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ABSTRACT 
 

The Ribosomal DNA Genes Influence Genome-Wide Gene Expression in 

Drosophila melanogaster.  

(May 2011) 

Lida Silvana Paredes Martinez, B.S., Universidad de Los Andes 

Chair of Advisory Committee:  Dr. Keith Maggert 
 
 

Chromatin structure is a fundamental determinant of eukaryotic gene 

expression and it is composed of two chromatin environments, euchromatin and 

heterochromatin. Euchromatin provides an accessible platform for transcription 

factors; hence it is permissive for gene expression. Heterochromatin on the 

other hand is highly compacted and inaccessible, which in most cases leads to 

transcriptional repression. A locus that is composed of both of these 

environments is the ribosomal DNA (rDNA). In eukaryotes the rDNA is 

composed of hundreds to thousands of tandemly repeated genes where 

maintaining both silent and active copies is fundamental for the stability of the 

genome. The aim of this research was to investigate the role of the rDNA in 

gene expression in Drosophila melanogaster.  

In D. melanogaster the rDNA loci are present on the X and Y 

chromosomes. This research used the Y-linked rDNA array to investigate the 

role of this locus on gene expression. A genetic and molecular strategy was 

designed to create and quantify specific, graded and isogenic Y- linked rDNA 
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deletions. Then the deletions were used to address the effect of rDNA deletions 

on gene expression using reporter genes sensitive to Position Effect Variegation 

(PEV). In addition, the effect of the deletions in nucleolus size and structure as 

well as the effect of spontaneous rDNA deletions on gene expression were 

tested in this study.  

This research found that changes in rDNA size change the chromatin 

balance, which resulted in increased expression of the reporter genes, 

decreased nucleolus volume, and altered nucleolus structure. These findings 

prompted a further research question on whether this effect on gene expression 

occured globally in the genome. This was addressed by performing microarray 

analysis where the results showed that rDNA deletions affect about half of the 

genes on the genome. Presented in this dissertation is evidence that suggest a 

novel role for the rDNA is a global modulator of gene expression and also is a 

contributor to the gene expression variance observed in natural populations. 
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CHAPTER I 

INTRODUCTION 

 

CHROMATIN 

 The eukaryotic genome is packed in a limited space in the nucleus. In a 

mammalian cell, 1.7 meters of DNA are packed in a 5-micrometer nucleus in a 

way that allows for it to be replicated and transcribed properly (1). The genetic 

material is organized at different structural levels in order to confer the 

compaction that is required to fit all the information into the nucleus. Histone 

proteins bind to the DNA to help to create the different levels of compaction in 

what it is known to be the basic unit of chromatin: the nucleosome. 

Nucleosomes are composed of 146 bp of DNA wrapped around a histone 

octamer, which contains two units of each histone H2A, H2B, H3 and H4. 

Furthermore, the linker histone H1 and 50–60 bp of linker DNA connect the core 

histones to form a chromatosome (2). The main core of the histone is in direct 

contact with the DNA and the histone N-terminal tails are facing outwards, where 

they are exposed to become the target of different posttranscriptional 

modifications such as acetylation, methylation, ubiquitinylation, ADP ribosylation 

and   biotinylation (3).  These  modifications   change  the  physical   interactions 
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between the DNA and the histones and additionally create an appropriate 

platform for the binding of chromatin modifiers and chromatin components to 

establish the chromatin structure. The result of these chromatin modifications is 

the formation of an environment for gene expression that can be either 

repressive or permissive (4).  

 When permissive the chromatin is relaxed, thus transcription factors and 

chromatin remodelers have easy access to the DNA and transcription can take 

place. This environment is known as euchromatin (eu=good). In contrast, a 

transcriptional repressive environment is obtained when the chromatin is tightly 

compacted; hence accessibility to the DNA by transcription factors is more 

difficult in most of the cases (5). This repressive environment is know as 

heterochromatin (hetero=different relative to euchromatin) (3). When the DNA is 

stained with a DNA binding compound such as Hoechst, in an interphase 

nucleus the two chromatin environments are easily observed, heterochromatin is 

visualized as dark stained regions while euchromatin is observed as light and 

more abundant regions. In prophase, heterochromatin stains deeply and 

maintains a compacted organization during all the stages of the mitotic cycle (6). 

In Drosophila, heterochromatic regions are visible at the centromere and nearby 

it (referred to as pericentric heterochromatin), at telomeres, in the fourth 

chromosome, throughout the Y chromosome and spread among chromosome 

arms (referred to as intercalary heterochromatin) (7). 

 Heterochromatin can be constitutive or facultative. Facultative 
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heterochromatin refers to regions that are tightly packed, but that are present in 

a cell-specific manner, which can be clonally inherited. Examples of this are the 

inactive X chromosome in female mammalian somatic cells, imprinted 

autosomal genes and developmentally regulated Hox genes (8, 9). On the other 

hand, constitutive heterochromatin is found at the telomeres and centromeres, 

and it is found in all somatic cell types in an organism. Constitutive 

heterochromatin is a common characteristic of the eukaryote genome, 

composes 5% of the genome in Arabidopsis thaliana and 30% in both humans 

and Drosophila. In Drosophila the Y and the fourth chromosomes are largely 

composed of constitutive heterochromatin. This type of heterochromatin is 

characterized by low gene density, reduced meiotic recombination, late 

replication during S phase, enrichment in highly repeated DNA sequences such 

as transposons and satellite DNA, and very low levels of transcription (10).  

 For many years it was believed that constitutive heterochromatin was only 

genomic waste, but this idea has been modified based on genetic, cytological 

and molecular studies done primarily in the model organism D. melanogaster. 

These studies have shown that constitutive heterochromatin performs important 

cellular functions such as serving as a repressor and activator of transcription 

(11),  ensuring proper achiasmate  disjunction in female meiosis I (12, 13),  and 

carrying essential genes for viability and fertility (8, 14). In addition, about 600 

predicted genes have been identified by the annotation of the heterochromatin 

sequence (15). Therefore perfect assembly of heterochromatin is an essential 
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step for the cells. 

 The presence of coding genes in heterochromatin is not an exclusive 

characteristic of Drosophila, but it seems to be a conserved trait in the evolution 

of eukaryotic genomes. Heterochromatic genes have been also found in 

Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, 

Oryza sativa and in humans (16-20).  

 There is not a clear group of characteristics that can be used to 

discriminate euchromatin from heterochromatin. The two chromatin 

environments share basic characteristics, such as DNA, transcription factor 

binding, transcriptional corepressors, chromatin remodelers, histone variants, 

chromatin-modifying enzymes and DNA modifications. In addition, the histones 

of constitutive heterochromatin can be distinguishable from euchromatin in that 

they are remarkably under acetylated (21). However, there are some unique 

features required for proper establishment of heterochromatin such as: very long 

stretches of repeated DNA sequences that do not have enhancers and 

promoters and that mostly encode aberrant RNAs transcripts. Furthermore, 

there are different marks that are specific for each heterochromatic region. 

These marks can be histone variants and post-translational histone 

modifications.  

 Histone variants also help to mark regions of silencing from regions of 

transcription in different eukaryotes. For example the histone H2A variant, 

H2A.Z marks regions of active transcription, however it was recently found to be 
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localized in pericentric heterochromatin, which means that even though it is 

mostly enriched in euchromatin it is not restricted to it. Similarly, the histone H3 

variant H3.3 is tightly related with active transcription. On the other hand, 

heterochromatic regions are marked with the histone H2 variant macro H2A and 

the histone H3 variants H3.2 and CenH3 (CENP-A in humans, Cse4 in 

Saccharomyces cerevisiae, and CID in Drosophila melanogaster), which is 

present exclusively at the centromeric regions (9, 22). Similarly, there are some 

euchromatic marks that are conserved from yeast to humans, such as 

hyperacetylation of histones H3 and H4 and methylation of histone H3 at the 

lysine 4 residue (H3K4) (4, 23). Acetylation reduces the binding strength of the 

DNA with the lysine residue on the histone tail, and the weakening of this 

interaction makes the DNA more accessible for transcription factors (24). In 

addition to this, lysine acetylation also provides a specific target for several 

transcriptional activators and chromatin remodeler proteins, which bind to the 

targets through their bromodomain (25). Acetylation of different lysines, for 

instance H4K12, has also been implicated with heterochromatin. Therefore, 

acetylation is a mark that can be used to obtain specific effects on gene 

expression but is mostly associated with transcriptional activation (26). Histone 

methylation is another mark that has been associated with both euchromatin and 

heterochromatin. Methylation in histone H3K4, H3K36 and H3K79 are found on 

actively transcribed regions, while methylation in histones H3K9, H3K27 and 

H4K20 are prominent markers of silencing (27).  
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 A prominent mark of heterochromatic regions is Heterochromatin Protein 1 

(HP1), which was identified biochemically using monoclonal antibodies against 

nuclear proteins tightly bound to DNA in Drosophila. This protein was observed 

to be mostly present in pericentric chromatin and other heterochromatic regions 

in polytene chromosomes (28). HP1 has an N-terminal chromo domain (29) 

which binds the histone H3 tail when it is dimethylated on lysine 9,  and a C-

terminal chromo shadow domain which is known to mediate protein-protein 

interactions such as the homodimerization of HP1, and HP1 binding to several 

other proteins to form a higher order chromatin structure (30-32). The binding 

characteristics of HP1 have suggested a model for heterochromatin formation in 

which two HP1 proteins interact through their chromo shadow domains while 

interacting with different nucleosomes that are methylated at the residue lysine 9 

of the histone H3 tail through their chromo domain. This interaction locks the 

nucleosomes and converts the chromatin into a sturdy structure that is much 

less accessible to transcription factors (33). The chromo shadow domain of HP1 

also recruits H3K9 histone methyltransferase (HMT), which helps to propagate 

the methylation mark and consequently more HP1 proteins. Together this will 

spread the heterochromatic state to the neighboring regions. This spreading 

model is thought to be conserved from fission yeast to humans (5). However, 

recent studies have challenged the view of HP1- mediated heterochromatin 

formation as an immobile platform. It has been shown that the binding of HP1 is 

transient and dynamic, and that its localization is observed in heterochromatin 
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and euchromatin meaning that the interactions between this protein and H3K9 

methylation might be weak enough to allow HP1 to be mobilized to other targets 

by competition (34-36). Localization of HP1 in euchromatin has a transcriptional 

activator effect which is not dependent on H3K9 methylation. Although this has 

been observed to occur in several euchromatic genes, the mechanism of 

activation is still unclear but it seems that it might involve interaction of HP1 with 

transcription factors (37). Variations to the HP1-H3K9 methylation model are 

observed in Neurospora crassa and mammals, where DNA-methyltransferases 

are known to interact with HP1 to silence DNA regions (38, 39).  

 DNA methylation is a shared feature of silent regions that is present in 

animals, plants, fungi and Drosophila (40, 41). Cytosine bases that are next to 

guanine (CpG) are converted in 5-methylcytosine by DNA-methyltransferases, 

and this alteration is a mark of gene silencing and genome integrity (40). An 

important addition to the heterochromatin formation model came from studies 

done in fission yeast, which found a connection between RNAi and 

heterochromatin formation. In fission yeast, heterochromatin contains tandem 

arrays of a repeated unit. Using transgenes inserted on these arrays and 

mutations in genes involved in RNAi, it was demonstrated that the mutations of 

RNAi genes resulted in derepression of the array repeats and the transgenes 

present on them (42). The transcriptional activation obtained coincided with the 

loss of H3K9 methylation and the redistribution of SWI6 (HP1 homologue in 

yeast) on the genome. Likely due to the role of heterochromatin in centromere 
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structure, an abnormal chromosomal segregation also result from the disruption 

of RNAi (43). This data suggested that the tandem repeats present in 

heterochromatin generate RNAs that can be processed into double stranded 

RNA and later into siRNAs by the RNAi pathway. The siRNAs, associated with 

the RNAi-induced transcriptional silencing (RITS) complex, guide the targeting of 

H3 methyltransferase to the chromatin and after H3K9 has been methylated, 

HP1 binds to set up the repressive transcriptional environment (42).  

 In Drosophila, a very similar mechanism was shown to occur. The 

heterochromatic chromocenter of polytene chromosomes is rich in H3K9 

methylation (44), and enriched with HP1 (45). Mutations in components of the 

RNAi pathway generate loss of gene silencing coincident with a decrease in the 

level of methylation of H3K9 and a redistribution of HP1 from the chromocenter 

(46). In addition, centromeric and pericentromeric transcripts have been 

detected throughout several stages of mammalian development. Although many 

of the factors involved in heterochromatin formation are conserved from yeast to 

mammals, it is not clear yet if these transcripts are involved in heterochromatin 

formation or maintenance (47).  

   

POSITION EFFECT VARIEGATION 

 In 1930 H. J. Muller discovered a phenomenon known as Position Effect 

Variegation (PEV) that changed the view of chromosome structure (48). He 

created a series of X-ray induced Drosophila mutants that affected the 
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expression of the white+ gene (which confers the red pigmentation to the eyes). 

He observed that in some of the recovered mutants the red pigment of the eye 

did not change to a different shade or to white, but instead they generated a 

mottled phenotype characterized by the presence of red and white patches in 

the eye as a consequence of differential clonal white+ expression (49). The 

common characteristic of these mutants is that they had chromosomal 

rearrangements that displaced the white+ gene, normally found in euchromatin, 

to within or nearby heterochromatin. It was later suggested that the inactivation 

of the white+ gene in some patches was caused by spreading of the 

heterochromatin inducing its silencing (50).  Likewise, genes that are 

endogenously located in heterochromatin become silenced when they are 

translocated within or nearby euchromatin. An example of this is the light gene, 

which is actively transcribed from its location within pericentric heterochromatin 

(51). The finding that chromatin influences gene expression has been 

extensively used to study factors that are involved in chromatin formation and its 

role in regulation of gene expression.  

 PEV can be observed as a cis-inactivation effect in chromosomal 

rearrangements (as first discovered), and in transposon insertions, when a 

transposable element that carries a euchromatic gene is inserted into 

heterochromatin. In addition PEV can be observed as a trans-inactivation effect. 

The cis-inactivation PEV gives recessive phenotypes, hence in the presence of 

a wild type allele the PEV phenotype is lost (52). In contrast, the trans-
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inactivation PEV gives a dominant phenotype and is not very common. 

Rearrangements that affect the brown+ (bw) gene are the most studied example 

of PEV caused by trans-inactivation. These rearrangements give a PEV 

phenotype in the presence of a chromosome that carries a wild type brown+ 

allele, suggesting that the variegating brown gene has a trans-inactivating effect 

over the wild type allele. The most studied brown allele is the brownDominant 

(bwD), which is not a chromosomal rearrangement but instead it has a block of 

centromeric heterochromatin inserted within the brown gene making it non 

functional (53). Flies that are heterozygous for this locus (bw+/bwD) exhibit a 

PEV phenotype that responds to modifiers of PEV (54). Furthermore, it has been 

shown that the effect is pairing dependent, since insertions of the brown+ allele 

at chromosomal locations that do not pair with the bwD allele, are able to restore 

the wild type phenotype (55). The proposed hypothesis is that during 

chromosome pairing the heterochromatin block inserted into the bwD allele is 

able to drag the two alleles into a nucleus compartment where the centromeric 

regions localize, therefore silencing the expression of the brown wild type allele 

(56).   

 

Modifiers of PEV 

 The PEV phenotype can be enhanced or suppress by mutations on genes 

that encode chromatin components or modifiers. Indeed, the study of these 

mutations has increased our knowledge on chromatin structure and its effects on 
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gene expression. When the PEV phenotype is enhanced by a mutation, the 

silencing of the reporter gene increases indicating that the absent gene product 

is involved in creating a chromatin environment accessible to transcription or 

euchromatin. Genes that increase gene silencing on PEV are known as 

enhancers of variegation (E(var)s). In contrast, when the PEV phenotype is 

suppressed by a mutation, the silencing of the reporter gene is decreased 

indicating that the mutated gene is involved in heterochromatin formation. Genes 

that decrease gene silencing on PEV are known as suppressors of variegation 

(Su(var)s) (50, 52, 57).  

 On the other hand, genes that are normally expressed within 

heterochromatin (e.g. light+) have an opposite response to the action of Su(var)s 

and E(var)s. Therefore, mutations that act  as Su(var)s for euchromatic genes 

will act as E(var)s for heterochromatic genes, and the same is truth for E(var)s 

(58, 59). Many of the alelles found to affect PEV are dominant mutations and 

some of them are known to be haplo suppressor/triplo enhancers, such as 

Heterochromatin protein 1(HP1) (Su(var)205) and Histone H3K9 

methyltransferase (Su(var)3-9), which suggests that they have to be exactly at 

the wild type dose in order to maintain balanced chromatin (60, 61). PEV has 

been observed in mouse (62) and fission yeast (63). In addition, many of the 

PEV modifiers discovered in Drosophila are conserved in those organisms, 

plants, and S. cerevisiae (21).   

 There are additional factors that can modify the PEV phenotype such as 
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temperature: high temperatures (29ºC) suppress the phenotype while lower 

temperatures (~16ºC) enhance it (52). Changes in heterochromatic content in 

the nucleus can also alter the PEV phenotype. It has been shown that the 

addition of an extra X or Y chromosome suppresses the PEV phenotype and the 

subtraction enhances it (50, 64).  Likewise, addition of centromeric 

heterochromatin have an effect on PEV in the same way as the Y chromosome 

(52). It has been proposed that the presence of extra sequences with 

heterochromatic potential recruit heterochromatic factors titrating them away 

from other regions on the genome, leading to a more euchromatic environment 

of the endogenous sequences that are adjacent to heterochromatin (65).  

 

The In(1)wm4 Allele 

The chromosomal rearrangement most commonly used to study PEV and 

modifiers of PEV is the In(1)wm4 (wm4 for short = white mottled). This 

rearrangement is an inversion of the X chromosome that juxtaposes the 

normally euchromatic white+ gene to heterochromatin (Figure 1.1). The proximity 

to heterochromatin makes the white+ gene become inactive in some eye cells, 

leading to the variegating phenotype known as mottled (66). The nature of the 

decision of whether cells silence the gene or not is unknown.  
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Figure 1.1 Schematic representation of the chromosomal rearrangement 
In(1)wm4. Top: X chromosome showing the two breakpoints that generated the 
inversion that places the white+ gene nearby heterochromatin. Bottom: Pictures 
of eyes showing the white mottled phenotype In(1)wm4/Y,10B (left), suppression 
of silencing In(1)wm4/YrDNADef (middle) and enhancement of silencing 
In(1)wm4/Y,10B; mod(mdg4)/TM3, Sb Ser (right).  
   

The first genes that were identified to be susceptible to PEV effects were 

genes that have a visible phenotype. Later studies showed that other genes, 

whose expression is not as easily observed, could be affected by PEV as well. It 

was then suggested that all genes had the potential to exhibit PEV as long as 

they are located in an appropriate rearrangement (50). The frequency with which 

a gene is inactivated is negatively correlated to the distance to the chromosomal 

breakpoint. When the strength of PEV is measured, genes that are closer to the 
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chromosomal breakpoint have stronger mutant phenotypes and are more 

frequently inactivated. This observation has suggested that the PEV is the result 

of physical heterochromatin spreading from a chromosomal breakpoint towards 

euchromatin (52). The proposed mechanism by which this spreading is stopped 

is related to the presence of antagonizing chromatin components and modifiers 

in a dose-sensitivity fashion. According to this model, the spreading could be 

mediated until the available heterochromatin factors present are depleted (67). A 

euchromatic mark that is believed to stop heterochromatin spreading is 

phosphorylation of histone H3S10 by JIL-1 kinase. This mark is found in 

euchromatin interbands (regions of low compaction in polytene chromosomes) 

and antagonizes heterochromatin spreading (68).  !

 

RIBOSOMAL DNA GENES (rDNA) 

The rDNA genes are highly conserved among eukayotes. They are found 

as tandem repeats within arrays that can range from less than 100 to more than 

10.000 repeated units in one or more chromosomes (69). Each repeat encodes 

the rRNA precursor, namely, the 35S pre-rRNA in Drosophila and 45S pre-RNA 

in mammals (70, 71). These are transcribed by RNA Polymerase I and then 

posttranscriptionally modified to generate three of the four ribosomal RNAs the 

18S, 5.8S and 28S rRNA. Interestingly, in most organisms the 5S rRNA is 

transcribed by RNA Polymerase III and is clustered elsewhere on the genome. 

However, in a few organisms, including S. cerevisiae, the 5S is found on the 
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same rDNA array with the other RNA genes, but is transcribed from the opposite 

strand by RNA Polymerase III (72).  

