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ABSTRACT

Finite Element Analysis of Indentation in Fiber-Reinforced Polymer Composites.

(May 2011)

Arun Ravishankar, B.E., B.M. Sreenivasaiah College of Engineering, Bangalore

Co–Chairs of Advisory Committee: Dr. Anastasia Muliana
Dr. K. R. Rajagopal

This thesis employs a finite element (FE) method for numerically simulating the

mechanical response of constituents in a fiber-reinforced polymer (FRP) composite

to indentation. Indentation refers to a procedure that subsumes a rigid indenter

of specific geometry to impress the surface of a relatively softer material, with a

view of estimating its mechanical properties. FE analyses are performed on a two-

dimensional simplified microstructure of the FRP composite comprising perfectly

bonded fiber, interphase and matrix sections. Indentation response of the constituents

is first examined within the context of linearized elasticity. Time-dependent response

of the polymer matrix is invoked by modeling the respective constituent section as

a linear isotropic viscoelastic material. Furthermore, indentation responses to non-

mechanical stimulus, like moisture absorption, is also simulated through a sequentially

coupled analysis. A linear relationship describing the degradation of elastic moduli

of the individual constituents with increasing moisture content has been assumed.

The simulations subsume a point load idealization for the indentation load eventually

substituted by indenter tips with conical and spherical profiles. Results from FE

analyses in the form of load-displacement curves, displacement contours and stress

contours are presented and discussed.



iv

With the application of concentrated load on linearly elastic constituents for a

given/known degree of heterogenity in the FRP, simulations indicated the potential

of indentation technique for determining interphase properties in addition to esti-

mating the matrix-fiber interphase bond strength. Even with stiffer surrounding

constituents, matrix characterization was rendered difficult. However, fiber proper-

ties were found to be determinable using the FE load-displacement data, when the

load-displacement data from experimentation is made available. In the presence of a

polymer (viscoelastic) matrix, the surrounding elastic constituents could be character-

ized for faster loading rates when viscoelastic effects are insignificant. Displacements

were found to be greater in the presence of a polymer matrix and moisture content

in comparison with a linearly elastic matrix and dry state. As one would expect, the

use of different indenter tips resulted in varying responses. Conical tips resulted in

greater displacements while concentrated load produced greater stresses.

Further it was found that, despite the insignificant effects due to surrounding

constituents, analytical (Flamant) solution for concentrated, normal force on a ho-

mogeneous, elastic half-plane becomes inapplicable in back calculating the elastic

moduli of individual FRP constituents. This can be attributed to the finite domain

and the associated boundary conditions in the problem of interest.
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CHAPTER I

INTRODUCTION

Load and depth sensing indentation is widely recognized as a reliable tool for eval-

uating the mechanical properties of a diverse spectrum of materials with reasonable

accuracy [1]. Indentation testing is viewed to be advantageous over the traditional

uniaxial tests since it is capable of characterizing localized material properties ben-

eficial for small samples. A typical indentation process is characterized by a stiff

indenter, when compared to the stiffness of the substrate, penetrating normally into

the material of interest at a constant load-displacement rate until a certain load or

depth is reached. Load on the indenter is then gradually removed while displacement

is recorded continuously during one complete cycle of loading and unloading [2, 3].

Though numerous efforts have been made to gather load-displacement data and

consequently estimate the material properties through experimentation, there is yet

a considerable lack of understanding of the deformation due to indentation involving

areas of the order of micrometers, such as interphase 1 regions in heterogeneous ma-

terials [4]. Due to increasing use of small mechanical structures, functionally graded

materials and other heterogeneous materials in various engineering applications as

in electronics, mechanical and biomedical engineering, critical evaluation of stresses

and deformations constitute a prime aspect of the indentation analysis [5]. Recent

developments in micro-nano indentation have proven the ability of this technique

to characterize mechanical properties of materials at micron and sub-micron length

The journal model is IEEE Transactions on Automatic Control.

1The term Interface corresponds to the boundary or plane of contact between the
adhesive and the matrix/fiber sections, while Interphase refers to the region contain-
ing the interfaces when there is a thickness associated with this adhesive layer.
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scales, thus allowing individual constituents and local regions of heterogeneous ma-

terials to be characterized individually [6]. This is particularly important for un-

derstanding the mechanical response of heterogeneous materials in general, for e.g.,

polymer composite materials or even biological materials in which localized material

structure can significantly impact the overall or bulk behaviour [6]. A shortcoming

of the technique however, is the resulting boundary value problem that renders the

analyses formidable [7].

Environmental effects such as heat conduction and(or) moisture absorption in a

material will have a profound influence on its properties. For example, even small

quantities of moisture absorbed from the environment can significantly affect the

mechanical and physical properties of polymer composites and therefore need to be

factored in the characterization of materials [8]. Therefore, it would be intriguing to

include the effect of moisture diffusion while simultaneously indenting the material.

Consequently, the added complexity to the displacement field precludes a closed-form

solution, since coupled deformation-diffusion processes, stress concentration effects,

viscoelasticity and contact are all involved. Thus, a numerical technique such as finite

element (FE) method is employed for obtaining a solution to the coupled problem.

Indentation problems have received extensive investigations by many researchers

till date. They chiefly comprise analytical, experimental and numerical aspects in-

volving a wide range of materials and indenter geometries. The following paragraphs

selectively list the relevant literature besides furnishing the course of research.

A. Indentation: A review

Amongst many problems studied, the solution provided by Hertz in 1881 for stresses

resulting due to contact between two elastic bodies whose mechanical responses are
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isotropic [9] and the analytical solution to axisymmetric Boussinesq problem for a

punch of arbitrary profile derived by Sneddon [10] are of mathematical relevance,

since indentation involves contact as well as deformation under normal loading.

Giannakopoulos and Suresh [11] derived analytical solutions to the problem of an

inhomogeneous, linearly elastic semi-infinite solid surface indented by a point load,

for variation of Young’s modulus and different fixed values of Poisson’s ratio. Young’s

modulus was varied as a function of the depth below the indented surface, accounting

for the elastic inhomogeneity. The quasistatic analysis assumed small deformations

and locally isotropic material response. Stresses and displacements were also com-

puted by running FE simulations using a subroutine compatible with ABAQUS. In

a sequel to the aforementioned work, the authors [11] presented analytical results for

indentation by rigid, frictionless indentors of circular, spherical and conical profiles

instead of a point load. FE results were compared with their analytical counterparts

for validation.

Laursen and Simo [12] investigated the microindentation of aluminium and sil-

icon in their bulk forms and thin-film substrate combinations by rigid conical in-

denter, through a FE code called FEAP. A hyperelastic constitutive model based

on multiplicative decomposition of the deformation gradient into elastic and plastic

components described the indented material behaviour. During unloading, FE simu-

lations indicated changes in contact area which contradicts the popular assumption

of a constant area of contact.

Taljat et al. [13] analyzed ball indentation process in metal alloys using ABAQUS

FE code. The FE technique subsumed a deformable indenter and an elasto-plastic

constitutive law for isotropic materials. Sadeghipour et al. [14] studied elastic and

elastic-plastic responses of spherical micro-indentation in polymer-based brittle ma-

terials, using FEM. The study focused more on large deformations, distribution of
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stresses and strains for edifying the crack phenomena and disregarded viscoelastic

effects. ANSYS and ADINA were used in their study. FE technique describing the

elastic-plastic response of a flat specimen due to spherical indentation stress fields,

with practical relevance to deformation in ceramic materials was developed by Care et

al. [15]. They employed specialized gap elements of considerably larger stiffness, pre-

venting an intrusive contact between the indenter and the specimen. Mesarovic and

Fleck [16] report their FE study of normal indentation in an elastic-plastic half-space

by a rigid sphere. Frictional effects between the surfaces of indenter and specimen

were also investigated. FE analysis of indentation of a homogeneous half-space by

a rigid spherical indenter was carried out by Kral et al. [17]. The simulations were

based on an elastic-plastic constitutive model and were run on ABAQUS.

Mechanical response of heterogeneous materials is also studied through the tech-

nique of indentation. Clayton and co-workers [18] identified the inadequacy of their

simulations to describe spherical indentation response of metal-polymer composites.

Homogeneous elastic-perfectly plastic behaviour assumed for the simulation of these

materials failed to capture viscoelastic response induced by polymer component in

the microstructure. Shen and Guo [19] concluded that heterogeneous materials can-

not be regarded as homogenized materials for indentation modeling. The conclusion

was reached after conducting FE analysis on a soft, elastic-plastic matrix section with

harder, embedded elastic particles and its homogenized counterpart, with the same

overall stress-strain responses.

