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ABSTRACT

Controlling Deformation in Elastic and Viscoelastic Beams Due to

Temperature and Moisture Changes Using Piezoelectric Actuator. (May 2011)

Ramachandra Srinivasa Chaitanya Kuravi, B.Tech, Indian Institute of Technology,

Guwahati

Co–Chairs of Advisory Committee: Dr. Kumbakonam Rajagopal
Dr. Anastasia Muliana

This thesis analyzes the implementation of surface bonded piezoelectric actuators to

control or minimize the deformation in elastic or viscoelastic cantilever beams due to simul-

taneous heat and moisture diffusion. The problem is addressed in the context of linearized

elasticity and linearized viscoelasticity. The constitutive equations are derived from the bal-

ance laws for mass, linear and angular momenta, energy, entropy and the second law of

thermodynamics. The constitutive equations for linearized elasticity are then obtained as

a consequence of small deformation assumption. The temperature and moisture induced

deformation is introduced through the coefficient of thermal expansion CTE and coeffi-

cient of moisture expansion CME. The constitutive equations for linearized viscoelasticity

are obtained by correspondence principle. The coupled temperature and moisture diffusion

equations are obtained as a consequence of Clausius-Duhem inequality. The extent of cou-

pling between heat conduction and moisture diffusion phenomena is studied by varying the

ratio of their diffusivities and a non-dimensional coupling parameter. The effect of coupled

unsteady heat conduction and moisture diffusion phenomena on the short and long term

response characteristics of the beam such as displacement, stress and strain fields is stud-

ied. Based on these response characteristics, the magnitude of external actuating voltage

required to minimize deformation is predicted. This is followed by a comparative study of
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the field variables in cases of actuated and unactuated beams. Four materials are chosen

for this study; aluminium, epoxy, carbon fiber reinforced polymer with fiber volume fraction

of 60%, and an epoxy-like viscoelastic material. The viscoelastic material is assumed to be

thermorheologically simple. The shift factor is assumed to be a linear function of tempera-

ture and moisture fields. To address this problem numerically, a finite difference formulation

is presented for the field equations and boundary conditions. This numerical scheme is vali-

dated by solving the problem of uniformly loaded cantilever beam and comparing the results

with the analytical solution known a priori. The results obtained numerically are validated

by comparison with experimental results. It is observed that the under the effect of external

actuation, the stress and displacement fields are largely minimized in all four cases chosen for

study. The bending in the unactuated viscoelastic beam is more pronounced than bending

in the unactuated elastic beam. This is due to the softening of the material with time due

to evolving temperature and moisture fields. However, relatively lesser external actuating

voltage is necessary to minimize bending in the former case compared to the latter. The

magnitude of actuating electric field required in the piezoelectric layer suggests a need to

address the problem with in a non-linear framework, no such attempt is made in this study.
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and (a)λ=0.00122, ν=20.5, (b)λ=1.22, ν=0.0205. The non-dimensional

time parameter θ̂ varies from 0 to 3x10−1. . . . . . . . . . . . . . . . . . . . 67

3.15 Evolution of moisture and temperature fields when û=10−1 and λν=0.0025
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CHAPTER I

INTRODUCTION

Polymers, polymer composites and aluminium are widely used in structural components due

to light weight, low manufacturing cost and the ease to shape. Polymer composites also

offer high corrosion resistance, high strength to weight ratio and high material moduli. The

mechanical and physical properties of polymer and polymer composites such as material

modulus, strength, thermal stability and coefficient of thermal expansion can be engineered

to meet the requirements of specific applications in space craft and automotive industries,

medical devices applications, electronic components, off shore and on shore oil exploration

applications [1]. Aluminium, due to its low density, high strength to weight ratio, high

corrosion resistance and high thermal conductivity is widely used in automobile industry,

shipbuilding industry, heat exchangers, aircraft and railway industries to illustrate a few [4].

These materials while in use as structural components are subjected to several mechan-

ical loading cycles, environmental effects such as extreme temperature changes and humid

conditions during their life time. For instance, rotary blades in helicopters or wind turbines

are subjected to continuous temperature and humidity changes. These effects might pose a

detrimental effect on these structural components in the form of an excessive deformation,

for instance. Creep and stress relaxation characteristics are generally observed in polymer

and polymer composite materials owing to which they exhibit viscoelastic behavior. The

continued straining or flow of a material under constant stress is called creep whereas the

decrease in stress at constant strain is called stress relaxation [5]. The viscoelastic response is

prominent especially at elevated temperatures. Over a long period of time, the environmen-

tal factors might also lead to other effects such as corrosion, oxidation which reduce the load

The journal model is IEEE Transactions on Automatic Control.



2

carrying ability of the material and hence forth diminishing the lifetime of the components.

Prolonged existence of such loading conditions might also lead the system to the verge of

instability, if not failure. For instance, in the case of helicopter blades, a slight change in the

blade geometry i.e. blade angle can adversely affect the controllability of the helicopter. Ex-

ternal actuating mechanism in the form of surface bonded actuators or embedded actuators

offers a solution to control or minimize the deformation and prolong the life of such compo-

nents. However, decrease in load carrying capacity by deterioration of material properties

caused due to corrosion cannot be handled using an external actuating mechanism.

This study examines the use of an external actuating mechanism in the form of sur-

face bonded piezoelectric actuators to control the elastic/viscoelastic deformation in certain

structural materials i.e. Aluminium, polymer, particle or fiber reinforced polymer, subjected

to transient temperature and moisture fields, in the context of a linearized theory of elasticity

or viscoelasticity and piezoelectricity.

A. Piezoelectric Materials

Certain type of materials when pressed are observed to develop electric charges. Such ma-

terials are termed as Piezoelectric materials. The word Piezoelectricity is derived from the

the Greek word Piezien which means to press. This phenomenon was first experimentally

observed by Jacques Curie and Pierie Curie in 1880 AD. Piezoelectric materials are also

shown to exhibit an inverse effect, i.e. such materials deform when subjected to external

electric fields. The inverse Piezoelectric effect was proposed by Lippman and experimentally

confirmed by the Curie brothers. Owing to their electromechanical coupling characteristics,

piezoelectric materials are employed in wide range of applications. Direct piezoelectric effect

is employed in sensing applications whereas inverse piezoelectric effect is used in applica-

tions requiring actuation. As a sensor, the piezoelectric material records an electrical signal

from displacement or pressure and is employed in devices such as sonar, ultrasonic imaging
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technologies. Whereas as an actuator, it supplies electric signals such as applied voltage

or electric field for controlling movements in devices such as stepper motors, high precision

machining tools, valves etc. They are also used as energy harvesters in flooring systems

where electricity is generated when pedestrian or vehicular traffic passes over.

Many natural and man made materials exhibit piezoelectric phenomenon. Some exam-

ples of natural piezoelectric materials include cane sugar, rochelle’s salt, quartz etc. Bar-

ium Titanate (BaTiO3), Lead Titanate (PbT iO3), Lead Zirconate Titanate (Pb(Ti, Zr)O3),

Lead niobate (PbNb2O6) are some examples of piezoelectric ceramics which are man made.

Poly-vinyl difluoride (PVDF) is a typical example of polymers exhibiting piezoelectric phe-

nomenon. Among natural piezoelectric materials, quartz (α-Quartz) oscillators are com-

monly used for frequency control in TVs and computers. In general, natural piezoelectric

crystals exhibit inferior piezoelectric properties compared to piezoelectric ceramics and poly-

mers and so their applications are limited.

PVDF is lighter, more flexible and can be manufactured to desired shapes with rela-

tive ease compared piezoceramics. It also offers greater resistance to moisture absorption

and impact loading than piezoceramics. Its piezoelectric properties and permittivities are

inferior compared to piezoceramics, but owing to its better response characteristics to ul-

trasonic energy applications they are employed in applications such as sonor and imaging

transducers. Piezoceramics, in general posses relatively higher piezoelectric properties, di-

electric constants, electromechanical coupling coefficients and Curie temperature1 compared

to the other two kinds of materials. They exhibit stable piezoelectric properties even at

elevated temperatures (below the curie temperature). Hence, piezo ceramics are widely pre-

ferred for commercial purposes. But piezoceramics are brittle in nature and heavy. Among

piezoceramics, PZT offers superior piezoelectric properties(electromechanical coupling coef-

1Curie temperature is the temperature at which the spontaneous polarization of the
material becomes zero.
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ficients), dielectric properties and coupling constants2compared to other piezoceramics such

as (BaTiO3). But, (BaTiO3) exhibits greater resistance to depoling effect under compres-

sive stresses compared to PZT. Hence, (BaTiO3) doped with Co is preferred over PZT in

high acoustic power applications. In general, the choice of piezoelectric material is made

based on the type of requirements of a particular application.

Crawley et al. [6] presented the use of piezoelectric actuators to control the response of

cantilever beam like structures under static and dynamic loads. They developed analytical

models to predict the static and dynamic response characteristics of simple beams with

either surface bonded or embedded piezoelectric actuators. These models were validated

experimentally for aluminium, graphite/epoxy and glass epoxy laminates, satisfactorily. In

the case of surface bonded actuators they have also accounted for effects of a flexible bonding

layer between the actuated beam and the actuator and showed that a thin bonding layer with

high shear modulus would offer good approximation for perfectly bonded system. Crawley-

Anderson [7] discuss two analytical models (uniform strain model, Bernoulli-Euler model)

to predict extension, bending and shearing deformation in one dimensional structures with

surface bonded/embedded piezoelectric actuators. Their approach is based on an actuation

strain provided by the actuator which causes extension or bending in the beam assembly.

The results of these models are compared with the results predicted by (i)a finite element

model and experimentally obtained data. Zhou et al. [8] studied the problem of bending in

simply supported laminated composite plates under the effect of piezoelectric actuators. The

geometry was solved in the context of linearized elasticity. Piezoelectric actuators can also

be implemented to control thermal deformations in composite structural elements. Lee and

Saravanos [9] numerically simulated the deformation and stress fields in a graphite-epoxy

composite beam embedded with surface piezoelectric actuators subjected to (a)a uniform

2A piezoelectric coupling coefficient is a measure of the ability of a piezoelectric material
to transform electrical energy to mechanical energy or vice-versa.
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thermal change (b)a uniform thermal gradient throughout the entire beam. The active

compensation voltage to minimize the displacement was predicted. A layer wise treatment

of the beam assembly was considered for this purpose.

Piezoelectric materials are generally installed in patches at specific locations on the

controlled structures in place of including one single layer of piezoelectric material of the

same length as the controlled geometry, due to space constraints, cost constraints. Crawley

et al. [6] presents a note on the choice of actuator locations when piezoelectric patches are

used. In the context of linearized theory, Ahmed et al. [10] showed that piezoelectric patches

can be effectively used for control of deformation in structural elements. In the context of

linearized piezoelectricity, they numerically solved the problem of deformation in cantilever

beams under thermal and mechanical loading with the use of surface bonded piezoelectric

actuators. Song et al. [2] numerically simulated the use of piezoelectric patches for active

control of thermal deformation of composite beams and validated the results with experi-

ments. Their study includes both transient and steady state temperature loading conditions.

Active control of the beam deformation using piezoelectric patches was implemented using

a PID (proportional-integral-derivative) controller.

B. Thermal and Moisture Effects on Structural Components

Response characteristics of materials can change due to changes in loading conditions, en-

vironmental effects and aging. Aging process can be accelerated due to exposure to severe

environmental conditions. Environmental changes could have enhancing or detrimental ef-

fect on the material behavior. For instance, carbon/epoxy composites are highly vulnerable

to moisture diffusion in humid conditions. Due to presence of absorbed moisture, polymers

tend to swell and henceforth unintended dimensional changes might occur. Weitsman [11],

Springer et al. [12] have shown that the environmental effects on the response characteristics

of many polymer matrix composites is quite significant. In particular, Weitsman [13] pro-
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posed a model to account for the moisture effects on the response of polymer composites in

a general thermodynamic framework appealing to continuum damage theory. In his work,

the material moduli depend on 32 invariants making the model too complicated to work

with. Muliana et al. [14] studied the effect of moisture on the material response character-

istics by proposing that material properties depend on the concentration of the fluid. In

their study, the fluid flow is governed by the advection-diffusion equation. In the problems

of thermoelasticity, the temperature dependence of strain and stress fields is accounted by

introducing the notion of the coefficient of thermal expansion (CTE). Similarly, the effects

of moisture on deformation of composites were accounted for through coefficient of moisture

expansion (CME) in [15], [16]. Such a notion is restricted to small deformation problems.

Poenninger [17] experimentally measured the moisture induced deformation for a class of

carbon fiber reinforced polymer composites (CFRP) under isothermal conditions. The de-

formation was small enough to be explained in terms of a CME. The absorbtion of moisture

by polymer/polymer composites might also be dependent on factors such as temperature

and stress-strain fields in the composite and porosity. Right [18] reported the effect of mois-

ture absorption on several epoxy and CFRP composites. The steady state moisture content

in those composites at various temperatures and relative humidities, dimensional changes

due absorbed moisture were graphically presented. His work reports that the steady state

moisture content and moisture diffusivities of several epoxy resins and CFRP composites

are temperature dependent. Viscoelastic material behavior might also play a significant role

in the response characteristics of polymers, depending on the working and loading condi-

tions. In particular, the stress relaxation and creep processsess could be sped up at elevated

temperatures and slowed down at lower temperatures. In the context of linearized viscoelas-

ticity, certain class of materials whose response stress relaxation and creep characteristics

at temperatures other than reference temperature could be evaluated by accounting for a

corresponding shift of the time scale are termed as thermo-rheologically simple materials
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(TSM) by Schwarzl et.al [19]. For such materials, the shift factor is a material property

and a function of the reference temperature and current temperature. Similarly, the vis-

coelastic material response could also be altered by the changes in moisture content in the

material [20]. The author proposed to explain such an effect by choosing the shift factor

as a function of the concentration. Flaggs et al. [21] conducted experiments to measure

the curvature due to warping in non-symmetric GY70/330 composite laminates exposed to

temperatures between 75F to 160F and relative humidity varying from 20%-100%. The ma-

terial was assumed to be a TSM with the shift factor depending on both temperature and

moisture contents. The thermal and moisture induced strains were related to temperature

and moisture changes through CTE and CME, respectively. The results predicted by this

model were in good agreement with the experimental results.

There have been studies involving both transient thermal and moisture fields in poly-

mers, polymer composites and aluminium. In case of polymer and polymer composites, Fick’s

law of diffusion and Fourier’s law of heat conduction could be employed independently ne-

glecting the velocity of the medium and appealing to small deformation approximation to

obtain the temperature and moisture fields. Such an uncoupled theory to evaluate tempera-

ture and moisture fields might be inadequate and inaccurate as shown by Sih et al. [22, 23].

Their work indicates that stresses in CFRP due to coupling effect can deviate from the re-

sults from uncoupled theory by a minimum of 20% depending on the boundary conditions

employed. The extent of coupling between the temperature and moisture fields depends on

Lewis number, defined as the ratio of thermal diffusivity to moisture diffusivity. The cou-

pling becomes increasingly significant as the Lewis number approaches unity. For instance,

in metals such as aluminium, the coupling effect is insignificant as thermal diffusivity is sev-

eral orders of magnitude higher than moisture diffusivity. However, for certain polymer and

polymer composites coupling becomes important as moisture and thermal diffusivities are

comparable. For instance Sih et al. [22] showed the significance of a coupled theory numeri-
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cally for T300/5208 graphite fiber reinforced epoxy matrix with the Lewis number 10. When

the composite plate is subjected to a sudden change in surface temperature with moisture

concentration held constant, the stresses due to uncoupled theory varied significantly from

the coupled theory depending on the surface temperature gradient. Henry [24] developed a

phenomenological model to explain the coupling between temperature and moisture fields.

Hartranft and Sih [25] presented several other models for the same. All the models pre-

sented in their work are developed from the macroscopic conservation laws and irreversible

thermodynamics under the assumption that heat and mass fluxes are linearly dependent of

temperature and concentration gradients. The governing equations resulting from all the

models are of the same form but with different coefficients which can be related to one

another.

C. Objective and Motivation

Piezoelectric actuators employed to control deformation of elastic structures due to thermo-

mechanical effects have been extensively studied. Available studies show also that the de-

formation in polymers and polymer composites depends strongly on absorbed moisture,

temperature changes and coupled thermal and moisture fields in the materials. But, little

work has been done towards implementing piezoelectric actuators to control the deforma-

tion in (i) elastic materials subjected to changes in temperature and moisture fields and (ii)

materials whose viscoelastic behavior becomes predominant in the working temperature and

moisture conditions. In this regard, the objective of this work is to study the application of

linear piezoelectric materials to control the deformation of elastic and viscoelastic structural

components that are sensitive to both temperature and moisture changes over time. To this

end, piezoelectric materials are employed in the form of external surface bonded actuators

to control the deformation of these components. The problem is solved in the context of

linearized (i)elasticity/viscoelasticity and (ii)piezoelectricity. The choice of piezoelectric ma-
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terial for this purpose and its justification is presented later in this chapter. A cantilever

beam geometry of elastic/viscoelastic material with a surface bonded linear piezoelectric ac-

tuator is chosen as the structural component under study. Appropriate initial and boundary

conditions for the temperature and moisture fields are employed in the transient heat con-

duction and fluid diffusion analysis. Based on the transient response characteristics of the

beam assembly, an external actuating voltage boundary condition at each instant of time

is then employed across the piezoelectric material to minimize the net deformation of the

beam assembly.

D. Methodology

The problem of interest involves an elastic or a viscoelastic material beam perfectly glued to

a piezoelectric material and subjected to temperature and moisture gradients. As a result,

the beam assembly deforms and hence induces a potential difference across the piezoelectric

material. This voltage gives a rough estimate of an external voltage required to minimize

the deformation. The assumptions made and their justifications are described below. The

structural materials chosen for this study are assumed to be linearly elastic/viscoelastic in

the chosen temperature and moisture conditions. The piezoelectric material chosen for study

is assumed to be linearly piezoelectric. A cantilever beam geometry is chosen for simplicity.

Aging of the material is not considered in this study. In the current study, the constitutive

equations accounting for the effect of moisture and temperature dependent deformation are

obtained in the context of small strain theory appealing to the laws of conservation of mass,

linear and angular momenta, energy, entropy and thermodynamic principles. It is assumed

that the elastic material properties do not depend on the temperature and moisture for

simplicity. The effect of temperature and moisture on the deformation of the beam is incor-

porated through CTE, CME. In the case of viscoelastic material, the shift factor is assumed

to be dependent not only on temperature but also on moisture content. The coupled equa-
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tions governing the evolution of temperature and moisture fields are obtained by assuming

that the moisture and the temperature fluxes are linearly dependent on the gradient temper-

ature and moisture content in the body. The coupling between thermal and moisture fields

can be explained in terms of Dufour and Soret effects. The Dufour effect is defined as the

heat flux due to moisture concentration changes . The Soret effect is defined as the mass

flux caused in a body due to temperature changes. In this context, we define two constants.

λ is a measure of the ratio of mass flux to heat flux at a uniform moisture concentration.

ν is a measure of the ratio of heat flux to mass flux in an isothermal body. The product

of λ, ν is non-dimensional and is defined as coupling constant. It is a material property.