The number of chromosomes that harbor an rDNA array is variable 

among different eukaryotes. They are present in five chromosomes in humans, 

six chromosomes in mouse, two chromosomes in Arabidopsis, and only one 

chromosome in budding yeast, fission yeast and N. crassa (73-75). The total 

number of rRNA repeats differs greatly among eukaryotes and is been found to 

be positively correlated with the size of the genome (76).  

 

rDNA in Drosophila 

In Drosophila, the rDNA arrays are localized on the proximal 

heterochromatin of the X chromosome and on the short arm of the Y 

chromosome.  Each array contains about 150-250 copies of the repeats, 

however copy number is known to be quite variable among populations (77, 78). 

It has been shown that about 110 copies are required for viability, which is much 

lower than the total number of copies present; hence the arrays and the copies 

within the arrays are redundant (79, 80).  

 Each rDNA repeat is about 11 kb and contains the rRNA encoding genes 

and some additional sequences such as intergenic spacers and retrotansposon-

like elements R1 and R2 (Figure 1.2) (81, 82). Importantly, within the intergenic 

spacers are 240 bp repeats which serve as the autonomous pairing sites of X-Y 

chromosomes in male meiosis, since no rRNA encoding sequence is necessary 
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for the intergenic spacer to serve as pairing sites (83). The repeats in the array 

are imperfect in that some contain 28S genes that have been interrupted and 

rendered non-functional by insertion of R1 or R2 sequences. The insertion sites 

of these elements are conserved among repeats and only 74 bp apart from each 

other within the 28S gene (84). The level of R1 and R2 insertion can vary from 

only a small percentage to >70% of the total rDNA units among different 

populations of Drosophila (79, 85, 86). R1 inserts are found predominantly on 

the X chromosome, while R2 are found commonly in both X and Y but more 

predominately on the Y (79).  

 

 
!
Figure 1.2 Schematic representation of the rDNA arrays in Drosophila 
melanogaster. Top, the Y chromosome. Black oval represents the centromere. 
Gray rectangles are heterochromatic blocks. Bottom, array repeated units 
enhancing a single 35S gene, which encodes the 18S, 5.8S, 2S and 28S. Arrow 
indicates the gene where the R1 and R2 insertion sequences have landing sites.  
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The rDNA array is also known as the bobbed locus because the 

phenotype produced by deletions on the array produce the bobbed phenotype. 

This phenotype is likely the consequence of the decreased ability to produce 

enough proteins and it is characterized mostly by small bristles, etching of the 

abdominal tergites and delayed development (87, 88) (Figure 1.3). This 

phenotype is known to be negatively correlated to the copy number of the rDNA 

repeats, that is, the less copies of rDNA the more severe the phenotype is. 

Additionally, it has been shown that bristle length increases with the dosage of 

the rDNA copies accordingly, and when alleles of different strengths are 

combined the effect on bristle length is additive (87). The range of rDNA copies 

that produce a bobbed phenotype has been shown to be from ~60-80% of the 

wild type copy number, where as ~50% or less causes lethality (80). 

 

!
Figure 1.3 The bobbed phenotype. Female flies from the genotype C(1)X, rDNA-

/Y. Left, female carring a Y rDNA+ chromosome which confers a wild type 
phenotype. bobbed pictures are from females that carry a Y chromosome with 
different rDNA copy numbers. 
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Many of the lab stocks that have been used to carry out experiments to 

understand the bobbed phenotype have been known to decrease in severity of 

the phenotype or have total reversion to wild type over time. This reversion 

occurs through a process called “magnification”, where the number of rDNA 

copies on the array is increased. This mechanism of magnification has been the 

subject of many studies (79, 89). Currently the most accepted mechanism to 

explain rDNA magnification is the one proposed by K. D. Tartof in 1974, which 

proposes Unequal Sister Chromatid Exchange (USCE) as the means by which 

the rDNA array can reestablish its size. USCE can both increase and decrease 

array size (90). rDNA magnification occurs both somatically, known as “pseudo 

magnification”, and pre-meiotically in the germline in which case is heritable and 

is known as “magnification” (78, 79, 88-90). 

Most of the studies in magnification have been done on X-linked rDNA 

arrays and they have shown that magnification on the X requires the presence of 

a Y chromosome that lacks some or all of the copies of rDNA. In addition, the 

two chromosomes were required to be together for several generations in order 

for the X-linked array to magnify (88-92). However, exceptions to these 

observations are: 1) it has been shown that X-linked rDNA that was originally 

homozygous bobbed lethal (bbl) magnified in one generation at a low frequency 

generating an X chromosome homozygous viable (93), and 2) it has been 

shown that rDNA arrays on Y chromosomes are able to magnify without 

exposure to another chromosome with an rDNA deletion (94). 
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Magnification is not the only spontaneous alteration in the rDNA array 

size. Spontaneous deletions resulting in the formation of extra chromosomal 

circular DNA (eccDNA) is an interesting phenomena that has been observed in 

many eukaryotes from yeast to humans including Drosophila (95). The 

mechanism for eccDNA formation is thought to be the looping out of copies by 

intrachromosomal homologous recombination. Interestingly, the presence of 

eccDNA is not unique to the rDNA array, but also result from other tandemly 

arrayed repeated genes, such as histones, Stellate and Supressor of Stellate 

and occur throughout the life cycle in Drosophila. The plasticity of the genome is 

a characteristic of many eukaryotes and it is observed in tandem repeated 

genes, however the functional advantage of the formation of eccDNA has not 

been elucidated yet (95-98).    

 Growing cells require continuous rRNA synthesis, which can be 

controlled at different levels: 1) the amount of rDNA copies present, 2) the rDNA 

transcription rate per gene by its devoted polymerase RNA Pol I, and 3) the 

epigenetic state of the copies present on the rDNA array (75, 99). This 

epigenetic regulation results in the occurrence of both active and inactive copies 

on the arrays and is a general characteristic the eukaryotic genome. The 

mechanism of silencing has been well characterized in mammalian cells and 

budding yeast (70, 100-103); however, paucity of studies on the silencing 

mechanism in Drosophila has left the knowledge of the mechanism largely 

incomplete in this system. Within the arrays only a subset of units are 
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transcriptionally active (~60% of the total number of rDNA copies among all the 

arrays), and transcription of this fraction of the repeats is enough to provide the 

cell with the essential amount of ribosomes for adequate protein synthesis. 

Transcription of the active rDNA copies makes more than 80% of the total 

cellular RNA in the cell (70, 100, 104). On the other hand, the remaining copies 

on the array (~40% of the array) are inactive copies that have been 

epigenetically silenced (75). An exception to the presence of both active and 

silent rDNA copies on the same array is a phenomenon known as nucleolar 

dominance, which been observed in plants such as Arabidopsis and also in 

Drosophila. In some genetic hybrids, the entire array that has been inherited by 

one of the parents is silenced. In other words, the array of one of the parents 

dominates the nucleolus by being the only array able to maintain active rDNA 

genes. This is a reversible epigenetic phenomena and it is still unclear how the 

parental sets are discriminated (105). 

In mammals, the silencing of the copies occurs by epigenetic 

mechanisms such as DNA methylation and histone modification, which mark the 

chromatin state as open or closed for transcription by RNA Pol I (102). The 

silenced state, which is established by the nucleolar chromatin remodeling 

complex (NoRC), is maintained throughout the cell cycle and is inherited from 

cell to cell (75, 106). A non-coding RNA transcribed from the intergenic spacer 

binds a subunit of the NoRC complex and is required for silencing. The 

proposed hypothesis is that the non-coding RNA guides the complex towards 
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the rDNA copies for subsequent silencing (75). For establishment, NoRC is 

recruited to the rDNA promoter where it interacts with other factors to 

deacetylate histones H3 and H4 and methylate H3K9, H3K20 and H3K27. 

These steps lead to DNA methylation, which impairs the assembly of the 

transcription initiation complex. Another silent rDNA regulator is the mammalian 

homolog of Sir2, SIRT1, which has been also implicated with the silencing of the 

rDNA. SIRT1 is known to belong to the silencing complex known as eNoSC 

(energy-dependent nucleolar silencing complex), where it serves to sense the 

energy levels present in the cell and upon glucose starvation becomes activated 

leading to deacetylation of SL1, an rDNA transcription initiation factor, impairing 

the transcription initiation complex assembly on the rDNA. Additionally, the 

eNoSC complex is activated to save energy, which leads to establishment of 

heterochromatin at the rDNA by histone deacetylation, H3K9 methylation and 

transcriptional repression. These findings have linked the cellular energy 

balance with the epigenetic state of the rDNA locus (107). 

The role of Sir2 in rDNA silencing has been more extensively studied in 

the budding yeast S. cerevisiae. Here the Sir2 histone deacetylase (HDAC) 

protein is the main silencing component not only of the rDNA genes but the 

telomeres and the silent mating type loci (108). Sir2 belongs to the family of 

HDAC known as Sirtuins, which are widely conserved from archaea to humans 

and have vital functions among them (109). Due to its link with aging, Sir2 has 
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been in the scope of many studies, which have shown that Sir2-mediated 

silencing extends the life span of budding yeast (110).  

 

THE NUCLEOLUS 

Transcription of the rDNA copies by RNA Polymerase I forms the 

nucleolus, hence the rDNA is also known as the Nucleolus Organizer Region 

(NOR). The nucleolus is a dynamic membrane free structure that is formed 

inside the nucleus at the beginning of G1 and it is disassembled when 

transcription is turned off as cells enter mitosis (72). The main function of this 

structure is ribosome biogenesis, but it has been shown to perform additional 

important tasks such as, cell cycle regulation, control of aging, modification of 

small nuclear RNP’s, nuclear export pathways and telomerase function (111). 

For instance, in cell cycle regulation the nucleolus accumulates and dissociates 

different proteins at specific times during cell cycle. Some of these proteins are 

BLM, WRN (112), PTHrP (113), and CDC14A (114) and have functions such as 

phosphorylation and sumoylation, which are known to be important regulators of 

a wide variety of cellular processes. Another example is telomerase, which is 

sequestered in the nucleolus until it is released at the late stages of the S phase, 

when the telomeres need to be replicated (115).  

An additional important process attributed to the nucleolus is as a sensor 

and responder to cellular stress. An example of this is the role in the stabilization 

of the tumor suppressor protein p53. The p53 protein is commonly very 
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unstable, but it is stabilized when the cell experiences stress conditions, which 

leads to a series of events that end with cell cycle arrest or apoptosis. The 

protein HDM2 constantly destabilizes p53. Under stress conditions, a nucleolar 

protein named p14ARF leaves the nucleolus to capture HDM2 and physically 

sequester it into the nucleolus, promoting p53 stabilization (116).  

 Moreover, aging, cancer and human disease are also tightly linked to 

alterations of the nucleolus. Changes in nucleolus size and structure have been 

recognized for a long time as markers of proliferating cancerous cells as is the 

increased presence of active NORs (AgNORs), which is used for cancer 

prognosis (117). In addition, deregulation of ribosome biosynthesis has been 

correlated with disease raising the suggestion that over expression of rRNA is 

one of the steps towards tumorogenesis (118).  

 Interestingly, the nucleolus structure and function are sensitive to 

changes in dosage of chromatin modifiers and heterochromatic components. In 

Drosophila it was recently shown that nucleolar stability is affected in cells that 

lack of histone H3K9 methyltransferase and HP1 as well as several components 

of the RNA interference pathway, such as Ago2, Aubergine, dicer-2, Piwi, etc. It 

was proposed that the loss of chromatin compaction at the rDNA as a 

consequence of these mutations stimulates intra chromosomal recombination of 

the repeats on the array. The rDNA eccDNA nucleates extra chromosomal 

nucleoli which are observed as the formation of macro and micro extra 

chromosomal nucleoli (macro and micro nucleoli) (119). This hypothesis agrees 
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with previous reports in Drosophila that shown that a single rDNA repeat 

inserted at an ectopic location was able to nucleate a nucleolus (120).  

 The emerging findings about the nucleolus and the identification of its 

proteome in humans, plants and budding yeast (115) is tracing the path towards 

a better understanding of the many different roles that the nucleolus has in the 

cell. Studying the Nucleolus Organizer Region is a step towards deciphering this 

magnificent and important nuclear compartment.  

 

RESEARCH AIMS 

Drosophila has rDNA arrays located exclusively in both the X and Y 

chromosomes. Spontaneous rDNA deletions within these arrays occur from 

yeast to humans, but the functional relevance of these polymorphisms in rDNA 

array size is still unclear. Polymorphisms linked to the Drosophila Y 

chromosome affect global gene expression, but the specific regions within the Y 

chromosome responsible for these effects are unknown. Importantly, aging and 

cancer cells show both altered rDNA array sizes and exhibit global changes in 

gene expression patterns. The long-term goal of my study was to investigate the 

role of the rDNA genes and the nucleolus on gene expression. The specific 

objectives of the research I present here were to: 1) Design a strategy to obtain 

isogenic fly lines with specific and graded rDNA deletions. 2) Test the effects of 

those rDNA deletions on variegated gene expression and 3) Analyze the extent 

of the effect of the rDNA deletions on global gene expression. 
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CHAPTER II 

CREATING Y-LINKED rDNA DELETIONS BY I-CREI 

ENDONUCLEASE EXPRESSION* 

!

INTRODUCTION 

Over the past six decades, hundreds of studies have investigated the 

roles of the rDNA. Mainly biochemical approaches have been used to study this 

locus from yeast to humans (121). Studies focused on investigating 

characteristics related to the multiplicity of the rDNA in Drosophila have required 

the use of fly lines that have variations in the size of the rDNA arrays.  

Nevertheless, due to its repetitive nature, it has been difficult to create specific 

deletions since it is hard to screen for them unless they are extreme enough to 

produce a phenotype. Therefore, despite the advances in the molecular biology 

techniques available to create targeted gene deletions, there are no studies that 

have generated specific, graded, and targeted rDNA gene deletions until 

present. With the exception of spontaneous rDNA deletions (87), invasive 

mutagenic methods like ethyl-methane-sulfonate (EMS) and X-rays were the 

only available techniques to induce damage to the DNA for many years (122-

124). Another common method utilized chromosomal inversions and these 

methods  were  effective  in  altering  rDNA  copy  number,  they  were  also time 

*Reprinted with permission from “Expression of I-CreI Endonuclease Generates 
Deletions Within the rDNA of Drosophila” by Paredes S. and Maggert KA., 2009. 
Genetics, 181, 1661-1671, Copyright 2009 by the Genetics Society of America.   
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 consuming since they required large screenings and were also unspecific 

because they mobilized chromosomal blocks to non endogenous sites. Since 

the methods often generated genetic changes in addition to varying rDNA copy 

number, correlating phenotype to genotype was complicated (78, 125, 126).  

The first approach to create specific rDNA deletions came in 1981 when 

L.G. Robbins showed that the Rex mutation, which is a maternal inducer of 

mitotic exchange between rDNA cistrons, could create deletions to the rDNA 

under very specific conditions. This technique was limited in that the Rex 

mutation had to be maternally transmitted and the mitotic exchange occurs only 

in compound XY chromosomes (127). This method generates free Y 

chromosomes that harbor rDNA deletions. However, it is unknown whether the 

rDNA cistrons remaining are from the X, Y or both chromosomes.  

In 2005, Maggert and Golic showed that the I-CreI endonuclease 

specifically recognizes a sequence of the 28S gene from Drosophila 

melanogaster. I-CreI is a homing endonuclease from Chlamydomonas 

reinhardtii that recognizes a highly conserved 24-bp sequence within its 23S 

gene of the rDNA (128). By inducing the expression of an I-CreI transgene in 

Drosophila, the only interchromosomal exchanges recovered involved the X and 

Y chromosomes indicating specificity to the rDNA locus (129).  

I wanted to study the role of the rDNA loci in gene expression. To do this,  

I generated deletions within the rDNA loci then tested the effects of the deletions 

on gene expression. Hence, I needed a method that allowed me to obtain 
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specific, graded and isogenic rDNA array deletions. The use of I-CreI was key to 

developing this strategy because: 1) It is specific to the rDNA, which eliminates 

the background caused by the modification of other sequences on the genome, 

2) Since it recognizes the 28S genes that are present in all the repeats of the 

array, this allows the creation of graded deletions when I-CreI is expressed in a 

conservative fashion. Therefore, I can estimate ranges of rDNA that are required 

to cause certain phenotypes, and 3) It allows genetic manipulation to obtain 

isogenic fly lines with rDNA deletions for a proper comparison within the lines. 

Thus, using I-CreI I developed a genetic strategy to generate and study targeted 

rDNA deletions. 

I also needed a technique that allowed the reliable estimation of the 

number of rDNA copies removed. For that purpose, I developed a strategy 

based on Quantitative Real-Time PCR to molecularly quantify the number of 

rDNA copies on the array. 

 

RESULTS AND DISCUSSION!

Genetic Approach to Create the Y-linked rDNA Deletions 

The Y-linked rDNA array is almost unexplored because most of the 

studies about rDNA have been done on X-linked arrays. However, it is known 

that the X and Y chromosomal arrays differ in many ways. For instance, the 

presence of R1 and R2 insertion sequences is not uniform for both arrays (130, 

131).  In addition, at least one base difference has been found between X-linked 
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and Y-linked 18S RNA transcripts and the 5’ end of the nontranscribed spacer. 

Furthermore, the size and frequency of the intergenic spacers varies between 

the two arrays, and those in the X-linked arrays are more sequence 

homogeneous than those in the Y-linked arrays (79). Therefore, the rDNA 

information that has been obtained with the X-linked arrays might not properly 

be extrapolated to the Y-linked array.  

On the other hand, the Y chromosome is very easy to manipulate and 

monitor through crosses because even though it does not determine the sex, the 

sex on the fly reports its presence or absence. For all those reasons I used the 

Y-linked rDNA array to create the rDNA deletions. 

In my initial experiments, I used the Y chromosome Y,10A (Figure 2.1) 

(129). This chromosome has a P element transposon containing a white+ gene 

flanked by recombination targets (FRTs) (132) inserted at the tip of the short 

arm,  and a translocation of the tip of the X chromosome containing the yellow+ 

at the end of the long arm. The latter can be used to monitor the Y chromosome 

in genetic crosses. The related Y,10B, is identical in sequence save for FLP-

mediated loss of the white+ gene. Loss of the white+ in 10B allowed me to use 

the white+ gene as a reporter for effects on gene expression. For simplicity, Y10 

will be used throughout the text to refer to Y,10A and Y,10B unless a distinction 

needs to be made. 
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Figure 2.1 Schematic representation of the Y,10A chromosome. Grey 
rectangles denote heterochromatic blocks. Thin line at the left end represents 
the piece of the X chromosome that was translocated with the marker gene 
yellow (y+). Blue oval represents the centromere. Red box represents the white+ 
marker gene.  

 

To combine the marked Y chromosome with the I-CreI transgene, I 

crossed homozygous XX females that have the I-CreI transgene on the X 

chromosome to males that had the marked Y chromosome (10A or 10B) (Figure 

2.2, Generation 0). Progeny from this cross were heat shocked as larvae to 

induce the expression of I-CreI and deletion of the rDNA. In order to recover 

individual Y chromosomes (YrDNADef, where Def = deficiency) from chimeric 

males and to remove I-CreI, adult male progeny (I-CreI / Y10) were selected and 

crossed en masse to female virgins homozygous for the mutations y w on the X 

chromosome (y w / y w) (Figure 2.2, Generation 1). These males were viable 

regardless of the size of the Y-linked rDNA deletion because they were 

complemented by the wild type rDNA array present on the X-chromosome.  

In order to keep individual Y-linked rDNA deletions, these males were 

individually crossed to two different females:  y w / y w females and 

C(1)DXrDNA- / YrDNA females. Crosses to the y w females established an 
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isogenic stock for each individual Y chromosome and by crossing to unmated 

females each generation, spontaneous mutations in the background were 

minimized (Figure 2.2, Generation 2).  

Crosses to C(1)DXrDNA- / YrDNA females generated females where the 

only source of rDNA was present on the Y chromosome that was exposed to I-

CreI. Females of genotype C(1)DXrDNA- / YrDNA harbor a compound X 

chromosome C(1)DX  (i.e. two attached X chromosomes) that lack rDNA and a 

Y chromosome with a wild type rDNA array (YrDNA). Analysis of the progeny of 

this cross (Figure 2.2, Generation 3) both phenotypically and molecularly 

allowed characterization of the effect of rDNA copy number on Drosophila 

biology.  

Phenotypically the Y-linked rDNA deletions were characterized by their 

influence on male:female ratios in Generation 3, and the lethality or relative 

severity of the bobbed phenotype (Table 2.1). The frequency of chromosome 

translocations T(X;Y) was also monitored for comparison to previous frequency 

using these methods (a frequency of 17.9% has been previously reported (129)) 

(Table 2.1).  

