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ABSTRACT 

 

Modeling, Pattern Analysis and Feature-Based Retrieval on Retinal Images.  

(May 2011) 

Huajun Ying, B.S. Shanghai JiaoTong University  

Chair of Advisory Committee: Dr. Jyh-Charn (Steve) Liu 

 

Inexpensive high quality fundus camera systems enable imaging of retina for vision 

related health management and diagnosis at large scale.  A computer based analysis system 

can help establish the general baseline of normal conditions vs. anomalous ones, so that 

different classes of retinal conditions can be classified. Advanced applications, ranging from 

disease screening algorithms, aging vs. disease trend modeling and prediction, and content-

based retrieval systems can be developed.   

In this dissertation, I propose an analytical framework for the modeling of retina blood 

vessels to capture their statistical properties, so that based on these properties one can 

develop blood vessel mapping algorithms with self-optimized parameters.  Then, other image 

objects can be registered based on vascular topology modeling techniques.  On the basis of 

these low level analytical models and algorithms, the third major element of this dissertation 

is a high level population statistics application, in which texture classification of macular 

patterns is correlated with vessel structures, which can also be used for retinal image 

retrieval.  The analytical models have been implemented and tested based on various image 

sources.  Some of the algorithms have been used for clinical tests.  
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The major contributions of this dissertation are summarized as follows: (1) A concise, 

accurate feature representation of retinal blood vessel on retinal images by proposing two 

feature descriptors Sp and Ep derived from radial contrast transform.  (2)  A new statistical 

model of log-normal distribution, which captures the underlying physical property of the 

levels of generations of the vascular network on retinal images.  (3) Fast and accurate 

detection algorithms for retinal objects, which include retinal blood vessel, macular-fovea 

area and optic disc, and (4) A novel population statistics based modeling technique for 

correlation analysis of blood vessels and other image objects that only exhibit subtle texture 

changes.  
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 CHAPTER I 

 INTRODUCTION 

A.  Overview of the Dissertation 

 

Retinal imaging is one of the most important diagnosis and caring tools for both eye 

diseases and other chronic diseases that may introduce complications in retinal health 

conditions. With aging of the baby boomer generation and proliferation of chronic diseases 

like diabetics, there is a strong demand for automated image analysis solutions of retinal 

images to better capture developing cases at their early stages at low costs.  The main theme 

of this dissertation is to develop an analysis automation framework to support robust, 

accurate low level image analysis functions, and also high level statistical analysis of high 

level system dynamics based on the low level analysis results. Major elements of the 

analytical framework are shown in Figure 1. 

Our study starts with in Chapter III, an anatomically-driven modeling technique, which 

allows us to establish a reliable relationship between blood vessels and a mathematical model 

with self-optimized parameters.  The essence of the proposed modeling technique of blood 

vessel network is based on observation of generation levels [1] of blood vessel branches, 

which capture the morphological relationships between vessel segments at different 

 

 

 

 

____________ 

This dissertation follows the style of IEEE Transactions on Image Processing. 



2 

 

locations.  Using pattern analysis and statistical modeling techniques on the rotational 

contrast transform (RCT) of image pixels, we do a quantified reasoning of the transitional  

 

 

Figure 1: Proposed analytical framework on retinal image. 



3 

 

properties of vessel pixels from center-line vessel to vessel boundary and from pixels on 

large vessel segment to small ones.  The proposed modeling technique provides us a simple 

yet effective tool in tradeoff analysis between sensitivity and specificity in vessel detection 

analysis on retinal images.  

Continuing on our modeling technique, in Chapter IV, the second major element of our 

framework is to design algorithms for automated identification of major landmarks on retinal 

images.  Color retinal images can be affected by many factors in flash settings, disease 

conditions, field clarities, etc, which make accurate segmentation of retinal objects an even 

more complicated process.  Our purpose is to push the limit for less parameter adjustment, 

resilience to imaging factors, reduction in noise and false detection and reduction in 

computational cost.  Based on the proposed modeling of vessel generation levels, we first 

present a fast and accurate vessel mapping algorithm.  We further utilize the fixed 

relationship between the vascular network and macula-fovea area as well as the optic disc to 

locate both macula and optic disc area based on vascular topology analysis.   Our algorithms 

are tested on both two benchmark retinal image databases, STARE [2] and DRIVE [3] as 

well as the collected data from the clinics.  A desirable performance in terms of both 

accuracy and computational cost is achieved compared to the state-of-art algorithms. 

Landmark objects detection facilitates our analysis and data-driven of retinal images by 

establishing a frame of reference on retinal images.  In Chapter V, by means of feature 

extraction and quantitative measurement, we further develope high level applications on 

retinal images.  The first application involves texture analysis and classification of cropped 

macular areas.  Textures are the main changes manifested in macular areas of people in 

different ages and health groups.  Using the entropy statistics from the Gabor responses of 
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the macular area as their texture features, we are able to classify macular images belonging to 

three different population groups (healthy young, normal middle age and diseased retinas) 

reliably.  Furthermore, even though qualitative medical studies confirmed that degradation of 

the vascular network caused by diseases or aging lead to deteriorations of the macular 

functions, as of now, there are few known quantitative techniques which characterize the 

relationship between changes in the macular texture from that of the vascular network 

structure based on retinal images analysis.  We take a correlation analysis technique to 

investigate the relationship between changes in macular textures and changes of blood vessel 

structures.  We conclude the chapter by applying our analytical feature analysis result to the 

design of a ranked retrieval method on large retinal image database.  Initial results on our 

ranked retrieval algorithms have demonstrated the effectiveness of our method.  

 

B. Overview of Fundus Retinal Image 

 

Fundus color photography has its uniqueness of rich color representation, low cost and 

non-invasive nature against many other image modalities such as the fluorescein 

angiography, indocyanine green angiography, scanning laser ophthalmoscope, etc.,.  Fundus 

retinal images are mainly described by their image resolutions, angle of views and field type 

[4].  Image resolution determines the pixel resolution of the physical size of retina tissue.   

Based on the camera specification, commercial fundus camera models like Canon 20D or 

Canon 40D can obtain retinal images of size 3504x2336 or similar, whose pixel resolutions 

are of 6~10 µm in physical size.  For computation efficiency, full resolution images are often 

downsized to 700x605, 720x480 or similar in research community on retinal images.  Our 

discussion below will be accordingly based on the downsized image, if not particularly 



5 

 

specified.  Angle of view is the setting of the optical angle of acceptance of the lens on 

fundus camera, from the narrow-angle of 20 degrees or less, normal-angle of 30 degrees to 

wider-angle between 45 and 140 degrees.  The greater the angle of view, the larger the retinal 

area is contained in the photograph.  Field types of retinal images are defined by 

ophthalmologists to image and asses different areas on retina.  Seven standard fields are 

utilized as the protocols for retina photography in clinical trials.  Most often used retinal 

images for academic research and in our discussion are of field-1 and field-2 types and have 

viewing angle of 45º and 60º.  Figure 2(a) and (b) shows respectively typical field-1 and 

field-2 type retinal images of 60º viewing angles.  The former one has its field of view (FOV) 

centering on optic disc area while the latter on the macula-fovea area.   

We introduce three landmark retinal objects, including retina blood vessels, optic disc 

and macula-fovea area on a field-2 type retinal image (See Figure 2(b)).  Retina blood vessel 

(BV) network is the major visible retinal object that covers the whole area of the retinal 

image.  The circulation system of blood vessel supplies nutrients needed for the appropriate 

work of retina cells.  At the same time, the blood supply removes wastes that the cells have 

produced [5].  The optic disc (OD) is characterized as a bright yellowish disk.  It is an 

important organ on retina from which blood vessels and optic nerves emerge [6].  Macula is 

another important area near center retina.  At the center of the macula is the fovea, which is 

responsible for sharp central vision [7].  The macular-fovea (M-F) area is a darkened, 

circular, avascular structure in healthy, normal retina.  Anatomical study notes that it is 

approximately 2~2.5 optic disk diameter away from optic disk center along the raphe of the 

retina (the line passing through the optic disc and fovea).   

 



6 

 

 

(a) 

 

(b) 

Figure 2: (a) A field-1 type retinal image.  (b) A field-2 type retinal image. 
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Disorders in retinal objects have been related to retinal implications, which include 

hypertension, cholesterol, diabetes, glaucoma, age-related macular degeneration (ARMD), 

etc.  Correspondingly, retinal images affected by diseases are laden with different patterns of 

shapes and sizes.  In Figure 3, we show several examples of diseased retinal images. Figure 

3(a) is a sample image of neovascularization disease [8].  On it, proliferation of the retina 

blood vessels is of a different kind than usual with severe occlusions in vessel curvatures.  

Figure 3(b) shows the occurrences of spot-like patterns of microaneurysms and patches of 

hemorrhages on retina images, which are caused by blood leakage [9].  Medical studies find 

that they are usually the early symptoms of diabetics.   Figure 3(c) contrasts the change in 

cup-to-disc ratio within the optic disc through the development of glaucoma diseases [10], 

where the cup is defined to be the brightest spot within the optic disc area.  Figure 3(d) is an 

example of retina with ARMD, where there are bright yellowish deposits of drusen and hard 

exudates within and around the macular area.        

The main purpose of computer-aided analysis of retina images is to do retina screening 

which enables image comparison based on automated computer programs and supports 

disease tracking. 
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     (a)                            (b) 

           

     (c)                            (d) 

Figure 3: (a) Occlusion of retina blood vessels due to neovascularization disease (Source: [8]. Courtesy of 

Dr. S.N.Patel). (b) Occurrences of microaneurhysms (Source: [9]. Courtesy of Dr. Z.Ockrim).  (c) Change 

in cup to disc ratio due to glaucoma disease (Source: [10]. Courtesy of Dr. C.M.Gibson).  (d) Example of 

retina with age related macular degeneration (im0001 from STARE). 
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C. The Organization of This Dissertation 

 

The rest of this dissertation is organized as follows.  In Chapter II, we will review related 

work in the field of study.  In Chapter III, we will introduce our statistical modeling 

technique on retinal image.  In Chapter IV, we will present our algorithms design for retinal 

objects detection of retina blood vessels, optic disc and macula-fovea area.  In Chapter V, we 

will discusse our high level applications on retinal images including texture analysis, 

correlation study and ranked retrieval in large retinal image database.  We will summarize 

the dissertation in Chapter VI. 
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CHAPTER II  

RELATED WORK 

Numerous research efforts have been made in the area of automated computer-aided 

analysis of retinal images.  State-of-art research in this topic is split into two major areas.  

One focus is on the detection of main retinal objects which includes algorithm designs for 

segmentation of retina blood vessels, optic disc and macula-fovea areas.  Another more 

current research focus is content-based retrieval from retinal image databases.     A major 

application in this area is disease screening using retinal images and separation of diseased 

retinas from healthy ones.  In this chapter, we introduce both and discuss briefly the related 

state-of-art algorithms along with their methods and challenges. 

 

A. Retinal Objects Detection 

 

1. Retina Blood Vessel (BV) Mapping 

 

Many blood vessel mapping algorithms have been proposed.  Classical matching filters, 

e.g., Gaussian distribution, second order derivative Gaussian or Gabor, etc., have been 

successfully used to match shapes of BV cross sections [11][12][13][14][15][16][17] 

[18][19].  Mathematical morphology operators [20][21][22] have been applied to extract the 

linear crest lines of BV segments.  Continuity in the flows of BV has been widely used for 

the design of BV flow tracking as a post-filtering step [14][23][24].  It is also essential to the 

design of intensity threshold probing techniques [25][26]. Unsupervised and supervised 

learning algorithms [27] [28][29][30][31][32][33][34] have also been proposed to capture 

BV pixels from their high dimensional features.  Despite of the numerous efforts on blood 
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vessel mapping algorithms, few of these addressed algorithmic performance in terms of 

boundary issues, small and shallow BV detection, and tradeoff analysis between sensitivity 

and selectivity. 

 

2. Macula-fovea (M-F) Area Segmentation 

 

Direct detection of the M-F area becomes unreliable when the M-F area is of small size 

and weak contrast.  As such, it is more reliable to detect other retinal objects (such like the 

optic disc or blood vessels) and then use them as a reference to detect M-F area.  [35] 

estimated the optic disk location by a Gaussian tracking strategy and uses it as the vertex of a 

parabolic curve.  This curve wass fitted to blood vessel trajectory using a trained, modified 

active shape model.  It predicted the fovea to be the darkest area that is about 2 disc diameter 

away from the optic disc center along the main axis of the parabolic curve.  Similarly, [36] 

detected the optic disc in a probabilistic manner.  Then, it used a parabola with an axis 

rotation between +24º to -17º to define the search region of the M-F area to cope with the 

tilting angle between the raphe and the horizontal line.  [37] used the circular Hough 

transform for optic disc localization.  An ellipse obtained from training sets was used to fit 

the main vessels.  A total of 45 parameter sets were defined for different ellipse aspect ratio 

and inclinations.  [38] used a Gaussian intensity template to search for the fovea.  On 

angiographic images, [39] also proposed a Bayesian statistical approach for fovea detection.  

Existing methods mainly defined or trained their BV trajectory models using images that 

have adequate field clarity [40], i.e., the optic disc, M-F area and vessel arcades on both 

superior and inferior sides are all within the field of view.  They first detected the OD, and 

then used it to position the M-F area.  However, this approach, as we will discuss in the next 
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session, is subject to interference of diseased objects like hard exudates, drusen, etc, which 

may have brighter intensity than the OD. Also, retinal images acquired from the field may 

have inadequate field clarity, e.g. only partial optic disk is included in the image or the 

superior/inferior side BV arcade is not photographed. The general detection performance for 

those images is not well known, except that [41] illustrated some false detection outcomes 

due to parameter selection problems. 

 

3. Optic Disc (OD) Localization 

 

Due to its similar color tone to some other lesions such as hard exudates and cotton 

wool, accurate OD identification is a critical contributor to reduction of the false positive rate 

of algorithms designed to detect those lesions.  Early detection schemes aimed simply to find 

the largest clusters of pixels with the highest intensities.  However, this simplistic approach 

was compromised when large hard exudates coexist in the retinal image.  Differentiating the 

two is a challenge.  To overcome this, Li and Chutatpe [42] applied principal component 

analysis to each bright region.  Based on images in a training set, eigenvectors of a typical 

OD were calculated. A new retinal image was projected onto the eigenvectors according to 

the eigenvalues.  The point with the minimum distance between the retinal image and its 

projection was chosen to be the center of optic disc.  This method depended, to a large extent, 

on the training images, which would affect its correctness for images of different contrast or 

resolution.  Other proposed techniques exploit the information provided by optic disc contour 

and vessel structure.  Lalonde [43] relied on pyramidal decomposition and Hausdorff-based 

template matching techniques for large scale object tracking.  However, this method had 

difficulty differentiating the optic disc from other large bright round objects such as spot 
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artifacts or hard exudates that are close to the same size as the OD.  Similar approach was 

presented in [44], which detects the OD based on wavelet processing and ellipse fitting.  

Representation of the OD was mainly based on an intensity template.  The algorithm 

presented in [45] used a geometrical directional pattern to model the OD position as the 

convergence point of all vessels.  It provided a fitting model with respect to the entire 

vascular structure.  It used parameters determined by the vessel directions in the whole 

retinal image to minimize the weighted residual sum of squares.  The algorithm removed 

local minima by introducing a global stochastic simulated annealing optimization procedure, 

at the cost of a heavy computational burden.  [46] proposed an ultra-fast algorithms for OD 

localization to boost the computational efficiency of OD localization.  It located the optic 

disc by splitting the screening process into two 1D problems by projecting the image features 

onto two perpendicular directions.  Extraction of the image features included the 

directionality of vessels and brightness and the sizes of OD.  It achieved 87.6% detection rate 

on STARE with 0.8 seconds per image.  Similar to M-F localization, their detection 

performance on retinal images with poor field clarity were not well discussed. 

 

B. Content-based Image Retrieval in a Retinal Image Database 

 

The concept of content-based image retrieval (CBIR) was proposed in the past two 

decades [47][48][49][50].  By its name, it refers to the concept of retrieving images from a 

library based on similarities in image contents.   Techniques developed in CBIR differ in 

mechanisms used to define image contents and in metrics used to measure similarity.  For 

different analysis purposes, image content is usually described by a feature vector, which 

may be developed into several levels of image features.  Commonly used features can be 
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developed into several different semantic levels [51].  The lowest level consists of primitive 

image features that include color, texture, shape or the spatial location of the image elements 

[52][53][54].    Higher levels address object level features and rely on the reliable 

segmentation of target objects in the image [55][56][57].  More advanced ideas derive 

abstract attributes that characterize the segmented target objects [58][59].  Similarity usually 

refers to the distance measure defined in the extracted feature vector space, which includes 

Euclidean distance, geodesic distance, weighted sum of vector distances, Hausdorff, 

Mallows, etc.  A survey of prototype CBIR systems can be referenced in [60].   

