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ABSTRACT

The Bootstrap in Supervised Learning and

its Applications in Genomics/Proteomics. (May 2011)

Thang Vu, B.S., Hanoi University of Technology;

M.S.E, The University of Michigan, Ann Arbor

Chair of Advisory Committee: Dr. Ulisses M. Braga-Neto

The small-sample size issue is a prevalent problem in Genomics and Proteomics to-

day. Bootstrap, a resampling method which aims at increasing the efficiency of data usage,

is considered to be an effort to overcome the problem of limited sample size. This disserta-

tion studies the application of bootstrap to two problems of supervised learning with small

sample data: estimation of the misclassification error of Gaussian discriminant analysis,

and the bagging ensemble classification method.

Estimating the misclassification error of discriminant analysis is a classical problem in

pattern recognition and has many important applications in biomedical research. Bootstrap

error estimation has been shown empirically to be one of the best estimation methods in

terms of root mean squared error. In the first part of this work, we conduct a detailed

analytical study of bootstrap error estimation for the Linear Discriminant Analysis (LDA)

classification rule under Gaussian populations. We derive the exact formulas of the first

and the second moment of the zero bootstrap and the convex bootstrap estimators, as well

as their cross moments with the resubstitution estimator and the true error. Based on these

results, we obtain the exact formulas of the bias, the variance, and the root mean squared

error of the deviation from the true error of these bootstrap estimators. This includes the

moments of the popular .632 bootstrap estimator. Moreover, we obtain the optimal weight

for unbiased and minimum-RMS convex bootstrap estimators. In the univariate case, all

the expressions involve Gaussian distributions, whereas in the multivariate case, the results
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are written in terms of bivariate doubly non-central F distributions.

In the second part of this work, we conduct an extensive empirical investigation of

bagging, which is an application of bootstrap to ensemble classification. We investigate

the performance of bagging in the classification of small-sample gene-expression data and

protein-abundance mass spectrometry data, as well as the accuracy of small-sample er-

ror estimation with this ensemble classification rule. We observed that, under t-test and

RELIEF filter-based feature selection, bagging generally does a good job of improving

the performance of unstable, overtting classifiers, such as CART decision trees and neural

networks, but that improvement was not sufficient to beat the performance of single sta-

ble, non-overtting classifiers, such as diagonal and plain linear discriminant analysis, or

3-nearest neighbors. Furthermore, the ensemble method did not improve the performance

of these stable classifiers significantly. We give an explicit definition of the out-of-bag es-

timator that is intended to remove estimator bias, by formulating carefully how the error

count is normalized, and investigate the performance of error estimation for bagging of

common classification rules, including LDA, 3NN, and CART, applied on both synthetic

and real patient data, corresponding to the use of common error estimators such as resubsti-

tution, leave-one-out, cross-validation, basic bootstrap, bootstrap 632, bootstrap 632 plus,

bolstering, semi-bolstering, in addition to the out-of-bag estimator. The results from the

numerical experiments indicated that the performance of the out-of-bag estimator is very

similar to that of leave-one-out; in particular, the out-of-bag estimator is slightly pessimisti-

cally biased. The performance of the other estimators is consistent with their performance

with the corresponding single classifiers, as reported in other studies. The results of this

work are expected to provide helpful guidance to practitioners who are interested in apply-

ing the bootstrap in supervised learning applications.
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CHAPTER I

INTRODUCTION

This chapter provides a broad overview of the interface between the biomedical research

and the quantitative methods, which is now generally known as Computational Biology,

Systems Biology or Genomics Signal Processing. It also touches on the small sample

problem, one of the major obstacles of the field. Despite of still being in the primary stage,

Computational Biology has been showing very potential applications, some of which will

also be highlighted in this chapter. Finally, some contributions of this dissertation are

introduced and its organization is outlined.

A. Introduction

Quantitative methods are indispensable components of biomedical research in the 21st cen-

tury. In the report ”Catalyzing Inquiry at the Interface of Computing and Biology,” by the

National Institute of Health [1], Systems approach and the power of computation and engi-

neering were considered as essential constituents of the life science research this century.

In the same report, life science, in particular biology was characterized as ”empirical”,

”descriptive” and ”experimental”. With the recent advent of genome sequencing and high-

throughput data, computation is now integrated into biological sciences as a crucial com-

ponent. Computation means not only storage and visualization of but also the analysis and

inference of biologically meaningful information from the data. While the former can be

supported by information technology and software engineering, it is the statistical learning

that fulfills the latter.

A tremendous amount of effort is invested to apply the statistical learning into biomed-

The journal model is IEEE Transactions on Automatic Control.
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ical research and mining the high-throughput data. There are a plethora of research work on

applying engineering and quantitative sciences into life science and medicine in the last ten

years. It gave birth to new fields which are interdisciplinary between life sciences, physi-

cal sciences, and engineering. They are now generally known as Computational Biology,

Systems Biology, Genomics Signal Processing, or Bioinformatics.

This field is still in its infancy [2]. Despite of commonplace critics among the medical

research community about its reproducibility and reliability, the initial achievements of

Computational Biology are promising and deserves appreciation. Some applications in

cancer research will be mentioned in the next sections.

B. Supervised Learning

Supervised learning is an important quantitative method. It is one major type of statistical

learning, in which a system is mathematically modeled and designed from the available

information, which is usually in the form of numerical data sets. The supervised method

is different from the unsupervised method in the way that, in the former we know the

label of the data we have, instead of discovering them in the latter. More precisely, super-

vised learning is concerned with the problem of learning from the available information to

be capable of predicting unknown information in the future. It has been also known un-

der different names such as pattern recognition, machine learning, decision theory, pattern

analysis, data mining or artificial intelligence. Besides Computational Biology, it has al-

ready demonstrated wide varieties of practical applications in diverse fields such as Image

Analysis, Remote Sensing, Medical Image Diagnosis, Speech Recognition, Robotics etc

for a long time [3].

Supervised learning problems can be sub-classified into three categories: classifica-

tion, error estimation, and feature selection. The ultimate goal of a supervised learning
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problem is to design a reliable system which can accurately predict a future observation. In

practice, the available information , i.e the number of data points is typically limited. This

data set need to be used to design a predictor which is capable of predicting properties of

future samples such as their labels (classification) or their values (regression). Generally

the more samples are used for designing, the more accurate the predictor. The prediction

accuracy also depends significantly on the classification rule used to build it (classifica-

tion). In order to know how correctly the classifier work, we need to evaluate by estimating

its error rate. A good estimator requires, in principle, a large amount of independent infor-

mation or data set (error estimation). Furthermore, there are a known relation between the

accuracy of the classifier with the number of training samples and the number of character-

istics or features based on which the classification is made. For a fixed number of training

samples, it is not always the best to use as many features as possible. That leads to the

problem of selecting the optimal subsets of features with the best discriminatory powers,

which is known as the feature selection problem. The three problems have interacting re-

lations. Given the restricted source of information, finding an optimal solution for these

three closely interrelated problems is not an easy task.

Some more fundamental points of supervised learning are presented in Chapter II.

The next section presents some observations and applications of supervised learning in

biomedical research.

C. Genomics and Proteomics

The advent of biotechnology allow to measure simultaneously the activity of tens of thou-

sands of biological entities in cellulars such as mRNA, protein, noncoding RNA, DNA

methylation status of CpG sites, the numbers of copies of genes etc. For example, based on

the hybridization technology, the Human Genome U133 Plus 2.0 Array by the Affymetrix
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Corp. can measure the expression levels of about 47,400 transcripts [4]. The Agilent Hu-

man Genome CGH Microarray 244A is able to quantify the genome copy number variations

by performing Comparative Genome Hybridization (CGH) with about 236,381 biological

features [5]. The Infinium HumanMethylation27 BeadChip allows to investigate the methy-

lation status of 27,578 highly informative CpG sites located within the proximal promoter

regions of transcription start sites of 14,475 consensus coding sequencing (CCDS) in the

NCBI Database (Genome Build 36) [6]. The Liquid-Chromatography Mass Spectrometry

(LC-MS) and tandem Mass Spectrometry (LC-MS/MS) technology enable the quantitative

assessment of protein expression level through the relation between the mass over charge

ratio and the time of flight of the enzyme-digested peptides of the proteins.

These technologies obviously generate an enormous amount of data about the activity

of the cellular biological systems. Even though there are some current technical issues of

these technologies namely noise, image analysis, experimental design of microarray chips

etc and the low resolution, low accuracy of the proteomics instruments etc, these high-

throughput datasets can be considered as precious sources of information of the underlying

cellular biological processes, which was generally unavailable to the life science research

before. In order to mine the biological knowledge hidden in these numbers, the quanti-

tative methods need to be applied, and more specifically statistical inference are regarded

as a nature choice. One of the problems that the statistical inference of these data sets is

presently facing is the small number of samples in comparison to the number of features.

As mentioned before, most of the chips measure tens of thousand of biological features

while the number of biological replicates, i.e the number of tissues are often as limited

as hundreds in most of current biomedical research. The classical statistical inference has

been established for the context of having large numbers of samples. In the settings of

limited samples, these traditional inference methods work unsurprisingly differently. More

small-sample studies need to be done to ensure the reliable and accurate outputs of these
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statistical inference algorithms in the contexts of Genomics and Proteomics.

D. Case Examples of Applications

The growth of advanced high-throughput technology and the sequencing technology of

human genomes, together with some other factors, is a milestone of the new revolutionary

period of medical science [7]. There have been a considerable amount of research efforts in

applying the supervised learning using these genomics and proteomics data sets in solving

biomedical research problems. The range of Computational Biology is very large, includ-

ing the intersections of engineering, statistics and quantitative sciences with life sciences

and medicine. As a result, Computational Biology has been appearing in a wide variety

of biomedical research topics using different classes of quantitative research, which are

applied for all kinds of high-throughput and sequencing data. Due to the constraint of this

dissertation, we focus on applications of supervised and unsupervised learning in Genomics

and Proteomics with the emphasis on the supervised method, which is more relevant to this

dissertation. Following is a very brief highlight of Genomics-based and Proteomics-based

applications in biomedical research generally, and in cancer research particularly.

Genomics and Proteomics have been integrated into studies of different cancers. Read-

ers can obtain details about the genomics-based literature for each cancer type in many

comprehensive reviews, namely for breast cancer in [8, 9, 10, 11, 12], for lung cancer in

[13], for acute myeloid leukemia in [14], for melanoma in [15], for epithelial ovarian cancer

in [16], for colorectal cancer in [17] etc.

For each type of cancer, statistical inference of high throughput data sets has been

used to study some problems of oncology research. The applications of statistical learning

can be mostly classified into three main categories: class discovery, class prediction, and

class comparison. Besides these, it has also been employed in survival prediction, clinical
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trial design and biomarker discovery and validation.

First, class discovery has been playing roles in studing the biological mechanism of

cancer to get more insights into oncogenesis [18, 19]. It is also used to either discover

new cancer class or classify tumors to known classes, for which there have been no general

approach [20]. It is now well known that tumors with similar phenotypes can be geneti-

cally very different. Understanding the pathogenesis of cancer subtypes is very important,

because cancer in different subtypes can develop from different causes or cells of origin.

As a result, a more suitable therapeutic approach for each specific subtype need to be used

to provide better drug efficacy. For example in [21], Verhaak et al, using statistical analysis

mostly based on hierarchical clustering - one of the most common unsupervised meth-

ods, identified clinically relevant subtypes of Glioblastoma Multiforme. They also found

that Glioblastoma subtypes are reminiscent of distinct neural cell types and show different

treatment efficacy. Another example is the works by Bhattacharjee et al in [22], in which

distinct adenocarcinoma subclasses were revealed by mRNA expression profiling. Similar

attempts in identifying molecularly cancer subtypes can be found in [23, 24, 25].

Second, genomics- and proteomics-based studies have been used to find significantly

differently expressed genes or proteins, which are usually known as studies of class predic-

tion and comparison. These differentially expressed genes or proteins can be considered as

molecular biomarkers serving a wide varieties of applications namely diagnosis, progno-

sis, staging or selecting optimal personal therapy [26]. They can be used for early cancer

detection. Also, they can be clinically relevant therapeutic biomarkers, based on which a

better treatment plan is applied with expectedly better efficacy [27]. These tasks are to be

archived by using supervised learning methods together with well designed clinical trials.

Moreover, the microarray-based clinical trial research has been emerging as a new and

active area [28].They have been also used in studying of survival prediction [29, 30]. The

identification of new targets and new drug in drug discover, application of individualized
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medicine based on pharmagenomic biomarkers is significantly assisted by the statistical

inference [31].

Even though most of the findings of these research have not yet become part of the

medical practice today [32, 33, 34, 35, 9, 13, 36, 27, 37, 38], and obviously more works

needs to be done to realize them, they are unprecedented and deserve appreciation as the

initial step in directing the biomedical research to a new direction. The main drawbacks

of using microarray-based studies are reproducibility and validity [33]. The reasons for

these two problems, besides technical issues, are related to the small-sample size and the

computational models used. The basic points of the small-sample size problem is addressed

in the next section.

E. Small-sample Challenges and Resampling Technique

While the challenge of small-sample sizes was long time ago raised in the research liter-

ature of statistical pattern recognition regarding the relation between the sample sizes and

the optimal subsets of features used to design classification systems and the effect of that

relation on the system performance in [39, 40], it becomes particularly prevalent today in

the application of genomics and proteomics [41, 42, 43].

As a highly application-oriented field, statistical discriminant analysis received con-

siderable attention on its issues regarding practical design and implementation [44, 39, 45,

46, 47]. The basic question was, for a fixed number of samples, what was the optimal sub-

set of features that gives the best classifiers. The topic has been long known as the peaking

phenomenon or the curse of dimensionality. Given a fixed limited dataset, designing a clas-

sification system should be conducted as a process involved all the three closely interrelated

stages: feature selection, which involves picking the best subset of features to design the

classifiers on; the classifier design, which is concerned with formulating a predictor; and
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very importantly error estimation which determines how accurate the designed classifier

can be. As a general principle, the more data we have, the more accurate each stage. In

many practical applications, all these three stages must be implemented using one dataset

of limited samples.

So, the first difficulty of small-sample problems is naturally concerned with the design

and validation of the system. Small training set makes classifiers unstable and variable

[47]. Data is limited and has to be split to first design the system and then evaluate its

performance, not to mention the process of feature selection. It is a trade-off because

the fewer samples are used to design, generally the less accurate the classifier; the fewer

samples are left out to test the classifier, the more unreliable the estimators are.

The problem of sample sizes is remarkably important to the practitioners who want to

design a reliable and accurate system in practice. In principle, the small sample size can

easily contaminate the design and evaluation of the systems. Because first, data sets of few

samples fail to statistically represent the underlying distributions. Consequently, the classi-

fiers designed on this sparse data often perform poorly when validated on the independent

future observations. This fact can be explained clearly for parametric classification rules

where small-sample estimates for parameters of the label-feature distributions are far from

reliable and accurate. As a consequence, the parametrically designed classifiers are unsta-

ble and inaccurate [48]. The linear classifier with unknown covariances under Gaussianity

assumption is a clear example, when the covariance matrix is to be estimated by the pooled

sample covariance matrix. These matrices are even singular when the numbers of samples

are smaller than the number of features; the classification design fails consequently.

Small samples results in severe model selection bias [49] and overfitting. Overfitting

generally means while the classifiers perform very well on the training data, or even on

the hold-out test data, which gives the apparent error or the hold-out error almost zero,

they show disappointing performance on the validation samples. This behavior typically
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happens for classification rules of complexed structure, which normally require a large

amount of data to work well [48]. Apparently, these overfitting classification rules fail to

work well in the small-sample settings.

This small-sample problem is particularly prevalent in genomics and proteomics to-

day [27, 37, 33, 42, 50, 49, 51, 52, 53]. While high-throughput biotechnology chips can

be regarded as a breakthrough in the life sciences allowing activity measurement of tens

of thousands of cellular entities at the same times, it also poses a challenge for those

who want to statistically mine them by offering only a small number of replicates due

to subjective constraints such as the tissue sources, time, and, cost etc. One reason which

hinder the applications of molecular biomarker in cancer research, found by genomics-

based and proteomics-based classifiers, into clinical practice is the lack of valid validation

[35, 14, 27, 54, 13, 36, 32, 8, 33, 17, 34, 55, 56, 16, 9, 57, 58, 53, 59].

Cross-validation has been used an effort for validation [37]. It is good giving an almost

unbiased estimate. Problem with cross-validation is its high variance, in particular for

estimating the misclassification error of expression-based classifiers of small sample sizes.

While giving an almost unbiased estimate, the wide variability of cross-validation can ruin

its reliability.

Bootstrap can be regarded as a smooth version of cross-validation. It performs bet-

ter than cross-validation by giving smaller variance; and so ultimately the superior per-

formance in term of root-mean-squared error to most of other error estimation methods.

Moreover, bootstrap resampling increases the efficiency of data usage when it can reuse

the samples through the process of uniform resampling with replacement. That property

of bootstrap has been applied in designing more accurate classifiers. The ensemble clas-

sification rules are considered as typical application of that idea. The ensemble classifiers

combine the classification decisions of an ensemble of individual classifiers, which are

designed either on bootstrap samples (bootstrap aggregation or bagging) or on different
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subspace of features (random subspace method). So basically data are reused in design-

ing member classifiers of the ensemble; and the member classifers are clearly correlated.

Empirical studies have generally shown better performance for ensemble classifier, in par-

ticular when the individual classifiers are diverse and weakly correlated with each other.

The major drawback of the resampling method is computation time when it needs a

larger number of iterations, in comparison with cross-validation. This was a problem for

the effort to implement bootstrap about twenty years ago. Nowadays with the revolutionary

growth of information technology with strong personal computers and supercomputers, this

is no longer a big problem.

As a conclusion, resampling is one approach to beat the problem of limited samples.

This dissertation studies the applications of this method for the first two problems of super-

vised learning; bootstrap error estimation and ensemble classification rule.

F. Contributions

In the first part of this work, we conduct a detailed analytical study of bootstrap error es-

timation for the Linear Discriminant Analysis (LDA) classification rule under Gaussian

populations. We derive the exact formulas of the first and the second moment of the zero

bootstrap and the convex bootstrap estimators, as well as their cross moments with the re-

substitution estimator and the true error. Based on these results, we obtain the exact formu-

las of the bias, the variance, and the root mean squared error of the deviation from the true

error of these bootstrap estimators. This includes the moments of the popular .632 boot-

strap estimator. Moreover, we obtain the optimal weight for unbiased and minimum-RMS

convex bootstrap estimators. In the univariate case, all the expressions involve Gaussian

distributions, whereas in the multivariate case, the results are written in terms of bivariate

doubly non-central F distributions.
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In the second part of this work, we conduct an extensive empirical investigation of

bagging, which is an application of bootstrap to ensemble classification. We investigate

the performance of bagging in the classification of small-sample gene-expression data and

protein-abundance mass spectrometry data, as well as the accuracy of small-sample error

estimation with this ensemble classification rule. We observed that, under t-test and RE-

LIEF filter-based feature selection, bagging generally does a good job of improving the

performance of unstable, overfitting classifiers, such as CART decision trees and neural

networks, but that improvement was not sufficient to beat the performance of single stable,

non-overfitting classifiers, such as diagonal and plain linear discriminant analysis, or 3-

nearest neighbors. Furthermore, the ensemble method did not improve the performance of

these stable classifiers significantly. We give an explicit definition of the out-of-bag estima-

tor that is intended to remove estimator bias, by formulating carefully how the error count

is normalized, and investigate the performance of error estimation for bagging of common

classification rules, including LDA, 3NN, and CART, applied on both synthetic and real

patient data, corresponding to the use of common error estimators such as resubstitution,

leave-one-out, cross-validation, basic bootstrap, bootstrap 632, bootstrap 632 plus, bolster-

ing, semi-bolstering, in addition to the out-of-bag estimator. The results from the numerical

experiments indicated that the performance of the out-of-bag estimator is very similar to

that of leave-one-out; in particular, the out-of-bag estimator is slightly pessimistically bi-

ased. The performance of the other estimators is consistent with their performance with

the corresponding single classifiers, as reported in other studies. The results of this work

are expected to provide helpful guidance to practitioners who are interested in applying the

bootstrap in supervised learning applications.
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G. Dissertation Outline

Concerning the coverage of individual chapters, Chapter I introduces briefly the super-

vised learning as well as its applications in biomedical research, in particularly Genomics

and Proteomics. It also presents the main points of the small-sample problems and de-

scribes the resampling method, which is considered as an approach to resolve the problem

of the limited samples. The first part of this dissertation is about the theoretical analysis

of bootstrap error estimation for the linear classification rule. First, Chapter II provides

the preliminaries on supervised learning and a review on error estimation, with emphasis

on the bootstrap methods. Chapter III presents the theoretical analysis of some variants

of bootstrap estimations for linear discriminant analysis under univariate Gaussian model,

while Chapter IV provides the results for the multivariate Gaussian model. The second

part of this dissertation begins with Chapter V, which reports the performance of a varieties

of bagging classifiers in small-sample settings applied for some Genomics and Proteomics

datasets. Chapter VI provides the results of an extensive empirical study on estimating

errors of bagging classifiers. The last chapter, Chapter VII, presents some concluding re-

marks.



13

CHAPTER II

REVIEW ON ERROR ESTIMATION

This chapter first provides the preliminaries on supervised learning and the basic notations

which are used throughout the dissertation. Then a review on error estimation problem is

given with the emphasis on the bootstrap methods. Finally, we highlight the importance of

error estimation via some applications in computational biology.

A. Preliminaries on Supervised Learning

There are excellent references on supervised learning. Here, we present the main points

of supervised learning, which acts more as the introduction of the notation we will use,

other than a review of the subject. Thorough material of the subject can be found in the

works by Duda, Hart, and Stork [60], Devroye, Györfi, and Lugosi [61], Fukunaga [62],

Mclachlan [63], Jain, Duin, and Mao [64], the panel on Discriminant Analysis, Classifica-

tion, and Clustering of the committee on Applied and Theoretical Statistics of the Board

on Mathematical Sciences, National Research Council [65] or elsewhere.

Almost all the supervised problems can be modeled mathematically as following. Sup-

pose we need to classify an object, named X into one kind out of C categories. For sim-

plicity, we assume there are only two categories: Π0 and Π1 (C = 2). For C > 2, all the

concepts apply with slight modifications for which readers are referred to the previously

mentioned references. The classification problem with two classes are often referred to as

binary or dichotomous. The class of an object is also called its label. Let use Y to de-

note the label of object X . For binary classification, object X can either have label Y = 0

(X ∈ Π0) or label Y = 1 (X ∈ Π1). The object X is classified based on its characteris-

tics or features. Features can be either numerical or categorical, or converted to either of

these. Different characteristics makes up different features. The number of characteristics,
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p, available about the object X is called number of features and the set of p features create

the feature space of X .

X = X1×X2×·· ·×Xp (2.1)

From now on, we use X to denote the object and the its features interchangably. For

supervised learning, we usually have a set of data with known labels for both classes.

Let call the data set Sn = S0 ∪ S1 where S0 = {(X1,Y1), (X2,Y2), · · · ,(Xn0,Yn0)} and S1 =

{(Xn0+1,Yn0+1), · · · , (Xn0+n1,Yn0+n1)}, where Xi ∈ Π0 or Yi = 0, for all 1 ≤ i ≤ n0 and

Xi ∈ Π1 or Yi = 1, for all n0 + 1 ≤ i ≤ n0 + n1. The data collected often contain ran-

dom noise. The relationship between the features and their labels, therefore, is statistically

random. It is modeled as the joint distribution between label and features, often referred

to simply as the feature label distribution or the conditional distribution or underlying

distribution FX ,Y (.). This distribution is often unknown. It is subjectively ideal to find a

deterministic function f (.) such that

f :X −→ {0,1},

Y = f (X).

Given the random nature of the relationship between label and features mentioned above,

it is generally impossible to find such a deterministic f (.). The classification instead is im-

plemented via the discriminant function W (Sn,X) or the classifier ψ(X) found by applying

the classification rule Ψ on the training sample Sn.

ψ(X) =

 0 if W (Sn,X)≥ c

1 otherwise
(2.2)

where c is a threshold found when designing the classifier.

There are varieties of classification rules, which can be classified into different types

based on different classification criterion. They can be sample-based v.s. optimization-
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based. They are parametric v.s. non parametric. They are stable v.s weak. They can be

individual or ensemble. More details can be found in the review paper by Jain [64].

One of the ultimate goals of designing the classifier ψ(X) is to be able to accurately

predict the unknown label of new observations X . The probability of incorrectly classifying

X is

ε = P{Y 6= ψ(X)} . (2.3)

More precisely,

ε = P{ψ(X) = 1 |Y = 0}P{Y = 0}+P{ψ(X) = 0 |Y = 1}P{Y = 1} , (2.4)

or

ε = (1− γ)ε0 + γε
1 (2.5)

where ε0 = P{ψ(X) = 1 |Y = 0} , ε1 = P{ψ(X) = 0 |Y = 1} and γ = P{Y = 1} is the

class priori probability.

The Bayes rule is the classification rule Ψ∗ which produces the Bayes classifier ψ∗(X) with

the minimum misclassification error ε∗.

ε
∗ = min︸︷︷︸

Ψ

ε (2.6)

In the literature of error estimation in classification, ε is often referred to as the conditional

error to denote the given condition of training sample Sn, i.e the classifier ψ is still a

function of Sn. It is often of interest to investigate ε over the distribution of Sn, i.e consider

the expectation of ε (conditional error) and its other moments over the distribution of

Sn. In this dissertation, ε is used to denote the conditional error and ESn[ε] = E[ε] for

unconditional error.
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B. Linear Discriminant Analysis

Because the major part of this work is concerned with the bootstrap error estimation method

for linear classifiers under Gaussianity assumptions, details about this classification rule

under this standard condition is provided in the following.

Linear Discriminant Analysis (LDA) employs Anderson’s W discriminant [66], which

is defined as follows:

W (X) =

(
X− µ̂0 + µ̂1

2

)T

Σ
−1 (µ̂0− µ̂1) (2.7)

where

µ̂0 =
1
n0

n0

∑
i=1

Xi,

µ̂1 =
1
n1

n0+n1

∑
i=n0+1

Xi

(2.8)

are the sample means of the sample sets S0 and S1, respectively. This defines the LDA

classification rule, whereby the designed LDA classifier is defined by:

ψ(X) =


1 , if W (X)< 0

0 , if W (X)≥ 0
, (2.9)

that is, the sign of W (X) determines the classification of X . Here we are assuming that the

covariance matrix Σ is known.

For the case with the assumption of unknown covariance matrices, they are estimated

by the pooled sample covariance matrix

S =
1

n0 +n1

(
n0

∑
i=1

(Xi− µ̂0)(Xi− µ̂0)
T +

n0+n1

∑
i=n0+1

(Xi− µ̂1)(Xi− µ̂1)
T

)
. (2.10)

The W becomes

W (X) =

(
X− µ̂0 + µ̂1

2

)T

S−1 (µ̂0− µ̂1) . (2.11)
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In the univariate case, both (4.1) and (2.11) reduce to

ψ(X) =


1 , if

(
X− µ̂0−µ̂1

2

)
(µ̂0− µ̂1)< 0

0 , otherwise
. (2.12)

Under the standard assumption of Gaussinity, i.e Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and

Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+n1, the conditional true error ε has the closed form as

follows: with assumption of known covariance,

ε = (1− γ)Φ

(
−1

2

√
(µ0−µ1)T Σ−1(µ0−µ1)

)
+ γΦ

(
1
2

√
(µ0−µ1)T Σ−1(µ0−µ1)

)
;

(2.13)

and with assumption of unknown covariance,

ε =

(1− γ)Φ

(
−(µ0−µ1)

T S−1(µ0−µ1)

2
√

(µ0−µ1)T S−1ΣS−1(µ0−µ1)

)
+ γΦ

(
(µ0−µ1)

T S−1(µ0−µ1)

2
√

(µ0−µ1)T S−1ΣS−1(µ0−µ1)

)
.

(2.14)

Moreover, the unconditional error in the case of known covariance matrix is

E[ε] = (1− γ)P
(

W1

W2
<

1−ρ0

1+ρ0

)
+ γP

(
W3

W4
>

1+ρ0

1−ρ0

)
, (2.15)

where W1,W2,W3, and W4 (W1,W2 are independent and so are W3,W4) are distributed as

noncentral chi-square variables with p degrees of freedom with noncentrality parameters

λ1, λ2, λ3, and λ4, respectively with

λ1 = λ4 =
n0n1

2(1+ρ0)

(
1√

n0 +n1
− 1√

n0 +n1 +4n0n1

)2

∆
2 ,

λ2 = λ3 =
n0n1

2(1−ρ0)

(
1√

n0 +n1
+

1√
n0 +n1 +4n0n1

)2

∆
2 ,

ρ0 =
n1−n0√

(n0 +n1)(n0 +n1 +4n0n1)
,

(2.16)
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where ∆2 = (µ1−µ0)
T Σ−1(µ1−µ0) is the Mahalanobis distance between the populations.

The unconditional error E[ε] in the case of unknown covariance matrix has very complexed

distributional properties involving the distribution of Hotelling’s T 2 distributions [67]. In

[68], Sitgreaves obtained a complicated closed form for E[ε0] involving five infinite sum-

mations. There was a line of work on the topic of asymptotic expansion of the moments of

the conditional error. Such typical studies includes [69, 67, 70, 71, 72, 73, 74, 75, 76, 77,

78, 79]. The part of this dissertation on bootstrap error estimation for LDA is concerned

only with the case of known covariance matrix.

LDA is a simple rule but has been shown to work quite competitively in small-sample

settings. LDA can be trained/designed quickly, in comparison to other such as Classifica-

tion and Regression Tree (CART), or Neural Networks, etc which takes much longer time

to train. It also acts as the base rule for the nonlinear classification rule to be projected to

higher dimensional space. For example, the nonlinear Support Vector Machine is usually

projected onto higher-dimensional space, on which it is linear. The effectiveness of LDA

when there are limited sample points was affirmed in the works by Raudys [39]. Moreover,

in a study comparing the performance of ensemble classifiers with their corresponding in-

dividual classifiers [80] in the context of Genomics and Proteomics, LDA was shown to be

consistently one of the best in term of accuracy and training time.

C. Classical Error Estimation Methods

In practice, pattern recognition systems are often designed based on a fixed set of available

data; the accuracy of designed classifiers is evaluated based on the conditional error. While

the unconditional error gives us a global view of the performance of the classification rule

under a certain conditions and/or assumptions i.e. the average performance over all pos-

sible training sets, it is the conditional error that is useful in practice. Therefore, it is the



19

conditional error that needs estimating. All of the following estimation methods, unless

otherwise stated, are for estimating the conditional error.

Together with inventing estimation methods of the conditional error, evaluating their

performance is a critical issue, as well. This important issue was mentioned in the seminal

paper of Raudys [39]. Being functions of the data, the estimates themselves are statistics

with distributional properties. The estimators ε̂s are often evaluated based on the moments

of their deviation from the true error ε . The common moments of interests often are the

first (the bias E[ε̂− ε]), second (the variance E[(ε̂−Eε̂)2]), and the cross-moment (E[ε̂ε]),

which are involved in forming the RMS error E[(ε̂− ε)2], the usual metric used to evaluate

the behavior of estimators.

There have been some excellent reviews on estimating the misclassification rates in-

cluding [81, 82, 83, 84, 85]. These papers provide thorough overviews of the statistical

properties of the true error and its classical estimators including resubstitution, holdout,

cross-validation and kernel-based estimators as well as their performance in simulation

studies. We therefore in the first part of the followings mention concisely about these with

focus on the most up-to-date progress. The emphasis of this review is largely on the boot-

strap methods presented in the later part.

1. Resubstitution Estimation

Data in practice are often limited, and the training sample Sn has to be used for both de-

signing the classifier ψn and estimate the true error ε . An obvious method to estimate ε is

thus to use Sn itself as the test set. This is called the resubstitution estimator:

ε̂r =
1
n

n

∑
i=1
|Yi−Ψn(Sn)(Xi)|=

1
n

[
n0

∑
i=1

Iψ(Xi)=1 +
n0+n1

∑
i=n0+1

Iψ(Xi)=0

]
(2.17)

This method has been well known as often, although not always, optimistic, especially

in small sample settings. Zollanvari, Braga-Neto, and Dougherty provided some theoret-



20

ical results of distributional properties of resubstitution estimator for linear discriminant

analysis under Gaussianity assumption with known covariance matrix. The key part of

their results includes the exact formula for bias, variance, and the root-mean-square of the

deviation of the resubstition estimator from the true error in the univariate case; and the

asymptotic exact approximation in the multivariate case. More details can be found in

[86].

2. Cross-validation Estimation

In k-fold cross-validation, Sn is partitioned into k folds S(i), for i = 1, . . . ,k (for simplicity,

we assume that k divides n), each fold is left out of the design process and used as a testing

set, and the estimate is the overall proportion of error committed on all folds [60]:

ε̂cvk =
1
n

k

∑
i=1

n/k

∑
j=1
|Y (i)

j −Ψn(Sn\S(i))(X
(i)
j )|, (2.18)

where (X (i)
j ,Y (i)

j ) is a sample in the i-th fold. The process may be repeated, where several

cross-validated estimates are computed, using different partitions of the data into folds,

and the results averaged. In leave-one-out estimation, a single observation is left out each

time, which corresponds to n-fold cross-validation. The leave-one-out estimator is nearly

unbiased as an estimator of E[ε]. Zollanvari et al presented some theoretical distributional

properties of this special case of cross-validation, again for linear discriminant analysis

under Gaussianity assumption with known covariance matrix in [86].

On one hand, this has been one of the most widely used methods thanks to its almost

unbiased property. On the other hands, it is also known for the high variance. This behavior

of cross-validation has been explicitly identified in a number of extensive empirical studies.

