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ABSTRACT 

 

 

Assessment of U.S. Agriculture Sector and Human Vulnerability to a Rift Valley Fever 

Outbreak. (May 2011) 

Randi Catherine Hughes, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Bruce A. McCarl 

  

 

 Foreign animal disease outbreaks can cause substantial economic losses. Policy 

makers need information on both the vulnerability of the food supply to disease 

epidemics and the impacts of alternative protection actions. This research focused on the 

assessment of the U.S. agricultural sector and human vulnerability to a Rift Valley Fever 

(RVF) outbreak and the value of a select set of alternative disease control strategies. 

RVF is a vector-borne, zoonotic disease that affects both livestock and humans; thus 

both animal and human consequences of an outbreak were examined.  

 This research was conducted in two parts. Livestock impact assessment used an 

integrated epidemic/economic model to examine the extent of RVF spread in the animal 

population and its consequences plus the outcome of implementing two different control 

strategies: emergency vaccination and larvicide vector control. The number of infected, 

aborted, and dead animals is best controlled by coupling vaccination along with 

larvicide, but results in the second highest median national welfare loss. Therefore, 

careful decisions must be made as to what actions should be taken.  

 Total national producer welfare is reduced with each scenario, and is more severe 

than the total national welfare loss (producer, consumer, and processor together). 

Consumer welfare is increased with each scenario due to a drop in prices of some 

commodities, and in some instances, an increase in supply as well. The majority of the 



iv 
 

national welfare loss can be attributed to the producers' and processors' loss in welfare. 

The highest damages are seen in the regions of the outbreak such as the South Central 

(SC). Other regions such as the Corn Belt, Lake States, and South East regions also see 

high damages due to price changes. The outbreak did not have substantial price effect on 

dairy products, but did have noticeable price changes for live cattle such as heifer calves, 

stocked yearling, and dairy calves. Prices for substitutes such as pork, chicken, and 

turkey experienced a price reduction, which can also be a factor resulting in consumer 

welfare gains.  

 Human impact assessment utilized an inferential procedure for estimating the 

human consequences which comprise of a cost of illness calculation to assess the dollar 

cost of human illnesses and deaths, as well as a Disability Adjusted Life Year calculation 

to give an estimate of the burden of disease on public health as a whole. With potential 

costs above $2 billion for human illness, and with this number not accounting for loss or 

damages to other sectors of the economy, it can be highly probable that investing in a 

human vaccination campaign can be cost-effective and possibly cost-reducing.  

 This cost along with the economic loss of the agriculture sector suggests 

substantial potential losses to the U.S. if this hypothetical situation were to become 

reality. Combining total loss estimates from the cost of illness and ASM models, 

potential damage of a RVF outbreak could range from 121 million to 2.3 billion US 

2010$. The results of this study show the economic damages of an outbreak in the 

livestock population being much greater relative to the outbreak in the human population 

(roughly 16 times greater). It should be pointed out that both cost estimates are most 

likely under estimated. The animal outbreak is not incorporating all susceptible livestock 

(e.g. hogs and goats), and the human illness is not incorporating other damages to 

society (e.g. damages due to loss of tourism). By providing estimates on the potential 

economic outcomes, policy makers can better choose where, when, and how to invest 

their resources. 
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1. INTRODUCTION 

 Animal disease outbreaks can cause substantial economic losses to the 

agricultural sectors (as reviewed in Elbakidze et al. (2009), Hagerman (2009), and 

Junker et al. (2008)).  Outbreaks can come about as a result of intentional or 

unintentional behavior, and may disrupt agricultural commodity and related markets. If 

the disease is a zoonotic disease, infection can spread from animals to humans and vice 

versa and additional consequences arise for human health and health care expenditures. 

Although the U.S. has had less severe animal disease outbreaks than those occurring in 

many other countries, this does not necessarily mean that the U.S. food supply chain is 

safe from disease related threats. Therefore, assessments of disease outbreak impacts and 

control methods are potentially valuable in support of policy decision making regarding 

protection from and management of disease-related incidents.  

 This research focuses on the assessment of the U.S. agricultural sector and 

human vulnerability to a Rift Valley Fever (RVF) outbreak plus the value of alternative 

disease control strategies. Since RVF is a zoonotic disease, human susceptibility to 

infection, which may result in hemorrhagic fever among other illnesses (CDC 2010), as 

well as livestock susceptibility must be assessed. Thus, this research will examine not 

only the consequences felt through livestock losses and other livestock related effects, 

but also the human consequences. This research will proceed in two parts:  

1. An integrated epidemic/economic model will be used to examine the outcome of 

implementing different control strategies in Southeast Texas. Specifically, this 

study will look at vaccination and larvicide for disease intervention, used both 

independently and jointly. 

 

 

 
 
_________________ 
This dissertation follows the style of the Journal of Agricultural and Applied Economics. 
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2. An inferential procedure will be used to estimate human consequences.  This will 

consist of a cost of illness calculation assessing the dollar cost of human illnesses 

and deaths as well as a Disability Adjusted Life Year (DALY) calculation to 

estimate overall public health cost. Information from another vector-borne  

disease, West Nile Virus (WNV) will be used to infer the extent of RVF spread 

in the human population.  

 The study will yield information on base human and livestock vulnerability to 

RVF as well as, on the livestock side, the potential benefits of disease impact mitigation 

activities. This information will hopefully aid policy makers in evaluating control 

strategy decisions and recommending response actions regarding potential RVF 

outbreaks.  

 

1.1 Objective 

 Little is known about the livestock and human vulnerability to RVF in the US. 

The objective of this study is to develop information on the potential livestock and 

human vulnerability to RVF by assessing economic consequences. In addition, the 

economic implications of using a number of control strategies for RVF are examined. 

The results will provide information in support of policy decisions addressing the 

prevention or response to a RVF epidemic.  

 The study employs a two part procedure. The first part is an epidemic-economic 

analysis of RVF's consequences on the US livestock industry. A fundamental question 

for RVF or any other animal disease is what actions, ex-ante or ex-post, can be taken to 

reduce vulnerability/risk to or damages from disease? Assessment of livestock industry 

vulnerability and the implications of select outbreak control strategies in potential 

reducing vulnerability is vital in consideration of that question (see the discussion in 

Elbakidze et al. 2009). Vulnerability is measured by the difference from a baseline of no 

disease compared to epidemic outcomes with no extraordinary intervention (allowing the 
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disease to run its course). Alternatively, control strategies such as vaccination or vector 

control can be used to reduce the consequences of the outbreak compared to when such 

measures are not undertaken. Specifically, this study analyzes the impact of using a 

vaccination campaign, and pursuing vector (mosquito) control using larvicides, as well 

as using vaccination and larvicide together.  

 The second part of the study will assess human vulnerability to RVF in terms of 

human illness and mortality. This will be done by estimating potential economic losses 

associated with human illnesses and deaths as the disease is first introduced into the 

human population, and as the disease spreads throughout the nation's population. 

Hopefully, the results of this research will aid in policy decisions regarding national 

security.  

 

1.2 Motivation 

 A 2008 Institute of Medicine (IOM) and National Research Council (NRC) 

workshop report makes the case for increasing foreign animal and zoonotic disease risk 

arising in today’s world. The report shows us how several factors influence vulnerability 

to a foreign animal or zoonotic disease outbreak such as:  

 population growth 

 changing patterns of human–animal contact 

 increased demand for animal protein 

 increased wealth and mobility 

 environmental changes 

 human encroachment on farm land and previously undisturbed wildlife habitat  

 All of the above factors are interrelated and have implications for US 

vulnerability to disease outbreaks.  
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1.2.1 Population Growth 

 Population growth has created, and will continue to create, significant struggles 

in sustaining the world food supply. The world human population was less than 3.5 

billion in 1950 and reached approximately 6.5 billion in 2005; it is projected to pass 11 

billion by 2100.  Population growth is accompanied by an increase in demand for food; 

in particular, as developing nations gain wealth and participate in international trade, 

demand for animal protein and products increases. Figure 1 shows the increase in meat 

consumption in the developed and developing parts of the world since 1983. This 

increase in demand is projected to double by 2020, which will also increase the risk 

regarding global health (IOM and NRC 2008).  

 

 
Figure 1. World Meat Consumption Projections from 1983-2017 Adapted from 

IOM and NRC 2008 
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1.2.2 Human-Animal Contact and Changing Demands 

 To satisfy an increase in demand, production must also increase. Global meat 

production has nearly tripled since 1960 and is expected to keep growing (Speedy, 

2003). Production practices have aimed at gaining efficiency in livestock production to 

satisfy this demand. How this efficiency gain is realized varies by country and by the 

species of livestock produced. Historically in developed countries such as the U.S., this 

increase in production has been accomplished by increases in producing and finishing 

animals in concentrated animal production (or feeding) operations, often referred to as 

CAFOs.  This is particularly true of poultry and swine production. Although cattle are 

not as intensely produced, there has been an increase in the number of both beef and 

dairy cattle in CAFO operations, especially dairy. Since the late 1980s, there has been a 

tripling of dairy cows in CAFOs (Keeney 2010). These operations tend to use selective 

breeding which produces more homogeneity in animal products and carcass size. The 

characteristics of these concentrated animal production operations along with the 

decrease in genetic variability contribute to an increase in vulnerability to disease. As 

Gilchrist et al. (2007) state, 

The industrialization of livestock production and the widespread use of 

non-therapeutic antimicrobial growth promotants have intensified the risk 

for the emergence of new, more virulent, or more resistant 

microorganisms. These have reduced the effectiveness of several classes 

of antibiotics for treating infections in humans and livestock. Recent 

outbreaks of virulent strains of influenza have arisen from swine and 

poultry raised in close proximity. 

 Also, there are over 800 million livestock owners around the world who depend 

on their livestock for their living. In lesser developed countries such as Asia and Africa; 

these are typically resource scarce farmers who have little money and/or land which 

results in raising an increased number of livestock on constrained land, while at the same 
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time not having the resources to vaccinate or protect the livestock from disease (IOM 

and NRC 2008).  

 

1.2.3 Increase in Wealth and Mobility 

 Furthermore, an increase in population along with an increase in technology has 

led to increased travel and trade, which have a strong influence on disease incidence 

(Cossar 2006). This increase in mobility means animals and pathogens can travel faster 

and further than before. As the IOM and NRC report states, one billion persons cross 

international borders every year (25 persons per second), some of who may be 

transporting goods such as meat and other foods. In addition, the largest portion of 

population growth is taking place in the least developed countries where a larger portion 

of the population live in poverty, a higher population density occurs and contact with 

domestic and wild animals is high compared to developed countries. This creates a 

prime condition for the transmission and emergence of zoonotic disease. People 

travelling from developed countries such as the U.S. to developing countries create risk 

of bringing the disease to their home country, or spreading the disease to their next travel 

destination. A prime example of this is the H1N1 (swine flu) pandemic of 2009, which 

originated in Mexico and had infected people in over 60 countries by 2010 (WHO 2010). 

Figure 2 is a graphical representation of the number of passengers who arrived to cities 

flying from Mexico between March 1 and April 20, 2009 (NEJM 2009). 
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Figure 2. Graphical Representation of Flights from Mexico to the Corresponding Cities 

between March 1 and April 20, 2009. Source (NEJM 2009) 

 

1.2.4 Environmental Factors and Human Encroachment 

 Increase in demand and use for natural resources has led to great environmental 

changes. These include changes in weather and humidity patterns, and increases in 

drought and desertification.  In turn, these have created changes in the geographical 

ranges of pathogens and other species. These changes also affect the prevalence, 

competency, distribution, and movements of human and animal pathogens and 

associated vectors. Also, this increase in demand for natural resources has led humans 

and animals to encroach on wild lands and new environments exposing them to new 

pathogens (IOM and NRC 2008). 
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2. RVF: BACKGROUND 

2.1 Basics of the Disease  

 Rift Valley Fever is a vector-borne zoonotic disease caused by the Rift Valley 

Fever virus, a member of the genus Phlebovirus (Family Bunyaviridae). The disease was 

first identified in the Rift Valley of Kenya in 1931. It is currently confined to the African 

continent and the Arabian Peninsula. RVF mainly affects humans, sheep, cattle and 

goats, although other domestic and wild ruminants can also be infected. In infected 

livestock, the main symptoms are abortion of pregnant females and mortality in young 

animals. The two main vectors that carry RVF are the mosquitoes in the genus Aedes 

and Culex, although other genera of mosquito as well as biting insects can act as 

transmitters of the disease (Martin et al. 2008). 

