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ABSTRACT

Guaranteed Verification of Finite Element Solutions of Heat Conduction.
(May 2011)
Delin Wang, B.E., Qingdao University of Science & Technology, China;
M.S., Jilin University, China;
M.E., Texas A&M University

Chair of Advisory Committee: Dr. Theofanis Strouboulis

This dissertation addresses the accuracy of a-posteriori error estimators for finite
element solutions of problems with high orthotropy especially for cases where rather
coarse meshes are used, which are often encountered in engineering computations.
We present sample computations which indicate lack of robustness of all standard
residual estimators with respect to high orthotropy. The investigation shows that the
main culprit behind the lack of robustness of residual estimators is the coarseness
of the finite element meshes relative to the thickness of the boundary and interface
layers in the solution.

With the introduction of an elliptic reconstruction procedure, a new error es-
timator based on the solution of the elliptic reconstruction problem is invented to
estimate the exact error measured in space-time ¢-norm for both semi-discrete and
fully discrete finite element solutions to linear parabolic problem. For a fully discrete

solution, a temporal error estimator is also introduced to evaluate the discretization



v

error in the temporal field. In the meantime, the implicit Neumann subdomain resid-
ual estimator for elliptic equations, which involves the solution of the local residual
problem, is combined with the elliptic reconstruction procedure to carry out a pos-
teriori error estimation for the linear parabolic problem. Numerical examples are
presented to illustrate the superconvergence properties in the elliptic reconstruction
and the performance of the bounds based on the space-time %6-norm.

The results show that in the case of L? norm for smooth solution there is no
superconvergence in elliptic reconstruction for linear element, and for singular solution
the superconvergence does not exist for element of any order while in the case of energy
norm the superconvergence always exists in elliptic reconstruction. The research also
shows that the performance of the bounds based on space-time %¢-norm is robust, and
in the case of fully discrete finite element solution the bounds for the temporal error

are sharp.



To my family: my wife, Qian, and my daughter and son, Claire and Ethan



vi

ACKNOWLEDGMENTS

First I would like to express my deep appreciation to the chairman of my advisory
committee, Dr. Theofanis Strouboulis, for his invaluable assistance, encouragement
and guidance which gives me the strength and motivation to finish this dissertation.
His enthusiasm regarding research is the example that I will endeavor to follow.

I would like to thank Dr. J. Pasciak, Dr. W. Bangerth, and Dr. Y. Efendiev,
for serving on my advisory committee. Thanks also to Dr. Cizmas for his presence
at my defense to substitute for Dr. Y. Efendiev.

I would like also to express my sincere appreciation to Professor Ivo Babuska for
his advice and encouragement during the course of this work.

Many thanks are due to past colleagues. In particular, I would like to thank Dr.
Lin Zhang and Dr. Realino Hidajat for their help and support. Appreciation also
goes to Dr. Dibyendu Datta for his help in taking over the GFEM code.

I would like also to acknowledge Dr. Jessica Li and Dr. Goodson for their support
and help. I also thank Dr. Walter Haisler and my boss, Tony Paulin, for facilitating
all the paperwork to make the part-time Ph.D. possible. Thanks also to Ms. Karen
Knabe for her help in dealing with all the relevant documents and forms.

Truly unbounded thanks are due to my parents and brothers who have been a
tremendous moral support throughout these years.

Finally, my utmost gratitude is due my wife, who has always been present to

help me overcome all the difficulties along the way. Her love, patience, sacrifice and



vii

emotional support were essential for the completion of the dissertation. I also thank

my daughter, Claire, and my son, Ethan, who are the source of all joy.



CHAPTER

IT

I1I

IV

viil

TABLE OF CONTENTS

Page

INTRODUCTION . . . . . . . . .. 1
1.1 Motivation and background . . . . . . . ... ... 1
1.2 Research goals . . . . . ... ... .. ... ... .. ....
1.3 Outline of the dissertation . . . . .. ... ... ... ... 4
A POSTERIORI ERROR ESTIMATION OF A THERMAL
BATTERY PROBLEM WITH HIGH ORTHOTROPY . . . .. 5
2.1 Thermal battery problem and its finite element solution . . 5
2.2 Upper and lower bounds based on residual estimators . . . 12
ILLUSTRATION OF THE MAIN DIFFICULTY . .. .. ... 31
3.1 Model problem with boundary layer . . . . ... ... ... 31
3.2 Model problem with interface layer . . . . ... ... ... 41
3.3 A posteriori error estimation of the two model problems . . 50
GUARANTEED ERROR ESTIMATION FOR SEMI-DISCRETE
SOLUTIONS OF PARABOLIC PROBLEMS BASED ON
ELLIPTIC RECONSTRUCTION . . . .. ... .. ....... 59
4.1 Model problem, semi-discrete solutions, and postpro-

cessing based on elliptic reconstruction . . . . . . .. . .. 59
4.2 Upper bound in space-time norm for the exact error in

semi-discrete finite element solutions . . . . . . . . .. ... 61
4.3 Numerical examples . . . . . . .. ... 64
4.4 Bounds based on implicit residual estimators for semi-

discrete finite element solutions . . . . . . . .. . ... ... 90
4.5 Error estimation at any time instant . . . . . . ... . ... 103
GUARANTEED ERROR ESTIMATION FOR FULLY DIS-
CRETE SOLUTIONS OF PARABOLIC PROBLEMS BASED
ON ELLIPTIC RECONSTRUCTION . . . . ... ... .. ... 154

5.1 Fully discrete finite element solution of the transient
heat conduction problem, and postprocessing based on
elliptic reconstruction . . . . . .. .. ... ... ... ... 154



X

CHAPTER Page

5.2  Upper bound in space-time norm for the exact error in

fully discrete finite element solutions . . . . . . . ... .. 166

5.3 Bounds based on implicit residual estimators for fully
discrete finite element solutions . . . . . . . .. .. .. ... 191

5.4 Error estimation at any time instant for fully discrete
finite element solutions . . . . . . .. ... ... ... ... 214

VI CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

WORK . . . . . 252
6.1 Conclusions . . . ... .. ... ... ... 252
6.2 Futurework . .. ... .. ... 257
REFERENCES . . . . . . . . 258
APPENDIX A . . . . 265
APPENDIX B . . . . . . 273
APPENDIX C . . . . . . 276



TABLE

2.1

3.1

3.2

3.3

3.4

3.5

3.6

LIST OF TABLES

Comparision of the energy norm of the overkill solutions based
on two overkill meshes A%* and A% vs. the orthotropy k—z of

k
domain (23. Note that ||u g,y denotes the energy norm of the
A

[la
Z'uk
overkill solution from the mesh A% while lugr |y from the

Ao'uk/
h

/
mesh AYF'

Model problem with boundary layer. The relative value of the

energy norm of the error E¢ o ||652h | |6u/| |upx|]q X 100% versus

eforn=1,23,..,11. . .. ...

Model problem with boundary layer. The relative value of the H;
norm of the error Eff’ et |lesz ||H1/||uEX||H1 x 100%, versus €
h

forn=1,2,3,...,11. . . . . ...

Model problem with boundary layer. The relative value of the L?
norm of the error E7¢ = |lesz ||L2/||uEX||L2 x 100% versus € for
h

n=1,23,. 11 ... ...

Model problem with boundary layer. Comparison between the
element size at which the error in finite element solution is in
asymptotic range and the characteristic thickness of the boundary
layer with respect to different orthotropies i—z h. = 226 is the
element size in asymptotic range, n. is the mesh refinement level

and \/'Z—Z is the characteristic thickness of the boundary layer. . . .

Model problem with interface layer. The relative value of the
energy norm of the error E7¢ = |lesz ||6u/||uEX||6u x 100% versus
h

eformn=1,2,3,..,11. . . . ...

Model problem with interface layer. The relative value of the H*
norm of the error Ejff = |legy ||H1/||UEX||H1 x 100% versus € for
h

n=1,23,. 11 .. ...

Page

.37



TABLE

3.7

3.8

3.9

4.1

4.2

Model problem with interface layer. The relative value of the L?
norm of the error E7§ = |legr ||L2/||uEX||L2 x 100% versus for
h

n=1,23,. 11 ... ... ..

Model problem with boundary layer. Exact Neumann element
residual estimator %X‘;‘lm and exact Neumann subdomain residual
estimator €5 ry" based on uniform and adaptive overkill meshes.
The uniform mesh is from the three further uniform refinements
of the finite element solution mesh with polynomial order equal
to 8 while the adaptive mesh is obtained by refining adaptively
the finite element solution mesh along the direction of € five more

times with polynomial order equal to 3. For adaptive overkill

mesh the smallest mesh size along the € direction is Z—% ........

Model problem with interface layer. Exact Neuman element resid-
ual estimator %N‘;um and exact Neumann subdomain residual es-
timator %gﬁ;;n M based on uniform and adaptive overkill meshes.
The uniform mesh is from the three further uniform refinements
of the finite element solution mesh with polynomial order equal
to 8 while the adaptive mesh is obtained by refining adaptively
the finite element solution mesh along the direction of € five more

times with polynomial order equal to 3. For adaptive overkill

mesh the smallest mesh size along the € direction is Z—% ........

Heat transition problem in one dimension. The %-norm of the
semi-discrete solution ||ugr ||, and the relative value of ¢-norm
h

of the error ||ey| |%/| |ul|, for the semi-discrete solutions of degree

p = 1 2 and 3, computed using uniform meshes with mesh size
h =

2n Y
Heat transition problem in one dimension. The effectivity indices
k based on the exact solution @ and /‘f;sp+k = C/Sp+k/||€h||<(; based
on the finite element solution usp+k (k= 1 2,3, and Ay from the

nest subdivision of the original mesh Ay) of elliptic reconstruction
problem obtained with hp method, for the semi-discrete finite el-
ement solution Usy computed using elements of degree p =1,

2, and 3, and unlform meshes with mesh size h = 2n> n=123,

and 4 respectively. . . . ..o

n=1,2,3, and 4 respectively. . . . . ... ... ... ...

X1

Page



TABLE

4.3

4.4

4.5

4.6

4.7

Two dimensional synthetic problem. The %-norm of the semi-
discrete solution |[ugz ||, and the relative value of €-norm of the
h

error ||ep| |%/| |ul|4, for the semi-discrete solutions of degree p = 1,

2 and 3, computed using uniform meshes with mesh size h = 2n,

n=1,2,3, and 4 respectively. . . . . . ... ... L.

Two dimensional synthetic problem. The effectivity indices
based on the exact solution @ and ’{sp““ = Sp+k/||6h||<€ based

on the finite element solution @ gpx (k = 1 2,3, and Ay from the

Ay

nest subdivision of the original mesh Ay) of elliptic reconstruction
problem obtained with hp method, for the semi-discrete finite el-
ement solution Usy computed using elements of degree p =1,

2, and 3, and unlform meshes with mesh size h = z—n, n=1,23,

and 4 respectively. . . . ..o

L-shaped domain problem. The %-norm of the semi-discrete so-
lution [|ugz ||, and the relative value of ¢-norm of the error
h

||eh||%/||u||%, for the semi-discrete solutions of degree p = 1, 2

and 3, computed using uniform meshes with mesh size h = 2%,

n=1,2,3, and 4 respectively. . . . . . . ... ... L.

L-shaped domain problem. The effectivity indices x based on the
exact solution @ and Rgpth = @Sz+k/||€h||<@ based on the finite
h/ !

h
element solution ﬁsg““ (k=1,2,3, and Ay from the nest subdi-

vision of the original mesh Ay) of elliptic reconstruction problem
obtained with hp method, for the semi-discrete finite element so-
lution Usy computed using elements of degree p =1, 2, and 3,

and unlform meshes with mesh size h = n =1,2,3, and 4

2n>

respectively. . . . ..o

Transient diffusion problem in a thermal battery. The %¢-norm
of the semi-discrete solution ||u5p ||, and the relative value of

for the semi-discrete so-

%-norm of the error ||ep||, /Hu57 |

ovk

lutions of degree p = 1, 2 and 3 computed using Mesh I, and

Mesh II, for the isotropic and the orthotropic case. . . . . . . . ..

X1i

Page



TABLE

4.8

4.9

4.10

4.11

Transient diffusion problem in a thermal battery. The %¢-norm
of the semi-discrete solution ||u5p ||, and the relative value of

for the semi-discrete so-

%¢-norm of the error ||eh||%/Hu57 }%,

o'uk

lutions of degree p = 1, 2 and 3 computed using Mesh I, and
Mesh II, for the orthotropic case. In this case, to obtain the
overkill mesh, the adaptive refinement is adopted at the interface
layers located at the top and bottom of highly orthotropic domain
Q3 such that the smallest mesh size at the the interface layers is
about the same magnitude of the characteristic thickness of the

interface layers. . . . . . .. ..o

Transient diffusion problem in a thermal battery. The effectivity
indices xk based on the exact solution 4 and /‘f;sp+k based on the

finite element solution Sp+k of elliptic reconstructlon problem, for

the Mesh I, and Mesh II semi-discrete solution Usy computed
using elements of degree p = 1, 2, and 3, for the 1sotr0plc and

orthotropic case. . . . . . . . . . .. ...

Heat transition problem in one dimension. The values of the ef-
fectivity index k¥, kY, kL, and the ratio €, based on the sub-
domain residual estimators of the elliptic reconstruction problem,
for the semi-discrete finite element solutions of degree p = 1, 2,and
3 computed using Mesh I, Mesh 11, Mesh ITI, and Mesh IV corre-

sponding respectively to mesh size h = 2_n> n=1,2,3, and 4 with

Two dimensional synthetic problem. The values of the effectivity

index xY,

Kk Ky, and the ratio ), based on the subdomain
residual estimators of the elliptic reconstruction problem, for the
semi-discrete finite element solutions of degree p = 1, 2,and 3 com-
puted using Mesh I, Mesh I1, Mesh II1, and Mesh IV corresponding

respectively to mesh size h = 2n>

n=1,2,3 and 4 with L=1.. . . .

xiii

Page

87

89

95

97



TABLE

4.12

4.13

Al

C.1

L-shaped domain problem. The values of the effectivity index xY,

U L L - -
Kpiks Kpt s+ based on the subdomain residual

estimators of the elliptic reconstruction problem, for the semi-

r and the ratio e

discrete finite element solutions of degree p = 1, 2,and 3 computed
using Mesh I, Mesh II, Mesh III, and Mesh IV corresponding

respectively to mesh size h = 2, n=1,2,3, and 4 with L=1.. . . .

2m

Transient diffusion problem in a thermal battery. The values of

L

the effectivity index Y, kU, ,, k% , and the ratio €, based on

p+kr Vp+
the subdomain residual estimators of the elliptic reconstruction
problem, for the semi-discrete finite element solutions of degree

p = 1,2,and 3 computed using Mesh I, and Mesh II as shown in

Fig. 2.2, for the orthotropic and the isotropic case. . . . . . . . ..

Model problem with boundary layer. The comparisons of energy

norm uy and uX™ vs. the different orthotropies = and mesh
Yy

a b

refinements n with k, =€, hy = 5%, ho = 57, and n =1,2,3,4,5. . . .

Model problem with interface layer. The comparisons of energy

norm u} and )y vs. the different orthotropies £ on (2 and mesh
Y

refinements n with k, = ¢, hy = &, hy = &, and n = 1,2,3,4,5. . .

on on

X1v

Page

99

102

272

285



FIGURE

2.1

2.2

2.3

24

2.5

2.6

LIST OF FIGURES

Heat conduction in a thermal battery. The problem domain, its
subdomains and the boundary with its subdomains. [1] . . . . . . . .

Heat conduction in a thermal battery. The meshes A, with a)
Mesh I; b) Mesh II; ¢) Mesh IIT; d)The overkill mesh A%*; ¢)The
overkill mesh AgF' . [1] . . . .. ... ... ...

Heat conduction in a thermal battery. a) The energy norm of the
overkill solution ||ugs |, versus the orthotropy i—z, and b-d) the
Aoy

rel

Sk,
versus 'Z—z for Mesh I, Mesh II, and Mesh III, respectively. Note
that the relative error increases with the orthotropy, and it is

values of the relative error F for the finite element solution

relatively high for all the meshes and element degrees employed. [1] .

Patch residual problems: Example of partitions of a mesh into
patches of elements. a) The patches are identical with the ele-
ments; b) The patches consist of the vertex patches of elements
which are connected to the reentrant corners, and the elements
which remain after the re-entrant corner vertex patches have been
formed. [1] . .. .. .o

Examples of subdomains w)A(h = supp(gbf(h), for Mesh I. [1] . . . . ..

Heat conduction in a thermal battery. The variation of the ef-

ko

T of the exact estimators for Mesh I:
y

a)Neumann element residual %X‘;“m; b)Neumann patch residual

fectivity indices k vs.

%gium; c) Dirichlet subdomain residual €2 ,: d) Neumann subdo-

: : Neum,I . . Neum, I
main residual 1€, ; e)Neumann subdomain residual IT€ g0,

using elements of degree p=1,2, and 3. [1] . . ... ... ... ...

XV

Page

11



FIGURE

2.7 Heat conduction in a thermal battery. The variation of the ef-

ks
fectivity indices k vs. T of the exact estimators for Mesh II:
Y
a)Neumann element residual €X°"™; (b)Neumann patch residual
€5 ¢) Dirichlet subdomain residual €9%,;; d) Neumann sub-

domain residual I €g.,;"; (e)Neumann subdomain residual II

gy using elements of degree p=1,2,and 3. . . . . .. ... ..

2.8 Heat conduction in a thermal battery. The variation of the ef-

ks :

R of the exact estimators for Mesh III:
Y

a)Neumann element residual €X°*™; b)Neumann patch residual

%ggum; c) Dirichlet subdomain residual €2 ;: d) Neumann subdo-

. . Neum,I, . . Neum,IT
main residual [ €g,,,""; e¢)Neumann subdomain residual [T €., 7",

fectivity indices k vs.

using elements of degree p=1,2, and 3. [1] . . ... .. .. ... ..

2.9 Heat conduction in a thermal battery. The variation of the effec-

ks
tivity indices k vs. —, of the computed estimators for Mesh I:
a)Neumann element residual €X°",;; b)Neumann patch residual

€50 s ¢) Dirichlet subdomain residual €2y, ,,; d) Neumann

. . Neum,I . .
subdomain residual T €g.,5"" , ; e)Neumann subdomain residual IT

%gﬁg&npﬁk, using elements of degree p = 1,2, and 3 and k = 1,2,

and 3. . .

2.10 Heat conduction in a thermal battery. The variation of the effec-

ky

ky
a)Neumann element residual €X°",;; b)Neumann patch residual

€ho s ¢) Dirichlet subdomain residual €2y, ,,; d) Neumann

subdomain residual I €g,;;"" ;. ; ¢)Neumann subdomain residual IT

%gﬁg;npﬁk, using elements of degree p = 1,2, and 3 and k = 1,2,

and 3. [1] . . ...

tivity indices K vs. , of the computed estimators for Mesh II:

Xvi

Page



FIGURE

2.11

2.12

2.13

2.14

2.15

Heat conduction in a thermal battery. The variation of the effec-

ks

tivity indices k vs. T of the computed estimators for Mesh III:
Y

a)Neumann element residual €X°",;; b)Neumann patch residual

€50 s ¢) Dirichlet subdomain residual €2y, ,,; d) Neumann

. . Neum,I . .
subdomain residual T €g,,"" ;.; ¢)Neumann subdomain residual IT

%gﬁg&npﬁk, using elements of degree p = 1,2, and 3 and k = 1,2,

and 3. . ..,

Heat conduction in a thermal battery. The variation of effectivity

indices xk, ., (‘@) Mesh I; b) Mesh IT; ¢) Mesh I11. ) and k5,

Ky
Vs, ( d) Mesh I; e) Mesh II; f) Mesh III. ) of the Neumann

y
element residual based lower bound, for Mesh I, Mesh I1, and Mesh
III finite element solutions using elements of degree p = 1,2, and

dand k=1,2,and 3. . . . . ...

Heat conduction in a thermal battery. The variation of effectivity

indices xX ,,, () Mesh I; b) Mesh II; ¢) Mesh III. ) and k5,

VS. % ( d) Mesh I; e) Mesh II; f) Mesh III. ) of the Neumann

y
patch residual based lower bound, for Mesh I, Mesh II, and Mesh
III finite element solutions using elements of degree p = 1,2, and

dand k=1,2,and 3. . . . .. ..o

Heat conduction in a thermal battery. The variation of effectivity
indices kX, 41 (a) Mesh I; b) Mesh II; ¢) Mesh III. ) and /{i’:ﬁ%

VS. % ( d) Mesh I; e) Mesh II; f) Mesh III. ) of the Dirichlet

y
subdomain residual based lower bound, for Mesh I, Mesh II, and
Mesh III finite element solutions using elements of degree p = 1, 2,

and 3and k=1,2,and 3. . . . . ... ..o

Heat conduction in a thermal battery. The variation of effectivity
indices kX, .y (a) Mesh I; b) Mesh II; ¢) Mesh III. ) and /{i’:iirk

VS. % ( d) Mesh I; e) Mesh II; f) Mesh III. ) of the Neumann

subdoinain residual I based lower bound, for Mesh I, Mesh II, and

Mesh III finite element solutions using elements of degree p = 1, 2,

and3and k=1,2,and 3. [1] . . .. .. ... ...

xvii

Page

28



FIGURE

2.16

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

xXviil

Page

Heat conduction in a thermal battery. The variation of effectivity
indices kX, (@) Mesh I; b) Mesh II; ¢) Mesh IIT. ) and /{i’;’ik
VS. :—z ( d) Mesh I; e) Mesh II; f) Mesh III. ) of the Neumann
subdomain residual II based lower bound, for Mesh I, Mesh II,
and Mesh III finite element solutions using elements of degree
p=12 and3and k=1,2,and 3. . . . .. ... .. ... ..., 30

Model problem with boundary layer. [1] . . . . ... .. .. ... .. 33

Model problem with boundary layer. The convergence of E&¢

versus hy = %, n=1,2,..., 11 for various orthotropies e. [1] . . . . . 34

2n>

Model problem with boundary layer. The convergence of Effl

versus hy = o%, n=1,2,..., 11 for various orthotropies e. [1] . . . . . 35

2n>

Model problem with boundary layer. The convergence of E7¢

versus hy = 5%, n=1,2,..., 11 for various orthotropies e. [1] . . . . . 36

2n’

Model problem with boundary layer. Effectivity indices x2*X"* o

e/ llesy,

to various mesh size hy = &, n = 1,2,...,11 and different or-
thotropies kl‘ =58 1] .. 39

for error measured in energy norm with respect

Model problem with boundary layer. Effectivity indices /{EXP L 4

e /lesy, |,

to various mesh size hy = 2%, n = 1,2,...,11 and different or-

thotropies = = ke T 39

€

for error measured in H; norm with respect

Model problem with boundary layer. Effectivity indices £ o

e |lesy, Il
various mesh size hy = n =1,2,...,11 and different orthotropies

=t 40

for error measured in L? norm with respect to

Model problem with boundary layer. Effectivity indices £ o

ePXPL /| |e 2 l | Lo for 1nterpolat1on error measured in L2 norm with

respect to various mesh size hy = n=1,2,...,11 and different
orthotropies 7= = L 40

€



FIGURE

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

Model problem with boundary layer. FEffectivity indices of ZZ
estimator %% & %ZZ/Hesp IN

hy =L, n=12 .11 and different orthotropies 7= = k)

on €

with respect to various mesh size

Model problem with interface layer. [1] . . . . . .. ... ... .. ..

Model problem with interface layer. The convergence of Er¢ ver-

sus hg = n=1,2,...,11 for various orthotropies e. [1] . . . . . ..

2”’

Model problem with interface layer. The convergence of Efél ver-

sus he = 5=, n = 1,2, ..., 11 for various orthotropies e. [1] . . . . . . .

2’”

Model problem with interface layer. The convergence of Ezezl ver-

sus hy = n=1,2,...,11 for various orthotropies e. [1] . . . . . ..

2n>

Model problem with interface layer. Effectivity indices /{EXP L=

e less, Mla

to various mesh size hg = &, n = 1,2,...,11 and different or-
thotropies ¢ = L

€

for error measured in energy norm with respect

Model problem with interface layer. Effectivity indices /{EXP L=

i/ less, I,
to various mesh size hy = ;;, = 1,2,...,11 and different or-
thotropies 3 = L 1

€

for error measured in H; norm with respect

Model problem with interface layer. Effectivity indices /{EXP L=

e lesy, .o

various mesh size hy = 2n> n = 1,2, ..., 11 and different orthotropies

=t

for error measured in L? norm with respect to

Model problem with interface layer. Effectivity indices /{EXP L=

EXPL
et lesy Il.e

respect to various mesh size hy =

for interpolation error measured in L? norm with

2n, n=1,2,...,11 and different
orthotropies = = L 1

€

XIX

Page

41



FIGURE

3.18

3.19

3.20

3.21

3.22

3.23

4.1

Model problem with boundary layer. a)Mesh for linear finite ele-

ment solution; b)Uniform mesh for exact Neumann element /subdomain

residual restimator estimator. The uniform mesh with polynomial
order equal to 8 is obtained by refining uniformly three times for
the finite element solution mesh; c¢)Adpative mesh for exact Neu-
mann element/subdomain residual estimator. The adaptive mesh
with polynomial order equal to 3 is obtained by refining adap-
tively five times for the finite element solution mesh along the €

direction which results in the smallest size Z—% ] ..o

Model problem with interface layer. a)Mesh for linear finite ele-

ment solution; b)Uniform mesh for exact Neumann element /subdomain

residual restimator estimator. The uniform mesh with polynomial
order equal to 8 is obtained by refining uniformly three times for
the finite element solution mesh; c¢)Adpative mesh for exact Neu-
mann element/subdomain residual estimator. The adaptive mesh
with polynomial order equal to 3 is obtained by refining adap-
tively five times for the finite element solution mesh along the €

direction which results in the smallest size Z—% ] ..o

Model problem with boundary layer. The effectivity indices of
Neumann element residual estimator €X°"™ with respect to differ-

ent orthotropies and mesh sizes. [1] . . . . . . ... ... ... ..

Model problem with boundary layer. The effectivity indices of ex-

. . . Neum,IT _ .
act Neumann subdomain residual estimator €., with respect

to different orthotropies and mesh sizes. [1] . . ... ... ... ..

Model problem with interface layer. The effectivity indices of
exact Neumann element residual estimator €X°"™ with respect to

different orthotropies and mesh sizes. [1] . . . . ... . ... .. ..

Model problem with interface layer. The effectivity indices of ex-

. . . Neum,IT _ .
act Neumann subdomain residual estimator €g.,," with respect

to different orthotropies and mesh sizes. [1] . . . ... ... .. ..

Heat transition problem in one dimension. Plots of evolution of
energy norm ||ull, and L* norm [[ul| , with respect to time t.

Note that T'=4. . . . . . .

XX

Page



FIGURE

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Heat transition problem in one dimension. a) ||u — ul||y and ||u —

uSZhH““ at t = 1T—6; b) ||u — @]|z2 and ||u _USZhHLZ at t = 1T—6; c)

[l — @l and |lu — ugz |l at t = 35 d) [Ju—il|z> and [Ju —

ugp |12 at t = L, for the semi-discrete finite element solutions of
h

degree p = 1,2, and 3 with mesh size h L = 1,2,3, and 4

on»

respectively. The dashdot line is about u — % measured in energy

norm and L? norm while the solid line about u — Usp .
h

Two dimensional synthetic problem. Plots of evolution of energy
norm ||ul|, and L* norm |[u| , with respect to time t. Note that

T =02, .

Two dimensional synthetic problem. Plots of u(x,y,t) at time

instants: a) t=-1;b)t=2. . ... ... ... ... ...

162 2°

Two dimensional synthetic problem. a) |[u—d/lo and |J[u—wug ||a
h

at t = =: b) |Jlu— |2 and ||u—u52h||Lz at t == ¢) [lu—dlu

and [lu—ugy ||l att=%;d)|lu—a|lr2 and [[u—ug |[p2 att =T,
h h

for the semi-discrete finite element solutions of degree p = 1,2,

and 3 with mesh size h % 2%, n = 1,2,3, 4 and 5 respectively.

The dashdot line is about u — @ measured in energy norm and L?

norm while the solid line about w —uez . . . . .. ..o
h

L-shaped domain problem. a)The problem domain and the bound-

ary conditions; b)Mesh employed to obtain overkill solution. . . . .

L-shaped domain problem. Plots of evolution of energy norm
||ull,, and L* norm [|u|| , with respect to time t. Note that T =

0.5

L-shaped domain problem. a) ||u—1||s and ||u—u52h||ou att = L;
T
167
||u—u52h||ou at t = Z; d) [Ju — 4|;2 and ||u—u52h||Lz att =L,

b) [lu — dl|r2 and [lu — ugz [|r2 at t = ¢) ||lu — t||a, and
h
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Transient diffusion problem in a thermal battery. The evolution
of effectivity index for the exact error measured in L? norm based
on the subdomain residual problem of the elliptic reconstruction
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Transient diffusion problem in a thermal battery. The contour
plots for isotropic case related to the semi-discrete finite element
solution Usy of degree p = 1 at time instant ¢t = % for quanti-
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exact error |u — Usy | based on the exact solution @ of the elliptic
reconstruction problem; ¢) The approximation of the exact error
|ﬂ52:]f — u52h| based on the approximate solution g+« of the el-
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Transient diffusion problem in a thermal battery. The contour
plots for orthotropic case related to the semi-discrete finite ele-
ment solution usy, of degree p = 1 at time instant t = % for
quantities: a) The exact error |u — usy, |; b) The approximation
of the exact error |u — u52h| based on the exact solution 4 of the
elliptic reconstruction problem; ¢) The approximation of the ex-
act error [tgp+r — ugr | based on the approximate solution g+
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of the elliptic reconstruction problem with & = 1; d) The approxi-
mation of the exact error |i Kk sy | based on the approximate

solution ﬁsg““ of the elliptic reconstruction problem with £ =2. . . .
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Transient diffusion problem in a thermal battery. The contour
plots for orthotropic case related to the semi-discrete finite ele-
ment solution Usy of degree p = 2 at time instant t = % for
quantities: a) The exact error |u — usy, |; b) The approximation
of the exact error |u — u52h| based on the exact solution 4 of the
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act error |usp+k Usy | based on the approximate solution usp+k
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Transient diffusion problem in a thermal battery. The contour
plots for isotropic case related to the semi-discrete finite element
solution usy, of degree p = 1 at time instant ¢t = % for quantities:
a) The modulus of exact error |KV(u — uSZh)|; b) The approx-
imate modulus of the exact error |[KV(u — uSZh)| based on the
exact solution @ of the elliptic reconstruction problem; c¢) The ap-
proximate modulus of the exact error |KV(uSp+k —ugy )| based
on the approximate solution usp+k of the elhptlc reconstructlon
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problem with & = 1; d) The approximate modulus of the exact
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Transient diffusion problem in a thermal battery. The contour
plots for isotropic case related to the semi-discrete finite element
solution usy, of degree p = 2 at time instant ¢t = % for quantities:
a) The modulus of exact error |KV (u — uSZh)|; b) The approx-
imate modulus of the exact error |[KV(u — uSZh)| based on the
exact solution @ of the elliptic reconstruction problem; c¢) The ap-
proximate modulus of the exact error |KV(uSp+k —ugy )| based
on the approximate solution usp+k of the elhptlc reconstructlon
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problem with & = 1; d) The approximate modulus of the exact

error [KV (dgp+r —ugr )| based on the approximate solution @ g+
A, h Ny

of the elliptic reconstruction problem with k =2. . . .. ... ...

Transient diffusion problem in a thermal battery. The contour
plots for orthotropic case related to the semi-discrete finite ele-
ment solution Usy of degree p = 1 at time instant t = % for
quantities: a) The modulus of exact error | KV (u —uszh)|; b) The
approximate modulus of the exact error |KV (u—u 2, )| based on
the exact solution @ of the elliptic reconstruction problem; ¢) The
approximate modulus of the exact error | KV (u Sy —ugy )| based
on the approximate solution ﬁsiff of the elliptic reconstruction
problem with & = 1; d) The approximate modulus of the exact
error |[KV(u sy T Usy )| based on the approximate solution u szt

of the elliptic reconstruction problem with k =2. . . .. ... ...

Transient diffusion problem in a thermal battery. The contour
plots for orthotropic case related to the semi-discrete finite ele-
ment solution Usy of degree p = 2 at time instant t = % for
quantities: a) The modulus of exact error | KV (u —uszh)|; b) The
approximate modulus of the exact error |KV (tu—u 2 )| based on
the exact solution @ of the elliptic reconstruction problem; ¢) The
approximate modulus of the exact error | KV (u Sy —usy )| based
on the approximate solution asiff of the elliptic reconstruction
problem with & = 1; d) The approximate modulus of the exact
error | KV (u syt Uy )| based on the approximate solution 4 syt
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Transient diffusion problem in a thermal battery. The contour
plots for isotropic case related to the semi-discrete finite element
solution usy, of degree p = 2 at time instant ¢t = % for quantities:
a) The absolute value of exact error indicator function |éw§h|;

b) The absolute value of the computed error indicator function

& an p+k|,kz = 1; ¢) The absolute value of the computed error
X

indicator function |é a, p+k|, k = 2; d) The absolute value of the
wx",

computed error indicator function [é_a, p+k|, k=3, . ........
X

Transient diffusion problem in a thermal battery. The contour
plots for orthotropic case related to the semi-discrete finite ele-
ment solution sy of degree p = 2 at time instant t = % for
quantities: a) The absolute value of exact error indicator func-
tion |éw§h |; b) The absolute value of the computed error indicator
function |éw§h,p+k|’ k = 1; ¢) The absolute value of the computed

error indicator function [€_a, p+k|, k = 2; d) The absolute value of
X 9.

the computed error indicator function |é a, p+k|, k=3........
X ).

Transient diffusion problem in a thermal battery. The contour
plots for isotropic case related to the semi-discrete finite element
solution Usy of degree p = 2 at time instant ¢ = % for quan-
tities: a) The modulus value of exact error indicator function
|KVéw§h |; b) The modulus of the computed error indicator func-
tion |KVéw§h7p+k|, k = 1; ¢) The modulus of the computed error

indicator function [KVé_a, p+k|,k: = 2; d) The modulus of the
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computed error indicator function [KVeé a, p+k|, k=3 .......
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Transient diffusion problem in a thermal battery. The contour
plots for orthotropic case related to the semi-discrete finite ele-
ment solution usy, of degree p = 2 at time instant t = % for
quantities: a) The modulus value of exact error indicator func-
tion [KVé_a,[; b) The modulus of the computed error indicator
function |KXVéw§h7p+k|, k = 1; ¢) The modulus of the computed

error indicator function |KVé a, p+k|, k = 2; d) The modulus of
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the computed error indicator function |KVé a, [[k=3.. .. ..
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CHAPTER I

INTRODUCTION

1.1 Motivation and background

A posteriori error estimation has become increasingly important in engineering com-
putations because it is the main tool for “solution verification”[1, 2], which is needed
as part of verification of computed solutions, namely for checking “if the mathemat-
ical problem is solved right”[3]. In practice we are primarily interested in obtaining
certain outputs expressed in terms of the solution of the employed mathematical
model which are pre-specified goals of the analysis and are referred to as “quantities
of interest” (q.0.i)[2]. It follows that the objective of a posteriori error estimation is
mostly to be able to obtain reliable estimates of the approximation error in the com-
puted qg.o.i. A prerequisite for this is mostly to be able to compute reliable estimates
for the energy norm of the error and this is the topic addressed in this paper.
Various aspects of the state of the art of a-posteriori estimation including the
formulation of the various estimators, related theoretical aspects, their robustness
with respect to the topology, distortion of the mesh, and class of solutions, and how
to construct “guaranteed” estimates for the q.o.i. are addressed in [4-6] and in the
references therein. Recently, the focus of many efforts in a posteriori error estimation
has been the construction of computable guaranteed upper and lower bounds of the
error in the q.o.i. based on the developed infrastructure of residual estimators. This
subject is not new, it was addressed in [7] 30 years ago employing the framework of the
hypercircle from the book [8] which appeared more than 50 years ago. This approach

This dissertation follows the style of Computer Methods in Applied Mechanics
and Engineering.



was recently extended to more general classes of problems like e.g. viscoelasticity, and
inelasticity etc in [5,9-13]. Various approaches for constructing bounds for the error
in finite element solutions of heat-conduction and elasticity type problems based on
residual computations can be found in [5,9], in Chapter 6 of [6], in [14-18], and the
references therein.

In this paper we will study the robustness of several residual estimators for
the error in finite element solutions of a model problem of heat conduction in a
multimaterial domain with highly orthotropic subdomains. We will be interested in
the deterioration of the quality of the estimators with the high orthotropy, which can
occur in certain important practical applications [19]. This paper is an extension of
earlier work presented in the Ph.D. dissertation of Datta [20].

As for parabolic problems, a posteriori error estimates are derived in [21-23] for
one-dimensional and in [24-26] for multidimensional linear and mildly nonlinear prob-
lems. A theoretical and numerical study of the effectivity index is proposed in [24] for
the linear heat conduction. The L? in time and H' in space error is bounded above
and below by an explicit error estimator based on equation residual. In [25,26],
a posteriori error estimate are derived for linear and nonlinear parabolic problems
when using the discontinuous Galerkin methods. The L* in time, L? in space error
is bounded above by an explicit error estimator using sharp a priori estimates for
the dual problem. In [27] a general framework is developed for nonlinear evolution
equations and a posteriori error estimates are derived in the L in time, L? in space
error. In [28,29], the general framework introduced in [30] is extended to a wide class
of nonlinear parabolic problems. A posteriori error estimates are obtained for several
norms, upper and lower bounds are proposed. In [31,32], it is proven that a posteriori
error estimation of a linear elliptic problem yields an estimator for the semidiscrete

solutions of parabolic problems by employing appropriate space-time energy norms.



For a posteriori error estimation of fully discrete solutions of parabolic problems, see
[33]. Efficient adaptive procedures based on a posteriori error estimates are developed
in [34, 35] for solving nonlinear partial differential equations arising from physical and
industrial processes. In [36-39], a postprocessing technique is applied for the semidis-
crete finite element solution to nonlinear parabolic problems, which solves a linear
elliptic problem on a finer grid (or higher order space) once the time integration on
the coarser mesh is completed. This technique increases the convergence rate of the
finite element method to which it is applied. Numerical experiments show that the
technique is computationally more efficient than the method to which it is applied.
The study on the application of the a posteriori error estimation introduced in [36-39)
to the fully discrete nonlinear parabolic case is addressed in [40]. In [41,42], an aux-
iliary function called elliptic reconstruction is introduced to derive a posteriori error
estimators for linear parabolic case, which is essentially the postprocessed approxi-
mation in [36-39]. Based on the strategies from [43,44], a methodology is provided
in [45,46] to obtain computable strict bounds for quantities of interest for parabolic

problems.

1.2 Research goals

The goal of this research can be summarized as follows:

1. To find the culprit behind the poor performance of existing implicit residual
estimators for elliptic problem when applied to the thermal battery problem

with high orthotropy.

2. To employ the elliptic reconstruction procedure to carry out the error estima-
tion for both semi-discrete and fully discrete finite element solutions of linear

parabolic problem.



3. To combine the available a posteriori error estimation technology for elliptic
problems with the elliptic reconstruction procedure in attempt to practice a

posteriori error estimation for linear parabolic problem.

4. To investigate the performance of the elliptic reconstruction procedure in the

case of nonsmooth solution.

1.3  Outline of the dissertation

Following this Introduction, in Chapter II we formulate the model problem of heat-
conduction in a thermal battery [19] and its finite element approximations and we
report the effectivity of several residual estimators and its deterioration in the case of
extreme orthotropy. To clearly illustrate the main difficulty, which is the coarseness of
the mesh relative to the size of sharp layers in the solution, in Chapter III we construct
simpler model problems for which we are able to analyze further the results. We show
that if we do not have available capabilities for adaptive meshing, which is often the
case in practical computations, then the estimators may grossly overestimate the true
error.

Chapter IV is about the error estimation of semi-discrete finite element solu-
tion of linear parabolic problem based on elliptic reconstruction. Several numerical
examples are employed to verify the newly invented space-time error estimator. In
the meantime, the residual estimators for elliptic problem is combined with elliptic
reconstruction procedure. Similar work is extended to the fully discrete finite element
solution and we also introduce a new error estimator to evaluate the temporal error,
all of which is addressed in Chapter V. Then we close by formulating conclusions and

future work.



CHAPTER II

A POSTERIORI ERROR ESTIMATION OF A THERMAL BATTERY
PROBLEM WITH HIGH ORTHOTROPY

2.1  Thermal battery problem and its finite element solution

_ 5
Let Q be the domain consisting of five subdomains Qy, Q = |J Q, with boundary T'y
k=1

_ 4,
consisting of four parts I'y, Ty = |J Ty, as shown in Fig. 2.1. We will be interested
k=1

in the temperature distribution u, which satisfies the orthotropic Poisson equation.