Substantial portion of indentation tests are attributed to mechanical property

determination, while some are associated with interpretation of load-displacement

curves and(or) factors affecting the indentation process. Indentation technique is

useful in characterizing mechanical properties of thin films. Gan and Ben-Nissan

[20] performed FE analysis of thin films to understand the relationship between the
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indentation curves and film material properties, for spherical indenters of different

radii. Knapp et al. [21] developed a model based on FE method for extraction

of material properties of thin films for which coventional analytical treatments fail.

However, its inability to model time dependent behaviour such as creep was reported.

Applicability of indentation tests for the mechanical characterization of compos-

ite materials is also noteworthy. Zidi et al. [22] conducted Vickers indentation tests

on the fiber of a unidirectional glass/epoxy composite for the strength assessment of

its matrix-fiber interphase. Their study rested on the assumption that the measured

displacement comprises surface indentation and compression components. The latter

component associated with intefacial behaviour was extracted from experiments by

means of an analytical model incorporating matrix-fiber debonding and fiber sliding.

The model was further validated by FE simulations. A detailed study for charac-

terizing the interphase properties by indentation in fiber-reinforced polymer (FRP)

composites was undertaken by Desaeger and Verpoest [23]. Shear-lag2 theory formed

the basis for calculating the interfacial shear strength from experiments. In their non-

linear FE parametric study of microindentation in carbon fiber/epoxy composite, Ho

and Drzal [24] observed that, the ratio of interfacial shear stress to fiber axial stress is

nearly a constant for different fiber diameters. They recorded marginal changes in the

interfacial shear stress and indenter displacement with increasing interphase modulus

and interphase thickness, for a given fiber diameter. Load on the indenter increased

with fiber diameter causing a corresponding increase in the indenter displacement so

that interfacial shear strength to axial fiber stress ratio is nearly a constant. This

explains the difference in slopes of the load-displacement curves which are insensitive

to interphase properties. Hence, indentation curves cannot be directly used to char-

2A delay or slow response in developing shear flow reactions to applied loads
( c©1989 CRC Press LLC.).



6

acterize interphase properties. FE results were found to be in agreement with the

shear-lag analysis and an empirical derivation, for a certain range of the fiber volume

fraction.

Larsson and Carlsson [7] derived rigorous relations to completely characterize vis-

coelastic polymers by indentation besides citing the exhaustive theoretical framework

at disposal, necessary for characterizing such materials by spherical and cylindrical

indenters. Lu et al. [5] demonstrated the pertinence of indentation load-displacement

data to determine the creep compliance of time-dependent materials. They conducted

experiments on solid polymers for computing the creep compliance functions of lin-

early viscoelastic materials subjected to Berkovich and spherical indention. Indenta-

tion test data was further verified with that from traditional tension and shear tests

on the polymers. Odegard et al. [6] determined the dynamic viscoelastic properties

of polymeric materials through indentation and obtained consistent results from the

dynamic mechanical analysis. Sakai [25], using principle of superposition, obtained

the viscoelastic solution to the axisymmetric flat-ended, spherical and conical inden-

ter problems by modifying the solution for that of an elastic contact. Time-dependent

load-depth relations were arrived at, after conducting numerical analyses on simple

viscoelastic solid-like and fluid-like models. Stor̊akers and Larsson [26] developed a

theoretical framework for indentation analyses of creeping solids as opposed to the

uniaxial tests based on a power law constitutive relation for creep. Inelastic response

of materials were investigated and a FE procedure incorporating mixed variational

principle was used for accuracy of results. Boussinesq creep test involving a flat

cylindrical indenter was viewed advantageous over that using a spherical indenter.

Kumar and Narasimhan [27], in their study of spherical indentation of linear

viscoelastic materials, testified the accuracy of depth-sensing indentation technique

for characterizing the mechanical response of linear isotropic viscoelastic materials
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through comparison with conventional mechanical test data. They also compared

the analytical solution with experiments and FE analysis performed on polymethyl

methacrylate.

Several studies on determining responses of biomaterials using indentation tech-

nique have been presented. Carrillo et al. [28] attempted to validate the credibility

of nano-indentation technique to describe the mechanical response of softer (elastic

modulus below 5 MPa) biological materials, incorporating the assumptions of clas-

sical linearized elasticity. Recently, Gupta et al. [29] verified the ability of depth

sensing indentation for accurately determining properties of biomaterials which ex-

hibit non-linear viscoelastic behavior. Their assessments were based on a model (fibril

reinforced poroviscoelastic) used to simulate indentation process in porcine costal car-

tilage.

B. Motivation and course of research

Recent indentation studies have extensively focused on understanding the elastic and

plastic responses of homogeneous materials in addition to evaluating mechanical prop-

erties. Limited studies have shown the capability of indentation tests to characterize

bond strength and constituent properties of composite (heterogeneous) materials.

Understanding the mechanical response of heterogeneous materials with viscoelastic

constituents using indentation technique is far from satisfactory. Thus, there is a

need for further investigation. Furthermore, it is understood that localized response

of a constituent in heterogeneous materials depend upon properties of its surrounding

constituents. This can place difficulties in characterizing properties of a constituent

from an indentation response, since it is not always possible to know a priori, the

properties/behaviour of all other constituents. Also, the mechanical response during
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indentation will be affected in the presence of moisture.

The present work aims to examine the mechanical response of constituents (ma-

trix, interphase and fiber) of a FRP composite during indentation process. ABAQUS,

a commercially available FE analysis package is used for the simulations. Load-

displacement data are extracted for indentation at the center of fiber, interphase

and matrix regions separately for varying stiffness ratios (in the case of elastic con-

stituents) and different loading rates (considering effects of concentration and vis-

coelasticity). Further, significance of results is discussed with respect to the load-

displacement curves and contour plots for typical loading scenarios.

As a first step, plane strain deformation problem is considered in Chapter II. The

indentation load is idealized as a point load. The individual constituents (matrix, in-

terphase and fiber) of the composite material are modelled as homogeneous, linearly

elastic solids whose mechanical responses are assumed to be isotropic. Response to

a concentrated load applied at the mid-points of each constituent section is seeked

within a FE setting. A parametric study based on stiffness ratios of individual con-

stituents is carried out while each constituent is indented. The nodal displacement

is recorded for loading and unloading times. Indentation load-displacement curves

so obtained, are interpreted. Further, a sequentially coupled moisture diffusion-

deformation analysis is performed on the rectangular domain considered a priori.

FE solution to a transient mass diffusion problem with appropriate boundary con-

ditions is obtained. The nodal concentrations are given as input to the indentation

problem, where the material moduli of individual constituents are allowed to degrade

with increasing moisture concentration. Effect of moisture concentration on loading

and unloading indentation curves are discussed.

The matrix material being a polymer, exhibits viscoelastic behaviour. These ef-

fects are studied in Chapter III with the matrix being modelled as a viscoelastic solid-
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like material. Load-displacement curves from indentation are extracted for different

rates and locations of loading. FE solution for the coupled diffusion-deformation

problem is also obtained. Constitutive relations for the polymer matrix are modified

based on a time-temperature superposition principle, consequently varying the creep

compliance as a function of moisture concentration. As opposed to the mere ideal-

ization of indentation by a point load, detailed indenter tip profiles (spherical and

conical) are incorporated to study their influence on the loading-unloading curves.

Summary of results with conclusions are presented in Chapter IV.
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CHAPTER II

INDENTATION RESPONSE OF LINEARLY ELASTIC CONSTITUENTS

Indentation response of the constituents namely, matrix, interphase and fiber in a

FRP composite is examined within the realm of linearized elasticity. As indentation

technique is often used to characterize properties of constituents in heterogeneous

materials, it is important to understand localized responses while indenting each

constituent and the effects of its surrounding constituents on the localized responses

during the indentation process.

