
SYNCHRONIZATION OF MECHANICAL OSCILLATORS:

AN EXPERIMENTAL STUDY

A Thesis

by

ROOZBEH DANESHVAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2010

Major Subject: Electrical Engineering



SYNCHRONIZATION OF MECHANICAL OSCILLATORS:

AN EXPERIMENTAL STUDY

A Thesis

by

ROOZBEH DANESHVAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Tamás Kalmár-Nagy
Committee Members, Takis Zourntos

Deepa Kundur
Karen Butler-Purry

Head of Department, Costas N. Georghiades

December 2010

Major Subject: Electrical Engineering



iii

ABSTRACT

Synchronization of Mechanical Oscillators:

An Experimental Study. (December 2010)

Roozbeh Daneshvar, B.S., University of Tehran;

M.S., University of Tehran

Chair of Advisory Committee: Dr. Tamás Kalmár-Nagy

In this research we consider synchronization of oscillators. We use mechanical

metronomes that are coupled through a mechanical medium. We investigate the

problem for three different cases: 1) In passive coupling of two oscillators, the coupling

medium is a one degree of freedom passive mechanical basis. The analysis of the

system is supported by simulations of the proposed model and experimental results.

2) In another case, the oscillator is forced by an external input while the input is

also affected by the oscillator. This feedback loop introduces dynamics to the whole

system. For realization, we place the mechanical metronome on a one degree of

freedom moving base. The movements of the base are a function of a feedback from

the phase of the metronome. We study a family of functions for the reactions of

the base and their impact on the behavior of the metronome. 3) We consider two

metronomes located on a moving base. In this case the two metronomes oscillate

and as the base is not freely moving, they are not directly coupled to each other.

Now based on the feedbacks from the vision system, the base moves and hence the

phases of the metronomes are affected by these movements. We study the space of

possibilities for the movements of the base and consider impacts of the base movement

on the synchronization of metronomes. We also show how such a system evolves in

time.
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CHAPTER I

INTRODUCTION

Synchronization is a ubiquitous phenomenon everywhere and it plays an important

role in many other phenomena. We start by reviewing some literature about synchro-

nization and some related areas1.

A. Oscillation

The concept of self-oscillations was first proposed by Andronov, Khaikin and Vitt

in 1937 [1] (for the English version see [2]). It is mentioned that “A self-oscillating

system is an apparatus which produces a periodic process at the expense of a non-

periodic source of energy.” Appleton [3] and van der Pol [4, 5] set experiments with

electric circuits while they were studying the reception of radio signals with electric

circuits with triodes. In a relaxed self-sustained oscillator, although the motion of a

point in the phase plane might be non-uniform, but the growth of the phase in time

is still uniform [6].

B. Coupled Oscillators

The interaction between the organ pipes was studied by Rayleigh [7]. His experiment

involved two organ pipes which had close peach and were located close to each other.

The pipes together sounded in perfect unison. Another investigation is done by [8]

in which one pipe was substituted by an electric speaker. The authors observed that

even minute driving signals forced the pipe to synchronization. A simple model of

coupled oscillators is given by [9]:

1This thesis follows the style of IEEE Transactions on Automatic Control.
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θ̇1 = ω1 +K1 sin (θ2 − θ1) (1.1)

θ̇2 = ω2 +K2 sin (θ1 − θ2) (1.2)

in which θ1 and θ2 are the phases of the oscillators and ω1 and ω2 are the natural

frequencies. The two parameters K1 and K2 determine the amount of dependency

between the two oscillators (and show that how much they are affected from the other

one). For an uncoupled system, we have K1 = K2 = 0 and hence the equations are

reduced to

θ̇1 = ω1 (1.3)

θ̇2 = ω2 (1.4)

C. Synchronization

The word synchronous originates from the Greek words chronos and syn which means

“sharing the same time” [6]. The authors have considered synchronization as a com-

plex dynamical system rather than a state. Synchronization is thoroughly discussed

in [10]. When the oscillators are coupled, there is a phase difference φ between the

two oscillators

φ = θ1 − θ2 (1.5)

So, we have
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φ̇ = θ̇2 − θ̇1 (1.6)

= ω1 − ω2 − (K1 +K2) sinφ (1.7)

in which ω1 − ω2 is also called Frequency detuning [6]. Synchronization can result

from an interaction between systems [11] or sub-systems [12–14].

Synchronization of two coupled escapement-driven pendulum clocks was investigated

in [15]. Blekhman [16] discusses observations of the Dutch researcher Christian Huy-

gens2 and presents the results of a laboratory reproduction and a theoretical analysis

of oscillators coupled through a common supporting frame. At first, Huygens sus-

pected the “sympathy” between the clocks was due to induced air currents, but

eventually concluded that the cause was the “imperceptible movements” of the com-

mon supporting structure [17]. In the reproduction of Huygens experiment [17], the

anti-phase state was the only type of synchronization that was observed.

The first observations of synchronization in electronic tube generators were done

by Eccles [18, 19]. He considered the problem of creating a precision clock and the

transmission of naval signals. In [20] the authors experimentally studied rhythmic

hand clapping. They consider a conflict between average noise intensity and synchro-

nization. They discuss a mechanism of hand clapping period doubling by individuals

that helps the group achieve synchronization. Their results offer a novel route to syn-

chronization, not observed in physics or biological systems by the time of publication.

Synchronization only happens in self-sustained systems [21]. The authors de-

scribe self-sustained oscillators mathematically as an autonomous (i.e. without ex-

plicit time dependence) nonlinear dynamical systems. Phase of an oscillator is con-

2Christian Huygens is probably the first scientist who observed and described the
synchronization phenomenon.
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sidered neutrally stable. This means that a slight perturbation can change the phase

while the amplitude is stable and is not affected by external perturbations. This

property provides the oscillator the ability to synchronize [21].