 Outbreaks of RVF in Africa are strongly correlated with heavy rain fall. This is 

most likely related to the fact that the disease is vertically transmitted in the Aedes 

mosquito. Vertical transmission occurs when the female mosquito has the ability to pass 

the virus along through her eggs. The Aedes mosquitoes are often referred to as 

“Floodwater” mosquitoes, they have drought resistant eggs which may survive several 

years without hatching and require one or more floodings to trigger their further 

development (Peters and Linthicum 1994).    

 This vertical transmission may also be an indicator as to why the virus has 

become endemic in many countries, and a strong reason to believe that an outbreak in a 

disease-free country may result in a high probability of the disease becoming endemic. 

For this reason, as well as many others, RVF is viewed as a major threat to the United 

States.  

 West Nile Virus (WNV) is also a mosquito-borne virus. WNV did not reach the 

U.S. until 1999, and since then there have been 29,569 human cases and 1,159 human 

fatalities (CDC 2010). RVF is deadlier to humans than the WNV. Hence, the potential 

socio-economic impact of RVF in the U.S. could be detrimental. As the WHO states, 
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“the vast majority of [RVF] human infections result from direct or indirect contact with 

the blood or organs of infected animals. The virus can be transmitted to humans through 

the handling of animal tissue during slaughtering or butchering, assisting with animal 

births, conducting veterinary procedures, or from the disposal of infected carcasses or 

aborted foetuses. Certain occupational groups such as herders, farmers, slaughterhouse 

workers and veterinarians are therefore at higher risk of infection. There is some 

evidence that humans may also become infected with RVF by ingesting the 

unpasteurized or uncooked milk of infected animals. Human infections have also 

resulted from the bites of infected mosquitoes and biting flies. Those infected either 

experience no detectable symptoms or develop a mild form of the disease characterized 

by a feverish syndrome with sudden onset of flu-like fever, muscle pain, joint pain and 

headache. While most cases are relatively mild, a small percentage (less than 1%) 

develops a much more severe form of the disease such as ocular disease, 

meningoencephalitis or haemorrhagic fever” (WHO 2010).  

 RVF could be introduced to regions where it is not currently present by 

movement of infected vectors or through importation of infected domestic or wild 

ruminants, although this could only happen if importation took place within the short 

incubation period for the disease. Adoption of the recommended guidelines of the OIE 

International Animal Health Code for such importations would prevent this. Another 

possible mechanism is to transport RVF-infected mosquitoes or people through 

international flights. They can be moved from RVF endemic countries within a matter of 

hours (UNFAO 2003).  

 

2.2 Disease Control Strategies for Livestock 

 For the reasons previously stated, RVF is a serious threat to the US, and 

therefore, alternative disease management strategies in livestock need to be valued. 

Governments and international organizations such as the FAO have RVF contingency 

plans (UNFAO Animal Health Manual, No. 15 and Rift Valley Fever Contingency Plan 
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for the Netherlands, 2003). Although the U.S. has no specific RVF contingency plan, 

there are guidelines for emergency management of mosquito-borne disease outbreaks 

(ASTHO 2008). The following section will discuss alternative disease management 

strategies suggested by the FAO and found in UNFAO Animal Health Manual, No. 15 

and UNFAO Animal Health Manual, No. 17 (2003). 

 

2.2.1 Vaccination for Livestock 

 The FAO states that preventive vaccination is the most effective means to control 

RVF. Currently there are two vaccines available for veterinary use, the live Smithburn 

vaccine and the inactivated vaccine. The live vaccine is highly immunogenic1 and 

relatively inexpensive to produce, but has the drawbacks that it may cause pregnant 

females to abort or cause fetal abnormalities.  Successive vaccinations may be needed 

every 3-5 years. Since this vaccine may cause pregnant females to abort, a value 

judgement would have to be made whether to include pregnant females even though 

some abortions and fetal abnormalities may occur.   

 The inactivated vaccine is quite safe for all animals, but has shown signs of being 

poorly immunogenic. It is recommended that after the first dose is given, a booster dose 

would be needed three to four months later, followed by an annual vaccine thereafter. 

Not only is the inactivated vaccine not as successful at producing the needed immunity 

in the animals as the live vaccine, it is also fairly expensive to produce (UNFAO Animal 

Health Manual, No. 15, 2003).  

 Currently efforts are underway to produce new and improved RVF vaccines, 

both for humans and animals. Some of these vaccines would contain “markers”, which 

make it possible to know through testing whether the animal has antibodies to a vaccine 

or 'wild-type' strain (UNFAO Animal Health Manual, No. 17). Hagerman (2009) in her 

study of Foot and Mouth disease (FMD) showed how the vaccines with bio-markers may 

                                                 
1 Having the ability to elicit a response in the immune system. 
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reduce welfare slaughter due to the fact that if vaccinated animals were distinguishable 

from unvaccinated animals, the value of bringing feed into a quarantined zone at a 

higher cost may beneficial. The rationale for this is the possibility of encountering higher 

costs from an increased number of slaughtered animals and disposal if feed were not 

able to be brought in. The same may be true for Rift Valley Fever. However, vaccination 

in outbreak areas is not recommended at this time, when there is evidence of high levels 

of RVF transmission by mosquitoes. Apart from vaccinating too late when the animals 

may already be infectious, needle propagation of the virus is a real danger. (UNFAO 

Animal Health Manual, No. 17 and UNFAO Animal Health Manual, No. 15). 

 

2.2.2 Vector Control  

 Both FAO Health Manual No. 15 and No. 17 state that, at present, the options for 

vector control of RVF are limited. The best vector control strategy is larvicide treatment 

of potential mosquito breeding sites, however this process is still at the experimental 

stage. The most practical way of application is through burying larvicides in the mud of 

pans before flooding occurs2. Toxins derived from the bacterias Bacillus thurigiensis and 

sphericus as well as larval growth inhibitors, such as Methoprene, have been used 

experimentally and given excellent results. Methoprene is not as widely used as it once 

was, and presently Altocide is being used in replacement of Methoprene. Larvicide 

treatment is applicable where well-defined, discrete areas are expected to flood and 

where the likely floodwater area can be estimated (UNFAO 2003). 

 Mass insecticide spraying to control adults may be impractical and too costly, as 

well as environmentally unacceptable. Experts in Africa claim that this approach has not 

proven to be effective in controlling RVF outbreaks (OIE Regional Seminar Report, 

2009). Also, when compared with larvicides, insecticides tend to be roughly ten times as 

expensive.  

                                                 
2 Pan is a term used in Africa to refer to dry lake beds.  



12 
 

 One vector control strategy that has proven to be quite effective are "pour-ons". 

These are insect repellents that usually come in the form of a liquid, which is then 

applied directly to the animal. These can range in prices, but the low cost pour-ons have 

given favourable outcomes, showing this to be a cost-effective approach to preventing 

the spread of the disease.  One downside to pour-on is the need for regular reapplication, 

which may or may not be practical depending on the production practices of the 

specified region. Other vector control strategies stated by the FAO include controlled 

burning and smoke (OIE Regional Seminar Report 2009). 

 

2.2.3 Livestock Movement Control    

 Livestock movement control is another disease management strategy for RVF 

recommended by the FAO. It would restrict livestock movement into/out of the high-risk 

epizootic areas during periods of greatest virus activity, but might allow movement to an 

area where no potential vector species exists, such as high altitudes.  

 

2.2.4 Sentinel Herd Monitoring 

 UNFAO Animal Health Manual, No. 17 states that sentinel herds are small herds 

located in high risk areas, such as near rivers, swamps, or damns when referring to RVF. 

Monitoring of these herds has been used in different parts of Africa as a disease control 

strategy to monitor viral circulation in susceptible populations. This strategy could be 

enhanced by the additional monitoring of climatic parameters and utilization of an early 

warning system (see section 2.2.5). When using this approach, no preventative measures 

should be taken among sentinel animals as this could affect the exposure of the animals 

to potential vectors. The manual also notes that in some cases, incentives can be put in 

place to encourage participation. An example is free anti-parasite drugs for human use.  
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2.2.5 Early Warning Systems 

 As stated by the WHO (2010) and as discussed in the section 2.2.4, early warning 

systems are comprised of timely surveillance systems that collect information and data 

on environmental and other conditions related to diseases associated with forecasts that 

conditions are favourable that they may become epidemic in order to trigger prompt 

public health interventions. According to the UNFAO (2003), taking advantage of early 

warning systems might be the most accurate and least costly mechanism to controlling 

RVF. Currently there are models that have proven to be effective in practice at 

predicting RVF virus activity up to five months in advance (Anyamba et al. 2009). 

These models usually combine remote sensing satellite data (RSSD) with surface sea 

temperatures (SST) and are readily available on a country and regional basis. Utilizing 

these systems would allow for ample time for preventative measure to take place in 

anticipation of an outbreak, such as preventative vaccination and mosquito larval 

control.  

 

2.2.6 Veterinary Certificates 

 Veterinary certificates are a control strategy option for countries who import 

from regions where the disease is present3, aiding to the regionalization4 concept. 

Importing countries should require the presentation of these health certificates from the 

exporting country. Currently, the OIE is working on improving the quality of national 

veterinary services so that these certificates may become more reliable. Not all importing 

countries trust the certificates, perhaps because they are issued exclusively by veterinary 

services and under full responsibility of the exporting countries government. These 

certificates may also stand to benefit the exporting countries during times of disease 

                                                 
3  Veterinary certificates are certificates issued by a veterinarian relating to matters within the scope of 
veterinary medicine. These certificates are usually of soundness, freedom of products from diseased tissue, 
vaccination or surgical alteration. 
4 Regionalization allows consideration for importation of animals and animal products from specific areas 
or zones with in a country.  



14 
 

outbreak if the importing country recognizes and allows importation of animals with the 

presentation of the certificate (OIE Regional Seminar Report 2009). 

 

2.3 A Brief Review of Relevant Disease Analyses  

 Here I review the literature regarding economic and select epidemic studies of 

RVF as well as other diseases. Although not much economic work has been published 

on RVF, there have been a few studies which look at the economic impact of a RVF 

outbreak. Studies on other diseases, such as FMD and WNV allow us to explore 

different techniques and methods to quantify the economic damages related to such 

outbreaks.  

 

2.4 RVF Related Studies 

 While the literature on the economic impact of RVF is limited, there have been a 

few studies on the economic effects of RVF outbreaks in parts of Africa and the Arabian 

Peninsula. USAID conducted a study in which they examined the economic implications 

of the ban on livestock imports from Somaliland imposed in mid-September 2000 by the 

Kingdom of Saudi Arabia (KSA) and other states in the Arabian Peninsula. Their study 

found that Somaliland’s traditional dependency on a single-sector and market has proven 

to have many adverse effects. Prior to the import ban, Somaliland’s exported about 2.8 

million head of livestock valued at $120 million. After the export ban (between 

September 2000 and November 2002) less than 0.5 million head were exported. The 

Somaliland shilling experienced a dramatic depreciation and local currency of imported 

commodities inflated. Decline in livestock prices and closing of markets was another 

outcome of the ban which resulted in millions of dollars in lost income (Holleman 2002).   

 The International Livestock Research Institute (ILRI) evaluated the costs of the 

1998 and 2000 export ban by Saudi Arabia and other Gulf countries on livestock 
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products from Ethiopia. Evaluation of a proposed program of live animal certification 

from a RVF non-free zone is also conducted using benefit-cost analysis. Results of the 

study find that the export ban had substantial damages to the Somali region of Ethiopia, 

with GDP being reduced by $91 million (roughly a 25% reduction in comparison to a 

normal year). In the short-run, the ban caused a sharp reduction of livestock prices, 

deteriorating pastoralist's input/output price ratio. The total loss in value added in the 

region was $132 million, or 42% of total value added produces in a normal year. Results 

also indicate that implementation of animal health programs is feasible and justifiable in 

the region, with an increase in taxes on livestock sales offering the best way to 

implement the health certification plan given that it has the proper redistribution effects.  

 Further ILRI studies were conducted on the 2006/2007 RVF outbreak in the 

Greater Horn of Africa specifically in Tanzania and Kenya. These studies attempted to 

assess the market and economic impacts of the outbreak and subsequent control 

measures on the livestock value chain, the local and national response capacity, costs 

and socio-economic impact in livestock, public health and private sectors (ILRI 2008). 