Indentation is done by pushing or pressing the materials with an indenter that

is relatively small in size with respect to the medium being indented. Various nano-

micrometer sized indenters of spherical, conical, pyramidal and cylindrical shapes

are used. The size and shape of indenters will certainly affect the measured local-

ized response. In addition, material characteristic, which in this particular study is

determined by the elastic stiffness of the linearly elastic constituents, significantly in-

fluences the indentation response. In this chapter, an idealized problem of indentation

on linearly elastic FRP matrix composite is presented. The purpose is to examine

the effects of elastic stiffness of each constituent on the localized response during in-

dentation in the fiber, matrix and interphase regions. The following assumptions are

made: A two-dimensional representative microstructure of the FRP composite with

45% fiber volume content is considered, as shown in Figure 2.1. A concentrated force

is applied to simulate the indentation. Indentation is performed at the center of the

fiber, interphase and matrix regions separately. The three constituents are assumed

isotropic, linear elastic with respect to their mechanical response. It is noted that

fiber properties are usually not isotropic (but transversely isotropic); in order to un-

derstand the effect of stiffness on fibers with clarity, its response is considered to be
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isotropic. The indentation is effectuated by application of a concentrated force (per

unit thickness of the section) of magnitude P (= 1 N) on each constituent in the

micro-section of the composite. While the elastic moduli of fiber (Ef ) and interphase

(Ei) are expressed in terms of the Young’s modulus of matrix (Em), the Poisson’s

ratio (ν) is held constant (= 0.2) for all the constituents.

The first part of this chapter presents parametric studies on effects of elastic

stiffness of the constituents, for example, indenting a softer constituent with stiffer

surrounding constituents and indenting a stiffer constituent with softer surrounding

constituents. The second part of this chapter focuses on the effect of non-mechanical

stimulus such as moisture diffusion on the indentation response.

A. Problem description and modeling

ABAQUS, a commerical FE package is employed for the analysis, since it supports

a vast library of elements and list of constitutive models available for analyses of

problems across different domains with varying complexities in geometry and mate-

rial behaviour. It also supports UMAT, a subroutine for user-defined constitutive

modeling. Most of the FE packages including ABAQUS has no system of units built

into it and stipulates that all input data be consistent with regard to their units. This

is of prime importance if one seeks results with meaningful physical interpretations.

Hence, true values for load, geometric dimensions and material moduli are used to en-

force the aforesaid consistency. Mesh convergence study has been done and discussed

in Appendix A. This is undertaken to determine the mesh size required for accuracy

in solution, thus ensuring that the results are not affected by change of mesh size.

However, if one prefers to work with dimensionless variables, non-dimensionalization

can be carried out in the following manner. Use will be made of Flamant solution for
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displacement v(x, y) mentioned in Appendix A, the functional form for which reads:

v = f(P,E, x, y) , (2.1)

where v, x, y and P,E are respectively the variables and parameters involving dimen-

sions. Setting

v̄ :=
v

L
; x̄ =

x

L
; ȳ =

y

L
; Ē =

E

Eo
; P̄ =

P

EoL
,

with L as characteristic length and Eo as reference material modulus, Equation (2.1)

in the non-dimensional form can be written as:

v̄ = g(P̄ , Ē, x̄, ȳ). (2.2)

The actual displacement can then be calculated by multiplying the non-dimensional

displacement v̄ with L.

A rectangular cross-section of the composite (1.0 mm × 0.5 mm) containing

fiber, interphase and matrix constituents, forms the domain of interest for FE analy-

sis (Figure 2.1). The volume fractions of fiber (Vf ), interphase (Vi) and matrix (Vm)

are respectively 0.45, 0.10 and 0.45. Em is chosen to be 1000 MPa, since the matrix

stiffness is typically of the order of GPa. Figure 2.2 illustrates the plausible displace-

ment boundary conditions that could be imposed on the geometry, for indentation

loading.

Fiber is considered to be stiffer than the matrix which is generally true of FRP

composites. It is assumed that perfect bonding exists between individual constituents

within the composite material. In the sequentially coupled diffusion-deformation anal-

ysis, concentration boundary condition is applied on the top surface of the geometry,

accounting for moisture diffusion. The diffusivities of matrix (Dm), interphase (Di)
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and fiber (Df ) are chosen to be in the ratio 10 : 5 : 1.

1.0 mm

0.5 mm

F I M

x

y

Indentation load

Moisture diffusion from top surface

F - Fiber

I - Interphase

M - Matrix (Polymer)

Figure 2.1. Geometry for the finite element analysis.

The geometry is meshed using four noded, quadrilateral elements, CPE4 (plane

strain) and DC2D4 (mass diffusion), for deformation and diffusion problems respec-

tively. By default, plane strain thickness is set to unity. A finer mesh size is adopted

in the immediate neighbourhood of the loading location to precisely capture the as-

sociated displacement gradients. Regions away from the points of loading can work

with a relatively coarser mesh size without a trade-off between accuracy of results

and cost-effective computations. The FE mesh generated in ABAQUS with 21238
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nodes and 21003 elements is as illustrated by Figure 2.3.

1.0 mm

0.5 mm

F I Mu = 0

v = 0
x

y

C = 1,∀t > 0

Figure 2.2. Boundary conditions.

B. Deformation problem

In this analysis, matrix, interphase and fiber sections are indented, one at a time.

This is achieved by application of a concentrated load at the node corresponding to

the midpoint of each constituent section. This choice of loading location entails fairly

accurate characterization of mechanical properties of the constituent being indented.

Locations other than midsections are influenced by the response of surrounding con-

stituents and hence will not result in the true evaluation of mechanical properties.

Different responses will be obtained for different loading locations. The loading is

quasistatic and applied as a ramp until a magnitude of unity is reached in a certain

time interval. This is followed by removal of load at the same rate as that of loading.
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The displacement field u = u(x, y)i+v(x, y)j, for a plane strain problem with respect

to the x-y plane, due to loading is determined by solving the governing equations for

elasto-statics in ABAQUS3:

divT + ρb = 0. (2.3)

Figure 2.3. Finite element mesh.

Equation (2.3) is a consequence of the balance of linear momentum where ρ is

the density, b is the specific body force. The Cauchy stress tensor for a linearized

elastic solid,

T = λ(trε)I + 2µε. (2.4)

3One may refer to the ABAQUS theory manual [30] for details on the FE formu-
lation and implemention.
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λ and µ are Lamé constants and I is the identity tensor. In the absence of internal

couples, the balance of angular momentum will imply that T = TT . The linearized

strain,

ε =
1

2
[(∇u) + (∇u)T ]. (2.5)

Here, displacement boundary conditions are prescribed along the three segments of

the boundary (Figure 2.2) while the concentrated load, applied to act over a small

portion on the top boundary is the prescribed traction. Material properties namely,

Young’s modulus (E) and Poisson’s ratio (ν) are provided as inputs so that the Lamé

parameters are expressed as,

λ =
Eν

(1− 2ν)(1 + ν)
; µ =

E

2(1 + ν)
. (2.6)

The displacement component v(x, y) represents the depth of indentation. In this

case, v(x, y) corresponding to the node at the midpoint of a constituent section is

relevant. With this information, the following indentation curves are plotted for

varying stiffness ratios of the constituents, as a part of the parametric study.
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Table 2.1. Average values of E and ν for some FRP constituents4.

Material Constituent Young’s modulus Poisson’s ratio

E (GPa) ν

Carbon (Graphite) Fiber 230 0.30

Glass5 Fiber 85 0.20

Aramid (Kevlar) Fiber 124 0.36

Epoxy Matrix 3.4 0.30

In general, fiber materials exhibit greater stiffness when compared to the matrix.

The choice of stiffness ratios considered in this study is based on Table 2.1. Ef/Em >

20 correspond to carbon/epoxy, glass/epoxy, and kevlar/epoxy composites while, in

the case of polypropylene/epoxy composite (not listed in the table), Ef is comparable

to Em. A constant Poisson’s ratio is picked for all constituents, since the parametric

study involving variation of Poisson’s ratio is not considered. The value corresponds

to the Poisson’s ratio of a glass/epoxy system with 45% fiber volume fraction (≈ 0.2).

In the following discussion, results are presented and interpreted.

4Adapted from p.208 of [31].
5Ex = Ey; νxy = νyx.
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Figure 2.4. Indentation at the matrix for (a) Ef/Em = 2 (b) Ef/Em = 10 (c)

Ef/Em = 50 (d) Ef/Em = 100.
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Figure 2.4. cont.
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Figure 2.4 shows the load-displacement curves for indentation at the matrix for

different stiffness ratios. The responses are a consequence of force ramps applied at

a controlled rate of 1/10 on the matrix at its midsection, for fixed volume fractions

of the constituents. Variation in the load-displacement responses are obtained for

Ef/Em ≤ 50. This variation corresponds to increased slopes due to increased stiffness

of the surrounding constituents. For Ef/Em > 50, this variation is inconspicuous for a

given Ei/Em. The observed variations are likely to change with the loading location.