1 in Qg, Qg
V- (KVu)=f= (2.1a)

0 elsewhere

with the Robin boundary condition

KVu-n=g¢"%—a®y on I' (2.1b)
for e =1,2,3,4, where
( (
0, 1= 1 0’ — 1
. 17 1= 2 i 3, 1 = 2
o) = g = (2.1c)
2, 1=3 2, 1=3
3, 1 = 4 1’ — 4




(k)
o 0
with K is constant in each (2, with value Kf)k)h = with
0 K
( (
25.0, k=1 25.0, k=1
7.0, k=2 0.8, k=2
k k
KM =< f k=3 K =1k, k=3 (2.2)
0.2, k=4 0.2, k=14
0.05, k=5 0.05, k=5
\ \

where we employ k, = 5.0, and we choose k, such that 'Z—z = 1000, 2500, 5000, 10000,

25000, 50000.

kP 0
We will also consider the isotropic case in which KI('? =
0 KW

The variational formulation of the model problem reads:

Find u € w(Q?) such that

%Q(u,v)(jéf/VvTKVu +/ auv:ﬂf(v)dzof/fv%—/ g Voo eu)
Q r 0 Iy

N

(2.3a)

Here
() & {v ‘ 0], % \/Balo, 0) < oo} (2.3b)
is the energy space and || - ||, is the energy norm. Below, we will denote the exact

solution of this problem by uyy.
Let Aj, be a mesh of rectangles as shown in Fig. 2.2 a-c. We introduce the finite

element solution ugr of degree p as the solution of the discrete problem:
h



Fig. 2.1. Heat conduction in a thermal battery. The problem domain, its subdomains and
the boundary with its subdomains. [1]






Find ugy € S}, such that
h
%Q(uszh,v) = 2(v) VoueSy, (2.4)

Here Sih C wu(£2), is the finite element space defined using tensor-product rectangular
elements of degree p over the mesh Ay,

We will denote the error in the finite element solution ug by
h

def
€sy = Upx — Usy (2.5)

For the analysis, we will replace u by an overkill solution u , with A9°% denoting

/
SP
ovk
Ah

the overkill mesh, and p’ > p the employed degree of overkill approximation. We will
assume that the overkill approximation u SZ/M is sufficiently accurate so that we can
use it instead of the exact solution uyy to z:nalyze our results.

In the computations we employed the meshes Mesh I, Mesh II, Mesh III, shown
respectively in Fig. 2.2 a, b, ¢, and p = 1, 2, 3 for the finite element solution. In the
computation of the overkill solution, it should be noted that there are two interface
layers at the top and bottom of domain 23 in the case of high orthotropy with
the magnitude of characteristic thickness of the interface layer equal to \/% . The
interface layer will be addressed in details in the later sections. Therefore two types
of overkill meshes A%"* and A9"% as shown in Fig. 2.2 d and e are adopted. Both the
mesh A9 and the mesh A$"* were constructed starting from Mesh II, by employing
two uniform refinements followed by five nested refinements of the elements with
a vertex at a multi-material point. In the case of the mesh A9"* further adaptive
refinement was adopted at the two interface layers of domain 23 such that the smallest

mesh size is about the same magnitude as the characteristic thickness of the interface

layers. The polynomial order in the overkill solution is chosen to be p’ = 8.
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Table 2.1 lists the energy norm of the overkill solutions based on two overkill
meshes. [t can be seen that the interface layers have negligible effect on the energy
norm of the overkill solution. Therefore the overkill solution based on mesh A$°* can

be considered as the exact solution.

Table 2.1. Comparision of the energy norm of the overkill solutions based on two overkill
meshes A9’F and A% vs. the orthotropy g—z of domain 3. Note that ||u o ||, denotes

Az’uk
the energy norm of the overkill solution from the mesh szk while ||u o' ||6u from the
AZUk/
mesh AZ”'“/.
[logr Nallogr Mo
AO'U ov
o ugs |l ugr Il S o0
AZ'U Az’uk usp/ , a
Az’uk
1 1.1081536458 E+02 | 1.1081538842E4-02 0.2147716156E-04 %
1000 | 1.3288518146E+02 | 1.3288537701E402 0.1471192726E-03 %
2500 | 1.3370199254E+02 | 1.3370282712E+02 0.6242201591E-03 %
5000 | 1.3402794093E+02 | 1.3402971341E+02 0.1322467948E-02 %
10000 | 1.3421257854E+02 | 1.3421560030E4-02 0.2251452136E-02 %
25000 | 1.3433794621E402 | 1.3434295997E+02 0.3732089869E-02 %
50000 | 1.3438483324E+02 | 1.3439169401E+02 0.5105077402E-02 %
Fig. 2.3 illustrates the values of [lugs ||y, and relative error
Az’uk
eyl
Ey = —h % 100% (2.6)
Ap ||usp/ k||6u

ov
Ah

as a function of the orthotropy e
We see that the relative error is significant e.g. for Mesh II and p = 2, Egezl >
h

10%. Also note that for high orthotropy, e.g. 'Iz—z > 5000, the relative error is twice of
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that of the isotropic case.

Let us also note that in all the computations presented in this paper we employ
meshes of rectangles alligned with the axes of orthotropy. The more general case
where the orthotropy is oblique to the mesh is more challenging because it is related

with the problem of locking [47].

160 r T T T 40% : T T T
140 b 36% [ 1
Z}v 32% 1
120 1
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= 100 g o
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; 80 ) O—-0OMeshIp=2
> > 20% A~—AMeshlp=3 ]
fust s}
gg 60 © 6% F
L 0 ]
¥ 12% 1
40 b A A
8% 1
20 b
4% P E
0 L L L L o, N N N N
1 10000 20000 30000 40000 50000 0% 10000 20000 30000 40000 50000
a) Xy b) Xy
40% . " " " 40%
36% [ 1 36% |
O—-OMeshllp=1
% | 1 9
32% O—0OMesh i p = 2 32% O—OMesh lllp=1
8% | N—AMeshllp=3 S 28% | O—-0OMesh lllp =2
e = A—AMeshlllp =3
@ 24% D 24%
) ]
> 20% E 20% |
=]
©
% 16% o L O 6%
& 1% ] ol ¢
8% A 8% o 0
q
A%l{A/Af’—u* ] A%Eﬁ’u 4
0% 0%

10(300 20600 30500 40(300 50000 1 1 0600 20(300 30600 40600 50000
C) kx/ky d) kX/ky
Fig. 2.3. Heat conduction in a thermal battery. a) The energy norm of the overkill solution

l|ugs . ||, versus the orthotropy i—z, and b-d) the values of the relative error Eg%l , for the
Agv Ap

finite element solution versus i—l’ for Mesh I, Mesh II, and Mesh III, respectively. Note that
the relative error increases with the orthotropy, and it is relatively high for all the meshes
and element degrees employed. [1]
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2.2 Upper and lower bounds based on residual estimators

In order to introduce the estimators we will need the global residual ®5"" : U — R

defined by
2" (v) = £(v) — Balugy ,v) = Balesy ,v) v € UQ) (2.7)

and its splitting
25 (0) = S A (]) v e ) (28)

TEA
where ®2#P : q(7) — R, are the equilibrated element residua, and aU(7) denotes the
energy-space over the element 7. For the various construction of 22m? see [4-6,9).
We are going to address two types of residual estimators which are Neumann
patch residual estimators and subdomain residual estimators respectively.
def npatches
First for Neumann patch residual estimators, let 2, = {wj} , denote a
j=1
partition of the mesh Aj into non-overlapping patches of elements as is, for example,
shown in Fig. 2.4. Let é}j;um, denote the exact solution of the Neumann patch residual

problem:

Find é}j;um € U(wj) such that:

B, (éij;um, v) = @27 () Vo € Ulw;) (2.9a)
where
B, (éﬁjjum,y) dof / Vo'KVvele + / a eyt v (2.9D)
wj 8u;jﬂFN
and
def
o) =Y @] ) Vo € u(w)) (2.9¢)

TEA,TCw;
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Then, we have (see [4-6,9]) the constant-free upper bound

||65211 | |6u — g{éhﬂl’(eszh) < %Neum def \/ Z || ANoum| |2 (210)
w

5 €Qp,

Here U (wj) is the energy space over wj, eﬁ‘?um are the Neumann patch residual indica-
tor functions, and %ggum the Neumann patch residual estimator. In the special case

that Q, = A, we obtain the element residual estimator denoted by €X™.

T29 fdsb T31 [s2 Qoo
T25 HZ Hzx
T21 T2k T23 (M24 W6 -
(B} N 9
T19 [T20
T17 (g1 o7l || os
T13 i T1 (T16
4] | |®Os
T1 i
i ialig [
[E—— i .
a) L] s b) i

Fig. 2.4. Patch residual problems: Example of partitions of a mesh into patches of elements.
a) The patches are identical with the elements; b) The patches consist of the vertex patches
of elements which are connected to the reentrant corners, and the elements which remain
after the re-entrant corner vertex patches have been formed. [1]

Second for subdomain residual estimators, let w)A(h = U 7= supp(gb)A(h), denote

TEA
Xeor

the subdomain associated with the mesh-vertex X, where gbﬁh is the piecewise bilinear

h DlI‘

basis function supported over w)A( as is e.g. shown in Fig 2.5, and let é denote

X

the exact solution of the following Dirichlet problem:



14

Find eDlr € AUg(wi*) such that

B A, (éDXh,v) =P (v) Yo € adT(wih) (2.11)

w
X Wy

Here Uo(wi") is the energy space of functions which vanish on &u)A(fD = Quwi" —
(awﬁh N In), and B o and %Ah’p are defined by assembling the corresponding ele-

X

ment contributions. We then have [6]

1

m%g;rbd < ||usp ||6u < 3{%g;rbd (2.12)
where
def R
Coubd — > €% ||2 (2.13)
XeN(Ap)

D1r

is the Dirichlet subdomain residual estimator, é is the Dirichlet subdomain residual

X
error indicator function, M is the overlap index namely the maximum number of
elements connected to a vertex ( for Mesh I, Mesh II, and Mesh I1I, M = 4), and % is

a constant depending on the admissible classes of meshes, material orthotropies, and

the degree p of the elements (see [6] for details).

We will also introduce two Neumann subdomain residual estimators which lead
to constant-free upper bounds. We employ the following problems:

Find "™ € au(wy"), such that

wx
%f}éh (éfg;m’l, v) =R, (6% v) Vo€ uwih) (2.14a)
where
%45%’; (ANoumI def / ¢ VoK VANoumI ¢ gNeuml (2.14b)
Wy o> wih

and



A,
Xl. /X/
O
1
2,
LA
(1Y} X,
.Xg

Fig. 2.5. Examples of subdomains w)A(h = supp(qS)A(h), for Mesh 1. [1]

Find "™ € au(w§”), such that
wx

~Neum,II o Ay, Ay
B_a, (0™ 0) =R s, (03" 0) Vo € W(wi")
X u}X X
where
~Neum,II _y def ) )
B (€ zt;m, v) = Vol K veNewn Il o eNeum Il
Wy Wy w;‘(h awih

15

(2.15a)

(2.15b)

Note that the only difference between the two problems is the employment of a gbﬁh
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weighted bilinear form in (2.14a). We then have

Neum,I def eNe 1
lesg, llu < €5aa™ = \/Z o Ny o (2.16)
where || - A, a. is the energy norm corresponding to the weighted bilinear form
W(wy™),dx"
A X X
%wﬁh( ,+), and
X
Neum,IT def Neum, T
lesg, Il < gsima™ = D211 >0 sl (2.17)

TeAh XGN(A]—L)

,Neum,I ~Neum,IT : - .
Here é zum (resp. ¢ zum ) are the subdomain error indicator functions of type I

(resp. type IT) and %gﬁg?l (resp. €5y} are the corresponding estimators. Note
that (2.16) was proposed in [48], while (2.17) was established in [16]. Both subdomain
residual estimators provide constant free upper bound for the energy norm of the error,
similiarly as the Neumann patch and element residual estimators.

Let us now illustrate the sensitivity of the above residual estimators to the or-
thotropy of subdomain €23 for the finite element solutions u S%, with Mesh I, Mesh II,
Mesh IIT and p = 1,2,3. Figs. 2.6, 2.7 and 2.8 show the variation of the effectivity
index

€

lesg Tl

versus ',i—z, respectively for the Neumann element residual estimator %X‘mm, Neumann

patch residual estimator %Noum the Dirichlet subdomain residual estimator %D“ and
the Neumann subdomain residual estimators %Sogg“, nd %IS\ICE(T M In each case we

estimated the energy norm of the exact error by employing the overkill mesh, namely

~ _ — 2 _ 2
lesg s~ ltg, =g = gy 1 = s, I (2.19)
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Fig. 2.6. Heat conduction in a thermal battery. The variation of the effectivity indices k vs.

subdomain residual I €

Neum,I,
Subd

ka
ky
I: a)Neumann element residual %Xium; b)Neumann patch residual %gium; c) Dirichlet subdomain residual €g,;,;; d) Neumann

. . Neum, 1T
e)Neumann subdomain residual II € ¢))"

, of the exact estimators for Mesh
Dir

, using elements of degree p = 1,2, and 3. [1]
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We computed the “exact” indicator functions in each case by employing the
restriction of the overkill space Sigvk in the elements and subdomains. We note that
all three Neumann estimators which are guaranteed bounds of the energy norm of the
error grossly overestimate as the orthotropy ratio ™ is increased, while the Dirichlet
subdomain residual estimator underestimates.

Similar results were obtained for computed versions of the estimators as shown in
Figs. 2.9, 2.10 and 2.11 with Mesh I, II, and IIT in which we employed the p-version
with elements of degree p + k to approximate the indicator functions, and we have

for the Neumann element residual estimator

Noum def sNeum
Ah,p+k = Z || N,p+k||2 (2-20)
TEA
where eN;‘er,; denote the (p + k) degree finite element approximation of the exact

Noum Neum,I Neum,II
indicator functions € The computed estimators ‘(‘SA ok Esubdp ks Csubdpik AT€

defined analogously.
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Fig. 2.10. Heat conduction in a thermal battery. The variation of the effectivity indices x vs. —, of the computed estimators for
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Mesh II: a)Neumann element residual ¢ Ay ks

Neum,I

Neumann subdomain residual I € Subd.p+k e)Neumann subdomain residual IT € Subd.p-+k?

and k = 1,2, and 3. [1]

; b)Neumann patch residual €
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Qh 7p+k ’
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10°
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using elements of degree p = 1,2, and 3
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3and k=1,2, and 3.

Neum
Ah 7p+k7
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Neum
Qh 7p+k ’
Neum,IT

Subd,p+k’

using elements of degree p =1, 2, and

ke

ky

, of the computed estimators for

; ¢) Dirichlet subdomain residual %giurbdm s
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As expected, the computed estimators are smaller than those of the exact ones.
Nevertheless, we cannot use this fact to “improve” the estimators, namely it is not
possible in general, to employ a low k& to improve the accuracy of the estimator to
the high orthotropy.

Above, we have examined the sensitivity of the estimators computed directly
for the indicators with respect to the orthotropy. We have seen that the Neumann

Neum,T o Neum,IT

. Noum . . .
estimators €x. "™, €g g s €gupa which are upper estimators, grossly overestimate

the energy-norm of the error [|egr ||, and the same is true for their computed versions
h

%Noum %Noum,l %Noum,ll
Ap,p+ks ©Subd,p+k> ©Subd,p+k*

Let us now examine the sensitivity of lower bounds for the error constructed
using the same indicators. We obtain lower bounds using

%éh ,p( ~P+k)

Ay ,p/~pt+k
L/ ~p+k d_Cf %Qh p(ei—i_ ) < %L,opt ~p+k d_Cf Ay, < 2 21
(€a, ) = —1omm, — = (A7) = — = <llesz [l (2:21)
4 4
e, a min [|ey," + gl "

Ap

We call %L’Opt(é’fk) the optimized lower bound and its computation requires only the
h
processing of an additional right hand side employing the factorized stiffness matrix

used in the computation of ugr . Here é’:}:k € u(2) denotes a smoothened error
h

indicator function employed in the construction of the lower bound.
Neum

For example, in the case of the Neumann element residual indicators ¢,7;™ have

been computed, we can employ
~p+k ~Neum eum
RN N TI(0)) (2.22)

@Noum

sin s a gap function obtained using local averaging as is e.g. discussed in [6].

where

For the subdomain residual indicators we employ the partition of unity used in the
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construction of the estimator, for patching together the indicator functions namely

~;D+k _ Z ¢Ah AType (223)

XeN(Ap)

where Type = Dir, Neum, I, or Neum, II.

The effectivity index for the lower bounds will be denoted by

ptk p+k

L def %L( ;Z: ) L,opt  def %L,opt(eiz‘: )

Flpptk = Too 1 Btk = o | (2.24)
Tesg Il Tesg Tl

Figs. 2.12, 2.13, 2.14, 2.15, and 2.16 show the variation of "fih,p% and /{i’:iirk for
the Neumann element residual, Neumann patch residual, Dirichlet subdomain resid-
ual, Neumann subdomain residual I, and Neumann subdomain residual II, versus the
orthotropy g—z for Mesh I, IT, and III, p = 1,2,3 and k£ = 1, 2, 3. Note the improvement
in the lower estimate when the extra computation of ¢ € Sih which minimizes the
denominator is employed. Among all the residual based bounds, the improvement of
the optimized version of the lower bound was marked only for Neumann subdomain

ks

residual I based lower bound in the case that the orthotropy e is equal to 1. Note

ke

iy than the Neumann

also the lower bound is less sensitive to the high orthotropy
patch residual estimator the exact version of which is a guaranteed upper estimate.
Let us reiterate that the cost of the extra computation of ¢ € S}, which minimizes
the denominator ||6 + q|,, is negligible because it employs the factorized stiffness
matrix which was used to compute the finite element solution Usy -

Note that for this example problem, the best lower bounds seem to be the ones
obtained by employing Neumann element residual indicator functions. For isotropic

case the best lower lower bounds are obtained from the subdomain residual indicators

using optimization.
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Fig. 2.13. Heat conduction in a thermal battery. The variation of effectivity indices /{ZP +x (@) Mesh I; b) Mesh II; ¢) Mesh IIL
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CHAPTER III

ILLUSTRATION OF THE MAIN DIFFICULTY

Above we have examined the variation of the effectivity indices for four types of

ke

Py in the thermal battery model

residual estimators with respect to the orthotropy

problem. We have seen that:

a) The exact and computed versions of the Neumann patch residual estimator,
and the two types of the Neumann subdomain residual estimators grossly over-

estimate the energy norm of the error as the orthotropy is increased .

b) All lower estimators constructed using the indicator functions of the various
residual estimators also deteriorate with the orthotropy. Nevertheless the un-
derestimation is less than the overestimation of the three versions of the upper

estimator.

b) The lack of efficiency of the employed estimators can be detected by taking the

U
ratio £, where €V (resp. ¢l) is guaranteed upper (resp. lower) estimator.

%_L>
We will now illustrate the main culprit causing the lack of robustness of the

estimators in the employed thermal battery model problem. For this purpose we will

employ two simple model problems obtained from the thermal battery problem.

3.1 Model problem with boundary layer

The simplest possible problem which can be used to address the main difficulty is:
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Example 3.1. Model problem with boundary layer. We seek u which satisfies

—km% — ygi;; =0 on ;= (0,a) x (0,b)
—ky? = sin(zz) on 'y,
y @ (3.1a)
—kyg—z =0 on ['y,
u=0 onI'p

where a = 6.1 and b = 7.2, and €2y is the problem domain which was cut out of
the domain 3 of the thermal battery as shown by the dashed line in Fig. 3.1. The

analytical expression of the exact solution is:

1
kyCa (1= em200)

upy(x,y) = <ecl(y_2b) + e_cly)sin(zzv) on (3.2)

a

where C; = 7 i—z, ky = 5.0 and ky, = €. The orthotropy i—z of domain € is

chosen to be 5,50, 500, 5000, 50000, and 500000 respectively. Using (3.2) we can see
that the u,y has a boundary layer with thickness of \/% . In the extreme case of
'Z—z = 500, 000, the size of boundary layer is about 0.001414. In order for the mesh
size h to be less than or equal to the thickness of the boundary layer we must employ
12 of nested refinement of the rectangular domain leading to a mesh of more than 16
million elements.

Here we will employ bilinear elements (p = 1) and meshes of rectangles as shown
in the figure in Appendix A. For these meshes it is also possible to obtain an analytical
expression for the finite element solution Usy of degree p = 1 in order to analyze
the convergence and error estimation for the entire sequence of meshes. The detailed
derivations are given in Appendix A. This analytical approach allows us to analyze the

estimators without the effect of the roundoff error which must be addressed separately.
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4

1_‘N

Fig. 3.1. Model problem with boundary layer. [1]

Tables 3.1, 3.2, and 3.3 respectively report the relative error in energy norm, H*
norm, and L? norm of e S8 - Note that the number of elements from uniform mesh
refinement can be up to 222. Figs. 3.2, 3.3, and 3.4 show the convergence with respect
to the energy norm, the H' norm, and the L? norm respectively, for various values of
the orthotropy Z—:, Table 3.4 compares the characteristic thickness of boundary layer

:_Z with the mesh sizes for various orthotropies. It can be seen that the error in
finite element solution is within its asymptotic range only when the element size is
about the same order of magnitude of the characteristic size of bounday layer. In the

case of extreme orthotropy = 500, 0000, the mesh has to be refined more than 10

times before the asymptotic range in the finite element solution can be reached.
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Table 3.1. Model problem with boundary layer. The relative value of the energy norm of

the error Ej¢! o ||eszh||ou/||uEX||ou x 100% versus € for n =1,2,3, ..., 11.

llese |l
Egel = —Can N 100%

||U‘EX HGU.
n e=1 e=0.1 e =0.01 €= 0.001 € = 0.0001 e = 0.00001
1 69.1313 % 89.4660 % 96.7135 % 98.9699 % 99.6753 % 99.8974 %
2 42.7122 % 75.6787 % 92.2717 % 97.5966 % 99.2455 % 99.7620 %
3 23.0459 % 54.7030 % 83.7747 % 94.9545 % 98.4254 % 99.5046 %
4 11.7749 % 32.7209 % 68.2975 % 89.6804 % 96.7988 % 98.9971 %
5 5.92049 % 17.3771 % 46.4308 % 79.2763 % 93.5120 % 97.9802 %
6 2.9645 % 8.8330 % 26.4375 % 61.2285 % 86.8616 % 95.9254 %
7 1.4827 % 4.4359 % 13.7627 % 38.9492 % 74.0325 % 91.7506 %
8 0.7414 % 2.2202 % 6.95780 % 21.2986 % 53.6895 % 83.3588 %
9 0.3707 % 1.1104 % 3.48856 % 10.9335 % 32.1221 % 67.8554 %
10 0.1853 % 0.5552 % 1.74543 % 5.50510 % 17.0546 % 45.9994 %
11 0.0926 % 0.2776 % 0.87285 % 2.75727 % 8.6733 % 26.1364 %

3.0 T I T I T I T I T I T I T I T
20F -
1.0+ -
g L i
5 00F -
(&) - 4
=
E‘S 1.0 —
€t Jo—oe- :
220k O—e=0.1 -
- O—e=0.01 4
30k N—A\e=0.001 _
L V—~V e=0.0001 ]
i >—1>¢ = 0.00001 ]
5.0 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
1.0 0.5 0.0 -0.5 1.0 1.5 -2.0 -2.5 3.0

Iogm(hz)

Fig. 3.2. Model problem with boundary layer. The convergence of Er¢ versus hy = 2%,

n =1,2,...,11 for various orthotropies €. [1]
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Table 3.2. Model problem with boundary layer. The relative value of the H; norm of the
error E;fll o ||652h||H1/||uEX||H1 x 100%, versus € for n =1,2,3,...,11.

||esp [l g1
rel = "8 0100%
H ||U‘EX ||H1
n e=1 e=20.1 e =0.01 e = 0.001 e = 0.0001 e = 0.00001
1 76.0744 % 96.5228 % 99.6261 % 99.9621 % 99.9962 % 99.9996 %
2 50.0269 % 87.9535 % 98.4222 % 99.8306 % 99.9827 % 99.9983 %
3 27.9285 % 69.2108 % 94.3543 % 99.3245 % 99.9291 % 99.9928 %
4 14.4315 % 43.9841 % 83.0769 % 97.4929 % 99.7202 % 99.9711 %
5 7.27848 % 23.9441 % 61.1670 % 91.6191 % 98.9324 % 99.8859 %
6 3.6472 % 12.2611 % 36.5088 % 76.7868 % 96.1656 % 99.5569 %
7 1.8246 % 6.1684 % 19.3192 % 52.4480 % 87.8476 % 98.3375 %
8 0.9124 % 3.0890 % 9.8083 % 29.6933 % 69.2229 % 94.2256 %
9 0.4562 % 1.5451 % 4.9233 % 15.4030 % 43.9494 % 82.8197 %
10 0.2281 % 0.7726 % 2.4640 % 7.7762 % 23.9042 % 60.7737 %
11 0.1140 % 0.3863 % 1.2323 % 3.8976 % 12.2369 % 36.1724 %

o
o
T

L
o
T

(Relative error)

lo
g‘\O

b
(@]
T

i >—>¢ = 0.00001 i

1.0 0.5 0.0 05 -10 15 20 -25 -30
Iogm(hz)

el

Fig. 3.3. Model problem with boundary layer. The convergence of K7 versus hy = 2%,

n =1,2,...,11 for various orthotropies €. [1]
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Table 3.3. Model problem with boundary layer. The relative value of the L? norm of the
error E7¢ = ||652h||L2/||uEX||L2 x 100% versus € for n =1,2,3, ..., 11.

llese I
rel — _ A BT 100%
L ||U‘EX Il 2
L
n e=1 e=0.1 e =0.01 e =0.001 e = 0.0001 e = 0.00001
1 41.6445 % 77.1227 % 92.4684 % 97.5953 % 99.2375 % 99.7587 %
2 16.7169 % 57.0287 % 84.7956 % 95.0613 % 98.4267 % 99.5014 %
3 5.09582 % 314175 % 71.0879 % 90.2334 % 96.8573 % 99.0012 %
4 1.35193 % 11.7083 % 48.8778 % 81.0394 % 93.7649 % 98.0068 %
5 0.3433 % 3.3595 % 23.5617 % 64.5677 % 87.7457 % 96.0334 %
6 0.0861 % 0.8726 % 7.8547 % 39.9897 % 76.4266 % 92.1492 %
7 0.0215 % 0.2203 % 2.1492 % 16.8105 % 56.9569 % 84.6518 %
8 0.0053 % 0.0552 % 0.5504 % 5.1322 % 31.1975 % 70.8439 %
9 0.0013 % 0.0138 % 0.1384 % 1.3601 % 11.5431 % 48.4759 %
10 0.0003 % 0.0034 % 0.0346 % 0.3452 % 3.3010 % 23.2022 %
11 0.0001 % 0.0008 % 0.0086 % 0.0866 % 0.8565 % 7.6955 %
3-0 T I I T | T | T | T | T | T
20F =
1.0 =
E L _
S 00 -
o)
= L i
kS
éf'i 1.0 —
g | |O0—0e=1 1
= 20 —
' —-Le=0.1
r[O—=e=0.01 ]
SB3.0F IA—Ae=0.001 N
o IV—V e=0.0001 E
40k |D>—T>¢=0.00001 a
5.0 1 | | 1 | 1 | 1 | 1 | 1 | 1
1.0 0.5 0.0 -0.5 -1.0 -1.5 2.0 -2.5 3.0
Iogm(hz)

Fig. 3.4. Model problem with boundary layer. The convergence of Ezegl versus ho =

n =1,2,...,11 for various orthotropies €. [1]

b
2m)
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Table 3.4. Model problem with boundary layer. Comparison between the element size
at which the error in finite element solution is in asymptotic range and the characteristic

thickness of the boundary layer with respect to different orthotropies 'Iz—z he = 220 is
the element size in asymptotic range, n. is the mesh refinement level and g—z is the

characteristic thickness of the boundary layer.

€ Ne he = 220 \/%
1 2 1.8 0.44721360
0.1 4 0.45 0.14142136
0.01 6 0.1125 0.04472136
0.001 7 0.05625 0.01414214
0.0001 9 0.0140625 0.00447214
0.00001 10 0.00703125 0.00141421

The above framework allows us to analyze the effectivity of the estimators for the
entire range of orthotropies without any effect from roundoff error. We will see that
the estimator is reliable once the approximation has reached its asymptotic range.
For simplicity we will illustrate this by employing the explicit estimator ¢#XF'F given
below. Although there are some differences between the explicit residual estimators
and the patch and subdomain implicit estimators considered earlier, the trend should
be the same.

We have,

lesg Il < 6577 \/01(2 Pl ) + €23 (X 2|5
T T eCoT

;(e))) (33)
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where || - || here denotes the norm of interest, e.g. the energy, H', or L?-norm.
. . <KVusp . — KVugr |T) ‘n., ¢=01"\0r
r. f+V-(KVug |7), Jr An An
h
ﬂ(Q_KvuSZ 'nFN)> eCIly
h
(3.4)

The constants C7, Cs, ¢, and « have to be determined from a calibration of the
estimator; for the proof of (3.3) in the case that || - || is the energy norm see [6] and

the references therein. For linear finite element solution p = 1, r, = 0, and hence

lesy, Il < €5XP = \/02(2 (3 he
T eCor

See Appendix B for more details.

EA )) (3.5)
V21126

Figs. 3.5, 3.6, and 3.7 illustrate the convergence of the effectivity indices for the
explicit estimators for the energy, H', and L? norms of the error for various values of
the orthotropy % It can be seen that the effectivity indices of the energy norm and
H*' norm estimators converge to 1 while the effectivity index of the L? norm estimator
converges to a value between 1.7 and 2. The reason for this behavior is due to the
pollution error which is well known in the case of L? norm. This can be clearly seen
by employing the interpolated exact solution to calculate the estimator as shown in

Fig. 3.8, in which case the effectivity indices of €25 converge to 1.
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Fig. 3.6. Model problem with boundary layer.

€57 ey ||,

ky

=&

€

O——=0c¢=1
—Le=0.1
O—=e=0.01
N—\e=0.001
V—~V ¢=0.0001
>—>¢=10.00001

kg

n=1,2,...,11 and different orthotropies == 1]

€

5XPL<£f%%XPL/Heszh

b
2m

Effectivity indices &

39

[l

n=12.,11
gxpL  def

g1

for error measured in H; norm with respect to various mesh size hy = 2%,
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Fig. 3.7.
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Above we analyzed the effectivity indices of the explicit residual estimators which
are upper bounds for the enery-norm of the error. Fig. 3.9 is an illustration of the
convergence of the well known ZZ estimator (see [4-6,9]) which is not an upper
bound. It can be seen that ZZ estimator converges to the energy norm of the error
from below as the mesh refinement level is increased. Again the finite element solution

has to be in the asymptotic range before the good effectivity indices can be achieved.
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o
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0.4} -
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0'QI.O I I 3.0
Iogw(hz)
Fig. 3.9. Model problem with boundary layer. Effectivity indices of ZZ estimator k%4 def
%ZZ/HGSZhHou with respect to various mesh size hy = 2%, n = 1,2,...,11 and different
orthotropies = '%1‘ [1]

3.2 Model problem with interface layer

Above we have employed the simplest possible model problem of heat conduction in
an orthotropic domain and we have clearly seen that the accuracy of the estimation

is governed by the size of mesh relative to the size of the boundary layer. Let us now
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employ another model problem which has an interface layer in the solution which is

closer to the original battery model problem.

Example 3.2. Model problem with interface layer. We seek u such that

-V (K Vu) =0
,0u o
_k;ya—y = sm(gx) on I'y,
0
—k‘ya—z = on 'y,
u=0 on I'p

(3.6a)

where k;, k, (resp. k, k) are the principal orthotropies in €; o (0,a) x (0,b) (resp.

def

Q= (0,a) x (0,—d)), where the relation of the problem domain with the thermal

battery domain is shown in Fig. 3.10, and we have

(

A<602(y—2b) _|_6_Czy) sin(gﬁ) (l’,y) €

upx(z,y) =
\ Cld (Blecly + Bye Cly) sin(fx) (x,y) € Q
where
A 2e~C1d
K, Cy (1 + 6_202b) (1 — e‘zcld) + k,Cy (1 + e‘zcld) <1 — 6_202b)
BCa (14 €7202) — kyC (1 — 7200
By =
/{:/ 01 (1 + 6—20217) <1 —2Cld) + k‘ 02 (1 —2Cld) <1 _ 6—20217)
B Ca (14 €72 ) 4k, O (1 — e72020)
By =
K, Ch (1 + 6_202b) (1 - e—zcld) + k, Cs (1 + e—zcld) <1 - 6_202b)

(3.7)
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with Cy = | /Z—%g and Cy = /Z—Z% The orthotropy e of domain €2y is chosen to be
5,50, 500, 5000, 50000, and 500000 respectively with k, = 5 and &, = €.

[y L
a

Fig. 3.10. Model problem with interface layer. [1]

Once more, we employed bilinear finite elements (p = 1) and meshes of rectangles
obtained from the nested refinement of an initial coarse mesh of rectangles, and ob-
tained analytical expressions for the finite element solution as discussed in Appendix
C. Tables 3.5, 3.6, and 3.7 respectively report the energy norm, H! norm, and L2

norm of e} while their corresponding convergence curves are illustrated in Figs. 3.11,

3.12, and 3.13 respectively.
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Table 3.5. Model problem with interface layer. The relative value of the energy norm of

the error EX¢ = |leqr u x 100% versus € for n =1,2,3,...,11.
au SAh a EX 1oy

€aqp
Byt = ooz, % 100%
||U‘EX HGU.
n e=1 =01 e=0.01 € = 0.001 €=0.0001 | e=0.00001
1 47.6999 % 477547 % 477857 % 47.7980 % 47.8023 % 47.8036 %
2 24.4360 % 24.5283 % 24.5946 % 24.6230 % 24.6330 % 24.6362 %
3 12.2890 % 12.3714 % 12.4688 % 12.5219 % 12.5418 % 12.5484 %
4 6.15340 % 6.20494 % 6.30360 % 6.38705 % 6.42378 % 6.43656 %
5 3.07796 % 3.10541 % 317527 % 3.27383 % 3.33281 % 3.35527 %
6 1.53907 % 1.55311 % 1.59334 % 1.68047 % 1.76480 % 1.80409 %
7 0.76954 % 0.77660 % 0.79760 % 0.85421 % 0.94423 % 1.00429 %
8 0.38477 % 0.38830 % 0.39892 % 0.42983 % 0.49879 % 0.57257 %
9 0.19238 % 0.19415 % 0.19947 % 0.21534 % 0.25635 % 0.32353 %
10 | 0.09619 % 0.09707 % 0.09973 % 0.10772 % 0.12938 % 0.17484 %
11| 0.04809 % 0.04853 % 0.04986 % 0.05386 % 0.06486 % 0.09024 %

30 T | T | T | T | T | T | T | T
20k .
10 .
g L .
% 0.0 _
R §
§ 10F |O—0e=1 -
o2 |O0—-0Oe=0.1 T
220F  |[O—Ce=0.01 .
i A—AS =0.001 T
B0r I—<7&=0.0001 N
ol |[P>—>&=0.00001 i

1 | 1 | 1 | 1 | 1 | 1 | 1 | 1

'5'01.0 0.5 00 05 -10 -15 20 -25 -30

Iogm(hz)

Fig. 3.11. Model problem with interface layer. The convergence of EL¢ versus hy = 2%,
n =1,2,...,11 for various orthotropies €. [1]
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Table 3.6. Model problem with interface layer. The relative value of the H' norm of the

error E¢ = ||652h||H1/||’LLEX||H1 x 100% versus € for n =1,2,3, ..., 11.

llesz 1.
Bl = —2n s 100%
llugx HHI
n e=1 e=0.1 €=0.01 € =0.001 € =0.0001 ¢ = 0.00001
1 48.8323 % 49.1054 % 50.0292 % 52.7528 % 59.5515 % 71.8639 %
2 25.5305 % 26.0349 % 28.0426 % 33.5997 % 45.4640 % 63.6854 %
3 12.9612 % 13.5795 % 17.0949 % 25.5107 % 40.4797 % 61.1118 %
4 6.50748 % 7.00688 % 11.8718 % 22.4378 % 38.8051 % 60.2897 %
5 3.25721 % 3.55289 % 8.11422 % 20.4900 % 37.8452 % 59.8280 %
6 1.62903 % 1.78402 % 4.75212 % 17.2891 % 36.4949 % 59.2095 %
7 0.814568 % 0.89301 % 2.50210 % 11.9046 % 33.5393 % 58.0194 %
8 0.407290 % 0.44663 % 1.26867 % 6.75239 % 26.7948 % 55.4472 %
9 0.20364 % 0.22333 % 0.63660 % 3.50365 % 17.1093 % 49.2612 %
10 0.10182 % 0.11166 % 0.31858 % 1.76889 % 9.31418 % 36.5633 %
11 0.05091 % 0.05583 % 0.15932 % 0.88661 % 4.76857 % 21.8293 %
30 T | T | T | T | T | T | T | T
20 -
10 -
5 ]
S 00k i
Qo
= L ]
ks
g-1or -
o [ |[B—Le=0.1 1
o
=200 |O—=0e=0.01 T
[ |&—Ae=0.001 T
307 | V—V&=0.0001 .
" |[D>—">¢=10.00001 1
40+ a
5.0 ] | ] | ] | ] | ] | ] | ] | ]
1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 3.0
Iogm(hz)
Fig. 3.12. Model problem with interface layer. The convergence of E;ﬁ versus hy =

n =1,2,...,11 for various orthotropies €. [1]

b
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Table 3.7. Model problem with interface layer. The relative value of the L? norm of the

error E7% = ||652h||L2/||uEX||L2 x 100% versus for n =1,2,3,...,11.

Fig. 3.13. Model problem with interface layer. The convergence of E7'

n =1,2,...,11 for various orthotropies €. [1]

e
et e
L ||uEX 1
L
n e=1 e=0.1 e =0.01 e =0.001 e = 0.0001 e = 0.00001
1 20.5214 % 20.9277 % 21.1552 % 21.2441 % 21.2787 % 21.2855 %
2 5.31980 % 5.89910 % 6.54323 % 6.83128 % 6.93297 % 6.96465 %
3 1.35197 % 1.86176 % 3.05850 % 3.67595 % 3.89132 % 3.96035 %
4 0.33965 % 0.56622 % 1.64072 % 2.49834 % 2.81965 % 2.92416 %
5 0.08505 % 0.15319 % 0.68628 % 1.55962 % 1.99624 % 2.14435 %
6 0.02126 % 0.03917 % 0.21439 % 0.78512 % 1.30863 % 1.51338 %
7 0.00531 % 0.00985 % 0.05744 % 0.29076 % 0.75042 % 1.01904 %
8 0.00132 % 0.00246 % 0.01462 % 0.08437 % 0.33773 % 0.63433 %
9 0.00033 % 0.00061 % 0.00367 % 0.02202 % 0.11284 % 0.33711 %
10 0.00008 % 0.00015 % 0.00091 % 0.00556 % 0.03113 % 0.13639 %
11 0.00002 % 0.00003 % 0.00022 % 0.00139 % 0.00799 % 0.04195 %
3.0 T T T T T T T T T T T T T T
20F —
1.0 —
E L 4
E OO — -
()
= L 4
kS
é 1.0 —
g [|[G—0=e= ]
20NO0—0ge=0. i
20 O—e=0.01
|| e=0.001 ]
ol V—V & =0.0001 ]
| >—1> & = 0.00001 ]
5.0 ] | ] | ] | | ] | ] | ] ] ]
1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 3.0
Iogm(hz)

el
2

versus ho = 2%,
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From the convergence curve as shown Fig. 3.11 in terms of energy norm, it can
be seen that the solutions from different orthotropies converge in the same manner
before the 7th mesh refinement is reached since the error contribution from €2, is
dominant. However, the solutions in the cases of ¢ = 0.0001,0.00001 converge in a
different way once the error from €25 is killed and the error from €2; becomes dominant
after the 7th mesh refinement.

Fig. 3.12 is the illustration of convergence curve in H! norm. It can be seen that
for low orthotropies with € equal to 1 and 0.1, the error measured in H*! norm from €2,
is dominant for all the mesh refinements, and hence the H! convergence is basically
determined by the error from §25. As the orthotropies go up, the error contribution
from €2; becomes dominant quickly and the convergence behavior is controlled by
the error from €2;, which is similar to Example 3.1 as shown in Figs. 3.2, 3.3, and
3.4. Note that for ¢ = 0.01,0.001,0.0001 the number of mesh refinements for the
error from €2; to become dominant and the error from {2, to be killed is 3, 2, and
1 respectively. In the case of ¢ = 0.00001, the error from €2; is dominant for all the
mesh refinements, which means the convergence behavior is completely controlled by
the error in highly orthotropic €2;. Similar convergence behavior can also be observed
in the case of the error measured in L? norm as shown in Fig. 3.13.

The explicit estimator as defined in example 3.1 is employed to observe the
asymptotic behavior in the existence of interface layer as shown in Figs. 3.14, 3.15,
and 3.16 with calibration carried out on domain €2; and €2y separately. It should be
noted that explicit estimator is not necessary an upper bound since the calibration
does not enforce the continuity condition at the interface. Again we can observe that
the effectivity index of the L? norm estimator does not converge 1 due to the pollution
error. If we employ the interpolated exact solution, we can see that the effectivity

Eg( PL

index of €} converges to 1 with the refinement of the mesh as shown in Fig. 3.17.



Fig. 3.14. Model problem with interface layer. Effectivity indices /{QELXP L — gbXPLy | |e A

for error measured in energy norm with respect to various mesh size hy =

kg

and different orthotropies = [1]
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Fig. 3.15. Model problem with interface layer. Effectivity indices Iigfp L =
. . . . b
%%’fp Ly | |e SR, H e for error measured in H; norm with respect to various mesh size hy = 57,
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Fig. 3.16. Model problem with interface layer. Effectivity indices x
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Fig. 3.17. Model problem with interface layer. Effectivity indices x
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3.3 A posteriori error estimation of the two model problems

Above, we have analyzed the effectivity indices of explicit and ZZ estimators for the
simplest possible model problems, Example 3.1 and 3.2. We will now employ exact
Neumann element residual estimator and Neumann subdomain residual estimator
for the above-mentioned two model problems. In the computations below we em-
ployed finite element solution computed by employing a direct solver as in the earlier
computations for the thermal battery model problem.

It can be seen that for the two model problems in the case of high orthotropy the
boundary layer has the characteristic thickness of \/% . 'To obtain a converged finite
element solution, the element size along the direction of heat conduction coefficient
k, = € has to be about the same magnitude of the characteristic thickness as shown
in Table 3.4.

