

DESIGN-BY-ANALOGY USING THE WORDTREE METHOD AND

AN AUTOMATED WORDTREE GENERATING TOOL

A Thesis

by

EDGAR VELAZQUEZ ORIAKHI

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2011

Major Subject: Mechanical Engineering

DESIGN-BY-ANALOGY USING THE WORDTREE METHOD AND

AN AUTOMATED WORDTREE GENERATING TOOL

A Thesis

by

EDGAR VELAZQUEZ ORIAKHI

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Julie Linsey

Committee Members, Michael Johnson

 Daniel McAdams

 Xiaobo Peng

Head of Department, Dennis L. O‟Neal

May 2011

Major Subject: Mechanical Engineering

iii

ABSTRACT

Design-by-Analogy Using the WordTree Method and an Automated WordTree

Generating Tool. (May 2011)

Edgar Velazquez Oriakhi, B.S, Prairie View A&M University

Chair of Advisory Committee: Dr. Julie Linsey

Design-by-Analogy is an approach that is widely embraced by engineers and

designers seeking innovative designs. The identification of analogies for use in

engineering design problems is usually a spontaneous action that is brought about by

accident and not by a systematic design process applied during the idea generation stage

of new product development. A Design-by-Analogy method developed to lead designers

systematically to analogies that can be useful for solving design problems is the

WordTree Method. The WordTree Method uses the semantic relationships between

verbs, extracted from design problems, to lead engineers and designers to potentially

useful analogies. The WordTree Method is a relatively new design method, and as with

any new design method, there is room for improvement. In this thesis, a tool called

WordTree Express (WTE) was developed to automate the generation of the database-

based WordTrees used during the application of the WordTree Method. This tool

(WTE) showed, from an experiment, that its implementation had a positive effect on the

opinions of the engineers and designers who used it for solving a design problem. The

effects found from surveying the participants suggested that the participants were more

iv

likely to apply the method in their future design problems with the WTE tool than when

they applied the method without the WTE tool. Although the WTE tool did not show

statistical significance (p<0.1) in increasing the number of analogies identified by the

participants, compared to the non-automated method, it did enable the process of

identifying analogies to be done faster. Tools designed to perform tasks faster and more

efficiently usually tend to have a positive effect on its users. Different ontologies were

studied for their value in the application to Design-by-Analogy in engineering.

Recommendations for further work advancing the WordTree Method and contributions

to Design-by-Analogy are presented in the future work section.

v

ACKNOWLEDGEMENTS

I would like to express my greatest sense of gratitude to my committee chair, Dr.

Linsey for her guidance, encouragement and constant support throughout the course of

this research. I would also like to thank my co-advisor, Dr. Peng for his guidance and

support. Thanks to the members of my committee, Dr. McAdams and Dr. Johnson for

their support.

I am grateful to all the students who participated in my study. This would not

have been possible without them. I would like to thank my lab mates for their support

and encouragement. I would also like to thank Texas A& M University and the

Department of Mechanical Engineering for giving me the opportunity to be a part of

such a great institution through the Pathways Fellowship Program.

Thanks to all my friends and colleagues and the department faculty and staff for

making my time at Texas A&M University a great experience.

Finally, I would like to thank my mother and brothers for their constant

encouragement and support throughout my time at Texas A&M University.

vi

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS ... vi

LIST OF FIGURES .. viii

LIST OF TABLES ... x

CHAPTER

 I INTRODUCTION: WORDTREE DESIGN METHOD 1

 II BACKGROUND ... 5

 What Are Ontologies? ... 5

 Which Ontologies Are Useful for Design-by-Analogy? 8

 The WordNet Database ... 17

 Retrieval Systems and Visualization Tools ... 23

 Chapter Conclusion ... 30

 III WORDTREE EXPRESS PROGRAM DESCRIPTION 31

 Goals of the WordTree Express Program ... 31

 WordTree Express User Interface Layout ... 32

 WordTree Express Program Code Layout .. 33

 Benefits of the Design ... 44

Tutorial for the WordTree Express ... 45

 IV EXPERIMENT: WORDTREE DESIGN METHOD...……………………... 46

 Overview ... 46

 Research Questions and Hypothesis .. 47

 Method .. 49

 Metrics ... 60

Results and Discussion……………………….. .. 61

Addressing the Research Questions .. 81

vii

CHAPTER Page

V CONCLUSION AND FUTURE WORK .. 85

 Contributions of This Thesis .. 87

 Future Work ... 87

REFERENCES ... 91

APPENDIX A ... 94

APPENDIX B .. 129

VITA .. 197

viii

LIST OF FIGURES

FIGURE Page

 1 WordTree Design-by-Analogy process ... 2

 2 WordTree diagram for the word “clean” ... 3

 3 Ontology adaptation architecture .. 7

 4 Inclusion lattice of the PysSys ontology ... 9

5 Relationship between a design and a verb ... 16

6 Overview of the VisualizeIT approach .. 24

7 REBUILDER's architecture .. 26

8 combinFormation mixed initiative process ……... ... 27

9 Visual Thesaurus display for the word "seal" ... 29

10 WordTree Express program layout .. 33

11 WTE program layout .. 35

12 VB programming code for importing database files ... 36

13 VB code for the search function .. 37

14 VB code for status message box ... 40

15 VB code for the reset button ... 42

16 VB function codes assigned to the “create file and start graphviz” button 43

17 VB search function code assigned to the “search” button 43

18 VB reset function code assigned to the “reset” button .. 44

19 Analogy example slides shown to the participants .. 53

20 Design problem presented to the participants ... 54

ix

FIGURE Page

21 WordTree Method as presented to the design class ... 55

22 WordTree Method presented to the participants during the study 56

23 Usefulness of each step in the WordTree Method with standard error bars 67

24 Participants were asked how valuable each method was for a typical

engineering design problem.. 68

25 Participants were asked how valuable each method was for a

design problem that required an innovative solution ... 70

26 Participants were asked how likely they were to use each method in the

future ... 72

27 Two randomly selected charts to illustrate participant answering

consistency .. 74

28 Participants‟ WordTree Method value score for a typical engineering

design problem .. 76

29 Participants‟ WordTree Method value score for a design that required an

innovative solution .. 77

30 Participants' WordTree Method value score for how likely they would

use it in the future .. 78

31 Participants evaluation of the WordTree Method ... 80

x

LIST OF TABLES

TABLE Page

 1 Examples of part-whole relationships ... 10

 2 Some examples of physical domains .. 11

 3 Key terms and their meaning ... 14

 4 WordNet database verb group files .. 17

 5 A line from the verb index file illustrating its format ... 19

 6 Definition of fields in the index file ... 19

 7 Sample of a verb data file field .. 20

 8 Definition of fields in the verb data file ... 21

 9 Difference between Linsey et al., 2008 study and current study 49

 10 Pre-experiment survey question 1 ... 50

 11 Pre-experiment survey questions 2, 3 and 4 (Value for typical,

innovative and future use respectively) .. 51

 12 Pre-experiment survey question 5 ... 52

 13 Post-experiment survey questions 2, 3 and 4 (value for typical,

innovative and future use respectively) .. 58

 14 Post-experiment survey question 6 .. 59

 15 Interview questions .. 59

 16 Number of analogies as scored by the participants and the evaluator 62

 17 The percent of identified analogies used to find solutions 63

xi

TABLE Page

18 Number of participants who searched outside the domain of peanut

shelling ... 64

 19 Questions asked to evaluate the WordTree Method ... 80

 20 p-values comparing pre and post experiment questions 81

1

CHAPTER I

INTRODUCTION: WORDTREE DESIGN METHOD

Engineers and designers are often faced with the need for designing innovative

products; meeting such needs may sometimes require the application of one or more

engineering design methods to stimulate ideas. Analogies can trigger breakthrough ideas

in new product development (Schild et al., 2004). An example of Design-by-Analogy is

the Velcro design from an analogy to burrs. Several procedures and methods exist which

can be used to generate innovative ideas for product concepts based on analogies; such

methods include synectics (Weaver & Prince, 1990), TRIZ (Altshuller, 1999) and

biomimetics (Schild et al., 2004). Another design method based on analogy is the work

of Linsey called the WordTree Design-by-Analogy Method (Linsey, 2007).

The WordTree Method systematically re-represents a design problem, assisting the

designer in identifying analogies and analogous domains (Linsey, 2007). The WordTree

Method is applied by the process shown in Figure 1. Key problem descriptors are

identified from the design problem and used to create WordTrees that systematically re-

represent the key functions to more abstract and domain specific terms resulting in

analogies. Analogies and analogous domains are then identified for possible solutions to

a design problem. Research of the analogies and a broader look into the identified

analogous domains follows with newly created problem statements. Finally, ideas and

concepts are generated.

This thesis follows the style of Artificial Intelligence for Engineering Design, Analysis

and Manufacturing.

2

List Problem Descriptors

Create WordTrees
1. Team Generates Using Sticky Note
WordTrees by Rotational Brainwriting
2. WordNet results
3. Combine Team results with WordNet
results

Identify Potential Analogies
and Analogous domains

Generate Ideas

Research Analogies and
Search Analogous Domains

Create Multiple Problem
Statements

Figure 1: WordTree Design-by-Analogy process

 The WordTree Method is applied by identifying analogical relationships between

a keyword function and other words/phrases in a WordTree diagram. WordTree

diagrams are made using an online lexical database called WordNet (Princeton

University, 2010) and from a team idea generation session where members write down

words on sticky notes to make up the WordTree. From the WordTree diagrams, the

designers look for analogous relationships between the keywords and the other words in

the WordTree by skimming through all the words on the WordTrees. Sometimes

relationships are found in distant domains from the original keywords for possible

3

innovative solutions. The solutions from the WordTrees usually come from identified

functional relationships between the keyword and other words that represent potential

analogies. For example, Figure 2 shows a WordTree for the keyword “clean” that led the

designers to the word “dump” in a distant part of the WordTree, and this resulted in an

innovative solution for a cat litter box design where the analogy to a dump truck was

used as a solution to the problem (Linsey, 2007) (Note: The diagram in Figure 2 was

created for descriptive purposes only and does not accurately represent the WordTree

used).

Figure 2: WordTree diagram for the word “clean”

This thesis is focused on the WordTree Method because it has been shown to be

an effective tool for the identification of analogies and analogous domains. Although a

prior study by Linsey et al., 2008, has shown positive results in the methods

4

effectiveness, it also shows that the method needs an easier way to generate its

WordNet-based WordTrees as the current method is very time-consuming and tedious.

In this thesis, a major objective was to improve a significant part of the WordTree

generation stage (i.e. the “WordNet results” shown in the yellow block of Figure 1) by

developing an automated tool for generating the WordNet-based WordTrees. The tool

was developed using Microsoft Visual Basic (VB) as the programming language and is

called the “WordTree Express” (WTE). The WTE program works in combination with

two other programs, Grapghviz (Ellson, J et al., 2010) and Inkscape (INKSCAPE, 2010),

to accomplish its goal of creating WordTrees. Another objective of this thesis was to test

the effectiveness of the WTE tool by performing a controlled study and comparing the

results with the Linsey et al., 2008 study.

5

CHAPTER II

BACKGROUND

 This chapter presents relevant work in the application of ontologies in

engineering information organization and management as well as retrieval tools used in

creative design analogies. Ontologies are very important for applying Design-by-

Analogy because they represent a means to relate one concept to another.

What Are Ontologies?

Ontologies are an emerging means of knowledge representation to improve

information organization and management, and they are becoming more prevalent in the

domain of engineering design (Cross & Bathija, 2009). Artificial intelligence (AI) has

borrowed the word ontology from philosophy, where it is defined as a systematic

account of existence. According to Gruber, an ontology is an explicit specification of a

conceptualization (Gruber, 1995).

Some ontologies can be applied to Design-by-Analogy by using the libraries of

information they produce as a domain space for potential analogy search. Some

important questions to ask are: Which ontologies are useful for Design-by-Analogy?

How do we develop the right ontologies? These questions will be addressed with further

investigation. According to Cross and Bathija, the task of creating new ontologies

manually is not only tedious and cumbersome but also time consuming and expensive

(Cross & Bathija, 2009). A known solution to the problem of creating new ontologies is

reusing existing ones. The next section discusses an approach for reusing existing

ontologies.

6

Approach for reusing domain-specific ontologies

One approach to reducing the cost of creating ontologies is to reuse an existing

ontology mainly by extracting smaller application ontologies from larger, more general

purpose ontologies (Cross & Bathija, 2009). An automated adaptation process was

developed by Cross and Bathija that uses the architecture shown in Figure 3. The

approach works by taking smaller ontologies from larger, more general ontologies and

building upon them. The major algorithms developed for this adaptation process are

those for bottom-up pruning and for matching a domain concept tree to an ontology

concept in the extending phase (Cross & Bathija, 2009). The pruning algorithm

incorporates techniques used for analogy evaluation because the objective is to prune

concepts from the original domain that are not relevant to the new domain. The ontology

obtained from the pruning phase represents the starting point for the extending phase.

Concepts and the taxonomic relations relevant to this domain are added to the pruned

ontology using the domain training corpus and the integration of several software

resources.

7

Figure 3: Ontology adaptation architecture

8

This approach was assessed experimentally by automatically adapting a design

rationale ontology for the software engineering domain to a new one for the related

domain of engineering design; the results produced an ontology that was comparable in

quality to previous attempts to automate ontology creation (Cross & Bathija, 2009).

Which Ontologies Are Useful for Design-by-Analogy?

To answer the question of which ontologies are useful in Design-by-Analogy for

engineering, it was necessary to study a wide range of ontologies. Ontologies for

applications in engineering began with an overview of existing engineering ontologies.

The following potentially useful ontologies were selected for discussion.

The PHYSSYS ontology

The PHYSSYS ontology is a formal ontology based on system dynamics theory

as practiced in engineering modeling, simulation and design (Borst, 1997). The

PHYSSYS ontology forms the basis for the open library for models of mechatronics

components (OLMECO). Figure 4 shows the inclusion lattice of the PHYSSYS

ontology.

9

Figure 4: Inclusion lattice of the PysSys ontology

 This ontology is important in answering the question of which ontologies are

useful in Design-by-Analogy because it is made up of several engineering ontologies

which highlight different viewpoints to consider. The PHYSSYS ontology consists of

three engineering ontologies formalizing different viewpoints on physical devices:

Mereological, Topological and Ontology of Systems Theory. There are three other

ontologies also part of the PHYSSYS ontology: Component, Physical Process and

Mathematical. All these ontologies are described as follows:

1. Mereological Ontology: Mereology means „science of parts‟ and it defines

the part-of relationships. Some examples of part-whole relationship are

shown in Table 1.

10

Table 1: Examples of part-whole relationships

Whole Parts

Body organs

organism cells

Device components

House roof, walls

Book chapters

2. Topological Ontology: This ontology is based on the theory of the is-

connected relation in general. Clarke‟s mereo-topology theory integrates

mereological and topological concepts and relations into one (Borst, 1997).

3. Ontology of Systems Theory: This ontology defines the standard-theoretic

notions such as system, subsystem, system boundary, environment,

open/closed, etc.

4. Component Ontology: This ontology defines the structural view on physical

systems engineers have, i.e. components that can have subcomponents and

terminals.

5. Physical Process Ontology: This ontology specifies the behavioral view on

physical systems Table 2 shows examples of physical domains.

11

Table 2: Some examples of physical domains

domain Stuff flow effort

electrical charge current voltage

mechanical location velocity force

hydraulic volume volume flow pressure

6. Mathematical Ontology: An example is the EngMath ontology (Gruber

1994). The EngMath ontology includes conceptual foundations for scalar,

vector and tensor quantities, physical dimensions, units of measure, functions

of quantities, and dimensionless quantities.

The PHYSYS ontology is broad and has many components that could make up a

potentially rich design space. For Design-by-Analogy, the goal is to gain ideas by

looking beyond existing products for useful analogies; to do that, there needs to be a

driving force that connects a designer from one design to another useful design or idea

that can be in the same domain or in a different domain. As described in Chapter I for

the WordTree, this connection is based on a design‟s function. For the proper use of a

design‟s function to make the connection, verbs abstracted from the design function are

used as the individual connecting units from one design to an analogous design or idea.

Careful review of all the ontologies within PHYSSYS suggests that it would make a

large design space for engineering-specific constituents using the OLMECO library.

PHYSSYS could be useful for identifying analogies between engineering products, but

would leave out the very important analogies in nature. There is no known library

developed with the PHYSSYS ontology that includes both engineering components and

12

components from nature; this would have been an ideal search space for finding useful

design analogies.

The YMIR ontology

The YMIR ontology specifies a taxonomy of concepts for engineering design

which define the semantics of design knowledge in multiple engineering domains such

as electrical engineering, mechanical engineering, and civil Engineering (Alberts &

Dikker, 1992). YMIR represents two types of knowledge:

1. Synthesis knowledge: This knowledge is based on technical principles.

Engineering design can be regarded as the problem of finding a configuration

of physical elements in a single artifact that can perform a single function.

