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ABSTRACT

Advances in Inverse Transport Methods

and Applications to Neutron Tomography . (December 2010)

Zeyun Wu, B.S., Tsinghua University, China;

M.S.E., Tsinghua University, China;

M.E., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Marvin L. Adams

Dr. William S. Charlton

The purpose of the inverse-transport problems that we address is to reconstruct

the material distribution inside an unknown object undergoing a nondestructive eval-

uation. We assume that the object is subjected to incident beams of photons or

particles and that the exiting radiation is measured with detectors around the pe-

riphery of the object. In the present work we focus on problems in which radiation

can undergo significant scattering within the optically thick object. We develop a

set of reconstruction strategies to infer the material distribution inside such objects.

When we apply these strategies to a set of neutron-tomography test problems we find

that the results are substantially superior to those obtained by previous methods.

We first demonstrate that traditional analytic methods such as filtered back pro-

jection (FBP) methods do not work for very thick, highly scattering problems. Then

we explore deterministic optimization processes, using the nonlinear conjugate gradi-

ent iterative updating scheme to minimize an objective functional that characterizes

the misfits between forward predicted measurements and actual detector readings.

We find that while these methods provide more information than the analytic meth-

ods such as FBP, they do not provide sufficiently accurate solutions of problems in

which the radiation undergoes significant scattering.
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We proceed to present some advances in inverse transport methods. Our strate-

gies offer several advantages over previous reconstruction methods. First, our opti-

mization procedure involves the systematic use of both deterministic and stochastic

methods, using the strengths of each to mitigate the weaknesses of the other. An-

other key feature is that we treat the material (a discrete quantity) as the unknown,

as opposed to individual cross sections (continuous variables). This changes the

mathematical nature of the problem and greatly reduces the dimension of the search

space. In our hierarchical approach we begin by learning some characteristics of the

object from relatively inexpensive calculations, and then use knowledge from such

calculations to guide more sophisticated calculations. A key feature of our strategy

is dimension-reduction schemes that we have designed to take advantage of known

and postulated constraints.

We illustrate our approach using some neutron-tomography model problems that

are several mean-free paths thick and contain highly scattering materials. In these

problems we impose reasonable constraints, similar to those that in practice would

come from prior information or engineering judgment. Our results, which identify ex-

actly the correct materials and provide very accurate estimates of their locations and

masses, are substantially better than those of deterministic minimization methods

and dramatically more efficient than those of typical stochastic methods.
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CHAPTER I

INTRODUCTION

I.A Background

A radiographic imaging system, no matter what radiation is applied (x-ray, gam-

mas, neutrons, etc), follow the same general principle: that radiation is attenuated

on passing through the object of interest. After passing through the object, the

remaining beam enters a detector placed on the back side of the object and registers

the fraction of initial radiation intensity that has been transmitted by each path

through the object. Any inhomogeneous information inside in the object will be

finally revealed as a change of radiation intensity in the detector. Fig. I.1 illustrates

a typical radiographic imaging system, where the source part is marked as a neutron

beam.

Fig. I.1: An idealized facility configuration for radiographic imaging system.

This dissertation follows the style of Journal of Nuclear Materials .
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A radiography system traditionally consists four main parts, as illustrated in

Fig. I.1: (I) the source; (II) an efficient collimator to control the source beam (usually

it is a divergent beam); (III) a sample positioning system; and (IV) a radiography

camera or film. This ideal model is sometimes referred as “dynamic radiographic

imaging” [1].

Transmission images in standard radiography are captured in the camera with

both the sample in place and the sample not in place. The two- and three-dimensional

characteristics of the sample could then be determined by the following standard

transmission equation, provided that scattered particles can be neglected:

I(x) = I0e
−

∫ x

0
Σt(s)ds, (I.1)

which yields the result ∫ x

0

Σt(s)ds = − ln

(
I(x)

I0

)
. (I.2)

This basic methodology, sometimes referred to as the simple exponential attenu-

ation method (SEAM), has been used successfully for numerous applications. How-

ever, when it is applied to highly scattering media, the scattering component of the

beam intensity exiting the sample is not adequately specified by SEAM. This leads

to decreased system resolution when the scattered particles are recorded at the im-

age plane. This is sometimes called scattering-blur in the realm of optical imaging

science. Overcoming the scattering-blur drawback of SEAM has been the focus of a

great deal of research and development [1–4].

Before the Computed Tomography (CT) technology was invented, projection-

based radiography dominated in radiation imaging applications. Even today, with

CT well developed and powerful computers readily available, people in neutron imag-

ing research area, as a relatively small scientific community, still mainly focus on ra-

diographs (films). Basically, tomography (“Tomo” means “to cut” in Greek) refers to

the cross-sectional image reconstruction of an object from transmitted and reflected

radiation collected by illuminating the object from many different directions [5, 6].
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In other words, a tomography imaging system deals with reconstructing an internal

image of an object based on its peripheral exiting radiations. The impact of this

technology in imaging systems has been revolutionary.

Fig. I.2: Sketch for traditional computer tomography (CT) procedure.

A sketch of a traditional computer tomography system is depicted in Fig. I.2.

Similar to the radiography system, the tomography system also includes three main

parts: the source beam, the object under investigation, and the detector system. The

major difference between tomography and radiography is that tomography relies on

computations and the images it produces are reconstructed properties internal to the

object.

From a mathematical point of view, tomography reconstruction methods could

be classified into two main categories. One is the analytic (or direct) tomography

method [5–7], which mainly involves the following principles: (1) Radon transform

and inverse Radon transform, which maps and anti-maps a transmission line set to a

projected point set; (2) Fourier projection-slice theorem (also referred to as central-

slice theorem), which in two dimensions states that the Fourier transform of the

projection of a two-dimensional function onto a line is equal to a slice, parallel to

the projection line, through the origin of the two-dimensional Fourier transform of

that function. One of the most common methods in the analytic tomography recon-

struction category is back projection reconstruction (BPR). BPR can be subdivided

to simple BPR, filtered BPR, convolution BPR and so on based on the different key



4

technologies used with it. Among them, the Filtered Back Projection (FBP) is the

best known due to the excellent outcome and wide usage in medical and non-medical

applications.

Another category of tomographic reconstruction methods is the iterative image

reconstruction (IIR) method [8–10]. BPR usually demands projections from hun-

dreds of different directions, but in some scenarios it is unable or barely able to

obtain enough projections. Also, recall that BPR does not account for scattered

particles and thus is of questionable value for objects in which particles undergo sig-

nificant scattering. In these cases BPR yields poor results and IIR could be a good

alternative. IIR first defines a forward model, which is capable of calculating the

detector responses for the beam passing through a known object (where “known”

means the cross sections defining the object are known). In addition to this forward

model, an inverse method is also needed to influence the “guess” of the object struc-

ture. The inverse method typically works with an objective function, which connects

the information provided by forward model with that of the real measured images.

The forward model can then be repeated using a more accurate guess provided by the

inverse method and the system goes to the next iteration. These iterations continue

until the calculated image matched the measured image to within some tolerance

(i.e., the objective function is minimized). This is the fundamental concept behind

the iterative imaging reconstruction (IIR) schemes. IIR schemes mainly differ in their

choices of forward models and how the spatial distributions of the optical properties

of the medium are updated.
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I.B Research Objective

Neutron transport within a non-multiplying object with arbitrary anisotropic

scattering can be described with multigroup transport equation [11–13]:

Ω · ∇ψg(r,Ω) + Σtg(r)ψg(r,Ω) =

G∑

g′=1

∞∑

l=0

l∑

m=−l

Ylm(Ω)Σ
l
sg′→g(r)φlm,g′(r) + Sext,g(r,Ω) ,

(I.3)

where Σtg(r) and Σsg′→g(r) are the total and scattering macroscopic cross sections

associated with each energy group g. These functions are determined by the material

composition of the interacting object. We use r to denote the position vector and Ω

to denote the unit vector in the direction of particle travel. S is a volumetric source

rate density and Ylm is a spherical-harmonics function.

The forward transport problem is to solve for the angular flux ψg if the physics

constants {Σtg, Σsg′→g} are provided as functions of position. The angular flux ψg

determines the scalar flux φg and current Jg through the following relationship:

φg(r) =

∫

4π

ψg(r,Ω)dΩ, (I.4)

Jg(r) =

∫

4π

Ωψg(r,Ω)dΩ. (I.5)

In an inverse transport problem, on the contrary, the usual task is to infer the ma-

terial distribution within the object based on the limited information about angular

flux ψ that is obtained from detections of exiting radiation. Most methods for solving

such problems have focused on inferring cross sections information from the detec-

tion measurements and have not explicitly addressed the issue of inferring material

distribution from these constants. A familiar example of an inverse problem in radia-

tion transport is tomography in medical applications, which attempts to reconstruct

the interior of a patient from transmitted and reflected radiation collected while

illuminating the patient from different directions [5, 6].
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Fig. I.3: Schematic of the inverse problem we address in this research.

We use “inverse transport” and “tomography” to mean the inference of material

distribution inside an object based upon detection and analysis of radiation emerg-

ing from the object. We assume that the object is subjected to incident neutron

beams and we measure the exiting radiation with detectors around the periphery

of the object. Fig. I.3 depicts a two-dimensional cross section of the beam-object-

detector system in an exemplified problem. The source beam is not necessarily mono-

directional because even a collimated beam has some physical divergence in practice.

The detectors can be collimated such that they only record radiation coming from a

particular cone of directions. The beam is incident into the object under investigat-
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ing from one side, and the detectors are placed in other three periphery sides of the

object for the purpose of not only detecting the direct transmitted radiation from

the back side of the object but also the radiation exiting the left and right side of

the system due to scattering. This design is very beneficial for problems in which

particles undergo large numbers of scatterings [3]. Each side detector measures the

scattered neutron component at a variety of locations around the object, and these

scattered components could be used to help estimate the source of neutron reactions

in the sample. This information could lead to a more accurate reconstruction of the

surveyed object.

In many cases, especially when particles are likely to undergo multiple scattering

events within the object, inverse problems are ill-conditioned and thus very difficult

to solve. This is the class of problems that we address. When standard radiography

(and tomography) methods are applied to highly scattering objects the results are

usually inconclusive or misleading, because the scattered component of the exiting

radiation overwhelms the transmitted component [3]. The task of this research is

to develop systematic approaches to reconstruct the material distribution inside an

unknown object even when scattered particles dominate the exiting radiation.

One of the more common tomographic techniques is the filtered back projection

(FBP) method [5,6,14–17]. In this technique, the projection data can be considered

as line integrals along the particle beam lines and the tomographic method recovers

the density function (the images) via a projection process applied to the filtered

Fourier transform of the line integrals. As noted above, for highly scattering objects

this method has difficulty because the scattered particles can overwhelm the signal

from the un-scattered particles. Standard back projection techniques applied in X-

ray tomography meet limited success when applied to neutron tomography, again

because of scattering [2]. Even with collimated beams and collimated detectors FBP

still fails for optically thick, highly scattering problems. We will illustrate this issue

with example FBP results in Chapter II.
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Neutron radiography and tomography offer significant benefits for some applica-

tions compared to systems that use other particles [18–24]. For example, neutron

radiography exhibits better resolution given low atomic-number materials, such as

carbon, water, etc., especially when these materials are enclosed within heavy met-

als, while imaging systems based on other particles would usually fail in these sit-

uations [18, 25]. Although the research described here is not limited to neutrons, it

could significantly broaden the applicability of neutron tomography by allowing it

to treat highly-scattering objects.

In this research, we focus on tomography applications with optically thick objects

containing highly scattering materials and we develop a systematic reconstruction

strategy to infer the material distribution inside such objects. While our techniques

should be applicable to various kinds of radiation, we use neutrons in our examples.

In our examples we assume the availability of radiation measurements on all sides of

the object except the one on which the probe beam is incident. In next section we

present a sketch of our proposed methodology and point out the advances that our

research has produced.

I.C Our Methods in This Research

Due to the failure of analytic tomography methods for thick and high scattering

objects, the reconstruction methods we focus in this research mainly fall into the

second category described in section I.A, namely, the iterative-based image recon-

struction methods. We cast the inverse problem as an optimization problem and

consider iterative approaches to minimizing a functional that serves as a measure of

the difference between the real object and the latest guess (iterate). In this approach,

which is not new, a forward model capable of calculating the detector response does

so with an initial “guess” of the material distribution in the unknown object. An

inverse model then creates a better “guess” of the object structure in every iterative

loop. The forward model can then be repeated using the more accurate guess. This
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process continues until the determined material distribution minimizes the functional

that characterizes the difference between predicted and measured results. This is the

fundamental concept behind the model-based iterative imaging reconstruction (MO-

BIIR) schemes. MOBIIR schemes mainly differ in their choice of forward model and

how the spatial distributions of the interaction properties (cross sections, in the case

of neutrons) of the medium are updated.

A variety of tomography methods based on MOBIIR schemes have been studied

in the past [26–37]. While these studies have principally been in the area of optical-

photon or low-energy x-ray medical imaging, they have led to a variety of creative

methods and their general principles can be extended to neutron imaging. Some

of these studies are based on diffusion theory [26–30, 32, 33, 35] and some of them

are developed with transport theory [31, 34], but methods applied to these studies

are dominantly deterministic. We also notice many researchers have attempted to

address the inverse problems with stochastic-based optimization methods such as

simulated annealing (SA) [38–44], genetic algorithms (GA) [45–49] and other combi-

natorial tomography (CT) methods [50–52] in variety of applications. The determin-

istic methods are generally applied to simple models and can be susceptible to getting

stuck in local minima, while the stochastic methods have advantages regarding these

concerns but normally require substantial computational time.

In this work we present a methodology that combines both deterministic and

stochastic iterative methods within a systematic approach for applying constraints.

The constraints can enforce physical realities as well as postulates about the con-

tents of the object. Our approach dramatically reduces the effective dimension of

the parameter space that is ultimately searched, which dramatically decreases com-

putational effort while dramatically increasing the chance of a solution that is close

to reality. The idea of combining deterministic and stochastic methods in image

reconstruction has gained interest among researchers before. Dedkova [53] recently

proposed a new algorithm based on the combination of deterministic and stochas-
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tic methods to be used to obtain the best results of a reconstruction process of

the surface conductivity distribution with the applications in electrical impedance

tomography (ECT).

However, to our knowledge the methodology that we propose here is new. In our

hierarchical approach we begin by learning some characteristics of the object from

relatively inexpensive calculations, and then use the knowledge from such calculations

to guide successively more sophisticated calculations. Our algorithm proceeds as

follows:

1. Gradient-based deterministic search: Here we apply the basic determin-

istic search algorithm, in which cross-section parameters are the unknowns.

However, we employ a simplified transport model (for example one-group or

two-group transport or diffusion), perhaps on a spatial grid that is not as fine

as the ultimate desired resolution. Thus, the dimension of the search space is

manageable.

2. Cell Grouping: Based on the results from the deterministic optimization

process, we group into regions the cells that are likely to contain the same

material. Another kind of region is identified as likely to contain one or more

interfaces between materials. Henceforth each cell will be associated with a

region, with materials varying by region according to some chosen constraints

(see step 4). After this grouping, the forthcoming search process will work on

regions rather than cells, which greatly reduces the search-space dimension and

thus greatly saves computation time.

3. Material Restriction: The purpose of this step is to narrow the material

candidates to be considered in each region. Given the few-group parameters

found in step 1 for the cells in a given region, an algorithm determines which

materials could realistically have few-group parameters that are similar, and
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then places those materials in the material candidate library (MCL) for that

region.

4. Further Constraints: To further reduce the search space we can impose other

constraints that embody prior knowledge or that are postulated. For example,

we could constrain the algorithm to consider only material sub-objects with

relatively sharp boundaries as opposed to fragmentary objects. We could bias

the stochastic search process so that it favors a small number of material regions

embedded in a single-material background. The chosen constraints restrict the

kinds of material distributions that will be considered as viable candidates in

the final step.

5. Stochastic-based Combinatorial Optimization: In this stage we produce

a sequence of guesses for the material distribution and compute the objective

function for each guess. We apply a stochastic-based heuristic search method,

informed by the constraints and biases chosen in step 4, to select a material

in each cell. At this stage a full-fidelity transport forward model is applied to

evaluate the objective function for each material distribution. The algorithm

terminates either when a suitably small objective function is found or when an

iteration limit is reached.

The main contribution of our research is this overall approach, which systemat-

ically combines deterministic and stochastic methods within a framework that ap-

plies significant practical constraints, thereby dramatically improving solutions while

dramatically reducing costs. In addition, we have introduced or employed modest

improvements to the deterministic and stochastic optimization methods themselves.

In the deterministic optimization stage, we have implemented several improvements

to the approach described by Klose et al. [36,37] and corrected by Scipolo [54]. First,

we have created a variable change to impose non-negativity constraints on cross sec-

tions; this is described in a forthcoming publication [55]. To increase efficiency we
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apply a Krylov subspace iterative technique that speeds up each forward calculation.

We employ a nonlinear conjugate gradient (CG) [56] updating scheme as the heart

of our search procedure and integrate Brent’s method [57] into the associated line-

search algorithm. We also allow illumination of the object from all four sides of a

rectangular object in 2D, with each illumination producing a set of measurements.

All four sets are included in the sum that defines the objective function.

In stochastic optimization stage, the key feature in our approach is that we treat

thematerial (a discrete quantity) as the unknown, as opposed to individual cross sec-

tions (continuous variables). This changes the mathematical nature of the problem,

and in fact greatly reduces the dimension of the search space. It also automatically

imposes the important constraint that cross sections for a given region must be cross

sections of a real material. We incorporate further constraints that filter out unre-

alistic configurations and thus prevent the algorithm from wasting time computing

them with the (expensive) high-fidelity forward transport model.

To illustrate our methodology we consider model problems in a two-dimensional

X-Y Cartesian coordinate system. We assume an incident beam of thermal neutrons

from one side of the object at a time, with measurement of exiting radiation from

other three sides. Our forward solver employs a single (thermal) energy group, the

discrete-ordinates method for angular discretization, an analytic treatment of the

first-collision source, and the step-characteristic method for spatial discretization. In

this research we do not consider the complications of model or measurement errors -

our aim here is to evaluate whether our methodology works in a simple setting that

permits sharp analysis and sharp conclusions.

