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ABSTRACT 

 

 

 
Modeling Economic Resilience and Animal Disease Outbreaks in the Texas High Plains. 

(December 2010)   

Hen-I Lin, B.A., National Taiwan University;  

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Bruce A. McCarl 

 

Foot and Mouth Disease (FMD) could have a significant impact on the U.S. 

agriculture industry and the welfare of U.S. producers and U.S. consumers. In order to 

address the potential impact from animal disease outbreaks, this project is designed to 

utilize a combined epidemic and economic modeling framework to evaluate animal 

disease management strategies which can be used to reduce the potential losses in an 

unusual event such as FMD outbreaks. 

In this study, we compare the welfare changes among three different parties with 

different strategies using, 1) ANOVA analysis; 2) cost benefit analysis; and 3) Risk 

Aversion Coefficient (RAC) analysis. Four types of index feedlots are selected in the 

study including, Feedlot Type 1 (> 50,000 heads of animals), Feedlot Type 4 

(backgrounder feedlot), Large Beef Grazing (>100 heads of animals), and Backyard 

(<10 heads of animals). Results suggest that early detection of FMD events has the 

advantage in reducing risk as shown in the epidemiological impacts. Enhanced 

surveillance is found to be a preferred mitigation strategy for U.S. consumers in the 



iv 

scenario of smaller feedlot disease introductions (e.g. Large Beef Grazing and Backyard) 

and for U.S. producers in the larger feedlot disease introduction scenarios (e.g. Feedlot 

Type 1 and Feedlot Type 4). Adequate vaccination is not cost effective when seeking to 

minimize average loss but becomes a preferred strategy when the risk aversion rises. 

Risk modeling with stochastic programming adopted in this study also confirms 

the importance of incorporating risk evaluation into decision making process. It offers 

another option for us to evaluate the mitigation strategies. Two portfolio models are 

adopted in this study including, E-V model (mean variance portfolio choice model) and 

Unified model. The results show that the preference for control strategies depends on 

risk attitude. Early detection proves to be preferable for U.S. consumers and is also 

preferred by U.S. processors and producers as Risk Aversion Parameters (RAP) rises. 

Adequate vaccination strategy can benefit U.S. consumers but does not give U.S. 

processors a better outcome. Adequate vaccination provides a better choice for U.S. 

producers when the RAP rises. Enhanced surveillance is preferred for U.S. consumers. 

For U.S. processors, enhanced surveillance does not give a better risk/return outcome. 

U.S. producers are likely to switch their preferences from regular surveillance to 

enhanced surveillance as their RAP rises.  
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1. INTRODUCTION 

 

Stimulated by economic growth, the demand for livestock products has been 

growing rapidly. According to a 2009 United Nations, Food and Agriculture 

Organization (FAO) report, the consumption of livestock products has shown substantial 

growth in major developing and developed countries, excepting in Africa (United 

Nations 2009). Research finds that the consumption of livestock products is significantly 

influenced by income level and urbanization (Rae 1998). More advanced technology 

used in breeding, feeding, processing, transporting, and marketing of livestock products 

has resulted in structural change in agriculture. The change in both consumption and 

livestock production has increased the volume of international trade. The United Nations 

FAO report also shows an increase in international trade volume and share of total 

agricultural livestock production from 1980 to 2006 (United Nations 2009).   

Because of technology use and increased livestock production, agricultural 

production has also gradually become more greatly geographically clustered (United 

Nations 2009).  

Considering the concentration of animals and urbanization, plus the more recent 

greater incidence of disease outbreaks, the prevention and control of potential animal 

disease outbreaks has become a very critical issue. For example, in the United States the 

cattle industry is very highly concentrated in the Great Plains region (see Figure 1). 

Several disease outbreak events have shown that naturally occurring animal disease can 

cause not only extreme economic loss in the livestock industry in this country, but can  

*This dissertation follows the style of The American Journal of Agricultural Economics. 



   
2 

also be a potential threat to human health and security of the general public as discussed  

below.  

 

 

 

Figure 1: U.S. cattle and calves distribution  

Source: US Department of Agriculture, National Agricultural Census Statistics 

Service, 2007. Cattles and Calve Inventory-2007.   

 

In February 19, 2001, Donald Vidgeon, a British livestock transporter, noted a 

problem with sows he was to transport that morning, and alerted Mr. Craig Kirby, a 

resident veterinarian in Brentwood, United Kingdom (UK). This started the discovery of 

a Foot and Mouth Disease (FMD) outbreak in 2001, which was soon determined as the 
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worst recorded epidemic outbreak (Anderson, 2002). Although FMD is not a direct 

danger to human health, this outbreak resulted in an extreme loss to the country. During 

the epidemic FMD outbreak in the UK, over 6 million animals were slaughtered and 

approximately £8 billion were lost (Donaldson et al. 2006).   

FMD has traditionally been controlled by conventional strategies, including the 

slaughter of infected animals and the „stamping-out‟ strategy (Anderson, 2002). 

Researchers also indicate that the non-vaccination policy was adopted in Europe from 

1992 and the strategy of stamping-out was used under farmers‟ or producers‟ choices 

(Cohen, Van Asseldonk, and Stassen, 2007). These strategies were used in the FMD 

outbreak occurring in 1981 at the Isles of Wight, United Kingdom, and they were 

actually effective in preventing the disease from spreading in the regions where a small 

number of cases were found (Anderson, 2002).   

However, conventional strategies were not able to stop the 2001 UK epidemic of 

FMD disease outbreak in most parts of the country (UK). Therefore, a culling strategy 

was adopted as an alternative to control the outbreak (Anderson, 2002). All infected and 

direct contact healthy animals were removed to ensure the elimination of FMD. As the 

UK exported meat to other countries, the impact reached many other traditional trade 

partners. Ex post estimates show that the damage to the UK economy is huge and the 

total estimated cost is between £7.6 to £8.5 billion (Mangen and Burrell 2003). The 

incident then led to increased public awareness and policy consideration relating ways to 

deal with threats from infectious animal diseases.      

Recent bovine spongiform encephalopathy (BSE), avian influenza (AI), and 
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classical swine flu events also raise similar concerns. In the United States, the 2003 BSE 

event resulted in immediate closure of beef overseas markets in several major U.S. beef 

importing countries, including Japan, Korea, Mexico, and Canada, stimulating lower 

prices and beef industry losses (Pendell et al. 2007).   

During the 1997 Hong Kong avian influenza outbreak event, the AI virus was 

discovered among poultry handlers (WHO 2007). This event has started establishing 

evidence that AI can infect both animals and humans. Beginning in 2003, AI viruses 

caused animal disease outbreaks in poultry in several countries in southeastern Asia, 

including Bangladesh, Thailand, India, Indonesia, and Myanmar (WHO 2007). At the 

same time, China, Cambodia, Laos, and Vietnam also reported infections (WHO 2007). 

Approximately 250 million birds either died or were culled during the outbreak. The 

economic loss in Asia was also sizeable (WHO 2007).  

The recent swine flu (influenza A H1N1) outbreak starting from Mexico in April 

2009 has been reported to cause more than 18,114 deaths and affect more than 214 

countries as of May 2010 (WHO 2010). The novel strand of influenza virus usually 

emerges from the exchange of viruses among different animals, humans, or wild birds 

(Narain, Kumar, and Bhatia 2009). Given that current agriculture production involving 

animals tend to be concentrated in populated areas because of the trend toward 

urbanization, the probability of having an epidemic infectious disease may be greater 

and will result in threats to potential economic loss and human health.         

Research has suggested that movement of animals is an important risk factor 

influencing epidemic spread (Green, Kiss, and Kao 2006). Therefore, implementing 
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effective prevention or response strategies at the local level to prevent the outbreak from 

happening has grown to be a critical issue in the area of animal disease control, 

particularly within the context of modern agricultural industry.   

Because FMD is the most contagious animal disease of hoofed mammals and a 

potential massive animal health and economic threat, FMD is a priority area of concern 

within the United States Department of Agriculture (USDA) and the Department of 

Homeland Security (DHS). Many studies on the analysis of FMD-related decision-

making have appeared mainly in veterinary journals (Bates et al. 2001, 2003; Berentsen, 

Dijkuizen, and Oskam 1992; Ferguson et al. 2001; Garner and Lack 1995; Keeling et al. 

2001; Schoenbaum and Disney 2003). Most of those studies examine decision-making 

once an outbreak has occurred, largely addressing post-outbreak disease spread 

management with vaccination and slaughter as FMD disease spread management 

policies.   

To further contribute to knowledge in this area, this dissertation is designed to 

research the effects of various mitigation strategies using combined Epidemic-Economic 

Simulation Modeling in an effort to provide information to reduce the cost and incidence 

of extreme disasters, and improve industry economic resiliency. This study is conducted 

in the face of a possible animal disease outbreak in the Texas High Plains.   

1.1. Research Questions 

FMD is a high risk disease facing the livestock industry. Research at the Center for 

Foreign Animal and Zoonotic Disease Defense (FAZD) has been examining the 

vulnerability of animal agriculture pertaining to this and other disease issues. In 
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addressing the FMD issue one can approach it from several perspectives. First, one may 

address the fundamental issues inherent in the following questions:   

1. How much of a threat is FMD? 

2. Are there actions that if undertaken would limit vulnerability in terms of disease 

management alternatives during the course of an outbreak? 

3. What are scientific developments that could accelerate detection or provide 

increased degrees of immunity?  

4. What actions will be undertaken afterwards that could reduce further disease 

damage from different viewpoints of different parties?  

Second, one could evaluate the risk consequences of mitigation actions by studying 

the welfare effects of various disease management strategies using stochastic modeling 

and economic risk-associated analytical approaches.  

In this work a combination of these approaches will be used employing combined 

economic-epidemic simulation analysis, and a further risk based investigation. 

1.2. Research Objectives and Methodology 

This dissertation research investigates the effect of mitigation strategies on sectors‟ 

resiliency to potential animal disease outbreak. Addressing this problem requires a 

modeling formulation that depicts the resiliency response to decisions and sector 

characteristics. Two major modeling approaches will be taken to address this problem. 

The first modeling approach is an economic-epidemic framework that evaluates the 

consequences of a set of disease management strategies, and examining their effects on 

welfare, welfare distribution in turn making inferences about effects on resiliency. 
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Disease outbreak will be simulated under a stochastic disease spread assumption. The 

second modeling approach involves determination of “optimal" resiliency responses 

with risk modeling through stochastic programming. 

1.3. Case Study Region 

Although the threat of animal disease outbreak on agricultural product supply in the 

United States is generally huge, Texas is one of the more vulnerable states. Texas has 

around 20 percent of the U.S. beef cattle production, and the total cattle industry sales 

value is estimated around $8 billion per year (Elbakidze et al. 2008). An FMD outbreak 

occurs in Texas, could well cause serious damage to the U.S. agricultural sector, and, 

consequently, to the whole economy. Therefore, Texas is an important region to target 

when researching resiliency responses of sector characteristics to animal disease 

outbreak.   

In Texas, the major area for where beef cattle feedlots are located is in the 

Panhandle region.  This study examines an 8-county area in the Panhandle of Texas (see 

Figure 2). According to the US Department of Agriculture (2007), those 8 counties 

contain 17.5 percent of the cattle and calves in the State of Texas, which is 2.5 percent of 

the U.S. total cattle and calf population. Moreover, in the category of cattle on feed, 

those regions contain 83.5 percent of Texas animals and 16.4 percent of U.S. animals. 

The initial motivation is to investigate a potential economic problem in modeling 

economic resilience for a possible animal disease outbreak in the Texas High Plains.   

In addition, examining mitigation options on a local basis rather than a national 

scale can provide a better understanding of various components of developed optimal 
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economic approaches used to prevent or detect disease outbreaks. Characteristics of 

developed economic models can be applied to a broader setting.   

 

 

Figure 2: The Texas high plains project study regions 

 

1.4. Organization of the Study 

This dissertation is organized into five sections. Section 1 provides the introduction, 

research methodology, case study focus and objectives of the study. Section 2 gives an 

overview of the literature on the history of biosecurity within the context of animal 

disease management, the development of FMD disease control strategies, and the 
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concept of economic resiliency, as well as its application in decision support tools. 

Section 3 applies an integrated epidemic-economic modeling to control strategies 

applied to an FMD disease outbreak in the Texas High Plains, and also employs 

stochastic dominance and risk aversion analysis to evaluate the effectiveness of 

mitigation strategies. Section 4 reports results of using a stochastic programming 

application of two risk portfolio choice formulations to evaluate optimal choice of 

mitigation strategies. Section 5 gives conclusions and discussion of future research. 

1.5. Definition of Key Terms 

Biosecurity: society‟s collective responsibility to safeguard the population from 

dangers presented by pathogenic microbes whether intentionally released or naturally 

occurring (Fidler and Gostin, 2008); it describes management practices preventing 

infectious disease from being introduced into a herd or flock. 

Economic Resiliency: the ability of an agency/sector to recover from a severe 

incident (Rose, 2004). It includes two types of resilience: 1) inherent – the ability to 

recover under normal circumstances (eg. The ability to substitute inputs or allocate 

resources to respond to the price increase followed by the incident); 2) adaptive – the 

ability to recover under crisis (eg. Expanding the possibilities for input substitutions or 

providing more information to match suppliers‟ or customers‟ needs.) (Rose, 2004) 
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2. LITERATURE REVIEW 

2.1. History and Origins of Agricultural Biosecurity 

The history of agricultural resources considered to be potential targets of 

bioterrorism can be traced back to World War I (Monterey Institute of International 

Studies 2009). In 1925, the Geneva Protocol was initiated to prohibit chemical or 

biological weapons, since many countries such as Germany, Japan, and Russia (Former 

Soviet Union) used viruses to kill people or contaminate the food supply during the war 

(Geneva Protocol 1925; MIIS 2009). The concept of biosecurity emerged shortly 

thereafter and covers both deliberate and unintentional event origins. Whether the virus 

is released intentionally or occurs naturally, the threat to human health is clearly 

immense.   

As a result, biosecurity has developed into the concept that is defined as a critical 

responsibility of the nation, which is to protect its citizens from dangers presented by 

pathogenic microbes (Fidler and Gostin 2008). It encompasses issues related to the use 

of biological weapons and the naturally or accidentally occurring infected disease. A 

consensus on the importance of addressing challenges of naturally infected disease 

outbreak has surfaced among researchers, policymakers, and international society. In 

2006, the Bush Administration named fighting against naturally occurring disease 

epidemics as one of the prioritized national security topics (White House 2006), 

reflecting how massive the impact of a disease outbreak could be on the nation.   

Foot and Mouth Disease (FMD) is one of the most highly infectious animal 

diseases. Although human health will not be impacted by FMD, it can cause significant 
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economic damage because of the high likelihood of infecting animals exposed to the 

virus (GAO 2009). The United States has been FMD free since 1929; however, the 

possibility of accidentally introducing FMD into the country through international 

agricultural trading is still there, considering the fact that FMD has continued to happen 

in many countries in the world (U.S. Department of Agriculture 2007). FMD spread and 

outbreak cases have occurred in Europe, Asia, South America, and Africa since 2005 

(see Figure 3).  

 Research has suggested that movement of animals is a large risk factor for many 

infectious diseases (Green et al. 2006). As a result, it is important to focus on the topic of 

risk management within the context of animal disease outbreak such as FMD in disease-

free regions to provide involved governmental bodies and industry greater knowledge 

for effectively carrying out the diseased-related decision-making process, while facing 

an unexpected outbreak.     

Therefore, this literature review will focus on various strategies used in FMD 

control management, and the relationship between selected strategy options and 

economic resiliency, and the development of epidemic economic simulation model 

selected to apply in this study. 
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Figure 3: Global map of Foot and Mouth Disease (FMD) outbreak since 2005  
Source: World Organization for Animal Health (OIE), Global map of Foot and Mouth Disease (FMD) 

outbreak since 2005, 2010. World Animal Health Information Database. (Accessed Aug 14, 2010) 

 

2.2. FMD Control Measures 

The “best” control measure to prevent an FMD epidemic from happening still 

remains controversial. Research conducted in the UK and Netherlands suggests that 

most stakeholders of the study prefer to adopt a preventive strategy to reduce risk of the 

outbreak, and then to eradicate the disease (Cohen, Van Asseldonk, and Stassen 2007). 

An effective early warning system to monitor animal health and vaccination can be used 

to prevent the outbreak from happening and/or reduce its magnitude. Control strategies 

introduced in this review include a) vaccination, b) slaughter control, and c) culling 

strategies.   

Vaccination has been used to control FMD effectively in three settings (1) as 

prophylactic protection prior to an outbreak, (2) as an action to limit spread during the 

outbreak, or (3) as a strategy combined with slaughter control (Kitching and Hutber 
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2003). Hutber et al. (2010) conduct a review of previous vaccination programs and 

divides all into three major categories based on where vaccinations are used. That 

includes vaccinations applied in areas where the disease is endemic, semi-endemic, or 

disease-free. Due to the cost and possible entry of animal disease from vaccine 

administration plus international trade concerns, disease-free regions are not likely to 

take control of measures of regular vaccinations (Hutber et al. 2010). Therefore, 

vaccinations can be used as an effective measure, combined with other strategies when 

an unexpected disease outbreak occurs. However, whether vaccinations or slaughter 

control are more effective in controlling an epidemic remains controversial.        

