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ABSTRACT 

 

Impervious Areas: Examining the Undermining Effects on Surface Water Quality. 

(December 2010) 

De‟Etra Jenra Young, B.S., Southern University and A&M College; M.S., Texas A&M 

University  

Co-Chairs of Advisory Committee: Dr. Raghavan Srinivasan 
         Dr. Jacqueline Aitkenhead-Peterson 

 

This study explored the relationship between increased proportions of 

imperviousness in a watershed on surface water quality and examined the effectiveness 

of using remote sensing to systematically and accurately determine impervious surfaces. 

A supervised maximum likelihood algorithm was used to classify the 2008 high 

resolution National Agriculture Imagery Program (NAIP) imagery into six 

classifications. A stratified random sampling scheme was conducted to complete an 

accuracy assessment of the classification. The overall accuracy was 85%, and the kappa 

coefficient was 0.80.  Additionally, field sampling and chemical analysis techniques 

were used to examine the relationship between impervious surfaces and water quality in 

a rainfall simulation parking lot study. Results indicated that day since last rain event 

had the most significant effect on surface water quality. Furthermore, concrete produced 

higher dissolved organic carbon (DOC), dissolved organic nitrogen (DON), potassium 

and calcium in runoff concentrations than did asphalt. Finally, a pollutant loading 

application model was used to estimate pollutant loadings for three watersheds using two 
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scenarios. Results indicated that national data may overestimate annual pollutant loads 

by approximately 700%. This study employed original techniques and methodology to 

combine the extraction of impervious surfaces, utilization of local rainfall runoff data 

and hydrological modeling to increase planners‟ and scientists‟ awareness of using local 

data and remote sensing data to employ predictive hydrological modeling.  
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DOC   Dissolved Organic Carbon 
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NAIP   National Agriculture Imagery Program 

NPS   Non point Source 

PAHs   Polycyclic Aromatic Hydrocarbons  

PLOAD  Pollutant Loading Application 

TN   Total Nitrogen 
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TDS   Total Dissolved Solids 
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TSS   Total Suspended Solids 

US United States 
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CHAPTER I 

INTRODUCTION AND 

LITERATURE REVIEW 

 

Background of Study 

Population growth with its concomitant urban sprawl has been occurring since the 

late nineteenth century. Between 1800 and 1950 the U.S. population increased by 1650% 

(Hall 1984). Since the 1950s, cities transitioned from a largely agricultural focused 

society resulting in rapid urban development. This increase in population has yielded a 

greater demand for water and has led to the urbanization of our nation‟s watersheds 

(U.S. EPA 2006). Bhaduri et al. (2000) asserted that land use change by humans has 

played a significant role in changing the hydrologic system. During this change, land 

was transformed to several uses such as agriculture, mining, industrial and residential 

uses and these transformations have changed the hydrologic characteristics of the 

landscape. Thus, increased building and population density has a noticeable strong 

influence on urban hydrological processes (Hall 1984) and natural hydrological 

processes (Niemczynowicz 1999). 

Impervious surfaces have been noted as indicators of urbanization for many years. 

As land is covered with impervious surfaces such as roofs, roads, parking lots, buildings 

and sidewalks, the natural hydrologic cycle is disrupted.  

____________ 
This dissertation follows the style of Urban Water Journal. 
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In natural environments rainfall is managed through the hydrological cycle and a large 

portion of the rainfall is filtered through the soil layer before reaching surface water such 

as rivers, streams and lakes or alternatively, infiltrates the soil to deeper layers to 

become groundwater (Echols 2008). 

That precipitation which falls onto impervious surfaces quickly runs off directly into 

stormwater systems to local surface water altering the hydrologic cycle. Thus, instead of 

infiltrating into the soil, precipitation in urban areas is quickly transported out of the 

system (Lazaro 1990). Urbanization has transformed the characteristics of watersheds 

(Schiff and Benoit 2007, U.S. Soil Conversation Service 1986). For example, new 

impervious structures reduce the water storage capability of the watershed and the result 

is unfavorable physical and ecological impacts on the environment, leading to unstable 

stream channel morphology and increasing the hydraulic efficiency of a catchment 

(Schiff and Benoit 2007, Pappas et al. 2008). As a result of this shift in the natural 

landscape, runoff volume and peak flow increases (Pappas et al. 2008). 

When there is an increase in the impervious to pervious surface ratio, stream systems 

display base flow is decreased and pollutant load carried by stormwater is increased 

(Brabec et al. 2002). There is a direct negative correlation between water quality and 

urbanization (Gnecco et al. 2005, Arnold and Gibson 1996, Stoel 1999). For example, 

Brett et al. (2005) noted that urbanization marked a decrease in water quality in 17 urban 

streams in Seattle.  They reported that stream phosphorous concentrations were 

correlated (r2 = 0.58) with catchment land cover, yet nitrogen concentrations were only 

weakly correlated with land cover type. Furthermore, urban streams were attributed with 
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having higher total phosphorous, higher soluble reactive phosphorous and higher 

turbidity than forested streams.  

