols; in contrast,

communicational constraints affect the messages from both the control protocol and

the application protocols. However, this asymmetry is only superficial. Consider

messages sent by an application protocol r from process i to process j. The commu-
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Algorithm 10 TIOA for the empirical system TIOA (state transitions).

transitions for automaton empiricalSystem()
output takeStep(i)
precondition
( i /∈ crashSet) ∧ (stepCount[i] < Phi) //If i has taken fewer then Phi steps
effect //since the last time reset() was invoked
stepCount[ i ] ← stepCount[i] + 1 //Account for process i taking another step

internal reset ()
precondition
(∀i ∈ Π/crashSet: stepCount[i] 6=0) //If all live processes have taken
effect
∀i: Index stepCount[ i ] ← 0 //Reset counters

input crash( i : Index)
effect
crashSet ← crashSet ∪ {i}

input send(m, s, r) //The message sent is either timely or delayed or dropped
effect
coinflip ← either privileged or unprivileged //Choose message classification
if ( sparsity 6= 0) and (coinflip = unprivileged ) then //Msg is unprivileged
sparsity ← sparsity − 1 //Decrement the number of unprivileged messages
either //Either, the message is in transit with unbounded delay
choose deadline such that
(deadline > now) ∧ (∀i,j ∈ Π,∀p ∈ transit[i,j]:: (p.deadline 6=deadline))
transit [ s , r ] ← transit [ s , r ] ∪ {[m, now, deadline]}

or drop the message //Or, the message is dropped
else //Else, the message is privileged
choose deadline such that
(deadline∈ (now, now+∆]) ∧ (∀i,j∈ Π, ∀p∈ transit[i,j]:: (p.deadline 6=deadline)
transit [ s , r ] ← transit [ s , r ] ∪ {[m, now, deadline]} //Bounded delay
sparsity ← R //The next R messages may be unprivileged

output receive(m, r , s) //Receive a message whose deadline has not expired
precondition
∃p ∈ transit[s, r ]: ∀p′ ∈ transit[s, r]/{p}: (p.message = m) ∧ (p′.deadline 6= now)
effect
transit [ s , r ] ← transit [ s , r]/{p} //A message whose deadline has not expired

trajectories
stop when
∀i,j ∈ Π, ∃p: Packet p ∈ transit[i,j] ∧ (p.deadline = now)
evolve
d(now) = 1
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nicational constraints affect the delay of these messages only while the messages are

in transit between the control protocol at i and the control protocol at j. On the

other hand, the delay incurred by these messages in the message buffer sBuffer in the

application protocol at i, rReceiveBuffer in the control protocol at j, and the message

buffer rBuffer in the application protocol at j remain unconstrained. Consequently,

the total delay experienced by application-protocol messages remain unconstrained

(except for the minimal constraint of fair-lossy).

Recall that program actions at all application protocols are subject to the min-

imal temporal constraint of weak fairness (cf. Section V.2.1.6) much like the weak

fairness computational constraint of the control protocol in the asynchronous system

model (cf. Section III.1.3). Therefore, application protocols are viewed as always be-

ing asynchronous whereas control protocols are constrained by the temporal bounds

of the distributed system model. Consequently, such differentiated behavior of control

protocols and application protocols (and their corresponding messages, respectively)

within the TIOA framework provides us with a mathematically sound mechanism

to model co-existence of a partially-synchronous control protocol and asynchronous

application protocols within a single distributed system.

V.7. Algorithms and solvability

A problem P is defined by a set of properties (predicates) on the sequence of input

and output actions that must be satisfied in all executions of a distributed system. A

problem P is said to be solvable in system modelM if there exists a set of guarded

commands G such that if G is executed as the program actions of a protocol r (either

a control protocol or an application protocol) at each process, then all executions of

M satisfy the properties of P . Such a set of guarded commands G is said to be an
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algorithm that solves P inM, and is denoted P �M.

If the system modelM is partially synchronous and the protocol r is a control

protocol, then then G is said to be a partially synchronous algorithm. On the other

hand, if the protocol r is an application protocol, then G is said to be an asynchronous

algorithm (because application protocols are viewed as being asynchronous).
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CHAPTER VI

FAILURE DETECTORS

The study of error is not only in the highest degree prophylactic, but it

serves as a stimulating introduction to the study of truth.

Public Opinion, 1922

– Walter Lippman

In Chapter V, we explored partially-synchronous models as a plausible framework

for expressing many empirical systems insofar as these models provide an adequate

description of the empirical systems while retaining sufficient temporal guarantees to

admit crash fault tolerant solutions to classic problems in distributed computing. We

focused on two classes of partially synchronous models in Chapter V, theM∗ models

which represent idealized descriptions of partial synchrony, and the empirical system

model (ADD channels with bounded relative process speeds and local clocks) which

represent physical (and many overlay) systems found ‘in the wild’.

Recall that our goal is to implementM∗ on top of empirical systems. We accom-

plish our goal through algorithmic constructions that preserve sufficient synchronism

to enable implementing M∗ on top of an otherwise asynchronous system. To this

end, we need a mechanism that can ‘capture’ the necessary and sufficient synchro-

nism from the empirical system model. Failure detectors [20] are such a mechanism.

This chapter provides a detailed overview of failure detectors and demonstrates the

use of failure detectors by application protocols within the TIOA framework specified

in Chapter V.

Informally, an unreliable failure detector [20] can be viewed as a system service

that is available to protocols, and when queried, it provides a list of processes, called
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a suspect list, that it suspects as having crashed1. Each process has access to its

own local detector module that provides (potentially unreliable) information about

process crashes when queried.

VI.1. Formal specification

In order to provide a clearer understanding of failure detectors and how they are used

by processes, we define and specify them formally as functions that map fault patterns

to histories. Fault patterns are a formal conceptualization of crash faults, and failure

detector histories are a formal notation to describe the value of the suspect list of a

failure detector at each process at each instant of time.

VI.1.1. Fault patterns

A fault pattern is a function F that returns the set of crashed processes at any given

time. That is, F : IR→ 2Π; F (t) denotes the set of processes that are crashed at time

t.2 Since we assume that crashed processes never recover, ∀t, t′ ∈ IR, t < t′ : F (t) ⊆

F (t′). We define faulty(F ) = ∪∀t∈IRF (t) and correct(F ) = Π − faulty(F ); that is,

faulty(F ) denotes all the processes that crash in F and correct(F ) denotes all the

processes that are correct in F . A process that has not crashed at time t is said to

be live at time t. We consider only fault patterns F in which at least one process is

1The canonical output of a failure detector is a subset of process ids, called a suspect
list, which corresponds to the list of processes that the failure detector suspects as
having crashed. This was later generalized to admit outputs of arbitrary formats [19]
ranging from a single process id (in [19]) or a set of integers [3] to entire algorithms [53].
In this dissertation, we consider only those failure detectors whose output is a suspect
list.

2Canonically, in [20] and subsequent work on failure detectors, time is modeled
as moving in integer valued steps, and therefore the signature of a fault pattern
function is F : IN→ 2Π. However, since we model time as a continuous function (see
Section V.2.1.1), we adopt a different signature for a fault pattern.
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correct; that is, correct(F ) 6= ∅; let the set of all such fault patterns be denoted F .

VI.1.2. Histories

A failure detector history is a function H that maps Π × IR to 2Π. H(pi, t) is the

value of the suspect list of the failure detector module at process pi at time t. If

pj ∈ H(pi, t), then we say process pi suspects process pj at time t in H. Note that

it is possible for failure detector modules at two processes to have different suspect

lists at the same instant; that is, if pi 6= pj, then H(pi, t) 6= H(pj, t) is possible. Let

H denote the set of all possible failure detector histories.

VI.1.3. Failure detectors

A failure detector is a function D that maps each fault pattern F to a subset of

histories; that is D : F → 2H. The value D(F ) denotes the set of failure detector

histories that may be output by a failure detector D for a fault pattern F . In different

executions of a system with the same fault pattern F , the failure detector D may

output different histories from D(F ). Different definitions of the function D specifies

different failure detector classes. Traditionally, D is defined through two abstract

properties: completeness and accuracy.

Informally, completeness and accuracy denote the kinds of unreliability in the

suspect list of a failure detector: false negatives (i.e., failing to suspect a crashed pro-

cess) or false positives (i.e., wrongfully suspecting a correct process). Completeness

restricts the false negatives, while accuracy restricts the false positives.

VI.1.3.1. Completeness

We consider two kinds of completeness properties from [20]: weak and strong com-

pleteness.
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Weak Completeness requires that every crashed process is eventually and

permanently suspected by some correct process.

Strong Completeness requires that every crashed process is eventually and

permanently suspected by all correct processes. Note that weak and strong com-

pleteness are known to be computationally equivalent [20], and hence the remainder

of this dissertation will only consider failure detectors that satisfy strong complete-

ness.

Formally, a failure detector D satisfies strong completeness if and only if:

∀F ∈ F , ∀H ∈ D(F ), ∀i ∈ correct(F ),∀j ∈ faulty(F ),∃t ∈ IR : ∀t′ ≥ t : j ∈

H(i, t′)

Strong completeness is easy to satisfy in isolation. Any failure detector whose

output is always the set Π at all processes at all times trivially satisfies strong com-

pleteness. However, such a failure detector provides no useful information about

process crashes. In order for a failure detector to be useful, in additional to satisfying

completeness, it also needs to satisfy an accuracy property.

VI.1.3.2. Accuracy

We consider four kinds of accuracy properties from [20]: perpetual strong accuracy,

eventual strong accuracy, perpetual weak accuracy, and eventual weak accuracy.

Perpetual strong accuracy requires that for every pair of processes i and j,

i is not suspected by j before i crashes. The word ‘perpetual’ is often dropped to

denote this property Strong Accuracy.

Formally, a failure detector D satisfies strong accuracy if and only if:

∀F ∈ F ,∀H ∈ D(F ),∀t ∈ IR,∀i, j ∈ Π− F (t) :: i /∈ H(j, t)

Eventual strong accuracy requires that eventually no correct process is ever

suspected by any other correct process.
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Formally, a failure detector D satisfies eventual strong accuracy if and only if:

∀F ∈ F ,∀H ∈ D(F ),∀i, j ∈ correct(F ),∃t ∈ IR : ∀t′ ≥ t : i /∈ H(j, t′)

Perpetual weak accuracy requires that there exist some correct process that

is never suspected by any other process. Again, the word ‘perpetual’ is often dropped

to denote this property Weak Accuracy.

Formally, a failure detector D satisfies weak accuracy if and only if:

∀F ∈ F ,∀H ∈ D(F ),∃i ∈ correct(F ),∀t ∈ IR, : ∀j ∈ Π− F (t) : i /∈ H(j, t)

Eventual weak accuracy requires that there exist some correct process that

is eventually never suspected by any other correct process.

Formally, a failure detector D satisfies eventual weak accuracy if and only if:

∀F ∈ F ,∀H ∈ D(F ), ∃i ∈ correct(F ), ∃t ∈ IR : ∀t′ ≥ t, ∀i ∈ correct(F ) : i /∈

H(j, t′)

VI.1.4. Chandra-Toueg failure detector classes

Based on the aforementioned properties, Chandra and Toueg introduced four classes

of failure detectors in [20] which form the Chandra-Toueg hierarchy 3: perfect fail-

ure detector, eventually perfect failure detector, strong failure detector and eventually

strong failure detector.

Perfect failure detectors (denoted P) are the class of failure detectors that

satisfy strong completeness and (perpetual) strong accuracy. That is, a perfect failure

detector never suspects processes before the latter crash, and it upon suspected a

crashed process, the suspicion is permanent.

Strong failure detectors (denoted S) are the class of failure detectors that

3In fact, [20] introduces eight failure detector classes in the original Chandra-Toueg
hierarchy of failure detector. But the computational equivalence between weak and
strong completeness collapses this hierarchy to just four failure detectors.
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satisfy strong completeness and (perpetual) weak accuracy. That is, a strong failure

detector never suspects some correct process, and a strong failure detector eventually

and permanently suspects all crashed processes. The correct process that is never

suspected may vary from one execution to another.

Eventually perfect failure detectors (denoted ♦P) are the class of failure

detectors that satisfy strong completeness and eventual strong accuracy. That is, ♦P

may wrongfully suspect a correct process, but only during a finite prefix of an exe-

cution. Eventually, ♦P never suspects any correct process and permanently suspects

crashed processes. Although every execution is known to contain a suffix in which ♦P

never suspects correct processes and always suspects crashed processes, the starting

time of such a suffix is unknown (and can vary from one execution to another).

Eventually strong failure detectors (denoted ♦S) are the class of failure

detectors that satisfy strong completeness and eventual strong accuracy. That is,

there exists some correct process that ♦S may wrongfully suspect during a finite

prefix of an execution. Eventually, ♦S stops suspecting that correct process 4, and ♦S

eventually and permanently suspects all crashed processes. Although every execution

is known to contain a suffix in which ♦S never suspects some correct process and

always suspects all crashed processes, the starting time of such a suffix is unknown.

The starting time of such a suffix may vary from one execution to another, and

furthermore, the correct process that is never suspected in such a suffix may vary

from one execution to another as well.

4♦S provides no guarantees for other correct processes in the system. They may
be suspected infinitely often, finitely often, or never.
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VI.2. Failure detectors within the formal TIOA framework

Recall from Chapter V that a distributed system is modeled by a TIOA where each

process communicates with other processes through communication links and consists

of multiple protocols of which one protocol is designated to be the control protocol,

and the control protocol’s program actions are scheduled by the system model sched-

uler through the action takeStep. Within this framework, a failure detector may run

as a collection of protocols where one protocol at each process behaves as the local

failure detector module and all other protocols interact with the local failure detector

module through actions query and response. The remainder of this section describes

the behavior, role, and placement of a local failure detector module within the TIOA

framework.

VI.2.1. Failure detector protocol

We implement failure detectors as program actions of the control protocol in a par-

tially synchronous system. The foregoing decision is based on three observations:

(1) Chandra-Toueg failure detectors cannot be implemented in asynchronous systems

(which follows from the impossibility of consensus in asynchrony [42], the solvability

of consensus in partial synchrony [35], and the solvability of consensus using ♦S [19]),

(2) Chandra-Toueg failure detectors can be implemented in various models of partial

synchrony [45], and (3) failure detectors supplant the assumptions about partial syn-

chrony within a distributed system; that is, algorithms that use failure detectors are

assumed to execute under asynchrony. Consequently, in order to utilize the partial

synchronism in the underlying system and supplant the former within the framework,

the failure detector actions are placed within the control protocol.

Note that properties of a failure detector are defined with respect to its suspect
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list which is a subset of processes that the putative failure detector module at a given

process currently suspects. Hence, we mandate the existence of a variable suspectList

— a set of process IDs — in the failure detector (control) protocol at each process,

and the value of suspectList should be identical to the suspect list of the putative local

failure detector module implemented by the protocol.

Application protocols that use the failure detector obtain the suspect list infor-

mation from the failure detector by querying the latter. We model this behavior

through two actions: query and response. The action query is an output action of

the application protocol and an input action of the failure detector, and the action

reponse is an output action of the failure detector protocol and an input action of the

application protocol.

When an application protocol r invokes the action query of the failure detector

protocol r0, a variable queryInProgress[r] is set to true. The time evolution function

at r0 is stopped when queryInProgress[r] is true. Also, the precondition for the action

response in r0 is queryInProgress[r] = true and response sends the current value of

suspectList; that is, the failure detector responds to the query immediately with the

current suspect list5.

The TIOA specification of a failure detector (control) protocol is given in Algo-

rithm 11.

5In a strict sense, within an asynchronous system, it is not necessary for a failure
detector to respond with the current suspect list immediately. It is sufficient if the
latency of the response is finite and order of outputs respect the real-time order. How-
ever, a common argument (based on private communications with other researchers in
the field) for an immediate response to a query is that failure detectors are expected
to periodically write the current value of the suspect list to a shared variable that is
readable by all protocols.
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Algorithm 11 Failure Detector TIOA.

automaton controlProtocol(i: pIndex, r0: rIndex)
//Failure Detector Protocol r0 at process i

type pIndex = enumeration of p1,p2,...,pn where Π = {p1, p2, . . . , pn}
type rIndex = enumeration of r0, r1, r2,. . .,rm where ρ = {r0, r1, r2, . . . , rm}

and r0 refers to the control protocol itself
type Packet = tuple of message: Type, sent : Real, deadline : Real

signature (in addition to the actions specified in Algorithm 1)
input query( i : pIndex, r : rIndex)
output response(i : pIndex, r : rIndex , suspectList : set [ Index]
states (in addition to the variables defined in Algorithm 1)
now: Real ← 0 //As defined in Algorithm 1: Current time
queryInProgress : Array[ rIndex , Boolean] ← constant(false) //‘true’ ⇒ stop time
suspectList : Set[pIndex] ← ∅, //Suspect List

transitions
input query( i , r) //Client queries the failure detector
effect
queryInProgress [ r ] ← true

output response(i , r , suspectList ) //Failure detector responds to the client’s query
precondition
queryInProgress [ r ] = true
effect
queryInProgress [ r ] ← false //Return the set suspectList as the response

input takeStep()
effect
//The suspectList is updated by the program action
//The program action is implementation specific, and it will be discussed when
//we investigate specific failure detector implementations

trajectories
stop when
∃r∈ ρ::queryInProgress[r] = true //Ensure 0 time between query and response
evolve
d(now) = 1
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VI.2.2. Application protocols

Since application protocols are assumed to execute their program action based on the

recently received value of the suspect list, we have to ensure that, in every execution,

the failure detector is queried at least once between two consecutive program actions

of an application protocol. We accomplish this with the following modifications to

the application protocol.