Synchronization of two metronomes is investigated in [22]. The authors address

the problem of analytical study of in-phase synchronization for the model of two

metronomes an the common support proposed in [23]. The authors proved the ex-

istence of an in-phase regime and they proved that for when the angle difference of

metronomes was zero (φ1−φ2 = 0), the sum of angles (φ1 +φ2) has a periodic regime.

The synchronization of an array of clocks hanging from an elastically fixed hori-

zontal beam is studied in [24]. The beam is considered as a rigid body connected to a

spring and a damper. Different types of synchronization are observed in that research:

Symmetrical Synchronization, Complete Synchronization and De-synchronous Behav-

ior. Synchronization of two and more metronomes is considered in [23]. Synchroniza-

tion of coupled mechanical metronomes is also studied in [25]. The authors study

synchronization by means of numerical simulations showing the onset of synchroniza-

tion for two, three and 100 globally coupled metronomes.

Crowd synchrony on London Millennium Bridge [26] is investigated in [27]. Suf-

ficient conditions for controlled synchronization of non-linear systems is provided

in [28]. An attempt to provide a general formalism for synchronization in dynamical

systems is shown in [29]. Frequency and coordinate synchronizations are considered

in that article. It is mentioned that synchronization as a phenomenon should be

considered in context and depends on the view. A system showing synchronization

viewed from a view point, might not seem having synchronization from another point

of view.

A sample of synchronization is observed in various species. For instance, banded

mongoose groups show high degree of birth synchrony to avoid the negative effects
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of competition with other females [30]. Synchronization of time-delayed systems

is discussed in [31]. A brief introduction to the theory of synchronization of self-

sustained oscillators is presented in [32].

Synchronization is investigated in other fields such as Small-World networks

[33–35], in weighted complex networks [36–38] and in dynamical networks [39]. Phase

synchronization of weakly coupled self-sustained chaotic oscillators is investigated

in [40]. The exact mechanisms of generation of epileptic seizures in human brains is

still uncertain. Nevertheless, it is widely accepted that an abnormal synchronization

of firing neurons causes epileptic seizures. To investigate this problem, phase synchro-

nization between different regions of the brain is measured in many researches [41,42]3.

D. Chaos

Dissipative systems with a nonlinear time-delayed feedback or memory can produce

chaotic dynamics [43, 44]. The effect of the delay on the dimension of these chaotic

attractors is shown in [45]. Delay systems generically have families of periodic solu-

tions, which are reappearing for infinitely many delay times. As delay increases, the

solution families overlap leading to increasing coexistence of multiple stable as well

as unstable solutions [46]. Anticipating chaotic synchronization is discussed in [47].

E. Self-Adjusting Systems and the Edge of Chaos

Packard [48] showed adaptation to the edge of chaos in cellular automata rules with

genetic algorithms. Some of his results were later disputed in [49]. Co-evolution

to the edge of chaos is discussed in [50]. Edge of chaos has been found to be the

3This seems to be a potential line of research. If controlling this synchronization
can be under control or be interfered by some means, there might be a tool for
controlling epileptic seizures.
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optimal setting for control of a system [51]. A self-adjusting system is a system in

which the control of a parameter value depends on previous states of the system [52].

The authors in [53] describe adaptation to the edge of chaos in logistic map. They

believe that adaptation to the edge of chaos is a generic property of the systems

with a low-pass filtered feedback.They believe that this property is independent of

the form of the feedback and the system under study. The findings have also been

confirmed experimentally with Chua’s circuit [54]. In [55] conserved quantities are

used for investigating adaptation to the edge of chaos. The phrase Edge of Chaos was

originally proposed by Chris Langton in 1990 in the area of cellular automata [56]

although others mentioned the same at the same time [57]. Guiding an adaptive

system through chaos is also considered in [58]. The topic is also discussed in [59–62].

F. Purpose of this Research

We would like to consider oscillators and the effect when they are coupled through a

medium. We would study the synchronization phenomenon between oscillators and

we would like to study mechanical oscillators in an experimental settings and we

consider the important factors affecting the synchronization. We also study the case

in which we interfere with the coupling. For this case, we use the concept of forced

oscillators and use mechanical metronomes located on a moving base. We study the

effects of movements of the base on the behaviors of oscillators. This makes the whole

set a rich dynamical system that has many potentials to be explored. We will consider

the case where the system can adjust itself. We study how the system evolves in time

when some parameters of the system are adjusted by states of the system itself.
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CHAPTER II

EXPERIMENTAL SETTINGS

We used an experimental setting for this research. The description and details of

these settings are provided in this chapter.

A. Description

We use mechanical wind-up metronomes as oscillators that are mechanically coupled

through a moving base. The metronomes are Wittner’s Super-Mini-Taktell (Series

880) and are claimed to be the world’s smallest pendulum metronomes. Another part

of the system is in charge of reading the angle values of metronome rods in time.

A schematic of the system is shown in Fig. 1 and some images of the experimental

settings are shown in Fig. 2.

PC

CameraMotor

Oscillators

Cart

Fig. 1. The schematic of the system
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Stickers used for detection of points in
image processing

Two metronomes on a freely moving
passive cart

Servo motor and the controller for mov-
ing the active cart

A general view of the whole settings in-
cluding the camera, the track, the carts,
the motor and the PC

Fig. 2. Experimental settings

B. Settings

One of the main factors we had in mind was that to build a robust and reliable

setting that is easily available and possible to use. We needed to read the values of

angles at different times and one of the first candidates was using encoders for reading

the values. As the encoders might have affected the mechanics of the metronomes

and hence might have affected the dynamics, we preferred to choose an approach for

reading the values of angles that does not affect the dynamics of the system.
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We selected a vision and an image processing approach so that we track the rod;

for instance, the conservation of mechanical energy using video analysis has been

investigated in [63]. We used simple colored stickers so that the vision system can use

the color for tracking the position. The stickers are circles for which the radius is 9.4

mm and the choice of colors are red, green, yellow and blue. Regarding the position

of the stickers, the center of each sticker was marked and a tiny hole was made in the

center. This hole was used to align the position of the sticker on the center of the

rod.