The physical elements have particular geometrical and material properties

called form that displays a certain behavior dependent of the form. The

function is the required part of the combined behavior of a combination of

elements (Alberts & Dikker, 1992).

2. Evaluation knowledge: the official design standards or codes that a design

product has to adhere to. For instance, in the case of a bridge design, we

might explicitly specify the technical function of a bridge in terms of the

loads it has to transport to its fundaments. At the same time, however, we

implicitly assume that the bridge will also meet the applicable safety

standards, building and maintenance codes etc (Alberts & Dikker, 1992).

13

According to Alberts & Dikker, YMIR allows for the combination of the results

from applying knowledge from different sources in the design process; this allows for

stronger forms of integration between the different engineering domains (Alberts &

Dikker, 1992). Stronger forms integration means that since codes and standards used in

the different engineering domains are taken into consideration, there would be an easier

access to its applicability by all the domains involved. The basis of the YMIR ontology

is one that will be discussed in the future work section of this thesis. It possesses a

characteristic that can be used in selecting the appropriate ontology development

approach for a desired application. For example, if the goal was to develop ontology for

the general domain of medicine as opposed to a specialization or sub-domain of

medicine (e.g. pediatrics, dentistry, ophthalmology, veterinary etc.), information (both

synthesis and evaluation knowledge) from all the sub-domains of medicine must be

included in the development. The approach used in the YMIR ontology development

can be used for future development of ontologies for Design-by-Analogy by

incorporating information from the different engineering domains that would emphasize

better forms of integration between the different domains. Although, this ontology is

also engineering-specific and potentially useful, it would likely leave out the analogies

found in nature which are very important.

The WordNet system and ontology

WordNet is an English language electronic dictionary accessible from the

Internet. For a better understanding of the organization of the WordNet system, some

key terms have been defined in Table 3.

14

Table 3: Key terms and their meaning

Key terms Meaning

Collocation

A collocation in WordNet is a string of two or more words, connected by spaces

or hyphens. Examples are: Man-eating shark, blue-collar, etc.

Domain

A topical classification to which a synset has been linked with a CATEGORY,

REGION or USAGE pointer.

Group

Verb senses that are similar in meaning and have been manually grouped

together.

Hypernym

The generic term used to designate a whole class of specific instances. Y is a

hypernym of X if X is a (kind of) Y.

Hyponym

The specific term used to designate a member of a class. X is a hyponym of Y if

X is a (kind of) Y.

Lemma

Lower case ASCII text of word as found in the WordNet database index files.

Usually the base form of the word or collocation.

Lexical pointer A lexical pointer indicates a relation between words in synsets (word forms).

Lexicographer file

Files containing the raw data for WordNet synsets, edited by lexicographers,

that are put to the grind program to generate a WordNet database.

Lexicographer id

A decimal integer that, when appended onto lemma, uniquely identifies a sense

within a lexicographer file.

Sense A meaning of a word in WordNet. Each sense of a word is in a different synset.

Synset

A synonymous set; a set of words that are interchangeable in some context

without changing the truth value of the preposition in which they are embedded.

Troponym

A verb expressing a specific manner elaboration of another verb. X is a

troponym of Y if to X is to Y in some manner.

15

The WordNet system consists of lexicographer files. The lexicographer files

organize nouns, verbs, adjectives and adverbs into groups of synonyms (synsets), and

describe relations between synonym groups (Princeton University, 2010).

Representations in WordNet are not on the level of individual words or word forms, but

on the level of word meanings (lexemes) (Kamps & Marx, 2002). In other words, the

meaning of an individual word (or word form) is characterized by listing other words or

word forms that can be used to express it or replace it in a synonym set (synset), but the

word meaning in WordNet is determined by its sets of synonyms (i.e. the synonym set it

belongs to that defines the concept they describe). Meaning in WordNet is a structural

notion: the meaning of a concept is determined by its position relative to the other words

in the larger WordNet structure (Kamps & Marx, 2002). Each of the general WordNet

groups are structured based on a hierarchical ordering with words describing more

general concepts higher in the hierarchy and more specific ones lower.

The WordNet system is useful for identifying analogies because it presents a way to

relate ideas from words based on their similarity in describing a concept; this attribute is

powerful when searching for useful analogies based on semantics.

For the WordTree Method, only the semantic organization of verbs in WordNet

is required because the method uses only the part of WordNet that identifies

relationships between the descriptors (which are verbs) to other verbs as potential

analogies. Figure 5 shows the relationship between a design and verbs. Designs are

described by their functions while verbs are abstracted from designs‟ functions.

16

Figure 5: Relationship between a design and a verb

The WordNet system formalizes verb group relationships and distinguishes them

with lexicographer file names as shown in Table 4. There are 15 verb group files (29 to

43) in the WordNet database whose members (synonym sets) are grouped based on a

relationship to the concept of body, change, cognition, communication, competition,

consumption, contact, creation, emotion, motion, perception, possession, social, stative,

and weather. These groups or synsets and their relationships are important for retrieving

analogies because they allow a designer to connect one idea from one verb to another

relevant verb, from their shared concept description, for identifying potential analogies.

17

Table 4: WordNet database verb group files (Princeton University, 2010)

The WordNet Database

This section will cover the topics about WordNet that are needed to write a

program code for the automation of WordNet-based WordTrees. The knowledge from a

complete understanding of how the data is organized is needed because each time the

 Lexicographer file name Description

29 verb.body verbs of grooming, dressing and bodily care

30 verb.change verbs of size, temperature change, intensifying, etc.

31 verb.cognition verbs of thinking, judging, analyzing, doubting

32 verb.communication verbs of telling, asking, ordering, singing

33 verb.competition verbs of fighting, athletic activities

34 verb.consumption verbs of eating and drinking

35 verb.contact verbs of touching, hitting, tying, digging

36 verb.creation verbs of sewing, baking, painting, performing

37 verb.emotion verbs of feeling

38 verb.motion verbs of walking, flying, swimming

39 verb.perception verbs of seeing, hearing, feeling

40 verb.possession verbs of buying, selling, owning

41 verb.social verbs of political and social activities and events

42 verb.stative verbs of being, having, spatial relations

43 verb.weather verbs of raining, snowing, thawing, thundering

18

database is queried by a program, the function in the program is always dependent on the

position and interpretation of the queried data.

WordNet Database Organization

Information in WordNet is organized around logical groupings called synsets.

Each synset consists of a list of synonymous words or collocations (e.g. "wink",

"shake"), and pointers that describe the relations between one synset and other synsets.

A word or collocation may appear in more than one synset, and in more than one part of

speech. The words in a synset are grouped such that they are interchangeable in some

context (Princeton University, 2010). Two kinds of relations are represented by pointers:

lexical and semantic. Lexical relations hold between semantically related word forms;

semantic relations hold between word meanings. These relations include (but are not

limited to) hypernymy/hyponymy (super-ordinate/subordinate), antonymy, entailment,

and meronymy/holonymy (Princeton University, 2010). Verbs are organized into

hierarchies based on the hypernymy/hyponymy relation between synsets. Additional

pointers are used to indicate other relations. As discussed previously, the WordTree

Design-by-Analogy method uses files in the WordNet database composed of only verbs

which include: the verb index file and the verb data file.

1. The WordNet Verb Index File

A line from the verb index file is shown in Table 5 to illustrate its format. The

database format is in ASCII and can be viewed with an editor or text-based UNIX tool.

19

Table 5: A line from the verb index file illustrating its format

Abbreviate v 2 4 @ ~ $ + 2 0 00243900 00243749

In the field descriptions of the verb index file, number always refers to a decimal

integer unless otherwise defined. The verb index file format is as follows:

[lemma pos synset_cnt p_cnt [ptr_symbol...] sense_cnt tagsense_cnt

 synset_offset [synset_offset...]]

The meaning of each field in the index file is described in Table 6.

Table 6: Definition of fields in the index file (Princeton University, 2010)

Field
From

Table 5

Meaning

Lemma abbreviate

Lower case ASCII text of word or collocation. Collocations

are formed by joining individual words with an underscore

(_) character.

Pos v

Syntactic category: n for noun files, v for verb files, a for

adjective files, r for adverb files.

synset_cnt 2

Number of synsets that lemma is in. This is the number of

senses of the word in WordNet.

p_cnt 4

Number of different pointers that lemma has in all synsets

containing it.

20

Table 6 continued

Field
From

Table 5

Meaning

Ptr_symbol @ ~ $ +

A space separated list of p_cnt different types of pointers

that lemma has in all synsets containing it

sense_cnt 2

Same as synset_cnt above. This is redundant, but the field

was preserved for compatibility reasons.

tagsense_cnt 0

Number of senses of lemma that are ranked according to

their frequency of occurrence in semantic concordance

texts.

synset_offset

00243900

00243749

Byte offset in data.pos file of a synset containing lemma.

Each synset_offset in the list corresponds to a different

sense of lemma in WordNet. synset_offset is an 8 digit, zero-

filled decimal integer that can be used to read a synset from

the data file.

2. The WordNet Verb Data File Format

An example line from the verb data file is shown in Table 7 to illustrate the format.

Similarly, the database format also in ASCII and can be viewed with an editor or text-

based Unix tool.

Table 7: Sample of a verb data file field

00019182 29 v 01 reawaken . . . | awaken once again

21

All the lines in the data file are in the format shown below. Integer fields are of

fixed length, and are zero-filled to keep each column symmetric. It is important to know

how every field in the database is formatted because it facilitates code-writing (when

querying the databases) and prevents errors from mismatching fields.

[synset_offset lex_filenum ss_type w_cnt word lex_id [word lex_id...] p_cnt [ptr...

] [frames...] | gloss]

The meaning of each field in the verb data file database is described in Table 8.

Table 8: Definition of fields in the verb data file

Field
From

Table 7

Meaning

synset_offset 00019182 8 digit decimal integer

lex_filenum 29
Two digit decimal integer corresponding to the

lexicographer file name containing the synset. (29:Verb

pertaining to body)

ss_type v
One character code indicating the synset type: noun,

verb, adjective, adjective satellite or adverb.

w_cnt 01 Two digit hexadecimal integer indicating the number of

words in the synset.

Word reawaken ASCII form of a word as entered in the synset by the

lexicographer.

lex_id 0
One digit hexadecimal integer that, when appended onto

lemma, uniquely identifies a sense within a lexicographer

file.

p_cnt 001
Three digit decimal integer indicating the number of

pointers from this synset to other synsets.

Ptr @ A pointer from this synset to another.

22

Table 8 continued

Field
From

Table 7
Meaning

Frames 00018813
In the verb data file only, a list of numbers corresponding

to the generic verb sentence frames for words in the

synset.

Gloss

|awaken

once again

Each synset contains a gloss. A gloss is represented as a

vertical bar (|), followed by a text string. The gloss may

contain a definition, one or more example sentences, or

both.

The HowNet ontology

HowNet is a bilingual lexical ontology for English and Chinese (Veale, 2005).

HowNet and WordNet have a different view of semantic organization. In WordNet,

rather than attempting to express the meaning of a word explicitly, WordNet instead

differentiates words with different meanings by placing them in different synonym sets,

and further differentiates these synsets from one another by assigning them to different

positions in its taxonomy (Veale, 2005). In contrast, HowNet does not provide a human-

oriented textual gloss for each lexical concept, but instead combines sememes from a

less discriminating taxonomy to compose a semantic representation of meaning for each

word sense (Veale, 2005). Research performed by Veale concluded that HowNet

contains sufficient structure to realistically support both a taxonomic abstraction view

and a structure-mapping view of analogy generation (Veale, 2005). For example in

HowNet 手术刀 which is Chinese for “scalpel” (surgical knife) contains not just

characters, but ideas. 手术 means “surgery” and 刀 means “knife” (Veale, 2005). This

23

transparency in the makeup of words (etymology) allows for a broader scope of relations

than the word “scalpel” as you would find in WordNet. This broader scope is expected

to have an effect in analogy identification as it clearly allows an observer to make a

broader connection between ideas.

Retrieval Systems and Visualization Tools

A retrieval system is a tool for people actively searching for information.

Retrieved information can be applied to idea generation that focuses on Design-by-

Analogy. Some retrieval tools access databases to obtain stored information for use in

different applications. One of the applications, as is the focus of this thesis, is the

WordTree Design Method which can use a retrieval tool for its application. Information

used to stimulate creativity is sometimes stored in a repository. A repository is a place

where knowledge is stored for later use. Most information can be reused and it is

essential to save such information in an accessible location. Some repositories provide a

wealth of knowledge (e.g. product designs, components, pictures, etc.) that could include

potential analogy triggers that a user can use to jumpstart creativity during the idea

generation stage. This section will discuss existing retrieval and visualization tools that

can be applied to Design-by-Analogy.

VisualizeIT

VisualizeIT is a project seeking to identify a scientific basis and develop the

supporting cyber infrastructure needed to facilitate, evaluate, and disseminate

information-technology-enabled innovation methodologies that augment designer

24

creativity (English et al., 2010). The visualization tool is used for design problems and

works by the approach shown in Figure 6. The tool accesses a repository of stored

design knowledge, and empirical grammar rules are used for retrieving the information

and present them in the form of component flow graphs (CFG‟s). The user chooses a

design problem from a list and is presented with a list of functional models. The user

then selects a functional model and is presented with a list of clustering schemes.

Finally, once the user selects a scheme he/she is presented with list of candidates for the

proposed solution.

Figure 6: Overview of the VisualizeIT approach

25

The VisualizeIT tool provides an alternate approach for the kind of information

that can be stored when designing a repository in advancing the use of Design-by-

Analogy for engineering design problems.

REBUILDER: A Computer Aided Software Engineering (CASE) Tool for Analogy

Retrieval

REBUILDER is a Case-Based Reasoning (CBR) tool that uses several types of

knowledge in the domain of computer software, including WordNet as the ontology

(Gomes et al., 2006). Figure 7 shows the architecture of REBUILDER. There are four

main modules: UML editor, knowledge base manager, knowledge base (KB), and the

CBR engine. There are two user types: software designer and KB administrator. The

software designer uses REBUILDER as a case tool, while KB administrator is

responsible for keeping the KB updated and consistent. The KB consists of four parts:

the case library, which stores the case of previous software designs; an index memory

used for efficient case retrieval; a data type taxonomy; and WordNet, which is a general

purpose ontology (Gomes et al., 2006).

26

Figure 7: REBUILDER's architecture (Gomes et al., 2006)

 REBUILDER uses analogical reasoning to suggest class diagrams to the

designer. There are three steps to the analogy process: Identify candidate diagrams for

analogy; map each candidate diagrams with the target diagram; create new diagrams, by

knowledge transfer, between the candidate diagram and the target one (Gomes et al.,

2006). From preliminary experiment results, it was inferred that semantic retrieval

generates more useful class diagram, but they are less novel than diagrams using

structural strategies (Gomes et al., 2006). In other words, the structural strategies are a

predefined organization of class diagrams.

27

combinFormation (cF)

Research has shown that image and text knowledge representations are more

effective than text only. Cognitive research by Glenberg shows that the combination of

an image and a descriptive text promotes the formation of mental models (Glenberg &

Langston, 1992). This was comparing combinFormation is a mixed initiative system for

representing collections as compositions of image and text surrogates (Koh et al., 2007).

A surrogate represents an information resource and enables access to that resource

(Burke, 1999; Koh et al., 2007). The combinFormation mixed initiative process is shown

in Figure 8.

Figure 8: combinFormation mixed initiative process

28

Through the composition space, the user and the agent engage in mixed

initiatives. Through seeding, the user points the agent at particular information sources.

Through direct manipulation information collecting, the user brings surrogates, and their

underlying semantics, directly into the composition space and the model. Through direct

manipulation and composition, the user changes how the composition looks in order to

facilitate his/her own understanding of the information resources and their connections,

and perhaps to communicate such understanding to others.

Visual Thesaurus

Visual Thesaurus (Thinkmap, 2010b), developed using Thinkmap software

(Thinkmap, 2010a), is a visualization tool that enables a user to visualize relationships

between synonyms in an interactive interface. Figure 9 shows an example display of

Visual Thesaurus for the word seal. The thinkmap software is considered useful for

applications involving the visualization of large amounts of information on a screen.

This applicability could be used in displaying the output of an ontology-based library

(such as WordTrees) for analogy search. Additional features such as those found in the

Visual Thesaurus software could be applied to a WordTree generating tool. For example,

displaying the definitions of words by simply clicking the words on the tree would be

better than doing a separate search for the definition.

Figure 9: Visual Thesaurus display for the word "seal" (Thinkmap, 2010a)

2
9

30

Chapter Conclusion

 This chapter has presented relevant background for the proposed direction of this

thesis. The goal of advancing the WordTree Design-by-Analogy method from its current

state to a more applicable and sought after one begins with the understanding of its

development. The WordTree Method uses WordNet-based WordTrees as its main

resource for searching for, and identifying potentially useful analogies for solving design

problems. The makeup of the WordNet-based WordTrees is governed by the WordNet

ontology. This chapter has described the WordNet ontology and its related components.