Braga-Neto and Dougherty [43] did a substantial simulation study of error estimation in the

small-sample settings of Genomics application and illustrated clearly the high-variability
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of cross-validation estimators in that scenario.

3. Kernel-based Estimation

Most of the misclassification estimation methods are counting-based. There are some ef-

forts to introduce the kernel-based methods, which are also known as smooth estimation.

This is basically the continuity-corrected version of the regular counting methods, in order

to reduce variance. These works [87, 88, 89, 90, 43] presented promising performances of

kernel-based estimators, in term of RMS error. While it is arguably competitive with the

best methods, the major problem of smooth estimators is to choose the best kernel with its

optimal kernel bandwidth.

4. Specific Estimation for Linear Classifiers

Under the assumption of Gaussian distribution with equal covariance matrix, the error rate

of LDA has the closed form as in (2.13) and (2.14). Based on these formulas, the following

estimators were proposed by different authors and summarized in [63]:

• D method: The Mahananobis distance between the two classes is estimated by plug-

ging in the sample means and sample covariance matrix.

D =
√

(µ̂0− µ̂1)T S−1(µ̂0− µ̂1) (2.19)

• DS method: This is a modified version of the D method, in which the estimator of

Mahananobis distance is scaled with a weight to make it unbiased.

Dds =

√
n− p−1

n

√
(µ̂0− µ̂1)T S−1(µ̂0− µ̂1), (2.20)

where µ̂0, µ̂1, and S are defined as in (2.8) and (2.10), respectively.

• O method: This is based on Okamoto’s asymptotic expansion of ε0 and ε1 [69] with
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∆ replaced by D.

• OS method: This is the unbiased version of the O method where D is obtained as in

the DS method.

• Ū method treats the discriminant function as a Gaussian random variable and esti-

mates ε0 and ε1 separately by using cross-validation in combination with the above

normal-based approach.

D. Bootstrap Estimation Methods

The bootstrap method originated from Quenouille [91], Tukey [92] and Hartigan [93, 94,

95]. Efron first officially proposed it as a general statistics method in [96]. Bootstrap was

then further developed in [97, 98, 99, 100, 101, 102]. It has been used in a very wide

range of applications, namely engineering, social science [103], economics [104], biology

[105], and in particular statistics. This section gives a brief review on the application of the

methods in discriminant analysis and statistics, which is, in one way or another, related to

this dissertation. Details about implementation of bootstrap in other fields can be found in

the mentioned references and many others elsewhere.

1. Bootstrap in Classical Statistics

In [96], Efron presented a general principle for the bootstrap method, which was then

applied for multiple kinds of statistic including the error rate of prediction rules. That prin-

ciple can be briefly described as follows. First, consider the one-sample situation. Suppose

we have a random sample of size n observed from a completely unknown distribution F .

Xi = xi, Xi ∼ F, ∀i = 1,2, . . . ,n. (2.21)
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Denote X = {X1, X2, . . . , Xn} and x = {x1, x2, . . . , xn} the random sample and its observed

realization. Suppose R(X,F) is an statistic of interest, which we wish to estimate based on

the observation x. Then the bootstrap estimate R∗ of R(X,F) can be constructed as follows:

• Construct the empirical distribution F̂ by putting mass 1/n at each point xi, ∀i =

(1, 2 . . . , n).

• Draw a random sample of size n from F̂ ,say

X∗i = x∗i , X∗i ∼ F̂ , ∀i = 1,2, . . . ,n. (2.22)

In simple words, this process means resampling X uniformly with replacement n

times.

• Approximate R(X,F) by R∗(X∗, F̂)

In practice, when it is not possible to get a closed form of R∗(X∗, F̂), it is often estimated

by the sampling estimators of R∗(X∗, F̂)by implementing the Monte Carlo approximation

i.e repeating the above process multiples of times.

The two-sample situation can be expanded using the same principle. For example, in

the case of binary classification, we have the training sample Si from the class Πi, i = 0,1.

A bootstrap sample S∗ can be defined in two ways: S∗ may contain n samples drawn uni-

formly, with replacement, from S (full bootstrap sampling); or the process may be applied

to S0 and S1 independently, producing bootstrap samples S∗0 and S∗1, and one lets S∗= S∗0∪S∗1

(stratified bootstrap sampling). The development that we present in this paper is valid in

either case; but the latter case is sometimes preferred due to smaller computational com-

plexity when applying the complete bootstrap method in the next section, and also due

to the fact that it is consistent with the stratified sampling of the data into S0 and S1, the

sampling setting that is assumed here.
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In either the full or stratified bootstrap sampling case, some of the samples in S may

appear multiple times in S∗, whereas others may not appear at all. Let C be a vector of

size n, where the i-th component counts the number of appearances in S∗ of the i-th sample

in S. In addition, we consider the partition C = C0∪C1, where C0 (resp. C1) is the vector

containing the first n0 (resp. last n1) components of C. We call C a bootstrap vector. For

given S, the vector C (or, equivalently, C0 and C1) uniquely determines the bootstrap sam-

ple S∗. In the full bootstrap sampling case, C has a multinomial distribution with parameters

(n,1/n, . . . ,1/n), that is,

P(C = (i1, . . . , in)) =
1
nn

n!
i1! · · · in!

, i1 + · · ·+ in = n , (2.23)

whereas in the stratified bootstrap sampling case, the distribution of C is a product of two

multinomial distributions with parameters (n0,1/n0, . . . ,1/n0) and (n1,1/n1, . . . ,1/n1),

P(C = (i1, . . . , in)) =
1

nn0
0 nn1

1

n0!n1!
i1! · · · in!

, i1 + · · ·+ in0 = n0, in0+1 + · · · in = n1 . (2.24)

Bootstrap has been used extensively in estimating a number of standard statistics such

as mean, median, confidence interval, and particular variance. There are mathematically

rigorous works on the asymptotic behaviors of bootstrap, i.e when the number of samples

goes to infinity [106, 107, 108].

Even though there are some controversial opinions about whether or not bootstrap is

valid in every scenarios, bootstrap has been still receiving positive feedback on its wide

applicability. There are other versions of resampling scheme. More can be found in the

statistics literature.

While the asymptotic behavior of bootstrap has been studied, small sample properties

are not well understood, in particular when it comes to estimating the error rates of clas-

sification rules. Young [109] calls for more practical research on bootstrap, i.e., for the

case of finite samples. According to Chernick, Murthy and Nealy [110], “Although large
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sample properties of bootstrap have been studied, little is known about its small sample

behavior”. Shao and Tu [111] state: “Fixed sample (especially small sample) properties

are also important. Unfortunately, the bootstrap estimators are usually complicated, so that

we can only assess their fixed sample properties by empirical simulations carried out under

some special circumstances.”

2. Bootstrap Error Estimation

There has been a considerable amount of research on bootstrap error estimation methods

and they have been shown to usually outperform the traditional methods of resubstitution

and cross-validation, in terms of root mean square (RMS) error. [99, 102, 100, 112, 113,

114, 84, 115, 116, 117, 118, 110, 119, 120, 121, 43, 122].

Bootstrap was originally used to estimate the optimistic bias of the resubstitution error

from the the true error [96, 99].

R(X,F) = w = ε− ε̂r (2.25)

The bootstrap estimate of w, ŵb is

ŵb = E∗

[
∑

i

(
1
n
−P∗i

)
IYi=ψ(S∗n,Xi)

]
(2.26)

where P∗i =
|{X∗j =xi}|

n = C(i)
n ∀i = (1, 2, . . . , n).

The standard bootstrap was defined as

ε̂b = ε̂r + ŵb. (2.27)

The actual proportion of times a data point (Xi,Yi) appears in a bootstrap sample S∗n

can be written as P∗i = 1
n ∑

n
j=1 I(X∗j ,Y ∗j )=(Xi,Yi), where IS = 1 if the statement S is true, zero
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otherwise. The basic bootstrap is given by (note that Sn is fixed here):

ε̂0 =
∑

B
b=1 ∑

n
i=1 |Yi−Ψn(S∗bn )(Xi)| IP∗bi =0

∑
B
b=1 ∑

n
i=1 IP∗bi =0

. (2.28)

with the number of bootstrap sample B being between 25 and 200, as recommended in [99].

This is known as the bootstrap zero estimator [99].]

Bootstrap 632 is a variant of bootstrap which tries to correct the bias of the basic bootstrap

estimator by performing an average with the resubstitution estimator [99]:

ε̂b632 = (1−0.632)ε̂r +0.632ε̂0 (2.29)

Bootstrap 632 plus is another modified version of bootstrap, proposed in [102], which is

intended for highly-overfitting classification rules. Bootstrap 632 attempts to adaptively

find the weights in (3.9) that offset the effects of overfitting. The weights depend on the

relative overfitting rate R and no-information error rate α . In dichotomous classification,

R and α are estimated from p̂1, the proportion of observed samples belonging to class 1 and

q̂1, the proportion of classifier outputs belonging to class 1. The relations are as follows

α̂ = p̂1(1− q̂1)+ q̂1(1− p̂1) ,

R̂ =
ε̂0− ε̂r

α̂− ε̂r
,

ˆwb632+ =
.632

1− .368R̂
,

ε̂b632+ = (1− ˆwb632+)ε̂r + ˆwb632+ε̂0 .

(2.30)

In [99], Efron also proposed a set of variants of resampling schemes including double,

randomized, and randomized double bootstrap, which are corresponding to the variants of

bootstrap estimators.
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3. Empirical Bootstrap Error Estimation

In this section, we highlight some of the most substantial papers on the topic of empirical

bootstrap error estimation since Efron proposed the idea until recently.

In [99], Efron expanded the resampling scheme idea for predicting the error rate of

a prediction rule. Besides formulating the problem, he ran a simulation study to compare

the five variants of bootstrap with the synthetic data of Gaussian distribution of 2 and 5

dimensions, sample size 14 and 20. In [102], Efron presented an improved version of

the bootstrap .632 estimator called the bootstrap .632+, which is specifically designed for

dischotomous classification when the classification rules is highly overfitting. The overfit-

ting property makes the apparent error almost zero, which eliminates the ability of balanc-

ing between optimistic and pessimistic biases in the bootstrap .632 estimation. As a result,

a more appropriate convex scalar is needed to find and the bootstrap .632+ estimator is

expected to find give a better balanced combination in term of unbiasedness.

In [117], Chatterjee and Chatterjee presented a comparison empirical study of boot-

strap and other estimation methods including parametric substitution, resubstitution, split-

sample, and jackknife for linear classifiers. Their results on the synthetic data of univariate

gaussian model with three sample size 10, 20, and 50 and three real datasets of small,

medium, and large sample size gave complementary remarks on bootstrap methods.

In [113, 110], Chernick, Murthy, and Nealy studied bootstrap in the context of small-

samples for classification problem of two and three classes (n = 12, 20, and 29 for two-

and five-dimensional Gaussian vectors. By using two other resampling procedures other

than the original one by Efron [96], they proposed two more variants of bootstrap named

MC estimator and convex bootstrap, corresponding to their new resampling methods. Their

first new resampling procedure was based on the observation in another work by the same

authors [110] that while the asymptotic probability of a sample point that will not be in-
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cluded in the bootstrap sample is approximately .368, this probability is much smaller for

small n. For example for n = 14, the odds are 0.354. So in the MC estimator, the individual

bootstrap samples were controlled to contain a certain proportion of the training set. The

other new resampling of Chernick et al was to construct the new samples by taking convex

combinations of the original data. Based on those, they compared seven estimators includ-

ing the apparent, leave-one-out, zero bootstrap, .632 bootstrap, standard bootstrap, MC and

convex estimators for linear discriminant analysis.

Jain, Dubes, and Chen reported in their paper [118] favorable results of bootstraps

in term of the estimated confidence intervals with respect to the other estimation methods

with 1-NN, quadratic, and Fisher classification rules on simulation and three real data sets.

In [119], Raudys suggested that the well-known decrease in bias of the standard boot-

strap was due to the negative correlation between the apparent error and the bias w. He

stated that this correlation increased as the sample size got smaller or the classification

problem became more difficult, i.e the asymptotic error was larger, which was supported

by his theoretical establishment under asymptotic settings. Raudys also presented compli-

mentary simulation results for linear and Parzen-windown classification rule under Gaus-

sian and mixed Gaussian models.

In [114], a study of the effects of finite sample sizes on the performance of classifiers

by Fukunaga and Hayes, statistical properties of the bootstrap was analyzed. They pro-

vided a general framework for theoretical analysis of the standard bootstrap in the form of

”manageable” expressions for linear and quadratic classifiers under Gaussian assumptions.

The dominance of the bootstrap estimation was again confirmed in a review of ad-

vances in estimating the misclassification rate in 1987 by McLachlan [84]. The bootstrap

technique and its variants from the seminal paper of Efron [96, 99] were considered as the

main factor which trgiggered a series of works leading to improved estimators of error rates

by appropriate bias correction and small vatriance.
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Molinaro, Simon, and Pfeiffer published an extensive comparison study on the resam-

pling error estimation methods in [123]. Different estimation methods including twofold,

fivefold, tenfold, leave-one-out, split one-third, split one-half, .632+ were implemented

on the microarray and mass spectrometry proteomics data. They ran the simulations for

a number of classification rules such as diagonal linear discriminant, linear, CART and

nearest-neighbor classification rules. The .632+ was reports as the best methods when the

signal-to-noise ratios are moderate or weak. Moreover, the differences between resampling

methods were observed to decrease as the sample sizes increase.

In [124], Fu and Carroll presented a study of combining the two competing resampling

methods, bootstrap and cross-validation on microarray data. In their methods, a cross-

validation estimation was implemented on each bootstrap sample and the final estimate

was the sample mean of a number of cross-validation estimates. The simulation results

using that simple combination idea was reported to be promising for small sample sizes

and applicable for both parametric and nonparametric classification rules.

In [120, 121, 43], the authors provided substantial experimental studies on the per-

formance of error estimation methods for different classification rules when the sample

sizes are limited. Based on the root-mean-squared errors obtained on both synthetic mod-

els and microarray data, bootstrap error estimation were confirmed to be among the most

competitive methods.

In [112], Sima and Dougherty presented a study, in which the bias of the bootstrap

estimators were to be removed by finding the optimal convex scalar.

There also other works on the resampling methods for non-normality situations [125,

126].

This review on the empirical bootstrap is by no means exhaustive. It mostly focuses on

featuring some of the most typical works in the applications of resampling error estimation

methods. More references on the topic can be found in the papers [122, 127, 128, 129, 130,
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131, 132].

4. Complete Bootstrap Estimation in Small-sample Settings

In practice, bootstrap estimators are often obtained by Monte Carlo approximation, mean-

ing the resampling process is iterated a number of times, each times will yield an estimate.

The bootstrap estimator is the sample mean of these estimates. Choosing the optimal num-

ber of iteration has been a topic in the research of bootstrap methods.

Since each possible bootstrap sample S∗ from the training data S is associated in one-

to-one correspondence with a unique bootstrap vector C, we may write S∗ = TC(S), for

some C. Note that the original sample set itself is included: if C = (1, . . . ,1) def
= 1n, then

S∗ = T1n(S) = S, since each original sample point appears once in the bootstrap sample.

Note however that the number of distinct bootstrap samples, i.e., values for C, is equal to(2n−1
n

)
and

(2n0−1
n0

)(2n1−1
n1

)
in the full and stratified bootstrap sampling cases, respectively;

even for small n0, n1, and n, these are very large numbers. For example, in the full bootstrap

sampling case, the total number of possible bootstrap samples of size n = 20 is larger than

6.8×1010.

Given the fact that the total number of distinct bootstrap samples C grows exponen-

tially fast when n increases, it is almost impossible to compute the exact bootstrap as n

is moderate or large. In stead, a Monte Carlo approximation is often implemented as the

second method proposed by Efron [96]. For small sample case, which is prevalent in many

genomics and proteomics application, complete bootstrap becomes feasible and is of prac-

tical interest.

The complete bootstrap method, which goes through all the distinct bootstrap samples

and is assumed here, was argued to be competitive and practical for small samples by

Fisher and Hall [133], and to be sometimes even computationally cheaper than the more

common Monte-Carlo bootstrap by Diaconis and Holmes [134]. Other papers have studied
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the properties of the complete bootstrap method in small sample cases [135, 136, 137].

The first part of this dissertation including chapter III and IV is dedicated to theoret-

ical analysis of complete bootstrap error estimation of linear discriminant analysis under

standard Gaussian assumption. The analysis is concerned with establishing the moments

of the bootstrap estimation , and as a result, the bias, variance, and root mean square of

deviation from the true error, which are the usual metrics to globally evaluate estimation

methods.

E. Applications of Misclassification Error Estimation

Error estimation plays a very important roles in every statistical inference problem. When-

ever it comes to evaluation of the statistical inference algorithm, estimating the error rate

needs to be implemented. This fact is explicitly demonstrated in the practical applications

of statistical learning, in particular supervised learning, in biomedical research.

First, in the area of genomics-based and proteomics-based class prediction and com-

parison, the outputs are predictors such as genes, peptides etc which expectedly have dis-

criminatory power to classify different disease states, i.e normal v.s diseased, or different

cancer subtypes. How accurately these predictors can work is a crucial question in the

process of biomarker discovery and validation. It is the evaluation process that examines

the validity of the discovered biomarkers. The efficacy of these biomarkers when they are

integrated in future practical routine of diagnosis and prognosis of cancer and other dis-

eases entirely depends on the reliability and accuracy of the validation procedures. One of

the drawbacks, which hinder the realization of the quantitatively found biomarkers into the

clinical practice routine is the failure of validation process required by the FDA [37, 38].

Second, in the problem of class discovery such as classifying cancers into subtypes

or biclustering in functional Genomics, evaluation of the statistical algorithms used to dis-
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cover classes is even more important given the fact that we do not know the ground truth

under the dataset but are trying to discover it. This interprets literally as the problem of

error estimation for unsupervised learning or clustering, which is generally harder than the

supervised learning. In future medicine, distinct subtypes of diseases which originate from

different causes are to be handled with different treatments with hopefully better efficacy.

Failure to correctly distinguish cancer subtypes can result consequences such as treatment

cost and efficacy.

Another typical example of the important role of error estimation lies in inferring

gene regulatory networks [138]. Studying the biological pathways, in particular the regula-

tory mechanism of the genomes is crucial in accelerating the understanding the molecular

mechanism of cancer and other diseases. Based on the high-throughput data, gene regula-

tory networks are attempted to be inferred using different models. Interested readers can

find more about this topic in the review paper [139, 140]. Obviously, in order to ascertain

our knowledge of cancers and diseases from these findings, it is foremost to confirm the

validity of the discovered gene networks.

In addition, estimation of the accuracy prediction of transcriptional binding factors

deserved more attention regarding its wide applicability in understanding the regulatory

mechanism of the genome [141].

This chapter covers the main points of supervised learning and provides a review of

error estimation as well as some highlights of its applications. The next chapter is devoted

to the analysis of bootstrap estimation methods.
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CHAPTER III

BOOTSTRAP ERROR ESTIMATION - UNIVARIATE MODEL ∗

This chapter presents the theoretical analysis of complete bootstrap error estimation for

linear discriminant analysis under univariate Gaussian model. The variances of the label

feature distribution are assumed to be known. The analysis is concerned with some boot-

strap estimators including zero, .632, and convex bootstrap estimation. The results include

the first moments, the second moments, the correlation of these bootstrap estimators with

the true error and the resubstitution estimator. As a result, we obtain the exact formulas for

the bias, variance, and the root mean square of the estimation deviations from the true error,

which are the usual metrics for evaluation of estimation methods. Also, we propose unbi-

ased bootstrap estimation by zeroing the deviation bias and optimal bootstrap estimation

by minimizing the root mean square of the deviation. All the formulas are involved with

multivariate Gaussian random variables, up to dimension 4. Given the increasing difficulty

of complete bootstrap computation as the number of samples increases, an efficient algo-

rithm is introduced to compute the complete enumeration for up to moderate sample sizes.

Finally, some figures of the optimal convex scalar for the unbiased bootstrap estimation are

provided for different number of samples under various Gaussian models.

∗ Part of this chapter is reprinted with permission from ”Unbiased Bootstrap Error Es-

timation for Linear Discriminant Analysis.” by T. T. Vu, U. M. Braga-Neto, and E. R.

Dougherty, 2010. submitted, copyright 2010 of IEEE Transactions on Pattern Analysis

and Machine Intelligence.
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A. The Bias, Variance, and RMS of Estimation Deviation

Let ε̂ be an estimator for the true error ε , then the bias, variance, and RMS of estimation

deviation are defined as followings:

Bias[ε̂] = E[ε̂− ε], (3.1)

Vard[ε̂] = Var[ε̂− ε] = Var[ε̂]−2Cov[ε̂ε]+Var[ε], (3.2)

RMS[ε̂] =
√

E[(ε− ε̂)2] =
√

E[ε2]−2E[εε̂]+E[ε̂2]. (3.3)

It is simple to check that

RMS2[ε̂] = Bias2[ε̂]+Vard[ε̂]. (3.4)

While the bias represents that average centrality of the estimator around the true error, the

deviation variance measures the dispersion of the estimator from the true error. The optimal

estimator is the uniformly unbiased minimum variance one. There is a trade-off between

the bias and the variance. So, the ultimate metric to evaluate an estimator is RMS, which

combines bias and variance. From (3.3), we can see that to compute RMS[ε̂], we need

to know the second moments of the true error and the estimator, as well as the correlation

between them. The main sections of this chapter present theorems to compute the moments

of some bootstrap estimators and their correlation with the true error, and so ultimately

allows us to obtain the RMS of these bootstrap estimators using the relation (3.3).

B. The Bootstrapped Linear Discriminant Analysis

Let S∗ denote the bootstrap sample uniformly taken with replacement from S with the same

size like S and the corresponding weight vector C. All the probability formulas derived

herein assume C is given. Otherwise, it is explicitly stated. For brevity, we will omit the

conditional notation of C. Let ψC = Ψ(S∗) be the classifier designed on S∗ using the same
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classification rule Ψ.

The classification error rate εC of classifier ψC

εC = (1− γ)P(ψC(X) = 1 | X ∈Π0)+ γ P(ψC(X) = 0 | X ∈Π1)

def
= (1− γ)ε

0
C + γ ε

1
C .

(3.5)

We can define a “test-set” error estimator ε̂C for εC as the average error committed by the

bootstrap classifier ψC on the data left out of the bootstrap sample:

ε̂C =
1

∑
n
i=1 IC(i)=0

[
n0

∑
i=1

IC(i)=0 IψC(Xi)=1 +
n0+n1

∑
i=n0+1

IC(i)=0 IψC(Xi)=0

]
(3.6)

where C(i) denotes the i-th component of vector C.

With our assumption of complete bootstrap, the zero bootstrap error estimator is de-

fined as the expected value of ε̂C over the bootstrap sampling mechanism, i.e., over the

distribution of C:

ε̂0 = E[ε̂C |S] = ∑
C

ε̂CP(C). (3.7)

It can be seen that the zero bootstrap error estimator defined as in (2.28) is a Monte Carlo

approximation version of (3.7).

The more popular variants of bootstrap estimation are .632 bootstrap estimator and

convex bootstrap estimator. The .632+ bootstrap estimator is a special case of the latter for

the dichotomous classification problem, in which the convex scalar w is found adaptively

with the ”relative overfitting rate” (See (2.30).

ε̂b632 = (1−0.632) ε̂r +0.632 ε̂0 , (3.8)

ε̂b632+ = (1− ŵb632+) ε̂r + ŵb632+ ε̂0 , (3.9)
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More generally, we have the convex bootstrap estimate:

ε̂w = (1−w) ε̂r +w ε̂0 . (3.10)

In the followings, we establish some useful relations of the error rate ε̂C to compute its

moments. Define the following notations:

m0(C) =
n0

∑
i=1

IC(i)=0, m1(C) =
n0+n1

∑
i=n0+1

IC(i)=0, m(C) = m0(C)+m1(C), (3.11)

s0(C) =
1
n2

0

n0

∑
i=1

C2(i), s1(C) =
1
n2

1

n0+n1

∑
i=n0+1

C2(i), s(C) = s0(C)+ s1(C), (3.12)

r0(C1,C2) =
1
n2

0

n0

∑
i=1

C1(i)C2(i), r1(C1,C2) =
1
n2

1

n0+n1

∑
i=n0+1

C1(i)C2(i). (3.13)

It is clear that ri(C,C) = si(C) for i ∈ {0,1}. While these numbers m, s, and r are functions

of C, we will omit the notations Cs throughout the work for brevity in some of the re-

sults, unless keeping them is necessary to differentiate different bootstrap vectors Cs. Also,

suppose X∗ ∈Π0, and X∗∗ ∈Π1 are two samples independent of Sn.

1. First Moment

From (3.6), we have:

E[ε̂C] = E

{
1
m

[
n0

∑
i=1

IC(i)=0 IψC(Xi)=1 +
n0+n1

∑
i=n0+1

IC(i)=0 IψC(Xi)=0

]}

=
1
m

n0

∑
i=1

IC(i)=0 E[IψC(Xi)=1]+
1
m

n0+n1

∑
i=n0+1

IC(i)=0 E[IψC(Xi)=0]

=
1
m

n0

∑
i=1

IC(i)=0 P{ψC(Xi) = 1}+ 1
m

n0+n1

∑
i=n0+1

IC(i)=0 P{ψC(Xi) = 0}

So,

E[ε̂C] =
m0

m
P{ψC(X∗) = 1}+ m1

m
P{ψC(X∗∗) = 0} (3.14)
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2. Second Moment

From (3.6), we have:

E[ε̂2
C] = E

{
1

m2

[
n0

∑
i=1

IC(i)=0 IψC(Xi)=1 +
n0+n1

∑
i=n0+1

IC(i)=0 IψC(Xi)=0

]2}

= E

{
1

m2

[
n0

∑
i=1

IC(i)=0 IψC(Xi)=1 +
n0+n1

∑
i=n0+1

IC(i)=0 IψC(Xi)=0+

+
n0

∑
i=1

n0

∑
j 6=i

IC(i)=0,C( j)=0 IψC(Xi)=1,ψC(X j)=1+

+
n0+n1

∑
i=n0+1

n0+n1

∑
j 6=i

IC(i)=0,C( j)=0 IψC(Xi)=0 IψC(X j)=0+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC(i)=0,C( j)=0 IψC(Xi)=1,ψC(X j)=0+

+
n0+n1

∑
i=n0+1

n0

∑
j=1

IC(i)=0,C( j)=0 IψC(Xi)=0,ψC(X j)=1

]}

So,

E[ε̂2
C] =

m0

m2 P{ψC(X∗) = 1}+ m1

m2 P{ψC(X∗∗) = 0}+

+
1

m2

[
n0

∑
i=1

n0

∑
j 6=i

IC(i)=0,C( j)=0P{ψC(Xi) = 1,ψC(X j) = 1}+

+
n0+n1

∑
i=n0+1

n0+n1

∑
j 6=i

IC(i)=0,C( j)=0P{ψC(Xi) = 0,ψC(X j) = 0}+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC(i)=0,C( j)=0P{ψC(Xi) = 1,ψC(X j) = 0}+

+
n0+n1

∑
i=n0+1

n0

∑
j=1

IC(i)=0,C( j)=0P{ψC(Xi) = 0,ψC(X j) = 1}

]
.

(3.15)
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3. Cross Correlation

From (3.6), we have for C1 6=C2:

E[ε̂C1 ε̂C2] = E

{
1

m(C1)

[
n0

∑
i=1

IC1(i)=0 IψC1(Xi)=1 +
n0+n1

∑
i=n0+1

IC1(i)=0 IψC1(Xi)=0

]
×

× 1
m(C2)

[
n0

∑
j=1

IC2( j)=0 IψC2(X j)=1 +
n0+n1

∑
j=n0+1

IC2( j)=0 IψC2(X j)=0

]}

= E

{
1

m(C1)m(C2)

[
n0

∑
i=1

n0

∑
j=1

IC1(i)=0 IψC1(Xi)=1IC2( j)=0 IψC2(X j)=1+

+
n0+n1

∑
i=n0+1

n0+n1

∑
j=n0+1

IC1(i)=0 IψC1(Xi)=0IC2( j)=0 IψC2(X j)=0+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC1(i)=0 IψC1(Xi)=1IC2( j)=0 IψC2(X j)=0+

+
n0+n1

∑
i=n0

n0

∑
j=1

IC1(i)=0 IψC1(Xi)=0IC2( j)=0 IψC2(X j)=1

]}

So, the correlation between ”hold-out” errors of any two distinct C-bootstrap linear classi-

fiers is

E[ε̂C1 ε̂C2] =
1

m(C1)m(C2)

[
n0

∑
i=1

n0

∑
j=1

IC1(i)=0,C2( j)=0 P{ψC1(Xi) = 1,ψC2(X j) = 1}+

+
n0+n1

∑
i=n0+1

n0+n1

∑
j=n0+1

IC1(i)=0,C2( j)=0 P{ψC1(Xi) = 0,ψC2(X j) = 0}+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC1(i)=0,C2( j)=0 P{ψC1(Xi) = 1,ψC2(X j) = 0}+

+
n0+n1

∑
i=n0

n0

∑
j=1

IC1(i)=0,C2( j)=0 P{ψC1(Xi) = 0,ψC2(X j) = 1}

]
.

(3.16)

4. Cross Moment with Resubstitution Estimator

We are interested in the correlation between the ”hold-out” error ε̂C of the C-bootstrapped

classifier ψC(X) and the resubstitution estimator ε̂r of the original classifier ψ(X). From
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(2.17) and (3.6), we have

E[ε̂Cε̂r] = E

{
1
m

[
n0

∑
i=1

IC(i)=0 IψC(Xi)=1 +
n0+n1

∑
i=n0+1

IC(i)=0 IψC(Xi)=0

]
×

× 1
n

[
n0

∑
j=1

Iψ(X j)=1 +
n0+n1

∑
j=n0+1

Iψ(X j)=0

]}

= E

{
1

nm

[
n0

∑
i=1

n0

∑
j=1

IC(i)=0 IψC(Xi)=1Iψ(X j)=1 +
n0+n1

∑
i=n0+1

n0+n1

∑
j=n0+1

IC(i)=0 IψC(Xi)=0Iψ(X j)=0+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC(i)=0 IψC(Xi)=1Iψ(X j)=0 +
n0+n1

∑
i=n0+1

n0

∑
j=1

IC(i)=0 IψC(Xi)=0Iψ(X j)=1

]}

So,

E[ε̂Cε̂r] =
1

nm

[
n0

∑
i=1

n0

∑
j=1

IC(i)=0 P{ψC(Xi) = 1,ψ(X j) = 1}+

+
n0+n1

∑
i=n0+1

n0+n1

∑
j=n0+1

IC(i)=0 P{ψC(Xi) = 0,ψ(X j) = 0}+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC(i)=0 P{ψC(Xi) = 1,ψ(X j) = 0}+

+
n0+n1

∑
i=n0

n0

∑
j=1

IC(i)=0 P{ψC(Xi) = 0,ψ(X j) = 1}

]
.

(3.17)

5. Cross Moment with True Error

It is useful to know the correlation between ε̂C of the C-bootstrapped classifier and the true

error ε in the next sections. From (2.5) and (3.6), we have

E[εε̂C] = E

{(
(1− γ)ε

0 + γ ε
1) 1

m

[
n0

∑
i=1

IC(i)=0 IψC(Xi)=1 +
n0+n1

∑
i=n0+1

IC(i)=0 IψC(Xi)=0

]}

=
1− γ

m

n0

∑
i=1

IC(i)=0 E
[
ε

0IψC(Xi)=1
]
+

1− γ

m

n0+n1

∑
i=n0

IC(i)=0 E
[
ε

0IψC(Xi)=0
]
+

+
γ

m

n0

∑
i=1

IC(i)=0 E
[
ε

1IψC(Xi)=1
]
+

γ

m

n0+n1

∑
i=n0

IC(i)=0 E
[
ε

1IψC(Xi)=0
]
.
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E[εε̂C] =
m0(1− γ)

m
E
[
ε

0IψC(X1)=1
]
+

m1(1− γ)

m
E
[
ε

0IψC(Xn0+1)=0

]
+

+
m0γ

m
E
[
ε

1IψC(X1)=1
]
+

m1γ

m
E
[
ε

1IψC(Xn0+1)=0

]
, with C(X1) =C(Xn0+1) = 0.

(3.18)

We have

E[ε0IψC(X1)=1] = E[P{ψ(X) = 1|X ∈Π0,Sn}IψC(X1)=1]

= E[E(Iψ(X)=1|X ∈Π0,Sn)IψC(X1)=1]

= E[E(Iψ(X)=1 IψC(X1)=1|X ∈Π0,Sn)]

= E[Iψ(X)=1 IψC(X1)=1]

= P{ψ(X∗) = 1,ψC(X1) = 1}.

Similarly for E[ε1IψC(X1)=1], E[ε0IψC(Xn0+1=0], E[ε1IψC(Xn0+1=0]. So,

E[εε̂C] =
m0(1− γ)

m
P{ψ(X∗) = 1,ψC(X1) = 1}+ m0γ

m
P{ψ(X∗∗) = 0,ψC(X1) = 1}+

+
m1(1− γ)

m
P{ψ(X∗) = 1,ψC(Xn0+1) = 0}+ m1γ

m
P{ψ(X∗∗) = 0,ψC(Xn0+1) = 0}.

(3.19)

with C(X1) =C(Xn0+1) = 0.

6. The True Error

The first two moments of the true error, E[ε] and E[ε2] (also of the resubstitution estimator

E[εr] and E[ε2
r ]), were expressed in the forms involved with probabilities of discriminant

functions W in [86]. Based on that, Zollanvari et al [86] then derived the exact formulas

for the univariate case and obtained approximation ones for the multivariate case. Because

we need the second moment of the true error, E[ε2], to compute the root mean square of

the bootstrap estimators, we rewrite Zollanvari’s formulas and his univariate results in our

notation in this chapter, and present the exact results of the true error and the resubstitution
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estimator for the multivariate case in Chapter IV.