Ferguson et al. (2001) called for cost-benefit analysis of mass vaccination options 

versus slaughter-based control of infrequent outbreaks. Schoenbaum and Disney (2003) 

investigated the effectiveness of four slaughter and three vaccination strategies under 

varying conditions of herd sizes and rates of disease spread in the United States. Four 

slaughter options include slaughtering: a) only infected herds, b) herds with direct 

contact with infected herds, c) herds within 3km distance of infected herds, and d) herds 

with both direct and indirect contact with infected herds. Three vaccination options 

include: a) no vaccination, b) vaccination of all herds within 10km of infected herds after 

two infected cases were detected, and c) vaccination of all herds within 10km after 50 

were detected. Although they generally found that ring slaughter control based on herd 

demographics and the rate of contact among herds is the best option as opposed to other 

slaughter strategies. They also found that early ring vaccination helps to control the 

outbreak duration. The finding is also supported by Keeling et al. (2001). They suggest 
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that both ring slaughtering and ring vaccination were effective strategies if implemented 

rigorously, although ring slaughtering was more effective. A neighborhood cull option 

was found to be more effective than neighborhood vaccination. They also argue that 

spatial distribution, size, and species composition of farms all influence the pattern and 

regional variability of outbreaks.      

A recent review article argues that the effectiveness of vaccination and slaughter 

control also differ on the infection status of the location (Hutber et al. 2010). It further 

indicates that the benefits of ring and targeted vaccination is not greater than slaughter 

control in disease-free regions and indicates that it is unclear that emergent blanket 

vaccination has economic benefits over slaughter control. They also found that blanket 

vaccination proved to be an effective measure in disease-free and semi-endemic regions.  

Some other research investigates the relationship between the speed of slaughter 

control and FMD spread (Morris et al. 2001). They found that delaying the slaughter of 

animals at the infected farms beyond 24 hours would have slightly increased the size of 

the FMD epidemic during the UK 2001 FMD outbreak. Failure to carry out pre-emptive 

slaughter of animals at the susceptible farms would have substantially increased the size 

of the epidemic. Honhold et al. (2004) also suggest that there is a correlation between the 

speed of slaughter control and disease transmission among cattle with lower innate 

immunity. This research investigates the relationship among the rate of disease spread, 

average time from the first lesion to slaughter on infected premises, and the intensity of 

contagious and non-contagious premises. They found that the average time from the first 

lesion to slaughter control and the intensity of culling on non-contagious premises has a 
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significant relationship (Honhold, et al., 2004).      

Hutber et al. (2010) indicate that it takes approximately 5 days to achieve the 

immunity of vaccinated animals and finding the matched type of vaccines to the strain 

may also influence the effectiveness of this strategy. Morris et al. (2001) suggest that 

vaccination of up to three of the most outbreak dense areas, in addition to an adopted 

control policy, such as slaughter, would have slightly decreased the number of infected 

farms. However, relying solely on vaccination and disregarding other control policies 

would have significantly increased the size of an outbreak.   

Garner and Lack (1995) investigated the effectiveness of four control options for 

FMD, including a) “stamping out” of infected herds only, b) stamping out of infected 

and dangerous contact herds, c) stamping out of infected herds plus early ring 

vaccination, and d) stamping out of infected herds plus late ring vaccination. They found 

that if FMD is likely to spread rapidly then slaughter of dangerous contacts and infected 

herds would reduce the economic impact of the FMD outbreak. Early ring vaccination 

turned out to reduce the size and duration of an outbreak, but was uneconomic when 

compared to stamping-out alone. 

In general, slaughter control and vaccination are both more effective options among 

all control measures. Several studies suggest that slaughter control is an effective 

strategy; however, the combination of slaughter control and vaccination can help to 

reduce an epidemic in a more efficient way.    

2.3. Surveillance and Detection 

Surveillance programs developed at the local level provide protection from possible 
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animal disease spread. However, surveillance programs usually are more costly than 

detection as the investment in disease control and management itself is expensive. 

Research has indicated that the United States is under-investing in a surveillance 

program for FMD (Kompas, Che, and Ha, 2006). Early detection of an animal outbreak 

such as FMD usually will reduce production and tourism consequences, as well as 

disease management costs during and after the spread. However, less attention has been 

devoted to pre-event decision-making.  

Although some researchers have focused on surveillance system investigation, less 

attention has been devoted to pre-event decision-making. Attention to surveillance 

program (Bates et al. 2003; Akhtar and White 2003; Ekboir 1999), limited empirical 

investigation has addressed the issue of finding the optimal economic balance between 

pre-event preparedness and post-event response actions. Elbakidze and McCarl (2006) 

address this issue by investigating the economic balance between the pre-event 

installation/operation of surveillance and detection systems and post-event slaughter 

actions. They also examine the reliance within an optimal cost minimizing plan on pre-

event periodic animal health testing, versus sole reliance on post-event response 

measures. They found that there is a positive correlation between pre-event investment 

and the probability and severity of the potential event, as well as costs and effectiveness 

of response options. Specifically, theoretical and empirical investigations suggest that 

the optimal level of investment in pre-event preparedness is increased when disease 

spread rate gets larger; response strategy is less effective or more costly; the probability 

of disease introduction increases; the costs of the pre-event activity fall; and the co-
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benefits of the strategy outside of an event increase.   

Elbakidze et al. (2009) developed an integrated epidemiologic economic model to 

simulate the spread of disease across the region under various combinations of disease 

control options. The purpose of this integrated model is to estimate economic loss within 

the local cattle industry and associated costs of using corresponding disease management 

options based on the data obtained from epidemiologic output.  

They use the AusSpread model (Garner and Beckett 2005) as the epidemiological 

model to simulate disease spread in this study. AusSpread is a state transition model, 

which builds a geographic information system (GIS) framework into the model design. 

This model is modified to include stochastic elements to include probabilistic factors in 

simulating disease spread (Garner and Beckett 2005). The spread of the disease is based 

on a susceptible, latent, infectious, recovered state transition specification where herds 

fall into one of the four categories at any given time period (Garner and Beckett 2005). 

The probabilities of transition from susceptible to latent states depend on the rate of 

direct and indirect contacts between herds and the probability of infection given contact. 

Elbakidze et al.‟s (2009) simulations suggest that, on average, an epidemic might cost up 

to about $1 billion in local high-intensive cattle industry losses alone.  

Based on the assumptions and results of epidemiologic disease spread simulations, 

Elbakidze et al. (2009) found that generally early detection was the most economically 

effective control option of those considered in the study. The payoff for detecting an 

incursion earlier was substantial: in the case of an epidemic originating in a large feedlot, 

the cost saving on average was $150 million. Although the costs of early detection 
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programs were not modeled in this study, the findings suggested that, if an outbreak was 

to originate in a large feedlot, an early detection program, which would cost up to $150 

million, would likely pass the benefit cost test. Adequate vaccine availability and 

enhanced surveillance were not economically effective in minimizing overall costs of 

disease outbreak, compared to delayed vaccine availability and the default surveillance 

strategy, respectively.  

In addition, Elbakidze et al. (2009) used Generalized Stochastic Dominance 

methodology (McCarl 1990) to make inferences on the scenarios for which the 

cumulative distribution functions crossed. They found that for large feedlot introduction 

scenarios of all 16 considered mitigation strategies, the strategy of slaughter of infected, 

slaughter of dangerous contacts combined with regular surveillance and early detection 

was dominant if the risk aversion coefficient (RAC) is below 0.01 or above 0.099, while 

for RAC between those values the strategy of slaughtering infected and dangerous 

contact herds combined with early detection and enhanced surveillance was dominant. 

For backgrounder feedlot introduction scenarios, if RAC is lower than -0.099 then 

slaughtering infected and dangerous contact herds, combined with early detection and 

enhanced surveillance, is dominant. If RAC is greater than -0.099 then the strategy with 

slaughtering infected and dangerous contact herd, combined with early detection and 

regular surveillance, is dominant. For large grazing herd introduction scenarios, if RAC 

is below 0.13 then the dominant strategy is to slaughter infected and dangerous contact 

herds combined with regular surveillance and early detection. Otherwise dominant 

strategy is slaughter of infected and dangerous contact herds combined with early 
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detection and enhanced surveillance. For backyard herd introduction scenarios the 

strategy of slaughtering infected and dangerous contact herds, combined with enhanced 

surveillance and early detection, is dominant at all values of RAC. 

It does not look so certain that early detection will pass the cost benefit test in the 

results of the epidemiologic model; even the costs of early detection programs was not 

considered in the modeling. All the numbers and estimates in the study of Elbakidze et al. 

(2009) are reported as an average value, which might neglect the severity of infrequent 

outbreak. However, in most catastrophic outbreak cases, the related impact to the 

industry and the society can be significantly large so that a prevention measure may be 

necessary. 

Due to limited research targeted on this area, this dissertation study will extend 

knowledge relative to finding the optimal mitigation strategy of improving economic 

resiliency in the face of a potential FMD outbreak. The details of the development of 

integrated epidemic/economic model will be described in the next section. 

2.4. The Development of Integrated Epidemic/Economic Simulation Model 

For the purpose of evaluating alternative control practices, a linked 

economic/epidemic model will be used.  

Two major components are included in such a model: epidemic simulation and 

economic simulation. In an epidemic simulation, the focus is on simulating the disease 

spread under various control strategies and introduction scenarios. This means the 

epidemic model simulates the disease spread from multiple time periods, from the period 

of disease introduction, of restocking and recovering trade relationships to the time 
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period of the full recovery from the outbreak. The result will be output distributions on 

disease spread characteristics under the control strategy used and the disease 

introduction characteristics. The economic model then uses output from the 

epidemiologic model to simulate the economic cost when facing a potential FMD 

outbreak. The key economic model output will be the economic loss incurred by 

producers within the cattle industry, and the government-borne costs of implementing 

disease control strategies.  

The utilization of this integrated epidemic/economic model is divided into four 

phases: a) develop scenarios; b) epidemic simulation; c) economic simulation; and d) 

Analysis/Feedback Loop. A comprehensive research process procedure will be presented 

in Figure 4 below:  

 

 

Figure 4: Comprehensive integrated economic/epidemic modeling procedure 

Develop Scenarios 

• Based on Data Collected from Survey

• Episodic or Epidemic/Geographically    
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Epidemic Simulation 

• Produce Epidemic Output
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2.4.1. Develop Scenarios 

In terms of developing scenarios, there are several factors to be considered.  The 

first is to determine the type of disease spread. The disease spread can be either episodic 

or epidemic. The second factor is where the disease spread occurs, which will be the 

geographic spread assumption. The third factor will be what control strategies to use and 

how they will be implemented. The last factor to be taken into account will be the 

assumption related to the potential impact on the international trade market.  

2.4.2. Epidemic Models 

Before building an integrated model, it is important to choose what control 

measures will be adopted during the simulation. In general, herd demographics and 

contact rates among herds in the region to be simulated should be collected beforehand.  

Epidemic modeling includes two different types of simulation: episodic modeling, which 

is to simulate until the disease is eradicated totally, and endemic modeling, which is to 

have disease spread reach a stable state. Two essential ways to model epidemics include 

spatial and non-spatially based approaches. Spatial modeling will be used to collect data 

on actual locations of infected herds and contact rates among them to simulate the 

disease spread. Non-spatially based models will use algorithms for disease spread to 

estimate the cost of a disease spread. For capturing the full distribution of disease spread 

accurately, a spatial stochastic model will be used in this study (Hagerman, 2009). 

In the epidemic model, the investigation usually will target on the state of the 

animal health, which follows the Texas High Plains Report (Elbakidze et al. 2008), and 

generally includes four states: susceptible, latent, infectious, and recovered/removed. 
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Susceptible state refers to herds that could be susceptible to the disease. Latent state 

usually implies that animals have contracted the disease, but have not shown any clinical 

signs yet. When the clinical signs of infection are apparent, animals are at the infectious 

state. At this stage, the disease is being diagnosed and the treatment or response 

strategies are being taken. Recovered state usually refers to animals that either develop 

antibodies during the disease outbreak or are immune to the disease. Removed state 

implies that animals may have died because of the disease or other taken control 

measures such as slaughter control. Therefore, the disease spread is simulated based on 

whether a herd falls into one of these four states at any given time period.  The 

probabilities of changing from susceptible to latent state rely on the rate of direct and 

indirect contacts among herds and the probability of infection given contact (Elbakidze 

et al. 2009).  

2.4.3. AusSpread Model     

In this study, the epidemic model employed will be the AusSpread model (Gardner 

and Beckett 2005), which is a stochastic, state transition susceptible-latent-infected-

recovered (SLIR) model operating within the GIS framework. This model is appropriate 

for modeling activities in this integrated model. The AusSpread model also operates at 

different scales including the farm level, regional level, and national level (Gardner and 

Beckett 2005). Region usually refers to an area that is delimited by natural or 

geopolitical boundaries, and where homogenous animal production industry is located 

(Gardner and Beckett 2005). Considering characteristics of the Texas High Plains 

Region, the AusSpread model is an appropriate model to select in simulating a potential 
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disease spread at the region scale.     

AusSpread simulates disease spread on a daily basis. Therefore, contacts among 

different animal species are considered in the modeling process. Animal movements are 

included as well. Although the simulation is limited within a certain region, animal 

movements out of that region are recorded and tracked. The AusSpread model uses 

spatial distributions of livestock species including: feedlots, dairies, large and small beef 

operations, swine, small ruminants (sheep and goats), and backyard herds and their 

predicted contact structure to simulate the spread of FMD within the region.      

There are three options available in the AusSpread model for modeling the 

predicted spread of disease: a spread rate parameter, which is analogous to the basic 

reproductive ratio (Ro), direct and indirect contact pathways, and a mixed (Ro and 

pathways) approach. The current version of AusSpread uses direct and indirect contact 

pathways to model disease spread. In addition to modeling contacts between herds, the 

model also incorporates disease spread due to sale barns, order buyers, and windborne 

spread from large feedlots and swine facilities. 

In this study, a version of this model was used that was adapted to fit characteristics 

of Texas High Plains Cattle Industry (Ward, Highfield, and Garner, 2007; Ward et al., 

2009; Elbakidze et al., 2009; Hagerman, 2009). Detection, vaccination, and surveillance 

strategies were simulated for the purposes of this study. The effectiveness of early 

detection versus late detection, adequate availability of vaccination versus limited 

availability of vaccination, and enhanced surveillance versus regular surveillance will be 

compared.    
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2.4.4. Economic Modeling 

The economic model will use the outcome obtained from simulating a FMD spread 

using the epidemic model to calculate the associated economic impact of the potential 

outbreak. The impact calculated will include lost gross value of animals, lost gross 

income due to temporary business inactivity, consumer loss, trade loss, and cost of 

implementing mitigation strategies (Elbakidze et al. 2009). Therefore, the economic 

model needs to reflect the model generated disease spread and control characteristics. 

Four types of economic models could be used: simple cost calculating cost benefit 

analysis, input-output analysis, partial equilibrium, and computable general equilibrium 

models.  

As this study intends to evaluate local region impact, cost of utilizing a certain 

control strategy, consumer losses, trade losses, and the general economic impact of the 

disease outbreak, the model equipped with great flexibility is appropriate for this type of 

examination. The Agricultural Sector Model (ASM) of the Forestry and Agricultural 

Sector Optimization Model (FASOM) is the model that is capable of examining all items 

we intend to evaluate. Therefore, this model is chosen for this study.   

2.4.5. FASOM    

The Agricultural Sector Model (ASM), which is part of the Forestry and 

Agricultural Sector Optimization Model (FASOM), was described in studies (Adams et 

al. 1993; McCarl 1990) and has a long history. The driving force of creating FASOM is 

to model intertemporal optimizing behavior of the economic agents that would be 

affected by carbon sequestration policies. Private timberland owners‟ decisions usually 
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are influenced by tree farmers who plant millions of acres of potentially harvestable 

timber. By linking forest and agricultural sector in a dynamic framework, producers in 

both sectors can predict the consequences of their decisions and the impact of tree 

planting policies. This newly created model in a dynamic framework also allows for the 

land price equilibration in the sectors and for the transfer of lands based on the land‟s 

marginal profitability in all alternative forest and agricultural lands. 

Therefore, FASOM is a mathematical programming model which is characterized 

by dynamic, nonlinear, and price-endogenous features (Adams et al. 1996). The model 

can simulate the multimarket, multi-period equilibrium for each product market. The 

need for maximizing the sum of producers‟ and consumers‟ surpluses in the market is 

also satisfied. Product prices in the two sectors are simulated in the model as well. In 

general, FASOM uses an optimizing technique to simulate the economic markets, which 

characterize transformation of resources into products over time, initial and terminal 

conditions, availability of fixed resources, and policy constraints (Adam et al. 1996), 

presenting the estimates of total social welfare in the form of consumer‟s and producer‟s 

surpluses. Due to the fact that this model is equipped with these characteristics, it is a 

good mathematical programming tool to utilize in this study, while the purpose is to 

evaluate the economic impact of a potential animal outbreak considering the welfare of 

producer‟s surplus and consumer‟s surplus. 

2.4.6. Agricultural Sector Model (ASM)  

The Agricultural Sector Model (ASM) is a subcomponent of FASOM (Chang et al. 