A study of other ontologies was done to provide insights for understanding ontology

development, and also to recommend possible future directions. The YMIR ontology

focused on using information from multiple engineering domains for its development;

this provides stronger forms of integration between the different domains. This chapter

has studied retrieval and visualization tools used in the context of information

management and organization. The following chapters will discuss the development of

an automated WordNet-based WordTree generating tool called the WordTree Express,

and experiments designed to test the effectiveness of the tool.

31

CHAPTER III

WORDTREE EXPRESS PROGRAM DESCRIPTION

The WordTree Express (WTE) program is a computer program that automates

the application of the WordTree Design-by-Analogy method. The WTE program works

in conjunction with another program, Graphviz (Ellson, J et al., 2010), that reads and

displays the output graph. WTE program was designed with the user experience held as

the focal point for the design. The user of the program is expected to find its interface

easy to understand and use. The program‟s design minimizes the number of steps the

user takes to display the desired output from the program. This chapter lays out the

foundation for the development of the WTE program. The topics covered are as follows:

 Goals of the WTE program

 WTE user interface layout

 WTE program code layout

 Challenges of the design

 Benefits of the design

 Tutorial

Goals of the WordTree Express Program

The WTE program was designed to possess attributes formed by the recognized

user‟s need and expected program functions. The needs and desired functions include:

a. Simplicity: The need for making any design process as simple as possible is

essential in industry where time is of the essence. Designers always prefer

simplicity as it makes the design process more efficient.

32

b. Easy on the eyes: Some care was taken in designing the user interface to make

the screen view more comfortable. Soft colors with well defined buttons and soft

backgrounds were implemented to satisfy this attribute.

c. Provides the user with a selectable sense option: In order to develop a WordTree

having more than one possible output, the program has to offer options to the

user to produce the user‟s desired output. Implementing the checkbox options for

the keyword senses was a needed feature for the user.

d. Generates readable WordTrees: The Graphviz program can display WordTrees,

but has a display size limitation. Microsoft Office Visio and Inkscape are

optional viewing programs for Scalar Vector Graphics (SVG) files and are

capable of displaying the WordTrees without any limitation.

WordTree Express User Interface Layout

The WTE program has a total of three buttons as shown in Figure 10. The first

button, “Search”, runs a search query in the WordNet database of the typed keyword and

displays the related senses in a checklist box format. The second button, “Create file &

Start Graphviz”, is used after a selection of a keyword sense is made; it generates a text

file in a format that the Graphviz program can read, and simultaneously starts the

Graphviz program for the user. This combined function with a single button was done to

save time and make the program less complicated. Finally, there is a reset button that

allows the user to clear all the fields and perform new keyword searches without having

to restart the program or manually clearing the fields.

33

Figure 10: WordTree Express program layout

WordTree Express Program Code Layout

In the pre-programming planning phase of the WTE program, the following

questions had to be answered:

1. How was WordNet database structured?

2. What information was needed from the WordNet database for the program?

3. What programming language was to be used for the coding?

4. What did the user need the program to do?

5. What was the layout suppose to look like?

To answer these questions, some research was done. The WordNet structure was

studied and has been described in Chapter II. A conclusion from studying the WordNet

database reveled that it contained an index data file folder and folders of words for the

different parts of speech; for the application of the WordTree, only two folders would be

34

needed. The needed folders for the application were the verb index data file and the verb

data file. The next step was selecting the right programming language. Microsoft‟s

Visual Basic (VB) was chosen because of its simple structure and the available

resources. In determining what the program must do, a review of the non-automated

approach was studied; the study revealed that the user must be able to perform a

keyword search, have the ability to choose the desired sense of the keyword, and have

the complete WordTree displayed. Finally, from the laid out user‟s need, a user interface

was designed.

An overview of the major steps taken in the WordTree Express program

development will now be discussed in detail.

 Step 1: Creating form layout

Here the goal was to lay out an overall structure that would be filled in

progression. Using visual basics, the overall layout is described and shown in

Figure 11. All the necessary objects were placed on a new form (shown with

colored dots). These objects included: 2 textboxes (purple), 1 check list box

(red), 3 buttons (green), 9 labels (blue), and 3 pictures (orange).

35

Figure 11: WTE program layout

Step 2: Importing the needed database files

As mentioned in the previous section, there are two files needed for the

application of the WordTree Method: the index data file and the verb data file. In

the program, these files were named index.txt and database.txt respectively. The

code in VB to import the two files from their stated location is shown in Figure

12.

36

Private Sub funcLoadFiles()

 Try

 Dim sr As System.IO.StreamReader = System.IO.File.OpenText(“C:\WTE database\index.txt”)

 Dim StrArray(), strLine() As String

 Dim intRow, intTotal As Integer

 Dim sData As String

 „string = contents of file

 sData = sr.ReadToEnd

 „fill array with data

 StrArray = Split(sData, ControlChars.NewLine)

 „close stream

 sr.Close()

 intTotal = StrArray.Length – 1

 For intRow = 0 To intTotal

 strLine = StrArray(intRow).Split(“ “)

 _arrWord.Add(strLine(0))

 _arrMeaning.Add(StrArray(intRow))

 Next

 sr = System.IO.File.OpenText(“C:\WTE database\database.txt”)

 sData = sr.ReadToEnd

 „fill array with data

 StrArray = Split(sData, ControlChars.NewLine)

 sr.Close()

 intTotal = StrArray.Length – 1

 For intRow = 0 To intTotal

 strLine = StrArray(intRow).Split(“ “)

 _arrDefNum.Add(strLine(0))

 _arrDefinition.Add(StrArray(intRow))

 Next

 Catch ex As Exception

 End Try

 End Sub

Figure 12: VB programming code for importing database files

37

 Step 3: Creating the search query function

In creating the function to search the user‟s input keyword in the index data file

and returning a list of sense options, the following code in Figure 13 was written.

In creating the code some scenarios were identified that had to be accounted for

in the coding. One was replacing the user‟s space with an underscore because

multiple word phrases in the database are stored with underscores separating

them. For example the phase “back away” is stored as “back_away” in the

database file. For another scenario, a code was written so that if the input search

keyword is not found in the database, the following message is shown to the user:

“The word you typed does not exist in the database”.

Private Sub funcSearch()

 Try

 File.Create(“C:\WTE\” & txtSearch.Text & “”)

 Dim arrDefined As New ArrayList

 Dim strSearch As String = txtSearch.Text

 Dim strMeaning, strWord As String

 Dim intRow, intNumRows, intPtrCnt, intNewCnt As Integer

 Do While (strSearch.IndexOf(Space(1)) >= 1)

 strSearch = strSearch.Replace(Space(1), “_”) „Replaces spaces with “_” in the input.

 Loop

 intNumRows = _arrWord.Count – 1

 For intRow = 0 To intNumRows

 If strSearch.ToLower = _arrWord(intRow).ToString.ToLower Then

 Exit For

 End If

Figure 13: VB code for the search function

38

 If intRow = intNumRows Then

 MsgBox(“The word you typed does not exist in the database”)

 End If

 Next

 strMeaning = _arrMeaning(intRow)

 Dim strMean() As String

 strMean = strMeaning.Split(“ “)

 intPtrCnt = Cint(strMean(3))

 _arrSenses.Clear()

 For intNewCnt = (intPtrCnt + 6) To strMean.Length – 1

 strWord = strMean(intNewCnt).Trim

 If String.IsNullOrEmpty(strWord) = False Then

 _arrSenses.Add(strMean(intNewCnt))

 Console.WriteLine(strMean(intNewCnt))

 End If

 Dim strNdef, strWordW As String

 Dim intWordCnt, intRowN, intNumRowsN, intNewCntN As Integer

 Dim strDefinition As String

 intNumRowsN = _arrDefNum.Count – 1

 For intRowN = 0 To intNumRowsN

 If strMean(intNewCnt) = _arrDefNum(intRowN) Then

 Exit For

 End If

 Next

 strNdef = _arrDefinition(intRowN)

 Dim strNWord() As String

 strNWord = strNdef.Split(“ “)

 intWordCnt = Cint(strNWord(3))

 _arrSensesW.Clear()

Figure 13 continued

39

 If strNWord(3) = “0a” Then

 strNWord(3) = 10

 ElseIf strNWord(3) = “0b” Then

 strNWord(3) = 11

 ElseIf strNWord(3) = “0c” Then

 strNWord(3) = 12

 ElseIf strNWord(3) = “0d” Then

 strNWord(3) = 13

 ElseIf strNWord(3) = “0e” Then

 strNWord(3) = 14

 ElseIf strNWord(3) = “0f” Then

 strNWord(3) = 15

 End If

 strWordW = Nothing

 For i = 4 To (strNWord(3) * 2) + 2

 strWordW += strNWord(i) & “(“ & strNWord(1) & strNWord(i + 1) & “)” & “,”

 i = i + 1

 Next

 strWordW = strWordW.Substring(0, strWordW.Length – 1)

 For intNewCntN = 0 To strNdef.Length – 1

 If strNdef(intNewCntN) = “|” Then

 strDefinition = strNdef.Substring(intNewCntN + 1)

 CheckedListBox1.Items.Add(strWordW & “ “ & “” & “ “ & strDefinition)

 End If

 Next

 Next

 funcShowTree(Cint(_arrSenses(CheckedListBox1.SelectedIndex)))

 Catch ex As Exception

 End Try

 End Sub

Figure 13 continued

40

 Step 4: Creating a function to display a message box to inform the user of

the program status

After a set of options is presented to the user to make his/her selection of the

keyword sense, the program will notify the user, when he/she presses the “Create

file and start Graphviz” button, where the Graphviz WordTree file being created

is stored. The code for the function is shown in Figure 14.

Private Sub funcGraphViz()

 Try

 Dim FILE_NAME As String = “C:\WTE\” & txtSearch.Text & “”

 If System.IO.File.Exists(FILE_NAME) = True Then

 Dim objWriter As New System.IO.StreamWriter(FILE_NAME)

 objWriter.Write(TextBox3.Text)

 objWriter.Close()

 MsgBox(“A new Text file named “ & “””” & txtSearch.Text & “””” & “ has been created

and saved in C:\WTE folder.” & ControlChars.NewLine & “Graphviz will now start. Please open the

new file to view the WordTree”)

 Else

 MsgBox(“File Does Not Exist”)

 End If

 Catch ex As Exception

 End Try

 End Sub

Figure 14: VB code for status message box

41

Step 5: Creating the function to generate the WordTree in a Graphviz

readable format

This section was the main part of the coding and the raw code can be found in the

Appendix B (The function was named: funcShowTree). The program was

designed to read the database line by line and store the selected information in

matrices it creates as needed. Information from the created matrices is later

written to a hidden text box within the program. Based on the nature of the

database structure, this section has multiple sub-functions. In the database, each

word/phrase is represented by an 8-digit number. This function works by reading

the user‟s selected keyword sense from the database.txt file then checks if the

keyword has a hypernym in the related field (identified by an “@” symbol

preceding it). If the keyword has a hypernym the program repeats the query as

needed, for each hypernym found, until it gets to the top of the tree. Once the

top-most word is found the function saves the word into a matrix and does a

different sub-function. It starts to look for troponyms (identified by a “~” symbol

preceding it). The term “children” is used in the code when referring to

troponyms. For each of the children found, the function saves the word into a

matrix and continues in a series of loops to find the troponyms of each child and

so on. As all this is taking place, the function is also translating and storing the

word version of each troponym (originally represented by numbers in the

database).

42

The main problem in this section was differentiating words that were spelt the

same way, but had different sense of use. This problem caused the final

WordTree display to look disorganized by having lines between words cross each

other, and for large WordTrees, almost impossible to read. The solution required

adding identifiers to uniquely identify each word or phrase based on which

synset and sense it belong to. As seen in the WordTree output, succeeding every

word/phrase is a three or four digit number. The first two digits of the number

represent the synset the words belong to, while the third and fourth digits

represent the senses of the words. Adding these identifiers made the WordTrees

to display properly.

Step 6: Creating the reset button

The function to clear all the fields in the form for performing new keyword

searches was created using the code shown in Figure 15.

Private Sub ClearForm()

 For Each ctrl As Control In Me.Controls

 If TypeOf ctrl Is TextBox Then

 DirectCast(ctrl, TextBox).Text = String.Empty

 End If

 Next

 CheckedListBox1.Items.Clear()

 End Sub

Figure 15: VB code for the reset button

43

Step 7: Assigning functions to the buttons

This section was performed as needed during the code-writing. The functions

were assigned trigger buttons, and some buttons performed multiple tasks such as

running two or more different functions. For example the codes in Figure 16

were assigned to the “Create file and start Graphviz” button. The “search” button

and the “reset” button were triggers for the functions shown in Figures 17 and 18

respectively.

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 Cursor.Current = Cursors.WaitCursor

 funcShowTree(CInt(_arrSenses(CheckedListBox1.SelectedIndex)))

 funcGraphViz()

 System.Threading.Thread.Sleep(2000)

 Dim p As New System.Diagnostics.Process

 p.StartInfo.FileName = "Gvedit.exe"

 p.Start()

 End Sub

Figure 16: VB function codes assigned to the “create file and start graphviz” button

Private Sub btnGenerate_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnGenerate.Click

 funcSearch()

 End Sub

Figure 17: VB search function code assigned to the “search” button

44

Private Sub BtcClear_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles BtcClear.Click

 ClearForm()

End Sub

Figure 18: VB reset function code assigned to the “reset” button

Benefits of the Design

It will only be fitting, at this point, to shed some light on the expected benefits of

the WTE design as compared to the non-automated approach. A study of the precedent

method revealed the following proposed benefits of the new design.

1. The user will not need to deal with the process of online search. All the full

features of the program can be used offline as opposed to a limited offline feature

in the case of the non-automated approach.

2. The user will not need to spend time sorting and selecting each word needed for

the WordTree as this may lead to a limited range for idea generation and a waste

of valuable time.

3. The user will not need to manually type the words in the WordTree, as is done in

the non-automated approach; this also saves valuable time.

From the stated benefits, rewards from the program point to time savings, easy

application process, and availability for use without an internet connection.

45

Tutorial for the WordTree Express

For optimal application, as is the case for almost every product, a tutorial (or

user‟s guide) was developed to assist the user in getting acquainted with the WordTree

express program. The tutorial can be found in Appendix B; it covers the installation

procedures and a step-by-step description of how to create a WordTree using the WTE

program.

46

CHAPTER IV

EXPERIMENT: WORDTREE DESIGN METHOD

Overview

The WordTree Design Method was developed to assist engineers and designers

in the idea generation stage of a Design-by-Analogy approach to design problems. A

study by Linsey et al., on the effects of memory representation on analogy use supports

the assertion that the form of concept representation is important in the cognitive

analogy formation process (Linsey et al., 2008). The study was one of the drivers for the

development of the WordTree Method. Furthermore, a controlled study of the WordTree

Method showed that the method assisted engineers in identifying more analogies and

altered their database search patterns which resulted in cross-domain solutions being

found (Linsey, 2007). The study also showed that the method needed to provide a better

support for the mapping of identified analogies into solutions (Linsey, 2007). In the

controlled study of the WordTree Method, participants tended to identify large numbers

of analogies, but then a high percentage did not inspire conceptual solutions (Linsey,

2007). Participants ranked the WordTree Method among the least valuable methods for

their future use and also for design problems that required innovative solutions. There

were 13 methods in total and the WordTree Method‟s ranking was similar to the

TIPS/TRIZ, morph matrix, and 6-3-5 which were among the lowest scores while the

other 9 methods ranked higher. It is also important to note that TIPS/TRIZ is a highly

valued method by industry.

47

The method‟s developer suggested possible reasons for the outcome was from

the methods presentation to the participants; that it could use some more powerful

examples and strongly highlight the purpose of the method. The method‟s developer

suggested that another reason could be because of some of the participants‟ lack of

experience with the method or lack of skill in Design-by-Analogy. This thesis suggests

that an automated WordTree generating tool to simplify part of the method‟s application

(i.e. creating WordTrees), could be used in facilitating the teaching of the method and

positively affect the users opinions about the method.

Research Questions and Hypothesis

The questions this thesis seeks to answers to are the following:

1. Does the WodrTree Express program affect engineering designers‟ opinions of

the WordTree Method? Does simplifying the process of generating WordNet-

based WordTrees have a positive effect on the opinions of engineers when asked

to rate the value of the WordTree Method against other design methods for each

of the following:

a. A typical engineering design problem.

b. A design problem that requires an innovative solution.

c. How likely they would use the method in the future.

2. Does providing more comprehensive WordTrees (via WordTree Express) for

chosen problem descriptors affect the number of analogies identified and used for

conceptual solutions to the design problem?

48

3. What are some of the additional avenues for improvement to the WordTree

Design-by-Analogy Method?

To investigate these research questions the following hypotheses were proposed:

Hypothesis 1: WTE, by simplifying the process of generating WordNet-based

WordTrees, will increase designers’ opinions of the WordTree Method.

Hypothesis 2: Using the WordTree Express program to create WordTrees will

present the user with a more comprehensive WordTree; increasing the number of

identified analogies.