• The first moment of the the true error

From (2.5),

E[ε] = E[(1− γ)ε0 + γε1]

= E [(1− γ)P{ψ(X∗) = 1 |Sn}+(1− γ)P{ψ(X∗∗) = 0 |Sn}]

= (1− γ)P{ψ(X∗) = 1}+(1− γ)P{ψ(X∗∗) = 0}

(3.20)

• The second moment of the the true error

From (2.5),

E[ε2] = E[((1− γ)ε0 + γε1)
2]

= (1− γ)2E[ε0ε0]+2γ(1− γ)E[ε0ε1]+ γ
2E[ε1ε1]

Also,

E[ε0ε0] = E[P{ψ(X∗) = 1 |Sn}P{ψ(X∗
′
) = 1 |Sn}],

where X∗ and X∗
′
∈Π0 are independent with each other and of Sn

= E[P{ψ(X∗) = 1, ψ(X∗
′
) = 1 |Sn}

= P{ψ(X∗) = 1, ψ(X∗
′
) = 1}

Similarly for E[ε1ε1] and E[ε0ε1]. So,

E[ε2] = (1− γ)2P{ψ(X∗) = 1, ψ(X∗
′
) = 1}+2γ(1− γ)P{ψ(X∗) = 1, ψ(X∗∗) = 0}+

+ γ
2P{ψ(X∗∗) = 0, ψ(X∗∗

′
) = 0}

(3.21)
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7. The Zero Bootstrap Estimation

ε̂0 = E[ε̂C|S] = ∑
C

ε̂CP(C). (3.22)

• The first moment of zero bootstrap estimator

E [ε̂0] = ∑
C

P(C)E[ε̂C] (3.23)

• The second moment of zero bootstrap

E
[
ε̂

2
0
]
= E

[
∑
C

P(C)ε̂C

]2

= ∑
C

P2(C)E
[
ε̂

2
C
]
+2 ∑

C1 6=C2

P(C1)P(C2)E [ε̂C1 ε̂C2]
(3.24)

• The correlation of zero bootstrap estimator with the resubstitution estimator

E [ε̂rε̂0] = E
[
ε̂r ∑

C
P(C)ε̂C

]
= ∑

C
P(C)E[ε̂rε̂C]

(3.25)

• The correlation of zero bootstrap estimator with the true error

E [εε̂0] = E
[
ε ∑

C
P(C)ε̂C

]
= ∑

C
P(C)E[εε̂C]

(3.26)

8. The Convex Bootstrap Estimation

• The first moment of convex bootstrap estimator

E [ε̂w] = E
[
(1−w)ε̂r +wε̂0

]
= (1−w)E[ε̂r]+w∑

C
P(C)E[ε̂C]

(3.27)
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• The second moment of convex bootstrap estimator

E
[
ε̂

2
w
]
= E

[
(1−w)ε̂r +wε̂0

]2

= (1−w)2E[ε̂2
r ]+w2E[ε̂2

0 ]+2w(1−w)E[ε̂rε̂0]

(3.28)

• The correlation of convex bootstrap estimator with the true error

E [εε̂w] = E
[
ε((1−w)εr +wε0)

]
= (1−w)E[εε̂r]+wE[εε̂0]

= (1−w)E[εε̂r]+∑
C

P(C)E[εε̂C]

(3.29)

All the expressions in this section are applicable for any conditional distributions in-

cluding both univariate and multivariate models. Following are the results derived for uni-

variate Gaussian model.

C. Univariate Model

Let Xi ∼ N(µ0,σ
2
0 ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,σ

2
1 ) for i = n0 +1, . . . ,n0 +n1 be a set

of n = n0 + n1 i.i.d. observations. In this univariate case, the W statistic becomes greatly

simplified, being a function only of the sample means, and the LDA classifier is given by

ψ(X) =


1 , if

(
X− µ̂0+µ̂1

2

)
(µ̂0− µ̂1)< 0

0 , otherwise
, (3.30)

The C-bootstrap LDA classifier designed on S∗ corresponding to the bootstrap vector C is

obtained by replacing µi by µC
i , i = 0,1, in (3.30):

ψC(X) =


1 , if

(
X− µ̂C

0 +µ̂C
1

2

)
(µ̂C

0 − µ̂C
1 )< 0

0 , otherwise
, (3.31)
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where

µ̂
C
0 =

1
n0

n0

∑
i=1

C(i)Xi

µ̂
C
1 =

1
n1

n0+n1

∑
i=n0+1

C(i)Xi

(3.32)

are C-bootstrap sample means.

Define the following Gaussian vectors with Xu1,Xu2 ∈ Π0, Xv1,Xv2 ∈ Π1, i.e. 1 ≤ u1,u2 ≤

n0,n0+1≤ v1,v2≤ n0+n1. In the following definitions for Fs, assume Ci(ui) = Ci(vi) = 0

for i = 1, 2:

F I
00(u1,u2,C1,C2) =

[
Xu1−

µ̂
C1
0 + µ̂

C1
1

2
, µ̂C1

1 − µ̂
C1
0 ,Xu2−

µ̂
C2
0 + µ̂

C2
1

2
, µ̂C2

1 − µ̂
C2
0

]T
, (3.33)

F II
00(u1,u2,C1,C2) =

[
Xu1−

µ̂
C1
0 + µ̂

C1
1

2
, µ̂C1

1 − µ̂
C1
0 ,

µ̂
C2
0 + µ̂

C2
1

2
−Xu2 , µ̂

C2
0 − µ̂

C2
1

]T
, (3.34)

F I
11(v1,v2,C1,C2) =

[
Xv1−

µ̂
C1
0 + µ̂

C1
1

2
, µ̂C1

0 − µ̂
C1
1 ,Xv2−

µ̂
C2
0 + µ̂

C2
1

2
, µ̂C2

0 − µ̂
C2
1

]T
, (3.35)

F II
11(v1,v2,C1,C2) =

[
Xv1−

µ̂
C1
0 + µ̂

C1
1

2
, µ̂C1

0 − µ̂
C1
1 ,

µ̂
C2
0 + µ̂

C2
1

2
−Xv2, µ̂

C2
1 − µ̂

C2
0

]T
, (3.36)

F I
01(u1,v2,C1,C2) =

[
Xu1−

µ̂
C1
0 + µ̂

C1
1

2
, µ̂C1

1 − µ̂
C1
0 ,Xv2−

µ̂
C2
0 + µ̂

C2
1

2
, µ̂C2

0 − µ̂
C2
1

]T
, (3.37)

F II
01(u1,v2,C1,C2) =

[
Xu1−

µ̂
C1
0 + µ̂

C1
1

2
, µ̂C1

1 − µ̂
C1
0 ,

µ̂
C2
0 + µ̂

C2
1

2
−Xv2, µ̂

C2
1 − µ̂

C2
0

]T
, (3.38)

Basic algebra gives us the mean vectors and the covariance matrices as following:

E[F I
00] = E[F II

01] =
[

µ

2
,−µ,

µ

2
,−µ

]T
, E[F II

00] = E[F I
01] =

[
µ

2
,−µ,

−µ

2
,µ
]T

,

E[F I
11] =

[−µ

2
,µ,
−µ

2
,µ
]T

, E[F II
11] =

[−µ

2
,µ,

µ

2
,−µ

]T
.

where µ = µ0−µ1, and the covariance matrices are
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In the following definitions for Gs, assume C(u1) = C(v1) = 0:

GI
00(u1,u2,C) =

[
Xu1−

µ̂C
0 + µ̂C

1
2

, µ̂C
1 − µ̂

C
0 ,Xu2−

µ̂0 + µ̂1

2
, µ̂1− µ̂0

]T
, (3.39)

GII
00(u1,u2,C) =

[
Xu1−

µ̂C
0 + µ̂C

1
2

, µ̂C
1 − µ̂

C
0 ,

µ̂0 + µ̂1

2
−Xu2, µ̂0− µ̂1

]T
, (3.40)

GI
11(v1,v2,C) =

[
Xv1−

µ̂C
0 + µ̂C

1
2

, µ̂C
0 − µ̂

C
1 ,Xv2−

µ̂0 + µ̂1

2
, µ̂0− µ̂1

]T
, (3.41)

GII
11(v1,v2,C) =

[
Xv1−

µ̂C
0 + µ̂C

1
2

, µ̂C
0 − µ̂

C
1 ,

µ̂0 + µ̂1

2
−Xv2 , µ̂1− µ̂0

]T
, (3.42)

GI
01(u1,v2,C) =

[
Xu1−

µ̂C
0 + µ̂C

1
2

, µ̂C
1 − µ̂

C
0 ,Xv2−

µ̂0 + µ̂1

2
, µ̂0− µ̂1

]T
, (3.43)

GII
01(u1,v2,C) =

[
Xu1−

µ̂C
0 + µ̂C

1
2

, µ̂C
1 − µ̂

C
0 ,

µ̂0 + µ̂1

2
−Xv2, µ̂1− µ̂0

]T
, (3.44)

GI
10(v1,u2,C) =

[
Xv1−

µ̂C
0 + µ̂C

1
2

, µ̂C
0 − µ̂

C
1 ,Xu2−

µ̂0 + µ̂1

2
, µ̂1− µ̂0

]T
, (3.45)

GII
10(v1,u2,C) =

[
Xv1−

µ̂C
0 + µ̂C

1
2

, µ̂C
0 − µ̂

C
1 ,

µ̂0 + µ̂1

2
−Xu2, µ̂0− µ̂1

]T
, (3.46)

E[GI
00] = E[GII

01] =
[

µ

2
,−µ,

µ

2
,−µ

]T
, E[GII

00] = E[GI
01] =

[
µ

2
,−µ,

−µ

2
,µ
]T

,

E[GI
11] = E[GII

10] =
[−µ

2
,µ,
−µ

2
,µ
]T

, E[GII
11] = E[GI

10] =
[−µ

2
,µ,

µ

2
,−µ

]T
,

and

ΣGI
00(u1,u2,C)=

=



(
1+ s0

4

)
σ2

0 +
s1
4 σ2

1
s0σ2

0
2 −

s1σ2
1

2

(
Iu1=u2 +

1−2C(u2)
4n0

)
σ2

0 +
σ2

1
4n1

− σ2
0

2n0
− σ2

1
2n1

. s0σ2
0 + s1σ2

1
1−2C(u2)

2n0
σ2

0 −
σ2

1
2n1

σ2
0

n0
+

σ2
1

n1

. .
(
1− 3

4n0

)
σ2

0 +
σ2

1
4n1

σ2
0

2n0
− σ2

1
2n1

. . .
σ2

0
n0

+
σ2

1
n1


,
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ΣGII
00(u1,u2,C)=

=



(
1+ s0

4

)
σ2

0 +
s1
4 σ2

1
s0σ2

0
2 −

s1σ2
1

2

(
2C(u2)−1

4n0
− Iu1=u2

)
σ2

0 −
σ2

1
4n1

σ2
0

2n0
+

σ2
1

2n1

. s0σ2
0 + s1σ2

1
2C(u2)−1

2n0
σ2

0 +
σ2

1
2n1

−σ2
0

n0
− σ2

1
n1

. .
(
1− 3

4n0

)
σ2

0 +
σ2

1
4n1

σ2
0

2n0
− σ2

1
2n1

. . .
σ2

0
n0

+
σ2

1
n1


,

ΣGI
11(v1,v2,C)=

=



s0
4 σ2

0 +
(
1+ s1

4

)
σ2

1
s1σ2

1
2 −

s0σ2
0

2

(
Iv1=v2 +

1−2C(v2)
4n1

)
σ2

1 +
σ2

0
4n0

σ2
1

2n1
+

σ2
0

2n0

. s1σ2
1 + s0σ2

0
1−2C(v2)

2n1
σ2

1 −
σ2

0
2n0

σ2
1

n1
+

σ2
0

n0

. .
(
1− 3

4n1

)
σ2

1 +
σ2

0
4n0

− σ2
1

2n1
− σ2

0
2n0

. . .
σ2

1
n1

+
σ2

0
n0


,

ΣGII
11(v1,v2,C) =

=



s0
4 σ2

0 +
(
1+ s1

4

)
σ2

1
s1σ2

1
2 −

s0σ2
0

2

(
2C(v2)−1

4n1
− Iv1=v2

)
σ2

1 −
σ2

0
4n0

− σ2
1

2n1
− σ2

0
2n0

. s1σ2
1 + s0σ2

0
2C(v2)−1

2n1
σ2

1 +
σ2

0
2n0

−σ2
1

n1
− σ2

0
n0

. .
(
1− 3

4n1

)
σ2

1 +
σ2

0
4n0

− σ2
1

2n1
− σ2

0
2n0

. . .
σ2

1
n1

+
σ2

0
n0


,

ΣGI
01(u1,v2,C) =



(
1+ s0

4

)
σ2

0 +
s1
4 σ2

1
s0σ2

0
2 −

s1σ2
1

2
1−2C(v2)

4n1
σ2

1 −
σ2

0
4n0

− σ2
0

2n0
− σ2

1
2n1

. s0σ2
0 + s1σ2

1
2C(v2)−1

2n1
σ2

1 +
σ2

0
2n0

−σ2
1

n1
− σ2

0
n0

. .
(
1− 3

4n1

)
σ2

1 +
σ2

0
4n0

− σ2
1

2n1
− σ2

0
2n0

. . .
σ2

0
n0

+
σ2

1
n1


,
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ΣGII
01(u1,v2,C)=



(
1+ s0

4

)
σ2

0 +
s1
4 σ2

1
s0σ2

0
2 −

s1σ2
1

2
σ2

0
4n0

+ 2C(v2)−1
4n1

σ2
1

σ2
0

2n0
+

σ2
1

2n1

. s0σ2
0 + s1σ2

1
1−2C(v2)

2n1
σ2

1 −
σ2

0
2n0

σ2
1

n1
+

σ2
0

n0

. .
(
1− 3

4n1

)
σ2

1 +
σ2

0
4n0

− σ2
1

2n1
− σ2

0
2n0

. . .
σ2

0
n0

+
σ2

1
n1


,

ΣGI
10(v1,u2,C) =



s0
4 σ2

0 +
(
1+ s1

4

)
σ2

1
s1σ2

1
2 −

s0σ2
0

2
1−2C(u2)

4n0
σ2

0 −
σ2

1
4n1

σ2
1

2n1
+

σ2
0

2n0

. s1σ2
1 + s0σ2

0
2C(u2)−1

2n0
σ2

0 +
σ2

1
2n1

−σ2
1

n1
− σ2

0
n0

. .
(
1− 3

4n0

)
σ2

0 +
σ2

1
4n1

− σ2
0

2n0
− σ2

1
2n1

. . .
σ2

0
n0

+
σ2

1
n1


,

ΣGII
10(v1,u2,C) =



s0
4 σ2

0 +
(
1+ s1

4

)
σ2

1
s1σ2

1
2 −

s0σ2
0

2
2C(u2)−1

4n0
σ2

0 +
σ2

1
4n1

− σ2
1

2n1
− σ2

0
2n0

. s1σ2
1 + s0σ2

0
1−2C(u2)

2n0
σ2

0 −
σ2

1
2n1

σ2
1

n1
+

σ2
0

n0

. .
(
1− 3

4n0

)
σ2

0 +
σ2

1
4n1

− σ2
0

2n0
− σ2

1
2n1

. . .
σ2

0
n0

+
σ2

1
n1


.

In the following definitions for Ks, assume C(u1) =C(v1) = 0, again X∗ ∈Π0, X∗∗ ∈

Π1 are independent of Sn:

KI
00(C) =

[
Xu1−

µ̂C
0 + µ̂C

1
2

, µ̂C
1 − µ̂

C
0 ,X

∗− µ̂0 + µ̂1

2
, µ̂1− µ̂0

]T
, (3.47)

KII
00(C) =

[
Xu1−

µ̂C
0 + µ̂C

1
2

, µ̂C
1 − µ̂

C
0 ,

µ̂0 + µ̂1

2
−X∗, µ̂0− µ̂1

]T
, (3.48)

KI
11(C) =

[
Xv1−

µ̂C
0 + µ̂C

1
2

, µ̂C
0 − µ̂

C
1 ,X

∗∗− µ̂0 + µ̂1

2
, µ̂0− µ̂1

]T
, (3.49)

KII
11(C) =

[
Xv1−

µ̂C
0 + µ̂C

1
2

, µ̂C
0 − µ̂

C
1 ,

µ̂0 + µ̂1

2
−X∗∗, µ̂1− µ̂0

]T
, (3.50)
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KI
01(C) =

[
Xu1−

µ̂C
0 + µ̂C

1
2

, µ̂C
1 − µ̂

C
0 ,X

∗∗− µ̂0 + µ̂1

2
, µ̂0− µ̂1

]T
, (3.51)

KII
01(C) =

[
Xu1−

µ̂C
0 + µ̂C

1
2

, µ̂C
1 − µ̂

C
0 ,

µ̂0 + µ̂1

2
−X∗∗, µ̂1− µ̂0

]T
, (3.52)

KI
10(C) =

[
Xv1−

µ̂C
0 + µ̂C

1
2

, µ̂C
0 − µ̂

C
1 ,X

∗− µ̂0 + µ̂1

2
, µ̂1− µ̂0

]T
, (3.53)

KII
10(C) =

[
Xv1−

µ̂C
0 + µ̂C

1
2

, µ̂C
0 − µ̂

C
1 ,

µ̂0 + µ̂1

2
−X∗, µ̂0− µ̂1

]T
, (3.54)

E[KI
00(C)] = E[KII

01(C)] =
[

µ

2
,−µ,

µ

2
,−µ

]T
,

E[KII
00(C)] = E[KI

01(C)] =
[

µ

2
,−µ,

−µ

2
,µ
]T

,

E[KI
11(C)] = E[KII

10(C)] =
[−µ

2
,µ,
−µ

2
,µ
]T

,

E[KII
11(C)] = E[KI

10(C)] =
[−µ

2
,µ,

µ

2
,−µ

]T
,

ΣKI
00(C)=



(
1+ s0

4

)
σ2

0 +
s1
4 σ2

1
s0σ2

0
2 −

s1σ2
1

2
σ2

1
4n1
− σ2

0
4n0

− σ2
0

2n0
− σ2

1
2n1

. s0σ2
0 + s1σ2

1
σ2

0
2n0
− σ2

1
2n1

σ2
0

n0
+

σ2
1

n1

. .
(
1+ 1

4n0

)
σ2

0 +
σ2

1
4n1

σ2
0

2n0
− σ2

1
2n1

. . .
σ2

0
n0

+
σ2

1
n1


,

ΣKII
00(C)=



(
1+ s0

4

)
σ2

0 +
s1
4 σ2

1
s0σ2

0
2 −

s1σ2
1

2
σ2

0
4n0
− σ2

1
4n1

σ2
1

2n1
+

σ2
0

2n0

. s0σ2
0 + s1σ2

1
σ2

1
2n1
− σ2

0
2n0

−σ2
0

n0
− σ2

1
n1

. .
(
1+ 1

4n0

)
σ2

0 +
σ2

1
4n1

σ2
0

2n0
− σ2

1
2n1

. . .
σ2

0
n0

+
σ2

1
n1


,
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ΣKI
11(C)=


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1+ s1

4

)
σ2

1 +
s0
4 σ2

0
s1σ2

1
2 −

s0σ2
0

2
σ2

0
4n0
− σ2

1
4n1

− σ2
1

2n1
− σ2

0
2n0

. s1σ2
1 + s0σ2

0
σ2

1
2n1
− σ2

0
2n0

σ2
1

n1
+

σ2
0

n0

. .
(
1+ 1

4n1

)
σ2

1 +
σ2

0
4n0

σ2
1

2n1
− σ2

0
2n0

. . .
σ2

1
n1

+
σ2

0
n0


,

ΣKII
11(C)=



(
1+ s1

4

)
σ2

1 +
s0
4 σ2

0
s1σ2

1
2 −

s0σ2
0

2
σ2

1
4n1
− σ2

0
4n0

σ2
0

2n0
+

σ2
1

2n1

. s1σ2
1 + s0σ2

0
σ2

0
2n0
− σ2

1
2n1

−σ2
1

n1
− σ2

0
n0

. .
(
1+ 1

4n1

)
σ2

1 +
σ2

0
4n0

σ2
1

2n1
− σ2

0
2n0

. . .
σ2

1
n1

+
σ2

0
n0


,

ΣKI
01(C)=



(
1+ s0

4

)
σ2

0 +
s1
4 σ2

1
s0σ2

0
2 −

s1σ2
1

2
σ2

1
4n1
− σ2

0
4n0
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0

2n0
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1
2n1
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1 + s0σ2

0
σ2

0
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1
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0
n0

. .
(
1+ 1

4n1

)
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1 +
σ2
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4n0

σ2
1

2n1
− σ2

0
2n0

. . .
σ2

1
n1

+
σ2

0
n0


,

ΣKII
01(C)=



(
1+ s0

4

)
σ2

0 +
s1
4 σ2

1
s0σ2

0
2 −

s1σ2
1

2
σ2

0
4n0
− σ2

1
4n1

σ2
1

2n1
+

σ2
0

2n0

. s1σ2
1 + s0σ2

0
σ2

1
2n1
− σ2

0
2n0

σ2
1

n1
+

σ2
0

n0

. .
(
1+ 1

4n1

)
σ2

1 +
σ2

0
4n0

σ2
1

2n1
− σ2

0
2n0

. . .
σ2

1
n1

+
σ2

0
n0


,

ΣKI
10(C)=



(
1+ s1

4

)
σ2

1 +
s0
4 σ2

0
s1σ2

1
2 −

s0σ2
0

2n0

σ2
0

4n0
− σ2

1
4n1

σ2
0

2n0
+

σ2
1

2n1

. s1σ2
1 + s0σ2

0
σ2

1
2n1
− σ2

0
2n0

−σ2
1

n1
− σ2

0
n0

. .
(
1+ 1

4n0

)
σ2

0 +
σ2

1
4n1

σ2
0

2n0
− σ2

1
2n1

. . .
σ2

0
n0

+
σ2

1
n1


,
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ΣKII
10(C)=



(
1+ s1

4

)
σ2

1 +
s0
4 σ2

0
s1σ2

1
2 −

s0σ2
0

2n0

σ2
1

4n1
− σ2

0
4n0

− σ2
0

2n0
− σ2

1
2n1

. s1σ2
1 + s0σ2

0
σ2

0
2n0
− σ2

1
2n1

σ2
1

n1
+

σ2
0

n0

. .
(
1+ 1

4n0

)
σ2

0 +
σ2

1
4n1

σ2
0

2n0
− σ2

1
2n1

. . .
σ2

0
n0

+
σ2

1
n1


.

H00 =
[
Xu1−

µ̂0 + µ̂1

2
, µ̂1− µ̂0,Xu2−

µ̂0 + µ̂1

2

]T
, (3.55)

H11 =
[
Xv1−

µ̂0 + µ̂1

2
, µ̂0− µ̂1,Xv2−

µ̂0 + µ̂1

2

]T
, (3.56)

H01 =
[
Xu1−

µ̂0 + µ̂1

2
, µ̂1− µ̂0,

µ̂0 + µ̂1

2
−Xv1

]T
, (3.57)

J00 =
[
Xu1−

µ̂0 + µ̂1

2
, µ̂1− µ̂0,X∗−

µ̂0 + µ̂1

2

]T
, (3.58)

J11 =
[
Xv1−

µ̂0 + µ̂1

2
, µ̂0− µ̂1,X∗∗−

µ̂0 + µ̂1

2

]T
, (3.59)

J01 =
[
Xu1−

µ̂0 + µ̂1

2
, µ̂1− µ̂0,

µ̂0 + µ̂1

2
−X∗∗

]T
, (3.60)

J10 =
[
Xv1−

µ̂0 + µ̂1

2
, µ̂0− µ̂1,X∗−

µ̂0 + µ̂1

2

]T
, (3.61)

Basic algebra gives us the mean vectors and the covariance matrices as following.

E[H00] =
[

µ

2
,−µ,

µ

2

]
E[H11] =

[−µ

2
,µ,
−µ

2

]
E[H01] =

[
µ

2
,−µ,

−µ

2

]
,

E[J00] =
[

µ

2
,−µ,

µ

2

]
E[J11] =

[−µ

2
,µ,
−µ

2

]
E[J01] =

[
µ

2
,−µ,

−µ

2

]
E[J10] =

[−µ

2
,µ,

µ

2

]
.

ΣH00 =


(
1− 3

4n0

)
σ2

0 +
σ2

1
4n1

− σ2
0

2n0
− σ2

1
2n1

σ2
1

4n1
− 3σ2

0
4n0

.
σ2

0
n0

+
σ2

1
n1

− σ2
0

2n0
− σ2

1
2n1

. .
(
1− 3

4n0

)
σ2

0 +
σ2

1
4n1

 ,

ΣH11 =


(
1− 3

4n1

)
σ2

1 +
σ2

0
4n0

− σ2
0

2n0
− σ2

1
2n1

σ2
0

4n0
− 3

4n1
σ2

1

.
σ2

0
n0

+
σ2

1
n1

− σ2
0

2n0
− σ2

1
2n1

. .
(
1− 3

4n1

)
σ2

1 +
σ2

0
4n0

 ,
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ΣH01 =


(
1− 3

4n0
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σ2

0 +
σ2

1
4n1

− σ2
0

2n0
− σ2

1
2n1

σ2
0

4n0
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σ2
1

4n1
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σ2

0
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σ2

1
n1

− σ2
0

2n0
− σ2

1
2n1

. .
(
1− 3

4n1

)
σ2

1 +
σ2

0
4n0

 ,

ΣJ00 =


(
1− 3

4n0
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0 +
σ2

1
4n1

− σ2
0
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σ2
1

4n1
− σ2

0
4n0
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σ2
0
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. .
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4n0
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 ,

ΣJ11 =


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1− 3
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)
σ2

1 +
σ2

1
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2n1
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0
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+
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σ2
1
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. .
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1 +
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 ,

ΣJ01 =


(
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4n0
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0 +
σ2

1
4n1

− σ2
0
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− σ2
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2n1

σ2
0
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 ,

ΣJ10 =


(
1− 3

4n1

)
σ2

1 +
σ2

0
4n0

− σ2
0

2n0
− σ2

1
2n1

σ2
0

4n0
− σ2

1
4n1

.
σ2

0
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+
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σ2
1

2n1
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. .
(
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4n0

)
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0 +
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4n1

 ,

D. The C-bootstrap Linear Classifier

This section presents the theorems to compute the first and the second moment of the

hold-out error ε̂C of the C-bootstrap linear classifier ψC(X) and it cross moment with the

resubstitution estimator and the true error of the original linear classifier ψ(X).

Theorem 1 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0+n1 i.i.d. observations used to derive the classifier in (3.31). Then we
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have:

E[ε̂C] =
1
m

(
m0(C)P{B0(C)≥ 0}+m0P{B0(C)< 0}+

+m1P{B1(C)≥ 0}+m1P{B1(C)< 0}
)
,

(3.62)

where B0(C) and B1(C) are bivariate Gaussian random vectors with the following means

and covariance matrices:

E [B0(C)] =

 µ

2

−µ

 , ΣB0(C) =

(1+ s0
4

)
σ2

0 +
s1
4 σ2

1
s0
2 σ2

0 −
s1
2 σ2

1

. s0σ2
0 + s1σ2

1

 , (3.63)

E [B1(C)] =

 −µ

2

µ

 , ΣB1(C) =

 s0
4 σ2

0 +
(
1+ s1

4

)
σ2

1
s1
2 σ2

0 −
s0
2 σ2

1

. s0σ2
0 + s1σ2

1

 , (3.64)

where m, mi, s, si, (i = 0,1) are defined as in (3.11) and (3.12), respectively, and µ =

µ0−µ1.

Proof: See appendix.

Theorem 2 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (3.31). Then

given a bootstrap weight vector C, we have:

E
[
ε̂

2
C
]
=

1
m2

[
m0

(
P{B0(C)≥ 0}+P{B0(C)< 0}

)
+m1

(
P{B1(C)≥ 0}+P{B1(C)< 0}

)
+

+
(
m2

0−m0
)(

P{T00(C)≥ 0}+P{T00(C)< 0}
)
+

+2m0m1

(
P{T01(C)≥ 0}+P{T01(C)< 0}

)
+

+
(
m2

1−m1
)(

P{T11(C)≥ 0}+P{T11(C)< 0}
)]

,

(3.65)

where B0(C) and B1(C) are bivariate Gaussian random vectors defined as in (3.63) and

(3.64), respectively. T00(C), T11(C), and T01(C) are trivariate Gaussian vectors with the
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following means and covariance matrices:

E [T00(C)] =


µ

2

−µ

µ

2

 , ΣT00(C) =


(
1+ s0

4

)
σ2

0 +
s1
4 σ2

1
s0σ2

0
2 −

s1σ2
1

2
s0
4σ2

0 +
s1
4 σ2

1

. s0σ2
0 + s1σ2

1
s0σ2

0
2 −

s1σ2
1

2

. .
(
1+ s0

4

)
σ2

0 +
s1
4 σ2

1

 ,

E [T11(C)] =


−µ

2

µ

−µ

2

 , ΣT11(C) =


s0
4 σ2

0 +
(
1+ s1

4

)
σ2

1 − s0σ2
0

2 +
s1σ2

1
2

s0
4 σ2

0 +
s1
4 σ2

1

. s0σ2
0 + s1σ2

1 − s0σ2
0

2 +
s1σ2

1
2

. . s0
4 σ2

0 +
(
1+ s1

4

)
σ2

1

 ,

E [T01(C)] =


µ

2

−µ

µ

2

 , ΣT01(C) =


(
1+ s0

4

)
σ2

0 +
s1
4 σ2

1
s0σ2

0
2 −

s1σ2
1

2 − s1
4 σ2

1 −
s0
4 σ2

0

. s0σ2
0 + s1σ2

1 − s0σ2
1

2 +
s1σ2

1
2

. . s0
4 σ2

0 +
(
1+ s1

4

)
σ2

1

 ,

where s0 and s1 are defined as in (3.12), m as in (3.11), and µ = µ0−µ1.

Proof: See appendix.

Theorem 3 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (3.31). Then

given two distinct bootstrap vectors C1 and C2, we have:

E [ε̂C1 ε̂C2] =

= λ (C1,C2)
( n0

∑
i, j=1

IC1(i)=0,C2( j)=0F00(i, j,C1,C2)+
n0+n1

∑
i, j=n0+1

IC1(i)=0,C2( j)=0F11(i, j,C1,C2)+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC1(i)=0,C2( j)=0F01(i, j,C1,C2)+
n0+n1

∑
i=n0+1

n0

∑
j=1

IC1(i)=0,C2( j)=0F01( j, i,C2,C1)
)
,

(3.66)
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where λ (C1,C2) =
1

m(C1)m(C2)
, and

Fab(i, j,C1,C2) = P{F I
ab(i, j,C1,C2)> 0}+P{F I

ab(i, j,C1,C2)< 0}+

+P{F II
ab(i, j,C1,C2)> 0}+P{F II

ab(i, j,C1,C2)< 0},

where F I
ab(i, j,C1,C2),F II

ab(i, j,C1,C2), a,b = 0,1 are 4-dimensional Gaussian random vec-

tors defined as in (3.33), (3.34), (3.35), (3.36), (3.37), and (3.38), respectively, and m as in

(3.11).

Proof: See appendix.

Theorem 4 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (3.31). Then

given a bootstrap vector C, we have:

E [ε̂Cε̂r] =
1

nm

( n0

∑
i, j=1

IC(i)=0G00(i, j,C)+
n0+n1

∑
i, j=n0+1

IC(i)=0G11(i, j,C)+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC(i)=0G01(i, j,C)+
n0+n1

∑
i=n0+1

n0

∑
j=1

IC(i)=0G10(i, j,C)
)
,

(3.67)

where m is defined as in (3.11), and

Gab = P{GI
ab(i, j,C)> 0}+P{GI

ab(i, j,C)< 0}+

+P{GII
ab(i, j,C)> 0}+P{GII

ab(i, j,C)< 0},

where GI
ab(i, j,C), GII

ab(i, j,C), a, b = 0, 1 are 4-dimensional Gaussian random vectors de-

fined as in (3.39), (3.40), (3.41), (3.42), (3.43), (3.44), (3.45), and (3.46), respectively.

Proof: See appendix.
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Theorem 5 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (3.31). Then

given a bootstrap vector C, we have:

E [ε̂Cε] =
m0(1− γ)

m
K00(C)+

m1γ

m
K11(C)+

m0γ

m
K01(C)+

m1(1− γ)

m
K10(C), (3.68)

where m, m0, and m1 are defined as in (3.11), and

Kab(C) = P{KI
ab(C)< 0}+P{KI

ab(C)> 0}+P{KII
ab(C)< 0}+P{KII

ab(C)> 0},

where KI
ab(C), KII

ab(C), a, b = 0, 1 are 4-dimensional Gaussian random vectors defined as

in (3.47), (3.48), (3.49), (3.50), (3.51), (3.52), (3.53), and (3.54), respectively.

Proof: See appendix.

E. The Zero Bootstrap Error Estimation

The followings present the theorems to compute the first and second moments of zero boot-

strap estimator and its correlation with the true error as well as the resubstitution estimator.

Theorem 6 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0+n1 i.i.d. observations used to derive the classifier in (3.31). Then we

have:

E [ε̂0] = ∑
C

P(C)

m(C)

(
m0(C)P{B0(C)≥ 0}+m0(C)P{B0(C)< 0}+

+m1(C)P{B1(C)≥ 0}+m1(C)P{B1(C)< 0}
)
,

(3.69)

where B0(C) and B1(C) are defined as in Theorem 1, m, m0, and m1 as in (3.11), and P(C)

as in (2.24).
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Proof: This is the immediate result of Theorem 1 and (3.23).