CBIR from a retina image database is a newly developed research area.  Current work 

mainly focuses on the retrieval and classification of diseased retinas for automated diagnosis 

and population study purposes.  Developed algorithms for CBIR from retina image systems 

usually rely on screening of disease objects on retinas, which include mainly 

microaneurysms, hard exudates, drusen, etc.  [61] proposed an algorithm to detect and count 

microaneurysms in angiographic images around the macula area using top-hat filter and 

shading correction.   [62] used a multi-stage neural networks approach to detect 

microaneurysms.  [63] used histogram-based approaches to decide an appropriate local 

threshold for localization of drusen.  [64] and [65] used Gabor filters and wavelet frames for 

drusen detection, respectively.  [66] presented a method to segment drusen using multi-level 

analysis starting from pixel to region, then area and image level.  Candidate drusen pixels 

were selected at the pixel level and drusen detection results were refined based on detection 

rules when going into higher conceptual levels.  A key challenge in disease object detection 

is the irregularity of shapes, sizes and counts.  Formation of disease objects can take several 

different aspects like spotty, patchy or lacelike patterns, based on the gradation of diseases 



15 

 

[67].  Moreover, image interference like illumination condition, lens dust and image noise, 

like white nerve fibers found in retinas of younger patients, make the aforementioned 

detection approaches less reliable and increase the false detection rate.  Other CBIR 

approaches do not rely on the domain specific features of diseased objects.  Instead, they 

extract global features on images for image classification.  [68] and [69] used the distribution 

of wavelet coefficients in each subband of the decomposition of retinal images as the 

signatures to characterize retinal health.    [70] built a biometric system to give signatures to 

the human retina based on pattern analysis of the segmented retina blood vessels.  CBIR is 

still a promising and immature research area on retinal image analysis.  As with the common 

challenges in CBIR, research efforts are to be focused on semantic representation of retinal 

information with maximum retrieval throughput.  

 

C. Summary of the Open Problems  

 

Though the aforementioned research has successfully applied their algorithms in their 

area of study, several open problems are to be addressed or improved, which drive the 

direction for computer-aided analysis in its future development.  Firstly, many of the existing 

work rely on high dimensional feature extraction for retinal object detection.  Due to the 

“curse of dimensionality” problem, this complicates the process of learning the physical 

properties of retinal objects given the low number of trained data samples.  It thus needs a 

succinct representation of the physical property of retinal object.  Secondly, many algorithm 

designs are related to empirical parameter settings.   As a result, their performances may vary 

for different types of images.  As such, we are in pursuit of algorithms design which enables 

adaptive parameter adjustment.  Thirdly, imaging factors in illumination conditions and field 
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clarities compromise the performance of accurate target object detection.  Continuing 

research study need to test and discuss their results on images under low illumination and 

incomplete field clarity conditions, which are often found in clinical practice.  Fourthly, 

besides quantitative measurement of retinal features, extension of the study pushes the need 

for an analytical framework that bridges the gap between the low-level image segmentation 

and high-level retinal image analysis.  Such high level studies will be related and extended to 

population statistics in age, race and health conditions.  Finally, with the demand for retinal 

image retrieval on a large image database, we still lack of a systematic approach to feature 

extraction and weighting to optimize the retrieval throughput.  Our following discussions will 

cover these open problems in more details and aim to address them by our proposed 

approaches. 
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 CHAPTER III 

  MODELING OF RETINAL OBJECT ON RETINAL IMAGES 

A. Overview of the Chapter 

 

Key issues to purse in order to improve algorithmic performance are to explore the 

physical properties of retinal objects on retinal images and to relate these to our algorithm 

design and performance analysis.  Among the many retinal objects on a typical retinal image, 

retina blood vessel (BV) network is the main and only main visible retinal object that covers 

the whole area on retinal image.  Pattern of vascular network generation is the key 

pathological indicator of retinal health.  And knowing its statistics is critical in many 

algorithmic designs and analyses for BV mapping.  Besides, due to its fixed locations to 

other retinal objects such like the optic disc (OD) and macula-fovea (M-F) area, it is an 

important image cue to OD and M-F localization.  As such, we propose the modeling of 

retina blood vessel in terms of its levels of generation on the whole retinal image. 

The essence of the proposed anatomically-driven modeling technique of blood vessel 

network is based on observation of generation levels [1] of blood vessel branches, which 

capture the morphological relationships between BV segments at different locations.  Figure 

4 shows the different levels of vessel generations from small to large marked with different 

colors by medical doctors on a retinal image.  In our work, we propose to use pattern analysis 

and statistical modeling techniques to characterize the properties of vessels at different 

generation levels, and generalize the statistics of vascular network pixels based on their 

levels of vessel generations.  



 

Figure 4: Vessel generation levels from small to large marked with different colors by medical doctors.

Key idea behind our modeling technique originates from our observation that vessels at 

different generation levels in their widths, lengths and l

properties in their boundaries.  

large and small BV cross section profile respectively.  

concluded that large BV segment has muc

compared with that of small BV segment, which is much narrower and much less sharper.  

As such, by exploring the difference in the boundary transition property for large and small 

BV segments, we approach designin

to indicate if it is a BV or non

center-line or BV boundary.  

 

vels from small to large marked with different colors by medical doctors.

(Source[1]: Courtesy of Dr.McKay). 

 

Key idea behind our modeling technique originates from our observation that vessels at 

different generation levels in their widths, lengths and locations have different transitional 

properties in their boundaries.  Figure 5 shows the intensity transitions of image pixels on a 

large and small BV cross section profile respectively.  Comparing the two, it can be 

concluded that large BV segment has much wider and sharper boundary transition as 

compared with that of small BV segment, which is much narrower and much less sharper.  

by exploring the difference in the boundary transition property for large and small 

BV segments, we approach designing a quantified measure for each pixel on the image 

e if it is a BV or non-BV pixel, if it is on small or large BV segment and if it is near 

line or BV boundary.  Given this quantified measure, further, by doing statistics on 
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for all the vessel pixels, we aim to characterize the count of vessels at different generation 

levels using statistical modeling technique. 

 
(a) 

Figure 5: (a) Image pixels on cross section of large and small BV segment respectively. (b) Their 

corresponding intensity transitions. 
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(b) 

Figure 5 continued. 

 

In achieving the goal, in the following sessions, we will address the following issues. 

• A succinct representation of BV pixel. 

• Quantified reasoning of BV pixels at different generation levels. 

• Test of the model fitness against different factors. 

 

B. Daisy Graph Representation of Image Pixels and Its Feature Descriptors 

 

We first use a visualization technique called daisy graph representation developed in our 

previous work [71] to approach the physical property of image pixel.  Daisy graph 

representation results from the technique of rotational contrast transform (RCT) [71] of 
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image pixels.  RCT is a contrast based filter, which, when applied to the green channel of a 

color retina image, obtains readings along different orientations. Here, the contrast of a pixel 

is defined as the ratio of its intensity against the average intensities of its surrounding area 

(the analysis window) [72][73].  Let p be a pixel with intensity 
�, based on the contrast 

definition in [74] , RCT of p along direction θ can be defined as:  

��
�� � ������
��
���
�� ,  

 

where 
 ��
�� � �� � 
�����
����  , is the average intensity of p's neighbors along direction�� , and r 

the distance span of the neighborhood. The neighborhood of p along direction���with size r is 

defined as: 

��
���� �  !"��#�$%"� � &"� ' ( )*+ ,-� #� � &#� ' ( +./ ,�-� ( � 01 1 23. 
The neighborhood of p along direction�θ�is shown in Figure 6. The RCT vector of p, �� = 

{��
���� ��
�4�� ��
�5� 6�}, denotes the set of RCT values along different orientations.  The 

number of orientations N for the RCT, is determined based on the angular resolution 7 � �
589: .  For image resolution of 584x565 or similar, r=21 and N=32 can serve the purpose 

adequately.   
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Figure 6: Illustration of the neighboring pixels of p along direction�;. 
 

In a daisy graph, each ��
�<�
 value is denoted by a directional arrow, whose length 

represents its magnitude, and positive and negative values are represented in the red and blue 

color respectively.  A BV pixel has strong continuity along the BV flow, yet sharp negative 

contrast across the BV boundary. On its daisy graph, this observation translates into two 

negative lobes and a gap between them (see Figure 7 for the daisy graphs of four different 

BV pixels, which are the in-line BV pixels well within the BV boundary).  The maximum of 

RCT values for a BV pixel occurs at the orientation which is perpendicular to the BV flow.  

Generally speaking, pixels on small, shallow BV (pixel 3 and 4) have small magnitudes than 

their large counterparts (pixel 1 and 2), and therefore also smaller lobes on their daisy graphs. 

In Figure 7, the unit in daisy graphs of pixels 1 and 2 are 0.5, yet that of pixels 3 and 4 are 

0.1 and 0.2, respectively. 
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Figure 7: Daisy graphs of four different BV pixels, which are well within the BV boundary. 

  

Using the daisy graph representation, we demonstrate the transitional properties of pixels 

when moving from in-BV, BV boundary to non-BV area.  The lobe patterns in daisy graphs 

for sixteen pixels which are marked across the BV in Figure 8(a) from left to right are given 

in Figure 8(b), in the left to right, top and down order.  BV pixels numbered 9-14 have strong 

negative RCT values (blue color), and the symmetry of two lobes for a daisy graph increases 

as the pixel moves to the center of the BV. An abrupt change in the daisy graph pattern 

occurs when the pixel moves out of the BV boundary, e.g., pixels 8 and 15, which do not 

have symmetric negative RCT daisy graph pattern any longer.   
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(a) 

 

(b) 

Figure 8: (a) Sixteen pixels along the cross section of a BV.  (b) Daisy graphs of the sixteen  pixels. 
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Daisy graph representation provides us a qualitative representation of the morphological 

property of image pixel.  To explore the relationship between shapes of daisy graph patterns 

with respect to BV, we propose two feature descriptors of daisy graphs, energies and 

symmetry-difference, for pattern and statistics analysis of BV, BV boundary, and the 

background pixels.  Given the designed feature descriptors, our goal is that differentiation 

between BV and non-BV pixels, BV pixel on small and large BV branches and center-line 

BV and BV boundary pixels can all be quantified.   

For a pixel p, its energy descriptor Ep and symmetry-difference descriptor Sp are defined 

as follows.  The energy Ep is the sum of RCT values of image pixel along different directions. 

                                                      =� � � ��
�>����?@9 . 

where ��
�>�
 is the RCT values along �A, �A � BC A:. BV pixels have lower intensity than 

the background, and thus in most cases BV pixels have negative values for the sum of all 

RCT elements.  

The symmetry-difference Sp is the sum of the symmetry difference between a RCT value 

along an orientation and that of the opposite direction.    

D� � � EEF�
�>��F�
G�>HIJKEELMF�NNNNMIJOP>QR

%STU!F�$�S<V!F�$%  , 

where ��
�>��W�X���Y�>HIJZ
 are the RCT values at opposite directions along �A.  ��NNN�is the 

mean of contrast magnitudes.  %[\"!��$ ] [./!��$% denotes the maximal variation in the 

contrast along different directions.  By its design, the numerator part denotes the symmetry 

property of the lobe pattern on a daisy graph, so that the more symmetric the lobe pattern is, 

the smaller the value of the numerator part is.  At the same time, the denominator part 
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denotes the maximum difference of contrasts for an image pixel against different directions.  

As such, vessel pixels on large BV segments have sharp contrast against their boundary areas 

while low contrast along the vessel direction.  As a result, the value of %[\"!��$ ]
[./!��$% is large.  On the contrary, the term value for small BV segment is much smaller, 

due to their much shallower contrast against boundary areas.  As a whole, D� value increases 

as we move from the center toward the boundary of a BV, from large to small BV segment, 

with the decrease in the degree of symmetry of the two lobes of the daisy graph and decrease 

in contrast difference.   

Proposition of D� descriptor, therefore, provides a method so that we can establish an 

order of BV pixels at different locations on vascular network.  For image pixels of same 

object types, their (Ep, Sp) values tend to have similar properties, and therefore when they are 

projected to a new feature space F, they tend to cluster together.  As a result, we may explore 

the statistical properties for BV and BV boundary pixels to establish more reliable 

relationships between them, than independent analysis of point observations. 

 

C. Statistical Properties of BV and BV Boundary Pixels in F 

 

We use the twenty hand-labeled images in DRIVE [3] by two human experts as the 

reference sets to explore the statistical properties of different types of image pixels on F.  

The two hand-labeled BV maps (for each image) have some subtle differences, especially for 

BV boundaries and small/shallow vessels.  In order to evaluate the robustness of statistical 

distribution against different detection sensitivity, we will use the double-marked BV maps, 

i.e., BV pixels marked by both experts and single-marked BV maps, i.e., BV pixels marked 

only by one expert, for our studies.  Non-BV pixels are those both experts recognized as non-
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BVs.  To explore boundary properties of BV, we also obtain the BV boundary maps from 

both reference sets.  Here, BV boundary pixels are generated by applying the Sobel edge 

detector to BV pixel maps.  For an original retinal image in DRIVE [3] shown in Figure 9(a), 

its two hand-labeled BV maps are given in Figure 9 (b) and (c), respectively. Their “single-

marked” BV map is given in Figure 9 (d), and the BV boundaries for the two hand-labeled 

BV maps are given in Figure 9 (e) and (f), respectively. 

 

  

   (a)      (b) 

Figure 9: (a) Original retinal image (im01 from DRIVE), its two hand-labeled BV maps are given in (b) 

and (c), respectively. Their “single-marked” BV map is given in (d), and the BV boundaries for the two 

hand-labeled BV maps are given in (e) and (f), respectively. 
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   (c)      (d) 

  

   (e)      (f) 

Figure 9 continued. 

 

We then make some simple observations on the clustering properties of single-marked 

and double-marked BV pixels, non-BV pixels, and BV boundary pixels in F, and they are 

plotted in Figure 10. The ratio between single-marked to double-marked BV pixels is roughly 
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1:2 for the 20 reference images in DRIVE. We note that the color code (to represent range of 

magnitudes) in these figures are based on relative scale, and the numerical ranges for each 

figure are labeled at its colorbar at the side.  Generally speaking, double-marked BV pixels 

are most tightly clustered onto the area in F with small Sp and negative Ep values (in Figure 

10 (a)).  On the other hand, non-BV pixels are clustered onto area in F of positive Ep values 

or negative Ep values but with large Sp values (see Figure 10 (b)) and its cluster center is far 

apart from that of “double-marked” BV pixel area.  Sp values of both the BV boundary pixels 

(see Figure 10 (c) and Figure 10 (d)) have similar clustering behavior with that of “double-

marked” BV pixels.  Their cluster centers are close to that of the “double-marked” BV pixels, 

while a portion of their pixels would have positive Ep values.  Sp values of their outer-range 

pixels would overlap with that of non-BV pixels area.  It is also noted that Sp values of 

“single-marked” BV pixels in Figure 10 (e) are relatively more scattered as compared with 

that of “double-marked” BV pixels and BV boundaries.  Similarity in the outer range area of 

Figure 10 (e) with that of (c) and (d), suggests that most “single-marked” BV pixels are 

resulted from different interpretations of BV boundary by two human experts. 
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       (a)            (b) 

 

       (c)            (d) 

Figure 10: Clustering behavior of different types of image pixels.  (a) “double-marked” BV pixels; (b) 

non-BV pixels; (c) and (d) the BV boundary pixels for two hand labeled BVs; (e) “single-marked” BV 

pixels.  Note that the colorbars for the five figures have different ranges. 
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        (e) 

Figure 10 continued. 

 

Next, we will apply rigorous statistical analysis on distributions for BV and BV 

boundary pixels and explore their relationships on F along Ep and Sp descriptors.   

 

1. The Ep Descriptor for Different Types of Image Pixels 

 

We do simple statistics to calculate the ratio of BV (both “double-marked” and “single-

marked”), its boundary pixels, and non-BV pixels having negative Ep values for the two 

hand-labeled BV maps of the 20 images in DRIVE.  On average, over 94% (68%) of the 

“double-marked” (single-marked) BV pixels have negative Ep values. For the first (second) 

reference set, 80% (84%) of the BV boundary pixels have negative Ep values.  On the 

contrary, only 27% of the non-BV pixels have negative Ep values.  The result suggests that a 

threshold near the zero-crossing of Ep values is a reasonable first indicator to eliminate a 

large number of non-BV pixels.  We can control the false negative value by adjusting the 

threshold on the Ep. Any potentially false positive BV pixels would then be eliminated by 

subsequent analysis of their Sp values.  
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We further look into some examples (see Figure 11) of hand-labeled BV pixels that have 

positive Ep values.  Figure 11 (a) is the original retina image cropped from Figure 11 (a), and 

Figure 11 (b) its corresponding hand-labeled BV maps (marked in white color). The blue and 

the red colored pixels denote the “double-marked” BV and “single-marked” BV pixels 

(mainly BV boundary pixels) that have positive Ep values, respectively.   Those BV pixels 

with positive Ep values appear to be the result of either human interpolation or extrapolation 

of small and shallow BV boundaries based on continuity of BV flows, or filling the hollow 

area within the BV due to the light reflection.  The differences in the interpolation or 

extrapolation outcomes reflect the personal judgments of the human experts. Knowing that 

the number of BV pixels with positive Ep values is very small, and most of them are located 

at the smallest BVs, we will take the zero cross point of Ep as a screening threshold to 

eliminate non-BV pixels from further analysis of BV pixels and BV boundaries in the 

subsequent discussions. We denote the area in F that has negative Ep values as Fneg-E. 

 

 

          (a)     (b) 

Figure 11:  (a) Cropped images from Figure 9(a).  (b) BV pixels have positive Ep values. The blue and the 

red colored pixels denote the “double-marked” BV and “single-marked” BV pixels (mainly BV boundary 

pixels) that have positive Ep values, respectively.    
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2. The Sp Descriptor for Different Types of Image Pixels 

 

Next, we discuss characteristics of different types of pixels along the Sp descriptor for 

the area of Fneg-E.  Recall that from subsection B, BV pixels of similar locations on BV 

network have similar values in Sp.  As such, Sp value represents a form of pixel type ordering, 

e.g., in-BV pixels would have the smaller Sp value than those located at BV boundaries.  

Small and shallow BVs have even larger Sp values. The anatomic study on human retina 

suggests that BV growth can be modeled as generation levels based on their widths, lengths 

and locations.  Under normal conditions, their pattern of generation levels, such like BV 

width ratios, artery to vein ratio would conform to certain proportional laws, such as that 

described by fractal dimensions[75][76], etc.     