This renders the mechanical characterization of matrix implausible. Though, an

estimate of the average properties is possible for fixed volume fractions, a constant

Ei/Em and higher Ef/Em (> 50), this approach is generally inapplicable. Because,

in reality, the local volume fractions differ due to inhomogeneity in the material.

Table 2.2. Slope (α) under the load-displacement curves for indentation at the matrix.

Ef/Em Ei/Em α× 103

1/2 0.186

2 1 0.191

2 0.195

1/2 0.207

10 1 0.215

2 0.220

1/2 0.215

50 1 0.224

2 0.230

1/2 0.216

100 1 0.225

2 0.232
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Table 2.2 presents a summary of the indentation response, defined by slope α. It

is seen that, the overall matrix response is less senstitive to interphase properties. This

is true when Ei/Em is varied from 1/2 to 2 and is subjected to further verification for

Ei/Em > 2. When the fibers are much stiffer than the matrix, such as in carbon, glass,

or kevlar fiber-reinforced polymer composites, the indentation response in polymers

also insignificantly varies with the fiber stiffness. When the elastic stiffness of fiber

is comparable to that of the matrix like in polypropylene fiber-reinforced polymer

composites, mechanical response of matrix is quite sensitive to the fiber stiffness.

Also, for all the cases tabulated above, α increases with Ei/Em, which implies that

a stiffer interphase contributes to an effective transfer of load from the matrix to the

fiber. However, this contribution is barely noticeable in the presence of a very stiff

fiber, like in a carbon/epoxy composite.

Magnitude of displacement, |u| and von Mises stress, Tv distribution at the peak

load are extracted from ABAQUS as shown in Figure 2.5. The former is defined as:

|u| = (u.u)1/2, (2.7)

and the latter is calculated as mentioned in Appendix A.

As shown in Figure 2.5(a), |u| > 2.50×10−3 mm in the immediate neighbourhood

of the point of application of load and is confined to the matrix section. A small

portion of the interphase is subjected to |u| = 1.25 × 10−3 mm, while fiber region

experiences displacement magnitudes less than 1.25× 10−3 mm. From Figure 2.5(b),

a jump in the von Mises stress is observed. This is attributed to change of stiffness

between the interphase and fiber sections.
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(a) Displacement
plot, |u|max =
5.24× 10−3 mm.

(b) Stress plot,
(Tv)max =
505.45 MPa.

≥ 10

5

0

≥ 2.50

1.25

0.00

von Mises stress (Tv),
MPa

Displacement magnitude (|u|),
(×10−3) mm

Figure 2.5. Contour plots for indentation at the matrix (Ef/Em = 2, Ei/Em = 1) at

maximum load, showing (a) displacement and (b) stress variations.

On the other hand, no such jump occurs at the interface between matrix and

interphase regions because Ei/Em = 1. Tv ≥ 5 MPa in the upper one-fourth of the

height of the matrix region, owing to a stiffer fiber together with Ei/Em = 1.
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Figure 2.6. Indentation at the interphase for (a) Ef/Em = 2 (b) Ef/Em = 10 (c)

Ef/Em = 50 (d) Ef/Em = 100.
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Figure 2.6. cont.
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For indentation at the interphase (Figure 2.6), higher stiffnesses lead to greater

slopes, based on a similar argument made for indentation at the matrix. Different

responses are observed for varying Ef/Em and Ei/Em within the regimes simulated.

It is seen that the localized response at the interphase varies significantly with proper-

ties of matrix and fiber. Characterization of interphase properties using indentation

technique can therefore be challenging. Furthermore, interphase region is usually

much smaller than the fiber and matrix regions. Since, indentation response is very

sensitive to the loading location, extracting interphase properties from indentation is

complicated. Thus, the use of indentation technique for an accurate characterization

of real interphase properties in composites needs further investigation.

Table 2.3. Slope (α) under the load-displacement curves for indentation at the inter-

phase.

Ef/Em Ei/Em α× 103

1/2 0.129

2 1 0.214

2 0.332

1/2 0.151

10 1 0.276

2 0.479

1/2 0.160

50 1 0.308

2 0.584

1/2 0.161

100 1 0.314

2 0.605
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The responses are sensitive to variations in the constituent properties as seen

from Table 2.3. Interphase response shows least variation for higher Ef/Em (≥ 50)

and lower Ei/Em (< 1), although in reality, it is often not possible to know a priori,

the stiffness of an interphase. It is interesting to note that, for known values of Ef

and Em, the increase in α is solely attributed to increasing stiffness of the interphase

Ei. This enables characterization of the interphase if one succeeds in indenting the

mid-section interphase despite their low volume fractions.

(a) Displacement
plot, |u|max =
4.69× 10−3 mm.

(b) Stress plot,
(Tv)max =
505.65 MPa.

≥ 10

5

0

≥ 2.50

1.25

0.00

von Mises stress (Tv),
MPa

Displacement magnitude (|u|),
(×10−3) mm

Figure 2.7. Contour plots for indentation at the interphase (Ef/Em = 2, Ei/Em = 1)

at maximum load, showing (a) displacement and (b) stress variations.

Displacement magnitudes greater than 1.25 × 10−3 mm are confined to the

upper one-thirds of the geometry (Figure 2.7(a)) with the interphase taking up
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|u| ≥ 2.50× 10−3 mm. Since Ei/Em = 1 and perfect bonding exists between matrix-

interphase sections, indentation at the interphase may be regarded as indentation at

a different matrix location. The effect of loading location on the response is then clear

from Figure 2.7. The variation in stiffness between adjacent constituents produces a

prominent jump in the stresses at the interface between fiber and interphase regions

(Figure 2.7(b)).

(a) Stress plot for
Ei/Em = 1/2,
(Tv)max =
505.89 MPa.

(b) Stress plot for
Ei/Em = 2,
(Tv)max =
505.68 MPa.

≥ 10 5 0von Mises stress (Tv), MPa

Figure 2.8. Contour plots for indentation at the interphase for Ef/Em = 2 and

maximum load, showing stress variations for (a) Ei/Em = 0.5 and (b) Ei/Em = 2.
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Figure 2.8(a) shows that maximum stresses are witnessed in all the three con-

stituents in the close vicinity of loading location. Stresses fade away gradually in the

matrix and fiber regions for distances away from the interphase. Interphase is nearly

stress-free in its lower regions due to the stiffer surrounding constituents. Fiber, pos-

sessing a higher stiffness, takes up more stresses than the matrix. Figure 2.8(b) is

analogous to fiber indentation, but at a location other than the midsection. This is be-

cause Ef/Em = Ei/Em = 2. Stress jump is seen only at the interface between matrix

and the interphase regions. Streses are of high magnitudes at regions of discontinuities

which could result in debonding between the fiber and matrix. Debonding can occur

either due to shear failure at the interface between fiber-interphase/matrix-interphase

or due to shearing of the interphase itself. However, for a smaller interphase, this dif-

ference is barely noticeable. Hence, it might be possible to characterize the bonding

strength of the fiber-matrix interphase.
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Figure 2.9. Indentation at the fiber for (a) Ef/Em = 2 (b) Ef/Em = 10 (c) Ef/Em =

50 (d) Ef/Em = 100.
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Figure 2.9. cont.
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When the fiber is indented, variation in the load-displacement response with vary-

ing intephase stiffness are observed for Ef/Em ≤ 10, as illustrated in Figure 2.9. For

Ef/Em > 10, indentation response shows an unchanging trend for different Ei/Em.

If the loading location is moved closer to the interphase, changes in indentation re-

sponse are expected. It seems feasible to characterize the modulus of fiber, provided

the assumptions of linearized elasticity holds for all the constituents. With this ra-

tionale and the advantage of known fiber stiffness, back calculation of fiber modulus

is attempted. Hence, Flamant solution for point load at the fiber is employed for

Ei/Em = 1/2, since the fiber response is seen to be insensitive to the surrounding

constituents.

Table 2.4. Fiber stiffness for varying Ef/Em.

Ef/Em (Ef )Actual (Ef )Calculated

MPa MPa

2 2000 ≈ 1600

50 50000 ≈ 33000

100 100000 ≈ 65000

Table 2.4 gives a comparison between the actual fiber stiffness and that back

calculated using the elasticity solution. Despite the insignificant effects of surrounding

constituents on the fiber response, Flamant solution provides an ineffective means of

back calculating fiber properties. The fact that Flamant solution is derived for a

concentrated normal force on a homogeneous, elastic, infinite half-plane, explains

its inapplicability to a finite domain problem with boundary conditions, which are
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different from those associated with the Flamant ’s problem.