The study estimated that total loss of value due to death of animals was estimated to be 

kSh 45,566,030 in Garissa and KSh 154,918,459 in Ijala district (565,019 and 1.9 

million US$ respectively) . Total domestic supply falls by 0.09% or Ksh 2.1 billion (26 

million US$), with the bulk of the impacts felt in the livestock sector in terms of highest 

percentage change. The value of other crops fell by over 0.5%, possibly due to a lower 

demand for feed crops. Shocks to the tourism sector were relatively small on a 

percentage basis (less than 0.1%) but Ksh 28 million (347,200 US$) in absolute value 

terms. Value of poultry rose by 5%. Slaughterhouses and butchers value loss was 

estimated to be KSh 1,440,000 and 125,000 respectively (17,856 and 1,550 US$). The 

study also notes that the outbreak resulted in an increase in public awareness about the 

disease due to the extensive media campaigns put forth by the government, development 

agencies, and the media. 

 The potential for vectors of RVF in other areas of the world have been examined. 

Two such studies are those conducted by Turell et.al (2008) and Moutailer et. al. (2008) 
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The Turell et.al (2008) study observes the potential for North American mosquitoes to 

transmit RVF while the Moutailer et. al. (2008) focuses on the potential for mosquitoes 

collected in southern France and Tunisia to transmit RVF in the Mediterranean region. 

Both studies found that the vectors studied could transmit the virus.      

 The fate of mosquito borne diseases often comes into question when considering 

climate change. Many have speculated that higher global temperatures will enhance their 

transmission rates and extend their geographic ranges (Bourgarel et al. 2010). Reiter 

(2001) found, through studying the history of three such diseases; malaria, yellow fever, 

and dengue, that climate has rarely been the principal determinant of their prevalence or 

range. Rather, human activities and their impact on local ecology have been more 

significant factors.  

 

2.4.1 Studies on Other Diseases 

 Although the literature on the economics of disease outbreaks is expanding, these 

studies tend to focus on diseases other than RVF, such as Bovine Spongiform 

Encephalopathy (BSE also known as Mad Cow disease) or Foot-and-Mouth disease 

(FMD). Review of these studies is used to help understand the mathematical procedures 

and economic approaches that have been used to model animal disease outbreaks and 

alternative disease management strategies. However, each animal disease is unique from 

the other; therefore, the epidemiological processes and models may be quite different. 

This section will cover a brief review of such studies, for a more general review, see Jin 

et al. (2009) and Hagerman et al. (2009). 

 Hagerman et al. (2009) conducted a study in which they simulated an FMD 

outbreak in the California dairy industry using the Davis Animal Disease Simulation 

model and the Agricultural Sector Model (ASM).  A number of management alternatives 

were simulated and analyzed such as: early detection, late detection, vaccination, no 

vaccination, and welfare slaughter. The results found that early detection was always 

preferred to late detection, with early detection at 7 days showing median losses of $2.3 
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billion and late detection at 22 days showing median losses of $68.9 billion. Vaccination 

was shown to reduce the median number of animals slaughtered and put under 

movement restrictions; however, it also caused an increase in median losses to producers 

in the infected region. The study found that producers in some other, non-infected 

regions experienced gains as a result of national price changes. 

 Another study by Elbakidze et al. (2009) simulated an FMD outbreak in the 

Texas High Plains using the same method of integrated epidemic-economic modeling, 

but a different epidemic model. The AusSpread epidemic model was used along with the 

same ASM used in the California study, but did not include an international trade ban. 

Similar disease management strategies were simulated and analyzed as in the California 

FMD simulations. The study found on average, an outbreak might cost $500 million 

without trade losses. Early detection was most effective at reducing the length of the 

epidemic and number of heads slaughtered, but results in higher national welfare loss. 

The study found that enhanced surveillance may reduce the length of an epidemic and 

national welfare losses. Vaccination was shown to not be a cost effective mitigation 

option when trying to lower average cost, but may reduce risk of extreme outcomes.  

 The OECD conducted a study on the impacts of animal disease outbreaks. The 

objective of their study was to quantify costs related to trade bans on the beef and pork 

markets. Outbreaks were simulated for the United States, Canada, and the Netherlands. 

No epidemic model was used in the study and both the length and the duration of the 

waiting period (period between last outbreak and reclamation of disease free status) was 

based on historical evidence. Four disease management scenarios were examined: 

stamping out, vaccination to live, stamping out with regionalization, vaccination to live 

with regionalization. The duration of the epidemic was assumed to be 2 months, while 

the waiting periods were assumed to be 4.5 months and 7.5 months with stamping out 

and vaccination to live, respectively. Control strategies were assumed to not affect the 

duration of the epidemic and no assumptions were made on losses in production as a 

consequence of the disease itself or veterinary intervention. All quantities that would be 

exported under normal conditions were assumed to be diverted to the domestic market.  
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 This OECD study used the Aglink-Cosimo model, an agricultural sector model 

which combines a partial equilibrium economic model of developed countries and a 

partial equilibrium model of developing countries. Aglink is a partial equilibrium sector 

model developed by the OECD which represents OECD countries (developed countries). 

The Cosimo model is also a partial equilibrium sector model developed by the FAO 

which represents a number of developing countries. A Global Trade Analysis Project 

(GTAP) general equilibrium model was also used to analyze global economic 

implications.  

 The quantities affected were calculated using the following equation: 

q1  =  q0 (1 – t*r*µ) 

 Here, q1 represents the quantity of exports in the year of the outbreak, q0 

represents the initial quantity of exports, t is the time declared as infected expressed in 

percent of the year, r is equal to the share of the infected region in national meat exports 

and µ represents the share of the affected commodity in GTAP, which is equal to 1 in all 

Aglink-Cosimo simulations. Annual data is used to translate the trade ban into shares of 

one year, assuming trade flows are equally distributed over the year.  

 They chose the outbreak to occur in the state of Iowa under the rationale that in 

the year of their data, Iowa was the state with the largest share in export value of live 

animals and meat. The results indicate that no matter which strategy was chosen, the 

impacts on the pork market were always greater. This can be rationalized by the fact that 

pork has a greater export share than that of beef in the U.S. The vaccination to live 

strategy resulted in the highest amount of loss, which can be related to the assumption 

that the trade ban under this alternative is three months longer. The stamping out with 

regionalization resulted in the lowest loss. This can be explained by the assumption that 

under the regionalization strategies, the infected zone was assumed to be only that of 

Iowa with the rest of the U.S. declared free from FMD along with the assumption that 

trading partners accept the regionalization. This would imply that only 4% of beef 

exports and 28% of pork exports would be affected by the ban (OECD 2009). 
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2.5 Incorporating Human Damages 

 When estimating a country’s human vulnerabilities to an epizootic disease 

outbreak, several items must be taken into account. Since RVF can infect humans, the 

economic consequences of the outbreak should reflect this. This could be done using one 

of the following methods: 

 Cost of Illness (COI) 

 Willingness-to-pay (WTP) 

 Human Capital (HK) 

 Daily Average Life Year (DALY) 

 The COI approach attempts to measure the sum of medical expenses, forgone 

earnings of affected individuals, and productivity losses to employers of affected 

individuals on paid sick leave. In an August 1996 report, the U.S. Department of 

Agriculture estimated the medical costs and productivity losses of six bacterial 

foodborne diseases using the COI approach. They estimated the annual cost-of-illness 

for these six foodborne illnesses at $2.9 billion to $6.7 billion.  

 The WTP method aims to estimate the value that individuals place on reductions 

in risk to identify the value to society of publicly provided risk reduction. As Viscuci 

(1993) demonstrates, one dominant approach to obtain estimates of this risk-dollar 

tradeoff is by using a hedonic wage equation with labor market data on worker wages for 

risky jobs to infer attitudes toward risk. This wage premium is the result of the 

interaction of labor demand by firms and labor supply decisions by workers.  Providing 

greater workplace safety is costly to the firm; therefore, to maintain the same level of 

profits along some isoprofit curve, the firm must pay a lower wage rate to offset the cost 

of providing a safer work environment. The econometric task of the hedonic wage 

equation is to estimate the locus of these wage-risk tradeoffs for the entire market.  

 In the standard HK approach, it is assumed that the value to society of an 

individual’s life is measured by future production potential, usually calculated as the 
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present discounted value of expected labor earnings. Landefeld and Seskin (1982) 

provide an adjusted WTP/HK approach in which they produce adjusted HK estimates 

based on a WTP criterion. With this adjusted WTP/HK method, they find the value for 

males aged 40-44 to be $660,193 and females aged 40-44 to be $414,562.  

 Taken from the definition given by the WHO, Daily Adjusted Life Years 

(DALY) is a summary measure of population health to express epidemiological burden 

of diseases. One DALY can be thought of as one lost year of “healthy” life. The sum of 

these DALYs across the population, or the burden of disease, can be thought of as a 

measurement of the gap between current health status and an ideal health situation where 

the entire population lives to an advanced age, free of disease and disability. DALYs for 

disease or health condition are calculated as the sum of the Years of Life Lost (YLL) due 

to premature mortality in the population and the Year Lost due to Disability (YLD) for 

incident cases of the health condition. A study by Krishnamoorthy et al. (2009) 

estimated the burden due to suspected chikungunya, a vector-borne disease, in India 

during the 2006 epidemic using DALYs. Their study found that the national burden was 

estimated to be 25,588 DALYs lost, with an overall burden of 45.26 DALYs per million.    

 The Emerging Infectious Diseases Department of the CDC (EIDD-CDC) 

estimated the impacts of the 2002 West Nile Virus epidemic in Louisiana. Estimated 

total cost of the outbreak was calculated as the sum of 1) medical costs (inpatient and 

outpatient); 2) non medical costs (productivity loses, premature deaths, costs of 

transportation, childcare expenses); and 3) costs incurred by public health or government 

agencies for epidemic control. Medical costs were calculated using information received 

from Louisiana hospitals while non medical costs were calculated from information 

gathered by interviews using a questionnaire administered by telephone. The cost due to 

productivity losses attributable to illness and death were calculated using the human-

capital (HK) method. Information obtain from the Louisiana Office of Public Health on 

costs incurred for laboratory support, epidemiologic aid, administrative and clerical 

activities, and communication services was used to calculate the cost for total epidemic 
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control. The study found that the estimated total costs of the 2002 epidemic were $20.1 

million (Zohrabian et al. 2004).   

 Prior to assessing the economic consequences of the disease outbreak on humans, 

we must have an idea of what the magnitude of infection to humans could possibly be. 

Since surveillance of RVF is not well documented, this study will utilize the data 

available from the 1999 outbreak of West Nile Virus infection in the U.S. By doing so, 

we assume that the two diseases have similar disease infection and spread rates.  
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3. BIOSECURITY AS AN ECONOMICS PROBLEM 

 When analyzing the potential economic impacts of a biosecurity threat such as 

RVF, several factors could potentially play a role in affecting the welfare of both 

producers and consumers, and therefore need to be considered in the analysis. Another 

term which is used interchangeably with welfare is surplus. A graphical representation of 

surplus can be seen in Figure 3. Consumer surplus is the area below the demand 

schedule and above the price line, and is depicted as CS. Producer surplus is the area 

above the supply schedule and below the price line, depicted as PS. As one can 

visualize, these areas are dependent on the supply and demand schedules. Shifts or 

rotations in these schedules can either increase or decrease the areas which represent the 

consumer and producer surplus. Examples of possible situations which may alter these 

values will be discussed further in the following sections.  

 

 
Figure 3. Graphical Display of Consumer and Producer Surplus 
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3.1 Market Damages 

 Market damages occur through a decrease in demand, altered supply, or through 

price changes. In the event of an animal disease outbreak, consumer confidence may be 

altered. This may result in a decrease in demand for the product directly affected by the 

disease as well as an increase in demand for substitutes of the product. Such evidence of 

events can be seen in Leeming and Turner (2004). The likelihood of consumer demand 

and confidence to alter in the event of a RVF is most likely to be high due to the 

vulnerability of infection when handling raw meat. 

 The supply chain could also be greatly impacted in the incidence of a disease 

outbreak, particularly when the supply alteration is large. Depending on the production 

loss, this could have a noticeable impact on the market supply. If supply is decreased 

enough to have an effect, this could cause an increase in prices. If demand is 

simultaneously decreased, then depending on the elasticities and magnitudes of the 

shifts, prices could increase, decrease, or stay the same. In the long run, domestic supply 

may be increased due to trade bans and inability to export, creating pressure and 

decreasing prices. Prices could also experience different changes along the supply chain, 

which may increase or decrease price margins. 

 

3.2 Loss of Breeding Value 

 Farmers may invest their money in preserving the genetics of their livestock, 

which may reach back for several generations. The value of this loss in blood line may 

be very hard to estimate, but nevertheless should be considered.  

 

3.3 Trade 

 Trade impacts tend to have significant impacts to economies when it comes to 

animal disease outbreaks. Import/export bans are usually put into place, which may vary 
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in length depending on what actions were taken during disease management, such as 

vaccination. If regionalization was put into place, some regions may gain in welfare 

while others may lose welfare. Similarly, producers and consumers may be affected 

differently.  