It is known that for the implicit estimator an element residual problem needs
to be solved. For Neumann element/patch residual estimator, the residual problem
usually has pure Neumann boundary condition, which can pose a problem in calcu-
lating the exact estimators due to the boundary layer effect. The conjecture is that to
obtain the exact estimator for Neumann element residual estimator the mesh size has
to be about the magnitude of the characteristic thickness in solving the local residual
problem. However for Neumann subdomain residual estimator, there is no boundary
layer problem since the local residual problem has homogeneous Neumann boundary

condition.
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In order to check our conjecture, we considered the coarse meshes with two levels
of refinement for both model problems employed overkill to obtain the exact Neumann
element /subdomain residual estimators using overkill meshes shown in Figs. 3.18 and
3.19 for boundary layer and interface layer problems respectively. One type of overkill
mesh is to uniformly refine each element three times and the polynomial order is 8
while the other type of mesh is obtained by adaptively refining the element edges
having the boundary layer with polynomial order equal to 3. For the adaptive mesh,
the smallest element size is Z—% and therefore for orthotropy 'Z—z lower than 5,000,
namely ¢ < 0.001, the estimator should be exact as indicated in Table 3.4. The
exact Neumann element /subdomain residual estimators based on two types of overkill
meshes are listed in Tables 3.8 and 3.9. It can be seen that the boundary layer has

negligible effect on the accuracy of the exact estimators and hence the uniform overkill

mesh can be employed to obtain the exact estimator.



a) b) C) ez

Fig. 3.18. Model problem with boundary layer. a)Mesh for linear finite element solution; b)Uniform mesh for exact Neumann
element /subdomain residual restimator estimator. The uniform mesh with polynomial order equal to 8 is obtained by refining
uniformly three times for the finite element solution mesh; c¢)Adpative mesh for exact Neumann element/subdomain residual
estimator. The adaptive mesh with polynomial order equal to 3 is obtained by refining adaptively five times for the finite element
solution mesh along the e direction which results in the smallest size g—% [1]

¢S



Table 3.8. Model problem with boundary layer. Exact Neumann element residual estimator %X‘:‘m and exact Neumann subdomain

residual estimator %gﬁg&n’n based on uniform and adaptive overkill meshes. The uniform mesh is from the three further uniform

refinements of the finite element solution mesh with polynomial order equal to 8 while the adaptive mesh is obtained by refining

adaptively the finite element solution mesh along the direction of € five more times with polynomial order equal to 3. For adaptive

overkill mesh the smallest mesh size along the e direction is g—%

Neum Neum,II
%Ah %Subd

Uniform Mesh

Adaptive Mesh

Uniform Mesh

Adaptive Mesh

1 7.31353267E — 01 7.31355446E — 01 7.02505141E — 01 7.02505104E — 01
0.1 2.78092205E + 00 2.78097757E + 00 2.37541117E + 00 2.37540563E + 00
0.01 8.97043367E + 00 8.97200650E + 00 6.27822847E + 00 6.27871385E + 00

0.001 2.81455046E + 01 2.81794157E + 01 1.68732637E + 01 1.69207737E + 01
0.0001 8.86745092E + 01 8.87515113E + 01 4.88178399E + 01 4.95042831E + 01
0.00001 2.80258825E + 02 2.80298061E + 02 1.50865404E + 02 1.51646393E + 02

€s



) b) o bbb b

Fig. 3.19. Model problem with interface layer. a)Mesh for linear finite element solution; b)Uniform mesh for exact Neumann
element /subdomain residual restimator estimator. The uniform mesh with polynomial order equal to 8 is obtained by refining
uniformly three times for the finite element solution mesh; c¢)Adpative mesh for exact Neumann element/subdomain residual
estimator. The adaptive mesh with polynomial order equal to 3 is obtained by refining adaptively five times for the finite element
solution mesh along the e direction which results in the smallest size g—% [1]

[



Table 3.9. Model problem with interface layer. Exact Neuman element residual estimator %X‘:‘m and exact Neumann subdomain

residual estimator %gﬁg&n’n based on uniform and adaptive overkill meshes. The uniform mesh is from the three further uniform

refinements of the finite element solution mesh with polynomial order equal to 8 while the adaptive mesh is obtained by refining
adaptively the finite element solution mesh along the direction of € five more times with polynomial order equal to 3. For adaptive
overkill mesh the smallest mesh size along the e direction is g—%

Neum Neum,II
%Ah %Subd

Uniform Mesh

Adaptive Mesh

Uniform Mesh

Adaptive Mesh

1 3.92759857E — 01 3.92758113E — 01 3.88612634FE — 01 3.88611413E — 01
0.1 3.95323230E — 01 3.95345453E — 01 3.90233982E — 01 3.90243604E — 01
0.01 4.15460932E — 01 4.15631419E — 01 3.96739178E — 01 3.96794280E — 01

0.001 5.75903418E — 01 D.77373696E — 01 4.50614912E — 01 4.510564192E — 01
0.0001 1.38276655E + 00 1.38838225E + 00 8.10576902E — 01 8.12980909E — 01
0.00001 4.20828043E + 00 4.22367882E + 00 2.27950171E + 00 2.28799193E + 00

qq
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Figs. 3.20 and 3.21 are the effectivity indices of Neumann element residual esti-
mator €X°"™ and Neumann subdomain residual estimator %?ﬁﬁjﬁ” for the one battery
domain problem. The effectivity indices for both exact estimators are equal to 1 for
first level of mesh refinement because in this case the error estimation recovers the
exact error obtained from the overkill. In comparison of the convergence curves as
shown in Figs. 3.2, 3.3, and 3.4, it can be seen that the effectivity indices for both
estimators are close to 1 once the finite element solution is in asymptotic range. For
instance for e = 0.001, i.e. the orthotropy equal to 5000, the finite element solution
starts to converge at the 4th level of refinement and the corresponding effectivity in-
dices for both exact estimators are close to 1.9. At the 5t¢h level of refinement when
the convergence behavior becomes significant, the effectivity indices for both exact
estimators are close to 1.5. It can be expected that the effectivity indices for both
estimators can be close to 1 at the 6th level of refinements where the finite element
solution falls into asymptotic range. This fact is obvious in the case of € = 0.01 in
which the finite element solution is asymptotic range at the 5th iteration and the cor-
responding effectivity indices for both estimators are close to 1. It can be anticipated
that for the extreme orthotropies with € equal to 0.0001 and 0.00001 the effectivity
indices for both estimators will be close to one once the finite element solution is in
the asymptotic range.

Figs. 3.22 and 3.23 illustrate the effectivity indices of Neumann element residual
estimator €X°"™ and Neumann subdomain residual estimator €.y for the two bat-
tery domain problem. It can be seen that the convergence curve measured in energy
norm as shown in Fig. 3.14 cannot provide any indication about the performance

of the two estimators since the curve indicates that the finite element solution is in

asymptotic range for all levels of mesh refinements.
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Fig. 3.20. Model problem with boundary layer. The effectivity indices of Neumann element

residual estimator %X‘;um with respect to different orthotropies and mesh sizes. [1]
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Fig. 3.21. Model problem with boundary layer. The effectivity indices of exact Neumann

subdomain residual estimator %gﬁg?’II with respect to different orthotropies and mesh sizes.

1]



Effectivity index

14.0

13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0

O—-C0¢=1
O—e=0.1
O—=e=0.01
N—\e=0.001
V—V £=0.0001
>—>¢=0.00001

A4

0_0|||||||||||||||||||||||||||||||||||

-0.25

0.75

0.50

A\ Y L%
0.25 0.00
Iogw(hz)

-0.50

-0.75

58

Fig. 3.22. Model problem with interface layer. The effectivity indices of exact Neumann

element residual estimator %X‘;um with respect to different orthotropies and mesh sizes. [1]
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Fig. 3.23. Model problem with interface layer. The effectivity indices of exact Neumann

Neum,IT

subdomain residual estimator € Subd
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with respect to different orthotropies and mesh sizes.
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CHAPTER IV

GUARANTEED ERROR ESTIMATION FOR SEMI-DISCRETE SOLUTIONS
OF PARABOLIC PROBLEMS BASED ON ELLIPTIC RECONSTRUCTION

4.1 Model problem, semi-discrete solutions, and postprocessing based on elliptic

reconstruction

Let €2 be a bounded two-dimensional polygonal domain which consists of several ma-
terial subdomains, 2;, i = 1, ..., nsubd, with boundary 0f) consisting of the Dirichlet
part I'p, and the Neumann part I'y, namely, 0Q = I'p UT'y, and I';; o 08; N 08Y;,
the intersection of 0€);, and 0€2;, which could be empty. Let Qr L0 x (0,T) denote
the space-time domain. We will be interested in solving the transient heat conduction

problem with the orthotropic Laplacian in €2 given by:

Find u = u(x,t), such that

~V - (K; Vu) + 7% = f in QLY Qx(0,T), i=1,..,nsubd (4.1a)
u=0 on I'px(0,7) (4.1Db)
K;(s)Vu-n=g—a(s)u on (I'yNoy) x (0,T) (4.1¢)
u(-,00=0 in Q (4.1d)

where n is the exterior unit normal.

From [49] there exists a solution u of (4.1), which satisfies the variational equation

(V%W)LZ(Q) + Ba(u,v) = L(v) Yo € u(Q), vt € (0.T) (4.2)
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where
au dot nsubd au
(7§>U)L2<m =2 /Q Tige? (4.3)
i=1 i

The semi-discrete finite element solution is defined as the solution of the following
problems

Find ugy € SR, such that
0 = Yo € S% v 0, T 4.4
(o tgy W)y + Balugg 1) =20)  WeSK.  VeOT)  (44)

where Sih C wu(€?) is the finite element space defined using tensor-product rectangular
elements of degree p over mesh Ay,
The post-processed or reconstructed solution 4 is defined by, [36]

Find @ € w(Q?) such that

N 0
Ba(t,v) =L(v) — (vauszh,v)m(m vt e (0,7) (4.5)

It follows that
(9u52
Ba(t,v) = L(v) — (77]1’”)9(9) = %Q(Uszh,v) Vv e Sy, , vVt € (0,7T)
(4.6)
and hence ugz is the finite element approximation of 4. In [36,37] @ is called post-
h

processed solution and in [50] the elliptic reconstruction.

Theorem 4.1. For any time instant 7"(0 < 7" < T'), there exists a constant C' >

0 which depends on K(u) where K(u) = Og%g?/K(u,t) and K (u,t) o ||| goer +
, and 2

5¢» and sufficiently small £,

||%|| mr+1, such that for sufficiently smooth w and

A) For p > 2 [36], and [ = 0, 1:

llw — @) | < CHPFAH " logh|™ (4.7)
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where i and 7 are

2 ifp>3 0 ifp=2

=I
Il
=3
Il
—~
=~
[e’e)
SN—

1  otherwise 1  otherwise

where |[v][0 % [Jo]l> % / Vo2 and [[o]|; / Vol
Q Q

B) For p=1[37],and | =0, 1:
l|lu — @] = Ch*|logh| (4.9)

For the details of the proof see [36] and [37].
Recall now, standard Galerkin error bound for the semi-discrete solution Usy
[49]
[lu = sy |l < Ch*t=1 1 =0,1 (4.10)

Employing the triangle inequality, we have
& —usy (g —|lu—a|lm| < |lu—ug m <o —usy ||+ [Ju—al|m (4.11)
h h h

and neglecting ||u — ||z, according to (4.7), and (4.9), we obtain the asymptotic
estimates,

||u—u52h||Hz R~ ||ﬂ—u52h||Hz, p>2—1, 1=0,1 (4.12)

4.2 Upper bound in space-time norm for the exact error in semi-discrete finite ele-

ment solutions

Let

T T
[olle = \//0 IvAvll: dt+/0 (T —t) [vlls dt (4.13)
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Let denote the exact error of the parabolic problem by e, o —u 5o in order to be
h

different from the exact error egr for elliptic problem. Then we have:
h

Theorem 4.2. Under the assumptions which are sufficient for existence of solutions

of (4.2)

llewlle < Gpx &

T
\/ | @bl g i de+ T FRON  (@1)
0

nsubd
where ej,(0) denotes the exact error at time instant ¢ = 0 and |[,/yv| |22 o Z IvaE |22
i=1

Proof: Substracting equation (4.5) from the equation (4.2), we have

Let v = ep,, we have

Ld

5 il IVenll,, + Balu —i.en) =0 Wt € (0,7) (4.16)

It can be shown that

~

~ 2 ~
ol — i, 1) = Blen +usy —ier) = [lenlly + Balug, — . en)
2 A~ ~ ~
= [len|lo + Bolusy —d,u—d+a—ug )
h h
2 . 2 . .
= llenlly — [[a — usy, IFy +Bolusy —i,u—1a) (4.17)
2 ~ 2 ~ A~
= llenlla = [lo —ugz |l + Balusy —u+u—i,u—1a)
h h
2 R 2 12 ~
= [lenlla = [lt = ugg [la + |lu = ally = Balen, u —a)

Then we obtain

. 1 2 2 . 2
Bo(u —d, en) = 5 ([lenllu + llu = ally — |2 = usg_ ) (4.18)
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Therefore (4.16) becomes
d 2 2 ~112 ~ 2
gIvaenlle +llenlla + [lu = ally, = [lt —ugy la (4.19)

Take time integration fOT fOT on both sides of (4.19) and employ Fubini’s theorem, we
have

/ (||ﬁeh||2z+<T—t>||eh||;)dt+/ (T — t)lJu—alf} dt
0 0 (4.20)

T
R 2
= [ @ =tlaugy Ifs dt+ 7T O
0

By dropping the term fOT(T —t)||u — @[5 dt, (4.20) immediately yields (4.14).

O

Remark 4.1. Note that here we take double integration over time fOT fOT in order to
have a norm similar to the one defined in [31-33] which is called space-time sf-norm

as shown below

0] Mif\// 5l dt+/( —t) (o]l dt (4.21)

The introduction of space-time s-norm in [31-33] is for the purpose of employing
duality approach in order to have upper bound. It can be seen that the only difference

between ||v||¢ and |[v]|, is that there is a factor of 5 for the L? norm of ||\/§v||i2
Remark 4.2. When ||u — 4l|q, is superconvergent the upper bound €gx is sharp.

To get a computable estimate, we replace the exact @ by its approximation @ sy

where Aj,/is obtained from nested subdivision of the mesh A, to obtain

def
Sp+k = \// T—1) |usp+k usy, o, dt + T ||/ven(0 )||L2 (4.22)

which is not necessary a guaranteed upper bound.
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4.3 Numerical examples

Let us analyze the performance of the upper bound €gx and its computable version

¢ SZ:],C using examples.

Example 4.1. Heat transition problem in one dimension [31]. We consider the equa-

tion
ou  0*u
E - w = .f on QT = (0>L) X (0>T] (423&)
u(z,0) =0, 0<z <L (4.23b)
w(0,8) = u(L,t) =0 (4.23¢c)

with L =4, T'=4, and f(z,t) such that

2 2,
u(z,t) = % sin (ﬂ-L—:E) (1- e_ﬂff) (4.23d)

Fig. 4.1 shows ||u||g:,{ = 0,1, for 0 <t < T = 4. We choose the time instants

t==L I

= 15> 3 at which the solution reflects obvious transient behavior to study the relevant

convergence behaviors.

Fig. 4.2 illustrates the superconvergence properties of the elliptic reconstruction

T T

measured in the energy norm and L? norm at time instant ¢ = 5> 3 for the semi-

discrete solution ugr ~ computed using elements of degree p = 1, 2, and 3, and uniform
h

L
2n

meshes with mesh size h = n = 1,2,3, and 4 respectively. It can be seen that
the convergence rate of ||u — 4l|y is 2, 4, and 5 for p = 1,2, and 3 respectively while
the convergence rate of ||lu — uSZhH““ is 1, 2, and 3. For L? norm, ||u — 4||z2 and
||u— usy ||z have the same convergence rate of 2 in the case of linear element, which
means that the values of 4 are not superconvergent for p = 1. For quadratic element,

||u— 1|2 has a convergence rate of 4 while |[u—wugz ||z is 3. For cubic element, the
h
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Fig. 4.1. Heat transition problem in one dimension. Plots of evolution of energy norm ||u|l,
and L? norm |[u]|,, with respect to time t. Note that 7" = 4.

convergence rate of [lu — |2 is 6 while ||[u —ugz |[z2 is 4. It can be seen that the
h

elliptic reconstruction does achieve the superconvergence behavior as shown in (4.7)

and (4.9).

Remark 4.3. In this paper discontinuous Galerkin method [51,52] was employed
to obtain the “exact” semi-discrete finite solution Usy by adopting overkill mesh in
time. The overkill mesh is obtained by the use of finer refinement in time intervals, the
polynomial order up to 8, and the geometric refinement towards to the singularity at

t = 0 at which time instant the initial and boundary conditions are suddenly applied.
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Fig. 4.2. Heat transition problem in one dimension. a) [|u— ||y, and [Ju —ugy ||y at t = L
h
A _ T, A _ T.
b) [lu—allzz and Jlu —ugp [Ir2 at ¢ = {g; ¢) |lu — Gllu and [lu —ugy [lu at ¢t = 33 d)

||lu—1l|r2 and ||u—u52 ||r2 at t = %, for the semi-discrete finite element solutions of degree
h

p =1,2, and 3 with mesh size h def

L

on

about u — @ measured in energy norm and L? norm while the solid line about u — (T
h

n =1,2,3, and 4 respectively. The dashdot line is
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Table 4.1 gives the space-time ¢-norm of the semi-discrete finite element solution

of Il

discrete solution of degree p = 1, 2 and 3, computed using uniform meshes with mesh

«» and the relative value of the 6-norm of the error ||e, «» for the semi-

| |Usgh

size h = 2%, n = 1,2,3, and 4 respectively. The uniform meshes are denoted as

Mesh I, Mesh II, Mesh III, and Mesh IV, which corresponds to the refinement level

n =1,2,3, and 4 respectively.

Table 4.1. Heat transition problem in one dimension. The %¢-norm of the semi-discrete

solution [[ugz ||, and the relative value of ¢-norm of the error |[len||, / |||, for the
h
semi-discrete solutions of degree p = 1, 2 and 3, computed using uniform meshes with
. _ L _ .
mesh size h = 57, n = 1,2,3, and 4 respectively.
llull, = 4.18817232
Mesh I Mesh II Mesh 111 Mesh IV
[lenll [lenll [len !l [lenll
6 € € €
p | luge |l luge I lluge I lluge I
sk e | Tl sh e | Tl sl | Tl s e | Tl
1| 3.89636 | 32.33888% | 4.11854 | 15.43148% | 4.17095 | 7.62816 % | 4.18387 | 3.80335 %
2 | 417730 | 6.15057 % | A4.18747 | 1.54107% | 4.18812 | 0.38529 % | 4.18816 | 0.09632 %
3| 418798 | 0.80787% | 4.18816 | 0.10197 % | 4.18817 | 0.01278 % | 4.18817 | 0.00160 %
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Table 4.2 shows the effectivity index

K= (4.24)

for the upper bound €gx based one the exact solution @ of the elliptic reconstruction
problem, for the semi-discrete finite element solution sy computed using elements
of degree p = 1,2, and 3, and uniform meshes with mesh size h = 2%, n=1,2,3, and
4 respectively. It can be observed that the effectivity indices are all close to 1 even

for the case where the relative error is over 32%.

Table 4.2 also lists the effectivity index

Kopih o (4.25)
+k = .
S lenlle

for the computable estimate @SZZ? where the finite element solution {LSZ:],“ of the
elliptic reconstruction problem is computed with the elements of higher degree p + k
(p method), the finer mesh Ay from the nested subdivision of the original mesh Ay,
(h method), and the combination of the two (hp method). It can be seen that the
effectivity indices based on the computable @SZZ? are all close to 1. Clearly as the
mesh is refined and the element order is increased, the effectivity indices from the

computable € gy converge to the ones corresponding to the exact Cpx.
h/



Table 4.2. Heat transition problem in one dimension. The effectivity indices x based on the exact solution @ and
Kgpth = @Sz+k/||€h ¢ based on the finite element solution ﬁsg““ (k =1,2,3, and Ay from the nest subdivision of the
Aps 19 h’

original mesh Ay) of elliptic reconstruction problem obtained with Ap method, for the semi-discrete finite element solution
uge computed using elements of degree p = 1, 2, and 3, and uniform meshes with mesh size h = £, n=1,2,3, and 4
h

on»
respectively.
(S Mesh I Mesh IT Mesh 11T Mesh IV
Aps
Mesh p+k p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3
1 _ _ _ _ _ _ _ _ _ _ _ _
Mesh I 2 1.0122 - - - - - - - - - - -
3 1.0294 | 0.9942 - - - - - - - - - -
4 1.0304 | 1.0027 | 0.9957 - - - - - - - - -
1 0.8902 - - - - - - - - - - -
Mesh 11 2 1.0289 | 0.9711 - 1.0024 - - - - - - - -
3 1.0304 | 1.0028 | 0.9929 | 1.0073 | 0.9980 - - - - - - -
4 1.0304 | 1.0030 | 1.0007 | 1.0073 | 1.0002 | 0.9988 - - - - - -
1 0.9968 - - 0.8716 - - - - - - - -
Mesh 11T 2 1.0303 | 1.0010 - 1.0070 | 0.9684 - 1.0006 - - - - -
3 1.0304 | 1.0030 | 1.0006 | 1.0073 | 1.0002 | 0.9922 | 1.0018 | 0.9995 - - - -
4 1.0304 | 1.0030 | 1.0007 | 1.0073 | 1.0002 | 1.0000 | 1.0018 | 1.0000 | 0.9997 - - -
1 1.0221 - - 0.9751 - - 0.8674 - - - - -
Mesh IV 2 1.0304 | 1.0029 - 1.0073 | 0.9982 - 1.0018 | 0.9682 - 1.0001 - -
3 1.0304 | 1.0030 | 1.0007 | 1.0073 | 1.0002 | 0.9999 | 1.0018 | 1.0000 | 0.9922 | 1.0005 | 0.9999 -
4 1.0304 | 1.0030 | 1.0007 | 1.0073 | 1.0002 | 1.0000 | 1.0018 | 1.0000 | 1.0000 | 1.0005 | 1.0000 | 0.9999
¢
K= ﬁ 1.0304 | 1.0030 | 1.0007 | 1.0073 | 1.0002 | 1.0000 | 1.0018 | 1.0000 | 1.0000 | 1.0005 | 1.0000 | 1.0000

69
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Example 4.2. Two dimensional synthetic problem[53]. We consider the problem

%—%—%:f on Qpr=Qx (0,7 (4.26a)
u=0 on 0N (4.26Db)
u(x,y,0) = 1006_800(”6”“)2(3’_3’“)2sin(mc)sinz(7ry) (4.26¢)
The exact solution is
upy(z,y,t) = 100e ~10t=800(z—2m)*(y=ym)* g (72 )sin? (ry ) (4.26d)

Note that Q < (0, L) x (0,L), L=1, T = 0.2, and %, = y = 0.1

Fig. 4.3 shows the evolution of the exact solution measured in energy norm and

T T

L? norm respectively. We choose the time instants t = 15> 3 at which the solution

contour as shown in Fig. 4.4 reflects obvious transient behavior.

110 — 1 1. 1. | 1 1. 1t 1 [ T T T T [ T T T 1

100
90
80

70

60 energy norm
50
40
30

20

L2 norm

10

1 1
0.05 0.10 0.15 0.20

co
OrTTT
o

Fig. 4.3. Two dimensional synthetic problem. Plots of evolution of energy norm ||ul|, and
L? norm |[u]|,, with respect to time t. Note that T'= 0.2.
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Fig. 4.4. Two dimensional synthetic problem. Plots of u(z,y,t) at time instants: a) t = {¢;
b)t=1.

Fig. 4.5 is the illustration of superconvergence properties based on elliptic re-

construction in terms of energy norm and L? norm at time instant ¢ = lT—G, %, for the

semi-discrete solution ugy computed using elements of degree p = 1, 2, and 3, and
h

L

uniform meshes with mesh size h = 5, n = 1,2,3, 4, and 5 respectively. It can
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be seen that for energy norm the convergence rate of ||u — l]q, is 1.9, 4, and 4.9 for
semi-discrete finite element solution u SR, of element order p = 1, 2, and 3 respectively
while the convergence rate of ||u — USZhHOu is 0.8, 2.1, and 3.0.

For L? norm, in the case of linear element ||u — @||z2 has convergene rate of 1.8
while ||u — usy |2 converges at the rate 2.0 . Clearly there is no superconvergence
property for L? norm in the case of linear element. For quadratic element, ||u —
U||z2 has a convergence rate of 4 while ||u — UthHLZ is 3.1. For cubic element, the

convergence rate of ||u — a|.2 is 6.0 while [Ju — ugp |12 is 3.9.
h

Remark 4.4. It should be noted that the improved convergence rate of the elliptic
reconstruction solution happens only under the condition that the classical semi-
discrete finite element solution is in asymptotic range. However even when the finite
element solution Usy is out of asymptotic range, the magnitude of the term u — @
measured in energy norm and L? norm is much smaller than the corresponding terms
of u—u S5 -

Table 4.3 gives the space-time ¢-norm of the semi-discrete finite element solution
||u52h ||, and the relative value of the 6-norm of the error ||e| |%/| |ul|, for the semi-
discrete solution of degree p = 1, 2 and 3, computed using uniform meshes with mesh

2%, n = 1,2,3, and 4 respectively. Note that the mesh type, namely, Mesh

size h =
I, II, III, and IV, corresponds to the refinement level n. It can be seen that the
semi-discrete finite element solution starts converging only when finer meshes, such
as Mesh III and Mesh IV, are employed. In the case of coarse mesh, such as Mesh I
and II with element degree of p = 1, the relative error is close to 100%.

Table 4.4 shows the effectivity index k based on the exact solution @ of the elliptic

reconstruction problem, for the semi-discrete finite element solution ugr , computed
h

using elements of degree p = 1,2, and 3, and uniform meshes with mesh size h = 2%,
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Fig. 4.5. Two dimensional synthetic problem. a) ||u — ||y and ||u — ugn [l at t = 1T—6; b)
h

[lu—llz2 and [[u—ugy |[z2 at t = g; ©) |lu—ally and [Ju—ugy [l att = F;d) [u—dllz:

and ||u —ugr ||z2 at t = L, for the semi-discrete finite element solutions of degree p = 1, 2,
sy, 1L 2

and 3 with mesh size h & L 5 = 1,2,3, 4 and 5 respectively. The dashdot line is about

DICR)
u — 1 measured in energy norm and L? norm while the solid line about u — uge .
h
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Table 4.3. Two dimensional synthetic problem. The %-norm of the semi-discrete

solution [[ugs ||, and the relative value of €-norm of the error ||eh||%/||u||%, for the
h

semi-discrete solutions of degree p = 1, 2 and 3, computed using uniform meshes with

mesh size h = 2%, n =1,2,3, and 4 respectively.

|lull, = 938532401

Mesh 1 Mesh 11 Mesh III Mesh IV

llenll,
[ull,

llenll,
[ull,

lenll,
[ull,

llenll,
[ull,

P | llusg g luss 1l luss 1l luss 1l

1 0.80256 99.85850 % 3.65931 93.16247 % 8.29446 47.43671 % 8.90835 35.58213 %
2 4.27059 89.42646 % 7.50215 60.68975 % 9.01966 34.35868 % 9.34872 11.69422 %
3 6.50270 72.59938 % 7.90165 55.99704 % 9.34128 14.34975 % 9.38465 1.94138 %

n = 1,2,3, and 4 respectively. It can be observed that the effectivity indices are all
close to 1 even for the case where the relative error is close to 100%.

Table 4.4 also lists the effectivity index KJSZ:I,C from the computable ¢ SZ:],C where
the finite element solution asiff of the elliptic reconstruction problem is computed
by hp method, which means o SZ:],C is obtained either by increasing the elements order
up to p + k, or adopting the nested subdivision of the original mesh A, for the
semi-discrete finite element solution sy of degree p, or the combination of both
procedures. It can be seen that the effectivity indices based on the computable € SZ:],C
are all close to 1 as finer mesh and higher order polynomials are adopted to compute
{LSZ:I,“’ and the effectivity indices from the computable @SZZ? converge to the ones
corresponding to the exact €gx. Note that in the case of Mesh I with p = 1 where
relative error is close to 100%, if we only use quadratic element to compute asiff’
we have the effectivity index around 0.5. Likewise, if we adopt one level of nested

subdivision of the original mesh Aj, without increasing the polynomial order, we can

also expect the effectivity index close to 0.5.



Table 4.4. Two dimensional synthetic problem. The effectivity indices x based on the exact solution @ and Rgpth =

Coprr /llen

¢ based on the finite element solution ﬁsg““ (k = 1,2,3, and Ay from the nest subdivision of the original

mesh Ay) of elliptic reconstruction problem obtained with Ap method, for the semi-discrete finite element solution (O
h

respectively.

computed using elements of degree p = 1, 2, and 3, and uniform meshes with mesh size h = 2%, n = 1,2,3, and 4
i gp i Mesh I Mesh IT Mesh IIT Mesh IV
Aps
Mesh p+k p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3
1 - - - - - - - - - - - -
Mesh I 2 | 0526 | - - - - - - - - - - -
3 | 07094 | 06135 | - - - - - - - - - -
4 | 07475 | 0.6670 | 0.3754 | - - - - - - - - -
1 | 04806 | - - - - - - - - - - -
MeshIT | 2 | 0.8069 | 0.7469 | - 07728 | - - - - - - - -
3 | 08399 | 0.7915 | 0.6518 | 0.8133 | 0.4127 | - - - - - - -
4 | 09654 | 0.9539 | 0.9269 | 0.9599 | 0.8926 | 0.8671 - - - - - -
1 | 08889 | - - 08700 | - - - - - - - -
Mesh IIT | 2 | 0.9465 | 0.9297 | - 0.9380 | 0.8327 | - 07043 | - - - - -
3 | 0.9942 | 0.9902 | 0.9830 | 0.9932 | 0.9747 | 0.9656 | 0.9579 | 0.9008 | - - - -
4 | 1.0029 | 1.0010 | 0.9994 | 1.0032 | 0.9983 | 0.9936 | 0.9972 | 0.9794 | 0.9208 | - - -
1 |oour| - - 09319 | - - 0.6706 | - - - - -
Mesh IV | 2 | 0.9972 | 0.9939 | - 0.9966 | 0.9828 | - 0.9714 | 0.9282 | - 0.9418 | - -
3 | 1.0036 | 1.0010 | 1.0007 | 1.0039 | 1.0001 | 0.9957 | 1.0001 | 0.9850 | 0.9546 | 0.9942 | 0.9675 | -
4 | 1.0037 | 1.0018 | 1.0010 | 1.0041 | 1.0005 | 0.9962 | 1.0008 | 0.9863 | 0.9626 | 0.9954 | 0.9794 | 0.9164
5
K= HS“% 1.0038 | 1.0022 | 1.0013 | 1.0041 | 1.0008 | 1.0006 | 1.0010 | 1.0004 | 1.0000 | 1.0007 | 1.0000 | 1.0000
11g ()

6L
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Example 4.3. L-shaped domain problem. We consider the L-shaped domain problem

as shown in Fig. 4.6a

ou 0*u 0%
E_W_a—y?:f on Qp =Qx(0,7] (4.27a)
u=0 on I}y (4.27Db)
ou  Ougy

2 = r 4.2
on on O N (4.27c)
u(z,y,0) =0 (4.27d)

The exact solution is
AN
upy(r,0,t) = 1073 sin (§) sin(37t) (4.27e)
Note that T'= 0.5, L = 1, and r = /2% + y?
A
>
L 1—;“ L
N
0
= Q X
B T
- I
a) Ly b)

Fig. 4.6. L-shaped domain problem. a)The problem domain and the boundary conditions;
b)Mesh employed to obtain overkill solution.

Fig. 4.7 shows the evolution of the exact solution measured in energy norm and

L? norm respectively. We choose the time instants t = lT—G,% at which the solution
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reflects obvious transient behavior.
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Fig. 4.7. L-shaped domain problem. Plots of evolution of energy norm ||u]|, and L? norm
|[ul , with respect to time t. Note that 7' = 0.5.

Fig. 4.8 is the illustration of superconvergence properties based on elliptic re-

construction in terms of energy norm and L? norm at time instant ¢ = 1T_6> %, for the
semi-discrete solution ugr computed using elements of degree p = 1, 2, and 3, and
h

L
2n7

uniform meshes with mesh size h = n = 1,2,3, and 4 respectively. At ¢t = 1T—6, it
can be seen that for energy norm the convergence rate of ||u — ||y, is 0.76,0.71, and
0.69 while the convergence rate of ||u — u52h||ou is 0.36, 0.35, and 0.34 corresponding
to element order p = 1,2, and 3 respectively. For L? norm, ||u — @||z2 has conver-
gence rate 0.76, 0.71, and 0.69 while ||u — usy, ||z converges at the rate 0.83, 0.74
and 0.71 for element order p = 1,2, and 3 respectively. Similar convergence rate can
be observed at time instant ¢t = %

It can be noted that in the case of energy norm u — @ has improved convergence
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Fig. 4.8. L-shaped domain problem. a) ||u — 4|y and ||u—u52h||ou at t =L b) |ju— |

and ||u—uS£h||Lz at t = 1T—6; ¢) ||u — al]a, and ||u—u52h||ou at t = %; d) ||u — 4|2 and

llu—ugr ||z2 at t = L, for the semi-discrete finite element solutions of degree p = 1,2, and
S Ay 2

3 with mesh size h & 2%, n =1,2,3, and 4 respectively. The dashdot line is about u — 4
measured in energy norm and L? norm while the solid line about u — (O
h
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rate over u — ugz . while in L? norm there is no improvement in terms of convergence.
Moreover the magnitude of the term u — 4 measured in energy norm is smaller than
u—ugy while in L? norm the magnitude of u — @& much bigger than u — Usy - Note
that the exact solution u is computed with the overkill mesh as shown in Fig. 4.6b
and with polynomial order equal to 8, and adaptive refinement is adopted around the
singularity located at the origin.

Table 4.5 gives the space-time ¢-norm of the semi-discrete finite element solution
||u52h ||, and the relative value of the ¢-norm of the error ||e| |%/| |ul|, for the semi-
discrete solution of degree p = 1, 2 and 3, computed using uniform meshes with
mesh size h = 2%, n = 1,2,3, and 4 respectively. Note that Mesh I, II, III, and 1V
correspond to the refinement level n = 1,2, 3,and 4 respectively. It can be seen that
even for finer mesh such as Mesh IV and element order p = 3, the relative error is

still about 5%.

Table 4.5. L-shaped domain problem. The %-norm of the semi-discrete solution
|lusz [l and the relative value of ¢-norm of the error ||eh||%/||u||%, for the semi-
h

discrete solutions of degree p = 1, 2 and 3, computed using uniform meshes with

. _ L _ .
mesh size h = 55, n = 1,2,3, and 4 respectively.
llull, = 5.98729130
Mesh 1 Mesh 11 Mesh 111 Mesh IV
[lenll llenll [lenll [lenll
€ € € €

p | lluge |l llugz |l llugzy_ |l llugz |l

Sa, llully, Sa, llully, Sa, llully, Sa, llully,
1| 6.08007 | 22.80031% | 6.04384 | 16.95901% | 6.02197 | 12.96582% | 6.00874 | 10.06376 %
2 | 6.02044 | 14.58408 % | 6.01365 | 11.24924% | 6.00372 | 8.77569 % | 5.99756 | 6.89181 %
3| 6.01410 | 11.35307% | 6.00400 | 8.85357% | 5.99773 | 6.95159% | 5.99383 | 5.48064 %
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Table 4.6 shows the effectivity index x based on the exact solution @ of the elliptic
reconstruction problem, for the semi-discrete finite element solution u S%, computed
using elements of degree p = 1,2, and 3, and uniform meshes with mesh size h = 2%,
n = 1,2,3, and 4 respectively. It can be observed that the effectivity indices are all
close to 1 even for the coarse mesh such as Mesh I and element order p = 1 where
the relative error is about 23%.

Table 4.6 also lists the effectivity index KJSZ:I,C from the computable ¢ SZ:],C where
the finite element solution {LSZ:],“ of the elliptic reconstruction problem is computed
by hp method, which means o SZ:],C is obtained either by increasing the elements order
up to p + k, or adopting the nested subdivision of the original mesh A, for the
semi-discrete finite element solution Usy of degree p, or the combination of both
procedures. It can be seen that the effectivity indices based on the computable € SZ:],C
are all close to 1 as finer mesh and higher order polynomials are adopted to compute

2252+k, and the effectivity indices from the computable @Sz+k converge to the ones
h! n

corresponding to the exact Cpx.



Table 4.6. L-shaped domain problem. The effectivity indices x based on the exact solution 4 and Hsp+k = C,

based on the finite element solution usp+k (k =1,2,3, and Ay from the nest subdivision of the orlglnal mesh Ah) of
h
elliptic reconstruction problem obtained with hp method, for the semi-discrete ﬁnlte element solution ugz , computed
h

using elements of degree p = 1, 2, and 3, and uniform meshes with mesh size h = n =1,2,3, and 4 respectively.

2” ’
I otk Mesh I Mesh 11 Mesh III Mesh IV
Aps
Mesh p+k p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3
1 - - - - - - - - - - - -
Mesh I 2 0.8657 - - - - - - - - - - -
3 1.0071 | 0.6425 - - - - - - - - - -
4 1.0718 | 0.7898 | 0.5507 - - - - - - - - -
1 0.7313 - - - - - - - - - - -
Mesh II 2 1.0109 | 0.6520 - 0.7904 - - - - - - - -
3 1.0922 | 0.8324 | 0.6345 | 0.9209 | 0.6247 - - - - - - -
4 1.1314 | 0.9105 | 0.7735 | 0.9806 | 0.7673 | 0.5421 - - - - - -
1 0.9397 - - 0.6678 - - - - - - - -
Mesh 111 2 1.0946 | 0.8371 - 0.9245 | 0.6340 - 0.7588 - - - - -
3 1.1439 | 0.9346 | 0.8137 | 0.9994 | 0.8084 | 0.6243 | 0.8828 | 0.6149 - - - -
4 1.1680 | 0.9801 | 0.8873 | 1.0351 | 0.8835 | 0.7602 | 0.9392 | 0.7544 | 0.5370 - - -
1 1.0529 - - 0.8595 - - 0.6421 - - - - -
Mesh IV 2 1.1453 | 0.9373 - 1.0015 | 0.8130 - 0.8862 | 0.6240 - 0.7421 - -
3 1.1757 | 0.9945 | 0.9100 | 1.0465 | 0.9066 | 0.7995 | 0.9569 | 0.7946 | 0.6182 | 0.8620 | 0.6091 -
4 1.1907 | 0.9801 | 0.9528 | 1.0684 | 0.9501 | 0.8712 | 0.9905 | 0.8677 | 0.7522 | 0.9164 | 0.7467 | 0.5339
¢
= W 1.2290 | 1.0905 | 1.0562 | 1.1235 | 1.0552 | 1.0348 | 1.0731 | 1.0342 | 1.0217 | 1.0447 | 1.0213 | 1.0135
116 ()

18
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Example 4.4. Transient diffusion problem in a thermal battery. We will also consider
the problem of the transient heat conduction in a thermal battery [19] modeled as
a problem of orthotropic transient heat conduction in the multi-material domain {2,

— 5 __
consisting of five material subdomains Q, Q@ = |J Qk, with boundary T'y = 09,
k=1

consisting of four parts Ty, 'y = |J 'y, as shown in Fig. 2.1, and ¢ € (0, 3000),
k=1
namely,

ou 1 in Qg, Qg

Yo T V- (K Vu) = f(:,t) o (4.28a)

0 elsewhere

with K, and v constant in each material subdomain €2, given below, and boundary
condition

KVu-n=g¢9:t)—a®(:,t)u on I' (4.28b)

for i = 1,2,3, and 4, where a(:,t) = o and ¢@(:,t) = ¢ are defined as fol-

lows,where
( (
0, 1= 1 0’ — 1
. 17 1= 2 X 3, 1 = 2
o) = g = (4.28¢)
2, 1=3 2, 1=3
3, 1 = 4 1’ — 4
\ \

for 0 < t < 3000, and with the initial condition

u(:,0) =0 in Q. (4.28d)
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We will consider the orthotropic case and K is constant in each €2, with value Kgf)th =

K0
and
0 KP
( (
25.0, k=1 25.0, k=1
7.0, k=2 0.8, k=2
KM =S50 k=3 KM =< 00001, k=3 (4.28¢)
02, k=4 0.2, k=4
0.05, k=5 0.05, k=5
\ \
K o
We will also consider the isotropic case in which KI('? = and the fol-
(k)
0 Ky
lowing v are employed:
(
40, k=1
18, k=2
YW =239 k=3 (4.28f)
01, k=4
0.3, k=5
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Fig 4.9 is the evolution of the overkill solution ugr . In terms of energy norm
NG

‘Gu and L? norm Huy . ‘ ‘LZ with respect to time for the isotropic, and the
Aoy

‘ ‘uS7
Az’uk
orthotropic case. Note that for the orthotropic case the solution reaches the steady
state at a slower rate compared to the isotropic case. For both the isotropic case
and the orthotropic case, the solution reflects significant transient behavior for time
t < 500.
Table 4.7 gives the ¢-norm of the semi-discrete finite element solution [|ugz ||,
h

and the relative value of the %¢-norm of the error ||esll, / Hu57 for the semi-
AR

vk } }‘6’
discrete solution of degree p = 1, 2 and 3, computed using Mesh I, and Mesh II as
illustrated in Fig. 2.2. The overkill solutions are computed with p = 8, on the meshes

AR and A% as shown in Fig. 2.2

Remark 4.5. For both the isotropic case and the orthotropic case, we have multi-

material singularities denoted by A;, i = 1,...,19 as shown in Fig. 2.1.

Remark 4.6. For orthotropic case there are two interface layers on the top and
bottom of domain 23 at the interfaces between 25 and {23 due to the high orthotropy
of Qg.
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Fig. 4.9. Transient diffusion problem in a thermal battery. a) The evolution of energy norm
||u57 . | |ou with respect to time for isotropic and orthotropic cases; b) The evolution of L?
AO’U

norm ||uS7 . | | 2 with respect to time for isotropic and orthotropic cases.
AO’U



Table 4.7. Transient diffusion problem in a thermal battery. The %-norm of the semi-discrete solution ||u52 |, and the relative
h
value of %-norm of the error ||eh||(€/| |u57 . | Le, for the semi-discrete solutions of degree p = 1, 2 and 3, computed using Mesh I,
A0V ©

h
and Mesh II, for the isotropic and the orthotropic case.