 If the strategy produces a gradient of deletions, then I expect a gradient 

of phenotypes among the females. At one of the extremes of the gradient would 

be wild type females, where relatively little or no Y-linked rDNA deletion 

occurred, and at the other extreme dead females, where the remaining Y-linked 

rDNA is insufficient for survival. Somewhere in the phenotypic middle is the  
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Figure 2.2 Crosses to generate rDNA deletions. Generation 0. Females 
harboring a heat shock inducible I-CreI transgene were crossed to males that 
harbor the Y marked chromosome (red). Generation 1. Heat shock was done as 
larvae and adult males were crossed en masse to females y w, which have wild 
type rDNA arrays in both X chromosomes, to recover the Y chromosome that 
now likely contains an rDNA deficiency (rDNADef). Generation 2. Males harboring 
the Y rDNADef were crossed to y w females (left) to produced a stable stock, and 
to C(1)DX/Y females (right) to qualitatively and quantitatively analyze the size of 
the deletion. 

 

 

 

 

 

 

31



!

bobbed phenotype characterized by small bristles and late development 

(Described on Chapter I). The severity of this phenotype is negatively correlated 

to the rDNA cistron copy number. Since loss of the rDNA affects viability of the 

females in Generation 3, I could also expect that the males containing large 

deletions would give rise to fewer viable females thereby skewing the 

male:female sex ratio of Generation 3.  

I did two screens for Y-linked rDNA deletions. The first one used the 

Y,10A chromosome and the second one Y,10B. A total of 1160 individual 

chromosomes were tested for male:female ratio (Table 2.1). Phenotypically 

bobbed and lethal were the only lines that were pursued in further studies 

because I could visually detect that they had undergone an rDNA deletion, which 

facilitated the screening and also increased the likelihood of observing other 

phenotypic rDNA related changes, for instance in gene expression. 

 

Table 2.1. Summary of independent Y chromosomal lines that harbor an rDNA 
deletion. 
 
Screen Y10 

chromosome 

Chromosomes 

screened 

 Altered 

sex ratio 

T(X;Y) Bobbed 

Phenotype 

Lethal 

phenotype 

1 10A 560 32 12 0 7 

2 10B 600 60 6 9 16 

Total  1160 92 18 9 23 

 
Total number of screened chromosomes are shown for 10A and 10B. Number of 
lines that shown altered sex ratio, T(X:Y) translocations, and a bobbed or lethal 
phenotypes are shown. 
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Chromosome Cytology 

During mitosis active Nucleolus Organizer Regions (NORs) stay relatively 

undercondensed and this chromatin structure appears as a secondary 

constriction in methaphase chromosomes. The undercondensation causes the 

NORs to appear as gaps on the chromosomes (Figure 2.3, Top) (105). To 

investigate whether the phenotypes of my lines corresponded with cytological 

changes in the NORs and no other alterations in chromosome structure, I 

analyzed mitotic chromosome spreads. In order to visualize the effect of the 

rDNA deletions on the secondary constrictions, I prepared interphase and mitotic 

chromosomes derived from third instar larval neuroblasts of flies harboring Y-

linked rDNA deletions lethal and bobbed, and the wild type progenitor Y (Figure 

2.3, Bottom). The arrows are pointing to the rDNA region of the Y chromosomes, 

while arrow heads point to X chromosomes. Lines bb-465 and bb-76 are lines 

that genetically showed a bobbed phenotype and cytologically the show a mild 

deletion that is enough to create a reduction on the size of the constriction. Lines 

l-480, l-498, l-481, l-510 and l-473 genetically showed a lethal phenotype, and a 

cytological reduction in the size of the constriction even smaller than for the 

bobbed lines. There was no evidence of damage in the other chromosomes on 

the spread.  
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Figure 2.3 Chromosome spreads of bobbed and lethal lines. Top: Schematic 
representation of X and Y chromosomes showing the localization of the rDNA in 
comparison to a metaphase X and Y chromosomes stained with DAPI. Bottom: 
Prometaphase chromosomes stained with DAPI. Arrows are pointing to 
constriction created by the Y-linked rDNA array. Arrowheads point towards the 
constriction created by X-linked rDNA arrays.  
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The constriction size was a visual but not quantifiable indication of how 

much rDNA was removed, and the size of the constriction matched the 

estimated size of the array determined by genetic crosses. However, it is 

imprecise and unreliable to estimate the deletion size by measuring the 

constriction because it is unknown if the size of a transcriptionally active copy is 

cytologically the same size as an inactive copy. Therefore, two arrays might 

have the same number of copies but could appear of different sizes cytologically 

depending on the relative proportion of active versus inactive copies.  

 

Quantitative Real-time PCR to Measure rDNA Array Size 

Previous studies used rDNA quantification techniques that were 

cumbersome and not as precise as modern molecular techniques (i.e. slot blot, 

Southern blot) (80). Those techniques required the use of high amounts of DNA, 

for which dozens of flies were needed. Since it is known that the rDNA array is 

very volatile (95, 96, 98), I needed a method that allowed me to quantify rDNA 

from individual flies and also reliably detect small changes in rDNA copy 

number. In order to quantify the rDNA deletions, I developed an assay to 

measure the rDNA copy number using Real-Time PCR.  

I needed to select two genes for PCR amplification, the target and the 

normalizer. The target gene is the gene that I want to quantify, and the 

normalizer is a gene that is constant and will serve as internal control. As the 

target gene I choose the 18S because it is a gene that remains intact in all the 
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copies of the array, and it is long enough to allow testing of primers on different 

regions for standardization purposes. As the normalizer I choose the tRNALys 

gene because it is multicopy (30 copies per genome) but scattered through the 

genome, which makes it likely more stable than tandemly repeated genes, which 

can be variable in number due to natural variance or interchromatid 

recombination (133). I used the comparative CT method to obtain a relative 

quantification of the copy number of rDNA cistrons. The comparative CT method 

is based on the difference of the CT values (CT=cycle threshold) from the target 

gene and normalizer, which are determined by the point during the exponential 

phase of the PCR reaction where the fluorescent intensity of the reaction is 

above background, and the cycle number of the PCR in which this happens 

(134). When using this approach the method needs to be validated to ensure the 

reliability of the result. The way to validate this method is to ensure that the 

amplification efficiency of the target gene is approximately equal to the 

amplification efficiency of the normalizer gene (134). To address this issue it was 

necessary to observe how the difference between the two amplified genes (!CT) 

varies with template dilution. I validated this method using six different 

concentrations of gDNA (Table 2.2).  

!

!

!

!
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Table 2.2 Average CT value for 18S and tRNA at different gDNA input amounts. 
!

Input Amount 
ng gDNA 

18S 
 Average CT 

tRNA 
 Average CT 

!CT  
18S-tRNA 

15 19.18±0.11 22.59±0.06 -3.41±0.12 
10 19.79±0.07 23.13±0.15 -3.34±0.17 
7 20.62±0.11 23.92±0.11 -3.30±0.16 
5 21.25±0.40 24.30±0.07 -3.05±0.12 
2.5 22.15±0.20 25.31±0.09 -3.15±0.12 
1 23.91±0.06 27.43±0.20 -3.52±0.12 

 
Plus/Minus are SD of three replicates. DNA used was extracted from 
C(1)DX/Y10B females.  CT refers to the number of amplification cycles on the 
PCR at which a threshold has been set.   
!

The change in amplification cycles between the target and normalizer 

gene (!CT) for different DNA concentrations was within a tight range (S.D. = 

0.17). The data were plotted as a linear regression of the log of the input amount 

of gDNA versus the !CT, and found the slope was 0.0503, well within the 

acceptable absolute value of the slope of the linear regression of <0.1 (134) 

(Figure 2.4). Additionally, the assay could reliably detect rDNA copy number at 

very low concentrations of DNA (1,5 pg = ~5 genome equivalents).  
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Figure 2.4 Plot of the log input amount of DNA versus !CT. Data was taken from 
Table 2.2. The slope is 0.050 indicating that the assay is valid.  
!
!
 

In order to estimate the rDNA copy number present in an array, I used the 

!CT value and performed the following equation: 

# rDNA copies = (2-(!CT
)) X 30,  

where the number 30 is a constant value given by the number of tRNALys copies 

present on the genome and !CT is elevated to 2 because each cycle represents 

two-fold template change. 

 

Allelic Series of rDNA Deletions 

rDNA arrays can be variable, hence the presence of a wild type array in 

the same genetic background with a YrDNADef could introduce variability when 

measuring the rDNA copy number. Therefore, it is ideal to quantify the rDNA 
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)!$!%&%*%+,!-!+&+++'!

-*!

-.!

-+!

-/!

-'!

%!
%! %&/! %&.! %&(! %&0! '! '&/! '&.!

38



!

copy number in flies where the YrDNADef is the sole source of rDNA. For this 

purpose, I used females of the genotype C(1)DX,rDNA-/YrDNADef  (Figure 2.2, 

Generation 3) to estimate the rDNA copy number remaining in the YrDNADef 

after the deletion. This analysis was done only for chromosomal lines that 

showed a bobbed or lethal phenotype. From these progeny two classes of 

females could have arisen. First, triplo-X metafemales can be obtained by the 

inheritance of the patroclinous X chromosome marked with y w. However, these 

progeny were expected to be rare because these females are known to die in 

late stages of development. Rare escapers have a characteristic yellow 

phenotype that made them easy to exclude from my studies (135). Alternatively, 

females can inherit the Y chromosome YrDNADef.  In order to survive, these 

females rely on the amount of rDNA that is still present in the YrDNADef 

chromosome plus the rRNA and ribosomes that have been maternally loaded 

into the egg. Early studies investigating the X-linked rDNA array shown that a 

mild deletion (leaving ~90-110 rDNA copies as the sole source of rDNA) yielded 

bobbed females and stronger deletions (leaving less than 90 rDNA copies) 

yielded lethal females (79).  

I generated a series of twenty-five deletions, of which nine expressed a 

bobbed phenotype and sixteen were lethal (Figure 2.5). I could analyze the 

lethal females because they survive until the pupal stage due to the rRNA that is 

maternally loaded into the egg. Adult females were used for rDNA quantification 

from those with bobbed phenotype. The developmental stage at which the rDNA 
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was quantified did not affect the outcome of the quantification, since I performed 

quantification tests in larvae, pharates (lethal females that survive until pupae) 

and adults, and the results were consistent for all of them (data not shown). 

I established ranges of rDNA copy number for each chromosomal line 

based on the quantified rDNA from three to seven individual siblings female flies 

of genotype C(1)DX, rDNA-/Y10BrDNADef. For each fly I did three replicated 

measurements for both the target gene 18S and the normalizer gene tRNALys. 

This allowed me to have a reliable amplification cycle value (CT), which was 

obtained as an average of the three replicates. In some cases I obtained a 

replicate value that was out of a set deviation range from the other two replicate 

values, therefore this point of data was discarded from my analysis. The criteria 

of exclusion was CT values that were deviated >0.5 cycle difference from the 

other two CT values. The frequency of this was approximate 0.5% of the total 

number of reactions.  

Since the YrDNADef chromosomes were derived from the Y,10B 

chromosome, the latter was used as reference to estimate percentage of rDNA 

copy number on the deletions relative to wild type. Previous reports about copy 

number have been done with other techniques and using different chromosomes 

which vary in copy number, thus in addition to copy number I also present the 

quantification results as a percentage of the wild type Y10 chromosome. 

As expected, I observed a correlation between the degree of the deletion 

and the severity of the phenotype. Fly lines that had the large deletions were 
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lethal while flies with mild deletions were bobbed, and the expressivity of the 

bobbed phenotype correlated with the size of the array. These series of 

deletions defined the amount of relative rDNA at two phenotypic transitions.  

The first transition is from wild-type to bobbed: phenotypically bobbed 

flies starting to appear when the rDNA was reduced to ~90% of the wild type 

copy number, which is ~260 copies as the sole source of rDNA in the fly. This 

value is higher than in previous observations, which reported this transition at 

~150-200 rDNA copies (80, 88). The difference between previous observations 

and my observations might be due to the use of X chromosomes in previous 

reports, and the quantification techniques that were different and not as precise 

as our technique (i.e. Southern blot). The second phenotypic transition defined 

was from bobbed to lethal: lethality started to be appear when the rDNA was 

reduced to ~65% of the wild type copy number, which is ~190 rDNA copies. 

Again, our values for this transition were also higher than the previously reported 

for X-linked arrays, where ~97 copies are enough for viability (80) (Figure 2.5).  

Since the rDNA arrays have epigenetically silent copies and differences in 

insertion sequences R1/R2, these might also explain why our observations differ 

from previous reports. These features influence the activity of the copies; hence 

it is likely that other differences in the copy number for each phenotypic 

transition are observed when using a different chromosome than 10A. 

Although most chromosome deletions showed similar correlation, Y10B 

rDNAl-539 did not. This chromosome is phenotypically lethal but has rDNA levels 
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in a range similar and above the wild type level (Figure 2.5). I hypothesize that 

many of the functional copies may have been damaged by other nucleases prior 

to being re-ligated into the array. The requirement for rDNA copies might have 

induced magnification, which in this case might have occurred using the now 

non-functional copies and/or R2 interrupted copies, making an almost intact 

array in terms of size yet containing mostly non functional copies. An additional 

hypothesis is that most of the copies that were left on the array after I-CreI 

exposure were epigenetically silenced, and after magnification this state was 

maintained yielding a large and inactive array.  

 

rDNA Magnification is Observed in the YrDNADef Lines 

rDNA magnification has been observed to happen even in wild type rDNA 

arrays (136). However, most of the previous studies have shown that Y-linked 

rDNA deletions are very stable or need of special conditions to magnify, and X-

linked deletions need to be in the presence of a Y bobbed chromosome to be 

magnified (88-92, 127, 137). In my preliminary screens using the Y10A 

chromosome, I surprisingly noticed that after seven generations of establishing 

stable stocks and without selective pressure, I observed the reversion of the 

lethal phenotype to bobbed. To elucidate the mechanism of this phenotypic 

reversion I first genetically confirmed that this reversion mapped to the Y 

chromosome and not to a suppressor accumulated on the X chromosome or on 

an autosome. For this purpose, I crossed males harboring the YrDNADef 
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chromosome to females that had marker genes on the autosomes. The progeny 

of this cross was back crossed to the same females to obtain males with  

genetic markers in the autosomes and  X chromosome but mantaining the 

YrDNADef chromosome. In other words, the autosomes and X chromosome were 

removed from the background. Then I crossed these males to the C(1)DXrDNA-

/Y females again and from this cross I obtained viable female progeny that were 

phenotypically bobbed, which means that neither the X or the autosomes had a 

suppressor for the lethality, hence the Y chromosome was responsible for the 

bobbed phenotype. In addition, rDNA quantification showed an increase in the 

array size suggesting that rDNA magnification was the cause of the reversion of 

the phenotype. In order to follow the kinetics of magnification of the YrDNADef 

chromosomes I decided to monitor the rDNA array size every generation in the 

second screen I did using the Y,10B.  
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I selected six Y rDNADef chromosomes to follow magnification for at least 

four generations. Four chromosomes were lethal and two were bobbed. Every 

generation I analyzed the rDNA amount of 4-10 individual pupae or adult 

females. As expected, I observed a progressive increase of rDNA copy number 

every generation. The kinetics of magnification is variable within the lines, but all 

lines showed an overall increase in size through the generations. With the 

exception of the flies that exhibited large increases or decreases (i.e. when there 

is a change in the phenotype), on average the four generations showed an 

increase of ~5% of the wild type the array size, which is equivalent to an 

increase of ~15 cistron copies each generation, similar to previous observations 

on the X chromosome (88). I found that in line l-498 magnification initially 

increased after the first generation ~11.6% of the wild type array size (from 46% 

to 57% of wild type), which is equivalent to ~33 rDNA copies  (Figure 2.6), and 

the following generations the array stayed almost steady with a slight increased 

of ~0.5% (~2 rDNA copies). 
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Figure 2.6 rDNA magnification occurs in the Y chromosome. Six chromosomes 
were monitored throughout 4 generations. Y axis show percentage of rDNA 
relative to wild type. X axis denote generations 1 to 4. Blue points are individuals 
with the same phenotype as denoted by the name of the line (lethal or bobbed), 
and red points are individuals that change to the next phenotype: from lethal to 
bobbed, or from bobbed to wild type. The lines connecting the generations are 
marking the average in rDNA amount within the individuals at each generation. 

l-481! l-498!

bb–76! bb-465!

l-510! l-473!
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In contrast to this chromosome, the averages of the other three lethal 

lines analyzed, l-481, l-510 and l-473, showed more noticeable magnification 

each generation, although the total amount of magnification in these lines varied 

it has consistent small increases each generation. The almost steady state 

levels that I observed with line l-498 could be due to small sample size, which 

was common for all the analyzed lines. The magnification in line l-498 is 

happening indeed but by taking small groups of individuals in which the larger 

events are underrepresented I might be diluting the real magnified state at each 

generation.  

An interesting case of magnification is observed in line l-473 from the first 

to the second generation. I observed two individuals that had an increased of 

~80% the size of the original chromosome, giving rise to a chromosomes that 

contained in average ~116% of the wild type array (~335 rDNA copies) (Figure 

2.6). The total increased was 3.2 times greater than the array size found in the Y 

chromosome from the first generation. Since a single USCE event can only 

theoretically double the array size, either more than one event of USCE 

occurred and/or there is an alternative mechanism that also contributes to the 

magnification of the array. Furthermore, even though the two individuals 

harbored arrays larger than wild type, they were phenotypically bobbed. This 

could hypothetically be due to a larger fraction of interrupted or damaged copies 

within the template used for magnification.  
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The bobbed line bb-465 had an initial increase of ~13% of the wild type 

array (~37 rDNA copies) from the first to the second generation, and then it 

decreased about the same percentage from the second to the third generation. 

This reduction could be explained by having this progeny derived from a single 

father in whom magnification did not occurred in first to second generation 

(Figure 2.2, Generation 3, left). The transition from third to fourth generation 

gives two kinds of progeny: Some that retain the same array size and some that 

underwent magnification at the level of wild type or higher and consequently 

changed the phenotype from bobbed to wild type (Figure 2.6). 

Line bb-76 shows a clear trend of magnification from first to the fourth 

generation, maintaining the bobbed phenotype for the first three generations and 

switching to wild type on the last generation where the average array size 

reaches wild type levels (~101% of wild type = ~291 rDNA copies). For all the 

six analyzed chromosomes, the levels of rDNA copy number agree with the two 

phenotype transition ranges previously described, ~190 Y-linked rDNA copies is 

the transition from viable to lethal and ~260 Y-linked rDNA copies is from wild 

type to bobbed (Figure 2.5). 

My data shows that the Y-linked rDNA arrays are able of magnify even in 

the absence of a special inducing chromosome as previously observed (91). 

Since previous studies have shown that Y-linked rDNA deletions are very stable 

(138), it is reasonable to think that a magnifying  element was present in the Y10 
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chromosome, or that the induction of I-CreI has itself induced the magnification 

potential of this chromosome.  

 

Magnification can be Induced by the Expression of I-CreI  

The process of Unequal Sister Chromatide Exchange involves unequal 

pairing of sister chromatides, followed by chromatid breakage and rejoining (90). 

It has been observed that mutations in genes involved in DNA double-strand 

break repair inhibit magnification (i.e. mus-101 and mei-41). In addition mutants 

in mus-108 have been observed to be defective in magnification and reduction, 

suggesting that these two processes might have a general component (79). I 

wanted to test whether double strand breaks induced by I-CreI, could induce 

magnification in the rDNA array. To assay this I took advantage of the skewed 

male:female ratios among progeny of a male containing a lethal YrDNADef 

crossed to C(1)DX, rDNA-/Y females. I used three of the lethal lines as a starting 

point of rDNA copy number (l-473, l-480 and l-481), and crossed the male flies 

to females that contained the I-CreI transgene in both X chromosomes. Then, I 

induced the expression of the endonuclease on these lethal YrDNAdef (YrDNAl) 

chromosomes by heat shock (Figure 2.7, Generation 0). The male progeny from 

this cross were outcrossed en masse to females C(1)DXrDNA-/YrDNA (Figure 

2.7, Generation 1). As control I performed the same crosses using lines that did 

not contain the I-CreI transgene on the X chromosome. It is expected that if I-

CreI induces magnification of the array on the YrDNAl then the proportion of 
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viable females will increase among the progeny only when the YrDNAl was 

exposed to the I-CreI endonuclease (Figure 2.7, Generation 2). On the other 

hand only male progeny were expected if there was not magnification of the 

array. The results are summarized in Table 2.3.  

