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ABSTRACT 

 

Evaluations of a Mathematical Model in Predicting Intake of  

Growing and Finishing Cattle. 

(December 2007) 

Brandi Marie Bourg, B.S., Louisiana State University 

Chair of Advisory Committee: Dr. Luis Tedeschi 

 

   

 The Cattle Value Discovery System (CVDS) was developed to predict growth and 

feed requirements of individual cattle fed in groups based on animal, diet, and 

environment information (Tedeschi et al., 2006). Evaluations of the CVDS using several 

databases of finishing cattle were conducted to determine the accuracy and precision of 

the model in predicted dry matter required (DMR) of pen-fed cattle. As well, the 

sensitivity of the model’s predictions to deviations from actual ration metabolizable 

energy (ME) value was conducted. A meta-analysis of growing and finishing steers 

evaluated to model’s accuracy in predicting DMR of individually fed steers, and the 

relationships between several model-predicted variables and actual performance and 

efficiency measures. 

 Results for the first CVDS model evaluation involving pen-fed Santa Gertrudis 

cattle fed finishing diets revealed that accurate predictions of DMR are possible. The 

average mean bias for both steers and heifers was 2.43%. The sensitivity analysis of 
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dietary ME values revealed that the model tends to consistently over- and under-predict 

DMR when the ME values are under- and over-estimated, respectively. However the 

ranking of pens was not affected by this mis-estimation of diet ME. In the second 

evaluations, both methods (mean body weight; MBW, dynamic iterative model; DIM) of 

CVDS were highly accurate and precise in allocating feed to pens of steers fed diverse 

types of diets and environmental conditions, with both models having a mean bias under 

4%. The DIM model was slightly more accurate than the MBW model in predicting 

DMR. An evaluation of sources of variation revealed that for both models a large portion 

of the error was random, indicating that further work is needed to account for this 

variation. The meta-analysis study revealed that the model was able to account for 64% 

and 67% of the variation in observed dry matter intake (DMI) for growing and finishing 

steers, respectively. The two model-predicted efficiency measures, the ratio of DMR to 

average daily gain (ADG) and predicted intake difference (PID), were strongly to 

moderately correlated with their observed efficiency counterparts. In growing and 

finishing steers, DMR: ADG was able to account for 76% and 64% of the variation in 

observed feed conversion ratio (FCR) in growing and finishing studies, respectively. 

Strong correlations were also found between residual feed intake (RFI) and PID, 

suggesting that there may also be some similarity on these two measurements. 
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NOMENCLATURE 

 

CVDS Cattle Value Discovery System 

CNCPS Cornell Net Carbohydrate and Protein System 

DECI Decision Evaluator for the Cattle Industry 

NRC National Research Council 

BW Body weight 

BW0.75 Average metabolic body weight 

ADG Average daily gain 

DMI Dry matter intake 

DMR Dry matter required 

RFI Residual feed intake 

PID Predicted intake difference 

FCR Feed conversion ratio 

R: G DMR: ADG 

FFM Feed for maintenance 

FFG Feed for gain 

ME Metabolizable energy 

RE Retained energy 

NEm Net energy for maintenance 

NEg Net energy for gain 

EBF Empty body fat 
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EBW Empty body weight 

IBW Initial body weight 

FBW Final body weight 

SBW Shrunk body weight 

AFSBW Adjusted final shrunk body weight at 28% EBF 

FT 12-13th rib fat thickness 

REA Longissimus dorsi  muscle area, rib-eye area 

MRB Marbling score 

PEG Partial efficiency of growth 

KR Kleiber ratio 
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CHAPTER I 

INTRODUCTION 

 The conversion of feed into animal products during the post-weaning growth 

phase has a large influence on the cost of producing beef (Herd et al., 2003). The beef 

industry is moving steadily toward a system where cattle and carcasses are managed and 

marketed on an individual rather than pen basis (Cross and Whitaker, 1992). Individual 

Cattle Management Systems (ICMS) may aid in improving profitability, minimizing 

excess fat produced, and improving product consistency by decreasing individual animal 

variability within a pen. As cattle from multiple owners and biotypes are often fed 

together within a single pen, successful implementation of ICMS would require more 

accurate predictions of feed inputs of individual calves based on performance data (Fox 

et al. 2001). A successful ICMS program has to meet three directives: (1) accurate 

prediction of rate and cost of gain, (2) accurate prediction of days to finish, and (3) 

accurate allocation of feed to individual animals based on performance and diet 

information in order to facilitate marketing of individual animals at their most profitable 

endpoint.  

 The Cattle Value Discovery System (CVDS) was developed to predict growth and 

feed requirements of individual cattle fed in groups based on animal, diet, and 

environment information (Tedeschi et al., 2006). An enhanced, dynamic version of the 

CVDS model was developed and evaluated (Tedeschi et al., 2004) to improve the 
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accuracy of these predictions. The CVDS utilizes observed BW, average daily gain 

(ADG), carcass measurements, breed type, environmental conditions, and dietary 

metabolizable energy (ME) to predict BW at 28% empty body fat (AFBW), feed DM 

required for maintenance, feed DM required for gain, and their sum of DM required 

(DMR). From these values the model predicts several feed efficiency indicators, such as 

DMR: ADG and predicted intake difference (PID), which is calculated as observed DMI 

minus DMR.  

Previous studies have shown model predicted DMR to be highly accurate in 

allocating feed to individual animals fed in groups with values within 2% of actual pen 

intakes (Fox et al., 2004a). Williams et al. (2006) found strong genetic correlations ( > 

0.95) between DMR and observed DMI in finishing steers. Due to the accuracy of CVDS 

and its relationship to observed traits, it may be a useful tool in identifying efficient 

animals. Therefore, a thorough evaluation of the CVDS model is needed for growing and 

finishing animals in different scenarios of production. 
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CHAPTER II 

 LITERATURE REVIEW 

Mathematical models are very useful tools to apply to livestock production. Often 

it may be difficult, expensive, or even unethical to apply a certain treatment in an 

experiment; here a model of the system plays an important role in furthering our 

understanding the system. They can be used to predict the effects a certain disease may 

have on a population without having to actually infect any animal. Evaluating 

environmental effects of large scale animal feeding operations has also benefited from the 

use of models that predict excreted nutrient run-off and its effect on environmental 

pollution.  

The conversion of feed into animal products during the post-weaning growth 

phase has a large influence on the cost of producing beef (Tess and Kolstad, 2000; Herd 

et al., 2003). With increases in feed prices there is a rising interest in improving the 

efficiency of our beef production systems. In a review beef cattle energetic efficiency, 

Johnson et al. (2003) noted that fattening steers retain only 16-18% of energy that they 

consume. However, the cost of measuring individual feed intake is often the prohibiting 

factor in the collection of individual animal efficiencies which are necessary if genetic 

improvements are to be made.  

The beef industry has been moving steadily toward a system where cattle and 

their carcasses are managed and marketed on an individual rather than pen basis (Cross 

and Whitaker, 1992). Fox et al. (2001)described an Individual Cattle Management 

System (ICMS) and the application of a decision support system to aid these programs. 

The ICMS may aid in improving profitability, minimizing excess fat produced, and 
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improving product consistency by decreasing individual animal variability within a pen. 

As cattle from multiple owners and biotypes are often fed together within a single pen, 

successful implementation of ICMS would require more accurate predictions of feed 

inputs of individual calves based on performance data (Fox et al. 2001). 

Predicting individual animal intake based on performance and diet information 

provides a useful tool for several scenarios. Not only would this provide a means to more 

cost-effectively determine individual animal intake for use in determining individual 

animal efficiency for use in genetic improvement programs, but also provides a tool to 

allocate feed to individual animals fed in pens of mixed ownership. For a mathematical 

model to be applied to the prediction of intake in these scenarios, the model must be able 

to accurately and precisely perform these tasks. Therefore, the objectives of this literature 

review are to 1) review several current mathematical models whose purpose is to predict 

intake of growing and finishing beef cattle and 2) to review techniques for evaluating 

model predictions. 

Mathematical Models 

As with all agricultural production systems, the production of beef is categorized 

as a biological system. According to Jones and Luyten (1998), biological systems are 

highly complex, involving numerous components that interact simultaneously, and often 

in highly non-linear or chaotic manners. These biological processes are made up of 

interacting chemical processes, of which in many cases, we have an incomplete 

understanding. Therefore, often when we study or attempt to understand these systems 

our work is often impeded by our misunderstanding. This is when modeling or 
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simulations of complex systems are often useful to provide insight into the behavior and 

management of these systems (Jones and Luyten, 1998). 

Jones and Luyten (1998) a system can be defined as “a collection of components 

and their interrelationships grouped together for the purpose of studying some part of the 

real world.” These systems are often viewed as a simplified view of reality, and offer us a 

way to study biological processes without the effects of certain unknown interactions. 

Rountree (1977) stated that an important property of any system is that it can be defined 

within a hierarchy of systems.  A farm or ranch is a hierarchy of systems and sub-

systems. The ranch as a whole is one system, while individual herds within the ranch are 

another system, and individual animals within a herd are systems within themselves. One 

can continue to classify systems and sub-systems, but it is important that the system does 

not become too small and difficult to model. It is also important that our systems are 

affected by their environment, but that the environment is not affected by the system 

(Jones and Luyten 1998). This is an important concept because if the system we are 

trying to study has a significant impact on its environment then it would also require a 

modeling of the environment and the changes that the system would inflict upon it (Jones 

and Luyten 1998). This is a vital step during the development phase of a model: 

determining the model boundary and exogenous variables.  

Peart and Curry (1998) define the model of a system as a “set of equations and 

rules that quantitatively describe the operation of a system through time.” The authors 

also describe simulation as the solving of these equations used to define the system 

within set rules over a period of time, or the mimicking of how a system will perform 

over a set amount of time by calculating values of the variables at a series of time steps. 
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In a discussion of mathematical models in applied livestock production science, Sorensen 

(1998) described a model as a simplification of the system from a certain perspective and 

with a certain purpose. In other words, we design our models to suit the purpose of our 

particular analysis or theory.  

Gill et al. (1989) stated that the representation of biological concepts as equations 

or sets of equations, and the subsequent solving of these equations simulating the 

behavior of a system are called mathematical models. In a review of the biochemical 

basis in the steps taken during the construction of whole animal metabolism, Gill et al. 

(1989) stated some drawbacks of predictive models, such as those that predict intake, 

which previously had been derived from statistical analysis of large data sets, making it 

difficult to apply the model for predictive purposes to dissimilar datasets.  

In the chapter on using mathematics as a problem solving tool, Cooke (1998) 

offers an adaptation of the steps in formulating a mathematical model from Ver Planck 

and Teare’s (1954) suggestions. The author offered five general steps and considerations 

that should be followed when one is trying to model a process or system. The first step is 

simply defining the problem, which involves dividing it into a series of specific 

questions, deciding among alternative approaches, and review previous literature on the 

topic. The next step in model formulation is planning its treatment. This involves 

identifying assumptions that must be made, and trying alternative explanations, among 

other things. Cooke (1998) emphasizes that the rule of Occam’s razor should be followed 

here, with a successful simpler explanation being more desirable than a complex method 

that yields the same result. Step number three is to execute the plan. This is where the 

actual model set-up and formulation comes into play. Here it is important to define 
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variables and assign units, number equations, and attempt the use of more than one 

approach. Good note-keeping is a must at this step. Step four is checking thoroughly, and 

it may be the most important step when formulating a model. Frequent use of 

intermediate checks is a must, and often the most effective way to check the development 

of the model is through the use of a carefully designed experiment. A properly designed 

experiment may serve to more readily convince one that the model and its underlying 

assumptions are indeed valid. The final step in model formulation is to learn and 

generalize from the analysis, and to summarize important findings.  

In a review of current mathematical models in ruminant nutrition, Tedeschi et al. 

(2005) stated that currently most models used for formulating rations consist of a 

combination of mechanistic and empirical approaches, with empirical models providing a 

best fit to data obtained at the level of prediction, and mechanistic models incorporating 

underlying biology of the system. They also stated that these models are typically steady 

state and static, not incorporating time into predictions. The authors defined a ruminant 

nutrition model as an integrated set of equations and transfer coefficients that describe 

nutrient requirements and feed utilization by cattle and sheep for use in formulating diets 

on farms.  

Current Models of Beef Cattle Intake 

 Intake of individual animals represents a dilemma for some researchers, as it is 

often difficult and expensive to determine individual animal intake for use in nutrition 

trials. There are several types of models currently used to predict performance and intake 

of growing and finishing cattle. The National Research Council (NRC, 2000) 

incorporates a computer model that can be used to balance rations and predict animal 
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performance. The Cornell Net Carbohydrate and Protein System (CNCPS; Fox et al. 

2004b) was first published in 1992 and 1993 in a series of four papers, and has been 

continually refined and improved over the past ten years. The CNCPS focuses on ration 

balancing and performance prediction, and uses the same equations as level 2 of the NRC 

model. Mathematical growth models that can predict DMI when animal performance and 

nutrient information is known, as well as predict performance when DMI and nutrient 

content of the feedstuff is known, have also been developed. Both the Cornell/ Cattle 

Value Discovery System (CVDS; Guiroy et al. 2001; Perry and Fox 1997; and Tedeschi 

et al. 2004) and the Decision Evaluator for the Cattle Industry (DECI; Williams and 

Jenkins 2003 a,b) were developed for these type of predictions.   