I.D Overview of Chapters

In this introductory chapter we have given a background discussion, described

the objective of our work, and provided a brief summary of the methods we devise
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with a highlight of the advances we introduced in this research. Our subsequent

discussions are organized as follows.

We begin in Chapter II by explaining the fundamentals of FBP-based analytic

tomography methods and applying them to test problems of interest. Our applica-

tion uses the general Monte-Carlo simulation code MCNP [58] to construct simulated

”measurements” for our tests. We give a detailed description of the MCNP model

we develop and the radiation tallies that we acquired. We explore the FBP-based

reconstruction method using a MATLAB-based utility that we have adapted to re-

construct the total cross section of the test problem. The local tomography method,

a derivative method of FBP method, is also investigated in this chapter to recon-

struct the interface area of the material distribution. The results obtained in this

chapter illustrate the conclusion that FBP-based methods may provide certain useful

information in problems with some or no scattering, but in highly scattering prob-

lems these methods will generally fail even with collimated beams and detectors.

This motivates us to consider a different class of methods.

In Chapter III we describe and illustrate deterministic optimization methods,

focusing the one that we apply as the first step in our hierarchical approach. We

follow the gradient-based iterative scheme based on the work of Klose et al. [36,

37] and Scipolo [54], but we also devise methods that address the difficulties we

encountered with this scheme. These contributions to the deterministic optimization

procedure are highlighted in the introductory section of the chapter.

In Chapter IV the main innovations of our work, most of which can be viewed as

advanced dimension-reduction techniques. We describe our hierarchical approach in

detail and also describe particular algorithms that can be used at each step in our

hierarchy, including algorithms that accomplish the following tasks: cell grouping,

material restriction, and combinatorial optimization with smart constraints imposed.

In Chapter V we present computational results from a range of test problems

to illustrate the efficiency and advantages of our systematic approach to inverse
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problems. We conclude in Chapter VI with a summary of our salient points and our

view of the future potential for application and extension of this research.
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CHAPTER II

ANALYTIC TOMOGRAPHY METHOD

II.A Introduction

The methodology we apply in this research to solve the inverse problem is iterative

based optimization. Before we discuss our approach, in this chapter we discuss the

application of analytic tomography methods to the problems of interest. The purpose

is to understand the difficulties that traditional tomography methods encounter if

they are applied to inverse problems with thick and highly scattering objects.

The terminology “analytic tomography”, also referred to as “direct tomogra-

phy”, applies to reconstruction methods based on the underlying idea of the Radon

Transform [5, 6, 59], e.g., line integrals along projection trajectories. With some in-

version techniques such as filtered back projection (FBP) applied to the projections,

analytic tomography methods are capable of reconstructing material properties to

infer what is inside an object without opening it up [7, 60]. Analytic tomography

methods have gained significant interest among researchers and have been applied

to variety of applications [14–17, 61] for several decades. Although most of these

applications principally address photon-based tomography, we illustrate the method

using neutron-tomography examples.

The usual material property that the FBP method reconstructs is material total

cross section, or attenuation coefficient. Such properties are normally referred to as

density functions of the positions within the object. They are determined by the

composition of the material and in most cases are sufficient to infer the material

itself. But under some circumstances, we are interested to know the interface area

between two different materials rather than the materials themselves [62–64]. Local

tomography has been invented to achieve this goal.

Local tomography, also known as Lambda tomography or “high frequency tomog-

raphy” was first introduced respectively by Vainberg et al. [65] and Smith & Kein-
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ert [15] independently. The method was further extended by Kuchment et al. [16]

and continues to be extensively studied [17, 66–68]. Local tomography recovers the

first derivative of the density function rather than density function itself. This can

offer advantages compared to the traditional tomography [16,69].

Though the analytic tomography methodologies are generally easy to apply and

fast in process, they can fail if the underlying assumption of the Radon Transform

- that the exiting radiation is simply the entering radiation multiplied by an atten-

uation factor that depends on an integral along the beam path - is not satisfied,

as is the case for example if the exiting radiation includes a significant portion of

scattered radiation. We will elaborate this conclusion after presenting some results

from applying these methods to out test problem in the section E of this chapter.

We are especially interested in local tomography methods because of their po-

tential to provide material interface locations, which could provide useful constraints

on a more detailed optimization search procedure. However, as we show later in

this chapter, local tomography also fails for optically thick objects with significant

scattering.

II.B Analytic Reconstruction Method

In this section we will briefly go through the mathematical basis of analytic

tomography based traditional filtered back-projection (FBP) method, which is dom-

inantly applied in computerized tomography (CT). Most of the materials in this

section could be found in details in the Chapter 3 of the Kak & Slaney’s book [5].

Essentially, the FBP based analytic reconstruction method could be summarized by

the following three major parts:
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II.B.1 Line integral to obtain projections/measurements

A line integral represents the integral of some properties of the object along a line.

These integrations work as set of projections/measurements required for analytic

tomography methods to recover the image of the cross section of an object. In other

words, the necessary projections required for analytic reconstruction are provided by

the line integral procedure. Through line integral, the physical properties along the

integration line are mapped into one projection, and if we could map this information

back from the projection, we would recover the corresponding properties along the

line. After all integration lines are recovered and analyzed together, the whole cross

section image is recovered. This is the concept of analytic tomography method.

Therefore the line integral works as the foundation of the methodology.

To better describe the fundamentals of line integrals, we use Fig. II.1 as an

example: the object is represented by a two-dimensional function f(x, y) and each

integral line is determined by the (θ, t) parameters. Here θ is the angle of a set of

parallel lines, relative to some reference direction, and t is a coordinate along an axis

perpendicular to the lines.

The projection Pθ(t) in Fig. II.1 could be obtained through the following line

integral as:

Pθ(t) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)δ(x cos θ + y sin θ − t)dxdy. (II.1)

Here x cos θ + y sin θ = t represents the equation of line AB in Fig. II.1 and the

function Pθ(t) is known as the Radon Transform of the function f(x, y).

II.B.2 Fourier slice theorem (FST)

The Fourier Slice Theorem is the key to analytic tomographic imaging systems.

It discloses the relationship between the measured projection data and the two-

dimensional Fourier transform of the density function in the cross sectional object,

which is represented in Fig. II.2.
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Fig. II.1: Pθ(t1) is the projection of the density function f(x, y) shown from an

angle θ and a position t1. [70]
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Fig. II.2: The Fourier Slice Theorem relates the Fourier transform of a projection

to the Fourier transform of the object along a radial line. [71]

The two dimensional Fourier transform applied to f(x, y) is

F (u, v) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)e−j2π(ux+vy)dxdy. (II.2)

If we apply Fourier transform on the projection Pθ(t) into its frequency domain, we

have

Sθ(ω) =

∫ +∞

−∞

Pθ(t)e
−j2πωtdt. (II.3)

Then the Fourier Slice Theorem (FST) states that

Sθ(ω) = F (ω cos θ, ω sin θ). (II.4)

The proof of this statement can be found in [5]. Mathematically, FST in two

dimensions states that the Fourier Transform of the projection of a two-dimensional

function fonto a line is equal to a slice through the origin of the two-dimensional

Fourier transform of that function, with the slice taken parallel to the projection line.

This is a very important result which indicates that by taking the projections of a
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density function at number of angles and Fourier transforming each of these projec-

tions, we can determine the values of F (u, v) on radial lines as shown in Fig. II.2. If

an infinite number of projections are taken, F (u, v) would be known at all points in

the uv-plane. With the known F (u, v), the density function f(x, y) can be retrieved

by using the inverse Fourier transform on F (u, v). This leads to the third part of the

basic analytic tomography method.

II.B.3 Filter back projection (Inverse transform)

The inverse reconstruction method applied to specific problems depends the type

of projection data measured. For simple description purpose, we discuss the methods

here based on parallel beam projection data, which is also the source beam we are

interested in for this research.

The two variable inverse Fourier transform is described as

f(x, y) =

∫ +∞

−∞

∫ +∞

−∞

F (u, v)ej2π(ux+vy)dudv. (II.5)

By changing the rectangular coordinate variables (u, v) into polar coordinate variable

(ω, θ), and applying the property of symmetry and the results from Fourier Slice

Theorem, we could change the form of Eq. (II.5) into

f(x, y) =

∫ π

0

[∫ +∞

−∞

Sθ(ω) |ω| ej2πωtdω
]
dθ, (II.6)

where t = x cos θ + y sin θ.

To better understand Eq. (II.6) we obtained above, we define

Qθ(t) =

∫ +∞

−∞

Sθ(ω) |ω| ej2πωtdω (II.7)

and name it as “filtered projection” which indicates a filtering operator worked on

Sθ(ω). Then we have

f(x, y) =

∫ π

0

Qθ(x cos θ + y sin θ)dθ. (II.8)
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Eq. (II.8) represents the pure “back-projection” process.

It has been shown [5, 14,16] that

Qθ(t) =
1

2π2t
∗ ∂Pθ(t)

∂t
= Hilbert Transform of

∂Pθ(t)

∂t
. (II.9)

So the back projection can also be represented as

f(x, y) =

∫ π

0

Ht

∂Pθ(t)

∂t
dθ. (II.10)

Eq. (II.8) or Eq. (II.10) states that each filtered projection is to be “back pro-

jected” and makes the same contribution to the reconstruction of all those points

on the line associated with this projection. Therefore the reconstruction process of

analytic tomography is to smear back each filtered projection to recover the image

plane.

II.C Local Tomography

Local tomography recovers a function different from the density function f ,

which is the goal of most tomography methods. To illuminate this method and some

advantages behind this method, we introduce local tomography following the logic

of lectures from Faridani [17].

We start this section with the definition of line integral as described in Eq. (II.1)

Pθ(t) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)δ(x cos θ + y sin θ − t)dxdy.

By performing the same procedure as we addressed in the previous section, the

reconstructed function f(x, y) would be

f(x, y) =

∫ π

0

Ht

∂Pθ(t)

∂t
dθ. (II.11)

This equation could also be presented as the following form:

f(x, y) =

∫ π

0

[ΛPθ(t)]dθ, (II.12)
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here the sign Λ denotes as Calderon’s operator [66], which is defined as

Λ =
√
−∆, where ∆ = Laplacian operator.

A local tomography method, in contrast to the traditional analytic tomography,

does not attempt to reconstruct the function f itself but instead produces the related

function Lf = Λf + µΛ−1f , which is derived as [17, 66]:

Λ−1f =

∫ π

0

[Pθ(t)] dθ, (II.13)

Λf =

∫ π

0

[−∆Pθ(t)] dθ. (II.14)

Here Eq. (II.13) is just direct back projection operated on Pθ(t) and easy to apply.

To implement Eq. (II.14), we notice the Fourier transform of −∆Pθ(t) is

∫ +∞

−∞

[−∆Pθ(t)] e
−j2πωtdt

=− (jω)2
∫ +∞

−∞

Pθ(t)e
−j2πωtdt

= ω2

∫ +∞

−∞

Pθ(t)e
−j2πωtdt

= ω2Sθ(ω)

,

where Sθ(ω) is defined in Eq. (II.3), so we could change Eq. (II.14) into

Λf(x, y) =

∫ π

0

[∫ +∞

−∞

Sθ(ω)|ω|2ej2πωtdω
]
dθ. (II.15)

This is the final back projection formula we obtained for local tomography, analogous

to Eq. (II.6) in traditional analytic tomography methods.

Local tomography does not recover the correct density function f , however it

yields a function Λf which has exactly the same singularities as f in the sense that

both functions have the same wavefront sets [16]. Therefore this method has many

advantages. First, it is local (which gives local tomography its name). This means

that in order to recover the value of Λf at some point x, one needs only the Radon

data Pθ(t) for lines passing close to the point x; this is not true for the actual
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inversion formula Eq. (II.6). Another advantage is that Λf has singularities located

at the same positions as the ones of f , but those of Λf are much ‘stronger’ than those

of f (and hence are significantly highlighted in an image); the reason for this is that

Λ is of positive order. Hence, if one is only interested in the singularities of f , one

would be much better off using the local tomography formula in Eq. (II.15) rather

than the actual tomography formula in Eq. (II.6). This advantage is the particular

reason that we interest in local tomography in our research. The singularity of our

interest is a simple discontinuity in f which could be used to infer the material

interface inside the investigating object. One more additional advantages of local

tomography include the fact that it is often computationally simpler and the local

experimental data often contains fewer errors since, for example, demagnification

may not be required [66].

II.D MCNP Simulation

As described in the previous sections, we know that it is obligatory to obtain

a number of projections before we can perform analytic tomography methods to

reconstruct the density images as we desire. In this research we obtain the requisite

projections by carrying out computational simulations of experiments with Monte-

Carlo modeling and simulation.

We use the general Monte Carlo transport code MCNP [58] to model and simulate

the beam-object-detector system. The schematic layout of the our test problem and

configuration for the computational experiment is illustrated in Fig. II.3.

As shown in Fig. II.3, an investigated object with square shape (10cm × 10cm in

dimension) is composed of two materials: water and iron. It is subjected to a plane

mono-directional neutron source defined with thermal Maxwell energy spectrum. An

array of 20 detectors, each 0.5 cm wide, is placed on the other side of the object. They

measure the radiation emerging from the object after being transmitted through or

scattered by the materials in the object.
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(a) X-Y View (b) X-Z View

Fig. II.3: Test problem layout and experimental configuration in MCNP.

The plane neutron source in Maxwell spectrum is defined with the following

MCNP inputs:

sdef pos=0 -2 0 vec=0 1 0 dir=1 erg=d2 y=-2 x=d3 z=d4

sp2 -2 2.5e-8 $ Maxwellian thermal energy spectrum

si3 h -1.42 1.42

sp3 d 0 1

si4 h -2 2

sp4 d 0 1

The materials in the test problem are defined in MCNP as below:

m1 1001 -0.111894 $ water

8016 -0.888106

m2 26000 -1.000000 $ Iron

m3 6000 -0.000124 $ C(air)

7014 -0.755268 $ N

8016 -0.231781 $ O
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18000 -0.012827 $ Ar

The simulation procedure of the test problem is depicted in the Fig. II.4. The

neutron particles coming from the beam are incident to the object, and since the

object is optically thick comparing to the mean free path (mfp) of the neutrons

with thermal energy range, most of initial interactions (absorption and scattering)

happen within 2 to 3 mfp (the thermal neutron mfp in water is around 1.5 cm) of the

incident surface. Therefore only a small percentage of neutrons are able to transmit

uncollided through the object and reach the surface where detectors are placed.

Fig. II.4: Particles transport procedure simulated in the test problem by MCNP.

We perform an experimental simulation with different types of tally in MCNP to

approximate the detector readings of the transmitted radiation exiting the back side

of the object. The detector reading is collimated because we attempt to preserve

the direct transmission particle information as much as possible. The definition of

different tally for collimated detector readings in MCNP is written as:

c Tally section
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fq0 s c $ Change the order of tallies output

c F1 Tally

f11:n 4

fs11 -100 -101 -102 -103 -104 -105 -106

-107 -108 -109 -110 -111 -112 -113

-114 -115 -116 -117 -118 -119 -120

sd11 (1 20r 1)

c11 0 0.996194698 1 $ polar anger from 180-90, 90-5, 5-0.

c F2 Tally

f12:n 4

fs12 -100 -101 -102 -103 -104 -105 -106

-107 -108 -109 -110 -111 -112 -113

-114 -115 -116 -117 -118 -119 -120

sd12 (1 20r 1)

c12 1

c F5 Tally

fir15:n 0 5.1 0 7r nd $ Array of point detectors

c15 -1 1

fs15 -5 19i 5

The measurements obtained in different tally type is illustrated in Fig. II.5. The

plots in Fig. II.5 has been normalized for comparison purpose. We find although

different measurements from different tally type have differences in magnitude, they

almost follow the same profile (see Fig. II.5). Since the magnitude in measurements

don’t influence the tomography results [5], for the consideration of computational

cost (For example, F5 tally normal takes much longer time to compute than F1

tally.), in the later on experiments we only count collimated current (F1 tally with

c card in MCNP) exiting the surface of the object as the transmitted projection,

which is needed for analytic tomography. A dummy disk is attached with the object
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Fig. II.5: Comparison of normalized measurements from different MCNP tally type.

(see Fig. II.3) to work as a coordinate which stays invariant when object is rotated

as described in the forthcoming paragraphs. The full MCNP input deck for the

modeling and simulation of the test problem can be found in Appendix A.1.

To meet the conditions of most CT methods, we must obtain simulated measure-

ments from multiple groups of projections. We achieved this goal by rotating the

system around an axis through the center of the system. However, instead of rotating

the source and detector system, we rotate the object with the source beam and detec-

tor system invariant. The tool mcnp pstudy [72] is used for this. Mcnp pstudy allows

the complete parameter space of all cases to be specified in a single MCNP input

deck, and automatically generates the required input decks and submits the full set

of cases to a Linux cluster for computation. The rotating procedure is demonstrated

with the multiple pictures in Fig. II.6.

In Fig. II.6 we only displays six scenarios as exemplified cases; however, in the

experiment we rotate the object uniformly in 20 directions from 0 to 360 degrees,
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Fig. II.6: Rotate the object in different angles.

collecting 20 sets of projection information, and each projection has 30 detector

readings uniformly distributed along the back side of the object. All these projections

are used in analytic tomography methods to recover the density image associate with

our test problem in Fig. II.3. The input source of the test problem in the format of

mcnp pstudy is attached in Appendix A.2.

The simulated count rates in the collimated detectors are shown in Fig. II.7 for

five of the 20 different orientations of the object.

As we expect, because of the iron inclusion embedded in the upper left region

of the object (see Fig. II.3), an asymmetry exists in the plot profile with no rota-

tion. This information is automatically used in the reconstruction procedure. With
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Fig. II.7: Transmitted radiation measured with object rotated in different angle.

the radiation detection information available, we are ready to perform tomography

algorithms to recover the tomogram of our interest.

II.E Implementation and Results

Before we perform back projection operations on the measurements, there is one

more thing to be clarified. The density image associate with the test problem we

attempt to recover here is actually the total cross section distribution among the

object. It is described in the simple attenuation model

Iθ(t) = I0e
−

∫
+∞

−∞
Σt(x,y)ds. (II.16)

To map Eq. (II.16) to the form of Radon transform in (1), we do the following

manipulation

Pθ(t) = ln

(
I0
Iθ(t)

)
=

∫ +∞

−∞

∫ +∞

−∞

Σt(x, y)δ(x cos θ + y sin θ − t)dxdy. (II.17)
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Eq. (II.17) discloses the relationship between the measurements yielded from MCNP

simulation and the projections required for the filtered back projection process. Now

we are ready to employ a MATLAB-based FBP utility to recover the total cross

section image associated with the test problem.