Temperature and moisture fields are greatly dependent of the ratio of moisture and thermal

diffusivities and the non-dimensional coupling constant. So, a parametric study is first done

to examine the evolution of temperature and moisture concentrations with time. This para-

metric study involves varying the Lewis number from 101 to 106 and the coupling constant

(λν) varying from 0.25 to .0025. The choice of these parameters is justified as follows. In

the materials considered for study i.e. aluminium, epoxy and fiber reinforced polymers the

thermal diffusivity is observed to be greater than moisture diffusivity. Therefore, the ratio of

thermal to moisture diffusivities is allowed to vary from one order of magnitude (as observed

in T300/5208 CFRP) to 6 orders of magnitude as observed in un-reinforced epoxy material.

It shall be shown in Chapter II that by thermodynamic limitations, the coupling coefficient

λν < 1. In case of T300/5208 CFRP, the coupling coefficient λν = 0.25 [26]. Therefore,

λν = 0.25 can be considered as a reasonable starting value for parametric study. It shall be

graphically depicted in Chapter III that at a given Lewis number, the smaller the value of λν,

the smaller is the coupling between thermal and moisture fields. Through this parametric

study it is concluded that the larger the Lewis number, the smaller the coupling effect. For

a given Lewis number, the evolution of temperature and moisture fields is dependent on the

constants λ and ν. The following are the cases considered in the current study. Materials
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considered for study are as follows:

• Linearly elastic materials:

1. Aluminium-PZT beam assembly subjected to transient temperature field.3

2. Isotropic un-reinforced epoxy-PZT beam assembly subjected to transient thermal

and moisture fields.

3. Anisotropic CFRP-PZT beam assembly subjected to transient thermal and mois-

ture field.

• Linearly viscoelastic material-PZT beam assembly subjected to transient thermal and

moisture field.

Crawley et al. [6] presented a study on the choice of actuating materials based on their

properties. They assert that piezoelectric materials with high effectiveness, high modulus of

elasticity and high curie temperature are suitable for actuating purposes. Effectiveness is the

ratio of maximum strain transmitted by the actuator to the beam under perfectly bonded

static conditions when maximum allowable electric field (EC) is applied across the actuator.

It is proportional to electro mechanical coupling coefficient4 (d311) and EC . PZT 5H is chosen

for this purpose as it meets the above mentioned requirements better than other piezoelectric

materials such as PVDF, BaTiO3. In the current study, linear piezoelectric equations are

employed for PZT 5H actuator. The linearized piezoelectric material behavior is restricted

to small electric fields (in general of the order of 0.1MV/m). Crawley-Anderson [7] present

an experimental study on G-1195 PZT material to determine the limits of actuating electric

3The moisture dependent deformation of aluminium is not considered for its moisture
absorbability is negligible.

4d311 in engineering notation represents the strain along direction-1 (ε11) due to unit elec-
tric field applied along direction-3 (E3). Alternatively, it represents polarization in direction-3
(P3) due to unit stress along direction-1 (σ11).
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field for a linear constitutive model to be applicable for the Piezoelectric material. They show

that when an electric field of the order of 1MV/m is applied along the polarization direction,

the strain in the direction perpendicular to the polarization direction is not proportional to

the electric field. This leads the system to the verge of non-linearity.

In this thesis, piezoelectric layer is assumed to be very thin and hence is assumed to

be in an isothermal state with constant moisture content. Pyroelectric effect and the effect

of moisture on the deformation of PZT 5H material are not considered for simplicity. The

geometry of the actuated plate and the PZT actuator is shown in the Figure. 1.1(a). The ge-

ometry, the initial and boundary conditions used in the problem are summarized as follows:

A thin linearly elastic/viscoelastic beam with length to thickness ratio of 1
40

is perfectly glued

to a PZT beam with length to thickness ratio of 1
200

. The PZT layer rests on the top of the

elastic/viscoelastic layer. The width of the beam is assumed to be large enough to solve the

problem in the context of plain strain deformation. The length of either layers is represented

by L. The thickness of the elastic/viscoelastic beam and PZT beam are represented by h1,

h2, respectively. The cantilever beam assembly is fixed along the edge ACE as shown in Fig-

ure. 1.1(b). The darkly shaded region corresponds to the PZT layer and the lightly shaded

region corresponds to the elastic/viscoelastic material. The surface containing the edge AB

is maintained at a temperature of Tf and a moisture content, Cf . The surface containing

the edge EF is maintained at a temperature of To < Tf and moisture density of Co < Cf .

The surfaces containing the edges ACE, BDF are perfectly insulated and the moisture flux

is maintained at zero. Displacement and traction continuity is assumed at all times along

the common interface CD owing to the perfect bonding between the two layers. Since the

thickness to length ratio is� 1, the heat and moisture are assumed to diffuse only along the

thickness direction. Therefore, the temperature and moisture fields are obtained by solving

one dimensional coupled diffusion equations through the thickness. Since To < Tf and Co <
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Cf , heat and moisture diffuse from the surface containing edge AB to the surface containing

edge EF. Once the system attains a steady state it is assumed that it remains in that state

thereafter. The equations governing the system described above are solved for the displace-

ment and the stress fields in the elastic/viscoelastic beam region and voltage and electric

field across the PZT5H beam at various instances of time (starting from initial time to the

time at which system attains a steady state), as temperature and moisture fields evolve. At

a given instant of time, the voltage and electric field so obtained may vary from location to

location along the length of the PZT beam. Since, the objective is to minimize the effect

of moisture and temperature fields on the deformation of the beam, an external actuating

voltage needs to be applied across the PZT layer which in turn minimizes the deformation

of beam assembly. A rough estimate of this actuating voltage for a given instant of time

could be obtained from the voltage plot obtained for PZT 5H, from the former analysis. The

equations governing the system are then solved again for deformation and stress fields by

applying this actuating voltage across the PZT 5H beam with out changing other loading

conditions. This procedure is repeated for all time instances chosen for study. By plotting

the actuating voltage required to minimize the deformation versus time, one can estimate

the actuating voltage for all other intermediate times.

The field equations and the boundary conditions are replaced by their corresponding finite

difference equations. This reduces the problem to a set of simultaneous algebraic equations.

Finite difference equations are solved explicitly using a Forward-time Centered-Space ap-

proximation. Various grid sizes, grid ratios and time steps are considered for the study and

an optimum value is chosen based on the convergence of results or comparison of the results

with analytical solutions of known test cases. The outline of the thesis is as follows:

In Chapter II, the constitutive equations governing thermal and moisture dependent

deformation and coupled temperature and moisture evolution are derived from the conserva-

tion principles. These equations are then systematically linearized under small deformation
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assumption. The equations governing temperature and moisture dependent viscoelastic be-

havior are then derived following the correspondence principle.

In Chapter III, the material geometry under study is described along with the appropri-

ate initial and boundary conditions. The material parameters chosen for study are presented.

A parametric study is presented for the evolution of thermal and moisture fields. The finite

difference approximation schemes implemented for solving the constitutive and the govern-

ing equations with appropriate initial and boundary conditions are presented. In the case of

viscoelastic material, an algorithm that accounts for history dependent response is explained

briefly. A convergence study is presented to justify the choice of grid sizes and time steps

chosen for computations. The four test cases mentioned above are solved numerically to

obtain the voltage necessary to minimize the deformation.

In Chapter IV, conclusions are discussed.
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Fig. 1.1. (a) Figure shows the geometry of the cantilever beam assembly (b) Figure shows

the temperature and moisture boundary conditions of the beam when no external

voltage is applied across the PZT 5H layer. The shaded layer refers to the PZT

5H material and the unshaded layer refers to the elastic/viscoealstic material. The

surface containing the edge ACE in Figure(a) is rigidly clamped and all other surfaces

are traction free.
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CHAPTER II

CONSTITUTIVE MODELS FOR LINEARLY ELASTIC AND VISCOELASTIC

MATERIAL BEHAVIOR INCORPORATING THERMAL AND MOISTURE EFFECTS

This chapter presents a systematic derivation of the constitutive equations for the defor-

mation of a linearly elastic material incorporating the dependence of stress-strain fields on

moisture and temperature changes from the macroscopic conservations laws with the aid

of the Clausius-Duhem inequality. The coupling between temperature and moisture fields

is derived assuming a linear dependence of moisture and heat fluxes on temperature and

moisture gradients. This constitutive model is adopted from the work by Henry [24] and

Hartranft et al. [25]. The constitutive model for an isotropic viscoelastic material is also

obtained appealing to the correspondence principle. The effects of temperature and mois-

ture fields on the viscoelastic deformation are incorporated by considering the material as

a thermorheologically simple material (TSM). Following this, the appropriate constitutive

and governing equations for the linear piezoelectric actuator are presented.

A. Constitutive Model for Elastic Deformation Due to Coupled Heat and Moisture Effects

One can model the solid and fluid portions independently accounting for their mutual in-

teractions terms, in the context of mixture theory. But, prescribing boundary conditions in

such a setting is a challenging task. In this regard, the solid mass through which heat and

moisture diffusion occurs is modeled as follows. The solid and fluid portions are assumed

to co-exist at every location in the mixture and their motion is constrained such that these

constituents move together at all times. We shall further assume that no chemical reactions

occur between the two media. The free energy of the solid mass at every location is assumed

to depend on the moisture concentration. The following subsection presents in detail the

derivation of the constitutive equations for the solid portion incorporating the effects of heat
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and moisture diffusion.

1. Kinematics

Let the reference and current configurations of the body be denoted respectively by κR and

κt. A one-one mapping that assigns every single point X ε κR to a point x ε κt is defined as

a placer, denoted by χκR . A one parameter(time) family of such placers is defined as motion.

x = χκR(X, t) (2.1)

The gradient of motion/deformation gradient F is defined by

F :=
∂χκR
∂X

(2.2)

The displacement u is defined as follows:

u := x−X (2.3)

The deformation gradient and the displacement are related as follows from Eq. (2.3):

∇u = F− 1

⇒ F = 1 +∇u (2.4)

where 1 denotes the identity tensor. The velocity v is defined as follows:

v :=
∂χκR
∂t

(2.5)

The velocity gradient L is defined by

L :=
∂v

∂x

= ḞF−1 (2.6)
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where(̇) denotes the material time derivative. The lagrangian time derivative of detF is given

by the following equation.

˙
det(F) :=

d(det(F))

dt

= det(F) div(v) (2.7)

where d
dt

represents the Lagrangian time derivative. The Green - St-Venant strain tensor E

is defined as follows:

E :=
FTF− 1

2
(2.8)

Substituting from Eq. (2.4), Eq. (2.8) leads to

E =
∇u +∇uT +∇uT∇u

2
(2.9)

We define the linearized strain ε as follows:

ε :=
∇u +∇uT

2
(2.10)

2. Conservation of Mass

In the absence of chemical reactions, the conservation of mass for the solid and fluid portions

are written separately. If ρR, ρ represent the density of the solid portion in the reference

(κR) and current configurations (κt), then the conservation of mass for solid portion results

in the following equation.

ρR − ρdet(F) = 0 (2.11)

(or) ρ̇+ ρdiv(v) = 0 (2.12)

where Eq. (2.11), (2.12) are the Lagrangian and the Eulerian forms of mass conservation,

respectively. If ρm denotes the density of moisture in the current configuration and the mass
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flux of the diffusing substance in the solid medium is denoted by f, the conservation of mass

for the diffusing substance leads to

˙ρm + ˙ρmdiv(v) = −div(f) (2.13)

If we denote the ratio of moisture and solid mass densities in the current configuration by c,

then

c :=
ρm
ρ

(2.14)

Substituting from Eq (2.14) into Eq (2.13) we obtain the following:

ρċ+ c(ρ̇m + ρ div(v)) = −div(f) (2.15)

Substituting from Eq (2.12) into Eq (2.15) we obtain the following:

ρċ = −div(f) (2.16)

3. Conservation of Linear Momentum

Ignoring the amount of momentum transfer to the solid medium due to fluid flow, the

conservation of linear momentum equation gives

ρv̇ = div(TT ) + ρb (2.17)

Here, T represents the Cauchy Stress Tensor, b represents the body force per unit mass.

4. Conservation of Angular Momentum

In absence of the internal body couples and ignoring the contributions due to the moisture

flow to the angular momentum of the solid, balance of angular momemtum reduces to the
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following equation.

T = TT (2.18)

5. Conservation of Energy

We shall ignore the energy equation of the fluid. However, we shall incorporate the contribu-

tions due to interactions between the solid and fluid portions in the conservation of energy

equation for the solid portion. In which case, the energy equation for the solid portion in

the integral form is written as follows.

d

dt

∫
Pt

ρε dν = −
∫
∂Pt

q · n da+

∫
∂Pt

(t + ρb) · v da+

∫
Pt

ρr dν −
∫
∂Pt

ĥf · n da (2.19)

Here, ε,ĥ, q, t, r denote the specific internal energy of the solid mass, energy flux of mois-

ture per its unit mass, heat flux, boundary traction and specific internal heat source terms,

respectively and Pt, ∂Pt represent a control volume and its bounding surface in the cur-

rent configuration κt. Substituting from Eq. (2.17), (2.18) and appealing to divergence

theoram1,the Eq. (2.19) reduces to the following equation.

ρε̇ = T · L + ρr − div(q)− div(ĥf) (2.20)

The Specific Helmholtz Potential ψ of the solid medium is assumed to depend on the tem-

perature θ, concentration of the diffusing fluid and the deformation gradient of the solid,

i.e.,

ψ := ψ(θ, c,F) (2.21)

The material time derivative of Helmholtz potential ψ is given as

ψ̇ =
∂ψ

∂F
· Ḟ +

∂ψ

∂θ
θ̇ +

∂ψ

∂c
ċ (2.22)

1
∫
∂Pt

Aijk..pnp ds =
∫
Pt
Aijk...p,p dν
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But Helmholtz potential is defined in terms of specific internal energy of the solidu, specific

entropy of the solid η and temperature θ as follows

ψ := ε− ηθ (2.23)

⇒ ε = ψ + θη (2.24)

⇒ ε̇ = ψ̇ + θ̇η + θη̇ (2.25)

Substituting from Eq. (2.25), Eq. (2.20) is given as

ρ(ψ̇ + θ̇η + θη̇) = T · L + ρr − div(q)− div(ĥf) (2.26)

ρθη̇ + ρ(
∂ψ

∂θ
+ η)θ̇ + ρ

∂ψ

∂c
ċ = (T− ρ∂ψ

∂F
FT ) · L− div(q) + ρr − div(ĥf) (2.27)

Here we have used the fact that Ḟ=LF.

6. Balance of Entropy

Though the balance of entropy is not considered for the fluid portion, the irreversibility

associated with the diffusion of fluid is incorporated in the balance of entropy equation

written for the solid mass. In integral form the entropy equation for the solid portion is

expressed as follows:

d

dt

∫
Pt

ρη dν = −
∫
∂Pt

q

θ
· n da+

∫
Pt

ρr

θ
dν −

∫
∂Pt

η̂f · n da+

∫
Pt

ρζ dν (2.28)

Appealing to the divergence theorem Eq. (2.28) in the local form reduces to the following

equation

ρη̇ = −div(
q

θ
) +

ρr

θ
− div(η̂f) + ρζ (2.29)

Here η̂ denotes the entropy of moisture per its unit mass and ζ denotes the rate of entropy

generation per unit mass of solid. Substituting from Eq. (2.29) the Eq. (2.27) leads to the
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following equation.

ρζθ = −q · ∇θ
θ

+ (θ ∇η̂ f + θη̂ div(f))− (ĥ div(f) +∇ĥ · f) +

(T− ρ∂ψ
∂F

FT ) · L− ρ∂ψ
∂c
ċ− ρθ̇(η +

∂ψ

∂θ
) (2.30)

We introduce the variable µ̂, which is defined as follows:

µ̂ = ĥ− θη̂ (2.31a)

∇µ̂θ=const = ∇ĥ− θ∇η̂ (2.31b)

Substituting from Eq. (2.31b) in Eq. (2.30), the rate of dissipation ρζ̇θ can be written as

follows:

ρζθ = −q · ∇θ
θ

+ (−µ̂+ ρ
∂ψ

∂c
) div(f) + (θ∇η̂ −∇ĥ) · f

+(T− ρ∂ψ
∂F

) · L− ρθ(∂ψ
∂θ

+ η) (2.32)

The terms on the right hand side are defined as follows

q · ∇θ
θ

≡ entropy generation due to heat tranfer

(T− ρ∂ψ
∂F

) · L ≡ entropy generation due to Mechanical working

(θ∇η̂ −∇ĥ) · f ≡ entropy generation due to diffusion of fluid

We shall define

µ̂ :=
∂ψ

∂c
(2.33)

The specific entropy of the solid portion η is related the Helmholtz potential ψ as follows:

η = −∂ψ
∂θ

(2.34)
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If entropy generation due to mechanical working is assumed to be zero then the Cauchy

stress tensor can be defined as

T := ρ
∂ψ

∂F
FT (2.35)

Then the Eq. (2.32) subject to Eq. (2.33), (2.31b) reduces to the following equation

ρζθ = −q.∇θ
θ
−∇µ̂θ=const · f (2.36)

The Clausius-Duhem Inequality states that

ρζ ≥ 0 (2.37)

⇒ −q.∇θ
θ
−∇µ̂θ=const · f ≥ 0 (2.38)

7. Linearization of the Constitutive Equations

In this subsection we obtain expressions for the Cauchy stress tensor, specific entropy of

the solid mass and µ̂ in the context of a linearized theory. This is achieved by assuming

that the body undergoes an infinitesimal deformation due to mechanical loads, temperature

and moisture changes. The changes in temperature and moisture concentration are assumed

to be small enough to be addressed by a linearized theory. To this end, we introduce the

linearized strain ε. This is done as follows:

The Cauchy stress tensor T can be expressed in terms of Green - St-Venant strain tensor

E by substituting from Eq.(2.8) in Eq. (2.35). This results in the following equation.

⇒ T = ρF
∂ψ

∂E
FT (2.39)

For Small strain problems i.e. when ||∇u|| � 1, The Green-St Venant strain tensor from
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Eq. (2.9) and the Cauchy Stress Tensor transform as follows:

E ≈ ∇u +∇uT

2
= ε (2.40)

T ≈ ρ
∂ψ

∂ε
(2.41)

The Taylor Series expansion of ψ in the neighbourhood of the reference configuration can be

written as follows:

ψ(F, θ, c) = ψo +
∂ψ

∂ε
· ε+

∂ψ

∂θ
∆θ +

∂ψ

∂c
∆c

+
1

2

∂2ψ

∂ε∂ε
· ε⊗ ε+

1

2

∂2ψ

∂θ2
(∆θ)2 +

1

2

∂2ψ

∂c2
(∆c)2+

∂2ψ

∂θ∂ε
· (∆θ)ε+

∂2ψ

∂c∂ε
· (∆c)ε+

∂2ψ

∂θ∂c
· (∆c)ε (2.42)

Appealing to Eq. (2.33), (2.34), (2.41), Eq. (2.42) can be written as follows:

⇒ ψ(F, θ, c) = ψo +
To

ρ
· ε− ηo∆θ + µo∆c

1

2ρ

∂T

∂ε
· ε⊗ ε− 1

2

∂η

∂θ
(∆θ)2 +

1

2

∂µ̂

∂c
(∆c)2

+
1

ρ

∂T

∂θ
· (∆θ)ε+

1

ρ

∂T

∂c
· (∆c)ε− ∂η

∂c
(∆c)(∆θ) (2.43)

where ψo, ηo, µo, To denote values in the reference configuration. We assume that in the

reference configuration, ε = 0, ∆c = 0. We further assume that the reference configuration

is a stress free configuration i.e. To=0. Under these assumptions, Eq. (2.43) reduces to the

following form:

⇒ ψ(F, θ, c) = ψo − ηo∆θ + µo∆c+
1

2ρ

∂T

∂ε
· ε⊗ ε− 1

2

∂η

∂θ
(∆θ)2 +

1

2

∂µ̂

∂c
(∆c)2(2.44)

+
1

ρ

∂T

∂θ
· (∆θ)ε+

1

ρ

∂T

∂c
· (∆c)ε− ∂η

∂c
(∆c)(∆θ) (2.45)

We define the elastic modulus (C), the linear thermomechanical coupling coefficient (α̂) and
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the linear moisture-mechanical coupling coefficient (β̂) as follows:

C :=
∂T

∂ε
(2.46a)

α̂ := −∂T

∂θ
(2.46b)

β̂ := −∂T

∂c
(2.46c)

We further introduce the following variables

γ̂ := −∂η
∂c

(2.47a)

δ̂ := −∂µ̂
∂c

(2.47b)

ω :=
∂η

∂θ
(2.47c)

From Eq. (2.41), (2.46c), (2.47c), (2.33), we obtain expressions for the Cauchy Stress T, the

specific entropy η and µ̂ as follows:

T = Cε− α̂∆θ − β̂∆c (2.48)

η = ηo + ω∆θ +
ε · α̂
ρ

+
γ̂ ∆c

ρ
(2.49)

µ̂ = µ̂o + δ∆c+ γ̂ ∆θ − ε · β̂
ρ

(2.50)

B. Coupled Temperature and Moisture Fields

In this section, we obtain the expressions that govern the coupled heat and moisture trans-

port phenomena in the solid medium. To this end, we begin by assuming a form for heat

and moisture flux in the solid medium based on the mathematical form of Fourier’s heat

conduction and Fickian mass diffusion. The coefficients introduced in these equations are

evaluated by using the Eq. (2.38), which is a consequence of Clausius-Duhem inequality.