Isotropic case Orthotropic case

||u52 . ¢ = 2.24075002E'5 ||uSZ . ¢ = 2.61372111E5
Mesh 1 Mesh 11 Mesh | Mesh 11

|lenll¢ |lenl¢ |lenl¢ len!lq

Pl luse |l ' luse || ' luse || ' luse || '
an e ||uSZka ¢ Ap e ||uszzm ¢ ap e ||uszzm ¢ ap e ||uSngk ©
1] 2.22163E5 | 12.42345% | 2.23199E5 | 8.40942% | 2.52214FE5 | 25.45529% | 2.57158FE5 | 17.23978%
2| 2.23547E5 | 6.52553% | 2.23840E5 | 4.35227% | 2.58666E5 | 13.87615% | 2.60139E5 | 9.14114%
3| 2.23835E5 | 4.39573% | 2.23967E5 | 2.94321% | 2.60130E5 | 9.19611% | 2.60702E5 | 6.58230%

98
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Adaptive refinement is adopted for the interface layers with the smallest mesh

size close to the magnitude of the characteristic thickness of the interface layers which
3

is % in this case. For details about the interface layers of the thermal battery

x

problem, refer to [1]. It can be observed that the interface layers have negligible
influence on the overkill solution and relative error as it can be seen from Table 4.8.
For simplicity, the overkill solution based on overkill mesh A%* as shown in Fig. 2.2d)

is employed for the orthotropic case.

Table 4.8. Transient diffusion problem in a thermal battery. The %-norm of the semi-

discrete solution ||u52h [l Lga

«» and the relative value of 6-norm of the error ||ep||,, / ||ugr .
AO'U

for the semi-discrete solutions of degree p = 1, 2 and 3, computed using Mesh I, and Mesh 11,
for the orthotropic case. In this case, to obtain the overkill mesh, the adaptive refinement is
adopted at the interface layers located at the top and bottom of highly orthotropic domain
Q3 such that the smallest mesh size at the the interface layers is about the same magnitude
of the characteristic thickness of the interface layers.

Orthotropic case
||ugr e = 2.61415216E5
Aoy
Mesh 1 Mesh I1
||6h q ||6h q
p ||u52h @ I ‘ ||u52h % | ‘
SZZ'UIC © SZZ'UIC ©
1] 2.52214F5 | 25.51157% | 2.57158E5 | 17.32494%
2 | 2.58666E5 | 13.98115% | 2.60139E5 | 9.29963%
3 | 2.60130E5 | 9.35304% | 2.60702E5 | 6.79922%
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Table 4.9 lists the effectivity index k from the exact solution 4 of elliptic recon-
struction problem based on the semi-discrete finite element solution u S35 computed
with the Mesh I, and Mesh IT using elements of degree p = 1, 2, and 3, for the
isotropic case, and the orthotropic case. It can be seen that for both the isotropic
case and the orthotropic case the effectivity indices are all close to 1.

Table 4.9 also shows the effectivity indices from the computed @ SZ:],C which results
from from the nested subdivision of the original mesh (h method), or the increase of
polynomial order (p method), or the combination of the two (hp method). It can
be seen that the worst effectivity indices are around 0.6, which happens to the cubic
element. For semi-discrete finite element solution u SR, of linear order the increase of
polynomial order and further refinement of the original mesh yield the best effectivity
indices for both the isotropic and orthotropic case. Note that in the case of h method,
for the finite element solution usy, computed with Mesh I, we employ Mesh II and
Mesh III as shown in Fig. 2.2 b) and ¢) to obtain ﬁsgjj while for Usy from Mesh II,

we use Mesh III.



Table 4.9. Transient diffusion problem in a thermal battery. The effectivity indices x based on the exact solution 4 and Kgpk
h/
based on the finite element solution usp+k of elliptic reconstruction problem, for the Mesh I, and Mesh II, semi-discrete solution

ugr . computed using elements of degree p =1, 2, and 3, for the isotropic and orthotropic case.

Orthotropic Isotropic
I SZ*’“ Mesh 1 Mesh II Mesh 1 Mesh 11
h!
Mesh p+k p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3
1 - - - - - - - - - - - -
Mesh I 2 0.8537 - - - - - 0.8499 - - - - -
3 0.9603 | 0.7533 - - - - 0.9346 | 0.7388 - - - -
4 0.9839 | 0.8611 | 0.6068 - - - 0.9635 | 0.8622 | 0.6597 - - -
1 0.7473 - - - - - 0.7348 - - - - -
Mesh II 2 0.9590 | 0.7593 - 0.8552 - - 0.9359 | 0.7449 - 0.8554 - -
3 0.9883 | 0.8888 | 0.6934 | 0.9347 | 0.6851 - 0.9711 | 0.8924 | 0.7428 | 0.9366 | 0.7366 -
4 1.0053 | 0.9364 | 0.8198 | 0.9647 | 0.8149 | 0.5997 | 0.9835 | 0.9402 | 0.8629 | 0.9644 | 0.8599 | 0.6559
1 0.9162 - - 0.7541 - - 0.8884 - - 0.7367 -
Mesh 111 2 0.9938 | 0.8956 - 0.9389 | 0.7056 - 0.9718 | 0.8953 - 0.9383 | 0.7446 -
3 1.0104 | 0.9534 | 0.8613 | 0.9757 | 0.8571 | 0.7009 | 0.9869 | 0.9531 | 0.8935 | 0.9720 | 0.8912 | 0.7417
4 1.0182 | 0.9793 | 0.9225 | 0.9926 | 0.9192 | 0.8341 | 0.9925 | 0.9736 | 0.9410 | 0.9842 | 0.9398 | 0.8628
&
= Heslﬁ 1.0299 | 1.0175 | 1.0082 | 1.0177 | 1.0060 | 1.0006 | 1.0025 | 0.9997 | 1.0000 | 1.0000 | 1.0000 | 1.0000
e ()

68
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4.4 Bounds based on implicit residual estimators for semi-discrete finite element

solutions

Let

én = - ugy (4.29)
h

Then we have the following residual for the elliptic recontruction problem (4.5)

8’& D
SAh

ot

Ba(én,v) = R(v) et P(v) — (7 ,v) . - %Q(uszh,v) Vo e u(f2) (4.30)

Noting that
R(v) =0, Vv e S}, (4.31)

and similar to the Neumann subdomain residual estimator as defined in (2.15a) for

the elliptic problem, we have by following [1]

leally < €50 = [D0 11 D0 eally (4.32)

TeAh XGN(A]—L)

where w)A(h = supp(gbf(h) and gbﬁh is the piecewise bilinear basis function supported
over w)A(h, which employs the subdomain residual problems:

Find & a, € Uo(wy") o {v € U(wy =0or [a,v=0 } such that
wy Wx

)‘ ,U|8w§hﬂl"p

B a,(€ ap,v) o / V'K Ve a, —I—/ aé a, v =0 a,(d%" V) Yo € Ao(wit)
wx o Wx w;‘(h wx awih wx wx
(4.33)
Note that
A
Rv)= D R a(ox" v) (4.34)

XeN(Ap)

When we employ the p-version with elements of degree p+ k to approximate the

indicator function €4, and then we have the computed subdomain residual estimator
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defined as

Gpe = D D Emull (4.35)

TeAh XGN(A]—L)

where € a, denotes the p + k degree finite element approximation of the exact

X 0tk
indicator function € a,,.
X
From the computed error indicator function € a, ok of subdomain residual prob-
X
lem, the lower bound €%, ok Of the error |[ép[[a, of the elliptic reconstruction problem

can be constructed by smoothening the error indicator function with the introduction

of the partition of unity used in the construction of the estimator
- o N
Ept+k = Z bx Codh prk (4.36)
XeN(Ap)
With the smoothened error indicator function €,44, we obtain the duality based

lower bounds, namely

def  R(Eptr) R
Compprr = o < ||énlfa (4.37)

[|€p4r + anlla,

where ¢ € Sih can be obtained by solving the following variational problem

B(qns gn) = —B(Ep+, qn) Van € S}, (4.38)

It should be noted that ¢, is the function satisfying

|eprr + anllo, = min [|€p1k + x|y, (4.39)
xeSAh

Upper Estimates for Space-Time Norm:

T
def 2
lenlle < 55, \/ / (T—t) (€4,)> di + T [V7en(O)]  (4.40)
0

Proof: Given the identity as shown in the equation (4.20), the 6-norm of the exact
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error of the semi-discrete finite element solution of the parabolic problem satisfies the

following

lealle = \/ / <T—t>(||éh||% - ||u—a||i) G+ TIVAe O, (4.41)

Therefore we have by replacing the error ||é,||, with its upper bound €V

llenlle < \// (T—t)((%gub)z— ||u—ﬂ||oi) dt + Ty /en(0)|[;
’ (4.42)

< \//0 (T—t)(%gub)z dt + T||/ven(0)|]2,
O

With the computed residual estimator €§,, .., the ¢-norm of the exact error

llen||le¢ can be estimated by the following

T
def 2
3, ., \/ / (T 1) (€U, 0)° di+T || Fen(0)]2s (4.43)

where we replaced the exact upper bound €%, in (4.40) with its computable version
%gub,p—l—k
If we replace the error ||é]|,, in (5.63) with its duality based lower bound €§,, .-

we have

llenlle = \//0 (T = t)((%éub,p+k)2 = |[u —ﬂlli) dt + T|lyyen(0)ll; (4.44)

A guaranteed lower bound is obtained assuming that fOT(T—t) ||u—1a|,dt is negligible

in comparison of fOT(T —t) (%éuberk)zdt, thus we have

T
def 2
lenlle = Fuppin = \//0 (T — 1) (€5 per) At +Tll\Aen(0)|12 (4.45)
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Remark 4.7. @gubm% is not guaranteed upper bound of ||e]|¢ since the computable

estimator €5, ., is not a guaranteed upper bound of the exact error ||é||,,.

Remark 4.8. Note that in [31-33] the duality approach based on space-time s-norm

does not yield lower bound while in our case we can have lower bound.

As shown in (4.44), in order to have a meaningful lower bound, the term fOT(T —
t)||u — 4|2 dt has to be negligible in comparison with the term fOT(T —t) (‘ééume)z.

To evaluate the ratio of the two, let us define

T
| @Ol g
e = 20 x 100% (4.46)

T
/0 (T - t) (%éub,p—l—k) 2dt

Let us analyze the accuracy of #G,,, ¢, .., and F§,, ., based on the sub-
domain residual problem, for ¢-norm of the exact error ||ep||¢ using the following

examples. In the meantime, we will also check the performance of the ratio 65 ke
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Example 4.5. Heat transition problem in one dimension. Table 4.10 lists the effec-

tivity indices

U det Fo U def F b p ik L def FSubp ik (4.47)
llenle’ P enlle P enlle '

for the ¢-norm of the error [|ey/|¢ in the semi-discrete finite element solution ugr

h
using elements of degree p = 1,2 and 3, computed using Mesh I, Mesh II, Mesh III,
and Mesh IV.

U

It can be seen that the effectivity indices " are close to 1 and kU, kL., are like-

p+k>» "Vp

wise. As mentioned before the computable upper bound Fﬁgubm +x 1s not a guaranteed
upper bound of ||ep||¢ and thus £Y,, < 1 can happen. It can also be observed that

/{g% converges to k¥ with the increase of polynomail order p+ k. For /@5 '\, in the case

of linear element if we use coarse mesh, e.g., Mesh I, we can expect the effectivity index

greater than 1 for the lower bound, which corresponds to e’ ~ 6%. With the in-

L
p+k
T

T
means / (T —t)||u — @||3 is negligible in comparison with / (T —1t) (‘ééub’z,%)zdt,
0 0

crease of polynomial order and the finer mesh, we can see that €., is close to 0, which

and we should expect good effectivity indices from the lower bound %§,; .,



Table 4.10. Heat transition problem in one dimension. The values of the effectivity index xU,

based on the subdomain residual estimators of the elliptic reconstruction problem, for the semi-discrete finite element solutions

U
Fp+ies

L

L .
Ktk and the ratio €tk

of degree p = 1, 2,and 3 computed using Mesh I, Mesh II, Mesh III, and Mesh IV corresponding respectively to mesh size h = 2%,
n=1,2,3, and 4 with L = 4.

Mesh 1

Mesh 11

Mesh 111

p=2

p=2

p=2

p+k

N =

1.0122
1.0294
1.0304

0.9942
1.0027
1.0030

0.9957
1.0006
1.0007

1.0024
1.0073
1.0073

0.9980
1.0002
1.0002

0.9988
1.0000
1.0000

1.0006
1.0018
1.0018

0.9995
1.0000
1.0000

0.9997
1.0000
1.0000

1.0001
1.0005
1.0005

0.9999
1.0000
1.0000

0.9999
1.0000
1.0000

1.0304

1.0030

1.0007

1.0073

1.0002

1.0000

1.0018

1.0000

1.0000

1.0005

1.0000

1.0000

1.0130
1.0111
1.0093

0.9784
0.9673
0.9652

0.9727
0.9592
0.9562

0.9930
0.9870
0.9832

0.9834
0.9717
0.9688

0.9732
0.9592
0.9554

0.9882
0.9811
0.9770

0.9855
0.9736
0.9707

0.9734
0.9593
0.9553

0.9870
0.9796
0.9754

0.9861
0.9741
0.9712

0.9734
0.9593
0.9553

6.0160
6.0384
6.0598

0.6253
0.6397
0.6425

0.1442
0.1483
0.1492

1.4942
1.5127
1.5241

0.0404
0.0414
0.0416

0.0103
0.0106
0.0107

0.3762
0.3816
0.3849

0.0025
0.0026
0.0026

0.0007
0.0007
0.0007

0.0942
0.0957
0.0965

0.0002
0.0002
0.0002

0.0000
0.0000
0.0000

g6
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Example 4.6. Two dimensional synthetic problem. Table 4.11 lists the effectivity
index kY , kY, kL., and the ratio e, for the ¢-norm of the error ||es|¢ in the
semi-discrete finite element solution Usy using elements of degree p = 1,2 and 3,
computed using Mesh I, Mesh II, Mesh III, and Mesh IV.

It can be seen that xU are all close to 1. Even for the coarse mesh, e.g., Mesh
I where the relative error is about 100%, the effectivity index is still close to 1. For
Kk, it can be observed that for the coarse mesh such as Mesh I and Mesh II the
upper bound Fﬁgubm 1 can grossly underestimate the exact error ||es||¢ in the case of
p = 3,k = 1 which has the effectivity index as small as 0.3762. However with the
increase of polynomial order p+k the effectivity indices can be improved dramatically.
Again note that the computable upper bound @;ﬂrk is not a guaranteed upper bound.
The effectivity index /@5 ' has good performance and the worst number is about 0.5
as in the case of Mesh I, p = 3,k = 1. It should be noted that the lower bound
Fﬁéubﬁk can be greater than the computable upper bound ?J?gubﬁk, which is the case
for k = 1. It can be noted that e, , is small and the maximum value is about 3%,

which indicates that the lower bound can be sharp if €§,, ., is a sharp lower bound

of the exact error ||é]lq,-



Table 4.11. Two dimensional synthetic problem. The values of the effectivity index s,
the subdomain residual estimators of the elliptic reconstruction problem, for the semi-discrete finite element solutions of degree

U
Fpths

L

L c L
Ktk and the ratio ik based on

p = 1,2,and 3 computed using Mesh I, Mesh II, Mesh ITI, and Mesh IV corresponding respectively to mesh size h = 5%, n = 1,2, 3,
and 4 with L = 1.
Mesh 1 Mesh I1 Mesh III Mesh IV
k| p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3
1 10.5326 | 0.6140 | 0.3762 | 0.7826 | 0.4135 | 0.8717 | 0.7085 | 0.9147 | 0.9564 | 0.9483 | 0.9872 | 0.9485
Hg+k 2 10.7144 | 0.6674 | 0.6258 | 0.8226 | 0.8933 | 0.8986 | 0.9617 | 0.9947 | 0.9879 | 1.0012 | 0.9993 | 0.9991
3 10.7525 | 0.7757 | 0.8440 | 0.9683 | 0.9152 | 0.9798 | 1.0010 | 0.9998 | 0.9999 | 1.0025 | 1.0006 | 1.0001
kY | oo | 1.0010 | 1.0024 | 1.0015 | 1.0121 | 1.0013 | 1.0013 | 1.0046 | 1.0019 | 1.0007 | 1.0026 | 1.0006 | 1.0001
1 10.6253 | 0.6221 | 0.5285 | 0.7712 | 0.7372 | 0.8625 | 0.8206 | 0.9324 | 0.9469 | 0.9544 | 0.9680 | 0.9483
H£+k 2 10.7018 | 0.6644 | 0.6949 | 0.8258 | 0.8715 | 0.8592 | 0.9308 | 0.9568 | 0.9420 | 0.9720 | 0.9607 | 0.9597
3 10.7319 | 0.7986 | 0.8294 | 0.9230 | 0.8746 | 0.9391 | 0.9552 | 0.9606 | 0.9594 | 0.9733 | 0.9634 | 0.9617
1 13.1094 | 1.3817 | 1.1665 | 1.6097 | 0.3423 | 0.3228 | 0.3418 | 0.3338 | 0.1463 | 0.2806 | 0.0911 | 0.0200
e£+k 2 121968 | 1.1764 | 0.6383 | 1.3771 | 0.2424 | 0.3254 | 0.2641 | 0.3169 | 0.1479 | 0.2704 | 0.0925 | 0.0195
3 1 1.9537 | 0.7661 | 0.4384 | 1.0743 | 0.2407 | 0.2714 | 0.2505 | 0.3144 | 0.1425 | 0.2697 | 0.0920 | 0.0195

L6
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Example 4.7. L-shaped domain problem. Table 4.12 lists the effectivity index &Y |
Kk Ky, and the ratio e/, for the 6-norm of the error ||ey||¢ in the semi-discrete
finite element solution Usy using elements of degree p = 1,2 and 3, computed using
Mesh I, Mesh II, Mesh III, and Mesh IV.

It can be seen that sV are all close to 1. The worst effectivity index is around

1.3 which happens to Mesh I and element degree p = 1. For kU

o1k 1D the case of p =3

and k = 1, the effectivity index can be as small as 0.5. However with the increase of
polynomial order p+ k the effectivity indices can be improved to be around 0.8. Again
note that the computable upper bound @ngkis not a guaranteed upper bound. For
the effectivity index k[, we can see that €/ is over 10% except for Mesh IIT and IV
with element order p = 2, 3, which means that the term fOT(T—t)||u—ﬁ| |2 dt as shown
in (5.66) is not negligible in comparison of fOT(T —t) (‘ééume)zdt. Therefore £l is
a guaranteed lower bound even though it happens that /@5 . can be good effectivity

L : L o .
), 1s small number, such as e, = 7.1% in the

indices close to 1. In the case that e
case of Mesh III and p = 3, we can expect guaranteed lower bound, which is 0.8 in
this case. It should be noted that the lower bound #§,, , , can be greater than the

computable upper bound Fg,, ;.



Table 4.12. L-shaped domain problem. The values of the effectivity index s, f{ngk, f{ﬁ ', and the ratio 65 ', based on the
subdomain residual estimators of the elliptic reconstruction problem, for the semi-discrete finite element solutions of degree
p = 1,2,and 3 computed using Mesh I, Mesh II, Mesh III, and Mesh IV corresponding respectively to mesh size h = 2%,

n=1,2,3, and 4 with L = 1.

Mesh 1 Mesh 11 Mesh 111 Mesh IV

k| p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3

—_

0.8869 | 0.6511 | 0.5555 | 0.8197 | 0.6357 | 0.5480 | 0.7929 | 0.6274 | 0.5436 | 0.7792 | 0.6225 | 0.5409
1.0339 | 0.7997 | 0.7019 | 0.9605 | 0.7817 | 0.6926 | 0.9302 | 0.7717 | 0.6871 | 0.9142 | 0.7658 | 0.6837
3 | 1.1020 | 0.8776 | 0.7841 | 1.0265 | 0.8583 | 0.7738 | 0.9945 | 0.8474 | 0.7677 | 0.9774 | 0.8409 | 0.7640

\)

p+k

kY | oo | 1.2643 | 1.0965 | 1.0478 | 1.1994 | 1.0878 | 1.0472 | 1.1630 | 1.0744 | 1.0392 | 1.1432 | 1.0661 | 1.0341

1 10.9430 | 0.7250 | 0.6277 | 0.8610 | 0.7046 | 0.6177 | 0.8257 | 0.6932 | 0.6117 | 0.8068 | 0.6863 | 0.6080
/{5+k 2 | 1.0375 | 0.8354 | 0.7456 | 0.9500 | 0.8113 | 0.7331 | 0.9104 | 0.7974 | 0.7255 | 0.8885 | 0.7890 | 0.7208
3 | 1.0835 | 0.8897 | 0.8063 | 0.9925 | 0.8635 | 0.7922 | 0.9504 | 0.8483 | 0.7837 | 0.9271 | 0.8390 | 0.7785

1 | 57.392 | 35.988 | 29.322 | 35.368 | 22.851 | 18.558 | 22.237 | 14.478 | 11.728 | 14.060 | 9.1565 | 7.4105
e£+k 2 | 47411 | 27.099 | 20.781 | 29.057 | 17.237 | 13.175 | 18.295 | 10.941 | 8.3368 | 11.592 | 6.9288 | 5.2725
3 | 43.467 | 23.895 | 17.773 | 26.622 | 15.217 | 11.281 | 16.785 | 9.6690 | 7.1433 | 10.647 | 6.1276 | 4.5200

66
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Example 4.8. Heat equation in a thermal battery. Table 4.13 lists the effectivity
index kY , kY, kL., and the ratio e, for the ¢-norm of the error ||es|¢ in the
semi-discrete finite element solutions Usy of degree p = 1,2 and 3, computed using
Mesh I and Mesh II as shown in Fig. 2.2, for the orthotropic case and the isotropic
case.

It can be seen that sV is close to 1 for isostropic case. However for orthotropic
case, the effectivity index U deteriorates and #Y,, severely overestimates the exact
error ||en||¢, and the culprit of the deterioration is the interface layers at the top
and bottom of the highly orthotropic subdomain €23. For details about the effect
of interface layers on the robustness of residual estimators, refer to [1]. Note that
the exact upper bound %Y , is constructed from the “exact” indicator functions éwf{h
computed by employing the restriction of the overkill space SZM in the elements and
subdomains.

The effectivity index xY

»+x based on the computable upper bound ?ﬁg% converges

to the corresponding exact one kY based on the exact upper bound %Y. Again the
computable upper bound %4, ., based on the subdomain residual estimator €4, .,
may underestimate the exact error ||ep||¢ for the isotropic case. In the orthotropic
case, Fg,, ., grossly overestimates the exact error |[|es||¢ because of interface layers
in the highly orthotropic domain which causes the severe overestimation of €, .,

about the exact error of the elliptic reconstruction problem.
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In the case of k[, it can be seen that F§,, ., based on the subdomain residual

of elliptic reconstruction problem grossly underestimates the exact error ||ep||¢ for the
orthotropic case. The reason is that the lower bound €’ severely underestimates the
exact error of the elliptic reconstruction problem due to the presence of the interface
layers. However, in the isotropic case, for finer mesh and higher order of polynomial,
e.g., Mesh II and p = 2,3, the lower bound can yield pretty good effectivity indices
close to 0.9.

L L

For the ratio of €;,,;, in the isotropic case €;,, is close to 0, which means the

T
neglected term / (T — t)||u — a||2dt in (5.66) is negligible in comparison of the
0

T

term / (T —t) (‘ééume)zdt. Therefore if €5, ., is a good lower bound for the
0

exact error of [|é,|],, of the elliptic reconstruction problem, the effectivity index 7,

is good. In the orthotropic case the ratio €/, can be as worse as 300% and in the

meantime €§,, . severely underestimates the exact error of ||é4,, the corresponding

effectivity index s~

1 18 close to 0.15. Even in the case when e£+k is 5%, the effectivity

index rk

L ¢ is still 0.3 due to the underestimate of €§,, ., over ||é4|,,.



Table 4.13. Transient diffusion problem in a thermal battery. The values of the effectivity index s, /{ng > f{ﬁ 1, and the ratio 65 Lk

based on the subdomain residual estimators of the elliptic reconstruction problem, for the semi-discrete finite element solutions
of degree p = 1, 2,and 3 computed using Mesh I, and Mesh II as shown in Fig. 2.2, for the orthotropic and the isotropic case.

Orthotropic Isotropic

Mesh 1 Mesh 11 Mesh 1 Mesh 11

k| p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3 p=1 p=2 p=3

—_

6.8930 | 5.0605 | 4.2962 | 8.9716 | 6.4718 | 4.6249 | 0.9823 | 0.7974 | 0.6862 | 0.9743 | 0.8026 | 0.6936
8.5241 | 6.5257 | 5.6635 | 9.9363 | 7.5684 | 5.6048 | 1.0698 | 0.9210 | 0.8269 | 1.0550 | 0.9259 | 0.8345
3 | 85272 | 6.5312 | 5.6722 | 9.9373 | 7.5711 | 5.6095 | 1.0985 | 0.9718 | 0.8922 | 1.0832 | 0.9772 | 0.9004

\)

p+k

kY | oo | 8.5368 | 6.5476 | 5.6997 | 9.9398 | 7.5781 | 5.6227 | 1.1336 | 1.0575 | 1.0261 | 1.1185 | 1.0644 | 1.0338

—_

0.1498 | 0.1866 | 0.2219 | 0.1945 | 0.2470 | 0.2508 | 0.6548 | 0.7613 | 0.7143 | 0.7254 | 0.7689 | 0.7131

/{5+,€ 2 10.1696 | 0.2189 | 0.2642 | 0.2117 | 0.2869 | 0.2990 | 0.7142 | 0.8551 | 0.8234 | 0.7872 | 0.8624 | 0.8244
3 1 0.1719 | 0.2240 | 0.2721 | 0.2135 | 0.2923 | 0.3069 | 0.7379 | 0.8921 | 0.8694 | 0.8087 | 0.8979 | 0.8707
1 ] 278.88 | 101.55 | 32.781 | 95.484 | 19.664 | 7.6115 | 0.2606 | 0.0518 | 0.0269 | 0.0957 | 0.0227 | 0.0122
e£+k 2 | 217.53 | 73.797 | 23.127 | 80.575 | 14.572 | 5.3554 | 0.2191 | 0.0411 | 0.0202 | 0.0813 | 0.0180 | 0.0091

3 | 211.84 | 70.503 | 21.799 | 79.219 | 14.034 | 5.0841 | 0.2053 | 0.0377 | 0.0181 | 0.0770 | 0.0166 | 0.0082

¢01
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4.5 FError estimation at any time instant

As we have already seen in (4.12) except the linear element in the L? norm, due to

the superconvergence properties of the term u — u, we have
lenlls = llu —ugz ||m ~ [|d—usy [|u (4.48)
h h

for H=L? and H = a.

Let us define the effectivity index at any time instant as

|4 — ugp |l |4 — ugp |2
() et ef L (4.49)
[len]la |len||z2
Similarly Mgy (t) and CSZ:I,C (t) when a is replaced by ﬂsiff'
Further, we let
_ det €Y, _ def ESubpik
0= e () = e (4.50)

~ lealla” [lenlla,

where €%, is the exact estimator of ||4 — usy, ||o» and 7Y, (t) for the computable
“bound”

In the case of the exact error measured in L? norm, we can also calculate the
effectivity index based on the exact and computed error indicator function. Thus we

have

~ H2
22 el

TeAh XGN(A]—L)

()=

4.51
Tenllze (4.51)

and (,1x(t) when the computable indicator is used.
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Let us use the above effectivity indices to analyze the quality of the error esti-

mators at all time instants.

Example 4.9. Heat transition problem in one dimension. For this problem, we focus
on uniform coarse mesh consisting of 16 elements with mesh size equal to h = 2L—2, L=
4.

Fig. 4.10 is the variation of effectivity index n(f) and its computable version
7752:1/@ (t) corresponding to the exact solution @ and its approximate solution ﬁsiff
from p method, for the elliptic reconstruction problem constructed from the semi-
discrete finite element solutions of degree p = 1,2, and 3 with mesh size h = 2% It
can be seen that the effectivity index is close to 1 except for the time instants close
to t = 0 at which the boundary condition and initial condition are suddenly applied.
Note that with the increase of polynomial order p + k in the approximate solution
asiff’ the computable version 7752:1/@ (t) is close to the exact one n(t).

Fig. 4.11 is the variation of effectivity index ((t) and its computable version
¢ SZ:],C (t) corresponding to the exact solution 4 and its approximate solution @ SZ::/C from
p method, for the elliptic reconstruction problem constructed from the semi-discrete
finite element solutions of degree p = 1,2, and 3 with mesh size h = 2L—2 Except the
linear element (p = 1) where ||u — @||z2 does not have superconvergence property, it
can be seen that the effectivity index is close to 1 except for the time instants close
to t = 0 at which the boundary condition and initial condition are suddenly applied.

Note that with the increase of polynomial order p + k in the approximate solution

asz+k, the computable version Csz+k (t) is close to the exact one ((t).
n' n



4.0

3.5

w
o
T

[d
o

Effectivity index
n
)

1.5

T

TTTT

7p=‘| g

TR R p=2 :

N p=3 —:

E”H{”“””””“'”“”””kE”i
Time

.0

b)

4.0

3.5

g [d w
o o [S)

Effectivity index

o

105

!
i

I L B L L R R LI B
3 — _p=1,p+k=2 E
3 p=1,p+k=3 E
: —p=1,p+k=4 ;
I p=2,p+k=3 ]
: p=2,p+k=4 ]
F | p=3,p+k=4 E

)

0.5 1.0 1.5 3.5

>

Time

Fig. 4.10. Heat transition problem in one dimension. a) The evolution of effectivity index

7(t) based on the exact solution @ of the elliptic reconstruction problem; b) The evolution

of effectivity index T]Sp+k( ) based on the approximate solution usp+k of the elliptic recon-

struction problem. Note that the elliptic reconstruction problem 1s constructed from the

semi-discrete finite element solutions of degree p = 1,2, and 3 with mesh size h =

4.0

35

[d w
o [S)

g
o

Effectivity index
AR s

o

a)

TTTTTT

o

0.5 2. 35
Time

>

4.0

3.5

[d w
o [S)

Effectivity index
n
)

2_2.

UL ILRLRLL S LR S LU S SR SR
i — p=1,p+k=2 |3

p=1,p+k=3 |1
- —p=1,p+k=4 |
|- p=2,p+k=38 |1
- p=2,p+k=4 |
N p=3,p+k=4 |
:|||||||||||||||||||||||||||||||||||||||:
.0 0.5 1.0 1.5 3.5 4,

Time

Fig. 4.11. Heat transition problem in one dimension. a) The evolution of effectivity index

¢(t) based on the exact solution @ of the elliptic reconstruction problem; b) The evolution

of effectivity index ( Sp+k( ) based on the approximate solution uSp+k of the elliptic recon-
A

h!
struction problem. Note that the elliptic reconstruction problem is constructed from the

semi-discrete finite element solutions of degree p = 1,2, and 3 with mesh size h =

22



106

Fig. 4.12 is the evolution of effectivity index 7V (t) , 75, (t), and 7%, (t)) for the
exact error measured in energy norm, where the exact error indicator function and its
computed version are obtained from the subdomain residual problem of the elliptic
reconstruction problems corresponding to the semi-discrete finite element solution
usy, of degree p = 1,2, and 3. It can be observed that except at time instants
close to t = 0 the effecitivity indices are all close to 1. Note that 7", (t) is greater
than 1 which means that the duality-based lower bound €§,, ., is not necessary a
guaranteed lower bound for the exact error ||es||, even though it is indeed a lower
bound for the exact error ||i — usy, ||, of the elliptic reconstruction problem.

Fig. 4.13 is the evolution of effectivity index ¢(¢) and (,4x(t) for the exact error
measured in L*norm, where the exact error indicator function and its computed ver-
sion are obtained from the subdomain residual problem of the elliptic reconstruction
problem. It can be seen that except the linear element case, the effecitivity indices

are all close to 1.
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Fig. 4.14 is the comparison of the exact error u — ugz In value with its ap-
h
proximate @ — ugz at time instant ¢ = 1T_6 for the exact solution u of the elliptic
h

reconstruction problem constructed from the semi-discrete finite element solutions of

L

degree p = 1,2, and 3 with mesh size h = 3.

It can be seen that except the lin-
ear element case p = 1, the exact error u — Ugy ~can be approximated very well by
U — Usy - We can see similar behavior as shown in Fig. 4.15 if we use approximated
solution ﬁsiff of degree p = k to the elliptic reconstruction problem instead of the

exact solution u. Note that the solid line denotes the quantities related to u while

discontinuous line related to @ or its computable version i gp+s
Ay

h

Ouep

S
Fig. 4.16 is the comparison of the exact error % — afh in derivative with its
. Augp
approximate % — ajh at time instant ¢t = 1T—6. It can be seen that the difference

between the two is small. Likewise for the case when we replace the exact solution 4

with computable ﬁsg““ as shown in Fig. 4.17.
h/
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Example 4.10. Two dimensional synthetic problem. For this problem, we also choose

uniform coarse mesh (Mesh 2) with the number of elements equal to 16. As shown

I T
167 27

in Fig. 4.5 at time instants t = the term u — @ measured in energy norm and
L? norm does not exhibit superconvergence properties over u — Usy - However its
magnitude is much smaller than that of u — S, -

Fig. 4.18 is the variation of effectivity index n(f) and its computable version
7752:1/@ (t) corresponding to the exact solution @ and its approximate solution ﬁsiff
from p method, for the elliptic reconstruction problem constructed from the semi-
discrete finite element solutions of degree p = 1,2, and 3 with mesh size h = 2% It
can be seen that the effectivity index is close to 1 except for the time instants close
to t = 0 at which the boundary condition and initial condition are suddenly applied.
Note that with the increase of polynomial order p + k in the approximate solution
aSZ:If’ the computable version 7752:1/@ (t) converges to its corresponding exact one 7(t).

Fig. 4.19 is the variation of effectivity index ((t) and its computable version
CSZ:I,C (t) corresponding to the exact solution @ and its approximate solution asiff
from p method, for the elliptic reconstruction problem constructed from the semi-
discrete finite element solutions of degree p = 1,2, and 3 with mesh size h = 2%
For elements of degree p > 2, it can be seen that the effectivity index is close to 1
except for the time instants close to t = 0 at which the boundary condition and initial
condition are suddenly applied. In the case of linear element p = 1, the effectivity
index is also close to 1. This is due to the fact that except at the beginning time
instant the magnitude of ||u — 4||z2 is much smaller than that of ||a — usy, |2 as
shown in Fig. 4.5 even though ||lu — @||z2 does not have superconvergence property.

Note that with the increase of polynomial order p + k in the approximate solution

asz+k, the computable version Csz+k (t) is close to the exact one ((t).
n' n
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Fig. 4.18. Two dimensional synthetic problem. a) The evolution of effectivity index 7(t)
based on the exact solution 4 of the elliptic reconstruction problem; b) The evolution of
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effectivity index nsp+k( ) based on the approximate solution 4

struction problem. Note that the elliptic reconstruction problem is constructed from the

semi-discrete finite element solutions of degree p = 1,2, and 3 with mesh size h =
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based on the exact solution @ of the elliptic reconstruction problem; b) The evolution of

effectivity index Csp+k( ) based on the approximate solution usp+k of the elliptic recon-

struction problem. Note that the elliptic reconstruction problem 1s constructed from the

semi-discrete finite element solutions of degree p = 1,2, and 3 with mesh size h = 2—2.
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Fig. 4.20 is the evolution of effectivity index 7V (t) , 75, (t), and 7%, ,(t)) for the
exact error measured in energy norm, where the exact error indicator function and its
computed version are obtained from the subdomain residual problem of the elliptic
reconstruction problems corresponding to the semi-discrete finite element solution
usy, of degree p = 1,2, and 3. It can be seen that 7Y (t) is close 1 even at the time
instants close to ¢ = 0. For the computable version 75, ,(t) and 7}, ,(t)) converge to
1 with the increase of order p+ k. Note that ﬁg 1% (1) is not a guarantted upper bound
and it can happen that 77, , (¢) is smaller than the lower bound 7Y, , (). For instance,
for p =2 and k =1, 7, (t) is about 0.4 while 77, (¢) about 0.72.

Fig. 4.21 is the evolution of effectivity index ¢(¢) and (,4x(t) for the exact error
measured in L*norm, where the exact error indicator function and its computed ver-
sion are obtained from the subdomain residual problem of the elliptic reconstruction
problem. It can be seen that for linear element, ((#) is close to 2 while for quadratic
and cubic element ((t) is 1 except at the time instants close to ¢t = 0. The computed
version (,,1(t) converges to the values corresponding to ((¢). Note that for p = 2 and
k=1, (p4x(t) can be as small as 0.5 and its value can be improved significantly with
the increase of order k. For example, for k = 2, (,,x(t) is around 0.88.

Fig. 4.22 (resp. Fig. 4.23) is the contour plot of the exact error |u — u52h|
(resp. |u — usy, ) in absolute value at time instant ¢ = & for the semi-discrete finite
element solutions of degree p = 1,2, and 3 and the exact solution u of the elliptic
reconstruction problem based on these finite element solutions. It can be seen that

the contour plots match each other well even in the case of linear element p = 1.
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Fig. 4.24 is the contour plot of |ﬂ52:]f — u52h| based on the approximate solution
asiff of degree p + k to the elliptic reconstruction problem. It can be seen that as
the increase of polynomial order p + k the contour plot of |ﬂ52:]f — u52h| is close to
the one from |u — usy, |.

Fig. 4.25 (resp. Fig. 4.26) is the contour plot of the modulus |V (u — uSZh)| of
the exact error (resp. Fig. 4.26) at time instant ¢t = 1T_6 for the semi-discrete finite
element solutions of degree p = 1,2, and 3 and the exact solution u of the elliptic
reconstruction problem constructed from these finite element solutions. It can be
seen that these contour plots are close between |V (u — uSZh)| and |V (u — uSZh)|'

Fig. 4.27 is the contour plot of the modulus |V(ﬁ5§ff — uSZh)| based on the
approximate solution ﬁsiff of degree p + k to the elliptic reconstruction problem
from the semi-discrete finite element solutions of degree p = 1,2, and 3. It can be
seen that with the increase of polynomial order p + k in asiff the contour plots of

|V(a5§ff - uSZh)| are close to |V (i — uSZh)|.
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Fig. 4.24. Two dimensional synthetic problem. The contour plot of |d g+ — ugn | at t = 15,
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where Ugptr 18 the exact solution
Ay

h
of the elliptic reconstruction problem constructed from the semi-discrete finite element solutions of degree p = 1,2, and 3 with
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mesh size h = 55
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Fig. 4.26. Two dimensional synthetic problem. The contour plot of the modulus of |V (4 — ugr )| at t = 1T—6.
h
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Fig. 4.27. Two dimensional synthetic problem. The contour plot of the modulus of [V(igp+s — ugr )| at t = 1T—6, where 1 gp+k
Ah/ h A

h/
is the exact solution of the elliptic reconstruction problem constructed from the semi-discrete finite element solutions of degree

p=1,2, and 3 with mesh size h = 2%
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Fig. 4.28 is the contour plot of the absolute value of the exact error indicator
function éwf{h and its computable version éwj‘(h,p ok based on the subdomain residual of
the elliptic recontruction problem based on the semi-discrete finite element solution
of degree p = 2. It can be seen that the contour of the exact |éw§h| matches the
corresponding exact error as shown in Fig. 4.22 and with the increase of polynomial
order p + k the contour of computable |éw§h,p +k| converges to the one from the exact
error indicator function.

Fig. 4.29 is the contour plot of the modulus of the exact error indicator function

€ _a, and its computable version € a, based on the subdomain residual of the ellip-
X

<tk

tic recontruction problem based on the semi-discrete finite element solution of degree

p = 2. we can see that the modulus of the exact error indicator function |[Veé a, |
X

matches the modulus of the exact error as shown in Fig. 4.25 and its computable

version |VéwAh erk| converges to the exact one with the increase of degree p + k.
X
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X

b) =2, k=1;c) — 2. k=3

|éw§h,p+k|’p |éw§h7p+k|ap

Fig. 4.29. Two dimensional synthetic problem. The contour plots of the modulus of the error indicator function. a) [Vé a,[; b)
X

|Véwah

b P=2k=10) [VE s, o, |p=2k=3.

1¢1



122

Example 4.11. L-shaped domain problem. Fig. 4.30 is the variation of effectivity
index 7(t) and its computable version Mgyt (t) corresponding to the exact solution
h/
4 and its approximate solution ﬁsyz@ from p method, for the elliptic reconstruction
h/

problem constructed from the semi-discrete finite element solutions of degree p = 1, 2,

L

5z 1t can be seen that the effectivity index is close to 1

and 3 with mesh size h =
except for the time instants close to t = 0 at which the boundary condition and
initial condition are suddenly applied, and the time instants t = % at which the exact
solution is 0. Note that with the increase of polynomial order p+k in the approximate
solution ﬁsiff’ the computable version 7752:1/@ (t) converges to its corresponding exact
one 7(t).

Fig. 4.31 is the variation of effectivity index ((t) and its computable version
CSZ:I,C (t) corresponding to the exact solution @ and its approximate solution ﬁsiff
from p method, for the elliptic reconstruction problem constructed from the semi-
discrete finite element solutions of degree p = 1,2, and 3 with mesh size h = 2% It
can be seen that for all the element order p = 1,2, and 3, ((¢) and its computable
version ( SK (t) severely overestimate the exact error except around the time instants
t= % at which the exact solution is 0, the effectivity indices can be close to 0. Note
that with the increase of polynomial order p + k in the approximate solution ﬁsiff’

the computable version Csz+k (t) is close to the exact one ((t).
h!
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Fig. 4.32 is the evolution of effectivity index 7V (t) , 75, (t), and 7%, (t)) for the
exact error measured in energy norm, where the exact error indicator function and its
computed version are obtained from the subdomain residual problem of the elliptic
reconstruction problems corresponding to the semi-discrete finite element solution
usy, of degree p = 1,2, and 3. It can be seen that 7Y (t) is close 1 even at the time
instants close to t = 0 and ¢ = 3. For the computable version 7%, (t) and 7%, (¢))
converge to 1 with the increase of order p + k. Note that ﬁg (1) is not a guarantted
upper bound.