This thesis investigated the research questions by first performing a repeated

measures study of the participants. This was accomplished by surveying the participants

who were taught different design methods including the WordTree Method without the

use of an automated WordNet-based WordTree generating tool, and surveying the

participants after the experiment in which they used the automated WordTree generation

tool (WTE). Secondly, the study replicated the original WordTree Method control study

with some minor modifications and compared both results. Table 9 summarizes the

differences between the original WordTree control study and that done in this thesis.

49

Table 9: Difference between Linsey et al., 2008 study and current study

Linsey et al., 2008 WordTree Control Study Current Study

Participant were undergrad students Participants were graduate students

Senior capstone course during one 50 minute

lecture

60 minutes graduate design course

Included re-writing problem statements Did not include re-writing problem

statements

Participant did not have to generate WordNet-

based WordTrees, they were provided with

them

Participants were asked to generate their

WordNet-based WordTrees using WTE

10 participants in the WordTree condition and

10 in the control condition.

15 participants in the WTE condition

Method

Participants

The participants were graduate Mechanical Engineering students at Texas A&M

University. All the participants were recruited from a graduate design class and were

compensated for their participation in the experiment with extra credit in their class.

Procedure

The WordTree Method was taught to a graduate design course during a 60

minute lecture. Participants were recruited from the graduate design course after they

had shown their understanding of the method from the results of an assignment on

applying the WordTree Method to their project design problems. The participants were

50

given extra credit for their participation and were told the amount of extra credit

depended on their efforts and results. A total of 15 participants took part in the study.

One of the participants was not an engineer, but a psychology graduate student taking

the design course as an outside department course requirement. Most of the participants

were PhD level students. The experiment procedure was as follows:

Step 1: Participants were shown to their sits, told that they could not monitor the

time during the experiment, and were asked to turn off their cell phones and put

their watches away. Participants were told the duration of the experiment was

two hours and were given the consent forms to sign if they agreed to participate

in the experiment.

Step 2: Participants were provided with a pre-experiment survey made up of

Table 10, Table 11 and Table 12 which asked for their opinions about the

WordTree Method and other design methods for different situations based on

their experience with all the methods.

Table 10: Pre-experiment survey question 1

 Not at all

useful

Somewhat

Useful

Useful Very Useful

Overall, WordTree Method was:

The WordTrees were:

Listing analogies was:

Listing analogous domains was:

Writing new problem statements

was:

51

Table 11: Pre-experiment survey questions 2, 3 and 4 (Value for typical, innovative and future use

respectively)

 Zero value

A little

value

Medium

value

High

value

Extremely

valuable

Can‟t

remember

Background research /

Literature review

Mission Statement

Quality Function Development

(QFD, House of Quality)

Black Box diagram

Activity Diagram

Function Structure

Patent Search

6-3-5

Mind Maps

TRIZ/TIPS

Morph Matrix

Pugh Charts

WordTree Method

52

Table 12: Pre-experiment survey question 5

 Strongly

Disagree

Disagree Neither

Agree Nor

Disagree

Agree Strongly

Agree

1. This method helped me to find

analogies for my design problem.

2. This method helped me to

generate more ideas.

3. This method helped me to

generate more quality ideas

4. This method was a waste of my

time.

5. The presentation of this method

was easy to understand.

6. This method was easy to use.

7. I expect to use this method in the

future.

8. This method needs improvements.

9. This method was useful.

10. I like using the method.

11. I expect to use this method in the

future for design problems that

require an innovative solution.

Step 3: The participants were told that multiple color pens would be used to keep

track of when items were written. Examples of analogies were shown to the

participants using the PowerPoint slide shown in Figure 19.

Figure 19: Analogy example slides shown to the participants

5
3

54

Step 4: Participants were provided with the design problem shown in Figure 20.

The participants were told that the design problem was real and from the website

thinksycle.org, and their solutions could be given to a design team working on

the problem.

Figure 20: Design problem presented to the participants

Step 5: The participants were asked to create sticky note WordTrees for 20

minutes for the problem descriptors: shell, remove, separate, and import energy.

A printout of the WordTree Method reminder was also given to the participants

for reference. The method shown on the WordTree Method reminder was slightly

modified to eliminate re-writing problem statements and geared towards an

individual rather than a team. The WordTree Method reminder can be found in

Appendix A. Figure 21 shows the method that was taught to the participants in

55

class, while Figure 22 shows the method the participants were asked to use for

the study.

Figure 21: WordTree Method as presented to the design class

56

Figure 22: WordTree Method presented to the participants during the study

Step 6: Participants were asked to watch a recorded tutorial for the WordTree

Express program and to use it to generated two WordTrees, one for the keyword

“shell” and the other for the keyword “separate”. The WTE program also dictated

which sense of the keywords to use for their WordTrees. These were the two

WordTrees presented to the participants in the control study. The participants

were asked to circle all the words of interest on each WordTree that could lead to

potential analogies. The participants had 30 minutes for this step which included

9 minutes for the tutorial video.

57

Step 7: Participants were asked to use 10 minutes to write down all the potential

analogies they identified from all their WordTrees on a sheet of paper.

Step 8: The participants were provided with numbered sheets of paper to sketch

and describe solutions to the peanut shelling problem. The total time for this

activity was 60 minutes. Colors of the pens were changed during idea generation

at the 15, 30, 40 and 45 minute marks. The participants were told that they could

end the idea generation session at any time and were asked to fill out a

questionnaire asking them why they decided to stop idea generation if they did.

After participants filled out the questionnaire, they were provided with a sheet

asking them to continue generating solutions as most people could still generate

ideas even after they thought they ran out of ideas. After 45 minutes of idea

generation, the participants were told that they could use the internet on the

computers to assist them in generating ideas. They were told that it could be used

to research the potential analogies they identified and to search for patents in the

analogous domains. Web searches were optional and not required.

Step 9: In this step, the participants were again asked to note all the analogies

they used for their final solutions and to describe how they searched the internet

for solutions if they used that option; the participants were given a new analogy

list sheet to fill.

 Step 10: This was the final step in the experiment. The participants were

provided with a post-experiment survey nearly identical to the first, but included

questions specific to the WordTree Express program and a set of interview

58

questions. The post-experiment survey included Tables 13 and 14 and the set of

interview questions in Table 15.

Table 13: Post-experiment survey questions 2, 3 and 4 (value for typical, innovative and future use

respectively)

 Zero value

A little

value

Medium

value

High

value

Extremely

valuable

Can‟t

remember

Background research/Literature

review

Mission Statement

Quality Function Development

(QFD, House of Quality)

Black Box diagram

Activity Diagram

Function Structure

Patent Search

6-3-5

Mind Maps

TRIZ/TIPS

Morph Matrix

Pugh Charts

59

Table 13 continued

 Zero value

A little

value

Medium

value

High

value

Extremely

valuable

Can‟t

remember

WordTree Method non-

automated (Paper-based)

WordTree Method automated

(e.g. WordTree Express)

Table 14: Post-experiment survey question 6

 Strongly

Disagree

Disagree Neither

Agree Nor

Disagree

Agree Strongly

Agree

I ran out of time before I ran out of ideas.

I ran out of ideas before I ran out of time.

Table 15: Interview questions

What did you like about the WordTree Method?

What steps in the WordTree Method were most useful?

How could the WordTree Method be improved?

What difficulties did you have when using the WordTree Method?

Where did you need more guidance from the WordTree Method?

What do you think of the WordTree Express program? How would you compare your experience when you made

WordTrees manually to using this automated method?

Please state any additional comments you have about the experiment. Use the back of the paper if needed.

60

Metrics

Quantitative and qualitative measures were done in a similar fashion to the prior

study. The metrics of interest include:

1. The number of analogies identified by the participants.

2. The number of ideas generated.

3. The percentage of analogies identified that were used to find solutions.

4. The number of participants who searched outside the domain of peanut shelling.

5. Opinions of the participants about the WordTree Method.

 Metrics were scored by the experimenter. Analogies were calculated using two

approaches. The first was from the number of analogies the participants listed on their

analogy list sheets. It was noticed that many of the participants did not list all the

analogies and analogous domains they identified in their WordTrees (i.e. the circled

words). The second approach was done by counting the number of non-redundant

analogies listed in either the analogy list sheets or those identified in the participants‟

WordTrees. Counting of analogies was done by the evaluator and a second evaluator

with inter-rater agreement of 0.92 (Pearson‟s correlation). The search strategy used by

the participants was scored from the search terms used that were outside the domain of

peanut shelling. In this study the chosen criteria was similar to the 2007 study by Linsey

et al., 2008. For example if a participant searched for “pod peas” or “pitting cherries” it

would have be considered outside the domain, but if the search was for “peanut

machine” or “universal nut sheller” as was the case in this study, it was considered

within the domain of peanut shelling. The terms used for the evaluation came from those

61

listed by the participants in the second analogy list sheet where they described their

search strategy. Not all the participants chose to use the computer to search for analogies

(only 9 of 14 used the computer) and some of those that used the computer did not list

all the terms they searched for (i.e. 4 of 9 did not list anything); thus the search strategy

for some participants could not be determined. The data for one of the participants who

had a difficulty in understanding the meaning of the words on the WordTrees were not

included in the analysis of the non-survey measures (i.e. the data was included for only

the survey-related measures). This was a result of an observed low knowledge of the

English vocabulary from being a native of a non-English speaking country. The decision

to include the participant‟s data in the survey measures was made because the participant

had applied the non-automated WordTree Method translating it into his native language;

that makes him qualified for the study that was based on his opinion of the WTE

program. Another participant whose field of study was not engineering was included in

the data because it was not expected to have a significant influence on the participant‟s

performance since the participant had equally been taught the required material needed

to participate in the study.

Results and Discussion

The number of analogies identified by the participants is shown in Table 16. For

scores by the evaluator, participants in the WTE study found significantly (p<0.1) more

analogies on average than the control group in the Linsey et al., 2008 study; a pairwise t-

test was used for the analysis (t=0.46, p=0.001).

62

Table 16: Number of analogies as scored by the participants and the evaluator

Evaluator Scores

(SD.)

Raw Participant Scores

(S.D.)

N

Ave. Control (Linsey et

al., 2008 study) 7.6 (4.8) 7.6 (4.8) 10

Ave. WordTree (Linsey

et al., 2008 study) 23.3 (12.2) 15.6 (13.2) 10

Ave. WordTree (WTE) 29.4 (15.9) 15.6 (9.1) 14

Table 17 shows the percentage of identified analogies that were used to find

solutions in both the Linsey et al., 2008 study and the current one. The average

percentage of identified analogies that were used to find solutions was 42 percent for the

Linsey et al., 2008 study and 22 percent for the WTE study. the decline was not

statistically significant from a pairwise t-test The non-significance could be attributed to

the large deviations from the mean as shown in the results for the minimum and

maximum usage in the Linsey et al., 2008 study (15% and 64% respectively) and the

WTE study (5% and 78% respectively). For the WTE study, the wide deviation from the

average by the values of maximum and minimum percentage of analogies used for

solutions could suggest that there were some participant who fully understood how to

apply the identified analogies and others who did not know how to. A hypothesis from

observing that some of the graduate students were non-English native speakers was that

it had an influence on how well they interpreted each word on their WordTrees to find

analogies resulting in poor performance.

63

Table 17: The percent of identified analogies used to find solutions

Percentage of identified

analogies that were used to find

solutions (Linsey et al., 2008

study)

Percentage of identified analogies

that were used to find solutions

(WTE)

Ave. Usage 42% 22%

Min. Usage 15% 5%

Max Usage 64% 78%

Database search

In the experiment using the WordTree Express program only nine of the fourteen

participants chose to use the internet to search for solutions. Four of the participants that

used the internet did not present any results from their search and therefore did not

bother to record the terms they searched for. This resulted in only five participant left to

analyze search patterns. From the results shown in Table 18, all the five participants

searched only within the peanut domain:

64

Table 18: Number of participants who searched outside the domain of peanut shelling

 Outside Peanut

Shelling Domain

Only Within Peanut

Shelling Domain

Control 0 4

WordTree

(Linsey et al.,

2008 study)

6 2

WordTree

(WTE)

0 5

The result could be attributed to several possible factors such as: 1. the WordTree

Express tool may be have had an effect causing the participants to fixate on the peanut

shelling domain. 2. The part of the WordTree Method that stresses the importance of

searching outside the principal domain during the research step of the WordTree Method

may not have been understood clearly by the participants when they were taught the

method. This was indicated by some the comments from in the interview questions

presented to the participants. For example one of the participants answered to the

interview question:

Question: How could the WordTree Method be improved?

Answer: “How do we draw the line between what is a design analogous domain

and what is not? More clarification is needed. Also what good will the domains

do for the engineer?”

65

From the collected data, nine participants used the internet to search for solution,

so it is also possible that some of those that did not record their search terms may have

searched for terms outside the peanut shelling domain.

Surveys

Figure 23 shows the result from comparing the Linsey et al., 2008 study, pre-

experiment and post-experiment participant opinions on the usefulness of each step in

the WordTree Method. As expected, the results from the Linsey et al., 2008 study and

the pre-experiment survey from the WTE study are similar expect for “Listing

Analogous Domains”. In addition, the results show a favorable increase across the four

questions asked, but only two of them were statistically significant between the pre-

experiment and post-experiment for the WTE study: WordTrees (t= -2.10, p=0.05) and

listing analogous domains (t= -3.1, p=0.007) (p<0.1 is significant). The results suggest

that the participants were finding more value in the WordTree Method than they

originally had prior to using the WordTree Express tool. The results show that for the

question on listing analogous domains, participants opinions increased significantly

between the pre-experiment and post experiment scores. This observation could suggest

that the participants found some useful analogies from their WordTrees that were outside

the peanut shelling domain; this was determined from the analogies they listed and used

for solutions.

66

Given that the participants had low pre-experiment opinions about listing

analogous domains, a hypothesis is that the participants didn‟t fully value the importance

of analogous domains at the time they were taught the WordTree Method possible

because they did not learn it well, but saw the importance as they applied the method for

the design problem in the experiment.

Figure 24 shows the results of the participant surveys on the value of different

methods for a typical engineering design problem. The change in the pre-experiment and

post-experiment scores across all the methods was insignificant except for the WordTree

Method. Between the non-automated WordTree Method and the WordTree Method

using WTE where a t-test showed statistical significance (t= -1.9, p= 0.07) for an

increased opinion for the Method. This result suggests that the opinions of the

participants on the value of the WordTree Method changed in a positive way from using

the WordTree Express program.

Figure 23: Usefulness of each step in the WordTree Method with standard error bars

Overall, WordTree

Method

WordTrees Listing analogies Listing analogous

domains

Writing new problem

statements

A
v
e.

 R
a
ti

n
g

Steps

Usefulness of Each Step in the WordTree Method

2008 WordTree study Pre-Experiment Post-Experiment

Not at
all

Useful

Somewhat
Useful

Useful

Very Useful

6
7

Figure 24: Participants were asked how valuable each method was for a typical engineering design problem

A
v
e.

 R
a
ti

n
g

Methods

Value of Each Method for a Typical Engineering Design Problem

Pre-Experiment Post-Experiment
Extremely
Valuable

High Value

A Little
Value

Medium
Value

Zero Value

6
8

69

Figure 25 shows the results from the participant surveys on the value of different

methods for a design problem that requires an innovative solution. The change in the

pre-experiment and post-experiment scores across all the methods was statistically

insignificant (for significance p<0.1) except for the QFD, function structure and 6-3-5

method (t=-1.9, p=0.08; t=1.9, p=0.08; and t=2.4, p=0.03, respectively). This result was

strange because an effect was not expected for the either of the methods. A t-test

comparing the post-experiment score for the non-automated WordTree Method and the

WordTree Method with the WTE tool showed the difference to be statistically

significant (t=-3.6, p=0.003); this result suggests that using the WTE tool caused the gap

in participants‟ opinions to increase between the values for the WTE tool and the non-

automated WordTree Method during the experiment.

The significance found in the 6-3-5 and Pugh methods between the Linsey et al.,

2008 study and the current study could have resulted because the undergraduate

students, on average, did not understand the method purpose compared to the graduate

students. The methods in the Linsey et al., 2008 study and the current study were all

taught by different professors with different except for the WordTree Method which

could account for some of the differences.

Figure 25: Participants were asked how valuable each method was for a design problem that required an innovative solution

A
v
e.

 R
a
ti

n
g

Methods

Value of Each Method for a Design Problem that Requires an Innovative Solution

2008 WordTree study Pre-Experiment Post-Experiment

A Little Value

Medium Value

High Value

Extremely
Valuable

Zero Value

7
0

71

Figure 26 shows the results from the participant surveys asking them how likely

they were to use each method in the future. A t-test for change in the pre-experiment and

post-experiment scores was significant (p<0.1) for the black box diagram and patent

search (t=-1.9, p=0.08; t=2.6, p=0.02 respectively). The change in the WordTree Method

(non-automated) and the WordTree Method (using the WTE) were also found to be

statistically significant (p<0.1) from the t-test (t=-1.9, p=0.08; t=-4.2, p=0.001

respectively). The change found in the use of the black box was not expected, but a

change in patent search could have resulted from being applied in the WordTree Method

(as a step). The change found between the pre-experiment and post-experiment for the

non-automated WordTree Method suggests that the participants are more willing to

apply the method even if it was done manually in the future. A possible reason for this

result is that using the WordTree Express tool may have caused some influence on their

perception or understanding of the WordTree Method so that they are willing to use the

non-automated method in the future.