CNCPS and NRC 

 The NRC (2000) developed a computer model which includes two levels of 

solution available to the user. It incorporates equations to predict nutrient requirements of 

various classes of beef cattle, as well as empirical equations to predict DMI of various 

classes of cattle, with adjustments for breed, EBF effect, implant status, temperature, and 

mud depth. Both levels of the NRC (2000) model use the same set of animal requirement 

equations. The DMI is predicted per kg of shrunk body weight (SBW). Level 1 uses 

tabular feed energy values, while level 2 incorporates the CNCPS rumen model to predict 

protein and carbohydrate fermentation, as well as amino acid supply and requirements. 

This sub-model predicts microbial growth and passage rates from feed carbohydrate and 

protein fractions. The NRC (2000) indicated that level 1 should be used by those with 

limited information on feed composition, and not familiar with how to read and interpret 

results from level 2 of the model.  
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The CNCPS model accounts for factors that affect performance, feed efficiency, 

and nutrient excretion in both beef and dairy cattle in unique production situations 

(Tedeschi et al. 2006). The CNCPS focuses on accounting for differences in maintenance 

requirement, mature body size, composition of gain, feeding program, and feeding 

system (Fox et al. 2004b). In the proceedings of the 1996 Cornell Nutrition Conference, 

Pitt et al. (1996a) briefly described CNCPS as an integrated set of equations and transfer 

coefficients that describe physiological processes in cattle. The CNCPS model 

incorporates information on feed, cattle, and environment to predict the nutrient supply 

from digestion and absorption, as well as nutrient requirements for metabolism and 

production, and nutrient excretion.  

According to Fox et al. (2004a), the CNCPS sub-models are classified according 

to physiological functions. These sub-models include maintenance, growth, pregnancy, 

lactation, reserves, feed intake and composition, rumen fermentation, intestinal digestion, 

metabolism, and nutrient excretion.  A brief description of the mathematical equations of 

each sub-model as described by Fox et al. (2004a) follows. The maintenance sub-model 

computes maintenance requirements by accounting for breed, physiological state, 

activity, urea excretion, heat or cold stress, and environmental acclimatization effects; 

with adjustment for previous plane of nutrition using body condition score (BCS). 

Growth requirements include adjustments for the rate of gain and chemical composition 

of gain, and mature weight, with adjustments for effects of body weight. Pregnancy 

requirements and weight gain from uterine growth are computed from expected calf birth 

weight and day of gestation. The body reserves sub-model uses BCS to compute energy 

reserves, with change in BCS used to determine energy and protein gain or loss.  



10 

Requirements for lactation are determined from actual milk production and milk 

components when available, or prediction based on weaning weights.  

The rumen sub-model provides estimations of microbial protein, and materials 

that are fermented or escape ruminal degradation, such as carbohydrates and proteins. 

Additionally, an amino acid sub-model is available to predict the adequacy of absorbed 

essential amino acids in cattle diets (O’Connor et al., 1993). The CNCPS model also 

separates feedstuffs into several fractions, assuming that feedstuffs are made up not only 

of protein, carbohydrate, fat, ash, and water, but also further subdivides protein and 

carbohydrate by their digestibility characteristics in the rumen or post-ruminally. 

Fox et al. (2004b) described the equations currently incorporated into the CNCPS 

model, and provided a summary of evaluations and sensitivity analyses. In an evaluation 

of growing cattle individually fed high grain rations, the CNCPS accounted for a large 

portion (89%) of the variation in ADG. A separate sensitivity analysis was also 

conducted with lactating dairy data to determine the effects of changes in feed 

composition to responses of the rumen sub-model. It was found that all pools and 

responses were affected by a change in DMI, with increased DMI, diet ME was reduced 

due to an increased rate of passage, which indicates the importance of accurate estimates 

of DMI. It was found that under some conditions the rumen sub-model is sensitive to all 

pools of carbohydrate and protein. The results of Fox et al. (2004b) indicated that the 

CNCPS can provide accurate predictions of nutrient requirements, feed utilization, and 

nutrient excretion under various production conditions. 
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DECI and CVDS 

The DECI model is a combination of several models that were published 

previously. It is a biological model with the ability to predict animal performance when 

DMI and nutrient content of the ration are known, as well as having the ability to predict 

DMI when animal performance and nutrient content of the ration are known (Williams et 

al, 2006).  

The DECI model development initiated with the description of a computer model 

that was developed to predict empty body weight (EBW) in cattle as a function of animal 

and diet characteristics by Williams et al. (1992a). With inputs of forage NDF, physical 

form of forage, fraction of concentrates in the ration, and final BW of the animal, it was 

found that this new model more accurately predicted EBW than previous systems, with 

an R2 of 0.99.  

Keele et al.(1992) and Williams et al.(1992b), described the theory, the 

development, and an evaluation of a computer model designed to predict composition of 

gain in EBW of cattle fed at different levels of nutrition. According to Keele et al. (1992), 

the model was based on the following four assumptions: 1) as animals mature, there is a 

greater proportion of fat in gain than in body weight, 2) the effects of plane of nutrition 

on body composition that are not associated with EBW can be predicted from rate of 

EBW gain, 3) the effects of changes in nutrition are not immediate nor permanent, 4) 

when EBW gain is zero, cattle approach an empty body composition equilibrium. In this 

model, rate of EBW gain is used to predict the amount of fat free matter in the EBW gain. 

The amount of fat in EBW gain is obtained by difference. The evaluation of this model 
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indicated that it could accurately predict some of the effects that nutrition has on fat 

deposition that are not associated with EBW gain. 

Williams and Bennett (1995) developed a bioeconomic model to predict slaughter 

end points of cattle of varying breed types with either maximization of profit/day or 

profit/rotation. The authors found that when the goal was maximum profit/day compared 

to maximum profit/rotation, as profitability increased rotation length was decreased and 

steers were also marketed at lighter carcass weights. Results of the evaluation of this 

model suggested that it has potential to offer more profitable options in the marketing of 

fed cattle. 

In 1998, Williams and Jenkins integrated models developed by Keele et al.(1992) 

and Williams and Jenkins (1997) which both partitioned EBW gain into fat and fat free 

matter, with the model of Keele et al.(1992) being for growing cattle and Williams and 

Jenkins (1997) for mature cattle. The authors assumed that as cattle grow, a transition 

would occur from the equations for growing cattle to those for finishing cattle. Their 

evaluation of the integrated model suggested that it could accurately predict changes in 

body composition of cattle across ages and systems of nutritional management.  

A dynamic model developed to estimate ME utilization for maintenance and to 

estimate additional responses in heat production that result from level of feeding and 

previous plane of nutrition was developed by Williams and Jenkins (2003a, b), in which 

they described the model prediction of EBW gain from ME available for gain. Based on 

previous experiments, which indicated a simple proportional relationship between 

maintenance requirements and body weight for different breeds of mature cattle, as well 

as calves and growing steers and BW stasis, this model uses this proportionality to 
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predict ME utilized for maintenance. Heat production to support metabolism is then 

calculated as a multiple of maintenance intake. The evaluation of the maintenance portion 

of the model, when compared to other experimental data where ME for maintenance was 

known, was shown to be similar in prediction. The portion of the model that predicts ME 

utilized for gain and also ADG by using recovered energy as the input has several 

components. One predicts net efficiency of ME utilized for gain using constant partial net 

efficiencies for protein and fat gain of 0.20 and 0.75 respectively. The other component 

uses recovered energy to predict daily gain using a system of differential equations that 

are numerically integrated on a daily basis. Retained energy as a function of change in 

EBW was predicted according to the model of Williams and Jenkins (1998). Retained 

energy is first predicted from ME for gain, and change in EBW is then predicted from 

retained energy. An evaluation of the model by Williams and Jenkins (2003c) indicated 

that the integrated model provided accurate predictions of body weight gain using ME 

intake as an input. 

The CVDS model was developed as a deterministic and mechanistic growth 

model to dynamically predict growth rate, accumulated weight, days required to reach a 

target body composition, carcass weight, and composition of individual beef cattle for use 

in ICMS (Tedeschi et al. 2004). These ICMS are necessitated and have been developed to 

help the beef industry in marketing individual animals at their own optimum endpoint 

rather than a group average. They may help to improve profitability, minimize excess fat, 

which may come about in attempting to feed to a pen optimum average, and increase 

consistency of product. These ICMS bring about a need to co-mingle cattle from different 
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owners in the same pen, which in turn brings up the need for a system to accurately 

allocate feed to individual animals in pens of mixed ownership.  

The CVDS provides a method for predicting energy requirements, performance 

and feed required for individual animals fed in groups (Tedeschi et al., 2003). It accounts 

for the following variables in its predictions: NE values of the fed ration, DMI on a daily 

basis, environmental effects on maintenance and gain requirements, effect of stage of 

growth on ADG and NEg, as well as body weight, carcass weight, and body composition. 

The model utilizes the above factors to predict a body weight at 28% empty body fat 

(EBF), which corresponds to USDA low choice grade, and then it is used to predict 

animal nutrient requirements and gain needed to finish based on this grade (Tedeschi et 

al., 2003). Feed is then allotted to individual animals for maintenance (FFM) and gain 

(FFG), as well as an overall daily dry matter required (DMR) for each animal. 

Fox and Black (1984) described a system for predicting body composition and 

performance of growing cattle, with adjustments for factors known to have an effect on 

composition and requirements. DMI prediction equations are also described by the 

authors. When the model was evaluated with data from three trials of Holstein steers, it 

was found that actual DMI averaged 99% of predicted and actual gains averaged 87% of 

those predicted from actual DMI. An evaluation with feedlot data from central Florida 

indicated that the model under-predicted intake for steers by 11% and by 13% for heifers. 

However, when actual intake was used to predict ADG and feed efficiency the results 

were within 1% for steers and 3% for heifers. From these results, the authors concluded 

that the value of this model lay in its ability to predict performance accurately in unique 

production and management conditions.  
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Perry and Fox (1997) described a model with equations to predict proportional 

carcass fat and yield grade in live cattle, while also predicting final EBF from carcass fat 

which was then used to predict energy and feed required for individual animals fed within 

a pen. An evaluation of this system indicated a 3% over-prediction bias, with 98.79% of 

predicted values consumed. However, only 48% of the variation in actual DMI was 

accounted for by the model which indicated that further work needed to be done to 

account for this variation. The authors concluded that equations to predict carcass weight 

and composition, along with the proposed system for allocating feed to individual 

animals fed in a group could be used to market cattle at an optimum time. 

Guiroy et al. (2001) revised the equations of Perry and Fox (1997) in predicting 

EBF, and evaluated the CVDS with these new equations for the purpose of predicting 

individual feed requirements of cattle fed in groups. Data from 401 steers were used to 

develop the equations that the model uses to predict EBF from carcass measurements, 

and the equation developed accounted for 61% of the variation in EBF in his original 

dataset. Analysis with an independent dataset showed that the equation developed 

accounted for 51% of the variation in EBF. The CVDS model for prediction of DMR was 

evaluated with his adjustments for EBF with a database of individually fed cattle, and it 

was found that DMR accounted for 74% of the variation in observed DMI. When the 

CVDS with the new EBF equations was applied to the prediction of DMR in actual 

feedlot data, a bias of -0.91% for steers and 0.89% for heifers was noted. The author’s 

evaluation indicated that the CVDS can be used to accurately allocate feed to individual 

animals fed in a group. 
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Tedeschi et al. (2004) described the development and evaluation of a dynamic 

iterative version of the CVDS model. The authors described in detail the calculation of 

harvest body weight and composition, prediction of DMI, prediction of energy 

requirements for maintenance, and prediction of EBF. It was assumed that the most 

important variable determining composition of gain is the retained energy per unit of 

gain, and the importance of inputs of initial body composition to allow the model to 

predict the accumulation of fat over time is emphasized. Tedeschi et al. (2004) discusses 

that the CVDS model uses the equations described by the NRC (2000) for prediction of 

DMI with adjustments for the relationship between equivalent SBW and EBF.  

Evaluations of three methods of the CVDS were conducted by Tedeschi et al. 

(2004): 1) prediction of ADG based on animal, diet, and environment information; 2) the 

dynamic iterative version of the model to predict body composition, DMR, and feed 

efficiency when animal performance was known; and 3) the mean body weight method, 

which uses mean values for SBW, diet ME, and a constant ADG to predict DMR, body 

composition, and feed efficiency. The first method indicated that the model accounted for 

89% of the variation in actual ADG, with a bias ranging from an over-prediction of -6% 

to an under-prediction of 7.5%. The second method indicated a high precision for 

prediction of DMR with an r2 ranging from 0.71 to 0.74 depending upon whether NEg 

was adjusted for portion of retained energy. This method had a bias ranging from -5.7% 

(over-prediction) to 4.2% (under-prediction). The third method of the CVDS had similar 

r2 values to the second (0.75 to 0.78), but indicated a greater bias ranging from -4.7% to 

23.5%. It was concluded that the new dynamic iterative method of the CVDS could 

predict animal performance and composition with acceptable accuracy. 
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Similar studies evaluating phenotypic correlation between DMR and observed 

DMI found correlations of 0.75 (Tedeschi et al., 2006) and 0.80 (Bourg et al., 2006b). 