 Hong (2009) found that trade related welfare losses in the beef markets due to 

animal disease outbreak is reduced by up to 40%. Attavanich et al. (2010) examined the 

effect that the initial swine flu label for H1N1 and associated press coverage had on US 

meat demand and found that domestic and international pork markets suffered. Results 

from the study show a drop in lean hog futures price which lasted around 3 months, 

causing a loss of $167.3 million.  

 

3.4 Compensation 

 Farmers may receive indemnity payments in the case of a disease outbreak when 

animals are slaughtered due to disease control or for welfare reasons. Calculation of the 

value that the farmers should receive can be complicated. The price should be low 

enough to prevent individual farmers from over-reporting, transporting animals from 

areas from outside event zone, or manufacturing diseased animals. However, it should be 

high enough to prevent under-reporting or hiding potentially sick animals. 

 

3.5 Related Markets, Local Economies, and Tourism 

 Markets such as tourism could face potential loss in the event of disease 

outbreaks. A prime example of this is the UK FMD outbreak in 2001 in which it was 

estimated that a large amount was lost due to tourism and other non farming 

communities (Bennett el al. 2002).  

 Another example of this is the case of swine flu outbreak in Mexico and its 

impacts on their economy (BBC 2010). Other related markets such as those that produce 
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feed may also be affected due to a decrease in demand due to massive slaughter, causing 

an oversupply of feed.   

 Figure 4 was adapted from Hagerman (2009) and used a partial equilibrium 

model to show an example of possible outcomes from an animal disease outbreak on the 

cattle and meat markets. The U.S. is a net exporter of fed beef and a net importer of live 

cattle. Supply is shown to be inelastic to indicate the short run analysis.  As depicted in 

the graphical model, a reduction in the short run supply of live cattle in the infected 

region reduces the national aggregate short run supply. This reduction from SC-US to S’C-

US changes the excess demand from  EDC-W to ED’C-W, which in turn increases the price 

on the world market from p to p’ as can be seen in the bottom right panel.  

 Producers in the infected region will be affected both by a shift in the supply and 

shift in price. If the shift in price (T+U) is greater than the decrease in supply (U+W) 

they could gain. This is most likely not the case, price increase is usually not large 

enough to offset the supply reduction for producers in the infected region, and large 

producer surplus losses tend to occur. Producers in other regions, such as those depicted 

in the bottom left panel, face no shift in supply but do have an increase in prices, and 

therefore a gain in producer surplus.    
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Figure 4. Regional Effects of a Disease Outbreak 

 

 If a trade ban were put into place and exports for fed beef must go to zero, the 

effect can be seen in the top left panel of Figure 4. Now the price is set by the domestic 

market and falls to p’’, increasing consumer surplus, while producer surplus is 

decreased. If no trade ban is put in place, a decrease would still occur in the world 

markets excess supply from ESM-W to ES’M-W, increasing the price on the world market 

from p to p’.  

 A loss in market share is also possible in the event of a disease outbreak. 

Importing countries may look to other disease free countries to import from in an event 

of an outbreak in an exporting country. Market share could be temporarily and 

sometimes permanently lost in such cases if the importing country continues to import 

from the previously disease free country even after eradication and reclamation of 

disease free status.  

 In the case of RVF, it is a notifiable disease to the OIE and has consequent trade 

implications for those commodities of which could be affected by the disease. This study 

did not incorporate trade impacts into the model. For a more in depth overview of the 



27 
 

impact to the trade in commodities, see OIE (2009).  With trade implications not taken 

into account, a RVF outbreak would most likely mean an increase in imports of live 

cattle. Since RVF causes such a high abortion rate, the number of replacement cows 

needed would increase. In order to meet this increase in demand for replacement cows, 

other regions outside of the infected area in the US will either have to increase 

production, or it could be met with an increase in imports. Exports of fed beef would 

most likely decrease, unless there were also an increase in production in other areas 

which could meet the same pre-event demand levels.  
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4. METHODOLOGY 

 This study will employ a two part methodology to separately estimate livestock 

implications and human implications. A livestock related epidemic/economic analysis 

method will be used to analyze RVF vulnerability and the value of control strategies in 

the context of the U.S. agriculture sector. The human analysis method attempts to 

estimate the potential economic impact due to human illness and death.   

 

4.1 Integrated Epidemic-Economic Modelling 

 Since we do not have data on actual outbreaks in the U.S., we must rely on 

models that simulate hypothetical outbreaks and then value the effects with an economic 

model. The specific models being used are a RVF epidemic model developed at 

Georgetown University (Gaff et al. 2007) and the Agricultural Sector Model (ASM) 

economic model developed at Texas A&M University (Adams et al. 2005).  The 

epidemic model is a Monte Carlo simulation model for two populations of mosquito 

species, those that can transmit vertically and those that cannot, and for one livestock 

population. The ASM is a partial equilibrium agricultural sector model that endogenizes 

market prices as documented in Adams et al. 2005.  

 The epidemic model is used to simulate the spread of the animal disease under no 

intervention and certain control strategies, in this case larvicides and vaccination. The 

economic model then uses the simulated epidemic model outcomes to develop a 

distribution of disease impact. Partial equilibrium models, like ASM, utilize sets of 

supply and demand relationships which recognize interdependencies between markets in 

the U.S. Through this model, there is ability to assess the direct and secondary effects of 

an animal disease outbreak by including not only initial prices and quantities, but price 

shifts as demand varies. This study will not directly vary the demand curves. However, 

there may be a shift in quantity demanded as the price adjusts in response to the supply 

shift.   
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4.1.1 Epidemic Model 

 When using integrated modelling to assess the potential impacts of a disease 

outbreak, the epidemic model must be carefully chosen. There are a vast range of 

characteristics that an outbreak may hold which depend on several elements such as the 

disease, the environment, and the host. Since RVF is a vector borne disease that is 

sensitive to rainfall, the spread of the disease will differ from those diseases which are 

not vector borne, such as FMD, and the epidemic model should be able to reflect this.  

 The specific epidemic model used in this study is a compartmental ordinary 

differential equation model of RVF transmission developed by Gaff et al. (2007). The 

model considers two populations of mosquitoes and a population of livestock animals 

with disease-dependent mortality.   

 The two population of mosquitoes considered are the Aedes mosquitoes, which 

can be infected through either vertically or via a blood meal form and infectious host, 

and the Culex mosquito which is able to transmit the virus to hosts but not to their 

offspring. Once infectious, mosquito vectors remain infectious for the remainder of their 

lifespan. Hosts, which in this case represent various livestock animals and populations, 

can become infected when fed upon by infectious vectors. The livestock may then die or 

recover, having lifelong immunity to reinfection.  

 The host population can belong to one out of four stages: (1) a susceptible stage 

(Si), where they are vulnerable to infection; (2) an incubating stage (Ei), where they are 

infected but are showing no signs of infection and are not yet infectious; (3) an 

infectious stage (Ii), where they are showing signs of infection and are able to spread the 

infection; and (4) a removed or recovered stage (R2), where they are either removed due 

to death or slaughter, or they recover with an immunity to reinfection.  

 To reflect the vertical transmission in the Aedes species, compartments for 

uninfected (P1) and infected (Q1) eggs are included. The Culex species only includes 

uninfected (P3) eggs. The adult mosquito population is Ni = Si + Ei +Ii, for i = 1 and 3. 

The livestock population size is N2 = S2 + E2 + I2 + R2.   
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 The following equations are taken from Gaff et al. (2007) and represent the 

corresponding populations. Although this particular model is not used, the parameters 

are based off of the Gaff et al. (2007) model, except a Monte Carlo approach is used in 

order to get the stochasticity:  

 Aedes mosquito vectors 
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Culex mosquito vectors 

  
   

  
 = b3N3 – θ3P3 

  
   

  
 = θ3P3 – d3S3 – 

       

  
 

  
   

  
 = – d3S3 +  

       

  
 – ε3E3 

  
   

  
 = – d3I3  + ε3E3 

  
   

  
 = (b3 – d3)N3, 

where: 

  12 = adequate contact rate: Aedes to livestock 

  21 = adequate contact rate: livestock to Aedes  

  23 = adequate contact rate: livestock to Culex 

  32 = adequate contact rate: Culex to livestock 

 1/d1 = lifespan of Aedes mosquitoes 

 1/d2 = lifespan of livestock animals 

 1/d3 = lifespan of Culex mosquitoes 

 b1   = number of Aedes eggs laid per day 

 b2   = daily birth rate in livestock 

 b3  = number of Culex eggs laid per day 

 K2 = carrying capacity of livestock 

          1/ε1   = incubation period in Aedes  

          1/ε2   = incubation period in livestock  
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          1/ε3   = incubation period in Culex  

          1/γ2   = infectiousness period in livestock 

 μ2 = RVF mortality rate in livestock  

 q1 = transovarial transmission rate in Aedes 

         1/θ1 = development time of Aedes 

         1/θ3 = development time of Culex. 

 

4.1.2 Economic Model 

 This study builds on a previous RVF study done by Hartley et al. (2009). The 

economic model used in this study is the ASM component of the Forest and Agricultural 

Sector Optimization Model (FASOM) which is a dynamic, nonlinear programming 

model of the forest and agricultural sectors in the United States, originally developed to 

evaluate the welfare and market impacts of alternative policies and documented in 

Adams et al. (2005). The model depicts the allocation of land, over time, to competing 

activities in both the forest and agricultural sectors and is also designed to aid in the 

appraisal of a wider range of forest and agricultural sector policies. The modeling system 

of FASOM is designed to work on the forest and/or agricultural sectors either 

independently or simultaneously allowing for evaluation of independent sector issues, or 

across both sectors. This study examines only that of the agricultural sector.     

 The FASOM model is based on a joint, price-endogenous, market structure. 

Prices are endogenously determined given demand functions and supply processes. It 

simulates 36 primary crop and livestock commodities and 39 secondary commodities 

that compete for land, labor, and irrigation water at the regional level. Competition 

allows for simultaneous price determination in both sectors. Land use is capable of 

changing over time, and constraints on production possibilities can be relaxed, which is a 

valuable aspect when analyzing animal disease outbreaks which may become endemic.  
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 Maximization of net present value of the sum of consumers’ and producers’ 

surplus for each sector allows the model to provide estimates of total welfare, as well as 

the distribution of welfare between producers and consumers.  

 The Agricultural Sector Model (ASM) of FASOM contains budgets for beef, 

dairy, hogs, sheep, broilers, turkeys, egg layers and horses, along with a number of 

intermediate budgets such as calves, milk, eggs, wool, and culled livestock.  

 ASM runs over 11 regions and 66 sub-regions. Results can be reported on either 

a sub-region or aggregated regional basis. The 66 sub-regions consist of one sub-region 

for each U.S. state except for California, Illinois, Indiana, Iowa, Ohio, Oregon, 

Oklahoma, Texas, and Washington. These states have sub-state production regions based 

on differences in production conditions.  

 FASOM also allows for trade with 37 international regions. Animal products 

which are imported to the U.S. are eggs, wool, non-fed beef, fed beef, pork, secondary 

dairy products, and some live cattle. The exports are eggs, fed beef, wool, pork, 

secondary dairy products, chicken, and turkey.  

 The market structure includes both explicit and implicit demand and supply 

curves in a five-year period which are solved such that the affected agricultural markets 

are in equilibrium. When conducting a comparative analysis with different control 

strategies for animal disease outbreaks, land is not allowed to shift to reach equilibrium. 

Supply changes in response to the slaughter will cause the shifts in prices. Such supply 

and demand curves include: 

 Regional product supply 

 National raw product demand 

 Regional or national processed commodity demand 

 Regional or national supply of processed commodities 

 Regional or national export demand 

 Regional or national import supply 

 Regional feed supply and demand 
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 International transport perfectly elastic supply  

 Country-specific excess demand and supply of rice, sorghum, corn, soybeans and 

the 5 types of wheat 

 This study analyzes the economic impacts of a disease outbreak of RVF in south 

and east Texas by adjusting the corresponding agricultural budgets. The limitation of the 

outbreak is confined to Texas, but state, regional, and national impacts will be evaluated.  
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5. CASE STUDY: RFV OUTBREAK IN SOUTHEAST TEXAS 

 This particular study simulates an outbreak of RVF in South and East Texas. The 

breakdown of the regions can be seen in Figure 5. This study uses data collected only 

from those counties in the Central Black Land, East Texas, South Texas and Coastal 

Bend regions to adjust the corresponding livestock and feed budgets as a result to 

disease outbreak. 