Figure 26: Participants were asked how likely they were to use each method in the future

A
v
e.

 R
a
ti

n
g

Methods

How likely are you to use of each method in the future?

2008 WordTree study Pre-Experiment Post-Experiment

Very
Likely

Likely

Unlikely

Neutral

Very
Unlikely

7
2

7
2

73

In comparing the Linsey et al., 2008 study with the WTE study, there were

statistical differences in the box diagram, activity diagrams, function structure, 6-3-5 and

TIPS/TRIZ. These results could be attributed to the graduate versus undergraduate

discrepancy in understanding each method‟s value or in how the methods were taught.

Evaluating the Participants' Scoring Consistency

The charts in Figure 27 show the consistency of the participants, for pre and post-

experiment, in answering selected questions that were not expected to be influenced by

the experiment. The questions were on the participants‟ opinions on value for a typical

engineering design problem for function structures and QFD‟s respectively. These

results are typical for the various methods. The charts show (from the dashed ovals) that

some participants made some changes in scoring methods that were not targeted by the

WTE tool for influence. This could signify that some of the changes that exist between

the pre and post experiment scores for the WordTree Method may not be entirely a result

of the WordTree Express tool‟s effect, but the participants‟ rating inconsistencies.

Figure 27: Two randomly selected charts to illustrate participant answering consistency

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Consistency of Participants (Function structure)

Pre-experiment

Post-experiment

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Consistency of Participants (QFD)

Pre-experiment

post-experiment

7
4

75

Evalation of the participants’ scoring for the WordTree Method

Figure s 28, 29 and 30 show the pre-experiment and post-experiment score of

each participant for the WordTree Method only. The results from observing how each

participant scored the WordTree Method showed a trend in the post-experiment survey

of opinions to be either equal or improved for every participant except for participant 1

and 8 in the question for typical engineering problems and 8 and 10 for the question on

innovative designs. Further review of the participant‟s data show that participant 1 and 8

were among the participants that identified the most analogies, but used very few of

them for solutions. Participant 10 was among those that identified the least number of

analogies resulting in only a few solutions. This would possibly suggest that an element

of frustration for the given design problem may have influenced their opinions about the

WordTree Method. A review of each of the participants‟ data on the evaluation of the

WordTree Method was done to check for consistency in how they responded to similar

questions in the surveys. The results show that the participants were consistent in every

question within a margin of error of +/- 1. This would mean that the effect of their

opinions were not mostly out of inconsistency in scoring.

7
4

Figure 28: Participants’ WordTree Method value score for a typical engineering design problem

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Participants

WordTree Method Only (for typical engineering design problems)

Pre(Typical) Post(Typical with WTE)
Extremely
Valuable

High Value

A Little
Value

Medium
Value

Zero Value

7
6

Figure 29: Participants’ WordTree Method value score for a design that required an innovative solution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Participants

WordTree Method Only (for innovative solutions)

Pre(innovative) Post(Innovative with WTE)Extremely
Valuable

High Value

A Little
Value

Medium
Value

Zero Value

7
7

Figure 30: Participants' WordTree Method value score for how likely they would use it in the future

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Participants

WordTree Method Only (for future use)

Pre(Future) Post(Future with WTE)Extremely
Valuable

High Value

A Little
Value

Medium
Value

Zero Value

7
8

79

Evaluation of the WordTree Method

Figure 31 shows the results of the questionnaire (Table 19) for evaluating the

WordTree Method and compares results from the Linsey et al., 2008 study, pre-

experiment and post-experiment WTE study. The results comparing the pre-experiment

and post-experiment showed statistically significant (p-value <0.1) positive effect in all

the questions asked except for questions 7, 8 and11 where they remained statistically

equal. The trend was higher scores for the post experiment (t and p-values are shown in

Table 20). This effect showed that the WordTree Express program influenced the users‟

opinions in a positive way. Although, question 7 and 9 were expected to increase based

on the questions comparing the different methods, the insignificance could be attributed

to the question scale (0 to 4 in this one) rather than (0 to 5 in the methods value

questions); this would influence an increase in standard error.

In comparing the result of the post-experiment with the Linsey et al., 2008 study,

the result shows a positive change for all the questions with all statistically significant

except for questions 7, 8 and11. The results suggest a possible effect from using the

WordTree Express tool was positive.

In comparing the results of the Linsey et al., 2008 study to the pre experiment

survey results, there were significant differences found in questions 1, 2, 5, 6, 10 and 11.

These differences could be from a number of factors such as: graduate (WTE study) vs.

undergraduate (Linsey et al., 2008 study), survey given before the experiment (WTE

study) vs. after (Linsey et al., 2008 study), etc.

Figure 31: Participants evaluation of the WordTree Method

Table 19: Questions asked to evaluate the WordTree Method

1. This method helped me to find analogies for my design problem. 7. I expect to use this method in the future.

2. This method helped me to generate more ideas. 8. This method (does not) needs improvements.*

3. This method helped me to generate more quality ideas 9. This method was useful.

4. This method was (not) a waste of my time.* 10. I like using the method.

5. The presentation of this method was easy to understand. 11. I expect to use this method in the future for design problems that require an

innovative solution.

6. This method was easy to use. *Reversely scored. () omitted in actual survey

1 2 3 4 5 6 7 8 9 10 11

A
v
e.

 R
es

p
o
n

se

Question Number

Evaluation of the WordTree Method

2008 WordTree study Pre-Experiment Post-Experiment
Strongly
Agree

Agree

Disagree

Neutral

Strongly
Disagree

8
0

81

Table 20: p-values comparing pre and post experiment questions

Questions t df Sig. (2-tailed)

1 -3.9 14 .002

2 -2.8 14 .016

3 -3.2 14 .007

4 1.8 14 .089

5 -2.07 14 .057

6 -2.5 14 .027

7 -1.00 14 .33

8 1.00 14 .33

9 -2.8 14 .014

10 -2.8 14 .014

11 -1.0 14 .33

Addressing the Research Questions

 Question 1: Does the WordTree Express program affect engineering

designers’ opinions of the WordTree Method? The WordTree Express

program positively affected the opinions of the designers. The study showed a

significant rise in value scores for the WordTree Method in two of the three

measures taken: the question on the value of the WordTree Method for a typical

engineering design problem and for how likely they would use the Method in the

future The results shown in Figures 24 and 26 support the hypothesis that: WTE,

by simplifying the process of generating WordNet-based WordTrees, will

increase designers‟ opinions of the WordTree Method. Although the positive

82

results seem to point at the use of the WordTree Express tool, a second factor to

consider is that the participants knew at the time of the post experiment survey

what they were being tested for and it may have biased their response.

Question 2: Does providing more comprehensive WordTrees (via WordTree

Express) for the chosen problem descriptors affect the number of analogies

identified and used for conceptual solutions to the design problem? The

results from Table 16 showed that there was no significant increase in the

number of analogies identified by the WordTree participants in both studies. This

shows that the second hypothesis stating that using the WordTree Express

program to create WordTrees will present the user with a more comprehensive

WordTree; increasing the number of identified analogies was not satisfied. This

result lead to the possibility that the pre-generated WordTrees given to the

participants in the prior study was well put together using mostly relevant words

to create them. Another possibility is that since the prior study had smaller

WordTrees, it was easier to for the participants to identify the relevant potential

analogies, while for the WTE participants a more demanding filtering was

required from the participants because of the larger size of the WordTrees and

this could have led to overlooked potential analogies. The percentage of

analogies used for conceptual solutions on average were equal because there was

no statistical significance (p-= 0.5). A possible explanation for the decrease in the

percentage of analogies used is that the participants were graduate students rather

than undergrads (as in the Linsey et al., 2008 study) which leads to the

83

assumption that graduate students would tend to be more selective of the

concepts they chose to present compared to the undergrads.

Question 3: What are some of the additional avenues for improvement to the

WordTree Design-by-Analogy Method? From the observation of the

participants during the experiment, the WordTrees needs to be further refined as

many of the participants found it tedious to scroll through very large WordTrees.

For example one participant answered to the following interview survey:

 Survey: Please state any additional comments you have about the experiment.

Use back of paper if needed.

 Participant response: “Saving WordTree file is troublesome.” “WordTree

generated tends to be horizontal, not easy to read.” “Easy to use”

A possible solution would be to prune the WordTrees using predefined criterion

and storing the WordTrees in a depository for multiple uses.

Another area for improvement would be in enhancing the participants

understanding of the Method. While some of the participants found the

WordTree Method to be very useful, others did not seem to understand the

concept of analogies and the need to search distant analogous domains for

possible innovative solutions. This could be from not being presented with very

effective examples of solutions using the WordTree Method during the lecture on

the method. It is recommended to stress the method‟s strength by challenging the

students to generate ideas for a selected design problem in a class activity and

presenting the students with the solution found using the WordTree Method. The

84

lack of a full understanding of applying the WordTree Method could have

suppressed the level of the positive results shown. Participants with the less

favorable opinions came from those that identified either many or a few number

of analogies; this supports the assertion that a lack of understanding of the

method or a lack of skills in Design-by-Analogy will likely produce unfavorable

results in the experiment.

85

CHAPTER V

CONCLUSION AND FUTURE WORK

Design-by-Analogy is becoming a more sought after approach for solving

engineering design problems. Some of the best solutions to design problems are found in

nature and prior solutions. The WordTree Method not only presents a way to lead an

engineer or designer to useful analogies in nature, but also to other existing and useful

non-natural analogies. This thesis has investigated the WordTree Method and has sought

to foster advancing the state of the method to a more easily adapted method by engineers

and designers. The first step to achieving this was to change designers‟ opinion about the

method to a more positive one.

A computational tool for simplifying the process of generating WordNet-based

WordTree was developed and has shown, by experiment, to be effective in significantly

changing the opinions of engineers about the WordTree Method. The result is expected

to help in the goal of making the WordTree Method a more sought after one. The results

from the experiment showed that the WordTree Express tool allowed the users to

identify a large number of analogies for the given design problem. It also showed that

the participants‟ opinions on the WordTree Method positively changed across most of

the survey questions asked. The result from the participants‟ opinion on using the

WordTree Method in the future for each participant increased or remained the same; this

was the basis of the study. The study showed that developing the WTE tool to foster the

application of the WordTree Method made a positive impact that could be a contribution

to the way the students are taught the method in the future.

86

This thesis has also done a thorough investigation on how the WordTree Method

could benefit from other existing ontologies such as PHYSSYS, HowNet and YMIR

ontologies. The PHYSSYS ontology provides a broad space for engineering specific

analogies, but the current library (OLMECO) created using the PHYSSYS ontology

limits the ability to search for analogies in nature. However, since the PHYSSYS

ontology with the OLMECO library is more focused on engineering than WordNet, it

would make finding relevant analogous products quicker. The HowNet ontology has an

advantage over the WordNet ontology as its members (words) are clearly defined. For

example in HowNet 手术刀 which is Chinese for “scalpel” (surgical knife) contains not

just characters, but ideas. 手术 means “surgery” and 刀 means “knife” (Veale, 2005).

This means that in HowNet for 手术刀 “surgery knife” you can relate to ideas in the

domain of “medicine” (where “surgery” is found) and in the domain of “knifes” (where

“knife” is found), but in WordNet “scalpel” would be found in the domain of “medicine”

only. So a HowNet user can be provided with analogies in the “surgery domain” and

“knives domain” rather than just the “medical tools” domain in WordNet. HowNet

contains sufficient structure to realistically support both a taxonomic abstraction view

and a structure-mapping view of analogy generation (Veale, 2005). In other words,

using the example 手术刀,”sufficient structure” means the unit (手术刀) is enough, as a

word, to be classified by a taxonomy. The YMIR ontology which is made up of

taxonomy of concepts that are used in different domains of engineering could be

presented in a WordTree form for designers and engineers to use as an analogy search

domain.

87

Contributions of This Thesis

1. Research work done in this thesis supported the development of the WordTree

Express tool to foster the application of the WordTree design method. The WTE

tool can serve as a tool to teach the WordTree Method.

2. The WTE tool has shown, from the experiment performed, that it had a positive

effect on the opinions of engineers on the WordTree Method.

3. This thesis has researched some useful ontologies for their application in Design-

by-Analogy such as the HowNet, YMIR and PYSSYS ontologies.

Future Work

For future work on the WordTree Method, some recommendations are proposed

from the collection of insights gained from this thesis. The background research coupled

with the results of the experiment and other significant observations lead to the

following recommendations:

 Increase sample size experiment: A larger size experiment with more

participants and a longer duration time would make for a better study. It was

noticed that a large number of the participants did not have enough time to go

through their second WordTree while identifying potential analogies. This could

have had an effect on the number of useful analogies they identified. It is

recommended that the experiment last for at least a three hour period and include

a semi-formal interview of the participants to accurately account for their

understanding and reasoning behind their opinions about the WordTree Method.

88

 Alternate ontology to WordNet: WordNet has proven to be very effective in

leading to useful analogies, but as noted by Veale WordNet lacks the word

transparency that could lead to a broader analogy space. This transparency is

defined by the structure of a word (e.g. “surgical knife” in HowNet is represented

by “scalpel” in WordNet) that makes more connections than the WordNet

representation. In other words, a HowNet user can be provided with analogies in

the “surgery domain” and “knives domain” rather than just the “medical tools”

domain in WordNet. HowNet contains sufficient structure to realistically

support both a taxonomic abstraction view and a structure-mapping view of

analogy generation (Veale, 2005). In other words, the words and pairs of words

(i.e. Chinese language-based structure) you find in HowNet have enough

structure to allow them to be classified by the HowNet ontology. So a

recommendation would be to use HowNet to generate WordTrees and compare

its effectiveness with WordNet results. The two results could also be combined

for an even larger design space for analogy search.

 Improve user-interface: Including a more sophisticated user interface with more

functions would make the WordTree Method even easier to apply. Functions

such as those found in Visual Thesaurus where you can find definitions of the

word by simply pointing to them on the tree rather than doing a new word search

would be ideal. The software used for the development of Visual Thesaurus,

thinkmap (Thinkmap, 2010a) should be considered as a developing tool for the

new interface because it was designed specifically for the kind of application the

89

WordTree is (i.e. an application that displays large trees as outputs). The

Thinkmap software will be beneficial because 1. it comes with a set of out-of-

the-box configurations for solving common visualization problems, as well as

visualization techniques for customizing data displays. 2. Visualizations can be

built rapidly using an XML-based configuration language. 3. It comes with pre-

configured building blocks including: Spider, Hierarchy, Clustering, and

Chronology.

 combinFormation: As discussed in the background section, the work of Glenberg

and Langston showed that when images are accompanied by descriptive texts

they promote the formation of mental models than just texts alone (Glenberg &

Langston, 1992). A recommendation would be to integrate the current WordTree

Method with a program such as combinFormation to make identifying analogies

easier for the user and to present images with the words.

 Color coding words on the WordTrees: Highlighting relationships between words

on a WordTree could also be effective in teaching the importance of domains and

how solutions can be found in distant domains. When it is visually clear to the

student that two words belong to distinctly different domains it promotes a faster

understanding of importance to search in other domains for solutions and would

make students easily learn how to properly apply the method. Using different

color for words that belong to different domains is a suggested approach.

 General use repositories: Useful analogies have made their way into design

solutions from analogous products built on fundamental engineering principles

90

and concepts. The YMIR ontology is a taxonomy of concepts used in different

engineering disciplines and could be used as a source of analogy identification if

properly presented to designers and engineers. A proposed direction would be to

design a repository of solutions, from using the WordTree Method and other

design methods that could retrieve solutions from identifying function keywords

(verb).

91

REFERENCES

Alberts, L., & Dikker, F. (1992). Integrating standards and synthesis knowledge using

the YMIR ontology. In Artificial Intelligence in Design '94, J.S. Gero and F.

Sudweeks (Eds.), Boston, Kluwer Academic Publishers, 517-53494.

Altshuller, G. (1999). The Innovation Algorithm: TRIZ, Systematic Innovation and

Technical Creativity, Worchester, MA. Technical Innovation Center.

Borst, W., (1997). Construction of engineering ontologies for knowledge sharing and

reuse. PhD Dissertation. University of Twente, Enschede, The Netherlands.

Burke, M. (1999). Organization of Multimedia Resources, Hampshire, UK: Gower.

Cross, V., & Bathija, V. (2009). Automatic ontology creation using adaptation. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing 24(01), 127-141.

Ellson, J., Gansner, E., Hu, Y., & Bilgin, A. (2010). Graphviz - Graph Visualization

Software. http://www.graphviz.org.