I recovered viable females C(1)DX, rDNA-/ YrDNAl-rev for each of the three 

lethal lines that we analyzed. Some females exhibited a very strong bobbed 

phenotype, meaning that although there was increase in array size, it was just 

enough to provide RNA for survival. Additionally, females with a wild type 

phenotype (bb+) were recovered. I molecularly confirmed the increase in rDNA 

copy number by qPCR on the revertant females for the three chromosomal lines 

and in the original Y chromosomes before the I-CreI treatment (Figure 2.7). For 

two of the lines, l-473 and l-480, the amount of rDNA on each chromosome after 

the induction of I-CreI correlates with the expressivity of the phenotype for each 

female fly (Figure 2.7). An exceptional case was revertants from l-481, which did 

not contain increases in rDNA size. A hypothesis for this is that the few copies 

present on the array could be epigenetically silenced and induction of I-CreI 

could have stimulated the activation of some or all of them, yielding viable 

females with no increase in array size.  

I also recovered two females phenotypically wild type (bb+) from the 

control crosses, l-480 and l-481. These females could have been derived from 

non-disjunction events, such that they contained the Y rDNA+ chromosome from 

the mothers along with the Y rDNAl chromosome from the fathers. Molecular 
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quantification of the rDNA array in these females confirmed this hypothesis since 

the amount of rDNA present on the Y chromosomes of these females was 

~200% of the wild type 10B chromosome (Figure 2.7, l-481 rev*). 

Together these data suggest that I-CreI-induced double stranded DNA 

breaks stimulate the process of magnification. This agrees with a previous 

hypothesis that suggested that reductions in the size of the rDNA array result in 

DNA breaks in the ribosomal genes, which triggers the recombinational DNA 

repair pathway that causes sister chromatid exchange and further magnification 

(139).  

 

Table 2.3 Magnification induced by I-CreI expression in YrDNAl chromosomes. 
 
 

X Chromosome 

 

Y10B rDNAl 

Chromosome 

 
X/Y male progeny 

(Generation 2) 

 
C(1)DX/Y10B, rDNAl-rev female 
progeny (Generation 2) and 
phenotypes 

I-CreI l-473 149 3 bb (1.9%), 3 bb+ (1.9%) 

I-CreI l-480 196 1 bb (0.5%), 3 bb+ (1.5%) 

I-CreI l-481 126 6 bb (4.5%) 

X l-473 111 - 

X l-480 116 1 bb+ (NDJ) (0.8%) 

X l-481 62 1 bb+ (NDJ) (1.6%) 

!
 bb+ means wild type phenotype. Females bb+ from non disjunction events (NDJ) 
are present only in control crosses. Percentages of the presence of bb and bb+ 
females are shown in parenthesis next to the number. 
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CONCLUSION 

The rDNA is an extensively studied locus among different eukaryotes. 

However because of its multiplicity, it has been difficult to genetically study this 

locus by creating specific deletions. It has been shown that the endonuclease I-

CreI creates specific cuts within the rDNA of Drosophila melanogaster (129). But 

a sensitive technique to reliably quantify the amount of rDNA genes in an array 

had not been described. 

Here I designed a genetic strategy to create specific, isogenic and graded 

deletions to the rDNA using I-CreI endonuclease. In addition, I developed a 

molecular strategy based on Real-time PCR, to measure the amount of rDNA 

copies. I created a series of twenty five Y-linked rDNA deficient lines, in which I 

observed a magnification rate of ~15 rDNA copies per generation.  In addition, I 

showed that magnification of the rDNA could be induced by exposure to I-CreI. 

Together my data show a relatively easy method to create specific rDNA 

deletions in the Y-linked rDNA array of Drosophila melanogaster. This technique 

could be applied to study X-linked rDNA arrays as well. The YrDNADel lines that I 

created are useful to further study the biology of the rDNA. 
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CHAPTER III 

THE rDNA IS A REGULATOR OF CHROMATIN BALANCE* 

!

INTRODUCTION  

Chromatin structure has a fundamental role in the regulation of gene 

expression. Understanding how chromatin is formed and how its structure is 

regulated is an essential step towards understanding regulation of gene 

expression. Chromatin encompasses two contrasting environments, repressive 

and permissive, which are known as heterochromatin and euchromatin 

respectively. Hence, a good locus to study chromatin is the rDNA array, as it is 

composed of both of these two environments (85, 100). The epigenetic 

regulation of the rDNA has been intensely studied in some organisms such as 

plants, mammals and yeast (140), but in Drosophila not much is known about 

this mechanism. This locus nucleates the nucleolus, an important compartment 

formed inside the nucleus during cellular interphase, in which several essential 

cellular processes take place, but most notably ribosome biogenesis (141). The 

nucleolus structure is sensitive to changes in dosage of some heterochromatin 

components such as Heterochromatin Protein 1 (Su(var)2-5), Histone H3K9 

methyltransferase  (Su(var)3-9),  and also some  members of the  RNAi pathway  

 
*Reprinted with permission from “Ribosomal DNA contributes to global 
chromatin regulation” by Paredes S. and Maggert KA., 2009. PNAS, 106, 17829-
17834, Copyright 2009 by the Proceedings of the National Academy of 
Sciences.  
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which act as Su(var)s such as dicer- 2, Aub, and Spn-E (119). As a 

consequence of these mutations, defects in nucleolus structure are observed as 

the formation of multiple extra chromosomal nucleoli. Since it is known that a 

single rDNA repeat is able to form a small nucleolus by recruitment of and active 

transcription by RNA Polymerase I (120), it is proposed that changes in the 

dosage of heterochromatin components causes chromatin relaxation. This 

relaxed chromatin state then facilitates recombination between the repeats 

followed by formation of rDNA extra chromosomal circles and consequent 

formation of extra chromosomal nucleoli (119). Interestingly, fluctuations in rDNA 

array size happen spontaneously throughout the life cycle of many organisms 

(95, 98, 133), and have been observed to occur both somatically and meiotically 

(79, 91). Additionally, the rDNA locus has been shown to affect and induced 

gene variegation (125, 142, 143). Notably, the formation of multiple extra 

chromosomal nucleoli and misregulation of genes are also phenotypes observed 

in aging and cancerous cells (99, 144).  

I wanted to study the effect of the rDNA locus on gene expression. In 

order to do that, I introgressed the Y chromosomes of the YrDNADef lines into 

different genetic backgrounds that contained a reporter gene. The reporter 

genes I used were in a chromosomal rearrangement sensitive to PEV. Since I 

observed rDNA magnification in my preliminary experiments, I decided to 

monitored rDNA array size and reporter gene expression for several 

generations. The evidence of spontaneous rDNA size fluctuation occurring 
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throughout the life cycle of Drosophila pointed me to extend my analysis to the 

expression of a second reporter gene in otherwise wild type flies, to address 

whether this natural process also influences gene expression. In addition, the 

evidence of changes in nucleolus structure as a consequence of changes in 

rDNA chromatin composition led me to examine the effect of the YrDNADef lines 

on nucleolus structure.  

 

RESULTS AND DISCUSSION 

rDNA Deletions Affect Gene Expression 

The rDNA array is composed of euchromatic and heterochromatic 

tandem repeats, which determine the transcriptional state of the copies on the 

array (85, 100). Hence, it is an ideal locus to study chromatin structure and its 

role on gene expression. Furthermore, the correlation between rDNA copy 

number and genome size across many plants and animals (76), and the role of 

its high copy number on stability of the genome (145) suggest that this locus has 

an additional essential role other than ribosome biogenesis. The question I 

wanted to answer was: does the rDNA have a role in the regulation of gene 

expression? 

To address this question I used the YrDNADef fly lines (Chapter II) to 

study the effect of rDNA copy number on the expression of reporter genes. I 

needed a sensitive test that allowed me to visually detect changes in gene 

expression.  These changes are easier to detect visually when the gene is on a 
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PEV rearrangement as opposed to its endogenous location, where slight 

increase or decrease might not be visually detectable. In addition, PEV is the 

classical model to study changes in chromatin composition, which has given rise 

to most of our knowledge regarding the role of chromatin structure in gene 

expression. In my first genetic approach I used as a reporter for gene 

expression, the classical PEV allele In(1)wm4 (66) (Described in Chapter I). This 

reporter allowed me to determine if rDNA alterations have a positive (Su(var)) or 

negative (E(var)) effect on gene expression by testing whether there is a change 

in the red pigment of the eyes of the flies compared to wild type.  

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. Crosses to measure rDNA deletions and test the effect on gene 
expression. 1) genetic approach to estimate the amount of rDNA present on the 
YrDNADef array (red Y). C(1)DX,rDNA-/Y females were used to leave the 
YrDNADef as sole source of rDNA on the individual. 2) is the genetic approach to 
test effect on gene expression. Only male progeny was analyzed by eye 
pigment!"""
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I performed two crosses: 1) to obtain a quantification of the Y-linked rDNA 

array and 2) to test the effect of the rDNA deletion on gene expression. The first 

cross used the same genetic strategy as when creating the deletions (Figure 

3.1, cross #1). The use of C(1)DX,rDNA-/Y females was a convenient way to 

isolate the Y-linked rDNA for molecular quantification and also phenotypically 

corroborate the level of rDNA in each generation in a single generation. The 

second cross tested the expression of the white+ gene present on the X 

chromosomal rearrangement In(1)wm4 (Figure 3.1, cross 2). I analyzed the 

pigmentation of the eyes of the male In(1)wm4/YrDNADef progeny from this 

second cross to In(1)wm4 / In(1)wm4 females. Thus, the two crosses allowed 

estimation of both rDNA copy number and effects on gene expression in one 

generation, and allowed the investigation of whether these were correlated.  

However, a drawback of this strategy was that to ensure the success of the 

cross I could not used the same male for both crosses, instead I had to use 

different males for each one of the crosses. Due to the volatility of the rDNA 

array (133), this might have added some variability to the progeny of both 

crosses, because the flies that I analyzed for gene expression necessarily came 

from a different progenitor than the flies that I use to measure rDNA copy 

number.    
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 From the twenty five YrDNADef lines that I created, I selected a subset of 

Y chromosomes for further analysis based on two criteria: 1) that there was 

representation of the bobbed and lethal deletions, and 2) that there was 

representation of the different rates of rDNA magnification. Therefore I chose the 

six YrDNADef lines analyzed for magnification in Chapter II, two with mild 

deletions that produce bobbed flies (bb-465 and bb-76) and four large deletions 

that are lethal (l-481, l-498, l-510 and l-473). As a control I used the parental 

chromosome Y,10B that contains a full rDNA array (Ywt). For the sake of 

simplicity I will refer to these chromosomes based on the percentage of rDNA 

that they have left relative to wild type (Y,10B) as follows: bb-465 = bb-0.87, bb-

76 = bb-0.85, l-481 = l-0.49, l-498 = l-0.46, l-510 = l-0.41and l-473 = l-0.36. The 

control Y,10B will be referred as Ywt. 

I observed that the Y chromosome control (Ywt) had a neutral effect, that 

is, the eye pigmentation remained similar to the eye pigmentation on the 

In(1)wm4 stock. In contrast, Y chromosomes that had undergone an rDNA 

deletion showed strong expression of white+. In other words the YrDNADef 

behaved as classical Su(var)  mutations (e.g. HP1, Su(var)3-9) (Figure 3.2). 
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Figure 3.2. Su(var) effect of rDNA deletion on the white+ gene present on the 
In(1)wm4 chromosome. Left, picture of an eye from a male fly taken directly from 
the fly stock. Middle, picture of an eye from a male fly that harbors the Ywt 
chromosome (Y,10B). Right, picture of an eye from a male fly that harbors a Y 
chromosome with an rDNA deletion (YrDNADef, l-473).  
 

 

Further inspection reveled three categories of white+ expression based on 

visualization, which I confirmed by pigment extraction and further 

spectrophotometer measurement (Figure 3.3). Henceforth, I measured the 

degree of reporter expression for the Y chromosomes in each generation as the 

percentage of male progeny in each category. 
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Figure 3.3 Categories of gene expression according to pigment extraction. Top, 
pictures of eyes displaying the three categories. Cat 1 denotes the lowest 
expression and Cat 3 the highest. Bottom, spectrophotometer measurements for 
each category taken at an absorbance of 480 nm (Y axis). Error bars are + 
standard deviation of 5 replicate measurements.  
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After several generations of follow up, I compared the categories of gene 

expression versus the estimated rDNA copy number on the Y-linked array and 

observed a inverse correlation across the seven lines. In other words small Y-

linked rDNA arrays generated a high percentage of individuals with high 

expression of white+, while bigger rDNA arrays have a lower percentage of 

individuals with high expression (Figure 3.4).  

One exception to this observation was the lethal line l-539 (Chapter II). 

Since this is lethal despite the rDNA quantification revealing that it harbored a Y-

linked rDNA array that was larger than wild type (~115%), I hypothesize that the 

array is composed of damaged and/or interrupted copies, which are unable to 

provide functional rRNA. Interestingly, despite the larger array size this line 

increased the expression of the white+ gene. This suggests that the functionality 

of the copies rather than the physical number may be what actually influences 

gene expression. But how? Perhaps loss of rDNA copies, either by deletion or 

interruption, results in a compensatory activation of X-linked rDNA copies. By 

altering the percentage of active copies in the genome, loss of functional rDNA 

may alter the heterochromatin/euchromatin balance and thereby alter the white+ 

expression. This will be discussed in Chapter V.   
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Figure 3.4 Inverse correlation of rDNA amount versus white+ expression for 
In(1)wm4. Grey bars represent percentage of rDNA amount relative to wild type, 
indicated in the left Y-axis. Right Y-axis indicates percentage of male flies found 
on each category of white+ expression. Bright red bars are cat 3 of expression. 
Medium red bars are cat 2 of expression. White bars are cat 1 of expression. X-
axis shows the seven genotypes analyzed. Error bars are + standard deviation 
of the mean, which was derived from the measurement of 5-8 individual flies. 
Student’s t-test was performed for significant differences between the amounts 
of rDNA among the lines and P values obtained are as follows: Ywt vs. bb-0.87 
(P = 0.036), Ywt vs. bb-0.85 (P = 0.025), bb-0.87 vs. bb-0.85 (P =!0.950), bb-
0.85 vs. l-0.49 (P < 0.001), l-0.49 vs. l-0.46 (P = 0.01), l-0.46 vs. l-0.41 (P = 
0.23), l-0.46 vs. l-0.36 (P = 0.027), l-41 vs. l-0.36 (P = 0.36).  
 

Effects on PEV can vary depending on the location of the gene tested in 

the rearrangement (50). Hence, not all the chromosomal rearrangements will 

respond in the same way to changes in chromatin caused by Su(var)s and 

E(var)s. I wanted to test whether the increased white+ expression effect of the 

YrDNADef was general or simply an allele-specific effect of the In(1)wm4 allele. In 

addition, I wanted to rule out a possible parental influence on the increased 

expression of white+ observed.  There are several alleles derived from the 
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In(1)wm4 such as: wm454l, wm451b, wm4d, wm4h. The former one, In(1)wm4h, is a 

stronger variegating allele since it contains only ~5% of the red eye pigments 

compared to wild type (57). This allele has been shown to be more responsive to 

Su(var)s (146). Therefore, a strong effect of suppressor of variegation should be 

noticeable in most or all the progeny. In addition, this line has different 

chromosomal breakpoints than In(1)wm4 and previous observations have shown 

that this allele is insensitive to the parental source of the rearrangement. For 

instance, exposure of parents to temperature or inheritance of the allele from 

different genetic backgrounds has less of an effect relative to other alleles (57).  

I performed the same analysis as above using the variegating In(1)wm4h allele, 

and following the same genetic strategy and pigment categorization as for the 

In(1)wm4 previously explained.  

I obtained a similar inverse correlation as with the In(1)wm4 allele (Figure 

3.5). However the higher category of gene expression was present in 100% of 

the individuals that harbored the smaller arrays (l-0.49, l-0.41 and l-0.36), while 

only up to 80% was on the test with In(1)wm4. This agrees with the stronger 

sensitivity of this allele to the presence of strong Su(var)s. In addition, it rules out 

a possible maternal contribution to the phenotype observed with the In(1)wm4. 

Together this data show that rDNA array size affects variegated gene 

expression at least in the X-chromosome.  
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Figure 3.5 Inverse correlation of rDNA amount versus white+ expression for 
In(1)wm4h. Grey bars represent percentage of rDNA amount relative to wild type, 
indicated in the left Y-axis. Right Y-axis indicates percentage of male flies found 
on each category of white+ expression. Intense blue bars are cat 3 of 
expression. Medium blue bars are cat 2 of expression. White bars are cat 1 of 
expression. X-axis shows the seven genotypes analyzed. Error bars are + 
standard deviation of the mean, which was derived from the measurement of 5 -
8 individual flies. Student’s t-test was performed for significant differences 
between the amounts of rDNA among the lines and P values are the same as in 
Figure 3.4.  
 

 

In addition, to test that the effect was not X chromosome-specific, I 

analyzed the effect of the rDNA deletions on a euchromatic gene located in an 

autosome. I used the Stubble-variegator (StubbleV) as gene reporter. Stubble is 

a gene that is located in the third chromosome and when mutated produces 

short bristles. StubbleV places a dominant Stubble mutant gene nearby 

heterochromatin, hence heterochromatic gene silencing will inactivate the 

mutated gene producing wild type bristles, and Su(var)s will make this mutated  
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gene more active resulting in a larger number of mutant, short bristles. I tested 

two medium deletions (bb-0.87 and bb-0.85), one large deletion (l-0.36) and the 

wild type array (Ywt). I measured five kinds of bristles among the male 

population and found that the rDNA deletions affected the expression of Stubble, 

but not in the same way in terms of magnitude, direction, and level of expression 

for all the kinds of bristles tested (Figure 3.6). In other words, rDNA deletions act 

as Su(var) for some bristles and as E(var) for others.  

This agrees with previous observations showing that Stubble does not 

respond in the same way to some modifiers of variegation compared to other 

genes tested that were present on the same genetic background. For instance, 

C.P. Bishop tested the response of two variegating genes present in the same 

genetic background to different modifiers of variegation. He used the yellow+ 

gene and Stubblev, and found that in some cases the two genes responded in 

the same way, but for some modifiers of variegation only one of the two was 

affected (147). This suggests that the response of different genes to the same 

modifier of variegation can vary, as it was observed with the response to the 

rDNA deletions. 
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Arguably the shortened bristles characteristic of the bobbed phenotype 

(148) could have complicated the analysis of Stubblev. However, two 

observations suggest otherwise: 1) the bobbed phenotype is recessive, and 

should be fully complemented by the wild type array on the X-chromosome in 

these flies (79), and 2) I measured the the rRNA levels in flies that harbor the 

YrDNADef and a wild type X-linked array and found that the rRNA levels are 

similar to wild type (see below). However, I did not measure the rRNA levels in 

this specific genetic background, and even so this analysis requires using whole 

flies, which would have only shown the average level of rRNA for all the tissues. 

Since the fraction of active rDNA genes varies between different cell types (149), 

it is complicated quantify the degree to which the bobbed mutation contributes to 

the bristle phenotype.    

This analysis suggests that rDNA deletions influence the chromatin 

balance generally on all chromosomes. Furthermore, the direction of the effect 

on gene expression is not biased and can vary in different regions of the 

organism.   
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Figure 3.6 rDNA deletions affect the expression of StubbleV. Top, percentages 
of length for five different bristles relative to wild type (Y10B). X axis shows the 
five kinds of bristles measured. A. Sc. is anterior scutellar, P.Sc. is posterior 
scutellar, Dc is dorsocentral, A. Stp. is anterior sternoplural, P.Stp. is posterior 
sternoplural. Picture on the bottom right displays some of the analyzed bristles.  

 

Until this point, my data had shown that rDNA deletions have an effect on 

gene expression for the In(1)wm4, In(1)wm4h and some of the bristles in the 

StubbleV similar to the effect of many genes that are involved in heterochromatin 

formation, such as HP1, Su(var)3-9, Modulo, Su(var)3-7, etc (52). This 

suggested that creating a deletion within the rDNA caused an alteration on the 

heterochromatin environment of the nucleus, leading to differential gene 

expression. 
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This hypothesis predicts that if I affect the heterochromatic environment 

then genes normally found in heterochromatin, even in autosomes, will also 

have an alteration in expression. To address this issue I tested the light+ gene. 