This is achieved as follows:



26

In the Eq. (2.50), we shall ignore the dependence of chemical potential µ̂ on the strain

ε for simplicity. Thus, Eq. (2.50) reduces to the following form:

µ̂ = µ̂o + δ̂∆c+ γ̂ ∆θ

⇒ ∇µ̂|θ=constant = δ̂∇c (2.51a)

Thus, the Eq. (2.52) reduces to the following form

−q.∇θ
θ
− δ̂∇c · f ≥ 0 (2.52)

The Eq. (2.52) be is assumed to be satisfied with the following forms for heat and moisture

fluxes as suggested by Henry [24], Hartranft et al. [25].2.

q = −k11
∇θ
θ
− k̂12δ̂∇c = −k11

∇θ
θ
− k12∇c

f = −k21
∇θ
θ
− k̂22δ̂∇c = −k21

∇θ
θ
− k22∇c (2.53a)

Substituting Eq. (2.60b) into Eq. (2.52) we obtain the following inequality.

(k12 + k21)
2 ≤ 4k11k22 (2.54)

Setting the concentration gradient and mass flux are set to zero, equations (2.60b), (2.52)

require that

k11 > 0 (2.55)

Similarly, setting the temperature gradient and heat flux to zero, equations (2.60b), (2.52)

require that

k22 > 0 (2.56)

2By setting the constants k12, k21 to zero, Eq. (2.60b) reduce to Fourier’s Heat conduction
and Fickian diffusion equations respectively
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Since, we require that the inequality in Eq. (2.52) to hold even when q=0, f=0, we obtain

the following relation between the coefficients.

k11k22 = k21k12 (2.57)

Substituting from Eq. (2.54), Eq. (2.57) leads to

k21 = k12 (2.58)

We assume that the density of the solid mass doesn’t change significantly due to the diffusion

of heat and moisture. In this regard, we ignore the spatial and temporal variation of solid

mass density due to the diffusion. Therefore, the gradient of c can be written as follows:

∇c ≈ ∇ρc
ρ

(2.59)

Substituting from Eq. (2.59), Eq. (2.65b) can be re-written as follows:

q = −k11
∇θ
θ
− k12

ρ
∇ρm (2.60a)

f = −k21
∇θ
θ
− k22

ρ
∇ρm (2.60b)

Let, Dm be defined as the coefficient of moisture diffusivity of the fluid in the solid in an

isothermal state and k̂ be the thermal conductivity of the solid medium in dry state. Then,

Dm :=
k22
ρ

(2.61a)

k̂ :=
k11
θ

(2.61b)

Let Q∗ be defined as the ratio of isothermal heat flux to mass flux. Therefore

Q∗ :=
k12
k22

(2.62)
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The thermal diffusivity of the solid medium denoted by Dh is defined as follows

Dh :=
k̂

ρCv
(2.63)

where Cv denotes the specific heat capacity of the solid mass which is defined as follows:

Cv :=
∂ε

∂θ
(2.64)

Substituting from Equations (2.61b), (2.62) and (2.63), the Eq. (2.60b) reduces to the

following form:

f = −Dm∇ρm −
Q∗Dmρ

θ
∇θ (2.65a)

q

ρCv
= −Dh∇θ −

Q∗Dm

ρCθ
∇ρm (2.65b)

Let coupling constants ν, λ be defined as follows:

ν :=
Q∗

ρCv
(2.66a)

λ :=
Q∗Dmρ

Dhθ
(2.66b)

Using the equations 2.65b, 2.66b and 2.54 we obtain

f = −Dm∇c− λDh∇θ (2.67)

q

ρCv
= −Dh∇θ − νDm∇c (2.68)

λν < 1 (2.69)

Substituting from Eq. (2.16) and replacing with ρm with C, Eq. (2.67) reduces to the following

form:

ρċ = Dm∇2C + λDh∇2θ (2.70a)

⇒ Ċ = Dm∇2C + λDh∇2θ (2.70b)
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If the velocity of the body, the amount of energy supplied supplied by the moisture and

the internal heat source terms are neglected, the energy equation Eq. (2.20) reduces to the

following equation.

ρε̇ ≈ −div(q) (2.71)

Substituting from Eq. (2.68), the Eq. (2.71) leads to the following equation:

ρε̇ = ρCv(Dh∇2θ + νDm∇2C) (2.72a)

⇒ ε̇ = Cv(Dh∇2θ + νDm∇2C) (2.72b)

Substituting from the definition of specific heat capacity in Eq. (2.64), the Eq. (2.72b) reduces

to the following form.

θ̇ = Dh∇2θ + νDm∇2C (2.73)

The equations (2.73), (2.70b) can be equivalently written as follows:

D∇2C = Ċ − λθ̇ (2.74a)

D∇2θ = θ̇ − νĊ (2.74b)

where

D = (1− λν)Dm ,D = (1− λν)Dh (2.75)

This concludes the derivation of the equations incorporating the effects of heat and

moisture diffusion in the context of linearized elasticity.

C. Constitutive Equations for an Isotropic, Homogeneous Linearly Elastic Material

In this section, the constitutive and governing field equations for an isotropic, homogeneous

linearly elastic material are presented taking into account the temperature and moisture

effects. Since, a plane strain deformation field is assumed for the current study, the relevant
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equations for this special case are presented.

The displacement field in for plane strain deformation is given as follows:

u = (u(x, y), v(x, y)) (2.76)

The constitutive equations for a linearly elastic material are written as follows from Eq. (2.48):

T = Cε− α̂∆θ − β̂∆c (2.77)

where α̂ and β̂ are second order tensors representing thermo-mechanical and hygro-mechanical

coupling coefficients. These coefficients are related to CTE (α) and CME (β) as follows:

α̂ = Cα (2.78)

β̂ = Cβ (2.79)

In the absence of temperature and moisture effects this equation reduces to the following

form:

T = Cε (2.80)

The elastic modulus C in Eq. (2.48) is a fourth order tensor with 81 independent entries.

Appealing to the symmetry of stress and strain tensors, the number of independent entries

reduce to 36. For an isotropic material the number of independent coefficients further reduce

just 2. In this case, the constitutive equation Eq. (2.80) reduces to the following form:

T = 2µε+ λ̂trε1 (2.81)

where µ, λ̂ are known as Lamé constants. The Eq. (2.81) can be written equivalently in

terms of the Young’s modulus (E) and the poisson ratio (ν̂) as follows:

T =
E

(1 + ν̂)
ε+

Eν̂

(1 + ν̂)(1− 2ν̂)
trε1 (2.82)
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where the Lamé constants are related to E, ν̂ as follows:

µ =
Eν̂

2(1 + ν̂)
(2.83)

λ̂ =
Eν̂

(1 + ν̂)(1− 2ν̂)
(2.84)

When the temperature and moisture effects are also incorporated and further assuming that

the material response is assumed to be isotropic when subjected to temperature and moisture

changes then the Eq. (2.80) takes the following form:

T =
E

(1 + ν̂)
ε+

Eν

(1 + ν̂)(1− 2ν̂)
trε1− E

(1− 2ν̂)
(α∆θ + β∆C)1 (2.85)

where α and β are the CTE and the CME, respectively. In case of plane strain deformation,

the stress components σxx, σyy, σxy can be expressed in terms of displacements appealing to

Eq. (2.82), (2.10) as follows:

σxx =
E(1− ν̂)

(1 + ν̂)(1− 2ν̂)
u,x +

Eν̂

(1 + ν̂)(1− 2ν̂)
v,y−

E

(1− 2ν̂)
(α∆θ + β∆C) (2.86a)

σyy =
E(1− ν̂)

(1 + ν̂)(1− 2ν̂)
v,y +

Eν̂

(1 + ν̂)(1− 2ν̂)
u,x−

E

(1− 2ν̂)
(α∆θ + β∆C) (2.86b)

σxy =
E

2(1 + ν̂)
(u,y +v,x ) (2.86c)

The conservation of linear momemtum Eq. (2.17) for plane strain deformation leads to the

following equations:

σxx,x + σxy,y = 0 (2.87a)

σxy,x + σyy,y = 0 (2.87b)
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Substituting from the Eq. (2.86c), the Eq. (2.87b) leads to the following equations:

E(1− ν̂)

(1 + ν̂)(1− 2ν̂)
u,xx +

E

2(1 + ν̂)(1− 2ν̂)
v,xy +

E

2(1 + ν̂)
u,yy−

E

(1− 2ν̂)
(αθ,x +βC,x ) = 0

(2.88a)

E(1− ν̂)

(1 + ν̂)(1− 2ν̂)
v,yy +

E

2(1 + ν̂)(1− 2ν̂)
u,xy +

E

2(1 + ν̂)
v,xx−

E

(1− 2ν̂)
(αθ,y +βC,y ) = 0

(2.88b)

Thus the equations (2.86c) and (2.88b)represent the field equations that shall be

employed for the elastic portion of the beam assembly.

D. Constitutive Equations for Viscoelastic Materials With and Without Temperature and

Moisture Effects

In this section, the constitutive and governing equations for a linear viscoelastic material

for 2 cases are presented. In the first case, temperature and moisture effects are not consid-

ered, and in the second case where temperature and moisture effects are incorporated, the

viscoelastic material is assumed to be a thermo-rheologically simple material.

For a class of problems in linearized viscoelasticity, the solution can be constructed

from the solution of a corresponding boundary value problem in linearized elasticity. This

approach is known as the Correspondence Principle and is discussed in detail by Rajagopal

and Wineman [5]. However, there exist certain limitations to this principle. This principle

can be appealed to only under the following conditions:

1. All material points must belong to the body for all times t ≥ 0.

2. The motion of the viscoelastic body is quasi-static.

3. During the deformation, the boundary condition at a point on the boundary cannot

be changed from displacement being specified to traction being specified.
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For problems in linearized viscoelasticity where the above conditions are met with, the solu-

tion is constructed from the corresponding boundary value problem in linearized elasticity.

The constitutive and governing field equations along with the boundary conditions in case

of linearized viscoelasticity when transformed into laplace domain result in equations that

are similar to in linearized elasticity. Thus from the solution obtained in the latter case,

the solution for the former case can be obtained as follows: the field variables such as dis-

placements, stresses, strains are replaced by their appropriate forms in laplace domain while

the material properties of the elastic medium are replaced the laplace parameter times the

laplace transform of the viscoelastic medium properties3. The geometry used for the cur-

rent study as depicted in Figure 2.1(a) meets all conditions imposed by the correspondence

principle to be used. Hence for the case where viscoelastic beam is perfectly bonded to the

PZT layer, the constitutive and governing equations are obtained from the corresponding

equations in linearized elasticity, appealing to the correspondence principle.

In what follows, the constitutive and governing equations for the viscoelastic part of

the beam assembly are presented for plane strain deformation with out incorporating tem-

perature and moisture effects. For simplicity, the linear viscoelastic material is assumed to

be isotropic and homogeneous. Let Es and Ec denote the stress relaxation modulus and

creep compliance of the viscoelastic material respectively. For simplicity, the Poisson ra-

tio ν is assumed to be a constant. Then constitutive equations in Laplace domain for an

isotropic, homogeneous linearly viscoelastic material appealing to correspondence principle

3For a field variable A and material property E, the replacement is done follows:
A(x, t) → Ā(x, s); Es(x, t) → sĒ(x, s) where Ā and Ē denote the laplace transform of A
and the viscoelastic material modulus Es
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can be written from Eq. (2.86c) as follows:

σ̄xx =
sĒs(1− ν̂)

(1 + ν̂)(1− 2ν̂)
ū,x +

sĒsν̂

(1 + ν̂)(1− 2ν̂)
v̄,y (2.89)

σ̄yy =
sĒs(1− ν̂)

(1 + ν̂)(1− 2ν̂)
v̄,y +

sĒsν̂

(1 + ν̂)(1− 2ν̂)
ū,x (2.90)

σ̄xy =
sĒs

2(1 + ν̂)
(ū,y +v̄,x ) (2.91)

On inversion, these equations transform as follows:

σxx =
(1− ν̂)

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(t− s)

∂u,x
∂s

ds+
ν̂

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(t− s)

∂v,y
∂s

ds

σyy =
(1− ν̂)

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(t− s)

∂v,y
∂s

ds+
ν̂

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(t− s)

∂u,x
∂s

ds

σxy =
1

2(1 + ν̂)

∫ t

0−
Es(t− s) (

∂u,y
∂s

+
∂v,x
∂s

)ds (2.92)

where
∫ t
0−Es(t− s)

∂f
∂s
ds := Es(t)f(0) +

∫ t
0
E(t− s)∂f

∂s
ds.

Similarly, on applying laplace transform to Eq. (2.88b) we obtain the following equations:

sĒs(1− ν̂)

(1 + ν̂)(1− 2ν̂)
ū,xx +

sĒs
2(1 + ν̂)(1− 2ν̂)

v̄,xy +
sĒs

2(1 + ν̂)
ū,yy = 0

sĒs(1− ν̂)

(1 + ν̂)(1− 2ν̂)
v̄,yy +

sĒs
2(1 + ν̂)(1− 2ν̂)

ū,xy +
sĒs

2(1 + ν̂)
v̄,xx = 0 (2.93)

On inversion, these equations transform as follows:

(1− ν̂)

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(t− s)

∂u,xx
∂s

ds+
1

2(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(t− s)

∂v,xy
∂s

ds

+
1

(1 + ν̂)

∫ t

0−
Es(t− s)

∂uyy
∂s

ds = 0 (2.94)

(1− ν̂)

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(t− s)

∂v,yy
∂s

ds+
1

2(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(t− s)

∂u,xy
∂s

ds

+
1

2(1 + ν̂)

∫ t

0−
Es(t− s)

∂v,xx
∂s

ds = 0 (2.95)

Thus equations (2.92), represent the field equations for an isotropic, homogeneous

lineraly viscoelastic material due to mechanical loads.
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1. Temperature and Moisture Dependent Response of Viscoelastic Materials

The response of viscoelastic materials is strongly dependent on the temperature changes to

which the material is subjected. The stress relaxation or creep phenomena can either be

sped up or slowed down depending on the change in temperature. For a class of materials

for which such a change can be accounted for by a corresponding change in the time scale

are termed as thermo-rheologically simple materials (TSM) by Schwarzl and Staverman [19].

For these materials, the change in the time scale is quantified in terms of shift factor(a),

which is a material property. The shift factor is a function of the working temperature θ and

the reference temperature θo. This theoretical model that describes the viscoelastic behavior

with respect to time and temperature is known as time-temperature superposition.

The TSM materials exhibit the following features:

• The relaxation/creep curves when plotted on logarithmic time scale have same shape

for all temperatures.

• The initial and long time values of relaxation modulus/creep compliance are indepen-

dent of temperature.

• Same rearrangements of macromolecules occur during creep and stress relaxation pro-

cesses but the speed of such rearrangements is temperature dependent.

Time-temperature superposition allows to evaluate the creep compliance/relaxation modulus

of TSM at a temperature other than the reference temperature from (i) the creep compli-

ance/relaxation modulus at reference temperature and (ii) the temperature dependent shift

factor a. For instance, the stress relaxation modulus Es at temperature θ is given as follows
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follows:

Es(t, θ) = Es(
t

a(θ, θo)
, θo) (2.96)

if θ > θo ⇒ a < 1 (2.97)

if θ < θo ⇒ a > 1 (2.98)

if θ = θo ⇒ a = 1 (2.99)

Rajagopal and Wineman [5] discuss the extension of time-temperature superposition to time

varying temperature histories. In this case, the creep compliance/relaxation modulus in

Eq. (2.96) takes the following form.

Es(t, θ) = Es(

∫ t

o

ds

a(θ, θo)
, θo) (2.100)

where the integral
∫ t
o

ds
a(θ,θo)

is termed as intrinsic time/reduced time and is denoted by φ(t)

i.e.

φ(t) =

∫ t

o

ds

a(θ, θo)
(2.101)

Viscoelastic material behavior can also be affected due to the diffusion of a fluid in the

material, such as moisture. The diffusing fluid can either soften the material or harden it.

In either case the material response is influenced due to the presence of the fluid. The effect

of diffusing fluid such as a medical drug on the response characteristics of the viscoelastic

materials such as muscles was studied by Rajagopal and Wineman [20]. Towards this end,

the shift function (a) is assumed to be a function of the fluid/drug concentration as follows:

Es(t, θ) = Es(

∫ t

o

ds

a(C,Co)
, Co) (2.102)

Since, the current study is intended to incorporate the effects of temperature and mois-

ture on the response characteristics of a viscoelastic material, to address this the shift factor
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is assumed to be a function of temperature and fluid concentration as follows:

Es(t, θ, C) = Es(

∫ t

o

ds

a(θ, C, θo, Co)
, θo, Co) (2.103)

in which case the intrinsic time is given as follows:

φ(t) :=

∫ t

0

ds

a(θ(s), C(s), θo, Co)
(2.104)

The constitutive equations for viscoelastic plane strain deformation incorporating thermal

and moisture effects can be obtained from the corresponding equations in linearized elasticity

Eq. (2.86c) by the same procedure described in the earlier subsection. The summary of the

equations so obtained is as follows:

σxx =
(1− ν̂)

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s))

∂u,x
∂s

ds

+
ν̂

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s))

∂v,y
∂s

ds

− 1

(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s)) (α

∂θ

∂s
+ β

∂C

∂s
)ds (2.105)

σyy =
(1− ν̂)

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s))

∂v,y
∂s

ds

+
ν̂

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s))

∂u,x
∂s

ds

− 1

(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s)) (α

∂θ

∂s
+ β

∂C

∂s
)ds (2.106)

σxy =
1

2(1 + ν̂)

∫ t

0−
Es(φ(t)− φ(s)) (

∂u,y
∂s

+
∂v,x
∂s

)ds (2.107)
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Similarly, the equilibrium equations can be summarized as follows:

(1− ν̂)

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s))

∂u,xx
∂s

ds

+
1

2(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s))

∂v,xy
∂s

ds

+
1

(1 + ν̂)

∫ t

0−
Es(φ(t)− φ(s))

∂u,yy
∂s

ds

− 1

(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s)) (α

∂θ,x
∂s

+ β
∂C,x
∂s

)ds = 0 (2.108)

(1− ν̂)

(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s))

∂v,yy
∂s

ds

+
1

2(1 + ν̂)(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s))

∂u,xy
∂s

ds

+
1

2(1 + ν̂)

∫ t

0−
Es(φ(t)− φ(s))

∂v,xx
∂s

ds

− 1

(1− 2ν̂)

∫ t

0−
Es(φ(t)− φ(s)) (α

∂θ,y
∂s

+ β
∂C,y
∂s

)ds = 0 (2.109)

This concludes the constitutive and governing field equations for the linearly viscoelastic

portion of the beam incorporating temperature and moisture effects.