English, K., Naim, A., Lewis, K., Schmidt, S., Viswanathan, V., Linsey, J., McAdams,

D.A., Bishop, B., Campbell, M.I., Poppa, K., Stone, R.B., & Orsborn, S. (2010).

Impacting designer creativity through IT-enabled concept generation. Journal of

Computing and Information Science in Engineering 10(3), 031007-031010.

Glenberg, A., & Langston, W. (1992). Comprehension of illustrated text: Pictures help

to build mental models. Journal of Memory and Language 31(2), 129-151.

Gomes, P., Seco, N., Pereira, F.C., Paiva, P., Carreiro, P., Ferreira, J.L., & Bento, C.

(2006). The importance of retrieval in creative design analogies. Knowledge-based

Systems 19(7), 480-488.

92

Gruber, T. (1995). Toward principles for the design of ontologies used for knowledge

sharing. International Journal of Human Computer Studies 43(5), 907-928.

INKSCAPE. (2010). Open Source Scalable Vector Graphics Editor.

http://www.inkscape.org.

Kamps, J., & Marx, M. (2002). Visualizing WordNet structure. ICGW02, 1st Int. Conf.

on Global WordNet, pp. 182–186. Mysore, India.

Koh, E., Hill, R., Kerne, A., Dworaczyk, B., Mistrot, J., Choi, H., Smith, S., Graeber, R.,

Caruso, D., & Webb, A. (2007). combinFormation: A mixed-initiative system for

representing collections as compositions of image and text surrogates. JCDL07,

Proc. of 6th ACM/IEEE Joint conf. on Digital Libraries, pp. 11-20. Chapel Hill,

NC.

Linsey, J., Wood, K., & Markman, A. (2008). Modality and representation in analogy.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 22(2),

85-100.

Linsey, J.S. (2007). Design-by-Analogy and Representation in Innovative Engineering

Concept Generation. Ph.D. The University of Teaxas at Austin.

Princeton University (2010). About WordNet. WordNet. Princeton University.

http://wordnet.princeton.edu

Schild, K., Herstatt, C., & Lüthje, C. (2004). How to Use Analogies for Breakthrough

Innovations. Hamburg, Germany: Technical University of Hamburg, 63: 495-508.

Thinkmap (2010a). The Thinkmap White Paper. http://www.thinkmap.com.

93

Thinkmap (2010b). Visual Thesaurus. Desktop edition. Retrieved from

http://www.visualthesaurus.com.

Veale, T. (2005). Analogy generation with HowNet. IJCAI05, Proc. of the 19th Int.

Joint Conf. on Artificial Intelligence 1148-1153. Edinburgh, Scotland.

Weaver, W., & Prince, G. (1990). Synectics: Its potential for education. Phi Delta

Kappan, 71(5), 378-388.

94

APPENDIX A

95

WORDTREE EXPRESS EXPERIMENT

PARTICIPANT MATERIALS

1. WordTree Express tutorial

USING WordTree Express

1. Double click the WordTree Express shortcut icon on your desktop.

 (WordTree Express program icon as seen on the desktop)

2. Type a keyword in the textbox, click search and select a sense.

 The program should look like this:

3. Click on the "Create file & Start Graphviz" button to create a Graphviz file and

start the Graphviz program. The following popup message will be displayed to

96

let you know that a file has been saved as the keyword you typed in C:\WTE:

Click on OK

*****If you don’t see the message box before Graphviz starts, close

Graphviz and click the "Create file & Start Graphviz" button

again******

4. In the Graphviz program point to file-->open and select the created Keyword

text file in C:\WTE.

97

5. Click on run and choose ".svg"(Scalable vector graphics) as the "output file

type" in the popup window.

98

99

6. Next, click OK to save a scalable vector graphics version of the WordTree and to

display the graphviz output as shown below.

7. Close Graphviz and Open the WTE shortcut on your desktop; double click

the svg file you created.

8. Use the magnifying glass shown in the figure below to zoom out and in by left

clicking with or without holding down the Ctrl button respectively.

9. Use the pen shown in the figure below to write on your WordTree.

100

10. To perform a new search using WordTree Express, click on the "Reset All"

button and type a new keyword.

101

3. Design Problem

Device to shell peanuts

Problem Description:

In places like Haiti and certain West African countries, peanuts are a significant crop.

Most peanut farmers shell their peanuts by hand, an inefficient and labor-intensive

process. The goal is to build a low-cost, easy to manufacture peanut shelling machine

that will increase the productivity of the peanut farmers. The target throughput is

approximately 50Kg (110lbs) per hour.

Customer Needs:

 Must remove the shell with minimal damage to the peanuts.

 Electrical outlets are not available as a power source.

 A large amount of peanut must be quickly shelled.

 Low cost and easy to manufacture.

Functions:

 Import energy to the system.

 Break peanut shell.

 Separate peanut shell from the nut.

102

4. WordTree Method Reminder

Modified WordTree Analogy Method Overview

Problem Descriptors
(problem statement / mission statement, CNs, functions)

Search for Analogies and Solutions

R1:Single Words from Tree

R2: Patent Results and Researched Analogies (Google)

Continue with Design Process

Identify Potential

Analogies

Create WordTrees (Re-represent the problem)

1. Individual Generates Using Sticky Note

2. WordTree Express results

Identify Analogous

Domains

Patent Search

Analogous Domain

Research

Analogies

Functional Model

Finished Sticky Note WordTree

103

Identify Analogous Domains &

Analogies
• Identify Analogous

Domains
– Parallel braches

– Multiple potential
analogies in the same
domain

• Identify potential analogies
(frequently, words that are
both nouns & verbs)
– Unusual words / domain

specific words

– [e.g. douse (lower
quickly) "douse a sail"
and reef (roll up (a portion
of a sail) in order to
reduce its area)]

– Pay close attention to the
“leaves”

– Once one analogy or
useful word is found,
others on same branch
are likely candidates too.

Generating Ideas and Analogies

1. Words from WordTree

2. Researched Potential Analogies

(Google) from list and search for patents

in the analogous domains you identified

104

5. Analogy Example

Example of Analogy:
Same domain analogy

Liquid measuring
device with
convenient to read
measurement
scales

New Measuring Cup

Historical Patent for
this problem

Problem
Description

Analogy Concept

105

Design by Analogy Example: Product
Emulation (Same domain)

Distance Design Analogy Example:
Analogy between two devices (Distant domain)

Vegetable
Peeler

Pick-up winder to
create coiled wire pick-
ups for an electric
guitar

What is a Design Analogy

• The mapping of features of one thing to a
design problem you are trying to solve

• Anytime you take information from an
example you have seen before

• Can be same domain or distant domain

• Examples
– Other devices

– Close domain/ far domain

– Nature

3. Surveys

Pre-experiment Survey

Please answer the following questions for the WordTree Method.

 Not at all

useful

Somewhat

Useful

Useful Very

Useful

Overall, WordTree Method

was:

The WordTrees were:

106

Listing analogies was:

Listing analogous domains

was:

Writing new problem

statements was:

What is the value of each of the following for a TYPICAL ENGINEERING DESIGN

PROBLEM?

Zero

value

A little

value

Medium

value

High

value

Extremely

valuable

Can‟t

remember

Background research /

Literature review

Mission Statement

Quality Function

Development (QFD,

House of Quality)

Black Box diagram

Activity Diagram

Function Structure

Patent Search

6-3-5

107

Mind Maps

TRIZ/TIPS

Morph Matrix

Pugh Charts

WordTree Method

What is the value of each of the following for a DEIGN PROBLEM THAT

REQUIRES AN INNOVATIVE SOLUTION?

Zero

value

A little

value

Medium

value

High

value

Extremely

valuable

Can‟t

remember

Background

research/Literature review

Mission Statement

Quality Function

Development (QFD, House

of Quality)

Black Box diagram

Activity Diagram

Function Structure

Patent Search

108

6-3-5

Mind Maps

TRIZ/TIPS

Morph Matrix

Pugh Charts

WordTree Method

Assuming you are working as an engineer, how likely are you to use each of the

following methods in the future?

Very

unlikely

Unlikely Neutral Likely

Very

Likely

Can‟t

remember

Background

research/Literature review

Mission Statement

Quality Function

Development (QFD, House

of Quality)

Black Box diagram

Activity Diagram

Function Structure

Patent Search

109

6-3-5

Mind Maps

TRIZ/TIPS

Morph Matrix

Pugh Charts

WordTree Method

Please answer the following questions for the WordTree Method:

 Strongly

Disagree

Disagree Neither

Agree

Nor

Disagree

Agree Strongly

Agree

12. This method helped me

to find analogies for my

design problem.

13. This method helped me

to generate more ideas.

14. This method helped me

to generate more quality

ideas

15. This method was a waste

110

of my time.

16. The presentation of this

method was easy to

understand.

17. This method was easy to

use.

18. I expect to use this

method in the future.

19. This method needs

improvements.

20. This method was useful.

21. I like using the method.

22. I expect to use this

method in the future for

design problems that

require an innovative

solution.

111

Post-experiment Survey

Please answer the following questions for the WordTree Method including the

WordTree Express program.

 Not at all

useful

Somewhat

Useful

Useful Very

Useful

Overall, WordTree Method was:

The WordTrees were:

Listing analogies was:

Listing analogous domains was:

Writing new problem statements

was:

What is the value of each of the following for a TYPICAL ENGINEERING DESIGN

PROBLEM?

Zero

value

A little

value

Medium

value

High

value

Extremely

valuable

Can‟t

remember

Background

research/Literature review

Mission Statement

Quality Function

Development (QFD, House

of Quality)

112

Black Box diagram

Activity Diagram

Function Structure

Patent Search

6-3-5

Mind Maps

TRIZ/TIPS

Morph Matrix

Pugh Charts

WordTree Method non-

automated (Paper-based)

WordTree Method

automated

(e.g WordTree Express)

What is the value of each of the following for a DEIGN PROBLEM THAT

REQUIRES AN INNOVATIVE SOLUTION?

Zero

value

A little

value

Medium

value

High

value

Extremely

valuable

Can‟t

remember

Background

113

research/Literature review

Mission Statement

Quality Function

Development (QFD, House

of Quality)

Black Box diagram

Activity Diagram

Function Structure

Patent Search

6-3-5

Mind Maps

TRIZ/TIPS

Morph Matrix

Pugh Charts

WordTree Method non-

automated (Paper-based)

WordTree Method

automated

(e.g WordTree Express)

114

Assuming you are working as an engineer, how likely are you to use each of the

following methods in the future?

Very

unlikely

Unlikely Neutral Likely

Very

Likely

Can‟t

remember

Background

research/Literature review

Mission Statement

Quality Function

Development (QFD, House

of Quality)

Black Box diagram

Activity Diagram

Function Structure

Patent Search

6-3-5

Mind Maps

TRIZ/TIPS

Morph Matrix

Pugh Charts

WordTree Method non-

115

automated (Paper-based)

WordTree Method

automated

(e.g WordTree Express)

Please answer the following questions for the WordTree Method including the

WordTree Express program:

 Strongly

Disagree

Disagree Neither

Agree

Nor

Disagree

Agree Strongly

Agree

23. This method helped me

to find analogies for my

design problem.

24. This method helped me

to generate more ideas.

25. This method helped me

to generate more quality

ideas

26. This method was a waste

of my time.

27. The presentation of this

method was easy to

116

understand.

28. This method was easy to

use.

29. I expect to use this

method in the future.

30. This method needs

improvements.

31. This method was useful.

32. I like using the method.

33. I expect to use this

method in the future for

design problems that

require an innovative

solution.

 Strongly

Disagree

Disagree Neither

Agree Nor

Disagree

Agree Strongly

Agree

I ran out of time before I

ran out of ideas.

117

I ran out of ideas before I

ran out of time.

How much engineering industrial work experience (experience not part of a class) do

you have?

Full-time (35+ hrs/week) engineering work (internships or full-time work)

__________months

__________years

Part-time (less than 35 hrs/week) engineering work

__________hrs/week __________months

__________years

Please answer the following

 Gender (check one):

Male Female

118

 Age:

Years

 Years in Graduate school (check one):

1 2 3 4 Other

What did you like about the WordTree Method?

What steps in the WordTree Method were most useful?

How could the WordTree Method be improved?

What difficulties did you have when using the WordTree Method?

Where did you need more guidance from the WordTree Method?

What do you think of the WordTree Express program? How would you compare your

experience when you made WordTrees manually to using this automated method?

Please state any additional comments you have about the experiment. Use the back of

the paper if needed.

Thank you very much for your time.

119

EXPERIMENT SCRIPT

WordTree Idea Generation – Experimenter Script

Check list:

o Participant instruction packets (Sticky note and WTE)***

o Slides (projector setup)****

o WordTree Express tutorial

o Numbered papers (1-44)

o Sticky Notes

o Sticky Note instruction sheet

o Sticky Note Blanks (four 8.5X11)

o WTE instruction sheet

o Analogy list sheet 1

o Analogy list sheet 2

o Multiple color pens (black, blue, green, pink, maroon, light blue pen, light blue

marker)***

o Computers for the participants (Tutorial screen up)

o Participant consent forms (2)

o Problem Statement sheet

o Surveys

o Stop watch

o Stapler

o Print out of WordTree Method Reminder***

120

o Tape

Make sure all files in WTE folder have been deleted

Make sure headphone are working

Test video playback

1. Consent

On the table:

 Participant consent forms

 BLACK pen

 2 different color Sticky Notes (left)

 Sticky Note instruction sheet + 4 Blank sheets (left on top of sticky notes)

 WordTree Method Reminder (center)

 Problem statement (right)

On computer table:

 WTE tutorial hardcopy on participants left side (face down)

 WTE instruction sheet on participants right side (facedown)

When participants come, show them the work place.

Start stop watch

121

“Hello and thank you for taking time today to participate in this research study.

Please turn off all cell phones. For this study, you are not supposed to monitor time

using your watches or cell phones. So, please put your watches and cell phones in

your back pack or the box on this table” (Show the box).

Check to make sure that the participants have no mobiles or watches with them.

“This study is evaluating different idea generation methods. Your task is to

generate ideas and analogies for a design problem. The total time required for this

study is 2 hours. Please read the consent form. You are not required to participate

in this study and may end your participation at any time.”

Wait until all of the participants have finished reading to proceed with the experiment.

Then say,

“If you agree to participate please sign the consent form and keep the second copy

for your records.”

Wait for participants to sign the consent forms

Collect the consent forms

“Please put away your copy of the consent form”

2. Pre-Experiment Survey (5 min)

Place on the table

 Pre- Experiment survey

122

“Please fill out the given survey”

Collect the survey when finished

3. Design problem (110 min)

“OK, we are now beginning with the experiment. This experiment has multiple

activities and the entire two hours will be required. Your effort will be

compensated with extra credits for your design class or payment as discussed. You

must agree to not discuss any aspects of this study with other mechanical

engineering students in Texas A&M until after May 1, 2011 since this will bias the

results. Are there any questions before we begin?”

Record the questions and answers in case of any.

Answer the questions if any.

“Multiple colors of pens are being used to keep track of when items are written. I

will be asking you to switch colors periodically throughout the experiment.”

Show analogy examples and read from description

Place slides hardcopy on table

“Please look at the slides”

“You are being asked to generate ideas for a peanut shelling machine. Flip over the

sheet on your right.”

Problem Description

In places like Haiti and certain West African countries, peanuts are a significant crop.

Most peanut farmers shell their peanuts by hand, an inefficient and labor-intensive

123

process. The goal is to build a low-cost, easy to manufacture peanut shelling machine

that will increase the productivity of the peanut farmers. The target throughput is

approximately 50Kg (110lbs) per hour.

Customer Needs:

 Must remove the shell with minimal damage to the peanuts.

 Electrical outlets are not available as a power source.

 A large amount of peanut must be quickly shelled.

 Low cost and easy to manufacture.

Functions include

 Import energy to the system.

 Break peanut shells.

 Separate peanut shells from the nut.

“This is a real problem from a website called Thinkcycle.org. Thinkcycle.org

presents design needs from underserved populations. An efficient, low cost solution

does not exist for this problem. Your ideas may be given to a design team working

on this problem.”

“For this experiment you are being asked to use the WordTree Design-by-Analogy

Method you were taught in class.”

Activity 1 (20 min)

Spend 20 minutes creating sticky note WordTrees for the following Key Problem

Descriptors:

124

 Shell

 Remove

 Separate

 Import Energy

“A printout of the WordTree Method reminder is on your table for your reference”

“Flip over the stacks of papers on your table”

“Use the smaller stack of Sticky Notes for your keywords”

“Go ahead and start”

At 20 min

“Please stop the activity.”

*** Tape down sticky note WordTrees***

Activity 2 (20 min)

“Please move your chair to face the computer on your left and have a sit”

“For the next activity, you are required to generate WordTrees using a new

software program called WordTree Express. To help you with this, we have

recorded a short tutorial for you. Press the play button after you put on your

headphones. When the tutorial finishes, take off your headphones”

“You may now put on your headphones and press the play button”

Allow tutorial to finish playing

“Please close the tutorial”

125

 “Do you have any questions?”