Fig. 4.33 is the evolution of effectivity index ((t) and (,,x(t) for the exact error
measured in L*norm, where the exact error indicator function and its computed ver-
sion are obtained from the subdomain residual problem of the elliptic reconstruction
problem. It can be seen that ((t) is not a good estimate of the exact error. Again
the computed version (, x(t) converges to the values corresponding to ¢(¢) with the
increase of p+ k.

Fig. 4.34 (resp. Fig. 4.35) is the contour plot of the exact error |u — u52h|
(resp. |u — usy, |) in absolute value at time instant ¢ = L for the semi-discrete finite
element solutions of degree p = 1,2, and 3 and the exact solution u of the elliptic
reconstruction problem based on these finite element solutions. It can be seen that

the contour plots does not match each other at all.



S0 vt 5.0EHH“,kuwuywuu S0 vt
E E o E
E E E — p=l.k=1 1 E b1, ket 1
40f E 40 1 D=1, k=2 E 40 w S=1. . E
35 p=1 3 35F p=1, k=3 E 35F p=1, k=3 E
5 1 O S [ p=2, k=1 ] s b |- =2, k=1 ]
[ N R =2 ] °a. v | 5 ] ) p=z, ]
S 30f p E S 30f p=2, k=2 3 S30F | p=2, k=2 3
O p=3 E = p=2, k=3 ] = p=2, k=3 ]
25 E sF p=3, k=1 E el T e — p=3, k=1 E
B20p 3 S0l | p=3, k=2 E ool | p=3, k=2 E
T S E i p=3, k=3 3 i p=3, k=3 1
15k 1 1.5 E 15F E
ke 3 ] 3 ]
10F 1.0 f ——] 1.0 f J
osF 05 = 05F 5
OB e v e ookt 0H"\H“\“H\‘\‘y”m””
Do 0.1 02 03 0.4 05 Do 0.1 02 03 0.4 05 Do 0.1 02 03 0.4 05
a) Time b) Time C) Time

Fig. 4.32. L-shaped domain problem. The evolution of effectivity index for the exact error measured in energy norm based on

the subdomain residual problem of the elliptic reconstruction problem. a) 7Y (¢); b) ﬁg x(t); ¢ ﬁﬁ (1)

14.0 pr——— T 140 T
130 3 130F E
120 f E 120F E
11.0f E 11.0F — p=1.k=1 E
100 f : E 100 p:l:::g 3
= —— p= 3 o0l p=1.k= 3
goo | 02 E goof | D=2, k-1 ]
S80¢ 3 E £80fF |- p=2, k=2 E
Z0R T p= 3 270 p=2, k=3 3
2 El 3 2 -3, k=1 E
0 60k E Seofh | TC p=3, k= E
2 W E o N p=3. k=2 E
w50 3 3 w50 p=3, k=3 3

40f 3 40 3

30F = 30 3

20F E 20p

10 g E 10F

00t N 0.0E

%0 0.1 0.2 03 0.4 0.5 %0

a) Time b)

Fig. 4.33. L-shaped domain problem. The evolution of effectivity index for the exact error measured in L? norm based on the

subdomain residual problem of the elliptic reconstruction problem. a){(t); b) (prx(t)-

qcl



p =1
p =2
r r

Flg. 3 = . p - .
4 4 I h oblem I l]e contou l()‘ ()f |U u h|

p =1
p =2
r r

g. 3 -S. S 16
1 . . a:p d d p

€ omalin pI‘ blem. U t
I\ 4 5 I h (o) I l]e contou l()‘ ()f |U u ph| a:t L

9¢1



127

Fig. 4.36 is the contour plot of |ﬂ52:]f — u52h| based on the approximate solution
asiff of degree p + k to the elliptic reconstruction problem. It can be seen that as
the increase of polynomial order p + k the contour plot of |ﬂ52:]f — u52h| is close to
the one from |4 — sy |, which is especially obvious in the case of p = 1.

Fig. 4.37 (resp. Fig. 4.38) is the contour plot of the modulus |V (u — uSZh)| of
the exact error (resp. Fig. 4.38) at time instant ¢t = 1T_6 for the semi-discrete finite
element solutions of degree p = 1,2, and 3 and the exact solution u of the elliptic
reconstruction problem constructed from these finite element solutions. It can be
seen that these contour plots are close between |V (u — uSZh)| and |V (u — uSZh)|'

Fig. 4.39 is the contour plot of the modulus |V(ﬁ5§ff — uSZh)| based on the
approximate solution ﬁsiff of degree p + k to the elliptic reconstruction problem
from the semi-discrete finite element solutions of degree p = 1,2, and 3. It can be
seen that with the increase of polynomial order p + k in asiff the contour plots of

|V(a5§ff - uSZh)| are close to |V (i — uSZh)|.
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Fig. 4.37. L-shaped domain problem. The contour plot of |V (u — sy )| at t = <=

Fig. 4.38. L-shaped domain problem. The contour plot of |V (4 — usy )| at t = <=

6¢1



p=1,p+ k =2 p=1,p + k =8 p=1,p + k =4

p=2,p+ k =3 p=2,p+ k =4 p=3,p+ k =4

Fig. 4.39. L-shaped domain problem. The contour plot of the modulus of |V (% Sp+k usy )| at t = 16, where @ gp+i is the exact

Ay

h
solution of the elhptlc reconstruction problem constructed from the semi-discrete ﬁmte element solutions of degree p = 1, 2, and

3 with mesh size h = 2—2

0€T



131

Fig. 4.40 is the contour plot of the absolute value of the exact error indicator
function éwf{h and its computable version éwj‘(h,p ok based on the subdomain residual of
the elliptic recontruction problem based on the semi-discrete finite element solution
of degree p = 2. It can be seen that the contour of the exact |éw§‘(h| does not match
the corresponding exact error as shown in Fig. 4.34 in the case of p = 2 and with
the increase of polynomial order p+ k the contour of computable |éw§h,p +k| converges
to the one from the exact error indicator function. Note that as shown in Fig. 4.8,
l|u — |2 and ||lu — uSZhHLZ have the same convergence rate, which explains why
|éw§h| does not have good performance.

Fig. 4.41 is the contour plot of the modulus of the exact error indicator function
éwf{h and its computable version éwj‘(h,p ok based on the subdomain residual of the ellip-
tic recontruction problem based on the semi-discrete finite element solution of degree
p = 2. we can see that the modulus of the exact error indicator function |Véw§h|

matches the modulus of the exact error as shown in Fig. 4.37 and its computable

version |VéwAh ) +k| converges to the exact one with the increase of degree p + k.
X



Fig. 4.40. L-shaped domain problem. The contour plots of the absolute value of the error indicator function. a) |e Ah|

|ew§h,p+k| p 2 k_ 1 C) |ew§h,p+k| p 2 k_3

Fig. 4.41. L-shaped domain problem. The contour plots of the modulus of the error indicator function. |Ve Ah|
|V€w§h7p+k|,p =2,k=1;¢) |vew§h7p+k|ap =2,k=3.
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Example 4.12. Transient diffusion problem in a thermal battery. Here we focus
on the semi-discrete finite element solution sy computed with elements of order
p = 1,2 and Mesh I as shown in Fig. 2.2. It should be noted that the solution has
significant transient behavior for time instant ¢ < 500 as shown in Fig. 4.9.

Fig. 4.42 is the variation of effectivity index 7(t) corresponding to the exact
solution u of the elliptic reconstruction problem constructed from the semi-discrete
finite element solutions of degree p = 1,2, and 3. It can be seen that the effectivity
index is close to 1 at all time instants for the isotropic case while for the orthotropic
case except at the time instant close to ¢ = 0 where the effectivity index can be much
greater than 1, the effectivity index is close to 1.

Fig. 4.43 is the variation of effectivity index 7752:1/@ (t) corresponding to the ap-
proximate solution SZ:],C of the elliptic reconstruction problem constructed from the
semi-discrete finite element solutions of degree p = 1,2, and 3. It can be seen that
the effectivity index 7752:1/@ (t) has the performance similar to the exact version of 7(t).
Note that with the increase of polynomial order p + k in the approximate solution

'llsz+k, the computable version Mgy (t) converges to the exact version 7(t).
n' n
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Orthotropic case
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Fig. 4.42. Transient diffusion problem in a thermal battery. The evolution of effectivity

index 7(t) based on the exact solution @ of the elliptic reconstruction problem constructed

from the semi-discrete finite element solutions of degree p = 1,2, and 3 for isotropic case

and orthotropic case.
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Fig. 4.43. Transient diffusion problem in a thermal battery. The evolution of effectivity in-

dex T]Sp+k( ) based on the approximate solution sph of the elliptic reconstruction problem
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from the semi-discrete finite element solutions of degree p = 1,2, and 3 for isotropic case

and
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Fig. 4.44 (resp. Fig. 4.45) is the variation of effectivity index ((t) (resp. its com-
putable version ¢ Sy (t)) corresponding to the exact solution @ (resp. its approximate
solution ﬁsiff)’ for the elliptic reconstruction problem constructed from the semi-
discrete finite element solutions of degree p = 1,2, and 3 and Mesh I for the isotropic
case and the orthotropic case. It can be seen that for the isotropic case ((t) based on
4 is close to 1 even in the case of linear element where there is no superconvergence
for the term ||u — 4||12(q). For orthotropic case, ((¢) has poor performance at the
time instants close to t = 0. But as time evolves, ((t) improves. The effectivity index
CSZ:],“ (t) has performance similar to its corresponding exact version ((¢) for both the
isotropic case and the orthotropic case.

Fig. 4.46 (resp. Fig. 4.47) is the evolution of effectivity index 7V (t) , 7 ,(t),
and 77;£+k(t) for the exact error measured in energy norm, where the exact error in-
dicator function and its computed version are obtained from the subdomain residual
problem of the elliptic reconstruction problems corresponding to the semi-discrete
finite element solution sy of degree p = 1,2, and 3 with Mesh I for the isotropic
case (resp. the orthotropic case). It can be seen that for the isotropic case, we have
good effecviity index for 7V (t) , 7Y, ,(t), and 7, (t) at all time instants. However
for the orthotropic case, it can be seen that 7V (t) and 7, (t) severely overestimate
the exact error while 77;£+k(t) severely underestimate the exact error, and the culprit

is the interface layers in the highly orthotropic domain €23.
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Orthotropic case

Fig. 4.44. Transient diffusion problem in a thermal battery. The evolution of effectivity
index ((t) based on the exact solution @ of the elliptic reconstruction problem constructed
from the semi-discrete finite element solutions of degree p = 1,2, and 3 for isotropic case

and orthotropic case.
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index (gptk (t) based on the approximate solution @ gptk of the elliptic reconstruction problem
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Fig. 4.48 (resp. Fig. 4.49) is the evolution of effectivity index ((t) and (, () for
the exact error measured in L?norm, where the exact error indicator function and its
computed version are obtained from the subdomain residual problem of the elliptic
reconstruction problem corresponding to the semi-discrete finite element solution u S%,
of degree p = 1,2, and 3 with Mesh I for the isotropic case (resp. the orthotropic
case). It can be seen that for the isotropic case in the case of linear element p = 1
the effectivity index can be as worse as 3.0. However for p > 2, both ((t) and (,4(t)
are close to 1. For the orthotropic case, both ((t) and (, x(t) severely overestimate

the exact error measured in L? norm. The best effectivity index is still close 100.
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Fig. 4.48. Transient diffusion problem in a thermal battery. The evolution of effectivity
index for the exact error measured in L? norm based on the subdomain residual problem

of the elliptic reconstruction problem for the isotropic case. a)((t); b) (prx(t)-
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Fig. 4.49. Transient diffusion problem in a thermal battery. The evolution of effectivity
index for the exact error measured in L? norm based on the subdomain residual problem

of the elliptic reconstruction problem for the orthotropic. a)((t); b) {pik(t).

Figs. 4.50 and 4.51 (resp. Figs. 4.52 and 4.53) are the contour plots of the
exact error |u — u52h| and its approximations | — u52h| and |ﬂ52ff — u52h| based
on the exact and approximate solutions of the elliptic reconstruction problem for
isotropic case (resp. orthotropic case) for the semi-discrete finite element solution
usy computed with degree of p = 1,2 and Mesh II. It can be seen that even in the
case of linear element where there is no superconvergence property in ||u — @||r2(q)
the contour plots match each other well. This is even more obvious in the case
of quadratic element given that fact that ||u — ||;2() possesses superconvergence
property. Note that for orthotropic case, the high orthotropy does not affect the

performance of approximations based on elliptic reconstruction problem.



a) b) c) d)

Fig. 4.50. Transient diffusion problem in a thermal battery. The contour plots for isotropic case related to the semi-discrete finite
clement solution ugr of degree p =1 at time instant ¢ = % for quantities: a) The exact error |u — ugr [; b) The approximation
h
of the exact error |4 — ugn | based on the exact solution @ of the elliptic reconstruction problem; ¢) The approximation of the
h
exact error |ﬂsp+k — ugr | based on the approximate solution tgp+r Of the elliptic reconstruction problem with k = 1; d) The
ANy, h Ay

approximation of the exact error |u gr+k = Ugk | based on the approximate solution @ gtk Of the elliptic reconstruction problem
ANy, h ANy
with k = 2.
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Fig. 4.51. Transient diffusion problem in a thermal battery. The contour plots for isotropic case related to the semi-discrete finite
element solution ugr ~of degree p = 2 at time instant ¢ = % for quantities: a) The exact error |u — (A |; b) The approximation
h

of the exact error |4 — (5 | based on the exact solution @ of the elliptic reconstruction problem; ¢) The approximation of the
exact error |ﬂsp+k — ugr | based on the approximate solution tgp+r Of the elliptic reconstruction problem with k = 1; d) The
ANy, h Ay
approximation of the exact error |u gr+k = Ugk | based on the approximate solution @ gtk Of the elliptic reconstruction problem
ANy, h ANy

with £ = 2.

171



a) b) c) d)

Fig. 4.52. Transient diffusion problem in a thermal battery. The contour plots for orthotropic case related to the semi-discrete finite

clement solution ugr of degree p =1 at time instant ¢ = % for quantities: a) The exact error |u — ugr [; b) The approximation
h

of the exact error |4 — ugn | based on the exact solution @ of the elliptic reconstruction problem; ¢) The approximation of the
h
exact error |ﬂsp+k — ugr | based on the approximate solution tgp+r Of the elliptic reconstruction problem with k = 1; d) The
ANy, h Ay

approximation of the exact error |u gr+k = Ugk | based on the approximate solution @ gtk Of the elliptic reconstruction problem
ANy, h ANy
with k = 2.

44!



a) c) d)
Fig. 4.53. Transient diffusion problem in a thermal battery. The contour plots for orthotropic case related to the semi-discrete finite
clement solution ugy of degree p =2 at time instant ¢ = % for quantities: a) The exact error |u — u A |; b) The approximation
h h
of the exact error |4 — ugr | based on the exact solution @ of the elliptic reconstruction problem; ¢) The approximation of the
h

exact error |ﬂsp+k — ugr | based on the approximate solution tgptr Of the elliptic reconstruction problem with k = 1; d) The
Apr h Ay

approximation of the exact error |u gr+k = Ugk | based on the approximate solution gtk Of the elliptic reconstruction problem
Apr h Apr
with k = 2.
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Figs. 4.54 and 4.55 are the contour plots of the modulus of the exact error
KV (u — uSZh)| and its approximations |KV(u — uSZh)| and |KV(2252:1/€ — uSZh)|
based on the exact and approximate solutions of the elliptic reconstruction problem
for isotropic case for the semi-discrete finite element solution Usy computed with
degree of p = 1,2 and Mesh II.

Figs. 4.56 and 4.57 are the contour plots of the modulus of the exact error
KV (u — uszh)| and its approximations |KV(u — uSZh)| and |KV(2252:1/€ — uszh)|
based on the exact and approximate solutions of the elliptic reconstruction problem
for orthotropic case for the semi-discrete finite element solution u sz, computed with
degree of p = 1,2 and Mesh II. It can be seen that for both the isotropic case and
orthotropic case the contour plots match each other well. Clearly with the increase
of polynomial order p + k, the approximate value of |KV (u Sg u SZh)| converges to

the exact value of [KV (@ —ug )|.
h



a) b) c) d)
Fig. 4.54. Transient diffusion problem in a thermal battery. The contour plots for isotropic case related to the semi-discrete
finite element solution ugr . of degree p =1 at time instant t = % for quantities: a) The modulus of exact error [KV(u — ugr h)|;
b) The approximate modulus of the exact error |[KV(u — ugn h)| based on the exact solution @ of the elliptic reconstruction
problem; c¢) The approximate modulus of the exact error |KV('[/J5,Z:I,C — ugr h)| based on the approximate solution ﬂSZ:If of the
elliptic reconstruction problem with & = 1; d) The approximate modulus of the exact error |KV('EL5,Z:I,C — ugn h)| based on the

approximate solution @ gp++ of the elliptic reconstruction problem with k& = 2.
Ah/
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Fig. 4.55. Transient diffusion problem in a thermal battery. The contour plots for isotropic case related to the semi-discrete
finite element solution ugr of degree p = 2 at time instant ¢ = % for quantities: a) The modulus of exact error [KV(u—ugr )|;
h h

b) The approximate modulus of the exact error |[KV(u — (A )| based on the exact solution @ of the elliptic reconstruction
problem; ¢) The approximate modulus of the exact error [KV (i gptr — ugn )| based on the approximate solution @ gp+r of the
ANy, h ANy,
elliptic reconstruction problem with & = 1; d) The approximate modulus of the exact error |KV(@SZ+k — ugn h)| based on the
h!

approximate solution @ gp++ of the elliptic reconstruction problem with k& = 2.
Ah/
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Fig. 4.56. Transient diffusion problem in a thermal battery. The contour plots for orthotropic case related to the semi-discrete
finite element solution ugr of degree p =1 at time instant ¢ = % for quantities: a) The modulus of exact error [KV(u—ugr )|;
h h

b) The approximate modulus of the exact error |[KV(u — ugn )| based on the exact solution @ of the elliptic reconstruction
h
problem; ¢) The approximate modulus of the exact error [KV (i gptr — ugn )| based on the approximate solution @ gp+r of the
ANy, h ANy,
elliptic reconstruction problem with & = 1; d) The approximate modulus of the exact error |KV('[/JS£+I¢ — ugn h)| based on the
h/

approximate solution @ gp++ of the elliptic reconstruction problem with k& = 2.
Ah/
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Fig. 4.57. Transient diffusion problem in a thermal battery. The contour plots for orthotropic case related to the semi-discrete
finite element solution ugn . of degree p = 2 at time instant t = % for quantities: a) The modulus of exact error [KV(u — ugr h)|;
b) The approximate modulus of the exact error |[KV(u — ugn h)| based on the exact solution @ of the elliptic reconstruction
problem; c¢) The approximate modulus of the exact error |KV(@S,:; — ugr h)| based on the approximate solution {LSZ:],C of the
elliptic reconstruction problem with & = 1; d) The approximate modulus of the exact error |KV(115,.§11,c — ugn h)| based on the

approximate solution @ gp++ of the elliptic reconstruction problem with k& = 2.
Ah/
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Fig. 4.58 (resp. Fig. 4.59) is the contour plot of the absolute value of the exact
and computed error indicator functions |éw§‘(h| and |éw§h,p ;| for isotropic case (resp.
orthotropic case), where the error indicator functions are based on the subdomain
residual of the elliptic reconstruction problem constructed from the semi-discrete
finite element solution computed with element of degree p = 2 and Mesh I. It can
be seen that for isotropic case the contour plot based on the error indicator function
matches the exact error well. However for orthotropic case, the contour plots between
the error indicator function and the exact error are completely different.

Fig. 4.60 (resp. Fig. 4.61) is the contour plot of the modulus from the exact
and computed error indicator functions |éw§‘(h| and |éw§h,p ;| for isotropic case (resp.
orthotropic case), where the error indicator functions are based on the subdomain
residual of the elliptic reconstruction problem constructed from the semi-discrete
finite element solution computed with element of degree p = 2 and Mesh 1. Again for
isotropic case, the modulus based on the error indicator function matches the exact

error well. However this is the case for orthotropic case.
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Fig. 4.58. Transient diffusion problem in a thermal battery. The contour plots for isotropic case related to the semi-discrete finite

element solution (A of degree p = 2 at time instant t = % for quantities: a) The absolute value of exact error indicator function

|é_ay,[; b) The absolute value of the computed error indicator function [é_a, erk|, k = 1; ¢) The absolute value of the computed
X X

error indicator function [é a, |,k = 2; d) The absolute value of the computed error indicator function |é », |, k= 3.
wx Ptk wx p+k
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c) d)
Fig. 4.59. Transient diffusion problem in a thermal battery. The contour plots for orthotropic case related to the semi-discrete finite
element solution u A of degree p = 2 at time instant t = % for quantities: a) The absolute value of exact error indicator function

h

|é_a,|; b) The absolute value of the computed error indicator function |é a, - .» & =1; ¢) The absolute value of the computed
X X

error indicator function [é a, .|,k = 2;d) The absolute value of the computed error indicator function |é a, |, k= 3.
wyx'tpt+k wy'tpt+k
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Fig. 4.60. Transient diffusion problem in a thermal battery. The contour plots for isotropic case related to the semi-discrete finite
element solution u A of degree p = 2 at time instant t = % for quantities: a) The modulus value of exact error indicator function
h

[KVé_a,[; b) The modulus of the computed error indicator function [KVeé a, erk|, k = 1; ¢) The modulus of the computed error
X X

indicator function |[KVé a, |, k= 2; d) The modulus of the computed error indicator function |KVé A, | k=3.
Wy ,0+k Wy ,0+k
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Fig. 4.61. Transient diffusion problem in a thermal battery. The contour plots for orthotropic case related to the semi-discrete finite
element solution u A of degree p = 2 at time instant t = % for quantities: a) The modulus value of exact error indicator function

h

[KVé_a,[; b) The modulus of the computed error indicator function [KVeé a, erk|, k = 1; ¢) The modulus of the computed error
X X

indicator function |[KVé a, |, k= 2; d) The modulus of the computed error indicator function |KVé A, | k=3.
Wy ,0+k Wy ,0+k
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CHAPTER V

GUARANTEED ERROR ESTIMATION FOR FULLY DISCRETE SOLUTIONS
OF PARABOLIC PROBLEMS BASED ON ELLIPTIC RECONSTRUCTION

5.1 Fully discrete finite element solution of the transient heat conduction problem,

and postprocessing based on elliptic reconstruction

The formulation of the fully discrete finite element solution corresponding to (4.1) is

the following.

Let § & {In}i:]:l, be a partition of the time interval [0, 7] into N uniform time

steps I, = (tn-1,tn], n = 1,..,.N, 0 =ty < t1.... < ty = T, and we denote by

AtY t, —t _, the time step size. Thus for ¢t € I, the standard backward Euler-

Galerkin method for the discretization of problem (4.1) associated with the finite

element spaces Sih is defined as follows:

Find € 5%, , such that

n
SP
Ap,

ur, — Ut
S S
] e + Bo (Ul ,v) = L"(v Yoe S,  Vte (thi,tn
S A
At LZ(Q) Ah "

(5.1)

where

gn(v) /Q v+ /P ) g"v (5.2)

: t Al n def rrp n—1 def rrpn_q n, def
Note that for simplicity USZh = USZh (x,t,), USZh = USZh (x,tn-1), f" = f(x,tn),
g g(x,t,) and S3C U(Q) is the finite element space defined using tensor-product

rectangular elements of degree p over mesh Ay.
Given the discrete function of time Ug, at time node ¢, and ng_l at t_,, we

Ay Ap

can build a continuous function of time USZ def USZ (x,t) for time interval [t,_1,1,)]
h h
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by piecewise linear interpolation, e.g.,

def n— n
Ugy = zm(lt)USZh1 +1.(t) 3 for t € [th_1,tn) (5.3)
where
e t —1 def t—1
l t d:f n = n—1 4
el EACEE (5.4)

Let us address the elliptic reconstruction problems as formulated in [36,37] in
terms of the fully discrete finite element solution to the equation (4.1) which is defined

as follows:

Find U = U(x,t), such that
Bo(U,v) = £(v) — (vaUsph U)LZ(Q) Yo € a(Q), vt € (0,T) (5.5)
The finite element approximation of (5.5) in space S} is the following

Ba(l, v) = 2(0) — (12 Usy_v)

P
@ o VoeSh, Vte(0,T)  (56)

L*(9)

Note that unlike the semi-discrete finite element solution where the equation (4.6)
holds at any time instant ¢ € (0,7, the finite element solution US,, of the equation
Ap

(5.5) is equivalent to the fully discrete finite element solution U v only at time instant
h

t=t,,n=0,1,..., N, namely,

rn n 9 n
%Q(Uszh,v) =9"(v) — (VEUSZ,I’U)LZ(Q) = B SZh’U) Vv e S}, (5.7)
with . [t
0 U8R, TSR,
s P v (5:8)

If we define the exact error between the exact solution u and its fully discrete
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finite element approximation Ugy ~at any time instant ¢ as follows
h

def
Eh = u-— Uszh (59)

then at time instant t =t,,n =0,1,..., N, we have by triangle inequality
1B i = Il = Uy e < " = Ol + 1107 = Uy e 1=0,1  (5.10)

where U™ is the exact solution of equation (5.5) at time instant t,,.
Since gZ is finite element approximation of U™ based on finite element space
h

SR, we know that U™ — ng ||, is spatial error term with the following bounds
h
10" = Uy |lm < CRPFH 0 1=0,1 (5.11)
h

By introducing the exact solution 4™ of equation (4.5) at time instant ¢,,, we can

split u™ — U™ the following way,
u'=U"=u"—-u"+a" - U" (5.12)
Therefore
[u — U™ < |0 — @] + ||[0" = O"||;p 1=0,1 (5.13)

Clearly ||u™ — @"||g is the spatial error term and its convergence rate is defined
by the theorem 4.1 while ||a" — U"||g: is the temporal term and for quasi-uniform
meshes and uniform time step size At, we have the following bounds if the temporal

discretization scheme is backward difference [40]

6" — U™ < CAt  1=0,1 (5.14)
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Therefore we have
IEM g < C (WP 4+ WP+ Hlogh| + At) p>1, 1=0,1 (5.15a)

E || < C(R*' 4+ hP|logh|' + At) p=1, 1=0,1 (5.15b)

Clearly it can be seen that if the temporal error term ||a" — U"||Hz is negligible and

the term ||u"™ — 4"|| 1 is superconvergent, we have
1B [~ [|U" = Ugy |l 1=0,1 (5.16)
h

Let us illustrate the convergence behaviors of ||EP||;: and ||@" — U™|| g with the

following examples.

Example 5.1. Heat transition problem in one dimension. We choose the time instant
t = % at which the solution reflects obvious transient behavior to study the relevant
convergence behaviors as shown in Fig. 4.1.

Fig. 5.1 (resp. Fig. 5.2) is the convergence plot of ||u"—U§Zh |1 and ||@"—U"||
(I = 0,1) with respect to time step size At = 2T—n,n = 2,3,4, and 5, at time instant
t = % for the fully discrete finite element solutions of degree p = 1,2, and 3 for
uniform meshes h = 5%, m = 1,2, 3, and 4. It can be seen that ||a" — U (1=0,1)
has a convergence rate of 1 with respect time step size At. As the mesh density and
polynomial order increase, the convergence behavior of ||u™ — ngh |l (1 =0,1) is

dominated by the temporal error term ||@" — U"||; (I = 0,1), which is obvious in

the case of p = 3.
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Fig. 5.1. Heat transition problem in one dimension. The convergence of ||[u" — Ug ||
Ap,
and ||G" — U"||1 vs. time step size At = £, n = 2,3,4, and 5, at time instant t = £ for

the fully discrete finite element solutions of degree p = 1, 2, and 3 computed with mesh size
h = %,m: 1,2, 3, and 4.
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Fig. 5.2. Heat transition problem in one dimension. The convergence of ||[u" — Ugy ||go

Ap,

and ||4" — U™||go vs. time step size At = 2%,11 = 2,3,4, and 5, at time instant ¢ = % for

the fully discrete finite element solutions of degree p = 1, 2, and 3 computed with mesh size
h = %,m: 1,2,3, and 4.

Fig. 5.3 (resp. Fig. 5.4) is the convergence plot of ||u" — gZ || g and |67 —U"| g1

h
(I =0,1) with respect to mesh size h at time instant ¢ = % for the fully discrete finite
element solutions of degree p = 1,2, and 3 for uniform meshes h = zim,m =1,2,3,

and 4. Tt can be seen that ||@" — U"|| (I =0,1) is not sensitive to the mesh density

since it is related to temporal error only. With the increase of the number of time
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steps, the magnitude of ||a" — U"||;n (I = 0,1) is reduced. Again for p = 3 where the
temporal error is dominant, we can see that ||@" — U"|| (I = 0,1) is about the same

as [|a" — U|; (1=0,1).
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Fig. 5.3. Heat transition problem in one dimension. The convergence of ||u"™ — gz || 1
h

and ||4™ — U™|| 1 vs. mesh size h = #,m = 1,2,3, and 4, at time instant ¢t = % for the
fully discrete finite element solutions of degree p = 1, 2, and 3 computed with time step size
At = %,n: 2,3,4, and 5.
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Fig. 5.4. Heat transition problem in one dimension. The convergence of |[u" — Ug, || o

Ap,

and ||@" — U"™||go vs. mesh size h = %,m = 1,2,3, and 4, at time instant ¢t = % for the

fully discrete finite element solutions of degree p = 1, 2, and 3 computed with time step size

Atzzln,n:2,3,4, and 5.

T

Example 5.2. Two dimensional synthetic problem. We choose the time instant ¢ = 5

at which the solution contour as shown in Fig. 4.3 reflects obvious transient behavior.

®

©
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Fig. 5.5 (resp. Fig. 5.6) is the convergence plot of ||u" — gzh || and [|a"—U"||
(I = 0,1) with respect to time step size At = 2T—n,n = 2,3,4, and 5, at time instant
t= % for the fully discrete finite element solutions of degree p = 1,2, and 3 for uniform
meshes h = 5%, m = 1,2,3, and 4. It can be seen that ||a" — U|yr (1=0,1) has a
convergence rate of 1 with respect to time step size At. The exact error ||u" — gzh || g
(I = 1) is not sensitive to the variation in time step size At which indicates that the
spatial error is dominant. In the case of ||[u" — gZhHHl (I = 0), we can see the

convergence behavior of ||u" — gZ | (1 =0) is controlled by || — U"||; (I = 0)
h

for p = 2,3 and Mesh 4 since the temporal error is dominant in this case.

=1 =2 =
20 HPWHHHH‘H_ 20“”‘”””9“””HH‘HH 20 \pwwsw
151 < 15 ; = 0 0 = — 15 E 8 ym = 5 <
1ol B 1o B 1ol B
05F 3 05 ; E 05F 3
00f Bz . B 00F Qe B 00f B
£ “‘81;\,\ [ ° ]
05F Qe 3 05F B W E 05F - E
F | o Mesht rol===ig ] F | o Mesh1 e ] F | o Meshi 10y
1.0 O Mesh2 El 40F | 5 Mesh2 : o Bl A0F | O Mesh2 e
E A Mesh3 ] F | A Mesh3 El F | o Mesh3 ]
asE <& Mesh 4 E IS 1 & Mesh 4 B SE | © Mesh4 E
_2_9172\ L \-'\.4\ L ‘.1‘_6‘ L ‘.1‘_8‘ L \.2“0\ L \_2‘2\ L ‘.;A _2_9172\ L \-'\.4\ L ‘_1‘_6‘ L ‘.1‘_8‘ L \.2\‘0\ L \-2\2\ L ‘_;A _2_9172\ L \-'\.4\ L ‘.1‘_6‘ L ‘.1‘_8‘ L \.2\‘0\ L \-2\2\ L ‘.;A
log, (At) log, (At) log, (At)
Fig. 5.5. Two dimensional synthetic problem. The convergence of [[u" — Ug |[|g and
Ap

|| — U™|| g1 vs. time step size At = £L.n =2,3,4, and 5, at time instant ¢ = Z for the

fully discrete finite element solutions of degree p = 1,2, and 3 computed with mesh size
h = %,m: 1,2,3, and 4.
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Fig. 5.6. Two dimensional synthetic problem. The convergence of |[u" — Ug |[|go and
An

[ — U™||yo vs. time step size At = 2%,11 = 2,3,4, and 5, at time instant ¢ = % for the
fully discrete finite element solutions of degree p = 1,2, and 3 computed with mesh size
h = %,m: 1,2, 3, and 4.

Fig. 5.7 (resp. Fig. 5.8) is the convergence plot of ||u™ — ngh ||z (1 =0,1) and
|a™ — U™||gn (I = 0,1) with respect to mesh size h at time instant ¢ = T for the
fully discrete finite element solutions of degree p = 1,2, and 3 for uniform meshes
h=3%,m=1,23, and 4. It can be seen that ||a" — UM |t (1 =0,1) is not sensitive
to the mesh size since it is related to the temporal error only and with the increase
of the number of time steps its magnitude is reduced. When the spatial error is
dominant, ||u™ — gZhHHl (I = 0,1) converges as the mesh is refined. In the case
where the temporal error is dominant, ||u" — gZhHHl (I =0,1) and [|a™ — U"||
(I =0,1) are about the same. For example, we can observe this in the case of p = 3,

Mesh 4 and the number of time steps N equal to 4.
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Fig. 5.7. Two dimensional synthetic problem. The convergence of [[u" — Ug |[|g and
Ap,
[|a"™ — U™|| g1 vs. mesh size h = #,m =1,2,3, and 4, at time instant ¢ = % for the fully
discrete finite element solutions of degree p = 1,2, and 3 computed with time step size
_ T _
At = 57,n = 2,3,4, and 5.
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Fig. 5.8. Two dimensional synthetic problem. The convergence of [[u" — Ug |[|go and
Ap,

||[a™ — U"|| o vs. mesh size h = #,m =1,2,3, and 4, at time instant ¢ = % for the fully

discrete finite element solutions of degree p = 1,2, and 3 computed with time step size
At = 21,1,11:2,3,4, and 5.



163

Example 5.3. L-shaped domain problem. We choose the time instant ¢t = % at which

the solution reflects obvious transient behavior as shown in Fig. 4.7. Fig. 5.9 (resp.

Fig. 5.10) is the convergence plot of ||u" — gZ g and [|a® — U|| (I = 0,1)
h

T

with respect to time step size At = 55,n = 2,3,4, and 5, at time instant ¢ =

3
for the fully discrete finite element solutions of degree p = 1,2, and 3 for uniform
meshes h = 5=, m = 1,2,3, and 4. It can be seen that |[a" — U | (I =0,1) has
a convergence rate of 1 with respect to time step size At. In the case of [ = 1, the
exact error ||u"™ — ngh || gzt is not sensitive to the variation of time step size At, which
means the spatial error is dominant for the given number of time steps. Moreover
its magnitude is greater than ||a" — U™||;. However for [ = 0, we can see that

[[u™ = Ug ||p is about the same as |[4" — U"|| 0 except the case of p = 1 and Mesh
Ap

1, which indicates that the temporal error in ||u™ — ng || is dominant for [ = 0.
h
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Fig. 5.9. L-shaped domain problem. The convergence of [[u"—~Ugy ||g1 and |6 —U™|| g1 vs.
Ap

time step size At = zln, n =2,3,4, and 5, at time instant ¢ = % for the fully discrete finite
element solutions of degree p = 1,2, and 3 computed with mesh size h = 2%, m=1,2,3,
and 4.
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Fig. 5.10. L-shaped domain problem. The convergence of |[u" —Ug, ||o and [|4" — U™|| g0
An

vs. time step size At = zln, n = 2,3,4,and 5, at time instant t = % for the fully discrete finite

element solutions of degree p = 1,2, and 3 computed with mesh size h = 2%, m=1,2,3,
and 4.

Fig. 5.11 (resp. Fig. 5.12) is the convergence plot of ||u" — gZ || and ||a™ —
h
U™ | (1= 0,1) with respect to mesh size h at time instant ¢ = T for the fully discrete

finite element solutions of degree p = 1,2, and 3 for uniform meshes h = X, m =

T
1,2,3, and 4. It can be seen that ||a™ — U"||g: is temporal error dependent and is
not sensitive to the mesh size, and with the increase of the number of time steps its
magnitude is reduced. Since the spatial error is dominant for [ = 1, we can see that
||u™ — ngh || gt converges as the mesh is refined. Again in the case of [ = 0 where the

temporal error is dominant except the case of p = 1, Mesh 1 and N = 32, we can see

that ||u™ — U% ||, is about the same as || — U™|| 4.
SR,



165

N=4 N=8§ N=32

L e o LS o e B L B 10:“‘““‘““““““““““
08} , osf— g
04F @ 1 %

J

02fF B 02f

Sl b b b b b e
o
o
T
=Y >O0
T T O

=1

00F o p=l E 00:— =2

o p=2 ] 3 o p=1 =3
o02fF 4 p=3 ] 02k O p=2 02F

] g s p=3
04F B 0.4 F F
B ST “‘_1\0‘”‘_1\2””;4 ,O%:Z‘H T R 06 e
log ,(h) log, () log (M)
Fig. 5.11. L-shaped domain problem. The convergence of [|[u" —Ug, |[|g1 and [[a" —U"|| g
Ap

vs. mesh size h = 2%, m =1,2,3, and 4, at time instant t = % for the fully discrete finite
element solutions of degree p = 1,2, and 3 computed with time step size At = 21,1, n=2,3,4,
and 5.
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Fig. 5.12. L-shaped domain problem. The convergence of [[u" —Ugy |[|go and [|4" — U™|| go
Ap

vs. mesh size h = 2%, m =1,2,3, and 4, at time instant t = % for the fully discrete finite

element solutions of degree p = 1,2, and 3 computed with time step size At = L, n = 2,3, 4,

2n7
and 5.
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5.2 Upper bound in space-time norm for the exact error in fully discrete finite ele-

ment solutions

Upper Bound in Space-Time Norm: The error £, measured in 6-norm has the

upper bound as follows

T
def NP A
1B < €5, \// (T = 0)(I10 — Usg 1+ 10z, — Usg 1B dt + TV
(5.17)
where Ej,(0) denotes the exact error at time instant ¢ = 0.

Proof: Substracting equation (5.5) from the equation (4.2), we have

(V%Eh,v)m(g) +Bou—U,0)=0  Yoeau(), vVt e (0,7T) (5.18)

Let v = Ej, we have

1d

§£||\/§Eh||zz+%g(u—U,Eh) —0 vt € (0,7) (5.19)

It can be shown that
A~ A 2 ~ 2 2 2
Bo(u—U, Ep) = [lu=Ully = [[U = Ugg_ Il + (1B, /[0 = Ba(Ep,u=U)  (5.20)

Then we obtain

A 1 2 NI A 2
Ba(u—U, Ep) = §(||Eh||ou + [lu = Ully, = [JU — Usghllou) (5.21)
Therefore we have
d 2 2 A 2 A 2
EllﬁEhlle Bl + v = Ulla = IU = Usg_la (5.22)

Note that U, gz is the finite element approximation of (5.5) in S}, and we have the
h
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following orthogonality
B (U — Uszh , Uszh ~Usz ) =0 (5.23)

Thus
~ 2 ~ ~ 2 ~ 2
10— Usg 1 =110~ U 1+ 10y, — Us Il (5.24)

Take time integration fOT Jo on both sides of (5.22) and employ Fubini’s theorem,

we have
T , ) T ~
(IWAERl2 + (T = Ol Bnlla)dt + [ (T = t)]|u—Ully, dt
o 0 (5.25)
~ A 9 A 2 2
= [ @ =000 =y I+ 1105, = Usg 1) dt+ TIVABO
By dropping the term ||u — U||2,, (5.25) immediately yields (5.17)
O

Remark 5.1. If fOT(T—t)||u—U| | dt is negligible in comparison of fOT (IIVAE,] .+

(T — t)||Eh||62u) dt, the upper bound €gx is sharp.

With the introduction of ¢55 | we can define effectivity index to measure the

error £y, of the fully discrete finite element solution Ugz  as shown below
h

KJFD def @EE%(
1B, [l

(5.26)

In practice the exact solution U of elliptic reconstruction problem (5.5) is not
computable and thus the upper bound ¢£5. is unknown. However U can be approxi-
mated by the nested refinement of the finite element mesh for U, sz (h method) or the
increase of polynomial order (p method), or both (hp method). We will refer to U Sy
as the approximation of the exact solution U where p—+k denotes the polynomial space

of degree p + k and the mesh Ay, is obtained from the uniform nested subdivision of
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the mesh A employed to obtain the fully discrete finite element solution U S8
h

Thus we can define the following computable version of upper bound ¢£5

T
def 2
@ggD+k = \//0 (T —1t) ||U524;1k — U52h||; dt+T ||\/§Eh(0)||i2 (5.27)
1% /
It should be noted that @gak is not necessary a guaranteed upper bound.
Ah/
Let us define the effectivity index of the @g;]irk as
Ah/
<FD
KFD,, & ey (5.28)
Saw | Enlle '

Let us split the error of fully discrete finite element solution Ej into two parts

as follows

Eh = Ph + Qh (529)
where pj, is the spatial error defined as

Ph - ugr (5.30)
h

and 6, is the temporal error defined as

def
eh = USZh — Uszh (531)

We define the ratio of the spatial error to the total error as

ot llenlle 000 (5.32)

[oW
e}
[

and the ratio of the temporal error to the total error as

gt 18l
IZ,]

o

x 100% (5.33)

R
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Upper Bound for Temporal Error in Space-Time Norm: The temporal

error #;, measured in space-time %-norm has the following upper bound:

T
def A
1, < 25p \/ | T =0l0s;, ~Usg 11y a (534
Proof: Substracting equation (5.6) from the equation (4.4), we have
99 U =0 Vve Sk vte (0,7) (535
(7& h>'U)L2(Q) +%Q(u52h - Szh>v) - IS Ay le ( ) ) ( : )

Let v = 6),, we have

1d

5 71Vl + Balusy — Usy .6,) =0 vt e (0,7) (5.36)

It can be shown that
~ ~ 2 -~ 2 2
Ma(ugy —Usy 00) = llus, — Oz I~ 10 —Usy 104l (537)
Therefore, we have

d ) ) L .
SVl 5a + 100+ sy, = Tsg =110y, —Usg Il (5:39)

Take time integration fOT fOT on both sides of (5.38) and employ Fubini’s theorem,
we have
T

T
| (Aol + @ = ollonia+ [ = bllusg, ~Usg I at
0

T
- [0l ~Us It 639
0

Note that the temporal error at time instant ¢t = 0 satisfies 6,(0) = 0.