This is a gene required for normal levels of pigmentation in larval and adult 

tissues including the eye, and it is found in the pericentric heterochromatin on 

the second chromosome, where the generally repressive environment is actually 

required for normal expression (52). I used a chromosomal rearrangement that 

makes this gene variegate. Eye cells that silence this gene will have a less 

intense pigmentation as the wild type cells in which the gene is active. Since the 

effect of heterochromatin on light+ expression is opposite to that of white+, I 

expected an opposite effect of rDNA deletion on the expression of light+. In other 

words, just as others Su(var)s mutations (i.g. HP1) (150), rDNA deletion should 

act as an E(var) on light+.  
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I tested three chromosomes, two harboring mild deletions (bb-0.87 and 

bb-0.85) and one with a large deletion (l-0.36). As with the white+ gene, I 

obtained three categories of light+ expression, from low variegation (low gene 

silencing) to high variegation (high gene silencing). Consistent with the rDNA 

deletions generating a generally transcriptionally permissive environment, I 

observed that the light+ gene became less active as the rDNA deletion became 

larger (Figure 3.7). This data suggested that deletions to the rDNA caused 

changes in chromatin structure, and this effect could influence the entire 

genome. 

Some Su(var) mutations, such as Su(var)205 (HP1), can enhance 

variegation of heterochromatic genes such as light+ (151). This suggests a 

double role for these proteins: as inducers of the silencing of euchromatic genes 

and as promoters of normal expression of heterochromatic genes. Since 

deletions to the rDNA have the same effect in euchromatic and heterochromatic 

genes, this points to the rDNA as a balancer of the two environments, possibly in 

cooperation with some of these known chromatin proteins and modifiers. 
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Figure 3.7 rDNA deletions act as an E(var) on the light+ gene. Top panel, 
percentage of male flies located on the three different categories of light+ 
expression. Bottom panel, pictures of eyes from the 3 categories of expression. 
Notice the disappearance of the pseudo pupil on the eye exhibiting high 
variegation compared to the eye with low variegation as a consequence of light+ 
gene silencing. 
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Together this data shows that deletions within the Y-linked rDNA array of 

Drosophila melanogaster alter the balance between heterochromatin and 

euchromatin in the nucleus, and as a consequence of this alteration gene 

expression changes occur in different regions of the genome. The investigations 

using the PEV marker genes wm4, wm4h and lightvar as reporters of gene 

expression found that rDNA deletions act as classical suppressors of 

variegation. That finding suggested that the environment of the nucleus 

becomes more heterochromatic or silent due to the rDNA deletion. However, a 

somewhat more complex story was suggested by the marker gene Stubblev. 

Here, changes in gene expression were still observed, however the direction 

and magnitude of the change varied depending on the location of the bristles on 

the fly. This suggested two characteristics of the role of the rDNA on gene 

expression: 1) that the effect on chromatin balance was not biased towards 

changes in any specific direction of gene expression, and 2) that there were 

differences in the effect according to the group of cells or tissue analyzed. This 

was not surprising as it is known that different tissues exhibit unique gene 

expression profiles conferred by different chromatin structures (152, 153). In 

other words, the level of heterochromatic gene silencing occurs in a tissue 

specific manner. Hence, the effects on chromatin balance caused by rDNA 

deletions can also be expected to be tissue specific depending on the 

heterochromatin/euchromatin ratio present in certain group of cells. 
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This data suggests an additional important role for the rDNA, as a 

regulator of chromatin structure. rDNA deletions behave as classical Su(var) 

mutations (52, 57, 66), which means that just as those chromatin components, 

the presence of rDNA repeats are important to maintain the balance of the 

chromatin in the nucleus. 

 

rDNA Magnification Reverts the Changes in Gene Expression 

The best proof that a mutation is causing a phenotype is given by a 

complementation assay. The natural increase in rDNA copies, known as rDNA 

magnification, has been very well documented in Drosophila (90, 93, 137, 139). 

Since I observed in my preliminary experiments that the rDNA deletions 

increased in size, I realized that rDNA magnification would provide the best 

complementation assay. For that reason, I decided to monitor the rDNA deletion 

lines each generation for over five generations analyzing the rDNA deletion 

phenotype (using the In(1)wm4 allele as reporter) as well as the rDNA copy 

number. Consistent with my expectations, I observed an increase in array size 

every generation (about 15 copies each generation on average, Chapter II), and 

a gradual reversion of the Su(var) phenotype each generation (Figure 3.8). In 

other words, the complementation assay provided by rDNA magnification 

confirmed that the rDNA deletion was the cause of the changes in chromatin 

balance that led to increased gene expression. 
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Figure 3.8 rDNA magnification reverts the phenotype. Shown six YrDNADef 
chromosomes in two subsequent generations. Left Y axis, estimated percentage 
of rDNA relative to wild type represented by grey bars. Each grey bar is a 
subsequent generation for the same line. Right Y axis, percentage of male flies 
found on each category of white+ expression. Bright red bars are Cat 3 of 
expression. Medium red bars are Cat 2 of expression. White bars are Cat 1 of 
expression. Error bars are + standard deviation of the mean derived from 5-8 
individual measurements. The analysis was done using the In(1)wm4 allele as 
reporter. Magnification tests were analyzed with a Student’s t-test and the 
following P values were obtained for each line: bb-0.87 generations (P = 0.393), 
bb-0.85 (P = 0.016), l-0.49 (P < 0.001), l-0.46 (P = 0.002), l-0.41 (P = 0.818), l-
0.36 (P = 0.051). 
 

 

rDNA Deletion Affects Nucleolus Size and Structure 

It is known that heterochromatin structure is important for nucleolus 

structure, as it has been shown that mutations in heterochromatin components 

cause nucleolus instability (119). Hence I wanted to test whether causing a 

deletion to the rDNA would have an effect on the nucleolus in terms of size and 

structure. In order to address this question, I decided to study the nucleolus of 

polytene chromosomes in salivary glands, since they are in a tissue known for 

having high levels of gene expression, thus the nucleolus is constantly formed in 
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these cells as opposed to mitotic tissue. I choose to do this experiment in female 

flies C(1)DX/YrDNADef because the only source of rDNA comes from the Y 

chromosome, which makes easier the detection of any changes. This 

experiment was done with three Y chromosomes: one mildly reduced (bb-0.87), 

one largely reduced (bb-0.36) and the control Ywt. I immunostained whole 

mount salivary glands using a antibody against fibrillarin, which is a protein 

involved in post transcriptional rRNA regulatory processes that is found 

exclusive in the nucleolus (115). Additionally, I stained the DNA using DAPI to 

have a measurement of the size of the nucleus. Using confocal microscopy and 

three-dimensional reconstruction, I obtained the volume of the nucleolus relative 

to the volume of the nucleus. Not surprisingly, I observed that the volume of the 

nucleolus was reduced in the lines with rDNA deletions compared to wild type. In 

addition, the reduction in volume was correlated with the size of the deletion; the 

larger deletion formed the smaller nucleolus. The average volume from thirty 

different nuclei (ten per individual) from the same chromosomal line are shown 

(Figure 3.9). 
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Figure 3.9 Nucleolus size is affected by the rDNA deletion. Top pictures are 
slices of confocal imaging representing each analyzed line. Nucleolus volume as 
a percentage relative to the nucleus volume is shown for each line as an 
average of 30 different nuclei (10 per individual) for each analyzed line.   
 

 

 Interestingly, not only size was affected but also structure. I observed the 

presence of mini and micronucleoli, which are small extra chromosomal nucleoli, 

only in the lines that harbor the deletions (Figure 3.10). Because mutations in 

heterochromatin components induce the formation of extra chromosomal 

nucleoli (154) and a single rDNA repeat is able to nucleate the nucleolus (120), it 

is possible that this is the consequence of the combination of two processes: 

magnification and over activation of the remaining copies on the rDNA array as a 

compensatory mechanism for rRNA production, which could lead to the 

formation of extra chromosomal rDNA circles.  

78



 

Interestingly these observations resemble the changes in nucleolus size 

and structure that are observed in aging and diseases such as cancer and Down 

Syndrome (110, 117, 155), where a common characteristic is the increased 

transcription of the rDNA copies. For instance, mutations on the rDNA silencer 

protein Sir2 decreases the life span in yeast while increases in the dosage 

extended it (156). In addition, increased levels of rRNA, changes in nucleolus 

volume, and increase in the number of rDNA arrays that are active in the cell 

(known as AgNORs) are common in cancerous cells (117) and in patients with 

Down syndrome (155). Furthermore, it is known that maintaining a subset of 

inactive rDNA copies is essential for the stability of the genome (76). Together 

these suggest that increases in the activity of the rDNA copies are related to 

changes in cell programming that lead to disease. 

I did not observed formation of extra chromosomal nucleoli in the wild 

type cells analyzed, which suggests that the deletions in the rDNA cause 

nucleolar instability and further formation of extra chromosomal nucleoli. These 

observations might help to understand the connection between nucleolus and 

disease.    
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Figure 3.10 Nucleolus structure is affected by rDNA deletions. Pictures of 
nucleolus from two lines of YrDNADef are shown. Formation of mini and 
micronucleoli (white arrows) was observed exclusively on the lines that contain 
an rDNA deletion. Top panel, whole nucleus. Middle and bottom panels, zoom in 
pictures to highlight the extrachromosomal nucleoli.  
 

 

Translational Capacity is Maintained as in Wild Type Conditions 

The genetic approach that I used to analyze the effect of rDNA deletions 

on gene expression uses a genetic background that contains a wild type X-

linked rDNA array present on the In(1)wm4 chromosome. This array is able to 

supply the cell with enough rRNA. Indeed, I quantified the rDNA copy number for 
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this chromosome and found that it contained twice the amount of the parental 

Y,10B chromosome (~400 rDNA copies). However, rDNA transcription is 

regulated at different levels: epigenetically, transcriptionally and by rDNA copy 

number (75, 99). In addition, it is known that heterochromatin components and 

modifiers (i.e. HP1, Histone H3K9 methytransferase) are dose sensitive, 

meaning that subtle changes in dosage could generate a phenotype (52). Thus, 

there is still the possibility that the observed effect of increased white+ 

expression is being caused by an insufficient amount of steady state rRNA, 

which decreases the translational capacity of the cell, reducing the amount of 

proteins required to build up heterochromatin. In order to investigate this 

possibility, I decided to measure the rRNA levels present on the same fly 

population that were used to analyze the eye phenotype (In(1)wm4/YrDNADef). In 

order to have a measurement of intact 28S and 18S rRNA, excluding the 

possibility that one or both of these rRNAs were incompletely transcribed in the 

mutants, I used gel quantification. This method allows the detection of full-length 

rRNAs as opposed to other methods such as qPCR, which can pick up 

fragmented products. I extracted total RNA and did gel quantification of three 

lines: a mildly deleted (bb-0.87), a largely deleted (bb-0.36) and wild type (Ywt). 

Quantification values relative to wild type showed that there is a slight but not 

significant increase in the rRNA amount produced by the YrDNADef lines (Figure 

3.11). This indicates that the wild type array on the X chromosome is providing 
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enough rRNA to the cell, hence the phenotype is not caused by a limitation on 

the translational capacity.  

It is known that the number of active rDNA copies varies between 

different cell types, meaning that the fraction of rDNA genes that are actively 

transcribed changes during development and differentiation (149). Hence, an 

aspect to consider here is that by using whole flies for rRNA measurement I am 

averaging the amount of rRNA in all the tissues. An ideal experiment to rule out 

translational capacity would be to correlate gene expression vs. rRNA amount in 

the same tissue. However the method used to estimate full-length rRNA makes 

it difficult to perform this experiment in such small pieces of tissue.  

Overall the rRNA quantification suggests that the effect of increased 

white+ expression is not a by-product of a reduction in the amount of rRNA that 

produces a limitation in the translational capacity of the cell. 
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Figure 3.11 Comparison of rRNA content among three lines. Y-axis is 
percentage of rRNA relative to wild type (which is defined as 100%). The 
genotype of the adult flies used to estimate rRNA amount is wm4/YrDNADef and 
wm4/Ywt.  Grey bars are the mean of five independent replicated, error bars are 
+ standard deviation of the mean. Slightly high values are not statistically 
significant  (Student’s t-test). White bars are expected rRNA amount relative to 
the amount of rDNA present in each line. 
 

Spontaneous rDNA Deletions Affect Gene Expression Somatically 

It is been shown that reduction in rDNA copy number by extra 

chromosomal circle formation occurs throughout the life cycle of different 

organisms including Drosophila (95-97). Additionally in Drosophila, during 

embryogenesis, heterochromatic silencing is relieved in differentiated tissues but 

is kept in cells that contain precursor cells for adult tissues (152). Therefore, I 

wanted to test whether the spontaneous rDNA variation that is observed in 

somatic tissue could influence gene expression. In order to address that 

question, I used as a reporter gene a variegated GFP transgene inserted in the 

heterochromatic Y chromosome in an otherwise wild type fly line (Figure 3.12). I 

decided to look at larval brains because of the relatively high rate of division, 

0 
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Ywt bb-0.87 l-0.36 
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which increased the likelihood of observing the mitotic intrachromatide 

recombination events leading to spontaneous rDNA deletions. Furthermore, the 

visually detectable dynamic range of GFP expression in these tissues was 

relatively better compared to other larval tissues. I dissected neuroblasts 

according to the level of GFP expression and measured the rDNA genes present 

in each fragment of the tissue. As expected, reductions in rDNA amount 

correlated with increased expression of the GFP transgene (a Su(var) 

phenotype), and the patches of tissue that had lost more rDNA had the higher 

GFP expression (Figure 3.12). That suggests that the spontaneous changes in 

rDNA that occur during mitosis have an effect on gene expression.  

The rDNA quantification assay is highly sensitivity, since it allows us to 

reliable quantify rDNA from DNA concentrations equivalent to ~5 genomes 

(Chapter II), therefore this technique was adequate to estimate rDNA amount in 

small fragments of tissue. While this represents a significant improvement over 

analyzing whole flies, the data still represents an average of rDNA copy number 

and a qualitative estimate of the GFP expression among the dissected cells. A 

true understanding of the linearity of the relationship between rDNA copy 

number and the gene-expression response of the cell will require techniques 

that allow more accurate measure of expression and rDNA copy number on 

individual cells.  

The biological relevance of spontaneous rDNA loss through extra 

chromosomal DNA circles is unknown. However, since this is (52) a ubiquitous 

84



 

process in eukaryotic organisms including humans (95, 96), it might have a very 

important role for the genome. Given that more sequences have been identified 

in Drosophila other than the rDNA to form extra chromosomal DNA circles 

throughout the life cycle, such as 5S, Stellate, Suppressor of Stellate and 

Histone cluster (97), it is a reasonable hypothesis that the plasticity of these 

other regions could also contribute to the chromatin balance. Differences in the 

size of repeated genomic sequences have also been observed in humans. For 

instance, striking variability in the 45S and 5S rDNA gene cluster size (50kb-

>6Mb) was observed among healthy humans (157), and formation of extra 

chromosomal DNA circles has also been observed from the 5S and satellite 

repeats in human cells (96). Spontaneous and environmentally induced changes 

in rDNA array size in different tissues throughout development could create a 

mosaic in chromatin structure that could have implications in development and 

cell differentiation. Furthermore, the differential gene expression generated 

could influence the predisposition of certain tissues and certain individuals to 

disease. 

Lu and colleagues showed that heterochromatic gene silencing starts 

during embryogenesis, but it is suppressed in differentiated cells (152). This 

suggests that it is important in early development to maintain a differential 

regulation of gene expression, therefore extreme changes in rDNA could lead to 

developmental abnormalities. For instance, the phenotype of the Down 

syndrome individuals cannot be fully explained by the extra gene dosage that is 
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provided by the additional chromosome 21 (158, 159). A recent study proposed 

that the presence of an extra nucleolus organizer (present on chromosome 21) 

accounts for a major part of the Down Syndrome phenotype. It was observed to 

be transcriptionally active, causing an increase in the rRNA levels and ribosomal 

proteins compared to wild type cells (155, 160). It is possible then that the 

functional importance of the ubiquitous presence of ecc rDNA and other 

sequences is to confer plasticity to the genome so it will have the ability to 

modulate the genome in response to changes in the environment. 

Since the rDNA is constantly changing, differences from cell to cell, 

programmed or spontaneous, can lead to different patches of gene expression 

in the same tissue. This could be a mechanism that contributes to the 

determination of cellular fate and differentiation, either intentionally during 

development, or unintentionally during aging and carcinogenesis.   

Together this data suggest that natural rDNA loss influences gene 

expression in the same way as induced rDNA deletions, where larger rDNA 

losses induce stronger gene expression. 
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Figure 3.12 Spontaneous rDNA deletion influences gene expression. Pictures of 
brain tissue dissected according to GFP expression are shown. Brains were 
derived from male flies that have a Y chromosome that harbors a variegating 
GFP transgene. rDNA quantification of brain tissues revealed fewer rDNA copies 
in the pieces of tissue that have a higher expression of the GFP transgene. 
Percentages of rDNA present in GFP-expressing tissue relative to non-
expressing tissues are shown ± S.E.M. Schematic representation of the Y 
chromosome used for this analysis is shown.  
 
  

Mutants of Heterochromatin Components Have Small rDNA Arrays 

An intriguing point is that our observed effects caused by rDNA copy 

number are similar to those observed by mutations involved in chromatin 

compaction (52). Since mutations in heterochromatin components destabilized 

the rDNA array inducing the formation of extra chromosomal nucleoli (119), I 

wanted to test whether the rDNA arrays found in Y chromosomes from 

heterochromatin mutant backgrounds have differences in rDNA array size. To 

test this, I measured the array size of Y chromosomes isolated from different 
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chromatin modifiers stocks. Using the same genetic strategy as for my YrDNADef 

chromosomes, I made this Y chromosomes the sole source of rDNA on the fly.  

It is known that Y chromosomes isolated from different regions have differences 

in rDNA array size (161), and consistent with this I observed an entire series of 

lengths among the different Y chromosomes that were tested. Interestingly, the 

smallest Y-linked rDNA arrays were found on the Y chromosomes that were 

isolated from two mutants involved in heterochromatin formation: Su(var)2-1, 

and Su(var)3-9 (Figure 3.13, top). Additionally, in the fly stocks of these mutants 

(before outcrossing them to the C(1)DX line) I found females that were 

phenotypically bobbed (Figure 3.13, bottom). 

Despite the fact that extensive studies have provided conclusive evidence 

that connects many of the Su(var) proteins to heterochromatin formation (66), 

this findings suggest that the Su(var) phenotypes observed in those mutants 

could be in part due to a reduction in the size of the rDNA array. A supporting 

observation for this hypothesis was obtained from a study that correlated 

microarray gene expression analysis with physical localization of HP1 using 

cytology and chromatin immunoprecipitation (ChIP) in Drosophila. This study 

showed that mutants in HP1 exhibit differential expression of hundreds of genes 

throughout the genome without any bias in the direction of expression. This 

demonstrates that despite the known characteristics of the role of HP1 in 

heterochromatic silencing, it is also involved in silencing and activation of 

euchromatic genes. Interestingly, within the cytological region 31 (left arm, 
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second chromosome), which is known to be a high spot for HP1 localization 

according to cytological reports, is found the gene CG13135 that has been 

consistently shown to be up regulated in HP1 mutants. However neither by ChIP 

nor cytology, was HP1 enrichment found on any region of this gene in salivary 

glands in a wild type background (162). This data suggested that the alteration 

on expression of CG13135 in the HP1 mutant is due to an indirect effect, or that 

there is association of HP1 with this gene in tissues other than the salivary 

glands. Together this study and the evidence that showed that mutations in HP1 

and other chromatin modifiers cause nucleolus instability (119) support the 

hypothesis that the effect of chromatin proteins and modifiers could be partially 

obtained throughout changes in the rDNA array size and possibly some other 

repetitive sequences in the genome.  

 Another compelling observation consistent with this hypothesis is the 

case of the modifier of variegation E(var) 3-93D, which exhibited an array at the  

bigger end of the measured chromosomes (Figure 3.13, top), suggesting that 

the large size could mediate its effect as an E(var). This E(var) is a very 

mysterious gene because it has an imprinting–like effect on the Y chromosome.  
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Flies exposed to the E(var) 3-93D mutation (on chromosome III) can continue 

passing the E(var) phenotype (mapped to chromosome Y) for many generations 

after the mutation has been removed from the background (163). Interestingly, 

even after 11 generations of being without the presence of the mutation, the Y 

chromosome is still able to cause the E(var) phenotype. The explanation for this 

imprinting effect has not been found yet, but my findings suggest that the gene 

product of E(var) 3-93D could mediate an increase in the size of the rDNA. This 

larger array would be maintained for many generations, hence passing along the 

E(var) phenotype by altering the chromatin balance in the nucleus. I showed that 

I-CreI-induced double stranded DNA breaks induces magnification of the rDNA 

array (Chapter II). Using this approach we could create enlargement of a wild 

type rDNA array to test whether it acquires the ability to produce an E(var) 

phenotype.  
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Figure 3.13 Y-linked rDNA arrays from mutants in heterochromatin formation 
are small. Top, plot displaying Y-linked rDNA quantification from different genetic 
backgrounds. Y chromosomes were introgressed into female flies from the 
genotype C(1)DX/Y. Y-axis indicates percentage of rDNA relative to our 
chromosome control Ywt. Error bars are + standard deviations of the mean 
derived from rDNA measurement of 5-7 individuals. Chromosome 4468 contains 
an rDNA duplication. Bottom, pictures of female flies X/X from the original stock 
of the mutant background Su(var)3-9. White arrows point to the cuticle formation 
defects, which are characteristic of the bobbed phenotype. 
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Y-linked rDNA arrays present in Su(var) backgrounds have a reduction in 

size compared to other chromosomes tested. However, since Y-linked rDNA can 

be variable among populations (77), it is possible that these chromosomes have 

always had an small array. In addition, if the effect of the Su(var)s on rDNA  

arrays is a general effect, it is expected that this reduction would be observed if 

a different Y chromosome is introgressed into this background. In order to 

address these two issues, I measured rDNA arrays from two different Y 

chromosomes before and after they were introgressed into several modifier of 

variegation backgrounds for several generations (about 1-2 years after the 

introgression) (Figure 3.14). As a control, the Y chromosomes tested were 

isolated from natural populations and were kept in the original background (164).  