The proportional law of BV growth pattern in terms of levels of vessel generations is 

also reflected in the distribution of Sp values in Fneg-E.  Despite the differences between the 

two hand-labeled maps, we observe that the statistical behaviors of the Sp values for BV 

pixels on different retinal images exhibit highly consistent skewed shape on their histogram 

plots, as the blue curve example depicted in Figure 12 (a) and (b).    

The majority of BV pixels have small Sp values on the histogram plot, and they represent 

pixels located around BV center-lines on the original image. The tail portion of the plot 

denotes BV pixels which have relatively larger Sp values. They represent the small number of 

small and shallow BV pixels.  It is interesting to note that the histogram plot of Sp values for 

BV boundary pixels exhibits a very similar skewed shape (see the red plot in Figure 12 (a) 

and (b)) as that of the BV pixels.  This is because boundary pixels located at large (small) BV 

trunks have smaller (larger) Sp values, and there are more boundary BV pixels for large BV 

segments than that of smaller ones.  Comparing the two histogram plots for BV and BV 



34 

 

boundary pixels, we observe that, despite the difference in their peak values, both curves 

closely resemble each other in their shape transitions.  The plot of the BV boundary is 

enclosed within that of the BV and both plots tend to reach their peaks concurrently.  In 

addition, when BV width is reduced to 1-2 pixels, both the BV boundary and BV refers to the 

same pixel due to the limit of image resolution.  As a result, the two curves converge at their 

tails.   

We use statistical model fitting techniques [77] [78] to analyze the two distribution plots.  

It is shown that both the BV (blue color) and BV-boundary (red color) histogram plots can be 

fitted to the lognormal distribution functions.  Fitness of the lognormal distribution for the 

two histograms is given in the subsection 3.4, and the fitted distributions are marked in the 

green and yellow colors in Figure 12 (a) and (b), respectively, for the two histograms. The 

lognormal distribution has long been studied in population statistics in biology and life 

sciences [79][80].  In our study, the fitted lognormal distribution offers a simple yet efficient 

tool in analyzing the statistical properties of BV and BV boundary pixels, and the 

relationship between the two types of pixels along Sp.   First, we exploit six important 

statistical measures {Ts1 … Ts6} [77] on these lognormal distribution curves,  

• Ts1: mode (the point of global maximum of the point density function of 

lognormal distribution), 

• Ts2: median (the point where cumulative distribution function amounts to 0.5), 

• Ts3: mean, 

• Ts4: 1σ upper bound, 

• Ts5: 2σ upper bound, 

• Ts6: 3σ upper bound. 
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Important statistical information can be inferred from these measures, such as the 

proportion of the area covered under the curve, curve shape, etc.   

 

           

(a) 

Figure 12: (a) and (b) are the distributions of BV and BV boundary pixels along Sp descriptors based on 

two hand-labeled results respectively.  The blue and the red curves denote the histograms for the Sp 

values of BV and BV boundary pixels respectively. The green and yellow curves denote their 

corresponding fitted lognormal distribution curves. 
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 (b) 

         Figure 12 continued. 

 

Let {Ts_BV} and {Ts_Boundary} respectively denote {Ts1, Ts2, Ts3, Ts4, Ts5, Ts6} for fitted 

distribution curves of BV and BV boundary pixels. We then compare the paired measures of 

Ts1,Ts2…Ts6 from {Ts_BV} and {Ts_Boundary} sets for all the images in DRIVE, and the 

results are shown in Figure 13, where the “x” axis refers to the values from {Ts_BV} and the 

“y” axis from {Ts_Boundary}.  We observe that the paired measures from Ts1 to Ts5 values 

are highly concentrated along the “y=x” line.  Only a few pairs of Ts6 deviate from each other 

slightly.  The result suggests that there exists a strong and linear correlation between the 

distribution of the statistical behavior of BV and its boundary pixels. As a result, with high 

statistics confidence we can use {Ts_Boundary} set to predict {Ts_BV} set values. It is the 

basis for us to use {Ts_Boundary} to develop the statistical behavior of BV pixels on F in the 

subsequent discussions.  
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    (a) 

Figure 13: (a) and (b) are the {Ts_BV} and {Ts_Boundary} values derived from the two hand-labeled 

results respectively for all images in DRIVE.  On both plots, the “x” axis refers to the Ts1 to Ts6 values 

from {Ts_BV} and the “y” axis from {Ts_Boundary}.  Paired measures from the {Ts_BV} and 

{Ts_Boundary} sets are highly concentrated along the diagonal  line on both plots. 
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    (b) 

           Figure 13 continued. 

 

Next, we test the robustness of the derived {Ts_Boundary} values against different hand-

labeled results by comparing their paired measures derived from the two reference sets for 

images in DRIVE in Figure 14.  Similarly, the pairs of {Ts_Boundary} values concentrate 

along the diagonal line, except for the slightly dispersed pairs of Ts6 values.  The discrepancy 

in Ts6 pairs reflects the difference in the tail regions on the two derived lognormal distribution 

curves, which is mainly due to the human’s preferences in boundary delineations.  In the 

following discussions, we may show that Ts6 refers to the very shallow BV pixels, whose 

selection is more subjective.  Except for the shallow boundary pixels, {Ts_Boundary} values 

are statistically stable against different hand-labeled sets. We could take any of the two 

{Ts_Boundary} sets to demonstrate its effect on BV pixel clustering.  
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Figure 14: Paired values of {Ts_Boundary} values derived from two hand-labeled sets for all images in 

DRIVE.  “x” and “y” axes denote the {Ts_Boundary}values from the two hand-labeled reference sets 

“RS1” and “RS2” respectively.  The paired values are highly concentrated along the diagonal  line. 

 

Finally, we show the clustering behavior of image pixels in the Fneg-E based on setting of 

different threshold values for {Ts_Boundary} of the Sp descriptor, and show the statistics of 

the averaged coverage ratio of BV (both “double-marked” and “single-marked”) and the non-

BV pixels for images in DRIVE.  In Figure 15, (a) shows the calculated ratio with respect to 

the total number of pixels for each pixel type in Fneg-E, while (b) shows a similar ratio 

measure for F. We use the red and blue lines to represent the covered ratio of “double-

marked” and “single-marked” BV pixels respectively, and the green color line for the non-

BV pixels.  The error bar on the curve is calculated by one standard deviation for each 

calculated covered ratio.  In summary, when D� ^ _̀ �, only “double-marked” BV pixels are 
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included.  When the threshold is increased to Ts4,  over 90% of “double-marked” BVs, over 

50% of the “single-marked” BVs,  and a very small fraction of non-BV pixels (ratio is less 

than 0.08 in Fneg-E and less than 0.04 in F) are covered.  When the threshold is increased to 

Ts5, almost all BV pixels (more than ratio of 0.95) in Fneg-E are included, and more non-BV 

pixels are also inevitably included. When the threshold is increased to Sp =Ts6, the included 

ratio non-BV pixels would increase to 0.6 and that of BV turn to 1 in Fneg-E.  A close look at 

these calculated ratios under different values in {Ts_Boundary} shows that they closely 

conform to the theoretical ratios of the covered area under the lognormal distribution curve, 

which in turn, demonstrates  fitness of the lognormal distribution.   

We further investigate characteristics of error bars of these statistic measures against 

different images.  We observe that the error bar for the “double-marked” BVs is small under 

all {Ts_Boundary} values while that of the “single-marked” BVs is relatively a slightly 

larger.  This reflects that fact that the statistical behavior of the fitted model for “double-

marked” BV is highly consistent among different images while that of “single-marked” is 

less due to human preferences.  Further, the error bar of the non-BVs would become even 

larger when Sp moves to Ts5 and Ts6, which reflects the different physical properties of the 

retina background among different images.  
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        (a) 

 

        (b) 

Figure 15: Statistics on the average portion of BV (both “double-marked” and “single-marked”) and 

non-BV pixels (for images in DRIVE) under different thresholds using Sp values of {Ts_Boundary}.  The 

result in (a) ((b))is calculated using the total number of pixels for each pixel type in Fneg-E (F ) as the 

denominator.  The red (blue) color  represents “double-marked” (“single-marked”) BV pixels, and the 

green represents  non-BV pixels.  The error bar is calculated by one standard deviation for each 

calculated covered ratio. 
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In Figure 16, we show graphically BV and non-BV pixels being captured by using 

different Sp threshold values in a {Ts_Boundary} set. In these figures, the BV pixel map for a 

hand-labeled reference is marked in the white color.  The red and blue colors denote the BV 

and non-BV pixels being covered for different threshold values.  It is noted from Figure 16 

(a) to Figure 16 (f), “sliding” the threshold on Sp value from “left” to “right” (Ts1 to Ts6) leads 

to coverage of set of pixels which expand from ridges to boundaries of BVs.   The “ridge to 

edge” region growth appeared to be highly consistent for large BVs, and most small BVs are 

included simultaneously when the growth reaches the boundary of large BVs.  As expected, 

when the growth approaches BV boundaries, some non-BV pixels would also be included.  

When Sp value becomes larger than Ts5, nearly all BV pixels are included and only non-BV 

pixels would be increased.  Comparing Figure 16 (e) with Figure 16 (f), it is noted that no 

more BV pixels except for the very shallow small BVs would be included when increasing Sp 

from Ts5 to Ts6.   
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      (a)         (b) 

  

 

(a 

 

 

 

 

 

 

(a)  

 

 

        (c)           (d) 

Figure 16: (a)-(f) refer to inclusion of BV and non-BV pixels under different threshold values in 

{Ts_Boundary} set from Ts1 to Ts6. On each image, the white color denotes the reference from one hand-

labeled result.  The red and blue colors denote the included BV and non-BV pixels under different 

thresholds. 
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        (e)           (f) 

Figure 16 continued. 

 

D. Fitness of the Statistical Model 

 

In this session, we show the fitness of the lognormal distribution (green and yellow 

curves respectively in Figure 12) to the histograms of Sp values of BV and its boundary 

pixels in Fneg-E.  

The probability density function of the lognormal distribution has the form of 

a
"b �� c� � 0"dBec4 f
�
gV U�h�J4iJ �
 

for x > 0, where µ and σ are the mean and standard deviation of the logarithm of x, i.e., ln(x), 

which by definition is normally distributed. Here, x represents Sp value of BV or BV 

boundary pixels in Figure 17 (a) and (b) respectively. To fit the data set, we need to estimate 

µ and σ, based on the observed datasets. Using the maximum likelihood criterion, we get 

��=�V � j/kll  , cm4 � �V � 
j/kl ] ���4l  
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where, no is the observed Sp value for each BV (or BV boundary) pixel and n  the total 

number of hand-labeled BV (or resulted BV boundary pixels).  

Theoretically, to demonstrate the fitness of the curve model to the empirical histogram 

plots, we can take a rigorous statistical hypothesis test of the normality of ln(x) (with the 

estimated pm and ��) using the Kolmogorov-Smirnov Test [77].  We performed the normality 

test of ln(x) by the Matlab library function “kstest.m”, using 1000 randomly sampled pixels 

for BV and BV boundary respectively as the dataset. With the significance level of 0.05, we 

perform a one-sided test on the sample data.  The null hypothesis for the Kolmogorov-

Smirnov test is that 
q�
"� ] pm) / ��  has a standard normal distribution.  The alternative is 

that it does not have that distribution.  The null hypotheses on the sample data are all tested 

to be 0 for both BV and BV boundary pixels, which indicates that we cannot reject the 

hypothesis if the test is significant at the 5% level.  By visual inspection, plots in Figure 17 

also show that empirical curves (of the normality tests) for both BV (Figure 17 (a)) and BV 

boundary (Figure 17 (b)) closely match the normal distribution.  A close examination on the 

original image areas that correspond to the unmatched area (mostly located near the tail) in 

Figure 17 (a), shows that they were mostly due to subjective human interpretation of the BV 

boundaries of small BVs.  The testing results are consistent for all the images in both STARE 

and DRIVE.  One thing worth noting is that in performing the test, we choose only a 

relatively small portion of samples (1000 pixels) from the large number of BV or BV 

boundary pixels (estimated over 20,000 and 8,000 pixels, respectively, for 700x605, 584x565 

or similar images) for model fitting.  The reason is to avoid the oversampling problem. 

Otherwise, when the sample set is too large, the Kolmogorov-Smirnov Test will reject the 
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null hypothesis, because of the “fallacy of p-value” issue [77] [78], even though the empirical 

CDF plot closely matches that of the normal distribution.   

In practice, however, rigorous proof of the fitness of data to lognormal distribution is not 

required or even needed for its practical usage in modeling fitting.  Lognormal distribution 

curve model with its estimated pm and �� provides us a closed form in calculating the 

cumulative distribution function (CDF) of the function.  As such, to test the fitness of the 

model, we can compare the empirical and its corresponding standard quantile values on CDF 

to determine the fitness of the model.  With this, we find the quantile value of X99% on the 

empirical histogram curves for is very close to  rs4 � ptuv�tuv5  of the fitted lognormal 

distribution. Similar results of other quantile values can be derived.  It thus, can be used to 

test the fitness of the model. 

Finally, use of the lognormal distribution fitting method provides us a way to indicate 

the levels of generations on the vessel map with succinct parameter representation.  It can 

therefore be further used as a characteristic curve for each vessel map and in comparing the 

vessel generations on different retina images.   Knowing that the essence of the skewed shape 

of lognormal curve is determined by the underlying physical property of ratios of vessel 

pixels among different generation levels, it can be used as a good indicator of vessel diseases 

as is with the case of neo-vascularizations.  Such study will be conducted in our follow up 

research when more data are available.     
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         (a) 

Figure 17: The CDF plots of  ln(Sp) values of (a) BV and (b) BV boundary pixels v.s. their fitted normal 

distributions. Taking the logarithm of the original Sp value and normalized by estimated w� and x�, it can 
be seen that the converted data samples match the normal distribution. 
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         (b) 

Figure 17 continued. 

 

 

E. Summary of the Chapter 

 

In summary, this chapter presents a novel technique to characterize the statistical 

distribution of BV and its boundary pixels in a feature space F of the daisy graph 

representation of the RCT outputs.  The relationship between BV and its boundaries can be 

effectively represented by two fitted curve models along Sp descriptors.  We can draw the 

following conclusions: 
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Regardless of the interpolated BV boundary pixels on hand-labeled results, negative Ep 

value is a statistically sound attribute to characterize the BV and the boundary pixels along 

Ep descriptor.   

Histograms of both BV and BV boundary pixels along the Sp descriptor can be 

effectively fit to the lognormal distribution.  The Sp value of the BV and BV boundary pixels 

is indicative of the generation levels of the vascular network. Their distributions are highly 

correlated against different images in DRIVE based on the comparison between paired 

measures from {Ts_BV} and {Ts_Boundary}.  As a result, we are able to use {Ts_Boundary} 

to infer the BV pixel distribution on F.  

The fitted curve model offers a simple yet efficient tool in tradeoff analysis between 

sensitivity and specificity for pixel classifications.  Using the derived statistic measures, we 

are able to capture the dynamics between in-BV, the BV boundary and non-BV pixels. 

The derived statistical results are important clues to pixel classifications for BV mapping 

operations.  Using these results, we will further propose our BV mapping algorithm in the 

following chapter. Fitness of the model is substantiated by extensive tests on retina images in 

both DRIVE and STARE databases.  That being said, a closer look  into  retina images on 

DRIVE and STARE shows that few of them have  vascular diseases such as 

neovascularizations [81][82], for which the ratio of large to small BV pixel count may differ  

significantly.  Our ongoing study will aim to capture the change in the distribution that may 

correlate to the vascular disease patterns.   We also aim to use the fitness of the lognormal 

distribution model for BV segmentation map as the metric for automated retinal vascular 

disease analysis.  
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 CHAPTER IV 

 RETINAL OBJECT DETECTION ALGORITHMS 

A. Overview of the Chapter 

 

In this chapter, we propose algorithms for automated segmentation of the three landmark 

retinal objects on retinal images.  In practice, imaging conditions like illumination, field 

clarities as well as diseased objects make the reliable detection of these objects an even 

complicated process.  The purpose of our study is to design accurate and reliable detection 

algorithms with adaptive parameter adjustment and less susceptible to field clarities and 

diseased objects. 

Our BV detection algorithm derives from our statistical model of the BV statistics in our 

previous chapter.   The lognormal distribution models of BV pixels for BV and BV boundary 

are critical for the design of a self-adaptive BV mapping algorithm against different image 

factors. In this technique, we use the Sobel edge detector [83] as an approximation of the BV 

boundary to derive a fitted lognormal distribution.  Based on statistical measures of the fitted 

curve, one can reliably estimate the adaptive threshold for BV detection on different retinal 

images.   We further develop the BV mapping operation into a few stages.  Using increased 

threshold values in Sp derived from the fitted curve at each stage, we grow the vascular 

network by including candidate BV pixels followed by a continuity checking rule to suppress 

the noise artifacts.  The resulting algorithm achieves high performance compared with the 

state-of-the-art algorithms and is much more computational efficient. 

We also propose a simple yet robust unsupervised algorithm for automated localization 

of macula-fovea area on retinal images.  The small sizes and weak contrast of the macula-
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fovea area on retinal images make it unreliable to detect it directly.  As such, one can extract 

the retina blood vessel network topology based on local energy function of blood vessel 

widths and densities and use it as the main image cue to position the macula-fovea area.  

Regardless of the severity of most retinal diseases as well as variations in field clarity, the 

high level topology of the retina blood vessel flows remains fairly predictable.  Compared 

with conventional algorithms, our method can effectively localize the macula-fovea area on 

retinal images with inadequate field clarity and diseased conditions. 

We further propose novel algorithms to detect optic disc location on retinal images.  