C. Image Processing

The main image processing library that is used in this system is OpenCV1. A simple

USB webcam is used to capture the image and the capture frame rate is around 20

to 40 frames per second2. We do not use a pre-recorded movie for processing so that

we can have real-time control on the system. The image processing module has these

main sections

1. Capture Image: The program captures the image from the webcam

2. Track Colored Stickers: The markers are tracked

3. Find Values: The values, such as angles of metronomes, are calculated based

on the detected values for positions of the markers

1OpenCV is a computer vision library originally developed by Intel. It
is free for use under the open source BSD license. The library is cross-
platform and it focuses mainly on real-time image processing. It is available at
http://opencv.willowgarage.com/

2This is a rough estimate and is extracted based on experiments in normal condi-
tions. It is changed according to the settings of the program and the specifications
of the camera used for the image processing.
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4. Evaluate Values: The values, such as angles of metronomes, are evaluated

and the unaccepted data is discarded

5. Store Values: The values are stored in the memory

6. Apply Control: Control commands are issued (such as the commands for the

moving cart)

7. Save Values: The values are saved on the data storage

In order to track the objects in real-time, an algorithm is in charge of looking

for proper pixels in a certain window around the object that is being tracked. With

enhanced settings, we used more than one color sticker for each metronome rod so

that we increase the accuracy of angle detection (color image processing has been used

in some applications such as [64]). The pseudo-code used for the image processing

module is shown in Algorithm 1. In this pseudo-code we have described the basic

steps required for the image processing module. A sample of the perceived image is

shown in Fig. 3.

To present the range of values detected from the vision, the values for a short period

of time are shown in Fig. 4. This picture provides the rough idea of the range of

numbers used for deducing the angles of the rods. A calibration is done to deduce the

distances in mm based on the detected pixels. For this case every 41 pixels correspond

to 18.8 mm.

In another experiment the frequency of the metronome was reduced to 0.4 Hz. The

values and a short period of time are shown in Fig. 5. For this case every 66 pixels

correspond to 18.8 mm.
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Fig. 3. Two metronomes on two connected carts. The yellow crosses show the center

of mass of the detected stickers. Also there are gray rectangles around each of

the stickers which show the area to be searched at each step. In this setting

we have used color stickers to detect the position of the carts as well.

1. Finding the Angle

When using more than two stickers on the rod, we need to find the least squares

regression line. We use the following formula for finding the angle of the metronome

rod

θ = tan−1


n

n∑
i=1

xiyi −
n∑
i=1

xi
n∑
i=1

yi

n
n∑
i=1

xi2 −
(

n∑
i=1

xi

)2

 (2.1)

in which n is the number of stickers and xi and yi are the x and y of the ith sticker
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Fig. 4. A short time frame of the values from investigation of a metronome for different

stickers. Four stickers are used on a metronome: one blue color is used on the

very top of the rod, one green color is on the moving weight and one blue color

on the bottom of the rod. One red sticker is also used on the pivot of the rod.

All the values are extracted from the image and converted to mm based on

calibrations. The metronome is located on a solid base and the frequency is 1

Hz (which corresponds to 120 beats per minute).

in pixels.

2. Image Processing Calibration

A square is used for which the length of each side is 72.4 mm. We marked each

corner with a sticker and added a sticker to the geometrical middle of the square.

The settings and the data are shown in Fig. 6.
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3. Validating the Results

The image processing module might occasionally lose track of stickers. To prevent the

consequences of this problem and to validate the results, correlation of the positions

of the detected stickers are calculated as below

rxy =
n
∑
xiyi −

∑
xi
∑
yi√

n
∑
x2
i − (

∑
xi)2

√
n
∑
y2
i − (

∑
yi)2

(2.2)

in which n is the number of stickers and xi and yi are the x and y of the ith sticker in

pixels. If correlation is more than a certain threshold, the sample is accepted, used for

updating the values and stored. If the correlation is smaller than the threshold, then

there might be one possibility: The positions of the detected stickers are too close to

a vertical line (which reduces the correlation). In that case, the detected points are

virtually rotated π
4

radians and the correlation is calculated again. If the correlation

is more than the threshold, it means that the detected points have been sufficiently

close to a line and the line has been vertical on the first round. If correlation is less

than the threshold even in the second round, then it shows error in detecting the

stickers and the sample is discarded.
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Algorithm 1 Basic Image Processing

1: while processing image do

2: capture image

3: for all track points do

4: for all pixels in a rectangle around the track point do

5: compare the color of the pixel with reference

6: if difference is less than threshold then

7: store location

8: end if

9: end for

10: calculate average of locations of detected pixels

11: store the average as the location of the trackpoint

12: end for

13: calculate angles and positions based on track point locations

14: evaluate detected points

15: if detected points are not valid then

16: discard data

17: end if

18: apply control

19: store parameter values

20: end while
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Fig. 5. The values from investigation of a metronome to show the positions of the

stickers. Four stickers are used on a metronome: one green color sticker is on

the moving weight, one blue color is used on middle of the rod and one blue

color on the bottom of the rod. One red sticker is also used on the pivot of

the rod. All the values are read from the image and are converted to mm.