An application protocol that uses the failure detector information is assumed

to have the variable suspectList that stores the value returned in the input action

response. The effect of the input action response is to set a variable slRefreshed to

true. The variable slRefreshed indicates that the suspect list information has been

refreshed since the last time the application protocol executed a program action. The

precondition for the program (internal) action takeStep is augmented from live = true

to (live = true) ∧ (slRefreshed = true) and the effect of takeStep is augmented with

slRefreshed ← false. Since slRefreshed is set to true only by the action response, and

the failure detector module invokes response only when query is invoked, we ensure

that the suspect list if refreshed by response at least once between two consecutive

program actions by the application protocol.

The modified framework of the application protocol is shown in Algorithm 12.

VI.3. Solvability

Recall from section V.7 that a problem P is a predicate on the sequence of input

and output actions that must be satisfied in all executions of a distributed system.

If there exist a set of guarded commands G such that executing G as the program

action of a protocol r in a system modelM guarantees that all the executions ofM

satisfy the predicate P , then the problem P is said to be solvable in M. We now



116

Algorithm 12 TIOA for a Failure-Detector-Querying Application Protocol.

automaton applicationProtocol(r: rIndex , i : pIndex) App. Protocol r at process i
type pIndex = enumeration of p1,p2,...,pn where Π = {p1, p2, . . . , pn}
type rIndex = enumeration of r0, r1, r2,. . .,rm where ρ = {r0, r1, r2, . . . , rm}

and r0 refers to the control protocol itself
type Packet = tuple of message: M, sent: Real, deadline : Real

signature
output rSend(m: Type, r: rIndex , j : pIndex) //As defined in Algorithm 3
input rReceive(m: Type, r : rIndex , j : pIndex) //As defined in Algorithm 3
internal takeStep() //Executes a program action
input crashProcess( i : pIndex, r : rIndex) //As defined in Algorithm 3
input query( i : pIndex, r : rIndex)
output response(i : pIndex, r : rIndex , suspectList : set [ Index ])
states
now: Real ← 0 //Current time
sBuffer : Array[pIndex, Queue[Type]] ← constant(∅) //As defined in Algorithm 3
rBuffer : Array[pIndex, Queue[Type]] ← constant(∅) //As defined in Algorithm 3
live : Boolean ← true //Set to false upon crashing
slRefreshed : Boolean ← false //Set to true by response
suspectList : Set[pIndex] ← ∅, //Suspect List

transitions
internal takeStep()
precondition
( live = true) ∧ (slRefreshed = true)
effect
execute an enabled program action
slRefreshed ← false

output query(i , r)
effect
//empty

input response( i , r , suspectList )
effect
slRefreshed ← true

trajectories
evolve
d(now) = 1
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define what it means for a problem P to be solvable by a failure detector D.

Informally, we say that a problem P is solvable by failure detector D if there

exists an algorithm G that potentially queries D to satisfy the predicate P in an

asynchronous system. More precisely, consider a systemM where the program action

of the control protocol r0 satisfies the properties of a failure detector D. A problem P

is said to be solvable by D if and only if there exists an asynchronous algorithm G that

solves P inM while the program actions of the control protocol r0 satisfies D. Recall

that program actions of an application protocol are executed at arbitrary times and

are subject only to weak fairness. That is, program actions of an application protocol

do not provide any temporal guarantees. Therefore, the asynchronous algorithm G

can be executed as the program action of an application protocol.

VI.4. Reducibility

Failure detectors and distributed system models are compared with each other thro-

ugh the notion of reducibility. Informally, a failure detector D is reducible to a failure

detector D′ with respect to the asynchronous system model if and only if an asyn-

chronous system augmented with D can implement D′. That is, D is reducible to D′

with respect to the asynchronous system if and only if for every system model M

whose control protocol satisfies the properties of D, there exists an asynchronous al-

gorithm G such that, if G is executed as the program action of an application protocol

r inM, then r satisfies the properties of D′. We denote this D′ � D.

Similarly, we also define reducibility between failure detectors and system models.

A failure detector D is reducible to a system modelM if there exists a set of guarded

commands G executed as the program action of an application protocol r in every

systemM′ where the program action of the control protocol satisfies the properties
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D such that: (1) the protocol r has the same TIOA signature as the system model

M; that is, protocol r has an output action takeStep, an input action receive, and an

output action send, and (2) all the computational and communicational constraints

satisfied by M are satisfied by G. The aforesaid definition is illustrated in (a part

of) Fig. 6 where the program action of the control protocol satisfies the properties of

the failure detector D and the application protocol in Fig. 6 has the output action

takeStep, the output action receive, and the input action send; if the application

protocol satisfies the properties of system modelM, then D is reducible toM.

A failure detector D is said to be solvable inM if there exists a set of guarded

commands G such that when the control protocol r0 at each process atM is as defined

in Algorithm 11 and G is executed as the program action of r0, then the changes in the

value of suspectList and the sequence of values output by the action response satisfies

the properties of D. The aforesaid definition is illustrated in (a part of) Fig. 6 where

the system model satisfies the properties ofM. If the control protocol in Fig. 6, which

has an input action query and an output action response, satisfies the properties of

the failure detector D, then D is solvable inM.

If a failure detector D is reducible to a failure detector D′ and D′ is reducible to

D (with respect to the asynchronous system), then D and D′ are said to be equivalent

(with respect to the asynchronous system); denoted D ≡ D′. Formally, (D � D′) ∧

(D′ � D)⇔ D ≡ D′.

Similarly, we can define the notion of equivalence between a failure detector D

and a system model M as follows: if D is reducible to M and D is solvable in M,

then D is said to be equivalent toM, denoted D ≡M. Formally, (D �M)∧ (M�

D)⇔ D ≡M.

The schematic TIOA-based construction to establish the equivalence between a

system modelM and a failure detector D is shown in Fig. 6.
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Fig. 6 TIOA construction to show equivalence between failure detector D and system

modelM. If the failure detector implemented within the control protocol of system

model M satisfies properties of D, then we say that D is solvable in M. If the

application protocol in the figure implements a scheduler using the failure detector D

(from the control protocol), and the scheduler satisfies the properties ofM, then we

say that D is reducible toM.
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CHAPTER VII

CONSTRUCTINGM∗

Time is an illusion. Lunchtime, doubly so.

The Hitchhiker’s Guide to the Galaxy, 1979

– Douglas Adams

In this chapter we construct fairness-basedM∗ (specifically, fairness-basedM2) us-

ing a failure detector.1 Recall from Chapter IV that the construction of M∗ from

empirical systems follows three steps. The first step is to construct an appropriate

failure detector on top of empirical systems; the second step is to implement reliable

communication on top of empirical systems; and the third step is to construct M∗

using the thus constructed failure detector and reliable channels.2

The issue central to the methodology is the choice of the failure detector to be

employed in our constructions and algorithmic transformations. Any failure detector

D that we choose must satisfy the following properties for our methodology to work:

(1) D must be solvable in empirical systems, (2) reliable communication must be

solvable by D, and (3)M∗ must be solvable by D.

It is unfeasible to explore all possible failure detectors that are solvable in em-

pirical systems and verify if any of these failure detectors solve M∗, or vice versa.

Therefore, we have to adopt a different approach. We consider the ‘weakest’ failure

detector that can implement the M∗ system models and check if this failure detec-

tor can be solved by empirical systems. If it turns out that this failure detector is

1The results from this chapter have been published in [67].
2Note that we established in Section III.2 that real-time basedM∗ is impossible to

construct on empirical systems, and we saw that fairness-basedM∗ could be plausible
on empirical systems. Hence, we focus only on fairness-basedM∗ models here.
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not solvable by empirical systems, then it proves that implementing M∗ on top of

empirical systems is impossible.

Thus, an intermediate goal of this dissertation is to find the ‘weakest’ failure

detector that can solveM∗. Before we find such a failure detector, we need to define

what it means for a failure detector to be the ‘weakest’ to solveM∗. By treating the

system model specification ofM2 as a problem specification, we state that a failure

detector D is the ‘weakest’ to solve M∗ if and only if the following are true: (1) D

is solvable in M∗; that is, M � D, and (2) all failure detectors that solve M∗ are

reducible to D; that is, (M� D′)⇒ (D � D′).

An ideal candidate for such a failure detector is one that is equivalent to M∗.

This follows from the definition of equivalence. If D ≡M∗, thenM∗ � D and for any

D′ such thatM∗ � D′, we know D �M∗, from transitivity we know that D � D′.

Thus, the goal of this chapter is to find a failure detector D such thatM∗ ≡ D.

VII.1. Methodology

We consider a candidate failure detector D. If we design a partially synchronous

algorithm G in M∗ (either M1, M2, or M3 system models) such that the control

protocol in M∗ implements D, then we have shown M∗ � D. Similarly, given

a system M whose control protocol implements D, if we design an asynchronous

algorithm G in an application protocol r such that protocol r has an output action

takeStep, an input action receive, and an output action send, and all the computational

and communicational constraints satisfied by M∗ are satisfied by G, then we have

shown D � M∗. Combining the two results we have (M∗ � D) ∧ (D � M∗) ⇔

M∗ ≡ D.

Given that the M∗ models are to implemented on top of empirical systems,
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Fig. 7 TIOA schematic for building fairness-based partially-synchronous system on

top of the empirical system using a failure detector.

our methodology must also consider the issue of message loss. Specifically, recall

that empirical systems permits infinite message loss whereas theM∗ models require

eventually reliable links. Therefore, in constructing theM2 model on using the appro-

priate failure detector, we address the issue of reliability by employing an application

protocol to implement correct-reliable channels on top of the lossy communication

links offered by the rSend and rReceive actions of the control protocols at each pro-

cess. We assume that the application protocol (implementing the correct-reliable

communication) utilizes any of the several existing algorithms [1–3, 11, 37] to imple-
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ment correct-reliable communication on top of fair-lossy channels. The schematic for

implementing fairness-based partial synchrony (includingM∗) using a failure detector

is shown in Fig. 7.

VII.2. ♦P: a candidate failure detector

We show that the candidate failure detector that is equivalent to M∗ is ♦P . By

following the methodology described in Section VII.1, we show that ♦P is solvable in

M∗ in section VII.3, and in section VII.4 we show thatM∗ is solvable in ♦P .

VII.3. Implementing Chandra-Toueg failure detectors

The guarded commands in Algorithm 13 implement ♦P when executed as the program

action of the control protocol inM∗. In fact, the algorithm described in Algorithm 13

is a universal construction that implements the Chandra-Toueg failure detectors P ,

♦P , S, and ♦S, respectively, if the underlying system model satisfies the properties

of AF , SF , ♦AF (identical toM∗, see Section III.2.1), and ♦SF , respectively.

VII.3.1. Algorithm description

In Algorithm 13, the failure detector module (control protocol) at process i maintains

a timer timerValuej for each process j in the system which counts down from k+d+1

to 0, where, in the various system models described in Section V.5.4, the bounds on

fairness are specified by the existence of k-proc-fair and d-com-fair processes. The

timer timerValuej is decremented by 1 in each step (line 10). In each step process i

receives zero or more messages from all other processes (line 2) and sends a heartbeat

to each process j in the system (line 4). If i receives a heartbeat from j, then i

deletes j from the set suspectList (line 6) and resets the timer to k+ d+ 1 (line 7). If
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timerValuej is decremented to 0, then i adds j to suspectList (line 9). Here we assume

that when the failure detector module is queried, it returns suspectList. Hence, when

i adds j to suspectList, i is said to suspect j as having crashed; when deletes j from

suspectList, i is said to trust j.

Algorithm 13 Implementing Chandra-Toueg failure detectors in system models

where (some) processes are k-proc-fair and d-com-fair.

constant timeOut ← k + d+ 1
set suspectList ← ∅
∀j ∈ Π− {i} :

integer timerValuej ← timeOut

1 : {true} −→ Action 1
2 : {\sf msgSet} ← ∪∀j∈Π−{i} {j: receiveMsg (〈HB〉, j)}

//Receives zero or more messages from each process
3 : ∀j ∈ Π− {i} do
4 : sendMsg (〈HB〉, j) //Send a heartbeat to each process
5 : if (〈HB, j〉 ∈ msgSet)
6 : suspectList ← suspectList− {j} //Trust upon receiving a heartbeat
7 : timerValuej ← timeOut //Reset timer
8 : if (timerValuej = 0)
9 : suspectList ← suspectList ∪ {j} //Suspect upon timer expiry
10 : timerValuej ← max(timerValuej − 1, 0) //Decrement timer for each process

VII.3.2. Proof of correctness

We now show that the action system in Algorithm 13 satisfies strong completeness

and different accuracy properties depending on the underlying system model. For

the purpose of the proofs, we consider an arbitrary control-protocol-restricted run α

where the program action of the control protocol executes the guarded commands

from Algorithm 13.

Theorem VII.3.1. The action system in Algorithm 13 satisfies strong completeness;

that is, there exists a time after which every crashed process is permanently suspected.
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Proof. In α, processes send heartbeats in every step. If a process i crashes at time

t in α, i stops taking steps after t, and so stops sending heartbeats. Eventually, all

the (finite) heartbeats sent by i are delivered. Let the last such delivery be at time

t′ ≥ t. Inspection of the code reveals that the maximum value of timerValuei at j at

time t′ is k + d + 1. Thereafter, in every step executed by a process j after time t′,

timerValuei is decremented (if timerValuei is not already 0) until j receives another

heartbeat from i. Process j resets timerValuei to k + d + 1 only upon receiving a

heartbeat from i. Since we have established that no such heartbeats are received by

j after t′, it follows that in at most k+ d+ 1 steps, timerValuei is decremented to 0 at

all processes j, and so j starts suspecting i (in line 9). Since j does not receive any

more heartbeats from i, j suspects i permanently.

We prove accuracy properties in two steps. In the first step (Lemma VII.3.2),

we show that a correct process is trusted infinitely often; that is, if a correct process

j trusts a correct process i at time t, then there exists a time t′ > t such that j

trusts i at time t′. Note that this permits j to (falsely) suspect i in the open interval

(t, t′). In the second step (Lemma VII.3.3), we show that if a process i is trusted after

it is k-proc-fair and d-com-fair, then i will be continuously trusted until i crashes.

Lemmas VII.3.2 and VII.3.3 are used to prove the various accuracy properties satisfied

by Algorithm 13, depending on the underlying system model.

Lemma VII.3.2. In α, if process i is correct, then every correct process trusts i

infinitely often; that is, ∀t ∈ IN, there exists a time t′ > t such that j trusts i at time

t′

Proof. From lines 5–6 of Algorithm 13 we know that a correct process (say) j 6= i

trusts process i upon receiving a message from i. We also know that i sends heart-

beats to all processes in every step (Algorithm 13). Hence, if i is correct, then i
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takes steps infinitely often, and sends heartbeats infinitely often. Correct-reliable

communication guarantees that no heartbeat is lost. Therefore, all correct processes

receive heartbeats from i infinitely often, and hence, execute lines 5–6 of Algorithm 13

infinitely often. Therefore, all correct processes trust i infinitely often.

Lemma VII.3.3. In α, if i becomes k-proc-fair and d-com-fair from time t, and the

value of timerValuei is k + d+ 1 at a process (say) j at time t′ ≥ t, then from time t′

onwards, i is never suspected by j until i crashes.

Proof. Let i become k-proc-fair and d-com-fair in α from time t. Let the value of

timerValuei be k + d + 1 at a process (say) j at time t′ ≥ t. We know that the value

of timerValuei is decremented by 1 in each step until j receives a message from i.

We now show that j is guaranteed to receive a message from i before timerValuei is

decremented to 0.

Note that i sends a heartbeat to j in each action that i executes. Given that

i is k-proc-fair and d-com-fair, we know that i will send at least one heartbeat to j

before j has taken k+ 1 steps after t′, and this heartbeat is received by j before j has

taken k+ d+ 1 steps after t′. Recall that time t′, the value of timerValuei is k+ d+ 1

and is decremented by 1 at every step taken by j. However, j receives at least one

heartbeat from i within k + d + 1 steps, and so the value of timerValuei is reset to

k + d+ 1 (in line 7) before it reaches 0.

Note that for j to start suspecting i, timerValuei must be 0, and we have shown

that if j starts trusting i, then the value of timerValuei is reset to k+ d+ 1 (in line 7)

before it reaches 0. Therefore, from time t onwards, i is never suspected by j until i

crashes.

Theorem VII.3.4. If the action system in Algorithm 13 is executed on a AF system

model, Algorithm 13 implements the perfect failure detector P.
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Proof. Recall that the AF system model guarantees that every process is k-proc-

fair and d-com-fair from time t = 0. Also at time t = 0, at each process j, the

value of timerValuei = k + d + 1 for every other processes i in the system. Applying

lemma VII.3.3 with t = t′ = 0, we know that i is never suspected by j until i crashes.

Since i and j are arbitrary processes in the system. It follows that no process is

suspected before it crashes. This, in conjunction with theorem VII.3.1 shows that

every process is distinguished; that is, Algorithm 13 implements the perfect failure

detector P .

Theorem VII.3.5. If the action system in Algorithm 13 is executed on a ♦AF

system model, Algorithm 13 implements the eventually perfect failure detector ♦P.