The reconstructed Σt image we obtained from this experiment is shown in Fig. II.8.

We see no evidence of the iron inclusion. Recall that the incident beam has a

Maxwellian distribution and note that the cross section is a function of neutron

energy. This means that the attenuation of the uncollided beam intensity is not as

simple as is shown in Eq. (II.16), but in fact includes integration over all neutron

energies. Thus, it is not straightforward to say exactly what the “correct” answer is

for the Σt(x, y) that we are asking FBP to construct. Nevertheless, we would expect

a viable method to find that Σt is different in the region that contains the iron. For

comparison the material map is shown in Fig. II.9.

Optically thick, highly scattering problems violate the fundamental assumption

behind FBP, namely that the detector signal is proportional to e−τ , where τ is

proportional to a line integral of the quantity of interest (such as total cross section

or density). This is because scattered particles contribute more to the detector signal

than the directly transmitted particles. Collimation of source and detector can help

significantly, and we have employed collimation in our application of FBP. However,

this is not sufficient for the test problem described above, as Fig. II.8 illustrates.

This figure shows the FBP reconstruction of Σt in the test object; clearly (and not

surprisingly) this is far from the correct solution, and in fact does not suggest that

there are any embedded heterogeneities. For comparison we create a smaller version

of the same problem, in which the dimensions are reduced by a factor of five. This

reduces the optical depth of the shortest path through the water from more than 7

mean free paths to less than 1.5 mean free paths. In this case FBP (with collimated

sources and detectors) is able to locate the embedded object, as shown in Fig. II.10

with a comparison to the real distribution shown in Fig. II.11.
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Fig. II.8: Σt reconstructed with FBP method for the test

problem.

Fig. II.9: Geometry and material configuration of the test

problem.
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Fig. II.10: Σt reconstructed with FBP method for a smaller

version of the test problem.

Fig. II.11: Geometry and material configuration of a

smaller version of the test problem
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The implementation of local tomography becomes straight forward through an

observant comparison of Eq. (II.12) with Eq. (II.13) and Eq. (II.14). With back-

projection operation on Ht
∂Pθ(t)

∂t
, we recover the density function f . Therefore it’s

natural to conclude that if we have a desire to recover the function Λ−1f and Λf , we

only need to operate back-projection on Pθ(t) and −∆Pθ(t) respectively. However,

there’s an alternative approach to recover Λf , which is described in Eq. (II.15).

Following the logic in Eq. (II.15), we could save the energy that would be required

to compute −∆Pθ(t) directly. Instead, we first compute the Fourier transform of

projection (i.e. Sθ(ω)), and then multiply it with |ω|2 which works as a filter here,

and in the last step we operate on the product with an inverse Fourier transform to

obtain −∆Pθ(t). Then we operate back projection on −∆Pθ(t) to obtain Λf . The

whole theory of this alternative approach is buried in Eq. (II.15). This alternative

may look like more complicated in the computation but it is in fact simpler in the

implementation, because it takes the advantage of normal tomography algorithms.

The only thing that changes between them is that the filter applied to the filtration

projection switches from |ω| to |ω|2.
We perform local tomography to the test problem with the small modification to

the MATLAB utilities that is described in the preceding paragraphs. The image of

derivatives of the density function (Λf) is reconstructed and the material interface

information deduced from Λf is inferred. The results of the test problem with 10cm

× 10cm in dimension are illustrated in Fig. II.12.

The left picture in Fig. II.12 is Λf tomogram reconstructed with the local tomog-

raphy algorithm. In this picture the interface between water and air are strongly

highlighted; however the interface between the iron inclusion and the water is hardly

discerned. This is due to the same reason as we find in the normal tomogram: the

object is so thick and highly scattering that the scattering component makes signif-

icant contribution to transmitted projections, even with collimation. This violates

the underlying basis of line integral rule, so the results from local tomography could
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Fig. II.12: Local tomography for the test problem. Left: Reconstruction image of

f ; Right: Material interface indicated by information provided in the left image for

the test problem.

not provide us anything valuable. This conclusion is further proved in the right pic-

ture in Fig. II.12 which is anticipated to identify the interface information within the

object by utilizing the information in the left reconstructed image. This is also the

motivation that we investigate local tomography in the research. The criterion we

apply to determine the interface based on the gradients calculation of the quantities

in the left image, i.e. we assume g = Λf , and let

h =

∣∣∣∣
∂g

∂x

∣∣∣∣+
∣∣∣∣
∂g

∂y

∣∣∣∣ ,

then any cells with h > 1
2
hmean will be recognized as boundary cells. The theory

behind the criterion is that theΛf function normally will have a very sharp slope in

boundary areas. Unfortunately in the right picture of Fig. II.12, this algorithm does

not find any interface in the boundary between water and inclusion which implies

the failure of this method.

As we have done previously in the normal tomogram experiment, we also applied

local tomography to the smaller version of the same problem, in which the dimensions
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are 2cm × 2cm in x and y coordinates. The same criterion is applied to find the

interface area. The Λf tomogram and the interface information inferred from it are

illustrated in Fig. II.13. In this case, the left tomogram is able to locate the inclusion

boundaries and the interface area in the object is recognized by our algorithm and

very close to the white box which is the accurate interface boundary.
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(a) Property image reconstructed by local tomography
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Fig. II.13: Local tomography for a smaller version of test problem. Left: Recon-

struction image of Λf ; Right: Material interface indicated by information provided

in the left image for a smaller version of the test problem. (The white box shows the

correct location of the interface.)

II.F Summary of Chapter II

In this chapter we have discussed the FBP based analytic tomography method

and applied it to a test problem that is optically thick and consists of highly scatter-

ing materials. The results we obtained from our experiment demonstrate that the

analytic tomography method is not a workable approach to address such problems

even with collimated source and detectors applied. This is due to the fact that the
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basic assumption underlying line-integral methods is violated when the scattering

component significantly contributes to the transmitted projections.

The local tomography method was also investigated and applied to the test prob-

lem to explore the efficiency and advantages of this method in identifying the material

interfaces within the object. However, due to the same reason it fails to achieve the

goal in the thick problem with highly scattering medium as well. This conclusion

may be generalized to all the FBP based tomography methods. For thick problem

undergoing many highly scatterings, we must turn to other methodologies such as

iterative based optimization methods. These are the topics we present in the rest of

this dissertation.
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CHAPTER III

GRADIENT-BASED DETERMINISTIC OPTIMIZATION

III.A Introduction

Beginning with this chapter, we pose our tomography problem as an optimiza-

tion problem with a goal to minimize a pre-defined multi-variable objective function.

Contrasting to the analytic methodology that we discussed in Chapter II, the dom-

inant approaches in the minimization category are iterative-based reconstruction

methods. The important ingredients in these methods are an efficient numerical

method to solve the forward model and an efficient inverse model to search for the

optimal values. We focus on deterministic optimization in this chapter and address

stochastic optimization in next chapter in the course of our development the general

tomography method (which involves both deterministic and stochastic components).

Recall that the purpose of the research is to infer material properties inside an

object based upon detection and analysis of radiation emerging from the object under

investigation. This goal is relatively simple to achieve under the following conditions:

• Mono-directional beams of radiation can be sent into the object,

• Emerging intensity can be detected on the other side with high spatial (and

perhaps directional) resolution,

• Radiation has low probability of scattering within the object, and

• Different internal materials have different attenuation coefficients (different to-

tal cross sections).

We assume that if everything about the object (material distributions) and any

incident radiation is known, a forward model (i.e., solution of the transport equation)

could accurately predict the measurements obtained by peripheral detectors. We

further assume that detector measurements are given. In practice these would come
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from physical detection systems, but during the testing phase of a method they may

be simulated by Monte-Carlo or other simulation. Then we pose an optimization-

based problem to determine the material distributions that minimize some measure

of the difference between predicted and measured results. This measure, called the

objective function (it is also referred to as cost function, misfit function, least-squared

function, chi squared function etc. in other lectures), could for example be the sum

of the squared relative difference between predictions and measures:

Φ =

1
2

N∑
i=1

(Pi −Mi)
2

1
2

N∑
i=1

(Mi)
2

, (III.1)

where Φ denotes the objective function, N is the total number of the detectors in

the system, P and M are the predicted and measured values respectively. In our

current model, M is obtained from the transport calculation in the mathematical

model with accurate material properties. The schematic of the problem is depicted

in Fig. I.3. The task of the iterative reconstruction method is to design an inverse

iteration scheme that finds material properties that reduce the objective function to

a fairly small minimum. During each iteration a forward calculation is performed

using the latest iteration of material properties, yielding new predicted values and

thus a new objective function.

The problem is therefore posed as minimization of the objective function with

respect to the material properties within the unknown object. To solve this op-

timization problem, a forward model capable of calculating the detector responses

(both transmitted image and scattered image) for the beam passing through a known

object is needed. In addition to this forward model an inverse model is needed in

order to create a new “guess” of the object structure (essentially the cross section

sets defining the object) after each new objective function is calculated. The forward

model can then be repeated using the more accurate guess. These iterations would
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continue until the calculated detection rates matched the measured detection rates

to within some tolerance (i.e., an objective function is minimized).

Our research work in deterministic optimization follows the work of Scipolo [54],

who developed a transport solver (i.e. forward model) using the step characteristic

(SC) spatial discretization method to provide reasonably accurate forward transport

calculations. Following the work of Klose et al. [36, 37], Scipolo included logic in

the forward code to calculate not only the predicted detector readings but also the

derivative of the objective function with respect to each unknown material property

(cross section). Collectively these derivatives form the gradient of the objective

function. Scipolo’s inverse model is built with the steepest-descent updating scheme,

which of course relies on knowledge of the gradient of the objective function. Scipolo

has gained some success in the application of his method to neutron tomography.

For the deterministic component of our method we follow the same basic strategies

of Klose et al. [36, 37] and Scipolo [54], but we have implemented several improve-

ments to the approach. We first allow illumination of the object from all four sides

of a rectangular object in 2D, with each illumination producing a set of measure-

ments. All four sets are included in the sum that defines the objective function.

To increase efficiency we apply a Krylov subspace iterative technique that speeds

up each forward calculation. In addition, we employ the nonlinear conjugate gradi-

ent (CG) [56] updating scheme as the heart of our search procedure and integrate

Brent’s method [57] into the associated line-search algorithm. The most striking

aspect we improve in this stage is that we perform a variable change to impose non-

negativity constraints on cross sections; this is described later in this chapter and in

a forthcoming publication [55].

In the following sections of this chapter, we present the essential components

of our deterministic optimization method with emphasis on the improvements we

introduce in our implementation.
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III.B Multi-beams Incorporation

The uniqueness of the inverse problem is discussed in Boyd [10]. We have en-

countered ill-conditioning in our inverse problems even in the case of very simple

configuration such as only 4 cells in the object. In these cases we may end with a

solution that is far from the correct answer but gives a very small objective func-

tion. Such ill-conditioning could be mitigated if we can illuminate the object with

beams from all of its surfaces. The quality of the reconstruction could be improved

by an increase in the number of sources and detectors, or sometimes with smaller

mesh sizes, but these tactics are not always practical [35]. In this section we dis-

cuss our techniques and implementation of multiple beams, which we use to improve

conditioning.

Since the shape of the object in our problem is rectangular (see Fig. I.3, we light

the object with beams incident from 4 directions, each of them on one edge of the

object. In the simulated experiment, we accomplished this by rotating the object

about its center axis and leave the beam and detectors invariant. Then we have to

make the transport solver to run four times to collect all the exiting radiation which

works as predicted radiation for each forward calculation. We also have to prepare

four groups of experiment measurements. This produces four objective functions:

Φ1 =
1

2

N∑

i=1

(M1i − P1i)
2,

Φ2 =
1

2

N∑

i=1

(M2i − P2i)
2,

Φ3 =
1

2

N∑

i=1

(M3i − P3i)
2,

Φ4 =
1

2

N∑

i=1

(M4i − P4i)
2.
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We sum them and define the new objective function as below:

Φ =
Φ1 + Φ2 + Φ3 + Φ4

1
2

4∑
j=1

N∑
i=1

(Mji)
2

(III.2)

The objective function has the same form of the old one in Eq. (III.1) except it has

four groups of misfit functions, and it is normalized to the total sum of the four

groups of measurements.

In deterministic optimization stage, the inverse model we adopted is a gradient-

based iterative scheme. Therefore if we change the form of the objective function,

we also need to be careful of the gradient calculation term for the objective. It is

modified as the following: For the property in a specific cell i, we have the expression

for the gradient with the relationship to the old gradient values

∂Φ

∂σi
=

1

1
2

4∑
j=1

N∑
i=1

(Mji)
2

(
∂Φ1

∂σi
+
∂Φ2

∂σi
+
∂Φ3

∂σi
+
∂Φ4

∂σi

)
. (III.3)

Note that the gradient calculation must be performed four times, once per for-

ward calculation, to obtain the final gradient with respective to σi as illustrated

in Eq. (III.3).

Our multi-beam procedure is described below:

Input 4 groups of measurements (m1, m2, m3, m4)

Input initial guess for cross sections

Search loop begins

Forward calculation to obtain Φ1

Evaluate Φ1 by calling measurements m1

Gradient calculation to obtain
∂Φ1

∂σi
Rotate cross sections distribution

Same way to obtain Φ2,
∂Φ2

∂σi
; Φ3,

∂Φ3

∂σi
; Φ4,

∂Φ4

∂σi
Calculate Φ [Eq. (III.2)]

Calculate
∂Φ

∂σi
[Eq. (III.3)]



42

CG/SD updating procedure begins

Line search to find α - here each objective evaluation needs to run forward

transport solver 4 times.

Cross sections updating - here the dimension of updating variables will be the

same as before.

CG/SD updating procedure ends

If the minimum value obtained, output solutions and exit

If not, continue searching

Search loop ends

III.C Transport Forward Model and Accelerating Iterative Techniques

Our forward model is illustrated with a simple one-group version of the neutron

transport equation for a non-multiplying material with linearly anisotropic scatter-

ing:

Ω · ∇ψ(r,Ω, t) + Σt(r)ψ(r,Ω, t) =

1

4π
Σs(r) [φ(r, t) + 3gΩ · J(r, t)] + Sext(r,Ω, t).

(III.4)

Here Σt and Σs are macroscopic total and scattering cross sections and g denotes the

averaging scattering cosine. These three parameters are properties of the material in

the object being studied. The task of a “forward” transport problem is to solve for

the angular flux ψ if the material properties (Σt, Σs, g) are provided as a function

of position in the spatial domain.

Σt and Σs may be easy to catch up, here we give a further introduction to the

property of neutron linear scattering anisotropy factor, which is also referred to as

neutron scattering asymmetry factor. It is often denoted by g or µ0 in some nuclear-

reactor texts [11, 73]. It is the average cosine of the scattering angle of a single-

scattering event, which is used to characterize the angular distribution of scattering.

See the simple Fig. III.1 below:
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Fig. III.1: Neutron scatters through angle θ, called the “scattering angle”, after

colliding with a nucleus.

If we define µ0 = cos θ, we have

g = µ0 =

∫ 1

−1
µ0σs(µ0)dµ0∫ 1

−1
σs(µ0)dµ0

,

where when




g = 1, particles scattering is forward peaked

g = 0, particles scattering is isotropic

g = −1, particles scattering is backward peaked

.

Different nuclear isotope has different but specific σs(µ0) distribution in neutron-

target interaction. It also changes with incident neutron energy, sometimes dramat-

ically. All these will synthesize to determine a specific g. In the relatively common

case of isotropic scattering in the center-of-mass reference frame, we can show that

the lab-frame anisotropy factor is g ≈ 2
3A
, where A is the atomic mass number of the

scattering nucleus [73].

The general neutron transport equation (which is more complicated than Eq. (III.4)

is a linear form of the Boltzmann equation, developed more than one century ago for
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the study of the kinetic theory of gases [11]. It describes the evolution of a particle

distribution function in an infinitesimally small six-dimensional phase-space (space,

energy, direction) volume. The analytic solution of this equation is known only for

very highly idealized cases often concerning semi-infinite mediums [74]. The solution

of the equation for more common but complicated problems is obtained through the

use of numerical approximations and computational calculations.

The numerical solutions to the transport equation are divided into stochastic

(Monte Carlo) and deterministic. The Monte Carlo method treats all the events

that can occur to a particle in terms of probability functions. It tracks a represen-

tative sample of particles from “birth” until “termination” (for many reasons such

as absorption, leaking ) and thus makes the history of each sampled particle [75].

By using a large number of histories it estimates the average particle behavior. This

method is in general computationally more expensive than deterministic methods.

The advantage is the possibility of simulating complex geometrical systems and phys-

ically complex histories.

Deterministic methods solve the transport equation by discretization of the phase

space volume in order to reduce the transport equation to a set of simpler algebraic

equations. The discretization into energy groups leads to a multi-group transport

equation. The transport equation can be expressed as an integro-differential equation

or as an integral equation. The choice of spatial and angular discretization depends

on the form of the equation. The form used for this project is the steady-state,

one-group integro-differential form that involves an angular integral and a first-order

spatial derivative. Other forms are described elsewhere [12, 74]. Different angular

discretization can be applied o simplify the angular integral into a set of differential

equations. We choose to treat the angular dependence with a discrete ordinate
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(SN) method in this work. The SN methods approximates the angular integral as a

quadrature summation:





φ(r) =
∑

m

wmψ(r,Ωm)

J(r) =
∑

m

wmΩmψ(r,Ωm)
.

If we now recognize that we need to solve Eq. (III.4) only for each direction in

the quadrature set, we see that the resulting set of equations is a coupled system of

partial differential equations in space. Each of this is spatially discretized to generate

a set of algebraic equations.

In the present work, we consider an X-Y two-dimensional problem, thus the

solution of the forward neutron transport model needs to be derived for the two

dimensional case. The detailed procedure for the forward transport solver develop-

ment can be found in [54] chapter II. Here we only point out that the method chosen

for the spatial discretization in our work is the Step Characteristic (SC) method. It

has been developed first by Lathrop [76]. Like every other characteristic method the

SC method transforms the Sn equation into a one-dimensional equation by rotating

the axis of the coordinate system along the direction of motion (the characteristic

line). Given the value of the angular flux at a point along the characteristic line

and known source term the characteristic equation can be analytically solved for the

angular flux everywhere along the line.