The metronome is located on a solid base and the frequency is 0.4 Hz (which

corresponds to 48 beats per minute).
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Fig. 6. The settings and the errors for calibration test. In this test we have four red

stickers on the corners of a square and one blue sticker in the middle of the

square. The length of each side of the square is 72.4 mm. For this test every

74 pixels correspond to 18.8 mm.
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D. Active Cart

To determine the speed of the cart when moved by the servo motor, a simple test is

done in which the cart moves to the right and left with the fastest possible speed.

The position of the cart vs. time is shown in Fig. 7.
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Fig. 7. The position of the cart in a test. The cart was moved with the fastest possible

speeds to right and left.
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E. Experimental Results

For one of the settings, a simple metronome is placed over a solid base. The phase of

the metronome is shown in Fig. 8 and a partial view of the time series is shown in

Fig. 9.
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Fig. 8. The phase of a metronome in time showing the transient region. The transient

region at the beginning shows the beginning of the experiment in which the rod

is started from the rest position. The phase is later absorbed to the limit cycle

(the stable region after the transient). The angle is compared to the vertical

line. Hence positive values of angle show that the rod is bend towards right

and negative values show bending towards left. Zero value shows that the rod

is vertical. The metronome is located on a solid base and the frequency is 1

Hz (which corresponds to 120 beats per minute).
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Fig. 9. A short time frame of the metronome phase showing that the shape of the wave

is not completely a sine wave. This agrees with the model and simulations (the

shape of the wave depends on the parameters of the system such as escapement

of the metronome). The average capture frame rate is about 32 frames per

second. The metronome is located on a solid base and the frequency is 1 Hz

(which corresponds to 120 beats per minute).
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For another setting we used a much lower frequency for the metronome. In this case

also a simple metronome is placed over a solid base. The phase of the metronome is

shown in Fig. 10 and a partial view of the time series is shown in Fig. 11.
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Fig. 10. The phase of a metronome in time when the metronome is located on a solid

base. The angle is compared to the vertical line. Hence positive values of angle

show that the rod is bend towards right and negative values show bending

towards left. Zero value shows that the rod is vertical. The metronome is

located on a solid base and the frequency is 0.4 Hz (which corresponds to 48

beats per minute).
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Fig. 11. A short time frame of the metronome phase showing sample points. The shape

of the wave is not completely a sine wave and this agrees with the model and

simulations (the shape of the wave depends on the parameters of the system

such as escapement of the metronome). The average capture frame rate is

about 32 frames per second. The metronome is located on a solid base and

the frequency is 0.4 Hz (which corresponds to 48 beats per minute).
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1. Storing the Images

In order to verify the results, we set up experiments in which we stored the images

while processing them. This would help to find potential flaws of the image processing

module. The drawback of this approach is that it imposes overhead on the system

and decreases the accuracy because of less processing speed. A time frame sample of

the signal is shown in Fig. 12.
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Fig. 12. A short time frame of the metronome phase to show more details with sample

points. In this experiment the images are stored in the memory for debugging

purposes. The metronome is located on a solid base and the frequency is 1

Hz (which corresponds to 120 beats per minute).
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2. Pivot Point

In Fig. 13 the distance of the detected pivot point from the regression line is presented.
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Fig. 13. The distance of the detected pivot point from the regression line of all the

stickers for higher frequency. A short time frame is shown on the right. The

metronome is located on a solid base and the frequency is 1 Hz (which corre-

sponds to 120 beats per minute).

The same test was done with a lower frequency of the metronome. In Fig. 14 the

distance of the detected pivot point from the regression line for the whole test is

presented.
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Fig. 14. The distance of the detected pivot point from the regression line of all the

stickers for lower frequency. The distance of the detected pivot point from

the regression line of all the stickers for lower frequency. A short time frame

the right. The metronome is located on a solid base and the frequency is 0.4

Hz (which corresponds to 48 beats per minute).
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3. Using Hue-Saturation-Value for Tracking Colors

We use Hue-Saturation-Value for tracking the colors in image processing. For this case

we convert the RGB (Red-Green-Blue) of the original pixel to HSV (Hue-Saturation-

Value). Then we compare the HSV of the search pixels of the image frames with the

original pixels. If H, S and V are in a certain range of difference, we consider the

detected pixel as a part of the sticker. The ranges of parameter for thresholds are

determined by the experiment. The algorithm for converting RGB to HSV is shown

in Algorithm 2.

F. Base Setups

Some properties of the base, such as damping, play an important role on synchro-

nization [23, 65]. Hence, we have tried various base settings for our experiments. In

a passive base, the base can move almost freely. We tried to reduce the friction as

much as possible to avoid possible interferences. In another setting for the base, it

can move according to commands issued from the controller program. When running

tests, we set the metronomes’ rods to random initial angles and then release them.

G. Conclusions

In this chapter we described experimental settings that were used in this project. We

described the image processing module and how we use the vision to gain sensory

information. We described the details of the implementation and some important

factors, such as how to find the angles of mechanical oscillators and how to validate

the results. The one degree of freedom cart was introduced and the experimental

results of running the set were provided.
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Algorithm 2 Coverting RGB to HSV

1: min = min(r,g,b)

2: max = max(r,g,b)

3: v = max

4: delta = max - min

5: if max 6= 0 then

6: s = delta / max

7: else

8: s = 0

9: h = -1

10: return

11: end if

12: if r = max then

13: h = (g - b) / delta // between yellow and magenta

14: else

15: if g = max then

16: h = 2 + (b - r) / delta // between cyan and yellow

17: else

18: h = 4 + (r - g) / delta // between magenta and cyan

19: end if

20: end if

21: h = 60 // degrees

22: if h < 0 then

23: h = h + 360

24: end if
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CHAPTER III

SYNCHRONIZATION

Different settings and sets of parameters were used to study synchronization. Some

of them and the results are described in this chapter.