1992; Adam et al. 1996) and is the particular part of FASOM that will be used herein. 
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ASM is a price-endogenous model designed to be simulated in the agricultural sector. It 

simulates 36 primary crop and livestock commodities and 39 secondary or processed 

commodities. There are more than 2,000 production possibilities (budgets) included in 

the model. Budgets for beef, dairy, hogs, sheep, broilers, turkeys, egg layers, and horses 

are included in this model, although the last category is treated in a very cursory fashion. 

Within the beef and hog operations, a number of intermediate budgets are represented to 

separate out important stages of production. The four budgets impacted by FMD, beef, 

dairy, hogs, and sheep, are discussed in detail below (Adams et al. 2005): 

 Beef: Fed and non-fed beef are generated with intermediate goods of  heifer and 

steer calves, heifer and steer yearlings, and cull cows. The simulation focus will be 

on modeling production at the cow-calf, stocker, and feedlot stages, plus an 

infusion of calves, and cull cows from the dairy herd.    

 Dairy: Milk and calves are generated, along with cull cows.  

 Hogs: Fed hogs are generated with intermediate outputs of feeder pigs and cull 

sows. Simulation is performing on the period of farrowing, finishing, and farrowing 

to finishing stages.   

 Sheep: Wool, lambs, and cull ewes are generated. 

When an animal disease occurs, the main focus will be on how to stop the disease 

spread and reduce the economic loss of all involved industries. Export losses are usually 

the major consequence to a country‟s economy due to a disease outbreak (Schoenbaum 

and Disney, 2003). Because of possible trade bans imposed on a country undergoing a 

disease outbreak, the cost of processing industry usually increases (Wilson and Kinsella, 
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2004). Therefore, an issue will be how producers can make optimal production decisions 

to reduce the economic loss of such a “disease shock.”  

According to Niemi et al (2008), disease shock can be measured through the 

realized demand and supply shocks. The simulation is conducted in a manner of 

evaluating the optimal value considering the percentage of production that is removed 

from the market and the loss in export demand, plus the duration of the shock. Within 

the ASM model, budgets in ASM are adjusted in the outbreak region to simulate the 

„disease shock.‟ Epidemic data regarding head slaughtered, vaccinated, or restricted will 

be normalized on one animal basis. The „disease shock‟ is simulated to calculate the 

optimal economic balanced cost under various control strategies. 

As a result, FASOM/ASM modeling can provide detailed information regarding the 

number of dead animals, number or percentage price and quantity impact in the meat 

market, and the economic loss during the recovery from facing a disease break. Trade 

impacts can also be estimated by using the FASOM model.  

2.4.7. Integrated Epidemic/Economic Modeling Process 

This section will introduce details of a modeling process using step-by-step analysis 

performed in an AusSpread-ASM integrated model. The general structure and 

assumptions will be discussed in details.   

2.4.8. Theoretical Assumptions 

The first assumption refers to types of disease spread. Two types of disease spread 

are possible. Episodic disease means a single outbreak event, which can usually be 

eradicated in a short time period. Endemic disease means that it could not be eradicated 
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once it is introduced into the region.  

The second assumption refers to disease management options. These control 

options should be realistic and reflect what actually happens in a real outbreak event. 

Some strategies may be quite costly. Therefore, information gathered about control 

implementation cost should be comprehensive and as accurate as possible.   

The third assumption includes alternative factors influencing the modeling results 

that should be considered. For example, export trade ban imposed on the country to 

cause the economic loss should be taken into account when performing analysis within 

the economic model. The key to making this assumption is to identify important issues 

that cannot be answered during the epidemic simulation stage. 

2.4.9. Data Requirements 

For the purpose of matching up data obtained from epidemic simulation with input 

parameters in the ASM Model, a set of standardized inputs should be defined before 

performing economic model simulation. They are summarized in Hagerman (2009) and 

re-organized in Table 1:  
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Table 1: Standardized Input Parameters 

 
Inputs Definition/Explanation  

Altrun The names of the set of alternative scenarios that are being considered. 

This will be each unique identifier for each scenario name if the model 

is being run on average epidemic results, or it could be a unique 

identifier for every iteration within each scenario if the full distribution 

of economic losses is desired. 

Iter The number of stochastic replications runs in the epidemic model. This 

must be at least 1 if the averages from the stochastic epidemic model 

are being run through the economic model, but may go up to the 

maximum number of iterations run in the stochastic epidemic model. 

For the two epidemic models considered here, the standard number of 

iterations was 100. 

Id A unique identifier for every premise in the affected region. This will 

vary by region and perhaps epidemic model. 

Type For each premises in the region, the type of that premises should be 

indicated so the appropriate budgets can be adjusted. At a minimum, 

these should indicate operation type on a premises (beef grazing, beef 

feeding, dairy, sheep, or swine operation). Ideally, more detail would be 

provided as will be discussed later. 

All_stock The total number of animals on each premises. 

Status The herd status at the end of the run for each unique premises id. This 

will generally be limited to the statuses corresponding to the states of 

the epidemic model: susceptible, infected, dead, and vaccinated. Adult 

animals that contract FMD rarely die from the disease, but the current 

U.S. response policy is to "stamp out" all of the infected and dangerous 

contact animals combined with vaccinate-to-die if vaccination is used. 

So the status of each premises should be categorized as either 

susceptible or dead at the end of the outbreak. This is because all sub-

clinically infectious, infectious, and immune animals are slaughtered. 

Restricted This is an indicator variable used to identify herds in the quarantine 

zone (0 = not restricted, 1 = restricted). This variable may need to be 

conditioned on later so that only restricted premises that were not 

slaughtered for infection or vaccination are in a separate group. This 

allows an estimate of the animals that would need to be maintained 

while the movement restriction is in place, but will still be alive at the 

end of that period.  

When_res The number of days that the herd is under quarantine. 
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Table 1 Continued.  

 

Inputs Definition/Explanation  

Days_left_res The number of days that the herd will remain under quarantine at the 

end of the epidemic. Some models do not have this number, rather a 

standardized assumption can be made. For example, a 90-day period in 

which no new cases are identified may be the standard policy before 

movement restrictions are lifted. 

Surv An indicator variable used to identify herds that will be under 

surveillance. 

N_visits The number of times the herd is visited before surveillance ceases. This 

may be two visits in which no signs of FMD are observed, or may be 

weekly for the entirety of the outbreak. This is an assumption of the 

modeler or defined by policy generally.  

Vacc Indicator variable for herds that are vaccinated (0=no vacc, 1=vacc). If 

a vaccinate to live strategy has been employed, these animals will only 

be subject to the increased cost of the vaccination process and 

potentially a decline in the value of the animal after the movement 

restriction ban has been lifted. If a vaccinate to die strategy has been 

employed these animals must be added to the death loss from the 

disease. If vaccination is used, under current U.S. policy those animals 

must also be slaughtered.      
 

Source: Hagerman, A. D., 2009. “Essays on modeling the economic impacts of a foreign animal disease on 

the United States agricultural sector” PhD dissertation, Texas A&M University.   

 

2.4.10. Data Conversion 

Data from the AusSpread model are reported in terms of animal populations in 

different scenario settings. Integration of two models includes the work of converting the 

epidemiologic data to economic data that can be adjusted and change the budget in the 

ASM model. A simple example is illustrated in Hagerman (2009):  

For the animals slaughtered:  
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For the sum over all scenarios indicated by ids (p) where the status is “dead” is divided 

by the sum of all stock in all statuses for premises‟ ids. Each stochastic replication (i) 

and each type of herd (t) can be calculated and the data are transformed from individual 

premises impacts to regional impacts where, for each type of herd (e.g., cow/calf or 

dairy), the percentage of that particular herd type population in the diseased region that 

is susceptible, dead, vaccinated, or quarantined are calculated for each iteration 

(Hagerman, 2009). 

2.4.11. Scenarios and Adjustments in ASM Model 

The High Plains Study examines 64 scenarios, which include 4 infection index herd 

types (a large feedlot, a backgrounder feedlot, a large beef grazing operation, and a 

backyard operation) and 16 sets of combinations of disease mitigation strategies.  The 

mitigation strategies include early versus late detection, adequate versus inadequate 

vaccination, ring and targeted vaccination, and regular versus enhanced surveillance.   

Because of „stamp out‟ and slaughter of infected animals policy, numbers of adult 

cows are adjusted to reflect the death of those who are directly infected and fall into the 

category of having contact with infected animals. The equation of general budget 

adjustment is as follows:          

)_1(*__ ,,Re,,Re ChangePercCattleLBCattleLB AnimalTypegAnimalTypeg  (2) 

where LB_Cattle is the pounds of calves produced by a single cow  

 Reg: the region of infection 
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 Type: the type of budget being adjusted  

 Animal: the output of the budget being adjusted 

 Perc_Change: the percentage of disease loss in the infection region 

The adjustment is made in cow-calf production, stocker operations, and feedlot 

operations as illustrated in Figure 5: 

 

 

Figure 5: ASM beef cattle flow chart 
Source: A. Hagerman, PhD dissertation, Chapter 3, p. 68, 2009. 
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2.4.12. Economic Simulation Output 

The output of the ASM Model can be divided into many categories. The major 

output data we use for this study are welfare changes. In the category of welfare change, 

ASM gives us the changes in many categories from the base scenario (no disease 

outbreak) to a simulated scenario (after a possible simulated outbreak). The output 

reflects the welfare changes by U.S. consumers, U.S. processors, U.S. producers, U.S. 

total welfare, foreign consumers, foreign processors, foreign producers, and foreign total 

welfare.  
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3. EVALUATION OF WELFARE CHANGES BY A POTENTIAL FMD 

OUTBREAK IN THE TEXAS HIGH PLAINS

 

3.1. Background 

Researchers at the Center for Foreign Animal and Zoonotic Disease Defense 

(FAZD) at Texas A&M University (TAMU) conducted a simulation study of the animal 

and economical impact of FMD issues in the Panhandle of Texas based on regional 

livestock industry characteristics and animal movements. A High Plains specific version 

of the AusSpread epidemic simulation model (created by the Australian Department of 

Forestry, Fisheries, and Agriculture) was developed with assistance from the Texas 

Cattle Feeders Association (TCFA) and researchers at West Texas A&M University 

(WTAMU). The model was used to simulate decision and outbreak alternatives. 

Economic analysis of modeling results was conducted to evaluate the disease mitigation 

cost of various outbreak scenarios and mitigation strategies. This analysis was later 

expanded to account for the welfare impacts of not only the High Plains region, but the 

entire U.S. economy.  

                                                      

 This section is a collaborative work with my former colleague, Dr. Amy D. Hagerman, under the Texas 

High Plains Project funded by the FAZD center. The materials in this section are also discussed in the 

PhD dissertation written by Hagerman in 2009.     
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Figure 6: Texas high plains study - integrated modeling process 

 

The High Plains region is representative of a high density livestock area. The study 

(Ward et al. 2007) proceeded in several stages (see Figure 6).The first phase involved a 

survey and interview data gathering component by Dr. Bo Norby at Texas A&M 

University. Initially, interviews with industry representatives were used to establish 

important 'points of contact' for livestock. Subsequently, quantitative surveys of 

livestock producers were used to determine the densities and distributions of farmed 

animals in the study area. The surveys were used to assess direct (animal-to-animal) and 

indirect (animal-to-vector/fomite-to-animal) contacts. The survey also gathered data on 

differences in the density, within-herd distributions, contact rates, and distances of 

movements of the various livestock species included in the study. Results from the 

producer survey indicated that there was little seasonal variation in contact rates for 

feedlots and dairies in this study area, but swine farms, which tended to be smaller in 
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size, did have some seasonal changes in animal movements. Livestock arrived to the 

study area from 29 states, Mexico, and Canada. Animals were sent from the study area to 

14 other states. Distances traveled by livestock in the area ranged from 10 miles to over 

1,000 miles. Information was obtained on the size, composition, borders, and 

distribution of premises.  

In the second phase, the AusSpread model was used to examine the potential impact 

of FMD introduction into an intensive agricultural setting; various disease introduction 

and mitigation strategies were simulated. There were a wide number of strategies 

simulated, which are summarized in the following content. 

In the third phase, we bridge the models between epidemic and economic models. 

In this study, epidemic modeling is the AusSpread model while Cost function model was 

built by Elbakidze and McCarl (2005). The FASOM model was first incorporated in the 

economic modeling setting in this study, followed with further mitigation strategy 

analysis, which includes ANOVA analysis, welfare analysis, and RAC analysis 

(Elbakidze et al., 2009). 

3.1.1. ASM Model Results  

In this section, the welfare changes output data from the ASM model will be used to 

provide the experimental simulation results in the two major methods of basic 

descriptive statistics and risk aversion analysis. The welfare changes with and without 

the three designed mitigation strategies are categorized in three parties including U.S. 

consumer‟s surplus, U.S. processor‟s surplus, and U.S. producers‟ surplus. Another 

specific strategy scenario design is conducted to avoid the possible correlated impacts 
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between strategies in the original experimental design. A local impact in producers‟ 

surplus in the High Plains area will also present the severity of the welfare changes to 

the local economy due to the FMD outbreak.  

The choice of accepting a disease control strategy can be determined by the risk 

aversion level of the decision makers. Elbakidze et al. (2009) find that a potential FMD 

outbreak can cost up to $1 billion in the local cattle industry in the Texas High Plains 

area. From their cost comparison methods, early detection is considered to be the best 

effective mitigation strategies among the three major strategies we have in our original 

experimental design. In addition, the vaccination strategy failed to pass their economic 

cost test due to the cost itself, and enhanced surveillance strategy is not effective either. 

The economic cost models have been well developed and become the initial and 

fundamental framework after this study begins. 

The following content will be organized as follows. Section 1 provides the 

simulated data from the ASM model with basic statistics analysis. Section 2 presents an 

alternative scenario design comparison and results. Section 3 introduces the welfare 

changes data and that includes a stochastic dominance analysis and a risk aversion 

coefficient analysis. The latter analysis will give us BRAC point values if there is a 

crossing situation in the strategy preference comparisons. Local producers‟ welfare 

comparison and results are presented in Section 4. The overall conclusion and policy 

implications are provided in Section 5. 

3.1.2. Data of the Experimental Simulation Scenario  

Based on the High Plains Report Version I by Ward et al. (2007), the AusSpread 
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model contains 13 types of herds in the study. Those are listed as follows:  

1: Feedlot1: Company owned feedlot (>50,000 head). 

2: Feedlot2: Stockholder feedlot (20,000 – 50,000 head). 

3: Feedlot3: Custom feedlot (5,000 – 20,000 head). 

4: Feedlot4: Backgrounder feedlot. 

5: Feedlot5: Yearling-pasture feedlot. 

6: Feedlot6: Dairy Calf-raiser feedlot. 

7: Small beef: < 100 cattle. 

8: Large beef: >100 cattle. 

9: Small dairy: < 1000 number dairy cows. 

10: Large dairy: >1000 number dairy cows. 

11: Backyard: < 10 cattle. 

12: Swine: pig concentrated animal feeding operations. 

13: Small ruminant: sheep and goats. 
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Four types of herds out of the 13 were chosen as points where the initial infection 

begins. They were categorized as: 1) Feedlot Type 1 (large feedlots); 2) Feedlot Type 4 

(small feedlots); 3) Large Beef operation (large beef grazing); and 4) Backyard operation. 

Sixteen different scenarios were designed with different simulated disease management 

settings including the three major mitigation strategies (e.g., early detection, adequate 

vaccination, enhanced surveillance). A total of 64 scenarios were simulated and are 

summarized in Table 2 (Elbakidze et al. 2008). Three sets of experimental design focusing 

on variables of interest with respect to three different mitigation strategies are shown in 

Table 3, Table 4, and Table 5.   
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Table 2: Original Experimental Design for Epidemic Modeling Scenarios 

 

Mitigation Strategies (M) Types of Herds (T) 

Feedlot Type 1 Feedlot Type 4 Large Beef Backyard 

SR; Surv-R; SI; Sdc; DE 1 2 3 4 

SR; Surv-R; SI; Sdc; DL 5 6 7 8 

SR; R-Surv; SI; Sdc; DL; VT; VA 9 10 11 12 

SR; Surv-R; SI; Sdc; DL; VT; VI 13 14 15 16 

Surv-E; SI; Sdc; DE 17 18 19 20 

Surv-E; SI; Sdc; DL 21 22 23 24 

Surv-E; SI; Sdc; DL; VT; VA 25 26 27 28 

Surv-E; SI; Sdc; DL; VT; VI 29 30 31 32 

SI; Sdc; Surv-R; VR; DE; VI 33 34 35 36 

SI; Sdc; Surv-R; DE 37 38 39 40 

SI; Sdc; Surv-R; DL; VR; VA 41 42 43 44 

SI; Sdc; Surv-R; DL; VR; VI 45 46 47 48 

SI; Sdc; Surv-R; DE; VT; VA 49 50 51 52 

SI; Sdc; Surv-R; DL 53 54 55 56 

SI; Sdc; Surv-R; DL; VT 57 58 59 60 

SI; Sdc; Surv-R; DE; VR; VA 61 62 63 64 

 

Source: Elbakidze, L., A. Hagerman, L. Highfield, H. Lin, S. Loneragan, M. Ward, B. McCarl, B. Norby, J. 