 

 
Figure 5. Breakdown of Texas Regions 

 

 When developing epidemic models, it is imperative to understand the 

environment in which an epidemic develops as well as the complex interrelationships of 

the relevant variables and their resulting behaviour (Ritchie-Dunham 1999).  This 

particular region was chosen under the assumption that it is viewed as a highly 
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vulnerable region to a RVF outbreak. This is due to several factors: 1) Environment of 

the region, 2) High livestock population along with high human population such as in the 

city of Houston, 3) High vector (mosquito) population.   

 Another decision that needs to be made is whether you want to model a onetime 

outbreak of the disease or model a disease outbreak that becomes endemic since model 

structure between the two different assumptions is very different. If the outbreak under 

consideration is assumed to be a onetime outbreak, sometimes referred to epizootic 

outbreak, then it is assumed that the outbreak occurs once and then is eradicated. If the 

disease is assumed to be endemic, meaning the outbreak occurs in time T and then 

another outbreak occurs in time T+1, and so on, then the economic results of investing in 

certain control strategies is very different. For example, some might argue that if the 

U.S. were to have taken certain measures to implement control strategies of West Nile 

Virus when it first broke out, then perhaps we would have been able to eradicate the 

disease, which is now endemic to the U.S. This study assumes a onetime outbreak of 

RVF. 

 Data for the number of cattle and herd size in Texas counties East of interstate 

highway 35 and South of interstate highway 10 was taken from the National Agricultural 

Statistics Service (NASS 2010). Data was taken from this area only as opposed to the 

whole state based on the assumption that if an outbreak were to occur in Texas, this area 

is more vulnerable. This is due to two reasons. First, the breeding sites of the vectors and 

vector population is increased in this area due to the geographic nature, such as the 

swampy areas of Houston and Beaumont, and the close proximity to the ocean and it’s 

ports of entry. Second, this area has a high number of cow/calf and beef operations. This 

along with the prime conditions not only for the vector to live and propagate, but also to 

be introduced through one of the ports along the Texas coastline,  puts this area at high 

risk of infection and spread of the disease. Each set of state data was plotted as a 

histogram and the resulting figure was used to fit (using maximum likelihood 
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estimation) to a lognormal PDF5. For the number of counties possessing non-zero cattle 

inventory, random numbers were generated based on the fitted PDF to yield a simulated 

county cattle population. We assume the virus was introduced into randomly selected 

Texas counties. Furthermore, we model scenarios of different control strategies, in 

particular, we modeled the effect of no intervention, vaccination, larvicide, and 

vaccination and larvicide together.  

 The data from the epidemic model are then used to make a distribution of herd 

size which is randomly drawn from to obtain herd numbers used for the susceptible 

populations. In other words, we do not start the outbreak at a single point in real 

geographic space, but rather create a Texas-like region where the outbreak occurs. The 

random draws are done 10,000 times. From these 10,000 data points, a random sample 

of 1,000 is taken and then fed into the ASM.    

 A simple static estimation model is applied to the Texas-like region rather than 

using a spatially-explicit, dynamic mathematical epidemiology model for several 

reasons. First, since Rift Valley Fever is seen as a national security threat to the U.S., 

complications can arise when simulating an outbreak that may show the exact points of 

high vulnerability to the disease. Second, there are currently no validated dynamic 

models specific for RVF in the U.S. There are models that are in the process of being 

adapted to the U.S., however the only completed dynamic models for RVF are those that 

are specific for Africa, which cannot be geographically compared to the U.S. Finally, by 

creating a Texas-like region, the model is able to be generalized and therefore can be 

utilized and applied to a wider range of situations than if the model were to be built with 

a more specific geographical specification.  

 

                                                 
5 The lognormal was chosen arbitrarily. However, the basic properties of the lognormal function reflect the 
characteristics of the cattle inventory data, namely that a few counties have zero or very few cattle while  
some counties have extremely high populations of cattle.  
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5.1 Scenarios 

 This study analyzes the effects of a RVF under alternate control strategies. The 

following control strategies comprise of the four scenarios which were considered in the 

study: 

 No intervention. We simulate the disease and let it run its course with no 

interruption.  

 Vaccination of the herds. Specifically, 43.87% of the herd is vaccinated 

resulting in a 33% reduction in infection, death and abortion.  

 Larvicide applied to the vector population. Specifically, we assume a 5% 

reduction in mosquito population in the populations.  

 Vaccination and larvicide used together.  

 Adulticide was initially considered, and no simulations were performed due to 

the supporting evidence found in the literature indicating that adulticide is unlikely to be 

efficient and that it is an expensive method of vector control, most of the time only 

serving as a measure that provides piece of mind for the public (OIE, Boyce et al. 2007, 

Newton and Reiter 1992, and Speigal et al. 2005).  

 Only the larvicide reduction of the 5% scenario was run through the economic 

model. The reason for not using a higher percentage in reduction comes from evidence 

in the literature that a 50-70%  or higher reduction in disease incidence is nearly 

unattainable. As Gu and Novak (2005) point out, to achieve this amount of effective 

larval intervention would call for implementation of targeted control efforts towards 

productive habitats. However, for targeted larval interventions, aquatic habitats need to 

be mapped and surveyed to estimate adult productivity along with quantification of 

habitat productivity based on sample data, e.g. larval density and surface size of habitats. 

In the event of a Rift Valley Fever outbreak, resources and systems such as these would 

have to already be in place, of which they are currently lacking in the US. Most larval 

control in the U.S. is untargeted, of which result in the 5% reduction (Gu and Novak 

2005).  
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5.2 Interfacing the Models 

 To evaluate the economic costs of a potential outbreak and the use of alternative 

control strategies, output from the epidemic model will be used to feed into an economic 

model, in this case the ASM portion of the FASOM model. The epidemic model will 

give results of the simulated outbreak in terms of number of animals in each state (e.g. 

infected, dead, aborted) as well as number of animals receiving any intervention (e.g. 

vaccination).  In order to make the output from the epidemic model be the input for the 

economic model, certain conversions of the data will need to be made in order to make 

appropriate adjustments. In the ASM model, the focus will be on reducing the 

production of outputs and increasing other costs. This action allows for an imitation of a 

disease shock in the region. Since budgets in the ASM are normalized to a one animal 

basis, the epidemic data in terms of head slaughtered, vaccinated, infected, etc., must 

also be normalized. This causes the impact of the outbreak to be spread evenly across the 

entire region such that the average productivity per animal in the region is reduced and 

the average cost of production per animal is increased. This increase in cost is associated 

with the costs of disease management such as vaccination, carcass disposal, and culling. 

This study also incorporates a decrease in feed requirement in the infected region as a 

result of loss of animals due to the outbreak. For a more in depth review of interfacing 

epidemic models with economic models, see Hagerman (2009).    

 

5.3 Herd Inventory 

 The epidemic model focuses on the spread of the disease throughout the region. 

As stated in the previous section 5.2, the output will give a number of animals in each 

state, which is called the herd inventory. The herd inventory data are then used to adjust 

the corresponding livestock budgets in the ASM. The particular herd inventories given 

by the epidemic model in this study are categorized below:  

 Young_Susceptible 
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 Adult_susceptible 

 Pregnant_susceptile 

 Young_Infected 

 Young_dead 

 Pregnant_Infected 

 Pregnant_dead 

 Abortions 

 Adult_infected 

 Adult_dead 

 Young_vaccinated 

 Pregnant_vaccinated 

 Adult_vaccinated 

 These categories are aggregated in the ASM model as: (1) cow/calf and (2) dairy. 

The susceptible populations are those that are vulnerable to infection and death, this 

number is reduced under vaccination scenarios. Under vaccination we assume that 

43.87% (arbitrarily chosen in the epidemic model from a range of 25%-75%) of each 

susceptible population is vaccinated resulting in a 33% reduction in infection, abortions 

and death.  

 

5.4 Cost and Other Assumptions 

 The direct cost incurred as a result of an RVF outbreak is captured in our disease 

management cost estimates. Disease management cost is the number of animals infected 

times the cost per head of disease management. The disease management cost 

component consists of costs to clean and disinfect the premises plus the cost of 

surveillance. These costs are incurred under all scenarios. The vaccination scenario also 

incurs the cost to vaccinate. The larvicide scenario includes the costs of the larvicides. 

The costs are based on a schedule that varies by the size of the herd, and are adapted 
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from Galli's (2009) cost estimates, adjusted for herd size specific to the regions in Texas 

for this study. All cost assumptions include cost of personnel, supplies, and equipment. 

The affected animals in the ASM were limited to cow/calf beef operations and dairy 

operations. Affected calves were limited to calves for slaughter, dairy calves, steer 

calves, and heifer calves.   

 The cost of disposal for beef and dairy cattle were assumed to be a fixed cost of 

$50 each head. 

 The cost of cleaning and disinfecting for beef and dairy cattle was assumed to be 

$37 and $23 per head, respectively. 

 Vaccination costs for beef and dairy cattle were assumed to be $32 and $10 per 

head, respectively.  

 Cost of surveillance the beef and dairy cattle were assumed to be $113 and $34 

per head, respectively.  

 Cost to apply larvicide at the 5% reduction rate was assumed to be $187 per head 

infected. We assumed a constant square mile coverage between 25-30 sq mi. To 

get this into a per-head cost we divided the total cost to treat this square mileage 

by the number of infected cattle under no intervention. Spreading the costs out 

over the number of all animals would not be justifiable and would understate the 

true cost.  

 Further assumptions were made regarding disposal and culling of infected 

animals.  It was assumed that 100% of dead animals will be disposed of, while 50% of 

adult and pregnant infected animals will be disposed and 50% will be culled for disease 

management purposes. Seventy-five percent of young infected animals will be disposed 

of for disease management purposes. In beef operations, we assume the following: 

replacement heifers will be at weaning weight. The population of potential replacement 

heifers is reduced by abortions, young deaths and pregnant cow deaths as well as those 

young cattle that are culled or disposed of due to infection. Outside of the reduced 

replacements, cow/calf budgets also need to be reduced directly by adult deaths, young 

deaths, abortions, pregnant deaths, and infected animals that are culled or disposed of. 
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Dairy cattle are treated similarly. There will also be a reduced milk supply by abortions, 

young deaths, pregnant cow deaths as well as young cattle culled or disposed due to 

infection. Only those animals culled due to abortion are assumed to increase meat sale. 

Labor requirements are also decreased by .04 times the number of infected animals to 

better simulate the conditions under an outbreak. With less animals due to abortions, 

death and culling of infected animals, less labor hours would be needed due to smaller 

herd numbers.   

 All feed budgets will be decreased by the number of dead animals and infected 

animals that are culled or disposed of for disease management purposes, as previously 

discussed in section 5.2. The reason for this being simply that the demand for feed will 

be reduced due to a decrease in number of livestock; fewer animals will need to be fed 

and therefore less feed will be bought. This decrease in demand of feed in the infected 

region will result in an increase in the overall national supply of feed, which could lead 

to a change in price for the related feeds. The following list reflects all feed items that 

are directly adjusted in the ASM model:  

 Silage - Fermented feed made from corn or sorghum plants for ruminants. 

 Hay - Cut, baled and stored grass for livestock feeding. 

 Soybean Meal - A soybean processing by-product used in animal feeding. 

 DairyCon0 – A blend of grain concentrates for dairy operations. 

 CowGrain0 – A blend of grains for cow calf operations. 

 CowHighPro0 – Protein feed for cow calf operations. 

 SaltMiner - Salt mineral supplements used in animal feeding. 

 StockPro0 – A protein feed for stockers. 

 WheatPastu - Wheat pasture used for grazing. 

 CatGrain0 – A blend of grains for finishing cattle. 

 HighProtCa – A protein feed for finishing cattle.  
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5.5 Human Valuation 

 To analyze the effect of a RVF outbreak on public health, we need to develop 

assumptions on the extent of the outbreak.  However RVF has yet to be introduced into 

the U.S. and is currently confined to Africa and the Arabian Peninsula (AAP). Past 

surveillance and historical data on RVF is very limited. The way humans interact with 

climate and animals is different in the U.S. from that of the Arabian Peninsula and 

Africa. Livestock production in Africa and the Arabian Peninsula involves much more 

human-animal interaction than in the U.S. There exist nomadic farmers who migrate 

alongside their herds creating a very close interaction with the livestock. This provides 

greater exposure to mosquito vectors as well as direct contact. Slaughterhouse processes 

vary greatly between the countries as well. Slaughterhouses in the U.S. utilize a largely 

automated system and wear protective clothing including gloves and masks, minimizing 

direct human contact with the meat and blood. Carcass processing in Africa is still 

largely done wholly by human hands without the use of protective clothing, masks and 

gloves, which means more contact with animal products and blood. Recall, RVF 

transmission can occur from contact with the raw meat, blood, and organs of an infected 

animal. Another risk factor is aerosolization of virus from body fluids leading to 

infection.  This creates different degrees of potential disease exposure.   Therefore, using 

data from human illness in Africa and applying to U.S. may give improper estimates. 