A. Model of Oscillators

The equation that governs the motion of a single metronome is described as below

[23,25]

d2θ

dt2
+
mrc.m.g

I︸ ︷︷ ︸
k

sin (θ) + ε

[(
θ

θ0

)2

− 1

]
dθ

dt
= 0 (3.1)

in which θ is the phase of the metronome (angle made with the vertical line), I is

the moment of inertia of the pendulum, m is the mass of the pendulum, rc.m. is the

distance of the pendulum’s center of mass from the pivot point, ε specifies the effect

of escapement and damping, θ0 is the van der Pol term and g is the acceleration of the

gravity. k = mrc.m.g
I

determines the frequency of oscillation. The damping function

D(θ) is defined as [25]

D(θ) =

(
θ

θ0

)2

− 1 (3.2)

and with small ε, this term produces small oscillations with an amplitude of approx-

imately 2θ0 in an isolated oscillator [23].
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dθ

dt
= γ (3.3)

dγ

dt
= −

(mrc.m.g
I

)
︸ ︷︷ ︸

k

sin (θ)− ε

[(
θ

θ0

)2

− 1

]
γ (3.4)

in which γ is the rotational speed and ε specifies the effect of escapement and damping.

When ε = 0, we do not have a limit cycle and we have infinite cycles as shown in

Fig. 15. In this case the phase is a sine wave. When ε 6= 0, we have a limit cycle as

shown in Fig. 16. In this case the phase is not a sine wave and changes the shape

depending on the value of ε.

Fig. 15. The trajectory of the phase when the base does not move with ε = 0. In this

case k = 0.3, ε = 0 and θ0 = π
4
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Fig. 16. The phase when the base does not move with ε 6= 0. In this case k = 0.3,

ε = 0.2 and θ0 = π
4
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B. Oscillators on a Passive Base

When the oscillators are located on a passive base1, they have the possibility of

synchronization. A schematic of the settings is shown in Fig. 17.

PC

Camera

Oscillators

Cart

Fig. 17. The schematic of the system for two metronomes located on a passive base.

The metronomes move the base and the movements of the base affect the

metronomes. The camera and the PC are only for observation.

The equations of motion in this case are as follows [23]

1By a passive base we mean a common base on which the metronomes are located
and moves freely. A sample is shown in Fig. 2.
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d2θ1

dτ 2
+ (1 + ∆) sin (θ1) + µ

[(
θ1

θ0

)2

− 1

]
dθ1

dτ
− β cos (θ1)

d2

dτ 2
(sin (θ1) + sin (θ2)) = 0

(3.5)

d2θ2

dτ 2
+ (1−∆) sin (θ2) + µ

[(
θ2

θ0

)2

− 1

]
dθ2

dτ
− β cos (θ2)

d2

dτ 2
(sin (θ1) + sin (θ2)) = 0

(3.6)

in which τ = ωt is a dimensionless time variable, ω2 = mrc.m.g
I

is the square of the aver-

age angular frequency of the uncoupled, ∆ ≈ ω1−ω2

ω
is the relative frequency difference

between the oscillators, small amplitude oscillator without damping or driving, θ0 is

the van der Pol term and β is the coupling parameter

β =

(
mrc.m.
M + 2m

)(rc.m.m
I

)
(3.7)

in which M is the mass of the base, I is the moment of inertia of the pendulum,

m is the mass of the pendulum (masses of the pendulums is considered to be the

same), rc.m. is the distance of the pendulum’s center of mass from the pivot point.

For low damping of the coupling medium we may observe in-phase synchronization

and when the damping of the coupling medium is high, we can observe anti-phase

synchronization. The simulations with various values of β and the phase transition

are shown in Fig. 18 (the plots are shown for times when the transient is relaxed).
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Fig. 18. The Lissajous figure for the coupling parameter values from 0.056 to 0.080.

This shows the transition from anti-phase to in-phase synchronization.
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C. Synchronization on a Passive Base

The metronomes were set to various frequencies and then located on the passive

base. The phase differences were observed for each frequency. Higher frequencies of

metronomes correspond to more consumption of energy and more movements of the

passive base (if any). The experimental results are shown in Figures 19 through 26.
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Fig. 19. Phase difference of two metronomes on a passive base f1 = f2 = 0.4Hz (which

corresponds to 48 beats per minute)
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Fig. 20. Phase difference of two metronomes on a passive base f1 = f2 = 0.6Hz (which

corresponds to 72 beats per minute)
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Fig. 21. Phase difference of two metronomes on a passive base f1 = f2 = 0.9Hz (which

corresponds to 108 beats per minute)
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Fig. 22. Phase difference of two metronomes on a passive base f1 = f2 = 1.05Hz

(which corresponds to 126 beats per minute)
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Fig. 23. Phase difference of two metronomes on a passive base f1 = f2 ≈ 1.27Hz

(which corresponds to 152 beats per minute)
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Fig. 24. Phase difference of two metronomes on a passive base f1 = f2 ≈ 1.47Hz

(which corresponds to 176 beats per minute)

-1.5

-1

-0.5

0

0.5

1

1.5

0 500 1000 1500 2000

θ
1
 -

 θ
2
 (

ra
d

ia
n

s
)

Time (seconds)

Fig. 25. Phase difference of two metronomes on a passive base f1 = f2 = 1.6Hz (which

corresponds to 192 beats per minute)
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Fig. 26. Phase difference of two metronomes on a passive base f1 = f2 ≈ 1.73Hz

(which corresponds to 208 beats per minute)
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In an experiment the frequency of the metronomes were set to 0.4 Hz and they

were located on a passive base. The base was a freely moving platform on two wheels.

In Fig. 27 the distance of the detected pivot point from the regression line for the

whole test is presented.
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Fig. 27. The distances of the detected pivot points from the regression lines of all

the stickers. The metronomes are located on a freely moving base and the

frequencies are 0.4 Hz (which corresponds to 48 beats per minute).