The United States (US) Environmental Protection Agency (EPA), in 1984, reported 

to congress that nonpoint source (NPS) pollution was one of the leading causes of water 

quality problems in the US. Nonpoint source pollutants can be grouped into several 

categories. These categories include pathogens, nutrients, metals, pesticides, toxic 

containments and debris (Arnold and Gibson 1996).When there is a large concentration 

of nutrients in surface waters, this can lead to algal blooms, which can lead eventually to 

eutrophication with anoxic conditions resulting in low dissolved oxygen and fish kills. 

Heavy metals and pesticides affect many aquatic organisms and can also pose an 

aesthetic concern because they increase water turbidity, often discoloring water. 

Additionally, odors may be indicative that contaminants are from municipal or industrial 

waste sources.  

The EPA has estimated that it will have to increase its spending by $263 billion 

dollars over the next 20 years to maintain its water services because of concerns over 

water quality (Young 2006).   Because of the relationship between pollution loading and 

urban land use, there is potential to improve our nations‟ water quality by adopting land 

use management practices aimed at reducing pollution (Basnyat et al. 2000).  Beneficial 

practices to ameliorate urban surface waters might include incorporation of low impact 

development techniques such as pervious pavements, grass swales, bioretention areas, 

constructed wetlands and rain gardens in urban planning (Li et al. 2010) 
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Geographic Information Systems (GIS) and Modeling 

As technology advances, the growth of cities and transitioning land uses are 

commonly examined using aerial photography that incorporates spectral data. The use of 

multi-spectral data allows planners and scientists the ability to measure and foresee land 

use and land cover changes (Carlson and Arthur 2000).  The use of aerial photography is 

often expensive and flights are only flown occasionally. As anthropogenic development 

is causing rapid land use change, satellite imagery becomes a more practical alternative 

for planners and managers. Multi-spectral imagery utilizes a scale that can easily detect 

land use changes and allows the user to foresee and predict future surface land use 

change. Complex computer models are cost-effective, resourceful tools in urban 

planning and management used to measure water quality and control (Chen and Adams 

2007).  

Combining GIS and water quality run-off data fosters a better understanding for 

planners in establishing management practices while examining impervious surfaces and 

their potential effects on surface runoff quality and quantity (Goldshleger et al. 2009). 

The joining of remote sensing data such as land use and land cover with runoff data is 

generally helpful in determining the relationship between runoff and fundamental land 

changes (Goldshleger et al. 2009).  

 

Significance of Study 

Urban hydrology is concentrated in areas with high levels of human interaction with 

nature‟s processes and has gained a significant amount of attention during the last couple 
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of decades, (Niemcynowicz 1999).  Johnson (2001) asserted that “increased run-off of 

stormwater and increased rise of flooding incidences” was a significant environmental 

impact of urban sprawl. Even though these impacts are easily observed, they are often 

difficult to measure. It is important then that we gain a better understanding of the 

complex concepts associated with urbanization, impervious surfaces and urban runoff 

(Goldshelger et al. 2009).  

Impervious surface area in relationship to urbanization is relatively simple to 

calculate and has been noted as an effective indicator of declines in stream quality and 

quantity (Brabec 2002). Recently there has been a push for research that examines the 

correlation between urban sprawl and surface runoff quality. In addition to conducting 

research, models for predictive/preventative, and management measures are also 

emerging (Brabec 2002). Models are currently being used as a supporting tool to 

determine real time data. Advanced modeling tools and techniques to be applied in 

stormwater management are now considered to be a priority (Chen and Adams 2007).  

 

Definition of Terms 

There is a need to distinguish differences among terms to avoid confusion in 

research. Throughout this study, impervious surfaces will be defined or identified as a 

feature that disallows water from naturally infiltrating watershed soil. Concrete, 

pavement and other impermeable surfaces, such as rooftops and swimming pools, are all 

features of urban landscapes and are considered impervious surfaces. As a result, this 

study identifies two types of impervious surfaces: effective and non-effective areas 
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(Alley and Veenhuis 1983). Effective impervious areas are those areas that are 

hydraulically connected to the channel drainage system, whereas, non-effective 

impervious surfaces drain to nearby pervious areas (Alley and Veenhuis 1983). 

 

Research Purpose and Objectives 

The overall aim of this dissertation research was to better understand the linkage 

between impervious surfaces and urban water quality. As a result, the overall research 

question for this study was “what is the relationship between increased proportions of 

imperviousness in a watershed on surface water quality?” I employed a research 

strategy that used both field experimental data and hydrological modeling to answer this 

question.  