Additionally, an analysis of Santa Gertrudis steers and heifers (N = 457) by Bourg et al. 

(2006a) found an overall mean bias between actual feed fed and model predicted DMR of 

2.43%, which suggests that the model was accurate in predicting the DMR for these pens 

of cattle. 

Williams et al. (2006) evaluated both the DECI and CVDS for their accuracy in 

predicting individual DMI and the feasibility of their prediction for use in genetic 

evaluations. A comparison of observed DMI to DMR predicted by the DECI and CVDS 

models indicated that the DECI prediction was very similar to the mean observed DMI, 

while the prediction of the CVDS was 3.5% lower. The authors suggested that these 

differences in prediction may be due to an under-prediction of maintenance requirements 

by the CVDS as compared to the DECI. In comparing actual individual DMI to predicted 

individual DMI, the CVDS accounted for 44.3% of the variation in observed DMI, and 

the DECI accounted for 53.4%. Both models indicated a bias in prediction, with the 

CVDS under-predicting with an average bias of 3.4% and the DECI over-predicting with 

an average bias of 0.4%. In their evaluation of phenotypic and genetic correlations of 

observed DMI with DMR, it was noted that genetic relationships (0.79 for both models) 

were much stronger than phenotypic (0.95 and 0.96 for CVDS and DECI; respectively). 

It was concluded that a genetic relationship between observed and predicted feed intake 

does exist, but that both models need further evaluation in populations with genetic 

variance in feed efficiency, to determine further if predicted DMR could be substituted 

for actual DMI in genetic evaluations of feed efficiency. 
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These models would drastically decrease the costs that are now associated with 

collecting individual intake data, to identify those cattle that are able to convert feed into 

to product more efficiently. Tedeschi et al. (2006) recently evaluated the effectiveness of 

the CVDS in predicting efficiency in cattle when individual intake is not known. It was 

concluded that the CVDS model could be used to identify difference in feed: gain or 

gain: feed ratio of individual cattle fed in groups through its prediction of individual 

DMR. This prediction can also be useful in determining genetic evaluations of DMR 

(William and Jenkins, 2006; Kirschten et al., 2006). 

Model Evaluation 

Tedeschi (2006) reviewed several techniques for assessing the adequacy of 

mathematical models, and stated that testing for the adequacy of a mathematical model is 

typically done to prove the rightness of a model. These tests of rightness are then 

typically presented as evidence to promote acceptance and use of a model, and that these 

tests should be designed to evaluate and identify model weaknesses that should be 

addressed. Tedeschi (2006) proposed that the terms evaluation and testing indicate the 

measurement of model adequacy based on criteria of acceptable model performance that 

have been pre-determined. The author also cautioned of errors in model evaluation such 

as a type I error or rejecting an appropriate model, which is likely if incorrect or biased 

observations are chosen in evaluating the model, or a type II error, accepting an 

inappropriate model, which is likely if during the development of the model biased or 

incorrect observations were used.  

Meta-analysis to remove effects of study when data are obtained from literature  

to develop or evaluate models is offered by Tedeschi (2006) as a useful technique to 
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further decrease the risks associated with sampling error. St. Pierre (2001) discussed the 

application of compiling data from multiple published studies in attempt to obtain 

relationships among key variables. This statistical process has been labeled meta-

analysis. The use of meta-analysis is a powerful technique for interpretation of results 

from multiple studies. 

The concepts of accuracy and precision of a model are discussed by Tedeschi 

(2006) as well. Accuracy is defined as the closeness of model predicted values to actual 

values, while precision is defined as the model’s ability to predict similar values 

consistently, whether or not they are close to actual values. Precision and accuracy are 

independent of each other, and a case of one being high does not guarantee that the other 

will be. Numerous statistical techniques are available to determine model accuracy and 

precision, several of which will be discussed below. 

Model precision (r2) can be assesed by regression of observed values (y-variate) 

on model-predicted values (x-variate). As discussed by Tedeschi (2006), observed values 

are plotted on the y-axis due to inherent natural variability, while model predicted 

variables do not contain this random variation. Data points below the Y=X line indicate 

an over-prediction by the model. 

 Model accuracy can be determined from several techniques. Ideally, the linear 

regression between model-predicted and observed values passes through the origin and 

has a slope of unity (Dent and Blackie, 1979). When performing a linear regression of 

model-predicted and observed values several assumptions must first be made (Tedeschi, 

2006). The first assumption the X-axis values (model-predicted) are known to be without 

errors. The second assumption is that observed values (Y-axis) are random, independent, 
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and homocedastic. The final assumption is that the residuals of the regression are 

independent and normally distributed. Performing separate tests of the null hypotheses 

that slope = 1 and intercept = 0 may not provide an accurate result if there is a large 

amount of scatter in the data points, as it would be harder to reject the null hypotheses 

either because the slope is really not different from unity or because there is too much 

scatter around the regression line (Tedeschi, 2006). Therefore, the more relevant test of 

the null hypothesis that slope and intercept coefficients were simultaneously different 

from 0 and 1 based on equations by Dent and Blackie (1979) is used to determine if the 

model’s predictions represent the ideal. Tedeschi (2006) cautions that although linear 

regression may provide reliable estimates to model accuracy and precision, its results 

should be interpreted after first being certain that several assumptions are met. 

Lin (1989) developed a reproducibility index also known as the concordance 

correlation coefficient (CCC), which simultaneously accounts for accuracy and precision. 

The concordance between two pairs of samples can be characterized by the expected 

value of their squared difference, which incorporates Pearson correlation coefficient. This 

value can be transformed to a scale between -1 and 1 as Lin (1989) described. The Cb 

statistic is the component of the CCC that measures accuracy. It is a bias correction factor 

that indicates how far the regression line deviates from the Y=X line, and ranges from 0 

to 1, with a value of 1 indicating that no deviation from this line occurred. The Pearson 

correlation coefficient is the component of the CCC that measures precision by 

measuring how far each observation deviates from the Y=X line. 

Mean bias is perhaps the oldest and most widely used method to assess model 

accuracy (Tedeschi, 2006). It provides an indication of how close the predictions are to 
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the observed values. Mean bias is calculated based on the mean difference between 

observed and model-predicted values as a percent of predicted values. 

 Mean square error of prediction (MSEP, also known as mean square prediction 

error, MSPE) is used to measure predictive accuracy of a model (Tedeschi, 2006). For the 

MSEP to provide a reliable estimate of accuracy, the paired data points must be mutually 

independent, and the model must be independent of the experiment from which the data 

points were obtained. However, the reliability of MSEP decreases as sample size 

decreases. A comparison of two models can be obtained, such that the model with the 

smaller MSEP is more accurate. The sources of variation of MSEP can be decomposed 

into errors in central tendency (mean bias), errors due to regression, or random errors that 

cannot be accounted for by linear regression. These terms are represented as the mean 

bias, variance, and covariance (Tedeschi, 2006). 

 Non-parametric tests can be a good test of model adequacy as they are resistant to 

abnormalities in the data, such as outliers. A balance analysis using non-parametric 

techniques can be used to evaluate the balance of data points that were over or under-

predicted by a model from the model-predicted and observed means (Tedeschi, 2006). 

Tedeschi (2006) described two χ
2 tests that are used to test the distribution of data in a 

contingency table that sorts data points into four quadrants, or those over- or under-

predicted above or below the observed- or model-predicted means. The first χ
2 hypothesis 

tests if 25% of the data points are located in each of four quadrants (below the observed 

mean and over-predicted, below the observed mean and under-predicted, above the 

observed mean and over-predicted, and above the observed mean and under-predicted). 

The test reveals whether data points are distributed evenly in each quadrant, indicating 
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whether the model tends to over- or under-predict above or below the mean. The second 

χ
2 hypothesis tests for associations between model behavior and locations about the 

mean, or whether each of the cells in the balance allocation is independent of each other 

(Tedeschi, 2006). The odds ratio statistics tests whether the predictions above or below 

the mean and over- or under-prediction are independent, with a value of 1 indicating that 

the data are independent. The odds ration can be any non-negative number (Agresti, 

1996). The natural logarithm of the odds ratio statistic is more resistant to skewness of 

data due to small sample size, and follows a normal distribution. It provides a more 

reliable test of independence, with a value equal to 0 indicating independence (Agresti, 

1996).  

Conclusion 

Nutrition models discussed (e.g. NRC, CNCPS, CVDS and DECI serve an 

increasingly important purpose in our knowledge of our beef cattle nutrition systems. 

Although each were designed with slightly different objectives in mind, with the CNCPS 

and NRC more focused on diet formulation and nutrient utilization, and the DECI and 

CVDS more focused toward prediction of individual animal performance or individual 

animal intake. However, both models types of models have the potential to improve the 

efficiency of beef production systems. The CNCPS or the NRC can be utilized to 

maximize nutrient utilization through more accurate formulation of diets to better meet 

nutrient requirements, which in turn will reduce nutrient run-off and waste, and therefore 

environmental pollution. The CVDS and DECI models, on the other hand, offer a 

different alternative, to identify differences in feed efficiency among individual animals 

fed in groups, or to project individual cattle to their most profitable endpoint, and thereby 
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reducing variation in animal performance and carcass quality. The future applications of 

both types of models are numerous to improve the overall efficiency of beef production 

systems. However, these models must continue to be refined and tested so as to offer 

more accurate and precise predictions. Model sensitivity analysis is needed to determine 

which biological components have the greatest impact on results. This would illustrate 

which of these components is most in need of accurate measurement or further model 

refinement.  As well, use of these models must be streamlined and simplified, with ease 

of input being a large priority, to further aid in their adoption by industry personnel. 

Mathematical models are important tools that will help to further understanding of 

our beef production systems. There are numerous applications of mathematical models 

for the beef industry. Whether it be modeling forage intake of a beef cow-calf unit in 

western Montana to determine supplementation needs, or modeling the effects of various 

management decisions on profitability of an operation, or modeling intake of feedlot 

cattle in an effort to improve production efficiency, these models will continue to aid in 

our development of research programs that will assist us in furthering our understanding 

of how our biological systems work, in particular those involved with beef production. 

Our biological systems are and will continue to be complex processes of which we have 

an incomplete understanding, and these and future mathematical models will help to 

further our understanding. 
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CHAPTER III 

ANALYSIS OF THE SENSITIVITY OF THE CVDS MODEL TO VARIATION 

FROM ACTUAL RATION ENERGY VALUES 

Objectives 

1) To evaluate the CVDS model’s effectiveness in predicting total DM required 

(DMR) of Santa Gertrudis steers and heifers  

2) To conduct a sensitivity analysis of the accuracy of dietary ME value on the 

model’s predictions of DMR. 

Materials and Methods 

The cattle in the evaluation database consisted of five pens of Santa Gertrudis 

steers and heifers (n= 457) fed at the King Ranch feedyard (Kingsville, TX). Table 3.1 

summarizes the calves used in the evaluation. Pens 1 and 4 contained only heifers, while 

pens 3 and 5 contained only steers, and pen 2 contained both steers and heifers. Average 

initial BW ranged from 202 to 297 kg. Cattle were slaughtered over four dates from June 

15 to August 18. 

 The cattle were fed three step-up rations and one finishing ration that ranged 

from 2.3 to 2.82 Mcal ME/kg DM. The finishing ration consisted of 67% milo, 9% 

pressed brewer’s grain, 7% premix, 6% molasses, 5.5% whole cottonseed, 2.5% cotton 

burrs, 2% fat, and 1% cottonseed meal. Dietary ME was calculated using actual feed 
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Table 3.1. Summary of pens used in the model evaluation 1 

Pen  Sex2 n DOF IBW FBW REA FT 

1  H  84 180-208 265.3 496.4 74.8 1.68 

2  S & H  109 223-243 202.1 459.3 71.6 1.45 

3  S  85 180-223 296.5 561.6 77.4 1.40 

4  H  110 208 233.9 476.3 71.6 1.83 

5  S  69 208-223 258.1 530.3 78.1 1.42 

Mean     208 251.2 504.8 74.7 1.55 
1DOF = days on feed; IBW= initial body weight, kg; FBW= final body 
weight, kg; REA = rib-eye area, cm2; FT = 12-13th rib fat thickness, cm. 
2S = steer; H = heifer. 

 
 

 

analysis of individual feed ingredients in the Cornell Net Carbohydrate and Protein 

System (CNCPS; Fox et al., 2004b) model. 

 For each pen, model inputs included dietary ME, days on each ration, and 

number of animals fed each ration. Individual animal performance and carcass data used 

for model prediction included: sex, breed type (beef or dairy), hide thickness, initial date 

of feeding period, approximate age, BCS, initial and final BW, yield grade, hot carcass 

weight, 12th rib fat thickness (FT), marbling (MRB) class and percentile, and rib-eye 

area (REA). Additionally for each individual animal in the dataset, BW and carcass 

composition (HCW, LMA, FT, and MRB) were used to predict a BW at 28% empty 

body fat (EBF). Empty BW (EBW) was computed from HCW, and adjusted final shrunk 

BW at 28% fat (AFSBW) was then computed using carcass information as described by 

Guiroy et al. (2001), which was estimated using the relationship between EBF and 
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EBW. The CVDS model with the adjustment of ME to NE efficiency for composition of 

gain was used to predict individual DMR and to estimate total DMR of the pen. 