Table 2.5. Slope (α) under the load-displacement curves for indentation at the fiber.

Ef/Em Ei/Em α× 103

1/2 0.320

2 1 0.327

2 0.336

1/2 1.423

10 1 1.434

2 1.449

1/2 6.873

50 1 6.885

2 6.903

1/2 13.681

100 1 13.693

2 13.711

Based on the slopes given by Table 2.5, the fiber response is insensitive to the

properties of the surrounding constituents. Even for stiffness ratios as low as Ef/Em =

2, changes in response at the fiber with varying interphase properties are not apparent.

This kind of a response is verified only for Ei/Em in the range 1/2 - 2. Variation of

α with Ei/Em for a given Ef/Em is infinitesimal. This renders characterization of

the fiber plausible when its response is assumed isotropic (generally not true). It is

observed that α is directly proportional to Ef .
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(a) Displacement
plot, |u|max =
3.06× 10−3 mm.

(b) Stress plot,
(Tv)max =
505.54 MPa.

≥ 10

5

0

≥ 2.50

1.25

0.00

von Mises stress (Tv),
MPa

Displacement magnitude (|u|),
(×10−3) mm

Figure 2.10. Contour plots for indentation at the fiber (Ef/Em = 2, Ei/Em = 1) at

maximum load, showing (a) displacement and (b) stress variations.

In Figure 2.10(a), |u| ≥ 2.50 × 10−3 mm corresponds to a very small region

surrounding the loading location, while |u| ≥ 1.25× 10−3 mm is limited to top one-

thirds of the fiber region including a very small portion of the interphase. Stresses

are mostly confined to the fiber region due to increased stiffness and they decrease

gradually with distances away from the the indentation location (Figure 2.10(b)).
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Thus, it can be seen that when the fiber is indented, field variables are faded

away from point load, implying insignificant effect of the surrounding constituents on

the local response. It is possible to calculate the slope αExp. using the experimental

load-displacement data for indentation at the fiber. Then, one can extract FE load-

displacement data by varying Ef until αFE matches with αExp.. Ef for a fiber stiffer

than the matrix can be determined in this manner.

C. Coupled diffusion-deformation problem

An investigation on the effect of moisture concentration on indentation response is

performed. It is assumed that the diffusion process follows Fick’s laws. Both diffusion

and deformation analyses make use of the same FE mesh (Figure 2.3). Displacement

field due to indentation in the presence of moisture diffusing through the composite,

from its top surface, (Figure 2.1) is determined by performing a sequentially coupled

diffusion-deformation analysis. Unlike in a fully coupled analysis, the concentration

field is not influenced by the deformation field.
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Numerical solution to the following initial boundary value problem gives the

moisture concentration C(x, t) = C(x, y, t) for all the nodes at all times until steady

state is attained:

∂C

∂t
= D div(∇C). (2.8)

Equation (2.8) represents Fick’s second law where, D is the diffusivity, which is as-

sumed to be a constant in this study. It is necessary to mention that, in general, the

diffusion process through polymers is non-Fickian [32].

C(x, 1, t) = 1, ∀ t > 0 is the prescribed concentration at the top surface while

the remaining segments are assigned zero flux boundary conditions i.e.,

∂C

∂x
(0, y, t) =

∂C

∂x
(0.5, y, t) = 0 indicating that no moisture diffusion takes place

normal to these edges and
∂C

∂y
(x, 0, t) = 0 representing that there is no moisture

diffusion into or out of the bottom surface. Together, the flux boundary conditions

enforce that the moisture diffusion takes place vertically from the top boundary to the

bottom and confines moisture retention to the rectangular domain Ω : [0, 1/2]× [0, 1].

Initial condition for the concentration is given by C(x, y, 0) = 0.
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F I M

0.1325 mm

1 2 3

Figure 2.11. Variation of concentration at locations 1, 2 and 3 corresponding to

matrix, interphase and fiber regions.
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Figure 2.11 shows the concentration profiles for nodal locations 1, 2 and 3 in the

fiber, interphase and matrix regions respectively, located at a distance of 0.1325 mm

from the top surface. Discernible changes in concentration (upto 10−3) occur until

t = 40 seconds. Concentration changes are not very significant for t > 40 seconds

before steady state is reached at around 112 seconds. In our case, steady state refers

to the time before which the nodal concentrations are changing at a rate greater than

10−6. Concentration profiles can be similarly plotted by picking different locations to

demonstrate the significant concentration gradients at early times.

Subsequently, the deformation problem is solved as discussed in the previous

section by introducing a concentration dependent elastic modulus,

E(C) = E(1− 0.5C) (2.9)

for each of the constituents such that the material degrades with increasing moisture

content. It is possible to pick different forms for E(C), as long as E(C) > 0. Poisson’s

ratio is assumed to remain a constant and effects of polymer swelling are ignored.

Results are discussed in the following section.

A case of Ef/Em = 2;Ei/Em = 1 is picked for studying the effect of concentration

on the load-displacement curves (Figure 2.12). Loading and unloading curves do not

coincide with slower deformations leading to lower slopes. Continuously changing

material moduli due to moisture diffusion gives different loading and unloading paths.
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Even with the onset of material degradation, the constituents are stiffer at early

times than at times approaching steady state. Thus, the load-displacement curves

exhibit higher slopes for faster loading rates. The distinction between loading and

unloading curves is prominent at loading rates of 1/10 and 1/20. The concentration

changes being significant at early times (Figure 2.11), bring about greater variations

in the material moduli until t = 40 seconds.

Figure 2.12. Effect of loading rates with Ef/Em = 2 and Ei/Em = 1 for indentation

at (a) matrix (b) interphase (c) fiber.
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Figure 2.12. cont.
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Though the elastic moduli for all the constituents are reduced to half their orig-

inal value while they are degraded, variations are pronounced for indentation at the

fiber. This is attributed to a greater change in the modulus of fiber when compared to

that of matrix or interphase. However, these responses are with respect to the elastic

properties of the constituents degrading with concentration. Since, the concentration

gradients are smaller for t > 40 seconds, the corresponding changes in the material

moduli is inconspicious. This renders the distinction between loading and unloading

curves unclear for loading rate greater than 1/20.

Table 2.6. Average slope (αavg) under the load-displacement curves for indentation

at the interphase (Ef/Em = 2, Ei/Em = 1) with an elastic matrix and moisture

diffusion.

Loading Rate αavg × 103

1/50 0.107

1/20 0.110

1/10 0.114
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Table 2.7. Average slope (αavg) under the load-displacement curves for indentation

at the fiber (Ef/Em = 2, Ei/Em = 1) with an elastic matrix and moisture diffusion.

Loading Rate αavg × 103

1/50 0.164

1/20 0.171

1/10 0.182

Though the loading and unloading curves are different, this difference is not

significant. This permits calculation of an average slope (αavg) of these curves, as if

they were straight lines. The average slopes so determined, are tabulated in (Table 2.6

and Table 2.7) shown above. Faster loading would mean steeper slopes, since the

constituents are more stiffer at early times. Comparing αavg for the case of moisture

diffusion with α from Table 2.3 and Table 2.5 (without moisture diffusion), α/αavg ≈ 2

for the loading rates simulated. This implies that the diplacements in the saturated

condition are twice the displacements in dry condition.
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(a) Displacement
plot, |u|max =
10.205× 10−3 mm.

(b) Stress plot,
(Tv)max =
505.478 MPa.
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Displacement magnitude (|u|),
(×10−3) mm

Figure 2.13. Contour plots for indentation at the matrix (Ef/Em = 2, Ei/Em = 1)

with moisture diffusion at maximum load (Loading Rate=1/20), showing (a) displace-

ment and (b) stress variations.