The primary objectives of this study were threefold:  

(1) to effectively use remote sensing and GIS data to systematically and 

accurately determine impervious surfaces for urban water quality modeling; 

(2) to establish the common relationship between impervious surfaces and water 

quality across an urban setting while focusing on surface material 

characteristics, i.e. asphalt vs. concrete, parking intensity and days since 

significant rainfall; and 

(3) to spatially explore a correlation between impervious surface area and the 

effects on water quality utilizing BASINS Pollutant Loading Application 

(PLOAD), Geographic Information Systems (GIS) and remote sensing 
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Dissertation Structure 

This dissertation has five chapters that examine the relationship between impervious 

surfaces and urban hydrology. Specific topics for each chapter are summarized as 

follows: 

(1) Chapter I introduces a brief background of the research, presents its 

significance and research objectives. It also reviews urban hydrology and 

hydrological modeling literature to effectively expand on the importance of 

linking urbanization to water quality. This chapter presents the history of 

urbanization, impervious surfaces and degrading water quality. The second 

part of this literature review pertain a review of hydrological predictive 

modeling and water quality. Lastly, this chapter contains a conceptual 

framework to present the linkage and theoretical components along with 

research hypotheses. This chapter builds the foundation for later chapters; 

(2) Chapter II aims to use remote sensing data, high resolution imagery, to 

accurately extract impervious surface classifications; 

(3) Chapter III attempts to utilize a rainfall simulation field sampling technique 

to the examine the first flush of nutrients in storm runoff;  

(4) Chapter IV evaluates and compares the effectiveness of using predictive 

hydrological models and data accuracy; and, 

(5) Chapter V summarizes key findings, provides concluding remarks and 

addresses research limitations and suggests future research. 

 



8 
 

Literature Review 

This section will outline key areas of research literature to effectively expand on the 

importance and understanding of linking urbanization and impervious surface area to 

their effects on nonpoint source pollution. In particular, it will cover the history of 

urbanization and runoff and its associated pollutants. This review will also explain the 

“first flush” phenomena and its linkage to nutrient concentration. Lastly, this review will 

cover the critical use of models to assist planners, researchers and managers in spatially 

correlating the significance of impervious surfaces in urban watersheds.  

 

Impervious Surfaces and Urban Water Quality 

Urbanization often results in an influx of impervious surfaces, which contributes to 

negative environmental impacts. An increase in manmade surfaces replacing natural 

native ground cover has altered the hydrological cycle, resulting in decreasing water 

infiltration and increasing runoff (Leopold 1968, Pappas et al. 2008). With this 

expansion of impervious surface area, pollutants attached to these impervious surfaces, 

which can include pollen, dusts and soil particles from construction activities, domestic 

and wildlife feces, and novel carbon compounds and metals from vehicles are 

transported to water bodies via runoff.  

Rainfall frequency, volume, and intensity are important characteristics in estimating 

runoff volume and water quality. These characteristics are useful in associating 

precipitation with runoff pollution and erosion problems. Rainfall events are generally 

characterized by size, duration and intensity. This affects runoff rates and pollutant 
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concentration levels which drive pollutant concentrations and loading (Shaver et al. 

2007).  

The Center for Watershed Protection (CWP) compiled a database of national 

stormwater runoff water quality (CWP 2007). CWP noted that the western U.S. has a 

very distinct wet season, whereas the eastern and Midwestern U.S. has more dispersed 

precipitation patterns. Factors such as long or short duration and low or high intensity 

storms control Event Mean Concentration (EMC) levels for nutrients, sediments and 

metals. Arid and semi-arid zones often have prolonged wet or dry rain events, therefore 

impairing the hydrological balance in urban regions for longer periods (Pilgrim et al. 

1988). The majority of pollutant loading for some chemical constituents is correlated 

with smaller flow volumes. Driver and Tasker (1988) reported that the highest nutrient 

EMCs in stormwater were from arid or semi-arid regions. 

Rainfall duration plays a key role in stormwater models. Time influences the 

gravitational, thermodynamic, and other natural forces that create runoff (Shaver et al. 

2007). There are two fundamental measures of time that affect stormwater runoff. 

Runoff response time of the drainage to the rainfall input measures how quickly the rates 

of runoff will change as the runoff rates change. Secondly, the effective event time 

describes how much time an area takes to respond to rainfall.  

Rainwater produces ions such as sulfates (SO4
2-), chloride (Cl-), ammonium (NH4

+), 

nitrates (NO3
-), and orthophosphates (PO4

3-) as wet atmospheric deposition in 

quantifiable concentrations. The pH and electrical conductivity of rainfall typically 

increases during the first 2mm of a rainfall event and then decreases (Göbel et al. 2007).  
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For example, the pH value for rainwater in Germany has increased by 16% over a 10 

year period (Göbel et al. 2007).  Pollutants are also carried to ground surfaces through 

dry-fall or dry deposition. Dry-fall is contributed by industrial, construction and 

agriculture activities which deposit dust, aerosols and gas from the atmosphere to ground 

and plant surfaces. A residue is formed on the land surface from higher water density 

particles and washed into waterways as concentrated pollutants in the initial runoff 

caused by a rainfall event. This is known as the “first flush”. First flush is the initial 

period of stormwater runoff and it produces higher pollutant concentrations (Lee et al. 

2002, Goonetilleke et al. 2005). Researchers have frequently examined several 

contributors to urban stream runoff (e.g. Deletic 1998, Aitkenhead-Peterson et al. 2009, 

2010b, Steele et al. 2010). For example, Lee et al. (2002) examined 13 urban watersheds 

and 38 storm events to investigate the first flush phenomenon, describing the magnitude 

of the first flush and other applicable ways to examine its effects, i.e., not just 

concentration but quantity or mass export. They also reported the higher the magnitude 

of the first flush the greater effect on suspended solids and lesser effect on chemical 

oxygen demand.  Other researchers have commented that the significance of the first 

flush is overrated and that not all storms will exhibit this phenomenon (e.g. Hall and 

Ellis 1985, Sonzongni et al. 1980). 