 The CVDS model’s effectiveness in predicting DMR of group-fed cattle was 

evaluated using mean bias, which was calculated as mean difference between observed 

feed intake and model-predicted values as a percent of predicted values. Aditionally, a 

sensitivity analysis was conducted to test the effects of over and under-estimation of diet 

ME values on the CVDS prediction of DMR. Metabolizable energy values were 

evaluated at 5 or 10 percent below or above actual ME values. 

Results and Discussion 

 

The 90% confidence interval for predicted EBF at the harvest body weight 

ranged from 25-36% fat, and was similar for both steers and heifers. In an evaluation of 

the relationship between quality grade and EBF, Guiroy et al. (2001) noted that at a 

target quality grade of low choice the mean EBF percent was 28.61%, which is in 

agreement with the value of 27.8% fat at low choice reported by the NRC (2000). 

 The total feed DM fed to pen 1 was 117,141 kg for the entire feeding period, and 

the model’s prediction of DMR was 124,559 kg. This indicated a model over-prediction, 

with a mean bias of 6.22%. For pen 2, total feed fed was 168,471 kg, and DMR 

predicted was 168,265 kg. This indicated a slight under-prediction, with a mean bias of 

-0.12%. Pen 3 received 138,171 kg of feed over the period, and predicted DMR was 

156,861 kg, with a mean bias of -1.26% indicating a slight model under-prediction. Total 

feed fed to pen 4 was 156,861 kg, and the CVDS predicted a DMR of 162,213 kg, with a 

mean bias of 3.41%. Pen 5 received 105,517 kg of feed, and the CVDS predicted a DMR 
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of 109,378 kg, which indicated an over-prediction of 3.66%. These predictions indicated 

that for this evaluation, the CVDS model was more accurate for some pens than for 

others. The model had a mean bias of 4.64% and 1.46% for heifers and steers 

respectively, and with an overall value of 2.43% the model was highly accurate across 

pens. Guiroy et al. (2001) indicated that an under-prediction bias of up to 2% may be 

expected in DMR due to feed delivered to the pen that was lost or not consumed by the 

cattle. When Perry and Fox (1997) compared DMR to DMI of individually fed steers, a 

bias of 3% was noted, which was very similar to the overall bias in this analysis. 

 In Guiroy et al. (2001), a dataset of 12,105 feedlot cattle was used to evaluate the 

model in real world situations, and a mean bias of -0.91% and 0.89% for steers and 

heifers respectively was observed. The values noted in this evaluation were slightly 

higher than those reported by Guiroy et al (2001), which may be due to the size of the 

database in each evaluation. In this evaluation, only 457 steers and heifers were used, 

while Guiroy (2001) utilized a feedlot dataset of 12,105 steers and heifers. 

The results of the ME sensitivity analysis are reported in Figure 3.1. The 

sensitivity analysis revealed that the model tended to under-predict DMR when ME 

values were over-estimated, and tended to over-predict when ME values were under-

estimated, as was expected. If ME values are over-estimated, the model calculates DMR 

based on a greater amount of available energy from the feedstuff that would have been 

utilized in the resultant composition. Therefore the CVDS predicted that the animal 
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Figure 3.1. Relationship between accuracy of ration ME values and mean bias of the 

CVDS prediction of DMR 

 

would have consumed a lower amount of feed than was actual, with the opposite being 

true when ME was under-estimated. However, there appears to be no interaction 

between the mean bias of model predicted intake for the total pen and accuracy of ME 

used in the predictions, as the ranking of pens when ME was adjusted above or below 

the actual value did not change. This indicates that even if estimates of dietary ME 

values were incorrect the CVDS model would still rank feed required for pens and 

individual cattle in the same order. This is an important aspect of the CVDS model when 
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it is used in genetic evaluations. Kirschten et al. (2006) evaluated the model for genetic 

purpose using the individually fed steer contemporaries of the cattle used in this 

evaluation. Strong genetic relationships were observed between DMI, DMR calculated 

from ultrasound traits, and DMR calculated from carcass traits. Kirschten et al. (2006) 

also noted minimal re-ranking of sires which is extremely desirable in genetic 

predictions. 

Implications 

This evaluation of the CVDS model revealed that accurate prediction of 

individual DMR of pen-fed cattle was possible. This suggests that the CVDS model may 

be a useful tool to successfully implement ICMS, although further research is needed to 

improve inconsistencies in mean bias of DMR prediction. The sensitivity analysis of 

dietary ME values revealed that the model tends to consistently over- and under-predict 

DMR when the ME values were under- and over-estimated respectively. However the 

ranking of pens was not affected by this mis-estimation of diet ME, which suggests that 

the CVDS prediction of DMR may also have utility in the prediction of feed inputs for 

genetic evaluation.  
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CHAPTER IV 

EVALUTION OF A MATHEMATICAL MODEL TO ESTIMATE TOTAL FEED 

REQUIRED FOR PEN-FED ANIMALS BASED ON PERFORMANCE AND 

DIET INFORMATION 

Objective  

1) to evaluate the adequacy of the CVDS in predicting total dry matter required 

(DMR) of pen-fed steers from eight independent studies, using two methods to 

compute growth and carcass composition. 

Materials and Methods 

Study Description 

 A database consisting of 1,314 steers in 8 separate finishing studies conducted at 

West Texas A&M University was compiled to evaluate the CVDS. Table 4.1 

summarizes the studies used in this database. Steers of varying breed types were fed in 

173 pens, with an average of 8 steers per pen, and were on test for 70 to 206 d dependent 

upon the study objectives. Cattle were fed a high percent grain ration with ME from 2.78 

to 3.13 Mcal/kg DM. 

 Study 1 evaluated the effects of DMI restriction on performance and carcass 

characteristics of steers. Only steers included in the ad libitum treatment were included 

in the database. Seven pens, totaling 66 steers, were included in the evaluation database 

from this study. Steers were fed diets described by Drager et al. (2004a) and included a 

65% concentrate diet prior to the beginning of the study to minimize fill differences.  
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Table 4.1. Summary of trials used in the evaluation database 1 

Study Reference Sex N DOF ME ADG IBW FBW 

   Pen Steer d Mcal/kg kg/d kg kg 

1 Drager et al. 2004a S 7 66 151 2.80 1.61 414.3 558.7 

2 Silva et al. 2006 S 30 266 139 2.80 1.69 325.1 560.7 

3 Biggs et al. 2004 S 45 316 112 3.06 1.59 375.4 540.4 

4 Drager et al. 2004b S 6 39 70 2.97 1.86 486.0 616.0 

5 M.S. Brown, 
unpublished 
observations 

S 35 210 114 3.13 2.18 367.6 618.9 

6 Silva et al. 2006 S 36 320 198 2.95 1.76 284.6 589.8 

7 Bumpus 2006 S 6 58 119 3.09 1.41 362.6 530.3 

8 Vann et al. 2006 S 8 39 179 2.93 1.41 305.2 553.5 

Mean   22 164 135 2.97 1.69 365.1 571.0 

1 DOF = days on feed, IBW = initial BW, and FBW = final BW. 

 

Steers were adapted to a 90% concentrate diet (ME = 2.8 Mcal/ kg DM) with 6 d each 

adaptation to a 65, 75, and 82.5% concentrate diet. The 90% concentrate finishing diet 

(CP = 13.51%) contained 75.49% whole corn, 5% cottonseed hulls, 5% ground alfalfa 

hay, 4.01% cottonseed meal, 4% cane molasses, 3% white grease, and 3.5% supplement. 

Steers were on test for 151 d with an ADG of 1.61 kg/d. 

 Study 2 evaluated the effects of zinc source and level on both performance and 

carcass characteristics of finishing steers, as described by Silva et al. (2006). Steers were 
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fed a 55% concentrate diet for 8 d before initial BW were obtained. Upon 

commencement of the trial, 266 steers were adapted to a 92% (ME = 2.8 Mcal/kg DM) 

concentrate diet by feeding a 70% concentrate diet for 6 d and an 81% concentrate diet 

for 7 d. The 92% concentrate diet (CP = 12.5%) contained 79.25% whole corn, 8% 

alfalfa hay, 5% cane molasses, 3% supplement, 2.5% choice white grease, and 2.25% 

cottonseed meal. Steers were blocked by BW and assigned to treatments. The heaviest 

block was on feed for 126 d, the lightest two blocks for 166 d, and the intermediate 

blocks for 151 d, with an ADG for all blocks of 1.69 kg/d. 

 Study 3 utilized in the evaluation database was described by Biggs et al. (2004), 

and evaluated effects of dietary crude protein and degradable protein concentration on 

performance, carcass characteristics and estimated nutrient excretion of 316 beef steers. 

Steers were fed one of three CP concentrations (11.5, 13. or 14.5% of DM) provided by 

one of three proportions of supplemental degraded intake protein (50, 75 or 100% of CP) 

in 45 separate pens for 112 d. Steers were adapted to 90% concentrate diets, with an 

average ME of 3.06 Mcal/kg DM, and steers gained an average of 1.59 kg/d across all 

treatments. 

 Study 4 utilized 39 steers in 6 pens to evaluate the effect of Sucram C-150  on 

feedlot performance and carcass characteristics of finishing steers, as described by 

Drager et al. (2004b). Steers were fed a 90% (ME = 2.97 Mcal/kg DM) concentrate diet 

for 70 d that was supplemented to contain 0 or 180 g of Sucram/ton of diet DM. The 

90% concentrate diet contained 13.57% CP and consisted of 74% steam-flaked corn, 
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10% alfalfa hay, 5% cane molasses, 4% supplement, and 3% tallow. Across both 

treatments steers gained an average of 1.86 kg/d. 

 Study 5 contained unpublished observations of 210 steers on feed at West Texas 

A & M University (M.S. Brown, unpublished observations). Thirty five pens of steers 

were on feed for 114 days. Steers were fed a 55% concentrate diet until the study began, 

and were then adapted to a 90% (ME = 3.13 Mcal/kg DM) concentrate diet by offering 

70 and 80% concentrate diets for 7 d each.  The finishing ration (CP = 13%) contained 

78.5% steam-flaked corn, 10% alfalfa hay, 4% cane molasses, 3% yellow grease, 3% 

supplement, and 1.5% cottonseed meal. Across treatments, steers gained an average of 

2.18 kg/d. 

 Study 6 was also described by Silva et al. (2006), and as was the case with study 

2, Study 6 evaluated the effects of different sources and levels of zinc on performance 

and carcass characteristics of 320 feedlot steers fed in 36 pens. Steers were adapted to 

the finishing diet by offering 55 (14 d), 70 (7 d) and 80% (7 d) concentrate diets. The 

90% concentrate finishing diet contained 13.2% CP and 2.95 Mcal/kg DM of ME, and 

consisted of 78% steam-flaked corn, 10% alfalfa hay, 4% cane molasses, 3% yellow 

grease, 3% supplement, and 2% cottonseed meal. Across treatments, steers gained an 

average of 1.76 kg/d for 198 days on feed (DOF). 

 Study 7 of the evaluation database was the finishing phase of a grazing trial in 

which steers were fed one of 3 treatments with 2 replication of each, as described by 

Bumpus (2006). During the finishing phase, 58 steers were fed in 6 pens for 119 days. 

The common finishing diet contained approximately 13% CP and 3.09 Mcal/kg DM of 
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ME and consisted of 73% steam-flaked corn, 12.5% ground alfalfa,  4% cottonseed 

meal, 4% steep:molasses (70:30), 3.5% supplement, and 3% vegetable oil. Across 

treatments, steers had an ADG of 1.41 kg/d. Steep, or corn steep liquor is a liquid co-

product of the wet milling of corn to produce ethanol, and for this as well as study 8, 

steep was mixed with molasses on a 70:30 basis. 

 Study 8 examined the effects of breed type and temperament classification on 

feedlot performance, utilizing 39 Brahman and Angus steers that were classified as calm 

or excited, and was described by Vann et al. (2006). Steers were fed in 8 separate pens 

based on breed and temperament for an average of 179 d. The finishing ration contained 

13.1% CP and 2.93 Mcal/kg DM of ME and consisted of 72.5% steam-flaked corn, 

12.5% alfalfa hay, 4.5% cottonseed meal, 4.0% steep: molasses (70:30), 3.5% 

supplement, and 3% yellow grease. Across breed and temperament group steers had 

ADG of 1.41 kg/d over the length of the feeding period. 

The Cattle Value Discovery System 

 For each pen within study, model inputs included diet information (ME, 

Mcal/kg), DOF, and ionophore status, as dietary NEm was increased by 12% if 

ionophores were included in the ration (Tedeschi et al., 2003). Individual animal 

performance and carcass data used as model inputs included: sex, implant status, breed 

type (beef or dairy), and hide thickness, initial date of feeding period, approximate age, 

BCS, initial and final BW, yield grade, hot carcass weight, 12th rib fat thickness (FT), 

marbling (MRB) class and percentile, Longissimus dorsi muscle area (LMA). 

Additionally for each individual animal in the dataset, BW and carcass composition 
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(HCW, LMA, FT, and MRB) were used to predict a BW at 28% empty body fat (EBF). 