In most cases, transport solver requires a long time to compute a solution. We

speed the forward calculation by applying some acceleration techniques to the solver

and implement them into the forward model. For simplicity in illustrating these

techniques, we consider Eq. (III.4) in the slab-geometry case with isotopic source

and isotropic scattering:

µ
∂ψ(x, µ)

∂x
+ Σt(x)ψ(x, µ) =

Σs(x)

2
φ(x) +

Qe(x)

2
, (III.5)
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where

φ(x) =

∫ 1

−1

ψ(x, µ)dµ. (III.6)

Mathematically, this is an inhomogeneous equation. In general, Eq. (III.5) would

always have a stable solution provided that Σs ≤ Σt. To write Eq. (III.5) in operator

forms, we define

L ≡ µ
∂

∂x
+ Σt(x) = “leakage plus collision” operator,

S ≡ Σs(x)

2
= scattering operator,

q(x) =
Qe(x)

2
.

Then Eq. (III.5) may be written into

Lψ = Sφ+ q. (III.7)

For general purpose, Eq. (III.7) may be written as a form of

Ax = b. (III.8)

In many cases, when we attempt to solve the linear equation in Eq. (III.8) using an

iterative method, first we partition A into

A = D − L− U, (III.9)

where D = diag(A), L is the negative of the strictly lower triangular part of A, and

U is the negative of the strictly upper triangular part of A. We can summarize some

basic iterative methods in terms of these key matrices as follows:

• Jacobi:

Dx(k+1) = (L+ U)x(k) + b. (III.10)

• Gauss-Seidel:

(D − L)x(k+1) = Ux(k) + b. (III.11)
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• SOR (successive overrelaxation):

D − ωL)x(k+1) = ω(Ux(k) + b) + (1− ω)Dx(k). (III.12)

• SSOR (symmetric successive overrelaxation):




(D − ωL)x(k+
1

2
) = ω(Ux(k) + b) + (1− ω)Dx(k)

(D − ωU)x(k+1) = ω(Lx(k+
1

2
) + b) + (1− ω)Dx(k+

1

2
)
. (III.13)

Each iteration of the SSOR method consists of first a forward SOR iteration

that computes the unknowns in a certain order and then a backward SOR

sweep that solves for them in the opposite order. Choosing the best relaxation

parameters for the SOR and SSOR methods is an intriguing question with

rather complicated answers.

• Richardson:

x(k+1) = (I − A)x(k) + b. (III.14)

• Preconditioned Richardson:

x(k+1) = (I − PA)x(k) + Pb. (III.15)

Here the preconditioner is P .

In some references [77], these iteration methods described above are noted as sta-

tionary iterative methods, because the matrices used for updating variables are kept

constant during the iterative procedure. Nonstationary iterative methods, unlike sta-

tionary ones, involve information that changes at each iteration in the computation.

Typically, constants are computed by taking inner products of residuals or other

vectors arising from the iterative method. Numerical experiments show that the

nonstationary iterative methods accelerate the convergence the solutions to trans-

port model and in most of cases work as more efficient iterative scheme in the forward

calculation. We present some of these iterative techniques in this section and apply

them to the forward calculation in this research.
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In neutron transport category, within an energy group the source iteration (SI)

scheme would be written as follows:

µ
∂ψ(l+1)(x, µ)

∂x
+ Σt(x)ψ

(l+1)(x, µ) =
Σs(x)

2
φ(l)(x) +

Qe(x)

2
,

where

φ(l)(x) =

∫ 1

−1

ψ(l)(x, µ)dµ.

If represent it with operator form as Eq. (III.7), it is

Lψ(l+1) = Sφ(l) + q.

Therefore the iteration form derived here is solved by the method of iteration on

the scattering term. In the work prior to this research [54], the forward calculation is

indeed developed based on source iteration. However, in some physical scenario, e.g.

the problem with optically thick geometry (which means ∆xΣt is large) and highly

scattering physical material (which means c = Σs/Σt is close to unity), the source

iteration technique becomes very inefficient and the solution hardly converges. As a

result, more rapidly convergent iterative methods are required [12, 78]. In fact, this

is one of most active research topics in transport theory and application.

The solution to transport equation is the scalar flux φ. With the Richardson

updating scheme Eq. (III.14), we may write it as

φ(k+1) = (I − A)φ(k) + b. (III.16)

It is easy to show that source iteration satisfies Eq. (III.14) with the following defi-

nition of A:

A = I −
∫ 1

−1

(
L−1S

)
dµ.

So we would have

Aφ(k) = φ(k) − φ(k+1) + b. (III.17)

The equation we end here is very advantageous; it indicates that if we find φ(k+1)

by performing a transport sweep with Φ(k) used in the scattering source, we will
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be able to evaluate the matrix vector multiplication Aφ(k) with simple subtraction

and summation operation. And we know in computational methods to transport

equation, the transport “sweep” process gives us the capability to calculate φ(k+1)

once the previous (initial) flux φ(k) is given. Once we can use transport sweeps

to implement Krylov-subspace based acceleration techniques for transport solver,

because all those techniques require the operation of matrix vector multiplication. We

have done this in our forward transport solver. Our quantitative results show that the

forward calculation has dramatically speeded up and the computation time is greatly

reduced. This conclusion is consistent with results obtained by previous authors

[78–81]. The detailed method for some classic Krylov-subspace based accelerating

iterative scheme, such as Bi-CGSTAB [82], CGS [83], GMRES, etc., are presented

in Appendix B.

III.D Nonlinear Conjugate Gradient Optimization

III.D.1 Inverse model

The inverse model we apply in the deterministic optimization method is a gra-

dient based iterative scheme, in which we make use of nonlinear conjugate gradient

updating scheme for the minimization of the objective function. We start with prob-

lem with steepest descent (SD) method [54,84] in which the search direction in each

updating iterate is the direction opposite to the gradient of the objective function.

SD method normally converges very slowly especially when the optimized value is

getting close to the right solution. The conjugate gradient (CG) method is slightly

different from the steepest descent [56]. At every step instead of moving along a

direction orthogonal to the previous one the CG moves along an A-orthogonal di-

rection (A is the matrix that defines the quadratic dependence of the function with

respect to all the variables). From a more understandable point of view, the CG

method tries to minimize the residual instead of the objective function itself. In
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order to achieve the goal, the new direction in CG of every iterate is calculated with

a linear interpolation between the old direction and the new gradient.

We present the pseudo code for nonlinear conjugate gradient (CG) algorithm as

below:

Variables initialize x(1), where x = {Σt,Σs, g}
Set the initial search direction d(1) = r(1), where r(1) ≡ −∇Φ

(
x(1)

)

Define termination tolerance ε

Set iteration counter k = 0

Loop

Perform line search to find αmin that minimizes Φ(x(k) + αd(k))

x(k+1) = x(k) + αmind
(k)

r(k+1) ≡ −∇Φ
(
x(k+1)

)

d(k+1) = r(k+1) + βkd
(k) (we will elaborate the choice of βk later.)

k = k + 1

Until
∥∥∇Φ

(
x(k)

)∥∥ < ε

For the contrasting purpose, we also present the pseudo code for steepest descent

(SD) optimization algorithm, it differs from the CG algorithm only within the loop

part:

Loop

Perform line search to find αmin that minimizes Φ(x(k) + αr(k))

x(k+1) = x(k) + αminr
(k)

r(k+1) ≡ −∇Φ
(
x(k+1)

)

k = k + 1

Until
∥∥∇Φ

(
x(k)

)∥∥ < ε

The method of Steepest Descent is simple, easy to apply, and each iteration is

fast. It also very stable; if the minimum points exist, the method is guaranteed to

locate it eventually. But, even with all these positive characteristics, the method
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has one very important drawback: it generally has slow convergence. For badly

scaled systems; i.e. if the eigen-values of the Hessian matrix at the solution point

are different by several orders of magnitude, the method could take an extremely

large number of iterations before locating a minimum point. It starts out with a

reasonable convergence, but the progress gets slower and slower as the minimum is

approached to the exact solution, especially in the case of a quadratic function with

a long, narrow valley. The method may converge fast for such badly scaled systems,

but is then very much dependent on a good choice of starting point. In other words,

the Steepest Descent method can be used where one has an indication of where the

minimum is, but is generally considered to be a poor choice for any optimization

problem. It is mostly only used in conjunction with other optimizing methods.

III.D.2 Problems associated with nonlinear CG method

In our initial application of the nonlinear steepest descent/conjugated gradient

optimization, we encountered some difficulties in the procedure. Some of them we

have addressed successfully and some of them still can cause problems in certain

situations. We summarize them as follows.

1. Starting of SD or CG

In general, if there exists a rough estimate of the value of x , it should be used

as the starting value x0 . If not, set x0= 0; either SD or CG will eventually

converge when used to solve linear systems. However, Nonlinear minimization

is trickier, because there may be several local minima, and the choice of starting

point will determine which minimum the procedure converges to, or whether it

will converge at all. The closer the starting point is to the solution, the more

similar the convergence of nonlinear CG is to that of linear CG.

2. Loss of conjugacy

In linear case, conjugacy means A-orthogonal, but in nonlinear cases, it means
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f ′′-orthogonal where f is the objective function [56]. The less similar f is to

a quadratic function, the more quickly the search directions lose conjugacy.

(Because if f is a quadratic form, then f ′′ is just the familiar matrix A.)

However, in the general (nonlinear) case, the meaning of ”conjugacy” keeps

changing, because f ′′ varies with updating variable. The more quickly f ′′

varies with the variable, the more quickly the search directions lose conjugacy.

On the other hand, the closer the variable is to the right solution, the less f ′′

varies from iteration to iteration. The approach we apply to avoid the loss

of conjugacy is restart CG as SD at a certain step if the code detects that

conjugacy may possibly be lost in that step.

3. Restart CG (downhill search direction protected)

An inexact line search may lead to the construction of a search direction that is

not a descent direction. A common solution to this problem is as below, since

d(k+1) = r(k+1) + βkd
(k), (III.18)

before doing that, test the value of
(
r(k+1),d(k)

)
, if the line search is exact,

then this value should equal to zero, but if
(
r(k+1),d(k)

)
< 0, we will restart

the CG, which means set

βk = 0 i.e. d(k+1) = r(k+1) (III.19)

and thus we use the SD direction as the next search direction.

4. Different Choice of βk

Three of the best known formulas for βk are titled Fletcher-Reeves (FR), Polak-

Ribière (PR), and Hestenes-Stiefel (HS) [also known as Sorenson-Wolfe (SW)]

after their developers. They are given by the following formulas.

• Fletcher-Reeves (FR) formula

βFR
k =

(
r(k+1), r(k+1)

)

(r(k), r(k))
, (III.20)
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• Polak-Ribière (PR) formula

βPR
k =

(
r(k+1), r(k+1) − r(k)

)

(r(k), r(k))
, (III.21)

• Hestenes-Stiefel (HS) formula

βHS
k =

(
−r(k+1), r(k+1) − r(k)

)

(d(k), r(k+1) − r(k))
. (III.22)

These formulas are equivalent for a quadratic function, but for nonlinear opti-

mization the preferred formula is a matter of heuristics or taste. Interestingly,

the last two formulas are generally preferred in practice, though the first has

better theoretical global convergence properties. In fact, very recent research

has focused on combining these practical and theoretical properties for con-

struction of more efficient schemes. A popular choice is

βk = max
{
0, βPR

k

}
, (III.23)

which provides a direction reset automatically. Eq. (III.23) sometimes is re-

ferred to as Polak-Ribière-Polyar formula.

5. CG and SD hybrid

Because CG can only generate n vectors in an n-dimensional space, it makes

sense to restart CG every n iterations (restart CG means go SD method for one

iteration), especially if n is small. Numerical experience shows this is a very

effective way to get more minimum values in nonlinear optimization problems.

6. Stopping of SD or CG

When Steepest Descent or CG reaches the minimum point, the residual be-

comes zero. Because of accumulated roundoff error the recursive formulation

of the residual may yield a false zero residual; also, usually one wishes to stop

before convergence is perfect. It is customary to stop when the norm of the

residual falls below a specified value, often, this value is some small fraction of

the initial residual:
∥∥r(k)

∥∥ < ε
∥∥r(0)

∥∥ (III.24)
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III.D.3 Line search methods

Another important subject related to nonlinear conjugate gradient optimization

scheme is the line search (also referred to as 1-D search) method, which is the ap-

proach to find αto minimize the objective function f(x(k) + αd(k)) along the search

direction d(k). Here the d(k) could be taken as the line search direction, and α could

be taken as how far to go (step size) along the direction to obtain the minimum value

in the direction.

When using either Newton-Raphson or Secant method to line search in the con-

jugated gradient among the nonlinear optimization problems, the searched value

should be terminated when it is reasonably close to the exact solution [56]. Demand-

ing too little precision would cause a failure of convergence, but on the other hand

demanding too much precision would make the computation unnecessarily slow and

gains nothing, because conjugacy will break down quickly anyway if f ′′ varies much

with searched value. Therefore, a quick but inexact line search is often the better

policy (for instance, use only a fixed number of Newton-Raphson or Secant method

iterations, or even choose some fixed step size in the line as the solution). Unfortu-

nately, inexact line search may lead to the construction of a search direction that is

not a descent direction. A common solution is to test for this eventuality ( i.e. is

(r,d) nonpositive? ), and restart CG to SD if (r,d) ≤ 0.

We note that the line search involves multiple evaluations of the objective func-

tion, and each such evaluation requires the solution of a forward transport problem.

It is therefore important for the line search to locate the minimum efficiently (that

is, with a reasonably small number of function evaluations).

To locate the minimum along the search direction, there are a variety of line

search methods to accomplish it but they are all more or less based from Newton’s

method (quasi-Newton method). They either utilize gradient information or use only

function evaluations such as the quadratic fit method. It is often difficult to predict
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which of these routines provides the best results for any given problem. In this

section we summarize some of the common used line search methods as following:

1. Newton-Raphson method

This method requires the evaluation of the first and second order of derivatives.

2. Secant method

This method requires calculation of the first order of derivative.

3. Section method: Bisection or Golden section method

The section method is a linear search that does not require the calculation of

the gradients. It begins by locating an interval in which the minimum of the

performance function occurs. This is accomplished by evaluating the perfor-

mance at a sequence of points, starting at a distance of delta and doubling in

distance each step, along the search direction. When the performance increases

between two successive iterations, a minimum has been bracketed. The next

step is to reduce the size of the interval containing the minimum.

Bisection method systematically reduces the located bracket interval of uncer-

tainty by function comparison. It evaluates the midpoint of the interval and

the performance of the midpoint determines which side of the interval would be

discarded. Then each comparison reduces the width of the interval to half of the

original one until the interval of uncertainty goes to a width of per-determined

tolerance.

The golden section method, in a little bit different manner, evaluates two new

points that are located within the initial interval. The values of the performance

at these two points determine a section of the interval that can be discarded,

and a new interior point is placed within the new interval. This procedure is

continued until the interval of uncertainty is reduced to a width of pre-defined

tolerance. Please refer to [85] starting on page 12-16 for a complete description

of the golden section method.
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4. Brent’s method

Brent’s method is a linear search that is a hybrid of the golden section search

and a quadratic interpolation. Function comparison methods, like the golden

section search, have a first-order rate of convergence, while polynomial interpo-

lation methods have an asymptotic rate that is faster than super-linear. On the

other hand, the rate of convergence for the golden section search starts when

the algorithm is initialized, whereas the asymptotic behavior for the polyno-

mial interpolation methods can take many iterates to become apparent. Brent’s

method attempts to combine the best features of both approaches. For Brent’s

method, you begin with the same interval of uncertainty used with the golden

section search, but some additional points are computed. A quadratic function

is then fitted to these points and the minimum of the quadratic function is

computed. If this minimum is within the appropriate interval of uncertainty,

it is used in the next stage of the search and a new quadratic approximation

is performed. If the minimum falls outside the known interval of uncertainty,

then a step of the golden section search is performed. Please refer to [57] for

a complete description of this method. This method has the advantage that

it does not require computation of the derivative. The derivative computation

requires a back propagation through the network, which involves more compu-

tation than a forward pass. However, the method can require more performance

evaluations than methods that use derivative information.

5. Hybrid bisection-Cubic interpolation method

Like Brent’s method, this method is also a hybrid algorithm. It is a combination

of bisection and cubic interpolation. For the bisection algorithm, one point

is located in the interval of uncertainty, and the function and its derivative

are computed. Based on this information, half of the interval of uncertainty

is discarded. In the hybrid algorithm, a cubic interpolation of the function

is obtained by using the value of the function and its derivative at the two
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endpoints. If the minimum of the cubic interpolation falls within the known

interval of uncertainty, then it is used to reduce the interval of uncertainty.

Otherwise, a step of the bisection algorithm is used. Refer to [9] for a complete

description of the hybrid bisection-cubic search. This algorithm does require

derivative information, so it performs more computations at each step of the

algorithm than the golden section search or Brent’s method.

6. Charalambous method

The method of Charalambous was designed to be used in combination with

a conjugate gradient algorithm for neural network training. Like the previous

two methods, it is a hybrid search. It uses a cubic interpolation together with

a type of sectioning. Refer to [86] for a description of Charalambous method.

This method is used as the default search for most of the conjugate gradient

algorithms because it appears to produce excellent results for many different

problems. It does require the computation of the derivatives (back propagation)

in addition to the computation of function, but it overcomes this limitation by

locating the minimum with fewer steps, at least for some problems.

7. Backtracking method

The backtracking method is best suited to use with the quasi-Newton opti-

mization algorithms. It begins with a step multiplier of 1 and then backtracks

until an acceptable reduction in the objective function is obtained. On the first

step it uses the value of the function at the current point and a step multiplier

of 1. It also uses the value of the derivative of the function at the current point

to obtain a quadratic approximation to the function along the search direction.

The minimum of the quadratic approximation becomes a tentative optimum

point (under certain conditions) and the function at this point is tested. If the

function is not sufficiently reduced, a cubic interpolation is obtained and the

minimum of the cubic interpolation becomes the new tentative optimum point.
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This process is continued until a sufficient reduction in the function is obtained.