Pappas et al. (2008) used laboratory rainfall simulations to evaluate hydrological and 

sheet erosion of impervious surfaces on a small spatial scale. From this laboratory 

controlled study, they concluded that plots containing at least 50% impervious area 

initially produced significant higher runoff rates.  Hope et al. (2004) measured the 
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concentrations of soluble nutrients on four plots in Phoenix, Arizona and concluded that 

parking lots are important sites to examine nutrient accumulation, dissolved organic 

carbon (DOC) in particular. By utilizing a rainfall simulator on 38 asphalt sites with 

increasing vehicular usage, the Hope et al. (2004) study concluded that NO3
-N runoff 

concentrations were significantly higher on asphalt surfaces, than similar data collected 

on developed soil surfaces. Also, the highest concentrations of DOC (26 to 296 mg C L-

1) were found in commercial sites from sources such as leaking vehicles, leaching 

surface particulates from the breakdown of asphalt surfaces, and atmospheric deposition. 

Surface and subsurface soils located in the watershed also play a direct role in estimating 

runoff volume and rate from a rain event. Soil texture, structure and thickness determine 

how much rain can be infiltrated and retained in a soil. Silt and clays have a smaller 

saturated storage capacity than granular soils such as sand. Hard-packed soils lack 

permeability and affect the rate at which rainfall can enter and move through the soil 

which can lead to throughflow. Thus soils can play a vital role in producing storm 

runoff. Soil properties in urban areas that generate runoff are often hard to describe 

(Berthier et al. 2004) because for the most part they are constructed soils designed for 

strength for buildings and moisture retention for landscaping.  

One of the most common urban land uses are residential areas or sub-divisions that 

contribute to the „urban sprawl‟ outside of the commercial regions of the city. 

Residential areas also produce driveway runoff. Driveway concrete produces a moderate 

concentration of solids, nutrients, metals and polycylic aromatic hydrocarbon (PAH) in 

urban areas. Mahler et al. (2004) sampled runoff and scrapings from 4 test plots and 13 
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urban parking lots to investigate PAH from seal-coated parking lots. PAH concentrations 

in the particulates in runoff coal-tar-sealed parking lots were 3,500,00 mg kg-1 were 

significantly higher compared to those of asphalt sealed (620,000 mg kg-1) and unsealed 

parking lots (54,000 m kg-1). In an urban study conducted by Bannerman et al. (1993), 

residential driveways produced 21% of total runoff relative to 7% from lawns. 

Driveways in the Bannerman et al. (1993) study represented 5% of their study area. 

Furthermore, they reported that driveways contributed large phosphorous concentrations 

(1.16 mg L-1) while galvanized roof tops produced significant zinc concentrations (149 

µg L-1).  

Research has identified stormwater runoff as a major contributor to degrading and 

compromising water quality (Field 1985, Sickman et al. 2007, Sansalone and Kim 

2008). Water quality data is often used by State and Federal agencies to guide decision 

making (Trench and Kiesman 1998). Toxic compounds, bacteria, oxygen-demanding 

and suspended solids are often significantly higher in urban stormwater (Field 1985). 

Sickman et al. (2007) reported total organic carbon (TOC) (4 to 49 mg L-1) from urban 

runoff in Sacramento were 4 to 20 % greater than downstream. Classified as point or non 

point source pollutants, the impact of stormwater runoff pollutants on the receiving 

water bodies depends on a number of factors. The EPA has identified nonpoint source 

pollutants as one of the major causes of water impairment (U.S. EPA 1994). Pollutants 

are generally quantified by concentrations and loadings. Pollutant concentration is 

defined as the mass of pollutant per unit volume of water sample and expressed as mg L-

1l or µg L-1 and loading is defined as the mass over time and typically expressed as mg d-
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1 or kg yr-1.  To normalize values and aid to comparison among urban watersheds, 

exports defined as mg m-2 yr-1 or  kg km-1 yr-1 can be used.  

Urban water runoff pollutant loads contain a mixture of the following constituents: 

sediments, nutrients, heavy metals, biological oxygen demand (BOD) and organic 

chemicals (e.g. Zhao et al. 2007, Adams and Papa 2000, Shaver et al. 2007, Steele et al. 

2010). Section 303(d) of the Clean Water Act and the EPA Water Quality Planning and 

Management Regulations require states to identify water bodies that have impaired water 

quality and develop total maximum daily loads (TMDLs) for pollutants of concern. To 

appropriately address water quality concerns, it is important to understand the type of 

pollutants present, as pollutants impact water bodies differently. Pollutants affect aquatic 

life, but can also directly impact human recreation uses and activities. The Nationwide 

Urban Runoff Program (NURP) compiled a data report examining national mean 

concentrations of pollutants between 1979 and 1983 which resulted in a plethora of EPA 

handbooks for the management of stormwater and best management practices (e.g. U.S. 