Optic disc is a bright disc area and all major blood vessels and nerves originate from it.  Due 

to the similar color tone in diseased objects like hard exudates and drusen, they will introduce 

false positives in reliable detection of OD area.  We find optic disc can be more reliably 

differentiated from other bright regions with its high fractal dimension of vessels in its local 

area.  As such, similar to the idea used in M-F location, we first use the topology of BV 

network to determine the search region of OD.  Further, we combine the use of fractals 

dimension and bright spot detection to locate OD based on a divide-and-conquer strategy.  

Both our M-F and OD localization algorithms are tested on benchmark image databases 

STARE and DRIVE and gained satisfactory detection results. 

 

B. Blood Vessel Mapping 

 

1. Algorithm 

 

Knowing that in the feature space F statistical behaviors of BV and BV boundaries and 

their relationships are highly stable against variations in different images, we are able to 

design a highly effective BV mapping algorithm based on its boundary statistics.  We use a 
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Sobel edge detector to probe the boundary statistics.  The detected edge pixels are highly 

correlated with the true BV boundary pixels on retinal image laden with vascular network, 

which have been studied in several BV mapping algorithms [11][84].  Among the detected 

edge pixels, we determine those with negative Ep values to be the BV boundary pixels.  

Despite of the chance of inclusion of few non-BV boundary pixels, their effects on the 

boundary statistics can be ignored due to the small number of artifacts in most cases.  We fit 

the Sp values for the obtained boundary pixels to lognormal distribution and derived 

{Ts_Boundary} set values from the fitted distribution.  When sliding the threshold values in 

Sp from Ts1 to Ts6, we aim to detect the BV pixels by capturing the dynamics in BV 

generations, i.e., from “ridge to boundary, large to small BV branches”, with minimal 

inclusion of non-BV pixels.   

Based on the above discussion, we develop our BV detection algorithm into six stages.  

At each stage, we use one of the six threshold values from Ts1 to Ts6 in {Ts_Boundary} to 

generate a set of candidate BV pixels in Fneg-E.  When Sp = Ts1, only BV ridge pixels would 

be included, and they are used as the seed ridge pixels for growing the vascular network.  

When Sp becomes larger, more BV boundary and small BV branches are included, but in the 

mean time some noise artifacts would also be added.  As such, at each subsequent stage, we 

grow the vascular network by including only candidate BV pixels that are at close proximity 

of the vascular network obtained from the previous stages.  Further, we suppress the artifacts 

by exploiting the continuity property of BV flows for each included candidate BV pixel.  It is 

observed that when approaching the limit of the optical resolution, it is no longer reliable to 

take a per-pixel analysis technique for BV mapping.  On the other hand, BV flows exhibit 

continuity even when they become very shallow and clouded while the included non-BV 
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pixels are usually isolated from each other [25][26].  We explore the BV continuity property 

by similarity checking on the daisy graphs for neighboring candidate BV pixels along each 

probing BV direction.  We observe that pixels along the BV flow would all have similarly 

negative sharper contrast perpendicular to the probing direction of the BV flow (illustrated in 

Figure 18).  For smeared or fragmented BVs, usually only a small fraction of severely 

blocked BV pixels (so as non-BV pixels) do not conform to this property.  Based on the 

above observation, we derive our probing rule as follows.   

Let p be the candidate BV pixel included under the Sp threshold value from 

{Ts_Boundary} set for each stage.  p would be labeled as a BV pixel if the following 

conditions are all met.   

(1)   For pixel p, test if there exists a flow direction � , such that the two opposite RCT 

components perpendicular to the flow direction are negatively sharper than a threshold Cmin, 

i.e., ��
�yzJ� ^ �?<V. 

(2)  If yes, test if ��
�yzJ� ^ �?<V , for γL pixels in the neighborhood of p along the 

probing direction �, where γ is an error tolerance parameter for smeared or fragmented BVs. 

(3)  If among the γL pixels, there exists a pixel on the vascular tree developed from the 

previous stage. 

Among the γL pixels, there exists a BV pixel on the vascular tree developed from the 

previous stage so that the determined BV pixel is close to the vascular network. 
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Figure 18: Illustration of the continuity probing of BV flow.  

 

 

Selection of parameters in γ, L and the number of probing directions is mainly based on 

image resolution.  Also, Cmin is determined by the minimum contrast that is discernible by 

human eyes [73].  Settings of these parameters for image resolution of 584x565 or similar 

will be discussed in the following subsection. 

Finally, we summarize our BV mapping algorithm in Table 1: 
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Table 1: BV mapping algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

2. Experimental Results and Discussions 

 

Next, we test the performance of BV detection scheme based on the analytical model of 

pixel distribution on F.  The algorithm is implemented in C# and is tested on both DRIVE 

and STARE databases.  For images in both databases, we use the same parameters for Cmin= -

0.02 , γ=0.8, L=10.  Cmin is based on the minimum contrast that is discernible by human eyes 

[73][85].  For image resolution of 705x600 or similar, L is determined by the shortest BV 

Objective 

Map Retina Blood Vessels on Retina Image 

 

Algorithm 

Step I: Pixel Classification on F 

(i) Edge detection using the Sobel operator to obtain the edge pixels. 

(ii) Compute Sp values for the obtained edge pixels that have negative Ep values 

and fit their histogram plot to log-normal distribution curve. 

(iii) Derive the {Ts_Boundary} set for the fitted lognormal distribution and use 

them as the threshold values on Sp descriptor. 

 

Step II: Construct the vascular network by continuity checking on the original image 

for the candidate pixels included under different�Sp threshold values. 

(iv) Obtain the BV ridge seed pixels by setting Sp =Ts1 from {Ts_Boundary}.  

(v) Use different Sp threshold values from Ts2 to Ts6 in {Ts_Boundary} to include 

candidate BV pixels with negative Ep values for each of the following stage.  

Grow the vascular network by flow continuity check.  A new pixel p is added 

to the BV vascular network if the following conditions are all met. 

a) For pixel p, test if there exists a flow direction � , such that the two opposite 

RCT components perpendicular to the flow direction are negatively sharper 

than a threshold Cmin, i.e., ��
�yzJ� ^ �?<V , 

b) If yes, test if ��
�yzJ� ^ �?<V , for γL pixels in the neighborhood of p along the 

probing direction �, where γ is an error tolerance parameter for smeared or 

fragmented BVs. 

c) If among the γL pixels, there exists a pixel on the vascular tree developed 

from the previous stage. 
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segments which are approximately 10 pixels in length and γ is the error tolerance for BV 

continuity.  Besides, in using the Sobel edge detector for probing the boundary statistics, we 

choose a quantile threshold QT on the resulted edge map to label the corresponding edge 

pixels on each image.  QT is set to be 0.92 in the following discussions.  Effects of edge 

detector on the detection results would be discussed later.   

We note that the evaluation of the BV segmentation is more difficult, because of lack of 

a reliable ground truth set.  Besides, different evaluation metrics [19] [24] [86] may be 

needed for different applications.  Performance of the algorithm may vary significantly under 

different evaluation metrics.  The most common conventional method is to select one human 

segmented result as the ground truth set and measure the algorithm performance using the 

receiver operating characteristic (ROC) curves.  ROC curve is a graphical plot of the true 

positive rate (TPR) vs. false positive rate (FPR).  By true positive, we mean the image pixel 

which is identified as the vessel pixel by both the detection result and the ground truth set.  

While false positive is the pixel which is determined to be the vessel pixel by the detection 

result but not by the ground truth set.  The TPR is calculated by dividing the total number of 

true positives by the total number of vessel pixels in the ground truth set.  The FPR is 

calculated by dividing the total number of false positives by the total number of non-BV 

pixels in the ground truth set.  For conventional binary classification problems, the closer a 

ROC curve approaches the top left corner, the better the performance of the method is and 

the area under the ROC curve is to be the largest equal to 1.  

To compare with several of the state-of-the art algorithms, we show the performance of 

our BV detection algorithms under the ROC measure.  The calculated TPR and FPR were 

obtained over all the images in DRIVE and STARE.  Paired values of the TPR vs. FPR for 
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our detection algorithm are obtained under different threshold values (from Ts1 to Ts6) on F 

for each stage.  Paired measures for other detection algorithms were obtained based on 

different parameter settings reported.  Results for the ROC curves for different methods on 

DRIVE and STARE databases are plotted in Figure 19(a) and (b) respectively.  Like many 

others, we also include the hand-labeled results from another observer into our discussion 

and use it as the human observer performance.  It is observed that, due to the disagreement in 

human judgments on “single-marked” BV pixels, the human observer performance is not 

located at the top-left corner on the plot.  Human observer performance is important in 

setting up the criterion for evaluating the BV detection performance.  It can thus be inferred 

that the algorithm performance that produces the largest area under the ROC curve may not 

necessarily be the optimum.  Instead, we may estimate the statistically optimal region on the 

ROC plots referring to both the human observer performance and the ground truth set.   

In terms of the ROC measure using the ground truth set from the first human expert in 

both DRIVE and STARE databases, our algorithm achieves similar performance with the 

Staal’s methods[87] and outperforms Chauduri et al.’s[11] and Jiang’s algorithms[26].  

Staal’s methods is among the state-of-the-art algorithms that produce high area under the 

ROC curves.  However, our detection scheme has much less computational cost as compared 

with Staal’s method  (25~30 seconds on a 1GHz CPU for our algorithm compared with 

15min on a 1GHz CPU for Staal’s method).   
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     (a) 

Figure 19: ROC curves for comparing the detection results in both DRIVE and STARE databases 

between our algorithm and some  state-of-the art  algorithms.  (a) DRIVE databases.  (b) STARE 

databases. 

 

 

 

 



59 

 

 

     (b) 

       Figure 19 continued. 

 

Illustrative detection results for images from each database under different iterations 

along with the hand-labeled results are shown in Figure 20.   Different from other detection 

outcomes, sliding the Sp values from small to large values, the detected BV pixel map mimics 

the dynamics in BV generations (from ridge to boundary and from large to small branches).   
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          (a)        (b) 

  

          (c)        (d) 

Figure 20:  BV mapping results for a retina image in DRIVE.  (a) to (f) show detected BV pixels at each 

stage by including candidate pixels on F using the six threshold values for {Ts_Boundary}.  (g) and (h) are 

the hand-labeled reference BV maps. 
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   (e)       (f) 

  

   (g)        (h) 

Figure 20 continued. 

 

The main contribution of this algorithm is a novel analytical model to characterize the 

distribution of BV and BV boundary pixels in the feature space F. The universality of the 

pixel distribution for BV and BV boundary pixels on F and their relationships was tested 
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using retina images for both DRIVE and STARE databases.  Some informal observations 

show that the Sp descriptor is quite consistent with the BV generation order of BV pixels.  

This may suggest that why the Sp histograms for BV and BV boundary pixels can be fit to the 

lognormal distribution effectively.  The highly consistent relationship between the two curves 

is validated using images in both databases.   

  The proposed analytical model on the feature space F is highly effective for design of a 

BV detection algorithm by probing of the boundary statistics.  BV pixels at different 

generation levels can be differentiated stage by stage using different statistic measures 

derived from the fitted curve model.  We use the Sobel edge detector on the original retina 

image to probe the boundary statistics, and then use the results to predict the BV pixel 

behavior on F.  The quantile threshold QT on the resulted Sobel edge map is set to be 0.92 to 

obtain the edge map.  Empirical results show that it serves well for extracting the BV edges 

with minimal side effects caused by severe noise or artifacts in highly diseased retinas 

(shown in Figure 21(a) and (b)).  The choice of the QT also implies the detection sensitivity 

in probing the most small and shallow BV boundaries.  We test the effects of QT of different 

values within range of 0.9~0.95 on the curve fitting results.  The results shown in Figure 

21(c) suggest that the Sp descriptors for edge pixels captured using different QT values can all 

be fit to lognormal distribution with small errors.  The resulted {Ts_Boundary} sets under 

different QT’s do not change much in small Sp values (less than Ts5) (see in Table 2).  

Therefore, it has negligible effects on detection of the BV “ridge pixels”, nor on the growth 

of vascular tree for the first four to five iterations in BV detection algorithm.  On the other 

hand, their Ts6 values would be different due to the differences in their tail extensions on 

different fitted curves due to the different detection sensitivity by using different QT’s.  



63 

 

Therefore, it would include different amount of candidate BV pixels for the last one or two 

iterations, and may serve different purposes for small and shallow BV detection.   

 

 

 

(a) 

 

(b) 

Figure 21: Effects of different QT thresholds on fitted curves for detected edge pixels.  (a) Original image.  

(b) Edge pixel map by choosing QT=0.92.  (c) Fitted lognormal distribution curves for QT values ranging 

from 0.9 to 0.95. 
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(c)  

Figure 21 continued. 

 

Table 2:{Ts_Boundary} set values under different QT thresholds. 

 QT=0.90 QT=0.91 QT=0.92 QT=0.93 QT=0.94 QT=0.95 

Ts1 38.544 38.9791 39.4013 39.6726 40.3312 41.0913 

Ts2 55.2319 54.7907 54.4769 53.9265 53.5402 53.4585 

Ts3 66.116 64.9598 64.0565 62.8721 61.6878 60.9748 

Ts4 100.6172 98.2033 96.2518 93.8467 91.1675 89.2863 

Ts5 183.2968 176.0133 170.0612 163.3187 155.2388 149.1259 

Ts6 333.9159 315.4749 300.4704 284.2188 264.3386 249.0699 

 

In general, the algorithm is fast, self-calibrated to the optimal detection parameters of 

each image itself, sensitive, robust and with strong ROC results. It can suppress some artifact 

by picking linear segments near the BV ridge pixels, some objects that strongly resemble BV 

segments may still be mistaken for BV pixels, e.g., the outer ring of the optic disc, cracks 
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between the hard exudates, hemorrhages, etc. These issues are most common for images 

laden with severe diseases and artifact   (see example in Figure 22). These types of issues can 

be improved by techniques like the one proposed in [88]. 

 

 

Figure 22: Detection result for the diseased images in Figure 18.  Cracks between the hard exudates 

patches are mislabelled as BV segments due to their nearly identical linear shape and negative contrast 

against the neighboring areas. 

 

In summary, the analytical model for the BV pixel distribution on F provides the basis in 

characterizing the statistical attributes for BV pixels at different generation levels.  It is well 

incorporated into our design of BV detection algorithms.  The algorithm is simple, fast, self-

calibrated, and its ROC performance results are highly competitive against existing 

algorithms. 
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C. Macula-fovea Area Localization 

 

1. Introduction 

 

Existing methods mainly defined or trained their BV trajectory models using the images 

which have adequate field clarity [41], i.e., the optic disc (OD), M-F area and vessel arcades 

on both superior and inferior sides are all within the field of view.  They first detect the OD, 

and then use it to position the M-F area, but this approach is subject to interference of 

diseased objects like hard exudates, drusen, etc, which may have brighter intensity than the 

OD. It is also very common that retinal images acquired from the field may not have 

adequate field clarity, e.g. only partial optic disk is included in the image or superior/inferior 

side BV arcade is not photographed. The general detection performance for those images is 

not well known, except that [89] illustrated some false detection outcomes due to parameter 

selection problems. 

Our M-F area localization algorithm is aimed at attacking aforementioned problems.  We 

propose a simple yet robust unsupervised algorithm for M-F area localization by extracting 

the vascular network topology.  The proposed algorithm consists of three major steps. In step 

1, we map the blood vessels and form a vascular topology map (VTM) based on vessel width 

and density. We adjust the detection sensitivity at the vessel mapping step to suppress the 

potential interference of small and anomalous vessels (neovascularization and large 

hemorrhages).   In step 2, we fit the main vessel arcade pixels on the high energy band on 

VTM to a circle model so as to determine the search region for the M-F area.  We also use the 

fitting error as an inference of the field of clarity of the original image, and use it to label the 

image as either field-1 or field-2 type.  In step 3, for each pixel X within the circle, we design 
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three features to reflect the presence of blood vessels around X, its spatial relation to the 

extracted arcade pixels and its intensity respectively.   We use the former two features to 

position a candidate M-F area and propose a weight assignment rule among the first two 

features based on a logistic function of the fitting errors, in order to offset the effects of field 

clarity.  Finally, we use the intensity feature as a complement to refine the detection results.  

This way, one can reliably locate the M-F area.  

 

2. Algorithm 

 

As introduced in chapter one, field-1 and field-2 (see Figure 23) are the two common 

types of retinal images acquired in clinic settings.  The former centers the optic disc area and 

the latter centers the macula area [4].  Field-1 images may either not contain the macula or 

have it at the very left or right side in the field of view (FOV).  On the basis of a conservative 

design principle, field-1 images are excluded from the step of automated localization of the 

M-F area due to the poor illumination at the side area around the FOV on most field-1 

images, which would lead to inconclusive localization results even for human judgment.  

Accordingly, we design a detection rule that automatically separate field-1 images from the 

field-2 types and locate M-F area on the separated field-2 images.  
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      (a)         (b) 

Figure 23: Illustration of M-F area on field-1 and field-2 images.  (a) Field-1 image. (b) Field-2 image 

(Fovea and macula are circled). 

 

2.1. Vascular Topology Map (VTM) 

 

The vessel arcade in the retina represents the collection of thickest blood vessels flowing 

from the optic disc to the whole retina area.  On the other hand, the macula area has the least 

amount of large blood vessels. In this section, we separate the (large) blood vessel rich areas 

from the rest of the retina by a pixel level energy function map using local vessel widths and 

densities.  We map the blood vessels using the algorithm proposed in previous subsection 

and adjust the detection sensitivity at the vessel mapping step to suppress the potential 

interference of small and anomalous vessels (neovascularization and large hemorrhages).   