The backtracking algorithm is described in [87]. Backtracking method is a good

candidate for in-exact line search for the quasi-Newton algorithms, however, in

conjugate gradient or steepest descent method, the precision of result in line

search is instead vital to final solution of the method.

After testing several line search method we listed above, we finally adopted Brent’s

method to perform the line search in the optimization process in our research. We

choose Brent’s method due to the following two considerations: (1) The calculation of

the gradients of the objective function in our problem is time consuming and second-

order derivatives of the objective function would be challenging; (2) We require high

level of precision in the line search results as we use the conjugate gradient updating

scheme. In the implementation stage, we firstly locate an interval used to bracket the

minimum along the search direction. We then employ Brent’s method to determine

the minimum in the bracketed region by choosing the value between quadratic fit and

golden search. Brent’s search is in fact a linear search that is a hybrid of the golden

section search and a quadratic interpolation. The standard FORTRAN subroutine

of this method can be found in the book “Numerical Recipes in Fortran 77”, which

is available in the website: http://www.library.cornell.edu/nr/).

III.E Variable Change Technique in Constrained Optimization

Deterministic optimization methods minimize the objective function in Eq. (III.1)

by treating the measurements Pi (and thus the objective function) as a function of

the macroscopic cross sections of the materials in the object. Let x be the vector of

unknowns, so that xj is a cross section or g factor for some spatial region. The goal

is to find the x that minimizes Φ. The procedure is outlined in the work of Klose et
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al. [36, 37] as corrected by Scipolo [54]. We present the details of this approach in

previous sections, but we note here that updated iterates are produced as follows:

x
(k+1)
i = x

(k)
i + αx,stepd

(k)
i , (III.25)

where the update-direction vector, d, depends on several things including the gradient

of the objective function:

{
d
(k)
i , i = 1..N

}
depends on

{
∂Φ

∂xj

∣∣∣∣
(k)

, j = 1..N

}
. (III.26)

The components of the objective function’s gradients are constructed after a forward

calculation for a given iterate using the procedure described by Scipolo [54]. An

updated value may be outside the physically meaningful range for the variable. For

example, a new cross section may be negative. If this is not corrected, then it may

not be possible to perform the next forward calculation, which causes the entire

method to fail.

In our problem we perform a variable change to address this issue. The new

variables are not constrained; thus our procedure makes the optimization problem

appear unconstrained to the minimization method. The important ingredient is

a well behaved function for the variable change process. We have found simple

functions that appear to work well. For cross sections we use

yj = log(Σj) ⇒ ∂Φ

∂yj
=

∂Φ

∂Σj

dΣj

dyj
=

∂Φ

∂Σj

Σj .

For the anisotropic scattering factor we use

yj = tan
(π
2
gj

)
⇒ ∂Φ

∂yj
=
∂Φ

∂gj

dgj
dyj

=
∂Φ

∂gj

2

π

1

1 + tan2
(
π
2
gj
) .

Fig. III.2 shows how the changed variables vary smoothly along the entire real

line as the physical variables vary along their allowed ranges. After variable changes,

the new updating scheme is

y
(k+1)
i = y

(k)
i + αy,stepd

(k)
y,j . (III.27)
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After this unconstrained update of the transformed variables, it is simple to calculate

updated physical variables. As is clear from Fig. III.2, any value of a transformed

variable will map to an allowed value of the associated physical variable.
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Fig. III.2: Variable change functions. (a) cross sections and (b) average scattering

cosine.

Therefore the CG updating scheme with variable change technique incorporated be-

comes:

Start of iteration loop

Change variable x to y

Perform line search to find αmin that minimizes Φ(y(k) + αd(k))

y(k+1) = y(k) + αmind
(k)

r(k+1) ≡ −∇Φ
(
y(k+1)

)
, where ∇Φ(y(k+1)) is calculated based ∇Φ(x(k+1))

d(k+1) = r(k+1) + βkd
(k)

k = k + 1

Change variable y to x

Until
∥∥∇Φ

(
x(k)

)∥∥ < ε



61

End of iteration loop

We highlight the different places existed in the new algorithm with contrast to

the old one (see page 50), i.e. before the variable being updated, we need to change

the variable x into y to let the updating scheme being processed in y domain and

after updating we then need to change variable y back to x to make the forward

calculation being capable to proceed. We describe the variable change technique in

more detail in [55].

III.F Shortcomings in Current Methods

Existing methods for minimizing the objective function in Eq. (III.1) treat the

measurements Pi as functionals of the macroscopic cross sections of the materials

in an unknown object, which is usually partitioned into spatial cells, each assumed

to have uniform material properties. The goal is to find a set of cross sections in

each spatial cell such that the objective function Φ is minimized. Mathematically,

this involves a very high-dimensional space. The number of dimensions equals the

number of spatial cells times the number of cross sections needed to characterize the

material in each cell - the total number of unknowns in the problem. Note that each

unknown is a continuous variable. Note further the following:

• Dimensionality grows rapidly as the transport model becomes more realistic

(in its energy resolution and its treatment of anisotropic scattering). If energy

dependence is important, so that many energy groups are needed to accurately

treat the problem, the number of dimensions becomes very high indeed, scaling

as number of energy groups squared because of group-to-group scattering.

• Each Pi is a complicated nonlinear functional of each unknown cross section.

• While Φ is a continuous function of each unknown cross section, it may have

many local minima. This makes it difficult to find a global minimum. Deter-
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ministic versions (such as CG based optimization) are particularly susceptible

to becoming trapped in local instead of global minima.

• These inverse problems are ill-conditioned: In many cases, there are a wide

range of cross section distributions that produce approximately the same ob-

jective function.

• Individual stochastic versions (such as Simulated Annealing or Genetic Algo-

rithm) tend to be unable to use valuable information, for example gradients of

with respect to the unknowns. As a result, they require enormous numbers of

“forward” calculations given high-dimensional spaces of unknowns.

• Cross-section sets are not constrained to be realistic - a cell’s set may not

correspond to any real material.

We introduce some new ideas in this work that are designed to address these draw-

backs. The biggest novelty we apply here is to combine deterministic and stochastic

method together for the purpose of leveraging advantages of both sides. We treat

the results from the deterministic optimization stage as prior knowledge and use this

as input to stochastic optimization procedure. The important aspect in stochastic

part is to devise some key dimension reduction techniques to dramatically reduce

the computational burden. We will present the details of these new features of the

methods in next chapter (Chapter IV).

III.G Summary of Chapter III

In this chapter we have discussed deterministic optimization and presented the

version that we use in the research. We have described several techniques that we

have employed to make the deterministic optimization more robust, accurate, and

efficient; these are summarized as follows. We expose the object to multiple beams

to mitigate the ill conditioning of the inverse problem. We accelerate the transport
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forward calculation by applying Krylov-subspace based acceleration techniques to

it. Regarding the inverse model, we apply nonlinear conjugated gradient updating

scheme to search for the optimal solutions. We have introduced a variable-change

technique to convert the constrained optimization problem into an unconstrained

problem. This technique may be beneficial on its own to many gradient-based iter-

ative optimization problems as long as the proper variable-change function can be

found.
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CHAPTER IV

NEW APPROACHES IN HEURISTIC OPTIMIZATION

IV.A Introduction

Traditional inverse-transport methods attempt to determine interaction parame-

ters -cross sections - as a function of position in the object. As the modeling of the

problem becomes more realistic, the number of unknown parameters (spatial and

energy-dependent cross sections) increases drastically, which makes the optimiza-

tion problem far more difficult to solve. The dimension of the search space is the

number of spatial regions (cells) times the total number of unknown cross sections,

which in a neutron scattering problem scales as the square of the number of energy

groups or energy points (because of group-to-group scattering). The larger number

of unknowns (higher-dimensional space) makes the problem more ill-conditioned and

increases the number of iterations needed to find a minimum. Further, in practice

it is highly unlikely that the set of parameters found in a given cell by the search

algorithm will correspond to any real material. Thus, even if a set of parameters is

found that yields an acceptably small objective function, the end goal of determining

the material distribution in the object may remain difficult to achieve.

In this chapter we describe the strategies we have devised to address these diffi-

culties and describe how each strategy can be applied to a particular class of neutron

tomography problems. A common theme of these strategies is that they dramati-

cally reduce the dimension of the search space for the optimization algorithm that

is employed at the end. The basic strategies are:

1. Use an inexpensive forward-transport model with a gradient-based search algo-

rithm to gain helpful information about the problem. The inexpensive model

could, for example, use only a small number of energy groups, a relatively coarse

spatial grid, low-order anisotropic scattering, and possibly diffusion instead of

transport.
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2. Use the information from the first step to group cells that are likely to have

the same material (even though this material may be unknown) into “material

regions”. Some cells may fall into “interface regions” that are spatially between

“material regions”. Cells in such regions are likely to contain the same material

as one of the bounding material regions.

3. Use prior knowledge or hypothesis to create a library of candidate materials.

The search procedure will ultimately consider materials only from this library.

4. Exploit hypotheses for the internal structure of the object. For example, the

analyst might ask the algorithm to look for a single one-material region em-

bedded in a homogeneous background.

5. Employ a stochastic-based heuristic optimization method to search for a ma-

terial distribution that satisfies the constraints imposed by previous steps. An

important part of this is that for each trial to be tested, each cell is assigned

the cross sections from a real material from the candidate library. That is,

the unknown becomes the material, not the cross sections. Further, all the

cells in a given material region are assigned the same material in a given trial.

Finally, each cell in an interface region is assigned the material of one of its

bounding regions, and the interface is required to conform to the analyst’s hy-

potheses. Taken together, these constraints dramatically reduce the dimension

of the search space. As we shall show, this makes it feasible to obtain very

good solutions to very difficult problems.

An example can illustrate the dramatic reduction in problem complexity that

these strategies can achieve. Suppose that a transport model of adequate fidelity

for a given two-dimensional inverse problem is characterized by a 40 × 40 spatial

grid, 15 energy groups, and 3rd-order anisotropic scattering. If cross sections are

the primary unknowns, as is the usual case for gradient-based search algorithms,

then each cell contains four cross-section moments for each allowed group-to-group
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scattering transition, which could mean up to 4×152 = 900 scattering cross sections

per cell. With 1600 cells this means up to 1,440,000 unknown scattering cross sections

in this modest two-dimensional problem. If there is no upscattering the number

remains large (768,000). This is an extremely high-dimensional space in which to

perform a search, even though this is a rather simple example problem.

This motivates us to consider our problem from a different point of view. Instead

of viewing the unknowns as cross sections, we view the unknowns as the material

itself. This reduces the unknowns from a large number per cell to only one per cell.

However, it changes the nature of the problem and thus the methodologies needed to

solve it. The unknowns are now discrete (the material index in a given spatial cell)

instead of continuous (a real number for a given cross section in a given cell). Now

we cannot take meaningful derivatives of the objective function with respect to an

unknown and thus cannot apply gradient-based minimization approaches. In fact,

the problem now can be viewed as a combinatorial optimization (CO) problem. This

type of problem is often attacked using stochastic-based heuristic approaches such as

simulated annealing, tabu search, or genetic algorithms. In these approaches, guesses

for the solution (material index for each spatial cell) are generated using random

numbers coupled with some information learned from previous guesses. When we

evaluate the direct application of standard CO methods (simulated annealing, genetic

algorithms, etc.) to our problem we find that the dimensionality of the problems of

interest is so high that the methods are not likely to produce results with sufficient

efficiency for practical use. Returning to our example problem with its 40 × 40

spatial grid, suppose that prior knowledge or a reasonable guess suggests that there

are only a few - say 10 - materials that could be in the object. Then there are 10

possibilities for each of the 1600 cells, which means 101600 possible configurations.

This is a large search space, in which it is difficult to find a global minimum.

Suppose that instead of direct application of gradient-based searches or stochastic-

based approaches we employ the strategies outlined above, suppose for illustration
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that after the second step we arrive at the cell groupings shown in the figure [see

Fig. IV.1]. Further, suppose that after the second step we have determined that only

2 of the candidate materials fit what has been learned about the M2 region and only

3 fit this for the M1 region.

Suppose that instead of direct application of gradient-based searches or stochastic-

based approaches we employ the strategies outlined above, suppose for illustration

that after the second step we arrive at the cell groupings shown in the figure [see

Fig. IV.1]. Further, suppose that after the second step we have determined that only

2 of the candidate materials fit what has been learned about the M2 region and only

3 fit this for the M1 region.

Fig. IV.1: Three regions (M1, M2, I1) are determined after cell grouping process

in a demonstration example with 40 × 40 grids discretization.
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Finally, suppose the analyst postulates that the object contains a single rectan-

gular “inclusion” in a homogeneous background. Now we ask how many possible

configurations fit the constraints of what has been learned and what has been postu-

lated. There are only four possible locations of the left boundary of material M2, 3

for the top, three for the bottom, and three for the right. This gives only 4×3×3×3

= 108 possible geometric layouts that fit the constraints and postulate. In each of

these there are 3 possible M1 materials and 2 possible M2 materials, or 6 possi-

ble combinations. The total possible configurations is therefore 648. This is to be

compared against the 101600 possible configurations that we would encounter with

a pure brute-force approach. Note that if the postulate is correct, then one of the

648 configurations is very likely the single optimal configuration out of the original

101600 possibilities.

This is an admittedly simple example, but as we shall see later it is not far from

what can be achieved in the test problems that we have studied.

In the remainder of this chapter we provide an explicit example of how each of

the above strategies can be implemented for a family of two-dimensional neutron-

tomography problems. This includes a detailed description of the algorithm that

implements each strategy.

IV.B Demonstration Problems

The problems on which demonstrate our approach are two-dimensional rectangu-

lar objects. Measurements are provided from detectors on three sides while an object

is subjected to a neutron beam on the fourth side, and this is repeated with the beam

striking the other three sides. We assume a room-temperature Maxwellian distribu-

tion of the incident neutrons and thus model the system using Maxwellian-averaged

cross sections. For simplicity, the exiting partial current from a given segment of

a given side is assumed to be proportional to the detector reading associated with

that segment. For the demonstrations in this work, we use the same transport code
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to generate “measurements” that we use to perform forward calculations during the

inverse-transport solution, and we do not add noise to the measurements. A practi-

cal algorithm must deal with noise, and there are established methods for this. Our

goal in this stage of algorithmic development is to determine whether our strategies

can make it possible to obtain sharp answers in the presence of a high degree of scat-

tering, where previous approaches have been largely unable to do so even without

noise.

IV.C Overview of the Methods in Chapter IV

Our forward transport model is a one-group equation with linearly anisotropic

scattering in both the deterministic gradient-based optimization stage and the final

heuristic optimization stage. In the former stage we use a moderately coarse spatial

grid (say 20×20 cells); in the final step we use a finer grid (say 40×40 cells). The

methodology permits more difference between the model fidelities of the two stages,

but this is what we have chosen for our demonstrations.

In the previous chapter we described the details of the deterministic gradient-

based search that forms the initial stage of our approach. This includes a change of

variables, a nonlinear conjugate-gradient algorithm, Brent’s method embedded for

line searches, etc. See Chapter III for details.

In this chapter, we present a hierarchical algorithm to solve the same problem

with the following steps:

1. We use the same model with the exact material distribution to generate the

“measurements” and we do not add any noise. This is to simplify our initial

demonstration of the method and to determine whether it can work under ideal

circumstances. If it does, then future work can address practical complications

such as measurement noise.
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2. We employ a cell-grouping algorithm based on the prior knowledge we gain

from the deterministic optimization stage. This algorithm divides the domain

of the problem into three regions: background, inclusion, and interface. Note

that it is possible there exists multiple inclusion regions.

3. We begin with a library of ten candidate materials. The library includes water,

iron, paraffin, boron, silicon, nitrogen, cadmium, aluminum, natural uranium

and high enriched uranium (HEU). For all ten materials we used thermal cross

sections averaged with a roughly-Maxwellian spectrum. These cross sections

are generated with MCNP output post process.

4. We allow the user to impose constraints on what kind of inclusion the algorithm

will try to find. In our examples we constrain the interface so that it cannot

be arbitrarily ragged; for example, a “finger” of one material that is one cell

wide is not permitted to extend into the other material to a depth beyond

one cell. We employ bias in the stochastic material-choice algorithm for the

interface region, such that a cell close to the inclusion region is more likely to

be assigned the inclusion material and a cell close to the background region is

more likely to be assigned the background material.

5. The stochastic based heuristic optimization method employed in the final step

is extremely simple. Each guess is determined independently from all other

guesses (no learning is attempted), using random numbers for each degree of

freedom. The biasing described above is employed; the constraints described

above are imposed.

We have addressed some of the steps (step 1 and 2) in the algorithm which

are associated with the deterministic optimization procedure in Chapter III. In this

chapter we present the steps associated with heuristic optimization in details in

forthcoming sections. Meanwhile we elucidate the advances we devised in these

steps.
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IV.D Cell Grouping Technique

Our strategies in this stage are based on the results gained from the deterministic

optimization process. We group into regions the cells that are likely to contain the

same material; the cells in the same region have similar or related cross section

information as provided by the deterministic search. Another kind of region can

be identified as likely to contain interfaces between materials. Henceforth each cell

will be associated with a region, with materials varying by region according to some

chosen constraints. After this grouping, the forthcoming search process will work on

regions rather than cells, which greatly reduces the search-space dimension and thus

greatly saves computation time.

We must devise criteria to divide the problem into different regions. Many cri-

teria are possible here; for the test problems in this research, in which there is a

single material that forms one or more inclusions within a homogenous background

material, we set up the following simple criteria:

Σtr > Σtr,mean + α(Σtr,max − Σtr,mean) ⇒ Inclusion region

Σtr < Σtr,mean + β(Σtr,max − Σtr,mean) ⇒ Background region .

otherwise ⇒ Interface region

(IV.1)

Here Σtr refers to the “transport” cross section, defined as Σt − gΣs. The equations

above apply if the inclusion material has a larger transport cross section than the

background. If the results of the gradient-based search show that an inclusion has a

lower cross section these equations are modified in the obvious way. We chose in the

test problems that will be shown in the next chapter.

With the criteria we set up in Eq. (IV.1) we can group the cells of the problem into

3 regions: background region, interface region and inclusion region. Note that the

number of inclusion and interface region is determined by the search results provided

by the first search stage. After grouping cells into regions, we proceed with the search
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process in the scale of regions rather than cells. Furthermore, as described above,

we will search in the regions in the space of materials rather than cross sections.