By dropping the term fOT(T — t)|fusz — USZ ||2, dt, we have the upper bound
h h
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for the temporal error ||0p|¢(q)-

O
Remark 5.2. Note that ‘EEZD < ¢5Y since
h
T 9 )
& & 2
B = [0 = Oy i+ BV + TIVFBOIG G0

according to (5.17) and (5.34). And the terms ||U — USZ ||la, and ||\/§Eh(0)||22 have
h

spatial error only.

Remark 5.3. It should be noted that unlike €5 which is not computable, here

3 FD

T is computable and unlike the computable version @gak which might not be a
h

ANY

¥ is a guaranteed upper bound for the temporal error.

guaranteed upper bound, ¥ %

h

Remark 5.4. Note that at each time integration point an elliptic problem of (5.6)

has to be solved for U sz . However the global stiffness matrix of (5.6) only needs to
h

be factorized once and saved on the hard disk for the whole time interval (0,7, and

the only computational cost is to form the right-hand-side load vector of (5.6).

At any time instant, the term [|lugr — USZ ||2, is bounded as follows
h h
lusy, — Oyl < llii— Ul (5.41)

Proof: Since ugz —Ugsz € Sih, for semi-discrete finite element solution ugr , we
h h h

have the orthogonality condition
%Q(ﬂ—uszh,uszh —Uszh):() (542)
while for fully discrete finite element solution U sz, the orthogonality condition is
h

B (U — Usgh gy~ Usgh) =0 (5.43)
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Subtract (5.43) from (5.42), we have
Bt — U, Usy — Usgh) = [Jusy - Usgh [ (5.44)
Given the fact
Bl — U>usgh - Usgh) <|la—Ulla lusy = Usgh | (5.45)

we can see (5.41) holds.

O
We can define effectivity index to measure the temporal error 6, as follows
TP
= m (5.46)

Note that IEZDh is guaranteed computable upper bound for the temporal error.

It can be seen that for total error ||E}|l¢ we have the estimate GER. while for

3FD

temporal error the estimate is . Therefore we have the following estimate for the

h
exact temporal error ratio (3
TP
FD def @Fﬁ; x 100% (5.47)
EX

If we employ the computable version of €55, we have

TP
def A
ﬁgg'ik = G X 100% (5.48)
h! Svak
h/

Remark 5.5. If temporal error ||04]|¢ is dominant in the total error ||Ej||¢, namely,

|10r]l¢ =~ || En||<, we have according to (5.40)

il ~ ngDh (5.49)
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and hence

RV G (5.50)
h
Let us illustrate the upper bounds with some examples.

Example 5.4. Heat transition problem in one dimension. Fig. 5.13 is the relative

error

x 100% (5.51)

while Fig. 5.14 illustrates the ratio of spatial error to the total error a and the ratio
of the temporal error to the total error 3, for the fully discrete finite element solution
U sz

It can be seen that with the increase in mesh refinement level, polynomial order
p, the number of time steps, the relative error € goes down. In the case of p = 3, the
mesh refinement has no effect on the relative error which indicates that the temporal
error is dominant as shown in Fig. 5.14 for p = 3. For linear element p = 1, we can
see from Fig. 5.14 that with the increase of time steps, the spatial error becomes
dominant. As a matter of fact, for coarse mesh, Mesh 1, the spatial error is dominant
for all four types of time step size. In case of cubic element p = 3, the spatial error

is killed and temporal error is dominant.
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Fig. 5.13. Heat transition problem in one dimension. The relative error € for the fully

discrete finite element solutions of degree p = 1,2, and 3 computed with four different mesh
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Fig. 5.14. Heat transition problem in one dimension. The ratio of temporal error 3 (dash-dot

line) and the ratio of spatial error « (solid line) for the fully discrete finite element solutions

of degree p = 1,2, and 3 computed with four different mesh sizes and four different time

step sizes.

and the effectivity index (g

Fig. 5.15 is the illustration of the effectivity index x'P for the total error || Ep||¢

for the temporal error ||6,||¢ for the fully discrete finite

element solutions Usz  of degree p = 1,2, and 3. It can be seen that as the spatial
h

error is killed, the effectivity index s

D

converges to the effectivity index (5’ for the

P
Ap,

temporal error around the value of 1.65 as shown in the case of p = 3. Based on Fig.

5.14, we can also see that " is close to 1 as long as the spatial error is dominant.

0
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Fig. 5.15. Heat transition problem in one dimension. The effectivity index <P (solid line)

for the total error ||Ep||¢ and the effectivity index Cg,? (dash-dot line) for the temporal
Ap

error ||0p|]¢ for the fully discrete finite element solutions of degree p = 1,2, and 3 computed

with four different mesh sizes and four different time step sizes.

FD

p+k
SAh’

Fig. 5.16 is the illustration of the effectivity index s based on U sp which

is the finite element approximation of the exact solution U of degree p + k, k = 1,2,
and 3, computed with mesh Ay, obtained from the uniform nested subdivision of the
mesh A, employed to obtain the fully discrete finite element solution U. s%, - Here for
simplicity, we fix the mesh, i.e., Ay = Ay, and only increase the polynomial order

from p to p + k with £ = 1,2, and 3 respectively. It can be seen that KJEZDM has the
h/
F

D

performance similar to its exact version ' and it converges to x'° even for k = 1.
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Fig. 5.16. Heat transition problem in one dimension. The effectivity index /{g ,],)M for the
Ah/
total error ||Ep||¢ for the fully discrete finite element solutions of degree p = 1,2, and 3

computed with four different mesh sizes and four different time step sizes.

Fig. 5.17 is the illustration of the exact temporal error ratio § and its estimate
B¥P. In the case of linear element p = 1 whose spatial error is significant, we can see
that B'P is good approximation of 3. Again we can see that as the temporal error
becomes dominant, 5P converges to 3 such as the case of p = 3. We can also observe
that 3 is bounded by B¥P for this example. Note that 4 is not computable since it

employs the exact solution U of the elliptic reconstruction problem.

10 g 110:”H“H“HPWHH‘HH‘HH: 10 e g
100 E 100F E 100 o — N 3
= 3 eoi— —i 902— i
80F 3 80F E s0F 3
0F E 0F E = E
60F 3 60F E 60 o Mesh1 E

E . E E E E O Mesh2 E
s0F N E o o E 0 ~ Mesh 3 E
wf E a0f o El 40F < Mesh 4 E
fE| O MeéfN\\ “ 3 0F N 3 0F E

E : El E O M El E 3
20f | O Mesh2 3 20F esh 4 E 0f 3

E|Aa Mesh3 E E E E E
10; & Mesh 4 E 10; E 10; E

T S T TS BB W | Evvv o e Lo Lo Lo g L i3 )L S T T T O S
92" o0 oz oa .+ 08 0 U R T — 04 - S0 b2 00 02 A 06 08 10

log (A1) log (A1) log (A1)

Fig. 5.17. Heat transition problem in one dimension. The exact temporal error ratio 3
(solid line) and the estimated temporal error ratio 3¥P (dash-dot line) for the fully discrete
finite element solutions of degree p = 1,2, and 3 computed with four different mesh sizes

and four different time step sizes.
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Fig. 5.18 is the comparison of the exact temporal error ratio § and its approxi-

mation ﬁggk. It can be seen that ﬁgﬂk converges to its exact version 5P as shown
Ah/ Ah/
in Fig. 5.17 even with £k = 1. Note that ﬁgﬂk is computable since it is based on

Ay

~

U p+k .
SAh’

M0 = =
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Fig. 5.18. Heat transition problem in one dimension. The exact temporal error ratio 3 (solid

line) and the estimated temporal error ratio ﬁg D . (dash-dot line) for the fully discrete finite
A

/

h
element solutions of degree p = 1,2, and 3 computed with four different mesh sizes and four

different time step sizes.

Example 5.5. Two dimensional synthetic problem. Fig. 5.19 is the relative error ¢
for the fully discrete finite element solution U, s%, - It can be seen that the relative error
is not sensitive to the time step size which means that the spatial error is dominant
as seen in Fig. 5.20 which illustrates the ratio of spatial error to the total error o and
the ratio of the temporal error to the total error 3. Note that for coarse mesh, such

as Mesh 1, the relative error can be close to 100% for element of degree p =1 and 2.
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Fig. 5.19. Two dimensional synthetic problem. The relative error € for the fully discrete
finite element solutions of degree p = 1,2, and 3 computed with four different mesh sizes

and four different time step sizes.
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Fig. 5.20. Two dimensional synthetic problem. The ratio of temporal error § (dash-dot
line) and the ratio of spatial error « (solid line) for the fully discrete finite element solutions
of degree p = 1,2, and 3 computed with four different mesh sizes and four different time

step sizes.

Fig. 5.21 is the illustration of the effectivity index x'P for the total error || E, ||«

and the effectivity index Cgf
h

for the temporal error ||6,||¢ for the fully discrete finite
element solutions U, Sz, - It can be seen that ¥V is close to 1 and not sensitive to the
time step size due to the fact that spatial error is dominant. The maximum effectivity
index Cgi for the temporal error ||0y]|¢ is less than 1.6 which happens to Mesh 1 and

linear element p = 1.

S
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Fig. 5.21. Two dimensional synthetic problem. The effectivity index ' (solid line) for the
total error ||E, [[¢q) and the effectivity index Cg,]? (dash-dot line) for the temporal error
An

|[0n|[¢(q) for the fully discrete finite element solutions of degree p = 1,2, and 3 computed

with four different mesh sizes and four different time step sizes.

Fig. 5.22 is the illustration of the effectivity index /{ggk based on U sp which is
Apr h!

the finite element approximation of the exact solution U of degree p+k, computed with
the mesh Ay, obtained from the uniform nested subdivision of the mesh Aj; employed
to obtain the fully discrete finite element solution U. %, - Here for simplicity, we fix
the mesh, i.e., Ay = Ay, and only increase the polynomial order from degree p to

degree p + k with k£ = 1,2, and 3 respectively. It can be seen that Kg;];)+k converges
Ay

to its exact version k"D with the increase of element order p + k. For k = 1, the

effectivity index K“EEM can be as small as 0.4. However, with the increase of k, the

Ay

effectivity index is significantly improved.



179

=1 =2 =3
ws"H‘HH‘HP”HH“H”HH wsi"H‘HH‘HP”HH‘HH‘HHi ws:"H‘HH‘HPWHH‘HH‘HH:
YEolo Mesh1 | k=1 1 3 o Mesh 1 K< g '6F | o Mesh1 B
Wb 1o Mesh2 | 211 k=2 3 Wb o Mesn2 | o=l wafp | © Mesh2 - k=1 E
A Mesh 3 k=3 E A Mesh 3 ] E A Mesh3 E
S12F [ © Mesh4 ] 5120 O Mesh 4 3 5120 < Mesh 4 E!
2 EE ] Eio ]
Srof @rormom S — o 8 Z10F ¢ 0 ] BroF A I Tititipeniiiy ]
8 s F o A S L E ;“Gﬁ F O---oen O mmmeem Oemmmmmm o ]
T S S ey © s © E Fosf 3 Fosf 3
X W £ El E El
e = a F o O-mmmmmm 0 o ] £ ]
0.6 B o6 O------- I D------ =] — 06 =
ER Orommmes B = £ El £ El
04 ] oaf O m---- O ----e- O------- O e 04F O------- Or------ O------- o B
0_212\\\\4‘4\\\\71‘\\\\V‘b\\\\V‘\\\\VZ‘FZWWWWVZA 0‘2’2"HVW\AH"J\e‘H‘4\8‘”‘72\””\””7;4 0272\\\\71‘4\\\\‘\\\\4‘\\\\7‘\\\\‘\\\\7;4
log, u(A 1) log, u(A 1) Iogm(A 1)

Fig. 5.22. Two dimensional synthetic problem. The effectivity index /{g ,],)M for the total
Ah/
error || Ep||¢ for the fully discrete finite element solutions of degree p = 1,2, and 3 computed

with four different mesh sizes and four different time step sizes.

Fig. 5.23 is the illustration of the exact temporal error ratio § and its estimate
B¥P. It can be seen that S¥P is a very good approximation of 5. Again 3P is

not computable since it employs the exact solution U of the elliptic reconstruction

problem.
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Fig. 5.23. Two dimensional synthetic problem. The exact temporal error ratio 3 (solid
line) and the estimated temporal error ratio f*P (dash-dot line) for the fully discrete finite
element solutions of degree p = 1,2, and 3 computed with four different mesh sizes and four

different time step sizes.

Fig. 5.24 is the comparison of the exact temporal error ratio § and its approxi-

mation };Rk It can be seen that };Rk converges to its exact version 5P as shown

Apr Apr
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in Fig. 5.23 with the increase of k. Moreover, ﬁgﬁk is a good approximation of (3.
Ah/
Note that 3 is bounded by ﬁg%k and 3D, is computable since it is based on USZ“,“‘

p+
Bt SAh/
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Fig. 5.24. Two dimensional synthetic problem. The exact temporal error ratio 3 (solid

line) and the estimated temporal error ratio g D . (dash-dot line) for the fully discrete
Ah/
finite element solutions of degree p = 1,2, and 3 computed with four different mesh sizes

and four different time step sizes.

Example 5.6. L-shaped domain problem. Fig. 5.25 is the relative error € for the fully
discrete finite element solution U %, - It can be seen that the relative error is about
100% when the number of time steps IV is equal to 4 and with the increase in time
steps the relative error decreases dramatically. The relative error is not sensitive to
the polynomial order p and the mesh refinement which indicates that the temporal
error is dominant. Fig. 5.20 illustrates the ratio of spatial error to the total error
a and the ratio of the temporal error to the total error 3. It can be seen that the
temporal error is dominant for all the cases except the case where N =4, p =1 and

Mesh 1 are employed. where the spatial error becomes dominant.
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Fig. 5.25. L-shaped domain problem. The relative error € for the fully discrete finite element
solutions of degree p = 1, 2, and 3 computed with four different mesh sizes and four different

time step sizes.
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Fig. 5.26. L-shaped domain problem. The ratio of temporal error 3 (dash-dot line) and the
ratio of spatial error « (solid line) for the fully discrete finite element solutions of degree

p=1,2, and 3 computed with four different mesh sizes and four different time step sizes.

Fig. 5.27 is the illustration of the effectivity index x'P for the total error || E, ||«

and the effectivity index Cgf
h

for the temporal error ||6,||¢ for the fully discrete finite
element solutions U, sz, It can be seen that the best number of xP is close to 2.4
which happens to the case N = 32, p =1 and Mesh 1. In the case that the temporal
error is dominant such as p = 3 as shown in Fig. 5.20, the effectivity index Cgi for

the temporal error |0 || is close to kP

)

o
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Fig. 5.27. L-shaped domain problem. The effectivity index x'P (solid line) for the total

error || B, ||¢q) and the effectivity index Cg,p (dash-dot line) for the temporal error [|0p|¢(q)
A

for the fully discrete finite element solutior?s of degree p = 1,2, and 3 computed with four

different mesh sizes and four different time step sizes.

Fig. 5.28 is the illustration of the effectivity index KJE D . based on U SpH which is

ANy, h!
the finite element approximation of the exact solution U of degree p+k, computed with
the mesh Ay, obtained from the uniform nested subdivision of the mesh Aj; employed

to obtain the fully discrete finite element solution Ugz . Here for simplicity, we fix
h

the mesh, i.e., Ay = Ay, and only increase the polynomial order from degree p to

degree p+ k with k = 1,2, and 3 respectively. It can be seen that Kg;]?+k converges to
h/

A

F

its exact version x'P with the increase of element order p + k.
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Fig. 5.28. L-shaped domain problem. The effectivity index /{g ZDM for the total error ||Ep||¢
h/
for the fully discrete finite element solutions of degree p = 1,2, and 3 computed with four

different mesh sizes and four different time step sizes.
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Fig. 5.29 is the illustration of the exact temporal error ratio § and its estimate
B¥P. It can be seen that S¥P is a very good approximation of 5. Again 3P is
not computable since it employs the exact solution U of the elliptic reconstruction

problem.
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Fig. 5.29. L-shaped domain problem. The exact temporal error ratio 3 (solid line) and
the estimated temporal error ratio 3¥P (dash-dot line) for the fully discrete finite element
solutions of degree p = 1, 2, and 3 computed with four different mesh sizes and four different

time step sizes.

Fig. 5.30 is the comparison of the exact temporal error ratio § and its approxi-

mation g D +. Tt can be seen that g D« converges to its exact version 3P as shown
A A
h! n

in Fig. 5.23 with the increase of k. Moreover, ﬁgﬂk is a good approximation of [3.
Ah/

Note that 3 is bounded by ﬁgﬂk and ﬁgﬂk is computable since it is based on Usz+k.
Apr Ay I



184

110:””“H“HPWHH‘HH‘HH: 110 e 110 prr e T
100 E 100 E 100F E
90f E 0F E 90F E
B0 f E 80F 3 s0F E
s E 0F E L3 E
o0F E o o Mesh 1 E s0F o Mesh 1 3
sof E ©F | o Mesh2 E sof | O Mesh2 .. k=1 E

E E = S k=1 E E A Mesh 3 3
wf E wf | A Mesh3 77777 k=2 E “F o Mesh4 E
305 3 305 <& Mesh 4 E| 305— E

E |© Mesh4 3 E 3 E E
20F E 20F E 20F E
10 E 0f E 0F E
ob v b b b 1 g ob e b b b 1 g ob v b b b 1 g
08 0 EXNE] 2.0 %8 0 EXI a8 20 08 10 2 - a6 18 20

Iogw(A t) Iogm(At) Iogm(At)

Fig. 5.30. L-shaped domain problem. The exact temporal error ratio 3 (solid line) and

the estimated temporal error ratio ﬁg D . (dash-dot line) for the fully discrete finite element

solutions of degree p = 1, 2, and 3 computed with four different mesh sizes and four different

time step sizes.

Example 5.7. Transient diffusion problem in a thermal battery. Fig. 5.31 (resp.
5.32) is the relative error for isotropic case (resp. orthotropic case) where the exact

solution u is approximated by the overkill solution u computed with p’ = 8 and

/
SP
ovk
Ah

overkill mesh as shown in Fig. 2.2. It can be seen that for both cases the relative

error becomes smaller with the increase of the number of time steps.
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301 O Mesh ll ! 301 O Meshll 3 0 O Meshll 3
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Fig. 5.31. Transient diffusion problem in a thermal battery. The relative error ¢ for the
fully discrete finite element solutions of degree p = 1,2, and 3 computed with Mesh I and

II and four different time step sizes in the isotropic case.
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Fig. 5.32. Transient diffusion problem in a thermal battery. The relative error ¢ for the
fully discrete finite element solutions of degree p = 1,2, and 3 computed with Mesh I and

II and four different time step sizes in the orthotropic case.

Fig. 5.33 (resp. 5.34) illustrates the ratio of spatial error to the total error o and
the ratio of the temporal error to the total error 3 for the fully discrete finite element
solution U. 3 in the isotropic case (resp. orthotropic case). For isotropic case, it can
be seen that the temporal error is dominant for large step size, e.g., At = 212 and 213
With the smaller time step size, the spatial error becomes dominant. For orthotropic
case, in the case of linear element p = 1, the spatial error is dominant for all the four
different time step sizes. In the case of p = 2 and 3, the temporal error is dominant

for large time step size, e.g., At = 212, and the spatial error becomes dominant once

smaller time size is chosen, e.g., At = 21
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Fig. 5.33. Transient diffusion problem in a thermal battery. The ratio of temporal error
[ (dash-dot line) and the ratio of spatial error « (solid line) for the fully discrete finite
element solutions of degree p = 1,2, and 3 computed with Mesh I and II and four different

time step sizes in the isotropic case.
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Fig. 5.34. Transient diffusion problem in a thermal battery. The ratio of temporal error
[ (dash-dot line) and the ratio of spatial error « (solid line) for the fully discrete finite
element solutions of degree p = 1,2, and 3 computed with Mesh I and II and four different

time step sizes in the orthotropic case.

Fig. 5.35 (resp. 5.36) is the illustration of the effectivity index x'P for the total
error ||Eyll¢ and the effectivity index Cgi for the temporal error ||0)||¢ for the fully
discrete finite element solutions U. sz of degree p = 1,2, and 3 in the isotropic case
(resp. orthotropic case). It can be seen that P is close to 1 for both isotropic case

D

and orthotropic case, and the maximum effectivity index ng for the temporal error
h

is less than 1.6. We can also observe that if the temporal error is dominant P is
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FD

close to ng . For example, we can see from Fig. 5.33 that in the isotropic case with
h

time step size At = 212 and p = 2,3, the temporal error is dominant and about 100%.
In Fig. 5.35, we find that <P is equal to ngP . This phenomenon can also be observed
Ap

for orthotropic case with p = 2 and 3 at time step size At = 212
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Fig. 5.35. Transient diffusion problem in a thermal battery. The effectivity index P (solid

line) for the total error ||E, || and the effectivity index Cg,? (dash-dot line) for the temporal
Ap

error ||6, ||« for the fully discrete finite element solutions of degree p = 1, 2, and 3 computed

with Mesh I and II and four different time step sizes in the isotropic case.
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Fig. 5.36. Transient diffusion problem in a thermal battery. The effectivity index x"P

(solid line) for the total error ||Ep||¢ and the effectivity index Cg,]? (dash-dot line) for the
Ap
temporal error ||0p|]¢ for the fully discrete finite element solutions of degree p = 1,2, and 3

computed with Mesh I and II and four different time step sizes in the orthotropic case.

Fig. 5.37 (resp. 5.38) is the illustration of the effectivity index /{gak based on

Apr
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~

U

sp which is the finite element approximation of the exact solution U of degree
h/

p + k, computed with the mesh Ay, obtained from the uniform nested subdivision of

the mesh Aj, employed to obtain the fully discrete finite element solution U v . Here
h

for simplicity, we fix the mesh, i.e., Ay, = Ay, and only increase the polynomial order

from degree p to degree p + k with k = 1,2, and 3 respectively. It can be seen that

FD FD
K’sP‘Fk
Ah/

even for k = 1.

F

has the performance similar to its exact version xP and it converges to s

= =2 =3
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Fig. 5.37. Transient diffusion problem in a thermal battery. The effectivity index /{g ,],DM for

A

h/
the total error ||Ey||, for the fully discrete finite element solutions of degree p = 1,2, and

3 computed with Mesh I and II and four different time step sizes in the isotropic case.
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Fig. 5.38. Transient diffusion problem in a thermal battery. The effectivity index «FD,, for
SP+

ANy,

the total error ||Ep||¢ for the fully discrete finite element solutions of degree p = 1,2, and

3 computed with Mesh I and II and four different time step sizes in the orthotropic case.
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Fig. 5.39 (resp. 5.40) is the illustration of the exact temporal error ratio § and
its estimate BYP for isotropi case (resp. orthotropic case). It can be seen that f3 is
bounded by #¥P. For both cases, 3 is good estimate of 3. If the temporal error is
dominant, we can see that B¥P is very close to 3. For instance, in the isotropic case

with time step size At = 2T—2 and p = 2,3, where the temporal error ratio is about

100%.
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Fig. 5.39. Transient diffusion problem in a thermal battery. The exact temporal error
ratio B (solid line) and the estimated temporal error ratio B¥P (dash-dot line) for the fully

discrete finite element solutions of degree p = 1,2, and 3 computed with Mesh I and II and
four different time step sizes in the isotropic case.
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Fig. 5.40. Transient diffusion problem in a thermal battery. The exact temporal error
ratio B (solid line) and the estimated temporal error ratio 3¥P (dash-dot line) for the fully

discrete finite element solutions of degree p = 1,2, and 3 computed with Mesh I and II and
four different time step sizes in the orthotropic case.
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Fig. 5.41 (resp. 5.42) is the comparison of the exact temporal error ratio 4 and

its approximation AP, . It can be seen that 32, converges to its exact version 3P

SR SR
14 n
as shown in Fig. 5.17 even with £ = 1. Note that ﬁgﬂk is computable since it is
Ah/
based on Ugp+.
Ah/
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Fig. 5.41. Transient diffusion problem in a thermal battery. The exact temporal error ratio

B (solid line) and the estimated temporal error ratio ﬁg ZDM (dash-dot line) for the fully
discrete finite element solutions of degree p = 1,2, and 3 corhnputed with Mesh I and II and

four different time step sizes in the isotropic case.
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Fig. 5.42. Transient diffusion problem in a thermal battery. The exact temporal error ratio

B (solid line) and the estimated temporal error ratio ﬁg D . (dash-dot line) for the fully

discrete finite element solutions of degree p = 1,2, and 3 computed with Mesh I and II and

four different time step sizes in the orthotropic case.
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5.3 Bounds based on implicit residual estimators for fully discrete finite element

solutions

Let
(5.52)

which is the exact error of the elliptic recontruction problem (5.5).

Then we have
. 0 N
Ba(Ep,v) =R(v) = L(v) — (’YEUSZh,'U)LZ(Q) — %Q(Uszh,v) Yo e u(2) (5.53)

Noting that
R(v) =0, Vv € S}, (5.54)

and following [1] we have

1Bl <e5a” < D00 > &Rl (5.55)

TEAR  XeN(Ay)

which employs the following Neumann subdomain residual problems:

Find e e € Ug(wi") = {v € U(w Ah)‘ U|aw§hﬂl—‘p =0or fwf{h v=0 } such that

Wx Wx

B (éFEh, o / Vo 'K VéF]A)h / A, @ éFEh V=R (o3 v) Yo € Ug(wih)
Ow
(5.56)

When we employ the p-version with elements of degree p + k to approximate

the indicator function é¥ Eh, and then we have the computed Neumann subdomain
X

residual estimator defined as

U,FD def o 2
Comprn = | 2|1 D &R, p+kH6u (5.57)
TEAR  XeN(AR) X
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FD

. denotes the p + k degree finite element approximation of the exact
WX P

where ¢

FD

X

indicator function é

From the computed error indicator function &¥ Eh i of subdomain residual prob-

Wx P

lem, the lower bound %gflg, ., of the error || Ep || of the elliptic reconstruction problem

can be constructed by smoothening the error indicator function with the introduction

of the partition of unity used in the construction of the estimator
&FD An gFD
Gov= DL OXER L (5.58)
XeN(Ap)

sFD

ks We obtain the duality based

With the smoothened error indicator function é

lower bounds, namely

(&%) -

L,FD def pt+k

€s, = 55— < ||E 5.59
Supk = D gl || En] |a (5.59)

where ¢ P € Sih can be obtained by solving the following variational problem
Bla, s a,) = —BEnan)  Va,© € Sk, (5.60)
It should be noted that ¢" is the function satisfying

lepie + @l = nin gk + Xl (5.61)

Ap

Upper Estimates for Space-Time Norm:

def 2 A
1Bl < Fg° = \/ / —t (€sup )" + 11Uy — Usy, ||;) dt + T||VVE, (0)I[2,
(5.62)

Proof: Given the identity as shown in the equation (5.25), the 6-norm of the exact

error of the fully discrete finite element solution of the parabolic problem satisfies the
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following

|| En

T
.= \// (@ = )1l + 11Ty, — Usg (13— llu= IR dt + TIVAEO)I3»
(5.63)

Therefore we have by replacing the error || Ej||, with its upper bound €5

|| En

¢ <

T
\/ / <T—t>((%§£D) +11Usy, —Usz, Ila — ||u—U||i) dt + T||\/7en(0)| 72

T
2 o 2 2
< \/ / (T 1) ((%25?) + |05, —Usy. ||ou) dt + Tl[\Fen(0)][}
(5.64)

O

With the computed residual estimator %g’fl;?g +x» the €-norm of the exact error

|| En

¢ can be estimated by the following

T
~UFD  def : 2 ~
T \/ / (T 1) ((%gu%) L —Usth;M) dt + T || VTEO)][:
h
(5.65)

where we replaced the exact upper bound %g;ﬁ;D in (5.62) with its computable version

UFD
%Sub,p—l—k
If we replace the error || Ej|,, in (5.63) with its duality based lower bound %gfl;g%.
we have
|| Enl|le >

T
2 A A
\/ |- ((%é;%k) +[Tsg Vs Il — lhu = U||&) dt + T AEO)][}
(5.66)

A lower bound can be obtained assuming that ||u — U]||, is negligible in comparison
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LFD -
of €k OF ||Usgh - USZh ||as, thus we have

T
def 2 A
1Bl > F4D., \/ |- t)((%éﬁak) IO - Usgh%) dt + TlIAE O
(5.67)

Remark 5.6. @gﬁg . is not guaranteed upper bound of || Ej||¢ since the computable

- UFD . R
estimator €g,, ., is not a guaranteed upper bound of the exact error |[Ep|l,.

. aUFD g UFD = L,FD . T o
Remark 5.7. The estimates #'°, ) - and Fg,, -, contain the term [ (T

3FD

t)] |USZh — USZh | |62u dt which is related to the upper bound Ty for the temporal error.

Remark 5.8. Note that in [31-33] the duality approach based on space-time s-norm
does not yield lower bound while in our case it is possible that a lower bound can be

obtained.

UFD ,UFD LFD
[ gl [ gl [t
Let us analyze the accuracy of Fg,,", Fgp x> and Fgy oo, based on the sub-

domain residual problem, for ¢-norm of the exact error ||Ej||¢ using the following

examples.

Example 5.8. Heat transition problem in one dimension. Fig. 5.43 (resp. Figs. 5.44

and 5.45) is the illustration of the effectivity indices corresponding to

U FD U-FD gL FD
[ UFD def Fgup (UFD def FSubpik (LD def FSubpik (5.68)
[ Enlle” S (PR P S [P

vs. time step size At = L(n = 1,2,3,4), for the ¢-norm of the error ||Ej||¢ in the
fully discrete finite element solution U. sz, using elements of degree p = 1,2 and 3 and
uniform mesh size h = #(m =1,2,3,4).
It can be seen that all the effectivity indices are close to the ones defined by (5.26)
UFD UFD

as shown in Fig. 5.15, due to the fact that the bounds €g,,", €5, 1, and %gf;?,% are

good estimate of the exact error ||Ep||a of the elliptic reconstruction problem (5.5).
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The maximum effectivity indes is about 1.65 which corresponds to the case where the
temporal error is about 100% of the total error, e.g. p = 3 as shown in Fig. 5.14. It
should be noted that x5 is not less than 1 since the temporal error term ||u — U||a

p+k

in (5.66) is not negligible in comparison of the other terms.
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Fig. 5.43. Heat transition problem in one dimension. The variation of effectivity index

kUFD vs. time step size At = 2%(71 = 1,2,3,4) based on exact Neumann subdomain

residual estimator of the elliptic reconstruction problem, for the fully discrete finite element
solution of degree p = 1,2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4

corresponding to mesh size h = 2%, m =1,2,3, and 4 respectively.

18 T e 18 T 1.8:””“”“HP”HH‘HH‘HH

i3 E i3 E 17k E
E o Mesh1 | | K=1 E E

16F O Mesh2 | -—-——] k=21 16F =:.=;::::8.::_:_:“70““‘"O B 16 E
E A Mesh 3 k=3 E < —'0»\ sk 1

8" o Lo Meshs ] 57 O S i

Saf E S1af “'\@\ T S1af E

st s f N s f

S13p 9 g13f ., E g3 o Mesh 1 E

S f S f S = I P IR k=1

Sz E “12E o Mesh 1 B, E Hap O Mesh2 | ____| k=2 E
E E Mesh2 | ----- k=1 " £ A Mesh3 k=3

E E wf| O Mesnz k=2 Ssom 3 g © Mesh 4 E
E F| o Mesh3 k=3 h2] E

10F B 10F[ & Mesh 4 B 10F E
S B B S B B P Y Y AN B B

) R 7 S Y- 0932 R 7 S Y- %92 00 02 04 _ 06 08 70

log, U(A 1) log, U(A 1) Iog‘D(A t)

Fig. 5.44. Heat transition problem in one dimension. The variation of effectivity index
/{gf,;D vs. time step size At = 2%(71 = 1,2,3,4) based on computable Neumann subdomain
residual estimator of degree p+ k(k = 1,2, 3) of the elliptic reconstruction problem, for the
fully discrete finite element solution of degree p = 1,2, and 3 computed with Mesh 1, Mesh

2, Mesh 3, and Mesh 4 corresponding to mesh size h = 2%, m =1,2,3, and 4 respectively.
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Fig. 5.45. Heat transition problem in one dimension. The variation of effectivity index

L.FD

K. Vs. time step size At = T =(n =1,2,3,4) based on computable Neumann subdomain

P+
residual estimator of degree p —|— k(k =1,2,3) of the elliptic reconstruction problem, for the

fully discrete finite element solution of degree p = 1,2, and 3 computed with Mesh 1, Mesh
2, Mesh 3, and Mesh 4 corresponding to mesh size h = 2%, m =1,2,3, and 4 respectively.

Fig. 5.46 (resp. Figs. 5.47 and 5.48) is the estimated temporal error ratio

3FD

def TSR
ﬁU’FD UF]}) x 100%
F

Sub
CstD
D

e S
BIEDE i x 100% (5.69)

Sub,p+k
CstD
p

L,FD def A

JPSub,p—l—k
and the corresponding exact temporal error ratio § with respect to time step size

At = L(n = 1,2,3,4), for the ¢-norm of the error ||Ey|l¢ in the fully discrete

finite element solution U. SR, using elements of degree p = 1,2 and 3, computed using

uniform mesh size h = ;% (m =1,2,3,4).

. . UFD L FD
It can be seen that the estimated temporal error ratio SYFP, ik > and 7

are close to the exact ratio § and are also its upper bounds. Moreover they all are

about the same in the case that the temporal error is 100%. Note that ﬁUFD and

L,FD
ﬁ ﬁU,FD

1, converge to with the increase of element order p + k.
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Fig. 5.46. Heat transition problem in one dimension. The exact ratio of temporal error
to the total error 3 and its estimate SYFP based on exact Neumann subdomain residual
estimator of the elliptic reconstruction problem, for the fully discrete finite element solution
of degree p = 1, 2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4 corresponding
to mesh size h = 2%, m =1,2,3, and 4 respectively.
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Fig. 5.47. Heat transition problem in one dimension. The exact ratio of temporal error to
the total error 8 and its estimate ﬁ;ﬁ_lzD based on computable Neumann subdomain residual
estimator of the elliptic reconstruction problem, for the fully discrete finite element solution
of degree p = 1, 2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4 corresponding
to mesh size h = 2%, m =1,2,3, and 4 respectively.
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Fig. 5.48. Heat transition problem in one dimension. The exact ratio of temporal error to
the total error 8 and its estimate ﬁ;i’iD based on computable Neumann subdomain residual
estimator of the elliptic reconstruction problem, for the fully discrete finite element solution
of degree p = 1,2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4 corresponding

to mesh size h = 2%, m =1,2,3, and 4 respectively.

Example 5.9. Two dimensional synthetic problem. Fig. 5.49 (resp. Figs. 5.50 and

5.51) is the illustration of the effectivity indices kVFP, /{gjiD, and Kﬁf,;D vs. time step

size At = Z(n = 1,2,3,4), for the ¢-norm of the error ||Ep||¢ in the fully discrete

finite element solution Ugz using elements of degree p = 1,2 and 3 and uniform mesh
h
size h = zim(m =1,2,3,4).

U,FD

It can be seen that s is basically 1. The minimum value of /@gf,;D is about

0.4 and is improved dramatically with the increase of element order p+ k such as the

case of p = 1 and Mesh 1. The effectivity index I%;_’E,;D is less than 1 for most cases

and in the case of p = 3 and Mesh 4 where the maximum temporal error is 90% of
the total error, it can be seen that lﬁgf,;D is greater than 1. Note that lﬁgf,;D is greater

than the computable upper bound «”%" which is not a guaranteed one.
p+k
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Fig. 5.49. Two dimensional synthetic problem. The variation of effectivity index x"FP
vs. time step size At = 2%(71 = 1,2,3,4) based on exact Neumann subdomain residual

estimator of the elliptic reconstruction problem, for the fully discrete finite element solution
of degree p = 1, 2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4 corresponding

to mesh size h = 2%, m =1,2,3, and 4 respectively.
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Fig. 5.50. Two dimensional synthetic problem. The variation of effectivity index Kpip VS.
time step size At = 2%(71 = 1,2,3,4) based on computable Neumann subdomain residual

estimator of degree p + k(k = 1,2,3) of the elliptic reconstruction problem, for the fully
discrete finite element solution of degree p = 1,2, and 3 computed with Mesh 1, Mesh 2,
Mesh 3, and Mesh 4 corresponding to mesh size h = 2%, m=1,2,3, and 4 respectively.
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Fig. 5.51. Two dimensional synthetic problem. The variation of effectivity index /{fo,;D vs.

time step size At = 2%(71 = 1,2,3,4) based on computable Neumann subdomain residual
estimator of degree p + k(k = 1,2,3) of the elliptic reconstruction problem, for the fully
discrete finite element solution of degree p = 1,2, and 3 computed with Mesh 1, Mesh 2,

Mesh 3, and Mesh 4 corresponding to mesh size h = 2%, m=1,2,3, and 4 respectively.

Fig. 5.52 (resp. Figs. 5.53 and 5.54) is the estimated temporal error ratio VP,

ﬁgﬁD, and ﬁPLﬁD and the corresponding exact temporal error ratio § with respect

to time step size At = 2Zn(n = 1,2,3,4), for the ¢-norm of the error ||FE}||¢ in the

fully discrete finite element solution U 5o using elements of degree p = 1,2 and 3,
h

computed using uniform mesh size h = #(m = 1,2,3,4). It can be seen that we

have pretty good estimate for the exact temporal error ratio for all the cases. The

UFD L,FD UFD - .
computable 5, and (7, converge to [ with the increase of element order

p+k.
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Fig. 5.52. Two dimensional synthetic problem. The exact ratio of temporal error to the
total error 3 and its estimate SYFP based on computable Neumann subdomain residual
estimator of the elliptic reconstruction problem, for the fully discrete finite element solution
of degree p = 1,2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4 corresponding
to mesh size h = 2%, m =1,2,3, and 4 respectively.
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Fig. 5.53. Two dimensional synthetic problem. The exact ratio of temporal error to the
total error @ and its estimate ﬁgjiD based on computable Neumann subdomain residual
estimator of the elliptic reconstruction problem, for the fully discrete finite element solution
of degree p = 1, 2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4 corresponding
to mesh size h = 2%, m =1,2,3, and 4 respectively.
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Fig. 5.54. Two dimensional synthetic problem. The exact ratio of temporal error to the
total error G and its estimate ﬁjjiD based on computable Neumann subdomain residual
estimator of the elliptic reconstruction problem, for the fully discrete finite element solution
of degree p = 1,2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4 corresponding

to mesh size h = 2%, m =1,2,3, and 4 respectively.

Example 5.10. L-shaped domain problem. Fig. 5.55 (resp. Figs. 5.56 and 5.57) is

. . O FD L,FD . .
the illustration of the effectivity indices xVFP /{gjrk , and k7,7 vs. time step size

At = L(n =1,2,3,4), for the ¢-norm of the error ||Ej||¢ in the fully discrete finite
element solution Ugz using elements of degree p = 1,2 and 3 and uniform mesh size
h

h=£(m=1,234).
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Fig. 5.55. L-shaped domain problem. The variation of effectivity index x vs. time
step size At = 2%(71 =1,2,3,4) based on exact Neumann subdomain residual estimator of
the elliptic reconstruction problem, for the fully discrete finite element solution of degree
p=1,2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4 corresponding to mesh

size h = 2%, m =1,2,3, and 4 respectively.

=1 =2 =3
40:””“”””[‘)”””‘HH‘HH 407””“”””9”””‘HH‘HH 40:””“””””“””HH‘HH
i i o 8 i
i . o i 3.2; i
g % g f ‘@ g F O Mesh1
g2af ] g24F |0 Mesh1 | k=1 ] 82T O Mesh?2 ]
B F g Mesh1 kq\g G [ |0 Mesh2 | - k=2 bt A Mesh3
200 | 5 Meshz | 2llkZ2 © 20F | A Mesh3 k=3 ] 20F | o Mesh4 E
F | 2 Mesh3 k=3 [ [© Mesh4 :
16 & Mesh 4 — 16 — 16 —
1‘2075‘ e T Yot 1‘2075‘ S T Yot 1‘2075‘ S T Yot
Iogw(A t) Iogm(A 1) Iogw(A 1)
. . .. C . U,FD .
Fig. 5.56. L-shaped domain problem. The variation of effectivity index x_1,~ vs. time step

p+
size At = 2%(71 =1,2,3,4) based on computable Neumann subdomain residual estimator

of degree p+ k(k = 1,2, 3) of the elliptic reconstruction problem, for the fully discrete finite
element solution of degree p = 1,2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and

Mesh 4 corresponding to mesh size h = 2%, m=1,2,3, and 4 respectively.
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Fig. 5.57. L-shaped domain problem. The variation of effectivity index liﬁf,;D vs. time step

size At = 2%(71 =1,2,3,4) based on computable Neumann subdomain residual estimator
of degree p+ k(k = 1,2, 3) of the elliptic reconstruction problem, for the fully discrete finite
element solution of degree p = 1,2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and

Mesh 4 corresponding to mesh size h = 2%, m=1,2,3, and 4 respectively.