Empty BW was computed from HCW, and AFSBW was then computed using carcass 

information as described by Guiroy et al. (2001), which was estimated using the 

relationship between EBF and empty BW. For each pen within study, CVDS model 

predicted total DMR using both the mean BW method and the dynamic iterative growth 

(DIM) model, resulting in two DMR predictions for each pen. The mean BW method of 

the CVDS assumes a linear relationship between ADG and BW. With this method, all of 

the calculations were performed using the average BW of each period. For the DIM 

model, ration energy values, BW, and expected weight at 28% fat were used to predict 

accumulated BW, composition, and feed required for each pen of cattle.  

Model Evaluation 

 Analysis was conducted using two methods. An un-weighted analysis was 

conducted using DMR predictions from each method (mean BW, DIM) for each pen of 

steers in the database. A second analysis was conducted with DMR predictions weighted 

by the number of steers per day within pen. These two analyses were evaluated in the 

same manner for each method. 

A computer program (http://nutritionmodels.tamu.edu/mes.htm), as described by 

Tedeschi (2006), combining the following statistical procedures was used to assess the 

accuracy and precision of each method in predicting the total DMR of each pen of steers 

compared to the amount the was delivered to the pen. Model precision (r2) was 

determined by regression of observed values (y-variate) on model-predicted values (x-

variate). As discussed by Tedeschi (2006), observed values were plotted on the y-axis 
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due to inherent natural variability, while model predicted variables do not contain this 

random variation. 

 Model accuracy was determined from several techniques. Ideally, the linear 

regression between observed and model-predicted values passes through the origin and 

has a slope of unity (Dent and Blackie, 1979). Performing separate tests of the null 

hypotheses that slope = 1 and intercept = 0 may not provide an accurate result if there is 

a large amount of scatter in the data points, as it would be harder to reject the null 

hypotheses either because the slope was really not different from unity or because there 

was too much scatter around the regression line (Tedeschi, 2006). Therefore, the more 

relevant test of the null hypothesis that slope and intercept coefficients were 

simultaneously different from 0 and 1 based on equations by Dent and Blackie (1979) 

was used in this evaluation to determine if the model’s predictions represented the ideal. 

 Another measure of accuracy was the bias correction factor (Cb), which was 

proposed by Lin (1989) when developing a reproducibility index also known as the 

concordance correlation coefficient (CCC), which simultaneously accounts for accuracy 

and precision. The Cb statistic is the component of the CCC that measures accuracy. It 

indicates how far the regression line deviates from the Y=X line, and ranges from 0 to 1, 

with a value of 1 indicating that no deviation from this line occurred. 

Mean bias is perhaps the oldest and most widely used method to assess model 

accuracy (Tedeschi 2006). It provides an indication of how close the predictions are to 

the observed values. For this analysis, mean bias was calculated based on the mean 
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difference between observed and model-predicted values as a percent of predicted 

values. 

 Mean square error of prediction (MSEP, also known as mean square prediction 

error, MSPE) was used to measure predictive accuracy of a model (Tedeschi, 2006). The 

MSEP statistic evaluates the precision of the fitted linear regression using the difference 

between observed values and model-predicted values (Tedeschi, 2006). For this analysis, 

the sources of variation of MSEP were decomposed into errors in central tendency 

(mean bias), errors due to regression, or random errors (Tedeschi, 2006). 

 A balance analysis using non-parametric techniques was used to evaluate the 

balance of data points that were over or under-predicted by CVDS from the model-

predicted and observed mean (Tedeschi, 2006). The first χ2 hypothesis tests if 25% of 

the data points were located in each of four quadrants (below the observed mean and 

over-predicted, below the observed mean and under-predicted, above the observed mean 

and over-predicted, and above the observed mean and under-predicted). The test reveals 

whether data points are distributed evenly in each quadrant, indicating whether the 

model tends to over- or under-predict above or below the mean. The second χ
2 

hypothesis tests for associations between model behavior and locations about the mean, 

or whether each of the cells in the balance allocation was independent of each other 

(Tedeschi, 2006). The odds ratio statistics tests whether the predictions above or below 

the mean and over- or under-prediction were independent, with a value of 1 indicating 

that the data are independent. The natural logarithm of the odds ratio statistic is more 

resistant to skewness of data due to small sample size, and follows a normal distribution 
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(Agresti, 1996). It was used in this analysis to provide a more reliable test of 

independence, with a value of 0 indicating independence among the cells. 

 Pens were assigned to two groups: either DIM or MBW model depending on 

which method provided a mean bias closer to zero. Least-squares procedures of SAS 

(SAS Inst. Inc., Cary, NC) were used to examine differences between means of these 

two groups of pens for performance and carcass traits with differences in preferred 

method of model prediction. 

Results and Discussion 

Un-weighted Analysis 

 Mean observed DMI for pens was 10,258 kg and the mean pen DMR predicted 

using the mean BW method of CVDS was 10,630, while the mean pen DMR predicted 

using the DIM model of CVDS was 10,267 kg. Guiroy et al. (2001) indicated that an 

under-prediction bias of up to 2% may be expected in DMR due to feed delivered to the 

pen that was lost or not consumed by the cattle. This was not the case with the mean BW 

method of the CVDS model, with a mean bias of 3.5% (P < 0.01). A mean bias of 0.08% 

(P = 0.83), which was not different from zero, was calculated for the DIM model. These 

low bias values indicated that both methods were highly accurate in predicting the DMR 

of these steers, with the DIM model being slightly more accurate. In a previous analysis 

of a version of the CVDS predictions, Perry and Fox (1997) noted an over-prediction 

bias of 3%, which was similar to the mean BW method prediction. However the 

equations used to predict 28% EBF in the Perry and Fox (1997) evaluation only utilized 
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EBW and yield grade, while this evaluation used the equations to predict EBF developed 

by Guiroy et al. (2001) which include 12th rib fat thickness, HCW, QG, and LMA. 

In Guiroy et al. (2001), a dataset of 12,105 feedlot cattle was used to evaluate the 

model in real world situations, and a mean bias of -0.91% and 0.89% for steers and 

heifers respectively was observed. The lower bias noted in the Guiroy et al. (2001) 

analysis as compared to the mean BW method was likely due to the fact that DMR was 

predicted for larger pens of cattle, while in this analysis there were only an average of 8 

steers per pen. Guiroy et al. (2001) found that prediction error was greatly reduced in 

predicting groups of animals rather than individuals, and that as group size increased, 

error decreased more rapidly. The mean bias of the DIM model was very similar to that 

calculated in the evaluation of feedlot data by Guiroy et al. (2001), and was considerably 

lower than the bias reported by Perry and Fox (1997) of 3%. When Tedeschi et al. 

(2004) evaluated the DIM model with individually fed cattle, a bias of -5.7% was 

reported.  These inconsistencies in mean bias across the three evaluations may be due to 

the fact that for both Tedeschi et al. (2004) and Perry and Fox (1997) predictions were 

compared to individual animal intake, while in this evaluation and the feedlot portion of 

the analysis by Guiroy et al. (2001) model predictions were compared on a per pen basis. 

The regression analysis revealed a high precision (r2 = 0.97) of model prediction for both 

methods, and no outliers were identified in the dataset. Figure 4.1 illustrates the 

relationship between observed DMI and DMR predicted by pen when the mean BW 

method was used. Figure 4.2 illustrates the relationship between observed DMI and 

DMR predicted by pen when the DIM model was used. Both the evaluations of Tedeschi 
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et al. (2004) and Guiroy et al. (2001) indicated a lower model precision (r2 of 0.75 and 

0.74, respectively) when using the mean BW method. However, a similar r2 value was 

reported in Tedeschi et al. (2004), using the DIM model, with an r2 of 0.91. These high 

values indicate that the CVDS using the DIM model was consistently precise in 

predicting DMR. The lower precision noted for the mean BW method may be due to the 

fact that the mean BW method only uses an average BW across the period, while the 

DIM method’s use of trends in ADG and composition across the period may be a more 

reliable method of predicting DMR for certain pens. 
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Figure 4.1. Relationship between observed DMI and DMR predicted using the mean BW 
method of the CVDS for each pen, with each value represented as kg per pen × 1000. 
 



41 

 

y = 0.9129x + 0.8849

R
2
 = 0.9705

Cb = 0.99

Mean bias = 0.09 %

3

5

7

9

11

13

15

3 5 7 9 11 13 15

Dry Matter Required, kg x 1000

O
b

se
rv

ed
 D

M
I,

 k
g

 x
 1

0
0

0

 

Figure 4.2. Relationship between observed DMI and DMR predicted using the DIM 
model of the CVDS for each pen, with each value represented as total kg for each pen x 
1000. 
 

 

Slope and intercepts differed from one and zero simultaneously using the test by 

Dent and Blackie (1979), indicating that for the regression of observed on predicted 

values the slope and intercept simultaneously differed from unity and zero, for both 

methods. This indicates that the regression differed from the ideal, which would pass 

through the origin, with an intercept of zero, and have a slope of unity. However, the Cb 

of 0.98 for the mean BW method and 0.99 for the DIM model indicated the regression 

line was very close to the Y = X line of the regression, indicating that the model was 

highly accurate. 
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Table 4.2 provides the values for the balance analysis for both mean BW and 

DIM methods, indicating the proportion of data points about the observed mean. A 

tendency for the model to over-predict DMR for pens with greater than average DMI 

was revealed for the mean BW method, with 39% of the data points falling above the 

mean DMI and being over-predicted by the model. The majority of pens were slightly 

over-predicted (74.57%) by the mean BW method of the CVDS. The first and second χ2 

tests revealed that the cells were not homogeneously distributed at 25%, and not 

independent, with χ
2 of 57.31 (P < 0.01) and 25.70 (P < 0.01), respectively. Similarly, 

the odds ratio statistic of 0.10 indicated that the cells were not independent and this 

conclusion was supported with the natural logarithm transformation of the odds ratio 

statistic of -2.31. 

 

 

Table 4.2. Data points over- and under-predicted above and below the observed mean for 
the mean BW and dynamic iterative growth model (DIM) methods of CVDS for the un-
weighted analysis on a per pen basis 

 Mean BW method DIM method 

Model prediction Observed mean Observed mean 

 Below Above Below Above 

Over-predicted 35.26% 39.31% 19.08% 34.68% 

Under-predicted 23.12% 2.31% 39.31% 6.94% 
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The balance analysis of the DIM method revealed a tendency to over-predict 

values above the observed mean (34.68%), and to under-predict values below the 

observed mean (39.31%). The DIM method also tended to over-predict a greater portion 

of the data points (53.76% vs. 46.24%) compared to under-prediction. The first and 

second χ2 tests revealed that the cells were not homogeneously distribute at 25%, and not 

independent, with χ
2 of 45.66 (P < 0.01) and 43.40 (P < 0.01) respectively.  The odds 

ratio statistic of 0.10 also revealed that the cells in the DIM method were not 

independent. This was also confirmed with the natural logarithm transformation of the 

odds ratio (-2.44). The balance analysis suggests that the CVDS using the either the 

mean BW method or the DIM method may be somewhat biased as to over- or under-

predicting pens of cattle based on their location about the observed mean DMI. 

The over-prediction by both methods above the mean may be due to errors in 

estimation of diet ME. If ME of the diet was underestimated an over-prediction of DMR 

was likely as CVDS would estimate that the cattle would require more of the diet to 

meet the energy needs required to meet the steer’s level of performance. The same trend 

was also noted with the DIM method’s under-prediction for pens with below average 

DMI, which would be caused by an underestimation of diet ME. This error was noted in 

a sensitivity analysis of dietary ME by Bourg et al. (2006a), where ME was over- or 

under-predicted by 5 or 10%, and a corresponding decrease and increase in model 

predicted DMR was seen in subsequent evaluations. 

The evaluation of sources of variation by decomposing MSEP showed that the 

largest portion of variation in the mean BW method analysis was in the random, 



44 

 

uncontrollable error (44%). However, a large amount of variation was also noted for the 

other sources, with errors due to mean bias accounting for 26%, and errors due to 

regression accounting for 30% of the variation in MSEP. This indicates that although a 

large portion of the variation in DMR predicted by the mean BW method was due to 

random error, a substantial portion is attributed to regression error and mean bias 

suggesting that there may be inherent variation in the prediction of DMR of these pen 

fed steers using the mean BW method of CVDS. 

The evaluation of sources of variation by decomposing MSEP for the DIM 

model showed that the largest portion of variation in the analysis was in the random, 

uncontrollable error (77%). As expected due to the very low mean bias in this model 

prediction, very little variation was attributed to error due to mean bias (0.025%). 

Twenty three percent of the variation was due to regression error. The large portion of 

variation attributed to uncontrollable error suggests that there are factors in the 

prediction of DMR that the DIM model is not accounting for that may be unknown. 

Weighted Analysis 

When the predictions of DMR were weighted per steer per d for each pen, the 

observed DMI was 10.26 kg/steer/d. The mean BW method predicted an average DMR 

per steer per d of 10.57, which was very similar to actual DMI as indicated by the mean 

bias of 2.87%. This mean bias was actually lower than when values were reported on a 

per pen basis. The DIM model of CVDS when adjusted to a per steer per d basis 

predicted a DMR of 10.21 kg. This indicated a slight under-prediction, with a mean bias 

of - 0.51%. This was slightly higher than was predicted on a per pen basis. The results of 
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the mean BW prediction were very similar to values reported by Guiroy et al. (2001) in 

predicting individual animals, who reported a mean bias of 2.28% when the same EBF 

equations were used. 