IV.E Material Restriction Technique

As we address in the introductory section of this chapter, in this optimization

stage we treat materials as unknown rather cross sections. Therefore we start this

section with a description of building a material candidate library (MCL), in which

the different treatment to regular material and fissile material are address separately.

Then we present some simple material restriction techniques we apply to reduce the

material search dimension in the regions of the object.

IV.E.1 Building material candidate library (MCL)

1. Regular materials

We evaluate the one-group (i.e. thermal-energy with Maxwellian-spectrum col-

lapse) microscopic cross sections of each material as following:

σi =

∫ Eth

0
σi(E)φ(E)dE∫ Eth

0
φ(E)dE

=
(F4 + Fm4) Tally

F4 Tally
, (IV.2)

where the subscript i represents the type of interaction with which the cross section

is associated. We also include the tally number for the integral in Eq. (IV.2). These

tallies are generated with MCNP [58] output from a problem in which a homogeneous

volume of the given material is subjected to an incident Maxwellian beam of neutrons.

The MCNP input source we use to evaluate the cross section is attached in Appendix

A.3.

Another parameter we must have in our cross-section library is the linear anisotropic

factor of each material, which is defined as

g =

∫ 1

−1
µ0σs(µ0)dµ0∫ 1

−1
σs(µ0)dµ0

. (IV.3)
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Different isotopes have different specific σs(µ0) distribution in neutron-target inter-

action. But if we assume isotropic scattering in center-of -mass (COM) system,

then the average cosine of the scattering angle in the laboratory system is g = 2
3A
,

where A is the ratio of the nucleus mass to the neutron mass, or approximately the

atomic mass number of the scattering nuclei. Because thermal-neutron scattering is

very nearly isotropic in the COM frame under many interesting scenarios, we this

equation to generate values of g for each material in our candidate library.

2. Modification for fissile materials

In order to gain more practical interest, we want to add some fissile materials in

our material library, such as natural uranium, high-enriched uranium (HEU), etc.

But recalling the forward model development in Chapter III, we built the forward

model in the problem with transport equation valid only for non-multiplying system;

i.e., we did not incorporate the fission source in the forward model. Therefore we

need to make some modification of the cross sections of fissile material to make it

suitable to be worked in our model.

The one group transport equation with fission source is described as

Ω · ∇ψ(r,Ω) + Σt(r)ψ(r,Ω)

=
1

4π
Σs(r) [φ(r) + 3gΩ · J(r)] + 1

4π
νΣf (r)φ(r) + Sext(r,Ω) .

(IV.4)

But in our current model, we are really working on the equation

Ω · ∇ψ(r,Ω) + Σt(r)ψ(r,Ω) =
1

4π
Σs(r) [φ(r) + 3gΩ · J(r)] + Sext(r,Ω) . (IV.5)

Thus in order to “squeeze” Eq. (IV.4) to be the form of Eq. (IV.5), we defined the

“modified parameters” as




Σ̃s(r) = Σs(r) + νΣf (r)

g̃ = g
Σs(r)

Σs(r) + νΣf (r)

. (IV.6)

Then Eq. (IV.4) is reshaped to the form of

Ω · ∇ψ(r,Ω) + Σt(r)ψ(r,Ω) =
1

4π
Σ̃s(r) [φ(r) + 3g̃Ω · J(r)] + Sext(r,Ω) . (IV.7)
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Table IV.1: Properties of the 10 materials in MCL.

# Material Σt (1/cm) Σs (1/cm) g( 2

3A
)

1 Paraffin 0.567 0.567 5.56E-2

2 B-10 5.54E+2 3.20E-1 6.67E-2

3 water 0.744 0.736 3.70E-2

4 Si 0.110 0.103 2.37E-2

5 Fe 1.179 0.967 1.19E-2

6 Nitrogen 6.54E-4 5.54E-4 4.76E-2

7 Cadmium(Cd) 0.301 0.247 5.90E-3

8 Aluminum(Al) 0.097 0.083 2.47E-3

9 Natural Uranium 0.821 0.921 1.40E-3

10 HEU 2.70E+1 5.25E+1 3.61E-5

Therefore, for fissile material, the cross sections in the material candidate library

are calculated with modified version as expressed in Eq. (IV.6). We realize that

this ignores the extremely important fact that fission neutrons are born with MeV-

range energies, whereas the cross sections in our model are from the sub-eV energy

range. Thus, this is not a physically realistic model of fissile material. Nevertheless,

it provides a reasonable set of cross sections for testing our algorithms, which is our

purpose.

Table IV.1 gives the parameters of the 10 candidate materials we set up in the

material candidate library (MCL).

IV.E.2 Material restriction strategy

With the availability of the MCL, we are ready to set off the material restriction

step. The purpose of the step is to narrow the material candidates to be considered in
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each region hence reduce material search burden in the region. Given the few-group

parameters found for the cells in a given region, an material restriction algorithm

determines which materials could realistically have few-group parameters that are

similar, and then places those materials in the material candidate library (MCL) for

that region.

The material restriction work is taken place after we finish the gradient-based

continuous optimization procedure. At this time, we suppose we already have the

approximated cross section information (i.e. σs, σt, σtr) for each cell. The ultimate

goal is to know exactly what the material is in each cell. The material restriction

part will help us to greatly narrow the search space with respect to the materials in

the candidate library and tells us which materials are most likely to reside in each

region. This work will drastically save our energy and time for our next combinatorial

optimization procedure.

The next step is to restrict the material candidates in the inclusion and back-

ground regions by comparing each material’s cross sections to the cross sections that

were found in the deterministic search process. We first calculate an error associated

with each material for each region. Many “error” metrics and restriction criteria are

possible; for this illustration we have chosen the following metric:

em = error =
1

3

(∣∣∣∣
Σm

s − Σr
s

Σm
s + Σr

s

∣∣∣∣+
∣∣∣∣
Σm

t − Σr
t

Σm
t + Σr

t

∣∣∣∣+
∣∣∣∣
Σm

tr − Σr
tr

Σm
tr + Σr

tr

∣∣∣∣
)

. (IV.8)

Here Σm is the cross section of a given material and Σr is cross section determined by

the gradient-based search, averaged over the given region. We restrict the material

candidates for the region based on the following criterion: if there exists one and

only one material that has em < a, the region is determined to be that material m;

i.e., we find the material in the region. Otherwise we include all materials for which

em < b. Here a is a relatively small number and b is a relatively larger number; In

the model problems in this research we use a = 0.01, b = 0.5. At the end of this

stage we have significantly reduced the material search dimension for the final step.
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Each material in the MCL will be sorted for the region according to the error

associated with it. Then the one with the smallest error will be the first choice for

this region. In some cases, if the deterministic search result is accurate enough, the

algorithm may locate the correct material for the background region.

IV.F Heuristic Optimization

The final step is the combinatorial optimization process. A single iteration in

this step proceeds as follows. First the material in the inclusion region is selected

from the restricted set of candidates, as is the material in the background region.

Then the algorithm selects one material for inclusion region from the restricted set of

candidates of this region. With background region and inclusion region determined,

the algorithm proceeds to assign one of these two materials to each cell in the interface

region.

To acquire higher accuracy from the optimization search in this stage, we refine

the mesh construction of the object by using smaller grid size for each cell. For

example, a model problem that uses a 20x20 cells discretization configuration in the

first stage will be refined to 40x40 cells as demonstrated in Fig. IV.2.

The assignment begins with the cells adjacent to inclusion region and marches

out to those adjacent to background region, proceeding as follows. For each cell in

the inner ring the material was chosen based on a random number and a bias factor.

The probability that the inclusion material was assigned to a cell was approximately

the cell’s distance to background region divided by the distance from inclusion region

to background region. The bias technique is illustrated in Fig. IV.3.

With the demonstration in Fig. IV.3, the algorithm has the following steps:

1. Find the longest distance between a cell in the interface region and the center

of the inclusion region, call it dmax, and record the center of the inclusion region.

2. Find the shortest distance between a cell in the interface region and the center

of the inclusion region, call it dmin,



77

Fig. IV.2: The number of cells in the mesh is quadrupled - 40×40 instead of 20×20

- in the optimization of this stage.

3. For each cell in interface region

a) Calculate the length from the center of the cell to center of the inclusion

region, call it x,

b) The corresponding probability threshold of the cell is Pi =
dmax − x

dmax − dmin

,

c) If rnd < Pi then choose the interface material as the material in this cell,

otherwise choose background material.

To further reduce the search space we could impose other constraints that em-

body prior knowledge or that are postulated. For example, we could constrain the

algorithm to consider only material sub-objects with relatively sharp boundaries as

opposed to fragmentary objects. We could bias the stochastic search process so that

it favors a small number of material regions embedded in a single-material back-

ground. The chosen constraints restrict the kinds of material distributions that will

be considered as viable candidates in the final step. This is described in more detail

below.
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Fig. IV.3: Bias rule applied in combinatorial optimization.

After materials are assigned to the inner ring of interface-region cells we checked

whether the assignments for other interface-region cells were determined by con-

straints imposed by the analyst. For example, given the constraint of a relatively

smooth interface between the inclusion and the background, if the background ma-

terial were assigned to an entire row of cells, then all interface cells between that row

and the background region must also be the background material - otherwise the

inclusion region would be disjoint or more ragged than permitted by the imposed

constraint. This greatly reduces the number of allowed configurations and avoids

time-consuming calculations of unrealistic configurations.

Once a configuration is constructed in accordance with prior knowledge and im-

posed constraints, a full-fidelity transport forward model with refined mesh is applied
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to evaluate the objective function. This procedure terminates either when a suitably

small objective function is found or when an iteration limit is reached.

IV.G Summary of Chapter IV

In this chapter, we first introduced the motivation and objective of heuristic opti-

mization involved in the research. We describe our general strategies for addressing

difficult inverse-transport problems with the goal of performing well on problems

with a high degree of scattering. Then we walk through in detail all the steps in-

volved in the hierarchical approach we develop to carry out the stochastic based

optimization for our problem. These steps include cell grouping, material restriction

and combinatorial optimization with smart constraints imposed.

With the description of the steps of the heuristic optimization algorithm, we

mainly focus on the novelties we devise in the heuristic optimization process, in

which we combine the deterministic and stochastic optimization techniques together

for the purpose of fully leveraging the advantages of both sides. We especially focus

on the dimension reduction techniques we apply in the model problems. We believe

some of the ideas we present in this chapter will advance the approaches in neutron

tomography area.

In next chapter, we will apply the techniques we describe in Chapter III and IV to

some test problems to demonstrate the efficiency and advantages of the methodology

we introduce here.
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CHAPTER V

RESULTS

V.A Introduction

In foregoing two chapters we have fully discussed the methodology for solving

inverse transport problems that we have developed in the research. In this chapter

we apply these methods to some simple test problems and thereby demonstrate the

feasibility and efficiency these approaches.

We present two test problems in this chapter. Both of them are in 2-D Cartesian

coordinate system and constructed with background material containing some block

inclusions. We choose the size of the objects to be several mean free paths thick.

We also choose the materials in the object (both background and inclusion material)

to have high scattering cross sections. This creates problems in which the detected

particles emerging from the object are dominated by scattered particles. Solving

such problems is the main concern we address in the research.

V.B Model Problem 1: Water with one iron inclusion

We first consider a model problem with two materials inside an object, with

an “inclusion” of one material embedded in a “background” of another material.

Fig. V.1 is a schematic diagram for the problem.

Table V.1 lists the properties of the materials in the model problem. The trans-

port cross section (Σtr), mean free path (mfp) and scattering ratio (c) are deduced

properties which are defined as:

Σtr = Σt − gΣs, mfp =
1

Σt

, c =
Σs

Σt

. (V.1)

We list these three properties because they are usually considered important and

useful characteristics of the physical problem. For example, by observing the magni-

tude of mfp and c, we may state that our model problem is optically thick (¿ 7 mean
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Fig. V.1: Schematic diagram of the one inclusion problem.

free paths) and highly scattering (vast majority of collisions are scattering events)

problem. We will use Σtr as a representative factor to infer material distribution in

our example problem.

The configuration of this test problem is the same as the one we present in

Chapter II, in which we attempted to reconstruct the tomogram of the object with

an FBP-based method. We start our demonstration with the exactly the same

problem configuration and material constitution with the purpose of emphasizing

the advantages of our proposed methods.
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Table V.1: Physics properties of the materials in the model problem.

Material Water Iron

Σs (1/cm) 0.736 0.967

Σt (1/cm) 0.744 1.18

g ( 2
3A
) 3.70E-2 1.20E-2

Σtr (1/cm) 0.716 1.167

mfp (cm) 1.35 0.848

c 0.990 0.820

Before we proceed to present the results from the inverse problem, we show some

work to verify the solution of transport solver in our forward model. Recall that

we assume if we know the material constitutes of the object and incident source,

the forward model is capable of predicting accurate radiation exiting the boundary

of the object. The results yielded from our Sn transport solve are compared to

MCNP simulation results in Fig. V.2 with the same problem configurations shown

in Fig. V.1. The results in Fig. V.2 shows the predicting radiation exiting from

three sides (left, right and back side) of the object all agree with the Monte-Carlo

simulation results very well. Note that both radiation data in Fig. V.2 have been

normalized to their maximum value.

Next we begin our approach by approximately solving the inverse problem (search-

ing for cross sections and g factors) with gradient-based deterministic optimization

(as described in Chapter II). This is the first stage of our methodology. The image

reconstruction yielded by this stage is illustrated in Fig. V.3. The corresponding

objective function change with the number of the iterations is presented as the plot

in Fig. V.4. The overall normalized objective function has been reduced by a factor
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of 106 after 1000 iterations which indicates that the gradient-based updating scheme

is working very efficiently.
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Fig. V.3: Transport cross section (Σtr) distribution obtained from deterministic CG

based iterative search scheme for the one iron problem. (a) The real Σtr (background

is water and square inclusion is iron). (b) Initial guess for Σtr. (c) and (d) are results

after 100 and 1000 iterations, respectively.

Fig. V.3(a) is the actual Σtr distribution of the problem as shown in Fig. V.1,

repeated here for comparison with our first-stage results. We start the deterministic

optimization process with a homogeneous material distribution (see Fig. V.3(b) ).

Fig. V.3(c) and (d) are the Σtr distribution the object yielded from the process of
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Fig. V.4: The objective function changes after each iteration for the one inclusion

problem.

updating schemes of our inverse model. We expect the more accurate results as the

more iterates carried on. We see that the gradient-based continuous search process

indicates that there is an inclusion and roughly tells its location after 1000 iterations.

By this stage we have the similar outcome for parameters Σt and g as well in our

inverse problem though we only depict Σtr as representative in Fig. V.3.

We may use this information to try to discern the real physical material in the

object and in fact many traditional tomography methods do work in this way. How-

ever, there are significant drawbacks associated with this approach. For example,

the converged cross sections always have deviations from the real ones and they are

not constrained to be realistic; that is, they may not correspond to any real material.

In addition, it is usually difficult to tell which material is inside the object from this

limited information, and it is also difficult to locate the boundary and thus quantify
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how much area is occupied by the inclusion. Our method, whose results we are about

to present, attempts to overcome these drawbacks.

Here we emphasize again that we continue our process by working with materials

themselves as unknowns rather than cross sections. First we group the cells based

on the knowledge gained from the first stage as we describe in Chapter IV. We use

the prior information we obtain in Fig. V.3 and carry out cell grouping process to

combine the cells with close cross section quantities to be same region. The details

of the criterion applied for cell grouping is described in section D of Chapter IV.

The result of cell grouping is illustrated in Fig. V.5, where we see 3 regions: external

region (region 1), interface region (region 2) and internal region (region 3).

123
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Fig. V.5: Different regions identified by the cell grouping process for the one inclu-

sion problem. (Color in this figure denotes region only, not any particular numerical

value.)

The next step is to restrict the material candidates in the inclusion and back-

ground regions by comparing cross sections of each material in material candidate
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library (MCL) to the cross sections that were found in the deterministic search

process. The detailed criterion and process for material restriction is described in

section E of Chapter IV. For the example problem at the end of this stage we have

significantly reduced the material search dimension for all those three regions: our

algorithm determined that the background material must be water; thus region 1

will always be water in the subsequent trials. Our algorithm determined that the

inclusion could be any one of four different materials: iron, water, paraffin, or natural

uranium.

The final step is the combinatorial optimization process. A single iteration in

this step proceeds as follows. First the material in the inclusion region is selected

from the restricted set of candidates, as is the material in the background region.

(Implementation detail: instead of randomly selecting the inclusion material for each

iterate, which would have apportioned roughly 25% of the iterations to each candi-

date material, we deterministically assigned 25% of the iterations to each candidate

material.) With water assigned to region 1 and a choice made for region 3, the al-

gorithm proceeds to assign one of these two materials to each cell in the interface

region (region 2).

The assignment begins with the cells adjacent to region 3 and marches out to

those adjacent to region 1, proceeding as follows. For each cell in the inner ring the

material was chosen based on a random number and a bias factor. The probability

that the inclusion material was assigned to a cell was approximately the cell’s distance

to region 1 divided by the distance from region 3 to region 1. After materials were

assigned to the inner ring of interface-region cells the algorithm checks whether the

assignments for other interface-region cells are determined by defined constraints.

For example, if water were assigned to an entire row of cells, then all interface cells

between that row and the water region must also be water - otherwise the inclusion

region would be disjoint or more ragged than permitted by the imposed constraint.
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This greatly reduces the number of allowed configurations and avoids time-consuming

calculations of unrealistic distributions.

The results of applying this algorithm are shown in Fig. V.6 and quantitatively

assessed in Table V.2. With only 200 random guesses (50 for each candidate inclusion

material), the configuration shown in the figure was found and selected as the best

of the 200 distributions because it had the lowest objective function. The graphical

solution is strikingly similar to the correct distribution, but more important is the

quantitative comparison shown in Table V.2. Here we find that the method produces

exactly the correct mass (area corresponds to mass) of the correct material and almost

exactly the correct center-of-mass location. This is exactly what one would like to

get from a neutron tomography method.
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Fig. V.6: Results from the heuristic optimization for the single-inclusion problem:

Material distribution from the stochastic heuristic optimization after 200 iterations

(50 iterations per candidate inclusion material). Color in this figure denotes material

only, not any particular cross-section value.
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Table V.2: Inclusion location and area comparison for one inclusion problem.