Figure 2.13(a) depicts observable changes in displacement field in the presence

of moisture diffusion, as opposed to Figure 2.5(a) of section B, for indentation at the

matrix.
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Higher diffusivity of the matrix material when compared to the interphase and

fiber, causes faster degradation of the modulus due to increased moisture concen-

trations at early times. Lower modulus results in a more complaint matrix due to

the presence of moisture when compared to the dry condition. This explains the

large displacement magnitudes near the top surface of matrix region, when the ma-

trix material is pushed by a point load. It is noted that the maximum displacement

in the matrix region due to concentration of fluid is twice as large as that in the

dry condition, since the modulus decreases by half at the saturated condition, which

is expected. Stress variation on the other hand (Figure 2.13(b)) looks more or less

the same as in Figure 2.5(b). Owing to loss of stiffness in saturated condition, the

material actually requires a smaller stress to experience the displacement magnitude

shown in Figure 2.5. Since the admissible displacements due to a softer material

increase twofold, a nearly constant stress level (≈ 505.45 MPa) is maintained.
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CHAPTER III

INDENTATION RESPONSE WITH A LINEAR VISCOELASTIC MATRIX

Practicality dictates that the mechanical response of polymeric matrix in a FRP com-

posite is not that of a linearized elastic solid. Creep and stress relaxation phenomena

in polymers, linear or non-linear, can be pronounced, affecting overall response of the

composite. Consequently, indentation response of the FRP constituents is examined

when the polymer matrix is modeled as a linear isotropic viscoelastic solid-like ma-

terial. The effect of aging on the constituents are not considered. The other two

constituents are assumed isotropic, linear elastic with respect to their mechanical re-

sponse. Despite the preceding assumption, viscoelastic behaviour of the surrounding

polymer matrix might affect the localized response during indentation.

In this chapter, the purpose is to examine the effects of a linear viscoelastic matrix

on the localized response during indentation in fiber, matrix and interphase regions

for different loading rates. The same two-dimensional model of the FRP composite

with 45% fiber volume content is considered (Figure 2.1). Indentation is performed

on the center of each constituent separately in the micro-section of the composite, by

application of a unit magnitude point load.

First part of this chapter deals with the effect of loading rates for the deformation

problem. The second part focuses on the effect of moisture concentration and indenter

tips on the indentation response.

A. Deformation problem

Indentation at the matrix, interphase and fiber sections are analyzed, one at a time

for different loading rates. Problem description and modeling of Chapter II A holds

and the procedure listed in Chapter II B is adopted as far as loading is concerned.
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The elastic moduli for fiber (Ef ) and interphase (Ei) are expressed in terms of the

instantaneous elastic modulus for the polymer matrix (E0), chosen to be 1000 MPa.

Poisson’s ratio (ν) is held constant (= 0.2) for all constituents including the polymer

(viscoelastic) matrix.

The polymer matrix is modeled as a linear isotropic viscoelastic solid-like ma-

terial. Mechanical analog for the desired response in one-dimension is constructed

using N Kelvin-Voigt (a spring and a viscous damper in parallel: mechanical ana-

log for viscoelastic solid-like response) elements with a spring (mechanical analog for

linear elastic solid) in series (Figure 3.1).

Figure 3.1. Mechanical analog for one-dimensional viscoelastic response of the poly-

mer matrix6.

Creep compliance for this model takes the form of a Prony series:

D(t) =
1

E0

+
n∑
i=1

1

Ei
(1− e−t/τi) , (3.1)

where τi = µi/Ei, called the retardation time. If T (t) and ε(t) denote the stress

(normal or shear) and strain (normal or shear) respectively at time t, the creep form of

the constitutive equation for one-dimensional response of linear isotropic viscoelastic

6Adapted from p.53 of [33].
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material reads:

ε(t) = T (0)D(t) +

∫ t

0

D(t− s)Ṫ (s) ds = T ∗ dD , (3.2)

(∗) representing the convolution of T (t) and D(t).

Based on Equation (3.2), the constitutive relations for two-dimensional response

of an isotropic linear viscoelastic material with constant Poisson’s ratio is written as

εxx = [Txx − νTyy] ∗ dD; εyy = [Tyy − νTxx] ∗ dD; εxy = 2Txy ∗ dJ. (3.3)

J(t) is the creep compliance in shear and is given by J(t) = 2(1 + ν)D(t), for a

constant ν.

Figure 3.2. Creep compliance curve for N (=4) Kelvin-Voigt elements with a spring

in series.



47

Equations (3.3) are implemented through a FORTRAN subroutine (UMAT) in

ABAQUS, to obtain a numerical solution. This code defining the constitutive re-

lations for time-dependent behaviour of the viscoelastic material was developed by

Muliana et al. [34]. First five terms of the Prony series (N = 4) are considered in

Equation 3.1 for the polymer matrix material property defintion. The constants are

chosen to be 1/Ei = 5 × 10−5, 1.5 × 10−5, 3 × 10−5, 6 × 10−5 and τi = 10, 25, 50, 100

for i = 1, 2, 3, 4 respectively and the variation of D(t) with time is as shown in Fig-

ure 3.2. Results for the deformation problem involving a viscoelastic matrix are now

discussed.

Due to the influence of viscoelastic behaviour exhibited by the surrounding poly-

mer matrix, loading and unloading paths do not coincide, even when the elastic con-

stituents are indented. The difference is more prominent for a loading rate of 1/100

as seen in Figure 3.3, since the change in creep compliance for the polymer matrix

(Figure 3.2) is more prominent until t = 200 seconds. A faster loading rate of 1/10

also shows an observable difference between loading-unloading curves with steeper

slopes, because the time rate of change of creep compliance is higher at early times.

For slow loading (1/1000), since the creep compliance curve becomes asymptotic for

t = 750 seconds, a minimum difference between the loading and unloading paths is

observed. When loading is very slow compared to the creep time, creep compliance

reaches a constant value i.e., D(t)→ D(∞) as t→∞, resulting in a more compliant

response of the polymer matrix. In addition, the displacement is nearly zero upon the

removal of load. This is typical of a viscoelastic solid-like material which generally

recovers all the strain over a sufficiently long time, once the stress is removed.
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Figure 3.3. Effect of loading rates for indentation at (a) matrix (b) interphase,

Ei/E0 = 1 (c) fibre, Ef/E0 = 2.
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Figure 3.3. cont.

Table 3.1. Average slope (αavg) under the load-displacement curves for indentation

at the interphase (Ef/E0 = 2, Ei/E0 = 1) with a viscoelastic matrix.

Loading Rate αavg × 103

1/1000 0.196

1/100 0.202

1/10 0.211

Figure 3.3(a) also includes load-displacement curve for the elastic matrix for

the purpose of comparison. It is to be recalled that matrix characterization was

rendered implausible when its mechanical behaviour was assumed linear elastic. The
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viscoelastic responses are prominent even for a very slow loading rate of 1/1000 with

considerable differences in slopes. Viscoelastic repsonses for different loading rates

show large deviations from the elastic response. Hence, it might not be feasible to

characterize the polymer matrix by indentation though the surrounding constituents

are elastic. Also, the fast loading rate of 1/10 better resembles the the elastic response.

Table 3.2. Average slope (αavg) under the load-displacement curves for indentation

at the fiber (Ef/E0 = 2, Ei/E0 = 1) with a viscoelastic matrix.

Loading Rate αavg × 103

1/1000 0.310

1/100 0.316

1/10 0.324

For indentation at interphase and fiber, the effect due to loading rates is insignif-

icant. An average slope (αavg) is calculated for a set of loading-unloading curves

corresponding to each loading rate, as done in chapter II. This is given by Table 3.1

and Table 3.2 for indentation at interphase and fiber respectively. When compared

with α for the case of elastic matrix (Ef/Em = 2, Ei/Em = 1) from Tables 2.3 and

2.5, αEm/(αavg)V m = 1.009 when the loading is faster (1/10). For slower rates of

loading, αEm/(αavg)V m = 1.09 (Em: Elastic matrix; V m: Viscoelastic matrix).
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This indicates that, for fast loading, displacements at the interphase and fiber

regions with a viscoelastic matrix are comparable to the corresponding displacements

with an elastic matrix. Displacement increases by 10% as the loading rate is decreased

to 1/1000. Hence, estimation of elastic properties of fiber and interphase through

indentation is credible in the presence of a polymer matrix, provided the loading

is faster i.e., the response of fiber and interphase can be approximated only in the

presence of an elastic matrix. Once the viscoelastic effects become prominent, it is

not feasible to extract the elastic properties of fiber and interphase.

When the polymer matrix is indented, displacement and stress distributions

change as compared to the distributions obtained with indentation on a linearly

elastic matrix (Figure 2.5). There is a marginal increase in |u|max, while the in-

crease in (Tv)max is much higher. The viscoelastic matrix creeps faster at early times

(Figure 3.2) resulting in higher deformations.



52

(a) Displacement
plot, |u|max =
6.077× 10−3 mm.

(b) Stress plot,
(Tv)max =
522.076 MPa.

≥ 10

5

0

≥ 2.50

1.25

0.00

von Mises stress (Tv),
MPa

Displacement magnitude (|u|),
(×10−3) mm

Figure 3.4. Contour plots for indentation at the viscoelastic matrix (Ef/E0 = 2,

Ei/E0 = 1) at maximum load (Loading Rate = 1/20), showing (a) displacement and

(b) stress variations.