Theorem 7 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0+n1 i.i.d. observations used to derive the classifier in (3.31). Then we

have:

E[ε̂2
0 ] = ∑

C
λ2(C)

[
m0(C)P{B0(C)≥ 0}+m0(C)P{B0(C)< 0}+m1(C)P{B1(C)≥ 0}+

+m1(C)P{B1(C)< 0}+
(
m2

0(C)−m0(C)
)(

P{T00(C)≥ 0}+P{T00(C)< 0}
}
+

+
(
m2

1(C)−m1(C)
)(

P{T11(C)≥ 0}+P{T11(C)< 0}
)
+

+2m0(C)m1(C)
(

P{T01(C)≥ 0}+P{T01(C)< 0}
)]

+

+ ∑
C1 6=C2

λ3(C1,C2)

[
n0

∑
i, j=1

IC1(i)=0,C2( j)=0F00(i, j,C1,C2)+

+
n0+n1

∑
i, j=n0+1

IC1(i)=0,C2( j)=0F11(i, j,C1,C2)+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC1(i)=0,C2( j)=0F01(i, j,C1,C2)+

+
n0+n1

∑
i=n0+1

n0

∑
j=1

IC1(i)=0,C2( j)=0F01( j, i,C2,C1)

]
,

(3.70)

where λ2(C) = P(C)
m2(C)

, λ3(C1,C2) =
2P(C1)P(C2)
m(C1)m(C2)

, B0(C) and B1(C) are defined as in Theorem

1, Tab(C) as in Theorem 2, Fab(i, j,C1,C2) as in Theorem 3, a, b = 0, 1; m, m0, m1 as in

(3.11), and P(C) as in (2.24).

Proof: This is the immediate result of theorem 2, 3, and (3.24).

Theorem 8 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0+n1 i.i.d. observations used to derive the classifier in (3.31). Then we
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have:

E [ε̂0ε̂r] = ∑
C

P(C)

nm(C)

[
n0

∑
i, j=1

IC(i)=0G00(i, j,C)+
n0+n1

∑
i, j=n0+1

IC(i)=0G11(i, j,C)+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC(i)=0G01(i, j,C)+
n0+n1

∑
i=n0+1

n0

∑
j=1

IC(i)=0G10(i, j,C)

]
,

(3.71)

where Gab(i, j,C),a, b = 0, 1 are defined as in Theorem 4, m as in (3.11), and P(C) as in

(2.24).

Proof: This is the immediate result of theorem 3 and (3.25).

Theorem 9 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0+n1 i.i.d. observations used to derive the classifier in (3.31). Then we

have:

E[ε̂0ε] =

= ∑
C

P(C)

m(C)

[
(1− γ)

(
m0(C)K00(C)+m1(C)K10(C)

)
+ γ

(
m1(C)K11(C)+m0(C)K01(C)

)]
,

(3.72)

where Kab(C), a, b = 0, 1 are defined as in theorem 5; m, m0, and m1 as in (3.11), and

P(C) as in (2.24).

Proof: This is the immediate result of theorem 5 and (3.26).

F. The Convex Bootstrap Error Estimation

We first rewrite in our notations the moments E[ε], E[ε2], E[ε̂r], E[ε̂2
r ], and E[εε̂r] which

were were derived for the univariate model in [86]. This section then presents theorems

to compute the first and second moments of the convex bootstrap estimator with arbitrary

scalar w (3.10) and its correlation with the true error.
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1. The Moments of the True Error

a. The First Moment

Under univariate Gaussian model, (3.20) becomes

E[ε] = (1− γ)
(

P{B0(
−→
1 )> 0}+P{B0(

−→
1 )< 0}

)
+ γ

(
P{B1(

−→
1 )> 0}+P{B1(

−→
1 )< 0}

)
,

(3.73)

where B0 and B1 are defined in Theorem 1.

b. The Second Moment

Under univariate Gaussian model, (3.21) becomes

E[ε2] = (1− γ)2
(

P{R00 ≥ 0}+P{R00 < 0}
)
+2γ(1− γ)

(
P{R01 ≥ 0}+P{R01 < 0}

)
+

+ γ
2
(

P{R11 ≥ 0}+P{R11 < 0}
)
,

(3.74)

where R00, R11, and R01 are trivariate Gaussian random variables with the means and co-

variance matrices as followings

E[R00] =


−µ

2

µ

−µ

2

 ,ΣR00 =


(
1+ 1

4n0

)
σ2

0 +
σ2

1
4n1

σ2
0

2n0
− σ2

1
2n1

σ2
1

4n1
+

σ2
0

4n0

.
σ2

0
n0

+
σ2

1
n1

σ2
0

2n0
− σ2

1
2n1

. .
(
1+ 1

4n0

)
σ2

0 +
σ2

1
4n1

 , (3.75)

E[R11] =


µ

2

−µ

µ

2

 ,ΣR11 =


(
1+ 1

4n1

)
σ2

1 +
σ2

0
4n0

σ2
1

2n1
− σ2

0
2n0

σ2
1

4n1
+

σ2
0

4n0

.
σ2

0
n0

+
σ2

1
n1

σ2
1

2n1
− σ2

0
2n0

. .
(
1+ 1

4n1

)
σ2

1 +
σ2

0
4n0

 , (3.76)
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E[R01] =


−µ

2

µ

−µ

2

 ,ΣR01 =


(
1+ 1

4n0

)
σ2

0 +
σ2

1
4n1

σ2
0

2n0
− σ2

1
2n1

− σ2
1

4n1
− σ2

0
4n0

.
σ2

0
n0

+
σ2

1
n1

σ2
1

2n1
− σ2

0
2n0

. .
(
1+ 1

4n1

)
σ2

1 +
σ2

0
4n0

 , (3.77)

2. The Moments of the Resubstitution Estimator

a. The First Moment

E[ε̂r] = E

[
1
n

(
n0

∑
i=1

Iψ(Xi)=1 +
n0+n1

∑
i=n0+1

Iψ(Xi)=0

)]

=
n0

n
P{ψ(X1) = 1| X ∈Π0}+

n1

n
P{ψ(Xn0+1) = 0| X ∈Π1}

=
n0

n

(
P{D0 ≥ 0}+P{D0 < 0}

)
+

n1

n

(
P{D1 ≥ 0}+P{D1 < 0}

)
,

(3.78)

where D0, D1 are bivariate Gaussian vectors with the following means and covariance ma-

trices:

E[D0] =

 µ

2

−µ

 , ΣD0 =


(
1− 3

4n0

)
σ2

0 +
σ2

1
4n1

− σ2
0

2n0
− σ2

1
2n1

.
σ2

0
n0

+
σ2

1
n1

 , (3.79)

E[D1] =

 −µ

2

µ

 , ΣD1 =


(
1− 3

4n1

)
σ2

1 +
σ2

0
4n0

− σ2
0

2n0
− σ2

1
2n1

.
σ2

1
n1

+
σ2

0
n0

 , (3.80)

where µ = µ0−µ1.
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b. The Second Moment

E[ε̂2
r ] = E

[
1
n2

(
n0

∑
i=1

Iψ(Xi)=1 +
n0+n1

∑
i=n0+1

Iψ(Xi)=0

)2]

= E

[
1
n2

( n0

∑
i=1

Iψ(Xi)=1 +
n0+n1

∑
i=n0+1

Iψ(Xi)=0+

+
n0

∑
i=1

n0

∑
j 6=i

Iψ(Xi)=1Iψ(X j)=1 +
n0+n1

∑
i=n0+1

n0+n1

∑
j 6=i

Iψ(Xi)=0Iψ(X j)=0+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

Iψ(Xi)=1Iψ(X j)=0 +
n0+n1

∑
i=n0

n0

∑
j=1

Iψ(Xi)=0Iψ(X j)=1

)]

=
n0

n2 P{ψ(X1) = 1}+ n1

n2 P{ψ(Xn0+1) = 0}+

+
n0(n0−1)

n2 P{ψ(X1) = 1,ψ(X2) = 1}+

+
n1(n1−1)

n2 P{ψ(Xn0+1) = 0,ψ(Xn0+2) = 0}+

+
2n0n1

n2 P{ψ(X1) = 1,ψ(Xn0+1) = 0},

E[ε̂2
r ] =

n0

n2

(
P{D0 ≥ 0}+P{D0 < 0}

)
+

n1

n2

(
P{D1 ≥ 0}+P{D1 < 0}

)
+

+
n0(n0−1)

n2

(
P{H00 ≥ 0}+P{H00 < 0}

)
+

+
n1(n1−1)

n2

(
P{H11 ≥ 0}+P{H11 < 0}

)
+

+
2n0n1

n2

(
P{H01 ≥ 0}+P{H01 < 0}

)
,

(3.81)

where H00, H11, H01 are trivariate Gaussian random variables defined as in (3.55), (3.56),

and (3.57) respectively.
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c. The Correlation with the True Error

E[εε̂r] = E

[(
(1− γ)ε0 + γε

1)× 1
n

(
n0

∑
i=1

Iψ(Xi)=1 +
n0+n1

∑
i=n0+1

Iψ(Xi)=0

)]

=
(1− γ)

n

n0

∑
i=1

E[ε0Iψ(Xi)=1]+
(1− γ)

n

n0+n1

∑
i=n0+1

E[ε0Iψ(Xi)=0]+

+
γ

n

n0

∑
i=1

E[ε1Iψ(Xi)=0]+
γ

n

n0+n1

∑
i=n0+1

E[ε1Iψ(Xi)=0]

=
1− γ

n

(
n0P{ψ(X∗) = 1,ψ(X1) = 1}+n1P{ψ(X∗) = 1,ψ(Xn0+1) = 0}

)
+

+
γ

n

(
n0P{ψ(X∗∗) = 0,ψ(X1) = 1}+n1P{ψ(X∗∗) = 0,ψ(Xn0+1) = 0}

)
.

So,

E[ε̂rε] =
(1− γ)n0

n

(
P{J00 ≥ 0}+P{J00 < 0}

)
+

γn1

n

(
P{J11 ≥ 0}+P{J11 < 0}

)
+

+
γn0

n

(
P{J01 ≥ 0}+P{J01 < 0}

)
+

(1− γ)n1

n

(
P{J10 ≥ 0}+P{J10 < 0}

)
,

(3.82)

where J00, J11, J01, and J10 are trivariate Gaussian random variables defined as in (3.58),

(3.59), (3.60) and (3.61) respectively.
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3. The Moments of the Convex Estimator

This section presents the theorems to compute the first and second moments of the convex

bootstrap estimate with arbitrary scalar w, as well as its correlation with the true error ε .

Theorem 10 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0+n1 i.i.d. observations used to derive the classifier in (3.31). Then we

have:

E[ε̂w] =
n0(1−w)

n

(
P{D0 ≥ 0}+P{D0 < 0}

)
+

n1(1−w)
n

(
P{D1 ≥ 0}+P{D1 < 0}

)
+

+∑
C

wP(C)

m(C)

(
m0(C)P{B0(C)≥ 0}+m0(C)P{B0(C)< 0}+m1(C)P{B1(C)≤ 0}+

+m1(C)P{B1(C)> 0}
)
,

(3.83)

where D0 and D1 are defined as in (3.79) and (3.80), B0(C) and B1(C) as in Theorem 1; m,

m0, and m1 as in (3.11), and P(C) in (2.24).

Proof: This is the result of theorem 1, (3.27), and (3.78).
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Theorem 11 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0+n1 i.i.d. observations used to derive the classifier in (3.31). Then we

have:

E[ε̂2
w] =

(1−w)2
[n0

n2

(
P{D0 ≥ 0}+P{D0 < 0}

)
+

n1

n2

(
P{D1 ≥ 0}+P{D1 < 0}

)
+

+
n0(n0−1)

n2

(
P{H00 ≥ 0}+P{H00 < 0}

)
+

n1(n1−1)
n2

(
P{H11 ≥ 0}+P{H11 < 0}

)
+

+
2n0n1

n2

(
P{H01 ≥ 0}+P{H01 < 0}

)]
+

+∑
C

2w(1−w)P(C)

nm(C)

[
n0

∑
i, j=1

IC(i)=0G00(i, j,C)+
n0+n1

∑
i, j=n0+1

IC(i)=0G11(i, j,C)+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC(i)=0G01(i, j,C)+
n0+n1

∑
i=n0+1

n0

∑
j=1

IC(i)=0G10(i, j,C)

]
+

+∑
C

λ4(w,C)
[
m0(C)P{B0(C)≥ 0}+m0(C)P{B0(C)< 0}+m1(C)P{B1(C)≥ 0}+

+m1(C)P{B1(C)< 0}+
(
m2

0(C)−m0(C)
)
(P{T00(C)≥ 0}+P{T00(C)< 0})+

+
(
m2

1(C)−m1(C)
)
(P{T11(C)≥ 0}+P{T11(C)< 0})+

+2m0(C)m1(C)(P{T01(C)≥ 0}+P{T01(C)< 0})
]
+

+ ∑
C1 6=C2

λ5(w,C1,C2)
[ n0

∑
i, j

IC1(i)=0,C2( j)=0 F00(i, j,C1,C2)+

+
n0+n1

∑
i, j=n0+1

IC1(i)=0,C2( j)=0F11(i, j,C1,C2)+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC1(i)=0 IC2( j)=0F01(i, j,C1,C2)+
n0+n1

∑
i=n0+1

n0

∑
j=1

IC2( j)=0 IC1(i)=0F01( j, i,C2,C1)
]
,

where D0 and D1 are defined as in (3.79) and (3.80), Hab, a,b= 0,1 as in (3.55), (3.56), and

(3.57), B0(C) and B1(C) as in Theorem 1, Tab(C), a,b = 0,1 as in theorem 2, Gab(i, j,C)

as in theorem 4, Fab(i, j,C1,C2) as in theorem 3, and λ4(w,C) = w2P(C)
m2(C)

, λ5(w,C1,C2) =

2w2P(C1)P(C2)
m(C1)m(C2)

, and P(C) as in (2.24).
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Proof: This is the result of theorem 7, theorem 8, (3.28), and (3.81).

Theorem 12 Let Xi∼N(µ0,σ
2
0 ) for i= 1, . . . ,n0, and Xi∼N(µ1,σ

2
1 ) for i= n0+1, . . . ,n0+

n1 be a set of n = n0+n1 i.i.d. observations used to derive the classifier in (3.31). Then we

have:

E[ε̂wε] =

= (1−w)
[(1− γ)n0

n

(
P{J00 ≥ 0}+P{J00 < 0}

)
+

γn1

n

(
P{J11 ≥ 0}+P{J11 < 0}

)
+

+
γn0

n

(
P{J01 ≥ 0}+P{J01 < 0}

)
+

(1− γ)n1

n

(
P{J10 ≥ 0}+P{J10 < 0}

)]
+

+∑
C

wP(C)

m(C)

[
(1− γ)

(
m0(C)K00(C)+m1(C)K10(C)

)
+ γ

(
m1(C)K11(C)+m0(C)K01(C)

)]
,

where Jab a, b = 0, 1 are defined as in (3.58), (3.59), (3.60), and (3.61); Kab, a, b = 0, 1 as

in theorem 5, m, m0, and m1 as in (3.11), and P(C) as in (2.24).

Proof: This is the result of theorem 9, (3.29), and (3.82)

G. The .632 Bootstrap Error Estimation

Setting w = .632 in the formulas of the convex estimator yields the moments of the classic

.632 bootstrap estimate.

H. The Optimal Bootstrap Error Estimation

The above theorems allow one to compute the optimal weight w∗, which minimizes the

root mean square of the deviation of the convex bootstrap estimate ε̂w from the true error ε .

w∗ = argmin
w

RMS[ε̂w] = argmin
w

RMS2[ε̂w]
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RMS2[ε̂w] = E(ε̂w− ε)2

= E
[
ε̂

2
w
]
−2E [ε̂wε]+E

[
ε

2]
= (1−w)2E[ε̂2

r ]+w2E[ε̂2
0 ]+2w(1−w)E[ε̂rε̂0]+

−2((1−w)E[εε̂r]+wE[εε̂0])+E[ε2]

= w2E(ε̂r− ε̂0)
2 +2E

[
−εε̂0 + ε̂rε̂0 + εε̂r− ε̂

2
r
]

w+E(ε̂r− ε)2

The root mean square of the convex estimator RMS2[ε̂w] is a quadratic function of w.

Thus, w∗ can be found to be

w∗ =−
2E
[
−εε̂0 + ε̂rε̂0 + εε̂r− ε̂2

r
]

2E(ε̂r− ε̂0)
2

=
E
[
εε̂0− ε̂rε̂0− εε̂r + ε̂2

r
]

E
[
ε̂2

r −2ε̂rε̂0 + ε̂2
0
]

The optimal minimum RMS w∗ can be computed using Theorem 7, 8, 9, and the results

of (3.81), (3.82). In .632 bootstrap estimation, the combination scalar .632 was chosen

heuristically, which represents the proportion of the original sample points in the bootstrap

samples [99]. In .632+ bootstrap estimation, w was chosen heuristically adaptively in

accordance with the overfitting rate [102]. While both of them have been shown to be

among the best, they do not guarantee the minimum root mean square.

I. The Unbiased Bootstrap Error Estimation

While the minimized root mean square can be considered as the global criterion for esti-

mation evaluation, unbiased estimation is also of interest to many. Based on Theorem 10,

(3.78) and (3.20), we can find wu that guarantees an unbiased bootstrap estimation.

E[ε̂w− ε] = E[(1−wu)ε̂r +wuε̂0− ε] = 0
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wu =
E[ε− ε̂r]

E[ε̂0− ε̂r]
(3.84)

The unbiased scalar wu can be obtained based on Theorem 3.23, (3.78), (3.20). In

order to compute E[ε̂0], we need to go through all Cs. However, note that

E[ε̂0] = ∑
C

P(C)E[εC] = ∑
(s0,s1)

P(s0,s1)E[εC(s0,s1)] (3.85)

where C(s0,s1) is any bootstrap vector C that satisfies (3.12). Since the number of all

configurations of the vector (s0,s1) is much smaller than the number of all configurations

of C, this provides the basis for an efficient way to calculate E[ε̂0], provided that we have a

method of directly calculating P(s0,s1) without having to go through all C. Problem arises

for large n, which can be greatly alleviated by using (3.85) and we create a method for

computing P(s0,s1) efficiently that is described in the Appendix.

We present below examples of application of the formulas derived in the paper for

the unbiased weight wu. Figure I displays the exact wu as a function of Bayes error for

different sample sizes, and as a function of number of samples for different Bayes error, in

the univariate case. We can see that for small Bayes error, the unbiased weight tends to be

closer to the heuristic 0.632 weight than for large Bayes error. We also see that as sample

size increases, the unbiased weight appears to be converging to a fixed value, which is not

the heuristic 0.632 weight.
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Fig. 1. Optimal weight wu in the univariate case. The top figure displays wu as a function
of Bayes error for different sample sizes, whereas the bottom figure displays wu as a
function of the number of samples for different Bayes errors.
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CHAPTER IV

BOOTSTRAP ERROR ESTIMATION - MULTIVARIATE MODEL ∗

This chapter presents the theoretical analysis of complete bootstrap error estimation for

linear discriminant analysis under standard multivariate Gaussian model with the same

covariance matrix. The covariance matrix of the label feature distribution is assumed to be

known. The analysis is concerned with some bootstrap estimators including zero, .632, and

convex bootstrap estimation. The results include the first moments, the second moments,

the cross moments of these bootstrap estimators with the true error and the resubstitution

estimator. As a result, we obtain the exact formulas for the bias, variance, and the root mean

squared error of the estimation deviations from the true error, which are the usual metrics

for evaluation of estimation methods. Also, we propose unbiased bootstrap estimation by

zeroing the deviation bias and optimal bootstrap estimation by minimizing the root mean

square of the deviation. Different from the univariate case, the formulas in the multivariate

case are involved with doubly noncentral F random variables, including univariate and

bivariate F . The efficient algorithm introduced in Chapter III is also applicable for the

multivariate models. Finally, some figures of the optimal convex scalar for the unbiased

bootstrap are provided for different number of samples under various multivariate Gaussian

models.

∗ Part of this chapter is reprinted with permission from ”Unbiased Bootstrap Error Es-

timation for Linear Discriminant Analysis.” by T. T. Vu, U. M. Braga-Neto, and E. R.

Dougherty, 2010. submitted, copyright 2010 of IEEE Transactions on Pattern Analysis

and Machine Intelligence.
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A. Multivariate Model

1. Bootstrapped Linear Discriminant

Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0 +1, . . . ,n0 +n1 be a set of

n = n0 + n1 i.i.d. observations. The covariance matrix Σ is assumed to be known. Linear

Discriminant Analysis (LDA) employs Anderson’s W discriminant, which is defined as

follows:

W (X) =

(
X− µ̂0 + µ̂1

2

)T

Σ
−1 (µ̂0− µ̂1) (4.1)

where

µ̂0 =
1
n0

n0

∑
i=1

Xi,

µ̂1 =
1
n1

n0+n1

∑
i=n0+1

Xi

(4.2)

are the sample means of the sample sets S0 and S1, respectively. This defines the LDA

classification rule, whereby the designed LDA classifier is defined by:

ψ(X) =


1 , if W (X)< 0

0 , if W (X)≥ 0
, (4.3)

The C-bootstrap LDA classifier is obtained by substituting µ̂C
i , defined in (3.32), for

µ̂i, i = 0,1, in (4.1):

WC(X) =

(
X−

µ̂C
0 + µ̂C

1
2

)T

Σ
−1
(

µ̂
C
0 − µ̂

C
1

)
(4.4)

ψC(X) =


1 , if

(
X− µ̂C

0 +µ̂C
1

2

)T
Σ−1(µ̂C

0 − µ̂C
1 )< 0

0 , otherwise
. (4.5)
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2. Some Definitions

The multivariate model is different from the univariate one, in which we can break down

all the moments of error estimators to Gaussian distribution. In multivariate case, they are

involved with F distributions. Given the scarce literature of bivariate F distributions, we

will need to define the following functions to help represent the results.

Suppose Z j, j ∈ {1,2,3,4} are jointly p-dimensional Gaussian random vectors with

expectations E[Z j], the covariance matrix Σ j, and the cross-covariance matrices Σi j. Then

Y = [ZT
1 ZT

2 ]
T and Z = [ZT

1 ZT
2 ZT

3 ZT
4 ]

T are Gaussian random vectors of dimension 2p and

4p, respectively. We have:

E[Y ] =
[
E[Z1]

T E[Z2]
T ]T , E[Z] =

[
E[Z1]

T E[Z2]
T E[Z3]

T E[Z4]
T ]T ,

ΣY =

 Σ1 Σ12

. Σ2

 , ΣZ =



Σ1 Σ12 Σ13 Σ14

. Σ2 Σ23 Σ24

. . Σ3 Σ34

. . . Σ4


.

Because Z js are jointly Gaussian distributed, E[Z j]s and ΣZ fully specify Z js and their

relations.

Define the following probabilities:

G0(Y ) = P{ZT
1 Z1−ZT

2 Z2 < 0},

G1(Y ) = P{ZT
1 Z1−ZT

2 Z2 > 0},

G00(Z) = P{ZT
1 Z1−ZT

2 Z2 < 0,ZT
3 Z3−ZT

4 Z4 < 0},

G11(Z) = P{ZT
1 Z1−ZT

2 Z2 > 0,ZT
3 Z3−ZT

4 Z4 > 0},

G01(Z) = P{ZT
1 Z1−ZT

2 Z2 < 0,ZT
3 Z3−ZT

4 Z4 > 0},

G10(Z) = P{ZT
1 Z1−ZT

2 Z2 > 0,ZT
3 Z3−ZT

4 Z4 < 0}.

(4.6)
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We can see that G0, G1 are probabilities of a F = cZT
1 Z1

ZT
2 Z2

(c is a normalization constant)

random variable if Z1, Z2 are independent; G00, G11, G01, and G10 are probabilities of a

bivariate F = (F1F2) random variable where F1 = c1
ZT

1 Z1
ZT

2 Z2
, F2 = c2

ZT
3 Z3

ZT
4 Z4

if Z1, Z2 are inde-

pendent, and so are Z3, Z4. Given the scarce literature of bivariate F distributions [142],

we will use Gs, the previously defined functions of multivariate Gaussian distribution, as

standard notations in the following results.

B. The C-bootstrap Linear Classifier

This section presents the theorems to compute the first, second moment of the hold-out

error of the C-bootstrap linear classifier ψC(X) and it cross moment with the resubstitution

estimator and the true error of the original linear classifier ψ(X).

Theorem 13 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (4.5). Then

given a bootstrap vector C, we have:

E[ε̂C] =
1

m(C)

[
m0(C)G0 (Z0(C))+m1(C)G1 (Z1(C))

]
, (4.7)

where m, m0, m1 are defined as in (3.11), G0 and G1 in (4.6), and Z0, Z1 are 2p-dimensional

Gaussian random vectors with Zi(C) =
[
(Z1

i )
T (Z2

i )
T ]T , i = 0,1 with

E
[
Z1

0
]
= E

[
Z2

1
]
=
[
s−

1
2 +(s+4)−

1
2

]
Σ
− 1

2 µ,

E
[
Z2

0
]
= E

[
Z1

1
]
=
[
s−

1
2 − (s+4)−

1
2

]
Σ
− 1

2 µ,

ΣZ0 = ΣZ1 =

 2(1+ρ)Ip 0p×p

. 2(1−ρ)Ip

 ,

where ρ = s0−s1√
s(s+4)

, s, s0, s1 are defined as in (3.12), and µ = µ0−µ1.
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Proof: See appendix.

Theorem 14 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+

n1 be a set of n = n0 +n1 i.i.d. observations used to derive the classifier in (4.5). Then we

have:

E[ε̂2
C] =

m0

m2 G0(Z0(C))+
m1

m2 G1(Z1(C))+
m0(m0−1)

m2 G00 (T00(C))+

+
m1(m1−1)

m2 G11 (T11(C))+
m0m1

m2

[
G01 (T01(C))+G10 (T01(C))

]
,

where the functions G are defined as in (4.6), m0, m1, and m in (3.11), Z0 and Z1 as in

theorem 13, Tab, a,b = 0,1 are 4p-dimensional Gaussian vectors with

Tab =
[
(T 1

ab)
T (T 2

ab)
T (T 3

ab)
T (T 4

ab)
T ]T and

E
[
T 1

00
]
= E

[
T 3

00
]
= E

[
T 2

11
]
= E

[
T 4

11
]
= E

[
T 1

01
]
= E

[
T 4

01
]
=
[
s−

1
2 +(s+4)−

1
2

]
Σ
− 1

2 µ,

E
[
T 2

00
]
= E

[
T 4

00
]
= E

[
T 1

11
]
= E

[
T 3

11
]
= E

[
T 2

01
]
= E

[
T 3

01
]
=
[
s−

1
2 − (s+4)−

1
2

]
Σ
− 1

2 µ,

and

ΣT11 = ΣT01 = ΣT00 =


2(1+ρ)Ip 0p×p

(
2s+4
s+4 + 2(s1−s0)√

s(s+4)

)
Ip

2s+4
s+4 Ip

. 2(1−ρ)Ip
2s+4
s+4 Ip

(
2s+4
s+4 −

2(s1−s0)√
s(s+4)

)
Ip

. . 2(1+ρ)Ip 0p×p

. . . 2(1−ρ)Ip

 ,

where s, s0, s1 are defined as in (3.12), ρ = s0−s1√
s(s+4)

.

Proof: See appendix.

Theorem 15 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+

n1 be a set of n = n0 +n1 i.i.d. observations used to derive the classifier in (4.5). Then for



75

C1 6=C2 we have:

E[ε̂C1 ε̂C2] =
1

m(C1)m(C2)

[ n0

∑
i=1

n0

∑
j=1

IC1(i)=0,C2( j)=0 G00
(
F00(C1,C2, i, j)

)
+

+
n0+n1

∑
i=n0+1

n0+n1

∑
j=n0+1

IC1(i)=0,C2( j)=0 G11
(
F11(C1,C2, i, j)

)
+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC1(i)=0,C2( j)=0 G01
(
F01(C1,C2, i, j)

)
+

+
n0+n1

∑
i=n0

n0

∑
j=1

IC1(i)=0,C2( j)=0 G10
(
F01(C2,C1, j, i)

)]
,

where the functions G are defined as in (4.6), m as in (3.11), Fab(C1,C2, i, j), a, b = 0,1 are

4p-dimensional Gaussian vectors with Fab =
[
(F1

ab)
T (F2

ab)
T (F3

ab)
T (F4

ab)
T ]T , and

E
[
F1

00
]
= E

[
F2

11
]
= E

[
F1

01
]
=
[
s(C1)

− 1
2 +(s(C1)+4)−

1
2

]
Σ
− 1

2 µ,

E
[
F2

00
]
= E

[
F1

11
]
= E

[
F2

01
]
=
[
s(C1)

− 1
2 − (s(C1)+4)−

1
2

]
Σ
− 1

2 µ,

E
[
F3

00
]
= E

[
F4

11
]
= E

[
F4

01
]
=
[
s(C2)

− 1
2 +(s(C2)+4)−

1
2

]
Σ
− 1

2 µ,

E
[
F4

00
]
= E

[
F3

11
]
= E

[
F3

01
]
=
[
s(C2)

− 1
2 − (s(C2)+4)−

1
2

]
Σ
− 1

2 µ,

and

ΣFab(C1,C2,i, j) =



2(1+ρ(C1))Ip 0p×p κab1Ip κab2Ip

. 2(1−ρ(C1))Ip κab3Ip κab4Ip

. . 2(1+ρ(C2))Ip 0p×p

. . . 2(1−ρ(C2))Ip


,
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where

κ001 =
( r0 + r1√

s(C1)s(C2)
+

2C1( j)
n0
− r0 + r1√

s(C1)(s(C2)+4)
+

2C2(i)
n0
− r0 + r1√

s(C2)(s(C1)+4)
+

r0 + r1− 2C1( j)+2C2(i)
n0√

(s(C1)+4)(s(C2)+4)

)
,

κ002 =
( r0 + r1√

s(C1)s(C2)
−

2C1( j)
n0
− r0 + r1√

s(C1)(s(C2)+4)
+

2C2(i)
n0
− r0 + r1√

s(C2)(s(C1)+4)
−

r0 + r1− 2C1( j)+2C2(i)
n0√

(s(C1)+4)(s(C2)+4)

)
,

κ003 =
( r0 + r1√

s(C1)s(C2)
+

2C1( j)
n0
− r0 + r1√

s(C1)(s(C2)+4)
−

2C2(i)
n0
− r0 + r1√

s(C2)(s(C1)+4)
−

r0 + r1− 2C1( j)+2C2(i)
n0√

(s(C1)+4)(s(C2)+4)

)
,

κ004 =
( r0 + r1√

s(C1)s(C2)
−

2C1( j)
n0
− r0 + r1√

s(C1)(s(C2)+4)
−

2C2(i)
n0
− r0 + r1√

s(C2)(s(C1)+4)
+

r0 + r1− 2C1( j)+2C2(i)
n0√

(s(C1)+4)(s(C2)+4)

)
,

κ111 =
( r0 + r1√

s(C1)s(C2)
−

2C1( j)
n1
− r0 + r1√

s(C1)(s(C2)+4)
−

2C2(i)
n1
− r0 + r1√

s(C2)(s(C1)+4)
+

r0 + r1− 2C1( j)+2C2(i)
n1√

(s(C1)+4)(s(C2)+4)

)
,

κ112 =
( r0 + r1√

s(C1)s(C2)
+

2C1( j)
n1
− r0 + r1√

s(C1)(s(C2)+4)
−

2C2(i)
n1
− r0 + r1√

s(C2)(s(C1)+4)
−

r0 + r1− 2C1( j)+2C2(i)
n1√

(s(C1)+4)(s(C2)+4)

)
,

κ113 =
( r0 + r1√

s(C1)s(C2)
−

2C1( j)
n1
− r0 + r1√

s(C1)(s(C2)+4)
+

2C2(i)
n1
− r0 + r1√

s(C2)(s(C1)+4)
−

r0 + r1− 2C1( j)+2C2(i)
n1√

(s(C1)+4)(s(C2)+4)

)
,

κ114 =
( r0 + r1√

s(C1)s(C2)
+

2C1( j)
n1
− r0 + r1√

s(C1)(s(C2)+4)
+

2C2(i)
n1
− r0 + r1√

s(C2)(s(C1)+4)
+

r0 + r1− 2C1( j)+2C2(i)
n1√

(s(C1)+4)(s(C2)+4)

)
,

κ011 =
( r0 + r1√

s(C1)s(C2)
−

2C1( j)
n1
− r0 + r1√

s(C1)(s(C2)+4)
+

2C2(i)
n0
− r0 + r1√

s(C2)(s(C1)+4)
+

r0 + r1− 2C1( j)
n1
− 2C2(i)

n0√
(s(C1)+4)(s(C2)+4)

)
,

κ012 =
( r0 + r1√

s(C1)s(C2)
+

2C1( j)
n1
− r0 + r1√

s(C1)(s(C2)+4)
+

2C2(i)
n0
− r0 + r1√

s(C2)(s(C1)+4)
−

r0 + r1− 2C1( j)
n1
− 2C2(i)

n0√
(s(C1)+4)(s(C2)+4)

)
,

κ013 =
( r0 + r1√

s(C1)s(C2)
−

2C1( j)
n1
− r0 + r1√

s(C1)(s(C2)+4)
−

2C2(i)
n0
− r0 + r1√

s(C2)(s(C1)+4)
−

r0 + r1− 2C1( j)
n1
− 2C2(i)

n0√
(s(C1)+4)(s(C2)+4)

)
,

κ014 =
( r0 + r1√

s(C1)s(C2)
+

2C1( j)
n1
− r0 + r1√

s(C1)(s(C2)+4)
−

2C2(i)
n0
− r0 + r1√

s(C2)(s(C1)+4)
+

r0 + r1− 2C1( j)
n1
− 2C2(i)

n0√
(s(C1)+4)(s(C2)+4)

)
,

where s, s0, s1, r0, r1 are defined as in (3.12), (3.13), ρ(C) = s0−s1√
s(s+4)

.