D. Conclusions

In this chapter we discussed synchronization of oscillators. We described the model

of our self sustained oscillators and provided more details about the effect of their
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parameters. We also showed the proposed model of metronomes when located on a

freely moving base. We showed how the oscillations affect the base and on the other

hand how the movements of the base affect each of the metronomes. We discussed

the impact of base damping on the synchronization; whether the metronomes syn-

chronize in-phase or anti-phase. At the end experimental results of synchronization

of metronomes on a common base were shown.
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CHAPTER IV

FORCED OSCILLATORS AND ADAPTATION

In this chapter we investigate the effect of forcing the oscillators and will show how

the system evolves in various forcing conditions.

A. Forced Oscillators

When the metronome base moves, we have a forced oscillator for which the governing

equation is as below [23]

d2θ

dt2
+
mrc.m.g

I︸ ︷︷ ︸
k

sin (θ) + ε

[(
θ

θ0

)2

− 1

]
dθ

dt
+
(rc.m.m

I

)
︸ ︷︷ ︸

l

cos (θ)
d2x

dt2
= 0 (4.1)

in which x is the horizontal position of the base. We write the governing equation as

below

dθ

dt
= γ (4.2)

dγ

dt
= −k sin (θ)− ε

[(
θ

θ0

)2

− 1

]
γ − l cos (θ)

d2x

dt2
(4.3)

When we form a feedback loop between the phase of the oscillator and the movements

of the base, we have the following set of equations
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dθ

dt
= γ (4.4)

dγ

dt
= −k sin (θ)− ε

[(
θ

θ0

)2

− 1

]
γ − l cos (θ)λ (4.5)

dλ

dt
= h(θ, γ) (4.6)

in which

λ =
d2x

dt2
(4.7)

and h(θ, γ) is a function specifying the feedback. This function depends on how the

base responds to the detected angles of the metronome. For instance, h(θ, γ) = θ

means that the cart sets its acceleration to the same as the phase of the oscillator. A

sample of trajectory for ε = 0 and h(θ, γ) = θ is shown in Fig. 28 and a sample of

trajectory for ε = 0.2 and h(θ, γ) = θ is shown in Fig. 29.

B. Two Oscillators on an Active Base

In this case we consider two metronomes located on a moving base. The metronomes

oscillate freely while the movements of the base impacts their phase and frequencies.

The equations of motion for this case are as follows
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Fig. 28. The trajectory of the phase when the base moves with ε = 0. In this case

k = 0.3, ε = 0 and θ0 = π
4

ẋ1 = x2 (4.8a)

ẋ2 = − mrc.m.g
I︸ ︷︷ ︸
k

sin (x1)− ε

[(
x1

θ0

)2

− 1

]
x2 −

mrc.m.
I︸ ︷︷ ︸
l

cos (x1)x7 (4.8b)

ẋ3 = x4 (4.8c)

ẋ4 = − mrc.m.g
I︸ ︷︷ ︸
k

sin (x3)− ε

[(
x3

θ0

)2

− 1

]
x4 −

mrc.m.
I︸ ︷︷ ︸
l

cos (x3)x7 (4.8d)

ẋ7 = h(x1, x2, x3, x4) (4.8e)

in which x1 and x3 are the angles the metronomes make with the vertical and x2 and x4

are their derivatives (i.e. rotational speeds). x5 is the horizontal position of the base,

x6 = ẋ5 is the linear velocity of the base and x7 = ẋ6 is the acceleration of the base
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Fig. 29. The trajectory of the phase when the base moves with ε 6= 0. In this case

k = 0.3, ε = 0.2 and θ0 = π
4

(we have only included x7 because it is the only parameter affecting the oscillators).

I is the moment of inertia of the pendulum, m is the mass of the pendulum, rc.m.

is the distance of the pendulums center of mass from the pivot point and g is the

acceleration of gravity. We now consider two sample functions for h(x1, x2, x3, x4) in

Equation 4.8e and study the impact of these two functions on the oscillators.

1. Case 1: h(x1, x2, x3, x4) = m sin (x2 + x4)

In this case the equations of motions are

ẋ1 = x2 (4.9a)

ẋ2 = −k sin (x1)− ε

[(
x1

θ0

)2

− 1

]
x2 − l cos (x1)x7 (4.9b)

ẋ3 = x4 (4.9c)

ẋ4 = −k sin (x3)− ε

[(
x3

θ0

)2

− 1

]
x4 − l cos (x3)x7 (4.9d)

ẋ7 = m sin (x2 + x4) (4.9e)
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in which m is a coefficient specifying the relation between the values perceived from

the metronomes and the actions to be performed by the active base. We use this value

to partially adjust the behaviors of the base. In the implementation of the settings,

this value is set in the controller code (which implements the relation between sensory

values and actuator commands). To find out the fixed points of the above model, we

have

ẋ1 = 0⇒ x2 = 0 (4.10)

and

ẋ2 = 0⇒ −k sin (x1)− ε

[(
x1

θ0

)2

− 1

]
x2 − l cos (x1)x7 = 0 (4.11)

⇒ −k sin (x1)− l cos (x1)x7 = 0 (4.12)

which leads to the following values for x1

x1 = − cos−1

(
− k√

x2
7l

2 + k2

)
(4.13a)

x1 = cos−1

(
− k√

x2
7l

2 + k2

)
(4.13b)

x1 = − cos−1

(
k√

x2
7l

2 + k2

)
(4.13c)

x1 = cos−1

(
k√

x2
7l

2 + k2

)
(4.13d)

we also have
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ẋ3 = 0⇒ x4 = 0 (4.14)

and

ḋ = 0⇒ −k sin (x3)− ε

[(
x3

θ0

)2

− 1

]
d− l cos (x3)x7 = 0 (4.15)