Jacobs, R. Srinivasan, L.,. The High Plains Project Report: Version II. Center for Foreign Animal 

and Zoonotic Disease Defense (FAZD), 2008 

 

*Notes: In this table, abbreviations and various terms are used. They are explained as follows:   

Abbreviation: 

Ring Slaughter: SR; Slaughter of infected: SI; Slaughter of dc‟s: Sdc; Regular Surveillance: Surv-R; 

Enhanced Surveillance: Surv-E;   Early Detection: DE; Late Detection: DL; Target Vaccination: VT; 

Adequate Vaccination: VA; Inadequate Vaccination: VI; Ring Vaccination: VR 

Type of randomization: Complete Randomized Design (CRD) 

Type of treatment structure: Mitigation strategy (M) (with 16 levels) crossed with type of herds (T) (with 

4 levels) 

Type of the factors: M - fixed and T - fixed 

Experimental Units (EU) and/or Measurement Units (MU): EU = MU = Individual simulation run 

Sources of variation: M, T, and stochastic simulation runs 8,502 simulation points with 100 runs are 

given from the AusSpread model. With the integrated epidemiologic-economic modeling addressed in the 

previous section, welfare change data gives the results with 100 simulation points for each of the original 

64 scenarios. We sort the 64 scenarios with the three mitigation strategies as the variables of interests.  
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Table 3: Experimental Design Focusing on Variables of Interest – Early versus Late 

Detection 

 
Mitigation Strategy 

(M) 

Type of Herds (T) 

Time of Detection Pair 
Comparison  

Feedlot 
Type 1 

Feedlot 
Type 4 

Large Beef Backyard 

Early Detection A1E 1 2 3 4 

 

 

A2E 17 18 19 20 

 A3E 33 34 35 36 

 A4E 37 38 39 40 

 

 

A5E 49 50 51 52 

 

 

A6E 61 62 63 64 

Late Detection A1L 5 6 7 8 

 

 

A2L 21 22 23 24 

 A3L 45 46 47 48 

 A4L 53 54 55 56 

 

 

A5L 57 58 59 60 

 A6L 41 42 43 44 

 
*Notes: This table explains the scenarios we pick from the overall 64 experimental scenarios in Table1 in 

order to focus on the variable of interest (e.g. early detection in this case). The pair comparison 

codes are designed to distinguish the scenario which is selected for a certain variable of interest. 

For example, A1E represents the first focus scenario group with early detection. A1L is the 

control scenario group with late detection.   
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Table 4: Experimental Design Focusing on Variables of Interest – Adequate versus 

Inadequate Vaccine 

 
Mitigation Strategy 

(M) 

Type of Herds (T) 

Availability of Vaccine Pair 
Comparison  

Feedlot 
Type 1 

Feedlot 
Type 4 

Large Beef Backyard 

Adequate Vaccine 

 

 

B1A 9 10 11 12 

B2A 25 26 27 28 

B3A 41 42 43 44 

B4A 61 62 63 64 

Inadequate Vaccine 

 

 

B1I 13 14 15 16 

B2I 29 30 31 32 

B3I 45 46 47 48 

B4I 33 34 35 36 
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Table 5: Experimental Design Focusing on Variables of Interest – Enhanced 

Surveillance versus Regular Surveillance 

 
Mitigation Strategy 

(M) 

Type of Herds (T) 

Types of Surveillance Pair 
Comparison 

Feedlot 
Type 1 

Feedlot 
Type 4 

Large Beef Backyard 

Adequate Vaccine 

 

 

C1E 17 18 19 20 

C2E 21 22 23 24 

C3E 25 26 27 28 

Inadequate Vaccine 

 

 

C1R 37 38 39 40 

C2R 53 54 55 56 

C3R 57 58 59 60 

 

3.1.2.1. Early vs. Late Detection 

For comparing effects of early detection and late detection, we use descriptive 

statistics measures in Table 6, including Standard Deviation (SD), Coefficient of 

Variation (CV), and distribution percentile (10%, 75%, and 90%) to evaluate the welfare 

change effect of each mitigation strategy on consumers, processors, and producers at a 

national level. Analysis results are presented as follows:  

 For U.S. consumers, early detection management strategy brings greater and better 

welfare changes in average under the scenario of initial infection from the first two 

larger operations (large feedlot and small feedlot). However, for the other two 

smaller operations (large beef grazing and backyard), when comparing early 

detection with late detection under the initial disease introduction, there is no 
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significant improvement in the average welfare changes. 

 For U.S. processors, early detection has less average welfare loss in the scenario of 

small feedlot and backyard operation. However, it shows greater welfare loss in the 

scenario of large feedlot and large grazing operation. 

 For U.S. producers, early detection causes more damage on welfare in average for 

the first two larger operations. In the scenario of large beef grazing and backyard, 

early detection reduces extent in the loss of welfare. 

 Regarding CV values, when using the measure of early detection strategy, their 

absolute values in the scenario of the first two larger operations are less in the 

welfare changes in all three parties. That means early detection provides a less risky 

alternative. On the other hand, in the scenario of disease introduction from the other 

two smaller operations, the bigger absolute CV value in the early detection measure 

implies that early detection strategy does not offer a riskless option.  

The percentile of the distribution also indicates that the welfare change is deviating from 

the mean. In the large feedlot introduction scenario, early detection has a significantly 

positive welfare gains when observing U.S. customers ranged from the 10
th

 and 75
th

 

percentile. Meanwhile, for U.S. producers, early detection has greater welfare loss in the 

90
th

 percentile. Under the small feedlot introduction scenario, the U.S. consumers and 

processors have greater welfare gain and less welfare loss when comparing to the 10
th

 

percentile. In both 75 and 90 percentiles of the U.S. producers‟ welfare comparison, 

early detection causes greater loss in welfare.   
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Table 6: Descriptive Statistics for the Welfare Changes in Millions 2000 – Early vs. Late 

Detection 

 
Type of Herds Early Detection Late Detection 

Feedlot Type 1 CS PR PS CS PR PS 

Mean 166.61 -14.61 -952.86 157.26 -13.64 -943.73 

SD 29.53 8.21 -56.19 42.57 12.61 41.43 

CV 17.72 -56.19 -3.32 27.07 -92.46 -4.39 

10
th

 Percentile 133.41 -15.20 -992.40 84.21 -15.20 -992.40 

75
th

 Percentile 177.04 -15.20 -925.60 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -924.88 200.41 0.01 -882.06 

Feedlot Type 4 CS PR PS CS PR PS 

Mean 158386 -12.23 -946.55 151.54 -13.13 -937.80 

SD 36.05 8.32 -68.03 -13.13 12.19 -92.79 

CV 22.70 -68.03 -3.89 -937.80 45.34 -4.83 

10
th

 Percentile 107.57 -15.20 -992.40 84.21 -16.55 -992.40 

75
th

 Percentile 174.57 -15.20 -925.60 174.57 -15.20 -922.13 

90
th

 Percentile 200.41 0.01 -906.93 200.41 0.01 -866.34 

Large Beef CS PR PS CS PR PS 

Mean 156.35 -14.70 -941.64 159.72 -11.99 -947.93 

SD 41.98 13.18 41.90 38.71 7.92 38.58 

CV 26.85 -89.69 -4.45 -947.93 38.58 -4.07 

10
th

 Percentile 84.21 -44.88 -992.40 107.57 -15.20 -992.40 

75
th

 Percentile 174.57 -15.20 -925.60 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -882.06 200.41 0.01 -906.93 

Backyard CS PR PS CS PR PS 

Mean 153.26 -13.77 -939.19 158.49 -16.02 -942.57 

SD 40.75 12.16 41.65 36.10 11.30 39.32 

CV 26.59 -88.31 -4.43 22.78 -70.58 -4.17 

10
th

 Percentile 84.21 -29.67 -992.40 107.57 -29.67 -992.40 

75
th

 Percentile 174.57 -15.20 -922.13 174.57 -15.20 -925.42 

90
th

 Percentile 200.41 0.01 -877.25 200.41 0.01 -891.50 

 

*Notes: The numbers represent the welfare change in million dollars. CS represents the consumer‟s 

surplus, PR represents processors‟ surplus, and PS represents, producers‟ surplus. 
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 In the smaller operation introduction scenarios, the U.S. consumers have less 

welfare gains in the large beef grazing and backyard cases. The U.S. processors 

suffer a much greater welfare loss in the case of large beef grazing at the 10
th

 

percentile of the simulated distributions. The U.S. producers have reduced welfare 

loss with early detection strategy in both large beef and backyard scenarios. 

 The same group in different settings may have shown the same number. We 

interpret this situation as the best or worst scenario which may occur under the 

same simulation scenario.  

 Generally, early detection strategy can bring better average welfare improvement 

and have higher welfare gains even at the 10
th

 percentile of the distribution to the 

U.S. consumers in the large feedlot and small feedlot scenarios. The finding is 

mixed for the U.S. processors. For U.S. producers, early detection helps in reducing 

the average welfare loss when there is a disease introduction in smaller operations 

(large beef grazing and backyard), and it also can prevent the possible greater 

welfare loss at the 90
th

 percentile distribution comparison. 

3.1.2.2. Adequate Vaccine vs. Inadequate Vaccine 

The results of comparison of adequate vaccine versus inadequate vaccine are 

presented in Table 7. The findings are presented as follows:  

 For U.S. consumers, adequate vaccination management strategy brings greater 

welfare gains in average under the scenario of infection introduction in small 

feedlot, large beef grazing, and backyard operations. There is a very small 

difference in welfare gains in the large feedlot introduction scenario.  
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 For U.S. processors, adequate vaccination has greater average welfare loss in the 

scenario of large feedlot, large beef grazing, and backyard operations; however, 

welfare loss is reduced in the scenario of small feedlot introduction. 

 For U.S. producers, adequate vaccination reduces the extent of average welfare loss 

in the large feedlot introduction scenario, but it causes more damages in average on 

the welfare in the other three operations.  

 Regarding CV values, their absolute values in the scenarios of large feedlot 

operations are greater in terms of welfare changes in all three parties with the 

enforcement of adequate vaccination. That means adequate vaccination could 

provide a more risky alternative. On the other hand, in the scenario of disease 

introduction for the other three operations, it shows the smaller value under the 

adequate vaccination measure, which implies that the early detection strategy offers 

a less risky option.  

 In the large feedlot introduction scenario, adequate vaccination is less likely to have 

great welfare loss at the 90
th

 percentile of the simulation distribution for U.S. 

producers. However, in the large beef grazing and backyard introduction scenario, 

U.S. producers have greater welfare loss with adequate vaccination at the 90
th

 

percentile. Meanwhile, for U.S. consumers, adequate vaccination gives greater 

welfare gains at the 10
th

 percentile of the distribution in the small feedlot, large beef, 

and backyard scenarios. 

 Generally, adequate vaccination strategy in the small feedlot, large beef grazing, 

and backyard scenarios can bring better welfare improvement on average and have 
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higher welfare gains at the 10
th

 percentile of the distribution of the U.S. consumers. 

The result is very mixed for the U.S. processors. For U.S. producers, adequate 

vaccination helps in reducing the average welfare loss only when there is a disease 

introduction in the large feedlot. The possible greater welfare loss at the 90 

percentile distribution may occur when the infection introduction point starts from 

large beef grazing and backyard operations.  
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Table 7: Descriptive Statistics for the Welfare Changes in Millions 2000 – Adequate vs. 

Inadequate Vaccine 

 
Type of Herds Adequate Vaccine Inadequate Vaccine 

Feedlot Type 

1 

CS PR PS CS PR PS 

Mean 158.5229 -13.3789 -945.384 158.7029 -11.817 -947.094 

SD 41.21846 11.5389 40.26023 38.28704 7.776123 38.28721 

CV 26.00158 -86.2473 -4.25861 24.12498 -65.8046 -4.0426 

10
th

 Percentile 107.57 -15.20 -992.40 107.57 -15.20 -992.40 

75
th

 Percentile 174.57 -15.20 -925.60 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -892.55 200.41 0.01 -906.93 

Feedlot Type 

4 

CS PR PS CS PR PS 

Mean 154.6311 -13.5513 -940.974 152.852 -14.5683 -937.826 

SD 40.29592 10.78084 41.93706 40.9716 12.95539 41.91755 

CV 26.05939 -79.556 -4.45677 26.80475 -88.9285 -4.46965 

10
th

 Percentile 107.52 -15.20 -992.40 84.21 -29.67 -992.40 

75
th

 Percentile 174.57 -15.20 -925.60 174.57 -15.20 -906.93 

90
th

 Percentile 200.41 0.01 -877.25 200.41 0.01 -877.17 

Large Beef CS PR PS CS PR PS 

Mean 160.4835 -17.2703 -943.559 154.9946 -12.5618 -942.229 

SD 37.98871 13.72091 39.70676 44.92158 12.33488 43.39142 

CV 23.67142 -79.4481 -4.20819 28.98268 -98.1938 -4.60519 

10
th

 Percentile 107.57 -44.88 -992.40 75.66 -15.20 -992.40 

75
th

 Percentile 176.56 -15.20 -925.60 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -895.92 200.41 0.01 -866.34 

Backyard CS PR PS CS PR PS 

Mean 155.0495 -14.5462 -940.393 153.1546 -14.3865 -938.239 

SD 39.21775 12.20159 40.97698 44.10193 12.00962 45.96905 

CV 25.2937 -83.8817 -4.35743 28.79569 -83.4784 -4.8995 

10
th

 Percentile 107.52 -29.67 -992.40 84.21 -29.67 -992.40 

75
th

 Percentile 174.57 -15.20 -906.93 174.57 -15.20 -924.88 

90
th

 Percentile 200.41 0.01 -877.25 200.41 0.01 -866.34 

 
*Notes: The numbers represent the welfare change in million dollars. CS represents the consumer‟s 

surplus, PR represents processor‟s surplus, and PS represents, producer‟s surplus. Total welfare is 

the summation of the consumers‟, processors‟, and producers‟ surpluses. 
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3.1.2.3. Enhanced vs. Regular Surveillance 

Data pertaining to the comparison of enhanced versus regular surveillance 

strategies in terms of welfare change is presented in Table 8. The findings of the analysis 

are presented as follows:  

 For U.S. consumers, enhanced surveillance management strategy has greater 

average welfare gains under the scenarios of initial infection in two smaller 

operations (large beef grazing and backyard). However, the average welfare in the 

larger operations (large feedlot and small feedlot) do not show improvement by 

comparing enhanced surveillance to the outcomes of regular surveillance strategy.  

 For U.S. processors, enhanced surveillance strategy has less average welfare loss in 

the scenario of large feedlot and backyard operation; however, it shows greater 

welfare loss in the scenario of small feedlot and large grazing operations. 

 For U.S. producers, enhanced surveillance has less average damages on welfare in 

the first two larger operation disease introduction scenarios. In the scenarios of 

large beef grazing and backyard, enhanced surveillance increases the welfare losses 

in extents. 

 While examining CV values, the absolute values in the scenarios of the two smaller 

operations are lower in the welfare changes in all three parties when using the 

measure of enhanced surveillance strategy.  That indicates that enhanced 

surveillance strategy provides a less risky alternative. On the other hand, under the 

scenario of disease introduction in the other two larger operations, the larger 

absolute CV values in the enhanced surveillance measure implies that enhanced 
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surveillance strategy does not offer a riskless option.  

 In the two smaller feedlot (large beef grazing and backyard) introduction scenarios, 

enhanced surveillance has significantly better welfare gains at the 10
th

 percentile of 

the distribution for U.S. consumers. For U.S. producers, enhanced surveillance has 

greater welfare loss at the 90
th

 percentile. In the other two larger feedlot (large 

feedlot and small feedlot) introduction scenarios, the U.S. consumers have less 

welfare gains at the 10
th

 percentile; however, enhanced surveillance could make less 

welfare loss at the 90
th

 percentile for the U.S. producers.   

 Generally, in the large beef grazing and backyard operation scenarios, enhanced 

surveillance strategy can bring better average welfare gains and have higher welfare 

gains at the 10
th

 percentile of the distribution for the U.S. consumers. However, in 

the same scenarios, the U.S. producers suffer larger welfare loss, and could have 

more severe welfare loss at the 90
th

 percentile. When there is a disease introduction 

in larger operations (large feedlot and small feedlot), the phenomenon is presented 

in an opposite way. For U.S. producers, enhanced surveillance helps in reducing the 

average welfare loss and preventing the possible greater welfare loss at the 90
th

 

percentile of the simulated distribution. On the other hand, for the U.S. consumers, 

there are less average welfare gains and smaller welfare gains at the 10
th

 percentile. 
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Table 8: Descriptive Statistics for the Welfare Changes in Millions 2000 – Enhanced vs. 

Regular Surveillance 
 

 

*Notes: The numbers represent the welfare change in million dollars. CS represents the consumer‟s 

surplus, PR represents processor‟s surplus, and PS represents, producer‟s surplus. Total welfare is 

the summation of the consumer‟s, processor‟s, and producer‟s surpluses. 