I found that in all the tested mutant backgrounds, there was alteration in 

the rDNA array size for both Y chromosomes.  Interestingly, some modifiers 

have a positive effect for one chromosomes while a negative effect for the other 

one (i.e. Armitage, Su(var)2-10). I hypothesize that these differences could be 

chromosome specific, meaning that perhaps the polymorphic differences in the 

two Y chromosome tested can influence the response of the array to modifiers of 

variegation. It is possible that differences in other repetitive sequences present 

in these chromosomes (i.e. Suppressor of Stellate, satellite sequences, 

transposable elements) act also as targets of modification and can bias the 

action of modifiers of variegation on the rDNA. In addition, Su(var)s are known to 

cause instability of the nucleolus possibly by relaxing the chromatin at the rDNA 
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loci followed by extra chromosomal circle formation by intrachromatid 

recombination (119). The process of intrachromatid recombination requires 

double stranded DNA breaks (DSB), and I previously showed that induction of 

DSB by exposure to I-CreI endonuclease induces magnification (Chapter II). 

Hence, it is possible that in some cases the effect of Su(var)s mutations lead to 

increases in rDNA array size.  

The fact that all modifiers exerted an effect in the rDNA array size 

suggests that this might be a general effect.  However the mechanism of action 

for each modifier might be different. A comparison between microarray 

expression profiles of modifiers of variegation vs. YrDNADef lines could reveal if 

there is a significant overlap between the two groups and possibly suggest the 

pathways that each modifier take to affect gene expression by the modification 

of the rDNA. A summary of the absolute effect of the mutants tested for both 

chromosomes is shown (Figure 3.14).  

Together these data suggest that the rDNA plays an important role in 

chromatin structure, which influences gene expression in the same way as 

heterochromatin components (44, 66), and part of the effect of some of these 

components on gene expression could be mediated throughout the alteration of 

the rDNA array size.  
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CONCLUSION 

Nothing is known about the role of the rDNA as a modulator of chromatin 

balance. However, evidence about the importance of maintaining a large 

number of rDNA copies in order to maintain genome integrity (145) and the 

positive correlation between genome size and rDNA copy number in many 

eukaryotes (76), suggests that the rDNA might have an additional important role 

besides ribosome biogenesis. In addition, the observed natural rDNA loss in 

several eukaryotes through development has suggested a role for this 

mechanism (95), but the functional advantage of this process remains unknown. 

Here I present evidence that induced and spontaneous rDNA deletions 

have an effect on gene expression. In addition, the deletions affect nucleolus 

size and structure in a similar way as these changes are observed in aging and 

diseased cells. The effects on gene expression resemble the effects of 

mutations in heterochromatin components and the analysis of rDNA arrays in 

these mutant backgrounds revealed reduction in rDNA size. My data connects 

the rDNA deletions with the effects caused by heterochromatin components, 

which suggests that these proteins might mediate their effect in part through the 

rDNA. This points to a novel view of how some chromatin components could 

regulate the genome.  

Together my data shows that the rDNA act as a modulator of chromatin, 

which suggests that the effect of this modulation could affect chromatin and 

gene expression across the entire genome.   
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CHAPTER IV 

THE rDNA IS A POLYMORPHIC LOCUS THAT MODULATES 

GLOBAL GENE REGULATION* 

!

INTRODUCTION 

The rDNA locus has a remarkable plasticity that allows it to be in constant 

lose and gain of cistron copies both meiotically and mitotically throughout 

development. In eukaryotes the size of the genome is positively correlated with 

the number of rDNA copies present and this number can oscillate from around 

50 to 25,000 rDNA copies (76). This variability can also be observed within 

individuals of the same population and even within cells of the same tissue 

(Chapters II and III). A functional advantage for having the ability to increase and 

decrease in copy number has not yet been demonstrated, although it has been 

shown that having excessive cistron copy numbers (more than that required for 

sufficient rRNA in the cell) is beneficial for maintenance of genome integrity 

(145). In Drosophila, this characteristic of rDNA reduction and expansion could 

be responsible for the variability in Y-linked rDNA array size observed among 

thirty four different D. melanogaster Y chromosomes (77).  

 

 

 

*This chapter was co written with Keith Maggert and Bernardo Lemos. 

96



 

Recently a similar study showed that polymorphisms on Y chromosomes 

from natural D. melanogaster populations have an effect on the regulation of 

gene expression of thousands of genes. The regions on the Y chromosome that 

have the effect on gene expression have not been mapped. However, because 

the Y chromosome has several sources of potential variation immersed within 

heterochromatic blocks such as repetitive sequences and transposable 

elements (165), it was suggested that these factors could contribute to the 

observed effects (164). Here we asked if the PEV effects observed for our rDNA 

deletions (YrDNADef) have a broader impact on global gene expression and if the 

global gene expression changes linked to natural Y chromosome polymorphisms 

correlates with changes in rDNA array size. To address these questions we 

performed genome-wide gene expression analysis of some of our rDNA deleted 

lines, quantified the rDNA arrays from the natural isolates, and then perform a 

comparative analysis using the microarray expression data from these Y 

chromosomes.  
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RESULTS AND DISCUSSION 

Induced rDNA Deletions Affect Global Gene Expression  

 In order to address the hypothesis that changes in rDNA copy number may 

modulate genome-wide gene expression we used three of our YrDNADef 

chromosomes: two harboring mild deletions bb-0.87 and bb-0.85, one harboring 

a large deletion l-0.46 and the wild type control Ywt  (Chapters II and III). Since 

we wanted to compared our results to the previous study on natural populations, 

the Y chromosomes were introgressed into an isogenic background of 

autosomes and X chromosome by repeated backcrossing of males YrDNADef to 

females from the same fly stock that was previously used in the natural 

populations study (164) (Figure 4.1A). From this cross adult male flies were 

used as the source of RNA extraction for microarrays, which were done by 

comparative hybridization of the three YrDNADef chromosomes to the Ywt and to 

each other  (Figure 4.1B).  
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Figure 4.1 Microarray crosses and design. A. Crossing scheme to introgress Y 
chromosomes to a common and isogenic genetic background. y (yellow), bw 
(brown), e (ebony), ci (cubitus interruptus), ey (eyeless) were used as recessive 
genetic markers. B. Array design. Lines are direct comparisons and numbers 
are replicates per comparison. 

A. 

B. 
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 We observed substantial gene expression variation among these strains as 

compared to the random expectation (obtained with Bayesian posterior 

probabilities) across a range of P-value thresholds (Figure 4.2).  

 

 

Figure 4.2. Number of genes differentially expressed for Y chromosomes 
bearing deletions within the ribosomal DNA. Y-axis is number of genes. Mild 
Deletion is averages of bb-0.87 and bb-0.85. Large Deletion is l-0.46. Data are 
given at P < 0.05 and other indicated Bayesian posterior probabilities. White 
bars are expected values. Numbers of differentially expressed genes are broke 
down into deciles of fold expression. Light blue indicate differentially expressed 
genes with changes less than 1.5-fold, dark blue indicate >1.5-fold and !2 -fold, 
black indicate changes greater than 2-fold.  

 

 According to our previous observations (Chapter III), we expected that the 

deletions in the rDNA array would result in gene expression modulation that 

would not only be replicated in each independently generated mutant, but would 
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also be more pronounced in mutants lacking a larger proportion of the original 

locus. In agreement with this expectation, the numbers of differentially 

expressed genes are positively correlated with the rDNA deletion size (Figure 

4.2 and 4.3A).  

 
 

Figure 4.3 Overlapped genes among the YrDNADef chromosomes. A. Venn 
diagrams representing total number of genes expressed differentially relative to 
the wild-type chromosome, either uniquely differential or shared by multiple 
chromosomes (at P < 0.001, FDR < 0.05). B. Correlation of log-fold-changes 
comparing differentially expressed genes between l-0.46 and Ywt (X axis) to 
those differentially expressed between bb-0.87 and Ywt (Y axis), Rho = 0.84. C. 
Correlation of log-fold-changes comparing differentially expressed genes 
between l-0.46 and Ywt (X axis) to those differentially expressed between bb-
0.85 (Y axis), Rho = 0.78.  

 

 We observed that the Y chromosome with the lowest rDNA copy number 

(bb-0.46) induced the highest number of expression changes, whereas the two 

Y chromosomes with mildly-deleted arrays resulted in smaller numbers of 

differentially expressed genes (Figures 4.2 and 4.3A). This finding corroborates 

A. B. 

C. 
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our previous observations that chromosomes with fewer rDNA copies have a 

stronger effect on position effect variegation (Chapter III). 

 Furthermore, the genes identified as differentially expressed in the mild 

deletions were a subset of those induced in the strain with largely deleted rDNA 

(Figure 4.3A). Accordingly, 44 - 59% (P < 0.001, FDR < 0.05) of the genes 

identified by mild deletions were also identified by the Y chromosome with the 

largest rDNA deletion. In support of the reproducibility of the gene expression 

modulation 24% of differentially expressed genes were shared by at least two 

chromosomes with reduced rDNA arrays, whereas fewer than 0.2% were to be 

expected by chance (P < 0.001). In addition, the direction and magnitudes of 

changes in expression were significantly correlated (correlation coefficient rho = 

0.78 - 0.84, P < 10E-16) between Y chromosomes harboring rDNA deletions 

(Figure 4.3B,C). These data unequivocally establish the relevance of rDNA copy 

number variation to modulation of genome-wide gene expression. 

 Since natural polymorphisms and induced deletions of the rDNA show no 

overt dominant phenotype (77), and even X0 males, other than being sterile due 

to the loss of Y-linked fertility genes, are phenotypically normal despite having 

no Y-linked rDNA (166), we expected that induced rDNA deletion would have 

impacts on individual gene expression that were generally small. Indeed, we 

found that 85.1% of genes whose expression differed significantly from wild-type 

had changes in expression level of no more than 50% (Figure 4.4). 
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Figure 4.4 Number of differentially expressed genes at P < 0.01 for large 
deleted chromosome. Data was taken from Figure 4.2. Number of genes 
presented as absolute counts (solid lines, left Y axis) and cumulative percentage 
(dotted lines at 20% increments, right Y axe). X axe indicates deciles of gene 
expression fold change. 

 

  We found unexpected and unlikely that the number of genes showing only 

a 10% change in relative expression would be less than those showing a 20% 

change. This likely results in an underestimation in our count of the number of 

differentially expressed genes exhibiting the small changes. Using linear 

regression to extrapolate a corrected values for the first decile, we estimate that 

as many as 1200 - 1700 differentially expressed genes at P < 0.05 and 360 - 

435 at P < 0.01 might escape statistical detection despite our high level of 

replication (Figure 4.5A-C). These estimates suggest that as much as 45% of 

the genome might be subtly affected by partial rDNA deletion, supporting the 

hypothesis that the rDNA is a global genome modulator.  
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Figure 4.5 Estimation of the number of differentially expressed genes expected 
at !1.1 fold.  A. Number of differentially expressed genes (data from Figure 4.2) 
with estimated number of genes whose expression was modulated by less than 
10% and missed due to limited statistical power (grey). Data were generated 
from linear regression of subsequent five deciles. Projections are shown for P < 
0.05 and P < 0.01. B. Data from A graphed as separate deciles (X axis) to show 
quality of estimation for P < 0.05. Red lines indicate first decile without 
extrapolation for comparison. C. Data from A graphed as separate deciles (X 
axis) to show quality of estimation for P < 0.01. Red lines indicate first decile 
without extrapolation for comparison. 

 

A. 

B. C. 
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Effects on Gene Expression Are Common to Both Sexes 

 To determine the generality of rDNA induced expression changes, we 

investigated the differential expression induced by the Y chromosome rDNA-

deleted l-0.46 in the XX/Y female genotype. We crossed males harboring either 

the l-0.46 or the Ywt chromosomes to females XX/Y and the unmated female 

progeny was used as the source of RNA extraction for the microarrays (Figure 

4.6). We performed eight microarray replicates comparing the two mentioned 

chromosomes in the XX/Y background.  

 

Figure 4.6 Crossing scheme to generate XX/Y aneuploid females. Females 
harbor a compound X chromosome which is represented by the ^ symbol linking 
the two X chromosomes. y (yellow), bw (brown), e (ebony), ci (cubitus 
interruptus), ey (eyeless). 

 

  

 

105



 

 We observed hundreds of gene expression differences between XX/Y-0.46 

and isogenic XX/Y females bearing a wild-type Y chromosome (Ywt). This 

observation agrees with a recent study done by our collaborators (Bernardo 

Lemos and Dan Hartl) showing that natural isolated Y chromosomes affect gene 

expression in XX/Y females, even though in this genetic background Y-linked 

genes are not transcribed (167). However, the number of differentially expressed 

genes was about half in XX/Y females than in males (Figure 4.7). This could be 

because the additional heterochromatin provided by the extra X chromosome 

buffers the heterochromatin/euchromatin ratio so that gene expression is no 

longer as responsive to rDNA changes in the Y chromosome. Another possibility 

is that the presence of an extra rDNA array on the females could essentially 

partially complement for the loss on the Y-linked rDNA.  
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Figure 4.7 Differentially expressed genes in XX/Y females harboring the l-0.46 
chromosome. Analysis was done relative to XX/Y females harboring Ywt. Data is 
presented as in Figure 4.2.  
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Figure 4.8 Differentially expressed genes overlapped between males and 
females. A. Venn diagrams representing number of differentially expressed 
genes unique or common to X/Y l-0.46 males and XX/Y l-0.46 females (at P < 
0.05). Left, observed values. Right, expected by chance values. B. Breakdown 
of overlapping genes from observed values on A, separately categorizing genes 
whose expression was increased (up) or decreased (down) relative to the wild-
type Ywt chromosome in the same genetic background. C. Correlation of log-
fold-changes comparing differentially expressed genes between l-0.46 and Ywt 
in males (X axis) to those differentially expressed between l-0.46 and Ywt in 
females (Y axis); rho = 0.45. 

 

 

A. 

!

B. 

!

C. 
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 Nevertheless, we observed a significant enrichment of differentially 

expressed genes shared between males and females harboring the same Y 

chromosome; at P < 0.05, 185 genes were shared between the sexes whereas 

only 23 shared genes were expected by chance alone (Figure 4.8A). While the 

number of affected genes differed between the sexes, the magnitude of the 

effect of rDNA deletion in gene expression was similar with a significant 

correlation in fold-changes between the sexes (rho = 0.45, P < 10E-16) (Figure 

4.8C) and a significant association between down-regulated genes (Figure 

4.8B). 

 A similar trend of up- and down-regulation and commonly shared genes 

remained across a range of P-values used for ascertaining differential 

expression (Figure 4.9). Together, our data show that rDNA copy number 

variation commonly affects male and female transcription and identifies a similar 

set of “rDNA-sensitive” genes. These data suggest that the response of a gene 

to rDNA deletion is an attribute of the gene structure and/or its regulation, rather 

than a sex-dependent effect. 
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Figure 4.9 Observed and expected data at different P-values for overlapping 
genes between males and females. Data from Figure 4.8A,B at different P 
values. Values observed and expected by chance are shown. A. For P < 0.01. 
B. For P < 0.005. C. For P < 0.001.  

 

 

 

A. 

B. 

C. 
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 Eukaryotic genomes posses a hundred to thousands of rDNA copies (76) 

and they have evolved mechanisms to restore the copy number in case of rDNA 

loss (i.e. rDNA magnification) (90). However, they maintain the number within a 

certain range as opposed to have unlimited expansion. Based on the hypothesis 

that an extra rDNA array is what causes the diluted effect in females, it is 

reasonable to suggest that the controlled expansion in copy number could be a 

mechanism to keep the number of rDNA copies within the range of sensibility 

that the cell requires to sense when there are changes in copy number and 

respond to it. It is possible then that the conserved mechanism of natural rDNA 

loss by extra chromosomal circle formation (95) has evolved to ensure that the 

cell will keep the number of rDNA copies at the size that is required for the 

specific tissue or developmental stage that it belongs to.  

 

Effects on Gene Expression Are Genome Wide and Not Biased 

 One mechanism for the wide-ranging effects of rDNA copy number on 

gene expression might arise if deletions of the rDNA compromised global 

heterochromatin structure and limited its spreading to euchromatin (168, 169). 

Indeed, this is suggested by our observation that four heterochromatin-induced 

variegating alleles were affected by rDNA deletion (Chapter III). To address the 

issue we tested two strong predictions of such a heterochromatin spreading 

model: 1) that genes residing in the proximity of heterochromatin will be more 
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strongly affected by rDNA copy number changes, and 2) that the majority of 

gene expression changes will be seen as increase in expression as repressive 

heterochromatin is reduced.  

 We therefore tested for a statistically significant enrichment of differentially 

expressed genes according to their cytological location. The cytological 

distribution of differentially expressed genes was visualized by plotting according 

to their genomic location by cytological band, the number of differentially 

expressed genes from all three Y-chromosomes (Figure 4.10A, black bars; 

Figure 4.10B, black line) and the number of analyzed genes from the microarray 

(Figure 4.10B, grey line and bars). No cytological band showed a significant 

enrichment of differentially expressed genes. Furthermore, in agreement with my 

previous observations of the effects on the StubbleV gene (Chapter III), the 

effects were not biased towards any specific direction of regulation.  

 For instance, while we found that the number of differentially expressed 

genes drops near the cytological bands juxtaposed with centric heterochromatic 

blocks (bands: 20, 40/41, 80/81)  (Figure 4.10A), this is indistinguishable from 

our expectation based on lower gene densities in these regions (Figure 4.10B).  
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Figure 4.10 Dispersion of differentially expressed genes on the genome. A. 
Number of differentially expressed genes either up-regulated (above stylized 
chromosome map) or down-regulated (below chromosome map) as a function of 
cytological location. Each cytological division shows grouped data for each of 
the three Y chromosomes (bb-0.87, bb-0.85, and l-0.46) relative to the wild-type 
Ywt at P < 0.05. Map represents euchromatic regions of the genome and 
location of centric heterochromatin (ovals). B. Distribution of microarray spots 
yielding usable data for this study (gray bars) with scanning 5-division average 
(upper lines, gaps are intended to avoid centromeric regions). Overlaid scanning 
5-division average (lower lines) of data from all rDNA deletion chromosomes 
(taken from A) are compared at same scale. C. Scanning 5-division average of 
number of differentially expressed genes from males (upper lines) and females 
(lower lines) bearing l-0.46, relative to individuals bearing the wild-type Ywt 
chromosome (at P < 0.05). Cytological divisions are aligned across entire figure 
(dotted vertical lines). 
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 Furthermore, we could discern no general trend for genes near the 

telomeres (Bands: 1, 21, and 60/61). Finally, while loci on the heterochromatin 

rich fourth chromosome and X chromosome were less affected than were 

chromosome 2- and 3-linked genes (40 - 68% the frequency, Figure 4.10B, 

black lines), these trends are also indistinguishable from that expected given the 

distribution of genes analyzed (Figure 4.10B, gray bars and gray lines). This 

analysis indicated that the genes affected by rDNA deletion are evenly 

distributed in the genome, and are neither influenced by proximity to 

heterochromatin nor chromosome linkage. There was also no preponderant 

increase or decrease of differential expression.  

 Corroborating our conclusion that rDNA deletion affects the same set of 

genes in males and females, we saw that the distribution of affected genes in 

males and females was coincident (Figure 4.10C). Taken together these results 

argue against a simple heterochromatin spreading model but instead suggest 

that loci with sensitivity to rDNA copy number variation are scattered through the 

genome. 