Parameter Actual [Fig. V.3(a)] Opt. Result [Fig. V.6]

Material Iron Iron

X-center (cm) 3.00 2.97

Y-center (cm) 7.50 7.49

Area (cm2) 4.00 4.00

Iron/Water 4.17E-2 4.17E-2

V.C Model Problem 2: Water with two iron inclusions

The schematic layout of the second model problem is shown in Fig. V.7. In this

problem, the object has two iron inclusions being located in different places inside

water (see Fig. V.7). The dimension of the whole object is the same as the first

problem. One inclusion (the left-top iron block in Fig. V.7) has the same size and

located in the same place as in the first test problem. A smaller iron inclusion

is placed close to the right bottom corner of the object. The properties of the

background and inclusion materials in this problem are the same as listed in Table

V.1.

The transport cross section (Σtr) distribution results we obtain in the determin-

istic optimization stage for this problem is shown in Fig. V.8. We again start the

optimization process with an homogeneous material distribution (see Fig. V.8(a) ).

Fig. V.8 (c) and (d) shows the Σtr distribution after 100 and 1000 conjugate-gradient

iterations respectively. We see more accurate results in (d) and this approximately

infers the location and size of the two inclusions.

Fig. V.9 is the plot of the objective function in this problem as a function of

the number of iterations. This demonstrates the efficiency of the iterative search
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Fig. V.7: Schematic diagram of the two-inclusion problem.

process. The overall objective function has been reduced by a factor of 106 after

1000 iterations.

By only analyzing the data (including Σt,Σs,Σtr, g), we are still not be able to

tell the type of inclusion material in the problem. Next we proceed to finish the

problem with heuristic optimization methods.

Fig. V.10 shows the result from the cell grouping process in this problem. The

numbers and colors in the figure denote different regions. Since we have no clue to
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Fig. V.8: Transport cross section (Σtr) distribution obtained from deterministic CG

based iterative search scheme for the two-iron problem. (a) The real Σtr (background

is water and square inclusion is iron). (b) Initial guess for Σtr. (c) and (d) are results

after 100 and 1000 iterations, respectively.

tell the two inclusions are the same material or not in this stage, we use different

region number to identify them separately.

We carry out the same material restriction and stochastic optimization process

as we described for the single-inclusion test problem. We present the material dis-

tribution results of this problem in Fig. V.11 and quantitatively assess the results in

Table V.3.
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Fig. V.9: The objective function changes after each iteration for the two-inclusion

problem.

Table V.3: Inclusions location and areas comparison for two-inclusion problem.

Parameter Material
X-center Y-center Area

(cm) (cm) (cm2)

Inclusion 1
Actual Iron 3.00 7.50 4.00

Opt. Result Iron 2.95 7.37 4.25

Inclusion 2
Actual Iron 7.25 2.75 2.25

Opt. Result Iron 7.29 2.66 2.19

Fig. V.11 is the best material distribution selected after 100 random guesses for

each candidate inclusion material in each inclusion region. (There were a total of

4x4x100=1600 forward transport calculations performed in this stage.) The selection
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Fig. V.10: Different regions identified by the cell grouping process for the two-

inclusion problem. (Color in this figure denotes region only, not any particular

cross-section value.)

is based on the criterion that the object function it yields is lowest. The quantitative

results shown in Table V.3 demonstrate that the algorithm successfully finds the

material composition of each inclusion, accurately determines the area (mass) of

each, and accurately determines each location.

V.D More Model Problems

In this section, we present three more problems with similar configurations. The

schematic diagram of these problems can be seen in Fig. V.12 and the geometric

configuration to these model problems is list in Table V.4. These problems are

designed to find the limits of our methodology’s ability to find small inclusions deeply

buried in optically thick scattering media. We use the same materials as in previous
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Fig. V.11: Results from the heuristic optimization in two-inclusion problem: Ma-

terial distribution from the stochastic heuristic optimization after 100 iterations.

(Color in this figure denotes material only, not any particular cross-section value.)

model test problems (water and iron), but we increase thickness and decrease feature

size until the methodology fails.
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(a) Model Problem 3 (b) Model Problem 4 (c) Model Problem 5

Fig. V.12: Schematic diagram of three more model problems.
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Table V.4: Geometry configuration comparison for model problems 3 - 5.

Problem Model Problem 3 Model Problem 4 Model Problem 5

Water Area (cm2) 10× 10 10× 10 20× 20

Iron Area (cm2) 2× 2 1× 1 1× 1

The corresponding deterministic optimization results for Σtr (transport cross sec-

tion) distribution for each model problem is illustrated in Fig. V.13. These results

were obtained after 500 gradient-based iterations.

Relatively, the cross section distribution gained in MP3 has stronger contrast than

the one in MP4. This is reasonable because the inclusion area in MP4 is smaller and

more thoroughly hidden behind the background material. The result gained in MP5

almost has flat distribution which indicates that our CG based method actually failed

in this case to find a clear indication of an included object. The depth of the water in

front of the iron is almost 10 times of the depth of the iron itself, with the result that

the exiting radiation has little or no information from which to infer the existence of

the iron.

The next step in our approach is to perform cell grouping based on the information

we gained in the first stage. Results are given in Fig. V.14. Results are reasonable in

the first two problems (MP3 and MP4), but in model problem 5, the cell grouping

result are not consistent with the actual configuration, for reasons already discussed.
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Fig. V.13: Transport cross section (Σtr) distribution obtained from deterministic CG-based iterative search scheme for

model problem 3 - 5 after 500 iterations.
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Fig. V.14: Different regions identified by the cell grouping process for model problem 3 - 5.
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Need to note here that we actually improve the cell grouping result by adjusting

the parameters in the cell grouping criterion (see details in section D of Chapter IV).

In the model problems in previous section, we set the parameters α = 0.8, β = 0.2,

for MP3 and MP5 we set α = 0.95, β = 0.6 and for MP2 we set α = 0.95, β = 0.8,

which means we use more rigor standard to determine the internal and interface

region in the cell grouping process in these new model problems. In our proposed

approach, these parameters (or completely different cell-grouping criteria) would be

available to the analyst as he/she attempted to use all available tools to obtain a

solution to the inverse problem.

For model problem 3 and 4, after we perform material restriction algorithm to

select the candidate materials from MCL, we find that we gain the exact the same

results as we see in the previous model problems (model problem 1 and 2), which is

that region 1 was always chosen to be water and the inclusion could be any one of

four different materials: iron, water, paraffin, natural uranium. Based on this prior

knowledge, we proceed to process the problem with stochastic optimization and the

results yielded are presented in the next paragraphs.

The corresponding stochastic optimization results for model problem 3 is shown

in Fig. V.15, with quantitative results shown in Table V.5.

Need to emphasize here that at this time we actually gain perfect material distri-

bution in this model problem after only 10 iterations in the stochastic optimization

process. This is mainly because that we incorporate a rectangular shape based search

algorithm into the combinatorial optimization process at this stage. In each iterate

we start with a solution with the hypothesis that the shape of the inclusion is a

rectangular. Our algorithm is also able to choose alternative randomly selected com-

binatorial solution if the objective function come out with the rectangular solution

is higher.

We gained perfect material distribution in this model problem after only 10 it-

erations in the stochastic optimization process. This is because we instructed the
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Fig. V.15: Material distribution result from the heuristic optimization for model

problem 3 based on the cell grouping results in Fig. V.14(a)

stochastic search algorithm to consider only rectangular shapes for the interior mate-

rial. This illustrates the power of our overall approach, which allows the user to test

hypotheses (such as “the inclusion is rectangular”) and quickly determine whether a

hypothesis yields a small objective function, In this case it does. If the best objective

function that resulted from the rectangular hypothesis were too large, then the an-

alyst would relax this and search for more complicated shapes, as we demonstrated

in previous model problems.

The corresponding stochastic optimization results for model problem 4 is shown

in Fig. V.16, with quantitative results in Table V.6.

Once again we gain the perfect result for this model problem after once again

instructing the algorithm to search first for a rectangular inclusion. Note that this

restriction dramatically reduces the number of possible material configurations that
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Table V.5: Inclusion location and area comparison for model problem 3.

Parameter Actual [Fig. V.12(a)] Opt. Result [Fig. V.15]

Material Iron Iron

X-center (cm) 5.0 5.0

Y-center (cm) 5.0 5.0

Area (cm2) 4.0 4.0
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Fig. V.16: Material distribution result from the heuristic optimization for model

problem 4 based on the cell grouping results in Fig. V.14(b)

satisfy the cell-grouping results. After approximately 50 iterations, the algorithm

gives us the perfect result to the problem.

The model problem 5 is obviously more difficult. Cell grouping result of this

problem yielded from our algorithm is illustrated in Fig. V.14(c), which demonstrated
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Table V.6: Inclusion location and area comparison for model problem 4.

Parameter Actual [Fig. V.12(b)] Opt. Result [Fig. V.16]

Material Iron Iron

X-center (cm) 5.0 5.0

Y-center (cm) 5.0 5.0

Area (cm2) 1.0 1.0

faulty characteristic region distribution comparing to our real model problem. We

can imagine that if we continue to process this problem with the same methodology

as we presented in the previous chapters, we would eventually obtain totally false

optimization result. However, after performing material restriction process to each

sub-region in this model problem, our algorithm indicates the background material

- water - has been overwhelming favorable to each region, therefore we have reasons

to state that the optimal material distribution yield from our methodology for MP5

is water everywhere. Though this result is not the correct one for this case, the

approximately flat distribution of the cross section yielded from the first optimization

stage prohibits us from knowing more details inside the object. Thus we find that

given the detection information that we have postulated (with detectors that are

not collimated, for example), the combination of optical thickness (approximately 14

mean free paths) and small object size (1/20th of the problem diameter) makes MP5

too difficult for our methodology. The methodology fails at the first step, in which

the gradient-based search does not find any significant variation in the inferred cross

section as a function of position in the object.
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V.E Summary of Chapter V

In this chapter we have presented computational results from applying our new

inverse-problem strategies to a set of neutron tomographic model problems. The

results illustrate the efficiency and advantages of our systematic approach to inverse

transport problems. We purposefully chose the objects in the our test problems

to be optically thick with highly scattering materials (water and iron). The first

model problem has one iron inclusion embedded in water while the second one has

two iron inclusions embedded in different places of the object. The third, fourth,

and fifth model problems are similar except that each one is more difficult than the

previous. Difficulty is increased by reducing the size of the iron inclusion, increasing

the thickness of the water object, or both.

In the first four model problems, the gradient-based deterministic optimization

successfully reduces the objective function to a relatively low value and identifies

regions that are likely to have different cross sections. However, it is not capable of

identifying the material type or the size of the inclusions. The fifth problem is so

optically thick and highly scattering, with such a small inclusion, that the gradient-

based algorithm cannot identify a region with a different cross section.

The optimization methodology that we propose in this research can provide sig-

nificantly improved results compared to previous methods, for problems that are

optically thick and highly scattering. The cell grouping process incorporates the

cells with approximately the same cross sections (as found in the gradient-based

search stage) into regions and divides the object into background, inclusion, and in-

terface regions. The material restriction process greatly reduces the material search

space in each region. The stochastic-based heuristic optimization process finally

identifies the exact material type of each region and quantitatively tells the area and

location of each inclusive region. The results that our algorithms produce for the

model problems in this chapter are strikingly accurate, are vastly better than can be

achieved through deterministic searches, and are achieved with dramatically lower
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computational cost than would be incurred with standard stochastic optimization

procedures.
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CHAPTER VI

SUMMARY AND RECOMMENDATIONS

VI.A Summary

We have introduced some advances in inverse transport methods and applied

them to 2D neutron tomography problems. We are interested in problems that are

notoriously difficult for inverse algorithms: problems that are optically thick and

highly scattering and whose exiting radiation is therefore dominated by scattered

particles. Our main goal is to employ multiple steps that work together to dramati-

cally reduce the difficulty of the combinatorial optimization problem that ultimately

produces an estimate of the material distribution in the object being investigated.

Our results indicate that we have achieved this goal.

Results from a simple model problem in Chapter II show that direct (analytic)

tomography based on filtered back projection (FBP) fails to infer the material dis-

tribution within an object that is optically thick and whose exiting radiation has a

dominant scattering component. This is true even in the case of collimated sources

and collimated detectors, and it is true even for methods that are designed to find

only the interfaces between materials (and not their cross sections). We conclude

that for the class of problems we address, we can obtain little or no useful information

from these direct methods. We therefore turn to methods that seek to minimize an

objective function, a function that quantifies the difference between measured results

and the results that would be obtained from a given guess for the unknown object’s

configuration.

Results from the same simple model problem in Chapter III show that gradient-

based deterministic optimization methods can produce helpful information about

optically thick, highly scattering objects. We introduce some techniques to improve

the gradient-based search, including a variable-change technique that converts the

usual constrained optimization problem into an unconstrained one. However, we
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still encounter many defects associated with the methods themselves in this stage.

Deterministic minimization algorithms can get stuck in local minima. They can

obtain cross sections that do not match a real material. The dimension of their

search space grows rapidly as the fidelity of the transport model increases. These

difficulties lead us to move beyond gradient-based minimization techniques and to

develop more powerful and efficient techniques. We ultimately devised the following

general strategies:

1. Use an inexpensive forward-transport model with a gradient-based search algo-

rithm to gain helpful information about the problem. The inexpensive model

could, for example, use only a small number of energy groups, a relatively

coarse spatial grid, low-order anisotropic scattering, and/or possibly diffusion

instead of transport.

2. Use the information from the first step to group cells that are likely to have

the same material (even though this material may be unknown) into “material

regions”. Some cells may fall into “interface regions” that are spatially between

“material regions”. Cells in such regions are later presumed likely to contain

the same material as one of the bounding material regions.

3. Use prior knowledge or hypothesis to create a library of candidate materials.

The final search procedure will consider materials only from this library.

4. Exploit hypotheses that constrain the internal structure of the object. For

example, the analyst might ask the algorithm to look for a single one-material

region embedded in a homogeneous background.

5. Employ a stochastic-based heuristic optimization method to search for a ma-

terial distribution that satisfies the constraints imposed by previous steps. For

each trial to be tested, each cell is assigned the cross sections from a real mate-

rial from the candidate library. Each cell in an interface region is assigned the
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material of one of its bounding regions, and the interface is required to conform

to the analyst’s hypotheses. Taken together, these constraints dramatically re-

duce the dimension of the search space.

Chapter IV develops these strategies and presents concrete examples of algorith-

mic implementations of each of them for a family of neutron-tomography problems.

Chapter V applies these algorithms to optically thick, highly scattering test problems.

Results are excellent. Our hierarchical step-by-step approach correctly identifies each

material in the test problems and very accurately finds the locations and masses of

each embedded object in the larger overall object. The computational effort required

for this is modest because our strategies eliminate configurations that do not conform

to what was learned in previous stages or to the constraints imposed by the analyst.

VI.B Recommendations for Future Work

Though our simple implementation of our general strategies has worked well for

the problems we have considered, our work leaves room for exploration and innovation

that could improve on what we have shown and expand its applicability.

We have ignored the issues of measurement noise and model error, both of which

must be addressed in any practical method. There are proven methods for address-

ing these issues, but it remains to be conclusively demonstrated that they can be

employed within

In our implementation of the deterministic search that forms the first stage of our

method we rely on the gradient of the objective function - its derivative with respect

to each of the unknown cross-section parameters in each cell. This involves the

construction and manipulation of matrices (whose elements are partial derivatives of

various quantities with respect to other quantities). This process avoids the explicit

calculation of an adjoint solution, but it can be computationally costly. A possibly
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fruitful area of future investigation is whether an explicit adjoint calculation could

be more computationally efficient. The answer could be problem-dependent.

Regarding the stochastic based heuristic optimization stage, in our testing we

have made simple choices for constraints and biases; these could probably be im-

proved and placed on firmer theoretical footing. The same is true of our algorithms

for restricting materials based on results from the deterministic search. In practical

applications the initial deterministic search phase may use a crude few-group model

and thus produce few-group cross sections, but each material is actually character-

ized by energy-dependent or many-group cross sections. In the absence of known

weighting spectra it is not obvious how to compare the few-group cross sections from

the deterministic search with the real material cross sections. This question would

benefit from further research.