EPA 1993, Burton and Pitt 2002, EPA 2005).  

Eight percent of impaired water bodies in the U.S. are due to sediments (Borah et al. 

2006) and are either eroded from exposed soil construction sites, washed off from 

impervious surfaces in urban areas or are due to erosion of the stream channel. Maniquiz 

et al. (2009) reported that active construction contributed the majority of sediment from 

several urban development sites.  Parking lots, streets, rooftops, driveways and lawns 

receive dry deposited such as windblown sediments. Finally, due to altered hydrology in 

urban watersheds resulting in extremely high discharge, increased erosion of the stream 



14 
 

channel is often observed which will too contribute to sediment in the water column 

(Nelson and Booth 2002). Sediments have been reported as Total Suspended Solids 

(TSS), Total Dissolved Solids (TDS) and/or Turbidity (Adams and Papa 2000). TSS 

measures the total mass of suspended particles in a sample of water and is used to 

estimate sediment load transported to downstream receiving waters. TDS measures the 

dissolved solids and minerals present in stormwater runoff and TDS amount is used for 

assessing the purity of drinking water. Suspended particles such as dust and eroded 

sediments increase turbidity, which measures scattering of light by the suspended 

sediments in a water sample making it cloudy (Tsihrintzis and Hamid 1997). A high 

turbidity reduces the penetration of light and thus decreases the activity and growth of 

photosynthetic organisms but may protect other aquatic organisms. Turbidity 

aesthetically detracts from the water body and high levels of suspended solids may clog 

and damage fish gills (CWP 2003). Davies-Colley and Smith (2001) associated 

suspended solids in increasing turbidity in waterbodies and irritating fish gills.  

Sediments also slightly increase stream temperatures and serves as a major carrier of 

nutrients and metals (CWP 2003). Nelson and Booth (2002) reported urbanization 

increased Issaquah Creek watershed sediment production through channel erosion and 

accounted for 20% of the total watershed sediment budget.  

Nutrients are another cause of water quality impairment (Borah et al. 2006). Nitrate-

N and orthophosphate-P in urban streams not impacted with waste water treatment 

plants averaged 0.51 and 0.07 mg L-1 over a large range of reported urban streams (e.g. 

Steele et al. 2010).  Nitrate (NO3), ammonium (NH4) and total nitrogen (TN) are 
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commonly found in chemical fertilizers that are applied to lawns and gardens in 

residential areas.  Nitrogen can also originate from failed septic tanks. For example, the 

Illinois Department of Natural Resources has been concerned about the long-term impact 

of urbanization on NPS pollutant loads in St. Louis metropolitan area (Wang et al. 

2005). In St. Louis, nutrients from fertilizers are main causes of water quality problems. 

Lee and Olsen (1985) combined aerial photographs and nitrogen loading concentrations 

from septic and lawn fertilization from the Long Island area to examine pollutant 

loadings to area salt ponds. In the Ninigret salt pond, septic tanks produced 2844 kg N 

per year more than lawns. Nitrate is of high concern because as a conservative ion with a 

single negative charge, it is not readily absorbed by mineral soil and moves with 

infiltrating or runoff water (Shaver et al. 2007). Phosphates found in runoff are reported 

as soluble reactive phosphorous (SRP) or orthophosphate which is available for plant 

uptake. Total Phosphorous (TP) is also measured. Phosphates are typically linked to 

sewage, fertilizer and soil erosion. Nitrogen and phosphorus are essential plant nutrients, 

necessary to promote healthy growth of plants.  However, when nutrients appear in 

excessive concentrations they contribute to the eutrophication of water bodies (CWP 

2003, Steele et al. 2010). Excessive nitrogen and phosphorous increased the growth of 

flagellates and nuisance blooms were formed in the Mississippi River (Rabalais et al. 

1996). Dissolved oxygen can also be depleted when the blooms are encouraged by 

phytoplankton raiding dissolved oxygen during the daylight and significantly reducing 

dissolved oxygen saturation during the night. 
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Urban areas also contribute a significant amount of metals in urban water surfaces 

(Steele 2010, Göbel 1997). Non-point source pollution from motor vehicles is one of the 

major contributions of metals to the environment. Metals such as lead, zinc, copper, 

chromium, arsenic, cadmium, nickel can all be found in urban waters (Tsihrintzis and 

Hamid 1997). Heavy metals sources include lead leaking from leaded fuel vehicles, lead, 

oxide, copper from tire wear, copper, chromium and nickel from brake linings and 

engine parts (Tsihrintzis and Hamid 1997).  

 

Hydrological Modeling 

Models are critical tools used to gain understanding of the fate and transport of 

runoff to a watershed.  Problem areas are easy to identify, but nonpoint sources and 

causes are not (Engel et al. 1993). Hydrological models have the potential to assist land 

use managers and planners, to help mitigate and predict future conditions for a 

watershed. Chen and Adams (2007) successfully demonstrated that closed-form 

analytical models could be used to estimate stormwater runoff through two case studies. 