⇒ −k sin (x3)− l cos (x3)x7 = 0 (4.16)

which leads to the following values for c

x3 = − cos−1

(
− k√

x2
7l

2 + k2

)
(4.17a)

x3 = cos−1

(
− k√

x2
7l

2 + k2

)
(4.17b)

x3 = − cos−1

(
k√

x2
7l

2 + k2

)
(4.17c)

x3 = cos−1

(
k√

x2
7l

2 + k2

)
(4.17d)

as x2 = x4 = 0, we have

ẋ7 = 0 (4.18)

So, for specific values of k and l and a specific initial value of x7, we have 16 fixed

points in the system.
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2. Case 2: h(x1, x2, x3, x4) = m sin (x1 + x3)

In this case the equations of motions are

ẋ1 = x2 (4.19)

ẋ2 = −k sin (x1)− ε

[(
x1

θ0

)2

− 1

]
x2 − l cos (x1)x7 (4.20)

ẋ3 = x4 (4.21)

ẋ4 = −k sin (x3)− ε

[(
x3

θ0

)2

− 1

]
d− l cos (x3)x7 (4.22)

ẋ7 = m sin (x1 + x3) (4.23)

in which m is a coefficient as previously described. To find out the fixed points of the

above model, we have

ẋ1 = 0⇒ x2 = 0 (4.24)

and

ẋ2 = 0⇒ −k sin (x1)− ε

[(
x1

θ0

)2

− 1

]
x2 − l cos (x1)x7 = 0 (4.25)

⇒ −k sin (x1)− l cos (x1)x7 = 0 (4.26)

which leads to the following values for a
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x1 = − cos−1

(
− k√

x2
7l

2 + k2

)
(4.27)

x1 = cos−1

(
− k√

x2
7l

2 + k2

)
(4.28)

x1 = − cos−1

(
k√

x2
7l

2 + k2

)
(4.29)

x1 = cos−1

(
k√

x2
7l

2 + k2

)
(4.30)

we also have

ẋ3 = 0⇒ x4 = 0 (4.31)

and

ẋ4 = 0⇒ −k sin (x3)− ε

[(
x3

θ0

)2

− 1

]
x4 − l cos (x3)x7 = 0 (4.32)

⇒ −k sin (x3)− l cos (x3)x7 = 0 (4.33)

which leads to the following values for c
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x3 = − cos−1

(
− k√

x2
7l

2 + k2

)
(4.34)

x3 = cos−1

(
− k√

x2
7l

2 + k2

)
(4.35)

x3 = − cos−1

(
k√

x2
7l

2 + k2

)
(4.36)

x3 = cos−1

(
k√

x2
7l

2 + k2

)
(4.37)

we also have

ẋ7 = 0⇒ m sin (x1 + x3) = 0 (4.38)

⇒ x1 + x3 = nπ (4.39)

As the angles of the metronomes do not exceed a certain value, the only possible

value for n in the above formula is n = 0. So we have

x1 + x3 = 0⇒ x1 = −x3 (4.40)

C. Two Oscillators on an Active Base with Adjusting Parameter

In this case we also consider two metronomes located on a moving base, but we

introduce a parameter for changing the behavior of the system. The metronomes

oscillate freely while the movements of the base impact their phase and frequencies.

The movements of the base are a function of state variables with adjustments from a

parameter. The equations of motion for this case are as follows
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ẋ1 = x2 (4.41a)

ẋ2 = − mrc.m.g
I︸ ︷︷ ︸
k

sin (x1)− ε

[(
x1

θ0

)2

− 1

]
x2 −

mrc.m.
I︸ ︷︷ ︸
l

cos (x1)x7 (4.41b)

ẋ3 = x4 (4.41c)

ẋ4 = − mrc.m.
I︸ ︷︷ ︸
k

sin (x3)− ε

[(
x3

θ0

)2

− 1

]
x4 −

mrc.m.
I︸ ︷︷ ︸
l

cos (x3)x7 (4.41d)

ẋ5 = x6 (4.41e)

ẋ6 = x7 (4.41f)

ẋ7 = x9x1 + (1− x9)x3 (4.41g)

ẋ9 = f(x1, x2, x3, x4, x7, x9) (4.41h)

in which f(x1, x2, x3, x4, x7, x9) in Equation 4.41h is a low pass filter for modifying

the adjusting parameter (x9). A sample function for f is

ẋ9 = f(x1, x2, x3, x4, x7, x9) = x9 − (−0.9x9 + 0.9x1)︸ ︷︷ ︸
Low pass filter

(4.42)
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Fig. 30. Two metronomes on an actively moving base in which

ẋ7 = (ratio)θ1 + (1 − ratio)θ2. Shown in pictures are θ1 vs θ2 when

transient is relaxed for various values of ratio.
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D. Low-Pass Filtered Feedback

A low-pass filter is made to provide feedback. The feedback is used for adjusting the

parameter of the system which specifies the qualitative behavior of the system. The

equivalent differential equation is written as

R2C
dVout
dt

+ Vout = −VinR2

R1

(4.43)

So, for our filter, we write the differential equation as follows

dVout
dt

=
1

R2C

(
−VinR2

R1

− Vout
)

(4.44)

In this filter the cutoff frequency (in hertz) is defined as

fc =
1

2πR2C
(4.45)

or equivalently (in radians per second):

ωc =
1

R2C
(4.46)

The gain in the passband is R2

R1
, and the stop-band drops off at 6 dB per octave as it

is a first-order filter. Hence, the differential equations of our system will be as follows
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ẋ1 = x2 (4.47a)

ẋ2 = −
(mrc.m.g

I

)
︸ ︷︷ ︸

k

sin (x1)− ε

[(
x1

θ0

)2

− 1

]
x2 −

(mrc.m.
I

)
︸ ︷︷ ︸

l

cos (x1)x7 (4.47b)

ẋ3 = x4 (4.47c)

ẋ4 = −
(mrc.m.