 Given these diverse environmental, animal rearing and slaughtering aspects, and 

the unlikely event of RVF being introduced into the U.S. other than by mosquito-borne 

vectors, this study uses data from studies on the initial outbreak of 1999 West Nile 

Virus(WNV) to estimate the number of potential human infections.  Infection rates from 

these studies along with initial land area coverage of the outbreak are then utilized to 

estimate the disease impact and distribution within the human population. Data from the 

CDC on costs of illness, deaths, and hospitalizations are then applied to the distribution 

in order to assess the economic costs. Specifically mapping data made available by 

nationalatlas.gov will be employed from 1999 along with the rate of infection for WNV 

given in Nash et al. 2001. The same distribution of outbreak numbers among the human 
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population previously obtained from the WNV data is then used to estimate numbers of 

DALYs lost due to the outbreak. Then the calculation of the number of Disability 

Adjusted Life Years (DALYs) utilizes the cost figures given in Meltzer et al. (1999) to 

calculate a cost of illness. We assess these numbers for multiple stages of the outbreak, 

as the disease would progress and spread throughout the human population. 

 As stated by Melzter (2010), using a cost of illness metric to estimate potential 

impact of a disease outbreak is strongly recommended. Melzter also states that DALYs 

as a whole are not a particular good measure of impact of rare occurrences such as RVF, 

but rather that particular components that make up the DALY are typically of high 

importance to public health officials. This will be further explained in section 5.5.3. 

 

5.5.1 Employing West Nile Virus Spread Data 

  WNV first originated in the U.S. in Queens county in 1999 and had spread to a 

total of 10 adjacent counties by 2000. We will apply this geographic spread rate to 

construct a possible initial outbreak of RVF. The outbreak is chosen to start in the Texas 

county of Brazoria. This area has the highest cattle population along the coastal region of 

Texas, which is viewed to be a high risk area for mosquito borne diseases such as RVF.  

To construct this outbreak we followed 3 basic steps: 

Step 1. We assembled the infection rates from Nash et al. (2001) which can be seen in 

Table 1 below. 

 

Table 1. Infection Rate of WNV Per Million Population Adapted from Nash et al. 2001 

Age Rate of Infection per million pop 

0-17 0.9 
18-79 3.425 
60+ 30.8 
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Step 2. We assembled data on the population in 5 Texas coastal counties from the U.S. 

census bureau data and it can be seen in Table 2 below.  

 

Table 2. U.S. Census Bureau Data on Human Population in Corresponding Texas Counties 

 Age group 0-17 Age group 19-64 Age group 65+ 

County Percent Total Percent Total Percent Total 

Brazoria 36% 108,677 55% 164,671 9% 27,696 
Galveston 33% 95,695 56% 161,702 11% 30,842 
Matagorda 33% 12,633 52% 19,378 14% 5,254 

Harris 37% 1,494,131 55% 2,175,455 8% 314,764 
Fort Bend 35% 186,249 58% 310,770 7% 35,121 
Wharton 34% 14,073 52% 21,007 14% 5,711 
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Step 3. We applied the infection rates to the population yielding the infected population 

of 24.4, which can be seen below in Table 3. 

 

Table 3. Number of Estimated Infected Persons in Corresponding Texas Counties 

 
Age group 0-17 Age group 18-65 Age group 65+ Total 

Brazoria 0.10 0.85 0.56 1.51 
Galveston 0.09 0.95 0.55 1.58 
Matagorda 0.01 0.16 0.07 0.23 
Harris 1.34 9.69 7.45 18.49 
Fort Bend 0.17 1.08 1.06 2.31 
Wharton 0.01 0.18 0.07 0.26 
Total 1.72 12.92 9.77 24.4 
 

 

5.5.2 Cost of Illness 

 Disease outbreaks which infect both animals and humans can result in high 

economic damages. Meltzer et al. (1999) estimated what the economic impact would be 

for the U.S. if an influenza pandemic were to occur and found costs ranging from 

US$71.3 to $166.5 billion, excluding disruptions to commerce and society. Attavanich et 

al. (2010) looked at the effects of the 2009 H1N1 outbreak and its media coverage on 

consumer demand and agriculture markets and found that roughly $156.5 million was 

lost in market revenue for lean hogs alone.  

 Therefore, in order to grasp the full economic impact of a zoonotic disease such 

as RVF, efforts must be made to value the impacts to both animals and humans. In an 

attempt to do so, this study estimates a cost of illness to the U.S. if humans were to 

become infected with RVF.  
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 To calculate the total cost of illness for the first year of a hypothetical outbreak, 

the number of hospitalized cases was rounded up to 25. The assumptions shown in Table 

4 that were drawn from Meltzer et al. 1999, gives a breakdown of costs by disease 

outcomes and age groups for 1995 U.S.$ were then used. This study was chosen because 

it gives cost estimates for illness related to influenza, which is supposed to resemble the 

common side effects of RVF infection in humans (WHO 2010). The categorization of 

outcomes was as follows: 

 Death 

 Hospitalized 

 Outpatient Visits 

 Ill, no medical care sought 

 For this study, we use the rates of underreporting given by the CDC for influenza 

to better estimate total human vulnerability. Each reported hospitalized case represents 

2.7 unreported hospitalized cases of which one percent results in death. Each case of 

infection also represents a certain number of illnesses that go unreported. Estimates were 

made under four different levels of underreporting of infection (non-hospitalized) cases: 

 Each reported case represented 10 unreported cases.  

 Each reported case represented 20 unreported cases. 

 Each reported case represented 50 unreported cases. 

 Each reported case represented 80 unreported cases.  

 The dollar cost for each case is finally achieved by using the estimated cost per 

case for each category and each age group which can be seen in Table 4 below.  
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Table 4. Values Used to Calculate Cost of Illness 2010 US$ Adapted from Meltzer 1999 

 
    Age group   
  0-19 20-64 65+ 

Deaths       
avg. age 9 35 74 
PV lost earning($) 1,016,101 1,037,673 65,837 

hosp. cost($) 
3,435+2,63

2 7,605+3,888 8,309+3,692 
subtotal($) 1,019,536 1,045,278 74,146 

Hospitalizations       

hosp. cost($) 
2,936+2,09

9 6,016+2,086 6,856+3,200 
net pay for outpatient visit($) 74±40 94±70 102±60 
avg. copayment for outpatient($) 5 4 4 
net payment for drug claims($) 26±9 42±30 41±10 
days lost 5±2.7 8±4.8 10±5.4 
value of 1 day lost($) 65 100 or 
subtotal($) 3,366 6,842 7,653 

Outpatient visits       
avg. no. visits 1.52 1.52 1.52 
net payment per visit($) 49±13 38±12 50±16 
avg. copayment for outpatient 

visit($) 5 4 4 
net payment per prescription($) 25±18 36±27 36±22 
avg.  prescriptions per visit 0.9 1.8 1.4 
avg. copayment per 

prescription($) 3 3 3 
days lost 3 2 5 
value 1 day lost($) 65 100 65 
subtotal($) 300 330 458 

Ill, no medical care sought       
Days lost 3 2 5 
Value 1 day lost($) 65 100 65 
over-the-counter drugs($) 2 2 2 
subtotal($) 197 202 327 
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Costs are estimated for the following assumed reported hospitalized cases in Table 5: 

 

Table 5. Reported and Unreported Hospitalized Cases 

Reported Unreported Total 

25 43 68 
625 1,063 1,688 

2,000 3,400 5,400 

6,000 10,200 16,200 

 

 

 The reason these different scenarios are considered is due to the nature of vector 

born disease spread, and to shed light on the cost of future years if the disease were to 

become endemic. WNV reached a total of 9,862 reported cases in 2003, RVF is said to 

be more contagious than WNV and more deadly (CDC). However, it is still uncertain 

how species in the U.S. would react to infection and therefore this study calculates 

estimates for a range of severity rather than choosing one level.    

 

5.5.3 Disability Adjusted Life Years (DALYs) 

 DALY is global measure of disease burden. One DALY can be thought of as one 

lost year of healthy life. It is calculated as the number of Years of Life Lost (YLL) plus 

the number of Years of Life lost due to Disability (YLD) as defined by WHO (2010). As 

previously stated, DALYs as a whole are not a particular good metric to use for 

estimating impacts of rare diseases such as RVF, rather the specific component of the 

YLL are typically of high importance to public health officials. Public health officials 

are generally concerned about “how many” and “who”. In other words, they want to 

know how many deaths and what age group are most at stake.  

DALY = YLL + YLD 
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where  

 YLL    = N x L 

      N   = Number of deaths 

      L   = Life expectancy at age of death 

YLD   = I x DW x L 

      I    = Number of incident cases 

 DW  = Disability weight 

      L  = Average duration of case until remission or death in years 

 Average life expectancy was taken from the data provided by the Internal 

Revenue Service (IRS). The average number of deaths and number of incidence cases 

were taken from our previous calculations used to estimate cost of illness. DALYs were 

calculated for the same number of different estimated cases as the cost of illness (25, 

625, 2000, 3000, and 6,000). Since RVF does not have a unique disability weight, the 

disability weight for dengue fever and dengue hemorrhagic fever are used which are 

0.197 and 0.545 respectively. Since the average duration of illness under RVF is 3-7 

days (WHO) we used 5 days and divided by 365 to get on a scale of years.  
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6. RESULTS 

 This section will present the results. Detailed results for the integrated epidemic 

and economic modelling will first be presented. The cost of illness and DALY results 

will comprise the last part of this section.  

 

6.1 Epidemic Model Results 

 The epidemic model yields results on animal losses by animal category and 

control scenario, which are used as input into the economic model. Summary statistics 

for the corresponding herd category under each scenario can be seen in Tables 6 through 

9 below. Figure 6 gives a graphical demonstration of these results across the scenarios. 

The control scenario with the most infections, deaths, and abortions is the no 

intervention case, followed by the larvicide case. Using vaccination along with larvicide 

gives the smallest animal loss result, having less infection, abortions and death among 

the herd population. This would be expected under these scenarios as with no 

intervention there are no measures being taken to prevent or stop the disease from 

spreading. With vaccination and larvicide together, you would expect to have the least 

number of dead, infected, and aborted animals because you have both the vaccination of 

the animals and the larvicide acting to kill the vector of the disease, which should result 

in a decrease in the extent of animal damages.  
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Table 6. Summary Statistics for Number of Head Infected, Dead, or Aborted, for RVF 

Outbreak with No Intervention 

 
Mean StDev Min Median Max 

young_infected 4061 3973 0 2711 23549 
young_dead 2042 2406 0 1161 19802 
abortions 26095 16257 1918 22770 123901 
pregnant_dead 4121 2661 266 3538 20247 
pregnant_infected 34753 20306 3317 31075 131316 
adult_infected 38291 20108 4664 34732 132219 
adult_dead 4210 2652 299 3637 20252 
 

 

Table 7. Summary Statistics for Number of Head Infected, Dead, or Aborted, for RVF 

Outbreak with Vaccination 

 
Mean StDev Min Median Max 

young_infected 2735 2676 0 1826 15859 
young_dead 1375 1620 0 782 13336 
abortions 17574 10948 1292 15335 83442 
pregnant_dead 2775 1792 179 2383 13635 
pregnant_infected 23404 13675 2234 20928 88436 
adult_infected 25787 13542 3141 23390 89044 
adult_dead 2835 1786 201 2449 13639 
 

 

Table 8. Summary Statistics for Number of Head Infected, Dead, or Aborted, for RVF 

Outbreak with Larvicide  

 
Mean StDev Min Median Max 

 young_infected 3940 3855 0 2633 22487 
young_dead 1981 2334 0 1128 19142 
abortions 25314 15767 1837 22106 118808 
pregnant_dead 3997 2581 254 3432 19379 
pregnant_infected 33711 19693 3242 30178 127695 
adult_infected 37144 19502 4559 33729 128574 
adult_dead 4083 2572 287 3521 19384 
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Table 9. Summary Statistics for Number of Head Infected, Dead, or Aborted, for RVF 

Outbreak with Vaccination & Larvicide  

 
Mean StDev Min Median Max 

young_infected 2653 2596 0 1774 15144 

young_dead 1334 1572 0 760 12891 

abortions 17048 10618 1237 14888 80012 

pregnant_dead 2692 1738 171 2311 13051 

pregnant_infected 22703 13262 2183 20324 85997 

adult_infected 25015 13134 3070 22715 86589 

adult_dead 2750 1732 193 2371 13054 

 

  

 

 
Figure 6. Epidemic Results 

 

6.2 Economic Model Results 

 The epidemic model results were used to adjust the corresponding budgets in the 

ASM as previously discussed in section 5.2. This study restricts the outbreak to that of 

the South West and South Central region. Since this region contributes to the national 
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supply of livestock, the effects of the outbreak could be felt throughout the nation. This 

section will display the results of national welfare loss, price changes, as well as total 

livestock producer welfare and regional producer welfare effects of a RVF outbreak.  