Type of Herds Enhanced Surveillance Regular Surveillance 

Feedlot Type 1 CS PR PS CS PR PS 

Mean 158.4863 -13.896 -944.778 169.2103 -14.0851 -956.237 

SD 41.97141 12.47851 40.91029 23.78367 3.966316 27.36572 

CV 26.48268 -89.7995 -4.33015 14.05569 -28.1596 -2.86181 

10
th

 Percentile 84.24 -15.20 -992.40 151.20 -15.20 -992.40 

75
th

 Percentile 176.68 -15.20 -925.60 176.56 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -882.06 200.41 -15.20 -925.60 

Feedlot Type 4 CS PR PS CS PR PS 

Mean 154.1941 -13.2799 -940.537 160.4158 -13.0808 -947.339 

SD 42.85302 11.01377 44.26015 33.97603 8.8528 34.84645 

CV 27.7916 -82.9355 -4.70584 21.17997 -67.6777 -3.67835 

10
th

 Percentile 84.21 -15.20 -992.40 107.57 -15.20 -992.40 

75
th

 Percentile 174.57 -15.20 -925.60 176.56 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -866.34 200.41 0.01 -906.93 

Large Beef CS PR PS CS PR PS 

Mean 165.8769 -13.4101 -953.354 155.9441 -11.2312 -944.648 

SD 29.25653 5.498344 31.00046 42.26725 8.836043 41.06731 

CV 17.63749 -41.0015 -3.25172 27.1041 -78.6739 -4.34737 

10
th

 Percentile 133.41 -15.20 -992.40 84.21 -15.20 -992.40 

75
th

 Percentile 174.57 -15.20 -925.60 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -924.88 200.41 0.01 -882.06 

Backyard CS PR PS CS PR PS 

Mean 159.0305 -13.8166 -945.325 157.8057 -16.2904 -941.76 

SD 34.20128 9.955954 35.50975 36.74637 11.03961 40.22789 

CV 21.50611 -72.0578 -3.75635 23.28583 -67.7676 -4.27156 

10
th

 Percentile 107.57 -15.20 -992.40 107.57 -29.67 -992.40 

75
th

 Percentile 174.57 -15.20 -925.60 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -906.86 200.41 0.01 -877.25 
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3.1.3. An Alternative Scenario Comparison and Results 

In this section, we have re-designed the original experimental design focusing on 

three different mitigation strategies as the variables of interest. In the original design, a 

correlation effect question is being raised because of a set of complicated combination 

settings under the 64 scenarios. In this alternative design, only a specific mitigation 

strategy will be in use in each scenario to avoid the correlation effect. All selected 

scenarios are summarized as in Table 9.  

3.1.3.1. Early vs. Late Detection 

 In this section, a similar comparison to the one in the previous section will be 

conducted. Findings pertaining to differences between the original design and the 

alternative design will be presented. Whether a cross-strategy correlation effect exists in 

the original design will also be examined:         

 With respect to the average welfare changes, all the trends are similar except in the 

case of the large beef grazing scenario. That is, U.S. consumers have higher average 

welfare gains with the implementation of the early detection strategy, and U.S. 

producers have larger average welfare losses. Compared to the original design, in 

the first two larger feedlot scenarios, less average welfare gains or losses are found 

in the first two larger feedlot scenarios. However, in the other two scenarios, the 

average welfare changes are larger in gains and losses.  
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Table 9: Alternative Experimental Design Focusing on Variables of Interest 

 
Early Detection vs. Late Detection 

 

Mitigation Strategy (M) Type of Herds (T) 

Time of Detection 
Pair 

Comparison 

Feedlot Type 

1 

Feedlot Type 

4 
Large Beef Backyard 

Early Detection A1E 1 2 3 4 

 A4E 37 38 39 40 

Late Detection A1L 5 6 7 8 

 A4L 53 54 55 56 

 

Adequate vs. Inadequate Vaccine 

 

Mitigation Strategy (M) Type of Herds (T) 

Availability of Vaccine 
Pair 

Comparison 

Feedlot Type 

1 

Feedlot Type 

4 
Large Beef Backyard 

Adequate Vaccine B1A 9 10 11 12 

 

 
B3A 41 42 43 44 

Inadequate Vaccine B1I 13 14 15 16 

 

 
B3I 45 46 47 48 

 

Enhanced vs. Regular Surveillance 

 

Mitigation Strategy (M) Type of Herds (T) 

Types of Surveillance 
Pair 

Comparison 

Feedlot Type 

1 

Feedlot Type 

4 
Large Beef Backyard 

Enhanced Surveillance  C2E 21 22 23 24 

Regular Surveillance C2R 53 54 55 56 
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 With respect to the percentile comparison, in the first two introduction points 

scenarios, the basic results are similar to the ones above from the original design. 

However, in the last two smaller operation scenarios, results pertaining to U.S. 

producers are very different from the original one. Early detection gives a possible 

larger welfare loss at the 90
th

 percentile, while there is less welfare loss in the 

original design. In addition, in the large beef grazing scenario, the U.S. consumers 

will get greater welfare gains at the 10
th

 percentile. 

 In general, there are similar responses when implementing mitigation strategies in 

different scenarios as shown in Table 10. With the early detection alone, in the 

backyard introduction scenario, U.S. producers would still suffer a possible greater 

loss even though the average welfare loss is reduced in this case. 

3.1.3.2. Adequate vs. Inadequate Vaccination 

Data concerning welfare changes are organized in Table 11 and the findings of the 

analysis will be presented as follows:   

 With respect to the average welfare changes, the results are opposite to the ones of 

the original design in the large feedlot and backyard introduction scenarios. In the 

large feedlot scenario, U.S. consumers have higher average welfare gains with the 

implementation of adequate vaccination strategy, and U.S. producers have larger 

average welfare loss. In the backyard operation scenario, U.S. consumers have less 

welfare gains, while U.S. producers have smaller average welfare losses. Another 

finding in these two cases is that the gap or the average difference between 

adequate and inadequate vaccination mitigation strategies is much larger than in the 
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original design. 

 With respect to the percentile comparison, there are two findings. First, for U.S. 

producers, adequate vaccination gives a possible larger welfare loss at the 90
th

 

percentile in the large feedlot scenario, but a less welfare loss in the backyard 

scenario. Second, for U.S. consumers, adequate vaccination will get smaller welfare 

gains at the 10
th

 percentile in the backyard scenario. 

 In general, there are different responses regarding welfare changes for U.S. 

consumers and producers in the large feedlot and backyard scenarios. An important 

correlation problem may exist in the original design for the vaccination strategy as 

the variable of interest. Another noteworthy finding is that the impact of vaccination 

strategy on welfare changes is actually greater than the one measured in the original 

design. 
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Table 10: Descriptive Statistics for the Welfare Changes in Millions 2000: Early vs. Late 

Detection 

 
Type of Herds Early Detection Late Detection  

Feedlot Type 

1 

CS PR PS CS PR PS 

Mean 165.47 -16.56 -949.87 154.42 -10.81 -943.32 

SD 34.38 12.37 34.96 43.01 8.91 42.39 

CV 20.77 -74.65 -3.68 27.85 -82.42 -4.49 

10
th

 Percentile 133.36 -44.88 -992.40 84.21 -15.20 -992.40 

75
th

 Percentile 177.04 -15.20 -925.60 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -909.05 200.41 0.01 -866.34 

Feedlot Type 

4 

CS PR PS CS PR PS 

Mean 156.16 -11.07 -944.94 150.02 -15.10 -934.07 

SD 40.24 8.27 40.33 44.91 14.14 45.84 

CV 25.76 -74.75 -4.26 29.93 -93.61 -4.90 

10
th

 Percentile 104.80 -15.20 -992.40 84.21 -44.88 -992.40 

75
th

 Percentile 174.57 -15.20 -925.60 174.57 -15.20 -906.93 

90
th

 Percentile 200.41 0.01 -891.50 200.41 0.01 -866.34 

Large Beef CS PR PS CS PR PS 

Mean 162.99 -12.82 -950.87 158.09 -11.58 -946.46 

SD 32.56 6.33 33.48 41.44 8.60 40.90 

CV 19.97 -49.37 -3.52 26.21 -74.29 -4.32 

10
th

 Percentile 107.57 -15.20 -992.40 84.21 -15.20 -992.40 

75
th

 Percentile 174.57 -15.20 -925.60 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -906.93 200.41 0.01 -882.06 

Backyard CS PR PS CS PR PS 

Mean 155.68 -14.04 -941.58 158.00 -15.54 -942.28 

SD 36.63 11.70 37.45 39.82 10.80 42.85 

CV 23.52 -83.38 -3.97 25.20 -69.49 -4.54 

10
th

 Percentile 107.57 -16.65 -992.40 107.57 -29.67 -992.40 

75
th

 Percentile 174.57 -15.20 -924.19 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -895.92 200.41 0.01 -877.25 

 

*Notes: The numbers represent the welfare change in million dollars. CS represents the consumer‟s 

surplus, PR represents processors‟ surplus, and PS represents, producers‟ surplus. Total welfare is 

the summation of the consumers‟, processors‟, and producers‟ surplus. 
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Table 11: Descriptive Statistics for the Welfare Changes in Millions 2000 - Adequate vs.    

           Inadequate Vaccine 

 
Type of Herds Adequate Vaccine Inadequate Vaccine 

Feedlot Type 

1 

CS PR PS CS PR PS 

Mean 160.47 -15.55 -945.55 154.42 -10.81 -943.32 

SD 39.57 13.36 38.38 42.90 8.89 42.28 

CV 24.66 -85.93 -4.06 27.78 -82.22 -4.48 

10
th

 Percentile 107.57 -44.88 -992.40 84.21 -15.20 -992.40 

75
th

 Percentile 177.04 -15.20 -925.60 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -906.93 200.41 0.01 -866.34 

Feedlot Type 

4 

CS PR PS CS PR PS 

Mean 154.08 -12.17 -941.91 150.02 -15.10 -934.07 

SD 40.19 10.16 40.88 44.79 14.10 45.72 

CV 26.08 -83.50 -4.34 29.86 -93.38 -4.90 

10
th

 Percentile 105.24 -15.20 -992.40 84.21 -44.88 -992.40 

75
th

 Percentile 174.57 -15.20 -925.60 174.57 -15.20 -906.93 

90
th

 Percentile 200.41 0.01 -877.25 200.41 0.01 -866.34 

Large Beef CS PR PS CS PR PS 

Mean 161.80 -15.80 -946.74 158.09 -11.58 -946.46 

SD 36.90 12.85 36.89 41.34 8.58 40.80 

CV 22.81 -81.34 -3.90 26.15 -74.11 -4.31 

10
th

 Percentile 107.57 -44.88 -992.40 84.21 -15.20 -992.40 

75
th

 Percentile 176.68 -15.20 -925.60 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -906.93 200.41 0.01 -882.06 

Backyard CS PR PS CS PR PS 

Mean 148.18 -10.63 -936.73 157.88 -15.54 -942.08 

SD 44.84 12.12 43.88 39.71 10.77 42.73 

CV 30.26 -114.06 -4.68 25.15 -69.33 -4.54 

10
th

 Percentile 84.21 -15.20 -992.40 107.57 -29.67 -992.40 

75
th

 Percentile 174.57 0.01 -906.93 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -866.34 200.41 0.01 -877.25 
 

*Notes: The numbers represent the welfare change in million dollars. CS represents the consumer‟s 

surplus, PR represents processor‟s surplus, and PS represents, producer‟s surplus. Total welfare is 

the summation of the consumers‟, processors‟, and producers‟ surpluses. 
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3.1.3.3. Enhanced vs. Regular Surveillance 

Data concerning the comparison between enhanced surveillance and regular 

surveillance strategy will be presented in Table 12. Welfare results of the analysis will be 

presented as follows:  

 With respect to the average welfare changes, there are two different results from the 

ones in the original design. First, in the small feedlot scenario, U.S. producers do 

not get any benefit from using the enhanced surveillance strategy in the situation of 

increasing welfare loss. Second, U.S. consumers have smaller welfare gains with 

enhanced surveillance in the introduction scenario of backyard operation. 

 With respect to the percentile comparisons, a similar trend is shown from the trend 

of average welfare changes. In the large feedlot and small feedlot scenarios, the gap 

of consumers‟ welfare gain at the 10
th

 percentile and producers‟ welfare loss at the 

90
th

 percentile between enhanced and regular surveillance is getting close to a much 

smaller extent. On the other hand, the same gap is expanded to a larger extent in the 

scenarios of large beef grazing and backyard introduction. 

 In general, there are two major findings in this analysis. First, enhanced 

surveillance could be less effective in the measure of average welfare changes. 

From the analysis, we have found that less U.S. consumer‟s gains are shown in the 

backyard scenario and greater U.S. producer‟s welfare losses are presented in the 

small feedlot scenario. Second, from the analysis of percentile comparison, we have 

found that enhanced surveillance could have greater impacts on welfare changes 
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under the scenario of having disease introduction in smaller operations, and smaller 

impacts in the introduction scenario of larger feedlots. 

 

Table 12: Descriptive Statistics for the Welfare Changes in Millions 2000: Enhanced vs. 

Regular Surveillance 

 
Type of 

Herds 

Enhanced Surveillance Regular Surveillance 

Feedlot Type 

1 

CS PR PS CS PR PS 

Mean 159.28 -18.54 -941.42 164.32 -13.07 -952.06 
SD 43.20 16.96 40.93 29.06 5.28 31.47 

CV 27.12 -91.50 -4.35 17.68 -40.39 -3.31 

10
th

 Percentile 105.24 -44.88 -992.40 107.57 -15.20 -992.40 

75
th

 Percentile 181.00 -15.20 -925.60 174.57 -15.20 -925.60 

90
th

 Percentile 200.41 0.01 -892.31 200.41 0.01 -906.93 

Feedlot Type 

4 

CS PR PS CS PR PS 

Mean 146.59 -8.76 -937.06 149.78 -12.49 -936.40 
SD 47.61 10.05 46.95 41.82 13.63 40.58 

CV 32.48 -114.80 -5.01 27.92 -109.09 -4.33 

10
th

 Percentile 75.66 -15.20 -992.40 84.21 -18.17 -992.40 

75
th

 Percentile 174.57 0.01 -906.93 174.57 0.01 -906.93 

90
th

 Percentile 200.41 13.13 -866.27 200.41 0.01 -866.34 

Large Beef CS PR PS CS PR PS 

Mean 164.32 -13.07 -952.06 144.52 -8.56 -934.58 
SD 29.06 5.28 31.47 51.39 10.96 49.32 

CV 17.68 -40.39 -3.31 35.56 -128.04 -5.28 

10
th

 Percentile 107.57 -15.20 -992.40 49.82 -15.20 -992.40 

75
th

 Percentile 174.57 -15.20 -925.60 174.57 0.01 -906.93 

90
th

 Percentile 200.41 0.01 -906.93 200.41 13.13 -855.85 

Backyard CS PR PS CS PR PS 

Mean 149.78 -12.49 -936.40 150.26 -17.71 -931.74 
SD 41.82 13.63 40.58 47.58 14.08 50.24 

CV 27.92 -109.09 -4.33 31.66 -79.53 -5.39 

10
th

 Percentile 84.21 -18.17 -992.40 52.05 -44.88 -992.40 

75
th

 Percentile 174.57 0.01 -906.93 174.57 -15.20 -918.33 

90
th

 Percentile 200.41 0.01 -866.34 200.41 0.01 -855.85 

 

*Notes: The numbers represent the welfare change in million dollars. CS represents the consumer‟s 

surplus, PR represents processor‟s surplus, and PS represents, producer‟s surplus. Total welfare is 

the summation of the consumers‟, processors‟, and producers‟ surpluses. 
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3.1.4. Stochastic Dominance and Risk Aversion Coefficient Analysis

 

A risk analysis will be conducted by using the concept of stochastic dominance 

when a decision maker faces a choice of using the ex post mitigation strategies. 

Stochastic dominance will tell us which mitigation strategy is preferred to use. However, 

there is always a crossing situation when the choice is not dominant to the other. A 

Breakeven Risk Aversion Coefficient (BRAC) analysis will come along to solve this 

situation. In addition, we can find out the Risk Aversion Coefficient (RAC) points where 

the preference switches from one choice to the other. 

3.1.4.1. Basic Theoretical Concept of Stochastic Dominance and BRAC
1
 

Stochastic dominance (SD) can inform decision makers how to pick a choice under 

weak assumptions about risk attitudes. Three basic assumptions are made, including a) 

each individual is an expected utility maximizer, b) two alternatives can be used to 

compare and they are mutually exclusive, and c) the stochastic dominance analysis is 

based on the population probability distribution (McCarl 1996).  

3.1.4.1.1. First Degree Stochastic Dominance 

Assume x is the level of wealth, while f(x) and g(x) give the probability of each 

level of wealth for alternatives f and g. The difference in the expected utility between the 

prospects is as follows:  








 -
dxg(x) u(x) - 

-
dxf(x) u(x)      (3) 

The equation can be rewritten as: 

                                                      
 This part adopts the materials from McCarl, B.A. "Choosing among Risky Alternatives Using Stochastic 

Dominance." Unpublished Manuscript, Texas A&M University, August 2008. 
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 dx)g(x)-f(x)( u(x)
-




     

(4) 

If f is preferred to g, then the sign of the above equation would be positive. 

Conversely, if g is preferred to f, the sign of the above equation is negative. 

Apply the integration by parts formula to  

a = u(x)                          (5)         

b = (F(x) - G(x))                   (6) 

where 



X

XF
-

dxf(x))(  





X

XG
-

dxg(x))(    

  dx ) g(x) - (f(x)db

(x)dxu da 





      

Under this substitution, the integration of 

 
-

dx)g(x)-f(x)( u(x)



equals  dx)G(x)-F(x)( (x)u'G(x))] -  F(x)( [u(x)

-

- 






 

  

   (7) 

 
In the left part when F(x) and G(x) are evaluated at x equals -∞, both equal zero; x 

equals +∞. Both equal one and plus infinity where they equal one so the left part equals 

zero. Now let us look at the right part, which is: 

 
-

dx)G(x)-F(x)( (x)u'





          

(8)

 

 

If the overall sign is positive, then f dominates g. 