I

)
︸ ︷︷ ︸

k

sin (x3)− ε

[(
x3

θ0

)2

− 1

]
x4 −

(mrc.m.
I

)
︸ ︷︷ ︸

l

cos (x3)x7 (4.47d)

ẋ7 = −x9x1 + (1− (−x9))x3 (4.47e)

ẋ9 = α

(
1

R2C

)(
−x9 −

x2x4R2

R1

)
(4.47f)

In the filter, the feedback is attenuated based on [52]. Also the gain of the filter is

negative (set to be −1 for this case) and hence the negated value of x9 is used in the

differential equations.
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Fig. 31. Value of x9 (the adjustable parameter) in time for initial values from 0.00 to

0.45.
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Fig. 32. Value of x9 (the adjustable parameter) in time for initial value = 0.50.
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E. Adaptation in Experiments

In another experiment the tests were set such that the speed of the cart (and not the

acceleration) was changed as a function of the angles of metronomes. In this case we

have

x6 = ε(x9x1 + (1− x9)x3) (4.48)

in which ε is an attenuating factor. The effect of x9 parameter without adjustment is

shown in Figures 33 and 34 and the phase difference and the value of the adjusting

parameter evolving in time are shown in Fig. 35.

F. Conclusions

In this chapter we reviewed the model of forced oscillators. We discussed the model of

a metronome located on a moving base and analyzed the effects of the base movements

on the metronome. We described the case in which two metronomes are located on a

common base and the movements of the base are a function of a feedback from their

state variables. We analyzed the behavior of the system for some sample functions

of the feedback. We then introduced an adjusting parameter which determines the

feedback. The feedback receives input from state variables and provides output for

the movements of the common base. We showed the effect of the parameter on the

behavior of the system and then let it change. We showed that how the adjusting

parameter evolves through time when it changes according to a low-pass filtered

feedback from some state variables of the system. The results were supported with

results from experiments.
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Fig. 33. The Lissajous figures of phases of metronomes in experiment. The transients

are relaxed and ε = 0.3. The parameter x9 is fixed and the values are 0.25 to

0.50. The metronomes are located on a moving cart and their frequencies of

oscillations are 0.4 Hz (which corresponds to 48 beats per minute).
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Fig. 34. The Lissajous figures of phases of metronomes through time in experiment.

The transients are relaxed and ε = 0.3. The parameter x9 is fixed and the

values are 0.25 to 0.50. The metronomes are located on a moving cart and

their frequencies of oscillations are 0.4 Hz (which corresponds to 48 beats per

minute).
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Fig. 35. The phase difference of metronomes x1 − x3 and value of the adjustable pa-

rameter x9 through time during experiments. The phase difference is shown

on the left and the value of the adjustable parameter is shown on the right.

ε = 0.3, Three stickers are used on the metronomes, the metronomes are lo-

cated on a moving cart and their frequencies of oscillations are 0.4 Hz (which

corresponds to 48 beats per minute).
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this chapter we have conclusions of this research and will provide some recommen-

dations for future research.

A. Conclusions

In this research we considered the synchronization between two oscillators that are

mechanically coupled. We described the coupling possibility and showed some pa-

rameters that affected the coupling. The settings for the experiments were described

and we showed how a simple vision system with a light-weight image processing al-

gorithm can help to effectively find the phase of two oscillators. We demonstrated

how the oscillators synchronize and what is the relationship between the oscillation

frequency and the synchronization speed. We also showed how an active base affects

the behavior of oscillators and when the system is adjustable, how this dynamical

system evolves over time.

B. Future Work

There are some improvements that are suggested for the future work of this research.

1. Model

For analysis and numerical simulation, we considered an ideal model of the system

in which there are not any delays or random terms. An area for future work would

be to include these terms in the model and investigate the system. The similarity to

the experimental results would show the accuracy of the model.
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2. Experiments

Using other alternatives for detecting the phases of the oscillators is a possible im-

provement for the system. This might include using sound detecting devices1 and

encoders for detecting the angles of the metronomes2. Other devices for sensing can

be used simultaneously so that the accuracy of the data is increased.

3. Coupling

The oscillators are mechanically coupled in this system. A possible direction of future

research would be considering a case in which the coupling involves delay. This can

be realized when the metronomes are positioned on two independent carts and each

of the carts is capable of moving independently. The same can be done for when there

are random terms in the coupling between oscillators.

4. Oscillators

A possible area for extending the current work would be to introduce more oscillators.

The number of oscillators and their positioning besides how they are connected to

each other are some sample parameters of the system to be determined. A higher

number of oscillators will certainly bring more complexity to the system and we expect

to see more complex (and maybe richer) behaviors. We would also recommend using

other types of oscillators that are not necessarily mechanical oscillators (for instance

electrical circuits). A similar system can be replicated with other oscillators and the

evolution of the system can be studied.

1The metronomes make a tick sound when the rod reaches the far left or far right.
2Reading the values of the angles by using mechanical devices is acceptable if the

sensory device does not interfere with the dynamics of the system. One of the main
reasons that we had more tendency towards vision is that it does not interfere with
the oscillations of the metronome rods or their synchronization.
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5. Adaptation

In this research we showed some cases and considered the evolution of the system with

the relevant parameters and initial conditions. A possible area to be investigated

is studying the space of parameters and the evolution of the system for different

regions, i.e. what is the role of initial conditions and parameters of the system (such

as behaviors of the cart) on the evolution of the system.
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