These case studies verified and evaluated rainfall-runoff transformations. In the type I 

and II analytical models used by Chen and Adams (2007) comparable results to the 

Stormwater Management Model (SWMM) were provided. The  Type I analytical model 

estimated annual runoff to be 138 mm yr-1 compared to 149 mm yr-1 estimated by the 

SWW for the Upper East Don watershed in the city of Toronto, Ontario, Canada. Brun 

and Band (2000) used the Hydrological Simulation Program- FORTRAN (HSPF) with 

GIS to investigate the runoff ration and base flow and runoff relationship to percentage 
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impervious cover and soil saturation. Results from this simulation developed an 

impervious surface threshold for the Upper Gwynn‟s Falls watershed in Baltimore, 

Maryland. A percent impervious cover of 20-25% was the lower threshold for runoff 

concentration levels to remain constant. As models become popular, it is important to 

understand what steps, techniques and methodology should be taken to develop and 

parameterize an accurate model.  

Satellite derived data to predict changes associated with development in climatic and 

land surface parameters, such as runoff and evapotranspiration was used in Chester 

County, PA, by Carlson and Arthur (2000)  to assist planners in management and 

development.  In this study, AVHRR and Landsat TM data was used to predict that  the 

region‟s scaled surface temperature will increase by 58% and the evapotranspiration net 

radiation ration will decrease by approximately 10% , Schiff and Benoit (2007) explored 

water and habitat water quality in relationship to total impervious area over four spatial 

scales in New England, USA. Using GIS and water chemistry tests, their watershed 

study, determined that bicarbonate, calcium, and chloride were dominant ions found in 

streams relative to concentrations of nutrients and particular matter, which were 

relatively low. They reported a correlation between stream variables and impervious 

cover at the smaller, more local scale. As a result of their study, a critical level of 5% 

impervious cover was established as a condition where stream health declined.  
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Conceptual Framework 

This section provides a conceptual framework that will be used to further present the 

linkage and theoretical components of linking land use change to the degradation of 

urban water quality and the advantageous uses of applying GIS and computer modeling 

to predict future stormwater runoff outcomes. Conceptual models are essential to 

identify key factors, such as independent and dependant variables, and assist in 

developing hypothesis based literature reviews. The framework links literature to core 

concepts and essentially answers the research question. 

This study will focus on three essential factors that will serves as the key elements in 

examining the effects of urbanization on water quality. As a result, the primary factors 

include: 

(1) Site specification and land use, specifically, impervious surfaces that are 

defined as areas that disallow water from penetrating the ground naturally. 

This particular factor will examine impervious surfaces such as asphalt and 

concrete, high and low traffic areas, and residential and recreational areas;  

(2) spatial data factors, primarily, remote sensing and GIS data layers such as: 

2008 NAIP, zoning, roads, hydrology and re-classification data layers; and,  

(3) environmental data factors, mainly, event mean concentrations, pollutant 

concentrations, rainfall simulation analysis. 

The conceptual framework provides the foundation of how each factor or component 

is internally related and establishes the ground basis for formulating research hypotheses 

(Figure 1).   
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Figure 1. Conceptual framework used to determine research direction 
 
 
 
 

Dependent Variables 

 
The dependent variables of this study provides information on the total nutrients 

from effective impervious areas, predicted total pollutant loads by watershed, and 

predicted event mean concentration levels by watershed. As stated in the literature 

review, land use and water quality typically have a positive correlation. As land use 

changes with an increase of impervious areas, there is a significant increase in runoff 

pollution.  

Site Specification/ Land-Use Factors

Environmental Data Factors

Spatial Data Factors

Total Nutrients Concentrations:

(1) Effective Impervious Areas – 

Rainfall Simulation

(2)Total Pollutant Loads by 

Watershed -Map and Table

(3)Event Mean Concentration 

(EMC) by Watershed – Map and 

Table

Impervious Surfaces 

Classifications:

Supervised Classification

Impervious surfaces, asphalt 

vs. concrete, high traffic vs. low, 

traffic, residential vs. recreation

Water quality data: Rainfall 

Simulation analysis, Event 

Mean Concentration Table, 

Impervious Factor Table,  

Pollutant loading table

Remote sensing and GIS data layers 

(2008 NAIP, Zoning, Roads, Hydrology, 

Re-classification layers)
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Nutrient concentrations will be quantified after collection by rainfall simulation and 

surface runoff chemistry concentrations will be estimated.  Predictability concentration 

numbers will be estimated utilizing BASINS PLOAD and the simple calculation 

method. 

 

Independent Variables  

Site Specifications, Land Use, and Environmental Factors 

Planners and researchers are interested in finding ways to mitigate or reduce 

nonpoint source pollution in the urban environment. A number of studies have related 

water quality to impervious surface, or the percent of land use (Scheuler 1994, Rogers 

1994, Deletic et al. 1997, Pappas et al. 2008, Hope et al. 2004, Spångberg and 

Niemczynowicz 1992). Also water quality data provides essential information in 

assisting planners and mangers in watershed management, development and restoration.  

Hypothesis 1: Parking lot substrate will have a significant effect on nutrient 

concentration. 

Hypothesis 2:  An increase in parking lot intensity will have a significant impact 

on nutrient concentration. 