3.1.4.1.2. Second Degree Stochastic Dominance 

The above FSD derivation says expected utility of f minus g can be expressed as  

 
-

dx)G(x)-F(x)( (x)u'





              

(9) 

Applying integration by parts 
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dx ) G(x)- (F(x) db

(x) ua 




                (10) 

so that: 

 ) (x)G  - (x)(F b

dx(x) uda 

22



      (11) 

where F2 and G2 are the second integral of the cdfs 

                 



X

XF
-

dxF(x))(
2   (12) 





X

XG
-

dxG(x))(
2

                      

(13) 

Under these circumstances, if we plug in our integration by parts formula we get the 

equation 

 dx)(x)G-(x)F( (x)'u'(x))]G - (x) F( (x)[u'-
-

22-22 






 

     

(14) 

The formula above has two parts. Let us address the right-hand part of it first. 

 dx)(x)G-(x)F( (x)'u'(x))]G - (x) F( (x)[u'-
-

22-22 






 

     

(15) 

Right-hand part contains the second derivative of the utility function times the difference 

in the integrals of the cdf with a positive sign in front of it.   

 dx)(x)G-(x)F( (x)'u'
-

22






                          

(16) 

To guarantee that f dominates g, the sign of this whole term must be positive. Two 

assumptions need to be added in the second stochastic dominance. First, the second 

derivative of the utility function with respect to x is negative everywhere. Second, F2(x) 

is less than or equal to G2(x) for all x with strict inequality for some x. 

One extension of stochastic dominance that has been utilized is generalized 

stochastic dominance (GSD). One again starts from the variant of the expected utility 
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function: 

 
-

dx)G(x)-F(x)( (x)u'





                   

(17) 

Meyer and Meyer (2005) investigated the magnitude of this expression under the 

conditions that the Pratt risk aversion coefficient falls into an interval: 

 (x)
2

r
)('

)("
 (x)

1
r 

xu

xu

                  

 (18) 

Meyer and Meyer (2005) posed an optimal control format for this examination. 

where the variable is u(x) 

(x)r
)('

)("
 (x)r

(x)u')
(x)u'

(x)u"
((x))'u'(..

dx)G(x)-F(x)( (x)u'

21

-





 




xu

xu

ts

Max

     

(19) 

When this problem is solved, it looks for the choice of utility function, which has 

r(x) constrained in the interval. The objective function is the expected utility difference, 

which if positive means f dominates g. When we maximize it, we find the greatest 

expected utility difference over all possible utility choices such that r(x) is in that 

interval. If the greatest utility difference is negative, then f must dominate g.   

Meyer and Meyer (2005) recognized that this is a simple optimal control problem 

since it is linear in the control variables. The problem has what it is called a Bang-Bang 

solution.   
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0
*

dx)G(x)-F(x)( (x)u' if )*(x
2

r

0
*

dx)G(x)-F(x)( (x)u' if )*(x
1
r

)*r(x





























x

x    (20) 

Meyer originally wrote a computer program to do this, but implements it with u(xi) 

= - e
-rxi

. Yet another approach has been used to deal with crossings. Hammond (1974) 

showed that, given two alternatives that cross once, under constant absolute risk aversion 

there is a break-even risk aversion coefficient (BRAC) that differentiates between those 

two alternatives.  

Hammond (1974) also noted the expected utility problem given a constant absolute 

RAC (r) is 

 
-

dxf(x) rx-e-



                        

(21) 

Equation 21 is a form of the mathematical statistics moment generating function. This 

does not imply that the risk aversion parameter is a constant, rather it could be increasing, 

decreasing, or of any other form as long as it remains between the two bounds.   

GSD generalizes the other stochastic dominance forms when r1 = 0 and r2 =  we 

get second degree, while r1 = - and r2 =  is the same as first degree. This has been a 

fairly heavily used technique in the 1990s. The biggest problem in using this technique is 

always concerning finding the r1, r2 values.   

The moment generating function under normality, given the risk aversion parameter 

r for distribution f, is as follows: 

     e)(
2

ur-

2


















rf
f

rm



   (22) 

If we solve this for the break-even risk aversion parameter, first thing we need to do 



   
66 

is to set the expected utilities equal:  
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Or 
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This can be manipulated to  
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(25) 

which yields two roots 
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(26) 

 

Notice then for any two normally distributed prospects, we can find a break-even 

risk aversion parameter using this formula. 

McCarl wrote a program (RISKROOT) to implement Hammond‟s approach with an 

empirical discrete distribution of unknown form. RISKROOT takes data for two 

alternatives and searches for the break-even risk aversion parameters between those two 

alternatives by solving the following equation for all applicable values of r.   

 0)(x)g-(x)(f e- ii

-rx i 
i

     (27) 

RAC can show the degree of a particular decision maker‟s aversion to risk. 

Therefore, we can make further assumptions to distinguish from one choice to another 

choice, which is to a range where RAC falls. Generalized stochastic dominance or mean 

variance programming models are often employed in this type of analysis. McCarl (1988) 
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developed an approach based on Hammond‟s study (1974), in which the dataset are 

explored to see what risk aversion coefficients differentiate among prospects under the 

assumption of a constant risk aversion. When using this method, one does not need to 

specify bounds of the RAC. It calculates given bounds of the RAC. The program is 

called RISKROOT. The RISKROOT program finds RACs in such a manner that, on 

each side of them, a given distribution dominates. However, there may be multiple 

values for these RACs with multiple preference shifts. Such RACs are hereafter called 

break-even risk aversion coefficients (BRACs) (McCarl 1996). 

Another version of the BRAC analysis has been called Stochastic Efficiency with 

Respect to a Function (SERF). The advantage of using the SERF method in calculating 

BRAC points is that this method allows for an estimation of the utility-weighted risk 

premiums. The feature permits the payoffs comparing between risk alternatives 

(Hardaker et al. 2004). Instead of using RISKROOT, we use SERF as implemented in 

Simetar (Richardson 2007). We also employ the graphical display of BRAC points using 

SERF. 

3.1.4.2. Early vs. Late Detection 

The stochastic dominance and calculated BRACs can tell us how each mitigation 

strategy dominates and where one alternative has passed the other in the introduction 

scenario of four assumed cattle operations. The analysis is summarized as follows. 

 In Figure 7, for U.S. consumers, early detection strategy dominates from risk 

neutral (RAC=0) to risk averse (RAC>0) in the first two larger operation (large 

feedlot and small feedlot) introduction scenarios. However, in the smaller operation 
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(large beef grazing and backyard) introduction scenarios, early detection strategy is 

not preferred. 

 In Figure 8, for U.S. producers, opposite to the results for U.S. consumers, in the 

first two large operation introduction scenarios, early detection is not preferred from 

risk neutral (RAC=0) to risk averse (RAC>0). In the large beef grazing scenario, 

early detection dominates from risk neutral to risk adverse. In the backyard 

introduction scenario, early detection is preferred as the RAC is greater than 0, and 

less than 0.0607. When RAC is bigger than 0.0607, early detection strategy does 

not dominate in the U.S. producers‟ welfare changes.  

 For the overall U.S. welfare changes, in the large feedlot introduction scenario, 

early detection is not preferred as seen in Figure 9. In the small feedlot introduction 

scenario, early detection becomes preferred strategy only when RAC is larger than 

0.8333. In the larger beef grazing scenario, early detection dominated as RAC lies 

between 0 and 0.0607. In the smallest feedlot (backyard) scenario, the result also 

shows that early detection dominates as RAC is between 0 and 0.0722. 

 In general, U.S. consumers economically prefer the early detection strategy when 

there is a larger operation introduction (e.g., large feedlot and small feedlot). U.S. 

producers can accept early detection strategy only in the scenario of large beef 

introduction or in the situation where the decision-makers are neutral and less risk 

adverse (RAC<0.0668) in the backyard introduction scenario. For the overall U.S. 

welfare changes, early detection will only be considered beneficial in three 

situations. One is at a high risk averse level (RAC>0.8333) in the small feedlot 
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scenario, and the other two are at similar low risk adverse levels, 0<RAC<0.0607 in 

the large feedlot introduction scenario, and 0<RAC<0.0722 in the backyard 

introduction scenario.  

 

 
 

Figure 7: Early vs. late detection strategy dominance with respect to U.S. consumers' 

surplus 

 



   
70 

 

Figure 8: Early vs. late detection strategy dominance with respect to U.S. producers' 

surplus 
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Figure 9: Early vs. late detection strategy dominance with respect to U.S. total welfare 
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3.1.4.3. Adequate vs. Inadequate Vaccines 

Data concerning comparison of adequate versus inadequate vaccines is presented in 

Figure 10, Figure 11, and Figure 12 respectively. The analysis is summarized as follows: 

• In Figure 10, for U.S. consumers, adequate vaccination strategy dominates from 

risk neutral (RAC=0) to risk averse (RAC>0) in the two smaller operations (large 

beef grazing and backyard). In the two larger operation (large feedlot and small 

feedlot) introduction scenarios, adequate vaccination strategy is not preferred. 

• In Figure 11, for U.S. producers, in the large feedlot introduction scenario, adequate 

vaccination strategy is preferred. In the small feedlot scenario, the adequate 

vaccination strategy dominates at the higher risk aversion level (e.g. RAC> 0.0491). 

In the large beef grazing scenario, adequate vaccination is only accepted when the 

risk adverse level is between 0.011 and 0.2789. In the backyard scenario, adequate 

vaccination is not preferred. 

• For the overall U.S. welfare changes, in the large feedlot introduction scenario, 

adequate vaccination is preferred from risk neutral to risk averse. In the small 

feedlot introduction scenario, adequate vaccination becomes the preferred strategy 

only when RAC is larger than 0.0741. In the larger beef grazing scenario, adequate 

vaccination does not dominate over other strategies. In the backyard scenario, the 

result also shows that adequate vaccination dominates when RAC is between 

0.0571 and 0.8443. 

• In general, U.S. consumers preferred adequate vaccination strategy when there was 

a disease introduction from smaller operations (e.g., large beef grazing and 



   
73 

backyard). U.S. producers can accept adequate vaccination strategy in the larger 

operation introduction scenarios. Adequate vaccination dominates in the following 

scenarios at different risk adverse level: from risk neutral to risk averse in the large 

feedlot scenario, RAC> 0.0491 in the small feedlot scenario, and 

0.2789<RAC<0.7104 in the large beef grazing scenario. For overall U.S. welfare 

changes, adequate vaccination is preferred in the large feedlot scenario. This 

strategy will be useful at the risk averse level (RAC>0.0741) in the small feedlot 

scenario, and 0.0571<RAC<0.8443 in the backyard introduction scenario. 

 

  



   
74 

 
 

Figure 10: Adequate vs. inadequate vaccines strategy dominance with respect to 

consumer's surplus 
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Figure 11: Adequate vs. inadequate vaccines strategy dominance with respect to 

producer's surplus 
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Figure 12: Adequate vs. inadequate vaccines strategy dominance with respect to U.S. 

total welfare 

 

3.1.4.4. Enhanced vs. Regular Surveillance 

Data concerning the comparison of enhanced surveillance and regular surveillance 

strategy will be presented in Figures 13, 14, and 15. The analysis is summarized as 

follows: 

 In Figure 13, for U.S. consumers, enhanced surveillance strategy dominates from 

risk neutral (RAC=0) to risk averse (RAC>0) in the two smaller operations (large 

beef grazing and backyard). In the two larger operation (large feedlot and small 
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feedlot) introduction scenarios, enhanced surveillance strategy is not preferred. 

 In Figure 14, for U.S. producers, enhanced surveillance strategy is preferred in the 

two larger feedlot (large feedlot and small feedlot) introduction scenarios. In the 

two smaller operation (large beef grazing and backyard) scenarios, enhanced 

surveillance strategy does not show a better result. 

 For the overall U.S. welfare changes, enhanced surveillance is preferred from risk 

neutral to risk averse in the large feedlot introduction scenario. In the small feedlot 

introduction scenario, adequate vaccination becomes preferred only when RAC is 

larger than 0.1118. In the larger beef grazing scenario, enhanced surveillance does 

not dominate over the other strategy. In the backyard scenario, the result also shows 

that adequate vaccination dominates as RAC is between 0 and 0.1301. 

 In general, U.S. consumers preferred enhanced surveillance strategy when there is a 

disease introduction from smaller operations (e.g., large beef grazing and backyard). 

U.S. producers can accept enhanced surveillance strategy in the larger operation 

(e.g., large feedlot and small feedlot) introduction scenarios. For overall U.S. 

welfare changes, enhanced surveillance is good in the large feedlot scenario. This 

strategy is also preferred at the risk averse level (RAC>0.1118) in the small feedlot 

scenario, and 0<RAC<0.1301 in the backyard introduction scenario. 
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Figure 13: Enhanced vs. regular surveillance strategy dominance with respect to 

consumers‟ surplus 
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Figure 14: Enhanced vs. regular surveillance strategy dominance with respect to 

producers‟ surplus 
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Figure 15: Enhanced vs. regular surveillance strategy dominance with respect to U.S. 

total welfare 

 

3.1.4.5. BRAC Results from Alternative Design for the Mitigation Strategies 

From the alternative designs, we want to find out whether this setting could give a 

reasonable result from the BRAC analysis compared to the outputs from the original 

design. Findings of major differences will be summarized as follows: 

 Early Detection: In the small feedlot scenario, U.S. producers could get better 

results by using the early detection strategy if RAC is greater than 0.0703. In the 

large beef grazing scenario, this strategy will benefit U.S. consumers. In the 
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backyard scenario, early detection is preferred for U.S. consumers if RAC>0.0104. 

For overall U.S. welfare changes, early detection is acceptable in the range of 

0.04<RAC<0.1167. 

 Adequate Vaccination: In the large feedlot scenario, U.S. consumers prefer the 

adequate vaccination strategy. However, U.S. producers can only accept adequate 

vaccination in the range of 0.0227<RAC<0.171. For overall U.S. welfare changes, 

adequate vaccination is not preferred. In the small feedlot scenario, U.S. consumers 

also prefer adequate vaccination. In the backyard scenario, U.S. consumers do not 

prefer early detection, while U.S. producers could accept the strategy in the range 

of RAC<0.06. For U.S. welfare changes, it is acceptable if RAC<0.1444. 

 Enhanced Surveillance: For this strategy, when compared to the original design, 

most of the characteristics are very similar. However, in several scenarios, a range 

of enhanced surveillance strategies exists. For example, in the large feedlot scenario, 

enhanced surveillance is preferred for U.S. producers if RAC<0.152 and for U.S. 

welfare changes if RAC<0.0348. In the small feedlot introduction case, enhanced 

surveillance becomes acceptable for U.S. producers when RAC is greater than 

0.0439. In the backyard scenario, U.S. consumers prefer the mitigation strategy 

when RAC is greater than 0.0017. 

 In general, this alternative design gives us another look at the stochastic dominance 

and BRAC situation with three major mitigation strategies. Among these strategies, 

there are no further correlated effects. When U.S. producers change their 

preferences in implementing early detection strategies in the large beef grazing 



   
82 

scenario, they can begin adopting early detection strategy with higher risk aversion 

attitudes in the small feedlot and large beef scenarios. The result suggests that U.S. 

consumers change their preferences in adopting adequate vaccination in the large 

feedlot and small feedlot scenarios. U.S. producers also change from late detection 

to early detection in large feedlot and backyard scenarios within a range of specific 

RAC. For enhanced surveillance, there exists a certain range of RAC in several 

scenarios when enhanced surveillance is accepted. 
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3.1.5. Overall Concluding Remarks and Policy Implications  

A number of analyses in previous sections present whether different mitigation 

strategies are preferred in the standpoint of welfare changes comparisons. The three 

mitigation strategies have different impacts on U.S. consumers and U.S. producers.  

Early detection has the advantage as a strategy in reducing risks. In large and small 

feedlots index herds, it helps consumers to have higher lower bound welfare gains, as 

well as outbreaks starting in large beef grazing and backyard operations. The variability 

of the change in the range of producer‟s losses is reduced. In addition, disease infection 

starting from small feedlots and large beef grazing operations lead to a preferred 

decision for using early detection strategy as risk aversion rises. Early detection is 

preferred for the risk neutral and risk adverse for U.S. consumers in the large feedlot, 

small feedlot, and large beef grazing index herd case, while it is preferred in the 

backyard case when risk aversion rises. Meanwhile, U.S. producers could prefer early 

detection in the small feedlot, large beef grazing, and backyard as the risk aversion level 

rises. 

Vaccine availability results suggest that improving vaccine availability during an 

incursion is not a cost effective mitigation option when seeking to minimize the average 

loss. Adequate vaccination does not show effectiveness at a national welfare level. 

However, as risk aversion rises for U.S. consumers in the large feedlot, small feedlot, 

and large beef grazing index herds, it shows the preference toward adequate vaccine 

availability. U.S. producers could prefer adequate vaccine strategy in the small feedlot 

index herd as the risk aversion rises.  
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Enhanced surveillance has proved to be a great strategy to reduce U.S. producer‟s 

welfare losses for outbreaks starting in large feedlots and small feedlot operations. This 

strategy also helps to increase U.S. consumer‟s welfare gains in large beef grazing and 

backyard operation index herds. Both large feedlot and small feedlot introductions lead 

to a preference toward enhanced surveillance as risk aversion rises. However, there is a 

preference toward regular surveillance as risk aversion rises for large beef index herds 

and backyard index herds. This implies that this strategy is to reduce risk in areas with 

larger feedlots. For U.S. consumers, regular surveillance strategy dominates in the 

situation of larger feedlot introduction, while enhanced surveillance dominates in the 

smaller feedlot introduction. U.S. producers have a preference for enhanced surveillance 

strategy when there are larger feedlot introductions. 