E. Constitutive Equations for the PZT Layer

The derivation of the field equations in the context of coupled eletro-thermo-elasticity from

the fundamental principles of conservation of mass, linear momemtum, angular momemtum,

energy and charge followed by the use of second law of thermodynamics are presented by

H.F.Tiersten et.al. in [27]. Due to the interaction between electric field (Ê) and polarization

(P) the stress tensor(T) is shown to be non-symmetric and non linearly dependent on the

electric field (Ê) as shown in Eq. (2.110b). If ψ, ρ, F, π denote specific Helmholtz potential,
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density, deformation gradient and polarization per unit mass respectively, then

T = ρ F
∂ψ

∂Ê
FT −P⊗ Ê (2.110a)

π = −∂ψ
∂Ê

(2.110b)

where

π :=
P

ρ
(2.111)

The electric displacement D is related to the electric field Ê and the polarization P as follows:

D = εÊ + P (2.112)

where ε denotes the permittivity of the medium. If the deformation and electric fields

are assumed to be small enough to linearize the equations of the stress(T) and electric

displacement(D) and if the pyroelectric effects are ignored, then the Eq. (2.110b) reduces to

the following set of equations [28]:

T = C ε− eT Ê−α∆θ (2.113)

D = e ε+ ε Ê (2.114)

where e denotes the piezoelectric tensor and ε denotes the linearized strain. The electric

field can be expressed in terms of the voltage ϕ in the PZT material as follows:

Ê := −gradϕ (2.115)

The conservation of charge and the conservation of linear momemtum result in the following

equations:

divD = 0

divT = 0 (2.116)
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Thus equations (2.113) through (2.116) represent field equations employed for the PZT layer

of the beam assembly.

.
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CHAPTER III

NUMERICAL SOLUTION AND ANALYSIS OF THE ELASTIC OR VISCOELASTIC

BEAM ASSEMBLY

The geometry of the structure considered for study is summarized as follows. A thin lin-

early elastic/viscoelastic beam with length to thickness ratio of 1
40

is perfectly bonded to

a PZT beam with length to thickness ratio of 1
200

. The PZT layer rests on the top of the

elastic/viscoelastic layer. The length of either layers is represented by L. The thickness of

the elastic/viscoelastic beam and PZT beam are represented by h1, h2, respectively. The

cantilever beam assembly is fixed along the edge ACE as shown in Figure 3.1(b). The shaded

region corresponds to the PZT 5H layer and the unshaded region corresponds to the elas-

tic/viscoelastic material. The surface containing the edge AB is maintained at a temperature

of Tf and a moisture concentration of Cf . The surface containing the edge EF is maintained

at a temperature of To < Tf and moisture density of Co < Cf . The surfaces containing

the edges ACE, BDF are perfectly insulated and the moisture flux is maintained at zero.

Displacement and traction continuity is assumed at all times along the common interface

CD owing to the rigid bonding between the two layers. Since the thickness to length ratio is

� 1, the heat and moisture are assumed to diffuse only along the thickness direction. There-

fore, the temperature and moisture fields are obtained by solving one dimensional coupled

diffusion equations. Since To < Tf and Co < Cf , heat and moisture diffuse from the surface

containing edge AB to the surface containing edge EF. Once the system attains a steady

state, it is assumed that it remains in that state thereafter.
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Fig. 3.1. Figure depicting the geometry and of the cantilever beam assembly and the boundary

conditions for the case where no external voltage is applied across the PZT layer. The

blue layer corresponds to the PZT material and the ash colored layer corresponds to

the elastic/viscoealstic material. The surface containing the edge ACE is clamped

and all other surfaces are traction free.
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The first section presents a detailed description of the problem under study. The geome-

try considered for study and the corresponding initial and boundary conditions are specified

in this section. The second section is divided into two subsections. In the first subsection

finite difference equations for coupled heat and moisture diffusion equations are presented.

This is followed by a study to determine an optimal choice of grid size and time step values

required to solve these finite difference equations. In the second subsection, temperature and

moisture field characteristics for a range of values of moisture and thermal properties are

presented in the form of a parametric study. This is followed by a discussion on the choice

of thermal and moisture material properties considered for the problem. The third section is

divided into two subsections. In the first subsection, finite difference equations are obtained

for the governing and constitutive equations employed in the current study. In the second

subsection the optimal grid size values required to solve these finite difference equations

are obtained. In the fourth section, numerical solutions are obtained for the displacement

characteristics and the corresponding required active voltage control for the four different

material specimens considered for study. This is followed by a discussion on the results and

plots obtained. The materials chosen for the host structure and the actuator are summarized

as follows:

• Linearly elastic materials:

1. Aluminium-PZT 5H beam assembly subjected to transient thermal field.1

2. Isotropic un-reinforced epoxy-PZT beam assembly subjected to transient thermal

and moisture fields.

3. Anisotropic CFRP-PZT beam assembly subjected to transient thermal and mois-

ture fields.

1The moisture dependent deformation of Al is not considered for the moisture diffusion
in Aluminium is negligible compared to the diffusion of heat.
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• Linearly viscoelastic material-PZT beam assembly subjected to transient thermal and

moisture fields.

A. Description of the Problem

As described earlier, the cantilever beam assembly consists of an elastic/viscoelastic beam

perfectly glued to the PZT 5H layer which rests on the top of the beam as depicted in

Figure 3.1(b). Heat and moisture diffusion are assumed to occur predominantly along the

thickness direction, for simplicity. The assembly is clamped rigidly to a wall at one end and

all other surfaces are assumed to be traction free. The length of the beam is chosen to be

0.5m. The length to thickness ratio for the elastic/viscoelatic beam and the PZT 5H layer

are chosen as 40 and 200 respectively. The width of the beam is assumed to be large enough

to solve the problem in the context of plane strain deformation. Therefore, the displacement

field can be chosen as follows:

u = u(u, v) (3.1)

The boundary conditions for both the sections of the beam assembly referring to the Fig-

ure 3.1(a) are summarized as follows:

u = v = 0 along the edge ACE (3.2a)

∂v

∂x
= 0 along the edge ACE (3.2b)

Traction free boundary conditions along the surfaces BDF, AB and EF result in the following

equations:

σxx = σxy = 0 (3.3a)

σyy = σxy = 0 (3.3b)
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Traction and displacement continuity conditions along the surface CD can be summarized

as follows:

ue(x, h2, t) = up(x, h2, t) (3.4a)

σeyy(x, h2, t) = σpyy(x, h2, t) (3.4b)

σexy(x, h2, t) = σpxy(x, h2, t) (3.4c)

Other boundary conditions are summarized as follows:

ϕ = 0 along the edge CD (3.5a)

Dy = 0 along the edge AB when no voltage is applied across PZT layer (3.5b)

Dx = 0 along the edges ACE, BDF (3.5c)

ϕ = ϕo along the edge AB when voltage ϕo is applied across PZT layer (3.5d)

The boundary temperatures Tf , To are chosen to be 350 k and 300 k, respectively. The

moisture content in a structural component at steady state largely depends on the humidity

level of the surroundings. If Wo denotes the initial weight of T300/5208 CFRP sample

placed in an environment with relative humidity RH, then the final weight Wf of the sample

when completely saturated with moisture is reported to be 0.015 x RH x Wo% heavier

than its initial weight. AS/3501-5 carbon/epoxy composite is reported to be 0.017 x RH x

Wo% heavier than its initial weight [26]. Therefore the amount of moisture in T300/5208

and AS/3501-5 in saturated state is given by 0.015 x RH % and 0.017 x RH % of their

initial weights, respectively. For instance if the relative humidity RH=60% then the over

all weight of T300/5208 and AS/3501-5 would be increased by 0.9% and 1.02% respectively.

When completely immersed in distilled water, the absorbed moisture content for both these

materials is reported to be 1-2 % of initial weights at steady state [26]. The absorbed moisture

content in various epoxy resins and CFRP composites is also shown to be dependent on the
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temperature conditions [18]. In the Figure 3.1(a), boundaries AB and EF are assumed

to be saturated with moisture content Cf , Co respectively. For the current problem, we

shall assume Cf=1 and Co=0 i.e. the surface EF is assumed to be in dry state. Here,

Cf and Co denote the % of moisture by weight in the saturated and dry states of the solid

respectively. In the equations, (2.74b) which govern the coupled moisture and heat transport,

the properties that are material specific are thermal diffusivity Dh, moisture diffusivity Dm,

non-dimensional coupling constant λν. The coupling between temperature and moisture

diffusion phenomena is strongly dependent on the ratio of their diffusivities and the coupling

constant λν.

Diffusion of moisture through polymer/polymer composites is a relatively slower process

compared to the diffusion of temperature. It is almost negligible in the case of metals. The

ratio of thermal to moisture diffusivity (defined as Lewis number) in the case of composites

can differ directionally. For instance in the case of carbon fiber reinforced epoxy composite,

the thermal diffusivity along the fiber direction is much higher than in the direction per-

pendicular to it. Similarly, moisture diffusivity is much less along the fiber direction than

in the direction perpendicular to it. Since, the current study is intended to capture the ef-

fects of simultaneous heat and moisture diffusion, the direction of these diffusive phenomena

and ratio of their diffusivities is chosen such that both the effects are predominant for the

time period under consideration. It has been established in Chapter II that the value of the

coupling constant, λν <1 due to thermodynamic considerations. The interdependency of

temperature and moisture fields is governed by the constants λ, ν. Therefore a parametric

study is presented in the second section of this chapter, where temperature and moisture

field plots are obtained by varying the values of the Lewis number, the coupling constant(λν)

and the constants λ, ν over a certain range. Based on the results thus obtained a choice

of values for Lewis number, λν, λ and ν that would be apt for a strong coupling between

temperature and moisture fields.
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B. Coupled Thermal and Moisture Diffusion Equations

In the current study, we consider a one dimensional treatment to the diffusion problem for

both thermal and moisture fields. The derivation of the equations used in this section were

presented in Chapter II and shall not be repeated here. The coupled heat and moisture

diffusion equations are as follows:

∂C

∂t
= D∆C + λ

∂θ

∂t
(3.6)

∂θ

∂t
= D∆θ + ν

∂C

∂t
(3.7)

where D and D are related to the moisture diffusivity and thermal diffusivity respectively

by the dimensionless coupling constant λν as follows:

D = (1− λν)Dm (3.8)

D = (1− λν)Dh (3.9)

The equations (3.6) and (3.7) can be re-written as follows:

∂C

∂t
= D∆C + λ∆θ (3.10)

∂θ

∂t
= D∆θ + ν∆C (3.11)

The following non-dimensional parameters and functions f, g are introduced to rewrite

equations (3.10) and (3.11).

û = Dm/Dh (u is the inverse of Lewis number) (3.12)

θ̂ =
Dmt

h2
(3.13)

ξ =
y

h
(3.14)

C(ξ, θ̂) = C0 + νf(ξ, θ̂) (3.15)

θ(ξ, θ̂) = θ0 + νg(ξ, θ̂) (3.16)
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The transformed equations are as follows:

∂f

∂θ̂
=

∂2f

∂ξ2
+
λν

u

∂2g

∂ξ2
(3.17)

∂g

∂θ̂
=

1

û

∂2g

∂ξ2
+
∂2f

∂ξ2
(3.18)

The initial and boundary conditions for temperature and moisture fields are summarized

as follows:

∀ t > 0, θ(0, t) = θo (3.19a)

∀ t > 0, θ(h, t) = θf (3.19b)

∀ 0 ≥ ξ ≤ 1, θ(y, 0) = θo (3.19c)

∀ θ > 0, C(0, t) = Co (3.19d)

∀ θ > 0, C(h, t) = Cf (3.19e)

∀ 0 ≥ ξ ≤ 1, C(y, 0) = Co (3.19f)

Equations (3.20a) to (3.20f) when expressed using equations (3.12)-(3.16) transform to the

following form:

∀ θ > 0, g(0, θ̂) = 0 (3.20a)

∀ θ > 0, g(1, θ̂) =
θf − θ0
ν

(3.20b)

∀ 0 ≤ ξ ≤ 1, g(ξ, 0) = 0 (3.20c)

∀ θ > 0, f(0, θ̂) = 0 (3.20d)

∀ θ > 0, f(1, θ̂) = Cf − C0 (3.20e)

∀ 0 ≤ ξ ≤ 1, f(ξ, 0) = 0 (3.20f)
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1. Finite Difference Formulation and Convergence Study for Temperature and Moisture

Fields

The partial differential equations (3.17) and (3.18) and the corresponding boundary con-

ditions are replaced by their corresponding finite difference equations. This reduces the

problem to a set of simultaneous algebraic equations which can solved with ease. Finite

difference equations are solved explicitly using forward difference for temporal component

and central difference for spatial component. Hence, equations (3.17), (3.18) are written in

finite difference form as follows:

fk+1
i − fki

∆θ
=

fki+1 − 2fki + fki−1

(∆ξ)2
+
λν

û

gki+1 − 2gki + gki−1

(∆ξ)2
(3.21)

gk+1
i − gki

∆θ
=

1

u

gki+1 − 2gki + gki−1

(∆ξ)2
+
fki+1 − 2fki + fki−1

(∆ξ)2
(3.22)

In order for the solution obtained using the finite difference expressed in equations (3.30)

and (3.31d) to be acceptably accurate, grid sizes ∆ξ, and ∆θ, must be sufficiently small and

satisfy the following condition for convergence:

∆θ

û (∆ξ)2
≤ 0.2 (3.23)
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The following values are used as boundary conditions considered for the current study:

Co = 0 (3.24a)

Cf = 1 (3.24b)

θo = 300 K (3.24c)

θf = 350 K (3.24d)

To ensure that the condition (3.23) is good enough to predict the evolution of temperature

and moisture fields with desired accuracy, temperature and moisture plots are obtained by

varying the non-dimensional grid size ∆ξ and the non-dimensional time increment ∆θ. The

results of the same are presented below. For convergence analysis, the values for u, λν, λ

are chosen for the CFRP material T300/5208 from [26].

û = 10−1 (in the direction normal to fiber direction) (3.25a)

λν = 0.25 (3.25b)

λ = 0.122 (3.25c)
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Fig. 3.2. Figure shows moisture and temperature fields by varying the spatial grid size(∆ξ)

and time increment(∆θ). Arrow indicates the direction of evolution of both the

fields with time.

From the Figure 3.2, it can be concluded that temperature and moisture fields can be
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accurately predicted for a choice of ∆ξ ≤ 0.04 and ∆θ ≤ 2 x10−3û.

2. Parametric Study for Moisture and Temperature Fields

Since, the current study is focussed towards understanding the simultaneous effects of tem-

perature and moisture fields in polymer/polymer composites, it is essential to understand

the coupling between heat and moisture diffusion phenomena. The Lewis number(û−1) and

the coupling constant(λν) are the material parameters which quantify this coupling. It was

established in Chapter II that the coupling constant (λν <1). It was mentioned earlier that

the thermal and moisture diffusion phenomena in polymers/polymer composites occur at

different time scales, the latter phenomena being slower than the former. This is identified

by comparing the thermal and moisture diffusivities of materials. For instance, the Lewis

number in case of T300/5208 carbon/epoxy composite in the direction normal to the fibers

is 10. Whereas, referring to the table in page 82, the Lewis number for epoxy when calcu-

lated is of the order of 106. The coupling constant also differs from material to material.

So, in order to quantitatively study the effect of these constants on the coupling between

thermal and moisture diffusion is necessary to conduct a parametric study by allowing these

properties to vary and study the outcome. To this end, Table 3.1 summarizes the values

considered for the parametric study. For simplicity, the properties of T300/5208 polymer

composite are chosen for a standard case. The boundary conditions used for the parametric

study are summarized in Eq (3.24). Alternatively, mixed boundary conditions can be chosen

for the problem. The consequences of this are illustrated at the end of the parametric study.
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Table 3.1. Summary of the range of parameters considered for study

û λν λ ν

10−6

.25 .122 2.05

.25 .0122 20.5

.25 1.22 .205

.025 .122 .205

.025 .0122 2.05

.0025 .122 .0205

.0025 .0122 .205

û λν λ ν

10−3

.25 .122 2.05

.25 .0122 20.5

.25 1.22 .205

.025 .122 .205

.025 .0122 2.05

.0025 .122 .0205

.0025 .0122 .205

û λν λ ν

10−1

.25 .122 2.05

.25 .0122 20.5

.25 1.22 .205

.25 .00122 205.0

.025 .122 .205

.025 .0122 2.05

.025 .00122 20.5

.025 1.22 .0205

.0025 .122 .0205

.0025 .0122 .205

.0025 .00122 2.05
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(a) Plot showing evolution of temperature and moisture
fields(λ=0.122, ν=2.05)
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(b) Plot showing evolution of temperature and moisture fields
(λ=0.0122, ν=20.5)

Fig. 3.3. Evolution of moisture and temperature fields when û=10−6 and λν=0.25 for various

choices of λ, ν. The non-dimensional time parameter θ̂ varies from 0 to 3x10−7.
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Fig. 3.4. Evolution of moisture and temperature fields when û=10−6 and λν=0.25 and

(λ=1.22, ν=0.205). The non-dimensional time parameter θ̂ varies from 0 to 3x10−7.

It is observed from Figures (3.3) through (3.6) that for a very low value of u=10−6,

the effect of moisture field on the temperature field is negligible irrespective of the value of

coupling constant λν. But, the dependence of the moisture field on the temperature field is

strongly governed by the value of λ. This can be noted from Figures 3.3(b), 3.5(b) and 3.6(b).
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When the value of λ is decreased by one order of magnitude from its base value of

0.122, the dependence of moisture field on the temperature field is reduced greatly. It is

observed from Figure 3.4 that when the value of λ is increased by one order of magnitude

from its base value, the moisture concentration inside the material exceeds the boundary

values of moisture concentration. This is non-physical because, in such a case there should

be an outflow of moisture from the material (which is initially assumed to be dry) to the

surroundings, even in the absence of internal moisture source. The sharp changes in the

slope of the concentration curve is because of the following reasons: A jump discontinuity is

observed in the value of concentration at ξ=0 and t=0 due to the limitations of the numerical

scheme. Grid size considered for the parametric study is not fine enough to capture large

gradients in concentration near ξ = 1 at early times. This problem can be avoided by using

finer grids for the study. Since the parametric study is dedicated to quantitatively examine

the coupling effect, a coarser grid was implemented. However, while studying the effect of

hygrothermal deformation a finer grid was implemented.
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(a) Plot showing evolution of temperature and moisture
fields (λ=0.122, ν=0.205)
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(b) Plot showing evolution of temperature and moisture
fields (λ=0.0122, ν=2.05)

Fig. 3.5. Evolution of moisture and temperature fields when û=10−6 and λν=0.025 for various

choices of λ, ν. The non-dimensional time parameter θ̂ varies from 0 to 3x10−7.
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(a) Plot showing evolution of temperature and moisture fields
(λ=0.122, ν=0.0205)
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(b) Plot showing evolution of temperature and moisture
fields (λ=0.0122, ν=0.205)

Fig. 3.6. Evolution of moisture and temperature fields when û=10−6 and λν=0.0025 for vari-

ous choices of λ, ν. The non-dimensional time parameter θ̂ varies from 0 to 3x10−7.
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(a) Plot showing evolution of temperature and moisture
fields(λ=0.122, ν=2.05)
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(b) Plot showing evolution of temperature and moisture
fields (λ=0.0122, ν=20.5)

Fig. 3.7. Evolution of moisture and temperature fields when û=10−3 and λν=0.25 for various

choices of λ, ν. The non-dimensional time parameter θ̂ varies from 0 to 3x10−4.
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Fig. 3.8. Evolution of moisture and temperature fields when û=10−3 and λν=0.25 and

(λ=1.22, ν=0.205). The non-dimensional time parameter θ̂ varies from 0 to 3x10−4.