It can be seen that the largest effectivity index kP is about 4 which happens

to the case when the number of time steps is equal to 4, and with the increase of

U,FD

time steps kTP is reduced. However, the smallest effectivity index x is about

2.4 when the number of time steps is equal to 32 and p = 1. It can also be observed

U,FD
that & U,FD

ok with the increase of polynomial order p + k£ and has

converges to K
. . . U.FD .. . . L7FD . .
behavior similar to £7*~. The effectivity indices x 3}, are all above 1 which is not a

L,FD . U,FD U,FD
lower bound. As a matter of fact x,}," is close s}, . The reason that x"*P, x °,

L,FD
and k.

»ir  have poor performance is due to the fact that the temporal error term

, )
J T =l - Us |

0 dt is dominant in (5.62), (5.65), and (5.67) as shown in

2
UQ)
Figs. 5.58, 5.59 and 5.60 by the discontinuous lines. We can also observe that the

ﬁU,FD UFD

L,FD L
s Byar »and 37,7 are good approximation of the

estimated temporal error ratio

exact temporal error ratio # which is close to 100% except for p =1 and N = 32.
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Fig. 5.58. L-shaped domain problem. The exact ratio of temporal error to the total error
B and its estimate SYFP based on computable Neumann subdomain residual estimator of
the elliptic reconstruction problem, for the fully discrete finite element solution of degree
p=1,2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4 corresponding to mesh

size h = 2%, m =1,2,3, and 4 respectively.
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Fig. 5.59. L-shaped domain problem. The exact ratio of temporal error to the total error
G and its estimate ﬁ;ﬁ? based on computable Neumann subdomain residual estimator of
the elliptic reconstruction problem, for the fully discrete finite element solution of degree
p=1,2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4 corresponding to mesh

size h = 2%, m =1,2,3, and 4 respectively.
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Fig. 5.60. L-shaped domain problem. The exact ratio of temporal error to the total error
G and its estimate ﬁ;’iD based on computable Neumann subdomain residual estimator of
the elliptic reconstruction problem, for the fully discrete finite element solution of degree
p=1,2, and 3 computed with Mesh 1, Mesh 2, Mesh 3, and Mesh 4 corresponding to mesh

size h = 2%, m =1,2,3, and 4 respectively.

Example 5.11. Transient diffusion problem in a thermal battery. Figs. 5.61, 5.62

and 5.63 (resp. Figs. 5.64, 5.65 and 5.66) are the illustrations of the effectivity indices

U,FD
KUFD i

ork > and /{fo,;D vs. time step size At = 21”(71 =1,2,3,4), for the ¢-norm of

the error ||Ejp[l¢ in the fully discrete finite element solution Ugz = using elements of
h

degree p = 1,2 and 3 and Mesh I and II in the isotropic case (resp. orthotropic case).
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Fig. 5.61. Transient diffusion problem in a thermal battery. The variation of effectivity

UFD ys. time step size At = 2%(71 =1,2,3,4) based on exact Neumann subdomain

residual estimator of the elliptic reconstruction problem, for the fully discrete finite element

index

solution of degree p = 1,2, and 3 computed with Mesh I and II for isotropic case.
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Fig. 5.62. Transient diffusion problem in a thermal battery. The variation of effectivity index
/{gf,;D vs. time step size At = 2%(71 = 1,2,3,4) based on computable Neumann subdomain
residual estimator of degree p+ k(k = 1,2, 3) of the elliptic reconstruction problem, for the
fully discrete finite element solution of degree p = 1,2, and 3 computed with Mesh I and II

for isotropic case.
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Fig. 5.63. Transient diffusion problem in a thermal battery. The variation of effectivity index
/{;f,;D vs. time step size At = 2%(71 = 1,2,3,4) based on computable Neumann subdomain
residual estimator of degree p+ k(k = 1,2, 3) of the elliptic reconstruction problem, for the
fully discrete finite element solution of degree p = 1,2, and 3 computed with Mesh I and II

for isotropic case.
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Fig. 5.64. Transient diffusion problem in a thermal battery. The variation of effectivity

UFD ys. time step size At = %(n =1,2,3,4) based on exact Neumann subdomain

residual estimator of the elliptic reconstruction problem, for the fully discrete finite element

index

solution of degree p = 1,2, and 3 computed with Mesh I and II for orthotropic case.
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Fig. 5.65. Transient diffusion problem in a thermal battery. The variation of effectivity index
/{gf,;D vs. time step size At = %(n = 1,2,3,4) based on computable Neumann subdomain
residual estimator of degree p+ k(k = 1,2, 3) of the elliptic reconstruction problem, for the
fully discrete finite element solution of degree p = 1,2, and 3 computed with Mesh I and II

for orthotropic case.
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Fig. 5.66. Transient diffusion problem in a thermal battery. The variation of effectivity index
/{gf,;D vs. time step size At = 2%(71 = 1,2,3,4) based on computable Neumann subdomain
residual estimator of degree p+ k(k = 1,2, 3) of the elliptic reconstruction problem, for the
fully discrete finite element solution of degree p = 1,2, and 3 computed with Mesh I and II

for orthotropic case.

It can be seen that xYFP has good performance in the isotropic case and the

UFD can be as big as 10 since

maximum value is 1.4 while in the orthotropic case k
%g;ﬁ;D severely overestimates the exact error ||Ej||, and the culprit is the existence
of interface layers at the top and bottom of the highly orthotropic domain {23 as

shown in Fig. 2.2. For details about the effect of interface layers on the robustness of

elliptic residual estimators, refer to [1]. Likewise we can observe similar performance

U,FD

for Kp'k

for both the isotropic case and the orthotropic case, and with the increase
of element order p + k, /@gf,;D converges to kFP. Note that for orthotropic case, the

results are the same in the case of k =2 and k£ = 3.
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L,FD . . L,FD
In the case of £}, ", we can see that for isotropic case ;" can be greater than
1. For orthotropic case, €%5P  is ereater than 1 for coarse time step size. However
. P ) P Sub,p+k g P .

with the increase in the number of time steps the temporal error diminishes and

L,FD

spatial error becomes dominant as shown in Fig. 5.34, x°,~ can be as small as 0.2

P+
because the existence of interface layers on {23 causes the severe underestimation of

%gfz;g L+ over the exact error || E4l,, in the elliptic reconstruction problem (5.5).

Figs. 5.67, 5.68 and 5.69(resp. Figs. 5.70, 5.71 and 5.72) are the illustrations

ﬁU,FD U,FD and ﬁL,FD

of the estimated temporal error ratio s Btk s 1, and the corresponding

exact temporal error ratio § with respect to time step size At = 2%(71 =1,2,3,4) for

isotropic case (resp. orthotropic case). It can be seen that in isotropic case, 3VFP,

ﬁgﬁD, and ﬁ]ff;D are good estimate of the exact temporal error ratio 4 and also its

U,FD

L,FD
upper bounds. and 37" converge to fUFP
p+k p+k

with the increase of element order
p + k. However in the orthotropic case, 3YFP and ﬁgﬁD can grossly underestimate
the exact temporal error ratio 8 and 8552 can grossly overestimate §, which is
p+k

. . U,FD n
because of the severe overestimation of €g;, ., over the exact error ||Ep[|, and gross

L L,FD g
underestimation of €, ., over the exact error |[Ep|l,,.
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Fig. 5.67. Transient diffusion problem in a thermal battery. The exact ratio of temporal
error to the total error 3 and its estimate BYFP based on exact Neumann subdomain
residual estimator of the elliptic reconstruction problem, for the fully discrete finite element

solution of degree p = 1,2, and 3 computed with Mesh I and II for isotropic case.
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Fig. 5.68. Transient diffusion problem in a thermal battery. The exact ratio of temporal

error to the total error 6 and its estimate ﬁ;ﬁ_lzD

residual estimator of the elliptic reconstruction problem, for the fully discrete finite element

based on computable Neumann subdomain

solution of degree p = 1,2, and 3 computed with Mesh I and II for isotropic case.
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Fig. 5.69. Transient diffusion problem in a thermal battery. The exact ratio of temporal
error to the total error 6 and its estimate ﬁ;’iD based on computable Neumann subdomain
residual estimator of the elliptic reconstruction problem, for the fully discrete finite element

solution of degree p = 1,2, and 3 computed with Mesh I and II for isotropic case.
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Fig. 5.70. Transient diffusion problem in a thermal battery. The exact ratio of temporal
error to the total error 3 and its estimate BYFP based on exact Neumann subdomain
residual estimator of the elliptic reconstruction problem, for the fully discrete finite element

solution of degree p = 1,2, and 3 computed with Mesh I and II for orthotropic case.
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Fig. 5.71. Transient diffusion problem in a thermal battery. The exact ratio of temporal
error to the total error G and its estimate ﬁ;ﬁiD based on computable Neumann subdomain
residual estimator of the elliptic reconstruction problem, for the fully discrete finite element

solution of degree p = 1,2, and 3 computed with Mesh I and II for orthotropic case.
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Fig. 5.72. Transient diffusion problem in a thermal battery. The exact ratio of temporal

error to the total error § and its estimate ﬁ;’iD

residual estimator of the elliptic reconstruction problem, for the fully discrete finite element

based on computable Neumann subdomain

solution of degree p = 1,2, and 3 computed with Mesh I and II for orthotropic case.
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5.4 Error estimation at any time instant for fully discrete finite element solutions

For the exact error E,, we have
1Bulli = llu = Usg 1l < llu—llu +[la = Ullu + 1U = Ugg_ln (5.70)

for H = L% and H = a. As we have already known that except the linear element in

the L? norm, due to the superconvergence properties of the term v — @, we have
| Enllm = [|a = Ullg +|U = Usg_|lu (5.71)

The term ||i— U|| represents temporal error. It can be seen that at any time instant

t if the temporal error ||t — U| | is negligible in comparison of the term ||U— USZ ||,
h

we have

1Bl = [|U — Ugg Il (5.72)

Let us define the effectivity index at any time instant as

FD( d:of ||U_U52h||0u FD( ) d:0f ||U_U52h||L2 (573)
| Enlla || En]| 2
Similarly 752, () and (5P, (t) when U is replaced by Ugpir.
SAh/ SAh/ Ay

If we introduce the finite element approximation of U, we have
10— Usg 17, = 110~ Usg 1%+ 105y, —Usg [12 = B2 +110s5, —Usy, I3 (5.74)
because of orthogonality condition and
10 ~Usg 1122 < 10-Usg_ 21055 ~Usg, Ilzz = || Bulle +10s, ~Us 1122 (5.75)

because of triangle inequality.

Furthermore, if we employ the Neumann subdomain residual estimator to esti-
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mate the exact error of Eh

U,FD\ 2 2 o 2
O \/(%Sub ) +Usy —Usg 12 D

|1 En] | o

L.FD ~
o V@€ + 105, —Usg 112
1B,k

(5.76)
where %g;ﬁ;D is the exact estimator of ||U — U SZhH%’ and ﬁgﬁD(t) for the computable
“bound”

In the case of the exact error measured in L? norm, we can also calculate the
effectivity index based on the exact and computed error indicator function. Thus we

have

A 2 2
DI D R+ 0sy, — Usg llre

TEAR  XeN(AR)
|| Enl| 2

(1) = (5.77)

and (D) (t) when the computable indicator is used.

Remark 5.9. Note that according to (5.7), at certain time instant, i.e., t = t,, we

have Usr = Uge . Thus the term ||[Usp — Ugr || disappears at ¢ = t,,.
Ap Ap Ap Ap

Example 5.12. Heat transition problem in one dimension. Fig. 5.73 and 5.74 are
the evolution plots of the relative error measured in energy and L? norm respectively

defined as follows

of | E o ||E
P (1) 1Bnlly o 1000 PP € 1Enllz2 o 0% (5.78)
[l [Jul| 2

while Fig. 5.75 and 5.76 are the evolution plots of spatial and temporal ratios with

respect to the total error in energy norm

€ e 9
[P () lonlla o 3009 VD (4) & ||||Eh||°“ x 100% (5.79)
h
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and in L? norm

e e 9h||L2
50 (p) et Henllze oo gEn gy der [10nllze 00 5.80
O T AT O T AT (5:80)

, for the fully discrete finite element solutions of degree p = 1, 2,3, computed with

uniform mesh size h = 2% and time steps N = 4, 8, and 32 respectively.
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Fig. 5.73. Heat transition problem in one dimension. The evolution of the relative error
#FP(t) for the fully discrete finite element solutions of degree p = 1,2, and 3, computed
with mesh size h = 2% and time steps N = 4, 8, and 32 respectively.
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Fig. 5.74. Heat transition problem in one dimension. The evolution of the relative error
TP (t) for the fully discrete finite element solutions of degree p = 1,2, and 3, computed
with mesh size h = 2% and time steps N = 4, 8, and 32 respectively.
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Fig. 5.75. Heat transition problem in one dimension. The evolution of the spatial error
ratio uP(¢) (black-color line) and the temporal error ratio v¥P(¢) (red-color line) for the
fully discrete finite element solutions of degree p = 1,2, and 3, computed with mesh size

h= 2% and time steps N =4, 8, and 32 respectively.

Fig. 5.76. Heat transition problem in one dimension. The evolution of the spatial error ratio
§¥P(t) (black-color line) and the temporal error ratio ¥*P(t) (red-color line) for the fully

discrete finite element solutions of degree p = 1,2, and 3 computedwith mesh size h = 2L—2
and time steps N = 4, 8, and 32 respectively.

In the case of energy norm, it can be seen from Fig. 5.75 that for cubic element
p = 3, the temporal error is about 100% of the total error and spatial error is negli-
gible. For quadratic element, the temporal error is dominant for time steps equal to
4 and 8 while in the case of time steps equal to 32 the temporal error is dominant at
time instants close to t = 0 and as time evolves the spatial error becomes dominant.

For linear element, the spatial error is 100% of the total error in the case of time



218

steps equal to 32 while for time steps equal to 4 and 8 the temporal error is dominant
at time instants close to t = 0 and as time evolves the spatial error is dominant and
close to 100%.

In the case of L? norm, it can be that for quadratic and cubic element p = 2,3
the temporal error is dominant and about 100% of the total error. For linear element
p = 1 and time steps equal to 4, the temporal error is dominant for the whole time
interval and as time evolves it starts decreasing while spatial error increases. In the
case of time steps equal to 8 and 32, in the beginning the temporal error is dominant
and as time evolves temporal error starts decreasing and the spatial error becomes
dominant. It takes less time for spatial error to be dominant for time steps equal to
32 than for time steps equal to 8.

Fig. 5.77 (resp. Fig. 5.78) is the evolution of effectivity index (¥P(¢) (resp. its

computable version 77? D +(t)) based on the elliptic reconstruction problem from the

ANY

fully discrete finite element solution. It can be seen that except at time instants close
to t = 0 we can expect good effectivity indices equal to 1 as long as the spatial error
is close to 100% of the total error, which is obvious in the case of linear element
p = 1 and time steps equal to 32. Moreover, we also have good effectivity indices
at the end of each time interval, namely ¢t = ¢,, if spatial error becomes dominant.
However, if temporal error is dominant, we can expect ¢(¥P(¢) and 77? ZDM (t) close to 0

h!

at t = t,. Note that the element order p + k increases, nggk (t) converges to its exact
Ah/

value (*P(t). In the case of the error measured in L? norm, we can observe similar
behavior in the performance of effectivity index ¢(¥P(¢) and g D« (t) as shown in Figs.

Ay

5.79 and 5.80.
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Fig. 5.77. Heat transition problem in one dimension. The evolution of effectivity index
n"P(t) based on the exact solution U of the elliptic reconstruction problem. Note that the
elliptic reconstruction problem is constructed from the fully discrete finite element solutions

of degree p = 1,2, and 3, computed with mesh size h = 2L—2 and time steps N = 4, 8, and 32

respectively.
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Fig. 5.78. Heat transition problem in one dimension. The evolution of effectivity index

ng ,],)M (t) based on the approximate solution U gtk of the elliptic reconstruction problem.
Ay !

h h
Note that the elliptic reconstruction problem is constructed from the fully discrete finite
element solutions of degree p = 1,2, and 3, computed with mesh size h = 2L—2 and time steps

N =4, 8, and 32 respectively.



220

= N =32

5.0 - 5.0 ; N‘S ; - 50 ey T R RRRRRRS
sk E asf E 45H E
40F 4 40F 4 40H 4
E E E ——p=1 E E p=1 E
351 = 2 e T . p:2 = 3.5 H =
3. F E T B U p=3 E s e, e p=2 E
230F 3 230F 3 2oy e p=3 E
> .F ] > .F ] > .F | ]
= E = E 320 E
S b 9 S b 9 S b ]
Sa0F El S20F El S20H i El
£ 20F E| £ 20F E| £ 20F ! E|
HooE E| wor 1] A E| HooE i"-“l i E|
15F = 15F \ \ \ \ B 15 AL E|
3 E £l IYRNA \ E £ HH'H\\H E

E E| £ \ El E i i ]
10F E FCY S | W N A E 10! i"‘a"l|'.\'v‘l‘!11\‘\‘\\“\|\l‘“ xm
3 El S R\ AN RN RN AN A F HHRRERRARARE AR A AR A3 1T
0sF S| osE b AL AN A INE| 05 LT R R AR
E \ 1 B E | A Ni \ \ B i [ PRI R AR R

E \ \ N NE E VM N N N N N E 1'3 PELLTEH
oobn e N Nl FY SR IS PR SIS OO IO IO O 0.0 il AAARRRARRARASRARRRRARRRERAE
0005 70 15 20 25 30 35 40 0005 70 15 20 25 30 35 40 00 05 10 15 20 25 30 35 4l

Time Time Time

Fig. 5.79. Heat transition problem in one dimension. The evolution of effectivity index
¢FP () based on the exact solution U of the elliptic reconstruction problem. Note that the
elliptic reconstruction problem is constructed from the fully discrete finite element solutions

of degree p = 1,2, and 3, computed with mesh size h = 2L—2 and time steps N = 4, 8, and 32

respectively.
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Fig. 5.80. Heat transition problem in one dimension. The evolution of effectivity index

g ,],)M (t) based on the approximate solution U gptk of the elliptic reconstruction problem.

A

h! h
Note that the elliptic reconstruction problem is constructed from the fully discrete finite
element solutions of degree p = 1,2, and 3, computed with mesh size h = 2L—2 and time steps

N =4, 8, and 32 respectively.

Fig. 5.81 (resp. Figs. 5.82 and 5.83) is the evolution of effectivity index 7YFP(t)
(resp. ﬁgﬁD(t) and ﬁjﬁD(t)) for the exact error measured in energy norm, where
the exact error indicator function and its computed version are obtained from the
subdomain residual problem of the elliptic reconstruction problems corresponding to

the fully discrete finite element solution Ugz of degree p =1,2, and 3 with N = 4,8,
h
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and 32.

It can be observed that when the temporal error is negligible in comparison of
the spatial error such as the case of p = 1, N = 32, the effectivity index 7P () is
close to 1 and this especially holds at the time instant ¢ = ¢,, for each time interval

(tn—1,tn). Similar behavior can be observed for 77U FD( t)

and nLFD( )

which converge
to the exact 7¥"FP(¢) with the increase of polynomial order p+k. Note that 77L FD(t) is
greater than 1 which means that the lower bound is not necessary a guaranteed lower

bound for the exact error ||E}| |6u(Q even though €5 1k 18 indeed a lower bound for

the exact error ||U — U, sz ||ﬁu(9) of the elliptic reconstruction problem.
h
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Fig. 5.81. Heat transition problem in one dimension. The evolution of effectivity index

subdomain residual problem of the elliptic reconstruction problem.

for the exact error measured in energy norm based on exact estimator of the
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Fig. 5.82. Heat transition problem in one dimension. The evolution of effectivity index

ﬁgjiD(t) for the exact error measured in energy norm based on exact estimator of the

subdomain residual problem of the elliptic reconstruction problem.
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Fig. 5.83. Heat transition problem in one dimension. The evolution of effectivity index

ﬁﬁf;D(t) for the exact error measured in energy norm based on exact estimator of the

subdomain residual problem of the elliptic reconstruction problem.

Fig. 5.84 is the time evolution of effectivity index (¥P(¢). It can be seen that
when the spatial error is dominant, (¥P(¢) is close to 1 at time instant ¢ = ¢, for
each time interval (¢,_1,%,] which is obvious in the case of N = 32. The computable

“FD

version of (71} (t) which converges to the exact version ¢"P(t) has similar performance

as shown in Fig. 5.85.
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Fig. 5.84. Heat transition problem in one dimension. The evolution of effectivity index
¢FP(t) for the exact error measured in L? norm based on the exact estimator of the subdo-

main residual problem of the elliptic reconstruction problem.
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Fig. 5.85. Heat transition problem in one dimension. The evolution of effectivity index

_gfk (t) for the exact error measured in L? norm based on the exact estimator of the sub-

domain residual problem of the elliptic reconstruction problem.

Example 5.13. Two dimensional synthetic problem. Figs. 5.86 and 5.87 are the
evolution plots of the relative error ¢¥P(¢) and P (¢), and Figs. 5.88 and 5.89 are
the evolution plots of spatial and temporal ratios with respect to the total error for
pFP(t) and vFP(¢) in energy norm and for 6¥P(t) and ¥¥P(¢) in L? norm, for the fully
discrete finite element solutions of degree p = 1,2, 3, computed with uniform mesh

size h = 2L—2 and time steps N = 4, 8, and 32 respectively.
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Fig. 5.86. Two dimensional synthetic problem. The evolution of the relative error ¢P(t)
for the fully discrete finite element solutions of degree p = 1, 2, and 3, computed with mesh

size h = 2% and time steps N = 4, 8, and 32 respectively.
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Fig. 5.87. Two dimensional synthetic problem. The evolution of the relative error P ()
for the fully discrete finite element solutions of degree p = 1, 2, and 3, computed with mesh

size h = 2% and time steps N =4, 8, and 32 respectively.
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Fig. 5.88. Two dimensional synthetic problem. The evolution of the spatial error ratio
pFP(t) (black-color line) and the temporal error ratio P (t) (red-color line) for the fully

discrete finite element solutions of degree p = 1,2, and 3, computed with mesh size h = &

and time steps N = 4, 8, and 32 respectively.
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Fig. 5.89. Two dimensional synthetic problem. The evolution of the spatial error ratio
§¥P(t) (black-color line) and the temporal error ratio ¥*P(t) (red-color line) for the fully

discrete finite element solutions of degree p = 1,2, and 3, computed with mesh size h = 2L—2

and time steps N = 4, 8, and 32 respectively.

It can be seen that the relative error is not sensitive to the variation in the
number of time steps, and the spatial error is dominant and about 100% of the total
error during the whole solution time interval. It should be noted that the temporal
error ratio is reduced with the increase of time steps as shown in Figs. 5.88 and 5.89.

Fig. 5.90 (resp. Fig. 5.91) is the evolution of effectivity index n*P(¢) (resp. its

FD

p+k
SAh’

computable version 7!, (t)) based on the elliptic reconstruction problem from the
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fully discrete finite element solution for the exact error measured in energy norm.
¢¥P(t) is basically 1 for the whole solution time interval due to the fact that the
spatial error is dominant and about 100% of the total error as shown in Fig. 5.86. The

computable n?ﬁk (t) converges to the exact value (¥P(t) very fast with the increase of
Ah/

element order p+ k. For instance, for p =2 and k =1, n?ﬁk (t) is about 0.4 while it is

Ah/

close to 0.9 with k = 2. We can observe similar behavior in (*P(¢) and its computable

version g,{ik (t) for the exact error measured in L? norm as shown in Figs. 5.92 and
Apr
5.93.
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Fig. 5.90. Two dimensional synthetic problem. The evolution of effectivity index 5P ()
based on the exact solution U of the elliptic reconstruction problem. Note that the elliptic
reconstruction problem is constructed from the fully discrete finite element solutions of
degree p = 1,2, and 3, computed with mesh size h = 2L—2 and time steps N = 4, 8, and 32

respectively.
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Fig. 5.91. Two dimensional synthetic problem. The evolution of effectivity index ng ZDM (t)
h/
based on the approximate solution Ugp+r of the elliptic reconstruction problem. Note that

h
the elliptic reconstruction problem is constructed from the fully discrete finite element
solutions of degree p = 1, 2, and 3, computed with mesh size h = 2% and time steps N = 4,

8, and 32 respectively.

Fig. 5.94 (resp. Figs. 5.95 and 5.96) is the evolution of effectivity index 7YFP(t)
(resp. ﬁgﬁD(t) and ﬁjﬁD(t)) for the exact error measured in energy norm, where
the exact error indicator function and its computed version are obtained from the
subdomain residual problem of the elliptic reconstruction problems corresponding to
the fully discrete finite element solution USZh of degree p = 1,2, and 3 with N = 4,8,
and 32. It can be observed that 7V'FP(t) is close to 1 since the spatial error is
dominant as shown in Fig. 5.88. The computable upper bound ﬁgﬁD(t) and lower

bound ﬁjﬁD(t) have performance similar to 7V"¥P(¢). Note that ﬁifjiD(t) is indeed

lower bound.
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Fig. 5.92. Two dimensional synthetic problem. The evolution of effectivity index (P (t)
based on the exact solution U of the elliptic reconstruction problem. Note that the elliptic
reconstruction problem is constructed from the fully discrete finite element solutions of

degree p = 1,2, and 3, computed with mesh size h = 2L—2 and time steps N = 4, 8, and 32

respectively.
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Fig. 5.93. Two dimensional synthetic problem. The evolution of effectivity index g %k (t)
h/

based on the approximate solution U gtk Of the elliptic reconstruction problem. Note that
A/

h
the elliptic reconstruction problem is constructed from the fully discrete finite element
solutions of degree p = 1, 2, and 3, computed with mesh size h = 2% and time steps N = 4,

8, and 32 respectively.
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Fig. 5.94. Two dimensional synthetic problem. The evolution of effectivity index 7"FP(t)

for the exact error measured in energy norm based on exact estimator of the subdomain

residual problem of the elliptic reconstruction problem.
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Fig. 5.95. Two dimensional synthetic problem. The evolution of effectivity index ﬁgf;fD(t)
for the exact error measured in energy norm based on exact estimator of the subdomain

residual problem of the elliptic reconstruction problem.
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Fig. 5.96. Two dimensional synthetic problem. The evolution of effectivity index ﬁ;f;fD(t)
for the exact error measured in energy norm based on exact estimator of the subdomain

residual problem of the elliptic reconstruction problem.
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Fig. 5.97 is the time evolution of effectivity index (¥P(¢). It can be seen that
in the case of p = 1, (¥P(t) overestimates the exact error ||E, ||z2@). For p = 2,3,
the effectivity index (¥P(¢) is close to 1 for the whole time interval (0,7] and at
time instant ¢ = ¢,, (" (t) is basically 1. The computable version of (I} (¢) which

converges to the exact version ("P(¢) has similar performance as shown in Fig. 5.98.
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Fig. 5.97. Two dimensional synthetic problem. The evolution of effectivity index ¢FP(¢)
for the exact error measured in L? norm based on the exact estimator of the subdomain

residual problem of the elliptic reconstruction problem.

N=4 N=8 N=32
30— e — 30 — T 30— r
t p=1. k=1 p=1,k=1 L p=1.k=1
25F p=1.k=2 | 251 p=1, k=2 bl 251 p=1,k=2 ]
F p=1,k=3 p=1,k=3 E p=1,k=3
l ——————— p=2.k=1 |1 = | p=2, k=1 Py p=2,k=1
<20 020 TP E e p=2,k=2 | - <20 e p=2 | 20 eV e p=2, k=2 =
37t 37t 37t
R p-2 k-3 R p=2, R -2.k=3
=t | p=3, k=1 > F | p=3 = F | k=1
g5 e p=3.k=2 |4 s p=3, g s k=2 g
g p=3 k=3 g I p=3, g I k=3
Haof W of N w N
05 9 05 o 0.5 s o
S S S Y N S S S S Y N S S S Y N S
o'8.00 0.05 0.10 0.15 0.20 o'8.00 0.05 0.10 0.15 0.20 o'8.00 0.05 0.10 0.15 0.20
Time Time Time

Fig. 5.98. Two dimensional synthetic problem. The evolution of effectivity index C_g fk(t)
for the exact error measured in L? norm based on the exact estimator of the subdomain

residual problem of the elliptic reconstruction problem.

Example 5.14. L-shaped domain problem. Figs. 5.99 and 5.100 are the evolution

plots of the relative error ¢'P(¢) and ¢¥P(¢), and Figs. 5.101 and 5.102 are the
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evolution plots of spatial and temporal ratios with respect to the total error for
pFP () and vFP(¢) in energy norm and for 6¥P(t) and ¥¥P(¢) in L? norm, for the fully
discrete finite element solutions of degree p = 1,2, 3, computed with uniform mesh

size h = 2L—2 and time steps N = 4, 8, and 32 respectively.
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Fig. 5.99. L-shaped domain problem. The evolution of the relative error ¢"P(t) for the fully

discrete finite element solutions of degree p = 1,2, and 3, computed with mesh size h =

and time steps N = 4, 8, and 32 respectively.
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Fig. 5.100. L-shaped domain problem. The evolution of the relative error ¢¥P(t) for the
fully discrete finite element solutions of degree p = 1,2, and 3, computed with mesh size

h= 2% and time steps N =4, 8, and 32 respectively.
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Fig. 5.101. L-shaped domain problem. The evolution of the spatial error ratio ufP(t)
(black-color line) and the temporal error ratio ¥ (¢) (red-color line) for the fully discrete
finite element solutions of degree p = 1, 2, and 3, computed with mesh size h = 2L—2 and time

steps N = 4, 8, and 32 respectively.
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Fig. 5.102. L-shaped domain problem. The evolution of the spatial error ratio 6'P(t)
(black-color line) and the temporal error ratio 9P (t) (red-color line) for the fully discrete
finite element solutions of degree p = 1, 2, and 3, computed with mesh size h = 2L—2 and time

steps N = 4, 8, and 32 respectively.

First it can be seen that the relative error both in energy and L? norm tends to go
to infinity as the time is close to the instant ¢t = % at which the exact solution is zero.
In the energy norm case, the temporal error is dominant for almost all the whole time
interval except the time instants close to the final time 7" when the number of time
steps N = 4 is employed. As the number of time steps increases, it can be seen that

the spatial error becomes dominant except those time intervals which are close to the
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time instant at which the exact solution is zero, which can be observed obviously for
N = 32. In the L? norm case, it can be seen that for N = 4,8, the temporal error is
about 100% of the total error. Even in the case of N = 32, except those time instants
close to t = 0, the temporal error is still dominant most of the time.

Fig. 5.103 (resp. Fig. 5.104) is the evolution of effectivity index n¥P(t) (resp. its

computable version 77? D .(t)) based on the elliptic reconstruction problem from the

NG
fully discrete finite elemhent solution for the exact error measured in energy norm. In
comparison of Fig. 5.101, it can be seen that (¥P(¢) has good effectivity index at
the time instant ¢t = ¢,, for each time interval (¢,_1,%,]. For example, in the case of
N = 32, we have (*P(t) close to 1.2 at time instant ¢ = ¢, if the temporal error at
t = t,, is negligible compared with the spatial error. However, this is not the case for
the time instants within the time interval (t,,—1,t,]. We can observe similar behavior

in the computable version 77? D« (t) which converges to ¢¥P(¢) with the increase of

ANY

polynomial order p + k.
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Fig. 5.103. L-shaped domain problem. The evolution of effectivity index n™P(¢) based on the
exact solution U of the elliptic reconstruction problem. Note that the elliptic reconstruction
problem is constructed from the fully discrete finite element solutions of degree p = 1, 2,

and 3, computed with mesh size h = 2L—2 and time steps NV = 4, 8, and 32 respectively.
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Fig. 5.104. L-shaped domain problem. The evolution of effectivity index ng D x(t) based

ANY

on the approximate solution US of the elliptic reconstruction problem. Note that the

p+k
A

h
elliptic reconstruction problem is constructed from the fully discrete finite element solutions
of degree p = 1,2, and 3, computed with mesh size h = 2L—2 and time steps N = 4, 8, and 32

respectively.

Fig. 5.105 (resp. Fig. 5.106) is the evolution of effectivity index ¢¥P(¢) (resp. its

computable version ¢¥D, (¢)) based on the elliptic reconstruction problem from the

SR
fully discrete finite eler;ent solution for the exact error measured in L? norm. As
shown in Fig. 5.102, the temporal error is dominant for N = 4,8 and ¢*P(¢) does not
have good effectivity index. In the case of N = 32, we can see from Fig. 5.102 that
for p = 1 the spatial error is dominant at those time instants close to t = 0. However
¢¥D(t) is still not good number even at the time instant ¢ = ¢,, for each time interval
(tn—1,tn). Similar performance happens to the computable version of g Z%If (t) which

converges to ("P(t) with the increase of p + k.

Fig. 5.107 (resp. Figs. 5.108 and 5.109) is the evolution of effectivity index

_U,FD

nor P (t) (resp. ﬁgﬁD(t) and ﬁjﬁD(t)) for the exact error measured in energy norm,

where the exact error indicator function and its computed version are obtained from

the subdomain residual problem of the elliptic reconstruction problems corresponding

to the fully discrete finite element solution Ugz of degree p = 1,2, and 3 with
h

N = 4,8, and 32. It can be observed that 7V'FP(t) severely overestimates the exact
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error in the case N = 4,8. In the case of N = 32 for the time instants ¢t = ¢,, where

U,FD(t)

the spatial error is dominant, we have 7 close to 1.2. The computable upper

_UFD
bound ngjrk

_L,FD

(t) and lower bound 7,7,”(t) have performance similar to 77" (t)

and

U,FD(t)

converge to 7 with the increase of polynomial order p + k. Note that ﬁiﬁD(t)

is indeed lower bound.
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Fig. 5.105. L-shaped domain problem. The evolution of effectivity index ¢¥'P(¢) based on the
exact solution U of the elliptic reconstruction problem. Note that the elliptic reconstruction
problem is constructed from the fully discrete finite element solutions of degree p = 1, 2,

and 3, computed with mesh size h = 2L—2 and time steps NV = 4, 8, and 32 respectively.
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Fig. 5.106. L-shaped domain problem. The evolution of effectivity index g D »(t) based
Ah/

on the approximate solution US of the elliptic reconstruction problem. Note that the

pk

A/
h

elliptic reconstruction problem is constructed from the fully discrete finite element solutions

of degree p = 1,2, and 3, computed with mesh size h = 2L—2 and time steps N = 4, 8, and 32

respectively.
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Fig. 5.107. L-shaped domain problem. The evolution of effectivity index 7Y"FP(¢) for the
exact error measured in energy norm based on exact estimator of the subdomain residual

problem of the elliptic reconstruction problem.
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Fig. 5.108. L-shaped domain problem. The evolution of effectivity index ﬁgjiD(t) for the
exact error measured in energy norm based on exact estimator of the subdomain residual

problem of the elliptic reconstruction problem.
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Fig. 5.109. L-shaped domain problem. The evolution of effectivity index ﬁ;f;D(t) for the
exact error measured in energy norm based on exact estimator of the subdomain residual

problem of the elliptic reconstruction problem.
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Fig. 5.110 is the time evolution of effectivity index (¥P(¢). It can be seen that
¢*P(t) has poor performance and overestimates the exact error ||E, ||2() since the
temporal error is dominant. The computable version of (5 (¢) which converges to

p+k

the exact version ("P(t) has similar performance as shown in Fig. 5.111.
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Fig. 5.110. L-shaped domain problem. The evolution of effectivity index (¥P(t) for the
exact error measured in L% norm based on the exact estimator of the subdomain residual

problem of the elliptic reconstruction problem.
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Fig. 5.111. L-shaped domain problem. The evolution of effectivity index C_g fk(t) for the
exact error measured in L? norm based on the exact estimator of the subdomain residual

problem of the elliptic reconstruction problem.

Example 5.15. Transient diffusion problem in a thermal battery. Figs. 5.112 and
5.113 (resp. Figs. 5.114 and 5.115) are the evolution plots of the relative error

#FP(t) and P (t), for the fully discrete finite element solutions of degree p = 1,2, 3,
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computed with Mesh I and time steps N = 4, 8, and 32 respectively for isotropic

case (resp. orthotropic case). It can be seen that for both the istropic case and

the orthotropic case the relative error is big at the time instants close to t = 0 and

decreases as time evolves, and after ¢ > 1000 the relative error remains stable since

the solution is close to the steady-state as shown in Fig. 4.9, which is obvious in the

case of time steps equal to 8 and 32.
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Fig. 5.112. Transient diffusion problem in a thermal battery. The evolution of the relative

error ¢! (t) for the fully discrete finite element solutions of degree p = 1,2, and 3, computed

with Mesh I and time steps N = 4, 8, and 32 respectively for isotropic case.
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Fig. 5.113. Transient diffusion problem in a thermal battery. The evolution of the relative

error P (t) for the fully discrete finite element solutions of degree p = 1,2, and 3, computed

with Mesh I and time steps N = 4, 8, and 32 respectively for isotropic case.
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Fig. 5.114. Transient diffusion problem in a thermal battery. The evolution of the relative

error ¢''P(t) for the fully discrete finite element solutions of degree p = 1,2, and 3, computed

with Mesh I and time steps N = 4, 8, and 32 respectively for orthotropic case.
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Fig. 5.115. Transient diffusion problem in a thermal battery. The evolution of the relative

error 1P (1) for the fully discrete finite element solutions of degree p = 1,2, and 3, computed

with Mesh I and time steps N = 4, 8, and 32 respectively for orthotropic case.

Figs. 5.116 and 5.117 (resp. Figs. 5.118 and 5.119) are the evolution plots

of spatial and temporal ratios with respect to the total error for p*P(t) and v*P(t)

in energy norm and for 6*P(¢) and ¥¥P(¢) in L? norm in the isotropic case (resp.

orthotropic case). In the case of energy norm for both the isotropic case and the

orthotropic case, it can be seen that with the increase in the number of time steps,

it takes less time for the spatial error to become dominant and once the solution is

close to steady-state, the spatial error is about 100% and the temporal error becomes

negligible. In the case of L? norm, the spatial error ratio 6*°(¢) and the temporal
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error ratio ¥¥P(¢) in the isotropic case is not as sensitive as in the orthotropic with
respect to the increase in the time steps. Again we can see that the spatial error is

about 100% of the total error as the solution is close to the steady-state.
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Fig. 5.116. Transient diffusion problem in a thermal battery. The evolution of the spatial
error ratio uP(t) (black-color line) and the temporal error ratio P (t) (red-color line) for
the fully discrete finite element solutions of degree p = 1,2, and 3, computed with Mesh I

and time steps N =4, 8, and 32 respectively for isotropic case.
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Fig. 5.117. Transient diffusion problem in a thermal battery.The evolution of the spatial
error ratio §"P(¢) (black-color line) and the temporal error ratio ¥¥P(¢) (red-color line) for
the fully discrete finite element solutions of degree p = 1,2, and 3, computed with Mesh I

and time steps N =4, 8, and 32 respectively for isotropic case.
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Fig. 5.118. Transient diffusion problem in a thermal battery. The evolution of the spatial
error ratio uP(t) (black-color line) and the temporal error ratio P (t) (red-color line) for
the fully discrete finite element solutions of degree p = 1,2, and 3, computed with Mesh I

and time steps N = 4, 8, and 32 respectively for orthotropic case.
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Fig. 5.119. Transient diffusion problem in a thermal battery. The evolution of the spatial
error ratio "P(¢) (black-color line) and the temporal error ratio ¥¥P(¢) (red-color line) for
the fully discrete finite element solutions of degree p = 1,2, and 3, computed with Mesh I

and time steps N = 4, 8, and 32 respectively for orthotropic case.

Figs. 5.120 and 5.121 (resp. Figs. 5.122 and 5.123) is the evolution of effectivity

FD

p+k
SK

index n*P(¢) and its computable version n¥D,, (¢)) based on the elliptic reconstruction
problem from the fully discrete finite element solution for the exact error measured
in energy norm in the isotropic case (resp. orthotropic case). In comparison of Fig.
5.116 (resp. Fig. 5.118) for istoropic case (resp. orthotropic case), it can be seen as
long as the spatial error becomes dominant, the effectivity indices n*°(¢) and ng%k (1))

h/
start to improve. For instance in the isotropic case, for p = 1 and time steps equal to
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8, we can see from Fig. 5.116 that the spatial error becomes dominant after ¢ > 750
while in Fig. 5.120 we can see the effectivity index P (¢) close to 1. Similarly in the
orthotropic case, for p = 1 and time steps equal to 8, we can see from Fig. 5.118 that
the spatial error becomes dominant after ¢ > 500 and in Fig. 5.122 it can be seen the
effectivity index nP(t) starts to improve and eventually is close to 1 at the end of
time interval ¢t = t,,. The effectivity index 77? ZDM (t) converges to its exact value n*P(t)

h/
with the increase of element order p + k.
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Fig. 5.120. Transient diffusion problem in a thermal battery. The evolution of effectivity
index 7P (t) based on the exact solution U of the elliptic reconstruction problem. Note
that the elliptic reconstruction problem is constructed from the fully discrete finite element
solutions of degree p = 1, 2, and 3, computed with Mesh I and time steps N = 4, 8, and 32

respectively for isotropic case.
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Fig. 5.121. Transient diffusion problem in a thermal battery. The evolution of effectivity

index g

FD
P+
Ah,

. (t) based on the approximate solution US

p+k
A

of the elliptic reconstruction prob-

h
lem. Note that the elliptic reconstruction problem is constructed from the fully discrete

finite element solutions of degree p = 1,2, and 3, computed with Mesh I and time steps

N =4, 8, and 32 respectively for isotropic case.
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Fig. 5.122. Transient diffusion problem in a thermal battery. The evolution of effectivity

index nFP(t) based on the exact solution U of the elliptic reconstruction problem. Note

that the elliptic reconstruction problem is constructed from the fully discrete finite element

solutions of degree p = 1, 2, and 3, computed with Mesh I and time steps N = 4, 8, and 32

respectively for orthotropic case.
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Fig. 5.123. Transient diffusion problem in a thermal battery. The evolution of effectivity

index ng ,],)M (t) based on the approximate solution U otk of the elliptic reconstruction prob-

h h
lem. Note that the elliptic reconstruction problem is constructed from the fully discrete
finite element solutions of degree p = 1,2, and 3, computed with Mesh I and time steps

N =4, 8, and 32 respectively for orthotropic case.