 

6.2.1 Total Welfare Loss Under Alternative Control Strategies 

 The total welfare loss is a measure of societal loss due to the event on a national 

level. These results are presented in millions of 2004$ and can be seen in Table 10. The 

highest loss occurs  under the larvicide scenario, however, the highest median loss 

occurs under the vaccination scenario, which also has a higher standard deviation than 

the other scenarios. Although the vaccination and larvicide scenario gives the least 

amount of infections, abortions, and deaths, it can be an expensive and risky control 

strategy. As the results indicate, there is a chance to experience a large gain in welfare 

under this scenario and the vaccination scenario, but there is also potential to experience 

large losses. The least economic damage occurs under the no intervention scenario. This 

shows the cost of the control strategies outweigh the benefit in terms of the value of 

reduced animal losses. Under the larvicide scenario, the increase in disease management 

cost per head of livestock is far greater than under the vaccination scenario, and 

therefore results show a much higher loss relative to the vaccination scenario.  

 

Table 10. Total National Welfare Loss  

Million 2004 US$ 
  No Intervention Vaccination Larvicide (5%) Vaccination and Larvicide 
Mean -5.61 -9.42 -26.76 -16.23 

StDev 17.00 19.94 5.06 16.82 

Min -37.40 -102.30 -46.30 -44.60 

Median -14.60 -11.75 -25.10 -23.70 

Max 18.00 16.40 -15.80 25.80 
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6.2.2 Price Impacts 

 Price impacts have the potential to occur due to reduced supply as discussed in 3. 

This section will present the price effects of select commodities. Although Texas does 

not contribute much to the national supply of dairy cattle with roughly 4% of national 

dairy cattle inventory in 2007, it makes a noticeable contribution in terms of beef and 

cow/calf operations. Texas held around 14% of national inventory and 17% of the sales 

by cow/calf operations in 2007. Furthermore, it held roughly 20% share of both 

inventory and sales for beef cows in 2007 (USDA 2009). Any major decrease in this 

supply could impact national prices.  

 Table 11 shows the price changes for live cattle under the alternative scenarios. 

All prices are in constant 2004$ per unit. Most of the costs incurred from the disease 

outbreak are going to be attributed to disease management, such as vaccination and 

larvicide costs, as well as disposal cost which will also be felt under no intervention. 

This increase in cost for the producers is partially transferred to consumers by an 

increase in commodity price.  

 Since all culled animals were assumed to go into non-fed beef, the increased 

number of cull cows due to disease management did not have an effect on fed beef. The 

decrease in the number of beef calves and dairy calves due to death from disease, culling 

for disease management, and the decrease flow from heifer calves due to an increase in 

replacement needs, can cause these prices to increase.  

 Although the number of heifer calves and stocked heifer calves decreased in the 

infected region, there was an overall national increase in these numbers as well as an 

increased need for replacement heifers due to mature animal losses, which may 

contribute to the decrease in the prices. This increase may have been in response to the 

increase in replacement cows needed in the infected region to replace those livestock 

who either died, got infected, or were culled due to disease management. 
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Table 11. Mean Prices of Live Cattle Under Alternative Scenarios in $ Per Unit 

Mean Nonfed 
Slaughter 

Feedlot Beef 
Slaughter 

CullBeef 
Cow 

CullDairy 
Cow 

Steer 
Calve 

Heifer 
Calves 

Base 59.132 83.454 58.629 54.869 125.734 133.446 
No Intervention 59.217 83.454 58.719 54.965 126.575 133.216 
Vaccination 59.217 83.454 58.719 54.965 126.430 133.240 
Larvicide (5%) 59.218 83.454 58.719 54.965 126.575 133.232 
Vaccination and 
Larvicide 59.217 83.454 58.719 54.965 126.572 133.231 

Mean Stocked 
HCalf 

Stocked 
SCalf 

Dairy 
Calves 

Stocked 
Yearling 

StockedH 
Yearl 

StockedS
Yearl 

Base 110.076 103.568 117.226 91.113 96.753 96.171 
No Intervention 108.093 103.648 119.051 93.965 95.956 96.257 
Vaccination 109.982 103.705 118.666 95.281 95.923 96.257 
Larvicide (5%) 110.509 103.687 118.803 95.630 94.254 96.257 
Vaccination and 
Larvicide 112.038 103.695 118.968 95.858 96.834 96.257 

 

   

 As previously stated, pork and poultry are seen as substitutes for beef. Therefore, 

changes in beef could impact these commodities. Production for eggs and broilers did 

not increase, however the price of some inputs fell, which can explain the slight decrease 

in price for eggs and broilers. The result for price impacts for eggs and live poultry can 

be seen in Table 12, while those for beef, pork, and poultry can be seen in Table 13 

below.  

 
 
Table 12. Price Impacts for Eggs and Live Poultry 

  Eggs  Broilers  Turkeys  
Base 0.893 50.780 45.535 
No Intervention 0.875 50.440 45.505 
Vaccination 0.875 50.514 45.433 
Larvicide (5%) 0.875 50.439 45.450 
Vaccination and Larvicide 0.875 50.514 45.520 
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Table 13. Price Impacts for Beef, Pork, and Poultry 

 FedBeef NonFedBeef Pork Chicken Turkey 
Base 113.079 72.813 67.442 69.202 68.307 
No Intervention 113.079 72.950 67.662 68.777 68.263 
Vaccination 113.079 72.950 67.326 68.869 68.162 
Larvicide (5%) 113.079 72.950 67.318 68.776 68.186 
Vaccination and Larvicide 113.079 72.950 67.346 68.869 68.285 

 

             

 Dairy prices could also be affected due to any price impacts that may occur to 

dairy cows. The infected region however does not have a significant contribution to the 

dairy sector, and therefore may not have a significant impact on the prices.  Results for 

price impacts on dairy products can be seen in Table 14.  

 

Table 14. Price Impacts for Dairy Products 

 
NonFatDry 

Milk 
Butter AmCheese OtCheese Cottage 

Cheese 
IceCrea

m 
Base 1.475 2.026 2.208 1.989 1.583 1.721 
No Intervention 1.475 2.026 2.208 1.989 1.583 1.721 
Vaccination 1.475 2.024 2.207 1.988 1.583 1.720 
Larvicide (5%) 1.476 2.017 2.204 1.986 1.582 1.714 
Vaccination and 
Larvicide 1.476 2.013 2.203 1.985 1.582 1.711 

 
Milk FluidMilk 

whole 
FluidMilk 
LowFat 

Skim 
Milk 

Cream EvapCon
dMilk 

Base 15.636 0.377 0.246 0.167 0.737 0.332 
No Intervention 15.637 0.377 0.246 0.167 0.737 0.332 
Vaccination 15.631 0.377 0.246 0.167 0.737 0.332 
Larvicide (5%) 15.606 0.376 0.245 0.167 0.734 0.331 
Vaccination and 
Larvicide 15.595 0.376 0.245 0.167 0.732 0.331 

 

 

 Since there is a decrease in the feed requirement in the infected region due to a 

decrease in number of animals needing to be fed, prices of feed could be impacted. Since 
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less feed is needed, this would cause an oversupply of feed and hence a decrease in its 

price. However, if feed production is also reduced, and livestock production in other 

regions increased to take advantage of higher livestock prices, this could cause the feed 

price to increase. This could happen when the  dairy calf production increase is not more 

than offsetting the death loss. Price impacts for feed and feed grains can be seen in Table 

15 below. 

 

Table 15. Price Impacts for Feed and Feed Grain 

 Soybean 
Meal 

Silage Hay Dairy 
Con0 

Cow 
Grain0 

Base 200.417 24.981 108.419 10.777 6.200 
No Intervention 200.417 24.983 108.426 10.865 6.200 
Vaccination 200.417 24.982 108.427 10.862 6.200 
Larvicide (5%) 200.417 24.980 108.421 10.844 6.200 
Vaccination and Larvicide 200.417 24.983 108.429 10.865 6.200 

 CowHiPro0 StockPro0 CatGrain0 HighProt
Ca 

 

Base 11.819 11.355 6.343 12.310  
No Intervention 11.817 11.674 6.344 12.309  
Vaccination 11.817 11.689 6.343 12.309  
Larvicide (5%) 11.812 11.654 6.343 12.306  
Vaccination and Larvicide 11.790 11.634 6.344 12.292  

 

             

6.2.3 Total Regional Livestock Producer Surplus Impacts 

 The economic model also breaks down the U.S. into 10 different regions, which 

can be seen in Figure 7 below.  With the U.S. livestock industry being concentrated in 

certain regions, such as the dairy region in California, impacts of an animal disease 

outbreak will most likely have stronger impacts on some regions rather than others. This 

section will display impacts specific to the livestock producers for each region.  All 

results are in millions of 2004$.  
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Figure 7. Regions in ASM Model 

 

 Total national livestock producer surplus impacts under the alternative 

interventions can be seen in Table 16 below.  The lowest impact for livestock producers 

is under the no intervention scenario, which can be attributed to the same reason as those 

discussed under section 6.2.1.  Again, it should be noted that there is a higher median 

loss as well as variation in loss when using vaccination and larvicide together. 

 

Table 16. Total National Livestock Producer Surplus Impact under Alternative Scenarios  

Million 2004 US$ 

 No Intervention Vaccination Larvicide Vaccination and Larvicide 
Mean -171 -210.584 -302.77 -251.64 
StDev 75.74 90.79 58.21 126.55 
Min -321.27 -391 -406.83 -366.77 

Median -142.01 -223.59 -256.12 -268.18 
Max -96.34 124.96 -138.58 171.85 
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6.2.4 Regional Producer Surplus Impacts 

 While there is an overall loss in welfare with each scenario, results indicate that 

under some conditions, producers in regions outside of the outbreak can stand to gain 

from due to price increases. Results for regional producer (both crop and livestock 

producers) surplus impacts under no intervention can be seen in Table 17 below. As 

would be expected, the two regions with the higher damages are South Central (SC) and 

South West (SW), where the outbreak occurred. The South East (SE) region experiences 

high losses as well. This region is high in the production of broilers and other meat-type 

chickens, which experienced a decrease in price which would cause the welfare of the 

producers in this region to fall. Other regions such as the Great Plains (GP), Rocky 

Mountains (RM) and Pacific South West (PSW) gain. This could be attributed to the 

increase in prices along with these regions, especially GP, having the highest production 

in cow/calf and beef calves. With the inputs to these animals not increasing much if at all 

while the output price increases, along with these regions not having to undergo the costs 

of disease management related to the outbreak, allows for a large increase in producer 

surplus. Other regions that lose are the Corn Belt (CB) and the Lake States (LS). This 

loss can be attributed to the fact that these are dairy producing regions and the prices of 

inputs (feed and dairy calves) are going up while the output price (milk) is going down, 

causing a loss.  Regional price impacts under vaccination, larvicide and vaccination and 

larvicide together can be seen in Tables 18 through 20, respectively.  
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Table 17. Regional Producer Surplus Impact Under No Intervention  

Million 2004 US$ 

 CB GP LS NE RM 

Mean -11.619 24.720 -11.314 2.062 -3.476 
StDev 23.203 19.023 16.882 4.230 3.709 
Min -54.429 -7.082 -45.204 -6.992 -8.921 
Median 0.308 36.910 -0.848 0.222 -2.452 
Max 9.188 40.757 1.494 8.085 7.724 
 PSW PNWE SC SE SW 

Mean 0.748 -4.187 -96.039 -45.649 -23.317 
StDev 0.825 1.136 6.389 9.770 2.437 
Min -1.729 -6.165 -110.211 -65.508 -27.174 
Median 0.537 -3.996 -93.927 -40.862 -22.147 
Max 1.850 -2.691 -89.309 -37.635 -18.884 
CB stands for Corn Belt, GP stands for Great Plains, LS stands for Lake States, NE stands for  Northeast, RM stands for Rocky  
Mountains, PSW stands for Pacific Southwest, PNWE stands for Pacific Northwest West East, SC stands for South Central, SE 
stands for Southeast, and SW stands for South West.  