It is observed from Figures 3.7, 3.8 and 3.10 that when u=10−3, the evolution trend of

moisture and temperature fields is similar to the case where u=10−6. The effect of moisture

field on the temperature field is negligible irrespective of the value of coupling constant λν.

Whereas, the value of λ quantifies the dependence of the moisture field on the temperature

field. This is noted from Figures 3.7(b), 3.9(b) and 3.10(b). When the value of λ is decreased

by one order of magnitude from its base value of 0.122, the dependence of moisture field on

the temperature field is reduced, significantly. It can be noted from Figure 3.8 that when

the value of λ is increased by one order of magnitude from its base value, the moisture

concentration inside the material exceeds the boundary values. This is non-physical and the

explanation offered earlier holds here as well.
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(a) Plot showing evolution of temperature and moisture
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(b) Plot showing evolution of temperature and moisture
fields (λ=0.0122, ν=2.05)

Fig. 3.9. Evolution of moisture and temperature fields when û=10−3 and λν=0.025 for various

choices of λ, ν. The non-dimensional time parameter θ̂ varies from 0 to 3x10−4.



62

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ξ
C

on
ce

nt
ra

tio
n

0 0.2 0.4 0.6 0.8 1
300

320

340

360

ξ

T
em

pe
ra

tu
re

 (
K

el
vi

n)
t↑

t↑

(a) Plot showing evolution of temperature and moisture
fields (λ=0.122, ν=0.0205)
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(b) Plot showing evolution of temperature and moisture
fields (λ=0.0122, ν=0.205)

Fig. 3.10. Evolution of moisture and temperature fields when û=10−3 and λν=0.0025 for

various choices of λ, ν. The non-dimensional time parameter θ̂ varies from 0 to

3x10−4.
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(a) Plot showing evolution of temperature and moisture
fields (λ=0.122, ν=2.05)
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(b) Plot showing evolution of temperature and moisture
fields (λ=0.0122, ν=20.5)

Fig. 3.11. Evolution of moisture and temperature fields when û=10−1 and λν=0.25 for various

choices of λ, ν. The non-dimensional time parameter θ̂ varies from 0 to 3x10−1.

When u=0.1, the effect of coupling between temperature and moisture fields is promi-



64

nent. The interdependence of both the fields is strongly governed by the values of λ, ν.

Figure 3.11(a) represents the temperature and moisture fields for the base values of λ and

ν. From Figures 3.11(b) and 3.12 it is observed that when the values of λ, ν are changed

by an order of magnitude from their base values, temperature and moisture fields differ

significantly from the Figure 3.11(a). When these constants are changed by two orders of

magnitude, the result is non-physical as depicted in Figure 3.12(b). Figures 3.13 and 3.14

are obtained when the λν is reduced by one order of magnitude from its base value and

Figures 3.14 and 3.15 are obtained by reducing λν by two orders of magnitude from its base

value. From Figures 3.13, 3.14(b) and 3.15 it is observed that temperature dependency on

moisture is not affected by any decrease in the value ν from its base value. Whereas any

increase in the value of ν is reflected in the drastic change in temperature profile as shown in

Figures 3.11(b), 3.12(b)and 3.14(a). Moisture field is sensitive to both increase and decrease

of the value of λ from its base value as shown in Figures 3.11 to 3.15.
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(a) Plot showing evolution of temperature and moisture
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(b) Plot showing evolution of temperature and moisture
fields (λ=0.00122, ν=205.0)

Fig. 3.12. Evolution of moisture and temperature fields when û=10−1, λν=0.25 and

(a)λ=1.22, ν=0.205 (b) λ=0.00122, ν=205.0. The non-dimensional time parameter

θ̂ varies from 0 to 3x10−1.
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(a) Plot showing evolution of temperature and moisture
fields (λ=0.122, ν=0.205)
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(b) Plot showing evolution of temperature and moisture
fields (λ=0.0122, ν=2.05)

Fig. 3.13. Evolution of moisture and temperature fields when û=10−1 and λν=0.025 for vari-

ous choices of λ, ν. The non-dimensional time parameter θ̂ varies from 0 to 3x10−1.
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(a) Plot showing evolution of temperature and moisture
fields (λ=0.00122, ν=20.5)
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(b) Plot showing evolution of temperature and moisture
fields (λ=1.22, ν=0.0205)

Fig. 3.14. Evolution of moisture and temperature fields when û=10−1, λν=0.025 and

(a)λ=0.00122, ν=20.5, (b)λ=1.22, ν=0.0205. The non-dimensional time param-

eter θ̂ varies from 0 to 3x10−1.
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(a) Plot showing evolution of temperature and moisture
fields (λ=0.122, ν=0.0205)
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(b) Plot showing evolution of temperature and moisture
fields (λ=0.0122, ν=0.205)

Fig. 3.15. Evolution of moisture and temperature fields when û=10−1 and λν=0.0025 for

various choices of λ, ν. The non-dimensional time parameter θ̂ varies from 0 to

3x10−1.
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Fig. 3.16. Evolution of moisture and temperature fields when û=10−1, λν=0.0025 and

λ=0.00122, ν=2.05. The non-dimensional time parameter θ̂ varies from 0 to 3x10−1.

From the plots obtained for the choice of parameters summarized in Table 3.1, it can

be noted that the coupling between moisture and temperature fields increases with u and is

predominant when û=0.1. At û=0.1, it is observed from Figures 3.11 through 3.16 that the

interdependency of temperature and moisture fields is significant when the coupling constant

λν, the constants λ, ν are at their base values. Towards this end the following is the choice

of constants made for the problem under study:

û = 0.1 (3.26a)

λν = 0.25 (3.26b)

λ = 0.122 (3.26c)

A similar study can be performed by implementing mixed boundary conditions for tem-

perature and moisture concentration. For instance, boundary EF can be assumed to be

thermally insulated and with zero moisture gradient. Figure 3.17 depicts the evolution of



70

the temperature and the moisture concentration evolve in the medium. It is observed that

the average rise in temperature and the amount of absorbed moisture and in the medium is

more in this case than in the cases discussed earlier. Therefore the hygrothermal deformation

and hence the external actuating voltage in this case are expected to be more than in the

earlier cases. Therefore, boundary conditions play a critical role in determining the external

actuating voltage to minimize the deformation of the geometry.
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Fig. 3.17. Evolution of temperature and moisture fields when û=10−6, λν=0.25 and λ=0.122.

The non-dimensional time parameter θ̂ varies from 0 to 3x10−7.
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C. Finite Difference Formulation of Governing Equations and Convergence Study for the

Beam Assembly

1. Finite Difference Formulation of Field Equations for Viscoelastic Material

In this section, the finite difference formulation for the field equations derived in Chapter

II, will be presented. The finite difference equations for isotropic viscoelastic material field

equations are presented and those for the elastic material field equations can be obtained by

ignoring the history dependent terms.

At a fixed time tm, the first term of Eq. (2.108) can be expanded as follows:∫ tm

0−
Es(φ(tm)− φ(s))

∂u,xx
∂s

ds = Esu,xx (tm)−
∫ tm

0

u,xx (s)
∂Es(φ

m − φs)
∂s

ds (3.27)

which can be approximated as follows:

∫ t

0−
Es(φ(t)− φ(s))

∂u,xx
∂s

ds ≈ Esu,xx (tm)−
m−1∑
k=0

u,xx (tk)[Es(φ
m − φk+1)− Es(φm − φk)]

= Esu,
m
xx−

m−1∑
k=0

u,kxx[Es(φ
m − φk+1)− Es(φm − φk)] (3.28)

where,

u(tm) = um; φ(tm) = φm (3.29a)

φm =
m−1∑
k=0

tk+1 − tk
a(ck+1, θk+1)

(3.29b)

φk+1 =
k∑
p=0

tp+1 − tp
a(cp+1, θp+1)

(3.29c)

The spatial derivatives are approximated as follows: We use a mid point rule in obtaining

the finite difference equations for nodes other than those on the boundary which results in
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the following equations.

ξ,mx ≈
ξmi+1,j − ξmi−1,j

2∆x
(3.30a)

ξ,my ≈
ξmi,j+1 − ξmi,j−1

2∆y
(3.30b)

ξ,mxx ≈
ξmi+1,j − 2ξmi,j + ξmi−1,j

2∆x2
(3.30c)

ξ,mxy ≈
ξmi+1,j+1 + ξmi−1,j−1 − ξmi+1,j−1 − ξmi−1,j+1

4∆x∆y
(3.30d)

ξ,myy ≈
ξmi,j+1 − 2ξmi,j + ξmi,j−1

2∆y2
(3.30e)

where i, j denote the node numbers along the x and y directions, respectively. For the

boundary nodes a quadratic approximation is used which is described as follows:

if i=1, ξ,mx ≈
−3ξmi,j + 4ξmi+1,j − ξmi+2,j

2∆x
(3.31a)

if i=M, ξ,mx ≈
−3ξmi,j + 4ξmi+1,j − ξmi+2,j

2∆x
(3.31b)

if j=1, ξ,my ≈
−3ξmi,j + 4ξmi,j+1 − ξmi,j+2

2∆y
(3.31c)

if j=N, ξ,my ≈
3ξmi,j − 4ξmi,j−1 + ξmi,j−2

2∆y
(3.31d)

where ξ denotes the field variables such as displacement components u,v and voltage ϕ. M

and N denote the maximum number of nodes chosen along x and y directions.

At a fixed time tm Eq. (2.105) can be expanded as follows:

σmxx =
(1− ν̂)

(1 + ν̂)(1− 2ν̂)
(Esu,x (tm)−

∫ tm

0

u,x (s)
∂Es(φ

m − φs)
∂s

ds)

+
ν̂

(1 + ν̂)(1− 2ν̂)
(Esv,y (tm)−

∫ tm

0

v,y (s)
∂Es(φ

m − φs)
∂s

ds)

− 1

(1− 2ν̂)
{Es(αθ(tm) + βc(tm))−

∫ tm

0

(αθ(s) + βc(s))
∂Es(φ

m − φs)
∂s

ds}

≈ (1− ν̂)

(1 + ν̂)(1− 2ν̂)
(Es

umi+1,j − umi−1,j

2∆x
−
∫ tm

0

u,x (s)
∂Es(φ

m − φs)
∂s

ds)

(3.32)
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which referring to Eq. (3.28) and Eq. (3.30) can be approximated as follows:

σmxx ≈
(1− ν̂)

(1 + ν̂)(1− 2ν̂)
{Esu,mx −

m−1∑
k=0

u,kx[Es(φ
m − φk+1)− Es(φm − φk)]}

+
ν̂

(1 + ν̂)(1− 2ν̂)
{Esv,my −

m−1∑
k=0

v,ky[Es(φ
m − φk+1)− Es(φm − φk)]}

− 1

(1− 2ν̂)
{Es(αθm + βcm)−

m−1∑
k=0

(αθk + βck)[Es(φ
m − φk+1)− Es(φm − φk)]}

(3.33)

≈ (1− ν̂)

(1 + ν̂)(1− 2ν̂)
{Es

umi+1,j − umi−1,j

2∆x

−
m−1∑
k=0

uki+1,j − uki−1,j

2∆x
[Es(φ

m − φk+1)− Es(φm − φk)]}

+
ν̂

(1 + ν̂)(1− 2ν̂)
{Es

vmi,j+1 − vmi,j−1

2∆y

−
m−1∑
k=0

vki,j+1 − vki,j−1

2∆y
[Es(φ

m − φk+1)− Es(φm − φk)]}

− 1

(1− 2ν̂)
{Es(αθm + βcm)

−
m−1∑
k=0

(αθk + βck)[Es(φ
m − φk+1)− Es(φm − φk)]} (3.34)

In the same way, the Equation (2.106), (2.107) can be approximated by their finite

difference formulations. The governing equation Equation (2.108) can be expanded as
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follows:

(1− ν̂)

(1 + ν̂)(1− 2ν̂)
(Esu,

m
xx−

m−1∑
k=0

u,kxx[Es(φ
m − φk+1)− Es(φm − φk)])

+
1

2(1 + ν)(1− 2ν)
(Esv,

m
xy−

m−1∑
k=0

v,kxy[Es(φ
m − φk+1)− Es(φm − φk)])

+
1

(1 + ν̂)
(Esu,

m
yy−

m−1∑
k=0

u,kyy[Es(φ
m − φk+1)− Es(φm − φk)])

− 1

(1− 2ν̂)
{Es(αθ,mx +βc,mx )−

m−1∑
k=0

(αθ,kx +βc,kx )[Es(φ
m − φk+1)− Es(φm − φk)]} = 0

(3.35)

which referring to Eq. (3.30) can be approximated as follows:

(1− ν̂)

(1 + ν̂)(1− 2ν̂)
{Es

umi+1,j − 2umi,j + umi−1,j

2∆x2

−
m−1∑
k=0

uki+1,j − 2uki,j + uki−1,j

2∆x2
[Es(φ

m − φk+1)− Es(φm − φk)]}

+
1

2(1 + ν̂)(1− 2ν̂)
{Es

vmi+1,j+1 + vmi−1,j−1 − vmi+1,j−1 − vmi−1,j+1

4∆x∆y

−
m−1∑
k=0

vki+1,j+1 + vki−1,j−1 − vki+1,j−1 − vki−1,j+1

4∆x∆y
[Es(φ

m − φk+1)− Es(φm − φk)]}

+
1

(1 + ν̂)
{Es

umi,j+1 − 2umi,j + umi,j−1

2∆y2

−
m−1∑
k=0

uki,j+1 − 2uki,j + uki,j−1

2∆y2
[Es(φ

m − φk+1)− Es(φm − φk)]}

− 1

(1− 2ν̂)
{Es(α

θmi+1,j − θmi−1,j

2∆x
+ β

cmi+1,j − cmi−1,j

2∆x
)

−
m−1∑
k=0

(α
θki+1,j − θki−1,j

2∆x
+ β

cki+1,j − cki−1,j

2∆x
)[Es(φ

m − φk+1)− Es(φm − φk)]} = 0 (3.36)

The Eq. (2.109) can be approximated in similar manner. Since, in the current problem

temperature and moisture fields vary only along the y-direction their derivatives along x-

direction can be dropped from Eq. (3.36). The boundary conditions specified in Eq. (3.5d)
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lead to the following set of equations. Along the edge DF, σxx = 0 transforms as follows:

(1− ν̂)

(1 + ν̂)(1− 2ν̂)
(Esu,

m
x −

m−1∑
k=0

u,kx[Es(φ
m − φk+1)− Es(φm − φk)])

+
ν̂

(1 + ν̂)(1− 2ν̂)
(Esv,

m
y −

m−1∑
k=0

v,ky[Es(φ
m − φk+1)− Es(φm − φk)])

− 1

(1− 2ν̂)
{Es(αθm + βcm)−

m−1∑
k=0

(αθk + βck)[Es(φ
m − φk+1)− Es(φm − φk)]} = 0 (3.37)

⇒ (1− ν̂)

(1 + ν̂)(1− 2ν̂)
{Es

3umi,j − 4umi−1,j + umi−2,j

2∆x

−
m−1∑
k=0

3uki,j − 4uki−1,j + uki−2,j

2∆x
[Es(φ

m − φk+1)− Es(φm − φk)]}

+
ν̂

(1 + ν̂)(1− 2ν̂)
{Es

vmi,j+1 − vmi,j−1

2∆y

−
m−1∑
k=0

vki,j+1 − vki,j−1

2∆y
[Es(φ

m − φk+1)− Es(φm − φk)]}

− 1

(1− 2ν̂)
{Es(αθm + βcm)−

m−1∑
k=0

(αθk + βck)[Es(φ
m − φk+1)− Es(φm − φk)]} = 0

(3.38)

Along the edge EF, σyy = 0 transforms as follows:

(1− ν̂)

(1 + ν̂)(1− 2ν̂)
(Esv,

m
y −

m−1∑
k=0

v,ky[Es(φ
m − φk+1)− Es(φm − φk)])

+
ν̂

(1 + ν̂)(1− 2ν̂)
(Esu

m
x −

m−1∑
k=0

u,kx[Es(φ
m − φk+1)− Es(φm − φk)])

− 1

(1− 2ν̂)
{Es(αθm + βcm)−

m−1∑
k=0

(αθk + βck)[Es(φ
m − φk+1)− Es(φm − φk)]} = 0 (3.39)
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⇒ (1− ν̂)

(1 + ν̂)(1− 2ν̂)
{Es
−3vmi,j + 4vmi,j+1 − vmi,j+2

2∆y

−
m−1∑
k=0

−3vki,j + 4vki,j+1 − vki,j+2

2∆y
[Es(φ

m − φk+1)− Es(φm − φk)]}

+
ν̂

(1 + ν̂)(1− 2ν̂)
{Es

umi+1,j − umi−1,j

2∆x

−
m−1∑
k=0

uki+1,j − uki−1,j

2∆x
[Es(φ

m − φk+1)− Es(φm − φk)]}

− 1

(1− 2ν̂)
{Es(αθm + βcm)−

m−1∑
k=0

(αθk + βck)[Es(φ
m − φk+1)− Es(φm − φk)]} = 0

(3.40)

Along the edge DF, σxy = 0 transforms as follows:

1

2(1 + ν̂)
{Es(u,my +v,mx )−

m−1∑
k=0

(u,ky +v,kx )[Es(φ
m − φk+1)− Es(φm − φk)]} = 0

⇒ 1

2(1 + ν̂)
{Es(

umi,j+1 − umi,j−1

2∆y
+

3vmi,j − 4vmi−1,j + vmi−2,j

2∆x
)

−
m−1∑
k=0

(
uki,j+1 − uki,j−1

2∆y
+

3vki,j − 4vki−1,j + vki−2,j

2∆x
)[Es(φ

m − φk+1)− Es(φm − φk)]} = 0

(3.41)

Along the edge EF, σxy = 0 transforms as follows:

1

2(1 + ν̂)
{Es(u,my +v,mx )−

m−1∑
k=0

(u,ky +v,kx )[Es(φ
m − φk+1)− Es(φm − φk)]} = 0

⇒ 1

2(1 + ν̂)
{Es(

−3umi,j + 4umi,j+1 − umi,j+2

2∆y
+
vmi+1,j − vmi−1,j

2∆x
)