Proof. Consider a pair of correct processes i and j. Recall that the ♦AF system

model guarantees that i process is k-proc-fair and d-com-fair from some (unknown)

time t. From Lemma VII.3.2 we know that j trusts i infinitely often, which implies

that value of timervaluej at i is k+ d+ 1 infinitely often. Applying lemma VII.3.3 we

know that eventually j never suspects i. On the other hand, if i is faulty and crashes

in finite time, then from theorem VII.3.1 we know that eventually j always suspects

i. In other words, i is eventually distinguished. Since i is an arbitrary process in

the system, it follows that all the processes are eventually distinguished. That is,

Algorithm 13 implements the eventually perfect failure detector ♦P .

Theorem VII.3.6. If the action system in Algorithm 13 is executed on a SF system

model, Algorithm 13 implements the strong failure detector S.

Proof. Recall that the SF system model guarantees that some correct process i is

k-proc-fair and d-com-fair from time t = 0. Also at time t = 0, at each process j, the

value of timerValuei = k+d+1. Applying lemma VII.3.3 with t = t′ = 0, we know that

i is never suspected by j. This, in conjunction with theorem VII.3.1 shows that some
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correct process is distinguished and all faulty processes are eventually distinguished;

that is, Algorithm 13 implements the strong failure detector S.

Theorem VII.3.7. If the action system in Algorithm 13 is executed on a ♦SF system

model, Algorithm 13 implements the eventually strong failure detector ♦S.

Proof. Recall that the ♦SF system model guarantees that eventually some cor-

rect process i is k-proc-fair and d-com-fair. Let j be a correct process. From

Lemma VII.3.2 we know that j trusts i infinitely often, which implies that value

of timervaluej at i is k + d + 1 infinitely often. Applying lemma VII.3.3 we know

that eventually j never suspects i. This, in conjunction with theorem VII.3.1 shows

that some correct process is distinguished and all faulty processes are eventually dis-

tinguished; that is, Algorithm 13 implements the strong failure detector S.

VII.4. Extracting fairness from Chandra-Toueg failure detectors

In this section, we present a construction that ‘extracts’ the fairness encapsulated

by the Chandra-Toueg failure detectors by implementing fairness-based partially-

synchronous models in an asynchronous system augmented with a Chandra-Toueg

failure detector. The algorithm presented is a universal construction for the Chandra-

Toueg hierarchy in the sense that depending on the failure detector used by the

algorithm, the appropriate fairness guarantees are provided by the constructed system

model. We present the TIOA framework for such a construction next.

Recall that in a distributed system model the scheduler interacts with the pro-

cesses in the system through three external actions: takeStep, send, and receive.

Therefore, the construction presented in this section must provide these three ac-

tions to the processes. Specifically, the construction must provide (1) an output

action takeStep that enables the control protocol of each process to execute a pro-
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gram action, (2) an input action send for processes to send messages to each other,

and (3) an output action receive for processes to receive messages from each other.

The failure detectors used in this construction have two external actions: query

and response. The input action query is invoked by a process and as a result of

the query, the failure detector returns the current value of suspectList through the

output action query. We assume that the failure detector is implemented in the

control protocol of the process. Consequently, the construction is implemented as an

application protocol, and therefore is assumed to be asynchronous.

The asynchronous system interacts with our construction through two exter-

nal actions: send and receive. Note that these send and receive actions are separate

from the ones described earlier in Section V.3.1.2, and for convenience, we rename

these actions as sendA and receiveA (the subscript A stands for ‘asynchronous’). The

input action sendA is invoked by the construction module at each process to send

messages to each other, and the output action receiveA delivers these messages to

the appropriate recipient construction modules. We assume that the communication

links formed by these actions are correct-reliable; that is, messages send among cor-

rect processes is guaranteed to be delivered reliably (see Section V.5.2). Recall from

Section VII.1 that we assume the existence of another application protocol that imple-

ments a correct-reliable channel on top of the lossy rSend and rReceive communication

interface provided by the control protocol. That is, failure detectors are implemented

in empirical systems, and an application protocol in the empirical system implements

correct-reliable channels on top of the unreliable communication provided by the em-

pirical system without affecting the messages sent among the failure detector modules

within each process.

Recall that each application protocol has an internal action takeStep which ex-

ecutes the protocol’s respective program action. Also recall that the fairness-based
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partially-synchronous model implemented by an application protocol has an output

action labeled takeStep. In order to resolve this issue of duplicate labels for these two

distinct actions, we rename the internal takeStep action as myTakeStep.

VII.4.1. Fairness constraints

The properties that must be satisfied by the implemented fairness-based system are

the following:

• Local Progress. The application protocol that implements the fairness-based

system model must execute its output action takeStep infinitely at each correct

process often regardless of process crashes in the system.

• Fairness. If the constituent failure detector in the schematic from Fig. 7 is:

– P , then all the processes in the fairness-based system are k-proc-fair and

d-com-fair. That is, the application protocol implements the All Fair (AF)

system model.

– S, then some correct process is k-proc-fair and d-com-fair. That is, the

application protocol implements the Some Fair (SF) system model.

– ♦P , then all the processes in the system are eventually k-proc-fair and

eventually d-com-fair. That is, the application protocol implements the

Eventual All Fair (♦AF) system model.

– ♦S, then some correct process is eventually k-proc-fair and eventually d-

com-fair. That is, the application protocol implements the Eventual Some

Fair (♦SF) system model.
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Algorithm 14 Signature and states of the TIOA for the partially-synchronous system

model using failure detector D. The state transitions are in Algorithm 15.

automaton fairnessBasedPartiallySynchronousSystem(pIndex i)
type pIndex = enumeration of p1,p2,...,pn
type rIndex = enumeration of r0,r1,...,rm
type pktType = enumeration of msgReq, msgResponse, permitReq, permitResponse
type pkt = tuple of payload: Type, t : pkType
type schedulerState = enumeration of waiting, active
type takeStepState = enumeration of disabled, enabled, completed
signature
output takeStep(i : pIndex) //Enable control protocol at process i to take a step
input crashProcess( i : pIndex) //Process i is crashed. As defined in Algorithm 3
output sendA(m: pkt, i: pIndex, receiver : pIndex) //Send via correct-reliable link
input receiveA(m: pkt, i: pIndex, sender : pIndex) //Rcv from correct-reliable link
input send(m: Type, i : pIndex, r : pIndex) //Client (App.) send msg interface
output receive(m: Type, i : pIndex, s : pIndex) //Client (App.) receive msg interface
internal myTakeStep(i: pIndex) //Execute a program action
input query( i : pIndex, r : rIndex) //As defined in Algorithm 12
output response(i : pIndex, r : rIndex , suspectList : set [ Index ])

//As defined in Algorithm 12
states
live : Boolean ← true //As defined in Algorithm 12
slRefreshed : Boolean ← false //As defined in Algorithm 12
suspectList : Set[pIndex] ← ∅, //As defined in Algorithm 12
now: Real ← 0 //Current time
send_buffer: Array[s : pIndex, r : pIndex, Queue[Type]] //Msgs sent by app
receive_buffer : Array[s : pindex, r : pIndex, Queue[Type]] //Msgs to be delivered to app
sBuffer : Array[ r : pIndex, Queue[pkt]] //Msgs to be sent to other processes
msgReqQ: Array[s: pIndex, Queue[Type]] //Queue of message requests
msgResponseQ: Array[s: pIndex, Queue[Type]] //Msg-request responses
permitReq: Array[s : pIndex, Type] //Contains request for permit
permit: Array[s : pIndex, Type] //Contains permit and associated information
takeStepFlag: takeStepState ← disabled //Denotes if takeStep should be executed
si.state : schedulerState ← waiting //Scheduler is initially set to waiting
si.ht: Integer ← 0 //Initial height is 0
si.permit: Array[ j : pIndex, Boolean] ← (i>j) //Process with higher id holds the permit
si.req: Array[ j : pIndex, Boolean] ← (i<j) //Lower-id process holds the request token
si.ht: Array[ j : pIndex, Integer ] ← constant(0) //Process heights
si.seq: Array[ j : pIndex, Integer ] ← constant(0) //Sequence no. for msgs from j
si.maxAck: Array[j: pIndex, Integer ] ← constant(0) //The highest seq. no. acked by j
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Algorithm 15 State transitions for the TIOA for the partially-synchronous system

model using failure detector D shown in Algorithm 14.

transitions for fairnessBasedPartiallySynchronousSystem (pIndex i )
output takeStep(i)
precondition
live ∧ (takeStepFlag = enabled) //Process i is not crashed

effect
takeStepFlag ← completed //Denote that takeStep has been executed

input send(m, s, r)
effect
enqueue m in send_buffer[s, r ]

output receive(m, r , s)
precondition
m = receive_buffer[s , r ]
effect
receive_buffer [ s , r ] ← ∅

internal myTakeStep(i)
precondition
( live = true) ∧ (slRefreshed = true)
effect
execute program action in Algorithm 16
slRefreshed ← false

output sendA(m, r)
precondition
m = front sBuffer [ r ]
effect
dequeue m from sBuffer[r]

input receiveA(m, s)
effect
switch (m.pktType)
case msgReq: enqueue m.payload in msgReqQ[s]
case msgResponse: enqueue m.payload in msgResponseQ[s]
case permitReq: permitReq[s] ← m.payload
case permitResponse: permit[s ] ← m.payload

trajectories
evolve
d(now) = 1
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Algorithm 16 Program action for the scheduler in the partially-synchronous system

model using failure detector at process i.

1 : {si.state = waiting} −→ Action 1
2 : ∀j ∈ Π− {i} where si.req[j] ∧ ¬si.permit[j] do //Request permit
3 : enqueue 〈permitReq, si.ht〉 in sBuffer[j]; si.req[j] ← false

4 : {permitReq[j] 6=null} −→ Action 2
5 : si.req[j] ← true; si.ht[j] ← permitReq[j].ht //Received permit request
7 : if (si.permit[j] ∧ (si.state = waiting)∧ //Send permit if si is waiting

((si.ht[j] < sj .ht) ∨ ((si.ht[j] = si.ht) ∧ (i < j))) //and sj has higher priority
8 : enqueue 〈permitResponse, si.ht〉 in sBuffer[j];

si.permit[j] ← false; permitReq[j] ← null
9 : {permit[j] 6=null} −→ Action 3
10 : si.permit ← true; si.ht[j] ← permit[j].ht //Received permit
12 : if (si.req[j] ∧ (si.state = waiting)∧ //Send permit if si is waiting

((si.ht[j] < sj .ht) ∨ ((si.ht[j] = si.ht) ∧ (i < j))) //and sj has higher priority
13 : enqueue 〈permitResponse, si.ht〉 in sBuffer[j]
14 : si.permit[j] ← false; permit[j] ← null
15 : {(si.state = waiting) ∧ (∀j /∈ suspectList :: si.permit[j])} −→ Action 4
16 : si.state ← active //Active upon holding permits from trusted processes
17 : foreach j in Π− {i}
18 : increment si.seq[j] by 1 //Generate a new seq. no. to tag a request message
19 : enqueue 〈msgReq, si.seq[j]〉 in sBuffer[j] //Send request msgs to all processes
20 : { msgReqQ[j] not empty } −→ Action 5
21 : msgSet ← send_buffer[i, j];send_buffer[i, j] ← ∅ //Received a mesg request.
22 : dequeue num from msgReqQ[j]
23 : enqueue 〈msgResponse,msgSet, num〉 in sBuffer[j] //Send the local send buffer
24 : { msgResponseQ[j] not empty } −→ Action 6
25 : dequeue 〈msgSet′, num〉 from msgResponseQ[j]
26 : ∀m ∈ msgSet′: enqueue m in receive_buffer[j] //Add to local receive buffer
27 : si.maxAck[j] ← max(num, si.maxAck[j]) //Update max. ack receive so far.
28 : {(si.state = active) ∧ (∀j ∈ Π− {i} :: ((si.maxAck[j] = si.seq[j]) ∨ (j ∈ suspectList)))

∧(∀j ∈ Π− {i} :: receive_buffer[j, i] = ∅) ∧ (takeStepFlag = disabled)} −→ Action 7
29 : takeStepFlag ← enabled //Enable executing takeStep
30 : {(si.state = active) ∧ (∀j ∈ Π− {i} :: ((si.maxAck[j] = si.seq[j]) ∨ (j ∈ suspectList)))
∧(∀j ∈ Π− {i} :: receive_buffer[j, i] = ∅) ∧ (takeStepFlag = completed)} −→ Action 8

31 : takeStepFlag ← disabled //After executing takeStep, disable the action
32 : si.ht ← min(∀j ∈ Π− {i} :: si.ht[j], si.ht)− 1 //Reduce height below all neighbors
33 : ∀j ∈ Π− {i} where (si.permit[j]) //do whose height is known.
34 : enqueue 〈permitResponse, si.ht〉 in sBuffer[j];si.permit[j] ← false //Send permits
35 : si.state ← waiting //Exit the active state after executing an app. step
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VII.4.2. Algorithm description

The algorithm in Algorithms 14, 15, and 16 implements the scheduler for a distributed

system model with dynamic priorities and permits. Algorithm 16 specifies the pro-

gram action of the model, and Algorithm 14 shows the interface between the failure

detector, communication links, the implemented model, and the scheduled applica-

tion. The idea of dynamic priorities and permits (also called forks) is borrowed from

the algorithms to solve the dining philosophers problem in [21] and [69]. All the

processes are assigned a static id and all the ids are known to all the processes in the

system.

The automaton defined in Algorithms 14–15, which we call the model automaton,

reflects the schematic shown in Fig. 7 that was described earlier. The model automa-

ton sends and receives messages on behalf of the scheduled application; the application

sends and receives messages via the model automaton through the actions send and

receive, respectively. The model automaton at process i maintains a send_buffer[i, j]

and a receive_buffer[j, i] for each process j in the system. As shown in Algorithm 15,

the action send simply enqueues the message to be sent to j in send_buffer[i, j], and

the action receive simply dequeues a messages from receive_buffer[j, i] and delivers

it to the application. The program action of the model (application protocol) au-

tomaton (in Algorithm 16) is responsible for removing messages from send_buffer

and adding messages to receive_buffer.

The model automaton at a given process sends messages to, and receives mes-

sages from, the model automata at other processes through the actions sendA, and

receiveA, respectively. The messages exchanged among the model automata at differ-

ent processes are of four types: msgReq, msgResponse, permitReq, and permitResponse.

Message type msgReq is sent from process (say) i to process (say) j to solicit appli-
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cation messages sent from i to j. These messages are stored in the send_buffer[j, i]

at j. In response to a msgReq message, j sends a msgResponse message that contains

all the application messages in send_buffer[j, i]. Similar to application messages, the

shared permits between two processes (say) i and j are managed through permitReq

and permitResponse messages. Process i requests the permit shared between i and j

by sending a permitReq message to j, and j sends the shared permit to i by sending

a permitResponse message.

The program action of the model (application protocol) automaton sends mes-

sages by enqueuing them in the buffer called sBuffer. The output action sendA simply

dequeues a message from sBuffer and sends it to the recipient process as shown in

Algorithm 15. Messages are received from another process (say, j) in action receiveA

at process (say) i, and as shown in Algorithm 15, action receiveA first determines

the type of the message, and depending on the type of the messages does one of the

following:

• If the message type is msgReq, then the message is added to the queue ms-

gReqQ[j].

• If the message type is msgResponse, then the message is added to the queue

msgResponseQ[j].

• if the message type is permitReq, then the value of permitReq[j] is updated with

the contents of the message.

• If the message type is permitResponse, the the value of permit[j] is updated with

the contents of the message.

Thus, the program action at the model automaton (Algorithm 16) takes receipt

of various messages by checking the values of the corresponding data structures in
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which the messages are stored.

The model automaton also maintains a variable takeStepFlag, which is initially

set to disabled, to permit the scheduled application to take a step. When the variable

takeStepFlag is set to enabled, the automaton executes the output action takeStep and

then sets takeStepFlag to completed.

In addition to the state variables described so far, the program action specified

in Algorithm 16 utilizes additional state variables. In order to denote their ‘internal’

scope (that is, they are used exclusively by the program action and no other action in

the system), these variables are prefixed with si. where i denotes the process whose

model (application protocol) program action uses them. For each process i, si.state

which determines if the process is waiting or active. The height of a process is stored

in the variable si.ht which is initially 0. For each process j in the system, i maintains

the arrays: (a) si.permit[j] to determine if the permit shared with j is currently held

by i, (b) si.req[j] to determine if the request token to request a permit from j is

currently at i, and (c) si.ht[j] which stores the last received value of j’s height (in

permits and request messages).

We now describe the program action of the model automaton specified in Al-

gorithm 16. All processes start in the waiting state with the permits at higher-id

processes and request tokens at lower-id processes, and takeStepFlag is disabled. For

a waiting process to become active, it must collect all its shared permits. A wait-

ing process requests missing permits in Action 1. Upon receiving such a request in

Action 2, the process determines if the request should be honored based on the follow-

ing condition: if the process is waiting, holds the shared permit, and the requesting

process has greater height (or equal height and higher process-id), then the process

relinquishes the permit. Otherwise the process simply holds the token and defers

sending the permit if the permit is present.
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Upon receiving a permit in Action 3, the process again determines if the permit

should be kept/deferred or sent based on the same condition mentioned previously.