By taking moving average of the energy function map with an 
{|+1)x
{| ' 0��kernel ω, 

we generate the VTM to quantify and visualize the vascular network topology .  For images 

of size 700x605 or 565x584, we set {| to be 64, based on a rough estimation on the sizes of 

the whole macular area.    
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The energy function }~~
"� #� for each pixel is the normalized product of the local BV 

width }
"� #� and density ~
"� #� in ω. 

      ���
�� �� � �
��������
�����A������A���  
where  }�\" and ~�\" are respectively the largest W(.) and D(.) values in the whole 

image.  Let IB denote the binary BV map of a retinal image, the D(.) value for each pixel p is 

calculated by simple counting of BV pixels in ω.  The W(.) value of p is the average of the 

width measurements CT(x,y) for pixels in ω on IT (the binary thinning on IB) based on  a 

rotational search routine on the IB by counting the number of consecutive BV pixels along the 

lines of 16 different directions from 0º to 180º going through (x,y).  The smallest value of the 

sixteen different observations is used for CT(x,y). In summary, the W(.) and D(.) values for a 

BV pixel located at (x,y)  can be  respectively expressed as: 

   }
"� #� ���� � � ��
U�<������F�
U�����LJ�QO��LJ��LJ�QO��LJ� � ��
U�<������LJ�QO�LJ�LJ�QO�LJ , 

    �
�� �� � � � ��
U�<�������LJ�QO��LJ��LJ�QO��LJ
:�����
:����  . 

Figure 24 shows two examples of the calculated VTM maps (b) and (e) on field-1 and field-2 

images respectively resulted from the BV mapping results (a) and (d). 
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          (a)              (b)         (c) 

 

          (d)              (e)          (f) 

Figure 24: (a),(d) are the segmented BV maps.  (b),(e) are the VTM maps resulted from (a) and (d) 

respectively.  (c),(f) are the circle fitting results, on which, the white color denote the vessel pixels 

extracted on the high energy band in (b) and (e), the green dot denotes the fitted circle center and the 

blue the fitted circle. 

 

2.2 Circle Fitting of the Main Vascular Arcades 

 

Field-1 images usually have an X-shaped high energy band pattern on the VTM whereas 

the band is horseshoe-shaped enclosing the M-F area on field-2 images.  We are to model 

vessel arcades on field-2 images by extracting the vessel pixels in the high energy band area 

on VTM and using a circle model to fit the extracted pixels.  On the other hand, the same 

circle fitting method would result in comparatively large fitting errors for field-1 images.  We 

could therefore use the fitting error as an identifier for the field types of the retina image.    

We choose a quantile threshold QT on VTM to label a corresponding high energy band 

area and use Kasa’s method [90] to do the circle fitting.  Let Arcade_Circle denote the fitted 



71 

 

circle, whose center and radius are respectively denoted as CtSrh(Xc,Yc) and RadSrh.  Fitting 

error is represented as the mean squared error (MSE) of the differences between the fitted 

circle radius and the Euclidean distances from the circle center to the extracted BV pixels.  In 

comparing the fitting error among different images, we normalize the MSE by their fitted 

radius RadSrh and denote it as fit_Err.  We also use a simple enumerative comparison of 

fitting errors for a range of QT values, and pick the one with the smallest fit_Err as the best 

fitted circle model for the image.  In our experiments, the QT value set in the range of 0.9 to 

0.7, at 0.05 increments gave satisfactory results to cover the possible circle models. 

Fitted circles as well as the extracted BV pixels are shown in Figure 24 (c) and (f).  

Comprehensive statistics on the fitting errors demonstrates that most small fit_Err results 

from field-2 images with adequate field clarity (less than 0.1), where the fitted circle center is 

very close to the fovea.  fit_Err increases (within the range 0.1~0.2) when the image does not 

have good field clarity.  Circle center on these images would deviate from the fovea.  

Empirically, we find that fit_Err = 0.25 is a reliable threshold value to separate field-1 from 

field-2 images.   

An alternative method for the extraction of vessel arcade pixels can be derived from our 

log-normal curve model of detected vessel map presented in previous chapter.  By setting the 

threshold on Sp equal to Ts1 from {Ts_Boundary}, it is more computational efficient.   Using 

the same fit_Err to indicate field-1 and field-2 image, the results are almost the same.  This 

further substantiates the practical use of our model of vessel generations. 
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2.3 Macula-Fovea Localization 

 

We are then to locate M-F in Arcade_Circle on field-2 images.  On normal retina, fovea 

is a dark circular shape.  However, intensities within the M-F area would become high when 

there exist retinal diseases such like age-related macular degeneration, hard exudates, etc.  

On the other hand, the blood vessel network topology is more resilient to diseased conditions.  

Regardless of the severity of most retinal diseases, the high level topology of the retinal 

blood vessel flows remains fairly predictable.  Therefore, we use the vessel topology as the 

primary image cues and use the intensity as a complement for M-F localization. 

Accordingly, we use two features �̀ ��
1 �� �T�T`
1 � to quantify the BV topology for each 

pixel 
"� #� within Arcade_Circle with respect to its spatial relation to BV arcades pixels and 

the amount of vessels around it respectively.  Its intensity feature is denoted as �<V�(.)   In 

details,  

     �̀ ��
"� #� � 0 ] i
U����S<V�i�STU�i��S<V�i� , 
     �T�T`
"� #� � 0 ] ���
U����S<V�����STU������S<V�����, 
     �<V�
"� #� � 0 ] ��
U����S<V����STU�����S<V���� ,  

where, [\"�1 � and [./�1 � denotes the maximum and minimum operators for the 

corresponding features within Arcade_Circle.  c
"� #� is the standard deviation of distances 

between 
�� �� and BV pixels in the segmented arcade area.  Pixels near the center of the 

fitted circle would have small values on c
"� #� and thus large �̀ ��
"� #�.  
�
"� #� denotes 

the green channel intensity value.  All the �T�T`
1 �, �̀ ��
1 � and �<V�
1 � are normalized to be 

within range [0,1].  Normal retina with adequate field clarity would have large values for all 

the three features.  Feature maps are shown by example in Figure 25 (a),(b),(c). 
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We first use �T�T`
1 � and �̀ ��
1 � to predict a candidate M-F area.  We propose a weight 

adjustment rule between the two using a logistic function of fit_Err  to offset the field clarity 

as was illustrated in our previous discussion, so that �̀ ��
1 � is assigned more weights when 

fit_Err is small and is suppressed when fit_Err is large.  Weights on �T�T` and �̀ �� are 

denoted as �T�T` and �`�� respectively.  The logistic function is formulated as follows: 

 �s ¡ � ¢ ] £��uO
¤¥¦§¨����©Oª� 
                                                     ��«�s � 0 ] �s ¡, 

where A sets the range for the maxima function response, B and C are parameters that 

determines the slope and cut off point of the logistic model respectively.  Empirically, we set 

A=1, B=40, C=4.  The resulted logistic function is depicted in Figure 24(d), on which �s ¡ is 

suppressed when fit_Err is larger than 0.1.  Our candidate M-F area is on the pixel with the 

largest �F¬?­<V®�
"� #� within the search region where 

�F¬?­<V®�
"� #� � �T�T` � �T�T`
"� #� ' �`�� � �̀ ��
"� #�. 

Finally, we use ¯°± (.) to search for the dark pixels around the candidate with a search radius 

to be RadSrh/3, determined by the fixed distance between OD and M-F, which is of three 

disc sizes.  Dark fovea pixels are those with both their ¯°± (.) and ¯�«�s(.) greater than 0.95 in 

order to exclude the BV pixels.  The average location of the found dark pixels is the final 

localized M-F area.  If no dark pixel is found, we use the original candidate to be the final 

result.  (See Figure 24 (f)).  Algorithm for M-F localization is summarized in Table 3. 
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                     (a)               (b)          (c) 

 

      (e)               (f) 

Figure 25: (a), (b), (c) are the generated feature maps in C corresponding to ²³´³µ(.), ²µ¶·
1 � and ²¸¹¶(.) 
respectively where bright pixels correspond to large values. (d) is the logistic function of ¹º»¼ (e) is the 

final located M-F denoted as “+”. 
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Table 3: M-F localization algorithm. 

 

 

 

 

 

 

 

 

 

 

3. Experimental Results and Discussions 

 

We evaluate our detection accuracy using the following criteria:  (1) Separate the field-1 

images from field-2 types.  (2) For normal M-F area, the located M-F area should be within 

the contour of the fovea.  (3) For diseased M-F area, the located M-F area should be within 

the vessel-free macula area.  For situation (3), fovea area is usually hard to be recognized 

even for trained human eyes due to the deteriorated macula area.     

We tested our algorithms on two public retina databases, DRIVE [2] and STARE [3] as 

well as our collected retina images from clinics.  Their detection outcomes are shown in the 

Table 4.  DRIVE images mostly have healthy conditions and adequate field clarity.  

However, STARE has more than half diseased images and many are poorly illuminated and 

have inadequate field clarities.  DRIVE contains 40 retina images with 3 field-1 and the rest 

field-2 images.  Our scheme correctly differentiates the 3 field-1 images and has a detection 

rate of 100% for the rest 37 field-2 images.  STARE contains altogether 81 retinal images.  

Objective 

Locate Macula-Fovea(M-F) Area on Retinal Image 

 

Algorithm 

� Determine the search region of M-F on retinal image 

1.  Map blood vessels on retinal image. 

2.  Form a vascular topology map (VTM) based on vessel width and density. 

3. Fit the main vessel arcade pixels on the high energy band on VTM to a circle      

model to determine the search region for M-F area.  Use the fitting error fit_Err to 

label images as field-1 or field-2 images. 

� Locate M-F within the search region 

4. For each pixel X within the fitted circle, design three features to reflect the 

presence of blood vessels around X, its spatial relation to extract arcade pixels and its 

intensity. 

5.  Use adaptive weighting scheme among the features to locate M-F.  
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22 are field-1 and 59 are field-2 images.  Using our scheme, 20 among the 22 field-1 images 

are correctly separated.  For the rest 61 decided field-2 images, we have a detection rate of 

93.4% (57 out of 61).  Performance of our algorithm on the retinal images collected from on-

site clinics shows a detection rate of 95.75% (857 out of 895). 

 

Table 4: Performance evaluation of M-F detection algorithm. 

DATABASE Detection Rate on Field-2 Type Retinal 

Images 

DRIVE 100% (37 out of 37) 

STARE 93.4% (57 out of 67) 

Our Database (from clinics) 95.75% (857 out of 895) 

   

Several examples of the detection results for images of different field clarities and 

disease conditions are illustrated in Figure 26.  In Figure 26, (a) is a typical normal retinal 

image with adequate field clarity.  Fitted circle center is close to the fovea. (b) is a special 

case where field-1 image is not excluded from our detection system. However, M-F is 

correctly located. Different from other field-1 images, M-F area on this image can be clearly 

recognized and is located toward the image center so that the vessel arcade can be also well 

fitted to a curve.  (c) has inadequate field clarity where the superior vessel arcade to the 

temporal side is not included.  In (d), blood vessels in the inferior side are not detected due to 

the poor illuminations.  Both M-F on (c) and (d) can be correctly localized where the circle is 

fitted to the half arcade.  (e), (f) have severe macula diseases within the macula area and 

fovea can be barely recognized.  However, their locations can still be predicted using BV 

topology. 
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             (a)             (b)    (c) 

 

              (d)             (e)    (f) 

 

               (g)             (h) 

Figure 26: M-F localization results. The green dot is the fitted circle center and the blue the fitted circle.  

White “+” and “x” signs denote the correct and false detection results respectively. 

 

Two falsely detected cases are illustrated in Figure 26 (g),(h).  Our results deviate from 

the true M-F area (within the bright patches). Both images are complicated with retina 

diseases of choroidal neovascularization and age related macular degeneration.  In such 

cases, blood vessels grow into the macula.  This is contrary to our basic assumptions on the 

vessel-free M-F area and thus results in false detection.  However, we find these the extreme 
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diseased cases in the late stage of retinopathy that would have already caused blindness and 

therefore, could be set apart from the early computer-aided retinopathy screening purposes.   

In summary, we propose an unsupervised algorithm for the localization of M-F area by 

extracting the vessel network topology.  Compared with conventional methods, our method 

can reliably separate field-1 images from the field-2 type and overcome the difficulties in M-

F localization on images with inadequate field clarity and diseased conditions.  Our scheme 

can be expanded for other retina objects segmentation such like the optic disc area, which 

will be discussed in the next session. 

 

D. Optic Disc Localization 

 

1. Introduction 

 

Existing methods for OD localization mainly used its color tone or its relation to the 

global vessel directions as the main image cues.  In practical clinic images, however, some 

optic discs are found not to be of bright colors.  Also, in images with incomplete field clarity, 

partial vessel arcades are not captured.  These, together with the diseased objects like hard 

exudates, drusen and artifacts, make reliable detection of OD even more difficult.  As such, 

in this work, we propose a divide-and-conquer strategy for accurate and reliable localization 

of optic disc on retina images, which is resistant to incomplete field clarity, shallow 

appearances of OD and interferences of diseased objects.   

Similar to our technique used in M-F localization, we first determine the field type and 

search region of OD area based on the circle fitting of vessel topology.  Next, we narrow 

down the candidate OD areas based on feature detections of bright spot areas as well as 

fircation points of vessel segments.   Within each candidate area, we apply local fractal 
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analysis to characterize the concentration of blood vessels.  Finally, our divide-and-conquer 

strategy is adopted to locate OD area considering all factors of local intensities, fractal 

dimensions and vessel topology. 

 

2. Algorithm 

 

2.1 Determine the Search Region for OD Area 

 

Similar to our method used in M-F localization, we first determine the search region of 

OD area based on its relation to vascular topology.  The vessel arcades are first extracted 

from VTM or derived log-normal curve model of detected vessel pixels using circle fitting 

method.  The fitted circle is denoted as Arcade_Circle.  Likewise, we used the fitted error 

fit_Err = 0.25 as a reliable threshold value fT to separate field-1 from field-2 images.  If the 

calculated fit_Err is smaller than fT, it is determined as field-2 images.  Otherwise, field-1 

type.  Then we determine the search center and search radius for OD denoted as CtSrh and 

RadSrh respectively.  For field-1 image, CtSrh is determined to be the center of 

Arcade_Circle.  For field-2 image, the optic disc is either on the left or on the right side of 

the fitted circle.  Side location of OD can be further estimated from the comparison of 

number of detected BV pixels on each side, inferred from the fact that optic disc area is 

where the major retina blood vessels emerge.  As such, if left side of the Arcade_Circle has 

more detected BV pixels, the search center is at leftmost side of Arcade_Circle.  Otherwise, 

it is at the rightmost side of Arcade_Circle.  We further determine the search radius RadSrh 

to be 1/3 of Arcade_Circle, in that optic disc is usually 2~3 disc sizes away from the M-F 

area. 
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2.2 Select Candidate OD Area  

 

Two types of candidate areas are included for discussion for OD localization.  One is the 

bright spot area.  The other is the area where the blood vessel branches fircate.     

Bright spot are detected using the daisy graph representation introduced in Chapter III.  

Pixel within bright spot area has positive contrasts against background areas along all probed 

directions.  Figure 27 shows 25 pixels running across a bright spot area and their 

corresponding daisy graph representation.  Brightness of the spot can be represented by the 

sharpness of its contrast against the background areas.  Consequently, for a give pixel, let 

�*½/¾
,%��
�� ¿ ��?<V� denote the number of directions having positively contrasts sharper 

than ��?<V.  ��
��
 is the calculated directional contrast along , and  ��?<V denotes the 

smallest noticeable positive contrast to define a bright spot area.  We set ��?<V�=0.03 in all 

our experiments and let the number of directions in contrast calculation to be N=32.  

Neighborhood size in contrast calculation is determined by the size of optic disc.  On image 

resolution of size 700x605 or similar, we choose the neighborhood size to be 60.  We further 

use an error tolerance parameter À to relax the threshold so that if �*½/¾
,%��
�� ¿ ��?<V� ¿
À�, the pixel is then determined to be a bright spot.   À is set to be 0.8.  Finally, we cluster 

the detected bright spot pixels to determine the locations of bright spots.  Figure 28 shows the 

example of bright spot area detection on a diseased retina image with hard exudates. 

 



81 

 

 

(a) 

 

           (b) 

Figure 27: (a) 25 pixels running across a bright spot area.  (b) Their corresponding daisy graphs. 

 



 

Figure 28: (a) Original retina image with hard exudates

 

Vessels fircations denote the junction area wh

small branches.  To detect the fircation 

binary vessel map.  For each vessel pixel on the resulted thinning map, we count the number 

of its neighboring vessel pixels w

more neighboring vessels pixels are extracted as the fircation points.

neighboring fircation points together based on their Euclidean distance, s

more fircation points within 5 pixels distances to each other are identified as one fircation 

area. Figure 29 shows the detected fircation areas within the optic disc of a sample image.

(a) Original retina image with hard exudates (im0002 from STARE).  (b)  Bright spot 

detection outcome. 

denote the junction area where large vessel branches furcated into 

the fircation areas, we use thinning algorithm on the detected 

For each vessel pixel on the resulted thinning map, we count the number 

of its neighboring vessel pixels within an eight-neighborhood.  Vessel pixels having three or 

more neighboring vessels pixels are extracted as the fircation points.  Finally, we cluster the 

neighboring fircation points together based on their Euclidean distance, s

tion points within 5 pixels distances to each other are identified as one fircation 

the detected fircation areas within the optic disc of a sample image.

82 

 

(b)  Bright spot 

ere large vessel branches furcated into 

, we use thinning algorithm on the detected 

For each vessel pixel on the resulted thinning map, we count the number 

essel pixels having three or 

Finally, we cluster the 

neighboring fircation points together based on their Euclidean distance, such that two or 

tion points within 5 pixels distances to each other are identified as one fircation 

the detected fircation areas within the optic disc of a sample image. 
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Figure 29: Detected fircation area on cropped area around optic disc. 