Figs. 5.124 and 5.125 (resp. Figs. 5.126 and 5.127) is the evolution of effectivity

index ¢*P(t) and its computable version ggk (t) based on the elliptic reconstruction

Apr

problem from the fully discrete finite element solution for the exact error measured in
L? norm in the isotropic case (resp. orthotropic case). Again, in comparison of Fig.
5.117 (resp. Fig. 5.119) for istoropic case (resp. orthotropic case), we can observe

that as long as the spatial error becomes dominant, the effectivity indices (*P(¢) and

FD
ptk
SR

steps equal to 8, we can see from Fig. 5.117 that the spatial error becomes dominant

(t) also start to improve. For instance in the isotropic case, for p = 1 and time

after t > 1500 while in Fig. 5.124 we can see the effectivity index n*P(¢) close to 1.
Similarly in the orthotropic case, for p = 1 and time steps equal to 8, we can see from
Fig. 5.119 that the spatial error becomes dominant after ¢t > 500 and in Fig. 5.126

it can be seen the effectivity index n¥P(¢) starts to improve and eventually is close

to 1 at the end of time interval ¢ = ¢,,. The effectivity index ;“,Bk (t) converges to its

Apr

exact value (¥P(t) with the increase of element order p + k.
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Fig. 5.124. Transient diffusion problem in a thermal battery. The evolution of effectivity

index ¢FP(t) based on the exact solution U of the elliptic reconstruction problem. Note

that the elliptic reconstruction problem is constructed from the fully discrete finite element

solutions of degree p = 1,2, and 3, computed with mesh II and time steps N = 4, 8, and

32 respectively for isotropic case.
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Fig. 5.125. Transient diffusion problem in a thermal battery. The evolution of effectivity

index ¢FD
Ah/
lem. Note

ot (t) based on the approximate solution U gtk Of the elliptic reconstruction prob-

h
that the elliptic reconstruction problem is constructed from the fully discrete

finite element solutions of degree p = 1,2, and 3, computed with mesh II and time steps

N =4, 8, and 32 respectively for isotropic case.
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Fig. 5.126. Transient diffusion problem in a thermal battery. The evolution of effectivity
index ¢FP(t) based on the exact solution U of the elliptic reconstruction problem. Note
that the elliptic reconstruction problem is constructed from the fully discrete finite element
solutions of degree p = 1,2, and 3, computed with mesh II and time steps N = 4, 8, and

32 respectively for orthotropic case.
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Fig. 5.127. Transient diffusion problem in a thermal battery. The evolution of effectivity

index Cg D »(t) based on the approximate solution U gtk Of the elliptic reconstruction prob-
Ny y

h h
lem. Note that the elliptic reconstruction problem is constructed from the fully discrete
finite element solutions of degree p = 1,2, and 3, computed with mesh II and time steps

N =4, 8, and 32 respectively for orthotropic case.

Figs. 5.128, 5.129 and 5.130 (resp. Figs. 5.131, 5.132 and 5.133) are the evolution
of effectivity index 7UFP(¢), ﬁgﬁD(t) and ﬁiﬁD(t) for the exact error measured in
energy norm, where the exact error indicator function and its computed version are
obtained from the subdomain residual problem of the elliptic reconstruction problems

corresponding to the fully discrete finite element solution Ugz of degree p = 1,2, and
h
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3 with N = 4,8, and 32, in the isotropic case (resp. orthotropic case). For isotropic
case it can be seen that 7VFP(¢) is close to 1 for ¢+ > 1000 since the solution falls into
the range of steady state as shown in Fig. 4.9 and the spatial error is about 100% of
the total error as illustrated in Fig. 5.116. For t < 1000 where the solution reflects

obvious transient behavior, we find that as long as the spatial error is dominant we

SUFD

have effectivity index 777" (¢) close to 1 at time instant ¢ = ¢,, for each time interval

(tn—1,tn), which can be observed in the case of p = 1 and N = 32. The computable

bounds ﬁgﬁD(t) and ﬁiﬁD(t) have the performance similar to 7%"P(¢). It can also be

found that the lower bound ﬁL’FD

g (t) is less than 1 for ¢ > 1000 as the solution is close

SU,FD

to steady state. For orthotropic case, we can see that i (t) severely overestimates

the exact error even at the time instant ¢ = ¢,, where the spatial error is dominant

UED(1) is because of the

as illustrated in Fig. 5.118. The poor performance of 7
lack of robustness of the subdomain residual estimator for the elliptic reconstruction
problem due to the existence of interface layers caused by the highly orthotropic
domain. Likewise the computable version of ﬁgﬁD(t). The lower bound ﬁiﬁD(t)

severely underestimates the exact error. Again the culprit of severe underestimation

is because of the interface layer.
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Fig. 5.128. Transient diffusion problem in a thermal battery. The evolution of effectivity

U,FD(t)

index 7 for the exact error measured in energy norm based on exact estimator of the

subdomain residual problem of the elliptic reconstruction problem for isotropic case.
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Fig. 5.129. Transient diffusion problem in a thermal battery. The evolution of effectivity
index ﬁgjiD(t) for the exact error measured in energy norm based on exact estimator of the

subdomain residual problem of the elliptic reconstruction problem for isotropic case.

N=4 = N=32
50 T T sojuu“u‘“HN‘US‘H‘HH“H_ 5.0 P e
45—‘, 45f E s E
| | ] ]
40—!I k=1 40 E| 40 E
| k=2 | 1

35F| k=3 350 2 E 35 E
3 | k=1 3 !I 3 ] 3 ]
20| =2 2 N D b E 23 E
Zy5F | k=3 ZosEl | ] z ]
Sask | b 225—.' 2 E = E
3 \ ] \ 3 3 3 El
S20F | k=2 B el o R (S 1 e L2 E|
w \ k=3 w | S 2 1 i} 1

15—\ sk 3 1

\ \
10F “ 10F \ | 1.0
I~ \|

0sF | 0sF \{ 05
| 3 N k! 3]
b to it b by 1 bt tov bt by 10 oobrr i tov bt by 1o
500 1000 1500 2000 2500 3000 500 1000 _Iw_ 500 2000 2500 3000 500 1000 1500 2000 2500 3000

ime ime

ime

Fig. 5.130. Transient diffusion problem in a thermal battery. The evolution of effectivity
index ﬁﬁf;D(t) for the exact error measured in energy norm based on exact estimator of the

subdomain residual problem of the elliptic reconstruction problem for isotropic case.
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Fig. 5.131. Transient diffusion problem in a thermal battery. The evolution of effectivity

index V°FP(t) for the exact error measured in energy norm based on exact estimator of the

subdomain residual problem of the elliptic reconstruction problem for orthotropic case.
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Fig. 5.132. Transient diffusion problem in a thermal battery. The evolution of effectivity

index ﬁgjiD(t) for the exact error measured in energy norm based on exact estimator of the

subdomain residual problem of the elliptic reconstruction problem for orthotropic case.
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Figs. 5.134 and 5.135 (resp. Figs. 5.136 and 5.137) are the time evolution of
effectivity index ¢"P(¢) and its computable version ;1;1 D.(t) for isotropic case (resp.
orthotropic case). For istropic case, it can be seen that ¢"(¢) and (F'5(t) have poor
performance at t = t,, for each time interval (¢,,_1, t,,] even when the solution is close to
steady state. In the orthotropic case, both (FP(¢) and (¥'D (¢) severely overestimates

p+k

the exact error to such an extent that they have no practical meaning.
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Fig. 5.134. Transient diffusion problem in a thermal battery. The evolution of effectivity
index (P () for the exact error measured in L? norm based on the exact estimator of the

subdomain residual problem of the elliptic reconstruction problem for isotropic case.
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Fig. 5.135. Transient diffusion problem in a thermal battery. The evolution of effectivity

index _g fk(t) for the exact error measured in L2 norm based on the exact estimator of the

subdomain residual problem of the elliptic reconstruction problem for isotropic case.
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Fig. 5.136. Transient diffusion problem in a thermal battery. The evolution of effectivity
index ¢¥P(t) for the exact error measured in L? norm based on the exact estimator of the

subdomain residual problem of the elliptic reconstruction problem for orthotropic case.
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Fig. 5.137. Transient diffusion problem in a thermal battery. The evolution of effectivity

“FD
p+k
subdomain residual problem of the elliptic reconstruction problem for orthotropic case.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Conclusions

In this dissertation we first presented what can be called a careful benchmark study of
the robustness of residual estimators for a class of problems with very high orthotropy.

The conclusions can be summarized as follows:

1. We first employed as our model problem the heat conduction in a thermal bat-
tery which includes a highly orthotropic subdomain. We considered the exact
versions of four implicit residual estimators, namely, a Neumann element resid-
ual estimators, all three leading to constant-free upper estimators of the error,
and a Dirichlet subdomain residual estimator which is the first estimator ever
introduced. We employed overkills to obtain the "exact” solution of the model
problem and also the exact solutions of all the local residual problems, and we
analyzed the effectivity indices of the estimators as a function of material or-
thotropy for meshes of rectangles and elements of degrees p = 1,2, 3. The main
characteristic of the meshes is that they are dictated by the geometry, and seem
to be sufficiently refined for the intended computations especially when p = 3
degree elements are employed. Our intention was to analyze the estimators for
finite element approximations in settings likely to occur in practical computa-
tions where the analyst is not aware of all the details of the problem that he is
trying to solve, as it is often the case in engineering practice. From the analysis

of the results obtained in this setting we concluded:

a) All four estimators give reliable results in the isotropic case for all the

employed meshes.
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b) All four estimators deteriorate significantly with high orthotropy for all
the meshes and degrees p. All three Neumann estimators, the exact ver-
sions of which are upper bounds, grossly overestimate, while the Dirichlet
subdomain estimator underestimates and seems to perform better for high

orthotropy in this particular benchmark.

¢) The computed versions of all four estimators lead to smaller values of the
effectivity index. Nevertheless, the trend is very similar with that of the
exact versions and, in general, it is not possible to improve the robustness

of the estimators by computing the indicators with less accuracy.

d) All the lower estimators constructed from the four types of residual in-
dicators functions employed here, also deteriorate significantly with the

increase in orthotropy albeit less than the upper bounds.

e) The optimization of the lower estimators achieved by computing an ad-
ditional finite element solution at a negligible cost of a resolution of the
already factorized stiffness matrix, leads to significant improvement of the
lower estimators, especially in the isotropic case, where the obtained lower

estimate has effectivity close to one.

2. To clearly illustrate the culprit in the deterioration of the estimates, which
is the size of the mesh relative to the size of the sharp layers in the solution
close to the high orthotropy, we employed the simplest possible model problem
with boundary layer derived by simplifying the original model problem. In
addition to being able to obtain analytical expressions for the exact solutions
of this problem, we are also able to obtain an analytical expression for the
finite element solution. By this we mean the finite element solution computed

analytically in terms of a formula without the need to factorize the stiffness



254

matrix. This helps us avoid the effect of the roundoff error when the mesh
is refined many times before reaching the sufficiently small mesh size needed
for asymptotic behavior depending on the employed orthotropy. We used this
setting to analyze the explicit residual estimator which is directly calculated
from the residuals and can be formulated as an asymptotically exact estimator

for the energy, H' and L? norm of the error. We noted the following:

a) Until the size of the mesh is sufficiently small to get several elements across
the thickness of the boundary layer the explicit estimator grossly overesti-

mates.

b) Similar behavior is expected for the implicit residual estimators which lead

to constant-free upper bounds.

c¢) The estimation of the L*-norm of the error in bilinear finite element solu-

tion (p = 1) is not reliable because of the global pollution in the value.

. We also considered another simplified model problem which has an interface
layer and is closer to the original model problem of the thermal battery. Once
more the accuracy of the error estimation is governed by the size of the mesh
relative to the size of the interface layer due to the high orthotropy, however here
we have also another factor which is the contribution to the global norm of the
error from the error in the highly orthotropic subdomain. Extrapolating from
this example, we can say that the behavior of the effectivity of the estimators
for the thermal battery problem is much more complicated because it involves

the effectivity of the estimators at multimaterial points.

Another important issue that must be always addressed is the difference between
the exact and computed versions of the various residual estimators, especially

for the case of high orthotropy.
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4. The main point of the robustness analysis for the thermal battery problem is
that asymptotic analyses of the estimators may not be relevant for practical
computations where the mesh is chosen somehow based on the experience of
the user and on the available mesh generator. As we have seen in the model
examples above, the relative error can be in the acceptable range of engineering
accuracy e.g. 5%. However the bounds could indicate that it is big, e.g. nearly
100% leading the user to possibly unnecessary refinements and additional com-
putations until much higher accuracy e.g. 0.5% is obtained at which instant
the bounds also become efficient (the ratio Z‘E—Z is close to one), the user realizes
that a much higher than the desired accuracy has been reached and decides to
terminate the computation. In our view it is for this case namely when the error
is in the range of engineering accuracy 5% that we need to construct efficient
bounds for the error and not when the mesh is sufficiently refined for the bounds

to approach their asymptotic values.

Secondly, we carried out the a-posteriori error estimation for the semi-discrete
finite element solution of linear transient problem based on the elliptic reconstruction

procedure. The conclusions can be drawn as follows:

1. For smooth solution, the difference between the exact solution of the linear
transient problem and the exact solution of the elliptic reconstruction problem
based on the semi-discrete finite element solution, namely v — 4, has improved
convergence rate in comparison of the exact error in the semi-discrete finite
element solution when measured in energy norm or L? norm. However, in the
L? norm case, the superconvergence does not exist for linear finite element
solution. For nonsmooth solution such as the L-shaped domain problem, u —

has improved convergence rate only for the energy or H! norm. In the case of
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L? norm, u — 4 has the same convergence rate as the exact error u — u sz even
h

for quadratic and cubic finite element solutions.

2. The space-time based error estimator we invented has robust performance even

for nonsmooth solution.

3. With the introduction of elliptic reconstruction problem, all the available elliptic
residual estimators can be employed for the error estimation of linear parabolic
problem. Furthermore, we can even obtain lower bound for the error measured

in space-time %¢-norm.

4. Except the case where the exact error in linear finite element solution is mea-
sured in L? norm, u — ugy  can be approximated well at any time instant by
h
U —ugr if the solution is smooth. In the case of nonsmooth solution, @ — ugz
h h

is good approximation for u — u s measured in ! norm.
h

Thirdly, we employed the elliptic reconstruction procedure for the error estima-
tion of fully discrete finite element solution to the linear parabolic problem obtained
from backward-difference time discretization scheme. We can draw the following con-

clusions:

1. The exact error in the fully discrete finite element solution u — Ugz  can be
h
approximated well by U— Use at time instant ¢ = ¢, for each time inter-
h
val (tn-1,t,] only under the condition that the temporal error is negligible in

comparison of the spatial error.

2. We invented an estimator which can be employed to evaluate the temporal error

in space-time €¢-norm.
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3. Similar to the semi-discrete case, a space-time error estimator also exists for
fully discrete case and can have good performance if the temporal error is not

dominant.

6.2 Future work

The elliptic reconstruction procedure has a great potential that can be tapped, which

can be listed as follows:

1. For error estimation of quantity of interest for linear parabolic problem, the
prevalent scheme is to solve the a dual problem backwards in time which can
be tricky and even prohibitively expensive if three-dimensional problem is con-

sidered. The elliptic reconstruction procedure is appealing in this respect.

2. The procedure can also be extended to the reaction-convection-diffusion type

equation.

3. Given the new error estimator for the temporal error, it is practical now to

design adaptive time-stepping scheme in order to control the temporal error.

4. The time-discretization scheme employed in the dissertation is backward dif-
ference. The other discretization schemes, such as forward difference, Crank-

Nicholson, and discontinuous Galerkin method, can also be employed.
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APPENDIX A
EXACT FINITE ELEMENT SOLUTION FOR BOUNDARY LAYER PROBLEM

For a uniform mesh as shown in Fig. A.1, the number of subdivisions along both
x and y axis is chosen to be n and the mesh sizes along x and y axes are denoted by
hi o 2 and hy o % respectively. The nodal degrees of freedom is denoted by the

index i (i =0,1,2,...,n) along = axis and the index j (j =0,1,2,...,n) along y axis.

In the global stiffness matrix, we have the following discretization form corresponding

i-1,4+1 1,31 i+1, 371

At~ > :Y'
RN ™
. . o .
=>4l=1, 3 i 1 1i+1, 7
<
=g
N NS}
-7 i-1, 1,50 i+l, 1
Al

Fig. A.1. Uniform mesh for model problem with boundary layer
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to an arbitrary node denoted by (7, j) not on the boundaries.

h
(—m—i—k m)mljl+2ozm kﬁl)wﬁﬁ—

6h1  Y6hy 6h1  ?3hy
4(k:£;‘+k%$;)””“F2( Ajé: +ky£;)u“44+ (A1)
(— k‘mg% — k:yGthz)uHLjH =0

At the boundary I'y,, we have

hg hl h2 hl
_km— -7 i— — Ry — -1 i—
( 3h,1 + kyGhz)u 1,0 + ( k 6h,1 k‘y6h2)u 1,1

hg hl h2 hl
2 P 3 2 €T 7
+ (k: 3 +l{:y3h2)u7o+ (k: ohn ky?)hg)u 1+

ho h1 ho hi
( k‘m% + k‘y@) Uit1,0 + ( — km@ - k26—h2)uz+1,1

0 0
- [t [ w2,

where the shape functions at node (i,0) defined at the two elements 7, and 7, are
gbi‘ = %1 and gbl‘ = “TH respectively.

T1 Ti—Ti—1 T4 it

Similarly at the boundary I'y,, we have

(— kmﬂ —k i)ui—l,n—l + (— kmﬁ +k E) Ui—1,nt

6h1  “6hs 3hi  Y6hy
ho h1 ho hi
(k: ohr ky?)hg)u 1+ (k: 3h1 +k:y3h2)u, + (A.3)

hg hl h2 hl o
( - kahl - ky6h2)uz+1,n—1 + ( - km% + ky@) Uit1n = 0
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It should be noted that in equation A.3 the right-hand-side is zero due to homogeneous
Newumann boundary condition.
Using separation of variables and assuming the degrees of freedom w;; = X;Yj,

from equation A.1 we have

Yij1 +Y _C
Y;
(kméLTzl _kysf;zl) i-1 +4<kr3h "’kysh )X +2<km6hh2 kysf;zz) i+l _C
(ks - k)Xo b2 =Rt k) Xk (— Redt — R ds) Xin
(A.4)
From equation A.4, we have the following form for X, 1, X, and X, ;.
hg hl h2 hl
2ky— —ky— ) — X;
( (x 6h1 ky:ahz) ¢ (kg 6hy v oh )) G
hg hl h2 hl
41 k, k 20( —kpy— 4+ k,— | | X; A5
( ( Sy y3h2)+ ( Shy y6h2)) (A.5)
hg hl h2 hl
2 x Ly P €T g -7 Xi— ==
+( (k 6h1 ky:ahg) C<k 6h1 +ky6h2)) =0

Assume X; = ' and plug it into equation A.5, we have a quadratic equation for ~

(2(/%6% - k:yg%) — (ks Gf;jl + k:yg;z))vz%-

hg hl h2 hl
et A6
(4(k: o +k:y3h2) +2C( e +k:y6h2))7 (A.6)

hg hl h2 hl
2kg———ky— ) —Clke——+k =0
+( (x 6h1 y3h2) ( "oy © y6h2))
Assume 7, and v, are the two roots of equation A.6 and X can be expressed as a

linear combination of v, and ~, as follows

Xi=D,v + Dy, (A7)
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At the boundary z = 0 and x = a which corresponds to the indices i = 0 and i = n,

we have

Xo=D,+D,=0 ati=0
(A.8)

Xn=D '+ D,y ati=n
To have nontrivial constants D, and D,, the two roots v, and ~, have to be conjugate
complex. Thus by assuming v, = re!¥ and ~, = re~!¥ and using Vieta’s theorem, we

have

,y —|-7 _ (km3h1 +ky3h ) +2C< km3h +ky6h )
o

= 2cos(1))
kIéLTz_kysf;Ll) _C<kr6h +ky6h ) (A.9)

T V2 = r?=1
Therefore, X; has the following form by noting D, + D, =0 and r =1
X; = Dye'™ + Dye™ '™ = (D + Dy)cos(ivp) + I(Dy — Dy)sin(iv)) = I(Dy — Dy)sin(it))

(A.10)

According to boundary condition X,, = 0, we have
X, =I1(D, — D,)sin(ny) =0 (A.11)

Thus we have ¢ = —7r with k=1,2,....,n— 1.
Since D, and D, are arbitrary constants and by setting I(D, — D,) to be unity,

we have

XF = sin(%kﬂ) (A.12)
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The constant C, can be determined by plugging ¢ = = into equation A.9, which

has the form as follows

6 h 3
C,=2— i (A.13)
%‘f (24 cos(£m)) — e (1 — cos(%))
According to equation A.4, we have
Vi, —CYl+Yr, =0 (A.14)
Let Yf = )\i , we have a quadratic equation
XN —CA\+1=0 (A.15)
and its two roots are
y C,+/C?—4
1,k
2 (A.16)

2,k

\ G, =714
N 2

Likewise, put Y}* as a linear combintaion of the two roots A, and A, , we have

Y =a"N 4ok (A.17)

1 1,k 2 2k

n—1
Let w;; = Z XfY»k and plugging it into the equations A.2 and A.3 corresponding

to Neumann boundary conditions which are Y = a + a and V¥ = o/f)\?k + af)\gk

respectively. Thus we have after simplification

n—1 .
S sin(Ehm){(A*+ B ol + (A5 + B, Job} = sin(m)S
' n

o (A.18)
Zsin(ik‘ﬂ){(/lk)\ —I—Bk))\" 1 ’f (Ak)\ + BY) A 1 k} —0
n
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where
2hs k ha k
AF =k, 3—h1<1 — COS(ETF)) + ky3h2 (2 + cos(n ))
ha k ha k
_ D) =~ A.19
=k,—— “3h, (1 cos(nﬂ)) k, 3hs ( + cos(nﬂ)) ( )

S =2 221 (1 —cos(%))

From equation A.18, it can be seen that & = 1. For simplification, the index k is

dropped and we have

(A+ BX\)a, + (A+ B))a, =S5

(A.20)
(AN, + B)X" o, + (AN, + B)X" 'a, =0
where
2ho T h1 T
A=k,— "3, (1 - cos(g)) + ky3h2 (2 + cos(g))
h m h il A21
B=k,— 3 (1 —cos(n)) ky3h2 <2+cos(n)) (A.21)
a2
T
S =2 T (1 — cos(g))

After solving the two equations, the constants C| and C, have the following form

S .
a, = —TJ(A)\Z + B) A .

a, = %(AAl + B
where
T =\t (A)\l + B) <A + BAZ) -t (A + B)\l) (AN, + B) (A.23)

Therefore for linear finite element solution, the explicit expression of degree of freedom
at node (7, 7) is
ui; = X;Y; = sin(iﬂ) (N + a,N) (A.24)
n
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For an element defined by (i,7), (,7+ 1), (i+ 1,5+ 1), and (i + 1, j) as shown in

Figure A.1, the finite element solution can be put as

uiox = ui7j¢i,j + ui7j+1¢i,j+1 + ui+17j+1¢i+1,j+1 + ui+17j¢i+1,j (A25)

where ¢, ., ¢, ., ®,.,,,,,and ¢, . are linear shape functions corresponding to nodes
(i,4), (i,7+1), (i+1,7+1), and (i+1, j) respectively. Let us note that v’y computed
by the stiffness matrix, and uy**, are identical up to the roundoff error.

It can be observed that the procedures to derive an explicit expression of nodal
degree of freedom is identical with those to derive the exact solution to the partial
differential equation. The only difference between the two is that the former works
on discrete equation while the latter works on continuous equation. It should also
be noted that unlike the finite element solution uy obtained from Fortran code, the
solution u/y®* which can be called exact finite element solution has no numerical inte-
gration and factorization error since all the computations are symbolic. To validate
the above derivations, the comparision of energy norm of v} and uY®* is listed in

Table A.1. It is obvious that the results from the solution wY** based on explicit

formula are consistent with those from Fortran code.
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Table A.1. Model problem with boundary layer. The comparisons of energy norm u}

and uX™ vs. the different orthotropies g—z and mesh refinements n with k, =€, h1 = 55,

hy = &, and n = 1,2,3,4,5.

e=1 e=20.1

3

[lualla

[ua™

[luall

[[wa™ ey

1 (I
ST QO DD =

BB BBB

1.175884664
1.471496181
1.583604860
1.616090273
1.624556788

1.175895274
1.471496163
1.583604886
1.616090324
1.624556847

1.292884998
1.891691080
2.422598743
2.734684253
2.849963701

1.292884999
1.891691081
2.422598743
2.734684254
2.849963701

e =10.01

e = 0.001

3

||upA||6u

A" oy

||upA||6u

A" |

n=1 1.310153826 1.310153827 1.308532420 1.308532422
n=2 1.994326378 1.994326380 1.983797585 1.983797585
n=3 2.870217704 2.870217706 2.810196627 2.810196628
n=4 4.048925527 4.048925528 3.759091133 3.759091134
n=>5 5.578182413 5.578182413 4.557968568 4.557968568
e = 0.0001 e = 0.00001
n A [l A ™,

1 I
ST QO DD =

BB BBB

1.310316559
1.995394775
2.876582346
4.084720654
5.766436026

1.310316641
1.995394798
2.876582364
4.084720651
5.766436040

1.310332838
1.995501772
2.877222702
4.088388200
5.787087794

1.310332858
1.995501867
2.877222706
4.088388228
5.787087800
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APPENDIX B

DETERMINATION OF CONSTANTS IN EXPLICIT ESTIMATOR

We determine constants C and « based on interpolation error of a smooth

quadratic polynomial which satifies the following governing equation and boundary

condition defined on the domain of equation 3.1.

0%*u 0%*u
—km%—kya—yz =0 on Ql = (O,Cl) X (O,b)
—k‘m@ =2z atx=0,a (B.1)
ox
ou
— —_— —2 pr—
k:yay y at y=20,b
where
22 P
upx(T,y) = [ (B.2)

For an arbitrary element 7 defined by nodes (,j), (i,7+ 1), (i+ 1,7 + 1), and

(1 4+ 1,7) as shown in Figure A.1, we define an linear interpolation function as

1 1 1 1
U = ui,j¢i,j + ui,j+1¢i,j+1 + ui+1,j+1¢i+1,j+1 + ui+1,j+1¢i+1,j (B?’)

where ¢, ., ¢, .., &, ,,,,and ¢, . are linear shape functions corresponding to nodes
(i>j)> (27] + 1)7 (Z + 17] + 1)7 and (Z + 17]) respectively and Uaj, ug,j—l—h u%—l—l,j—l—h and

1 .
Uiq 41 are the exact values of upy at the corresponding nodes.
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Therefore we can get at element 7 the explicit formulae for the interpolation

1 def . 2
eITor €5 = Upx — U, in energy norm, /4; norm and L norm

L2 = haha (ke h3 + kyh2)
Al 3k, k,
hiha(K2h2 + k2h2)
leally oy = 3k:§2k:§ vy (B.4)
LR haha(—5kykyh3h3 + 3k2h3 + 3k2h1)
Callpzgy = 90kZ k2

It can be seen that the interpolation error among all the elements is identical for the
uniform mesh refinement. On element 7, the jump due to interpolation has the form

of
JT 12
> %
eCoT \/5

By assuming the total number of elements is NV, we have the following for interpolation

= 4(h?+1h§ + hg“hi) (B.5)

L2(e

error according to equation 3.5
e[ = Nllehl2 < ANCy (SRS + 5 *1h3) (B.6)

Given the explicit form of ||efgz |2 in different norms as shown in equation B.4, we
h
can determine the constant Cy by taking the equal sign in equation B.6, which can

be expressed as follows

kol + %
w __ B _
Cy = YIS and a=1
K28+
H! z B
=27 and a=1 (B.7)
24k k;
. 3k20* — Skik,(? + 3Kk2
CcE = B 1ky 5 Y and a=3

360( 5 + 0 ) 2k
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where ﬁ n is defined as aspect ratio and Cy, C{ ' , and CL denote the constant

(Y for error measured in energy norm, H; norm, and L? norm respectively. It can be

seen that the constant C} is the function of mesh aspect ratio and material properties.

Therefore we have the following explicit estimators

¢ PXPL 4 def \/Cou<z ( ZThf

T eC

Je

V2

2
Lz(e)))

Wl(z (>[5 )
T eCoT
JT

£

gExrL e def \/CL2<Z ( Z h? NG ;(E)))
T eCoT

which correspond to the error measured in energy norm, H' norm, and L? norm

respectively.
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APPENDIX C
EXACT FINITE ELEMENT SOLUTION FOR INTERFACE LAYER PROBLEM

For a uniform mesh as shown in Figure C.1, the number of subdivisions for

domain €2; and domain €25 is chosen to be n and the mesh sizes along x and y axes

are denoted by by & & and hy © L for domain O, and b} © £ and by € < for

domain €2,. It should be noted that A is equal to hy. The nodal degrees of freedom
for nodes on domain €2, are denoted by the index i (1 = 0,1,2,...,n) along x axis and
the index j (j = 0,1,2,...,n) along y axis while for nodes on domain €2, the nodal
degrees of freedom denoted by the index i (i = 0, 1,2, ...,n) along = axis and the index
[ (I=0,1,2,...,n) along y axis. It should be noted that the node indices for both
domains along x axis are denoted by the same index 7 since the number of refinement
level along x axis is the same for domain €2; and €2,.

In the global stiffness matrix, we have the following discretization form corre-

sponding to an arbitrary node on domain €2; denoted by (i, j) not on the boundaries.

h
(—m—i—k m)mljl+2ozm kﬁi)mfﬁ—

6h1  Y6hy 6h1  ?3hy
4(k: ;Z +k:y3f; )ui7j+2( ks 3@ +k:y6f; )ui+17j+ (C.1)

ho h
(— km@ - ky@)”i—l—l,j—l—l =0
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i— 2 i,0 L i+
i-Lo e SR I R T i+1,1-1
A, o a hi hi
X hi hi . S
i-I,T Ty 1,1 iFL 1 i) 1 i1, 1
Il x ’
== o
i-1,n-1  i.p-1 _ i+Ln =
hi hi -1, I+1 1, I+1 i+1, 1+1
a A
i-Enm 1, . 1Tl 1 10 1,0 s—it1, 0
. A Y
— I ro
hi hi
= i1, 1 i1 i+1, 1
i1 i j- i+1, j-1
S A W i, j-1 J
y AN _
SR 5 hi hi + .
1 y J ]’J’ L lyJ
=
[ E
i-1,n-1 i, n-1 i+l,n-1 i-1, F1 i, J+1 i+1, j+1
ht hi
2 @
i1 71+1, n

Fig. C.1. Uniform mesh for model problem with interface layer

while an arbitrary node on domain €2, denoted by (i,) not located on the boundaries

has the following discrete form in the global stiffness matrix.

( k% ¥ 62, )ui_u_l + 2<k:’ 6% ¥ 3}2/ )u“_l—l—
( k;% —k 6@, )um,l_l + 2( k:;% + k, 6@, )ui_l,wr
4<k:’ % + k, 3};’ )ui,z + 2( k‘;% + k, 6};’ )Uz'+1,z+

( k% ¥ 621, )ui_ml + 2(14 6% K 3}2/ )ui,,+1+
( f6h1 ;6}25)“"““1 =0
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At the boundary I'y,, we have for [ =0and [ =1

yhy yhy
( k +k )ui_Lo + ( k —k Ui—1,1+

¥ 3hy Y6h!, “6hy Y6h!,
/ h/ / hl / h/ / h
U 2 - Uj,1
(k‘ *3n; —l-k‘ygh,) o+ (kahl k‘ygh/) 1+
h, h K, h (C:3)
/ /RS ) 2 g )
( ks 30y + ky— o )Uz+1,0 + (— K, 6t ky— 6h, )Uz+1,1

,o0u |, ,o0u
/ka_ +/sf2kya_yi7é

where the shape functions at node (i,0) defined at the two elements 7{ and 7} are

¢, = 7= and gb’ = % respectively.
1 i
Similarly at the homogeneous Neumann boundary I'y,, we have for : = n — 1
and 1 =n
hg hl h2 hl
S L Ry (P Y ey S ) I
hg hl h2 hl
2( ky— — k im—1+ 2| ks ky—— |uin C4
( 6l yshz)“ ot ( "3hy y3h2)u’ * (C4)

hg hl h hl o
(_km@_ky@)uz—l—l,n—l‘l’ ( kf 3h1 +ky6h2)uz+1,n—0



279

At the interface of the two domains for [ = n—1,n and j = 0, 1, we have the following

discrete form for the common node (i,7) on domain Qs which is (7,0) on domain 24

( K, L — K o )ui—l,n—l -l—( k! i + kK — fu )ui—Ln—l—

“6hy Y6h, “3hy Y6h!,
/ h/ / hl / h/ / hl
- i,n— 2 Ui n
(k‘ " 6hs ky?)h’)u’ 1+ (k‘ 30, —I—k‘ygh/) nt
, hl , hy , hl , hy
( km 6h, ky 6h )ul+17n—1 + ( km 3h, + ky 6h )ul+17n+

h h h h (C5)
2 1 2 1
(— k‘mghl + ky6h2)uz—1,0 + (— km@ — k‘y6—h2)uz—1,1+
hg h h2 hl
2 T 7 2 o1 7
(k: 3 +ky3h2)u 0+ (k: o ky3h2)u’1+

hg hl h hl o
(— km?)hl +ky6h2)uz+1,0+ ( ky—— "o — ko— 6hs )Uz+1,1 =0

By noting the nodal degrees of freedom ;1 ,, u;p, and ;41 , defined on domain

are equal to their counterparts u;_; o, 10, and u;+1 0 defined on domain €2, we have

( h -k — o )Ui—l,n—l - (k‘/ h — k! o kmﬂ —k E)ui—l,n_

%hl Y6h, “3hy Y6hY 3hy Y 6ho
(km oh: y6h2)ui_1’1 + 2(k’ 6}21 — k:; 3};, )um_ﬁ—
Q(k/ ?Zl + %3}2’ bz f: + kysf;g)“” +2(k 6}: kyg%)”i’l_ (C6)
(k:’ 6,};;1 + k, 6@1’ )Ui+17n_1 — (k:’ ?Zl —k, 6@, km% — k:y(j%z) Uit1n—
(k: 6}:1 + ko f;;)ulurm =0
Assuming u;; = X;Y, u;; = X;Yj, following the same procedures as in the case of

one battery domain problem, and plugging them into the equations C.2 and C.1, we
have

Xk = sin(%knr) (C.7)
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and

-

with £k = 0,1, 2,...,n Therefore we have

Vi, —CYf+Y)}, =0 ony
(C.9)
Vi - C;Ylk +YE =0 on(y

Let YV}i = 7711 and Yf = )\i , we have two quadratic equations

)\i—C’k)\k—l—lz() on (Y
(C.10)
' —C'n,+1=0 on
and on domain €2y, the roots are

L _G+/a-1

1,k 9
¢, -/
B 2

(C.11)

A

2,k

while on domain 2, the roots are

_C;Jr\/@

2

Cl—,/C?—4

2

M
(C.12)

nz,k =
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Likewise, put Y;¥ and Y} as a linear combintaion of the their corresponding roots,
l i p g

we have
VE= BN, + 5, o
(C.13)
V' =aim, o, on Q
n—1
Let u;; = Y, XFY)* and [ = 0 and plug it into the equations C.3 corresponding
k=1
to Neumann boundary conditions, we have after simplification
— i i
Z sin(gk‘w){(Ek + FFp, )of + (EF + Fn, )al} = sin(gﬂ)S (C.14)
k=1
where
2h!, k ha k
EF =k 3hi (1 - COS(ETF)) + k, 30 (2 + COS(ETF))
R k ha k
FF =1 3h21 (1 - COS(ETF)) —k, 30 (2 + COS(ETF)) (C.15)
a’ 7
S = 27r2h1 (1 — cos(ﬁ))
n—1
Let u;; = Y, XY} and plug it into the equations C.4, we have after simplification
k=1
n—1 i
> sin(gk‘w){(Gk)\M + HINBE 4 (GR,, + HON 3L =0 (C.16)
k=1
where
2h2 k‘ hl k
Gk = k‘m% (1 — COS(ET()) + k‘y% (2 + COS(ET())
ho k ha k
H* = km% (1 — COS(ETF)) — l{:y% (2 + COS(ETF))

From equation C.14, it can be seen that k& = 1. For simplification, the index k is
dropped and we have
(E+ Fn)a, + (E+ Fn,)a, =S (C.17)

(GA, + H)X"™' 8, + (GX, + H)N'7'8, = 0 (C.18)
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where
, 2R T . h ™
E=k, 3hi (1 — cos(g)) + k‘yghll (2 + cos(g))
2
, hb T , ha T
F=kK, 3 (1 - cos(g)) - V3I (2 + cos(g))
2
G= l{:m% (1 - cos(%)) + k‘yg% (2 + cos(%)) (C.19)
1 2
. hg m hl m
H k‘m% (1 — COS(E)) — ky% (2 + COS(E)
a? ™
S = 27r2h1 (1 — cos(ﬁ))

Therefore at the interface of the two domains, we have for domain {2y by letting
l=n—-1,n

Yoor = o™ +ayn) ™ C.20)

Y, = O‘177:L + %77?

while for domain €2y with j =0, 1

Yo = 61 + ﬁz (C )
21

Y= 61)‘1 + ﬁz)‘z
Plug the equation C.20 and C.21 into the equation C.6, we have after simplification
(En*+ Fn' Na, + (En® + Fnl o, + (G+ HX)B, + (G+ HX\,)B, =0 (C.22)

It should be noted also that at node (i,m) on €' which coincides with node (7,0) on

2, we have u;, = u;o which means
O‘177:L + %77? = 61 + ﬁz (023)

The derivation of equations C.22 and C.23 is similiar to the enforcement of the con-

tinuity conditions of heat flux and temperature at the interface of two domains in
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deriving the exact solution.
The constants a,,«,, 3,, and 3, can be obtained by solving the linear system

equations of C.17, C.18, C.22, and C.23, which have the following form

A Y(GA, + H) (En, + F+n,(G+ H),))
a X
N A=Y (G, + H) (En, + F +n,(G+ H),))
X
A NG, + H) (En, + F+n,(G+ HX,))
L X (C.24)
N A=Y (G, + H) (En, + F +n,(G+ H),))
X
oI (g — ) F(GA, + H)
B X
oI (g, — ) (G, + H)
X

o

&,

B,

B,
where
X = U NG, + HY(E + F,) (En, + F +n,(G + H),))
— NI Y G, + H)(E + Fip,)(En, + F +n,(G + H),))
(C.25)
+ ALY GA, + H)(E + Fn) (En, + F +1,(G + H),))

—\L Y GA, + H)(E + Fn,) (En, + F +1,(G+ H),))

Therefore for linear finite element solution, the explicit expression of degree of
freedom at node (i,7) on € is

and for node (7,1) on €2 the expression is

7
uy = XY, = sin(gﬂ) (alni + aQUé) (C.27)
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For an arbitrary element on 2y defined by (i,7), (¢,5 + 1), (i + 1,7 + 1), and

(1 4+ 1,7) as shown in Figure C.1, the finite element solution can be put as

URT = Ui, Ui g1 @,y Ui 1D+ Uik (C.28)

where ¢, ., ¢, .\, ®,,,,,,,and ¢, . are linear shape functions corresponding to nodes
(4,7), 5,7+ 1), (i+ 1,5+ 1), and (i + 1, 7) respectively.
Likewise for the element on 5 defined by (7,1), (i,1+1), (i+1,{+1), and (i+1,1)

the exact finite element solution has the form of

p,ex

L7 ui7l¢i,l + ui7l+1¢i,l+1 + ui+17l+1¢i+1,l+1 + ui+17l¢i+1,l (029)

where ¢, , .\, &,.,,,,, and ¢, are linear shape functions corresponding to nodes
(2,0), (i,l+1), (i + 1,1+ 1), and (i + 1,1) respectively.

The comparison of energy norm of v, and «X* is listed in Table C.1. It is obvious
that the results from the solution u’X”* based on explicit formula are consistent with

those from Fortran code for the two battery domains problem.
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Table C.1. Model problem with interface layer. The comparisons of energy norm uy and

ulY™ vs. the different orthotropies g—z on 2 and mesh refinements n with k, = €, hy = g%

2m)
hy = &, and n = 1,2,3,4,5.

e=1 e=20.1

3

[lualla

[ua™

[luall

[[wa™ ey

/BB BB
Ol W N —

1.390409148
1.534023198
1.569990885
1.578984117
1.581232541

1.390408936
1.534022056
1.569989397
1.578982532
1.581230931

1.390411040
1.534171977
1.570356027
1.579462890
1.581748790

1.390411858
1.534177000
1.570363288
1.579471009
1.581757166

e =10.01

e = 0.001

3

||upA||6u

A" oy

||upA||6u

A" |

TIT T
Gl W N -

1.390411298
1.534199244
1.570462708
1.579665705
1.582014337

1.390412232
1.534205123
1.570471576
1.579676088
1.582025370

1.390411325
1.534202245
1.570476693
1.579702201
1.582083071

1.390412271
1.534208215
1.570485750
1.579712925
1.582094643

e = 0.0001

e = 0.00001

3

[lualla

[ua™

[lualla

A ]ay

/BB BB
Ol W N —

1.390411327
1.534202548
1.570478140
1.579706272
1.582092317

1.390412275
1.534208527
1.570487217
1.579717033
1.582103957

1.390411328
1.534202579
1.570478286
1.579706685
1.582093281

1.390412275
1.534208559
1.570487364
1.579717448
1.582104929
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