Once a waiting process (say) i receives all shared permits from processes not

suspected by the failure detector D (whose output is stored in the local variable

suspectList, and the value of suspectList is refreshed infinitely often), process i be-

comes active in Action 4. Upon becoming active, i sends an application-message

request (denoted 〈msgReq〉) with a new sequence number (si.seq[j]) to each process

j in the system in Action 4. Upon receiving such a message in Action 5, process j

sends the contents of its local send buffer in a message of type 〈msgResponse〉; the

sequence number associated with the received 〈msgReq〉 message is appended to the

〈msgResponse〉 message. When process i receives a message of type 〈msgResponse〉

in Action 6, the process adds contents of the message to its local receive buffer and

updates its local state to reflect the latest sequence number for which i has received

a response from j (stored in si.macAck[j]). Eventually i receives responses from all

trusted processes for the 〈msgReq〉 messages sent with the latest sequence number

(that is, si.seq[j] = si.maxAck[j] for all j trusted by i); let us denote this condition A.

Also, eventually, all the messages in the local receive buffer are delivered to the appli-

cation (through output action receive in Algorithm 15); let us denote this condition

B. After condition A and condition B are satisfied (and takeStepFlag is still disabled),

Action 7 is enabled. In Action 7, the scheduler sets takeStepFlag to enabled; this

enables the output action takeStep (in Algorithm 15) which executes the program ac-

tion of the scheduled application. This mechanism of receiving application messages

before enabling the action takeStep in Algorithm 15 ensures that an active process i

‘waits on’ all the messages sent by a correct and trusted process j; this guarantees

that a correct and trusted process is also a com-fair process.

The action takeStep in Algorithm15, upon execution, changes the value of the
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variable takeStepFlag to completed. After executing takeStep, conditions A and B

remain satisfied and takeStepFlag is completed. This enabled Action 8.

In Action 8, the process exits its active state by setting takeStepFlag to disabled,

reducing its height below all processes (whose shared permits it holds), sending all

the permits away, and transiting to waiting. Relinquishing the shared permits before

waiting ensures that correct and trusted processes become proc-fair processes as well.

VII.4.3. Proof of correctness

In this section we prove that the scheduler (for the distributed system model) in

Algorithm 16 satisfies the local progress and fairness properties specified in Sec-

tion VII.4. For the purpose of the proof, let the application protocol specified by

Algorithms 14, 15, and 16 be denoted rs. Consider an arbitrary execution α of the

system and the corresponding rs-protocol restricted run α|rs .

Lost request tokens or permits can compromise progress, while duplicated request

tokens or permits can compromise fairness. First we prove that every pair of processes

share a unique permit and a unique request token. We use the following notation to

denote that a message of type y is in transit from process i to j: My
i→j.

Lemma VII.4.1. For all states in α|rs, there exists exactly one request token between

each pair of live processes; that is, for all pairs of processes (i, j): si.req[j]⊕sj.req[j]⊕

MpermitReq
i→j ⊕MpermitReq

j→i .

Proof. For each pair of processes, the initialization code creates a unique request

token at the lower-priority process. Since communication channels are reliable, this

token is neither lost nor duplicated while in transit. Only Actions 1 and 2 can modify

the token variables. No token is lost, because every token received is locally stored

(Action 2), and no token is locally removed unless it is sent (Action 1). No token is
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duplicated, because every token sent is locally removed, and no absent token is ever

sent (Action 1). Thus, token uniqueness is preserved.

Lemma VII.4.2. For all states in α|rs, there exists exactly one permit between each

pair of live processes; that is, for all pairs of processes (i, j): si.permit[j]⊕sj.permit[j]⊕

MpermitResponse
i→j ⊕MpermitResponse

j→i .

Proof. For each pair of processes, the initialization code creates a unique permit at

the higher-priority process. Since communication channels are reliable, this permit

is neither lost nor duplicated while in transit. Only Actions 2, 3, and 5 modify the

permit variables. No permit is lost, because every permit received is locally stored

(Action 3), and no permit is locally removed unless it is sent (Actions 2, 3, & 8).

No permit is duplicated, because every permit sent is locally removed, and no absent

permit is ever sent (Actions 2, 3, & 8). Thus, permit uniqueness is preserved.

In order to prove local progress, we are required to show that every correct

process is guaranteed to take application steps infinitely many times. This proof is

established in two steps. In the first step (Lemma VII.4.4), we show that a correct

process is active only for a finite duration, and in that duration, the process executes

the output action takeStep exactly once. In the second step (Lemma VII.4.6 and

Theorem VII.4.7), given that a correct process is active only for a finite time, we

establish that every waiting process eventually becomes active. Since correct processes

alternate between waiting and active, it follows that a correct process becomes active

infinitely many times, and therefore takes application steps infinitely many times.

Lemma VII.4.3. For all states in α|rs, for all pairs of processes (i, j) where i 6= j,

si.maxAck[j] never exceeds si.seq[j]; that is, ∀i, j ∈ Π : i 6= j : si.maxAck[j] ≤

si.seq[j].
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Proof. Initially, si.seq[j] = si.maxAck[j] = 0, therefore the lemma is true initially.

Note that the only action that changes the value of si.seq[j] is Action 6, and Action 6

increments the value by 1. Therefore, if the lemma was true before i executed Action

6, then the lemma is true upon executing Action 6 as well.

The only action that changes the value of si.maxAck[j] is Action 6. If Ac-

tion 6 increases the value of si.maxAck[j], then the increased value num is received

by i in a message 〈msgResponse,msgSet′, num〉 from j. But note that j sends

〈msgResponse,msgSet′, num〉 to i only upon receiving 〈msgReq, num〉 from i (Ac-

tion 5). But in the message 〈msgReq, num〉 sent by i to j (at time t′), the value of

num (in line 25, Action 6, Algorithm 16) is si.seq[j] at time t′. Inspection of the

algorithm reveals that si.seq[j] is non-decreasing. Therefore, the new si.maxAck[j] is

either the current or a previous value of si.seq[j]. Therefore, if the lemma was true

before i executed Action 6, then the lemma is true upon executing Action 6 as well.

Thus, the lemma is true initially, and the lemma is true after executing any

action that changes the values of si.seq[j] and si.MaxAck[j]; thus proved.

Now we are ready to show that all correct processes are active only for finite

durations.

Lemma VII.4.4. Let C be a state in α|rs at time t in which a process i is active.

Then in some state C ′ at time t′ > t, either i is crashed or i is waiting.

Proof. Let process i become active in state C ′′ at time t′′ (in Action 4) and remain

active through time t ≥ t′′ in state C. If i is faulty, then i crashes at some time t′ > t,

thus satisfying the lemma.

However, if i is correct, then the following argument holds: From Action 4, we

know that i sends the message 〈msgReq, si.seq[j]〉 to all other processes in the step that

i takes immediately following C ′′. For all correct processes j, j receives the message
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〈msgReq, si.seq[j]〉 from i, executes Action 5, and sends 〈msgResponse,msgSet, num〉

where num = si.seq[j]. The message 〈msgResponse,msgSet, num〉 is eventually re-

ceived by i (i is still live) in Action 6 where i sets the value of si.maxAck[j] to

num (which equals si.seq[j]). This follows from Lemma VII.4.3 which shows that

si.maxAck[j] ≤ si.seq[j], and num = si.seq[j]; therefore, in line 27 of Action 6,

si.maxAck[j] is updated to num = si.seq[j].

For all faulty processes j, either (1) process i eventually receives a message

〈msgResponse,msgSet, num〉 from j where num = si.seq[j], and hence, eventually

si.maxAck[j] = si.seq[j], or (2) j crashes and by strong completeness, j is eventually

and permanently suspected by the failure detector D (that is, j ∈ suspectlist).

Since only finitely many msgResponse messages are received by i, the size of

receive_buffer[i, j] is finite for all processes j. Since the output action receive in

Algorithm 15 enabled while receive_buffer[i, j] is not empty, and every execution

of receive decreases the size of receive_buffer[i, j]. Eventually, receive_buffer[i, j] is

empty.

Therefore, eventually for all processes j ∈ Π−{i}, either si.maxAck[j] = si.seq[j]

or j ∈ suspectList, and receive_buffer[i, j] is empty. That is, eventually, Action 7 is

enabled at i.

Upon executing Action 7, takeStepFlag is set to enabled, thus enabling the output

action takeStep in Algorithms 14, 15. By executing the output action takeStep, the

scheduled application takes a step and takeStepFlag is set to completed. Thus, Action

8 is enabled at i. Upon executing Action 8, i starts waiting. Thus shown that if a

process i is active in state C at time t, then at some future state C ′ at time t′ > t

either i is crashed or i is waiting.

Corollary VII.4.5. Let (t, t′) be an interval in α|rs where process i is active at all



142

times in (t, t′), and let i be waiting at times t and t′. There exists a time t′′ in the

interval (t, t′) at which i executes the action takeStep in Algorithms 14, 15 (and the

scheduled application takes a step).

Given that live processes are active only for finite durations, in order to prove

progress, we need to show that every waiting process eventually becomes active. For

this purpose, we introduce some definitions to construct a metric function on states

in α. First, we measure the priority distance between any two processes i and j in a

state as:

dist(i, j) =


0, if (si.ht < sj.ht)

si.ht− sj.ht. if ((si.ht ≥ sj.ht) ∧ (i < j))

si.ht− sj.ht + 1, if ((si.ht ≥ sj.ht) ∧ (i > j))

Suppose for any pair of processes i and j that dist(i, j) = d in some state where

j is waiting. While j remains waiting, sj.ht remains unchanged. Also, recall from

Action 7 that each process reduces its height (below all the processes whose shared

permits it holds) when exiting the active state. Consequently, d is an upper bound

on the maximum number of times that process i can overtake process j and become

active before either j becomes active or si.ht < sj.ht. Now we define a metric function

M : Π→ IN for each process j ∈ Π as follows:

M(j) =
∑

∀i∈Π:i 6=j

dist(i, j)

Note thatM is bounded below by 0, and thatM(j) = 0 if and only if j currently

has the highest priority value among all processes in Π. In general, the value of M(j)

depends only on processes that are currently higher-priority than j. This is because

dist(i, j) = 0 for any process i with lower height than i or equal height as j but

lower process id. If M(j) = b, then b is an upper bound on how many times any
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higher-priority process can become active before either j becomes active or j is the

process with highest priority.

Also note that the metric value of each process in a given state is unique: (i 6=

j) ⇒ M(i) 6= M(j). Moreover, M(i) < M(j) ⇔ ((si.ht < sj.ht) ∨ ((si.ht = sj.ht) ∧

(i < j)). These properties follow from the fact that priorities are totally ordered.

Finally,the metric value M(j) never increases while process j is waiting. M(j)

can only increase by reducing the height sj.ht in Action 7 while exiting the active

state. Importantly, this change in relative priority actually causes the metric values

of all other processes to decrease.

We are now prepared to state and prove the following helper lemma for progress:

Lemma VII.4.6. Let C be any state in α|rs with at least one live waiting process.

Let j be the live waiting process in C with minimal metric. Then there is a later state

C ′ in α such that: (1) j is active in C ′, or (2) j is crashed in C ′, or (3) some other

process i is live and waiting and M(i) < M(j) in C ′.

Proof. Assume in contradiction that in every state after C, j is live and waiting and

has the minimal metric. We will show that eventually j is active, a contradiction.

Let C ′′ be a state after C in α|rs in where all faulty processes have crashed and

by strong completeness of D, all such crashed processes are permanently suspected.

After C ′′, j only needs to collect permits from correct processes. We show that j

succeeds in collecting and keeping all these permits, and thus, j will become active.

Let i be any correct process other than j. First we show that j will not lose the

permit it holds with i. By hypodissertation, j is waiting and has higher priority than

any correct process from state C onwards (recall that M(j) never increases while j

is waiting; hence, j will continue to be the highest priority process until it becomes

active), so any request token received by j in Action 2 will be deferred. Note that it is
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possible for j to receive an ‘old’ request token from i which has higher priority value,

thereby causing j to give up its shared permit. However, j will send the request token

to i in Action 1 right after sending the permit, and this time i will have to return the

permit to j because j has higher priority. Thereafter, eventually, j defers the request

token from i until j becomes active.

Now we show that j will eventually acquire the permit shared with i. By

Lemma VII.4.2, j shares a unique request token with i. All permits that were in

transit to j when j started waiting are delivered in finite time. For any missing

permits, if j holds the request token, then j will eventually send the corresponding

token.

However, if j has neither the request token or the shared permit upon transiting

to waiting, then eventually the shared permit and the request token are either at

i or at j. We now show that eventually j receives either the request token or the

shared permit. For the purposes of contradiction, suppose eventually i holds both

the permit and the request token permanently. If i is active, then i eventually starts

waiting (by Lemma VII.4.4) and sends the permit to j in Action 5. If i is waiting,

then depending on the order in which the request token and the permit arrived at i,

process i executes either Action 2 or Action 3. Since priorities are non-increasing, the

priority encoded in the token and the permit received by i must be at least as high

as j’s current priority. We have already established that j has the highest priority in

the system. Therefore, in both Action 2 and Action 3, i sends the shared permit to

j.

If j (eventually) receives the request token, then j sends this request token to i in

Action 1. Recall that by hypodissertation, j has higher priority than i; consequently,

this permit request must be honored unless i is currently active. In the latter case,

we know from Lemma VII.4.4 that i eventually exits to be waiting; therefore, the
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requested permit will be sent when i starts waiting in Action 5.

Thus, we conclude that if j remains waiting indefinitely, then j eventually sus-

pects each faulty process and eventually holds the shared permit with each correct

process. This enables the guard on Action 4, and eventually, j becomes active.

Theorem VII.4.7. Algorithm 16 satisfies local progress. That is, every correct

process takes infinitely many application steps.

Proof. Note that to prove the theorem, it is sufficient to prove the following claim:

For every k, every state C of α|rs , and every correct process j, if M(j) = k in C,

then there is a later state in which j is active. We prove this by a complete (strong)

induction on metric values.

Base Case: k = 0. SupposeM(j) = 0 in state C. Since 0 is the smallest possible

value that the metric can have and j is correct, Lemma VII.4.6 implies that in some

subsequent state C ′, either j is active or there is another live waiting process i whose

metric is smaller than j’s metric in C ′.

However, since a j’s metric can never increase while j is waiting, and it is not

possible for a process to have a metric less than 0, no such live waiting process i

exists. So, j eventually becomes active.

Inductive Case: k > 0. Suppose for every k′ < k, every state C of α|rs , and

every correct process j, if M(j) = k′ in C, then there is a later state in which j is

active. We must show that for every state C and every correct process j, if M(j) = k

in C, then there is a later state in which j is active.

Let C be a state, and let j be a correct waiting process in C with M(j) = k.

Suppose that k is the minimal metric value among all correct waiting processes in C.

Then Lemma VII.4.6 applies to j, so we conclude that j eventually becomes active,

or some correct process i with M(i) < M(j) starts waiting. Alternatively, suppose
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that k is not the minimal metric value among all correct waiting processes in C. Then

some correct waiting process i with M(i) < k already exists. Either way, we conclude

that j eventually becomes active or the inductive hypodissertation applies to some

correct waiting process i with M(i) < k. In the latter case, process i becomes active.

By Lemma VII.4.4, i eventually exits the active state by executing Action 5, which

thereby lowers the height si.ht and decreases dist(i, j) by at least 1. Recall that while

j remains waiting, M(j) does not increase. Thus, any decrease in dist(i, j) will cause

the metric value of M(j) to become less than k. Since j is now a correct waiting

process with M(j) < k, the inductive hypodissertation applies directly to j. Thus,

we conclude that j eventually becomes active.

By Lemma VII.4.4, Corollary VII.4.5, and Actions 7 and 8, we know that every

time j becomes active, it executes an application action, and j eventually exits. Upon

exiting j starts waiting again. Thus, we show that Algorithm 16 satisfies local progress

by complete induction.

To establish the proof for computational fairness, we make use of the notion of

distinguished processes. Recall that a distinguished process is never suspected until

it crashes and is suspected forever thereafter.

Theorem VII.4.8. Every (eventually) distinguished process is (eventually) 2-proc-

fair.3

Proof. Consider an arbitrary execution α and let i be any process that is eventually

distinguished in the run α|rs starting at some time ti. We must show that for all j,

3If all processes are distinguished, then a careful analysis shows that all correct
distinguished processes are, in fact, 1-proc-fair. We omit this here because, for the
purposes of our results, it is sufficient to show that a correct distinguished process is
2-proc-fair.
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in every interval starting after ti in which j takes 3 application steps, either i takes

at least 1 application step or i is crashed.

Consider a process j 6= i that takes 3 steps after ti, say at times t, t′, and t′′

and suppose that i is live through t′′. We must show that i takes a step at least once

between t and t′′. Since i is distinguished after ti, the failure detector D at j never

suspects i between ti and t′′.

At time t, let the height of i be hti and the height of j be htj. Let htj > hti.

From Action 8, we know that j sends the permit to i with height htj encoded in

the permit message. We also know that j takes an application step at time t′ and

therefore is active at time t′. Therefore, j must hold the permit it shares with i at

time t′. That is, i sends the permit to j in the interval (t, t′). Note that i sends the

permit to j only in actions 2 and 8. If i executes Action 8 in (t, t′), it implies that i

was active in the interval (t, t′), and hence took an application step in that interval;

thus, the lemma is satisfied.

On the other hand, if i sends the permit to j in Action 2 (and noting that i is not

active in the interval (t, t′)), then i encodes its height hti in the permit. Therefore,

when j is active at time t′, the value of sj.hti is hti. When j transits to waiting, it

reduces its height to htj′ < hti and encodes this height in the permit sent to i.

We know that j takes an application step again at time t′′, and so j is active

again at time t′′. Therefore, j must hold the permit it shares with i at time t′′. That

is, i sends the permit to j in the interval (t′, t′′). Note that in this interval i does not

send the permit to j in Action 2. We conclude this based on the heights of i and

j. When j sends a request token to i in (t′, t′′), it is encoded with height htj′ < hti.