 

 

2.3. Feature Analysis of Candidate OD Area 

 

Next we do feature analysis of the candidate OD areas.  For each centroid of the 

candidate OD area, we first use its Euclidean distance to the search center CtSrh to 

characterize its relation to vessel topology.  OD is more likely to be close to CtSrh due to its 

fixed relation to vessel network.  As such, for each candidate OD area k<, we denote its 

relation to CtSrh by the following equation. 

��<`� � 0 ] Ák< ] �¾D2ÂÁLÃ\ÄD2Â 

where Á1 Á denotes the distance between k<and �¾D2Â.  Consequently, the closer k< is to 

�¾D2Â, the larger its ��<`�. 
Further, we apply fractal analysis within the candidate areas to identify OD.  The 

identification criterion is justified by the fact that OD is the area where all major vessels 

merges, and thus presents the highest fractal dimension compared to other bright regions 

such as hard exudates and artifacts. 
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Fractal analysis has been widely used and demonstrated its effectiveness in spatial 

analysis of branching patterns in the fields of biology. Its key and fundamental concept, self-

similarity, describes the geometric pattern which remains constant when viewed at different 

levels of scaling.  Fractal dimension, Df, is a widely accepted and useful quantitative measure 

of self-similarity for branching pattern object.  Numerous medical studies have substantiated 

the fact that retinal circulation of the normal human retinal vasculature is statistically self-

similar. It has been reported with strong evidence that the fractal dimension of the blood 

vessels within the normal human retina is approximately 1.7 [76].  At the present stage, 

fractal analysis studies in retinal images focus mainly on region-based quantitative analysis 

of early-stage vascular disease in the human retina.  [91] used fractal analysis to characterize 

the neovascularisation process in diabetic retinopathy and [92] demonstrated the feasibility of 

fractal analysis of region-based vascular change in the normal and non-proliferative diabetic 

retina.  In our scheme, fractal analysis is utilized to differentiate OD area from other large 

and bright regions in retinal images due to the fact that OD area is the converging point of all 

major vessels, thus presents much higher fractal dimension compared to other bright regions 

such as hard exudates that are yellow deposits developing after leakage from retinal 

capillaries [93] and have few blood vessels within and around them. 

Fractal dimension is computed within a mask window centered at the centroid of bright 

spot or fircation area.  The window size is selected to be 128 on a 700x605 or similar 

resolution image, based on the approximated OD size.  Box-counting method is used in this 

paper to calculate the fractal dimension of the binary vessel skeleton for its easy 

implementation on computer [76]. In box-counting algorithm, the binary image is blanked 

repeatedly with square boxes of increasing side length (L=1, 2, 4, 8 …, 128). The number of 
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boxes with side length L used (denoted by N(L)) are counted if and only if the box contains at 

least one white pixel.  A linear least squares regression is applied to make a log-log plot of 

N(L) versus L. The negative value of line slope is used as the fractal dimension, Df.    

Combining the two features together, we get a weight for each candidate k< denoted by 

the following equation: 

�< � ��<`� � �~Å� 
 

2.4. A Divide-and-Conquer Strategy for OD Localization 

 

Finally, we determine the location of OD area from the candidate areas.  Our detection 

rule is based on a divide-and-conquer strategy according to three different cases. 

� Case 1: Bright spot areas are detected within the search region. 

Vessel topology analysis minimizes our efforts to remove the false detections of OD 

especially for those diseased objects, like drusens and hard exudates, which are of similar 

bright colors to OD area.  As such, given bright spot areas are detected within the search 

region, we treat them as the most significant image cues for OD localization.  In this case, 

OD is determined by the detected bright spot with largest �< value. 

� Case 2: Bright spot areas are not detected within the search region. 

In case of OD is not of bright color, we locate the OD area by a weighting scheme 

among all the detected fircation areas.  As a result, OD is determined to be the weighted 

average of all the fircation areas denoted by  

��( � �< � �"<�<@� ,  � �< � �#<�<@� ). 

where, "< and #< are the x and y coordinates for k<, N is the total number of candidate areas. 

� Case 3: Neither bright spot nor fircation areas are detected. 
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In some extreme diseased cases, however, optic disc area is neither of bright color, nor 

there exist vessels around it.  Under these circumstances, the only image cue left to use is 

based on the vessel topology.  Consequently, we determine the OD location to be the search 

center of OD resulted from subsection 2.2. 

Finally, we summarize our optic disc localization algorithm as follows in Table 5. 

 

Table 5: OD localization algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

  

Objective 

Locate Optic Disc (OD) Area on Retinal Image. 

 

Algorithm 

� Determine the search area of optic disc. 

1. Extract vessel arcade pixels based on Vessel Topology Map (VTM) or derived 

threshold on lognormal curve. 

2. Fit vessel arcade pixels to a circle Arcade_Circle.  Its search radius and center 

are noted as RadSrh and CtSrh respectively. 

3. Use the fitting error fit_Err to approximate the search area of the optic disc. 

(1) If the fit_Err >fT, the search center is around Arcade_Circle center. 

(2) Otherwise,  

If left side of the Arcade_Circle has more detected BV pixels, the search 

center is at leftmost side of Arcade_Circle.  Otherwise, it is at the rightmost 

side of Arcade_Circle. 

For each case, RadSrh is decided to be 1/3 of Arcade_Circle. 

� Detect feature pixels within Arcade_Circle and determine their weights. 

4. Detect bright pixels and all the frication areas within the search regions.  

5. For each detected feature pixels pi, calculate its distance dist(pi, CtSrh) to CtSrh, 

and the BV fractal dimension Df.  The feature weights wi for pi is 
0 ]Ä.+¾
Æ.� �¾D2Â�LÃ\ÄD2Â� � ~Å 

� Determine the location of optic disc. 

6. If there are bright pixels detected, the optic disc is the bright pixel having largest 

wi.   

Otherwise, it is determined to be weighted average of all the frication and 

endpoint pixels denoted by  
��( � �< � �k<�<@� ,  � �< � �Ç<�<@� ), where Xi and Yi are 

the pixel for each detected frication and end points.   

If neither bright pixels nor fircations, then use the search center as the OD area. 
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3. Experimental Results and Discussions 

 

We tested our scheme in both DRIVE and STARE image.  In DRIVE database, most 

images are of healthy retinas with bright optic disc areas.  In Table 6, we show that our 

algorithm identifies 40 optic discs out of 40 images in DRIVE database. STARE has more 

than half diseased images laden with bright color spot areas of drusens and hard exudates.  

Our algorithm identifies 76 out of 81 images in STARE.  We also test the algorithm on 

images with serious anomalies we collected in our projects and gained a detection rate of 

92%. 

 

Table 6: Performance evaluation of OD detection algorithm. 

DATABASE Detection Rate on both Field-1 and Field-2 Type 

Images 

DRIVE 100% (40 out of 40) 

STARE 93.83% (76 out of 81) 

Our Database (from clinics) 92% (823 out of 895) 

 

Our divide-and-conquer strategy shows strong ability in dealing with both normal and 

diseased retinas.  Several examples of OD detection results are shown in Figure 30.  (a) and 

(b) are the detection outcomes on field-1 images.  (c),(d),(e) are images laden with deposits 

of hard exudates and drusens.  (f) and (g) show the images whose OD are not of bright 

colors.  (h) is an image whose vessels around the OD come to degenerate.  Our divide-and-

conquer strategy using both vessel topology analysis and bright spot detections enables us to 

locate OD of shallow appearances and greatly improve the false detection rates when 

diseased objects exist. 



 

   (a) 

   (c) 

   (e) 

Figure 30: OD localization results. The green “+” is the locat

 

        (b) 

        (d) 

        (f) 

OD localization results. The green “+” is the located OD.
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ed OD. 



 

   (g) 

The algorithm may fail in some extreme cases when the imaging condition of the image 

is too poor.  Under these circumstances, the blood vessels are too shallow to be detected

given not manually adjusting

of vessel network unreliable.  

An example is shown in Figure 

disc area are not reliably detected if not increasing the detection sensitivity in BV mapping 

algorithms.  Thus, our OD detection algorithm fail

OD and make the false detection.

 

        (h) 

Figure 30 continued. 

 

 

The algorithm may fail in some extreme cases when the imaging condition of the image 

is too poor.  Under these circumstances, the blood vessels are too shallow to be detected

given not manually adjusting the sensitivity level.  It therefore makes the topological analysis 

of vessel network unreliable.  On these images, our algorithm can not accurately locate OD.

Figure 31.  In this case, blood vessels around and within the optic 

c area are not reliably detected if not increasing the detection sensitivity in BV mapping 

algorithms.  Thus, our OD detection algorithm fails to accurately locate the search region of 

OD and make the false detection. 
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The algorithm may fail in some extreme cases when the imaging condition of the image 

is too poor.  Under these circumstances, the blood vessels are too shallow to be detected, 

the topological analysis 

On these images, our algorithm can not accurately locate OD.  

In this case, blood vessels around and within the optic 

c area are not reliably detected if not increasing the detection sensitivity in BV mapping 

to accurately locate the search region of 



 

 

E. Summary of the Chapter 

 

In this chapter, we introduce algorithms for the segmentation three landmark objects on 

retina images, blood vessel network, macula

algorithm derives from our modeling technique in the

technique, we can adaptively tune the detection parameters by probing statistics resulted 

from Sobel edge detections on retina images.  

network on field-1 and field-

vessel topology analysis.  All our detection algorithms have been tested on both benchmark 

image databases as well as the images collected from on

performance compared with 

computational cost. In the next chapter, we further use the segmented landmark objects to 

develop high level applications on retina

 

 

 

Figure 31: False detection of OD. 

In this chapter, we introduce algorithms for the segmentation three landmark objects on 

retina images, blood vessel network, macula-fovea area and optic disc.  Our BV detection 

algorithm derives from our modeling technique in the previous chapter.  Using the modeling 

technique, we can adaptively tune the detection parameters by probing statistics resulted 

from Sobel edge detections on retina images.  Based on their fixed locations to vessel 

-2 retina images, we can further locate M-F and OD area using 

All our detection algorithms have been tested on both benchmark 

image databases as well as the images collected from on-site clinics and demonstrate high 

 state-of-art algorithms in terms of both detection accuracy and 

In the next chapter, we further use the segmented landmark objects to 

develop high level applications on retinal images. 
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In this chapter, we introduce algorithms for the segmentation three landmark objects on 

Our BV detection 

Using the modeling 

technique, we can adaptively tune the detection parameters by probing statistics resulted 

Based on their fixed locations to vessel 

F and OD area using 

All our detection algorithms have been tested on both benchmark 

site clinics and demonstrate high 

art algorithms in terms of both detection accuracy and 

In the next chapter, we further use the segmented landmark objects to 
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 CHAPTER V  

 HIGH LEVEL APPLICATIONS ON RETINAL IMAGES 

A. Overview of the Chapter 

 

Based on the algorithmic results from the previous two chapters, in this chapter, we 

develop high level applications on retinal images in retinal image database.  We start with the 

texture analysis and classification of the macula-fovea area on retinal images.  People 

belonging to different population groups in their ages and retinal health conditions are related 

to different appearances within and around their macula-fovea areas.  Texture analysis of 

macula-fovea area helps to group retinal images according to their population groups.  We 

use the entropy statistics from the Gabor responses of automatically extracted macula areas 

as their texture features.  By doing linear discriminant analysis (LDA), texture features 

belonging to three population groups (healthy young, normal middle age and diseased 

retinas) are well separated and classified on the resulted feature space.  We continue to use 

LDA as the numerical feature values to represent the texture of macula-fovea area and 

develop an analytical method to quantify the correlation between the texture of the macula-

fovea area and the structures of vascular network.  With respect to the vascular network, we 

extract local features of furcation point count, lengths, curvatures, and fractal dimensions to 

characterize the morphological pattern of vessel structure.  The correlation analysis between 

the two is performed based on a standard univariate correlation technique.  The purpose of 

our data-driven approach is to identify where and how change of local vascular morphology 

is correlated to the change in macula-fovea texture.  The analytical result is thus to contribute 

our knowledge of the underlying interaction between the two organelles.  Finally, we apply 
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our analytical results to the design of an algorithm for the similarity-based ranked retrieval of 

retina images on retinal image library.   

 

B. Texture Analysis of Macula-fovea Area 

 

People belonging to different population groups are associated with different 

appearances in their macular structures.  In this work, we study retinas of three population 

groups, namely, normal middle-aged retina, healthy young retina and diseased retinas. 

Figure 32 shows the typical samples of macula areas of each group.   In general, 

different macular types differ in their spatial distributions of pixel intensities within the 

localized macula area.  Normal middle aged macular areas present homogeneous spatial 

distribution of pixel intensities along different directions (see row 1).  Macular areas in row 2 

have white fiber-like tissues around the centered fovea areas, which are the reflections off the 

glossy surface of the retina that are typically observed in young retinas.  In contrast to the 

healthy macular structures, degeneration in macular structures (see row 3) is usually 

accompanied with the appearances with diseased objects like drusen or hemorrhages.  

Intensity distribution within these structures is highly disordered due to the irregularities in 

disease formations.   

 

 

 

 

 

 



 

 

Figure 32:  Macula structures 

healthy young retinas (row 2), diseased retinas (row 3)

 

We develop texture analysis technique to quantify and separate the macula

belong to the three population groups.

of pixel intensities, we extract features on macular areas based on the entropy statistics of 

two dimensional Gabor filtered response.  A 

modulated by a complex sinusoid pointing toward a specified direction.  It is denoted by the 

following equation. 

 

 

 

 

 

 for different population groups of normal middle aged retinas (row 1), 

healthy young retinas (row 2), diseased retinas (row 3). 

We develop texture analysis technique to quantify and separate the macula

he three population groups.  To represent the homogeneity in spatial distribution 

of pixel intensities, we extract features on macular areas based on the entropy statistics of 

two dimensional Gabor filtered response.  A 2D Gabor filter is, basically, a Gau

modulated by a complex sinusoid pointing toward a specified direction.  It is denoted by the 
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of normal middle aged retinas (row 1), 

We develop texture analysis technique to quantify and separate the macula-fovea areas 

homogeneity in spatial distribution 

of pixel intensities, we extract features on macular areas based on the entropy statistics of 

Gabor filter is, basically, a Gaussian filter 

modulated by a complex sinusoid pointing toward a specified direction.  It is denoted by the 
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where, DU and D� are the variances along x and y directions respectively, a is the center 

frequency of the sinusoid and � is the direction of the Gabor filter.  Gabor filter has been 

widely used in algorithms design for object detection and texture analysis 

[93][94][95][96][97].  Typical use of Gabor filter is to tune its parameters so as to match the 

shape and size of the target object.  Instead of direct usage of Gabor filter to do object 

detection, we use the entropy statistics of the Gabor filtered response macular images to 

characterize the homogeneity of the macular structures.  Entropy [98] is denoted as:  

]ÝÊ°qÙÞ�
Ê°�°  

where, Ê° is the probability that the texture image contains a specific intensity value Ü.  In 

general, the Gabor filtered response image is of complex value.  To use the entropy measure, 

we first do a quantization on the absolute value of the Gabor filtered image.  We set 256 bins, 

with the bin integer values ranging from 0~255, which denote the intensity level i of the 

quantized filtered image.  For the filtered image having Gabor response bigger than 255, we 

truncate the value to 255 and for the others we round the value to the nearest bin integer.  Ê° 
is used to denote the histogram counts for each intensity value i on the filter response image.  

For given set of the intensity values on the filtered image, the entropy measures the degree to 

which the histogram counts spread out over different possible response values.  Intuitively 

speaking, macular areas of homogenous textures have more localized histogram distributions 
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of filter responses as compared with that of diseases macula whose histogram distributions of 

filter responses would spread.  Therefore, we can represent different macular structures by 

their entropy statistics.  Tuning the Gabor filter to different frequencies and angles, we obtain 

the entropy statistics under different spreading and directional factors and compose a high 

dimensional feature vector.  We choose Sx, Sy and f range in values 2, 7 and 12 and � range 

in values 0, π/4, π/2, 3π/4.   Choice of values in Sx , Sy and f is based on our approximation of 

diseases patterns in different shapes, sizes and varying factors on the cropped image 

resolution of size 100x100 and on our empirical results of classification rates.  Our proposed 

angular resolution for Gabor filter is π/4.  Consequently, we obtain a high dimensional 

feature vector of dimension 3x3x3x4=108. 

Feature vector derived from Gabor filter responses is of high dimension.  Due to the 

curse of dimensionality problem [99], we further use Linear Discriminant Analysis (LDA) to 

perform dimensionality reduction while preserving as much of the class discriminatory 

information as possible.  The main idea of LDA is to find an order of projections that 

maximizes the ratio of between-class discriminant measure to within-class discriminant 

measure [99].   Using LDA, we project the feature vector of dimension 108 to the two most 

discriminatory dimensions and obtain a reduced feature space of 2 dimensions.   

There were 70 cropped normal middle aged, 75 healthy young and 35 diseased macula-

fovea areas used as the training set for LDA of macular textures.  Due to the shortage of 

diseased macula-fovea areas in our dataset, for each diseased macular area, we further 

cropped the areas on original retina images centered 50 pixels apart left and right, top and 

down from the original cropped center to increase the number of training images.  Scatter 

plot of the LDA result for the training data is shown in Figure 33.    Macula textures 
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belonging to three different population groups are well separated from each other on the 

resulted scatter plot. 

 

 

Figure 33: Scatter plot of the LDA result of texture analysis of macula structure. 