B. Coupled diffusion-deformation problem

Solution to the initial boundary value problem from Chapter II C is used in a se-

quentially coupled analysis. The dependence of material moduli on concentration

is introduced by the same relation as used earlier with βm = 0.5, corresponding to

instantaneous elastic modulus for the polymer matrix i.e.,

E0(C) = E0(1− 0.5C) . (3.4)
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Based on the time-temperature superpostion principle for a thermo-rheologically sim-

ple material, an expression for the creep response of a linear viscoelastic material, with

respect to time t and moisture concentration C can be analogously written. This is

because, the evolution of temperature or concentration with time, across a region, is

described by the same governing equation. Let C0 denote the reference concentration

corresponding to the dry condition (C = 0) and C1 be the steady state concentration

corresponding to the saturated condition (C = 1). Also, let D(t, C0) and D(t, C1)

be the creep compliances corresponding to uniform moisture conditions (similar to

isothermal conditions for temperature) C = 0 and C = 1 respectively. For a known

D(t, C0), D(t, C1) is obtained by invoking the aforesaid time-temperature superposi-

tion:

D(t, C1) = D

(
t

a(C1, C0)
, C0

)
. (3.5)

a(C1, C0) is called the shift function which is equal to unity for C1 = C0. It is

assumed that the polymer matrix creeps faster at higher concentrations. Therefore,

a(C1, C0) < 1 indicating shorter time for D(t) to attain a particular value. Thus,

Equation (3.5) enables to determine the response at C = 1 when the response at

C = 0 is known or vice-versa.

For transient moisture diffusion with time-dependent concentration profiles, Equa-

tion (3.5) takes the form:

D[t, C(s)ts=0] = D

[∫ t

0

ds

a(C(s), C0)
, C0

]
. (3.6)

∫ t
0

ds
a(C(s),C0)

= ζ(t) is referred to as the reduced time. This is valid for thermo-
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rheologically simple materials.

Figure 3.5. Creep compliance for different concentrations.

The concentration dependent creep compliance can therefore be written as:

D(t, C) =
1

E0(C)
+

n∑
i=1

1

Ei
(1− e−ζ(t)/τi) , (3.7)

with the shift function, a
(
C(s), C0

)
= 1/

(
1+9C(s)

)
. Different forms for shift function

can be constructed. In this study, shift function is chosen such that a(C1, C0) < 1,

since the polymer is assumed to creep faster for higher values of concentration. The

FORTRAN subroutine is modified to handle Equations (3.4) and (3.7) for the coupled

problem involving a polymer matrix. Figure 3.5 depicts the variation of D(t) with

time at fixed concentrations C1 and C0.
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For indentation at the matrix, it is observed from Figure 3.6, that loading and

unloading curves exhibit prominent differences for faster loading. This is expected,

since the concentration changes as well as time rate of change of creep are significant

at early times. For loading rate 1/50, the displacement is nearly zero, when matrix

is unloaded, since creep compliance curve (Figure 3.5) becomes asymptotic for t =

40 seconds. Also, for t > 40 seconds nearly saturated condition is reached by the

polymer. On the other hand, response at interphase and fiber are insensitive to

loading rates. This is because, the elastic fiber is away from the viscoelastic polymer,

whose property changes are relatively drastic.

Figure 3.6. Effect of loading rates for indentation at (a) matrix (b) interphase,

Ei/E0 = 1 (c) fibre, Ef/E0 = 2, with moisture diffusion.
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Figure 3.6. cont.
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Table 3.3. Average slope (αavg) under the load-displacement curves for indentation

at the interphase (Ef/E0 = 2, Ei/E0 = 1) with a viscoelastic matrix and moisture

diffusion.

Loading Rate αavg × 103

1/50 0.190

1/20 0.193

1/10 0.197

Table 3.4. Average slope (αavg) under the load-displacement curves for indentation at

the fiber (Ef/E0 = 2, Ei/E0 = 1) with a viscoelastic matrix and moisture diffusion.

Loading Rate αavg × 103

1/50 0.305

1/20 0.309

1/10 0.314

Average slope (αavg) is tabulated for each of the loading rates as done earlier.

Tables 3.3 and 3.4 for indentation at interphase and fiber respectively are compared

with α for elastic matrix (Ef/Em = 2, Ei/Em = 1) from Table 2.3 and Table 2.5.

αEm/(αavg)V m is 1.09 for the interphase and 1.04 for the fiber, when the loading is

faster (1/10). The observed differences in displacements range from 4-13% for the

loading rates simulated, evolution of concentration, assumed forms for creep compli-

ance and degradation of material moduli. In constrast, the corresponding displace-

ments differed by approximately 0.9% for the case of viscoelastic matrix in the dry

condition.
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C. Effect of indenter tip on the localized response

Point load represents an idealization of indentation. In actuality, there exists a surface

contact. In order to study the effect of indenter tips, the case of loading at the

softer polymer matrix in the presence of moisture diffusion is considered. Indenters

of different shapes and sizes can be used like the ones with pyramidal, cylindrical,

spherical and conical tips as shown in Figure 3.8.

In this study, indenter tips of spherical and conical geometries as shown in Fig-

ure 3.7 are employed to understand the effect due to a surface contact rather than

a point, which is impractical. Surface area of contact between the indenter and the

substrate depends both on the shape of indenter as well as the mechanical response

of substrate being indented. Based on these factors, the indenter can either push out

the displaced material to its sides or push the displaced material further ahead of the

indenter. In the former case, contact area increases and is referred to pile-up. The

latter effect is called sink-in resulting in a reduced contact area at a given depth [35].

Spherical tip is more likely to cause a pile-up effect, while sink-in effect might be seen

in conical tips. In addtion, mechanical response of the material plays an important

role in causing these phenomena. Pile-up and sink-in effects are important if one does

calculations involving surface area of contact between the indenter and the substrate.

The indenters are modeled such that the substrate material do not cross the rigid

surfaces of indenters and a rough surface contact is assumed between indenter and

substrate. The results and discussion shall now follow:
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0.08 mm

0.03 mm

(a) Spherical tip.

0.02 mm

0.02 mm

(b) Conical tip.

Figure 3.7. Indenter tip geometries.

(a) Berkovich
(Tip radius:
20-150 nm)

(b) Vickers (c) Cube-corner
(Tip radius:
20 nm)

(d) Conical
(Tip radius:
20-1000 nm)

(e) Spherical
(Tip radius:
150-2000 µm)

Figure 3.8. Common indenter tips in use7.

7Courtesy: Agilent Technologies http://www.agilent.com.
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A comparison is made in Figure 3.9, of indentation responses with effects of

concentration for a loading rate of 1/20. This choice of loading rate is attributed

to significant changes in concentration and hence the material properties, at early

times. It is observed that different responses are obtained with the indenter tips

when compared to the point load. The peak load and its corresponding displacements

resulting from the use of indenter tips vary significantly. This is because of the

increasing surface area of contact from point load through conical tip to spherical tip.

The existence of a surface contact is bound to introduce differences in responses at the

fiber and interphase regions as well. Based on the stiffness studies undertaken earlier

with a point load, one can only expect slight variations in the fiber and interphase

responses with the use of a particular indenter.

Factors influencing the variation of field variables, for indentation with concen-

tration effects include material properties, geometry, loading rate and the surface area

of contact of the indenter tip. Changes in distribution of field variables are expected

if one alters any of the aforementioned factors, such as, difussivity of the constituents

which may increase or reduce the steady state time, Prony coefficients and the retar-

dation times which influence the long time value of the creep compliance, assumed

form for shift function that controls the rate of creep, surface area and depth of the

indenter tips in contact with the substrate at a particular load and time.
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Figure 3.9. Indentation at viscoelastic matrix with moisture diffusion for a loading

rate of 1/20, showing the effect of different indenter tips.

From Figures 3.10 and 3.11, although displacement and stress profiles look sim-

ilar, variations in |u|max and (Tv)max are observed. Indenter tips result in greater

displacement when compared to the point load. Displacements due to spherical and

conical tips are comparbale although the latter produces a greater displacement ow-

ing to sink-in phenomenon. Stresses due to concentrated load are higher followed by

conical tip and least in the case of spherical tip.
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(a) Displacement
plot for point
load, |u|max =
12.298× 10−3 mm.

(b) Displacement plot
for spherical in-
denter, |u|max =
27.81× 10−3 mm.

(c) Displacement plot
for conical in-
denter, |u|max =
30.57× 10−3 mm.