Proof: See appendix.

Theorem 16 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+
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n1 be a set of n = n0 +n1 i.i.d. observations used to derive the classifier in (4.5). Then we

have:

E[ε̂Cε̂r] =
1

nm(C)

[
n0

∑
i=1

n0

∑
j=1

IC(i)=0 G00(M00(C, i, j))+
n0+n1

∑
i=n0+1

n0+n1

∑
j=n0+1

IC(i)=0 G11(M11(C, i, j))+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC(i)=0 G01(M01(C, i, j))+
n0+n1

∑
i=n0

n0

∑
j=1

IC( j)=0 G10(M10(C, i, j))

]
,

where the functions G are defined as in (4.6), m as in (3.11), Mab(C, i, j), a,b = 0,1 are

4p-dimensional Gaussian vectors with

Mab = [(M1
ab)

T (M2
ab)

T (M3
ab)

T (M4
ab)

T ]T ,

E
[
M1

00
]
= E

[
M2

11
]
= E

[
M1

01
]
= E

[
M2

10
]
=
[
s−

1
2 +(s+4)−

1
2

]
Σ
− 1

2 µ,

E
[
M2

00
]
= E

[
M1

11
]
= E

[
M2

01
]
= E

[
M1

10
]
=
[
s−

1
2 − (s+4)−

1
2

]
Σ
− 1

2 µ,

E
[
M3

00
]
= E

[
M4

10
]
=

[(
1
n0

+
1
n1

)− 1
2

+

(
1− 3

4n0
+

1
4n1

)− 1
2
]

Σ
− 1

2 µ,

E
[
M4

00
]
= E

[
M3

10
]
=

[(
1
n0

+
1
n1

)− 1
2

−
(

1− 3
4n0

+
1

4n1

)− 1
2
]

Σ
− 1

2 µ,

E
[
M4

11
]
= E

[
M4

01
]
=

[(
1
n0

+
1
n1

)− 1
2

+

(
1− 3

4n1
+

1
4n0

)− 1
2
]

Σ
− 1

2 µ,

E
[
M3

11
]
= E

[
M3

01
]
=

[(
1
n0

+
1
n1

)− 1
2

−
(

1− 3
4n1

+
1

4n0

)− 1
2
]

Σ
− 1

2 µ,

and s, s0 and s1 are defined as in (3.12), and

ΣMab(C,i, j) =



2(1+ρ)Ip 0p×p ηab1Ip ηab2Ip

. 2(1−ρ)Ip ηab3Ip ηab4Ip

. . 2(1+ρb)Ip 0p×p

. . . 2(1−ρb)Ip


.
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where ρ0 =
√

n
4n0n1−3n1+n0

, ρ1 =
√

n
4n0n1−3n0+n1

, ρ = s0−s1√
s(s+4)

with

η001 =
1

√
n0n1

(√
n
s
+

2n1C( j)−n1 +n0√
s(4n0n1−3n1 +n0)

+

√
n

s+4
+

4n0n1Ii= j−2n1C( j)−n1 +n0√
(s+4)(4n0n1−3n1 +n0)

)
,

η002 =
1

√
n0n1

(√
n
s
− 2n1C( j)−n1 +n0√

s(4n0n1−3n1 +n0)
+

√
n

s+4
−

4n0n1Ii= j−2n1C( j)−n1 +n0√
(s+4)(4n0n1−3n1 +n0)

)
,

η003 =
1

√
n0n1

(√
n
s
+

2n1C( j)−n1 +n0√
s(4n0n1−3n1 +n0)

−
√

n
s+4

−
4n0n1Ii= j−2n1C( j)−n1 +n0√

(s+4)(4n0n1−3n1 +n0)

)
,

η004 =
1

√
n0n1

(√
n
s
− 2n1C( j)−n1 +n0√

s(4n0n1−3n1 +n0)
−
√

n
s+4

+
4n0n1Ii= j−2n1C( j)−n1 +n0√

(s+4)(4n0n1−3n1 +n0)

)
,

η111 =
1

√
n0n1

(√
n
s
− 2n0C( j)−n0 +n1√

s(4n0n1−3n0 +n1)
−
√

n
s+4

+
4n0n1Ii= j−2n0C( j)−n0 +n1√

(s+4)(4n1n0−3n0 +n1)

)
,

η112 =
1

√
n0n1

(√
n
s
+

2n0C( j)−n0 +n1√
s(4n1n0−3n0 +n1)

−
√

n
s+4

−
4n1n0Ii= j−2n0C( j)−n0 +n1√

(s+4)(4n1n0−3n0 +n1)

)
,

η113 =
1

√
n0n1

(√
n
s
− 2n0C( j)−n0 +n1√

s(4n1n0−3n0 +n1)
+

√
n

s+4
−

4n1n0Ii= j−2n0C( j)−n0 +n1√
(s+4)(4n1n0−3n0 +n1)

)
,

η114 =
1

√
n0n1

(√
n
s
+

2n0C( j)−n0 +n1√
s(4n1n0−3n0 +n1)

+

√
n

s+4
+

4n1n0Ii= j−2n0C( j)−n0 +n1√
(s+4)(4n1n0−3n0 +n1)

)
,

η011 =
1

√
n0n1

(√
n
s
− 2n0C( j)−n0 +n1√

s(4n0n1−3n0 +n1)
+

√
n

s+4
+

n0−2n0C( j)−n1√
(4n0n1−3n0 +n1)(s+4)

)
,

η012 =
1

√
n0n1

(√
n
s
+

2n0C( j)−n0 +n1√
s(4n0n1−3n0 +n1)

+

√
n

s+4
− n0−2n0C( j)−n1√

(4n0n1−3n0 +n1)(s+4)

)
,

η013 =
1

√
n0n1

(√
n
s
− 2n0C( j)−n0 +n1√

s(4n0n1−3n0 +n1)
−
√

n
s+4

− n0−2n0C( j)−n1√
(4n0n1−3n0 +n1)(s+4)

)
,

η014 =
1

√
n0n1

(√
n
s
+

2n0C( j)−n0 +n1√
s(4n0n1−3n0 +n1)

−
√

n
s+4

+
n0−2n0C( j)−n1√

(4n0n1−3n0 +n1)(s+4)

)
,
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η101 =
1

√
n0n1

(√
n
s
+

2n1C( j)−n1 +n0√
s(4n0n1−3n1 +n0)

−
√

n
s+4

+
n1−2n1C( j)−n0√

(4n0n1−3n1 +n0)(s+4)

)
,

η102 =
1

√
n0n1

(√
n
s
− 2n1C( j)−n1 +n0√

s(4n0n1−3n1 +n0)
−
√

n
s+4

− n1−2n1C( j)−n0√
(4n0n1−3n1 +n0)(s+4)

)
,

η103 =
1

√
n0n1

(√
n
s
+

2n1C( j)−n1 +n0√
s(4n0n1−3n1 +n0)

+

√
n

s+4
− n1−2n1C( j)−n0√

(4n0n1−3n1 +n0)(s+4)

)
,

η104 =
1

√
n0n1

(√
n
s
− 2n1C( j)−n1 +n0√

s(4n0n1−3n1 +n0)
+

√
n

s+4
+

n1−2n1C( j)−n0√
(4n0n1−3n1 +n0)(s+4)

)
.

Proof: See appendix.

Theorem 17 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+

n1 be a set of n = n0 +n1 i.i.d. observations used to derive the classifier in (4.5). Then we

have:

E[ε̂Cε] =
m0(1− γ)

m
G00(K00(C))+

m1γ

m
G11(K11(C))+

+
m0γ

m
G01(K01(C))+

m1(1− γ)

m
G10(K10(C)),

where the functions G are defined as in (4.6), m as in (3.11), Kab(C, i, j), a,b = 0,1 are

4p-dimensional Gaussian vectors with Kab = [(K1
ab)

T (K2
ab)

T (K3
ab)

T (K4
ab)

T ]T , and

E
[
K1

00
]
= E

[
K2

11
]
= E

[
K1

01
]
= E

[
K2

10
]
=

[(
1
n0

+
1
n1

)− 1
2

+

(
4+

1
n0

+
1
n1

)− 1
2
]

Σ
− 1

2 µ,

E
[
K2

00
]
= E

[
K1

11
]
= E

[
K2

01
]
= E

[
K1

10
]
=

[(
1
n0

+
1
n1

)− 1
2

−
(

4+
1
n0

+
1
n1

)− 1
2
]

Σ
− 1

2 µ,

E
[
K3

00
]
= E

[
K4

11
]
= E

[
K4

01
]
= E

[
K3

10
]
=
[
s−

1
2 +(s+4)−

1
2

]
Σ
− 1

2 µ,

E
[
K4

00
]
= E

[
K3

11
]
= E

[
K3

01
]
= E

[
K4

10
]
=
[
s−

1
2 − (s+4)−

1
2

]
Σ
− 1

2 µ,
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and

ΣKab(C,i, j) =



2(1+ρ∗)Ip 0p×p ζab1Ip ζab2Ip

. 2(1−ρ∗)Ip ζab3Ip ζab4Ip

. . 2(1+ρ)Ip 0p×p

. . . 2(1−ρ)Ip


.

where ρ∗ =
n1−n0√

n(n+4n0n1)
, ρ = s0−s1√

s(s+4)
with

ζ001 = ζ011 = ζ112 = ζ102 =

√
s+4+

√
s√

n0n1s(s+4)

(√
n+

n0−n1√
4n0n1 +n

)
,

ζ002 = ζ012 = ζ111 = ζ101 =

√
s+4−

√
s√

n0n1s(s+4)

(√
n+

n0−n1√
4n0n1 +n

)
,

ζ003 = ζ013 = ζ114 = ζ104 =

√
s+4+

√
s√

n0n1s(s+4)

(√
n− n0−n1√

4n0n1 +n

)
,

ζ004 = ζ014 = ζ113 = ζ103 =

√
s+4−

√
s√

n0n1s(s+4)

(√
n− n0−n1√

4n0n1 +n

)
,

where s, s0, and s1 are defined as in (3.12), µ = µ0−µ1.

Proof: See appendix.

C. The Zero Bootstrap Error Estimation

Theorem 18 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (4.5). Then

given a bootstrap vector C, we have:

E [ε̂0] = ∑
C

P(C)

m(C)

(
m0(C)G0 (Z0(C))+m1(C)G1 (Z1(C))

)
, (4.8)

where the functions G are defined as in (4.6), m0, m1, and m as in (3.11), Z0(C) and Z1(C)

as in theorem 13.
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Proof: This is the immediate result of theorem 13 and (3.23).

Theorem 19 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (4.5). Then

given a bootstrap vector C, we have:

E[ε̂2
0 ] = ∑

C

P(C)

m2(C)

(
m0(C)G0 (Z0(C))+m1(C)G1 (Z1(C))+

+
n0

∑
i=1

n0

∑
j 6=i

IC(i)=0,C( j)=0G00 (T00(C, i, j))+
n0+n1

∑
i=n0+1

n0+n1

∑
j 6=i

IC(i)=0,C( j)=0G11 (T11(C, i, j))+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC(i)=0,C( j)=0G01 (T01(C, i, j))+
n0+n1

∑
i=n0+1

n0

∑
j=1

IC(i)=0,C( j)=0G10 (T01(C, j, i))
)
+

+ ∑
C1 6=C2

2P(C1)P(C2)

m(C1)m(C2)

[
n0

∑
i, j=1

IC1(i)=0,C2( j)=0 G00 (F00(C1,C2, i, j))+

+
n0+n1

∑
i, j=n0+1

IC1(i)=0,C2( j)=0 G11 (F11(C1,C2, i, j))+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC1(i)=0,C2( j)=0 G01 (F01(C1,C2, i, j))+

+
n0+n1

∑
i=n0

n0

∑
j=1

IC1(i)=0,C2( j)=0 G10 (F01(C2,C1, j, i))

]

where the functions G are defined as in (4.6), Z0 and Z1 as in theorem 13, Tab as in theorem

14, and Fab, a,b = 0,1 as in theorem 15, m0, m1, and m in (3.11), and P(C) in (2.24).

Proof: This is the immediate result of theorem 14, 15 and (3.24).

Theorem 20 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (4.5). Then
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given a bootstrap vector C, we have:

E [ε̂0ε̂r] = ∑
C

P(C)

nm(C)

[ n0

∑
i, j=1

IC(i)=0 G00(M00(C, i, j))+
n0+n1

∑
i, j=n0+1

IC(i)=0 G11(M11(C, i, j))+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC(i)=0 G01(M01(C, i, j))+
n0+n1

∑
i=n0

n0

∑
j=1

IC(i)=0 G10(M10(C, i, j))
]
,

where m is defined as in (3.11), the functions G as in (4.6), the random vectors Mabs as in

theorem 16.

Proof: This is the immediate result of theorem 16 and (3.25).

Theorem 21 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (4.5). Then

given a bootstrap vector C, we have:

E [ε̂0ε] = ∑
C

P(C)

m(C)

[
m0(C)(1− γ)G00(K00(C))+m1(C)γG11(K11(C))+

+m0(C)γG01(K01(C))+m1(C)(1− γ)G10(K10(C))
]
,

where the functions G are defined as in (4.6), the random vectors Kab, a,b = 0,1, as in

theorem 17, m, m0, and m1 in (3.11), P(C) in (2.24).

Proof: This is the immediate result of theorem 17 and (3.26).

D. The Convex Bootstrap Error Estimation

This section first presents the exact formulas for the moments of the true error and the re-

substitution estimators. Given that the proofs for these results are similar to that of theorem

15 provided in appendix B, they are omitted here. The theorems to compute the moments

of the convex bootstrap estimator and its correlation with the true error are then presented.
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1. The Moments of the True Error

a. The First Moment

Under multivariate Gaussian model, (3.20) becomes

E[ε] = (1− γ)G0(Z0(
−→
1 ))+ γG1(Z1(

−→
1 )) (4.9)

where Z0 and Z1 are defined in theorem 13.

b. The Second Moment

Under multivariate Gaussian model, (3.21) becomes

E[ε2] = (1− γ)2G00(R00)+2γ(1− γ)G01(R01)+ γ
2G11(R11) (4.10)

where the functions Gab, a,b = 0,1 are defined as in (4.6), R00, R11, and R01 are 4-

dimensional Gaussian random variables with the means and covariance matrices as fol-

lowings:

E[R1
00] = E[R3

00] = E[R2
11] = E[R4

11] = E[R1
01] = E[R4

01] =

=

[(
1
n0

+
1
n1

)− 1
2

+

(
1+

1
4n0

+
1

4n1

)− 1
2
]

Σ
− 1

2 µ,
(4.11)

E[R2
00] = E[R4

00] = E[R1
11] = E[R3

11] = E[R2
01] = E[R3

01] =

=

[(
1
n0

+
1
n1

)− 1
2

−
(

1+
1

4n0
+

1
4n1

)− 1
2
]

Σ
− 1

2 µ,
(4.12)
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and

ΣR00 = ΣR11 = ΣR01 =



2(1+ρ∗)Ip 0p×p ν1Ip ν2Ip

. 2(1−ρ∗)Ip ν3Ip ν4Ip

. . 2(1+ρ∗)Ip 0p×p

. . . 2(1−ρ∗)Ip


, (4.13)

where ρ∗ =
n1−n0√

n(4n0n1+n)
, and

ν1 =
2(n0−n1)√
n(4n0n1 +n)

+
4n0n1 +2n
4n0n1 +n

(4.14)

ν2 = ν3 =
4n0n1 +2n
4n0n1 +n

(4.15)

ν4 =
2(n1−n0)√
n(4n0n1 +n)

+
4n0n1 +2n
4n0n1 +n

(4.16)

2. The Moments of the Resubstitution Estimator

a. The First Moment

E [ε̂r] =
n0

n
P{ψ(X∗) = 1}+ n1

n
P{ψ(X∗∗) = 0}

=
n0

n
G0 (D0)+

n1

n
G1 (D1) ,

(4.17)

where D0, D1 are 2p-dimensional Gaussian vectors, Di(C) =
[
(D1

i )
T (D2

i )
T ]T , i = 0,1 with

E
[
D1

0
]
=

[(
1
n0

+
1
n1

)− 1
2

+

(
1− 3

4n0
+

1
4n1

)− 1
2
]

Σ
− 1

2 µ, (4.18)

E
[
D2

0
]
=

[(
1
n0

+
1
n1

)− 1
2

−
(

1− 3
4n0

+
1

4n1

)− 1
2
]

Σ
− 1

2 µ, (4.19)

E
[
D2

1
]
=

[(
1
n0

+
1
n1

)− 1
2

+

(
1− 3

4n1
+

1
4n0

)− 1
2
]

Σ
− 1

2 µ, (4.20)

E
[
D1

1
]
=

[(
1
n0

+
1
n1

)− 1
2

−
(

1− 3
4n1

+
1

4n0

)− 1
2
]

Σ
− 1

2 µ, (4.21)
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and

ΣDi =

 2(1+ρi)Ip 0p×p

. 2(1−ρi)Ip

 , (4.22)

where ρ0 =
n1−n0√

n(4n0n1−3n1+n0)
, ρ1 =

n1−n0√
n(4n0n1−3n0+n1)

.

b. The Second Moment

E[ε̂2
r ] = E

[
1
n2

(
n0

∑
i=1

Iψ(Xi)=1 +
n0+n1

∑
i=n0+1

Iψ(Xi)=0

)2]

= E

[
1
n2

( n0

∑
i=1

Iψ(Xi)=1 +
n0+n1

∑
i=n0+1

Iψ(Xi)=0+

+
n0

∑
i=1

n0

∑
j 6=i

Iψ(Xi)=1Iψ(X j)=1 +
n0+n1

∑
i=n0+1

n0+n1

∑
j 6=i

Iψ(Xi)=0Iψ(X j)=0+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

Iψ(Xi)=1Iψ(X j)=0 +
n0+n1

∑
i=n0

n0

∑
j=1

Iψ(Xi)=0Iψ(X j)=1

)]

=
n0

n2 P{ψ(X1) = 1}+ n1

n2 P{ψ(Xn0+1) = 0}+

+
n0(n0−1)

n2 P{ψ(X1) = 1,ψ(X2) = 1}+

+
n1(n1−1)

n2 P{ψ(Xn0+1) = 0,ψ(Xn0+2) = 0}+

+
2n0n1

n2 P{ψ(X1) = 1,ψ(Xn0+1) = 0},

E[ε̂2
r ] =

n0

n2 G0 (D0)+
n1

n2 G1 (D1)+
n0(n0−1)

n2 G00(H00)+

+
n1(n1−1)

n2 G11(H11)+
2n0n1

n2 G01(H01),

(4.23)
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where Hab =
[
(H1

ab)
T (H2

ab)
T (H3

ab)
T (H4

ab)
T ]T , a,b = 0,1 are 4p-dimensional Gaussian

vectors, with the means and covariance matrices as followings:

E
[
H1

00
]
= E

[
H3

00
]
= E

[
H1

10
]
= E

[
H3

10
]
=

[(
1
n0

+
1
n1

)− 1
2

+

(
1− 3

4n0
+

1
4n1

)− 1
2
]

Σ
− 1

2 µ,

E
[
H2

00
]
= E

[
H4

00
]
= E

[
H2

10
]
= E

[
H4

10
]
=

[(
1
n0

+
1
n1

)− 1
2

−
(

1− 3
4n0

+
1

4n1

)− 1
2
]

Σ
− 1

2 µ,

E
[
H1

11
]
= E

[
H3

11
]
= E

[
H1

01
]
= E

[
H3

01
]
=

[(
1
n0

+
1
n1

)− 1
2

−
(

1− 3
4n1

+
1

4n0

)− 1
2
]

Σ
− 1

2 µ,

E
[
H2

11
]
= E

[
H4

11
]
= E

[
H2

01
]
= E

[
H4

01
]
=

[(
1
n0

+
1
n1

)− 1
2

+

(
1− 3

4n1
+

1
4n0

)− 1
2
]

Σ
− 1

2 µ,

ΣHab =



2(1+ρa)Ip 0p×p αab1Ip αab2Ip

. 2(1−ρa)Ip αab3Ip αab4Ip

. . 2(1+ρb)Ip 0p×p

. . . 2(1−ρb)Ip


, (4.24)

where ρ0 =
n1−n0√

n(4n0n1−3n1+n0)
, ρ1 =

n1−n0√
n(4n0n1−3n0+n1)

α001 =

(
1+2

√
n0 +n1

4n0n1−3n1 +n0
+

n0−3n1

4n0n1−3n1 +n0

)
, (4.25)

α002 = α003 =
4n0n1

4n0n1−3n1 +n0
, (4.26)

α004 =

(
1−2

√
n0 +n1

4n0n1−3n1 +n0
+

n0−3n1

4n0n1−3n1 +n0

)
, (4.27)

α111 =

(
1−2

√
n0 +n1

4n0n1−3n1 +n0
+

n1−3n0

4n0n1−3n1 +n0

)
, (4.28)

α112 = α113 =
4n0n1

4n0n1−3n0 +n1
, (4.29)

α114 =

(
1+2

√
n0 +n1

4n0n1−3n1 +n0
+

n1−3n0

4n0n1−3n1 +n0

)
, (4.30)
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α011 = α014 =
4n0n1

4n0n1−3n1 +n0
, (4.31)

α012 =

(
1−2

√
n0 +n1

4n0n1−3n1 +n0
+

n1 +n0

4n0n1−3n1 +n0

)
, (4.32)

α013 =

(
1+2

√
n0 +n1

4n0n1−3n1 +n0
+

n1 +n0

4n0n1−3n1 +n0

)
. (4.33)

c. The Cross Moment

E [εε̂r] = E

[(
(1− γ)ε0 + γε

1)× 1
n

(
n0

∑
i=1

Iψ(Xi)=1 +
n0+n1

∑
i=n0+1

Iψ(Xi)=0

)]

=
(1− γ)

n

n0

∑
i=1

E
[
ε

0Iψ(Xi)=1
]
+

(1− γ)

n

n0+n1

∑
i=n0+1

E
[
ε

0Iψ(Xi)=1
]
+

+
γ

n

n0

∑
i=1

E
[
ε

1Iψ(Xi)=0
]
+

γ

n

n0+n1

∑
i=n0+1

E
[
ε

1Iψ(Xi)=0
]

=
1− γ

n

(
n0P{ψ(X∗) = 1,ψ(X1) = 1}+n1P{ψ(X∗) = 1,ψ(Xn0+1) = 0}

)
+

+
γ

n

(
n0P{ψ(X∗∗) = 0,ψ(X1) = 1}+n1P{ψ(X∗∗) = 0,ψ(Xn0+1) = 0}

)
,

So,

E [ε̂rε] =
(1− γ)n0

n
G00(J00)+

γn1

n
G11(J11)+

γn0

n
G01(J01)+

(1− γ)n1

n
G10(J10). (4.34)

where Jab =
[
(J1

ab)
T (J2

ab)
T (J3

ab)
T (J4

ab)
T ]T , a,b = 0,1 are 4p-dimensional Gaussian vectors

with the means and covariance matrices as followings:
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E[J1
00] = E[J1

01] =

[(
1
n0

+
1
n1

)− 1
2

+

(
1− 3

4n0
+

1
4n1

)− 1
2
]

Σ
− 1

2 µ, (4.35)

E[J2
00] = E[J2

01] =

[(
1
n0

+
1
n1

)− 1
2

−
(

1− 3
4n0

+
1

4n1

)− 1
2
]

Σ
− 1

2 µ, (4.36)

E[J1
11] = E[J1

10] =

[(
1
n0

+
1
n1

)− 1
2

−
(

1− 3
4n1

+
1

4n0

)− 1
2
]

Σ
− 1

2 µ, (4.37)

E[J2
11] = E[J2

10] =

[(
1
n0

+
1
n1

)− 1
2

+

(
1− 3

4n1
+

1
4n0

)− 1
2
]

Σ
− 1

2 µ, (4.38)

E[J3
00] = E[J3

10] = E[J4
11] = E[J4

01] =

[(
1
n0

+
1
n1

)− 1
2

+

(
1+

1
4n0

+
1

4n1

)− 1
2
]

Σ
− 1

2 µ, (4.39)

E[J4
00] = E[J4

10] = E[J3
11] = E[J3

01] =

[(
1
n0

+
1
n1

)− 1
2

−
(

1+
1

4n0
+

1
4n1

)− 1
2
]

Σ
− 1

2 µ, (4.40)

and

ΣJab =



2(1+ρa)Ip 0p×p βab1Ip βab2Ip

. 2(1−ρa)Ip βab3Ip βab4Ip

. . 2(1+ρ∗)Ip 0p×p

. . . 2(1−ρ∗)Ip


. (4.41)

where ρ∗ =
n1−n0√

n(n+4n0n1)
, ρ0 =

√
n

4n0n1−3n1+n0
, ρ1 =

√
n

4n0n1−3n0+n1
, and

β001 = β011 =

(√
n+

n0−n1√
4n0n1 +n

)(
1√
n
+

1√
4n0n1−3n1 +n0

)
, (4.42)

β002 = β012 =

(√
n− n0−n1√

4n0n1 +n

)(
1√
n
+

1√
4n0n1−3n1 +n0

)
, (4.43)

β003 = β013 =

(√
n+

n0−n1√
4n0n1 +n

)(
1√
n
− 1√

4n0n1−3n1 +n0

)
, (4.44)

β004 = β014 =

(√
n− n0−n1√

4n0n1 +n

)(
1√
n
− 1√

4n0n1−3n1 +n0

)
, (4.45)
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β111 = β101 =

(√
n+

n0−n1√
4n0n1 +n

)(
1√
n
− 1√

4n0n1−3n0 +n1

)
, (4.46)

β112 = β102 =

(√
n− n0−n1√

4n0n1 +n

)(
1√
n
− 1√

4n0n1−3n0 +n1

)
, (4.47)

β113 = β103 =

(√
n+

n0−n1√
4n0n1 +n

)(
1√
n
+

1√
4n0n1−3n0 +n1

)
, (4.48)

β114 = β104 =

(√
n− n0−n1√

4n0n1 +n

)(
1√
n
+

1√
4n0n1−3n0 +n1

)
. (4.49)

3. The Moments of the Convex Estimator

Theorem 22 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (4.5). Then

given a bootstrap vector C, we have:

E [ε̂w] =
n0(1−w)

n
G0(D0)+

n1(1−w)
n

G1(D1)+

+∑
C

wP(C)

m(C)

(
m0(C)G0 (Z0(C))+m1(C)G1 (Z1(C))

)
,

where the functions G0 and G1 are defined as in (4.6), the random variables Z0(C) and

Z1(C) in theorem 13, D0 and D1 in (4.17), m0 and m1 in (3.11), P(C) in (2.24).

Proof: This is the immediate result of theorem 13 and (3.27).
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Theorem 23 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (4.5). Then

given a bootstrap vector C, we have:

E
[
ε̂

2
w
]
=

= (1−w)2

[
n0

n2 G0 (D0)+
n1

n2 G1 (D1)+

+
n0(n0−1)

n2 G00(H00)+
n1(n1−1)

n2 G11(H11)+
2n0n1

n2 G01(H01)

]
+

+∑
C

2w(1−w)P(C)

nm(C)

[
n0

∑
i, j=1

IC(i)=0 G00(M00(C, i, j))+
n0+n1

∑
i, j=n0+1

IC(i)=0 G11(M11(C, i, j))+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC(i)=0 G01(M01(C, i, j))+
n0+n1

∑
i=n0

n0

∑
j=1

IC(i)=0 G10(M10(C, i, j))

]
+

+∑
C

w2P(C)

m2(C)

[
m0(C)G0 (Z0(C))+m1(C)G1 (Z1(C))+

+
n0

∑
i=1

n0

∑
j 6=i

IC(i)=0 IC( j)=0G00 (T00(C, i, j))+
n0+n1

∑
i=n0+1

n0+n1

∑
j 6=i

IC(i)=0 IC( j)=0G11 (T11(C, i, j))+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC(i)=0 IC( j)=0G01 (T01(C, i, j))+
n0+n1

∑
i=n0+1

n0

∑
j=1

IC(i)=0 IC( j)=0G10 (T01(C, j, i))

]
+

+ ∑
C1 6=C2

w2

m(C1)m(C2)

[
n0

∑
i, j=1

IC1(i)=0IC2( j)=0 G00 (F00(C1,C2, i, j))+

+
n0+n1

∑
i, j=n0+1

IC1(i)=0 IC2( j)=0 G11 (F11(C1,C2, i, j))+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC1(i)=0 IC2( j)=0 G01 (F01(C1,C2, i, j))+

+
n0+n1

∑
i=n0

n0

∑
j=1

IC1(i)=0 IC2( j)=0 G10 (F01(C2,C1, j, i))

]
,

where the functions G are defined as in (4.6), the random variables Z0 and Z1 in theorem

13, D0 and D1 in (4.17), Tab, Fab, a,b = 0,1 in theorem 14 and 15, respectively, m0 and m1

in (3.11), P(C) in (2.24).
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Proof: This is the immediate result of theorem 19, theorem 20, and (3.28).

Theorem 24 Let Xi ∼ N(µ0,Σ) for i = 1, . . . ,n0, and Xi ∼ N(µ1,Σ) for i = n0+1, . . . ,n0+

n1 be a set of n = n0 + n1 i.i.d. observations used to derive the classifier in (4.5). Then

given a bootstrap vector C, we have:

E[ε̂wε] = (1−w)
[(1− γ)n0

n
G00(J00)+

γn1

n
G11(J11)+

γn0

n
G01(J01)+

(1− γ)n1

n
G10(J10)

]
+

+∑
C

wP(C)

nm(C)

[
m0(C)(1− γ)G00(K00(C))+m1(C)γG11(K11(C))+

+m0(C)γG01(K01(C))+m1(C)(1− γ)G10(K10(C))
]
,

where the functions G are defined in (4.6), the random variables Jab and Kab as in (4.34)

and theorem 17, respectively, m as in (3.11).

Proof: This is the immediate result of theorem 21, and (3.29).

E. The .632 Bootstrap Error Estimation

Similarly to the univariate case, setting w = .632 in the formulas of the convex estimator

yields the moments of the classic .632 bootstrap estimate.

F. The Optimal Bootstrap Error Estimation

The above theorems allow one to compute the optimal weight w∗, which minimizes the

root mean square of the deviation of the convex bootstrap estimate ε̂w from the true error ε .

w∗ = argmin
w

RMS[ε̂w] = argmin
w

RMS2[ε̂w]
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RMS2[ε̂w] = E(ε̂w− ε)2

= E
[
ε̂

2
w
]
−2E [ε̂wε]+E

[
ε

2]
= (1−w)2E[ε̂2

r ]+w2E[ε̂2
0 ]+2w(1−w)E[ε̂rε̂0]+

−2((1−w)E[εε̂r]+wE[εε̂0])+E[ε2]

= w2E(ε̂r− ε̂0)
2 +2E

[
−εε̂0 + ε̂rε̂0 + εε̂r− ε̂

2
r
]

w+E(ε̂r− ε)2

The root mean square of the convex estimator RMS2[ε̂w] is a quadratic function of w.

Thus, w∗ can be found to be

w∗ =−
2E
[
−εε̂0 + ε̂rε̂0 + εε̂r− ε̂2

r
]

2E(ε̂r− ε̂0)
2

=
E
[
εε̂0− ε̂rε̂0− εε̂r + ε̂2

r
]

E
[
ε̂2

r −2ε̂rε̂0 + ε̂2
0
]

In principle for the multivariate case, the optimal minimum RMS w∗ can be computed

using Theorem 19, 20, 21, and the results of (4.23), (4.34). In .632 bootstrap estimation,

the combination scalar .632 was chosen heuristically, which represents the proportion of

the original sample points in the bootstrap samples. In .632+ bootstrap estimation, w was

chosen heuristically adaptively in accordance with the overfitting rate. While both of them

have been shown to be among the best, they do not guarantee the minimum root mean

square.

G. The Unbiased Bootstrap Error Estimation

By Theorem 10, (4.17) and and (4.9), the unbiased bootstrap scalar wu for the multivariate

case can be found similarly using (3.84). An issue that arises in the multivariate case is

the computation of the probabilities in (4.17), (4.9), and (4.8). This computation is very

difficult since it involves the ratio of noncentral chi-square random variables, which has

a doubly noncentral F distribution. Computation of this distribution is a hard problem.
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Moran proposes in [143] a complex procedure, based on work by Price [144], to compute

this probability, which only applies to even dimensionality p. To compute (4.8), we employ

an accurate approximation, based on the use of the Imhof-Pearson three-moment method

[145]. This consists of approximating a non-central χ2
p(λ ) random variable with a central

χ2
h random variable, by equating the first three moments of their distributions. This ap-

proach, which was originally employed in [146], is not restricted to even dimensionality p.

For example,

P
(

W1

W2
>

1−ρe

1+ρe

)
' P(χ2

h < y) , (4.50)

where W1 and W2 are two independent noncentral χ2
p with non-centrality parameters λ1 and

λ2, repectively, and χ2
h is a central chi-square random variable with h degrees of freedom,

with

h =
c3

2
c2

3
,

y = h+ c1

√
h
c2

,

(4.51)

and

ci =

(
1+ρe

2

)i

(p+ iλ1) +

(
1−ρe

2

)i

(p+ iλ2) , i = 1,2,3 . (4.52)

The approximation is valid only for c3 > 0 [145]. However, since λ1,λ2 ≥ 0,−1≤ ρe ≤ 1,

so it is always the case that c3 > 0 and the approximation applies. The same approximation

applies to (4.17), (4.9), and (4.8) by substituting the appropriate values.