 

To testify the capability of the LDA result on classifying unknown macula images, we 

use a test data set of 70 cropped normal middle aged, 75 healthy young and 35 diseased 

macula-fovea areas.  We project the feature vector extracted from each unknown test image 

onto the derived feature space and do the classification based on k-nearest neighbor 

classifier.  Table 7 shows the classification rate using different k numbers.  Our approach 

reaches the highest classification rate of 85% on the test data set when k is equal to 3, 5 or 7.    

Empirical results also show that, given the increase number of dimensionality of the 
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extracted feature vector by adding to the different values of Sx , Sy , f and �, we will run into 

the typical over-fitting problem.  That is, the clusters of macular textures belonging to 

different population groups are more separated from each other while the classification rates 

on the test data comes to be lower.   Selections of parameters in Sx, Sy, f and � are thus based 

on best empirical tradeoff results on both training and test data sets. 

 

Table 7: Classification rate of macular texture using different k numbers. 

 K=1 K=3 K=5 K=7 K=9 K=11 

Classification 

Rate 

84.44% 85.00% 85.00% 85.00% 84.44% 84.44% 

 

 On top of the classification of macular textures among different population groups, our 

proposed approach provides a numerical tool to quantify the difference between macular 

structures.  In next session, we use it to continue our correlation study between macula-fovea 

textures and vascular network structures. 

 

C. Correlation Analysis between Macular and Vascular Features 

 

In a retina, the blood vessel network and the macular area are two of most noted 

organelles. The macula-fovea area is a small circular area responsible for sharp vision. The 

macular-fovea area is mostly connected to terminating points of the blood vessel network to 

receive nutrients and expel wastes permeated through capillaries.  Despite of their tight 

relationship at the cellular level, the two organelles exhibit very different dynamics in 

response to diseases and aging. The macular area mostly changes in its textural appearances, 

with relatively subtle changes in shapes. On the other hand, vascular networks exhibit highly 

dynamic changes in widths, lengths, curvatures, furcation points and fractals, etc., with 



98 

 

respect to aging or presence of diseases. Any (non-macular) disease that affects the 

performance of the vascular network will affect the functionality of the macular subsystem.  

On the other hand, when the macular subsystem is sick, it may also signal the blood vessel 

network to change its structure as a part of the biological feedback loop.  Even though the 

clinical studies did confirm the existence such relationships [100][101][102][103][104][105], 

as of now there are few studies which quantify the nature of these relationships on retinal 

images. 

The most precise clinical procedure to study this type of problems should have decades 

of follow up studies on individuals with controlled conditions. Given the very high cost of 

running this type of investigations, due to the ultra low rate of changes, it is critical that we 

first have some credible evidences to make pivotal decisions on how to research on most 

promising hypotheses. To achieve this goal, we formulate this problem from the viewpoint of 

population statistics.  The first key issue is whether or not there exist strong, highly 

distinguishable patterns for the objects of interest such as blood vessels, macular-fovea 

textures, etc. for different population groups. Our investigation found that the answer is 

affirmative for selective blood vessel structures and macular-fovea textures.  

Based on these observations, we propose a new technique to simulate changes of a 

subject’s conditions in the population macula texture feature space with the feature distances 

from a sample S to centroids CY, CM, CD, of features from groups young-healthy (GY), mid-

age healthy (GM) and diseased (GD).  A (statistical) condition change is said to occur to the 

feature of a subject S in a particular group Gx, when its feature is not closest to Cx based on a 

feature distance function with respect to the three centroids.  

The first inferred statistical change:  I1: “S is deviating from Gx to some other state”.  
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The objective of the correlation study is: “Given I1, what are correlated changes in 

blood vessel structures?”  

This represents a case of general population study without excluding any subgroups 

from the study.  In the second type of study, we are interested in finding more refined 

relationship between three groups based similarly defined (statistical) changes for   “from GY 

to GD”, “from GY to GM”, and “from GM to GD”. Without loss of generality, let us assume that 

S is known in GY, yet its feature distance functions for CY and CM show that it is closer to CY, 

not CM. We note that in this step, CD is not used for evaluation of the distance functions.   

In this case, make the statistical inference that “the feature of S likely represents change 

when a normal subject in GY begins to migrate toward the group GM”, or  

I2: “from GY to GM”.  

The objective of our statistical analysis problem is: “Given I2, what are correlated 

changes in blood vessel structures?”  

A similar argument can be made to I3: “from GM to GD”, 

Its statistical analysis problem:“Given I3, what are correlated changes in blood vessel 

structures?”  

Due to lack of data for the case of from GY to GD, in this work we will concentrate on the 

two statistically inferred state migration cases only.  To answer these interesting and 

challenging questions, we take a univariate correlation analysis technique to investigate the 

relationship between changes in macular textures and changes of blood vessel structures 

among different regions within the field of view of a retinal image, based on the field-2 type 

images.  
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Textural change within macula-fovea area can be quantified based on the derived LDA 

result in previous subsection.  With respect to vascular network, its structural change is 

mostly manifested by the local change in vessel morphology, such like proliferation, 

degeneration, bending, etc, due to the blockage of blood and nutrients supply.   As such, in 

the following we do regional analysis to characterize the structure of the whole vascular 

network. 

 

1. Frame of Reference on Retinal Image 

 

The presented correlation analysis is based on 96 sample images acquired from clinic 

study, which include 40 healthy young retinas, 41 normal middle age retinas and 15 diseased 

retinas with macula diseases.  Resolutions of the studied retina images are all of 720x480 and 

all are of field type-2 with complete field clarity and 60º angle of view.  Medical study 

rigorously defined nine regions, namely, optic disc, macula, temporal, superonasal, 

inferonasal, superior, inferior, superotemporal and inferotemporal on a field type-2 retina 

image, based on the fixed relations among the retina objects,.  We automate the process of 

establishing a frame of reference on retinal images by the detection result of BV, M-F and 

OD.  Using the M-F as the center and its distance to OD as the radius, we draw a circle on 

the retina image to track the extension of vessel arcades and identify the nine regions on 

retina images.  Centers of each region are of 45º apart from each other along the drawing 

circle and window size of each region is of 256x256 (see Figure 34).     
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Figure 34: Frame of reference on retinal image. 

 

2. Feature Extraction of Vascular Network 

 

By the establishment of frame of reference, different field type-2 retinal images can be 

aligned with each for analysis.  On each identified local area, we extract four feature types of 

vessel structures, namely, fractal dimension, number of furcation points, mean value of 

segment lengths and mean value of vessel curvatures. 

(1)      Fractal Dimension (Df )  

Similar to our discussion for OD detection in Chapter IV, subsection D, here we use 

fractal dimension as a geometric index to quantify the self-similarity of geometric object.  

Medical study substantiated its use in classification of population groups in terms of varying 

degrees of vessel degradations.  We use similar approach of box-counting method to 

calculate the fractal dimension.  The window size for fractal calculation is set to be of 

256x256 with the maximum side length being equal to 256. 
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 (2)     Number of Fircation Points ( Nf ) 

Fircation point denotes the junction area where large vessel branch furcates into small 

branches.  Abnormality in the increase or decrease in fircation points is a significant sign of 

vessel proliferations or deaths.  Extraction of fircation areas is same with the method 

discussed in OD localization.  Within each identified local area, we use the number of its 

detected fircation points as the feature entry. 

(3)      Mean Value of Segment Lengths (Ml ) 

A vessel segment is the set of connected vessel pixels between the two neighboring 

fircation points on a skeleton BV map.  We use the center of the vessel segment to denote its 

location.  Length of the vessel segment denotes the continuity of its growth.  It is calculated 

by the number of pixels in each vessel segment.  We exclude the vessel segments which are 

of less than 10 pixels in length (minimal vessel segment length (minSegLen) defined, which 

will also be used in the curvature calculation in the following discussion), so as to minimize 

the noise effects in the vessel segmentation and thinning process.  Within each local area, we 

calculate the statistical mean for all included vessel segments. 

(4)     Mean Value of Segment Curvatures (Mc ) 

Measurement of the bending property of the vessel segment is another important cue for 

retina blood vessel health.  Normal retina blood vessels are usually slightly curved while 

under diseased condition, they change to be more tortuous due to the stretching and high 

congestion in vessel growth.  [106] proposed their method in measurement and classification 

of the retina vascular curvature.  We use their method to quantify the curved nature of vessel 

segments.  The curvature of a point p on a curve is defined as the derivative of the angle of 

the tangent line α(p) at the point with respect to the arc length of the curve s(p) within the 
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calculated window size.  The window size is chosen to be minSegLen=10, based on our 

definition of minimum segment length.  The arc length s(p) is determined by summing the 

Euclidean distance of the neighboring pixels within the window size and α(p) by calculating 

the angle of the line connecting the neighboring pixel.  Derivative of α(p) with respect to s(p) 

on p is the slope of a fitted line a
"� � (" ' ß by minimizing the summation of the square 

error between α(i) and a
.� using linear regression method, where i denote the index of 

points within the window size around point p (p-minSegLen/2, p-

minSegLen/2+1,…p+minSegLen/2-1).  For each vessel segment, we use the highest curvature 

among the points on the curve to denote its bending property.  Finally, within each region, 

we calculate the mean value of the segment curvature for all the included vessel segments to 

characterize its regional curvature.       

 

3. Correlation Analysis  

 

After obtaining the features characterizing both the vascular network pattern and 

macular textures, we do correlation study between the two organelles.  Assume that number 

of sample data is N.  Let X1, X2, … XN be the vessel feature vectors of the N sample image, 

where Xi is a M x 1 column vector à"<��� "<4�� "<5�� 6� � "<S �áâand M the number of feature 

elements of the vessel feature vector derived from our previous discussion, which is equal to 

4x9=36.  Let V1, …VN be the macular texture feature vector, where Vi contains number of K 

elements of macular texture feature from 2D LDA space for the i-th image, which is equal to 

2.  These data are presented in the M x N and K x N matrices, i.e., X=[X1, X2, … , XN] and 

V=[V1, V2, … , VN], respectively.   
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To derive the correlation between the structural change in vascular feature and that in the 

macular textures against different statistical conditions (I1, I2 and I3), for each trained 

sample feature data that belongs to a certain class, we do a normalization process for each 

entry in the feature vectors for both vascular network and macular structure. 

First, for vascular feature vector k< � à"<��� "<4�� "<5�� 6�� "<S �áâ, it is transformed into a 

new feature vector Ç< � à#<��� #<4�� #<5�� 6� � #<S�áâ, where for each entry of #<? in Ç< , 
#<? �� "<? ] ã<?�<?  

ã<? and �<? are, respectively, the entries for the mean and standard deviation vector of vessel 

features for the class which k< belongs to. 

Next, we derived the change of the macular texture for a given subject S in a particular 

group Gx against three (statistical) conditions I1, I2 and I3. 

(1)     I1: “S is deviating from Gx to some other state”.  

For macular texture feature vector ä° � àå<�� å<4�áâ, we transform it into a new feature 

vector �° � à�°á, where 

     �° � Áæ��ç�Áèæ��ç�è�Áæ��çéÁ                         

ê° is the mean macular feature vector (centroid) of the class to which the sample belongs to, 

and êë and êo are the mean macular feature vectors (centroids) of the classes that the sample 

do not belong.  Á1 Á denotes the distance between two vectors.  By design, larger value of �° 
indicates that the macular structure of the sample instance is more different from the typical 

macular structure that the instance belongs to, while smaller value of �° indicates that it is 

more of the typical structure of its category.  See illustration in Figure 35. 
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Figure 35: Distances between a particular subject to the three group centroids on LDA macular feature 

space. 

 

 

(2)     I2: “from GY to GM”.  

In this case, we focus on the textural feature for the population group of healthy young 

retinas GY and are interested in its transition to normal middle aged retina GM.  For given S of 

GY we define its similarity measure with regard to both two groups based on the ratio of 

distances as follows.     

�° � Áä°ì ] êìÁÁä°ì ] êíÁ 

where ä°ì denotes the texture feature vector for each S in GY, êì and êí are the centroids for 

GY and GM respectively.  Á1 Á denotes the distance between two vectors.  Accordingly, larger 

value of �° indicates that the macular structure of the sample instance is more different from 
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the typical macular structure of êì but more like that of êí, while smaller value of �° the 

other hand. 

 (3)     I3: “from GM to GD”. 

A similar derivation to I2 can be conducted in case of I3 to characterize the textural 

feature for the population group of GM transitioning to GD.  In this case,  

�° � Áä°í ] êíÁÁä°í ] ê�Á 

where ä°í denotes the texture feature vector for each S in GM, êí and ê� are the centroids 

for GM and GD respectively.  Á1 Á denotes the distance between two vectors.   

  Let Y1, Y2, … , YN be the normalized vessel feature vectors of the N sample image, 

where (Yi is a M x 1 column vector à#<��� #<4�� #<5�� 6�� #<S�áâ), and M the number of feature 

elements of the vessel feature vector, which is equal to 36.  Let W1, W2, … , WN be the 

normalized macular texture feature vector, where Wi is a one-dimensional feature �° � à�°á 
for the i-th image.  These data are presented in the M x N and 1 x N matrices, i.e., Y= [Y1, 

Y2, … , YN] and W= [W1, W2, … , WN], respectively.  We take standard univariate 

correlation analysis to calculate the correlation between each vessel feature entry #<�and 

macular feature �° as follows: 

î�ï � �  !#<� ] ã�$
�° ] ãï�3�<@� �c�cï  

ã� and ãï are the means of #<�and �°.  c� and cï are the standard deviations of #<�and �° 
respectively.   

Value of the correlation coefficient î�ï is within {-1, 1}.  Mathematically, positive and 

negative signs of the correlation coefficient indicate positive and negative correlations 

respectively.  Comparing the absolute values of the entries in m, we are able to identify the 
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dominating regional features of vessel network that show the strongest correlations to 

macula-fovea area against different (statistical) conditional changes in macular textures.  

Larger (smaller) positive value in î�ï indicates that the farther the macular structure of the 

sample data is away from the centroid of the class the sample belongs to, the more the 

identified vessel feature index will surpass (be below) its average level (i.e., mean value).  

On the other hand, larger (smaller) magnitude in negative value for î�ï indicates that the 

farther the macular structure of the sample data is away from the centroid of the class the 

sample belongs to, the more the identified vessel feature index will be below (surpass) its 

average level (i.e., mean value).   

 

4. Experimental Results 

 

Figure 36 shows the four vessel feature (Df , Nf , Ml , Mc) plots of different population 

groups.  On each vessel feature plot, x axis denotes the region on retina and y axis denotes 

the mean value of the corresponding regional feature for the population group.  Error bar on 

the plot is determined by the value of standard deviation.     

Firstly, we compare the vessel features of healthy young and normal middle aged retinas.  

On different regions, young retinas are found to have higher fractals, larger number of 

fircations but shorter segment lengths than normal middle age retinas.  Vessel segments in 

optic disc area of young retinas will be less tortuous than that of normal middle age retinas.  

These comply with the anatomic findings of vessel growing on retina in that in its young age, 

vessels flourish and furcate into many small branches.  And when the retina is aging, vessel 

degenerates and the small branches decay.  For diseased retinas, they have less fractals and 

less fircation numbers against different regions on retinas as compared to young and middle 



108 

 

age counterparts.  This is substantiated by the fact that in diseased conditions, malfunctioning 

of retinas leads to even more severe degradation of vessel structures.  Diseased retinas also 

have more curved vessel segments in optic disc and superonasal areas but not the rest and 

their segment lengths in optic disc and superior areas are larger.  Compared to the young and 

middle age retina, they have relatively higher deviations in vessel features.  This results from 

the fact that patterns of diseased formations in their locations and severity vary among 

different diseased retinas in the collected sample data.   

 

 
(a) 

Figure 36:  Plots of the mean values for different types of vessel features against different regions on 

retinal image. (a),(b),(c),(d) denote the vessel features of Df , Nf , Ml , Mc respectively.  On each plot, “1” to 

“9” on the x-axis denote the defined local regions on retina image of “Macular”, “Optic disc”, 

“Temporal”, “Superior”, “Inferior”, “Superonasal”, “Inferonasal”, “Superotemporal” and 

“Inferotemporal” respectively. 
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(b) 

 

 
(c) 

 

Figure 36 continued 
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(d) 

 

Figure 36 continued. 

 

The above regional feature analysis characterizes the vascular network structures for 

different population groups.  Next, we show the correlation between vascular network 

structure and macula-fovea textures against different (statistical) conditions. 

(1)     I1: “S is deviating from Gx to some other state”.  

(2)     I2: “S is deviating from GY to GM”.  

(3)     I3: “S is deviating from GM to GD”. 

For each condition, calculated correlation coefficients for each entry of vessel feature 

with respect to macula texture are shown in the following tables.  The last row and column 

on each table is the mean of absolute values for the entries in each corresponding row and 

column.  Within each table, we identify the three feature entries that have strongest positive 

and negative correlations to macular texture and mark them with red and blue colors 

respectively.  We are also to infer in average, which feature type of vessel structure and 
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which area have largest correlation to macular texture by comparing the values in last row 

and column respectively and mark them with yellow color.   

In Table 8, experimental results show that in case I1, when a subject S is deviating from 

Gx to some other state in the macular texture feature space, structures of vessels in 

superonasal area have strongest correlations with changes of macular structures and with 

fractal dimensions of vessels the most notable descriptor.  More specifically, fractals 

dimensions in superior area, vessel curvatures and lengths in superonasal area are the three 

most pronounced feature indicators.  On the other hand, little or no correlation exists for 

vessel features in temporal area. 

 

Table 8: Calculated correlation factors under statistical condition I1. 