Further research that includes a more comprehensive and detailed analysis for each 

individual type of feedlot can be conducted. We might find reasons that can contribute to 

differences among the index feedlots. The analysis from this study can help to develop 

Agricultural policies for FMD prevention and mitigation, which can be enforced with 

considerations of other scenarios, varied reactions in different types of feedlot operations, 

and diverse perspectives from all parties involved in the national welfare composition.  
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4. RISK MODELING FOR EVALUATION OF MITIGATION STRATEGIES 

An FMD outbreak poses a potential threat for the United States. This raises serious 

concerns and a number of parties are considering how to reduce the possible huge loss. 

Risk is a major factor across major control strategies. In this study, we evaluate the 

economic consequences of a number of control strategies considering both their average 

welfare and their risk implications. 

Many risk modeling approaches have been developed to evaluate possible decision 

choices. Stochastic modeling is not used to yield the best beneficial option for decision 

makers; however, it is utilized to assist them to find a robust position across all possible 

events (McCarl and Spreen 1997). There are two major types of stochastic programming 

risk models (McCarl and Spreen 1997). In the first type, all decisions must be made 

when the event occurs and all the possible outcomes are taken into account when 

decisions are made. However, in the second type decisions can be made when the event 

occurs, but subsequent decisions may be made to change or complement the initial 

decision adapting to the realized uncertainty.  

The modeling approach used in this Section is the first type, which is stochastic 

modeling programming without recourse (McCarl and Spreen 1997). All decisions must 

be made when the event occurs and no other decision will be made after any uncertainty 

is resolved. In this Section, we will use the welfare results derived from ASM Modeling 

in the previous Section to evaluate the „optimal‟ solution under all circumstances in a 

risk modeling analysis. The factor of what risk attitude is chosen by decision makers will 

be incorporated into this risk modeling analysis as well. According to McCarl and 
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Spreen (1997), risks may arise in different ways including objective function coefficients, 

technical coefficients, or right-hand side coefficients. They may contribute to the overall 

risk level separately or collectively. As the previous Section targets using welfare 

comparison to determine the „optimal‟ solution for decision makers, this Section will 

include the factor of risk variable to analyze whether the „optimal‟ solution will be 

influenced by taking this variable into account.  

This Section will include three parts. Two risk models will be introduced in Part 1. 

The first risk model is mean-variance (EV) portfolio choice formulation under objective 

coefficient risk modeling analysis, and the second model is the unified model (McCarl 

and Spreen 1997). Results of these two risk modeling analyses will be presented in Part 

2. Part 3 will include a comprehensive discussion based on results of risk modeling 

analysis. All findings will be summarized in the last Part of this Section, and concluding 

remarks will be presented.  

4.1. E-V Model 

When there is a portfolio choice problem, decision makers have to set a criterion to 

develop an optimal strategy to reach their goal. The Linear Programming (LP) 

formulation was criticized by Markowitz for the drawback of investing all funds in the 

highest return option. An expected value variance (E-V) model, first formulated and 

exploited by Markowitz (1959), takes divergence between observed and modeled 

behaviors into consideration (McCarl and Spreen 1997).  

Usually, this modeling approach applies to investment in order to make the high 

returns less a risk adjustment. In this study, we introduce this risk modeling concept and 
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apply it to the mitigation strategy choice decision to reach an ideal goal of reducing the 

mean and risk aspects of welfare loss from a potential FMD outbreak in the Texas High 

Plains. A state of nature (k) refers to each of the 100 simulated welfare runs performing 

under a chosen scenario with four types of disease introduction index herd. The welfare 

levels in the 16 designed strategy combinations are treated as the objective value of Xk. 

4.1.1. E-V Model Formulation 

The following formulations are referred to McCarl and Spreen (1997): 

A general formulation of the E-V problem is 

0
..





X
bAXts

SXXXCMax

       

(28) 

In this study, the formula above defines the mean and variance of a LP objective 

function with a risky parameter, which also represents the welfare level in this case. The 

objective function maximizes expected welfare ( X) less a "risk aversion coefficient" ( ) 

times the variance of total welfare (X'SX). C represents the welfare level, and X is the 

proportion of choice when facing either using a specific mitigation strategy or not using 

it at all. In our case, we are looking for a portfolio of mitigation strategies subject to a 

proportion constraint in pursuit of expected welfare maximization. Therefore, b is equal 

to 1. The model assumes that decision makers will trade expected welfare for reduced 

variance. The GAMS formulation of E-V model is shown in Figure 16. 
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Figure 16: GAMS formulation sample – E-V Model 
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Properties of optimal E-V solution can be calculated by the Kuhn-Tucker condition. 

The Lagrangian function is  

   bAXSXXXCX  ,   (29) 

And the Kuhn-Tucker conditions are  
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where μ is the vector of dual variables (Lagrangian multipliers) associated with the 

primal constraint         . 

Two major indications come from the Kuhn-Tucker conditions. First, the solution 

allows more variables to be nonzero than a LP basic solution. This occurs since variables 

can be nonzero to satisfy the n potential conditions ∂ // ∂X = 0 and the m conditions, 

where AX = b or μ = 0. Thus, the solution can have more nonzero variables than 

constraints. Second, the ∂ / ∂X equation relates resource cost (μ) with marginal revenue 

(  ) and a marginal cost of bearing risk (-2ΦX'S). The optimal shadow prices are risk 

adjusted as are the optimal decision variable values (McCarl and Spreen 1997). 

4.1.2. Unified Modeling and Stochastic Programming 

A unified model formulation is illustrated as follows:  

Max                 –             
       

                                           

S.t.                                                                                                                               
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 ,   

                      

                                                                                                              

 
 A new variable (welfare) is introduced as the welfare level under the state of nature 

k, which is reflecting the simulated welfare level with the addition of welfare gain or 

welfare loss after a hypothetical FMD outbreak. A variable is entered for average welfare 

(       ) which is equated to the probabilities (     times the welfare levels. We treat 

all the simulation points with the same probability. All    values are equally weighted. 

This term also reflects the expected welfare maximization. Deviations between the 

average and state of nature dependent welfare level are treated in the constraint 

formulation as dk
+
 is welfare above the average level and dk

-
 shows welfare below the 

average level. The objective function includes the expected welfare value, the 

probabilities, and deviation variables. Figure 17 shows the GAMS formulation. 
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Figure 17: GAMS formulation sample – unified model 
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4.1.3. Theoretical Concerns of EV Model Use  

From the 1970s, the Expected Utility Theory (von Neumann and Morgenstern) 

gives the main theoretical basis for choice under uncertainty. The major concentration in 

the EU model is mainly on how a change in the random parameter, x, affects the 

decision made by an economic agent (Rothechild and Stiglitz 1971). McCarl and Spreen 

(1997) argue that there is a general agreement that maximizing the E-V problem is 

equivalent to maximizing expected utility when one of two conditions holds. First, the 

underlying income distribution is normal - which requires a normal distribution of the cj, 

and the utility function is exponential (Freund 1956). Second, the underlying 

distributions satisfy Meyer's location and scale restrictions. In addition, Tsiang (1972) 

has shown that E-V analysis provides an acceptable approximation of the expected 

utility choices when the risk taken is small relative to total initial wealth.  

4.2. Results 

In this section, a sorted ASM welfare data set from the previous section is used, and 

welfare changes are transferred to the total welfare values for each party and a U.S. total 

as the variable for each state of nature after the addition of the base welfare value. The 

base welfare level is the welfare level before the outbreak is initiated. The welfare value 

becomes the c in the objective function of the EV model. There are four types of disease 

introduction index herds for each of the 16 strategy combinations. In each combination 

for each index herd, there are 100 ASM simulation runs that are treated as states of 

nature. 

In this analysis, mitigation strategies are the variables of interest as selected in both 



   
93 

original and alternative designs for the EV modeling and Unified modeling portfolio 

analysis. This risk modeling methodology is used to test the effectiveness of each focus 

mitigation strategy in the aspect of U.S. consumers‟ surplus, U.S. processors‟ surplus, 

U.S. producers‟ surplus, and total U.S. welfare. A switch point of RAP can help us to 

realize the response of decision makers to a selected mitigation strategy at certain levels 

of risk aversion. Moreover, those two portfolio models can provide us suggestions in 

possible investment on either a single mitigation strategy or a mixed set of strategies.  

However, since we can only pick one as a preferred option, the choice with more 

investment share units will be viewed as a preferred strategy in the situation when there 

exists an optimal portfolio selection for both using the targeted mitigation strategy and 

the opposite mitigation strategy.  

4.2.1. Overall Results for All Strategies with Respect to U.S. Total Welfare 

First, we check the U.S. total welfare levels from all 64 scenarios after the addition 

of welfare changes assuming an FMD outbreak occurring in the Texas High Plains. We 

treat the four types of disease introduction index herds as events in our formulations, and 

the 16 different strategy combinations as variables (see Table 13). For each type of 

introduction index herd, there are 100 simulated welfare change runs in each strategy 

combination. With the addition of base welfare level, those 6,400 runs are viewed as 

states of nature given a potential FMD outbreak. 

The EV portfolio modeling runs with varying Risk Aversion Parameter (RAP), 

which is presented in Figure 18, show us that there is only one solution (use4) 

dominating all the other strategy combination designs in the RAP range between 0 and 
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0.002 with respect to the U.S. total welfare. The use4 strategy that includes ring 

slaughter, regular surveillance, slaughters of infecteds, slaugher of dc‟s, late detection, 

targeted vaccination, and inadequate vaccines. As the RAP rises to between 0.002 and 

0.003, other strategies (use9, use14, use16) are being introduced into the optimal mixed 

portfolio result. The use4 strategy still has the laregest proportion in the mixed results 

and remains a preferred strategy as the RAP is equal to or less than 0.025.  
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Table 13: Use of Mitigation Strategy Combination in GAMS Formulation 

 

           

 
 

  

Mitigation Strategy (M) USE 

Ring slaughter, regular surveillance, slaughter of infecteds, slaughter of dc's, early 

detection 

1 

Ring slaughter, regular surveillance, slaughter of infecteds, slaughter of dc's, late 

detection 

2 

Ring slaughter, regular surveillance, slaughter of infecteds, slaughter of dc's, late 

detection, targeted vaccination, adequate vaccine 

3 

Ring slaughter, regular surveillance, slaughter of infecteds, slaughter of dc's, late 

detection, targeted vaccination, inadequate vaccine 

4 

Enhanced surveillance, slaughter of infecteds, slaughter of dc's, early detection 5 

Enhanced surveillance, slaughter of infecteds, slaughter of dc's, late detection 6 

Enhanced surveillance, slaughter of infecteds, slaughter of dc's, late detection, 

targeted vaccination, adequate vaccine 

7 

Enhanced surveillance, slaughter of infecteds, slaughter of dc's, late detection, 

targeted vaccination, inadequate vaccine 

8 

Slaughter of infecteds, slaughter of dc's, regular surveillance, ring vaccination, early 

detection, inadequate vaccine 

9 

Slaughter of infecteds, slaughter of dc's, regular surveillance, early detection 10 

Slaughter of infecteds, slaughter of dc's, regular surveillance, late detection, ring 

vaccination, adequate vaccine 

11 

Slaughter of infecteds, slaughter of dc's, regular surveillance, late detection, ring 

vaccination, inadequate vaccine 

12 

Slaughter of infecteds, slaughter of dc's, regular surveillance, early detection, 

targeted vaccination, adequate vaccine 

13 

Slaughter of infecteds, slaughter of dc's, regular surveillance, late detection 14 

Slaughter of infecteds, slaughter of dc's, regular surveillance, late detection, targeted 

vaccination, adequate vaccine 

15 

Slaughter of infecteds, slaughter of dc's, regular surveillance, early detection, ring 

vaccination, adequate vaccine 

16 
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Figure 18: Results from E-V model runs with varying RAPs for all strategies with 

respect to U.S. total welfare 
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The preferred strategy switches from the use4 strategy to the use16 strategy as the 

RAP rises to between 0.025 and 0.05. The use16 strategy includes slaughter of infecteds, 

slaughter of dc's, regular surveillance, early detection, ring vaccination, and adequate 

vaccination. As the RAP rises to 0.05 and higher, most of the 16 strategy combinations 

are selected in the optimal portfolio results. In the RAP range between 0.05 and 80, the 

maximum in our EV modeling outputs, the strategies with a significant portfolio 

proportion result that is higher than 0.1 are use4, use11, use13, and use16. The use11 

strategy is the combination of slaughter of infected slaughter of dc's, regular surveillance, 

late detection, ring vaccination, and adequate vaccine. The use13 strategy includes 

slaughter of infecteds, slaughter of dc's, regular surveillance, early detection, targeted 

vaccination, and adequate vaccine. We find that adequate vaccination has great 

advantages, because it is part of the use4, use11, use13, and use16 strategy combinations.   

The overall portfolio result indicates that if decision makers are more risk averse if 

the RAC is greater than 0.05, then they might consider mitigation strategies that employ 

early detection and adequate vaccination. As risk aversion rises to a even higher level, 

the three mitigation strategies might offer certain helps to maximize the obejective 

function in the EV modeling with the various strategy combinations in the optimal 

portflio outcome. However, McCarl and Bessler (1989) suggest that RAC should fall 

within the reasonable bounds, and using an unreasonably large maximum RAC value is 

always seen in the literatures. In addition, how to identify the preferred strategy becomes 

difficult as RAP rises among most of the 16 mixed strategy usages in the output table.    

From the results shown in the previous section, we have known that there are 
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siginificant welfare distributions among U.S. consumers, U.S. processors, and U.S. 

producers. U.S. producers suffer a possible welfare loss when there is a FMD outbreak 

occurring in the Texas High Plains. Therefore, further investigation with a specific 

design for treating mitigation strategies as the variable of interests researching the effects 

on the welfare of different parties should be conducted, which is designed to prevent a 

huge loss in the welfare of any specific party in the nation. 

      Based on the optimal portfolio result of Unified model runs in Figure 19, we 

have found that the strategy combination (use14) is the only selected strategy within the 

RAP range between 0 and 0.5. The use14 strategy includes slaughter of infecteds, 

slaughter of dc's, regular surveillance, and late detection. This strategy is very similar to 

the use4 strategy combination in the previous EV model runs. An optimal solution of a  
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Figure 19: Results from unified model runs with varying RAPs for all strategies with 

respect to U.S. total welfare 
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mixed strategy (use14 and use16) begins when the RAC is between 0.5 and 1. As the 

risk aversion level rises above 2.5, more strategy combinations are selected in the 

optimal mixed strategy portfolio. Meanwhile, the use14 strategy is the preferred strategy 

due to its largest proportion in the portfolio. The preferred strategy usage is switched 

from use14 strategy to use16 strategy when the RAC rises to between 5 and 10. The 

use16 strategy begins to serve as a preferred strategy to improve the overall welfare 

objective function in the face of a hypothetical FMD outbreak when RAP is equal to or 

higher than 10. The difference between use14 and use16 is that three more mitigation 

strategies, including early detection, ring vaccination, and adequate vaccine, are included 

in the use16 strategy combination. Two of them are our targeted strategies in this study.  

Moreover, in the RAP range between 10 and 80, which is the maximum in our 

modeling, the strategies with a significant proportion in the optimal portfolio result that 

is higher than 0.1 are use2, use11, use13, use14, and use16. The use2 strategy combines 

with strategies of ring slaughter, regular surveillance, slaughter of infecteds, slaughter of 

dc's, and late detection; the use11 strategy is the combination of slaughter of infecteds, 

slaughter of dc's, regular surveillance, late detection, ring vaccination, and adequate 

vaccine; the use13 strategy includes slaughter of infecteds, slaughter of dc's, regular 

surveillance, early detection, targeted vaccination, and adequate vaccine. We are not able 

to prove any advantage of any targeted mitigation strategy by looking for similarities 

among those strategy combinations with a significant proportion under the given result.  



   
101 

From this overall effect evaluation for all strategies in the Unified modeling, we can 

conclude that early detection and adequate vaccination could both be good mitigation 

strategies as the decision makers become risk averse.  

The contribution of the three targeted mitigation strategies to maximize the 

established objective function in both the EV model and the Unified model cannot be 

identified to provide strong enough evidence for the effectiveness of the overall effects 

on the U.S. total welfare. More efforts can be made with further investigation on the 

effects based on the design for the variables of interest for each mitigation strategy in the 

welfare comparisons of each different party and U.S. total welfare.    