Answer the questions if any

“Please raise your hand if you have any questions”

“Flip over the papers on the table”

“You are to generate WordTrees using WTE for the peanut shelling problem”

“You may refer to the hardcopy of the tutorial on your left as needed”

“To generate your WordTrees with WTE, use the 7
th

 sense of the keyword “Shell”

and the 5
th

 sense of the keyword “Separate”.”

“Remember to circle all the words of interest on your WordTrees and save any

changes you make to your WordTrees.”

“OK, you may now start.”

After 20 minutes

“Please stop the activity”

Activity 3 (10 min)

Place Analogy list sheet 1 on table

“Using the WordTrees you’ve generated, identify and list potential analogies and

analogous domains. Write down every possible analogy or analogous domain, even

if it is not directly from your WordTree or it is technically infeasible, wild, or crazy.

You have ten minutes to do this”

Activity 4 (60 min)

Add to the table

 Numbered sheets (1-44)

126

 Maroon pen

“Now you are being asked to generate solutions and continue generating analogies

for the peanut shelling problem. Use the single words from your WordTrees.”

“The goal is to generate as many solutions as possible with as high of quality as

possible and with as great of variety as possible. Technically infeasible, wild, non-

standard and far out ideas are also encouraged. This helps to generate unique

feasible solutions.”

“Use sketches and words to describe your ideas.”

“This session contains multiple tasks that will require the rest of the time. You may

choose when to end the idea generation session and move to the next task. When

you are ready to move to the next task please raise your hand.”

“You can use the rest of the time for idea generation.”

“Begin generating ideas by using the single words from your WordTrees.”

“Remember, the amount of extra credit you will receive depends on your effort and

performance.”

 “Go ahead and start”

Pen colors “Switch to the X pen”

Time Color Start End

0-15 Maroon

15-30 Light blue pen

30-40 Orange pen

40-45 Pink

127

**computer

45-60 purple

***Make sure I write down what time they want to end the

activity***

Hand out sheet on why they decided to stop idea generation

Hand out motivation sheet

“Remember you can use your WordTrees to help you generate ideas.”

At 45 minutes

 “If you want to use it, the computer has internet access and is available to assist

you in solving the peanut shelling device problem. You can use it to research the

potential analogies you identified in the previous activity and search for patents in

the analogous domains. You do not need to use it. If you gain ideas from using the

web, be sure to write down the reference information (the website address or other

appropriate information).”

“Please raise your hand when you want to use the computer.”

***Make sure I write down what time they start using the

computer***

End of Activity

“Please stop all activities”

Add to the table

128

 Analogy list sheet 2

“Note any analogies you used to help you find solutions. Please go ahead and do this

now”

If you used the computer to search for ideas, write down a short description of how

you searched. What search engines did you use? What terms did you search for?

Collect all the papers

4. Post Experiment Survey (5 min)

Add to the table*

 Post-Experiment Survey

“This is the final part of the experiment. Please fill out the given survey”

“In the section on years in graduate school, indicate if years include Masters

only or Masters and PhD”

Collect the surveys when finished

5. Disbursement

“Thank you for your participation. I will make sure that you receive your extra

credit or payment for your participation. This concludes your portion of the study.

Please remember to not discuss this study with your classmates until after May 1,

2011 since this will bias the data. If you have any questions about this study I can

answer them at this time. “

Record the questions and answers in case of any.

129

APPENDIX B

130

SAMPLE SOLUTION

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

WORDTREE EXPRESS TUTORIAL/MANUAL

WordTree Express User's Guide/Tutorial ver.1.0

INSTALLATION

1. Copy the WTE package folder to your desktop.

2. Copy the “WTE” and “WTE database” folders to C:\

3. Install the Graphviz program by running the “graphviz-2.26.3.msi” file in the

WTE package folder.

4. Install Inkscape by running the Inkscape-0.47-3.exe file in the WTE package

folder.

5. Restart your computer (recommended)

6. Install WordTree Express by double clicking the setup.exe file in the

Desktop\WTE Package\WTE deploy\Debug folder.

USING WTE

11. Double click the WordTree Express shortcut icon on your desktop.

 (WordTree Express program icon as seen on the desktop)

12. Type a keyword in the textbox, click search and select a sense.

 The program should look like this:

154

13. Click on the "Create file & Start Graphviz" button to create a Graphviz file and

start the Graphviz program. The following popup message will be displayed to

let you know that a file has been saved as the keyword you typed in C:\WTE:

Click on OK

 If the "Keyword" you typed doesn't exist you will see the following message:

155

 If you receive this error message you should check the spelling or type a different

Keyword.

14. In the Graphviz program point to file-->open and select the created Keyword

text file in C:\WTE.

15. Click on run and choose ".svg"(Scalable vector graphics) as the "output file

type" in the popup window.

156

16. Click on the box next to "Output file name" to give a name to the file. The

default file name is the keyword you typed in the search field (in this example

"Seal").

17. Next, click OK to save a scalable vector graphics version of the WordTree and to

display the graphviz output as shown below.

Note: Every word on the WordTree has a numeric identifier used by the program

for classification purposes and should be ignored when reading the output.

157

Graphviz WordTree output for the word “Seal”

18. In some cases (as shown below) the WordTree created is too large to be

displayed using Graphviz, therefore a solution is to open the created ".svg" file

158

with Inkscape or Microsoft Visio. You should make Inkscape or Microsoft Visio

the default ".svg" file handler. It is highly recommended to use Inkscape as it has

a better zoom feature than Microsoft Visio.

Graphviz WordTree output for the word “Change”

19. To make Inkscape or Microsoft Visio the default program for ".svg" files, right

click on any the ".svg" files created as shown in the figure below and select

"open with". Click "set default program" and brows program files to select

159

Inkscape or Microsoft Visio. Make sure the checkbox: "Always use the selected

program to open this kind of file" is checked.

160

20. Once a ".svg" file is open, use the zoom feature in Inkscape or Visio to adjust the

graphical display. In Inkscape this is done by left clicking anywhere on the

graph as shown below. To zoom out of the screen hold the shift key while

clicking the graph area. In Visio adjust the zoom level in the drop down option as

shown. Use the scroll bars to navigate the entire graph.

161

Inkscape WordTree output for the word “Change”

Visio WordTree output for the word “Remove”

21. To write on graph in Inkscape, you can use and edit the pen feature (shown on

the next figure) by selecting the pen (1), double click on the fill option at the

bottom left of the screen (2) and select the desired pen color (3). Adjust the

162

thickness of the pen stroke by adjusting the level as shown in the figure below

(5).

1 3

2

163

22. To perform a new search using WordTree Express, click on the "Reset All"

button and type a new keyword.

5

164

WORDTREE EXPRESS PROGRAM CODE

Imports System.IO

Public Class Form1

 Private _arrWord As New ArrayList

 Private _arrMeaning As New ArrayList

 Private _arrSenses As New ArrayList

 Private _arrDefinition As New ArrayList

 Private _arrDefNum As New ArrayList

 Private _arrSensesW As New ArrayList

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 Try

 funcLoadFiles()

 Catch ex As Exception

 End Try

 End Sub

 Private Sub funcSearch()

 Try

 File.Create("C:\WTE\" & txtSearch.Text & "")

 Dim arrDefined As New ArrayList

 Dim strSearch As String = txtSearch.Text

 Dim strMeaning, strWord As String

165

 Dim intRow, intNumRows, intPtrCnt, intNewCnt As Integer

 Do While (strSearch.IndexOf(Space(1)) >= 1)

 strSearch = strSearch.Replace(Space(1), "_") 'Replaces

spaces with "_" in the input.

 Loop

 intNumRows = _arrWord.Count - 1

 For intRow = 0 To intNumRows

 If strSearch.ToLower =

_arrWord(intRow).ToString.ToLower Then

 Exit For

 End If

 If intRow = intNumRows Then

 MsgBox("The word you typed does not exist in the

database")

 End If

 Next

 strMeaning = _arrMeaning(intRow)

 Dim strMean() As String

 strMean = strMeaning.Split(" ")

 intPtrCnt = CInt(strMean(3))

 _arrSenses.Clear()

 For intNewCnt = (intPtrCnt + 6) To strMean.Length - 1

 strWord = strMean(intNewCnt).Trim

166

 If String.IsNullOrEmpty(strWord) = False Then

 _arrSenses.Add(strMean(intNewCnt))

 Console.WriteLine(strMean(intNewCnt))

 End If

 Dim strNdef, strWordW As String

 Dim intWordCnt, intRowN, intNumRowsN, intNewCntN As

Integer

 Dim strDefinition As String

 intNumRowsN = _arrDefNum.Count - 1

 For intRowN = 0 To intNumRowsN

 If strMean(intNewCnt) = _arrDefNum(intRowN) Then

 Exit For

 End If

 Next

 strNdef = _arrDefinition(intRowN)

 Dim strNWord() As String

 strNWord = strNdef.Split(" ")

 If strNWord(3) = "0a" Then

 strNWord(3) = 10

 ElseIf strNWord(3) = "0b" Then

 strNWord(3) = 11

 ElseIf strNWord(3) = "0c" Then

 strNWord(3) = 12

 ElseIf strNWord(3) = "0d" Then

167

 strNWord(3) = 13

 ElseIf strNWord(3) = "0e" Then

 strNWord(3) = 14

 ElseIf strNWord(3) = "0f" Then

 strNWord(3) = 15

 End If

 intWordCnt = CInt(strNWord(3))

 _arrSensesW.Clear()

 strWordW = Nothing

'<<<<<<<<<<<<<<<<<<<<

 For i = 4 To (strNWord(3) * 2) + 2

 strWordW += strNWord(i) & "(" & strNWord(1) &

strNWord(i + 1) & ")" & ","

 i = i + 1

 Next

 strWordW = strWordW.Substring(0, strWordW.Length - 1)

 For intNewCntN = 0 To strNdef.Length - 1

 If strNdef(intNewCntN) = "|" Then

 strDefinition = strNdef.Substring(intNewCntN +

1) ' <----------------

 CheckedListBox1.Items.Add(strWordW & " " & "--

>" & " " & strDefinition)

 End If

 Next

 Next

168

funcShowTree(CInt(_arrSenses(CheckedListBox1.SelectedIndex)))

 Catch ex As Exception

 End Try

 End Sub

 Private Sub funcShowTree(ByVal intSenseNum As Integer)

 Try

 Dim strRowValue(), strNWord(), strNWordb() As String

 Dim arrChildren, arrChildrenb, arrChildrend, arrChildrene,

arrChildrenf, arrChildrenbx, arrChildrencx, arrChildrendx,

arrChildrenex, arrChildrenfx, arrChildrenc, strChildren, strChildrenb,

strChildrend, strChildrene, strChildrenf, strChildrenbx, strChildrencx,

strChildrendx, strChildrenex, strChildrenc, arrParentb, strParentb As

New ArrayList

 Dim strMeaning, strWord As String

 Dim intSenseRow, intParent, intNumRows, intRow, intNumRowsN

As Integer

 Dim strNdef, strNdefb, strParent As String

 Dim intRowN As Integer

 For counter = 0 To 10

'Assuming no more than 10 levels up is a possibility

 intNumRowsN = _arrDefNum.Count - 1

169

 intNumRows = _arrDefNum.Count - 1

 For intSenseRow = 0 To intNumRows

 If intSenseNum =

CInt(_arrDefNum(intSenseRow).ToString) Then

 Exit For

 End If

 Next

 strMeaning = _arrDefinition(intSenseRow)

 strRowValue = strMeaning.Split(" ")

 intNumRows = strRowValue.Length - 1

 For intRow = 0 To intNumRows

 If strRowValue(intRow) = "@" Then

 strWord = strRowValue(intRow + 1).Trim

 If String.IsNullOrEmpty(strWord) = False Then

 intParent = CInt(strWord) '<---------

 intSenseNum = intParent

 End If

 End If

 Next

 counter = counter + 1

 Next

 strParent = Nothing

 If intParent > Nothing Then

 For intRowN = 0 To intNumRowsN

 If intParent = _arrDefNum(intRowN) Then

170

 Exit For

 End If

 Next

 strNdef = _arrDefinition(intRowN)

 strNWord = strNdef.Split(" ")

 If strNWord(3) = "0a" Then

 strNWord(3) = 10

 ElseIf strNWord(3) = "0b" Then

 strNWord(3) = 11

 ElseIf strNWord(3) = "0c" Then

 strNWord(3) = 12

 ElseIf strNWord(3) = "0D" Then

 strNWord(3) = 13

 ElseIf strNWord(3) = "0e" Then

 strNWord(3) = 14

 ElseIf strNWord(3) = "0f" Then

 strNWord(3) = 15

 End If

 strParent = Nothing

'<<<<<<<<<<<<<<<<<<<<<

 For i = 4 To (strNWord(3) * 2) + 2

 strParent += strNWord(i) & "(" & strNWord(1) &

strNWord(i + 1) & ")" & "," 'ttttttttttttttttttttt

 i = i + 1

 Next

171

 strParent = strParent.Substring(0, strParent.Length -

1)

 ElseIf intParent = Nothing Then

 strParent =

CheckedListBox1.SelectedItem.ToString.Split(" ")(0) 'txtSearch.Text

This tells it to use the selected checkbox keyword as the input keyword

 End If

 '///////////////////////////////////////2ND

LEVEL//

///////////////////////////

 intNumRowsN = _arrDefNum.Count - 1

 intNumRows = _arrDefNum.Count - 1

 For intSenseRow = 0 To intNumRows

 If intSenseNum = CInt(_arrDefNum(intSenseRow).ToString)

Then

 Exit For

 End If

 Next

 strMeaning = _arrDefinition(intSenseRow)

 strRowValue = strMeaning.Split(" ")

 intNumRows = strRowValue.Length - 1

 For intRow = 0 To intNumRows

172

 If strRowValue(intRow) = "~" Then

 strWord = strRowValue(intRow + 1).Trim

 If String.IsNullOrEmpty(strWord) = False Then

 arrChildren.Add(CInt(strWord))

 End If

 End If

 Next

 For intRowN = 0 To arrChildren.Count - 1

 For intRow = 0 To intNumRowsN

 If arrChildren(intRowN) =

CStr(_arrDefNum(intRow).ToString) Then

 Exit For

 End If

 Next

 strNdefb = _arrDefinition(intRow)

 strNWordb = strNdefb.Split(" ")

 If strNWordb(3) = "0a" Then

 strNWordb(3) = 10

 ElseIf strNWordb(3) = "0b" Then

 strNWordb(3) = 11

 ElseIf strNWordb(3) = "0c" Then

 strNWordb(3) = 12

173

 ElseIf strNWordb(3) = "0D" Then

 strNWordb(3) = 13

 ElseIf strNWordb(3) = "0e" Then

 strNWordb(3) = 14

 ElseIf strNWordb(3) = "0f" Then

 strNWordb(3) = 15

 End If

 Dim strWordX As String

'<<<<<<<<<<<<<

 strWordX = Nothing

 For j = 4 To (strNWordb(3) * 2) + 2

 strWordX += strNWordb(j) & "(" & strNWordb(1) &

strNWordb(j + 1) & ")" & "," 'tttttttttttttttttttttttt

 j = j + 1

 Next

 strWordX = strWordX.Substring(0, strWordX.Length - 1)

 strChildren.Add(CStr(strWordX))

 Next

 TextBox3.Text = "/* courtesy Ian Darwin and Geoff Collyer,

Softquad Inc. */" & vbCrLf & "digraph unix {" & vbCrLf & "graph

[fontname = ""Sans"", fontsize = 36, label = "" \n\n\n\nWordTree

Express "", size = "" 10,10 ""]; node [color=white, fontname =

""Sans""]; " & vbCrLf & "size= "" 100,150 "";" & vbCrLf & """" &

CheckedListBox1.SelectedItem.ToString.Split(" ")(0) & """" & " " &

174

"[sides=4, color = dodgerblue, style = filled, fontname = ""Sans""];" &

vbCrLf

 For intRowN = 0 To arrChildren.Count - 1 'q

 TextBox3.Text += """" & strParent & """" & " " & "->" &

" " & """" & strChildren(intRowN) & """" & vbCrLf

 Next

 '///3RD

LEVEL//

/////////////////////////

 For intRowX = 0 To arrChildren.Count - 1

 intNumRowsN = _arrDefNum.Count - 1

 intNumRows = _arrDefNum.Count - 1

 For intSenseRow = 0 To intNumRows

 If arrChildren(intRowX) =

CInt(_arrDefNum(intSenseRow).ToString) Then

 Exit For

 End If

 Next

 strMeaning = _arrDefinition(intSenseRow)

 strRowValue = strMeaning.Split(" ")

 intNumRows = strRowValue.Length - 1

 For intRow = 0 To intNumRows

175

 If strRowValue(intRow) = "~" Then

 strWord = strRowValue(intRow + 1).Trim

 If String.IsNullOrEmpty(strWord) = False Then

 arrChildrenb.Add(CInt(strWord))

 arrChildrenbx.Add(CInt(strWord))