≥ 2.50 1.25 0.00
Displacement magnitude (|u|),

(×10−3) mm

Figure 3.10. Contour plots for indentation at the viscoelastic matrix (Ef/E0 = 2,

Ei/E0 = 1) with moisture diffusion at maximum load (Loading Rate = 1/20), showing

displacement variations for (a) point load (b) spherical indenter (c) conical indenter.

Significant differences in responses are observed with respect to the use of differ-

ent indenter tips. If the observed responses were to change slightly, determination of

material properties of heterogeneous media from indentation would be simpler.
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(a) Stress plot for point
load, (Tv)max =
522.127 MPa.

(b) Stress plot for
spherical inden-
ter, (Tv)max =
51.38 MPa.

(c) Stress plot for conical
indenter, (Tv)max =
234.3 MPa.

≥ 10 5 0von Mises stress (Tv), MPa

Figure 3.11. Contour plots for indentation at the viscoelastic matrix (Ef/E0 = 2,

Ei/E0 = 1) with moisture diffusion at maximum load (Loading Rate = 1/20), showing

stress variations for (a) point load (b) spherical indenter (c) conical indenter.
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CHAPTER IV

CONCLUSION AND FUTURE WORK

A. Conclusion

Indentation response of constituents of a FRP composite is numerically simulated us-

ing FE. Mechanical characterization of the constituents of a heterogeneous material

such as a FRP composite using indentation testing requires, that one understands

the localized responses while indenting each constituent as well as the influence of

the surrounding constituents on this localized response. Though, the extracted data

still needs to be compared with relevant experiments for validation purposes, it pro-

vides those first steps towards understanding the material behaviour, when subjected

to indentation and simultaneous application of a non-mechanical stimulus like heat

conduction or moisture diffusion. Based on the simulations, the following conclusions

can be arrived at.

(a) The difficulty in characterizing matrix properties with stiffer surrounding con-

stituents.

(b) The potential of indentation technique to determine interphase properties, if the

intricacies involved in indenting the small interphase region can be subdued. This

potential can certainly be exploited with advances in instrumentation.

(c) The possibility of determining bond strength of the matrix-fiber interphase.

(d) Fiber properties could be determined from the FE load-displacement data, pro-

vided the experimental load-displacement data for indentation at the fiber is made

available.
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(e) In the presence of a viscoelastic matrix, the surrounding elastic constituents can

be characterized by indentation for fast loading rates i.e., when the viscoelastic ef-

fects are inconspicuous. With slower loading rates, the viscoelastic effects become

prominent making it unfeasible to characterize fiber and interphase properties.

Analytical solutions such as Flamant solution which are derived for specific and sim-

plified boundary conditions are inadequate for back calculating fiber properties in

heterogeneous materials. Most analytical solutions derived for homogeneous mate-

rials assume infinite medium, while in heterogeneous materials, the infinite medium

condition with respect to indentation is seldom met entailing a need for numerical

solution.

Considering the effects of moisture concentration on the elastic constituents,

when the elastic moduli of the constituents were degraded to half their original value,

the diplacements increased twofold in the saturated condition as compared to the

dry state. When moisture concentration effects are considered along with viscoelas-

tic matrix, greater differences in displacements are observed due to the combined

effects of the concentration of fluid and creep, as expected. The use of indenter tips

results in varying responses. Infact, the responses due to spherical and conical inden-

ters tips differ considerably, with conical tip producing a greater displacement and

concentrated force resulting in greater stresses.

B. Scope for further work

Parametric studies including the effect of Poisson’s ratio could be undertaken. In-

corporating swelling of the polymer matrix due to moisture absorption and its effect

on the indentation response would mean a rigorous analysis. Modeling non-Fickian

moisture diffusion simulates realistic conditions. More heterogeneity introduced in
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the form of multiple fibers of different sizes with random distribution could be stud-

ied. Lastly, FE analysis on a three dimensional model for the FRP composite with

real indenter geometries would provide greater insight.
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APPENDIX A

This appendix presents convergence studies for the FE mesh and comparison of FE

solution with analytical (Flamant) solution available for a concentrated normal force

on a homogeneous, isotropic and linear elastic half-plane.

A. Convergence

It is necessary that the results from FE analysis satisfy convergence criteria i.e.,

the results should not change with mesh size. Hence, mesh refinement studies are

conducted for point load at the matrix (Ef/Em = 2;Ei/Em = 1/2) to justify the use

of element size (0.0025×0.0025) used in this study. Owing to singularity at the point

of application of load, numerical results at nodes in the immediate neigbourhood of

the point load are considered as shown in Figure A.1.

It is observed that the load-displacement curves for the mesh sizes 0.0025 and

0.00125 coincide, satisfying convergence. Mesh sizes 0.01 and 0.005 give reasonably

accurate displacements as well. However, these meshes still need to be verified for the

stresses. Table A.1 shows that the stresses vary appreciably for the first two meshes,

while von Mises stress is nearly converged for the last two meshes.
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Figure A.1. Displacement, v(x, y) corresponding to the node 0.01 mm below the

point load.

Table A.1. von Mises stress, Tv corresponding to the node 0.01 mm below the point

load, for different mesh sizes.

von Mises stress, Tv (MPa)

Load, N Mesh size: 0.01 Mesh size: 0.005 Mesh size: 0.0025 Mesh size: 0.00125

0.5 33.4586 28.3198 29.2454 29.4978

1.0 66.9173 56.6397 58.4909 58.9957

It is therefore acceptable to use an element size of 0.0025× 0.0025.
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B. Analytical versus numerical solution

The precision of FE solution is verified by considering the problem of a point load ap-

plied on a homogeneous, isotropic and linear elastic half-plane as shown in Figure A.2.

Mesh size 0.0025 is used.

P

x

y

Figure A.2. Point load P acting on the surface of an infinite medium.

Point load P is applied at the origin of the coordinate system. The traction

boundary conditions8 are given by:

Txy(x, 0) = 0; Tyy(x, y) = Pδ(x, y)

Near the origin, the concentrated force is like a Dirac delta,

δ(x, y) = 0, x, y 6= 0

δ(0, 0) Undefined

8Adapted from en.wikipedia.org.
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The corresponding stresses9 resulting from the governing equations of elasticity

(Plane strain) are:

Txx =
2Px2y

π(x2 + y2)
; Tyy =

2Py3

π(x2 + y2)2
; Txy =

2Pxy2

π(x2 + y2)2
; Tzz = ν(Txx + Tyy),

(A.1)

remaining components being zero.

von Mises stress is calculated analytically as:

Tv =

[
3

2
tr(ττ T )

]1/2
, (A.2)

where the deviatoric part of the stress tensor (T) is given by:

τ = T− pI, (A.3)

p being the mean normal stress.

Since the analytical solution is for an infinite medium and the FE solution is for a

finite domain, the effect of increasing the size of the FE domain on the stresses is

considered.

Due to singularity at the point of application of load, Tv is computed at locations

below the point load. Numerical solution is also obtained by increasing the size of

the medium. Figure A.3 shows that the analytical and numerical solutions for von

Mises stress are in good agreement albeit there are considerable differences in stresses

in the immediate vicinity (upto depth= 0.0025 mm) of point load.

9Adapted from p.138 of [38].
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Figure A.3. Comparison of von Mises stress variation.

Figure A.4. Variation of error between (Tv)Analytical and (Tv)Numerical.
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As seen from Figure A.4, error(%) in Tv is higher at locations immediately below

(upto depth= 0.0025 mm ) the point load. With an increase in medium size, there

is a reduction in the error(%). This is because, as medium size increases, numerical

solution tends to approach analytical solution (for an infinite medium), which is

expected. Considering the vertical component of displacement for the aforestated

problem:

v(x, y) = −P (1 + ν)

πE

[
(1− ν) ln(x2 + y2)− y2

x2 + y2

]
. (A.4)

where, P is the force per unit thickness. Numerical solution from ABAQUS for a

homogeneous, isotropic elastic solid (E = 2000 MPa ; ν = 0.2) subjected to a point

load of magnitude P = 1 N , is compared with that calculated using Equation (A.4)10.

The error is approximately 4.9% as shown in Figure A.5.

Figure A.5. Comparison of numerical and Flamant solutions.

10Adapted from p.45 of [39].
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With the use of Flamant solution, error in von Mises stress and vertical compo-

nent of displacement are within acceptable limits for a homogeneous medium. But

the solution becomes inapplicable for back calculating the properties of individual

constituents in a heterogeneous material as evident from Table 2.4 of Chapter II.
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