4.2.2. Results for Early Detection as a Mitigation Strategy 

In this section, we continue to use the alternative design where mitigation strategies 

are treated as the variable of interest with a specific objective to avoid inter-strategy 

effects. The optimal portfolio results of both EV modeling and Unified modeling runs 

are shown in Table 14. The major findings are summarized as follows.  
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Table 14: Optimal Proportion Usage for Early Detection as a Mitigation Strategy 

 

RAP EV Model  Unified Model 

  PS PR CS Total PS PR CS Total 

0 0 0 1 0 0 0 1 0 

0.0003 0 0 1 0 0 0 1 0 

0.0005 0 0 1 0 0 0 1 0 

0.0008 0 0 1 0 0 0 1 0 

0.001 0 0 1 0 0 0 1 0 

0.0015 0 0 0.976 0 0 0 1 0 

0.002 0.079 0 0.876 0 0 0 1 0 

0.003 0.247 0 0.775 0 0 0 1 0 

0.005 0.381 0.003 0.695 0 0 0 1 0 

0.01 0.482 0.269 0.634 0 0 0 1 0 

0.011 0.491 0.293 0.629 0.037 0 0 1 0 

0.013 0.502 0.322 0.622 0.094 0 0 1 0 

0.015 0.515 0.358 0.614 0.164 0 0 1 0 

0.025 0.542 0.429 0.598 0.305 0 0 1 0 

0.05 0.562 0.482 0.586 0.411 0 0 1 0 

0.1 0.572 0.509 0.58 0.463 0 0 1 0 

0.3 0.579 0.526 0.576 0.499 0 0 1 0 

0.5 0.58 0.53 0.575 0.506 0 0 1 0 

1 0.581 0.533 0.574 0.511 0 0 1 0 

2.5 0.582 0.534 0.574 0.514 0 0 1 0 

5 0.582 0.535 0.574 0.515 0.164 0 0.773 0 

10 0.582 0.535 0.574 0.516 0.412 0 0.667 0.284 

15 0.582 0.535 0.574 0.516 0.472 0 0.635 0.368 

20 0.582 0.535 0.574 0.516 0.5 0 0.62 0.407 

40 0.488 0.374 0.574 0.516 0.542 0 0.597 0.462 

80 0.244 0.187 0.574 0.516 0.562 0 0.585 0.489 

 

*Note: PS -U.S. Producers, PR - U.S. Processors, CS - U.S. Consumers; the highlighted slots indicate 

early detection is a dominant or preferred strategy. 
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For U.S. consumers: 

 Results indicate that early detection is a good option for disease control for risk 

neutral (RAP=0) to risk averse (RAP>0) decision making in both models. EV 

modeling results show that early detection is a dominant strategy as the RAP is 

between 0 and 0.001, while Unified modeling suggests that early detection is the 

only selected strategy for usage as the RAP is between 0 and 2.5. The optimal 

proportion outcome suggests a mixed strategy that includes both early detection and 

late detection starting when the RAP is equal to or greater than 0.0015 in the EV 

modeling case and 5 in the Unified modeling case, respectively. However, early 

detection has greater proportion and remains a preferred strategy in both modeling 

cases.  

For U.S. processors:  

 Early detection strategy is not a better choice for U.S. processors in the EV 

modeling runs as the RAP is between 0 and 0.05. However, early detection becomes 

a preferred strategy as its optimal proportion is greater than the proportion of the 

late detection strategy when the RAP is 0.1 or higher. However, early detection does 

not offer a better option for U.S. processors in the Unified modeling result. 

For U.S. producers: 

 Early detection strategy can be a good choice in both modeling runs. However, the 

switch RAP points in both modeling outcomes are very different. In the EV 

modeling case, early detection becomes a preferred strategy as RAP is equal to or 

greater than 0.013; in the Unified modeling case, the preference is the late detection 



   
104 

strategy instead. The preference switches from late detection to a mixed strategy 

only when RAP is equal to or greater than 5. Early detection has the same or greater 

proportion in the optimal portfolio selection and becomes a preferred strategy as 

RAC rises up to 20 or higher.  

For overall U.S. welfare: 

 Early detection can be a preferred option to choose. EV modeling outcome 

indicates that its optimal proportion is equal to or greater than the proportion of the 

late detection strategy as the RAP is equal to or greater than 0.5. However, in the 

Unified modeling result, early detection can never become a preferred strategy even 

though the RAC reaches to a very high level. 

4.2.3. Results for Adequate Vaccination as a Mitigation Strategy  

The results are shown in Table 15. Major findings in both EV modeling and Unified 

modeling results are summarized as follows. 

For U.S. consumers: 

 Adequate vaccination provides a good option for disease control for risk neutral 

(RAP=0) to risk averse (RAP>0) decision making for U.S. consumers in both 

models. EV modeling results show adequate vaccination is a dominant strategy as 

the RAP is between 0 and 0.0003, while Unified modeling suggests that adequate 

vaccination is the only selected strategy for usage as the RAP is between 0 and 

0.015. The optimal proportion outcome suggests a mixed strategy that includes both 

adequate vaccination and inadequate vaccination starting when the RAP is equal to 

or greater than 0.0003 in the EV modeling case and 0.025 in the Unified modeling 
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case, respectively. However, adequate vaccination has greater proportion and 

remains a preferred strategy in both modeling cases.  

 

Table 15: Optimal Proportion Usage for Adequate Vaccine 

 

RAP 

  

EV Model Unified Model 

PS PR CS Total PS PR CS Total  

0 0 0 1 0 0 0 1 0 

0.0003 0 0 0.533 0 0 0 1 0 

0.0005 0 0 0.525 0 0 0 1 0 

0.0008 0.105 0 0.522 0 0 0 1 0 

0.001 0.213 0 0.521 0 0 0 1 0 

0.0015 0.32 0 0.519 0 0 0 1 0 

0.002 0.373 0 0.519 0 0 0 1 0 

0.003 0.427 0 0.518 0 0 0 1 0 

0.005 0.47 0.073 0.518 0 0 0 1 0 

0.01 0.502 0.263 0.517 0.037 0 0 1 0 

0.011 0.505 0.28 0.517 0.079 0 0 1 0 

0.013 0.509 0.301 0.517 0.13 0 0 1 0 

0.015 0.513 0.326 0.517 0.191 0 0 1 0 

0.025 0.521 0.376 0.517 0.315 0 0 0.823 0 

0.05 0.528 0.414 0.517 0.407 0 0 0.649 0 

0.1 0.531 0.433 0.517 0.453 0 0 0.581 0 

0.3 0.533 0.446 0.517 0.484 0 0 0.538 0 

0.5 0.534 0.449 0.517 0.49 0 0 0.53 0 

1 0.534 0.45 0.517 0.495 0 0 0.523 0 

2.5 0.534 0.452 0.517 0.498 0.297 0 0.519 0 

5 0.534 0.452 0.517 0.499 0.425 0.284 0.518 0 

10 0.534 0.452 0.517 0.499 0.48 0.373 0.517 0.293 

15 0.534 0.452 0.517 0.499 0.499 0.4 0.517 0.367 

20 0.534 0.452 0.517 0.499 0.508 0.413 0.517 0.401 

40 0.417 0.289 0.517 0.499 0.521 0.433 0.517 0.451 

80 0.209 0.144 0.517 0.5 0.528 0.433 0.517 0.475 

 

*Note: PS -U.S. Producers, PR - U.S. Processors, CS - U.S. Consumers; the highlighted slots indicate 

adequate vaccination is a dominant or preferred strategy. 
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For U.S. processors: 

 The adequate vaccination strategy does not offer a better choice for U.S. processors 

in both modeling results. Adequate vaccination has a proportion in an optimal 

mixed strategy solution as the RAP is equal to or greater than 0.005 in the EV 

modeling results. In the Unified modeling results, a mixed strategy happens only 

when the RAP is equal to or greater than 5. The proportion of the adequate 

vaccination strategy is always smaller than the proportion of inadequate vaccination 

in both modeling results. Therefore, the adequate vaccination strategy is not in the 

preference for U.S. processors. 

For U.S. producers:  

 The adequate vaccination strategy can be a good choice for U.S. producers in both 

modeling runs. However, the switch RAP points in both modeling outcomes are 

very different. In the EV modeling case, adequate vaccination becomes a preferred 

strategy as RAP is equal to or greater than 0.01; however, in the Unified modeling 

case, adequate vaccination is preferred only when there is a decision maker whose 

RAP level is equal to or greater than 20.  

For overall U.S. welfare: 

 Adequate vaccination becomes a preferred strategy in the EV modeling results only 

when the RAP is equal to or greater than 80, while it has a share of optimal usage as 

the RAP is equal to or greater than 0.005. In the Unified modeling results, adequate 

vaccination has the proportion of optimal usage as the RAC is equal to or greater 

than 5, and it never becomes a preferred strategy. 
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4.2.4. Results for Enhanced Surveillance as a Mitigation Strategy 

The results for the enhanced surveillance as a mitigation strategy are shown in 

Table 16. Major findings in both EV modeling and Unified modeling results are 

summarized as follows. 

For U.S. consumers: 

 The enhanced surveillance strategy is a good option for U.S. consumers to invest 

within the range from risk neutral (RAC=0) to risk averse (RAC>0) in both 

modeling results. Enhanced strategy is the only preferred strategy when the RAP is 

between 0 and 0.0003 in the EV modeling results and the RAP is between 0 and 0.5 

in the Unified modeling. Even though a mixed strategy solution exists at a higher 

RAP level, enhanced surveillance still gives a better outcome for U.S. consumers. 

For U.S. processors: 

 The enhanced surveillance strategy does not offer a better choice for U.S. 

processors in both the EV modeling and Unified modeling results. Enhanced 

surveillance has a proportion in an optimal mixed strategy solution as the RAP is 

equal to or greater than 0.005 in the EV modeling results. In the Unified modeling 

results, a mixed strategy exists only when the RAP is equal to or greater than 2.5. 

The proportion of enhanced surveillance strategy is always smaller than the 

proportion of regular surveillance in both modeling results. Generally, U.S. 

processors do not prefer this enhanced surveillance strategy in both of the modeling 

results. 

For U.S. producers: 
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 Enhanced surveillance is a preferred option when the RAP is equal to or greater 

than 0.015 in the EV modeling results. In the Unified modeling, the preference 

switches from regular surveillance to enhanced surveillance when the RAP is equal 

to or greater than 20. 

For overall U.S. welfare: 

 Enhanced surveillance becomes a preferred strategy as its usage proportion in the 

optimal solution is equal to or greater than the proportion of regular surveillance in 

the EV modeling results as the RAP is equal to or greater than 5. In the Unified 

modeling results, enhanced surveillance does not become a preferred strategy 

because regular surveillance always has a greater usage proportion in all RAP 

ranges between 0 and 80. 

 

 

 

 

 

 

 

 

 

 

 



   
109 

Table 16: Optimal Proportion Usage for Enhanced Surveillance 

 

RAP 
EV Model Unified Model  

  PS PR CS Total PS PR CS Total  

0 0 0 1 0 0 0 1 0 

0.0003 0 0 1 0 0 0 1 0 

0.0005 0 0 1 0 0 0 1 0 

0.0008 0 0 0.847 0 0 0 1 0 

0.001 0 0 0.767 0 0 0 1 0 

0.0015 0.158 0 0.687 0 0 0 1 0 

0.002 0.254 0 0.647 0 0 0 1 0 

0.003 0.35 0 0.607 0 0 0 1 0 

0.005 0.427 0.025 0.575 0 0 0 1 0 

0.01 0.484 0.246 0.551 0.028 0 0 1 0 

0.011 0.489 0.266 0.548 0.071 0 0 1 0 

0.013 0.496 0.29 0.546 0.122 0 0 1 0 

0.015 0.503 0.319 0.543 0.186 0 0 1 0 

0.025 0.519 0.378 0.536 0.312 0 0 1 0 

0.05 0.53 0.422 0.531 0.406 0 0 1 0 

0.1 0.536 0.444 0.529 0.454 0 0 1 0 

0.3 0.54 0.459 0.527 0.485 0 0 1 0 

0.5 0.541 0.462 0.527 0.492 0 0 1 0 

1 0.541 0.464 0.527 0.496 0 0 0.883 0 

2.5 0.541 0.465 0.527 0.499 0.206 0.069 0.646 0 

5 0.542 0.466 0.527 0.5 0.396 0.299 0.585 0.178 

10 0.542 0.466 0.527 0.501 0.471 0.386 0.556 0.355 

15 0.542 0.466 0.527 0.501 0.495 0.413 0.546 0.405 

20 0.542 0.381 0.527 0.501 0.506 0.426 0.541 0.43 

40 0.393 0.191 0.527 0.501 0.524 0.446 0.534 0.466 

80 0.196 0.095 0.527 0.501 0.533 0.456 0.53 0.483 

 
*Note: PS -U.S. Producers, PR - U.S. Processors, CS - U.S. Consumers; the highlighted slots indicate 

enhanced surveillance is a dominant or preferred strategy. 
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4.3. Summary 

Through the two risk portfolio models, we find that preference for control strategies 

depends on risk attitude. For total U.S. welfare, adequate vaccination gains a greater 

share as with larger RAPs. In the Unified modeling, early detection and adequate 

vaccination increase as the RAP reaches a high level. However, additional information 

arises when other parties are considered. 

Early detection proves to be preferable for U.S. consumers. The EV optimal 

portfolio solutions show that early detection brings benefits for U.S. processors and U.S. 

producers as RAP rises. However, in the Unified modeling result this takes a high RAP.  

In the adequate vaccination strategy analysis shows that it benefits U.S. consumers, 

but does not give U.S. processors a better outcome. Adequate vaccination provides a 

better choice for U.S. producers as the RAP rises in the EV modeling solution, but it is 

only preferred with a high RAP in the Unified modeling framework.  

Enhanced surveillance is preferred for U.S. consumers. For U.S. processors, 

enhanced surveillance does not give a better risk/return outcome. U.S. producers switch 

their preference from regular surveillance to enhanced surveillance as their RAP rises.  
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5. CONCLUSIONS, FUTURE RESEARCH,  AND LIMITATIONS 

5.1. Summary of Major Findings  

In this dissertation, I examined the desirability of using three major mitigation 

strategies under a simulated FMD outbreak originating in the Texas High Plains. This 

was done using conventional cost benefit, welfare analysis and risk analysis. The welfare 

results come from an epidemic- economic analysis utilizing an agricultural sector model 

(ASM) operating over the results of the epidemiologic model (AusSpread). The analysis 

yields project the impact of possible outbreaks on animal slaughter, U.S. consumers‟ 

welfare, U.S. processors‟ welfare, U.S. producers‟ welfare, and overall U.S. welfare.  

The main findings from this work are:  

 Current literature suggests that early detection may be the most economically 

acceptable mitigation strategy. In this study, we have found that it is not preferable 

under risk neutrality, but becomes preferable as the decision maker becomes more 

risk averse (e.g., with a higher RAP).  

 Current literature suggests that the adequate vaccine availability strategy may not 

be very cost effective. We also find that this vaccine availability strategy is never 

economic under expected value maximization but can become so under risk 

aversion. U.S. consumers are the main welfare beneficiary from the usage of this 

strategy, but U.S. producers suffer a large average welfare loss. The risk portfolio 

modeling shows that adequate vaccination reduces risk for U.S. consumers, but not 

for U.S. processors. For U.S. producers and overall U.S. welfare, adequate 

vaccination becomes preferred as the RAP rises.  
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 Enhanced surveillance measures are generally not preferred in the stochastic 

dominance comparison, but are preferred in the risk portfolio model as the RAP 

rises. The risk modeling results indicate that enhanced surveillance could help both 

U.S. consumers and producers in risk management. 

 We find that U.S. consumers are the major beneficiary group from any of the three 

mitigation strategies, while U.S. producers outside the study area generally suffer a 

greater loss. A comprehensive compensation scheme might need to be developed to 

overcome those distributional differences with the corresponded welfare change 

estimates in this study.  

 Risk is found to be an important factor indecision making. A number of mitigation 

strategies become more acceptable when risk management is considered.  

 The results we have found above show implications for policy makers. It is 

important to examine vulnerability and possible mitigation strategies for a number 

of disease vulnerabilities. From an economic welfare analysis, the results from such 

evaluations can identify both absolute and distributional welfare results across 

different parties in the society. A compensation program could be established on the 

basis of that welfare evaluation in order to improve biosecurity strategy 

performance. 

5.2. Limitations 

Limitations of this study are associated with the treatment of correlation, case study 

specificity, and reliance on one epidemic model with limited cases.  

 Identification of the desirability of possible strategies can be complicated by the 
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experimental design used in the epidemic model simulations. The alternative design 

for the three mitigation strategies improved my ability to identify the effects and 

further efforts along that line may well be in order. 

 Case study specificity is another limitation because the effort is concentrated in the 

Texas High Plains, but other regions may respond differently, and thus the results 

are not generalizable. 

 Reliance on one epidemic model might also restrict the generalization of the 

findings in this study.  

5.3. Future Research 

More future research can be done in several ways:  

 A two-stage stochastic programming with recourse study could be done to examine 

the decisions made stage by stage with alternative strategies pursued as the 

outbreak proceeds and consideration of any a priori costs that may be encountered,. 

In the first stage, the cattle production and fixed cost investment would be 

determined before an FMD outbreak. Then cattle production, disease management 

effort, production and market prices depend on whether a FMD outbreak occurs or 

not, and are reflected in the second stage.  

 A case study on the UK outbreak could be conducted to investigate th risk attitudes 

for decision makers. 

 A trade analysis with the framework of the two-stage stochastic programming could 

be further accomplished to examine the implications of meat trading bans.  

 The study suffers from limitations in the use of a single epidemic model, a limited 
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set of mitigation strategies, and case study region specificity. The work could be 

extended to use more models over a wider geographic area with more strategies 

evaluated. 
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