−
m−1∑
k=0

(
−3uki,j + 4uki,j+1 − uki,j+2

2∆y
+
vki+1,j − vki−1,j

2∆x
)[Es(φ

m − φk+1)− Es(φm − φk)]} = 0

(3.42)
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2. Finite Difference Formulation of Field Equations for Piezoelectric Material

The field equations ( (2.113), (2.114)) for the PZT layer were summarized in previous

section. Since, the PZT layer is a transversely isotropic material poled along y-axis, the

number of independent coefficients on the elastic modulus tensor is 5 and can be noted from

page 93. In the context of plane strain deformation, the stress components σxx, σxy and σyy

in PZT layer are as follows:

σxx = c11u,x +c12v,y +e21ϕ,y−α̂1∆θ (3.43a)

σxy = c66(u,y +v,x ) + e16ϕ,x (3.43b)

σyy = c21u,x +c22v,y +e22ϕ,y−α̂2∆θ (3.43c)

The electric displacement component equations are as follows:

Dx = e16(u,y +v,x )− ε11ϕ,x (3.44a)

Dy = e21u,x +e22v,y−ε22ϕ,y (3.44b)

The equilibrium condition (Eq. (2.116)) results in the following equations:

σxx,x + σxy,y = 0

⇒ c11u,xx +c66u,yy +(c12 + c66)v,xy +(e16 + e21)ϕ,xy = 0 (3.45a)

σxy,x + σyy,y = 0

⇒ c66v,xx +c22v,yy +(c21 + c66)u,xy +e16ϕ,x x+ e22ϕ,y y − α̂1∆θ,y = 0 (3.45b)

Dxx +Dyy = 0

⇒ e16v,xx +e22v,yy +(e21 + e16)u,xy−ε11ϕ,xx−ε22ϕ,yy = 0 (3.45c)
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The finite difference equations of the field equations Eq. (3.45c) are as follows:

c11
ui+1,j − 2ui,j + ui−1,j

2∆x2
+ c66

ui,j+1 − 2ui,j + ui,j−1

2∆y2

+ (c12 + c66)
vi+1,j+1 + vi−1,j−1 − vi+1,j−1 − vi−1,j+1

4∆x∆y

+ (e16 + e21)
ϕi+1,j+1 + ϕi−1,j−1 − ϕi+1,j−1 − ϕi−1,j+1

4∆x∆y
= 0 (3.46)

c66
vi+1,j − 2vi,j + vi−1,j

2∆x2
+ c22

vi,j+1 − 2vi,j + vi,j−1

2∆y2

+ (c21 + c66)
ui+1,j+1 + ui−1,j−1 − ui+1,j−1 − ui−1,j+1

4∆x∆y

+ e16
ϕi+1,j − 2ϕi,j + ϕi−1,j

2∆x2
+ e22

ϕi,j+1 − 2ϕi,j + ϕi,j−1

2∆y2
− α̂1

θi,j+1 − θi,j−1

2∆y
= 0 (3.47)

e16
vi+1,j − 2vi,j + vi−1,j

2∆x2
+ e22

vi,j+1 − 2vi,j + vi,j−1

2∆y2

+ (e21 + e16)
ui+1,j+1 + ui−1,j−1 − ui+1,j−1 − ui−1,j+1

4∆x∆y

− ε11
ϕi+1,j − 2ϕi,j + ϕi−1,j

2∆x2
− ε22

ϕi,j+1 − 2ϕi,j + ϕi,j−1

2∆y2
= 0 (3.48)

The boundary conditions for the PZT material in finite difference formulation are as

follows:

Along the egde BD σxx = 0

⇒ c11
ui+1,j − ui−1,j

2∆x
+ c12

3vi,j − 4vi,j−1 + vi,j−2

2∆y

+ e21
3ϕi,j − 4ϕi,j−1 + ϕi,j−2

2∆y
− α̂1∆θ = 0

Along the edge AB σyy = 0

⇒ c21
3ui,j − 4ui−1,j + ui−2,j

2∆x
+ c22

vi,j+1 − vi,j−1

2∆y
+ e22

ϕi,j+1 − ϕi,j−1

2∆y
− α̂2∆θ = 0 (3.49)
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Along the edge AB σxy = 0

⇒ c66(
3ui,j − 4ui,j−1 + ui,j−2

2∆y
+
vi+1,j − vi−1,j

2∆x
) + e16

ϕi+1,j − ϕi−1,j

2∆x
= 0

Along the edge BD σxy = 0

⇒ c66(
ui,j+1 − ui,j−1

2∆y
+

3vi,j − 4vi−1,j + vi−2,j

2∆x
) + e16

3ϕi,j − 4ϕi−1,j + ϕi−2,j

2∆x
= 0 (3.50)

Along the boundary CD, we require the displacement and the traction to be continuous.

The traction continuity results in the following equations.

σeyy = σpyy

⇒ (1− ν̂)

(1 + ν̂)(1− 2ν̂)
{Es

umi+1,j − umi−1,j

2∆x
−

m−1∑
k=0

uki+1,j − uki−1,j

2∆x
[Es(φ

m − φk+1)− Es(φm − φk)]}

+
ν̂

(1 + ν̂)(1− 2ν̂)
{Es

3vmi,j − 4vmi,j−1 + vmi,j−2

2∆y

−
m−1∑
k=0

3vki,j − 4vki,j−1 + vki,j−2

2∆y
[Es(φ

m − φk+1)− Es(φm − φk)]}

− 1

(1− 2ν̂)
{Es(αθm + βcm)−

m−1∑
k=0

(αθk + βck)[Es(φ
m − φk+1)− Es(φm − φk)]}

= c11
ui+1,j − ui−1,j

2∆x
+ c12

−3vi,j + 4vi,j+1 − vi,j+2

2∆y

+ e21
−3ϕi,j + 4ϕi,j+1 − ϕi,j+2

2∆y
− α̂1∆θ (3.51)

σexy = σpxy

⇒ 1

2(1 + ν̂)
{Es(

3umi,j − 4umi,j−1 + umi,j−2

2∆y
+
vmi+1,j − vmi−1,j

2∆x
)

−
m−1∑
k=0

(
3uki,j − 4uki,j−1 + uki,j−2

2∆y
+
vki+1,j − vki−1,j

2∆x
)[Es(φ

m − φk+1)− Es(φm − φk)]}

= c66(
−3ui,j + 4ui,j+1 − ui,j+2

2∆y
+
vi+1,j − vi−1,j

2∆x
) + e16

ϕi+1,j − ϕi−1,j

2∆x
(3.52)

σeyy, σ
e
xy denote transverse and shear stresses in the elastic/viscoelastic portion of the beam.
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σpyy, σ
p
xy denote transverse and shear stresses in the piezoelectric layer of the beam.

Using the equations (3.36), (3.40), (3.41), (3.42), (3.46), (3.47) to (3.52) we form a set

of linear equations with (uki,j, v
k
i,j, ϕ) as independent variables where 1 ≤ i ≤ M , i ≤ j ≤ N

and 0 ≤ k ≤ m. By solving these equations we obtain the displacement field. The axial,

transverse and shear stress fields can then be evaluated from the following equations. In the

PZT region, the stress fields can be calculated as follows:

σxx ≈ c11
ui+1,j − ui−1,j

2∆x
+ c12

vi,j+1 − vi,j−1

2∆y
+ e21

ϕi,j+1 − ϕi,j−1

2∆y
− α̂1∆θ

σyy ≈ c21
ui+1,j − ui−1,j

2∆x
+ c22

vi,j+1 − vi,j−1

2∆y
+ e22

ϕi,j+1 − ϕi,j−1

2∆y
− α̂2∆θ

σxy ≈ c66(
ui,j+1 − ui,j−1

2∆y
+
vi+1,j − vi−1,j

2∆x
) + e16

ϕi+1,j − ϕi−1,j

2∆x
(3.53)

In the elastic/viscoelastic region, the stress fields can be calculated as follows:

σmxx ≈
(1− ν̂)

(1 + ν̂)(1− 2ν̂)
{Es

umi+1,j − umi−1,j

2∆x

−
m−1∑
k=0

uki+1,j − uki−1,j

2∆x
[Es(φ

m − φk+1)− Es(φm − φk)]}

+
ν

(1 + ν̂)(1− 2ν̂)
{Es

vmi,j+1 − vmi,j−1

2∆y

−
m−1∑
k=0

vki,j+1 − vki,j−1

2∆y
[Es(φ

m − φk+1)− Es(φm − φk)]}

− 1

(1− 2ν̂)
{Es(αθm + βcm)−

m−1∑
k=0

(αθk + βck)[Es(φ
m − φk+1)− Es(φm − φk)]} = 0

(3.54)

σmyy ≈
1

2(1 + ν̂)
{Es(

umi,j+1 − umi,j−1

2∆y
+
vmi+1,j − vmi−1,j

2∆x
)

−
m−1∑
k=0

(
uki,j+1 − uki,j−1

2∆y
+
vki+1,j − vki−1,j

2∆x
)[Es(φ

m − φk+1)− Es(φm − φk)]} (3.55)
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σmxy ≈
1

2(1 + ν̂)
{Es(

umi,j+1 − umi,j−1

2∆y
+
vmi+1,j − vmi−1,j

2∆x
)

−
m−1∑
k=0

(
uki,j+1 − uki,j−1

2∆y
+
vki+1,j − vki−1,j

2∆x
)[Es(φ

m − φk+1)− Es(φm − φk)]} (3.56)

3. Convergence Study

An unreinforced epoxy-PZT 5H beam assembly is chosen as a test case for convergence

study. The material modulus, CTE and CME of epoxy resin are summarized in Table 3.2.

The material modulus, piezoelectric and dielectric properties of PZT 5H are summarized

below. In the previous section following the parametric study, it was mentioned that the

coupled heat and moisture diffusion equations shall be solved by choosing the values of

u=0.1, λν = 0.25, λ = 0.122. The boundary conditions to which the beam assembly is

subjected to are summarized in Eq. (3.24). The grid sizes considered for convergence study

are summarized in Table 3.3. With this choice of material properties and grid sizes, the finite

difference equations derived in the previous section are solved simultaneously. Figure 3.18

depicts the evolution of temperature and moisture fields in the beam assembly for the above

mentioned choice of the constants u, λν, λ. Figures 3.19- 3.21 depict the vertical displacement

of the beam, potential difference developed across PZT layer and the axial stress at a cross

section taken at half length for the chosen grid size values. It can be noted from these

figures that the vertical displacement per unit length, potential difference and the axial

stress converge as the grid element size decreases. The tip vertical displacement, potential

difference at half length for all the grid sizes are summarized in Table 3.4. It can be noted

that tip vertical displacement and the potential difference values differ by less than 5% for

the grid sizes mentioned in 2nd and 3rd rows of Table 3.4. On further decreasing the grid

size, the accuracy of the results can further be improved but due the corresponding increase

in the computational time and the cost involved with it, the grid size specified in the 3rd row

shall be considered for the current study.
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Table 3.2. Summary of the properties of epoxy [1]

Elastic Modulus(GPa) 3.5

Poission’s ratioν 0.25

CTE (mm/mm/oC)α 6x10−5

CME(mm/mm/% H20)β 2x10−3

Thermal Conductivity(W/m/k) 0.1

density(g/cm3) 2.7

specific heat(J/Kg/ok) 1300

C =



126 84.1 79.5 0 0 0

84.1 117 84.1 0 0 0

79.5 84.1 126 0 0 0

0 0 0 23 0 0

0 0 0 0 22.35 0

0 0 0 0 0 23


GPa

e =


0 0 0 0 0 17

−6.5 23.3 −6.5 0 0 0

0 0 0 17 0 0

Col/m2

ε =


15.05 0 0

0 13.02 0

0 0 15.05

 x10−9Col/Vm

αp =

[
0.4658 −0.9004 0.4658

]
x10−6 mm/mm/k
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Table 3.3. Summary of grid sizes(mm) chosen for convergence study

∆X ∆y1 ∆y2

0.417 0.208 0.417

0.3125 0.125 0.3125

0.278 0.104 0.278
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Fig. 3.18. Plot shows the evolution of moisture concentration and temperature fields in the

beam assembly when û=0.1, λν = 0.25, λ = 0.122. t↑ indicates evolution with

time. The dimensionless time parameter θ̂ varies from 0 to 7x10−2.
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(a) Vertical displacement of the beam when θ̂ = 0.0058

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Length (m)

V
er

tic
al

 d
is

pl
ac

em
en

t /
 L

en
gt

h

− − − − − − ∆x=∆y
2
=.417 ∆y

1
=.208

−−−−−−−−−−− ∆x=∆y
2
=.313 ∆y

1
=.125

− ~ − ~ − ∆x=∆y
2
=.278 ∆y

1
=.104

(all units in mm)

(b) Vertical displacement of the beam when θ̂ = 0.0116

Fig. 3.19. Plot shows the vertical displacement per unit length for the grid sizes of

(a)∆X = 0.417, ∆y1 = 0.208, ∆y2 = 0.417 (0−−−−) (b)∆X=0.3125, ∆y1=0.125,

∆y2=0.3125 (——) and (c)∆X=0.278, ∆y1=0.104, ∆y2=0.278 (- - ). The plots

are obtained at non-dimensional time θ̂ values of 0.0058 and 0.0116.
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(a) Potential difference across PZT layer when θ̂ = 0.0058
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(b) Potential difference across PZT layer when θ̂ = 0.0116

Fig. 3.20. Plot shows the potential difference across PZT 5H layer for the grid sizes of

(a)∆X = 0.417, ∆y1 = 0.208, ∆y2 = 0.417 (- - - -)(b)∆X = 0.3125, ∆y1 = 0.125,

∆y2 = 0.3125 (——) and (c)∆X = 0.278, ∆y1 = 0.104, ∆y2 = 0.278 (- - ). The

plots are obtained at non-dimensional time θ̂ values of 0.0058 and 0.0116.
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(a) Axial stress at θ̂ = 0.0058
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(b) Axial stress at θ̂ = 0.0116

Fig. 3.21. Plot shows the axial stress at half length for the grid sizes of (a)∆X = 0.417,

∆y1 = 0.208, ∆y2 = 0.417 (- - - -)(b)∆X = 0.3125, ∆y1 = 0.125, ∆y2 = 0.3125

(——) and (c)∆X = 0.278, ∆y1 = 0.104, ∆y2 = 0.278 (- - ). The plots are

obtained at non-dimensional time θ̂ values of 0.0058 and 0.0116.
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Table 3.4. Summary of tip displacement per unit length and potential difference across PZT

layer at θ=0.0058 for the grid sizes summarized in Table 3.3

∆X ∆y1 ∆y2 tip vertical displacement/L Potential difference(GV)

0.417 0.208 0.417 0.575 5.75x10−6

0.3125 0.125 0.3125 0.515 5.1x10−6

0.278 0.104 0.278 0.495 4.910−6

Table 3.5. Summary of the properties of composite beam [2]

E11=E33(GPa) 17.2

E22 (Gpa) 6.9

ν13 0.14

ν12 =ν32 0.4

ν21=ν23 0.1558

G13 (GPa) 1.70

G12=G32 2.76

CTE (mm/mm/oC)α11=α33 5.2x10−6

α22 21.6x10−6

Thermal Conductivity(W/m/k) 0.49

density(g/cm3) 1.717

specific heat(J/Kg/ok) 900

Before numerically solving the cases described in Chapter I, the results predicted by

the numerical method are compared with those presented in the work by Song et al. [2]. To

this end, Figure 3.22(a) depicting the geometry used by Song et al. is slightly modified for

simplicity as depicted in Figure 3.22(b). The properties of the elastic layer are summarized
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in Table 3.5. The properties of PZT from page 93 are used for study.

PZT�5A PZT�5H

303k� �
15mm

25.5mm

3mm

318k�

2.79mm

318k� �

Rigid�clamp 849�mm

70*0.32�mm2

46*0.254�mm2

(a) Composite beam with 3 PZT 5H actuators and one PZT 5A sensor

PZT�5H

303k� �

25.5mm

318k�

2.79mm

318k� �

Rigid�clamp 849�mm

245*0.32�mm2

(b) Composite beam with PZT 5H surface bonded actuator

Fig. 3.22. Plot (a) illustrates the geometry used by Song et al. Plot (b) depicts the modified

geometry used in the current study.
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Table 3.6. Table summarizes the grid sizes considered for convergence study.

∆x ∆ y1 ∆y2

0.3317 0.35 0.16

0.849 0.35 0.16

Both the geometries in Figure 3.22 are subjected to same boundary conditions. The

top surface containing PZT actuators is maintained at 303 k and the bottom surface is

maintained at 318 k. The temperature in the composite beam is assumed to in a steady

state. Figure 3.23 depicts vertical displacement in the unactuated beam for various gird

sizes. To solve the problem numerically the grid sizes in the second row of Table 3.6 are

used. Figure 3.24 depicts the plot of vertical displacement of the beam in actuated and

unactuated states. It also compares the unactuated vertical displacement of the beam with

those reported by Song et al. in [2]. It can be seen that there is a good agreement between

both the results. The voltage required to actuate the beam is 45V as compared to 150V

required for the geometry considered by Song et al. in [2]. The difference in the magnitudes

in the voltages can be attributed to the fact that in the modified geometry, the overall length

of actuator is more than that in the original geometry. Also, in the geometry assumed by

Song et al. part of the actuation is performed by PZT 5A actuator which is weaker than

PZT 5H for actuation purposes. This justifies why lesser voltage is required in the former

case. The tip displacement is 11.46 mm in the case with modified geometry as compared

to 11 mm in [2]. Thus there is a good agreement between both the values. It is observed

that the displacement is suppressed more in the region where PZT actuators are employed

as observed in Figure 3.24.
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Fig. 3.23. Plot depicts the convergence of the vertical displacement of the beam for various

grid sizes.
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Fig. 3.24. Plot depicts the vertical displacement of the beam in actuated and unactuated

states. Curves highlighted by (’o’) depict the vertical displacement reported by

Song et al. [2].
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D. Numerical Solutions to the Cases Considered for Study

In this section, the finite difference equations presented in the earlier subsection are solved

numerically with the appropriate boundary conditions for the various materials considered

for the study. The cases considered for study are summarized as follows:

• Linearly elastic materials:

1. Aluminium-PZT 5H beam assembly subjected to transient thermal field.2

2. Isotropic un-reinforced epoxy-PZT beam assembly subjected to transient thermal

and moisture fields.

3. Anisotropic CFRP-PZT beam assembly subjected to transient thermal and mois-

ture fields.

• Linearly viscoelastic material-PZT beam assembly subjected to transient thermal and

moisture fields.

1. Aluminium-PZT Beam Assembly Subjected to Transient Thermal Load

The first case considered for study is an aluminium beam of the following dimensions; Length

(L)=0.5m, thickness (h1)=0.0125m. PZT 5H layer of same length but with thickness(h2)=.0025m

is perfectly bonded to the Al beam. The PZT 5H layer is assumed to be poled along direction-

2 as shown in Figure 3.1. The material properties of Al are summarized below in Table 3.7.

The properties of PZT 5H summarized following Table 3.7 are taken from [28]. The CTE of

PZT 5H is denoted by αp. The CME for Al is chosen to be zero because of the negligible

moisture absorbability of Al. The boundary conditions of the beam assembly are specified

in Eq. (3.24). Figure 3.25 shows the evolution of temperature in the Al layer with time.

2The moisture dependent deformation of Al is not considered for the moisture diffusion
in Aluminium is negligible compared to the diffusion of heat.
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Fig. 3.25. Plot shows the evolution of temperature in the Al layer with time. The non-di-

mensionalised time parameter θ̂ varies from 0 to 3x10−7. t↑ indicates evolution of

displacement with time.