Therefore, when i executes Action 2 upon receiving this request token, i notes that j’s

height is lower than its own height, and so does not send the permit to j. Therefore,

j could have received the permit from i only through Action 8 (executed by i); that
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is, i must have been active at some time in the interval (t′, t′′), and hence, i must

have taken an application step in the interval (t′, t′′). That is, from time ti onwards,

i is 2-proc-fair.

In other words, i is eventually 2-proc-fair. However, if ti = 0, then i is 2-proc-fair

in the execution α; that is, if i is distinguished process, then i is 2-proc-fair.

Thus shown that every (eventually) distinguished process is (eventually) 2-proc-

fair.

Theorem VII.4.9. Every (eventually) distinguished process is (eventually) 1-com-

fair

Proof. Consider an arbitrary execution α and let i be any process that is eventually

distinguished in the run α|rs starting at some time ti. We show that for all processes

j and all application messages m sent from i and received by j after ti, during the

time m is in transit, either j takes at most one step or i is crashed.

Consider a process j to which i sends an application message m at some time

t after ti. This message is sent by the application when i is active and executes

its output action send (m,i,j), which causes m to be added to send_buffer[i,j] (the

message is actually sent by the model automaton later during the execution). By the

assumption that m is received by j, we know that j takes at least one application

step after t. Again, note that j executes its application step only when j is active.

Let the earliest time after t that j is active be t′. In the active session that starts at

time t′, j sends 〈msgReq, sj.seq[j]〉 to i in Action 4.

From Lemma VII.4.3 we know that sj.maxAck[i] ≤ sj.seq[i] before j executes

Action 4. But Action 4 increments sj.seq[i], therefore, after j executes Action 4,

sj.maxAck[i] < sj.seq[i]

From Lemma VII.4.4, we know that j eventually stops being active. Since i is
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a correct eventually distinguished process, we also know that j does not suspect i.

Therefore, if j eventually exits the active state by executing Action 8, then eventually

sj.maxAck[i] = sj.seq[i].

The above two arguments imply that while j is , active, the value of sj.maxAck[i]

is updated to sj.seq[i]. However, the only action that updates sj.maxAck[i] is Action

6, and Action 6 is executes only upon receiving 〈msgResponse,msgSet′, num〉.

While the message 〈msgReq, sj.seq[i]〉 sent by j in action 4 is eventually received

by i in Action 5 (or i is crashed, in which case the lemma is satisfied). Action 5

empties send_buffer[i, j] and sends the messages in the buffer to j. But note that the

message m was in send_buffer[i, j] before Action 5 is executed. Therefore, message

m is sent to j in the message 〈msgResponse,msgSet′, sj.seq[i]〉. This message is

eventually received by j in Action 6, and Action 6 puts message m into the receive

buffer receive_buffer[j, i] and updates sj.maxAck[i] to si.seq[j].

While receive_buffer[j, i] has messages in it, the action receive in Algorithm 15

is enabled at j which delivers the messages from receive_buffer[j, i] to the scheduled

application.

Therefore, when j executes the output action takeStep in Algorithms 15 , m

which is in receive_buffer[j, i], is received by the scheduled application protocol at j.

That is, j takes no more than 1 step after m is sent and before m is received. In other

words, i is 1-com-fair after time ti. However, if ti = 0, then i is 1-com-fair in the

execution α; that is, if i is an (eventually) distinguished process, then i is (eventually)

1-com-fair.

Corollary VII.4.10. If the failure detector D in Algorithm 16 is the perfect failure

detector P, then the action system described in Algorithm 16 implements the All Fair

(AF) system model.
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Proof. Given that P is a failure detector for which every process is distinguished,

from Theorems VII.4.8 and VII.4.9 we know that all processes are 2-proc-fair and

1-com-fair. By definition, this is AF .

Corollary VII.4.11. If the failure detector D in Algorithm 16 is the eventually per-

fect failure detector ♦P, then the action system described in Algorithm 16 implements

the Eventual All Fair (♦AF) system model.

Proof. Recall that ♦P is a failure detector for which every process is eventually dis-

tinguished. Let the time after which every process is distinguished be t. From Theo-

rems VII.4.8 and VII.4.9 we know that all distinguished processes are 2-proc-fair and

1-com-fair after time t. Since every process is distinguished after time t, it follows

that, eventually, all processes are 2-proc-fair and 1-com-fair. By definition, this is

♦AF .

Corollary VII.4.12. If the failure detector D in Algorithm 16 is the strong failure

detector S, then the action system described in Algorithm 16 implements the Some

Fair (SF) system model.

Proof. Given that S is a failure detector for which some correct process is dis-

tinguished, from Theorems VII.4.8 and VII.4.9 we know that the correct distinguished

process is 2-proc-fair and 1-com-fair. By definition, this is SF .

Corollary VII.4.13. If the failure detector D in Algorithm 16 is the eventually strong

failure detector ♦S, then the action system described in Algorithm 16 implements the

Eventually Some Fair (♦SF) system model.

Proof. Note that ♦S is a failure detector for which, eventually, some correct process is

distinguished. Let the time after which some correct process (say, i) is distinguished
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be t. From Theorems VII.4.8 and VII.4.9 we know that i is 2-proc-fair and 1-com-fair.

By definition, this is ♦SF .

Recall from Section III.2.1 that the Eventual All Fair (♦AF) system model is the

same as theM∗ system models (assuming thatM∗ specifications are fairness based,

and not real-time based). Therefore, from Theorem VII.3.5 and Corollary VII.4.11,

we know that ♦P is the weakest failure detector to construct theM∗ system models.
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CHAPTER VIII

IMPLEMENTING ♦P ON EMPIRICAL SYSTEMS

If a man will begin with certainties, he shall end in doubts; but if he will

be content to begin with doubts he shall end in certainties.

The Advancement of Learning, Book 1, 1605
– Francis Bacon

Recall from Chapter IV that the construction ofM∗ from empirical systems follows

three steps. The first step is to construct an appropriate failure detector on top of

empirical systems; the second step is to implement reliable communication on top of

empirical systems; and the third step is to constructM∗ using the thus constructed

failure detector and reliable channels. The second step has been accomplished in [1–

3, 11, 37], and the third step was accomplished in Chapter VII. Also, Chapter VII

determined that the appropriate failure detector for step one is ♦P . Thus, the only

remaining step is the construction of ♦P on empirical systems. We accomplish this

task in this chapter.1

Implementing ♦P on empirical systems presents multiple challenges. While many

such challenges have been overcome in previous implementations of ♦P , two salient

challenges remain unresolved: (1) tolerating infinite message loss, and (2) the celera-

tion gap. We discuss these two challenges next.

VIII.1. Tolerating infinite message loss

Tolerating infinite message loss is critical to implementing ♦P on empirical systems

simply because the ADD channels in empirical systems can lose an infinite subset

1The celeration gap and bichronal time described in this chapter have been pub-
lished in [75].
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of messages. The classic and many customized models of partial synchrony [33, 35,

40, 50, 73] make relatively strong assumptions about communication reliability. To

our knowledge, among the partially synchronous system models sufficiently power-

ful to implement ♦P , ADD channels provide weakest guarantees on communication

reliability.

The models cited above assume that the communication channels are either al-

ways reliable, or eventually reliable (i.e., can lose at most finitely many messages over

some prefix, followed by an infinite reliable suffix). Implementations of ♦P in models

with such strong assumptions on communication reliability can be trivially adapted

to withstand certain subsets of messages being arbitrarily delayed or dropped. For

instance, consider a system E where only the odd-numbered messages may be delayed

or dropped, but all the even-numbered messages are delivered reliably within some

unknown bound on delay. Implementing ♦P in such a system is trivial, because the

infinite pattern of potentially delayed and dropped messages in known, and hence

can be used to advantage. Such applications can simply send dummy information in

the odd-numbered messages and use the even-numbered messages to communicate.

Effectively, the applications have access to a reliable sub-channel consisting of the

even-numbered messages. However, ADD channels in the empirical system model

may be viewed as links where, during every prefix of every computation, (say) at

most a fraction f of the messages sent may be delayed or dropped, but all other

messages are delivered within some (unknown) bound on delay. Implementing ♦P in

such a system becomes non-trivial.

We resolve the issues with infinite message loss by imposing a ‘bounded persis-

tence’ to the messages sent among processes. Informally, the sequence of messages

sent from process (say) i to process (say) j is bounded persistent if there exists an

upper bound on the real-time duration between times that two messages are sent
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consecutively. The intuition is that if messages are sent with bounded persistence,

then they are received with bounded persistence; that is, there exists an upper bound

on the real-time duration between times that two messages are received consecutively.

This roughly translates to an upper bound on the end-to-end communication delay of

certain subset of messages (specifically the set of privileged messages) in the system.

While this approach works well in system models where there is either an upper

bound on absolute process speeds or a lower bound on absolute process speeds, it fails

in the empirical system model where absolute process speeds are unbounded (above

and below). This is due to a phenomenon called the celeration gap. We discuss the

celeration gap and a mechanism to bridge the gap in Section VIII.2 that follows.

VIII.2. Process celeration

There are several implementations of ♦P in various real-time based models of partial

synchrony in the existing literature [4,14,20,39,58,59,62]. These implementations are

based on the deduction that upper bounds on relative process speeds and message de-

lay translate to an (unknown) upper bound on end-to-end communication delay. The

end-to-end communication delay is the duration between the send of a message and its

receipt. However, these implementations have overlooked an important subtlety with

respect to measuring the passage of time in celerating executions, wherein absolute

process speeds can continually increase and/or decrease while maintaining bounds on

relative process speeds. Such traditional implementations of ♦P can precipitate an

infinite number of failure detector mistakes in celerating executions.

In system models with bounded message delay and bounded relative process

speeds, such infinite failure detector mistakes happen because end-to-end message

delay, which is bounded either in real time, or in the number of steps executed by pro-
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cesses, in executions where absolute process speeds are bounded, become unbounded

in both real time and in the number of steps executed by processes when absolute

process speeds are not bounded. We call this the celeration gap.

In order to understand the celeration gap, we first describe how end-to-end mes-

sage delay is bounded in non-celerating executions (that is, execution where absolute

process speed is bounded, both above and below) where there exists a real-time upper

bound on message delay and an upper bound on relative process speeds. Then we

show how the end-to-end message delay can be unbounded in celerating executions.

VIII.2.1. End-to-end message delay in non-celerating executions

In non-celerating environments, the process speeds, by definition, do not accelerate

or decelerate continually. In other words, there exist some (potentially unknown)

upper and lower bounds on absolute process speeds. Given such bounds on absolute

process speeds, in conjunction with an upper bound on message delay, demonstrating

an upper bound on end-to-end communication delay is straightforward.

End-to-end communication delay can be measured either as the number of steps

executed by the recipient or as the passage of real time. Action clocks (or step timers)

measure the former whereas real-time clocks measure the latter.

VIII.2.1.1. Action clocks

Action clocks increment their clock value by one every time the protocol executes its

program action. Since we know that there exists an upper bound on absolute process

speeds in non-celerating environments, there exists an upper bound on the number of

program actions a control protocol can execute while a message is in transit (note that

there exists an upper bound on message delay). Additionally, sending and receiving

a message is assumed to be atomic and hence requires exactly one program action
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each. Since there exists an upper bound on relative process speeds, there exists an

upper bound on the number of program actions executed by control protocols at each

process while a message is either being sent or received. In other words, there exists

an upper bound on the number of action clock ticks at the control protocol while a

message is being sent, is in transit, and is being received. That is, there exists an

upper bound on end-to-end message delay as measured by the action clock.

VIII.2.1.2. Real-time clocks

A lower bound on absolute process speeds in non-celerating environments implies an

upper bound on the real-time duration for a message to be generated and sent, as well

as an upper bound on the real-time duration to complete the receipt of the message.

Since the upper bound on message delay is assumed, there exists an upper bound on

end-to-end communication delay, as measured by real-time clocks.

VIII.2.2. End-to-end message delay in celerating executions

In this section we describe the following:

• In accelerating executions, where absolute process speed is not bounded above,

the end-to-end communication delay of messages is unbounded when denomi-

nated in ticks of an action clock.

• In decelerating executions, where absolute process speed is not bounded below

by a positive finite value, the end-to-end communication delay of messages is

unbounded when denominated in duration of a real-time clock.
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VIII.2.2.1. Action clocks in accelerating executions

In accelerating executions, the end-to-end communication delay is unbounded when

denominated in ticks of an action clock. The argument for this behavior is as follows.

Consider an accelerating execution. Let time be measured locally by action

clocks. For the purpose of contradiction, assume that there exists an upper bound on

message delay as measured by an action clock. Let such a bound be k. Let the bound

on message delay be ∆ real-time units. Since processes are continually accelerating,

eventually (say, after real time t) process speeds exceed d k
∆
e program actions per unit

real time. Let some message m sent after time t experience a delay of ∆ real-time

units. The message delay for m measured in action clock ticks exceeds k (because

d k
∆
e · ∆ ≥ k). However, this contradicts our assumption that the upper bound on

message delay as measured by an action clock does not exceed k. This implies that

message delay measured in action clock ticks is unbounded. Therefore, in accelerating

environments, the end-to-end communication delay of messages is unbounded when

denominated in ticks of an action clock.

VIII.2.2.2. Real-time clocks in decelerating executions

In decelerating executions, the end-to-end communication delay is unbounded when

denominated in real-time duration. The argument for such behavior is as follows:

Consider a decelerating execution. Let time be measured locally by perfect real-

time clocks2. For the purpose of contradiction, we assume that there exists an upper

bound on real-time end-to-end communication delay. Let this bound be k real-time

units. As processes decelerate, an increasingly greater duration of time elapses be-

2Although it is not necessary for the real-time clocks to be perfect, we strengthen
the clock specification in order to strengthen the negative result
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tween consecutive control-protocol program actions. Eventually (say, after time t),

the time between consecutive control-protocol program actions exceeds k. Since it

requires at least one program action to send or receive a message, after time t, genera-

tion of a message m takes longer than k real-time units. Consequently, the end-to-end

communication delay for m exceeds k. This, however, contradicts our earlier assump-

tion that end-to-end communication delay is bounded above by k. In other words,

in decelerating environments, the end-to-end communication delay of a message is

unbounded when denominated in real-time duration.

VIII.2.3. The celeration gap

Celerating executions denote the set of executions where processes accelerate and/or

decelerate continually. Hence, absolute process speeds for (live) processes may be

unbounded (above and below) in such executions. From Section VIII.2.2.1, we know

that end-to-end communication delay when measured by action clocks is unbounded

in executions where processes accelerate continually. However, in exclusively acceler-

ating executions, the end-to-end communication delay remains bounded above when

measured by a real-time clock (with bounded drift rate). Similarly, we know from Sec-

tion VIII.2.2.2 that in executions where processes decelerate continually, end-to-end

communication delay is unbounded when measured by a local real-time clock (with

bounded drift rate). However, in exclusively decelerating executions, the end-to-end

communication delay remains bounded when measured by action clocks.

On the other hand, in executions where processes may accelerate and decelerate

continually, there exists neither an upper bound, nor a lower bound, on absolute

process speeds. Consequently, the end-to-end communication delay is unbounded

in terms of both real-time clocks and action clocks. Such unbounded end-to-end

communication delay in terms of either real-time clocks, or action clocks, or both, in
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celerating executions is referred to as the celeration gap.

VIII.2.4. Impact of the celeration gap

In this subsection, we discuss the impact of the celeration gap on designing a ♦P

failure detector implementation in the empirical system model.

VIII.2.4.1. Existing ♦P implementations

Recall from Section VIII.2 that the existing implementations of failure detectors like

♦P in real-time based partially synchronous systems adaptively estimate the upper

bound on end-to-end communication delay. However, since end-to-end communica-

tion delay is unbounded in terms of both action clock ticks and real-time duration,

all such implementations fail in celerating executions.

VIII.2.4.2. Bridging the celeration gap

We introduce a new technique to bridge the celeration gap without assuming lower

or upper bounds on absolute process speeds. Our solution is based on a composition

of action clocks and real-time clocks and is motivated by the following observations:

Message delay is bounded above in terms of real time. Therefore, there exists an

upper bound on the number of ticks of a real-time clock while a message is in transit.

Similarly, relative process speeds are bounded as well. Therefore, regardless of process

celeration, there exists an upper bound on the number of program actions executed by

the control protocol while messages that have been delivered at the recipient’s receive

buffer are being processed. In other words, there exists an upper bound on the number

of action clock ticks in the duration it takes for a message to be processed. Therefore,

running real-time clock timers when messages are in transit, and running action clock

timers when messages are being processed, should make ♦P implementations immune
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to the celeration gap. We explore this intuition by introducing a new clock called a

bichronal clock.

VIII.3. Bichronal clocks

A bichronal clock is a composition of an action clock and a real-time clock. It has

the following properties:

• Composition: A bichronal clock consists of an action clock a and a real-time

clock r.

• Two-dimensional Time: The time on a bichronal clock is the vector 〈a.time,

r.time〉 where a.time is the value of the action clock, and r.time the value of

the real-time clock. These time components are independent and will not be

ordered lexicographically.

Similarly, a bichronal timer consists of an action clock timer and a real-time

clock timer. It counts down from a given value (at, rt) where at is the starting value

for the action clock timer, and rt is the starting value for the real-time clock timer.

A bichronal timer is said to have timed out iff both the action clock timer and the

real-time clock timer have timed out.