Finally, an intriguing area for future work could be the application and exten-

sion of our general strategies to a different kind of highly scattering problem (for

example, medical diagnosis using optical wavelengths). There are different kinds of

prior knowledge and hypotheses that can be exploited in such different applications,

and it would be interesting to see whether their exploitation provides the dramatic

quantitative improvements that we have seen in our example neutron-tomography

problems.
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APPENDIX A

MCNP INPUT DECKS

MCNP Inputs for Model Problem 1

Detetor measurements for water-iron model problem 1

c Geometry sets up to match the exact transport solutions

c and test different tally type (F1, F2, F5, etc.)

c

c Cell cards

c

c #cell,#material,#density,#domain

11 1 -1.0 -55 u=1 imp:n=1

12 2 -7.874 -55 u=2 imp:n=1

13 0 -52 +51 -54 +53 -16 +17 u=6 lat=1 imp:n=1

fill=-10:9 -10:9 0:0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c

1 0 1 -2 3 -4 17 -16 fill=6 imp:n=1

4 0 -32 -30 31 #1 imp:n=1

5 0 32:30:-31 imp:n=0

c

c Surface cards

c

c SURFACES OBJECT

1 px -5.0

2 px +5.0

3 py -5.0

4 py +5.0

*16 pz +1

*17 pz -1

30 pz +4

31 pz -4

32 cz 20

c

c SURFACES U=1

51 px 0.0
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52 px 0.5

53 py 0.0

54 py 0.5

55 cz +20.0

c

c SURFACES FOR TALLY DIVIDER

100 px -5.0

101 px -4.5

102 px -4.0

103 px -3.5

104 px -3.0

105 px -2.5

106 px -2.0

107 px -1.5

108 px -1.0

109 px -0.5

110 px 0.0

111 px +0.5

112 px +1.0

113 px +1.5

114 px +2.0

115 px +2.5

116 px +3.0

117 px +3.5

118 px +4.0

119 px +4.5

120 px +5.0

c
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200 py -5.0

201 py -4.5

202 py -4.0

203 py -3.5

204 py -3.0

205 py -2.5

206 py -2.0

207 py -1.5

208 py -1.0

209 py -0.5

210 py 0.0

211 py +0.5

212 py +1.0

213 py +1.5

214 py +2.0

215 py +2.5

216 py +3.0

217 py +3.5

218 py +4.0

219 py +4.5

220 py +5.0

c

c All the data cards

c

mode n

c Materials

m1 1001 -0.111894 $water
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8016 -0.888106

m2 26000 -1.000000 $Iron

c Source

sdef pos=0 -10 0 vec=0 1 0 erg=d2 y=-10 x=d3 z=d4

sp2 -2 2.5e-8

si3 h -7.08 7.08

sp3 d 0 1

si4 h -1 1

sp4 d 0 1

nps 1e7

prdmp 2j 1 1

print -85 -110

c

c Tally card section

c

fq0 s c $change the output order for all tallies

c

c F1 Tally

c

c Tally along back surface

f11:n 4

fs11 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109

-110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120

sd11 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

c11 0 1

c Tally along left surface

f21:n 1

fs21 -200 -201 -202 -203 -204 -205 -206 -207 -208 -209



120

-210 -211 -212 -213 -214 -215 -216 -217 -218 -219 -220

sd21 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

c21 0 1

c Tally along right surface

f31:n 2

fs31 -200 -201 -202 -203 -204 -205 -206 -207 -208 -209

-210 -211 -212 -213 -214 -215 -216 -217 -218 -219 -220

sd31 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

c31 0 1

c

c F2 Tally

c

c Tally along back surface

f12:n 4

fs12 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109

-110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120

sd12 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

c12 1

c Tally along left surface

f22:n 1

fs22 -200 -201 -202 -203 -204 -205 -206 -207 -208 -209

-210 -211 -212 -213 -214 -215 -216 -217 -218 -219 -220

sd22 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

c22 1

c Tally along right surface

f32:n 2

fs32 -200 -201 -202 -203 -204 -205 -206 -207 -208 -209

-210 -211 -212 -213 -214 -215 -216 -217 -218 -219 -220
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sd32 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

c32 1

c

c F5 Tally

c

c F5 tally along back surface (flux image radiography)

fir15:n 0 5.1 0 0 0 0 0 0 0 0 nd

c15 -1 1

fs15 -5 19i 5

c F5 tally along left surface (flux image radiography)

fir25:n -5.1 0 0 0 0 0 0 0 0 0 nd

c25 -1 1

fs25 -5 19i 5

c F5 tally along right surface (flux image radiography)

fir35:n 5.1 0 0 0 0 0 0 0 0 0 nd

c35 -1 1

fs35 -5 19i 5

MCNP Pstudy Inputs for Model Problem 1

Water-Iron model problem 1 clockwise rotate THETA degrees

c General input file for mcnp_pstudy

c

c @@@ dim = 180

c @@@ number = repeat dim

c @@@ THETA = ( (number-1)*360/dim )

c @@@ PLUS90 = ( 90 + THETA )

c @@@ MINUS90 = ( 90 - THETA )

c @@@ OPTIONS = -jobdir /emchome/zeyunwu/mcnp/tomography \
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c @@@ -case wi -inner -job wiinp

c

c Cell cards

11 1 -1.0 -55 u=1 imp:n=1

12 2 -7.874 -55 u=2 imp:n=1

13 0 -52 +51 -54 +53 -16 +17 u=6 lat=1 imp:n=1

fill=-10:9 -10:9 0:0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c
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1 0 1 -2 3 -4 17 -16 fill=6 imp:n=1

2 3 -0.001205 -5 17 -16 #1 imp:n=1

3 3 -0.001205 11 -12 13 -14 17 -16 #1 #2 imp:n=1

4 3 -0.001205 -32 -30 31 #1 #2 #3 imp:n=1

5 0 32:30:-31 imp:n=0

c Surface cards

c SURFACES OBJECT

1 2 px -5.0

2 2 px +5.0

3 2 py -5.0

4 2 py +5.0

5 cz 7.075

11 px -7.08

12 px 7.08

13 py -7.08

14 py 7.08

*16 pz +1

*17 pz -1

30 pz +4

31 pz -4

32 cz 20

c SURFACES U=1

51 2 px 0.0

52 2 px 0.5

53 2 py 0.0

54 2 py 0.5

55 cz +20.0
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c SURFACES FOR TALLY DIVIDER

91 px -7.08

92 px -7.0

93 px -6.5

94 px -6.0

95 px -5.5

100 px -5.0

101 px -4.5

102 px -4.0

103 px -3.5

104 px -3.0

105 px -2.5

106 px -2.0

107 px -1.5

108 px -1.0

109 px -0.5

110 px 0.0

111 px +0.5

112 px +1.0

113 px +1.5

114 px +2.0

115 px +2.5

116 px +3.0

117 px +3.5

118 px +4.0

119 px +4.5

120 px +5.0

121 px 5.5
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122 px 6.0

123 px 6.5

124 px 7.0

125 px 7.08

c All the data cards

mode n

c clockwise rotate THETA degree

tr2* 0 0 0 THETA PLUS90 90 MINUS90 THETA 90 90 90 0

c Materials

m1 1001 -0.111894 $Water

8016 -0.888106

m2 26000 -1.000000 $Iron

m3 6000 -0.000124 $ C(air)

7014 -0.755268 $ N

8016 -0.231781 $ O

18000 -0.012827 $ Ar

c Source

sdef pos=0 -10 0 vec=0 1 0 dir=1 erg=d2 y=-10 x=d3 z=d4

sp2 -2 2.5e-8

si3 h -7.08 7.08

sp3 d 0 1

si4 h -1 1

sp4 d 0 1

c Others

nps 1.5e6

prdmp 2j 1 1

c
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c Surface Tally

c

c Tally along back surface

f11:n 14

fs11 -91 -92 -93 -94 -95

-100 -101 -102 -103 -104 -105 -106 -107 -108 -109

-110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120

-121 -122 -123 -124 -125

sd11 (1 0.16 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 0.16 1)

c11 0 1

fq11 s c

MCNP Inputs for Cross Section Evaluation

Calculate thermal cross section for water

c One-group thermal energy cross section generation

c Cell cards

11 1 -1.0 -55 u=1 imp:n=1

13 0 -52 +51 -54 +53 -30 +31 u=6 lat=1 imp:n=1

fill=-10:9 -10:9 0:0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c

1 0 1 -2 3 -4 -30 31 fill=6 imp:n=1

2 3 -0.001205 -5 -30 31 #1 imp:n=1

3 3 -0.001205 11 -12 13 -14 -30 31 #1 #2 imp:n=1

4 3 -0.001205 -32 -30 31 #1 #2 #3 imp:n=1

5 0 32:30:-31 imp:n=0

c Surface cards

c SURFACES OBJECT

1 px -1.0

2 px +1.0

3 py -1.0

4 py +1.0

5 cz 1.415
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11 px -1.42

12 px 1.42

13 py -1.42

14 py 1.42

30 pz +2

31 pz -2

32 cz 4

c SURFACES U=1

51 px 0.0

52 px 0.1

53 py 0.0

54 py 0.1

55 cz +20.0

c All the data cards

mode n

c Materials

m1 1001 -0.111894 $water

8016 -0.888106

c MT card to treat bounding effect for H,O

mt1 lwtr.60t

m2 26000 -1.000000 $Iron

m3 6000 -0.000124 $ C(air)

7014 -0.755268 $ N

8016 -0.231781 $ O

18000 -0.012827 $ Ar

c Source

sdef pos=0 -2 0 vec=0 1 0 dir=1 erg=d2 y=-2 x=d3 z=d4
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sp2 -2 2.5e-8

si3 h -1.42 1.42

sp3 d 0 1

si4 h -2 2

sp4 d 0 1

c Others

nps 10000

prdmp 2j 1 1

c Tally 4 and its multiplication to compute one group cross sections

f4:n 1

sd4 1.

f14:n 1

sd14 1.

c

c Reaction number notification

c 1 total cross section

c 2 elastic cross section

c -2 absorption cross section

c Format: FMn (C M R)

c

fm14 (1 2 2) (1 2 -2) (1 2 1)
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APPENDIX B

KRYLOV SUBSPACE ACCELERATION SCHEMES

To better describe the accelerating iterative schemes we are going to present, we

treat the forward problem as to solve the linear equations in matrix form Ax = b,

where A is taken as transport operator and b is the source term in the right hand

side of the transport equation.

CG Method

The Conjugate Gradient (CG) method is an effective method for symmetric pos-

itive definite systems. It is the oldest and best known of the nonstationary methods

discussed here. The method proceeds by generating vector sequences of iterates (i.e.,

successive approximations to the solution), residuals corresponding to the iterates,

and search directions used in updating the iterates and residuals. Although the

length of these sequences can become large, only a small number of vectors need to

be kept in memory. In every iterate of the method, two inner products are performed

in order to compute update scalars that are defined to make the sequences satisfy

certain orthogonality conditions. On a symmetric positive definite linear system

these conditions imply that the distance to the true solution is minimized in some

norm. The pseudo-code for the Conjugate Gradient Method is given below:

d0 = r0 = b− Ax0

Loop started

αk =
(rk, rk)

(dk, Adk)
xk+1 = xk + αkdk

rk+1 = rk − αkAdk

Convergence check with ‖rk+1‖2
βk =

(rk+1, rk+1)

(rk, rk)
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dk+1 = rk+1 + βkdk

Loop finished

Bi-CG Method

The Conjugate Gradient method is not suitable for non-symmetric systems be-

cause the residual vectors cannot be made orthogonal with short recurrences. The

GMRES method retains orthogonality of the residuals by using long recurrences, at

the cost of a larger storage demand. The Bi-Conjugate Gradient (Bi-CG) method

takes another approach, replacing the orthogonal sequence of residuals by two mu-

tually orthogonal sequences, at the price of no longer providing a minimization.

The update relations for residuals in the Conjugate Gradient method are augmented

in the Bi-CG method by relations that are similar but based on AT instead of A.

Instead of orthogonalizing each sequence, they are made mutually orthogonal, or

“bi-orthogonal”. Thus we update two sequences of residuals

rk+1 = rk − αkAdk, r̂k+1 = r̂k − αkA
T d̂k

and two sequences of search directions

dk+1 = rk+1 + βkdk, d̂k+1 = r̂k+1 + βkd̂k

The choices

αk =
(r̂k, rk)(
d̂k, Adk

) , βk =
(r̂k+1, rk+1)

(r̂k, rk)

ensure the bi-orthogonality relations

r̂k
T rl = d̂k

T
Adl = 0, if k 6= l

Bi-CG method, like CG, uses limited storage but requires a multiplication with the

coefficient matrix and with its transpose at each iterative step. The pseudo-code for

the Preconditioned Bi-CG Method is given below:
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d0 = r0 = d̂0 = r̂0 = b− Ax0

Loop started

αk =
(r̂k, rk)(
d̂k, Adk

)

xk+1 = xk + αkdk

rk+1 = rk − αkAdk

r̂k+1 = r̂k − αkA
T d̂k

Convergence check ‖rk+1‖2 and ‖r̂k+1‖2
βk =

(r̂k+1, rk+1)

(r̂k, rk)
dk+1 = rk+1 + βkdk

d̂k+1 = r̂k+1 + βkd̂k

Loop finished

CGS Method

In Bi-CG method, the residual vector rk can be regarded as the product of r0

and an kth degree polynomial in A, that is

rk = Pk(A)r0 (B.1)

This same polynomial satisfies r̂k = Pk(A
T )r̂0 so that

ρi = (r̂k, rk) =
(
Pk(A

T )r̂0, Pk(A)r0
)
=

(
r̂0, P

2
k (A)r0

)
(B.2)

This indicates that if Pk(A) reduces r0 to a smaller vector rk, then it might be advan-

tageous to apply this ”contraction” operator twice, and compute P 2
k (A)r0. Eq. (B.2)

shows that the iteration coefficients can still be recovered from these vectors, and it

turns out to be easy to find the corresponding approximations for x. This approach

leads to the Conjugated Gradient Square (CGS) method [83]. The Conjugate Gra-

dient Squared method is a variant of Bi-CG that applies the updating operations

for the A-sequence and the AT -sequences both to the same vectors. Ideally, this

would double the convergence rate, but in practice convergence may be much more
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irregular than for Bi-CG. A practical advantage is that the method does not need

the multiplications with the transpose of the coefficient matrix. The pseudo-code for

the CGS method is given below:

u0 = d0 = r0 = b− Ax0, and arbitrary choose r̂, (for example, let r̂ = r0)

Loop started

ρk = (r̂, rk), if ρk = 0, then method fails.

αk =
(r̂, rk)

(r̂, Adk)
qk = uk − αkAdk

Convergence check with‖qk‖2, if small enough, xk+1 = xk + αkdk and stop.

xk+1 = xk + αk (uk + qk)

rk+1 = rk − αkA (uk + qk)

Convergence check with ‖rk+1‖2
βk =

(r̂, rk+1)

(r̂, rk)
uk+1 = rk+1 + βkqk

dk+1 = uk+1 + βk (qk + βkdk)

Loop finished

Bi-CGSTAB Method

The Bi-Conjugate Gradient Stabilized method (Bi-CGSTAB) was developed to

solve non-symmetric linear systems while avoiding the often irregular convergence

patterns of the Conjugate Gradient Squared method [82]. The Bi-Conjugate Gradi-

ent Stabilized method is a variant of Bi-CG, like CGS, but using different updates for

the AT -sequence in order to obtain smoother convergence than CGS. Instead of com-

puting the CGS sequence k 7→ P 2
k (A)r0, Bi-CGSTAB computes k 7→ Qk(A)Pk(A)r0

where Qk(A) is an kth degree polynomial describing a steepest descent update. Bi-

CGSTAB requires two matrix-vector products and four inner products, i.e., two inner

products more than Bi-CG and CGS. The pseudo code for the Preconditioned Bi-

Conjugate Gradient Stabilized Method is given below:
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d0 = r0 = b− Ax0, and arbitrary choose r̂, (for example, let r̂ = r0)

Loop started

ρk = (r̂, rk), ifρk = 0, then method fails.

αk =
(r̂, rk)

(r̂, Adk)
sk = rk − αkAdk

Convergence check with‖sk‖2, if small enough, xk+1 = xk + αkdk and stop.

ωk =
(sk, Ask)

(Ask, Ask)
xk+1 = xk + αkdk + ωksk

rk+1 = sk − ωkAsk

Convergence check with ‖rk+1‖2, it is also necessary for ωk 6= 0.

βk =
(r̂, rk+1)

(r̂, rk)
· αk

ωk

dk+1 = rk+1 + βk (dk − ωkAdk)

Loop finished

GMRES Method

The Generalized Minimal Residual (GMRES) method is an extension of Minimal

Residual (MINRES) method (which is only applicable to solve symmetric systems) to

non-symmetric systems. Like MINRES, it generates a sequence of orthogonal vectors,

but in the absence of symmetry this can no longer be done with short recurrences;

instead, all previously computed vectors in the orthogonal l sequence have to be

retained. For this reason, “restarted” versions of the method are used. GMRES

method is designed to solve non-symmetric linear system. The most popular form

of GMRES is based on the modified Gram-Schmidt procedure, and uses restarts to

control storage requirements (See details in page 17 of [77] ).

If no restarts are used, GMRES (like any orthogonalizing Krylov subspace method)

will converge in no more than n steps (assuming exact arithmetic). Of course this

is of no practical value when n is large; moreover, the storage and computational
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requirements in the absence of restarts are prohibitive. Indeed, the crucial element

for successful application of GMRES revolves around the decision of when to restart;

that is, the choice of m as described in the implementation pseudo-code below.

In the Conjugate Gradient method, the residuals form an orthogonal basis for

the space span {r0, Ar0, A2r0, · · · }. In GMRES, this basis is formed explicitly:

wi = Avi

For k=1,· · · , i
wi = wi − (wi, vk) vk

End

vi+1 =
wi

‖wi‖

The reader may recognize this as a modified Gram-Schmidt orthogonalization. Ap-

plied to the Krylov sequence
{
Akr0

}
this orthogonalization is called the “Arnoldi

method” [88]. The inner product coefficients (wi, vk) and ‖wi‖ are stored in an

upper Hessenberg matrix.

The GMRES iterates are constructed as

xi = x0 + y1v1 + y2v2 + · · ·+ yivi

where the coefficients yk have been chosen to minimize the residual norm ‖b− Axi‖.
The GMRES algorithm has the property that this residual norm can be computed

without the iterate having been formed. Thus, the expensive action of forming the

iterate can be postponed until the residual norm is deemed small enough. The

pseudo-code for the restarted GMRES(m) algorithm is given below:

Initial guess x0

For j=1,2, · · ·
r = b− Ax0

v1 =
r

‖r‖
2

, s = ‖r‖2e1
For i=1, · · · , m

w = Avi

For k=1, · · · , i
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hk,i = (w, vk)

w = w − hk,ivk

End %end of k loop

hi+1,i = ‖w‖2
vi+1 =

w
hi+1,i

Construct Ji acting on ith and (i+1)st component of h = (h1,i, h2,i, · · · , hi+1,i)

such that (i+ 1)st component of Jih
T is 0

s = Jis

If s(i+ 1) is small enough then UPDATE(x̂, i) and quit.

End %end of i loop

UPDATE(x̂,m)

End %end of j loop

In this scheme UPDATE(x̂, i) represents the following computations:

Compute y as the solution of Hy = ŝ, in which the upper i× i triangular part of H

has hi,j as its elements and ŝ represents the first icomponents of s

x̂ = x0 + y1v1 + y2v2 + · · ·+ yivi

si+1 = ‖b− Ax̂‖2
if x̂is an accurate enough approximation then quit

else x0 = x̂

The major drawback to GMRES is that the amount of work and storage required

per iteration rises linearly with the iteration count. Unless one is fortunate enough

to obtain extremely fast convergence, the cost will rapidly become prohibitive. The

usual way to overcome this limitation is by restarting the iteration. After a chosen

number (m) of iterations, the accumulated data are cleared and the intermediate

results are used as the initial data for the next m iterations. This procedure is

repeated until convergence is achieved. The difficulty is in choosing an appropriate
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value for m. If m is “too small”, GMRES(m) may be slow to converge, or fail to

converge entirely. A value of m that is larger than necessary involves excessive work

(and uses more storage). Unfortunately, there are no definite rules governing the

choice of m - choosing when to restart is a matter of experience.
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