Table 3.7. Summary of the properties of Al [3]

Elastic Modulus(GPa) 70

Poission’s ratioν 0.3462

CTE (mm/mm/oC)α 2.3x10−5

CME(mm/mm/% H20)β 0

Thermal Conductivity(W/m/k) 200

density(g/cm3) 2.7

specific heat(J/Kg/ok) 913
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C =



126 84.1 79.5 0 0 0

84.1 117 84.1 0 0 0

79.5 84.1 126 0 0 0

0 0 23 0 0

0 0 0 0 22.35 0

0 0 0 0 0 23


GPa

e =


0 0 0 0 0 17

−6.5 23.3 −6.5 0 0 0

0 0 0 17 0 0

Col/m2

ε =


15.05 0 0

0 13.02 0

0 0 15.05

 x10−9Col/Vm

αp =

[
0.4658 −0.9004 0.4658

]
x10−6 mm/mm/k [10]

The system of equations governing the deformation of the beam assembly are converted

to the appropriate finite difference equations as presented in Chapter II. The following are

the mesh sizes used for solving the system numerically. Along the length span 1800 elements

with a grid size of 0.278mm are chosen. Along the height 120 elements each of size 0.104mm

are chosen for the Al-layer. Along the height of PZT 5H layer, 9 elements each of size

0.278mm are chosen for study. The vertical displacement of the composite beam, under

the influence of thermal load is depicted in Figure 3.26(a). It can be noted that the tip

displacement increases of the beam with time. This can be explained as follows. The Al

layer has a greater CTE compared to PZT 5H layer. Hence, when the beam assembly is

subjected to a uniform temperature increase, Al layer is strained more than the PZT 5H



94

layer. This results in the total beam assembly bending with a curvature towards the PZT

5H layer side. But in the current case, the temperature is non-uniform in the Al layer. From

Figure 3.1, it is noted that the temperature is lower at the lower section of Al layer and

increases along the thickness direction. Thus thermal strains increase as we move along the

thickness direction. This causes the beam to bend towards the surface maintained at lower

temperature, i.e with a curvature towards the Al layer side. The net displacement is the

resultant of these two counter-acting phenomena. As temperature evolves in the Al layer, the

curvature due to bending caused due to the temperature gradient in the Al layer decreases

to reach a steady state value. As a result, effect of the bending caused due to the difference

in CTE between the two layers increases with time. As a result, the curvature of the beam

towards the PZT 5H layer side increases with time which can be noted in Figure 3.26(a).

Figure 3.26(b) compares the vertical displacement with and with out the external actuation

being applied across PZT 5H layer. It can be noted that the displacement in the latter case

has been subdued to a great extent.
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(a) Non-dimensionalized vertical displacement under no ex-
ternal actuation
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(b) Non-dimensionalized vertical displacement under exter-
nal voltage

Fig. 3.26. Plots show the evolution of vertical displacement of the Al-PZT beam assembly

due to temperature chages when (a)no external voltage is applied across PZT 5H

layer (b) external voltage is applied across PZT 5H layer. t↑ indicates evolution of

displacement with time.
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The Figure 3.27(a) depicts the evolution of axial stress with time at half-length of

the beam assembly. It can be noted that at the Al-PZT 5H boundary, the axial stress is

discontinuous, as expected. Due to the bending of the beam towards the PZT 5H layer, it

can be noted that the axial stresses become more compressive in the Al layer as we move from

the bottom surface to the common interface between the two layers. The stresses becoming

increasingly tensile with time at the bottom most layer of the beam due to increased bending

of the beam assembly with time. The Figure 3.27(b) depicts the axial stress at the half length

with of the beam assembly under the effect of actuating voltage. It can be noted that the

axial stress is significantly reduced in the presence of actuating voltage.
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(a) Axial stress at mid section under no ex-
ternal voltage
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(b) Axial stress at mid section under exter-
nal voltage

Fig. 3.27. Plots show the evolution of axial stress σxx in the Al-PZT beam assembly due to

temperature changes when (a)no external voltage is applied across PZT 5H layer

(b) external voltage is applied across PZT 5H layer. Arrow indicates evolution of

displacement with time.

Figures 3.28(a) and (3.28(b) depict the evolution of shear stress with time, at half-length

of the beam assembly in the presence of (a)only thermal load and (b)both thermal load and

external actuating voltage, respectively. As expected, the shear stress is continuous at the

Al-PZT 5H boundary. It can be noted that the material discontinuity at the Al-PZT 5H
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boundary, is reflected in the form of a kink in the shear plot at the common boundary. The

shear stress is considerably reduced due to the application of external actuating mechanism

as shown in Figure 3.28(b).
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(a) Shear stress at mid section due to tem-
perature changes
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Fig. 3.28. Plots show the evolution of shear stress σxy in the Al-PZT beam assembly due

to temperature changes when (a)no external voltage is applied across PZT 5H

layer (b) external voltage is applied across PZT 5H layer. t↑ indicates evolution of

displacement with time.

Figures 3.29(a) and 3.29(b) depict the evolution of the electric field and voltage induced

across the PZT 5H layer respectively, when the beam assembly is under transient thermal

load. It can be noted from the figure that both the electric field and the potential difference

vary significantly along the length. Figure 3.30(a) represents the required actuating voltage

to minimize the bending of the beam assembly subjected to the given loading conditions. It

can be noted that the voltage required for deformation control increases linearly with time.

This trend can be explained in terms of the increasing tip displacement with time as shown

in Figure 3.26(a). More the tip displacement in unactuated beam, more the external voltage

necessary to minimize it. Figure 3.30(b) depicts the electric field developed across the PZT

5H layer when an external actuating voltage is applied across it. It can be noted that the
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electric field so induced increases with time due to the increase in the required external

voltage to minimize the bending of the beam. In practice, electric fields of the order of 1

MV/m in a piezoelectric material lead the system to the verge of non-linearity, in which

the case the the problem needs to be addressed in terms of a non-linear theory. Crawley et

al. [7] experimentally proved that when G 1195 PZT material is subjected to electric fields

of the order of 1MV/m, the induced strain and the applied electric field cannot be related

linearly3. However, the current study is focussed to analyze the problem in the context of

a linearized theory, for simplicity. Therefore, no attempt will be made to incorporate any

such non-linear effects.
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(a) Electric field induced across PZT 5H
layer
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PZT 5H layer

Fig. 3.29. Plots show the evolution of (a)the induced electric field E and (b)the induced

potential difference across the Al-PZT beam assembly due to temperature changes.

t↑ indicates evolution of displacement with time.

3A prolonged exposure to electric fields of magnitude > 1MV/m might result in the
excessive heating up of the piezoelectric material resulting in an eventual loss of piezoelectric
properties/failure of the material.
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(a) Actuating voltage required across PZT 5H with time
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(b) Electric field induced across PZT 5H with time

Fig. 3.30. Plots show the (a)external actuating voltage required with time,to be applied across

PZT 5H layer to minimize the bending of the Al-PZT beam subjected to changes

in temperature. (b) depicts the evolution of the induced electric field(E) across

the PZT 5H layer under the effect of an external actuating shown in. t↑ indicates

evolution of displacement with time.
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2. Epoxy-PZT 5H Beam Subjected to Transient Thermal and Moisture Loading

The second case considered for study is an epoxy beam of the following dimensions; length

(L)=0.5m, thickness of (h1)=0.0125m. PZT 5H layer of same length but with thickness of

(h2)=0.0025m is perfectly bonded to the epoxy beam. The PZT 5H layer is assumed to be

poled along direction-2 as shown in Figure 3.1. The material properties of the epoxy are

summarized below in Table 3.2. The specific heat of epoxy is taken as 1300J/Kg/ok [29]. The

properties of PZT 5H summarized are in page 93. The CME for epoxy is chosen to be of the

order of 2.0x10−3 based on the values of 3501-6 epoxy resin [30]. The boundary conditions of

the beam assembly are specified in Eq. (3.24). The moisture diffusivity of epoxy is the order

of 10−12 m2/s to 10−14 m2/s, depending on the temperature [18]. The thermal diffusivity

when computed from the values in Table 3.2 is of the order of 10−8 m2/s. So, a choice of

Lewis number of the order of 104 to 106 would be ideal for study. But, with such high Lewis

number, the moisture concentration reaches a steady state much later than temperature

does4. So, we choose a Lewis number of 10 with the following justification. The current study

is focussed to simultaneously incorporate the effects of both temperature and moisture. So,

the combined effect of temperature and moisture fields is more prominent if the time scales

of both the diffusive phenomena do not differ greatly. For instance, in the case where Lewis

number >10 is chosen (say, 103), the gradients of moisture are very high towards the end

with higher moisture concentration as shown in Figure 3.31. A computationally expensive

high resolution mesh is required in order to capture these gradients. Also, by choosing a

Lewis number of 10, (which is the case with T300/5208 carbon/epoxy composite) it is still

maintained that thermal diffusivity is faster than moisture diffusivity.

4A discussion on this was presented in the parametric study done in the second section
of this chapter.
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With this justification we choose û (inverse of Lewis number)=0.1 to accelerate the

diffusion process and save computing time. Our intention is to mainly examine the effect

of simultaneous heat and moisture diffusion on the overall deflection of epoxy beam. The

evolution of temperature and moisture fields in this case is depicted in Figure 3.32. The

finite difference equations of the corresponding governing equations of the system are solved

numerically with the following grid sizes. Along the length span 1800 elements with a

grid size of 0.278mm are chosen. Along the height 120 elements each of size 0.104mm are

chosen for the epoxy layer. Along the height of PZT 5H layer, 9 elements each of size

0.278mm are chosen for study. The vertical displacement of the composite beam is depicted

in Figure 3.33(a). It can be noted that the tip displacement of the beam increases with time.

An explanation similar to the one offered in the case of Al-PZT 5H beam assembly can be

offered in this case. Figure 3.33(b) compares the vertical displacement with and with out the

external actuation being applied across PZT 5H layer. It can be noted that the displacement

in the latter case has been subdued to a great extent.
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(a) Evolution of Moisture with time
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(b) Evolution of Temperature with time

Fig. 3.31. Plots show the evolution of temperature and moisture fields when û=10−3. (a)

Depicts the evolution of moisture field (b) Depicts the evolution of temperature

field. It can be noted that near the high concentration boundary, the gradients

are large. The non-dimensionalised time parameter θ̂ varies from 0 to 7x10−2.t↑
indicates evolution with time.
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(a) Evolution of Moisture with time
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(b) Evolution of Temperature with time

Fig. 3.32. Plots show the evolution of temperature and moisture fields when û=10−1. (a)

depicts the evolution of moisture field (b) depicts the evolution of temperature

field. The non-dimensionalised time parameter θ̂ varies from 0 to 7x10−2. t↑
indicates evolution with time.
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(a) Non-dimensionalized vertical displacement under no ex-
ternal actuation
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(b) Non-dimensionalized vertical displacement under the in-
fluence of an external voltage

Fig. 3.33. Plots show the evolution of vertical displacement of the beam assembly due to

transient temperature and moisture changes when (a)no external voltage is ap-

plied across PZT 5H layer (b) external voltage is applied across PZT 5H layer. t↑
indicates evolution of displacement with time.
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The Figure 3.34(a) depicts the evolution of axial stress with time, at half-length of the

beam assembly. The trend observed in this case is similar to what has been observed in

Al-PZT 5H beam. It can be noted that at the epoxy-PZT 5H boundary, the axial stress is

discontinuous, as expected. Due to the bending of the beam towards the PZT 5H layer, it can

be noted that the axial stresses become more compressive in the epoxy layer as we move from

the bottom surface to the common interface between the two layers. The stresses becoming

increasingly tensile with time at the bottom most layer of the beam due to increased bending

of the beam assembly with time. The Figure 3.34(b) depicts the axial stress at the half length

with of the beam assembly under the effect of actuating voltage. It can be noted that the

axial stress is significantly reduced in the presence of actuating voltage.
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(a) Axial stress at mid section under no ex-
ternal voltage
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(b) Axial stress at mid section under exter-
nal voltage

Fig. 3.34. Plots show the evolution of axial stress σxx in the epoxy-PZT beam assembly

due to transient temperature and moisture changes when (a)no external voltage

is applied across PZT 5H layer (b) external voltage is applied across PZT 5H layer.

t↑ indicates evolution of with time.

Figures 3.35(a) and 3.35(b) depict the evolution of shear stress with time, at half-length

of the beam assembly due to transient temperature and moisture changes and with and with

out external actuating voltage. As expected, the shear stress is continuous at the epoxy-
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PZT 5H boundary. It can be noted that the material discontinuity at the epoxy-PZT 5H

boundary, is reflected in the form of a kink in the shear plot at the common boundary. The

shear stress is considerably reduced due to the application of external actuating mechanism

as shown in Figure 3.35(b).
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(a) Shear stress at mid section when no ex-
ternal actuation applied
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(b) Shear stress at mid section due to ac-
tuating voltage

Fig. 3.35. Plots show the evolution of shear stress σxy in the epoxy-PZT beam assembly

due to transient temperature and moisture changes when (a)no external voltage is

applied across PZT 5H layer (b) external voltage is applied across PZT 5H layer.

t↑ indicates evolution of displacement with time.

Figures 3.36(a) and 3.36(b) depict the evolution of the electric field and voltage induced

across the PZT 5H layer respectively, when the beam assembly due to transient temperature

and moisture changes. It can be noted from the figure that both the electric field and

the potential difference vary significantly along the length. Figures 3.37(a) and 3.37(b)

represent the required actuating voltage and the corresponding electric field to minimize the

bending in the beam assembly subjected to the given loading conditions. It can be noted

from Figures 3.37(b)and 3.36(a) that the electric fields developed in the PZT 5H layer are

well over the range in which linear piezoelectric theory can be applied. The corresponding

voltages developed are also extremely high. Such high electric fields when applied in direction



107

opposite to the poling direction lead to the change in the polarization direction of the PZT

5H layer. That would indeed be the case with the epoxy-PZT 5H beam.

More the tip displacement in unactuated beam, more the external voltage necessary to

minimize it. This can be observed in the Figure 3.37(a). Figure 3.37(b) depicts the electric

field developed across the PZT 5H layer when an external actuating voltage is applied across

it. It can be noted that the electric field so induced increases with time due to the increase

in the required external voltage to minimize the bending in the beam. In practice, electric

fields of the order of 1 MV/m in a piezoelectric material lead the system to the verge of

non-linearity, in which the case the the problem needs to be addressed in terms of a non-

linear theory. Crawley et al. [7] experimentally proved that when G 1195 PZT material

is subjected to electric fields of the order of 1MV/m, the induced strain and the applied

electric field cannot be related linearly5. However, the current study is focussed to analyze

the problem in the context of a linearized theory, for simplicity. Therefore, no attempt will

be made to incorporate any such non-linear effects.

5A prolonged exposure to electric fields of magnitude > 1MV/m might result in the
excessive heating up of the piezoelectric material resulting in an eventual loss of piezoelectric
properties/failure of the material.
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(a) Electric field induced across PZT 5H layer
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(b) Potential difference induced across PZT 5H layer

Fig. 3.36. Plots show the evolution of (a)the induced electric field E and (b)the induced poten-

tial difference across the epoxy-PZT beam assembly due to thermal and moisture

changes. t↑ indicates evolution of displacement with time.
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(b) Electric field induced across PZT 5H with time

Fig. 3.37. Plots show the (a)external actuating voltage required with time,to be applied across

PZT 5H layer to minimize the bending of the beam under transient temperature

and moisture changes. (b) depicts the evolution of the induced electric field(E)

across the PZT 5H layer under the effect of an external actuating shown in. t↑
indicates evolution of displacement with time.
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3. Carbon Fiber Reinforced Polymer (CFRP)-PZT 5H Composite Beam Subjected to

Transient Thermal and Moisture Fields

The third case considered for study is a CFRP beam of the following dimensions; Length

(L)=0.5m, thickness (h1)=0.0125m. PZT 5H layer of same length but with thickness(h2)=0.0025m

is perfectly bonded to the CFRP beam. The PZT 5H layer is assumed to be poled along

direction-2 as shown in Figure 3.1. The material properties of CFRP are summarized be-

low in Table 3.8. The elastic modulus of CFRP is given below in the matrix form in page

111. The properties of PZT 5H are summarized in the matrix form in page 93. Due to

the inherent anisotropy of CFRP, the elastic modulus, CTE and CME are different along

the fiber reinforcement direction and normal to it . CFRP exhibits higher elastic modulus

and thermal conductivity along the fiber direction but much lower CTE and CME compared

to transverse direction due to the presence of carbon fibers. The CME values along and

perpendicular to the carbon fiber direction for CFRP are chosen to be of the order of 10−6

and 10−3 based on the values reported by Poenninger [17]. The boundary conditions of the

beam assembly are specified in Eq. (3.24). The moisture diffusivity of CFRP composites in

the transverse direction is the order of 10−13 m2/s to 10−14 m2/s, depending on the temper-

ature [18]. The thermal diffusivity along the transverse direction when computed from the

values in Table 3.8 is of the order of 10−8 m2/s. So, a choice of Lewis number of the order

of 104 to 106 would be ideal for study. But, with such high Lewis number, the moisture

concentration reaches a steady state much later than temperature does as mentioned earlier

in the case of epoxy. So, we choose a Lewis number of 10 (û=0.1) with the same justification

given in the case of epoxy-PZT 5H composite beam. The evolution of temperature and

moisture fields in this case is depicted in Figure 3.38.
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C =



141.6867 3.3735 3.3735 0 0 0

3.3735 10.7470 2.7470 0 0 0

3.3735 2.7470 10.7470 0 0 0

0 0 0 4.0000 0 0

0 0 0 0 4.1000 0

0 0 0 0 0 4.1000


GPa

Table 3.8. Summary of the properties of CFRP [1]

CTE along fiber direction(mm/mm/k)α1 0.5x10−6

CTE along transverse direction(mm/mm/k)α2=α3 27x10−6

CME along fiber direction(mm/mm/%H2O)β1 1x10−6

CME along transverse direction(mm/mm/%H2O)β2 =β3 1x10−3

Axial thermal Conductivity(W/m/k) 10

Transverse thermal Conductivity(W/m/k) 0.5

density(g/cm3) 1.6

specific heat(J/Kg/ok) [31] 1200

Transverse thermal diffusivity(m2/s) [31] 0.42x10−6
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(a) Evolution of moisture with time
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(b) Evolution of temperature with time

Fig. 3.38. Plots show the evolution of temperature and moisture fields when u=10−1. (a) De-

picts the evolution of moisture field (b) Depicts the evolution of temperature field.