Region 

# 

Region name Fractals Curvatures Fircations Lengths Absolute 

mean  

1 Macula -0.1465 -0.0798 -0.1434 -0.0321 0.1005 

2 Optic Disc -0.1699 -0.1762 -0.1887 0.0691 0.1510 

3 Temporal -0.0336 0.041 0.0396 -0.119 0.0583 

4 Superior -0.26 0.1124 -0.1161 0.0516 0.1350 

5 Inferior -0.0973 0.1234 -0.1916 -0.0617 0.1185 

6 Superonasal 0.138 0.3011 0.1497 0.2954 0.2211 

7 Inferonasal 0.202 0.1674 0.1347 0.1512 0.1638 

8 Superotemporal 0.1262 0.0996 0.1052 0.1268 0.1145 

9 Inferotemporal 0.2473 0.1108 0.0922 -0.1113 0.1404 

Absolute mean 0.1579 0.1346 0.1290 0.1131  

 

 

In Table 9, experimental results also show that different correlation patterns exhibit in 

transitions of macular structure from healthy young age to healthy middle age and from 

healthy middle age to diseased case.  When the macula texture feature τ for a young subject 

is closer to the centriod of that of the normal age group, fractals in superior area and 

fircations in both optic disc and superior areas show the most negative correlations with τ.  

Moreover, lengths in optic disc and superonasal areas and curvatures in superonasal area 
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show the most positive correlations with τ.  And overall, structures of vessels in optic disc 

area have strongest correlations with changes of macular structures and with lengths of 

vessels the most notable descriptor.  The results indicate that when τ migrating from normal 

young age feature cluster into normal middle age cluster, correspondingly, it exhibits less 

fractal dimensions and fircation points compared to its average level in most regions on 

retina and the area has most pronounced correlation is identified to be within the optic disc 

area. 

 

Table 9: Calculated correlation factors under statistical condition I2. 

Region 

# 

Region name Fractals Curvatures Fircations Lengths Absolute 

mean 

1 Macula -0.0711 -0.1279 -0.1454 -0.0671 0.1029 

2 Optic Disc -0.2936 -0.2044 -0.3536 0.312 0.2909 

3 Temporal 0.0267 0.0501 0.0575 -0.1174 0.0629 

4 Superior -0.3754 0.0523 -0.3348 0.1455 0.2270 

5 Inferior 0.0128 -0.1654 -0.1956 -0.0962 0.1175 

6 Superonasal -0.0163 0.2934 0.0166 0.2952 0.1554 

7 Inferonasal -0.0917 0.0491 -0.0509 0.116 0.0769 

8 Superotemporal -0.0054 -0.0041 -0.0044 -0.0599 0.0185 

9 Inferotemporal 0.1767 0.1306 -0.0167 -0.1406 0.1162 

Absolute mean 0.1189 0.1197 0.1306 0.1500  

 

 

In Table 10, it is shown that when the macula texture µ of a normal middle age subject is 

closer to the centroid of that of the diseased age group, fractals is the most pronounced vessel 

feature descriptor that shows the strongest correlation to γ .  Fractals in macula, superior and 

inferior areas show the most negative correlations while in inferonasal and inferotemporal 

areas they show the most positive correlations.   Moreover, curvatures in most areas on retina 

show positive correlations.  The results indicate that when γ migrating from normal middle 

age cluster into diseased cluster, fractal dimensions within and surround the macula area tend 

to below their average level.  On the other hand, fractals of the areas in superonasal and 
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inferonasal or superotemporal and inferotemporal away from macular tend to be above its 

average level.  Also, vessels are of more curved nature than the normal range. 

 

Table 10: Calculated correlation factors under statistical condition I3. 

Region 

# 

Region name Fractals Curvatures Fircations Lengths Absolute 

mean 

1 Macula -0.3372 -0.1336 -0.1921 0.0369 0.1750 

2 Optic Disc -0.231 -0.0801 -0.1787 -0.0008 0.1227 

3 Temporal -0.138 0.0865 -0.0315 -0.0629 0.0797 

4 Superior -0.3482 0.15 -0.0151 -0.0035 0.1292 

5 Inferior -0.2633 0.2819 -0.2039 -0.0646 0.2034 

6 Superonasal 0.1992 0.277 0.142 0.2651 0.2208 

7 Inferonasal 0.367 0.1627 0.1933 0.1074 0.2076 

8 Superotemporal 0.1991 0.1435 0.2604 0.235 0.2095 

9 Inferotemporal 0.2994 0.1701 0.1636 -0.113 0.1865 

Absolute mean 0.2647 0.1650 0.1534 0.0988  

 

5. Discussions 

 

Figure 36 indicates the general trend of structural changes in vessels when retina 

migrates from young to middle age and from healthy to diseased conditions by comparing 

their feature means.  Table 9 and 10 indicate the trend of structural changes in vascular 

network of GM and GY conditioning on textural migrations within macular areas.  We discuss 

the commonalities and differences in the inferred results from the two.  We take the inferred 

results of the comparison in fractal dimensions between two the population groups GM and 

GD as an example.  On Figure 36, it is inferred that fractals on different areas of normal 

middle age retina are bigger than those on diseased retinas.  On Table 10, we inferred from 

the signs of correlation coefficients that for the given GM, when its macular structure migrate 

from GM to GD, fractal dimensions of vessel structures in the macula, optic disc, superior, 

inferior and temporal areas are below their average levels (indicating the trend of decrease) 

while the rest of regions tend to be above their average levels (indicating the trend of 
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increase).  The similarities and differences of the two inferred results can be explained by the 

fact vessel structure is susceptible to varying stimulus of disease and aging conditions.  In 

correlation study, among the different factors that relate to the structural changes in vascular 

network, we pronounce and condition on the factors of migration of macular textures.  

Therefore, we find many analytical results inferred from Table 10 comply with that of Figure 

36 while some others disagree.  As such, our correlation study provides valuable insights into 

the correlation between the macular texture and vessel structure, which are not reflected in 

Figure 36. 

The derived result of our correlation analysis is based on 96 images.  The number of 

diseased retinas is relatively small due to the relatively few subjects contracted with macula 

diseases as were met in practical clinical setting.  Clearly, when the number of image 

samples increases, it will provide a study result of even more relevance, which helps clinical 

physicians and medical doctors in the interpretation and understanding the underlying 

mechanism of retina function, disease formation as well as medical record tracking.     

In summary, the proposed method provides valuable insights into the correlation 

between the macular texture and vessel structure based on image analysis on retinal images.  

The numerical index of the correlation coefficients indicates the relative importance among 

the features that characterize the pattern of local vessel morphology in response to the 

structural change in macular texture against different statistical conditions.  It contributes to 

our approach to understanding the underlying functioning and interaction of the two noted 

organelles.   
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D. Similarity-based Ranked Retrieval on Retinal Image Database 

 

In this session, we apply our analytical results to similarity-based ranked retrieval on 

retina image database and demonstrate the initial results we have made. 

Image data has different semantic meanings in different contexts.  In order to develop 

techniques of image retrieval system, it is required to understand the users’ query needs and 

how they are interfaced to the system.   Physicians mainly use image data to track, interpret 

and even predict the medical information.  Proliferation of digital image collection has 

dramatically broadened information access, which leads to more promising and fruitful 

medical findings through image comparisons, categorizations and predictive modeling.  

When the data amount is large, however, manual searching and comparison of image data is 

quite a labor intensive task.  It therefore, pushes the need of computer-aided information 

system to automate the whole process.  

With the wealth collection of digital retina images, our ranked retrieval system on retina 

image database is to bring out the top ranked retrieval results that bear the closest 

resemblance to the query data based on its medical content.  Our following discussion on the 

ranked retrieval design focuses on the two open problems.  The first is on the representation 

of retinal image content.  The second is on the evaluation of ranked retrieval outcome. 

 

1. System Architecture 

 

We first introduce the system architecture our ranked retrieval system.  Figure 37 shows 

the system architecture of our retrieval system.  The user inputs a query image on the client 

side.  On server side, the backend engine do image analysis on the query retinal image, 

extract the image features and organize them into metadata in numerical format (in XML 



116 

 

file).  It then search in the image database and return the ranked retrieval image results to the 

client side based on the similarity measures in the metadata.   

 

 

Figure 37: System architecture of ranked retrieval system on retinal images. 

 

2. Content Representation 

 

Medical information on retinal image is described by the physical property of the 

photographed retinal objects.  We could therefore extract the attributes of the detected retinal 

objects to infer its medical health.  In this dissertation, we have studied so far the attributes of 

vascular network structure and the macular texture.  Among the many factors that describe 

the retinal health, we have known that vascular network exhibits highly dynamic changes 

with respect to aging or presence of diseases.  Feature analysis of vascular structure has been 

done by extraction of morphological pattern of vessel segments.  In Figure 36, it is clearly 

shown that vessel structures of different population groups have distinct patterns of fractal 
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dimensions against different regions.  Further, regional fractals have the strongest correlation 

to the macular texture.   

In this session, we use these analytical results to develop ranked retrieval system on 

retinal image database by using the regional fractal dimension as the main feature to 

represent the image content.    We further apply the results of our correlation analysis 

between vessel structure and macular texture by assigning different weights to regional 

fractals and compare its retrieved outcomes to the original one.  Similarity metric is 

calculated by Mehalanobis distance and on the nearest neighbor approach.  In a k-ranked 

retrieval system, the ranked retrieval results are the k nearest neighbor to the query in terms 

of the calculated Mehalanobis distance. 

 

3. Evaluation Metric 

 

Evaluation of performances of information retrieval outcome is an even more open 

problem in the research community of information retrieval.  On one hand, performance 

evaluation measures the relative differences of the underlying principle of different similarity 

metrics under different conditions.  On the other hand, evaluation drives and identifies what 

needs to be retrieved.   Among the different proposed evaluation measures for ranked 

retrieval system, we used the metric of “Normalized Discounted Cumulative Gain”(NDCG) 

to evaluate our system performance [107].   

NDCG is designed for situations of non-binary notions of relevance and is used to 

evaluate over some number k of top search results.  For a set of queries Q, let C(j) be the 

relevance score assessors gave to retrieved outcome for query j.  Then, NDCG at position n is 

denoted as: 
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where ñV is a normalization factor calculated to make it so that a perfect ranking’s NDCG at 

n is 1.  The relevance score of a retrieve outcome is based on the following criteria: 

population group (1.5), diseased condition (1.5), field-type (1), field clarity (0.5) and 

illumination condition (0.5).  Scores of each criterion is shown in their following brackets. 

 

4. Experimental Results and Discussions 

 

Our ranked retrieval algorithm is tested on 20 query images on an image database of 895 

images.  Table 11 shows the average and standard deviations of NDCG scores for the top 5 

ranked retrieval results.  Initial test results show that regional fractal analysis is an important 

attribute to indicate the aging and diseased content, which is of the key concern for retina 

image retrieval.  Our test results also show that by tuning the weighting among fractals 

against different regions using the derived correlation coefficients, NDCG score will be 

slightly improved.   

 

Table 11: Performance evaluation of ranked retrieval outcome. 

NDCG 

@ n 
n=1 n=2 n=3 n=4 n=5 

fractal 

features 

0.8665±0.2669 0.7949±0.2536 0.7527±0.2303 0.7295±0.1927 0.7359±0.1631 

weighted 

fractal 

features 

0.8665±0.2669 0.8466±0.2200 0.8235±0.1825 0.7909±0.1806 0.7805±0.1693 
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In summary, our design of the ranked retrieval system is still at its initial stage.  Still, 

much can be improved in terms of both content representation and evaluation metrics.  

Current progress of our ranked retrieval system based on the analytical results on retina 

images demonstrate that it is quite promising research direction to follow in the future work.  

 

E. Summary of the Chapter 

 

In this chapter, we do quantitative analysis on the segmented objects on retinas.  Within 

the cropped macular-fovea area, we first do texture analysis and classification of macular-

fovea areas relating to different population groups.  Using entropy statistics of Gabor filter 

responses as the texture features and dimensionality reduction technique of LDA, our 

algorithm achieves classification rate of 85% using kNN classifier on the test data sets.  

Using the LDA result as the texture features of macular area, we continue to study its 

correlation to the structures of vascular network.  The vascular network exhibits dynamic 

changes in topologies due to repair and modification processes.  On the other hand, textures 

are the main changes manifested in macular areas of people in different ages and health 

groups.   Even though qualitative medical studies confirmed that degradation of the vascular 

network caused by diseases or aging lead to deteriorations of the macular functions, as of 

now, there is few known quantitative technique which can characterize the relationship 

between changes in the macular texture from that of the vascular network structure based on 

image analysis on retinal images.  We characterize the structure of vascular network by doing 

regional analysis of its morphological structures.  Our study is conducted to demonstrate the 

correlation pattern between the structural change in vascular network and the textural 

migration in macular-fovea area against different statistical conditions.  The chapter is 
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concluded by applying our analytical results to the design of a ranked retrieval system on 

retina image database.  Initial results in its increased performances in NDCG metric on our 

ranked retrieval algorithms have demonstrated the effectiveness of our method.  
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 CHAPTER VI 

 CONCLUSION 

In this work, I investigate and develop an overarching analytical framework to support 

computer-aided analysis of retinal images.  Experimental results show that our scheme can be 

used to construct   robust, accurate low level image analysis functions, which would require 

little, if any, parameter calibration to achieve optimal performance.  These low level 

functions form the foundation for high level statistical analysis techniques of high level 

system dynamics.   

Being able to automate the entire modeling process is important to deal with various imaging 

conditions, such as illumination setting, disease conditions and incomplete field of view, 

which occur in real world operations routinely.  Different from most traditional modeling 

techniques, our work is derived from a well established yet largely ignored anatomic 

property:  the generation levels of a vascular network.  Medical study has proved that a blood 

vascular network is consisted of different generation levels based on their width, length and 

locations.   

Two novel feature descriptors Sp and Ep of the radial contrast transform (RCT) of   

image pixels effectively capture patterns of the physical property of vessel generations in the 

feature space.  As a result, we can fit the histogram plot of the Sp descriptor for vessel pixels 

to a lognormal distribution curve, due to the fixed ratios of vessels pixels among different 

generation levels.   The model is effectively used to study the relationship of segmentation 

sensitivity among different human-labeled vessel maps, and the relationship of vessel pixels 

and its corresponding boundary pixels.  It provides an important statistical tool for the 

tradeoff analysis between sensitivity and specificity of vessel detection on retinal images. 
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Based on the modeling technique, we develop a self-adapted retina blood vessel 

detection algorithm by using an edge detector as a probing tool to acquire vessel statistics.  

Different from conventional vessel detection algorithms, we develop our mapping process 

into different stages.  By sliding the threshold value of Sp from small to large, the resulted 

vessel maps presents a growth pattern from “ridge to boundary” and “large to small” process.  

It can thus serve the purpose of vessel study at different segmentation sensitivity needs.  We 

continue to take the vessel topology analysis for the localization of two landmark retina 

feature objects of macula-fovea (M-F) and optic disc (OD) area.  M-F is an important area on 

retina, which is responsible for sharp vision of human eyes and OD is the place where major 

retina blood vessels emerge.  Accurate segmentation of these two areas is thus important for 

automated retina health evaluation and image registrations.  In practice, image factors in 

illumination settings, health conditions and field clarities, etc., make their detection algorithm 

design a difficult problem.  Our method uses their fixed relations in location to vessel 

topology as the main image cue.  Regardless of the severity in retinal diseases, the high level 

topology of vascular network remains highly predictable.  Both our detection algorithms for 

M-F and OD are tested on the benchmark retinal image databases STARE and DRIVE as 

well as the data collections from field clinics in our database.  Our M-F localization 

algorithm achieves 93.4% on STARE, 100% on DRIVE, and 95.75% on our database.  Our 

OD segmentation algorithm achieves 93.83% on STARE, 100% on DRIVE and 92% on our 

database.  Both their performances are comparable or better than the state-of-art algorithms 

in the field of study. 

Based on the low level analysis results, we conclude our discussion by developing high 

level applications on retinal images by doing quantitative analysis on the detected landmark 
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retina objects.  We first show that people belonging to different population groups in their 

ages and retinal health conditions are associated with different appearances within and 

around their macula-fovea areas.  By doing entropy statistics from the Gabor responses of 

automatically extracted macula areas, their textures can be well separated and classified on 

the resulted feature space based on LDA dimensionality reduction technique.  Medical study 

has demonstrated the tight relationship of the M-F and retina blood vessels at the cellular 

level.  Any (non-macular) disease that affects the performance of the vascular network will 

affect the functionality of the macular subsystem.  On the other hand, when the macular 

subsystem is sick, it may also signal the blood vessel network to change its structure as a part 

of the biological feedback loop.  Even though several clinical studies did confirm the 

existence such relationships, as of now there is few study which can quantify the nature of 

these relationships based on automated retinal image analysis.  To investigate this interesting 

problem, we continue to use LDA as the numerical feature values to represent the texture of 

macula-fovea area and develop an analytical method to quantify the correlation between the 

texture of the macula-fovea area and the structures of vascular network.  We extract local 

features of furcation point count, lengths, curvatures, and fractal dimensions to characterize 

the morphological pattern of vessel structure.  The correlation analysis between the two is 

performed based on a standard univariate correlation technique.  Under different defined 

statistical conditions, we can thus identify where and how change of local vascular 

morphology is correlated to the change in macula-fovea texture.  The analytical result 

contributes to our knowledge of the underlying interaction between the two organelles.  

Finally, we apply our analytical results to the design of an algorithm for the similarity-based 

ranked retrieval of retinal images on retina image library.  Initial results of our ranked 
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retrieval system have demonstrated its effectiveness in design of image retrieval system on 

retinas.  The proposed approach, though tested only on retinal images, can be extended to 

other applications. 

Experimental results show that the proposed analytical framework can serve as the basis 

for automated computer-aided analysis of retinal images acquired using a C# based camera 

control tool.  It has been used for field test based on retinal images acquired from clinics. The 

proposed modeling technique sets a concrete foundation for development of practical 

management and analysis tools of retina images. 
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