Figure 2 is as Figure 1, but displays the multivariate case, with p = 2. The plots

are exact save for the accurate Imhof-Pearson approximation described in the previous

section. Some of the same behavior observed in the univariate case is seen here. Unlike the

univariate case, here the unbiased weight can be quite far from the heuristic 0.632 weight,

even for small Bayes error.
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Fig. 2. Optimal weight wu in the multivariate case, p = 2. The top figure displays wu as a
function of Bayes error for different sample sizes, whereas the bottom figure displays
wu as a function of the number of samples for different Bayes errors.
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CHAPTER V

SMALL-SAMPLE PERFORMANCE OF BAGGING CLASSIFICATION RULES ∗

There has been considerable interest recently in the application of bagging in the classifi-

cation of both gene-expression data and protein-abundance mass spectrometry data. The

approach is often justified by the improvement it produces on the performance of unsta-

ble, overfitting classification rules under small-sample situations. However, the question of

real practical interest is whether the ensemble scheme will improve performance of those

classifiers sufficiently to beat the performance of single stable, non-overfitting classifiers,

in the case of small-sample genomic and proteomic data sets. To investigate that question,

we conducted a detailed empirical study, using publicly-available data sets from published

genomic and proteomic studies. We observed that, under t-test and RELIEF filter-based

feature selection, bagging generally does a good job of improving the performance of un-

stable, overfitting classifiers, such as CART decision trees and neural networks, but that

improvement was not sufficient to beat the performance of single stable, non-overfitting

classifiers, such as diagonal and plain linear discriminant analysis, or 3-nearest neighbors.

Furthermore, as expected, the ensemble method did not improve the performance of these

classifiers significantly. Representative experimental results are presented and discussed

here, whereas the full results of the empirical study are available on a companion website

http://www.ece.tamu.edu/∼ulisses/bagging/index.html.

∗ Reprinted with permission from ”Is Bagging Effective in the Classification of Small-

sample Genomic and Proteomic Data?” by T. T. Vu and U. M. Braga-neto, 2009. volume

2009, p.1–10, Copyright 2009 of EURASIP Journal on Bioinformatics and Systems Biol-

ogy.
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A. Introduction

Randomized ensemble methods for classifier design combine the decision of an ensem-

ble of classifiers designed on randomly perturbed versions of the available data [147, 148,

149, 150, 151]. The combination is often done by means of majority-voting among the

individual classifier decisions [150, 152, 151], whereas the data perturbation usually em-

ploys the bootstrap resampling approach, which corresponds to sampling uniformly with

replacement from the original data [96, 153]. The combination of bootstrap resampling and

majority-voting is known as bootstrap aggregate or bagging [150, 151].

There has been considerable interest recently in the application of bagging in the clas-

sification of both gene-expression data [154, 155, 156, 157] and protein-abundance mass

spectrometry data [158, 159, 160, 161, 162, 163]. However, there is scant theoretical justi-

fication for the use of this heuristic, other than the expectation that combining the decision

of several classifiers will regularize and improve the performance of unstable, overfitting

classification rules, such asunpruned decision trees, provided one uses a large enough num-

ber of classifiers in the ensemble [150, 151]. It is also claimed that ensemble rules “do not

overfit”, meaning that classification error converges as the number of component classifiers

tends to infinity [151].

However, the main performance issue is not whether the ensemble scheme improves

the classification error of a single unstable, overfitting classifier, or whether its classifi-

cation error converges to a fixed limit; these are important questions, which have been

studied in the literature (in particular when the component classifiers are decision trees)

[164, 165, 151, 166, 167, 168], but the question of main practical interest is whether the

ensemble scheme will improve the performance of unstable, overfitting classifiers suffi-

ciently to beat the performance of single stable, non-overfitting classifiers, particularly in

small-sample settings. Therefore, there is a pressing need to examine rigorously the suit-
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ability and validity of the ensemble approach in the classification of small-sample genomic

and proteomic data. In this chapter, we present results from a comprehensive empirical

study concerning the effect of bagging on the performance of several classification rules,

including diagonal and plain linear discriminant analysis, 3-nearest neighbors, CART de-

cision trees, and neural networks, using real data from published microarray and mass

spectrometry studies. Here we are concerned exclusively with the performance in terms

of the true classification error, and therefore we employ filter-based feature selection and

holdout estimation based on large samples in order to allow accurate classification error

estimation. Similar studies recently published [156, 157] rely on small-sample wrapper

feature selection and small-sample error estimation methods, which will obscure the issue

of how bagging really affects the true classification error. In particular, there is evidence

that filter-based feature selection outperforms wrapper feature selection in small sample

settings [169]. In our experiments, we employ the one-tailed paired t-test to assess whether

the expected true classification error is significantly smaller for the bagged classifier as op-

posed to the original base classifier, under different number of samples, dimensionality, and

number of classifiers in the ensemble. Clearly, the heuristic is beneficial for the particular

classification rule if and only there is a significant decrease in expected classification error,

otherwise the procedure is to be avoided; however the magnitude of improvement is also a

factor — a small improvement in performance may not be worth it the extra computation

required (which is roughly m times larger for the bagging classifier, where m is the number

of classifiers in the ensemble).

B. Randomized Ensemble Classification Rules

Randomization approaches based on resampling can be seen as drawing i.i.d. samples

S∗k = {(X∗1 ,Y ∗1 ),(X∗2 ,Y ∗2 ), . . . ,(X∗k ,Y ∗k )} from a surrogate joint-feature label distribution F∗,
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which is a function of the original training data Sn. In the bootstrap resampling approach,

one has k = n, and the randomized sample S∗n corresponds to sampling uniformly n training

points from Sn with replacement. This corresponds to using the empirical distribution of

the data Sn as the surrogate joint-feature label distribution F∗; the empirical distribution

assigns discrete probability mass 1
n at each observed data point in Sn. Some of the original

training points may appear multiple times, whereas others may not appear at all in the boot-

strap sample S∗n. Note that, given Sn, the bootstrap sample S∗n is conditionally independent

from the original feature-label distribution F .

In aggregation by majority voting, a classifier is obtained based on majority voting

among individual classifiers designed on the randomized samples S∗k using the original

classification rule Ψn. This leads to an ensemble classification rule ΨR
n , such that

ψ
R
n (x) = Ψ

R
n (Sn)(x) =


1 , E[Ψn(S∗k)(x) | Sn] >

1
2

0 , otherwise

(5.1)

for x ∈ V , where expectation is with respect to the random mechanism F∗, fixed at the

observed value of Sn. For bootstrap majority voting, or bagging, the expectation in (5.1)

usually has to be approximated by Monte-Carlo sampling, which leads to the “bagged”

classifier:

ψ
B
n,m(x) =


1 , 1

m ∑
m
j=1 ψ

∗( j)
n (x) > 1

2

0 , otherwise

(5.2)

where the classifiers ψ
∗( j)
n are designed by the original classification rule Ψn on bootstrap

samples S∗( j)
n , for j = 1, . . . ,m, for large enough m (notice the parallel with the development

in [99], particularly eqs. (2.8)–(2.10) and accompanying discussion).

The issue of how large m has to be so that (5.2) is a good Monte-Carlo approximation

is a critical issue in the application of bagging. Note that m represents the number of classi-
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fiers that must be designed to be part of the ensemble, so that a computational problem may

emerge if m is made too large. In addition, even if a suitable m is found, the performance

of the ensemble must be compared to that of the base classification rule, to see if there is

significant improvement. Even more importantly, the performance of the ensemble has to

compared to that of other classification rules; that the ensemble improves the performance

of an unstable, overfitting classifier is of small value if it can be bested by a single stable,

non-overfitting classifier. In the next section, we present a comprehensive empirical study

that addresses these questions.

C. Experimental Study

In this section, we report the results obtained from a large simulation study based on

publicly-available patient data from genomic and proteomic studies, which measured the

performance of the bagging heuristic through the expected classification error, for varying

number of component classifiers, sample size, and dimensionality.

1. Methods

We considered in our experiment several classification rules, listed here in order of com-

plexity: diagonal linear discriminant analysis (DLDA), linear discriminant analysis (LDA),

3-nearest-neighbors (3NN), decision trees (CART), and neural networks (NNET) [61, 170].

DLDA is an extension of LDA where only the diagonal elements (the variances) of the

covariance matrix are estimated, while the off-diagonal elements (the covariances) are as-

sumed to be zero. Bagging is applied to each of these base classification rules and its

performance recorded for varying number of individual classifiers. The neural network

consists of a one-hidden layer with 4 nodes and standard sigmoids as nonlinearities. The

network is trained by Levenberg-Marquardt optimization with a maximum of 30 iterations.
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CART is applied with a stopping criterion: splitting is stopped when there are fewer than

3 points in a given node. This is distinct from the approach advocated in [151] for random

forests, where unpruned, fully-grown trees are used instead; the reason for this is that we

did not attempt to implement the approach in [151] (which involves concepts as random

node splitting and is thus specific to decision trees), but rather to study the behavior of

bagging, which is the centerpiece of such ensemble methods, across different classifica-

tion rules. Resampling is done by means of balanced bootstrapping, where all samples are

made to appear exactly the same number of times in the computation [171].

We selected data sets with large number N of samples (see below) in order to be

able to estimate the true error accurately using held out testing data. In each case, 1000

training data sets of size n = 20,40,and 60 were drawn uniformly and independently from

the total pool of N samples. The training data are drawn in a stratified fashion, following

the approximate proportion of each class in the original data. Based on the training data,

a filter-based gene selection step is employed to select the top p discriminating genes; we

considered in this study p = 2,3,5,8. The univariate feature selection methods used in

the filter step are the Welch two-sample t-test [172] and the RELIEF method [173] —

in the latter case, we employ the 1-nearest-neighbor method when searching for hits and

misses. After classifier design, the true classification error for each data set of size n is

approximated by a holdout estimator, whereby the N−n sample points not drawn are used

as the test set (a good approximation to the classification error, given that N >> n). The

expected classification error is then estimated as the sample mean of classification error

over the 1000 training data sets. The sample size n is kept small, as we are interested in

the small-sample properties of bagging. Note also that we also must have N >> n in order

to provide for large enough testing sets, as well as to make sure that consecutive training

sets do not significantly overlap, so that the expected classification error can be accurately

approximated. As can be easily verified, the expected ratio of overlapping sample points
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between two samples of size n from a population of size N is given simply by n/N. In all

cases considered here the expected overlap is around 20% less, which we consider to be

acceptable, except in the case of the lung cancer data set with n = 60. This latter case is

therefore not included in our results. An unpaired one-tailed t-test is employed to assess

whether the ensemble classifier has an expected error that is significantly smaller than that

of the corresponding individual classifier.

2. Data Sets

We utilized the following publicly-available data sets from published studies in order to

study the performance of bagging in the context of genomics and proteomics applications.

• Breast Cancer Gene Expression Data. These data come from the breast cancer

classification study in [174], which analyzed N = 295 gene-expression microarrays

containing a total of 25760 transcripts each. Filter-based feature selection was per-

formed on a 70-gene prognosis profile, previously published by the same authors

in [175]. Classification is between the good-prognosis class (115 samples), and the

poor-prognosis class (180 samples), where prognosis is determined retrospectively

in terms of survivability [174].

• Lung Cancer Gene Expression Data. We employed here the data set “A” from the

study in [176] on non-small-cell lung carcinomas (NSCLC), which analyzed N = 186

gene-expression microarrays containing a total of 12600 transcripts each. NSCLC is

subclassified as adenocarcinomas, squamous cell carcinomas and large-cell carcino-

mas , of which adenocarcinomas are the most common subtypes and of interest to

classify from other subtypes of NSCLC. Classification is thus between adenocarci-

nomas (139 samples) and non-adenocarcinomas (47 samples).
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• Prostrate Cancer Protein Abundance Data. Given the recent keen interest on de-

riving serum-based proteomic biomarkers for the diagnosis of cancer [177], we also

included in this study data from a proteomic study of prostate cancer reported in

[178]. It consists of SELDI-TOF mass spectrometry of N = 326 samples, which yield

mass spectra for 45,000 n/z (mass over charge) values. Filter-based feature selection

is employed to find the top discriminatory n/z values to be used in the experiment.

Classification is between prostate cancer patients (167 samples) and non-prostate pa-

tients, including benign prostatic hyperplasia and healthy patients (159 samples). We

use the raw spectra values, without baseline subtraction, as we found that this leads

to better classification rates.

3. Results and Discussion

We present results for sample sizes n = 20 and n = 40 and dimensionality p = 2 and

p = 5, which are representative of the full set of results, available on the companion web-

site http://www.ece.tamu.edu/∼ulisses/bagging/index.html. The case p = 2 is displayed in

Tables 1–3, each of which corresponds to a different data set. Each table displays the ex-

pected classification error as a function of the number m of classifiers used in the ensemble,

for different base classification rules, feature selection methods, and sample sizes. We used

in all cases an odd number m of classifiers in the ensembles, to avoid tie-breaking issues.

Errors that are smaller for the ensemble classifier as compared to a single classifier at a 99%

significance level, according to a one-tailed paired t-test, are indicated by bold-face type.

This allows one to immediately observe that bagging is able to improve the performance

of the unstable, overfitting CART and NNET classifiers; in most cases, a small ensemble is

required, and the improvement in performance is substantial. In contrast, bagging does not

improve the performance of the stable, non-overfitting DLDA, LDA, and 3NN classifiers,

except via a large ensemble; and even so the improvement in magnitude is quite small, and
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Table I. Expected classification error of selected experiments with breast cancer gene ex-
pression data (full results available on the companion website). Bold-face type
indicates the values that are smaller for the ensemble classifier as compared to a
single component classifier at a 99% significance level, according to a one-tailed
paired t-test.

Rule p n Single m=5 m=11 m=15 m=21 m=25 m=31 m=35 m=41 m=45 m=51

LDA 2 20 0.212 0.237 0.224 0.220 0.217 0.217 0.216 0.216 0.215 0.215 0.214
LDA 2 40 0.204 0.217 0.209 0.208 0.207 0.206 0.206 0.206 0.205 0.205 0.205
LDA 2 60 0.203 0.212 0.207 0.205 0.205 0.204 0.204 0.204 0.204 0.204 0.204
LDA 5 20 0.240 0.285 0.261 0.255 0.251 0.249 0.247 0.248 0.246 0.246 0.245
LDA 5 40 0.207 0.233 0.219 0.216 0.213 0.212 0.212 0.211 0.211 0.210 0.210
LDA 5 60 0.196 0.216 0.205 0.203 0.201 0.201 0.200 0.199 0.199 0.199 0.199

3NN 2 20 0.230 0.281 0.246 0.241 0.235 0.234 0.231 0.231 0.230 0.229 0.229
3NN 2 40 0.228 0.274 0.241 0.235 0.231 0.229 0.228 0.227 0.226 0.226 0.225
3NN 2 60 0.225 0.269 0.238 0.232 0.228 0.227 0.225 0.224 0.224 0.223 0.222
3NN 5 20 0.220 0.270 0.235 0.229 0.224 0.223 0.221 0.220 0.219 0.219 0.219
3NN 5 40 0.217 0.262 0.229 0.224 0.220 0.219 0.217 0.216 0.216 0.215 0.215
3NN 5 60 0.219 0.261 0.230 0.225 0.221 0.220 0.219 0.218 0.217 0.217 0.216

CART 2 20 0.259 0.297 0.263 0.256 0.250 0.247 0.246 0.244 0.243 0.242 0.242
CART 2 40 0.257 0.294 0.258 0.252 0.245 0.244 0.242 0.240 0.239 0.239 0.237
CART 2 60 0.255 0.287 0.256 0.249 0.243 0.241 0.237 0.236 0.235 0.234 0.234
CART 5 20 0.261 0.291 0.257 0.248 0.240 0.238 0.235 0.235 0.233 0.232 0.231
CART 5 40 0.260 0.287 0.249 0.240 0.233 0.231 0.228 0.226 0.225 0.224 0.223
CART 5 60 0.262 0.290 0.248 0.240 0.232 0.229 0.226 0.225 0.223 0.222 0.221

NNET 2 20 0.252 0.293 0.246 0.240 0.230 0.230 0.225 0.224 0.223 0.222 0.221
NNET 2 40 0.226 0.256 0.225 0.219 0.215 0.213 0.212 0.210 0.210 0.209 0.209
NNET 2 60 0.216 0.241 0.216 0.211 0.208 0.206 0.204 0.204 0.203 0.203 0.203
NNET 5 20 0.282 0.321 0.265 0.250 0.242 0.239 0.235 0.233 0.231 0.230 0.229
NNET 5 40 0.253 0.286 0.238 0.228 0.221 0.218 0.215 0.213 0.212 0.210 0.209
NNET 5 60 0.236 0.268 0.226 0.218 0.212 0.210 0.208 0.206 0.205 0.204 0.204

certainly does not justify the extra computational cost (note that in the case of the simplest

classification rule, DLDA, there is no improvement at all). This is in agreement with what

is known about the ensemble approach (e.g., see [151]).

However, of larger interest here is the performance of the ensemble against a single

instance of the stable, non-overfitting classifiers. This can be better visualized in the plots

of Figures 3–5, which display the expected classification errors as a function of number of

component classifiers in the ensemble, for the case p = 5. The error of a single classifier

is indicated by a horizontal dashed line. Marks indicate the values that are smaller for
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Table II. Expected classification error of selected experiments with the lung cancer gene
expression data (full results available on the companion website). Bold-face type
indicates the values that are smaller for the ensemble classifier as compared to a
single component classifier at a 99% significance level, according to a one-tailed
paired t-test.

Rule p n Single m=5 m=11 m=15 m=21 m=25 m=31 m=35 m=41 m=45 m=51
LDA 2 20 0.201 0.206 0.203 0.203 0.202 0.202 0.203 0.202 0.202 0.202 0.203
LDA 2 40 0.192 0.194 0.193 0.193 0.193 0.193 0.192 0.192 0.193 0.192 0.192
LDA 2 60 0.190 0.191 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190 0.190
LDA 5 20 0.227 0.241 0.232 0.231 0.230 0.228 0.228 0.227 0.228 0.227 0.227
LDA 5 40 0.200 0.205 0.202 0.201 0.200 0.200 0.200 0.200 0.200 0.200 0.200
LDA 5 60 0.194 0.197 0.196 0.195 0.194 0.194 0.194 0.194 0.194 0.194 0.194

3NN 2 20 0.122 0.151 0.130 0.126 0.124 0.123 0.122 0.121 0.121 0.121 0.120
3NN 2 40 0.123 0.147 0.129 0.127 0.125 0.124 0.123 0.123 0.122 0.122 0.121
3NN 2 60 0.128 0.148 0.132 0.130 0.128 0.127 0.126 0.126 0.125 0.126 0.125
3NN 5 20 0.126 0.160 0.136 0.132 0.129 0.128 0.127 0.127 0.126 0.126 0.126
3NN 5 40 0.123 0.147 0.130 0.127 0.125 0.125 0.123 0.123 0.122 0.122 0.122
3NN 5 60 0.125 0.147 0.130 0.128 0.126 0.125 0.124 0.124 0.123 0.123 0.123

CART 2 20 0.160 0.182 0.161 0.155 0.152 0.151 0.150 0.149 0.148 0.148 0.147
CART 2 40 0.156 0.177 0.155 0.150 0.146 0.145 0.144 0.143 0.142 0.142 0.142
CART 2 60 0.158 0.177 0.154 0.149 0.146 0.144 0.143 0.142 0.141 0.141 0.140
CART 5 20 0.161 0.181 0.159 0.154 0.151 0.149 0.148 0.148 0.147 0.146 0.146
CART 5 40 0.158 0.181 0.156 0.151 0.148 0.146 0.144 0.143 0.143 0.142 0.141
CART 5 60 0.159 0.178 0.154 0.148 0.143 0.143 0.140 0.140 0.139 0.138 0.138

NNET 2 20 0.216 0.244 0.235 0.232 0.231 0.229 0.228 0.228 0.227 0.227 0.226
NNET 2 40 0.195 0.232 0.215 0.212 0.208 0.207 0.205 0.204 0.203 0.202 0.202
NNET 2 60 0.187 0.222 0.200 0.194 0.189 0.188 0.185 0.184 0.182 0.182 0.183
NNET 5 20 0.244 0.255 0.252 0.251 0.251 0.250 0.251 0.249 0.250 0.250 0.250
NNET 5 40 0.238 0.254 0.251 0.250 0.250 0.250 0.249 0.249 0.249 0.249 0.249
NNET 5 60 0.228 0.254 0.250 0.248 0.248 0.248 0.247 0.246 0.247 0.247 0.246
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Table III. Expected classification error of selected experiments with prostate cancer protein
abundance data (full results available on the companion website). Bold-face type
indicates the values that are smaller for the ensemble classifier as compared to a
single component classifier at a 99% significance level, according to a one-tailed
paired t-test.

Rule p n Single m=5 m=11 m=15 m=21 m=25 m=31 m=35 m=41 m=45 m=51
LDA 2 20 0.212 0.241 0.225 0.222 0.219 0.218 0.216 0.216 0.215 0.215 0.215
LDA 2 40 0.198 0.224 0.210 0.208 0.205 0.204 0.203 0.202 0.202 0.202 0.201
LDA 2 60 0.194 0.216 0.204 0.202 0.199 0.199 0.198 0.197 0.197 0.196 0.196
LDA 5 20 0.214 0.254 0.229 0.223 0.219 0.217 0.216 0.215 0.213 0.212 0.212
LDA 5 40 0.183 0.212 0.193 0.189 0.187 0.185 0.184 0.183 0.183 0.182 0.181
LDA 5 60 0.166 0.192 0.175 0.171 0.169 0.168 0.167 0.167 0.166 0.166 0.165

3NN 2 20 0.187 0.251 0.203 0.195 0.192 0.189 0.187 0.187 0.186 0.185 0.185
3NN 2 40 0.153 0.208 0.168 0.162 0.158 0.156 0.154 0.153 0.152 0.152 0.151
3NN 2 60 0.148 0.199 0.160 0.154 0.150 0.149 0.148 0.147 0.146 0.146 0.145
3NN 5 20 0.184 0.249 0.205 0.197 0.193 0.191 0.189 0.189 0.187 0.187 0.186
3NN 5 40 0.143 0.187 0.157 0.152 0.149 0.147 0.146 0.145 0.144 0.143 0.143
3NN 5 60 0.128 0.164 0.139 0.135 0.131 0.130 0.129 0.128 0.128 0.127 0.127

CART 2 20 0.232 0.247 0.223 0.218 0.213 0.210 0.209 0.209 0.208 0.209 0.208
CART 2 40 0.213 0.219 0.198 0.194 0.189 0.189 0.187 0.185 0.185 0.185 0.184
CART 2 60 0.204 0.205 0.185 0.180 0.176 0.175 0.172 0.172 0.172 0.171 0.171
CART 5 20 0.220 0.244 0.216 0.210 0.206 0.204 0.201 0.200 0.199 0.198 0.199
CART 5 40 0.187 0.215 0.188 0.182 0.179 0.176 0.174 0.173 0.172 0.172 0.171
CART 5 60 0.169 0.192 0.166 0.160 0.156 0.154 0.152 0.151 0.150 0.150 0.149

NNET 2 20 0.297 0.300 0.271 0.266 0.260 0.259 0.256 0.256 0.254 0.254 0.253
NNET 2 40 0.277 0.274 0.254 0.248 0.244 0.244 0.240 0.241 0.239 0.239 0.239
NNET 2 60 0.276 0.268 0.246 0.243 0.239 0.238 0.236 0.235 0.234 0.234 0.234
NNET 5 20 0.305 0.307 0.270 0.261 0.255 0.250 0.248 0.247 0.246 0.243 0.244
NNET 5 40 0.288 0.274 0.249 0.242 0.238 0.235 0.233 0.233 0.231 0.230 0.230
NNET 5 60 0.281 0.267 0.244 0.238 0.234 0.232 0.229 0.228 0.227 0.227 0.226
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the ensemble classifier as compared to a single component classifier at a 99% significance

level, according to a one-tailed paired t-test. One observes that as ensemble size increases,

classification error decreases and tends to converge to a fixed value (in agreement with

[151]). But we can also see that the error is usually larger at very small ensemble sizes,

as compared to the error of the individual classifier. We can again observe that, in most

cases, bagging is able to improve the performance of CART and NNET, but that is not

significantly so, or at all, for DLDA, LDA and 3NN. More importantly, we can see that

the improvement on the performance of CART and NNET is not sufficient to beat the

performance of single DLDA, LDA, or 3NN classifiers (with the exception of the prostate

cancer data with RELIEF feature selection, which we comment on below).

As we can see in Figures 3–5, the breast cancer gene-expression data produces linear

features that favor single DLDA and LDA classifiers (the latter do not perform so well at

n = 20, due to the difficulty of estimating the entire covariance matrix at this sample size,

which affects DLDA less), while the lung cancer gene-expression data produces nonlinear

features, in which case, according to the results, the best option overall is to use a single

3NN classifier, followed closely by a bagged NNET in t-test feature selection and a bagged

CART in RELIEF feature selection. The case of the prostate cancer proteomic data is

peculiar in that it presents the only case where the best option was not a DLDA, LDA, or

3NN classifier, but in fact a single CART classifier, namely, the case n = 20 (with either

p = 2 or p = 5) for RELIEF feature selection (the results for t-test feature selection, on

the other hand, are very similar to the ones obtained for the lung cancer data set). Note

that, in this case, the best performance is achieved by a single CART classifier, rather than

the ensemble CART scheme. We also point out that the classification errors obtained with

t-test feature selection are smaller than the ones obtained with RELIEF feature selection,

indicating that RELIEF is not a good option in this case due to the very small sample size

(in fact, there is evidence that t-test filter-based feature selection may be the method of
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choice in small sample cases [169]) In the case n = 40, the difference between 3NN and

CART essentially disappears. It is also interesting that in the case n = 20 and p = 5, for

RELIEF feature selection, bagging is able to improve the performance of LDA by a good

margin in the case of the prostate cancer data. This is due to the fact that the combination

LDA and RELIEF feature selection produces a unstable, overfitting classification rule at

this acute small-sample scenario.

The results obtained with t-test feature selection are consistent across all data sets.

When using RELIEF feature selection, there is a degree of contrast between the results

for the prostate cancer protein-abundance data set and the ones for the gene-expression

data sets, which may be attributed to the differences in technology as well as the fact that

we do not employ baseline subtraction for the proteomics data in order to achieve better

classification rates.

We remark that results are not expected to change much if ensemble sizes are increased

further (beyond m = 51), as can be seen from convergence of the expected classification

error curves in Figures 3–5.
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Fig. 3. Expected classification error as a function of number of component classifiers in the
ensemble for selected experiments with the breast cancer gene expression data (full
results available on the companion website). Error of single component classifier
is indicated by a horizontal dashed line. Marks indicate the values that are smaller
for the ensemble classifier as compared to a single component classifier at a 99%
significance level, according to a one-tailed paired t-test.
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Fig. 4. Expected classification error as a function of number of component classifiers in the
ensemble for selected experiments with the lung cancer gene expression data (full
results available on the companion website). Error of single component classifier
is indicated by a horizontal dashed line. Marks indicate the values that are smaller
for the ensemble classifier as compared to a single component classifier at a 99%
significance level, according to a one-tailed paired t-test.
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Fig. 5. Expected classification error as a function of number of component classifiers in
the ensemble for selected experiments with the prostate cancer protein abundance
data (full results available on the companion website). Error of single component
classifier is indicated by a horizontal dashed line. Marks indicate the values that are
smaller for the ensemble classifier as compared to a single component classifier at a
99% significance level, according to a one-tailed paired t-test.
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D. Conclusion

In this chapter we conducted a detailed empirical study of the ensemble approach to classi-

fication of small-sample genomic and proteomic data. The main performance issue is not

whether the ensemble scheme improves the classification error of an unstable, overfitting

classifier (e.g., CART, NNET), or whether its classification error converges to a fixed limit;

but rather whether the ensemble scheme will improve performance of the unstable, over-

fitting classifier sufficiently to beat the performance of single stable, non-overfitting clas-

sifiers (e.g., DLDA, LDA, 3NN). We observed that this never was the case for any of the

data sets and experimental conditions considered here, except in the case of the proteomics

data set with RELIEF feature selection in acute small-sample cases, when nevertheless the

performance of a single unstable, overfitting classifier (in this case, CART) was better or

comparable to the corresponding ensemble classifier. We observed that in most cases bag-

ging does a good (sometimes, admirable) job of improving the performance of unstable,

overfitting classifiers, but that improvement was not enough to beat the performance of

single stable, non-overfitting classifiers.

The main message to be gleaned from this study by practitioners is that the use of

bagging in classification of small-sample genomics and proteomics data increases compu-

tational cost, but is not likely to improve overall classification accuracy over other, more

simple, approaches. The solution we recommend is to use simple classification rules and

avoid bagging in these scenarios. It is important to stress that we do not give a definitive

recommendation on the use of the random forest method for small-sample genomics and

proteomics data; however, we do think that this study does provide a step in that direction,

since the random forest method depends partly, if not significantly, for its success on the

effectiveness of bagging. Further research is needed to investigate this question.
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CHAPTER VI

SMALL-SAMPLE ERROR ESTIMATION FOR

BAGGING CLASSIFICATION RULES ∗

Application of ensemble classification rules in gene-expression microarray classification

problems has become increasingly common. Among ensemble classification rules, boot-

strap aggregating (“bagging”) is the most popular, and has generated a considerable amount

of literature. However, the problem of error estimation for these classification rules, par-

ticularly under the small-sample settings prevalent in genomics, is not well understood.

Breiman proposed a general method, which he called “out-of-bag”, for estimating statistics

of bagged classifiers, which was subsequently applied by other authors to estimate the clas-

sification error. In this chapter, we give an explicit definition of the out-of-bag estimator

that is intended to remove estimator bias, by formulating carefully how the error count is

normalized. We conducted an extensive simulation study of bagging of common classifi-

cation rules, including LDA, 3NN, and CART, applied on both synthetic and real patient

data, corresponding to the use of common error estimators such as resubstitution, leave-

one-out, cross-validation, basic bootstrap, bootstrap 632, bootstrap 632 plus, bolstering,

semi-bolstering, in addition to the out-of-bag estimator. The results from the numerical

experiments indicated that the performance of the out-of-bag estimator is very similar to

that of leave-one-out; in particular, the out-of-bag estimator is slightly pessimistically bi-

ased. The performance of the other estimators are consistent with their performance with

the corresponding single classifiers, as reported in other studies. Bolstered error estima-

∗ Reprinted with permission from ”Small-sample Error Estimation for Bagged Classifi-

cation Rules,” by T. T. Vu and U. M. Braga-Neto, 2009. volume 2010, 12 pages, Copyright

2010 of EURASIP Journal on Bioinformatics and Systems Biology.
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tors showed consistent superior performance to the others, in terms of accuracy (RMS) and

computational cost.

A. Introduction

Ensemble classification methods combine the decision of multiple classifiers designed on

randomly perturbed versions of the available data [147, 148, 149, 150, 151]. The most

popular version of this scheme is known as bootstrap aggregating, or “bagging” [150, 151]

where the ensemble classifier corresponds to a majority-vote among classifiers designed on

bootstrap samples [96] from the available training data.

There has been considerable interest recently in the application of bagging in the clas-

sification of both gene-expression data [154, 155, 156, 157] and protein-abundance mass

spectrometry data [158, 159, 160, 161, 162, 163]. The popularity of bagging is based on the

expectation that combining the decision of several classifiers will regularize and improve

the performance of unstable, overfitting classification rules (the so-called “weak learners”).

In Chapter V, we have investigated this claim, in the context of small-sample genomics and

proteomics data. On the other hand, a different issue is the performance of error estima-

tors for bagged classifiers. Accurate error estimation is a critical issue in Genomics, as it

decisively impacts the scientific validity of hypotheses derived from application of pattern

recognition methods to biomedical data [43, 179, 180]. On the topic of error estimation,

Breiman proposed a general method, which he called “out-of-bag”, for estimating statistics

of bagged classifiers [181], and, subsequently, other authors applied it to the estimation

of the classification error [182, 183]. In this chapter, we give an explicit definition of the

out-of-bag estimator that is intended to remove estimator bias, which is done by formulat-

ing carefully how the error count is normalized. The performance of out-of-bag estimators

with general bagged classification rules is not in fact well understood, especially in connec-
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tion with bagging ensemble classifiers derived from classification rules other than decision

trees (which was Breiman’s primary interest). In addition, to our knowledge, no studies

have attempted to assess the performance of error estimators for bagged classifiers in the

context of Genomics data, particularly in the prevalent small-sample setting usually found

in these applications.

To investigate these issues, we conducted an extensive simulation study of bagging of

common classification rules, including LDA, 3NN, and CART, applied on both synthetic

and real patient data, corresponding to the use of common error estimators such as re-

substitution, leave-one-out, cross-validation, basic bootstrap, bootstrap 632, bootstrap 632

plus, bolstering, semi-bolstering, in addition to the out-of-bag estimator itself. We present

here selected representative results; the full set of results can be found on the companion

website, at http://gsp.tamu.edu/Publications/supplementary/oob. The results from the nu-

merical experiments indicated that the performance of the out-of-bag error estimator is very

similar to that of leave-one-out; in particular, the out-of-bag estimator is slightly pessimisti-

cally biased. The performance of the other estimators are for the most part consistent with

their performance with the corresponding single classification rules assessed in other stud-

ies, with the best performance being provided by the bolstered error estimators, in terms of

root mean square error.