 

 

Table 18. Regional Producer Surplus Impact Under Vaccination  

Million 2004 US$ 

 CB GP LS NE RM 
Mean -34.777 8.187 -27.510 -0.056 3.941 
StDev 7.364 6.169 17.878 4.429 6.615 
Min -54.682 -12.379 -83.497 -19.753 -14.745 
Median -34.605 9.836 -21.541 -1.654 3.581 
Max 8.683 40.006 -2.779 6.694 12.241 

 PSW PNWE SC SE SW 
Mean 0.728 -3.907 -84.643 -50.891 -19.412 
StDev 1.198 1.977 51.518 17.287 4.873 
Min -3.815 -10.128 -112.493 -66.851 -32.913 
Median 0.111 -3.453 -101.015 -55.665 -21.518 
Max 2.686 -1.309 74.832 11.907 -9.495 
CB stands for Corn Belt, GP stands for Great Plains, LS stands for Lake States, NE stands for  Northeast, RM stands for Rocky  
Mountains, PSW stands for Pacific Southwest, PNWE stands for Pacific Northwest West East, SC stands for South Central, SE 
stands for Southeast, and SW stands for South West. 
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Table 19. Regional Producer Surplus Impacts Under Larvicide  

Million 2004 US$ 

 CB GP LS NE RM 
Mean -41.459 0.192 -52.212 -3.995 -10.741 
StDev 6.972 6.877 26.988 1.655 6.496 
Min -57.903 -13.478 -83.627 -9.460 -19.379 
Median -39.097 0.273 -56.197 -4.070 -12.292 
Max -3.181 37.074 -2.327 -1.241 3.229 

 PSW PNWE SC SE SW 
Mean -0.342 -7.633 -104.916 -59.192 -26.990 
StDev 0.484 2.439 3.350 5.144 1.858 
Min -1.872 -11.164 -112.974 -68.452 -31.193 
Median -0.202 -8.740 -104.311 -57.272 -27.182 
Max 0.432 -3.602 -95.788 -41.520 -22.051 
CB stands for Corn Belt, GP stands for Great Plains, LS stands for Lake States, NE stands for  Northeast, RM stands for Rocky  
Mountains, PSW stands for Pacific Southwest, PNWE stands for Pacific Northwest West East, SC stands for South Central, SE 
stands for Southeast, and SW stands for South West. 
 

 

Table 20. Regional Producer Surplus Impacts Under Vaccination and Larvicide 

Million 2004 US$ 

 CB GP LS NE RM 
Mean -36.633 7.193 -51.027 -1.949 -4.367 
StDev 6.765 4.218 28.135 2.282 7.077 
Min -46.433 -1.680 -78.672 -13.294 -17.897 
Median -38.473 6.690 -68.758 -1.752 -6.229 
Max 13.610 46.820 23.435 1.587 6.792 

 PSW PNWE SC SE SW 
Mean 0.587 -6.581 -81.001 -51.406 -22.405 
StDev 1.014 2.546 59.388 22.863 5.539 
Min -2.998 -10.640 -109.469 -64.183 -31.193 
Median 0.177 -7.791 -102.172 -61.473 -23.001 
Max 2.143 -1.704 81.946 20.532 -7.859 
CB stands for Corn Belt, GP stands for Great Plains, LS stands for Lake States, NE stands for  Northeast, RM stands for Rocky  
Mountains, PSW stands for Pacific Southwest, PNWE stands for Pacific Northwest West East, SC stands for South Central, SE 
stands for Southeast, and SW stands for South West. 
 

 



63 
 

 Figure 8 below shows a graphical representation of the total national welfare loss 

(as seen in Table 10) in billions of 2004$ under each control strategy that the study 

analyzed.  As can be seen, not much difference resides between the two scenarios with 

the most damages, vaccination and vaccination and larvicide together. The least damages 

occur the no intervention scenario, showing that the cost of investing in vaccination and 

larvicide for exceeds the benefit of reducing the number of infections and deaths in the 

livestock.  

 

 
Figure 8. Graphical Representation of Total National Welfare Loss  

 

6.3 Cost of Illness Results 

 In year one, with 25 reported cases, the costs of illness accounting for 

underreporting where one reported case equals either, 10, 20, 50, or 80 unreported cases 

can be seen in Table 21 and graphically in Figure 9 below. 
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Table 21. Cost of Illness for Year One of Outbreak 

Reported cases to unreported cases Dollars 

1  to 10  $      4.47  
1 to 20  $      5.14  
1 to 50  $      7.15  
1 to 80  $      9.16  

      

 

 

 
 Figure 9. Cost of Illness for Year One 

 

 This study also calculated the cost of illness as the disease would progress among 

the human population and have a number of reported cases equal to either 625, 2000, 

3000, or 6000 cases. The results can be seen in Table 22 and Figure 10 below. 

 

Table 22. Cost of Illness as Disease Progresses in Million $ 

Cases 

 
625 2000 3000 6000 

1  to 10 $  114.50   $  366.41   $    549.62   $   1,099.23  
1 to 20 $  131.66   $  421.31   $    631.96   $   1,263.92  
1 to 50 $  183.12   $  409.79   $    878.99   $   1,757.99  
1 to 80 $  234.59   $  750.69   $    1,126.03   $    2,252.06  
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Figure 10. Cost of Illness as Disease Spreads 

 

 If RVF were to be introduced into the U.S. and follow the path of WNV, which 

reached over 9,000 reported cases in 2003, economic damages can be expected to be in 

the billions. As can be seen from the tables above, with either a low estimate of cases (1 

reported case representing 10 unreported) or a high estimate of cases (1 reported case 

representing 80 unreported cases), damages will be in the billions. The results for the 

reported cases of 6,000 with a low estimate of total cases shows a total cost of $1.1 

billion while the high estimate shows a total cost of $2.3 billion.  

 

6.4    Disability Adjusted Life Years Results 

 The results from the Disability Adjusted Life Years (DALYs) can be seen in 

Table 23 and Figure 11 below. As would be expected, the DALYs increase as number of 

cases increase. With a number of reported cases equal to 25, the total number of DALYs 

lost is 297. As this number increases, or as the virus spreads throughout the country to a 

number of reported cases equal to 6000, the total number of DALYs lost is equal to 

71,216. 
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Table 23. DALY Results 

Number of Cases DALY 

25 297 
625 7418 

2000 23739 
6000 71216 

 

 

 

 
Figure 11. Disability Adjusted Life Years (DALYs) 
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 As stated by Meltzer (2010), one of the more important components of a DALY 

is the YLL value, the value that shows how many deaths and to which age group they 

belong. Another important factor when dealing with public health issues and disease 

outbreak is who is going to get sick and how many. Seeing as how this is so, Table 24 

gives a breakdown of the number of hospitalizations, sick, dead, YLL, and YLD for the 

given three age groups (under 18, between 18 and 65, and 65+).  As the table shows, 

those aged between 18 and 65 have the most cases of hospitalization, sickness, and 

deaths. The most YLL occurs for those under age 18, seeing as how the younger 

population would have a greater number of life expectancy, with more to lose in this 

parameter.  

Table 24. Breakdown of Case Severity and YLL by Age Group 

Number of Cases = 25 Hospitalized Sick Dead YLD YLL 

under 18 24 6,305 0.876 17 129 

18< x <65 37 9,819 1.364 27 115 

above 65 7 1,876 0.261 5 4 

Number of Cases = 625      

under 18 591 157,635 22 427 3231 

18< x <65 921 245,475 34 666 2863 

above 65 176 46,890 7 127 105 

Number of Cases = 2000      

under 18 1,892 504,432 70 1368 10338 

18< x <65 2,946 785,520 109 2130 9160 

above 65 563 150,048 21 407 336 

Number of Cases = 6000      

under 18 5,675 1,513,296 210 4103 31014 

18< x <65 8,837 2,356,560 327 6389 27481 

above 65 1,688 450,144 63 1220 1009 
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7. CONCLUDING COMMENTS 

 Zoonotic disease outbreaks can cause economic losses. This study developed 

information on the potential livestock and human vulnerability to RVF by assessing 

economic consequences. In addition, the economic implications of using a number of 

control strategies for RVF are examined, which have the potential for reducing the 

magnitude of impact on livestock populations. The results provide information relevant 

to decisions regarding the prevention or response to a RVF epidemic.  

 As the results show, the number of infected, aborted, and dead animals is best 

controlled by coupling vaccination along with larvicide, but results in the second highest 

median national welfare loss. Therefore, depending on what the goals are for policy 

makers, careful decisions must be made as to what actions should be taken. If the 

ultimate goal is to reduce infections, abortions and deaths in the livestock population, 

then vaccination along with larvicide is the best answer. However, if the goal is to 

reduce economic impact, then the best answer is to let the disease proceed without 

significant intervention.  

 Total national producer welfare is reduced with each scenario, and is more severe 

than the total national welfare loss (producer, consumer, and processor together). 

Consumer welfare is increased with each scenario due to a drop in prices of some 

commodities, and in some instances, an increase in supply as well. The majority of the 

national welfare loss can be attributed to the producers' and processors' loss in welfare. 

The highest damages are seen in the regions of the outbreak such as the South Central 

(SC). Other regions such as the Corn Belt, Lake States, and South East regions also see 

high damages due to price changes. The outbreak did not have substantial price effect on 

dairy products, but did have noticeable price changes for live cattle such as heifer calves, 

stocked yearling, and dairy calves. Prices for substitutes such as pork, chicken, and 

turkey experienced a price reduction, which can also be a factor resulting in consumer 

welfare gains.  
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 It must be noted that these control strategies did not incorporate effects on human 

illness and death. Further research could be done on estimating the human infection 

implications with each of these control strategies, which would most likely change the 

cost-benefit analysis.  

 This study does however shed light on the potential impact to the public health 

sector as humans may become infected if an outbreak of RVF were to occur in the U.S. 

This cost along with the economic loss of the agriculture sector suggests substantial 

potential losses to the U.S. if this hypothetical situation were to become reality. 

Combining total loss estimates from the cost of illness and ASM models, potential 

damage of a RVF outbreak could range from 121 million to 2.3 billion US 2010$. The 

results of this study show the economic damages of an outbreak in the livestock 

population being much greater relative to the outbreak in the human population (roughly 

16 times greater). It should be pointed out that both cost estimates are most likely under 

estimated. The animal outbreak is not incorporating all susceptible livestock (e.g. hogs 

and goats), and the human illness is not incorporating other damages to society (e.g. 

damages due to loss of tourism). 

 Results indicate that the age group most affected by an outbreak would be those 

aged 18-65. Again, this is based on the infection rates from a WNV outbreak in a human 

population with high density and applied to an area with roughly half the population 

density, but with a higher livestock population, and therefore further research could also 

be done with a more accurate infection rate corresponding to each age group for RVF 

and for the accurate geographic area.  

 With potential costs above $2 billion for human illness, and with this number not 

accounting for loss or damages to other sectors of the economy, it can be highly 

probable that investing in a human vaccination campaign can be cost-effective and 

possibly cost-reducing. Needless-to-say, this study would ideally be done with an 

integrated epidemic/economic model that includes both livestock and human targets, all 

livestock populations which are susceptible not just cattle, as well as control strategies 

for both public health and agriculture sectors. This research was limited due to a lack of 
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completely accurate data on what the disease would actually do and how both livestock 

and human population would respond to a RVF outbreak in the U.S.  

 Future follow up research could incorporate international trade issues. Trade bans 

which are put into place under disease outbreaks can have a major impact and should be 

taken into account. Furthermore, this study could also be enriched by incorporating 

changes in demand for particular commodities as a result of an outbreak. Other livestock 

which are targets, such as hogs and goats, could also be incorporated. Other disease 

management strategies could be incorporated as well, such as surveillance, animal 

disease tracking, human vaccination, and other vector control measures such as 

repellants.  

 This study could also be extended to other regions. This study simulated a RVF 

outbreak in the southeast region of Texas. It has been shown that RVF has competent 

vectors across the entire nation of the U.S., and therefore this research could be 

expanded to include a wider geography of a potential outbreak. The state of California 

along with the U.S. southeast are potentially highly vulnerable, and also have high 

livestock populations. An outbreak in these regions, as well as other regions in the U.S., 

could cause substantial economic losses.  

 Impacts of animal disease outbreaks may either be elevated or alleviated 

depending on what disease control actions policy and decision makers take. This study 

uses careful economic assessment of RVF vulnerability and the value of prevention and 

control strategies along with assessment of damages to public health in order to support 

decision making. We find that there is a need for yet further development of control 

strategies as the ones examined herein did not have a large impact and were generally 

worse than letting the disease run its course.   
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