 

Spatial Data Factors 

Multi-spectral satellite data can be used as a resource to detect land use and land 

cover change on a spatial scale. Using GIS and remote sensing data integration and 

spatial analysis tools can be used to examine the relationship between land use and water 
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quality over different spatial scales (Tong and Chen 2002). GIS models provide tools to 

handle large amounts of spatial data for modeling and assessing the contributions of non 

point source pollution. These models provide tools to obtain predicted annual values, 

monitoring and visualization of pollutant loads and transport.  

Hypothesis 3: An increase in satellite imagery resolution will have a significant 

effect on impervious surface classification accuracy.  
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CHAPTER II 

A SYSTEMATIC APPROACH FOR DETERMINING IMPERVIOUS 

SURFACES FOR URBAN WATER QUALITY MODELING 

 

Impervious surfaces are utilized to link urbanization to non point source pollution 

(NPS) and are identified as a critical indicator in evaluating urban ecosystems.  The 

extraction of total area covered with an impervious surface from land use data serves as 

an important component in water quality and quantity models. This study aims to 

accurately quantify impervious surfaces using 2008 National Agriculture Imagery 

Program (NAIP) 1m high resolution imagery. This study area quantified the amount of 

impervious surfaces in Brazos County, Texas and developed six impervious classes 

using supervised classification. An accuracy assessment indicated an overall accuracy of 

85%. As a result, a unique way of classifying impervious surface type, i.e., asphalt, 

concrete, building surface tops, was employed to be used in enhancing hydrological 

models.  

 

Introduction 

Impervious surfaces influence the hydrologic cycle by increasing runoff, 

deteriorating stormwater quality, transporting non point source pollutants and reducing 

ground water recharge (Arnold and Gibbons 1996, Scheuler 1994, Brabec et al. 2002). 

Impervious surface area is a key indicator to measure the effect of land use change 

on surface water quality (Scheuler 1994). Commonly, an impervious surface, which 
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constitutes two major components, can be categorized as: a) rooftops (i.e., residential 

and commercial buildings) and b) transportation system (i.e., parking lots, road 

networks, sidewalks, driveways, etc.). These components can be quantified and used to 

establish the health of a watershed (Scheuler 1994). In general, the transportation system 

is the largest contributor of total impervious area (Scheuler 1994). 

Impervious surface area quantification has emerged as a tool to assist planners and 

managers in water protection plans and future development. Determination of where 

impervious surfaces are concentrated and distributed throughout the watershed landscape 

(Arnold and Gibbons 1996) coupled with current and precise spatial data allows for 

effective land use decision making (Yang et al. 2003).  

Arnold and Gibbons (1996) established four key environmental indicator properties 

for impervious surface area and the urban environment quality: (1) impervious surfaces 

can be classified as altering the hydrological cycle and degrading waterways; (2) 

impervious surfaces are linked to urbanization and produces multiple pollutants; (3) 

impervious surfaces devoid the  natural pollutant removal process by preventing 

percolation; and (4) impervious surfaces serves as a main transportation mechanism for 

pollutants to waterways. Yuan and Bauer (2007) compared the normalized difference 

vegetation index (NDVI) and percent impervious surface as an indicator of urban heat 

island effects. Results indicated a strong linear relationship (r2 > 0.97) between 

impervious surface area and land surface temperature.  

There is a need to enhance land use classification accuracy. Various approaches 

utilizing the incorporation of geographic data, census data, structural types, have been 
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applied to classify urban land use. However, shadows, mixed pixels and spectral 

confusion cause a decrease in extraction and accuracy. Efforts began in the 1970s to 

class impervious surfaces from remote sensing data (Lu and Weng 2006). Classifications 

provide essential measurements for water quality and quantity models such as: Soil and 

Water Assessment Tool (SWAT), Better Assessment Science Integrating Point and 

Nonpoint Sources (BASINS), Agriculture Non point Source (AGNPS), Source Loading 

and Management Model (SLAMM), Stormwater Management Model (SWMM) (Lenzi 

and Di Luzio 1997, Tong and Chen 2002, Abbaspour et al. 2007, Jat et al. 2009). 

In the past, methods and techniques used in estimating and mapping impervious 

surfaces were initially evaluated in three basic ways: (1) using photographic 

interpretation and a planimeter to estimate impervious surfaces (Draper and Rao 1986, 

Graham et al. 1974) and (2) employing detailed map and grid overlays (Avery and 

Berlin 1992). More recently classification of remotely sensed data has been utilized (Lu 

and Weng 2006). The most identified and accurate method of classification are ground 

based surveys, however, these surveys are costly and time-consuming (Bird et al. 2000).   

High spatial resolution data, in addition to spaceborne and airborne sensors have 

become a primary source in environmental modeling (e.g. Benz et al. 2004, Martin et al. 

2008). Smith et al. (2003) used Hyperion and Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) data to estimate nitrogen concentrations levels in the Bartlett 

Experimental Forest in New Hampshire, USA. Accuracy of Hyperion and AVIRIS were 

within 0.25% and 0.19%, respectively, of field measurements. Deriving information 

from a land or water surface, multi-spectral imagery is obtained from the reflection of 
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varied wavelengths of the electromagnetic spectrum. This reflection allows for features 

to be automatically identified and quantified.  