The regression analysis revealed that r2 values decreased for both methods when 

DMR was weighted on a per steer per d basis. For the mean BW method, the r2 of the 

regression decreased from 0.97 to 0.82 as represented in Figure 4.3, and for the DIM 

method, r2 values decreased from 0.97 to 0.82 as well, as is represented in Figure 4.4. 

The decrease in r2 may be due to the decrease in precision noted by Guiroy et al. (2001) 

when predicting individuals compared to groups of animals. When Guiroy et al. (2001) 

randomly divided 365 individually fed steers into groups of 5, 10, 20, 40, or 80 steers; a 

decrease in CV was noted as group size increased. This decrease in error when 

predicting individuals versus groups of cattle in a pen is important when this application 

is applied on a real world basis as was noted by Guiroy et al. (2001). 

As was the case in the un-weighted analysis, slope and intercepts differed from 

one and zero simultaneously using the test by Dent and Blackie (1979) for both methods. 

However, the Cb for the mean BW method when weighted decreased slightly to 0.97 

compared to the un-weighted analysis with a value of 0.98, although the value of 0.97 is 

still very close to the ideal of 1. 
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Figure 4.3. Relationship between observed DMI and DMR predicted using the mean BW 
method weighted by number of steers/pen, shown as kg/steer/d. 
 
 

For the DIM model, the Cb value for the weighted analysis was 0.99 which did not differ 

from the un-weighted analysis. Both Cb values indicate that when the predictions were 

weighted on a kg per steer per d basis, the regression of observed on predicted values 

was still very similar to the Y = X line.  The regression analysis of weighted values 

revealed that both the mean BW method and the DIM model were still highly precise in 

their predictions when weighted on a per steer per d basis. 
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Figure 4.4. Relationship between observed DMI and DMR predicted using the DIM 
model weighted by number of steers/pen, shown as kg/steer/d. 
 

 

Table 4.3 provides the values for the balance analysis for both mean BW and 

DIM methods, indicating the proportion of data points about the observed mean, when 

values were weighted on a per steer per d basis. For the mean BW method, the model 

tended to over-predict more values than under-predict; 74.56% compared to 25.44% 

respectively. A similar percentage of values were over-predicted below and above the 

mean (36.99% and 37.57%; respectively) for the mean BW method. However, more 

values above the mean observed DMI were under-predicted than those below the mean. 
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Table 4.3. Data points over- and under-predicted above and below the observed mean for 
the mean BW and dynamic iterative growth model (DIM) methods of CVDS for the 
weighted analysis on a per steer per d basis 

 Mean BW method DIM method 

Model prediction Observed mean Observed mean 

 Below Above Below Above 

Over-predicted 36.99% 37.57% 31.21% 22.54% 

Under-predicted 8.09% 17.34% 13.87% 32.37% 

 

 

The tendency to over-predict was similar to what was noted on the un-weighted basis. 

The first χ
2 test revealed that the cells were not distributed evenly at 25%, with χ

2 of 

50.24 (P < 0.01). The second χ2 test reveled that, with χ2 of 4.19 (P = 0.04), that the cells 

were not independent. The odds ratio statistic of 2.07 indicated that the cells were not 

independent, as well. The conclusion was supported with the natural logarithm 

transformation of the odds ratio statistic of 0.72. The results for the balance allocation 

for the weighted analysis of mean BW predictions were similar to those found in the un-

weighted analysis, although under-predicted values differed when weighted on a per 

steer per d basis. For the un-weighted analysis, the model under-predicted more values 

below the observed mean DMI, but for the weighted analysis the model under-predicted 

more values above the observed mean. This may be due to the fact that when the values 

were weighted on a per steer per d basis, some of the variation in DOF that was seen in 

the un-weighted analysis was removed, as there was a wide range in DOF for this 

evaluation (70- 198 d). 
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The balance analysis of the weighted values of the DIM method revealed a 

tendency to over-predict values below the observed mean (31.21%), and to under-predict 

values above the observed mean (32.37%). This was the opposite of the tendencies for 

the un-weighted values, and may once again be due to the fact that some of the variation 

attributed to the wide range in DOF in the dataset was removed. The DIM method also 

tended to over-predict a greater portion of the data points (53.76% vs. 46.24%) 

compared to under-prediction, as was the case with the un-weighted analysis. The first 

and second χ
2 tests revealed that the cells were not homogeneously distributed, and not 

independent, with χ
2 of 15.42 (P < 0.01) and 13.68 (P < 0.01) respectively.  The odds 

ratio statistic of 3.18 also revealed that the cells in the DIM method were not 

independent, as this value was not equal to 1. This was also confirmed with the natural 

logarithm transformation of the odds ratio (1.16). 

The evaluation of sources of variation by decomposing MSEP showed that the 

largest portion of variation in the mean BW method analysis for weighted values was in 

the random, uncontrollable error (71.39%), which was much larger than the 44.63% 

noted in the un-weighted analysis. The other sources of errors included mean bias 

accounting for 21.06%, and errors due to regression accounting for only 7.55% of the 

variation in MSEP. The variation due to regression was decreased significantly from 

29.68% to only 7.55% which indicates that a portion of the variation in the regression 

may have been due to variation in number of steers per pen or number of DOF. This may 

be important for future analyses. 
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The decomposition of MSEP for the weighted analysis of DIM model predictions 

indicated that a substantial portion of variation was still attributable to random error at 

94.12%, and a very small amount of error was due to mean bias as was expected to the 

very low mean bias, although the 0.79% in the weighted analysis was slightly higher 

than the 0.03% in the un-weighted analysis. However, as was noted in the mean BW 

weighted analysis, the error due to regression was significantly reduced from 23.01% in 

the un-weighted analysis to 5.09% in the weighted analysis. 

Method Comparison 

 Least-square means for performance and carcass traits of each method are 

presented in Table 4.4, with preferred method determined by that which provided a mean 

bias closer to zero. The DIM model was more accurate for 110 pens of 173 total pens, 

compared to 63 pens for the mean BW method. For the carcass traits presented, HCW 

and 12th rib fat thickness did not differ between the two methods (P > 0.10). LMA 

tended to differ between the two treatments (P = 0.09), with mean BW pens having 

slightly larger LMA. Yield grade and marbling score differed (P < 0.05) between the two 

methods, such that mean BW method pens had lower yield grade and higher marbling 

score. On average, there were fewer steers per pen (P < 0.05) in those where mean BW 

method provided a lower mean bias compared to the DIM pens (7.14 and 7.85, 

respectively). Pens where mean BW provided a lower mean bias also had (P < 0.05) 

compared to the DIM method, 16.5 fewer DOF (122.6, 139.1; respectively), and a more 

energy dense ration (3.04 Mcal ME/kg DM, 2.95 Mcal ME/kg DM; respectively). 
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Table 4.4. Comparison of two methods to predict dry matter required 
 Methods 2  

Trait1 MBW DIM SE 

Number 63 110 ------ 

Steers per pen 7.14a 7.85 b 0.17 

DOF, d 122.6 a 139.1 b 3.7 

ME, Mcal/kg 3.04 a 2.95 b 0.01 

ADG, kg/d 1.62 a 1.83 b 0.03 

DMI, kg/d 9,051 a 10,949 b 349.2 

HCW, kg 365.6 a 370.1 a 2.6 

FT, cm 1.15 a 1.20 a 0.03 

LMA, cm2 90.09 c 88.64 d 0.69 

YG 2.60 a 2.77 b 0.04 

MRB score 421 a 409 b 4.8 

a,b – means with different superscript in the same row differ P < 0.05 
c,d – means with different superscripts in the same row tended to differ P < 0.10 
1 DOF, HCW, FT, LMA, YG, MRB score = days on feed, hot carcass weight, 12th rib fat 
thickness, Longissimus dorsi muscle area, USDA Yield Grade, marbling score 
2 MBW = mean body weight method and DIM = dynamic iterative growth model 
method. 

 

These steers also consumed 17% less total feed, 9,051 kg compared to 10,949 kg for the 

DIM method. These steers also gained 0.21 kg per d less than those steers where the 

DIM offered a more desirable mean bias. These differences may be partially explained 

by the method that each uses to calculate DMR. The mean BW method uses the linear 

relationship between BW and ADG to determine the average BW of the period, while 
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the DIM model relies more on differences in composition and dynamically predicts 

accumulated BW. Those pens where mean BW offered a more desirable mean bias 

differed from expected composition with no difference in 12th rib fat thickness, a greater 

amount of marbling, lower numerical yields, and a tendency to have larger LMA. The 

variation in DMI may have been better explained by variation in BW rather than 

differences in composition. 

Summary 

 Both methods (mean body weight and DIM) of CVDS were highly accurate and 

precise in allocating feed to pens of steers fed diverse type of diets and environmental 

conditions. The DIM model was slightly more accurate. Both methods tended to over-

predict DMR slightly when pens consumed more than the average of the database. The 

decomposition of the MSEP revealed that a greater proportion of error was random when 

the dynamic model was used rather than mean BW, suggesting that more information 

might be needed to account for more of the variation in dry matter intake. A larger 

proportion of error was attributed to mean and systematic biases when the mean BW 

method was used, suggesting that further improvements in the equations are needed. 

Further work is needed to decrease mean and systematic bias when using the mean BW 

method, and to account for more random variation in the dynamic model. 

Implications 

 These results suggest that CVDS using either the mean BW method or the DIM 

model can accurately and precisely allocate feed to cattle fed in pens. For this reason, 

CVDS may be a useful tool in ICMS programs. 
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CHAPTER V 

META-ANALYSIS OF THE CVDS PREDICTIONS OF INTAKE AND 

EFFICIENCY IN GROWING AND FINISHING CATTLE 

Objectives 

1)  To evaluate the effectiveness of the CVDS in predicting DMR from individually 

fed animal’s observed ADG. 

2)   To examine phenotypic correlations between predicted and observed DMI and 

feed efficiency traits from eight studies using meta-analysis. 

Materials and Method 

Table 5.1 lists definition of terms used in this evaluation. Each abbreviation is 

defined, and a definition and formula for each trait is listed. 

Database Description 

Two databases were compiled based on growing or finishing diets. The 

descriptive statistics for 403 steers used in the growing database are presented in table 

5.2. All studies in the growing database were conducted in Texas across several years, 

and were designed to characterize feed efficiency traits. The four studies consisted of 

individually fed steers, with individual animal intake measured using a Calan Gates 

system or Growsafe® technology. Diet ME ranged from 2.06 to 2.26 Mcal/kg of DM 

dependent upon study. Steers had similar average IBW, although Santa Gertrudis steers 

in study 1 and 2 were slightly heavier at the 
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Table 5.1. Definition of traits 

Trait Name Abbreviation Definition Formula 

Initial body weight IBW Body weight at start of test  

Metabolic body weight BW0.75 Mid-test body weight raised to 
the 0.75  

Average daily gain ADG Body weight gain per day  

Metabolizable energy ME Mcal/kg DM  

Dry matter intake DMI Feed intake per day  

Fat thickness FT 12-13th rib fat thickness   

Rib-eye area REA Longissimus dorsi muscle area  

Residual feed intake I RFIx 

Difference between actual 
feed intake and expected FI 

from the regression of DMI on 
gain and BW 

Calculated from the linear 
regression of DMI on ADG 

and BW0.75 using mixed 
models across all studies  

Residual feed intake II RFIinra 

Difference between actual 
feed intake and expected FI 

from French feeding standards 
formula 

DMI- expected feed intake 
from French feeding standards 

formula 

Feed conversion ratio FCR Feed intake per unit of gain DMI ÷ ADG 

Partial efficiency of 
growth PEG 

Efficiency of weight gain net 
of maintenance feed 

requirements 

ADG ÷ (DMI-intake for 
maintenance) 

Kleiber ratio KR Body weight gain per unit of 
metabolic body weight ADG ÷ BW0.75 

Dry matter required DMR Computed from CVDS model The sum of FFM and FFG 

Feed for maintenance FFM Computed from CVDS model  

Feed for gain FFG Computed from CVDS model  

DMR:ADG R:G The ratio of DMR to ADG  

Predicted intake 
difference PID 

Difference between actual 
feed intake and that predicted 

by the CVDS model 
DMI - DMR 



 
 

 

Table 5.2. Descriptive statistics (mean ± SD) of cattle in the growing database1,2 

Study Reference Sex Breed N ME IBW ADG DMI uFT3 uREA4 

1 Brown et al. 2005 S SG 116 2.14 299.3 ± 33.7 1.25 ± 0.21 10.07 ± 1.30 0.32 ± 0.16 60.55 ± 6.57 

2 Gomez et al. 2007 S SG 118 2.26 308.8 ± 27.9 0.84 ± 0.16 9.44 ± 0.99 0.45 ± 0.13 60.53 ±6.45 

3 Carstens et al. 2002 S BR 112 2.06 255.5 ± 28.7 0.97 ± 0.20 9.75 ± 1.54 0.39 ± 0.07 53.24 ± 5.89 

4 Carstens et al. 2002 S BR 57 2.06 249.2 ± 26.2 1.09 ± 0.22 10.40 ± 1.35 0.44 ± 0.06 53.49 ± 4.99 

Mean     2.13 282.8 ± 39.0 1.03 ± 0.25 9.84 ± 1.34 0.40 ± 0.13 57.52 ± 7.09 

1 S= steer, SG= Santa Gertrudis, BR= Braunvieh,  
2ME, Mcal/kg, IBW, kg, ADG, kg, DMI, kg 
3 Final ultrasound 12-13th rib fat thickness, cm  
4Final ultrasound Longissimus dorsi muscle area, cm2 
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Table 5.3. Descriptive statistics (mean ± SD) of cattle in finishing database1,2 
Study Reference Sex Breed1 N ME IBW ADG DMI cFT3 cREA4 