The non-dimensionalised time parameter θ̂ varies from 0 to 7x10−2.t↑ indicates

evolution with time.
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The finite difference equations of the corresponding governing equations of the system

are solved numerically with the following grid sizes. Along the length span 1800 elements

with a grid size of 0.278mm are chosen. Along the height 120 elements each of size 0.104mm

are chosen for the CFRP layer. Along the height of PZT 5H layer, 9 elements each of size

0.278mm are chosen for study. The vertical displacement of the composite beam is depicted

in Figure 3.39(a). It can be noted that the tip vertical displacement of the beam is much

lower in this cases compared to the earlier two cases owing to the smaller axial CTE of CFRP

composite material compared to Al and un-reinforced epoxy materials. Also, it is noted that

the tip vertical displacement decreases with time contrary to what is observed in the earlier

two cases. This could be attributed to the anisotropic thermal response of CFRP material

which can be noted from Table 3.8 where the CTE in fiber direction and direction normal

to it are two orders of magnitude apart. Figure 3.39(b) compares the vertical displacement

with and with out the external actuation being applied across PZT 5H layer. It can be noted

that the displacement in the latter case has been subdued to a great extent.
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(a) Non-dimensionalized vertical displacement under no ex-
ternal actuation
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(b) Non-dimensionalized vertical displacement under exter-
nal voltage

Fig. 3.39. Plots show the evolution of vertical displacement of the CFRP-PZT beam assembly

under thermal load when (a)no external voltage is applied across PZT 5H layer

(b) external voltage is applied across PZT 5H layer. t↑ indicates evolution of

displacement with time.
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The Figure 3.40(a) depicts the evolution of axial stress with time, at half-length of

the beam assembly. The trend observed in this case is similar to what has been observed

in the earlier two cases. It can be noted that at the CFRP-PZT 5H boundary, the axial

stress is discontinuous, as expected. Due to the bending of the beam towards the PZT 5H

layer, it can be noted that the axial stresses become more compressive in the CFRP layer

as we move from the bottom surface to the common interface between the two layers. The

stresses becoming increasingly tensile with time at the bottom most layer of the beam due

to increased bending of the beam assembly with time. The Figure 3.40(b) depicts the axial

stress at the half length with of the beam assembly under the effect of actuating voltage.

It can be noted that the axial stress is significantly reduced in the presence of actuating

voltage.
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(a) Axial stress at half length under no ex-
ternal voltage
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(b) Axial stress at half length under exter-
nal voltage

Fig. 3.40. Plots show the evolution of axial stress σxx at half length in the CFRP-PZT beam

assembly under thermal load when (a)no external voltage is applied across PZT 5H

layer (b) external voltage is applied across PZT 5H layer. t↑ indicates evolution of

with time.

Figures 3.41(a) and 3.41(b) depict the evolution of shear stress with time, at half-length

of the beam assembly due to thermal and moisture changes and (a) under no external ac-
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tuation (b) under external actuating voltage. As expected, the shear stress is continuous

at the CFRP-PZT 5H boundary. It can be noted that the material discontinuity at the

CFRP-PZT 5H boundary, is reflected in the form of a kink in the shear plot at the com-

mon boundary. The shear stress is considerably reduced due to the application of external

actuating mechanism as shown in Figure 3.41(b).
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(a) Shear stress at mid section when no ex-
ternal actuating voltage applied
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(b) Shear stress at mid section due to ac-
tuating voltage

Fig. 3.41. Plots show the evolution of shear stress σxy in the CFRP-PZT beam assembly

subjected to transient temperature and moisture changes (a)no external voltage is

applied across PZT 5H layer (b) external voltage is applied across PZT 5H layer.

t↑ indicates evolution of displacement with time.

Figures 3.42(a) and 3.42(b) depict the evolution of the electric field and voltage induced

across the PZT 5H layer respectively, when the beam assembly is subjected to transient

thermal and moisture changes. It can be noted from the figure that both the electric field

and the potential difference vary significantly along the length. Figures 3.43(a) and 3.43(b)

represent the required actuating voltage and the corresponding electric field to minimize

the bending of the beam assembly subjected to the given loading conditions. The external

actuating voltage is noted have an opposite polarity which increasing magnitude than that

necessary in the earlier discussed cases.
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(a) Electric field induced across PZT 5H
layer
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(b) Potential difference induced across
PZT 5H layer

Fig. 3.42. Plots show the evolution of (a)the induced electric field E and (b)the induced poten-

tial difference across the CFRP-PZT beam assembly due to transient temperature

and moisture changes. t↑ indicates evolution of displacement with time.
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(b) Electric field induced across PZT 5H
with time

Fig. 3.43. Plots show the (a)external actuating voltage required with time, to be applied

across PZT 5H layer to minimize the bending in the beam caused due to transient

temperature and moisture changes (b) depicts the evolution of the corresponding

electric field(E) across the PZT 5H layer due to the external actuating voltage. t↑
indicates evolution of with time.
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4. Viscoelastic Epoxy-PZT 5H Composite Beam Subjected to Transient Thermal and

Moisture Fields

In this subsection, the response characteristics of a linearly viscoelastic-PZT beam subjected

to thermal and moisture changes is studied. To this end, the finite difference equations

(3.36), (3.40), (3.41), (3.42), (3.46), (3.47) to (3.52) are solved at all nodal points considered

in the domain to obtain the displacement and voltage fields in the beam. First, we begin by

validating the numerical method implemented for this case. This is done by comparing the

results obtained numerically and analytically for the case of a linearly viscoelastic cantilever

beam subjected to uniform transverse load at two different temperatures. This is then

followed by implementing the numerical method to address the problem under study.

The case of a viscoelastic epoxy-PZT 5H composite beam under heat and moisture

diffusion effects is an extension of the earlier case of epoxy-PZT 5H beam under transient

thermal and moisture changes. Here the epoxy material is assumed to exhibit linear vis-

coelastic behavior. Also, it is assumed to be a TSM for simplicity. The elastic, thermal and

moisture effect related properties of epoxy are summarized in Table 3.2. The elastic, thermal

and piezoelectric properties of PZT 5H are summarized in the matrix form in page 93. The

stress relaxation modulus of viscoelastic epoxy like material takes the following form:

Es(t, θ, C) = Es(

∫ t

o

ds

a(θ, C, θo, Co)
, θo, Co) (3.57)

where ’a’ represents the shift factor, initial temperature and initial concentration are denoted

by θo and Co respectively. We assume θ0 = 300k and Co = 0 for current study. The shift

factor is assumed to be the following function of temperature θ, and concentration C.

a(θ, C) = 1− k1
(θ − θo)
θo

− k2(C − Co)

where k1 = 0.9, k2 = 0.2 (3.58)
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To validate the numerical scheme implemented, two cases are considered where analytical

solutions are known a priori . The two cases are as follows:

1. A linearly viscoelastic beam subjected to a uniform transverse load (q) at temperature

θ = θo = 300k and C = Co = 0.

2. A linearly viscoelastic beam subjected to a uniform transverse load (q) at temperature

θ = 350k and C = Co = 0.

The following values of load and material properties are assumed.

Es(t, θ, C, θo, Co) = 1.75(1 + e
∫ t
o

ds
toa(θ,C,θo,Co) ) (3.59)

q

Es(0, θo, Co)
= 1.0x10−5 (3.60)

where to denotes the relaxation time. For cases 1 and 2, the shift factor defined in Eq. (3.58)

takes the following values :

Case 1 a = 1

Case 2 a = 0.85 (3.61)

The tip vertical displacement and axial stress at half length of a linear viscoelastic cantilever

beam subjected to a uniform transverse load is given as follows [5].

v(t) =
qL3Ec(t, θ, C, θo, Co)

8I
(3.62)

σxx(t) =
q(L− x)2y

2I
(3.63)

where Ec denotes the creep compliance, I represents second moment of the cross section about

z-axis, L represents the length and q represents the force per unit length. The ratio of tip

vertical displacement of the beam of time to the initial tip displacement and the axial stress

at mid section of the beam, at various instances of time obtained numerically and analytically

are summarized in Table 3.9. It can be noted that there is a good agreement between the both
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the results. However, the initial displacement v(0) predicted numerically and analytically

are 0.45m and 0.48m respectively. Figures 3.44 and 3.45 depict the evolution of vertical

displacement and axial stress at midsection in the beam at aforementioned temperatures. It

can be noted that the axial stress predicted numerically is in good agreement with the result

predicted analytically.

Table 3.9. Comparison of numerically and analytically obtained results for tip vertical dis-

placement of a viscoelastic cantilever beam under uniform transverse load at two

different temperatures. θ = 300k, θ = 350k

time(t/to)

v(t)/v(0)

θ = 300k θ = 350k

Numerical result Analytical result Numerical result Analytical result

0 1.0 1.0 1.0 1.0

0.5 1.0244 1.0247 1.0286 1.0290

0.10 1.0482 1.0488 1.0563 1.0571

0.15 1.0714 1.0723 1.0833 1.0845

0.20 1.0941 1.0952 1.1095 1.1110

0.25 1.1161 1.1175 1.1349 1.1368

0.30 1.1377 1.1393 1.1596 1.1618

0.35 1.1587 1.1605 1.1836 1.1861

0.40 1.1792 1.1813 1.2069 1.2097

0.45 1.1993 1.2015 1.2296 1.2326

0.50 1.2188 1.2212 1.2526 1.2548
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(a) Tip vertical displacement per unit length of the beam
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(b) Axial stress in the beam at half length (*)indicates
analytical solution (o) indicates numerical solution

Fig. 3.44. The plot (a) shows the evolution of tip vertical displacement and the plot (b) com-

pares the axial stress at mid section obtained analytically represented by (*) and

numerically represented by (o)for the viscoelastic beam under uniform transverse

load at initial temperature θo=300k. t↑ indicates the direction of time evolution.

t varies from 0-50s with ∆t/to=5s.
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(a) Tip vertical displacement per unit length of the beam
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Fig. 3.45. The plot (a) shows the evolution of tip vertical displacement and the plot (b) com-

pares the axial stress at mid section obtained analytically represented by (*) and

numerically represented by (o)for the viscoelastic beam under uniform transverse

load at initial temperature θo=350k. t↑ indicates the direction of time evolution.

t varies from 0-50s with ∆t/to=5s.
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For the case under study the following properties are considered for the viscoelastic

material. The properties summarized in Table 3.10 are same as those of epoxy material.

The stress relaxation modulus of the material is assumed to be form specified in Eq. (3.59)

with shift factor assuming the form specified in Eq. (3.58).

Table 3.10. Summary of the properties of viscoelastic epoxy [1]

Poission’s ratio ν 0.25

CTE (mm/mm/oC)α 6x10−5

CME(mm/mm/% H20)β 2x10−3

Thermal Conductivity(W/m/k) 0.1

density(g/cm3) 1.2

specific heat(J/Kg/ok) 1300

Relaxation time to (s) 3000

The relaxation time specified in Table 3.10 is assumed to be of the same order as the

time taken for the temperature and moisture fields to reach a steady state, for simplicity.

To this end, to is chosen to be 3000s. The PZT 5H layer is assumed to be poled along

direction-2 as shown in Figure 3.1. The properties of PZT 5H are summarized in the matrix

form in page 93. So, we choose a Lewis number of 10 with the same justification given in the

case of epoxy-PZT 5H composite beam. Figures 3.46(a) and 3.46(b) depict the evolution of

temperature and moisture fields in the viscoelastic material. Figure 3.47 depicts the plot of

stress relaxation modulus with time at temperatures 300k and 350k. It can be noted that

at an increase in temperature speeds up the relaxation process. The dimensions considered

for study are as follows: Length (L)=0.5m, thickness (h1)=0.0125m. PZT 5H layer of same

length but with thickness(h2)=0.0025m is perfectly bonded to the viscoelastic beam. The

length span is divided into 1800 elements each of length 0.278mm and the thickness of
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viscoelastic material is divided into 100 elements of thickess 0.125mm. The thickness of

PZT later is divided into 9 elements of thickness 0.278mm. In what follows, the vertical

displacement, axial and shear stresses at half length of the beam, electric field and voltage

across PZT layer are numerically obtained for the actuated and unactuated beams until

temperature and moisture fields reach steady state i.e. 0 < t < 1800. For t > 1800, the any

changes in the field values can be purely attributed to the viscoelastic effects. Therefore this

is addresses separately.
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Fig. 3.46. The plot (a) shows the evolution of temperature and the plot (b) shows the evolu-

tion of concentration in the viscoelastic material. t↑ indicates the direction of time

evolution. t varies from 0-1800s with ∆t=70s.
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Fig. 3.47. Plot shows the stress relaxation modulus at 300k and 350k.

The vertical displacement of the composite beam as time varies is depicted in Fig-

ure 3.48(a). It can be noted that the tip vertical displacement increases with time. Under

the influence of an external actuating voltage the vertical displacement of the beam is sup-

presses largely as depicted in Figure 3.48(b). It can be noted that the tip vertical displace-

ment is more in this case compared to the case of elastic epoxy-PZT 5H composite beam as

shown in Figure 3.33. This could be attributed to the softening of the viscoelastic material

as temperature evolves as follows. As the temperature increases in the viscoelastic material,

the relaxation modulus of layers below the layer CD in Figure 3.1(b) becomes progressively

lesser with time thus offering lesser resistance to thermal expansion of the higher temper-

ature layers above it. Thus bending is more pronounced here compared to the case where

material doesn’t soften with time. It will be observed that due to relatively more bending in

this case compared to the case of elastic epoxy-PZT 5H layer, the external actuating voltage

required to minimize deformation in this case is slightly higher as well.
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Fig. 3.48. Plots show the evolution of vertical displacement of the viscoelastic epoxy-PZT

beam assembly due to transient thermal and moisture changes when (a)no external

voltage is applied across PZT 5H layer (b) external voltage is applied across PZT

5H layer. t↑ indicates evolution of displacement with time. t varies from 0-1800s

with ∆t=70s.



127

The axial stress at half length of the beam is depicted in Figure 3.49(a) due to temper-

ature and moisture changes where no external actuation is applied. Figure 3.49(b) depicts

the axial stress at half length when external voltage is applied across PZT 5H beam. It can

be noted that the axial stress is largely reduced in the latter case.
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ternal voltage
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nal voltage

Fig. 3.49. Plots show the evolution of axial stress σxx in the viscoelastic epoxy-PZT beam

assembly due to transient temperature and moisture changes when (a)no external

voltage is applied across PZT 5H layer (b) external voltage is applied across PZT

5H layer. t↑ indicates evolution of with time.

The shear stress at half length of the beam is depicted in Figure 3.50(a) due to tem-

perature and moisture changes. Figure 3.50(b) depicts the same when an external voltage is

applied across PZT layer. It can be noted that the shear stress is largely suppressed in the

composite beam.
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Fig. 3.50. Plots show the evolution of shear stress σxy in the viscoelastic epoxy-PZT beam

assembly due to transient temperature and moisture changes when (a)no external

voltage is applied across PZT 5H layer (b) external voltage is applied across PZT

5H layer. t↑ indicates evolution of displacement with time.

The electric field and voltage developed across the PZT layer due to the bending of the

beam and temperature changes are depicted in Figures 3.51(a)and 3.51(b). Both the electric

field and voltage in the PZT layer vary along the length with a maximum at the fixed end.

Also, the voltage developed across the PZT layer also are very high. When PZT material is

subjected to such high electric field acting opposite to its poling direction, the dipoles in the

PZT material reorient themselves along the direction of external electric field. Such effects

care not accounted for in the current study. The magnitude of electric field is well over the

range in which the linear piezoelectricity can be appealed to and there is a need to address

the problem in the context of a non-linear framework which will not be done in this thesis.
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Fig. 3.51. Plots show the evolution of (a)the induced electric field E and (b)the induced

potential difference across the viscoelastic epoxy-PZT composite beam due to tem-

perature and moisture changes. t↑ indicates evolution of displacement with time.

The voltage required to suppresses the deformation in the composite beam and the

corresponding electric field are depicted in Figures 3.52(a) and 3.52(b). It can be noted that

the voltage required to suppress the deformation increases with time due to the increase in

bending with time of the unactuated beam.
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(b) Electric field induced across PZT 5H with time

Fig. 3.52. Plots show the (a)external actuating voltage required with time, to be applied

across PZT 5H layer to minimize the bending of the beam under transient temper-

ature and moisture changes for elastic and viscoelastic response of epoxy material.

(b) depicts the evolution of the induced electric field(E) across the PZT 5H layer

under the effect of an external actuating shown in. t↑ indicates evolution of dis-

placement with time.
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CHAPTER IV

CONCLUSION AND FUTURE WORK

The implementation of perfectly bonded surface piezoelectric actuators to minimize the

temperature and moisture induced deformation in elastic and viscoelastic cantilever beams

was studied.The coupled hygrothermal and mechanical constitutive equations for the elastic

material have been derived from the basic conservation laws and the second law of thermo-

dynamics. The field equations for a linearized theory are obtained by assuming sufficiently

small deformation field. In the linearized theory, the effect of temperature and moisture

fields on the strain field was incorporated through the coefficients of thermal and moisture

expansion (CTE, CME). The constituive equations for the viscoelastic material were de-

rived appealing to the correspondence principle. The viscoelastic material was asuumed to

be thermorheologically simple. A parametric study was performed to study the degree of

coupling between the temperature and the moisture diffusive phenomena. This numerical

study provided useful insights about the dependence of temperature and moisture fields on

the ratio of moisture and thermal diffusivities and the coupling constant. A discussion on

the choice of piezoelectric material chosen for actuation was presented.

A numerical method based on the finite difference was implemented for the field equa-

tions. The numerical method was verified by solving the problem of bending in a cantilever

beam under a uniform distributed surface load. The results obtained numerically were in

good agreement with the results analytically obtained. A convergence study was performed

to obtain optimum values of grid sizes for use for the current problem. The response of com-

posite beams comprised of aluminium-PZT 5H, unreinforced epoxy-PZT 5H, CFRP-PZT 5H

and linearly viscoelastic epoxy-PZT 5H under transient temperature and moisture changes

were obtained numerically. Based on these results, the external actuation required across

PZT 5H layer to minimize deformation in the composite beams were obtained numerically.
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By controlling the deformation in the composite beam with this external voltage it is shown

that the tip displacement and the magnitude of axial stresses were reduced significantly.

Numerically obtained results were in good agreement with experimental results.

In case of Aluminium-PZT composite beam, the effect of moisture was ignored due

to the negligible diffusion of moisture through aluminium. The tip displacement of the

composite beam is seen to increase steadily to a reach a constant value when temperature

field reaches a steady state. A similar trend was observed in the case of epoxy-PZT 5H

composite beam. But the magnitude of electric field predicted in the PZT 5H layer suggests

that the system response cannot be adequately addressed by a linearized theory due to

the non-linear behavior of the PZT material at high magnitudes of electric fields. So, the

problem needs to be addressed in a proper non-linear framework. In case of the CFRP-PZT

5H layer, the tip displacement is observed to decrease to a steady state value. This could be

attributed due to the anisotropy of the CFRP material where the CTE, CME are minimum

along fiber direction and maximum along the transverse direction.

In viscoelastic material-PZT 5H composite beam the deformation in an unactuated state

was observed to be greater than the elastic-PZT 5H beam. But, relatively lesser actuating

voltage was required in the former case to minimize bending in the beam.

A. Future Work

The current study analyzed the use of piezoelectric actuators to control the deformation of

various composite beams under temperature and moisture effects. The PZT material was

assumed to be perfectly to the elastic/viscoelastic beam. In practice, piezoelectric materials

are used in the form of patches at specific locations on the beam. So, one could solve the

current problem by assuming that several piezoelectric surface bonded patches distributed

along the length are used for actuation. The elastic material properties, CTE and CME

were assumed to be constants in this study for simplicity . This might not be case as it
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has been reported in several studies that the material properties can be dependent on field

variables such as stress, strain, temperature and moisture fields. To this end, one could

assume field variable dependent material properties to address the current problem. In such

a case, the viscoelastic material can no longer be assumed as TSM. In this study, the stress

and strain fields are assumed to be dependent on temperature and moisture changes (through

CTE and CME) but vice-versa has not been considered. One could address a fully coupled

problem where temperature and moisture evolution in the body is dependent on stress and

strain fields and also vice-versa. The current study doesn’t account for any mechanical loads

acting on the composite beam. One could also solve the current problem incorporating the

effect of external mechanical loads on the system.
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