VIII.4. Bichronal clocks as a part of the control protocol

Before proceeding to the ♦P implementation within the control protocols in empirical

systems, we first need to include bichronal timers in the TIOA specification for the

control protocol in each process. The TIOA framework for the control protocol in

empirical systems is given in Algorithms 17–18. In addition to the specifications and

descriptions of control protocol in Section V.3.2.1, we assume that the control proto-

col has access to a real-time clock (labeled clock) with a bound D on drift rate (as
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specified in Section V.5.5 and as defined in the trajectory function in Algorithm 18).

Bichronal timers, described next, are constructed from a real-time timer that is im-

plemented using clock and an action timer constructed by augmenting action takeStep

as described in the paragraphs that follow.

The automaton specified in Algorithms 17–18 uses four variables to implement

a bichronal timer: actionTimer, realTimeTimer, realTimeTimerExpired, and bichronal-

TimerExpired. The bichronal timer is initialized by the program action by execut-

ing the macro startBichronalTimer(a,r) (defined in Algorithm 17) for a actions and r

clock ticks. The macro initializes actionTimer to a, realTimeTimer to clock + r, real-

TimeTimerExpired to false, and bichronalTimerExpired to false. The values of these

variable change as follows.

The value of actionTimer is decremented by 1 every time the program action

is executed in takeStep (in Algorithm 18) until actionTimer is 0. When actionTimer

decrements to 0, the action timer is said to have expired. Thus, action timer ex-

pires after the control protocol executes its program action r times after the timer is

(re)started.

In contrast, the value of realTimeTimer remains unchanged until startBichronal-

Timer(a,r) is executed again. However, the control protocol executes action realTime-

TimerExpiry when clock, which evolves with a bound D on the drift with respect to

real time, equals realTimeTimer; the action sets realTimeTimerExpired to true.

When both the real-time timer and the action timer expire, the bichronal timer

also, by definition, expires. This is modeled by the internal action bichronalTimerEx-

piry which sets bichronalTimerExpired to true. To ensure that timer expiries happen

at the instant that the deadlines are reached, the trajectory function in Algorithm 18

ensures that time evolution is paused when clock equals realTimeTimer and action real-

TimeTimerExpiry is not yet executed. Similarly, time is evolution is paused when both
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Algorithm 17 Signature and states for the TIOA specification for the control proto-

col in empirical systems with a bichronal timer. The state transitions for the TIOA

are specified in Algorithm 18.

automaton controlProtocol(i: pIndex) //Control Protocol with a Bichronal Timer
type pIndex = enumeration of p1,p2,...,pn where Π = {p1, p2, . . . , pn}
type rIndex = enumeration of r0, r1, r2,. . .,rm where ρ = {r0, r1, r2, . . . , rm}

and r0 refers to the control protocol itself
signature (in addition to the actions specified in Algorithms 1 and 11)
input takeStep( i : pIndex) //Enables process i to take a step. Redefined here.
internal realTimeTimerExpiry() //Signals expiry of the real-time timer
internal bichronalTimerExpiry() //Signals expiry of the bichronal timer
states
now: Real ← 0 //Current time. As defined in Algorithm 1
rSendBuff: Array[ rIndex , pIndex, Queue[Type]] ← constant(∅)

//Messages sent by protocols. As defined in Algorithm 1
rReceiveBuff : Array[ rIndex , pIndex, Queue[Type]] ← constant(∅)

//Messages received for protocols. As defined in Algorithm 1
pause: Array[pIndex, Boolean] ← constant(false)

//Device to stop time evolution.As defined in Algorithm 1
queryInProgress : Array[ rIndex , Boolean] ← constant(false)

//As defined in Algorithm 11
suspectList : Set[pIndex] ← ∅, //Suspect List. As defined in Algorithm 11
actionTimer: Integer //Action timer value for the bichronal timer
realTimeTimer: Real //Real-time Timer value for the bichronal timer
realTimeTimerExpired: Boolean ← true //Denotes if the real-time Timer is expired
bichronalTimerExpired: Boolean ← true //Denotes if the bichronal Timer is expired
clock : Real ← 0 //Local clock value
fdi.aValue: Integer ← fixed constant a //Action timer value; used by Algorithm 19
fdi.rValue: Integer ← fixed constant r //Real-time timer value; used by Algorithm 19
fdi.hbBound: Array[pIndex, Integer ] ← constant(1)

//Estimate on number of messages sent; used by Algorithm 19
fdi.hbCount: Array[pIndex, Integer ] ← constant(1)

//Counts down number of messages sent; used by Algorithm 19
aliases
sendBuffer [ j ] ≡ rSendBuff[r0,j]
receiveBuffer [ j ] ≡ rReceiveBuff[r0,j]
startBichronalTimer (a, r) ≡ {actionTimer ← a;

realTimeTimer ← clock + r;
realTimeTimerExpired ← false;
bichronalTimerExpired ← false}
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Algorithm 18 Transitions for the TIOA Specification of the control protocol in

empirical systems with a bichronal timer. The signature and states of the TIOA is

specified in Algorithm 17.

input takeStep( i )
effect
execute an enabled program action from Algorithm 19
actionTimer ← min(actionTimer − 1, 0)
∀j∈ pIndex::pause[j] ← true

internal realTimeTimerExpiry()
precondition
realTimeTimer = clock
effect
realTimeTimerExpired ← true

internal bichronalTimerExpiry() //Bichronal timer expires only when both
precondition //action timer and real-time timer expire
(realTimeTimerExpired) ∧ (actionTimer = 0) ∧ (¬bichronalTimerExpired)
effect
bichronalTimerExpired ← true

trajectories
stop when
(∃j∈ pIndex::pause[j] = true) ∨ //Pause time to send msgs
(realTimeTimer = clock)∧(¬realTimeTimerExpired)) ∨
(realTimeTimerExpired ∧ (actionTimer = 0) ∧ (¬bichronalTimerExpired))
evolve //Pause time to flag timers’ expiry
d(now) = 1
D ≤ d(clock) ≤ 1/D //Local clock has a bound D on drift rate
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the real-time timer and the action timer are expired until the action bichronalTimer-

Expiry is executed. The program action verifies bichronal timer expiry by checking

the value of bichronalTimerExpired.

Note that in the control-protocol framework, we have specified just one bichronal

timer. However, it is permissible to have multiple timers. The only reason we have

specified just one is that one bichronal timer is sufficient to implement ♦P in empirical

systems.

VIII.5. Implementing ♦P

In this section, we present an implementation of ♦P on the empirical system model

(from Section V.5.5) using bichronal clocks. Let the set of processes in the system be

Π. The action system in Algorithm 19 implements ♦P when executed as the program

action of the control protocol at each process i in Π.

Algorithm 19 Program action of ♦P implementation at process i.

1 : { true } −→ Action 1
2 : foreach j ∈ Π− {i}
3 : dequeue m from receiveBuffer[j] //Receive at most one message
4 : if (m = 〈HB〉) //Upon receiving a heartbeat from j
5 : if (j ∈ suspectList) //Possible false suspicion
6 : fdi.hbBound[j] ← fdi.hbBound[j] +1 //Increment bound on heartbeats sent
7 : suspectList ← suspectList{j} //Take j off the suspect list
8 : fdi.hbCount[j] ← fdi.hbBound[j] //Start counting down again
9 : if (bichronalTimerExpired) //Upon timer expiry
10 : foreach j ∈ Π− {i}
11 : enqueue 〈HB〉 in sendBuffer[j] //Send heartbeats to all processes
12 : fdi.hbCount[j] ← min(fdi.hbCount[j]− 1, 0)
13 : if (fdi.hbCount[j] = 0) suspectList ← suspectList ∪ {j} //Suspect j
14 : startBichronalTimer(fdi.aValue, fdi.rValue) //Start bichronal timer
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VIII.5.1. Algorithm description

The action system uses the additional state variables described next (and defined in

Algorithm 17). In order to denote their ‘internal’ scope (that is, they are used exclu-

sively by the program action and no other action in the system), these variables are

prefixed with fdi. where i denotes the process whose control-protocol program action

uses them. The variables are: fdi.aValue, fdi.rValue, fdi.hbBound, and fdi.hbCount.

The variables fdi.aValue and fdi.rValue are set to some fixed values a and r,

respectively. These variables are used to (re)start bichronal timers repeatedly so that

each process i sends heartbeat messages to all other processes in the system every

(fdi.aValue, fdi.rValue) bichronal time units. Each element fdi.hbBound[j] (in the array

fdi.hbBound) stores the estimate on the highest number of heartbeats that i sends to

j without having received a heartbeat from j. The information about the actual

number of heartbeats sent by i to j without having received a heartbeat from j is

stored in the element fdi.hbCount[j] (in the array fdi.hbCount). In fact, fdi.hbCount[j]

counts down from fdi.hbBound[j], and if fdi.hbCount[j] equals 0, then that is the basis

for i to suspect j.

The action system in Algorithm 19 implements ♦P as follows. It consists of a

single guarded common Action 1 that is always enabled (that is, the guard is true),

and it consists of two phases. The first phase consists of lines 2–8 in Algorithm 19,

and the second phase consists of lines 9–14 in Algorithm 19. In the first phase at (say)

process i, process i receives at most one heartbeat from each process j in the system

(in line 3, Algorithm 19). All processes from who messages have been received are

taken off the suspect list (line 7, Algorithm 19). For each process y processes that was

suspected prior to receiving a heartbeat from j, the action increments the value of

fdi.hbBound[j]. Then it resets fdi.hbCount[j], the countdown of number of heartbeats
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to j sent prior to receiving a heartbeat from j, to fdi.hbBound[j].

In the second phase is executed only if the bichronal timer is expired. Note from

Algorithm 17 that initially bichronalTimerExpired is true; that is, the bichronal timer

is expired. If the bichronal timer is expired, then for every other process j in the

system: i sends a heartbeat to j (line 11, Algorithm 19), counts down of number of

heartbeats to j sent prior to receiving a heartbeat from j by decrementing fdi.hbCount

by 1 (line 12, Algorithm 19), and adds j to the suspect list if fdi.hbCount is equals

0 (line 13, Algorithm 19). Finally, i restarts the bichronal timer with action timer

value fdi.aValue and real-time timer value fdi.rValue (line 14, Algorithm 19).

VIII.5.2. Proof of correctness

To prove correctness, we need to show that the implementation in Algorithms 17–

19 satisfies ♦P specifications viz., strong completeness and eventual strong accuracy,

when executed as the control protocol in the empirical system model. Recall that

strong completeness specifies that every crashed process be eventually and perma-

nently suspected by all correct processes, and eventual strong accuracy specifies that

every correct process be eventually and permanently trusted by all correct processes.

First, we revisit the properties of the empirical system model to establish the in-

tuition behind the correctness of the ♦P implementation. We then follow the intuition

up with formal arguments to establish correctness.

VIII.5.2.1. Empirical system model: a refresher

Recall from Section V.5.5 that the ratio of process speeds is always bounded above;

that is, there exists an unknown upper bound Φ on relative process speeds. That is,

every process that is not crashed executes its control-protocol program action at least

once in a duration where all other processes (that have not crashed) execute their
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control-protocol program action Φ + 1 times. See Section V.5.1 for details.

Also, recall from Section V.5.5 that the communication links between every pair

of processes are ADD links. That is, there exist unknown ∆ ∈ N+ and unknown

R ∈ N+ such that for every interval of time in which process i sends exactly R + 1

messages at least one message (called privileged message) is delivered reliably at j

with delay not exceeding ∆ time units. See Section V.5.5 for details.

The constants Φ, ∆, R, and D (upper bound on the clock drift rate) can be used

to establish correctness as follows. For strong completeness, if a process j crashes, then

the ♦P-module action system at j stops sending heartbeats to each correct process

i. Therefore, i eventually stops receiving heartbeats while the bichronal timer at i

expires (and is restarted) infinitely often. Therefore, fdi.hbCount[j] eventually counts

down to 0, j is suspected by i, and i never receives another message from j to take

j off the suspect list. That is, every crashed process is eventually and permanently

suspected.

Eventual strong accuracy is based on the assertion that bounds Φ and D impose

an upper bound on the number of heartbeats that a correct process i sends to a

correct process j in the duration that j sends two heartbeats to i. Similarly, the

bounds ∆ and D impose an upper bound on the number of heartbeats that i sends

to j while a privileged message from j is in transit to i. Since at least one message in

every R+ 1 consecutive messages is guaranteed to be privileged, the bounds Φ, ∆, R,

and D impose an upper bound (say) MAX on the number of heartbeats i sends to

j before receiving a heartbeat from j. Thus, after finitely many false suspicions, the

value of fdi.hbBount[j] exceeds MAX after which i never suspects j. That is, every

correct process is eventually and permanently trusted by all correct processes.
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VIII.5.2.2. Bichronal timer properties

Understanding the behavior of bichronal timers is critical to establishing correct-

ness. Here we prove that, in Algorithms 17–19, when bichronal timers are started for

bichronal value (a, r), they run for either exactly a control-protocol program actions,

or exactly r units of local clock time.

Lemma VIII.5.1. Let α be an arbitrary execution of Algorithms 17–19. Let a correct

process i execute startBichronalTimer(fdi.aValue, fdi.rValue) at time t. Let the value of

the clock at process i at time t be denoted clocki,t. Let t′ > t be the earliest time (after

t) that bichronalTimerExpired is set to true (that is, the bichronal timer expires). In

the closed interval [t, t′], either (1) i executes the guarded command in Algorithm 19

exactly fdi.aValue times and clocki,t′ − clocki,t ≥ fdi.rValue (that is, the local real-time

clock at i ticks for exactly fdi.rValue units), or (2) i executes the guarded command

in Algorithm 19 at least fdi.aValue times and clocki,t′ − clocki,t = fdi.rValue (that is,

the local real-time clock at i ticks for exactly fdi.rValue units).

Proof. From the pesudo code in Algorithms 17–19, it can be verified that the state

variables that maintain the bichronal timer are modified only by action takeStep, the

macro startBichronalTimer in Algorithm 19, action realTimeTimerExpiry, and action

bichronalTimerExpiry. It can be verified that: the action takeStep signals the expiry

of the action clock component of the bichronal clock (when actionTimer = 0), the

action realTimeTimerExpiry signals the expiry of the real-time clock component of the

bichronal clock, and action bichronalTimerExpiry signals the expiry of the bichronal

timer itself. Also, it can be verified that the guarded command in Algorithm 19

executes the macro startBichronalTimer only upon bichronal timer expiry.

Therefore, if i executes startBichronalTimer(fdi.aValue, fdi.rValue) at time t, then

the bichronal timer is not restarted until the bichronal timer expires. That is, in
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the closed interval [t, t′], process i does not execute startBichronalTimer(fdi.aValue,

fdi.rValue).

Consequently, in the interval [t, t′], the value of actionTimer is decremented until

actionTimer is zero, and the value of realTimeTimer is unchanged at fdi.rValue.

Given that t′ is the earliest time that bichronalTimerExpired is true (and bichronal-

TimerExpired is set to false by the macro startBichronalTimer), we know that i executes

action bichronalTimerExpiry at time t′. The precondition for executing bichronalTimer-

Expiry is (realTimeTimerExpired∧(actionTimer = 0)∧(¬bichronalTimerExpired)) which

is a disjunction in the predicate for stopping the time evolution as well. Therefore,

at time t′, actionTimer is zero and realTimeTimerExpired is true.

We now consider the change in the values of actionTimer and realTimeTimerEx-

pired separately.

The state variable actionTimer is decremented by 1 in action takeStep, and

takeStep also executes the guarded command in Algorithm 19. Let actionTimer decre-

ment to zero at time (say) ta > t. Since actionTimer was set to fdi.aValue at time t,

we know that in the interval [t, ta] i executes the guarded command in Algorithm 19

exactly fdi.aValue times.

The only action that sets realTimeTimerExpired to true is realTimeTimerExpiry

which is executed when clock = realTimeTimer, and once realTimeTimerExpired is

set to true, it is reset of false only by startBichronalTimer(fdi.aValue, fdi.rValue).

Also, note that time evolution stops when realTimeTimerExpired is false and clock =

realTimeTimer. Given that at time t the value of realTimeTimer is set to clocki,t +

fdi.rValue, we know that there exists a time tr > t such that clocki,tr = clocki,t +

fdi.rValue. Thus, at time tr, action realTimeTimerExpiry is enabled and the time evo-

lution is stopped. Consequently, i executes realTimeTimerExpiry and sets realTime-

TimerExpired to true at time tr.
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If ta ≥ tr, then t′ = ta; that is, in the interval [t, t′], i executes the guarded

command in Algorithm 19 exactly fdi.aValue times, and clocki,t′− clocki,t ≥ fdi.rValue

On the other hand, if tr ≥ ta, then t′ = tr. Consequently, clocki,t′ = clocki,t +

fdi.rValue. That is, clocki,t′ − clocki,t = fdi.rValue. Also, i executes the guarded

command in Algorithm 19 at least fdi.aValue times.

Thus proved.

Note that from Lemma VIII.5.1 and the fact that processes send heartbeats

every time their bichronal timers expire, and they immediately restart the bichronal

timer, we know that there exists an upper bound on the bichronal duration between

the times at which two consecutive heartbeats are sent. Alternatively, we say that

heartbeats are sent with bichronal bounded persistence.

VIII.5.2.3. Strong completeness

Strong completeness states that every crashed process is eventually and permanently

suspected by all correct processes. From line 13 in Algorithm 19, we know that a

correct process i can suspect a faulty process j only upon expiry of the bichronal

timer at i. So in order to prove strong completeness, we first show that the bichronal

timer at i expires infinitely often.