1 Guiroy 2001 S AN 37 2.97 302.5 ± 18.7 2.03 ± 0.22 10.91 ± 0.86 1.50 ± 0.43 77.98 ± 5.28 

2 Brown et al. 2005 S SG 106 2.99 430.9 ± 43.3 1.09 ± 0.22 9.28 ± 1.57 1.26 ± 0.50 72.59 ± 15.59 

3 Lancaster et al. 2005 S AR 117 2.73 353.7 ± 41.3 1.32 ± 0.24 10.35 ± 1.36 1.43 ± 0.35 72.20 ± 5.48 

4 Perry and Fox 1997 S MX 49 2.85 237.7 ± 36.1 1.35 ± 0.21 8.08 ± 0.93 0.87 ± 0.50 85.12 ± 10.02 

Mean     2.89 355.7 ± 77.6 1.33 ± 0.36 9.69 ± 1.61 1.29 ± 0.48 75.08 ± 11.63 

1 S= Steer, AN=Angus, SG=Santa Gertrudis, AR= Red Angus, MX= Crossbred 
2ME, Mcal/kg, IBW, kg, ADG, kg, DMI, kg 
3Carcass 12-13th rib fat thickness, cm 
4Carcass Longissimus dorsi muscle area, cm2 
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start of the trial than Braunvieh steers in studies 3 and 4, with an overall SD of 38.97 

across all studies in the database. Steers in study 2 gained the least per day (0.84 kg/d), 

as compared to study 1 which had the greatest weight gains (1.25 kg/d). Steers in study 2 

also had the lowest DMI of the four studies. Steers across studies had similar final 

ultrasound FT; however Santa Gertrudis steers had slightly larger final ultrasound REA. 

Within studies, cattle were individually fed and managed in a similar manner. 

Summary statistics for the four studies used to compile the finishing database are 

presented in table 5.3. The database consisted of 309 individually fed steers. A total of 

eleven steers were removed from the database, nine from study 2 and two from study 3, 

due to periods during the trial in which BW was lost from one weigh period to the next. 

Study 1 and 4 were conducted in New York by Cornell University. Study 2 and 3 were 

conducted in Texas. Red Angus steers in study 3 had slightly lower metabolizable 

energy than other studies. Santa Gertrudis steers in study 2 had the heaviest initial BW, 

while crossbred steers in study 4 had the lowest initial BW. The finishing database 

contained more variation in initial BW as compared to the growing database, with a SD 

of 77.64 kg. Angus steers in study 1 recorded the highest gains, at slightly less than 1 kg 

per day more than Santa Gertrudis steers in study 2, who recorded the lowest gains over 

the feeding period. Crossbred steers in study 4 not only had the lowest DMI, but also had 

the leanest carcasses by 0.39 cm, with the largest rib-eyes by 12.92 cm2. As the steers in 

study 4 were selected to represent five breed types, and fed to three different carcass 

weight endpoints, their carcass composition differs slightly from the other studies in the 
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database. Thus, data in study 4 may present a problem in the combined analysis. The 

Santa Gertrudis steers also may present a problem in the analysis as they had the lowest 

ADG by 0.23 kg as compared to the Red Angus steers whose ADG was the next lowest, 

and gained 0.24 kg less than the average of the database, after those steers with 

questionable BW were removed. As was the case with the growing database, within 

study, cattle were fed and managed in a similar manner.  

Feed efficiency traits calculated within study included FCR, which was 

calculated as the ratio of DMI to ADG, PEG, which as described by (Geay and Micol, 

1988) offers an efficiency of weight gain in excess of estimated maintenance 

requirements, and KR, which gives body weight gain per unit of metabolic weight. 

The Cattle Value Discovery System  

Dry matter required for individual animals was calculated using the CVDS 

model. Individual animal performance and carcass information that were input into the 

model included: sex, implant status, breed type (beef or dairy), hide thickness, initial 

date of feeding period, approximate age, BCS, initial and final BW, yield grade, hot 

carcass weight, 12th rib fat thickness, marbling (MRB) class and percentile, and 

Longissimus dorsi muscle area. For growing steers, equivalent HCW was calculated 

from empty final body weight as HCW = (EBW- 30.26) ∕ 1.326 as described by Perry 

and Fox (1997). For finishing steers, actual carcass data was available for MRB, LMA, 

and FT, while for growing steers, ultrasound measurements, taken at the end of each 

trial, of percentage intra-muscular fat (%IMF), LMA, and FT were utilized in CVDS 

predictions. Additionally for each individual animal in the dataset, BW and carcass 
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composition (HCW, LMA, FT, and MRB) were used to predict a BW at 28% empty 

body fat (EBF). 

The dynamic iterative growth model of CVDS as described by (Tedeschi et al., 

2004) was used to calculate individual animal FFM, FFG, and their sum, or DMR. 

Several feed efficiency traits were then calculated using this prediction of intake. These 

include the ratio of DMR to ADG and the predicted intake difference, which was the 

difference between actual DMI and DMR.   

Statistical Analysis 

St. Pierre (2001) discussed the application of compiling data from multiple 

published studies in attempt to obtain relationships among key variables. This statistical 

process has been labeled meta-analysis. Tedeschi (2006) offered the use of meta-analysis 

as a useful technique to remove effects of study when data are obtained from literature to 

develop or evaluate models to further decrease the risks associated with sampling error. 

For this analysis, the results of the previously described studies were adjusted for the 

effect of study using the following statistical techniques. 

The MIXED procedure of SAS (SAS Institute Inc, Cary, NC) was used to 

compute the mixed RFI (RFIx) for growing and finishing databases assuming studies 

within databases as random effects and variance components for the variance-

(co)variance matrix using Equation [1].  

 

  [1] 

Where a, b, and c are N ((β0, β1, β2), Ψ), and eij is random, uncontrolled errors N (0, σ
2). 

 0.75     and      ij ijij ij i i ij iRFIx DMI DMI DMI a b ADG c BW
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A simpler random coefficient model (RCM) was used to adjust the Y-variate to 

the effects of studies. The fixed effects plus the residual error from the RCM were 

combined and Pearson correlation coefficients were obtained. In these two RCM, both 

intercept and slopes were adjusted for studies. Similarly, a third RCM was used to 

compare RFIx and other variables, but no adjustment on the intercept for studies was 

allowed. 

Results and Discussion 

Model-Predicted Traits 

The Pearson correlation coefficients between model-predicted intake and 

efficiency traits for both growing and finishing steers are presented in table 5.4. As 

expected, due to the relationships among the calculation of these traits, all correlations 

were significantly different from zero. For growing steers, as expected, there were strong 

correlations between DMR and FFM and FFG (0.70 and 0.99, respectively) for these 

403 individually fed steers, indicating that a larger proportion of DMR was explained by 

feed partitioned for gain than that explained by maintenance. The FFM was moderately 

correlated (r = 0.60) with FFG. 

There were moderate to strong negative correlations between DMR and the two 

model calculated efficiency traits, R: G and PID (-0.50 and -0.69, respectively). When 

DMR increased, the R: G decreased, such that more efficient animals had higher DMR. 

The negative relationship between DMR and PID also indicated a more efficient animal 

when DMR was increased. 
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Table 5.4.  Pearson correlation coefficients of model-predicted traits of growing (above 
diagonal) and finishing (below diagonal) cattle 

 DMR FFM FFG R:G PID 
DMR --- 0.70 0.99 -0.50 -0.69 
FFM 0.79 --- 0.60 0.25 -0.25 
FFG 0.99 0.61 --- -0.62 -0.72 
R:G 0.09b 0.50 -0.19 --- 0.46 
PID -0.52 -0.25 -0.57 -0.21 --- 
a Correlation was not different from zero at P > 0.05 
b Correlation tended to differ from zero at P < 0.10 

 

 

Arthur et al. (2001b), in their estimation of phenotypic and genetic correlations 

between growth and feed efficiency in growing Charolais bulls, noted a moderate 

positive correlation between actual feed intake and RFIinra, which calculated expected 

feed intake from French feeding standards rather than linear regression. The RFIinra 

estimates were similar to PID analyzed in this database. However, the relationship 

between PID and DMR is still expected to be similar in direction to that reported 

between DMI and RFIinra. This contrast may be due to the use of actual DMI as 

compared to DMR or the differences in the calculation of expected feed intake in the 

feed efficiency measures.  

The FFM was weakly correlated with both R: G and PID, although positively 

with R: G (r = 0.25), and a negatively with PID (r = -0.25). This was such that as an 

animal’s FFM increased, the R: G increased, which indicated a less efficient animal. 

However, a contrasting relationship was noted with PID and FFM. As an animal’s feed 

requirement for maintenance increased it became more efficient, with a smaller PID 

value. This differs from the results of Castro Bulle et al. (2007), who found the tendency 
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for a moderate positive correlation between RFI and ME for maintenance, and although 

not statistically significant, they found that low RFI steers had lower numerical ME for 

maintenance. 

The FFG had moderate to strong negative correlations with both efficiency 

measures. As an animal’s feed available for gain increased, the R: G decreased, 

indicating a more efficient animal. A similar relationship was noted between FFG and 

PID. As FFG increased, PID decreased, indicating that the animal was more efficient. 

This may be highly related to the animal’s maintenance requirements. As an animal’s 

maintenance requirement was decreased, more feed was available for gain, which may 

be indicative of the relationship found in this dataset. 

In the finishing database, all traits except DMR and R: G were significantly 

correlated with P < 0.05. As in the growing database, DMR had a strong positive 

correlation with both FFM and FFG (0.79 and 0.99; respectively), with a slightly 

stronger correlation with FFG. This also indicates that there may be a slightly stronger 

relationship between FFG and DMR than FFM. 

A moderate negative correlation was found between DMR and PID for the 

finishing database. This correlation was slightly stronger than that found by Tedeschi et 

al. (2006). Unlike the growing database, there was the tendency (P = 0.08) for a weak 

positive correlation between DMR and R: G. Figure 5.1. illustrates this relationship 

between DMR and R: G. An examination of intercepts for the regression line of 

individual studies revealed that study 1 had a slope of -0.79, study 2 had a slope of 1.51, 

study 3 had a slope of 1.38, and study 4 had a slope of -2.0974. This suggested that the 
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relationship being represented in this partial correlation may be difficult to interpret due 

to the large amount of between study variation present in this dataset. This differs from 

the relationship reported by Tedeschi et al. (2006), who found a moderate negative 

relationship between DMR and R: G with r = -0.40. These differences may be due to 

inherent problems in the studies combined to form the finishing database. Santa 

Gertrudis steers used in this data set had low ADG even after those steers with losses in 

BW were removed from the dataset. This may be masking the true relationship between 

DMR and R: G.  

 

Figure 5.1. Relationship between DMR and R: G for finishing steers. 

 

The FFM and FFG were moderately correlated with a similar Pearson correlation 

coefficient to the growing database. The FFM was positively correlated with R: G and 
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negatively correlated with PID, indicating a contradictory trend in regards to efficiency. 

This relationship was similar to that found with growing steers, but was also 

contradictory to the results of Castro Bulle et al. (2007), as was discussed with the 

growing database. Johnson et al. (2003) noted that fattening steers retained only 16-18% 

of energy that they consumed, with the largest loss associated with maintenance 

function, and that the maintenance component comprises approximately 50% of ME 

requirements. This indicates that in regards to efficiency of ME utilization, the function 

of maintenance represents the most inefficient portion, which may be causative of the 

contradictory relationships between FFM and the two model-predicted efficiency 

measures. 

Weaker correlations were noted between FFG and R: G and PID in the finishing 

as compared to the growing database. A weak negative correlation was found between 

FFG and R: G and may be partially due to problems associated with ADG in the Santa 

Gertrudis study. The negative relationship between PID and FFG was similar to that 

found in the growing database, but was slightly weaker. 

With the growing steers, a moderate positive correlation was found between R: G 

and PID, which was slightly stronger than that found by Tedeschi et al. (2006), who 

reported an r = 0.34. This was not the case with the finishing steers, where a weak 

negative correlation was found between the two model-predicted efficiency traits. The 

dataset used by Tedeschi et al. (2006) contained two of the same studies as the finishing 

database in this analysis. However, several of the correlations in this analysis were 
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contradictory to those noted by Tedeschi et al. (2006). This was likely due to the other 

two studies included in this analysis. 

Model-Predicted Traits and Performance 

 Pearson correlation coefficients for model-predicted traits and performance and 

carcass traits for steers in the growing and finishing databases are presented in tables 5.5 

and 5.6, respectively. The CVDS explained 64% of the variation in observed DMI in the 

growing database, and 67% of the variation in the finishing database. This was slightly 

higher than was reported by Tedeschi et al. (2006) and Williams et al. (2006), who found 

that the CVDS accounted for 56% and 53% of this variation respectively.  