One aspect to consider here is that since we used whole flies for RNA 

extraction for this analysis, the data obtained represents averaged gene 

expression profiles from several types of cells. It is known that different tissues 

exhibit unique gene expression profiles conferred by different chromatin 

structures (152, 153), hence the effect of the rDNA deletions on gene expression 

can vary according to the type of tissue analyzed. Thus, it is reasonable to 
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hypothesize that if we could obtain microarray expression profiles from small 

pieces of tissue, for instance just a piece of brain, the outcome would possibly 

be differential gene expression biased towards a specific direction of expression, 

and perhaps also exhibit chromosomal clustering of the differentially expressed 

genes. Since gene expression changes in a specific cell type are known to occur 

in diseases like cancer (170), the analysis of expression profiles in a tissue 

specific manner would reveal if there are cell types that are more tolerant to 

changes in the rDNA copy number,  which could be useful for therapeutic 

applications.  

 

rDNA Variation Greatly Contributes to the Y Chromosome Natural 

Polymorphisms that Cause Differential Gene Expression 

 An intriguing possibility is that polymorphisms of the rDNA copy number in 

naturally occurring Y chromosomes could account in part for the differential 

genome-wide modulation of gene expression exerted by these chromosomes. 

One indication that such rDNA-driven Y-linked variation is relevant came from 

categorizing the differentially expressed genes by Gene Ontogeny (GO) 

category. These analyses pointed to five categories that overlapped with those 

discovered by comparing differential gene expression due to natural Y 

chromosome polymorphisms (Table 4.1) (164). Interestingly, we found that two 

of these categories are linked to energy metabolism: mitochondrial membrane 

and electron transport, for both males and females. It is known that ribosome 
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production is a high energy consuming cellular activity. Hence, ribosome 

biosynthesis must rapidly adapt to changes in intracellular energy status. 

Balancing the intracellular energy is critical for cell survival, indeed energy 

metabolism has been implicated in aging and aging-related diseases (171). 

Therefore, it is important to understand the alterations in mitochondrial energy 

metabolism. Aging studies in C. elegans, Drosophila, mice and humans have 

identified misregulation of genes involved in ATP synthesis and mitochondrial 

respiration but it is not known if the changes in gene expression are a cause or 

consequence of the aging process (172, 173). Finding enrichment in these two 

groups of genes suggests that rDNA copy number could influence the regulation 

of expression of genes involved in energy metabolism. Aging studies of flies 

carrying the YrDNADef chromosomes could help to discern whether the 

expression of those genes is a cause or a consequence of the aging process.  

 These data suggest that rDNA copy number itself might play a central role 

regulating energy metabolism through modulation of gene expression.  

An additional hypothesis from these data is the following: our data 

showed that alterations in rDNA copy number cause differential expression of 

almost half of the genome. These changes in gene expression could be 

interpreted by the cell as a signal of stress, which could trigger the apoptosis 

pathways. It is known that stress-induced apoptosis is caused by a perturbation 

of the mitochondrial membrane (174). The mechanism of the membrane 

perturbation is unknown, but it is known that after the perturbation occurs 
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several pro-apoptotic proteins and cytochromes are released from the 

mitochrondria to the cytosol. The release of these proteins leads to the activation 

of the caspase pathway that directs the cell to apoptosis (175). We do not 

observe a phenotype in the male flies that were used for microarray analysis. 

Thus, if the gene expression alterations caused by the rDNA deletions are 

signaling the apoptotic pathway, there must also be a response mechanism 

counteracting this pathway. I hypothesize that the enrichment in differentially 

expressed genes involved in mitochondrial membrane and electron transport 

could be due to the counteracting response mechanism, perhaps by preventing 

mitochondrial membrane perturbation. Consistent with this hypothesis, I also 

found that several genes involved in proteolysis were down regulated; some of 

them were members of caspase pathways and apoptosis regulators (data not 

shown). Disruption of apoptosis is known to be another marker of cancerous 

cells (175). Together this data with the additional observations that are common 

between cancerous cells and rDNA deletions, such as increased rRNA 

transcription and changes in nucleolus structure (99), suggest that changes in 

rDNA copy number could be a major determinant in the change of cellular 

reprogramming that leads to tumorogenesis.  
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Table 4.1 Gene Ontogeny (GO) categories for which differential gene 
expression was significantly enriched.   

 
These categories overlap with those observed in the Y natural isolated 
chromosomes study. Blue cells display categories for males. Red cells display 
categories for females. 

 

 Finally, to address the relevance of rDNA copy number variation in natural 

populations directly, we integrated data from gene expression variation due to 

natural Y-linked polymorphisms and our induced changes in rDNA copy number 

(YrDNADef). We found a striking level of overlap in the identity of differentially 

expressed genes compared to the level expected by chance in pair wise 

comparisons (Figure 4.11), as well as when comparing the total number of 

differentially expressed genes between the natural isolated Y chromosomes and 

our YrDNADef chromosomes (Figure 4.12).  
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Figure 4.11. Pair wise overlaps of differentially expressed genes among 
YrDNADef chromosomes and Y natural isolates. A. Observed number of shared 
genes differentially expressed across pairwise chromosome comparisons. P < 
0.05 data are shown above the diagonal (white cells), P < 0.005 are shown 
below the diagonal (grey cells), and total number (shared plus unique) of 
differentially expressed genes (P < 0.05 / P < 0.005) are shown on the diagonal 
(blue cells). B. Expected numbers for A calculated from randomized datasets. 
Data presented as in A.  

 

 

A. 

B. 
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Figure 4.12 Overlapped genes between the two groups of Y chromosomes. A. 
Venn diagrams representing shared and unique differentially expressed genes 
encompassing the three YrDNADef chromosomes (rDNA deletions) relative to the 
wild-type Ywt and the three natural isolated chromosomes (wild Y isolates) at P 
< 0.05 and P < 0.005. B. Expected overlapping and differentially expressed 
genes for the data on A.  

 

 Using real-time PCR we confirmed that the natural Y chromosomes 

possessed polymorphisms in rDNA copy number, the range of which included 

the two more mild rDNA deletions used in this study: bb-0.85 and bb-0.87 

(Figure 4.13A). Moreover, the effect of naturally occurring Y chromosomes from 

YOhio and YZimb on PEV are consistent with effects seen with our induced 

rDNA deletions, which showed that small rDNA arrays act as Suppressors of 

PEV (Figure 4.13B) (Chapter III) (167).  

A. 

B. 
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Figure 4.13 rDNA array size for the natural isolated Y chromosomes. A. Copy 
numbers of rDNA arrays for natural Y chromosomes used in this study. Copy 
numbers are reported as a percentage of the Ywt chromosome.  Plots show 
average ± 1 S.D. B. Pictures of eyes from males that harbor the In(wm4h) 
chromosome, where the origin of the Y chromosome is the only source of 
genetic variation. Pictures taken from Lemos et. al. 2010 (167)!""

 

 Finally, fold-changes estimated between natural Y chromosome 

comparisons and induced rDNA deletion chromosome relative to the wild-type 

chromosome are significantly correlated (rho = 0.25 - 0.55, P < 10E-12). Since 

the square of the correlation coefficient rho (!2) estimates the fraction of the 

variance in the Y-axis that is explained by the X-axis in a linear regression 

analysis (176), our analyses indicate that approximately 5 - 30% of gene 

expression variation detected on natural Y chromosomes might be due to 

polymorphisms in the rDNA alone (Figure 4.14).  

 
 
 

B. A. 

YOhio YZimb. 
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Figure 4.14 Estimated contribution of rDNA deletions to the differential gene 
expression conferred by the Y chromosome in natural populations. A. 
Correlation of log-fold-changes comparing differentially expressed genes 
between l-0.46 and Ywt (X axis) to those differentially expressed between 
YZimb. and YOhio (Y axis); rho = 0.55, P < 10E-16. B. Correlation of log-fold- 
changes for l-0.46 versus Ywt  (X axis) compared to YCongo versus YZimb (Y 
axis); rho = 0.38, P < 10E-12. C. Correlation of log-fold-changes for l-0.46 
versus Ywt (X axis) compared to YCongo versus YOhio (Y axis); rho = 0.25, P < 
10E-6.  
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An aspect to consider here is that even though the two analyses were 

done in the same genetic background, the Y chromosomes that were compared 

(from natural isolates and YrDNADef) are different. This means that they can  

vary in several regions throughout the chromosomes (i.e. satellite repeats, 

transposable elements, and other heterochromatic blocks). This suggests that 

the estimated 5-30% contribution of the rDNA to the differential gene expression 

observed in natural isolates might come as well from the variation in these 

sequences. However, the absence of tools to investigate these other 

polymorphic regions on the Y chromosome impedes our ability to further 

differentiate the individual contributions of these regions. 

The ability to modulate the genome represents an important feature to 

thrive in hostile environments. Our data suggests that the differential gene 

expression induced by Y chromosomes isolated from natural populations is 

caused in part by alterations in rDNA array size. An interesting observation 

suggesting that the changes in gene expression caused by alterations in rDNA 

array size are important for the adaptation to environmental changes came from 

a Gene Ontology (GO) analysis that I performed on the group of genes that were 

differentially expressed in response to both the Y natural isolates and my 

YrDNADef chromosomes (data not shown). This analysis revealed that most of 

the statistically significant enriched genes that are common for the two groups 

analyzed, are involved in immune defense processes against pathogens such 

as: antibacterial humoral response, humoral immune response, response to 
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other organism, antimicrobial humoral response, etc. In Drosophila, it is known 

that the interaction between host and parasites initiates an immune response 

that is characterized by specific gene expression patterns. While these genes 

responding to the parasite are characterized, the genes responsible for the 

initiation of the response are poorly understood. Importantly this initiating 

response, like the rDNA arrays, varies both within and among populations (177). 

Therefore, we can hypothesize that variations in rDNA array size could mediate 

the adjustment of the genome in response to differences in natural environments 

such as presence and diversity of pathogens, either directly by inducing changes 

in the expression of immune response genes or indirectly by inducing changes 

in the genes that initiate the immune response.  

The observed effects on gene expression are probably not unique to 

Drosophila, as phenotypic changes in response to environmental alterations are 

known to happen in plants such as flax and Arabidopsis, which have been 

attributed to genome alterations that map to the rDNA (171, 178). In Arabidopsis 

differences in methylation of the 45S rDNA gene have been observed in different 

natural isolates. In flax, environmental changes generate stable phenotypic 

alterations that mapped to changes in the rDNA array size principally. In 

addition, variation in 45S and 5S rDNA arrays have been observed among 

healthy humans (157), and a positive correlation between rDNA copy number 

and genome size has been found in different species of plants and animals (76), 

suggesting that the variation in rDNA size could be mediating changes in gene 
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expression in several organisms. Together these suggest that changes in rDNA 

copy number are a common characteristic of the eukaryotic genome, which 

influences gene expression and has possibly evolved to modulate the genome in 

response to environmental changes for the adaptation and survival.   

In addition, Lyckegaard and Clark showed that there is variation among 

natural isolated Y chromosomes in the rDNA arrays and also in another 

repeated array, the Suppressor of Stellate (77). This suggests that changes in 

repeated sequences other than the rDNA could also influence gene expression. 

I have developed the tools to study the rDNA array, but it would be also 

interesting to develop a strategy to manipulate other repetitive sequences on the 

genome in order to determine whether they have a role and to what degree they 

contribute to the differential gene expression observed in natural populations.  

 

CONCLUSION 

We had previously shown that the rDNA has an effect on chromatin 

balance, which influences gene expression. Our collaborators had shown that 

polymorphisms in natural isolated Y chromosomes induce differential gene 

expression of thousands of genes. However, two important questions were left 

unanswered from these two observations: 1) to what extent does the rDNA 

affect gene expression in the genome?, and 2) which are the polymorphic 

regions in the natural isolated Y chromosomes responsible for the effects on 

gene expression? 
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 Here I report data that shows that the effects of rDNA deletions in gene 

expression occur globally in about half of the genome, without clustering or bias 

ib the direction of change. In addition, these effects are not sex specific, as they 

can be observed in males and females harboring an rDNA deletion. 

Furthermore, by comparing our analysis with the previous analysis on natural 

isolated Y chromosomes, we found that the rDNA contributes ~5-30% to the 

differential gene expression caused by the natural isolated Y chromosomes.  

 Together this data shows that the rDNA is a modulator of global gene 

expression. This modulation might have important implications such as 

adaptability of the species to environmental changes and evolution. Since there 

are other repetitive sequences present in the Y chromosome (i.e. Suppressor of 

Stellate, satellite repeats), these sequences might represent part of the unknown 

70% contribution to the differential gene expression observed in natural 

populations.  

!
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CHAPTER V 

SUMMARY AND DISCUSSION 

SUMMARY 

I developed a genetic strategy to specifically remove rDNA cistron copies 

by the induction of the I-CreI endonuclease and to molecularly estimate the 

rDNA cistron copy number by Quantitative Real-Time PCR. The strategy allows 

one to obtain graded deletions; hence I created an allelic series of twenty-five 

rDNA deletions. I found that deletions of the rDNA magnify an average of fifteen 

cistron copies per generation and that I-CreI-induced double-stranded breaks 

can cause magnification (Chapter II). I tested the effect of these rDNA deletions 

on gene expression using different reporter genes that are localized in 

chromosomal rearrangements that exhibit Position Effect Variegation (PEV). I 

observed that the rDNA deletions strongly modify the expression of the reporter 

genes and that the size of the rDNA array is inversely correlated with the effect 

on gene expression. Consistent with these results, I found that spontaneously 

occurring rDNA deletions have the same effect on gene expression. 

Furthermore, I found that rDNA deletions affect the nucleolus size and structure 

(Chapter III). With our collaborators, we tested the extent of these effects on 

gene expression by performing microarray hybridization analysis. We found that 

rDNA deletions affect the expression of about half the genes on the genome, 

that this effect is subtle (mostly < 1.5 fold expression), and that the affected 

genes do not cluster in any particular region of the genome. In addition, the 
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effect can be observed in both sexes; as we detect a set of “rDNA sensitive” 

genes that change regardless of the sex of the individuals analyzed. In addition, 

we compared previous data of differential gene expression caused by Y 

chromosomes isolated from natural environments with the data from the Y 

chromosomes with induced rDNA deletions. We found that there is a significant 

overlap within the sets of differentially expressed genes from both studies, 

suggesting that the rDNA is a major contributor to the gene expression 

differences caused by Y chromosomes isolated from natural environments 

(Chapter IV). Together the data I presented here show a previously undescribed 

role of the rDNA as a major regulator of gene expression, which has important 

implications for different areas of biology.   

 

DISCUSSION 

For many years heterochromatin was underestimated, misunderstood 

and oversimplified. It was considered as “junk” DNA because of its enriched 

composition in repetitive sequences and transposable elements (179). This 

erroneous view changed when important characteristics were attributed to it, 

such as the presence of essential protein coding genes and crucial chromosome 

functions like: centromeres, telomeres and meiotic chromosome pairing (12, 

180). Through genetic and biochemical approaches several characteristics of 

the heterochromatin composition have been discovered, such as histone 

modifications and associated non-histone proteins. Furthermore, most of the 
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heterochromatin related proteins are dose sensitive, which means that they are 

maintained at specific levels. This suggests that the balance between 

heterochromatin and euchromatin is very sensitive, as it can be altered just by 

increasing or decreasing the dosage of a single protein such as HP1, histone 

methyltransferases, histone deacetylases, histones acetyltransferases, etc. In 

natural environments, organisms are constantly exposed to short and long term 

changes that can have an impact on gene expression such as nutrient 

availability, radiation, temperature, light, chemicals and others (52, 181). 

Adaptation to environmental changes requires the fine tuning of gene expression 

in order to survive (182). Hence it is reasonable to think that there could be 

conserved mechanisms that are able to fine-tune gene expression in order to 

find a proper balance that adapts the organism to these changes.  

 

The Model 

The model I present here suggests that the X and Y rDNA arrays keep 

the balance between heterochromatin and euchromatin by maintaining the array 

size within a range that allows the coexistence of active and inactive copies, 

which I called “rDNA equilibrium” (Figure 5.1). Mutations in heterochromatin 

components that affect nucleolar structure (119) or spontaneous deletions to the 

rDNA array cause alterations in the rDNA equilibrium by forcing the inactive 

copies to become active. This forced activation leads to chromatin imbalance by 

displacing heterochromatin components, which can be redistributed in the 
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genome by binding to other sequences (Figure 5.1). The silencing factors are 

released to find new targets in the genome causing activation and repression. 

Some sequences might be more susceptible to recruitment of the newly 

released heterochromatic factors making them “rDNA sensitive genes.” 

 

 

 

 

Figure 5.1 Model for rDNA-mediated chromatin balancing. The rDNA maintains 
an equilibrium by having certain ratio of copies epigenetically silenced / active 
copies. This equilibrium helps to maintain the global balance of euchromatin / 
heterochromatin. Deletions to the rDNA drive the activation of silent copies, 
which disrupt the equilibrium and as a consequence of this, the chromatin 
balance is changed. 
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Thus it is reasonable to hypothesize that the cell could balance the 

system by getting rid of any block of heterochromatin that is not essential (e.g. 

that contains satellite repeats, transposable elements). However, instead by 

using an essential sequence the system guarantees the stability of the genome 

by ensuring a lower limit to the copy number. In addition, because of the 

repetitive nature, the ability to magnify and the multiple levels of transcriptional 

regulation, the rDNA is a convenient locus to use for this purpose. Furthermore 

there might be more repetitive sequences that contribute to this regulation and 

possibly serve as backup mechanisms (i.e. Suppressor of Stellate, satellite 

sequences).  

This provides an explanation for why the rDNA arrays have a much 

higher copy number than what the cell requires to survive, and supports recent 

data suggesting the high copy number as a means to maintain genome integrity 

(145). Previous studies have suggested that deletions to the X-linked rDNA 

array act as enhancer of variegation (124, 125). The X and Y-linked rDNA arrays 

differ in some aspects (79) but both have shown to exert effects on gene 

expression. Hence, interplay between the two rDNA arrays could be a 

mechanism that modulates chromatin, an additional role for the rDNA that until 

now has been unseen. 

Together my data suggest that the rDNA is a major regulator of global 

gene expression. Since chromatin structure is the main determinant of gene 

expression, the rDNA acts as an architect of this structure by balancing the 
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euchromatin/heterochromatin ratio. In Drosophila it is not known what factors are 

involved in silencing the rDNA, but it is known that the silencing of the rDNA can 

be altered by changes in classical heterochromatin components and modifiers 

(119). The silent copies of the rDNA are a recruiting point for heterochromatin 

components such as HP1 and Sir2. In addition to the rDNA, these two proteins 

are known act on other heterochromatic and euchromatic regions to mediate 

heterochromatin silencing, euchromatic gene silencing. HP1 is also known to 

mediate euchromatic gene activation (162, 183, 184). These and several other 

chromatin modifiers are present in the nucleus in a specific dosage, such that an 

increase or decrease yields a phenotype (52). It has been shown in budding 

yeast that delocalization of SIR factors from the telomeres causes its 

redistribution over all chromosomes producing misregulation of gene expression 

(185). Hence, it is reasonable to hypothesize that as a consequence of the 

induced activation of the silent copies on the X-linked rDNA array, the 

displacement of heterochromatin components away from the rDNA could lead to 

redistribution of these factors on all the chromosomes producing both gene 

activation and silencing. 

In addition, there is evidence that suggests RNAi as a regulator of 

another multiple tandem array in Drosophila called the Stellate gene (186). 

Since the rRNA is the most abundant in the cell (75) it is challenging to find 

small RNAs that could be involved in the silencing of the repeats, since it could 

be interpreted as degradation products. Components of the RNAi pathway 
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contribute to the stability of the nucleolus, suggesting that this pathway could be 

mediating the silencing of the rDNA inactive copies (119). Consistent with this 

finding, I detected alterations in the array sizes of two Y-linked rDNA arrays of 

different origin, after they were introduced to mutants for several components of 

the RNAi pathway such as Piwi, Ago1, Ago2, Armitage, Drosha, loqs, Dicer2, etc 

(Chapter III). In mammals, binding of the NoRC subunit Tip5 to a noncoding 

RNA from the intergenic spacer is crucial for stabilization of the complex and 

heterochromatin formation. The noncoding RNA shares sequence identity with 

the 45S promoter, which could serve to direct the NoRC to the promoter for 

silencing (75). The roles of the RNAi silencing machinery in heterochromatin 

formation in Drosophila have not yet been elucidated to the same extent as in 

fission yeast, but it is reasonable to hypothesize that RNAi could be the mediator 

of silencing of the rDNA repeats and probably could mediate silencing of other 

genes in the genome by chromatin silencing and post transcriptional silencing 

when delocalized from the rDNA repeats. There is still so much to learn about 

this phenomenon to elucidate a plausible mechanism for the pathways through 

which the rDNA deletions alter global gene expression. 