B. Error Estimation for Bagging Classification Rule

1. Classical Methods

Classical error estimation methods including resubstitution, cross-validation, and bootstrap

are reviewed in Chapter II. Readers are encouraged to refer back to chapter II for more

details. All these estimation methods are to be applied to the bagging classification rules.
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2. Bolstered Error Estimation

Bolstered estimation was proposed in [120]. It has shown promising performance for small

sample sizes in terms of root mean square error. While it is comparable to bootstrap meth-

ods in many cases, bolstered estimators are typically much more computationally efficient

than the bootstrap. The main idea of bolstering is to put a kernel at each of the sample point,

called “bolstering kernel” to smooth the variance of counting-based estimation methods (in

this chapter, we adopt Gaussian bolstering kernels). When the classifiers are overfitted, and

hence, resubstitution estimates are optimistically biased, then bolstering at a misclassified

point will increase this bias. Semi-bolstering is suggested for correcting this, by conducting

no bolstering at misclassified points. We refer the reader to [120] for the full details (in this

chapter, we employ the bolstered and semi-bolstered resubstitution estimators of [120]).

3. Out-of-bag Error Estimation

Breiman [181] originally proposed the out-of-bag method to estimate the generalization

error of bagged predictors of CART and the node priority probabilities. Bylander [182]

later did a simulation study comparing out-of-bag and cross-validation for tree classifica-

tion C4.5 and concluded that both are biased. Banfield et al [183] used out-of-bag in a

large simulation of investigating performances of a variety of ensemble methods. Martinez

[184], in an attempt to find the optimal number of components of ensembles, employed

out-of-bag as the optimization criterion. Despite that, the properties of the out-of-bag es-

timator remain largely unclear, in particular, the issue of bias. We propose in the sequel

a modification to the standard out-of-bag estimator that removes nearly all of its bias (as

evidenced by the numerical experiments in Section C).

In bagging, component classifiers are designed based on bootstrap sets, each of which

contain on average 63% of the original sample set. Hence, there are approximately 37%
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of the data which are not used to build the classifier and are therefore uncorrelated with

it. Out-of-bag estimates are obtained by testing the majority-voting classifier via those

individual classifiers in the ensemble that are uncorrelated with the testing point, i.e., those

classifiers whose training sets do not contain the testing points. Suppose we resample the

original sample set k times, leading to k bootstrap sample sets S∗ j. Let P j
i = 1 if sample i

appears in the bootstrap sample S∗ j, and P j
i = 0, otherwise, for i = 1, . . . ,n. Denote

A0(i) =
k

∑
j=1

I{P j
i =0}I{Yi=0}

B0(i) =
k

∑
j=1

I{P j
i =0}I{Ψn(S∗ j)(Xi)=1}I{Yi=0}

A1(i) =
k

∑
j=1

I{P j
i =0}I{Yi=1}

B1(i) =
k

∑
j=1

I{P j
i =0}I{Ψn(S∗ j)(Xi)=0}I{Yi=1}

(6.1)

for i = 1, . . . ,n. Notice that Am(i) is equal to the number of times that sample i in class m

appears across all bootstrap sample sets, while Bm(i) is equal to the number of times that

sample i in class m appears and is misclassified across all bootstrap sample sets. Then the

out-of-bag error estimator, as proposed by Breiman in [150], can be written as

ε̂oob =
1
n

n

∑
i=1

[
I
{B0(i)≥

A0(i)
2 }

I{A0(i)>0}+ I
{B1(i)≥

A1(i)
2 }

I{A1(i)>0}

]
. (6.2)

The estimator, as formulated above, will be optimistically biased, in general, according to

the following rationale. Clearly, when Yi = j and A j(i) = 0, then the i-th sample point

belongs to all of the bootstrap samples, so there are no individual classifiers to test on the

i-th point. In other words, the “out-of-bag ensemble” of classifiers for that point is empty

in this case. That means that, with training sample size of n, we often have fewer than

n samples to perform the out-of-bag estimation. In computing the proportion of incorrect

classification by the ensemble, one should therefore divide not by n as in (6.2), but rather
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by n minus the number of times when the out-of-bag ensembles are empty, which leads to

the following modified out-of-bag estimator:

ε̂
m
oob =

1
n−∑

n
i=1
[
I{A0(i)=0}+ I{A1(i)=0}

] n

∑
i=1

[
I
{B0(i)≥

A0(i)
2 }

I{A0(i)>0}+ I
{B1(i)≥

A1(i)
2 }

I{A1(i)>0}

]
.

(6.3)

As shown by the numerical results in Section C, this estimator has approximately the bias

of leave-one-out, i.e., it is only slightly pessimistically biased. As far as we know, this

formulation of the out-of-bag estimator has not been explicitly given in the literature.

C. Simulation Study

This section reports the results of an extensive simulation study, which were conducted on

both synthetic and publicly available microarray data and protein abundance mass spec-

trometry data. We present here selected representative results; the full set of results can be

found on the companion website, at http://gsp.tamu.edu/Publications/supplementary/oob.

We simulated bagged ensembles of linear discriminant analysis (LDA), 3-nearest-neighbors

(3NN), and decision trees (CART) [60], and computed actual and estimated errors, accord-

ing to the different estimation methods. These estimators were evaluated based on the

distribution of their deviation from the true error, and in terms of bias, variance, and root-

mean-square (RMS) errors.

1. Methods

We compared the performances of estimators for varying number of training samples with

different dimensions of the feature space. The dimensionality and number of samples are

selected to be compatible with a small-sample scenario (in this chapter, the dimensionality

is kept fixed at p= 2). For patient data, a small number of features (once again, p= 2 in this

chapter) are first selected by the t-test. We afterwards randomly draw a number of samples
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to be used as the training set and employed the rest as a testing set. The number of training

points are chosen to be small to keep the small sample setting, and to have a large enough

testing set. This was repeated 1000 times to get the empirical deviation distribution [43],

that is, the distribution of estimated minus actual errors, for the different error estimators.

The results are presented in forms of beta-fit curves, box-plots, and bias, variance, and

RMS curves in order to provide as detailed as possible a picture of the empirical deviation

distributions of the error estimators.

2. Simulation Based on Synthetic Data

We employ here the spherical gaussian model, where the covariance matrix is identity and

the two mean vector are symmetric over the origin. With that assumption, we varied the

Bayes error of the model by changing the distance between the two means. Models with

different Bayes errors and dimension are compared over varying number of samples. The

feature-label distribution is known and this allows us to exactly compute the true error of

the designed classifier, which is then used to derive the empirical deviation distribution for

the different estimators.

3. Simulation Based on Patient Data

We utilize the same three patients data sets described in Chapter V in order to study the

performance of bagging in the context of genomics and proteomics applications.

4. Results and Discussion

a. Synthetic Data

The various error estimators can be grouped into four groups according to performance.

The first group corresponds to resubstitution, which showed to be optimistically biased for
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the bagged LDA, 3NN, and CART classifiers, with a root mean square error that increases

substantially with increasing Bayes error; resubstitution had been previously known to be-

have as such for single LDA, 3NN, and CART classifiers. The second group contains

leave-one-out, five-fold cross-validation and out-of-bag. As we can see from Figure 6, the

out-of-bag estimator, with the formulation given in (6.3), is almost identical to leave-one-

out. This second group shows very small bias but considerably high variance. The re-

semblance of out-of-bag to cross-validation, which had been pointed out already in [182],

is explained by the similar way of partitioning the sample set. This group shows much

smaller bias than resubstitution, and this is consistent as the Bayes error increases. How-

ever, this group displayed larger variability than resubstitution and the bootstrap group, as

we already knew from [179] on single classification rules. The third group includes the

basic bootstrap, bootstrap 632 and bootstrap 632 plus; this group displays very competitive

performance in terms of root mean square error. Even though they often perform better

than the two previous groups, the estimators in this group took the longest time to com-

pute across all experiments. The last group consists of the bolstered and semi-bolstered

error estimators, which exhibit superior performance to the other groups, in terms of RMS

error, despite being far less computationally expensive than cross-validation and bootstrap

estimators.

Generally, for a fixed model, almost all the estimates work better when the sample size

increase and this holds for all three bagged classifiers. In Figure 7, we see that there is a

consistent trend: as the Bayes error increases or, equivalently, the classification problem be-

comes harder, error estimation performance decreases steadily, in term of root mean square

error; this is true for all error estimation methods. Bolstered error estimators showed con-

sistent superior performance to the others, in terms of accuracy (RMS) and computational

cost. These conclusions are also supported by Figures 8 and 9.

We observed that the performance of error estimators other than out-of-bag (which
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Table IV. Bias, variance (standard deviation), and RMS for different error estimators, with
different base classification rules, for breast cancer gene expression data, dimen-
sionality p = 2.

Rule n stat resb boot bresb loo b632 oob sbresb b632plus cv5
lda 20 bias -0.0388 0.0287 -0.0104 0.0063 0.0039 0.0076 0.0244 0.0092 0.0143

sd 0.0908 0.0944 0.0789 0.1004 0.0912 0.1003 0.0933 0.0938 0.1140
rms 0.0988 0.0986 0.0795 0.1006 0.0913 0.1006 0.0964 0.0942 0.1149

lda 40 bias -0.0198 0.0082 -0.0084 -0.0012 -0.0021 0.0002 0.0168 -0.0011 -0.0044
sd 0.0657 0.0642 0.0614 0.0671 0.0638 0.0673 0.0676 0.0641 0.0714

rms 0.0686 0.0647 0.0620 0.0671 0.0639 0.0673 0.0696 0.0641 0.0716
lda 60 bias -0.0157 -0.0000 -0.0097 -0.0045 -0.0058 -0.0036 0.0104 -0.0054 -0.0011

sd 0.0577 0.0559 0.0544 0.0580 0.0560 0.0581 0.0586 0.0560 0.0586
rms 0.0598 0.0559 0.0553 0.0582 0.0563 0.0582 0.0595 0.0563 0.0587

cart 20 bias -0.1554 0.0456 -0.0330 0.0226 -0.0284 0.0267 -0.0225 0.0096 0.0094
sd 0.0653 0.1047 0.0671 0.1210 0.0798 0.1229 0.0700 0.1059 0.1187

rms 0.1686 0.1142 0.0747 0.1231 0.0847 0.1258 0.0735 0.1063 0.1190
cart 40 bias -0.1583 0.0323 -0.0358 0.0095 -0.0378 0.0143 -0.0284 -0.0094 0.0058

sd 0.0484 0.0697 0.0502 0.0774 0.0533 0.0799 0.0516 0.0671 0.0810
rms 0.1655 0.0769 0.0616 0.0780 0.0653 0.0812 0.0589 0.0677 0.0812

cart 60 bias -0.1722 0.0211 -0.0377 0.0001 -0.0501 0.0043 -0.0317 -0.0232 -0.0050
sd 0.0400 0.0624 0.0473 0.0705 0.0473 0.0701 0.0472 0.0590 0.0695

rms 0.1768 0.0658 0.0605 0.0705 0.0689 0.0703 0.0569 0.0634 0.0697
3nn 20 bias -0.0964 0.0575 -0.0478 0.0270 0.0009 0.0269 -0.0176 0.0273 0.0076

sd 0.0716 0.0996 0.0649 0.1174 0.0835 0.1167 0.0778 0.1005 0.1156
rms 0.1201 0.1150 0.0806 0.1204 0.0835 0.1197 0.0798 0.1041 0.1159

3nn 40 bias -0.0952 0.0406 -0.0481 0.0109 -0.0094 0.0139 -0.0214 0.0075 0.0036
sd 0.0529 0.0687 0.0493 0.0787 0.0590 0.0785 0.0577 0.0669 0.0801

rms 0.1089 0.0798 0.0689 0.0794 0.0598 0.0797 0.0615 0.0673 0.0802
3nn 60 bias -0.0962 0.0316 -0.0504 0.0034 -0.0154 0.0054 -0.0261 -0.0012 -0.0008

sd 0.0432 0.0625 0.0452 0.0693 0.0526 0.0693 0.0514 0.0595 0.0680
rms 0.1054 0.0701 0.0677 0.0694 0.0548 0.0695 0.0576 0.0595 0.0680

can only be applied to ensemble rules) were consistent with their performance with the

corresponding single classifier, as reported in other studies [43, 120].

b. Patient Data

The results for the real patient data sets were entirely consistent with those for the synthetic

data, as can be seen in Figures 10–12 and Tables 4–6. We again observed the division of

the error estimators in the same four groups according to performance. We also observed

that the bolstered error estimator group displayed the best performance, as measured by

RMS.
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Bagged LDA Bagged 3NN Bagged CART

(a)

Bagged LDA Bagged 3NN Bagged CART

(b)

Fig. 6. Comparison of out-of-bag and leave-one-out for different Gaussian models over the
number of samples p = 2 (a) Sample mean, (b) Sample standard deviation.
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Bias Std. Deviation RMS

Fig. 7. Bias, variance (standard deviation), and RMS of as a function of the bayes error,
for the synthetic data, sample size n = 20, dimensionality p = 2, with different base
classification rules: LDA, 3NN, and CART on the first, second, and third row, re-
spectively.
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LDA 3NN CART

Fig. 8. Empirical deviation distribution (top row), box plots (middle row), and RMS as a
function of sample size (bottom row), for synthetic Gaussian model with Bayes error
= 0.05, sample size n = 20, dimensionality p = 2, with different base classification
rules.
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LDA 3NN CART

Fig. 9. Empirical deviation distribution (top row), box plots (middle row), and RMS as a
function of sample size (bottom row), for synthetic Gaussian model with Bayes error
= 0.15, sample size n = 20, dimensionality p = 2, with different base classification
rules.
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LDA 3NN CART

Fig. 10. Empirical deviation distribution (top row) and box plots (bottom row), for breast
cancer gene-expression data, sample size n = 20, dimensionality p = 2, with dif-
ferent base classification rules.
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LDA 3NN CART

Fig. 11. Empirical deviation distribution (top row) and box plots (bottom row), for lung can-
cer gene-expression data, sample size n = 20, dimensionality p = 2, with different
base classification rules.
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LDA 3NN CART

Fig. 12. Empirical deviation distribution (top row) and box plots (bottom row), for prostate
cancer mass-spectrometry data, sample size n = 20, dimensionality p = 2, with
different base classification rules.



128

Table V. Bias, variance (standard deviation), and RMS for different error estimators, with
different base classification rules, for lung cancer gene expression data, dimension-
ality p = 2.

Rule n stat resb boot bresb loo b632 oob sbresb b632plus cv5
lda 20 bias -0.0243 0.0238 -0.0070 0.0075 0.0061 0.0103 0.0294 0.0094 0.0106

sd 0.0938 0.0938 0.0827 0.0989 0.0923 0.0988 0.0910 0.0932 0.1025
rms 0.0969 0.0967 0.0830 0.0992 0.0925 0.0993 0.0956 0.0937 0.1031

lda 40 bias -0.0118 0.0109 0.0012 0.0017 0.0025 0.0044 0.0273 0.0033 0.0045
sd 0.0675 0.0655 0.0628 0.0684 0.0656 0.0685 0.0652 0.0656 0.0694

rms 0.0685 0.0664 0.0628 0.0684 0.0657 0.0686 0.0707 0.0657 0.0695
lda 60 bias -0.0092 0.0067 0.0023 -0.0004 0.0009 0.0015 0.0235 0.0012 0.0020

sd 0.0606 0.0587 0.0570 0.0608 0.0590 0.0608 0.0586 0.0590 0.0610
rms 0.0613 0.0591 0.0570 0.0608 0.0591 0.0609 0.0632 0.0590 0.0610

cart 20 bias -0.0945 0.0321 -0.0025 0.0100 -0.0145 0.0139 0.0076 0.0031 0.0017
sd 0.0502 0.0852 0.0623 0.0916 0.0683 0.0945 0.0676 0.0811 0.0849

rms 0.1069 0.0911 0.0623 0.0921 0.0699 0.0955 0.0681 0.0812 0.0849
cart 40 bias -0.0926 0.0226 -0.0230 0.0071 -0.0198 0.0088 -0.0141 -0.0071 0.0022

sd 0.0384 0.0630 0.0439 0.0694 0.0504 0.0705 0.0472 0.0577 0.0654
rms 0.1003 0.0670 0.0496 0.0698 0.0542 0.0710 0.0493 0.0581 0.0655

cart 60 bias -0.0938 0.0202 -0.0277 0.0043 -0.0218 0.0068 -0.0210 -0.0103 0.0012
sd 0.0335 0.0544 0.0397 0.0590 0.0438 0.0597 0.0414 0.0496 0.0571

rms 0.0996 0.0580 0.0484 0.0592 0.0490 0.0601 0.0464 0.0507 0.0571
3nn 20 bias -0.0483 0.0474 -0.0185 0.0114 0.0122 0.0132 0.0027 0.0238 0.0040

sd 0.0552 0.0803 0.0529 0.0876 0.0677 0.0870 0.0623 0.0765 0.0787
rms 0.0734 0.0932 0.0561 0.0884 0.0688 0.0880 0.0624 0.0802 0.0788

3nn 40 bias -0.0489 0.0236 -0.0270 0.0043 -0.0031 0.0055 -0.0094 0.0027 -0.0004
sd 0.0435 0.0602 0.0411 0.0626 0.0519 0.0624 0.0484 0.0555 0.0593

rms 0.0655 0.0646 0.0492 0.0627 0.0520 0.0626 0.0493 0.0555 0.0593
3nn 60 bias -0.0500 0.0198 -0.0317 0.0031 -0.0059 0.0036 -0.0147 -0.0009 -0.0028

sd 0.0381 0.0526 0.0383 0.0555 0.0459 0.0553 0.0439 0.0486 0.0514
rms 0.0629 0.0562 0.0497 0.0556 0.0462 0.0555 0.0463 0.0486 0.0514
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Table VI. Bias, variance (standard deviation), and RMS for different error estimators, with
different base classification rules, for prostate cancer mass-spectrometry data, di-
mensionality p = 2.

Rule n stat resb boot bresb loo b632 oob sbresb b632plus cv5
lda 20 bias -0.0506 0.0181 -0.0277 -0.0033 -0.0072 -0.0044 -0.0050 -0.0019 0.0006

sd 0.0871 0.1025 0.0879 0.1031 0.0949 0.1037 0.0993 0.0985 0.1071
rms 0.1007 0.1041 0.0921 0.1031 0.0951 0.1038 0.0994 0.0985 0.1071

lda 40 bias -0.0283 0.0079 -0.0189 -0.0051 -0.0054 -0.0042 -0.0029 -0.0039 -0.0031
sd 0.0609 0.0688 0.0626 0.0673 0.0647 0.0683 0.0674 0.0655 0.0693

rms 0.0672 0.0693 0.0654 0.0675 0.0649 0.0684 0.0675 0.0656 0.0694
lda 60 bias -0.0192 0.0045 -0.0141 -0.0042 -0.0042 -0.0044 -0.0008 -0.0035 -0.0017

sd 0.0514 0.0572 0.0524 0.0542 0.0542 0.0549 0.0559 0.0546 0.0577
rms 0.0549 0.0573 0.0542 0.0544 0.0544 0.0550 0.0560 0.0547 0.0577

cart 20 bias -0.1504 0.0409 -0.0500 0.0164 -0.0295 0.0248 -0.0441 0.0014 0.0059
sd 0.0693 0.1082 0.0765 0.1198 0.0847 0.1223 0.0791 0.1053 0.1169

rms 0.1655 0.1157 0.0914 0.1209 0.0897 0.1247 0.0905 0.1054 0.1170
cart 40 bias -0.1412 0.0320 -0.0436 0.0047 -0.0317 0.0096 -0.0418 -0.0108 0.0044

sd 0.0461 0.0701 0.0497 0.0753 0.0539 0.0773 0.0503 0.0646 0.0787
rms 0.1485 0.0771 0.0661 0.0755 0.0625 0.0779 0.0654 0.0655 0.0788

cart 60 bias -0.1397 0.0284 -0.0404 0.0021 -0.0334 0.0088 -0.0393 -0.0155 0.0049
sd 0.0347 0.0580 0.0418 0.0626 0.0441 0.0648 0.0424 0.0521 0.0636

rms 0.1439 0.0646 0.0581 0.0627 0.0554 0.0654 0.0578 0.0544 0.0637
3nn 20 bias -0.0820 0.0554 -0.0488 0.0165 0.0048 0.0200 -0.0371 0.0233 0.0104

sd 0.0748 0.1041 0.0757 0.1100 0.0871 0.1129 0.0805 0.0993 0.1037
rms 0.1110 0.1179 0.0901 0.1112 0.0872 0.1147 0.0886 0.1020 0.1043

3nn 40 bias -0.0673 0.0405 -0.0377 0.0029 0.0008 0.0067 -0.0271 0.0099 0.0040
sd 0.0458 0.0643 0.0460 0.0679 0.0536 0.0695 0.0504 0.0585 0.0644

rms 0.0814 0.0760 0.0595 0.0680 0.0536 0.0698 0.0572 0.0593 0.0645
3nn 60 bias -0.0660 0.0304 -0.0375 0.0015 -0.0051 0.0040 -0.0269 0.0016 0.0006

sd 0.0389 0.0534 0.0393 0.0560 0.0451 0.0563 0.0435 0.0482 0.0557
rms 0.0766 0.0614 0.0543 0.0560 0.0454 0.0564 0.0511 0.0482 0.0557
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D. Conclusion

We presented an extensive study of several error estimation methods for bagged ensembles

of typical classifiers. We provided here an explicit formulation for the out-of-bag error es-

timator, which is intended to remove estimator bias. We observed that this out-of-bag error

estimator was almost identical to leave-one-out, under spherical Gaussian models, and con-

jectured a very close relationship between the two. The results of our simulation study were

consistent between synthetic and real patient data, and the performance of error estimators

that can be applied to single classifiers (i.e., all of them save for the out-of-bag estimator)

with the bagged classifiers was comparable to their performance with the corresponding

single classifier, as reported elsewhere. The bolstered error estimators exhibited the best

performance, in terms of RMS error, in our simulation study, despite being far less compu-

tationally expensive than cross-validation and bootstrap estimators. We hope this work will

provide useful guidance to practitioners working with bagged ensemble classifiers designed

on small-sample data.
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CHAPTER VII

CONCLUSION

In this dissertation, we have presented a study of bootstrap technique in error estimation

and ensemble classification methods. This study is aimed at applications in Genomics and

Proteomics where the small-sample challenge is prevalent. Reuse of data is expected to

increase the accuracy and reliability of error estimation and classification.

In the first part, we have provided the exact formulas for the moments of the variants

of bootstrap error estimators, which have been empirically known among the best methods.

Based on these results, we obtained the closed form of RMS, which allows us to evaluate

the methods globally and hence, to find the optimal bootstrap estimator with the minimum

RMS. We believe that this is the first time, as far as we are aware of, that such analysis of

bootstrap error estimation is provided.

The second part give us more insights into the bagging classification rules, with respect

to the resampling efficiency for different classification rules used to build members of the

ensemble. It also provides new observations of the problem of error estimation for bagging

classifiers.

Some issues remain to be addressed. In the first part, we assumed the covariance

matrix is known. In the case of unknown covariance matrix, the bootstrap estimators

have more complexed distributional properties, which require different techniques to solve.

Also, our analysis provided here is based on the complete bootstrap, while the bootstrap

methods in practice is often its Monte Carlo approximation. Moreover, in the multivariate

case, the results are in the forms of noncentral bivariate F distributions, the computations

of which are needed to establish. These problems are to be under consideration.
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APPENDIX A

PROOFS IN CHAPTER III

Proof of theorem 1:

According to (3.14),

E[ε̂C] =
m0(C)

m(C)
P{ψC(X1) = 1}+ m1(C)

m(C)
P{ψC(Xn0+1) = 0}

P{ψC(X1) = 1}= P
{(

X1−
µ̂C

0 + µ̂C
1

2

)
(µ̂C

0 − µ̂
C
1 )< 0

}
= P

{
X1−

µ̂C
0 + µ̂C

1
2

< 0, µ̂C
0 − µ̂

C
1 > 0

}
+

+P
{

X1−
µ̂C

0 + µ̂C
1

2
> 0, µ̂C

0 − µ̂
C
1 < 0

}
= P{B0 < 0}+P{B0 > 0}

P{ψC(Xn0+1) = 0}= P
{(

Xn0+1−
µ̂C

0 + µ̂C
1

2

)
(µ̂C

0 − µ̂
C
1 )> 0

}
= P

{
Xn0+1−

µ̂C
0 + µ̂C

1
2

< 0, µ̂C
0 − µ̂

C
1 < 0

}
+

+P
{

Xn0+1−
µ̂C

0 + µ̂C
1

2
> 0, µ̂C

0 − µ̂
C
1 > 0

}
= P{B1 < 0}+P{B1 > 0}

B0 and B1 are two bivariate Gaussian random vectors with the means and covariance ma-
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trices as follows:

E [B0] =

 µ0−µ1
2

−µ0 +µ1

 , ΣB0 =


(
1+ s0(C)

4

)
σ2

0 +
s1(C)

4 σ2
1
(
−s1(C)σ2

1 + s0(C)σ2
0
)
/2

. s0(C)σ2
0 + s1(C)σ2

1

 .

(A.1)

E [B1] =

 µ1−µ0
2

µ0−µ1

 , ΣB1 =


(
1+ s1(C)

4

)
σ2

1 +
s0(C)

4 σ2
0
(
−s1(C)σ2

1 + s0(C)σ2
0
)
/2

. s0(C)σ2
0 + s1(C)σ2

1

 .

(A.2)

Proof of theorem 2:

Following (3.15), we have:

E[ε̂2
C] =

m0(C)

m2(C)
P{ψC(X) = 1| X ∈Π0}+

m1(C)

m2(C)
P{ψC(X) = 0| X ∈Π1}︸ ︷︷ ︸

(1)

+

+
n0

∑
i6= j=1

IC(i)=0 IC( j)=0 P{ψC(Xi) = 1,ψC(X j) = 1}︸ ︷︷ ︸
(2)

+

+
n0+n1

∑
i6= j=n0+1

IC(i)=0 IC( j)=0 P{ψC(Xi) = 0,ψC(X j) = 0}︸ ︷︷ ︸
(3)

+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC(i)=0 IC( j)=0 P{ψC(Xi) = 1,ψC(X j) = 0}︸ ︷︷ ︸
(4)

+

+
n0

∑
j=1

n0+n1

∑
i=n0+1

IC(i)=0 IC( j)=0 P{ψC(Xi) = 0,ψC(X j) = 1}︸ ︷︷ ︸
(5)

.

According to Theorem 1, we have:

(1)=
m0(C)

m2(C)

(
P{B0(C)≥ 0}+P{B0(C)< 0}

)
+

m1(C)

m2(C)

(
P{B1(C)≥ 0}+P{B1(C)< 0}

)
.
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Also,

(2) = P
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Xi−

µ̂C
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1
2

)(
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C
0 − µ̂
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1

)
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)(
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C
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C
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)
< 0 | Xi,X j ∈Π0

}
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µ̂C
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}

= P{T00(i, j,C)≥ 0}+P{T00(i, j,C)< 0},

where T00(i, j,C) is defined as in the statement of the theorem. It is clear that the mean

vector and covariance matrix of T00(i, j,C) are the same for all pairs (i, j). So denote

T00(i, j,C) = T00(C).

Similarly,

(3) = P{T11(i, j,C)≥ 0}+P{T11(i, j,C)< 0}= P{T11(C)≥ 0}+P{T11(C)< 0}

(4) = P{T01(i, j,C)≥ 0}+P{T01(i, j,C)< 0}= P{T01(C)≥ 0}+P{T01(C)< 0}

(5) = P{T01( j, i,C)≥ 0}+P{T01( j, i,C)< 0}= P{T01(C)≥ 0}+P{T01(C)< 0}

Theorem 2 follows immediately with m(C),m0(C) and m1(C) defined as in (3.32).
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Proof of theorem 3:

Following (3.16), we have:

E[ε̂C1 ε̂C2] =
n0
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i, j=1
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C2
1

2

)(
µ̂

C2
0 − µ̂

C2
1

)
< 0 | Xi,X j ∈Π0

}

= P

{
Xi−

µ̂
C1
0 + µ̂

C1
1

2
> 0, µ̂

C1
0 − µ̂

C1
1 < 0, X j−

µ̂
C2
0 + µ̂

C2
1

2
> 0, µ̂

C2
0 − µ̂

C2
1 < 0

}
+

+P

{
Xi−

µ̂
C1
0 + µ̂

C1
1

2
> 0, µ̂

C1
0 − µ̂

C1
1 < 0, X j−

µ̂
C2
0 + µ̂

C2
1

2
< 0, µ̂

C2
0 − µ̂

C2
1 > 0

}
+

+P

{
Xi−

µ̂
C1
0 + µ̂

C1
1

2
< 0, µ̂

C1
0 − µ̂

C1
1 > 0, X j−

µ̂
C2
0 + µ̂

C2
1

2
< 0, µ̂

C2
0 − µ̂

C2
1 > 0

}
+

+P

{
Xi−

µ̂
C1
0 + µ̂

C1
1

2
< 0, µ̂

C1
0 − µ̂

C1
1 > 0, X j−

µ̂
C2
0 + µ̂

C2
1

2
> 0, µ̂

C2
0 − µ̂

C2
1 < 0

}

= P{F I
00(i, j,C1,C2)≥ 0}+P{F II

00(i, j,C1,C2)≥ 0}+

+P{F I
00(i, j,C1,C2)< 0}+P{F II

00(i, j,C1,C2)< 0},

where F I
00(i, j,C1,C2) and F II

00(i, j,C1,C2) are defined as in (3.33) and (3.34).
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Similarly,

(2) = F I
11(i, j,C1,C2)> 0}+P{F I

11(i, j,C1,C2)< 0}+

+P{F II
11(i, j,C1,C2)> 0}+P{F II

11(i, j,C1,C2)< 0}

(3) = P{F I
01(i, j,C1,C2)≥ 0}+P{F I

01(i, j,C1,C2)< 0}+

+P{F II
01(i, j,C1,C2)≥ 0}+P{F II

01(i, j,C1,C2)< 0}

(4) = P{F I
01( j, i,C2,C1)> 0}+F I

01( j, i,C2,C1)< 0}+

+P{F II
01( j, i,C2,C1)≥ 0}+P{F II

01( j, i,C1,C1)< 0}

where F I
11 and F II

11 are defined as in (3.35) and (3.36) and F I
01 and F II

01 are defined as in

(3.37) and (3.38). Theorem 3 follows immediately.

Proof of theorem 4:

Following (3.17), we have:

E[ε̂Cε̂r] =
1

nm(C)

[
n0

∑
i, j=1

IC(i)=0 P{ψC(Xi) = 1,ψ(X j) = 1}︸ ︷︷ ︸
(1)

+
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(2)

+
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∑
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∑
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(3)

+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC( j)=0 P{ψC(X j) = 0,ψ(Xi) = 1}︸ ︷︷ ︸
(4)

]
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where GI
00(i, j,C) and GI

00(i, j,C) are defined as in (3.39) and (3.40).

Similarly,
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11(i, j,C)> 0}+P{GI

11(i, j,C)< 0}+

+P{GII
11(i, j,C)> 0}+P{GII
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+P{GII
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where GI
11 and GII

11 are defined as in (3.41) and (3.42) and GI
01 and GII

01 are defined as in

(3.43) and (3.44). Theorem 4 follows immediately.
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Proof of theorem 5:

Following (3.19), we have:

E[εε̂C] =
m0(C)(1− γ)

m(C)
P{ψ(X) = 1,ψC(X1) = 1|X ∈Π0}︸ ︷︷ ︸

(1)

+
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X1−

µ̂C
0 + µ̂C

1
2

> 0, µ̂
C
0 − µ̂

C
1 < 0, X− µ̂0 + µ̂1

2
> 0, µ̂0− µ̂1 < 0

}
+

+P
{

X1−
µ̂C

0 + µ̂C
1

2
> 0, µ̂

C
0 − µ̂

C
1 < 0, X− µ̂0 + µ̂1

2
< 0, µ̂0− µ̂1 > 0

}
+

+P
{

X1−
µ̂C

0 + µ̂C
1

2
< 0, µ̂

C
0 − µ̂

C
1 > 0, X− µ̂0 + µ̂1

2
< 0, µ̂0− µ̂1 > 0

}
+

+P
{

X1−
µ̂C

0 + µ̂C
1

2
< 0, µ̂

C
0 − µ̂

C
1 > 0, X− µ̂0 + µ̂1

2
> 0, µ̂0− µ̂1 < 0

}
= P{KI

00(C)≥ 0}+P{KII
00(C)≥ 0}++P{KI

00(C)< 0}+P{KII
00(C)< 0},
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Similarly,

(2) = KI
11(C)> 0}+P{KI

11(C)< 0}+

+P{KII
11(C)> 0}+P{KII

11(C)< 0}

(3) = P{KI
01(C)≥ 0}+P{KI

01(C)< 0}+

+P{KII
01(C)≥ 0}+P{KII

01(C)< 0}

(4) = P{KI
10(C)> 0}+KI

10(C)< 0}+

+P{KII
10(C)≥ 0}+P{KII

10(C)< 0}

where KI
11 and KII

11 are defined as in (3.49) and (3.50) and KI
01 and KII

01 are defined as in

(3.51) and (3.52). Theorem 5 follows immediately.

Algorithm to compute P(s0,s1)

In the full bootstrap sampling case, P(s0,s1) = P(s), where

s =
1
n2

n

∑
i=1

C(i)2 , (A.3)

whereas in the stratified bootstrap sampling case, P(s0,s1) = P(s0)P(s1). We limit our-

selves therefore to describe the algorithm to compute P(s) for a generic bootstrap vector of

size n. Let

Sn(x,y) =
n!
nn ∑

i1+···+in=x
i21+···+i2n=y

1
i1! . . . in!

, x,y ∈ Z+, x≥ 1,
x2

n
≤ y≤ x2 . (A.4)
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Clearly, P(s) = Sn(n,n2s). Now, notice that

Sn(x,y) =
n!
nn ∑

i1+···+in=x
i21+···+i2n=y

1
i1! . . . in!

=
n!
nn

n

∑
j=0

∑
i2+···+in=x− j
i22+···+i2n=y− j2

1
j! i2! . . . in!