Lemma VIII.5.2. In an execution α of Algorithm 19 where i is a correct process,

the macro startBichronalTimer(fdi.aValue, fdi.rValue) is executed infinitely often.

Proof. From Algorithm 17 we know that initially, bichronalTimerExpired is set to true.

From lines 9 and 14 in Algorithm 19, we know that when a correct process i executes

the guarded command Action 1 when bichronalTimerExpired = true. Therefore, i

executes the macro startBichronalTimer(fdi.aValue, fdi.rValue) when it executes the

guarded command in Algorithm 19 the first time. As a result, the bichronal timer
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starts counting down from (fdi.aValue, fdi.rValue) by resetting actionTimer to fdi.aValue

and realTimeTimer to clock + fdi.rValue).

Observe that actionTimer is decremented in action takeStep and reset to fdi.aValue

only after bichronalTimerExpired is set to true. Since i is correct, i executes action

takeStep infinitely often, and therefore, while bichronalTimerExpired is false, then

eventually actionTimer is set to 0.

Observe from line 9 and 14 in Algorithm 17 that the value of realTimeTimer is

modified only after bichronalTimerExpired is set to true. Therefore, while bichronal-

TimerExpired is false, the value of realTimeTimer remains unmodified. From line 14

in Algorithm17 and the definition of the alias startBichronalTimer in Algorithm17, we

know that every time the value of realTimeTimer is modified, it is reset to clock +

fdi.rValue). Therefore, fdi.rValue clock time units after realTimeTimer was reset, real-

TimeTimer equals clock; and that forces the execution of the action realTimeTimerEx-

piry. As a result, realTimeTimerExpired is set to true.

Thus, after every instance of executing startBichronalTimer(fdi.aValue, fdi.rValue),

which sets bichronalTimerExpired to false, in α, there exists a future state sexp in α

where actionTimer equals zero and realTimeTimerExpired is true. This enables action

bichronalTimerExpiry which sets bichronalTimerExpired to true.

In the execution of the control-protocol program action at i that follows state

sexp in α, we know from lines 9 and 14 in Algorithm 19 that bichronalTimerExpired is

set to true, and i executes macro startBichronalTimer(fdi.aValue, fdi.rValue), again.

Thus, in α for every state of the system where bichronalTimerExpired at i is set

to true, there exists a future state after which i executes the macro startBichronal-

Timer (fdi.aValue, fdi.rValue) in α, and for each state that follows i’s execution of

startBichronalTimer (fdi.aValue, fdi.rValue), there exists a future state where bichronal-

TimerExpired at i is set to true in α. Thus, we have shown that in every run α of
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Algorithm 19 where i is a correct process, the macro startBichronalTimer(fdi.aValue,

fdi.rValue) is executed infinitely often.

Theorem VIII.5.3. The implementation described in Algorithms 17–19 satisfies

strong completeness.

Proof. Recall that the strong completeness property states that every crashed process

is eventually and permanently suspected by all correct processes.

Consider a run of the algorithm in Algorithms 17–19 and let process i be an

arbitrary correct process and j be an arbitrary faulty process. Let j crash at time

tc. Let tf be the time of the last receipt of heartbeats sent by j to i. After time tf ,

process i does not receive any heartbeat from j, therefore the if condition in line 4

in Algorithm 19 at i evaluates to false in the infinite suffix. Consequently, if j is

suspected by i after time tf , then i will suspect j permanently thereafter.

At time tf , process i has some finite value of fdi.hbCount[j]. We know from

Lemma VIII.5.2 that the bichronal timer is restarted infinitely often, and every time

the bichronal timer expires fdi.hbCount[j] is decremented by one, so that eventually

fdi.hbCount[j] counts down to zero. Consider a time texp > tf at which fdi.hbCount[j]

is zero. Let ts be the earliest time after texp that the program action in Algorithm 19

is executed. At time ts the if condition in line 13 of Algorithm 19 evaluates to true.

Therefore the correct process i adds j to its suspect list at ts.

Thus, all correct processes eventually and permanently suspect all crashed pro-

cesses.

VIII.5.2.4. Eventual strong accuracy

In order establish eventual strong accuracy, we have to show that eventually fdi.

hbCount[j] remains non-zero for all pairs of correct processes i and j. In order to
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show that, we have to prove that there exists an upper bound on the number of

heartbeats i sends to j before i receives a heartbeat from j. The following lemmas

are used to establish the aforementioned result.

In Lemma VIII.5.4 we show that in the duration spanning a start and the corre-

sponding expiry of a bichronal timer at j, there exists an upper bound on the number

of heartbeats sent by i. Note that j does not send a heartbeat immediately upon the

expiry of the bichronal timer; j sends a heartbeat to i only in the program action

after the bichronal time expiry. In Lemma VIII.5.5 we show that in the duration

between bichronal timer expiry and the next execution of the program action at j,

there exists an upper bound on the number of heartbeats sent by i. Subsequently,

in Lemma VIII.5.6 we show that while a privileged heartbeat from j is transit to i,

there exists an upper bound on the number of heartbeats sent by i.

In the lemmas that follow, let α be an arbitrary execution of Algorithms 17–19,

and let i and j be an arbitrary pair of correct processes.

Lemma VIII.5.4. Let j start its bichronal timer at time (say) t and let t′ > t be the

earliest time (after t) that the bichronal timer expires. In the closed interval [t, t′], i

sends at most max(Φ× fdj .aValue

fdi.aValue
, D2 × fdj .aValue

fdi.aValue
) heartbeats to j, where Φ is the upper

bound on relative process speeds and D is the upper bound on the clock drift rate.

Proof. At time t, process j starts its bichronal clock by executing startBichronalTimer

(fdj.aValue, fdj.rValue). Let t′ > t be the earliest time (after t) that the bichronal

timer expires. From Lemma VIII.5.1 we know that in the interval [t′, t] either process

j executes its control-protocol program action exactly fdj.aValue times or the local

clock at j ticks for exactly fdj.rValue units.

Recall that Φ is the bound on the relative process speeds, and D is the bound

on drift rate. In the interval [t′, t], if j executes its control-protocol program action
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exactly fdj.aValue times, then i executes its control-protocol program action at most

Φ × fdj.aValue. On the other hand, in the interval [t′, t], if the local clock at j

measures exactly fdj.rValue units, then the interval [t′, t] is at most D × fdj.rValue

time units; consequently, in the the interval [t′, t], the local clock at i measures at

most D × D × fdj.rValue) time units. To summarize, in the interval [t′, t], either i

executes its control-protocol program action at most Φ× fdj.aValue times or the local

clock at i measures at most D2 × fdj.rValue time units.

From Lemma VIII.5.1 we know that the bichronal timer at process i runs for at

least fdi.aValue executions of the guarded command in Algorithm 19. Therefore, in the

interval [t, t′], if i executes its control-protocol program action at most Φ× fdj.aValue

times, then the bichronal timer at i is restarted at most Φ× fdj .aValue

fdi.aValue
times.

From Lemma VIII.5.1 we know that the bichronal timer at process i runs for at

least fdj.rValue unit ticks of the local real-time clock at i. Therefore, in the interval

[t, t′], if the local clock at i ticks at most D2× fdj.rValue time units, then the bichronal

timer at i is restarted at most D2 × fdj .rValue

fdi.rValue
times.

Recall from lines 9–14 in Algorithm 19 that every time the bichronal timer expires

at i, process i sends a heartbeat to j. Therefore, in the interval [t, t′], during which

the bichronal timer runs at most max(Φ × fdj .aValue

fdi.aValue
, D2 × fdj .rValue

fdi.rValue
) times, i sends at

most max(Φ× fdj .aValue

fdi.aValue
, D2 × fdj .rValue

fdi.rValue
) heartbeats.

Lemma VIII.5.5. Let time texp be a time at which j executes bichronalTimerExpiry in

α (that is, the bichronal timer at j expires at time texp). Let thb > texp be the earliest

time (after texp) in α at which j sends a heartbeat to i. In the interval [texp, thb],

process i sends at most Φ
fdi.aValue

heartbeats to j.

Proof. Since, j executes action bichronalTimerExpiry at time texp, bichronalTimerEx-

pired is true at time texp. Note that bichronalTimerExpired is set to false only in macro
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startBichronalTimer in the guarded command in Algorithm 19. Let tgc > texp be the

earliest time (after texp) in α at which j executes action takeStep and thus executes

the guarded command in Algorithm 19. Note that at time tgc bichronalTimerExpired

is true. Therefore, when j executes the guarded command in Algorithm 19, the if

condition in line 9 of Algorithm 19 evaluate to true, and hence j sends a heartbeat

to i. Therefore, tgc = thb, and in the interval [texp, thb] process j executes takeStep

exactly once.

Since relative process speeds is bounded above by Φ, in the interval [texp, thb] pro-

cess i executes takeStep (and hence, the guarded command at Algorithm 19) at most Φ

times. Since, i executes its control-protocol program actions at least fdi.aValue times

between the start of the bichronal timer and its expiry, in the interval [texp, thb] the

bichronal timer at process i expires at most Φ
fdi.aValue

times. Every time the bichronal

timer at i expires, i sends a heartbeat to j. Therefore, in the interval [texp, thb] process

i sends at most Φ
fdi.aValue

heartbeats to j.

Lemma VIII.5.6. Let tpriv denote a time in α at which j sends a heartbeat m to i,

and m is privileged. While m is in transit, i sends at most D×∆
fdi.rValue

heartbeats to j.

Proof. Recall from Section VIII.5.2.1 that the communication link between i and j

is an ADD channel, and therefore, the message delay of privileged messages does not

exceed ∆ time units. Therefore, while m, a privileged message is in transit from j to

i, the local clock at i advances by at most D ×∆ time units. In the same duration,

the bichronal timer at i expires at most D×∆
fdi.rValue

times, and every time the bichronal

timer expires, i sends exactly one heartbeat to j. Therefore, m is in transit, i sends

at most D×∆
fdi.rValue

heartbeats to j.

We are now ready to prove that there exists an upper bound on the number

of heartbeats i sends to j before i receives a heartbeat from j. Recall from the
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specification of ADD channels that if j sends infinitely many messages to i, then for

every interval of time where j sends exactly R+ 1 messages to i, at least one of these

messages is guaranteed to be privileged. We use this property of ADD channels to

establish our next lemma.

Lemma VIII.5.7. Let i and j be an arbitrary pair of correct processes in the execu-

tion α. For every two instances of time t1 and t2 such that:

• i executes takeStep (and hence, executes the guarded command in Algorithm 19)

at times t1 and t2 in α;

• the if condition in line 4 of the guarded command in Algorithm 19 at i evaluates

to true (that is, i receives a message from j) at times t1 and t2; and

• at all times in the open interval (t1, t2), the if condition in line 4 of the guarded

command in Algorithm 19 at i evaluates to false (that is, i does not receive a

message from j between times t1 and t2);

the following is true: i sends at most max(Φ × fdj .aValue

fdi.aValue
, D2 × fdj .rValue

fdi.rValue
) + Φ

fdi.aValue
+

D×∆
fdi.rValue

heartbeats to j in the interval [t1, t2].

Informally, the lemma states that there exists an upper bound on the number of

heartbeats that i sends to j in the duration between consecutive receipts of heartbeats

from j.

Proof. From Lemma VIII.5.2 we know that the bichronal timers at i and j are

restarted infinitely often. Note that in the guarded command in Algorithm 19, every

time a process restarts its bichronal timer, it also sends a heartbeat to each process.

Therefore, in α, processes i and j send heartbeats to each other infinitely often.

From the properties of ADD channels (see Section VIII.5.2.1) we know that for all

intervals of time in α where j sends R+ 1 heartbeats to i, at least one such heartbeat
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is privileged which is delivered reliably with an upper bound ∆ on delay. Since j sends

heartbeats to j infinitely often, j sends privileged heartbeats to i infinitely often.

Let tp1 be a time that i receives a privileged heartbeat (denoted m1) from j. Let

tp2 > tp1 be the earliest time (after tp1) that i receives (another) privileged heartbeat

(denoted m2) from j. Next, we determine the maximum number of heartbeats that

i sends to j in the interval [tp1, tp2].

Note that if i receivesm1 at time tp1, then j sends m1 a time t′p1 < tp1. Therefore,

the maximum number of heartbeats that i sends to j in the interval [tp1, tp2] does not

exceed the maximum number of heartbeats that i sends to j in the interval [t′p1, tp2].

The time interval [t′p1, tp2] can be divided into two sub-intervals [t′p1, t
′
p2] and

[t′p2, tp2] where t′p2 is the time at which j sends m2.

From the properties of ADD channels, we know that in the interval [t′p1, t
′
p2] pro-

cess j sends at most R+ 1 heartbeats. From Lemmas VIII.5.4 and VIII.5.5, we know

that in the duration between the times that j sends two heartbeats consecutively,

i sends no more than max(Φ × fdj .aValue

fdi.aValue
, D2 × fdj .aValue

fdi.aValue
) + Φ

fdi.aValue
heartbeats to j.

Therefore, in the interval [t′p1, t
′
p2], i sends at most (R + 1)(max(Φ × fdj .aValue

fdi.aValue
, D2 ×

fdj .aValue

fdi.aValue
) + Φ

fdi.aValue
) heartbeats.

The interval [t′p2, tp2] is the duration for which m2 is in transit. Since m2 is

privileged, we can apply Lemma VIII.5.6 to show that in the interval [t′p2, tp2], i sends

at most D×∆
fdi.rValue

heartbeats to j.

Therefore, in the interval [tp1, tp2], i sends at most MAX ≡ (R + 1)(max(Φ ×
fdj .aValue

fdi.aValue
, D2 × fdj .aValue

fdi.aValue
) + Φ

fdi.aValue
) + D×∆

fdi.rValue
heartbeats.

Let the time at which i receives the xth privileged message from j be denoted tr(x)

(and let tr(0) = 0). All the non-privileged messages, if any, are received by i in some

interval of the form [tr(x), tr(x+1)]. Therefore, every interval of time [t1, t2] (where t1

and t2 are defined in the statement of the lemma) is some sub-interval [tr(x), tr(x+1)]
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(for some finite x). Given that in each interval [0, tr(1)], [tr(1), tr(2)], . . ., [tr(x), tr(x+1)],

. . ., process i sends at most MAX heartbeats to j, therefore, in the interval of time

[t1, t2], process i sends at most MAX heartbeats to j.

We are now ready to prove eventual strong accuracy. We prove eventual strong

accuracy by showing that for all pairs of correct processes (i, j), process i may

suspect j finitely many times, but after suspecting j at most MAX (defined in

Lemma VIII.5.7) number of times, the value of fdi.hbBound[j] = MAX + 1, and i

trusts j permanently thereafter.

Theorem VIII.5.8. The implementation described in Algorithms17–19 satisfies

eventual strong accuracy.

Proof. Recall that eventual strong accuracy states that every correct process is even-

tually and permanently trusted by all correct processes.

Consider an execution α of Algorithms 17–19. Let i and j be two correct processes

in α.

Let ts be a time in α when i starts suspecting j by executing line 13 of Al-

gorithm 19 (if no such time exists, then the theorem is satisfied vacuously). From

Lemma VIII.5.2 we know that the bichronal timer at j expires infinitely often. Since

j sends a heartbeat to i every time the bichronal timer at j expires, we know that j

sends heartbeats to i infinitely often. From ADD channel properties we know that i

receives an infinite subset of these heartbeats. Therefore, there exists a time tns > ts

such that at tns process i receives a message from j. At time tns, the receipt of a

heartbeat is processed in line 4 of Algorithm 19. Note that from lines 5–7 in Al-

gorithm 19 we know at time tns, process i increments the value of fdi.hbBound and

trusts j.

If only finitely many such times ts exist, then consider the highest such ts and the
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corresponding highest such tns (denoted tns.high). By construction, i trusts j in the

infinite suffix of α that follows time tns.high, thus satisfying eventual strong accuracy.

For the purpose of contradiction, we assume that infinitely many such times

ts exist. Consider a time ts.MAX such that ts starts suspecting j by executing line

13 of Algorithm 19 and the value of fdi.hbCount[j] is MAX where MAX ≡ (R +

1)(max(Φ× fdj .aValue

fdi.aValue
, D2 × fdj .aValue

fdi.aValue
) + Φ

fdi.aValue
) + D×∆

fdi.rValue
from Lemma VIII.5.7. Let

tns.MAX denote the earliest time after ts.MAX when i receives a heartbeat from j.

From lines 5–7 in Algorithm 19 we know at time tns, process i increments the value

of fdi.hbBound to MAX + 1 and trusts j.

Note that i decrements fdi.hbCount[j] every time i sends a heartbeat, and i reset

the value of fdi.hbCount[j] to fdi.hbBound (which is at least MAX + 1 after time

tns.MAX). Applying Lemma VIII.5.7 for all time intervals [t1, t2] where t1 ≥ tns.MAX ,

we know that i sends at most MAX heartbeats to j before receiving another heart-

beat from j. Therefore, value of fdi.hbCount[j] is always positive when i receives a

heartbeat from j after time tns.MAX . Consequently, after time tns.MAX , the if condi-

tion in line 13 of Algorithm 19 always evaluates to false, and hence i never suspects

j after time tns.MAX .

Thus, we have shown that for every arbitrary pair of correct processes (i, j),

process i eventually and permanently trusts j. In other words, the implementation

in Algorithms 17–19 satisfies eventual strong accuracy.
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CHAPTER IX

CONCLUSION

The most exciting phrase to hear in science, the one that heralds new

discoveries, is not “Eureka!” but “That’s funny.”