 

Copy Number vs. rDNA Transcription 

My data showed a positive correlation between the size of the rDNA 

deletion and the magnitude of the effect on gene expression. However a 

question that still remains is whether the rDNA copy number causes the effects 
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on gene expression directly or indirectly. For instance, are the effects a 

consequence of the loss of rDNA copies or the transcriptional activation of the 

silent rDNA copies as response to the loss? Evidence that follows suggests that 

rDNA transcriptional activity correlates with gene expression changes. I found 

similar levels of rRNA in the lines that harbor the deletions compared to wild type 

(Chapter III). This indicates that to compensate for the deletion, there is either an 

increase in rRNA transcription per gene, activation of silent copies on the X-

linked array or both.  In addition, activation of these silent copies would be 

predicted to open the chromatin structure and promote the formation of extra 

chromosomal nucleolus, as observed for mutations in heterochromatin 

components (119) and as observed in my YrDNADef lines (Chapter III). 

Conversely, when rDNA transcription was reduced by treatment with the RNA 

polymerase I inhibitor rapamycin, I observed enhancement of variegation of the 

wm4 allele, and an increase in the nucleolus volume (data not shown). Together 

this data suggest that the rDNA transcriptional activity determines the changes 

in gene expression. A similar interesting test would be to measure effects on 

gene expression when inducing the activation of the silent rDNA copies in a wild 

type array. Enhancement of variegation would be expected as would be 

predicted by this model. 

In agreement with this hypothesis, additional evidence suggests that 

transcription of rDNA copies has an additional role to the cell other than rRNA 

production. For instance, a recent hypothesis has postulated a major role of the 
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rDNA copy number in maintenance of the genome integrity, suggesting that 

maintenance of a high copy number allows the genome to keep a subset of 

copies silenced. This in turn enables efficient replication-coupled recombination-

DNA repair by allowing condensin to associate to the silent copies and mediate 

sister chromatid cohesion. In other words, activation of most of the rDNA copies 

at the same time is deleterious for the cell (145). Furthermore, it is known that 

the number of active rDNA copies varies between different cell types, which 

means that the fraction of rDNA genes that are actively transcribed changes 

during development and differentiation (149). This suggests that rDNA activity 

could mediate the differential gene expression that is observed in cell 

determination. In addition, Laferte et. al. showed that Pol I transcriptional activity 

induces the transcriptional activity of Pol II and Pol III (187, 188). How Pol I 

transcription affects Pol II and Pol III transcription remains elusive, but is it 

important to understand how this interplay occurs given that deregulation of 

ribosome biogenesis and subsequent changes in nucleolus structure and gene 

expression are associated with the alterations in cell cycle and cell growth that 

are linked to cancer and aging (155, 189). My data might help to understand the 

connection of the rDNA to some of these phenotypes.  

 

The clonal nature of Position Effect Variegation 

The clonal patches that exhibit PEV in the eye of a fly which harbors the 

In(1)wm4 rearrangement, occur due to the ability of the heterochromatin to 
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spread over the white+ gene. It is known that inactivation of the white+ gene is 

determined at the end of the first larval instar, and it is based on cell lineage 

when around 20 eye precursor cells are present (65). However, it is unknown 

what confers the ability of some cells to silence (Figure 5.2, black arrow) while 

other cells are unable to do so (Figure 5.2, white arrow). In other words, it is 

unknown what is the cause of somaclonal variation. 

 

 

Figure 5.2 Eye with differential expression of the white+ gene. Black arrow is 
showing the patches, where white+ is silent. White arrow points to the patches 
where white+ is active.  
 

My data suggest that this ability is conferred by the amount of rDNA 

copies found in the progenitor cells of the eye. Likely there are two ranges of 

rDNA levels that determine if the gene is heterochromatically silenced or not 

(Figure 5.3, green and red bar). The progenitor cell has a high number of rDNA 

copies such that the white+ gene should be off. After mitotic divisions, the rDNA 

could be lost at different degrees such that the daughter cells will have less 

rDNA than the progenitor but some will still be within the range of rDNA copy 
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number that is required to promote white+ gene silencing. On the other hand, 

other daughter cells might have lost enough rDNA to shift the chromatin balance 

towards the activation of the white+ gene (Figure 5.3).  

 

 

Figure 5.3 Model to explain differences of white+ expression in the eye. Eye 
precursor cells start with a high level of rDNA copies that promote the gene 
silencing. After several divisions, some daughter cells will lose rDNA at a low 
degree, such that the white+ gene will remain inactive. In contrast, in some 
daughter cells the levels of rDNA loss are higher so that the white+ gene can be 
actively transcribed. 
 

 

This interpretation of the data can also be used to describe the 

differences in expression of the white+ gene observed between isogenic sibling 

flies. Accordingly, the parental fly has a high level of rDNA copies, which is 

enough to establish heterocromatin-mediated silencing of the white+ gene 

(Figure 5.4, Starting point).  The progeny could have different degrees of rDNA 

loss, hence some could have eye progenitor cells starting with a high copy 
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number, which might eventually lost more rDNA in the daughter cells, but most 

of them would remain within the level that keeps the white+ gene silenced 

(Figure 5.4, white eye). In contrast, some progeny might have undergone higher 

rates of rDNA loss in early development, such that the progenitor cells might 

start with already low levels that are unable to maintain the heterochromatic 

silence (Figure 5.4, red eye).    

 

 

Figure 5.4 Model to explain differences of white+ expression between siblings. 
The parental fly has high levels of rDNA to maintain silenced the white+ gene. 
The progeny inherits this level of rDNA but after several mitotic divisions some 
progeny maintains the high levels of rDNA copy number that silence the white+ 
gene, while others have a higher rDNA loss rate that activates the gene. 
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A possible mechanism 

The observed changes in the volume of the nucleolus could be the 

mechanism of how the heterochromatin factors are redistributed in the genome. 

This is based on two characteristics of the nucleolus: 1) the role in maintenance 

of chromosomal territories, and 2) the ability to sequester hundreds of proteins.    

The nucleus is a very complex environment that contains several nuclear 

bodies such as the nucleolus, histone locus bodies, splicing factor 

compartments, Cajal bodies, promyelocytic leukemia bodies, Gemini bodies, 

and several others (190). In addition to this the nucleus contains the 

chromosomes and recent studies have proposed that the chromosomes 

preferentially occupy a specific volume within the nucleus, which is known as 

chromosomal territories (191). The positioning of the chromosomes in the 

nucleus is a major determinant of gene expression, hence nuclear organization 

has been proposed to be a novel type of epigenetic regulation. In agreement 

with this, differences in how the chromosomes are distributed in the nucleus 

have been observed among different cell types and in cancerous cells (191, 

192). In addition, a recent study in the yeast S. cerevisiae found that all the 

genes are not randomly positioning relative to the nuclear envelope and the 

nucleolus, hence it was proposed that the nucleolus has a very important role in 

organization of the chromosomal territories (193). Since I observed that changes 

in rDNA copy number affect the nucleolus size and structure, it is plausible to 

think that these alterations, or similar alterations in any other nuclear body, could 
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disrupt the chromosomal territories leading to misregulation of gene expression. 

This resembles an observation in budding yeast, where the telomere sub 

compartment was disrupted, but the SIR factors (telomere silencing proteins) 

remained unaffected. The effect of this disruption was alteration in genes 

throughout the entire genome, suggesting that the SIR factors were redistributed 

to other sequences different than the telomeres (185). This hypothesis predicts 

that another mechanism for altering global gene expression would be the 

alteration of other nuclear bodies. Possibly because the nucleolus is the most 

prominent nuclear body in the nucleus, the effects of the alterations on this 

compartment could be the most extreme. 

The nucleolus contains hundreds of proteins involved in multiple nuclear 

processes such as ribosome biogenesis, chromatin structure, translation, 

chaperones, etc (194). Many of these proteins are released from the nucleolus 

when they are required to carry out a specific function (115). For example, the 

protein Modulo acts as a suppressor of variegation and it is found in the 

nucleolus where it is believed to be regulated by this localization (195). 

Therefore, it is reasonable to hypothesize that an alteration in the volume of the 

nucleolus could alter the physical capacity of the nucleolus to maintain the 

proteins it contains. These alterations in volume could also affect the role of the 

nucleolus to response to certain cues from the cell cycle and external conditions, 

by affecting its ability to regulate the interchange of proteins in and out of this 

compartment. Changes in nucleolus are commonly related to cancer, aging and 
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disease, which are cellular processes that also have alterations in transcription 

by RNA Polymerase I, II and III (155, 196, 197).  

Placing my model into perspective takes me to the very first definition of 

“epigenetics” that was coined by Conrad Waddington in 1942 and when he 

described the “epigenetic landscape” (198, 199). His hypothesis proposes that 

development occurs similarly to a ball rolling in a landscape that contains 

multiple hills and valleys. During development, cells are “balls” that take different 

paths on the landscape of valleys. Once they land in a valley, the landing 

determines cell fate. The “hills” of the landscape are the barriers that avoid 

uncontrolled differentiation. Cell determination is protected by these “hills”, which 

can change if there is enough perturbation (199). The current view of 

epigenetics refers to heritable modifications of genes that are unrelated to the 

DNA sequence, which exert changes in gene expression and can be variable 

among tissues of the same organism (200).  The model that I propose ties these 

two hypothesis together in a way that the “hills” that protect the “valleys” or cell 

state, are in a major part determined by the rDNA copy number. Activation of 

silent rDNA copies changes the chromatin state of different genes on the 

genome, and this can be heritably maintained and variable in different tissues of 

the same organism. Since the state of a cell is determined by its gene 

expression profile, my data suggest that the rDNA could be a major designer of 

this gene expression profile that maintains cell identity. 
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MATERIALS AND METHODS 

Fly Stocks for Induced I-CreI rDNA Deletions 

The Y10A chromosome is y+ Yw+, Dp(1;Y) y+, P{w+=RSw}10A (129). The 

first exon of the white+ gene in RSw is flanked by FRT sequences (201). A 

chromosome with FLP-induced loss of white+ is referred to as Y10B. Prior to 

using either Y10A or Y10B for these experiments, we crossed single males to 

females for three generations prior to our experiments. The X chromosome is y+ 

w67c23. The I-CreI expressing line is P{v+t1.8=hs-I-CreI.R}2A, v1/Y; Sb/TM6b, Ubx 

(202), obtained from the Bloomington Drosophila Stock Center. The attached-X 

chromosome is C(1)DX, y1 f1 bb0 (138). White-mottled stocks are In(1)wm4 or 

In(1)wm4h, light-variegator stock is ltx13/SM1, Cy lt. Deleted Y chromosome-

bearing males were backcrossed every generation to an isogenic stock. The fly 

strain variegating for green fluorescence protein, Y10C, is y!Y+, rDNA+, P{X97, 

ubiq-GFP, w+}10C, generated using FLP/FRT-mediated replacement (203) of a 

GFPS65T.Ubi-p63E transgene (cloned from y1 w*; In(2LR)Gla, wgGla-1 Bc1/CyO, 

P{w+mW.hs=Ubi-GFP.S65T}PAD1) at the Y10B P-element insertion site (129). For 

Chapter III and IV the names of the stocks used were changed to a name that 

includes the percentage of rDNA content left on the Y chromosome relative to 

the parental Y chromosome as follows: Ywt is!Y10B, YrDNA-0.87 is bb–465, 

YrDNA-0.85 is bb–76, YrDNA-0.49 is l– 481, YrDNA-0.46 is l–498, rDNA-0.41 is 

I-510, and YrDNA-0.36 is I-473. Flies were raised on cornmeal molasses agar at 

25°C and 80% humidity. 
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Induction and Screen for Deletions 

 Flies were allowed to lay eggs for 2–3 days, and larvae to develop for 1 

more day. Second and third instar larvae were heat-shocked in circulating water 

baths at 36°C. In experiments involving Y10A, larvae were heat-shocked on 2 

successive days, each treatment lasting 45 min. In experiments involving Y10B, 

larvae were heat-shocked on 1 day for 45 min. Heat-shock-induced expression 

was monitored by underrepresentation of I-CreI bearing male progeny in relation 

to P{v+t1.8=hs-I-CreI.R}2A, v1 / y1 w67c23 siblings and by cuticle or eye defects 

indicating expression-induced cell lethality (129). X–Y translocation 

chromosomes were identified as sterile yellow males and yellow+ females and 

were excluded from analysis. 

 

Real-time Polymerase Chain Reaction 

 Primers AGCCTGAGAAACGGCTACCA and 

AGCTGGGAGTGGGTAATTTACG amplify 63 nucleotides of the 18S gene in the 

35S rDNA. After confirming single melting curve kinetics using an ABI Step-One 

real-time polymerase chain reaction machine (Applied Biosystems) running 

Step-One v1.0 software, we used the Power SYBR Green master mix (Applied 

Biosystems) reagent, 500 nm primers, and 10 ng nucleic acid with 40 cycles 

alternating between 95° for 3 sec and 60° for 30 sec. DNA samples were 

prepared using a modified procedure from K. Dobie (204, 205). The organic 
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extractions were followed with ether extraction, rather than ethanol precipitation, 

which produced 1–2 mg total nucleic acid/fly. DNA was quantified using a 

Nanodrop and diluted to 10 ng/!L. Amplification data were processed by 

determining the point at which fluorescence first crossed a threshold of 10 

standard deviations above the average of all previous cycles (‘‘no amplification’’) 

of fluorescence from each extract, as determined by the Step-One software. 

Extracts were run in triplicate (occasionally quadruplicate) identical samples  

with 10 ng of template. Samples in discordance with the other samples (a 

threshold cycle with a difference of >2 standard errors of the mean) were 

interpreted as errors in reaction or reaction preparation and were excluded. 

Fewer than fifty of "5000 total samples were discarded using this criterion. 

tRNAK-CTT genes were amplified using primers 

CTAGCTCAGTCGGTAGAGCATGA and CCAACGTGGGGCTCGAAC to 

generate a 63-nucleotide product. Cycle differences between rDNA and tRNA 

genes (‘‘!CT’’) were compared to the same measurement from DNA pooled from 

a large population (~200) of adult flies or larvae bearing chromosome Y10B 

(‘‘!!CT’’), generating the percentage of wild-type rDNA quantity. Adult DNA was 

used for rDNAbb lines, and larval DNA was used for rDNAbb-l lines. The same 

pooled Y10B preparations of DNA were used for all experiments. We present 

either standard deviation (with pooled root-sum errors) if individuals are 

compared to other individuals or standard errors of the mean (with pooled root-

squared-sum errors) if array size from individuals is shown. 

146



 

 

Cytology and Photography 

 Photographs of adult flies were taken using a Nikon D2H camera attached 

to a Nikon SMZ- 1500 microscope. Neuroblast spreads were prepared following 

the protocol of S. Pimpinelli, S. Bonaccorsi, L. Fanti, and M. Gatti (206). 

 

Dissection  

 Larvae were raised on standard cornmeal molasses fly food supplemented 

with baker’s yeast and raised at 18°C. Salivary glands or brains from wandering 

third instar larvae where dissected in PBS. Tissues destined for 

immunofluorescence were processed immediately. Tissues destined for real-

time PCR were frozen at !70°C. 

 

Immunofluorescence and Confocal Microscopy  

 For immunofluorescence, salivary glands were washed in PBT (PBS 

supplemented with 0.1% Tween-80), blocked for 2 h in PBT with 10% BSA, and 

incubated with antibodies overnight at 4°C in PBT supplemented with 1% BSA 

and 500 mM NaCl. Mouse anti-fibrillarin antibody (Abcam) was used at a 1:200 

dilution, and goat anti-mouse conjugated to TRITC (Jackson ImmunoResearch 

Laboratories) was used at 1:200 as secondary antibody. Confocal fluorescent 

images were obtained on a Olympus FV1000 confocal microscope with a 100" 

immersion oil objective. Sequential excitation with lasers was done at 405 nm 
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and 543 nm to observe DAPI staining and rhodamine, respectively, and were 

analyzed with FV10-ASW 1.7 Viewer software. Three dimensional 

reconstruction of nucleoli and nucleus was done using ImageJ with the LOCI 

and Voxel-Counter plug-ins. Nucleolus volume was determined relative to the 

total nucleus. Ten nucleoli were analyzed in each of three different salivary 

glands for each fly line analyzed. 

 

Brain Tissue DNA Preparations  

 Frozen tissue was sonicated in 200µL PBS using a Misonix XL-2000 with 

three 10-s pulses and 20-s intervals. One microliter from the sonicated sample 

was used in each of triplicate real-time PCR reactions.  

 

RNA Analyses  

 RNA was extracted according to Bogart and Andrews (207). Pupae were 

C(1)DX/YrDNA-deletion, identified using the Y-linked yellow+ gene of Ywt (129), 

and adult flies were wm4/YrDNA-deletion. RNA was electrophoretically sepa- 

rated at 100 V for 215 min in 1.5% agarose with running buffer 400 mM Mops (3-

morpholinopropanesulfonic acid, 3-(N-morpholino)propanesulfonic acid), pH 7.0, 

100 mM sodium acetate, and 10 mM EDTA (EDTA) supplemented with 18% 

formaldehyde. RNA was stained with ethidium bromide and quantified relative to 

tRNA using a Typhoon TRIO Variable Mode Imager (GE Healthcare) running 

ImageQuant 5.2. RNA was isolated from five pools of 10 flies each for 
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comparison. 

 

Pigment Extraction  

 Fly heads were removed by banging frozen flies, and incubated in 8% 

NaOH, 66% ethanol (50 µL per head) in the dark for 24h at 37°C. Pigment 

quantification was done using a BioRad SmartSpec3000 spectrophotometer at 

320 nm (208) and 480 nm (46). 

 

Fly Stocks for RNA Extraction for Microarrays 

 The Y chromosomes with targeted deletions in the rDNA locus were 

introgressed into an isogenic (X chromosome, autosomes, and mitochondrial 

genome) laboratory stock as previously described (164). This isogenic stock is 

expected to contain very little genetic variation, and upon receipt was subjected 

to no fewer than eight additional generations of brother-sister mating to reinforce 

homozygosity of the genetic background. Four Y chromosomes were analyzed: 

The original Y chromosome that contains a wild type rDNA array (100%), two 

derived chromosomes with mild deletions 87% (YrDNA-0.87) and 85% (YrDNA-

0.85) of wild-type, and one grossly reduced derived chromosome that contains 

46% (YrDNA-0.46) of wild-type. Flies were grown under 24h light at constant 

temperature (25°C) and humidity (80%). XXY female flies were obtained by 

crossing males from the isogenic Y chromosome substitution lines described 

above to females from a laboratory stock containing a compound (attached) X 
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chromosome, C(1)M4, y. 

 

Gene Expression Analyses 

 Microarrays were approximately 18,000-feature cDNA arrays spotted with 

Drosophila melanogaster cDNA PCR products. For RNA extraction, newly 

emerged male flies were collected and aged for three days at 25°C, after which 

they were flash frozen in liquid nitrogen and stored at -80°C. When females were 

analyzed, they were collected within 7 hours of eclosion to assure they were 

unmated prior to aging under the same conditions as were males. Total RNA 

was extracted from whole flies using TRIZOL (Gibco-BRL, Life Technologies, 

Gaithersburg, Maryland). cDNA synthesis, labeling with fluorescent dyes (Cy3 

and Cy5) and hybridization reactions were carried out using 3DNA protocols and 

reagents (Genisphere Inc., Hatfield, Pennsylvania). Slides were scanned using 

AXON 4000B scanner (Axon Instruments, Foster City, California) and the 

GenePix Pro 6.0 software. Stringent quality-control criteria were used to ensure 

reliability of foreground intensity reads for both Cy3 and Cy5 channels. 

Foreground fluorescence of dye intensities was normalized by the Loess method 

in the library Limma (209, 210) of the software R. Significance of variation in 

gene expression due to Y chromosome origin was assessed with linear models 

and empirical Bayes moderated F statistics in Limma (209, 210). P values were 

adjusted for multiple testing by using the method of Benjamini and Hochberg to 
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control the false discovery rate (211). Test results were considered to be 

significant if the adjusted P values were less than 0.05, nominally controlling the 

expected false discovery rate to no more than 5%. Differential expression was 

also assessed using the Bayesian Analysis of Gene Expression Levels (BAGEL) 

model (212). False discovery rates were estimated based on the variation 

observed when randomized versions of the original dataset were analyzed. 

Similarly, expected values for the overlap between independent datasets were 

estimated by considering permuted versions of the datasets. Results were 

robust to choice of linear models in Limma or BAGEL. Enrichment in gene 

ontology categories was assessed using a modified Bonferroni correction with 

GeneMerge (213). Microarray gene expression data will be placed in the GEO 

database following publication. 
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