 End If

 End If

 Next

 If arrChildrenb Is Nothing = False Then

 For intRowN = 0 To arrChildrenb.Count - 1

 For intRow = 0 To intNumRowsN

 If arrChildrenb(intRowN) =

CStr(_arrDefNum(intRow).ToString) Then

 Exit For

 End If

 Next

 strNdefb = _arrDefinition(intRow)

 strNWordb = strNdefb.Split(" ")

 If strNWordb(3) = "0a" Then

 strNWordb(3) = 10

 ElseIf strNWordb(3) = "0b" Then

 strNWordb(3) = 11

 ElseIf strNWordb(3) = "0c" Then

176

 strNWordb(3) = 12

 ElseIf strNWordb(3) = "0D" Then

 strNWordb(3) = 13

 ElseIf strNWordb(3) = "0e" Then

 strNWordb(3) = 14

 ElseIf strNWordb(3) = "0f" Then

 strNWordb(3) = 15

 End If

 Dim strWordX2 As String

'<<<<<<<<<<<<<

 strWordX2 = Nothing

 For j = 4 To (strNWordb(3) * 2) + 2

 strWordX2 += strNWordb(j) & "(" &

strNWordb(1) & strNWordb(j + 1) & ")" & "," 'tttttttttttttttttt

 j = j + 1

 Next

 strWordX2 = strWordX2.Substring(0,

strWordX2.Length - 1)

 strChildrenb.Add(CStr(strWordX2))

 strChildrenbx.Add(CStr(strWordX2))

 Next

 End If

 For intRowN = 0 To arrChildrenb.Count - 1 'q

177

 TextBox3.Text += """" & strChildren(intRowX) & """"

& " " & "->" & " " & """" & strChildrenb(intRowN) & """" & vbCrLf

Next

 arrChildrenb.Clear() '************

 strChildrenb.Clear() '************

 Next

 '///4TH

LEVEL//

///////////////////////////

 For intRowZ = 0 To arrChildrenbx.Count - 1

 intNumRowsN = _arrDefNum.Count - 1

 intNumRows = _arrDefNum.Count - 1

 arrChildrenc.Clear() '************

 For intSenseRow = 0 To intNumRows

 If arrChildrenbx(intRowZ) =

CInt(_arrDefNum(intSenseRow).ToString) Then

 Exit For

 End If

 Next

 strMeaning = _arrDefinition(intSenseRow)

 strRowValue = strMeaning.Split(" ")

 intNumRows = strRowValue.Length - 1

178

 For intRow = 0 To intNumRows

 If strRowValue(intRow) = "~" Then

 strWord = strRowValue(intRow + 1).Trim

 If String.IsNullOrEmpty(strWord) = False Then

 arrChildrenc.Add(CInt(strWord))

 arrChildrencx.Add(CInt(strWord))

 End If

 End If

 Next

 If arrChildrenc Is Nothing = False Then

 For intRowN = 0 To arrChildrenc.Count - 1

 For intRow = 0 To intNumRowsN

 If arrChildrenc(intRowN) =

CStr(_arrDefNum(intRow).ToString) Then

 Exit For

 End If

 Next

 strNdefb = _arrDefinition(intRow)

 strNWordb = strNdefb.Split(" ")

 If strNWordb(3) = "0a" Then

 strNWordb(3) = 10

179

 ElseIf strNWordb(3) = "0b" Then

 strNWordb(3) = 11

 ElseIf strNWordb(3) = "0c" Then

 strNWordb(3) = 12

 ElseIf strNWordb(3) = "0D" Then

 strNWordb(3) = 13

 ElseIf strNWordb(3) = "0e" Then

 strNWordb(3) = 14

 ElseIf strNWordb(3) = "0f" Then

 strNWordb(3) = 15

 End If

 Dim strWordX3 As String

'<<<<<<<<<<<<<

 strWordX3 = Nothing

 For j = 4 To (strNWordb(3) * 2) + 2

 strWordX3 += strNWordb(j) & "(" &

strNWordb(1) & strNWordb(j + 1) & ")" & "," 'ttttttttttttttt

 j = j + 1

 Next

 strWordX3 = strWordX3.Substring(0,

strWordX3.Length - 1)

 strChildrenc.Add(CStr(strWordX3))

 strChildrencx.Add(CStr(strWordX3))

180

 Next

 End If

 For intRowJ = 0 To arrChildrenc.Count - 1 'q

 TextBox3.Text += """" & strChildrenbx(intRowZ) &

"""" & " " & "->" & " " & """" & strChildrenc(intRowJ) & """" & vbCrLf

Next

 arrChildrenc.Clear() '************

 strChildrenc.Clear() '************

 Next

 '\\\\\\\\\\\\\\\\\\\\\\\\\\5th

LEVEL\\

\\\\\\\\\\\\\

 For intRowZ = 0 To arrChildrencx.Count - 1

 intNumRowsN = _arrDefNum.Count - 1

 intNumRows = _arrDefNum.Count - 1

 arrChildrend.Clear() '************

 For intSenseRow = 0 To intNumRows

 If arrChildrencx(intRowZ) =

CInt(_arrDefNum(intSenseRow).ToString) Then

 Exit For

181

 End If

 Next

 strMeaning = _arrDefinition(intSenseRow)

 strRowValue = strMeaning.Split(" ")

 intNumRows = strRowValue.Length - 1

 For intRow = 0 To intNumRows

 If strRowValue(intRow) = "~" Then

 strWord = strRowValue(intRow + 1).Trim

 If String.IsNullOrEmpty(strWord) = False Then

 arrChildrend.Add(CInt(strWord))

 arrChildrendx.Add(CInt(strWord))

 End If

 End If

 Next

 If arrChildrend Is Nothing = False Then

 For intRowN = 0 To arrChildrend.Count - 1

 For intRow = 0 To intNumRowsN

 If arrChildrend(intRowN) =

CStr(_arrDefNum(intRow).ToString) Then

 Exit For

182

 End If

 Next

 strNdefb = _arrDefinition(intRow)

 strNWordb = strNdefb.Split(" ")

 If strNWordb(3) = "0a" Then

 strNWordb(3) = 10

 ElseIf strNWordb(3) = "0b" Then

 strNWordb(3) = 11

 ElseIf strNWordb(3) = "0c" Then

 strNWordb(3) = 12

 ElseIf strNWordb(3) = "0D" Then

 strNWordb(3) = 13

 ElseIf strNWordb(3) = "0e" Then

 strNWordb(3) = 14

 ElseIf strNWordb(3) = "0f" Then

 strNWordb(3) = 15

 End If

 Dim strWordX4 As String

'<<<<<<<<<<<<<

 strWordX4 = Nothing

 For j = 4 To (strNWordb(3) * 2) + 2

 strWordX4 += strNWordb(j) & "(" &

strNWordb(1) & strNWordb(j + 1) & ")" & "," 'ttttttttttttttt

 j = j + 1

 Next

183

 strWordX4 = strWordX4.Substring(0,

strWordX4.Length - 1)

 strChildrend.Add(CStr(strWordX4))

 strChildrendx.Add(CStr(strWordX4))

 Next

 End If

 For intRowJ = 0 To arrChildrend.Count - 1

 TextBox3.Text += """" & strChildrencx(intRowZ) &

"""" & " " & "->" & " " & """" & strChildrend(intRowJ) & """" & vbCrLf

Next

 arrChildrend.Clear() '************

 strChildrend.Clear() '************

 Next

 '///////////////////////////6th

level//

//////////////

 For intRowZ = 0 To arrChildrendx.Count - 1

 intNumRowsN = _arrDefNum.Count - 1

 intNumRows = _arrDefNum.Count - 1

 arrChildrene.Clear() '************

184

 For intSenseRow = 0 To intNumRows

 If arrChildrendx(intRowZ) =

CInt(_arrDefNum(intSenseRow).ToString) Then

 Exit For

 End If

 Next

 strMeaning = _arrDefinition(intSenseRow)

 strRowValue = strMeaning.Split(" ")

 intNumRows = strRowValue.Length - 1

 For intRow = 0 To intNumRows

 If strRowValue(intRow) = "~" Then

 strWord = strRowValue(intRow + 1).Trim

 If String.IsNullOrEmpty(strWord) = False Then

 arrChildrene.Add(CInt(strWord))

 arrChildrenex.Add(CInt(strWord))

 End If

 End If

 Next

 If arrChildrene Is Nothing = False Then

 For intRowN = 0 To arrChildrene.Count - 1

185

 For intRow = 0 To intNumRowsN

 If arrChildrene(intRowN) =

CStr(_arrDefNum(intRow).ToString) Then

 Exit For

 End If

 Next

 strNdefb = _arrDefinition(intRow)

 strNWordb = strNdefb.Split(" ")

 If strNWordb(3) = "0a" Then

 strNWordb(3) = 10

 ElseIf strNWordb(3) = "0b" Then

 strNWordb(3) = 11

 ElseIf strNWordb(3) = "0c" Then

 strNWordb(3) = 12

 ElseIf strNWordb(3) = "0D" Then

 strNWordb(3) = 13

 ElseIf strNWordb(3) = "0e" Then

 strNWordb(3) = 14

 ElseIf strNWordb(3) = "0f" Then

 strNWordb(3) = 15

 End If

 Dim strWordX5 As String

'<<<<<<<<<<<<<

 strWordX5 = Nothing

186

 For j = 4 To (strNWordb(3) * 2) + 2

 strWordX5 += strNWordb(j) & "(" &

strNWordb(1) & strNWordb(j + 1) & ")" & "," 'ttttttttttttttt

 j = j + 1

 Next

 strWordX5 = strWordX5.Substring(0,

strWordX5.Length - 1)

 strChildrene.Add(CStr(strWordX5))

 strChildrenex.Add(CStr(strWordX5))

 Next

 End If

 For intRowJ = 0 To arrChildrene.Count - 1

 TextBox3.Text += """" & strChildrendx(intRowZ) &

"""" & " " & "->" & " " & """" & strChildrene(intRowJ) & """" & vbCrLf

Next

 arrChildrene.Clear() '************

 strChildrene.Clear() '************

 Next

 '///////////////////////////7th

level//

//////////////

187

 For intRowZ = 0 To arrChildrenex.Count - 1

 intNumRowsN = _arrDefNum.Count - 1

 intNumRows = _arrDefNum.Count - 1

 arrChildrenf.Clear() '************

 For intSenseRow = 0 To intNumRows

 If arrChildrenex(intRowZ) =

CInt(_arrDefNum(intSenseRow).ToString) Then

 Exit For

 End If

 Next

 strMeaning = _arrDefinition(intSenseRow)

 strRowValue = strMeaning.Split(" ")

 intNumRows = strRowValue.Length - 1

 For intRow = 0 To intNumRows

 If strRowValue(intRow) = "~" Then

 strWord = strRowValue(intRow + 1).Trim

 If String.IsNullOrEmpty(strWord) = False Then

 arrChildrenf.Add(CInt(strWord))

 arrChildrenfx.Add(CInt(strWord))

 End If

 End If

 Next

188

 If arrChildrenf Is Nothing = False Then

 For intRowN = 0 To arrChildrenf.Count - 1

 For intRow = 0 To intNumRowsN

 If arrChildrenf(intRowN) =

CStr(_arrDefNum(intRow).ToString) Then

 Exit For

 End If

 Next

 strNdefb = _arrDefinition(intRow)

 strNWordb = strNdefb.Split(" ")

 If strNWordb(3) = "0a" Then

 strNWordb(3) = 10

 ElseIf strNWordb(3) = "0b" Then

 strNWordb(3) = 11

 ElseIf strNWordb(3) = "0c" Then

 strNWordb(3) = 12

 ElseIf strNWordb(3) = "0D" Then

 strNWordb(3) = 13

 ElseIf strNWordb(3) = "0e" Then

 strNWordb(3) = 14

 ElseIf strNWordb(3) = "0f" Then

 strNWordb(3) = 15

189

 End If

 Dim strWordX6 As String

'<<<<<<<<<<<<<

 strWordX6 = Nothing

 For j = 4 To (strNWordb(3) * 2) + 2

 strWordX6 += strNWordb(j) & "(" &

strNWordb(1) & strNWordb(j + 1) & ")" & "," 'ttttttttttttttt

 j = j + 1

 Next

 strWordX6 = strWordX6.Substring(0,

strWordX6.Length - 1)

 strChildrenf.Add(CStr(strWordX6))

 Next

 End If

 For intRowJ = 0 To arrChildrend.Count - 1

TextBox3.Text += """" & strChildrenex(intRowZ) & """" & " " & "->" & "

" & """" & strChildrenf(intRowJ) & """" & vbCrLf

Next

 arrChildrenf.Clear() '************

 strChildrenf.Clear() '************

190

 Next

'///////////////////////////6th//

//

'//

///

////////

 TextBox3.Text += "}"

 Catch ex As Exception

 End Try

 End Sub

 Private Sub funcGraphViz()

 Dim x As Integer = CheckedListBox1.SelectedIndex

'**

 Try

 Dim FILE_NAME As String = "C:\WTE\" & txtSearch.Text & ""

 If System.IO.File.Exists(FILE_NAME) = True Then

 Dim objWriter As New System.IO.StreamWriter(FILE_NAME)

 objWriter.Write(TextBox3.Text)

 objWriter.Close()

191

 My.Computer.FileSystem.RenameFile("C:\WTE\" &

txtSearch.Text, txtSearch.Text & x + 1) ' **

 MsgBox("A new Text file named " & """" & txtSearch.Text

& x + 1 & """" & " has been created and saved in C:\WTE folder." &

ControlChars.NewLine & "Graphviz will now start. Please open the new

file to view the WordTree")

 Else

 MsgBox("File Does Not Exist")

 End If

 Catch ex As Exception

 End Try

 End Sub

 Private Sub ClearForm()

 For Each ctrl As Control In Me.Controls

 If TypeOf ctrl Is TextBox Then

 DirectCast(ctrl, TextBox).Text = String.Empty

 End If

 Next

 CheckedListBox1.Items.Clear()

 End Sub

 Private Sub funcLoadFiles()

 Try

192

 Dim sr As System.IO.StreamReader =

System.IO.File.OpenText("C:\WTE database\index.txt")

 Dim StrArray(), strLine() As String

 Dim intRow, intTotal As Integer

 Dim sData As String

 sData = sr.ReadToEnd

 StrArray = Split(sData, ControlChars.NewLine)

 'close stream

 sr.Close()

 intTotal = StrArray.Length - 1

 For intRow = 0 To intTotal

 strLine = StrArray(intRow).Split(" ")

 _arrWord.Add(strLine(0))

 _arrMeaning.Add(StrArray(intRow))

 Next

 sr = System.IO.File.OpenText("C:\WTE

database\database.txt")

 sData = sr.ReadToEnd

 'fill array with data

 StrArray = Split(sData, ControlChars.NewLine)

 'close stream

 sr.Close()

193

 intTotal = StrArray.Length - 1

 For intRow = 0 To intTotal

 strLine = StrArray(intRow).Split(" ")

 _arrDefNum.Add(strLine(0))

 _arrDefinition.Add(StrArray(intRow))

 Next

 Catch ex As Exception

 End Try

 End Sub

 Private Sub btnGenerate_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles btnGenerate.Click

 funcSearch()

 End Sub

 Private Sub txtSearch_TextChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs)

 End Sub

 Private Sub TextBox3_TextChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles TextBox3.TextChanged

 End Sub

194

 Private Sub Label5_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Label5.Click

 End Sub

 Private Sub Label7_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

 End Sub

 Private Sub PictureBox1_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs)

 End Sub

 Private Sub CheckedListBox1_SelectedIndexChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

CheckedListBox1.SelectedIndexChanged

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button2.Click

 Cursor.Current = Cursors.WaitCursor

195

 funcShowTree(CInt(_arrSenses(CheckedListBox1.SelectedIndex)))

 Threading.Thread.Sleep(2000)

 funcGraphViz()

 Dim p As New System.Diagnostics.Process

 p.StartInfo.FileName = "Gvedit.exe"

 p.Start()

 End Sub

 Private Sub TextBox1_TextChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs)

 End Sub

 Private Sub BtcClear_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles BtcClear.Click

 ClearForm()

 End Sub

 Private Sub Label11_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Label11.Click

 End Sub

 Private Sub PictureBox2_Click(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles PictureBox2.Click

196

 End Sub

 Private Sub txtSearch_KeyDown(ByVal sender As System.Object, ByVal

e As System.Windows.Forms.KeyEventArgs) Handles txtSearch.KeyDown

 If e.KeyCode = Keys.Enter Then

 funcSearch()

 End If

 End Sub

End Class

197

VITA

Edgar Velazquez Oriakhi obtained his Bachelor of Science degree in mechanical

engineering from Prairie View A&M University, Texas, in December 2008. He pursued

his graduate studies at Texas A&M University in mechanical engineering from August

2009 and received his Master of Science degree in May 2011. His research interest

includes design-by-analogy and innovation in design.

Permanent Address: Department of Mechanical Engineering, ENPH, 3123

TAMU, College Station, Texas 77843, USA.

Email: edgar780@yahoo.com