– Issac Asimov, as quoted in [25, p. 236]

IX.1. Summary of the results

Several existing techniques in crash tolerance have long been within the domain of

the theory of distributed computing but their applicability in empirical systems was

believed to be tenuous at best. This dissertation has developed new methodology and

techniques to make these crash-tolerance techniques employable in empirical systems.

We focused on M∗ and its variant models of partial synchrony which have found

significant favor with theoreticians but have largely been ignored by practitioners.

This section provides a review of the new results in this dissertation and contrasts

them with the current state of the art in distributed computing.

IX.1.1. Methodology

Typically, idealized partially synchronous models are assumed to exist (natively) for

problem solving. In contrast, the methodology proposed here treats these models as

problems that need solving. The algorithmic constructions presented in this disser-

tation implement a virtual execution environment that simulates theM∗ (and other

variant) partially-synchronous models on top of empirical systems. Thus, the crash-

tolerance techniques developed for idealized partially-synchronous models like M∗

can now be deployed on empirical systems through these algorithmic constructions.
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To our knowledge, our results are the first to propose a generic methodology to

implement idealized models of partial synchrony on top of common empirical sys-

tems in the presence of crash faults and infinite message loss. In related work, the

methodologies proposed by [71, 72] to implement distributed schedulers using failure

detectors consider shared-memory systems and already assume the existence of ide-

alized shared memory primitives and use failure detectors without considering the

underlying system within which the appropriate shared memory primitives and fail-

ure detectors are assumed to be implemented. Hence, these results present fragments

of the proposed methodology, at best.

Failure detectors are central to our proposed methodology. Given the popularity

of failure detectors, there have been several results exploring multiple facets of the

failure detector abstractions in current literature. This dissertation provides a new

implementation of the ♦P failure detector and clarifies our understanding of partial

synchrony.

IX.1.2. Failure detectors

We employ failure detectors as an intermediary mechanism to encapsulate the under-

lying partial synchrony in empirical systems such that the encapsulated synchronism

is used to implement the better-behaved M∗ models on top of empirical systems.

This dissertation makes the following contributions to our understanding of failure

detectors.

IX.1.2.1. Process celeration

There have been several implementations of failure detectors like ♦P on real-time

based system models without unbounded absolute process speeds. We showed that

all these implementations are subtly broken if absolute process speeds are unbounded.
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The failure of these existing implementations is inextricably linked to how time is mea-

sured in these systems. We showed that all mechanisms that employ a single time

base (either real-time based or action based) to estimate end-to-end communication

delay in these systems suffer from the celeration gap by which end-to-end communi-

cation delay is unbounded. Consequently, these ♦P implementations, which depend

on bounded end-to-end communication delay, fail to behave correctly in executions

where absolute process speeds are unbounded. We presented a novel mechanism called

bichronal time to measure end-to-end communication delay such that even in runs

where process speeds are unbounded, while real time or action time based measure of

end-to-end communication delay may be unbounded, bichronal-time based measure

of end-to-end communication delay remains bounded. This overcomes the celeration

gap and permits provably correct implementations of ♦P on real-time based partially

synchronous systems.

IX.1.2.2. Infinite message loss

Many existing implementations of ♦P assume (eventually) reliable communication or

assume some trivial message loss pattern that enables processes to access a reliable

communication sub-channel. We presented a ♦P implementation in systems with non-

trivial message loss pattern such that processes could not access a reliable sub-channel

and are forced to content with the uncertainties of infinite message loss. The proposed

lossy channel, the Average Delayed/Dropped (ADD) channel is of independent interest

because it provides the timeliness of M∗ channels while retaining the uncertainties

of message loss in a manner similar to the communication patterns observed in real-

world distributed systems (cf. Section III.1.4.2 for a detailed justification).
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IX.1.3. Partial synchrony

Since the introduction of the M∗ models in [35], there have been two distinct, but

unstated, interpretations of these models: real-time based interpretation, and fair-

ness based interpretation. One set of results take a real-time based view of theM∗

models and derive multiple system models, arguably customized to describe different

distributed systems, that are real-time based variants ofM∗. Another set of results

take a fairness-based view of M∗ and derive other variants of M∗. To our knowl-

edge, we present the first detailed distinction of these two interpretations, describe

the consequences of each interpretation, and argue for the irreducibility between the

two interpretations.

Despite such irreducibility, we know that both interpretations of partial syn-

chrony provide sufficient timeliness to solve problems in crash-prone systems. How-

ever, our results show that while real-time based timeliness is sufficient for crash

tolerance, it is not necessary. On the other hand, fairness-based timeliness in partial

synchrony is necessary and sufficient for crash tolerance.

IX.1.4. Weakest system models for failure detectors

Current work on the weakest system models for implementing failure detectors (see

Section II.4.3) has met with limited success partly because the proposed system mod-

els assume real-time bounds on communication (and possibly computation too). Un-

fortunately, failure detectors do not preserve such real-time bounds. To find such

weakest system models, we address a more fundamental question: what precisely

about partial synchrony do failure detectors preserve?

We answered the foregoing question by demonstrating that failure detectors (at

least when restricted to the Chandra-Toueg hierarchy [20]) encapsulate fairness: a
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measure of the number of steps executed by a process relative to other events in the

system. We argue that oracles are substitutable for the fairness properties (rather

than real-time properties) of partially synchronous systems. We proposed fairness-

based models of partial synchrony and demonstrate that they are, in fact, the ‘weakest

systems models’ to implement the canonical failure detectors from the Chandra-Toueg

hierarchy in the presence of arbitrary number of crash faults.

IX.1.5. Formal framework

The TIOA-based framework described in Chapter V may be of independent interest.

To our knowledge, this is the first formal framework that provide a single consistent

view of asynchrony, partial synchrony, failure detector properties, algorithms that

implement failure detectors, and the algorithms that query failure detectors.

IX.2. Significance

The results in this dissertation provide new insights into future research direction, fail-

ure detector limitations, and failure detector performance. We discuss these insights

next.

IX.2.1. Influence on future research

Failure detector oracles have gained tremendous popularity as the mechanism of choice

for designing crash tolerant solutions. Our results further the shift in the direction

of oracular research away from real-time notions of partial synchrony (which have

traditionally been understood with respect to events that are essentially external to

the system) and towards fairness-based partial synchrony (which can be understood

solely with respect to other events that are internal to the system). In fact, our
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results suggest that fairness is the currency for crash tolerance and research on weaker

real-time bounds for crash tolerance should focus on enforcing appropriate fairness

constraints on empirical systems relative to which known failure detector oracles can

be implemented.

IX.2.2. Failure detector limitations

Even among fairness-based system models, questions on the ability of failure detectors

to encapsulate partial synchrony remain. For instance, it was first noted in [22] that

there exist time-free problems solvable in synchronous systems that are unsolvable

with P . This points to a ‘gap in the synchronism’ between P and the synchronous

system. The following corollary of our results explains this gap.

AF — the weakest system model to implement P — is extremely similar to

the synchronous system model with message delay being denominated in recipient’s

steps in the former and in real time in the latter. However, there is one significant

difference. AF ensures full synchrony for each message as long as the sender is live.

When a sender crashes, AF ‘loses synchronism’ for all the sender’s messages that

are still in transit. On the other hand, synchronous systems ensure the synchronism

for these messages as well. This difference in the behavior between AF and syn-

chronous systems is the ‘gap in synchronism’ between the perfect failure detector P

and synchronous systems. To our knowledge, we are the first to characterize this gap.

In general, our results point to a limitation of a failure detector’s ability to

encapsulate fairness. Failure detectors encapsulate the fairness communication events

for only as long as the sending and the receiving processes are live. If the sender

or receiver of a message m crashes, while m is in transit, failure detectors fail to

encapsulate any fairness guarantees on the delay ofm. The intuition for this limitation

is that upon the crash if a process, a failure detector is required to suspect that process
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to satisfy completeness. However, in order to preserve the fairness constraints with

respect to messages in transit from crashed processes, the failure detector is required

to not suspect processes until all the messages that are in transit have been delivered.

Depending on the ‘strength’ of the fairness constraints encapsulated by a failure

detector, it may be possible to reliably determine if all such messages have been

delivered. Therefore, permanent suspicion of crashed process will have to concede to

possible fairness violations with respect to messages from a crashed process that are

still in transit.

IX.2.3. Failure detectors and quality-of-service

Although our results argue that failure detectors are better understood as bounds on

fairness and not real time, they do not discount the real-time bounds that empirical

systems incidentally satisfy. The real-time bounds become useful when considering

the performance or the Quality of Service (QoS) [24] provided by these oracles. In

other words, our results provide a separation of concerns between the correctness

and performance of oracles with respect to the temporal properties of the distributed

systems. Specifically, our work shows that correctness of oracles can be determined

and understood exclusively through the fairness constraints of the system, and once

correctness has been established, the performance of the oracles can be analyzed

exclusively through the real-time constraints that the system satisfies.

IX.3. Open problems

Several open problems and avenues for future research remain.
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IX.3.1. On failure detectors and fairness

We have argued that several failure detector oracles encapsulate fairness in execu-

tions and provided evidence by demonstrating that the oracles in the Chandra-Toueg

hierarchy encapsulate such fairness constraints. This opens a larger question: do

all oracles encapsulate fairness? The answer is arguably no. Notable candidates for

counterexamples include the failure detectors proposed in [53] whose output can be ar-

bitrary and need not provide semantic information about process crashes alone. This

presents another question: what set of oracles do encapsulate fairness? This ques-

tion is open even when restricted to the extended Chandra-Toueg hierarchy (which

include oracles like T [29], and other parametric oracles like the ones in [16, 72]). If

it turns out that all oracles that output process ids do encapsulate fairness, then it

provides us with a clean hierarchy of fairness-based system models that mirrors the

extended Chandra-Toueg hierarchy. On the other hand, if we discover that there

exist oracles within the extended Chandra-Toueg hierarchy that do not encapsulate

fairness, then the implication is that these oracles encapsulate something other than

fairness. Knowledge of this other encapsulated information could help in designing

crash tolerant systems.

IX.3.2. Fault environments and fairness

Another consequence of failure detector oracles encapsulating fairness is that fault

environments — defined as a set of fault patterns — could encapsulate fairness as well.

Recall that the weakest oracles sufficient to solve problems in distributed systems vary

depending on the number of processes that may crash. For instance, consider fault-

tolerant consensus. Recall that ♦S is the weakest to solve the problem only in fault

environments where a majority of the processes are correct [19]. In fault environments
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where an arbitrary number of processes may crash, the weakest failure detector for the

problem is a stronger oracle (♦S,Σ) [28]. Given that ♦S encapsulates some fairness

constraints, and Σ can be implemented in an asynchronous system with a majority of

processes being correct, we conjecture that Σ and fault environments where a majority

of the processes are correct encapsulate equivalent fairness constraints in the system.

Furthermore, this implies that fairness is also encapsulated by constraints on the

number of processes that may crash in the system. Based on the above observations

and arguments, consider the following question: Is fairness a more general primitive

to understand crash fault tolerance in distributed systems? That is, can fairness unify

the different weakest failure detector results for the same problem in different fault

environments?

IX.3.3. Fairness: a new currency for fault tolerance?

Much effort is spent pursuing the ‘weakest’ real-time-based models to implement

certain oracles (like Ω, ♦P , and such) for two reasons: (1) bounds in many empirical

distributed systems are specified with respect to real time, and (2) these oracles are

known to be the weakest to solve many problems in distributed computing. However,

given the dependence of the weakest-oracle results on the fault environment, and the

conjecture that fault environments themselves could encapsulate fairness, it is perhaps

beneficial to investigate the ‘weakest’ real-time-based models to guarantee appropriate

fairness constraints (rather than failure detectors) so that these constraints can then

be encapsulated by various combinations of failure detectors and fault environments.

IX.3.4. Weakest system models to solve problems

Recall that ♦S is the weakest failure detector to solve consensus in asynchronous

systems with a majority of correct processes [19], and we have shown that ♦SF is
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the weakest fairness-based system model to implement ♦S. Does that mean ♦SF

is the weakest system model to solve consensus? The answer is no. While ♦S is

the weakest to solve consensus only in majority-correct environments, ♦SF is the

weakest to implement ♦S in all environments. This observation suggests that there

is a weaker system model which can implement ♦S in majority-correct environments,

but not in all environments.

The foregoing example illustrates the separation of failure detectors from classic

problems in distributed computing. Informally, failure detectors are a means to an

end, specifically, means to solving problems in crash prone environments. Therefore,

specifying the weakest system models to implement failure detectors need not auto-

matically translate to the weakest system model to solve the problems solvable by the

failure detector. Given that our results provide strong evidence that fault tolerance

depends on fairness in executions and not the real-time guarantees for computation

and communication, future research on the weakest system models to solve various

problems in crash prone systems should focus on fairness-based system models, and

specifications of such system models remains unsolved.
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APPENDIX A

CLASSIC PROBLEMS IN DISTRIBUTED COMPUTING

This appendix lists the many problems in distributed computing that have been

referenced in this dissertation.

1. The Consensus Problem. In the Consensus problem [65], all processes pro-

pose a value and must reach a unanimous and irrevocable decision on one of

these values. The Consensus problem is defined in terms of two primitives,

propose(v) and decide(u). When a process executes propose(v), we say that it

proposes v; similarly, when a process executes decide(u), we say that it decides

u. The Consensus problem is specified as follows:

• Termination. Every correct process eventually decides some value u.

• Integrity. Every process decides at most once.

• Agreement. No two correct processes decide differently.

• validity. If a process decides v, then v was proposed by some process.

The above definition is called non-uniform consensus since it permits faulty (but

long-lived) to terminate with a decision value that is different from the correct

processes’. Another variant called uniform consensus modifies the agreement

condition to state that “No two process that decide, decide differently,” and this

ensure that even if a live, but faulty, process decides, it has to decide on the

consensus value.

2. Non-Blocking Atomic Commit The non-blocking atomic commit problem

resembles the consensus problem in that they both require processes to reach
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a common decision. In non-blocking atomic commit, the processes propose to

either commit a transaction or abort it. Unlike consensus, processes can decide

of commit all processes propose commit.

3. Leader Election The leader election problem is equivalent to the consensus

problem. In leader election, all the processes are required to agree on a single

process on the leader. This is a special form on consensus in which each process

proposes its own process id as input value to a consensus protocol and the

process with the id that is output by the consensus protocol is considered to be

the leader

4. Stable Leader Election Stable leader election [4] is a ‘long-lived’ variant

of leader election in which processes are assumed to execute leader election

repeatedly. Apart from the requirement that all processes elect a common

leader, stable leader election requires that once a process i is elected leader, any

successive leader election should elect i as the leader until i crashes.

5. Mutual Exclusion. In the mutual exclusion problem [30], a set of processes

are assumed to have a specific set of actions that are “critical”, and no more

than one process can be in its respective “critical section” at any given time. A

process that is executing its critical section is said to be active, a process vying

for exclusive access to its critical section is said to be trying, and a process

that is neither active nor trying is said to be idle. A correct solution to mutual

exclusion requires that no more than one processes is active at any given time,

and if processes are active only for a finite duration, then every trying process

eventually becomes active.

6. Dining Philosophers Problem. The dining philosophers problem [31] is
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a generalization of mutual exclusion in which each process (called diners) is in

potential conflict with some only some subset of processes (diners) in the system.

A dining instance is modeled by an undirected conflict graph DP = (Π, E),

where each vertex p ∈ Π represents a diner, and each edge (p, q) ∈ E represents

the potential conflict between neighbors p and q. Each diner is either thinking,

hungry, or eating. The above three states correspond to the four basic phases

of a participating process: executing independently (idle), requesting access to

critical section (trying), and executing its critical section (active, respectively.

Initially, every process (diner) is thinking. Although processes may think for-

ever, they are permitted to become hungry at any time. Upon being scheduled

to eat, the process enters its critical section. Eating is always finite (but not

necessarily bounded) for correct processes; such processes must transit from eat-

ing to thinking in finite time. There are multiple variants of dining determined

by the constraints of the transition of diners from being hungry to eating.

No-Deadlock dining solutions guarantee that if at some process is hungry, then

eventually some process eats. No-Lockout dining solutions guarantee that if

some process is hungry, then that process eventually eats. Similarly, Wait-Free

dining solutions guarantee that every hungry diner eventually eats regardless of

process crashes in the system. Crash-Locality n dining solutions guarantee that

hungry processes that are n hops away from a crashed process in the conflict

graph are guaranteed to eat, but processes within n hops may starve.

Strong Exclusion dining solutions guarantee that no two neighbors (live or

crashed) eat simultaneously. Weak Exclusion dining solutions guarantee that no

two live neighbors eat simultaneously. Eventual Weak Exclusion dining solutions

guarantee that initially live neighbors may eat simultaneously, but eventually
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no two live neighbors eat simultaneously.

7. Clock Synchronization. In clock synchronization [55], every process has

access to a local physical clock and is allowed to modify the value of the clock

such that the clock values at all correct processes are always approximately the

same.

8. Quiescent Reliable Communication. The problem of quiescent reliable

communication [3] assumes that all the processes in the system are connected

to each other by lossy links. Therefore, for a process to reliably communicate

a message to another process, multiple copies of the message have to be sent

until an acknowledgment for that message is received. However, if a sender

keeps sending copies of a messages without receiving an acknowledgment, then

to could be because (1) the copies of the message or the acknowledgments are

being dropped by the links, or (2) the recipient is crashed. In the problem of

quiescent reliable communication: in the former case, the sender has to continue

sending copies of the message until an ack is received, whereas in the latter case

the process has to cease sending any messages to the recipient.
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