 In the growing database, strong correlations were found between DMR and both 

ADG and BW0.75. This relationship was expected as DMR was calculated from the sum 

of FFM and FFG, which were based on the animal’s BW, gain, and composition of gain. 

However, weak positive correlations were noted between DMR and the two measures of 

body composition in the growing database, ultrasound 12-13th rib fat thickness and 

longissimus dorsi muscle area taken at the end of each trial. The strong relationship 

between DMR and measures of BW and gain as compared to relatively weak 

relationship with DMR and measures of body composition suggests that ADG and BW 

have a greater impact on the estimation of DMR than composition of gain. Further 

research is needed to assess the sensitivity of DMR to errors in the measurements of 

BW, gain, and composition of gain, and to determine which of these errors has the most 

serious effect on DMR. A similar relationship between the two measures of body 
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composition and FFM and FFG were also noted. However, the relationship between 

FFM and uREA was slightly stronger. 

 
 
Table 5.5. Pearson correlation coefficients of model-predicted traits and selected 
performance and carcass traits for growing calves 

 DMR FFM FFG R:G PID 
DMI 0.80 0.65 0.75 -0.19 0.30 
ADG 0.96 0.47 0.99 -0.84 -0.69 
BW0.75 0.73 1.0 0.58 0.26 -0.22 
uFT1 0.38 0.31 0.35 0.09b -0.04a 

uREA2 0.33 0.59 0.22 0.06a -0.04a 

1 uFT= Final ultrasound 12-13th rib fat thickness, cm. 
2 uREA= Final ultrasound Longissimus dorsi muscle area, cm2. 
a Correlation was not different from zero at P > 0.05. 
b Correlation tended to differ from zero at P < 0.10 
 

 

Table 5.6. Pearson correlation coefficients of model-predicted traits and selected 
performance and carcass traits for finishing calves 

 DMR FFM FFG R:G PID 
DMI 0.82 0.66 0.80 -0.01a 0.49 
ADG 0.91 0.35 0.94 -0.75 -0.36 
BW0.75 0.73 0.90 0.61 0.36 0.04a 

cFT1 0.48 0.48 0.43 0.35 -0.07a 

cREA2 0.29 0.07a 0.24 -0.11b -0.14 
1 cFT= 12-13th rib fat thickness, cm. 
2 cREA= Longissimus dorsi muscle area, cm2. 
a Correlation was not different from zero at P > 0.05. 
b Correlation tended to differ from zero at P < 0.10. 

 

 

 Both R: G and PID were negatively correlated with ADG. This was such that 

selection for more efficient animals would result in an increase in ADG, which may 

favor larger, faster growing animals. Although the relationship was slightly stronger in 
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this analysis, Arthur et al. (2001b) also noted a negative relationship between RFI with 

expected feed intake calculated from French feeding standards. As the authors discuss, 

this relationship was not unexpected, as unlike RFI with expected feed intake calculated 

from the linear regression of DMI on ADG and BW0.75, RFIinra and in this case PID are 

not automatically independent of BW and ADG. Fan et al. (1995) found a similar 

relationship when expected feed consumption was calculated using NRC (1984).  A 

negative correlation was also found between PID and BW0.75, and was slightly weaker 

than that reported by both Arthur et al. (2001b) and Fan et al. (1995). This was such that 

more efficient steers as defined by PID had larger BW and higher ADG. On the other 

hand, R: G was weakly positively correlated with BW, such that more efficient steers 

had lighter BW. As DMR is calculated based on BW, gain, and composition, it is highly 

dependent on these traits. When DMR is used as an expected feed intake measure for use 

in efficiency calculations, the resultant trait is confounded with BW and gain. This 

means that selection for more efficient cattle using an efficiency trait such as PID may 

result in a corresponding selection for an increase in BW and gain. Further research is 

needed to examine this relationship. 

Correlations between the two model-predicted efficiency measures and body 

composition measures were not different from zero at P > 0.05. However, there was a 

tendency of having a weak positive correlation between R: G and uFT. This suggests 

that the selection for more efficient animals using either efficiency measure would not 

affect carcass composition. 
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The R: G was negatively correlated, although weakly, with DMI. This was in 

contrast to the relationship between observed DMI and observed FCR reported by 

Arthur et al. (2001a), who noted a weak positive relationship between the two traits. 

PID, however, was positively correlated with DMI. The relationship between PID and 

DMI was similar to that reported by Arthur et al. (2001b).  

In the finishing database, strong positive correlations were also noted between 

DMR and ADG and BW, as was the case with the growing calves. The relationship 

between DMR and ADG was similar to that reported by Tedeschi et al. (2006). Similar 

correlations were found between carcass composition, as indicated by carcass FT and 

longissimus dorsi muscle area, and DMR as those between DMR and ultrasound 

measures of body composition in the growing database, with the relationships with FT 

slightly higher in finishing steers, and the relationship with REA slightly lower in 

finishing steers. The relationships between FFM and FFG and carcass composition were 

also very similar to those reported in the growing steers, with the exception of FFM and 

REA, which was not different from zero. 

In this dataset, R: G was not correlated to observed DMI, which was similar to 

the results of Tedeschi et al. (2006). The relationship between PID and DMI was 

positive, and slightly higher than that reported by Tedeschi et al. (2006). Both R: G and 

PID were negatively correlated with ADG, with the relationship between R: G and ADG 

being stronger and both were similar to values of Tedeschi et al. (2006). The relationship 

between PID and BW was not different from zero. This was in contrast to the results of 

Arthur et al. (2001b) and Fan et al. (1995), who reported a negative correlation between 
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BW and similar traits. Although calculated in a somewhat similar manner, the authors of 

the previous studies calculated the expected feed intake from French feeding standards, 

and the NRC (1984), which does not involve the same equations used to calculate DMR 

by the CVDS.  

The relationships between the two model-predicted efficiency measures and body 

composition differed from that reported in the growing database. The R: G was 

positively correlated with FT, and tended to be negatively and weakly correlated with 

REA. There was no relationship between PID and FT, but a negative relationship with 

PID and REA. These differences may be due to the large amount of variation between 

studies in carcass composition. The steers in study 4 were much leaner than steers in the 

other four studies, and had much larger REA. This difference in composition may be 

attributed partially to breed type, as steers in study 4 were a British Continental cross, 

while steers in study 1 and 3 were purebred British and steers in study 2 were Brahman 

influenced. 

Model-Predicted Traits and Observed Efficiency Measures 

 Pearson correlation coefficients for model-predicted traits and observed 

efficiency traits are presented in tables 5.7 and 5.8 for growing and finishing steers, 

respectively. The PID as predicted by the CVDS model was able to explain 48% of the 

variation in RFIx in the growing database and 33% in the finishing database. This was 

slightly lower than the correlation reported by Tedeschi et al. (2006) for finishing steers, 

with an r = 0.84. The correlation in the growing database was similar to the relationship 
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reported by Arthur et al (2001b), with a correlation between RFI calculated from 

regression and by French feeding standards of 0.70. 

 The RFIx was not correlated with DMR in either the growing or finishing 

databases. This was consistent with the results of Tedeschi et al. (2006). The RFIx was 

not correlated with any of the other model-predicted traits in either database. Tedeschi et 

al. (2006) found that R: G was weakly correlated with RFI, which differs from these 

findings. 

 

Table 5.7. Pearson correlation coefficients of model-predicted traits and efficiency traits 
in growing calves 

 DMR FFM FFG R:G PID 
RFIx 0.01a 0.01a 0.02a 0.05a 0.69 
FCR -0.64 0.07a -0.74 0.87 0.91 
PEG 0.44 -0.12 0.52 -0.70 -0.95 
KR 0.80 -0.05a 0.89 -0.94 -0.66 
a Correlation was not different from zero at P > 0.05. 
b Correlation tended to differ from zero at P < 0.10. 
 
 
 
 
 
Table 5.8. Pearson correlation coefficients of model-predicted traits and efficiency traits 
in finishing calves 

 DMR FFM FFG R:G PID 
RFIx 0.04a 0.03a 0.04a 0.06a 0.57 
FCR -0.45 0.30 -0.58 0.80 0.80 
PEG 0.37 -0.30 0.49 -0.71 -0.89 
KR 0.80 -0.16 0.87 -0.89 -0.44 
a Correlation was not different from zero at P > 0.05. 
b Correlation tended to differ from zero at P < 0.10. 
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The FCR was negatively correlated with DMR and FFG in both the growing and 

finishing databases, with slightly stronger correlations in the growing database. In the 

growing database, the relationship between FCR and FFM was not different from zero, 

while in the finishing database, a weak positive correlation was found between these two 

traits. The FCR was strongly correlated with both R: G and PID in both databases, with 

slightly higher correlations in the growing database. This was in agreement with the 

relationships reported by Tedeschi et al. (2006) and Arthur et al. (2001b). 

The PEG was negatively correlated with FFM, R: G, and PID in both databases. 

As PEG describes the efficiency of weight gain net of feed required for maintenance, 

this negative relationship with FFM was expected, as it was represented in the 

denominator of this ratio. The relationships between PID and PEG were slightly stronger 

than the relationship between PEG and RFIinra reported by Arthur et al. (2001b). The 

PEG was positively correlated with both DMR and FFG in both databases, with slightly 

stronger correlations in the growing database. 

Similar correlations between KR and the model-predicted traits were found in 

both databases, with the exception of FFM, which was not correlated with KR in the 

growing database. The correlation between DMR and KR was similar to that reported by 

Tedeschi et al. (2006). As KR increased, a greater ADG relative to maintenance 

requirement was represented, as KR was the ratio of ADG to BW0.75. A strong negative 

correlation was found between KR and R: G. This was as expected due to the fact that 

the numerator of the KR was the denominator of R: G. Tedeschi et al (2006) found 

similar strong correlations between these two traits, although a slightly stronger 
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relationship was noted in this analysis. KR was also negatively correlated with PID 

although the relationship was not as strong as with R: G, and the relationship was 

slightly stronger in the growing database.  
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CHAPTER VI 

CONCLUSIONS 

Feed costs represent the largest expense in beef production, and Individual Cattle 

Management Systems (ICMS) have been suggested to improve profitability. The Cattle 

Value Discovery System (CVDS) was developed to predict growth and feed requirements 

of individual cattle fed in groups based on animal, diet, and environment information 

(Tedeschi et al., 2006). This evaluation of the CVDS: (1) examined the accuracy of  the 

model’s prediction of DMR for cattle fed in groups (2) examined the model’s sensitivity 

to diet ME values (3) compared the model’s prediction of DMR to actual DMI of 

individual animals and (4) evaluated the use of several model-predicted feed efficiency 

measures. 

The first evaluation of the CVDS model involving pen-fed Santa Gertrudis steers 

revealed that accurate prediction of individual DMR of pen-fed cattle was possible, with 

an average mean bias of 2.43% for both steers and heifers. This suggested that the CVDS 

model may be a useful tool to successfully implement ICMS, although further research 

may be needed to improve inconsistencies in mean bias of DMR prediction. The 

sensitivity analysis of dietary ME values revealed that the model tends to consistently 

over- and under-predict DMR when the ME values are under- and over-estimated 

respectively. However the ranking of pens was not affected by this mis-estimation of diet 

ME, which suggests that the CVDS prediction of DMR may also have utility in the 

prediction of feed inputs for genetic evaluation.  
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The second evaluation of the CVDS also evaluated the model’s prediction of feed 

required for pen fed steers from several research trials. Both methods (mean body weight 

and dynamic iterative model) of CVDS were highly accurate and precise in allocating 

feed to pens of steers fed diverse type of diets and environmental conditions. The DIM 

model was slightly more accurate. Both methods tended to over-predict DMR slightly 

when pens consumed more than the average of the database. The decomposition of the 

MSEP revealed that a greater proportion of error was random when the dynamic model 

was used rather than mean BW, suggesting that more information might be needed to 

account for more of the variation in dry matter intake. A larger proportion of error was 

attributed to mean and systematic biases when the mean BW method was used, 

suggesting that further improvements in the equations are needed. Further work is needed 

to decrease mean and systematic bias when using the mean BW method, and to account 

for more random variation in the dynamic model. These results suggested that CVDS 

using either the mean BW method or the DIM model can accurately and precisely 

allocate feed to cattle fed in pens. For this reason, CVDS may be a useful tool in ICMS 

programs. 

The meta-analysis of CVDS predictions for growing and finishing steers revealed 

that the model was able to account for 64% and 67% of the variation in observed DMI for 

growing and finishing steers, respectively. However, future work is needed to account for 

more of the animal variation in DMI.  The two model-predicted efficiency measures, R: 

G and PID, were strongly to moderately correlated with their observed efficiency 
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counterparts. In growing and finishing steers, R: G was able to account for 76% and 64% 

of the variation in observed FCR. Strong correlations were also found between RFIx and 

PID, suggesting that there may also be some similarity on these two measurements.  

These three analyses support the results of Tedeschi et al. (2006), Guiroy et al. 

(2001), and Tedeschi et al. (2004) who concluded the CVDS was able to account for a 

large portion of the variation in observed DMI. The authors also concluded that the 

CVDS may be a useful tool in ICMS, by allocating feed to individual cattle fed in group 

pens based on animal performance and diet information. 
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