=

(
n−1

n

)n−1 x

∑
j=0

1
j!

(n−1)!
(n−1)n−1 ∑

i2+···+in=x− j
i22+···+i2n=y− j2

1
i2! . . . in!

=

(
n−1

n

)n−1 x

∑
j=0

1
j!

Sn−1(x− j,y− j2) .

(A.5)

This, together with the fact that

S1(x,y) =

 1/x! , if y = x2

0 , otherwise
, (A.6)

provides an efficient recursive algorithm to compute P(s) up to moderate sample size n.

The details of the computation for the purposes of this paper were as follows: we set the

maximum value of n to 200 and stored values of Sn(x,y) as a matrix of size 200×200, for

each n. For n= 1, S1(x,y) has nonzero values at the positions (i, i2), for i= 1,2, . . .200 only,

c.f. (A.6). Then we compute Sn(x,y) based on the value of Sn−1(x,y) recursively through

(A.5). Each matrix of size 200× 200, corresponding to one value of n, took around three

minutes to compute on a state-of-the-art computer∗. In all, it took less than twelve hours

for compute all the values of Sn(x,y) up to n = 200. For each value of n, the probabilities

P(s) = Sn(n,n2s) were extracted from the table for Sn(x,y) and saved separately to be used

in the numerical examples.

∗An I-Mac Intel Core 2 Duo 2.4 GHz with 2GB RAM.
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APPENDIX B

PROOFS IN CHAPTER IV

Proof of Theorem 13:

From (3.14),

E[ε̂C] =
m0(C)

m(C)
P{ψC(X1) = 1}+ m1(C)

m(C)
P{ψC(Xn0+1) = 0}

=
m0(C)

m(C)
P
{(

µ̂
C
0 − µ̂

C
1

)T
Σ
−1
(

X1−
µ̂C

0 + µ̂C
1

2

)
< 0
}

︸ ︷︷ ︸
(1)

+

+
m1(C)

m(C)
P
{(

µ̂
C
0 − µ̂

C
1

)T
Σ
−1
(

Xn0+1−
µ̂C

0 + µ̂C
1

2

)
> 0
}

︸ ︷︷ ︸
(2)

(1) = P{UTV < 0}

= P
{
(U +V )T (U +V )− (U−V )T (U−V )< 0

}
= P

{
(Z1

0)
T Z1

0− (Z2
0)

T Z2
0 < 0

}
= G0 (Z0)

where

U = s−
1
2 Σ
− 1

2 (µ̂C
0 − µ̂

C
1 ), V = 2(s+4)−

1
2 Σ
− 1

2

(
X1−

µ̂C
0 + µ̂C

1
2

)
,

Z1
0 =U +V, Z2

0 =U−V, Z0 = [(Z1
0)

T (Z2
0)

T ]T ,

where s is defined as in (3.12). It is clear that U and V are p-dimensional Gaussian random

variables with dispersion matrix Ip. As a results, Z1
0 and Z2

0 are also p-dimensional Gaussian
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random variables with the means and covariance matrices as followings:

E
[
Z1

0
]
=
(
s−

1
2 +(s+4)−

1
2
)
Σ
− 1

2 (µ0−µ1),

E
[
Z2

0
]
=
(
s−

1
2 − (s+4)−

1
2
)
Σ
− 1

2 (µ0−µ1),

ΣZ1
0 ,Z

2
0
= 0p×p, ΣZ1

0
= 2(1+ρ)Ip, ΣZ2

0
= 2(1−ρ)Ip, where ρ =

s0− s1√
s(s+4)

.

Similarly for (2)

(2) = P
{
(Z1

1)
T Z1

1− (Z2
1)

T Z2
1 > 0

}
= G1(Z1).

Theorem 13 follows immediately.

Proof of Theorem 14:

From (3.15), we have

E[ε̂2
C] =

m0(C)

m2(C)
P{ψC(X) = 1| X ∈Π0}+

m1(C)

m2(C)
P{ψC(X) = 0| X ∈Π1}︸ ︷︷ ︸

(1)

+

+
1

m2(C)

[
n0

∑
i=1

n0

∑
j 6=i

IC(i)=0 IC( j)=0 P{ψC(Xi) = 1,ψC(X j) = 1}︸ ︷︷ ︸
(2)

+

+
n0+n1

∑
i=n0+1

n0+n1

∑
j 6=i

IC(i)=0 IC( j)=0 P{ψC(Xi) = 0,ψC(X j) = 0}︸ ︷︷ ︸
(3)

+

+
n0

∑
i=1

n0+n1

∑
j=n0+1

IC(i)=0 IC( j)=0 P{ψC(Xi) = 1,ψC(X j) = 0}︸ ︷︷ ︸
(4)

+

+
n0

∑
j=1

n0+n1

∑
i=n0+1

IC(i)=0 IC( j)=0 P{ψC(Xi) = 0,ψC(X j) = 1}︸ ︷︷ ︸
(5)

]
.
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The term (1) is obtained using Theorem 13. Consider (2)

(2) = P{ψC(Xi) = 1,ψC(X j) = 1|Xi,X j ∈Π0} with C(i) =C( j) = 0

= P
{
(µ̂C

0 − µ̂
C
1 )

T
Σ
−1
(

Xi−
µ̂C

0 + µ̂C
1

2

)
< 0,

(µ̂C
0 − µ̂

C
1 )

T
Σ
−1
(

X j−
µ̂C

0 + µ̂C
1

2

)
< 0|Xi,X j ∈Π0

}
= P

{
UTVi < 0,UTVj < 0

}
= P

{
(U +Vi)

T (U +Vi)− (U−Vi)
T (U−Vi)< 0,

(U +Vj)
T (U +Vj)− (U−Vj)

T (U−Vj)< 0
}

= P
{
(T 1

00)
T T 1

00− (T 2
00)

T T 2
00 < 0,(T 3

00)
T T 3

00− (T 4
00)

T T 4
00 < 0

}
= G00(T00)

where

U = s−
1
2 Σ
− 1

2 (µ̂C
0 − µ̂

C
1 ),

Vi = 2(s+4)−
1
2 Σ
− 1

2

(
Xi−

µ̂C
0 + µ̂C

1
2

)
, Xi ∈Π0,

Vj = 2(s+4)−
1
2 Σ
− 1

2

(
X j−

µ̂C
0 + µ̂C

1
2

)
, X j ∈Π0,

T00 = [(T 1
00)

T (T 2
00)

T (T 3
00)

T (T 4
00)

T ]T ,

where s is defined as in (3.12), and T 1
00 =U +Vi, T 2

00 =U−Vi, T 3
00 =U +Vj, T 4

00 =U−Vj.

It is clear that U , Vi, and Vj are p-dimensional Gaussian random variables with dispersion

matric Ip. As a results, T i
00, i = 1,2,3,4 are also p-dimensional Gaussian random variables.
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Basic algebra gives us

E
[
T 1

00
]
= E

[
T 3

00
]
=
(
s−

1
2 +(s+4)−

1
2
)
Σ
− 1

2 (µ0−µ1),

E
[
T 2

00
]
= E

[
T 4

00
]
=
(
s−

1
2 − (s+4)−

1
2
)
Σ
− 1

2 (µ0−µ1),

ΣT 1
00
= ΣT 3

00
= 2(1+ρ(C)) Ip,

ΣT 2
00
= ΣT 4

00
= 2(1−ρ(C)) Ip, where ρ(C) =

s0− s1√
s(s+4)

.

ΣT 1
00,T

2
00
= ΣT 3

00,T
4

00
= 0p×p

We are to compute ΣT 1
00,T

3
00

.

ΣVi,V j = E
[(

2(s+4)−
1
2 Σ
− 1

2

(
Xi−

µ̂C
0 + µ̂C

1
2

)
−EVi

)
×

×
(

2(s+4)−
1
2 Σ
− 1

2

(
X j−

µ̂C
0 + µ̂C

1
2

)
−EVj

)T]
=

s
s+4

Ip,

ΣU,Vi = E

[(
s−

1
2 Σ
− 1

2 (µ̂C
0 − µ̂

C
1 )−EU

)
×

×
(

2(s+4)−
1
2 Σ
− 1

2

(
Xi−

µ̂C
0 + µ̂C

1
2

)
−EVi

)T

|Xi ∈Π0

]

= 2
1√

s(s+4)
Σ
− 1

2

(
−1

2
Σ

µ̂C
0
+

1
2

Σ
µ̂C

1

)
Σ
− 1

2

=
s1− s0√
s(s+4)

Ip

= ΣU,V j .

ΣT 1
00,T

3
00
=Cov(U +Vi,U +Vj) = ΣU +ΣU,Vi +ΣU,V j +ΣVi,V j

=

(
1+

2(s1− s0)√
s(s+4)

+
s

s+4

)
Ip,
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ΣT 1
00,T

4
00
=Cov(U +Vi,U−Vj) = ΣU +ΣU,Vi−ΣU,V j −ΣVi,V j

=
2s+4
s+4

Ip = ΣT 2
00,T

3
00
,

ΣT 2
00,T

4
00
=Cov(U−Vi,U−Vj) = ΣU −ΣU,Vi−ΣU,V j +ΣVi,V j

=

(
s

s+4
− 2(s1− s0)√

s(s+4)

)
Ip

So,

ΣT00 =


2(1+ρ)Ip 0p×p

(
2s+4
s+4 + 2(s1−s0)√

s(s+4)

)
Ip

2s+4
s+4 Ip

. 2(1−ρ)Ip
2s+4
s+4 Ip

(
2s+4
s+4 −

2(s1−s0)√
s(s+4)

)
Ip

. . 2(1+ρ)Ip 0p×p

. . . 2(1−ρ)Ip

 .

Similarly for (3), (4), and (5):

(3) = P{(T 1
11)

T T 1
11− (T 2

11)
T T 2

11 > 0, (T 3
11)

T T 3
11− (T 4

11)
T T 4

11 > 0}= G11(T11),

(4) = P{(T 1
01)

T T 1
01− (T 2

01)
T T 2

01 < 0, (T 3
01)

T T 3
01− (T 4

01)
T T 4

01 > 0}= G01(T01),

(5) = P{(T 1
01)

T T 1
01− (T 2

01)
T T 2

01 > 0, (T 3
01)

T T 3
01− (T 4

01)
T T 4

01 < 0}= G10(T01).

with

E
[
T 1

11
]
= E

[
T 3

11
]
= E

[
T 2

01
]
= E

[
T 3

01
]
=
(
s−

1
2 − (s+4)−

1
2
)
Σ
− 1

2 (µ0−µ1),

E
[
T 2

11
]
= E

[
T 4

11
]
= E

[
T 1

01
]
= E

[
T 4

01
]
=
(
s−

1
2 +(s+4)−

1
2
)
Σ
− 1

2 (µ0−µ1),

ΣT11 = ΣT01 = ΣT00.

Theorem 14 follows immediately.

Proof of Theorem 15:

The same technique in the proof of Theorem 14 is applied for Theorem 15. From (3.16),
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we have

E[ε̂C1 ε̂C2 ] =
1

m(C1)m(C2)

[
n0

∑
i=1

n0

∑
j=1

IC1(i)=0IC2( j)=0 P{ψC1(Xi) = 1,ψC2(X j) = 1}︸ ︷︷ ︸
(1)

+

+
n0+n1

∑
i=n0+1

n0+n1

∑
j=n0+1

IC1(i)=0 IC2( j)=0 P{ψC1(Xi) = 0,ψC2(X j) = 0}︸ ︷︷ ︸
(2)

+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC1(i)=0 IC2( j)=0 P{ψC1(Xi) = 1,ψC2(X j) = 0}︸ ︷︷ ︸
(3)

+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC2(i)=0 IC1( j)=0 P{ψC2(Xi) = 1,ψC1(X j) = 0}︸ ︷︷ ︸
(4)

]
.

Consider (1)

(1) = P{ψC1(Xi) = 1,ψC2(X j) = 1|Xi,X j ∈Π0} with C1(i) =C2( j) = 0

= P
{(

µ̂
C1
0 − µ̂

C1
1

)T
Σ
−1

(
Xi−

µ̂
C1
0 + µ̂

C1
1

2

)
< 0,

(
µ̂

C2
0 − µ̂

C2
1

)T
Σ
−1

(
X j−

µ̂
C2
0 + µ̂

C2
1

2

)
< 0|Xi,X j ∈Π0

}
= P{UT

1 V1 < 0,UT
2 V2 < 0}

= P{(U1 +V1)
T (U1 +V1)− (U1−V1)

T (U1−V1)< 0,

(U2 +V2)
T (U2 +V2)− (U2−V2)

T (U2−V2)< 0}

= P
{
(F1

00)
T F1

00− (F2
00)

T F2
00 < 0, (F3

00)
T F3

00− (F4
00)

T F4
00 < 0

}
= G00

(
F00(C1,C2, i, j)

)
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where

Ui = s(Ci)
−1/2

Σ
− 1

2 (µ̂Ci
0 − µ̂

Ci
1 ), i ∈ (1,2)

V1 = 2(s(C1)+4)−1/2
Σ
− 1

2

(
Xi−

µ̂
C1
0 + µ̂

C1
1

2

)
, Xi ∈Π0,

V2 = 2(s(C2)+4)−1/2
Σ
− 1

2

(
X j−

µ̂
C2
0 + µ̂

C2
1

2

)
, X j ∈Π0,

F00 = [(F1
00)

T (F2
00)

T (F3
00)

T (F4
00)

T ]T ,

and, F1
00 =U1 +V1,F2

00 =U1−V1,F3
00 =U2 +V2,F4

00 =U2−V2. Basic algebra gives us

E
[
F1

00
]
=
(
s(C1)

−1/2 +(s(C1)+4)−1/2)
Σ
− 1

2 (µ0−µ1),

E
[
F2

00
]
=
(
s(C1)

−1/2− (s(C1)+4)−1/2)
Σ
− 1

2 (µ0−µ1),

E
[
F3

00
]
=
(
s(C2)

−1/2 +(s(C2)+4)−1/2)
Σ
− 1

2 (µ0−µ1),

E
[
F4

00
]
=
(
s(C2)

−1/2− (s(C2)+4)−1/2)
Σ
− 1

2 (µ0−µ1).

ΣF1
00
= 2(1+ρ(C1)) Ip ΣF2

00
= 2(1−ρ(C1)) Ip,

ΣF3
00
= 2(1+ρ(C2)) Ip ΣF4

00
= 2(1−ρ(C2)) Ip,

ΣF1
00,F

2
00
= ΣF3

00,F
4
00
= 0p×p

Basic algebra give us:

ΣU1,U2 =
r0 + r1√

s(C1)s(C2)
Ip, ΣU2,V1 =

2C2(i)
n0
− r0 + r1√

s(C2)(s(C1)+4)
Ip,

ΣU1,V2 =

2C1( j)
n0
− r0 + r1√

s(C1)(s(C2)+4)
Ip, ΣV1,V2 =

r0 + r1− 2C1( j)+2C2(i)
n0√

(s(C1)+4)(s(C2)+4)
Ip.
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ΣF1
00,F

3
00
= ΣU1,U2 +ΣU1,V2 +ΣU2,V1 +ΣV1,V2

=
( r0 + r1√

s(C1)s(C2)
+

2C1( j)
n0
− r0 + r1√

s(C1)(s(C2)+4)
+

+

2C2(i)
n0
− r0 + r1√

s(C2)(s(C1)+4)
+

r0 + r1− 2C1( j)+2C2(i)
n0√

(s(C1)+4)(s(C2)+4)

)
Ip

= κ001(C1,C2, i, j)Ip.

Similarly,

ΣF1
00,F

4
00
= ΣU1,U2−ΣU1,V2 +ΣU2,V1−ΣV1,V2

=
( r0 + r1√

s(C1)s(C2)
−

2C1( j)
n0
− r0 + r1√

s(C1)(s(C2)+4)
+

+

2C2(i)
n0
− r0 + r1√

s(C2)(s(C1)+4)
−

r0 + r1− 2C1( j)+2C2(i)
n0√

(s(C1)+4)(s(C2)+4)

)
Ip

= κ002(C1,C2, i, j)Ip,

ΣF2
00,F

3
00
= ΣU1,U2 +ΣU1,V2−ΣU2,V1−ΣV1,V2

=
( r0 + r1√

s(C1)s(C2)
+

2C1( j)
n0
− r0 + r1√

s(C1)(s(C2)+4)
−

−
2C2(i)

n0
− r0 + r1√

s(C2)(s(C1)+4)
−

r0 + r1− 2C1( j)+2C2(i)
n0√

(s(C1)+4)(s(C2)+4)

)
Ip

= κ003(C1,C2, i, j)Ip,

ΣF2
00,F

4
00
= ΣU1,U2−ΣU1,V2−ΣU2,V1 +ΣV1,V2

=
( r0 + r1√

s(C1)s(C2)
−

2C1( j)
n0
− r0 + r1√

s(C1)(s(C2)+4)
−

−
2C2(i)

n0
− r0 + r1√

s(C2)(s(C1)+4)
+

r0 + r1− 2C1( j)+2C2(i)
n0√

(s(C1)+4)(s(C2)+4)

)
Ip

= κ004(C1,C2, i, j)Ip.
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So,

ΣF00(C1,C2,i, j) =



(1+ρ(C1))Ip 0p×p κ001Ip κ002Ip

. (1−ρ(C1))Ip κ003Ip κ004Ip

. . (1+ρ(C2))Ip 0p×p

. . . (1−ρ(C2))Ip


.

Similarly for (3), (4), and (5).

(3) = P{(F1
11)

T F1
11− (F2

11)
FF2

11 > 0, (F3
11)

T F3
11− (F4

11)
FF4

11 > 0}= G11(F11(C1,C2, i, j)),

(4) = P{(F1
01)

T F1
01− (F2

01)
FF2

01 < 0, (F3
01)

T F3
01− (F4

01)
FF4

01 > 0}= G01(F01(C1,C2, i, j)),

(5) = P{(F1
00)

T F1
00− (F2

00)
FF2

00 > 0, (F3
00)

T F3
00− (F4

00)
FF4

00 < 0}= G00(F01(C2,C1, j, i)).

F11 and F01 are 4p-dimensional Gaussian random variables specified as in Theorem 15.

Proof of Theorem 16:

The same technique in the proof of Theorem 14 is applied for Theorem 16. From (3.17),

we have

E[ε̂Cε̂r] =
1

nm(C)

[
n0

∑
i=1

n0

∑
j=1

IC(i)=0 P{ψC(Xi) = 1,ψ(X j) = 1}︸ ︷︷ ︸
(1)

+

+
n0+n1

∑
i=n0+1

n0+n1

∑
j=n0+1

IC(i)=0 P{ψC(Xi) = 0,ψ(X j) = 0}︸ ︷︷ ︸
(2)

+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC(i)=0 P{ψC(Xi) = 1,ψ(X j) = 0}︸ ︷︷ ︸
(3)

+

+
n0

∑
i=1

n0+n1

∑
j=n0

IC( j)=0 P{ψC(X j) = 0,ψ(Xi) = 1}︸ ︷︷ ︸
(4)

]
.
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Consider (1)

(1) = P{ψC(Xi) = 1,ψ(X j) = 1|Xi,X j ∈Π0}, C(l) = 0

= P{(µ̂C
0 − µ̂

C
1 )

T
Σ
−1
(

Xi−
µ̂C

0 + µ̂C
1

2

)
< 0,

(µ̂0− µ̂1)
T

Σ
−1
(

X j−
µ̂0 + µ̂1

2

)
< 0|Xi,X j ∈Π0}

= P{UT
1 V1 < 0,UT

2 V2 < 0|Xi,X j ∈Π0}

= P{(U1 +V1)
T (U1 +V1)− (U1−V1)

T (U1−V1)< 0,

(U2 +V2)
T (U2 +V2)− (U2−V2)

T (U2−V2)< 0|Xi,X j ∈Π0}

= P{(M1
00)

T M1
00− (M2

00)
T M2

00 < 0, (M3
00)

T M3
00− (M4

00)
T M4

00 < 0}

= G00(M00)

where Xi ∈Π0, X j ∈Π0,C(i) = 0, and

U1 = s−
1
2 Σ
− 1

2 (µ̂C
0 − µ̂

C
1 ), V1 = 2(s+4)−

1
2 Σ
− 1

2

(
Xi−

µ̂C
0 + µ̂C

1
2

)
,

U2 =

(
1
n0

+
1
n1

)− 1
2

Σ
− 1

2 (µ̂0− µ̂1), V2 =

(
1− 3

4n0
+

1
4n1

)− 1
2

Σ
− 1

2

(
X j−

µ̂0 + µ̂1

2

)
,

and, M00 = [(M1
00)

T (M2
00)

T (M3
00)

T (M4
00)

T ]T ,

M1
00 =U1 +V1,M2

00 =U1−V1,M3
00 =U2 +V2,M4

00 =U2−V2. Basic algebra gives us

E
[
M1

00
]
=
[
s−

1
2 +(s+4)−

1
2

]
Σ
− 1

2 (µ0−µ1),

E
[
M2

00
]
=
[
s−

1
2 − (s+4)−

1
2

]
Σ
− 1

2 (µ0−µ1),

E
[
M3

00
]
=

[(
1
n0

+
1
n1

)− 1
2

+

(
1− 3

4n0
+

1
4n1

)− 1
2
]

Σ
− 1

2 (µ0−µ1),

E
[
M4

00
]
=

[(
1
n0

+
1
n1

)− 1
2

−
(

1− 3
4n0

+
1

4n1

)− 1
2
]

Σ
− 1

2 (µ0−µ1).
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ΣU1,V1 = ρ(C)Ip, ρ(C) =
s0− s1√
s(s+4)

ΣU2,V2 =

√
n

4n0n1−3n1 +n0
Ip = ρ0Ip

ΣM1
00,M

3
00
=Cov(U1 +V1,U2 +V2) = ΣU1,U2 +ΣU1,V2 +ΣU2,V1 +ΣV1,V2

ΣU1,U2 = E

[(
(s0 + s1)

− 1
2 Σ
− 1

2 (µ̂C
0 − µ̂

C
1 )−EU1

)(( 1
n0

+
1
n1

)− 1
2

Σ
− 1

2 (µ̂0− µ̂1)−EU2

)]

=

√
n0 +n1

n0n1(s0 + s1)
Ip

ΣU1,V2 = E
[(

(s0 + s1)
− 1

2 Σ
− 1

2 (µ̂C
0 − µ̂

C
1 )−EU1

)
×((

1− 3
4n0

+
1

4n1

)− 1
2

Σ
− 1

2

(
X j−

µ̂0 + µ̂1

2

)
−EV2

)
|Xm ∈Π0

]
=

(
2C( j)−1

2n0
+

1
2n1

)[
(s0 + s1)

(
1− 3

4n0
+

1
4n1

)]− 1
2

Ip

=
n0 +2n1C( j)−n1√

n0n1(4n0n1−3n1 +n0)s

ΣV1,U2 = E
[(

2(s+4)−
1
2 Σ
− 1

2

(
Xl−

µ̂C
0 + µ̂C

1
2

)
−EV1

)
×(

1
n0

+
1
n1

)− 1
2

Σ
− 1

2 (µ̂0− µ̂1)
]

=

(
1
n0

+
1
n1

)[
(s+4)

(
1
n0

+
1
n1

)]− 1
2

Ip

=

√
n0 +n1

n0n1(s0 + s1 +4)
Ip
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ΣV1,V2 = E
[(

2(s+4)−
1
2 Σ
− 1

2

(
Xi−

µ̂C
0 + µ̂C

1
2

)
−EV1

)
×((

1− 3
4n0

+
1

4n1

)− 1
2

Σ
− 1

2

(
X j−

µ̂0 + µ̂1

2

)
−EV2

)
|Xi,X j ∈Π0

]
=

(
4Ii= j−

2C( j)+1
n0

+
1
n1

)[
(s+4)

(
1− 3

4n0
+

1
4n1

)]− 1
2

Ip

=
4n0n1Ii= j−2n1C( j)−n1 +n0√
n0n1(4n0n1−3n1 +n0)(s+4)

Ip

ΣM1
00,M

3
00
=

(√
n0 +n1

n0n1(s0 + s1)
+

2n1C( j)−n1 +n0√
n0n1s(4n0n1−3n1 +n0)

+

+

√
n0 +n1

n0n1(s+4)
+

4n0n1Ii= j−2n1C( j)−n1 +n0√
n0n1(s+4)(4n0n1−3n1 +n0)

)
Ip

= η001Ip

ΣM1
00,M

4
00
=

(√
n0n1

(n0 +n1)(s0 + s1)
− 2n1C( j)−n1 +n0√

n0n1s(4n0n1−3n1 +n0)
+

+

√
n0 +n1

n0n1(s+4)
−

2n0n1Ii= j−2n1C( j)−n1 +n0√
n0n1(s+4)(4n0n1−3n1 +n0)

)
Ip

= η002Ip

ΣM2
00,M

3
00
=

(√
n0 +n1

n0n1(s0 + s1)
− 2n1C( j)−n1 +n0√

n0n1s(4n0n1−3n1 +n0)
−

−
√

n0 +n1

n0n1(s+4)
+

2n0n1Ii= j−2n1C( j)−n1 +n0√
n0n1(s+4)(4n0n1−3n1 +n0)

)
Ip

= η003Ip



175

ΣM2
00,M

4
00
=

(√
n0 +n1

n0n1(s0 + s1)
− 2n1C( j)−n1 +n0√

n0n1s(4n0n1−3n1 +n0)
−

−
√

n0 +n1

n0n1(s+4)
+

2n0n1Ii= j−2n1C( j)−n1 +n0√
n0n1(s+4)(4n0n1−3n1 +n0)

)
Ip

= η004Ip

ΣM00 =



2(1+ρ(C))Ip 0p×p η001 η002

. 2(1−ρ(C))Ip η003 η004

. . 2(1+ρ0)Ip 0p×p

. . . 2(1−ρ0)Ip


.

Similarly for (2), (3), and (4):

(2) = P{(M1
11)

T M1
11− (M2

11)
MM2

11 > 0, (M3
11)

MM3
11− (M4

11)
MM4

11 > 0}= G11(M11(C, i, j))

(3) = P{(M1
01)

MM1
01− (M2

01)
MM2

01 < 0, (M3
01)

MM3
01− (M4

01)
MM4

01 > 0}= G01(M01(C, i, j))

(4) = P{(M1
10)

MM1
10− (M2

10)
MM2

10 > 0, (M3
10)

MM3
10− (M4

10)
MM4

10 < 0}= G10(M10(C, j, i))

M11, M01, and M10 are specified as in Theorem 16. Theorem 16 follows immediately.
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Proof of Theorem 17:

The same technique in the proof of Theorem 14 is applied for Theorem 17. From

(3.19), we have

E[εε̂C] =
m0(C)(1− p)

m(C)
P{ψ(X) = 1,ψC(X1) = 1|X ∈Π0}︸ ︷︷ ︸

(1)

+

+
m1(C)(1− p)

m(C)
P{ψ(X) = 1,ψC(Xn0+1) = 1|X ∈Π0}︸ ︷︷ ︸

(2)

+

+
m0(C)p
m(C)

P{ψ(X) = 0,ψC(X1) = 1|X ∈Π1}︸ ︷︷ ︸
(3)

+

+
m1(C)p
m(C)

P{ψ(X) = 0,ψC(Xn0+1) = 1|X ∈Π1}︸ ︷︷ ︸
(4)

.

(B.1)

Consider (1)

(1) = P{ψ(X) = 1,ψC(Xl) = 1|X , Xl ∈Π0}, C(l) = 0

= P{(µ̂0− µ̂1)
T

Σ
−1
(

X− µ̂0 + µ̂1

2

)
< 0,

(µ̂C
0 − µ̂

C
1 )

T
Σ
−1
(

Xl−
µ̂C

0 + µ̂C
1

2

)
< 0|X ,Xl ∈Π0}

= P{UT
1 V1 < 0,UT

2 V2 < 0|X ,Xl ∈Π0}

= P{(K1
00)

T K1
00− (K2

00)
T K2

00 < 0, (K3
00)

T K3
00− (K4

00)
T K4

00 < 0}

= G00(K00)
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where

U1 =

(
1
n0

+
1
n1

)− 1
2

Σ
− 1

2 (µ̂0− µ̂1),

V1 =

(
1+

1
4n0

+
1

4n1

)− 1
2

Σ
− 1

2

(
X− µ̂0 + µ̂1

2

)
,

U2 = s−1/2
Σ
− 1

2 (µ̂C
0 − µ̂

C
1 ),

V2 = 2(s+4)−1/2
Σ
− 1

2

(
Xl−

µ̂C
0 + µ̂C

1
2

)
,where C(l) = 0.

K1
00 =U1 +V1, K2

00 =U1−V1,

K3
00 =U2 +V2, K4

00 =U2−V2.

ΣK1
00,K

3
00
=Cov [U1,U2]+Cov [U1,V2]+Cov [V1,U2]+Cov [V1,V2] ,

ΣK1
00,K

4
00
=Cov [U1,U2]−Cov [U1,V2]+Cov [V1,U2]−Cov [V1,V2] ,

ΣK2
00,K

3
00
=Cov [U1,U2]+Cov [U1,V2]−Cov [V1,U2]−Cov [V1,V2] ,

ΣK2
00,K

4
00
=Cov [U1,U2]−Cov [U1,V2]−Cov [V1,U2]+Cov [V1,V2] .

Cov [U1,U2] =

[
s−1/2

(
1
n0

+
1
n1

)]− 1
2

Cov
[
(µ̂0− µ̂1)(µ̂

C
0 − µ̂

C
1 )

T
]

=

[
s−1/2

(
1
n0

+
1
n1

)] 1
2
(

1
n0

+
1
n1

)
Ip

=

√
n0 +n1

n0n1s
Ip
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Cov [U1,V2] =

= 2
[
(s+4)−1/2

(
1
n0

+
1
n1

)]− 1
2

Cov

[
(µ̂0− µ̂1)

(
Xm−

µ̂C
1 + µ̂C

0
2

)T

|Xm ∈Π0

]

= 2
[
(s+4)−1/2

(
1
n0

+
1
n1

)]− 1
2
(

1
2

(
1
n0

+
1
n1

))
Ip

=

√
n0 +n1

n0n1(s+4)
Ip

Cov [V1,U2] =

=

[
s−1/2

(
1+

1
4n0

+
1

4n1

)]− 1
2

Cov

[
(µ̂C

0 − µ̂
C
1 )

(
X− µ̂0 + µ̂1

2

)T

|X ∈Π0

]

=

[
s−1/2

(
1+

1
4n0

+
1

4n1

)]− 1
2
(

1
2

(
1
n1
− 1

n0

))
Ip

=
n0−n1√

n0n1(4n0n1 +n0 +n1)s
Ip

Cov [V1,V2] =

= 2
[
(4+ s)−1/2

(
1+

1
4n0

+
1

4n1

)]− 1
2

Cov

[(
Xm−

µ̂C
1 + µ̂C

0
2

)(
X− µ̂0 + µ̂1

2

)T
]

= 2
[
(4+ s)−1/2

(
1+

1
4n0

+
1

4n1

)]− 1
2
(
− 1

4n0
+

1
4n1

)
Ip

=
n0−n1√

n0n1(4n0n1 +n0 +n1)(s+4)
Ip
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ΣK1
00,K

3
00
=

(√
n0 +n1

n0n1s
+

√
n0 +n1

n0n1(s+4)
+

+
n0−n1√

n0n1(4n0n1 +n0 +n1)s
+

n0−n1√
n0n1(4n0n1 +n0 +n1)(s+4)

)
Ip

=

(
1√
s
+

1√
s+4

)(√
n0 +n1

n0n1
+

n0−n1√
n0n1(4n0n1 +n0 +n1)

)
Ip

= ζ001Ip

ΣK1
00,K

4
00
=

(√
n0 +n1

n0n1s
−
√

n0 +n1

n0n1(s+4)
+

+
n0−n1√

n0n1(4n0n1 +n0 +n1)s
− n0−n1√

n0n1(4n0n1 +n0 +n1)(s+4)

)
Ip

=

(
1√
s
− 1√

s+4

)(√
n0 +n1

n0n1
+

n0−n1√
n0n1(4n0n1 +n0 +n1)

)
Ip

= ζ002Ip

ΣK2
00,K

3
00
=

(√
n0 +n1

n0n1s
+

√
n0 +n1

n0n1(s+4)
+

− n0−n1√
n0n1(4n0n1 +n0 +n1)s

− n0−n1√
n0n1(4n0n1 +n0 +n1)(s+4)

)
Ip

=

(
1√
s
+

1√
s+4

)(√
n0 +n1

n0n1
− n0−n1√

n0n1(4n0n1 +n0 +n1)

)
Ip

= ζ003Ip
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ΣK2
00,K

4
00
=

(√
n0 +n1

n0n1s
−
√

n0 +n1

n0n1(s+4)
+

− n0−n1√
n0n1(4n0n1 +n0 +n1)s

+
n0−n1√

n0n1(4n0n1 +n0 +n1)(s+4)

)
Ip

=

(
1√
s
− 1√

s+4

)(√
n0 +n1

n0n1
− n0−n1√

n0n1(4n0n1 +n0 +n1)

)
Ip

= ζ004Ip

Similarly for (2), (3), and (4).

(2) = P{(K1
11)

T K1
11− (K2

11)
T K2

11 > 0, (K3
11)

T K3
11− (K4

11)
T K4

11 > 0}= G11(K11(C)),

(3) = P{(K1
01)

T K1
01− (K2

01)
T K2

01 < 0, (K3
01)

T K3
01− (K4

01)
T K4

01 > 0}= G01(K01(C)),

(4) = P{(K1
10)

T K1
10− (K2

10)
T K2

10 > 0, (K3
10)

T K3
10− (K4

10)
T K4

10 < 0}= G10(K10(C)).

K11, K01, and K10 are 4-dimensional Gaussian random variables as specified in Theorem

17.
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