Wu and Murray (2003) estimated impervious surface fraction by analyzing low and 

high albedo end members. In their model, impervious surface distribution, vegetation 

and soil cover had an overall root mean square (RMS) error of 10.6%. Yang et al. (2003) 

examined an approach to quantify impervious surfaces as a continuous variable by using 

Landsat ETM+ and high resolution imagery at a 30 meter sub-pixel area. Impervious 

surfaces were mapped using a regression tree model and average error values ranged 

from 8.8 to 11.4%. Deguchi and Sugio (1994) evaluated the use of satellite imagery to 

estimate percentage impervious areas using satellite imagery to construct a simple high-

medium-low classification. Data interpreted from their study noted pixels in urbanized 

area are mixtures of various surfaces; and therefore classes not identified as impervious 

may, in reality, have impervious surfaces. Monday et al. (1994) used the Normalized 

Difference Vegetation Index (NDVI) transformation to assist in classifying impervious 

surfaces for utility fee applications from a four-band multi-spectral image.  

 

Objectives  

Extraction of impervious surface area from images is a challenge, due to the 

limitations associated with the mixing of urban land types and the selection of training 

sites, which leads to misclassification. As a result, the goal of this research is to apply a 

supervised classification of impervious surfaces, with accurate, up-to-date high 

resolution (1 meter) satellite imagery.  
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The goal and objective of this research is to effectively and accurately develop an 

improved impervious surface classification scheme using high resolution satellite 

imagery (NAIP 2008b) for hydrological modeling. This study aims to convert spectral 

data into six land cover classes using a supervised classification algorithm- maximum 

likelihood.  

 

Study Area and Data  

The study area is located within the cities of Bryan and College Station, Texas, USA 

(Figure 2). This study area possesses several components that make it an appropriate 

choice for a study and it was selected due to its rapid population growth. Currently 

agricultural and native rangeland land use is undergoing significant transitional changes 

due to population growth. Condominiums, apartments, single family homes and strip 

mall developments are continually being built to house the increasing population.  Carter 

Creek located in Brazos County has been identified as a third-order stream contributing 

to the Brazos River drainage basin (TWRI 2010). Carter Creek in particular has been 

chosen as the study area of choice because its headwaters originate in Bryan/College 

Station. Carter Creek watershed has been placed on the EPA 303(d) listing for impaired 

water  by E. coli (Esherichia coli)  since 1999 and high nutrient concentrations since 

2006. The state of Texas requires that water quality in Carter Creek (Segment 1209C) be 

suitable for contact recreation, aquatic life, and fish consumption uses, as designated in 

the Texas Surface Water Quality Standards.  
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Figure 2. Study area for the impervious surface extraction study (NAIP 2008a). 
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Data Sets 

 

The United States Department of Agriculture NAIP image of Bryan and College 

Station, Texas, which was acquired on June 1, 2010, was used for this research. The 

NAIP image has a 1 meter ground sampling distance (GSD) resolution with 5 meters of 

reference ortho imagery. The image is in natural color. The NAIP contract states that 

“95% of well-defined points tested shall fall within 6 meters of true ground.” In 2008, 

Texas was contracted with meeting 95% accuracy specifications for this image at 

absolute ground control specification. Received as a Digital Ortho Quarter Quad 

(DOQQ), this image tile covers a 3.75 x 3.75 minute quarter quadrangle in addition to a 

300 meter buffer on all four sides. DOQQs have high resolution and are capable in 

producing high accuracy levels in determining impervious surfaces (Bird 2000). The 

image was downloaded in GeoTiff format and cast to the Universal Transverse Mercator 

(UTM) projection, and referenced to the North American Datum of 1983 (NAD83).  

The National Hydrography Dataset (NHD) was also used in this study. The NHD is a 

surface-water component of the United States Geological Survey National Map. This 

spatial dataset comprises of waterbodies, i.e., lakes, ponds, streams, rivers, canals, and 

dams, within this study area. Designed to be used hydrological mapping and modeling, 

this seamless dataset was acquired on June 1, 2010 as a high-resolution 1:24,000 – scale 

topographic mapping. The data set was cast to the Universal Transverse Mercator 

(UTM) projection, and referenced to the North American Datum of 1983 (NAD83).  
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Extraction of Impervious Surfaces and Results 

ITT Visual Information Solutions (ITT VIS) Environment for Visualizing Images 

(ENVI) v4.5 was used as a platform to deliver results for this study. ENVI was used for 

the visualization, analysis and presentation of all types of imagery data. ENVI was 

written in Interactive Data Language (IDL) and allows integrative image processing. 

Collectively, the components make ENVI the best software choice for this study. 

A NDVI layer was created from the NAIP imagery using the expression (NIR-

R)/(NIR+R) and then stacked with the original NAIP image. 

A supervised classification algorithm was used to classify the image.  Regions of 

Interests (ROI) were selected for 9 classes: Natural Grass, Irrigated Grass, Bare Soil, 

Tree, Shrub, Concrete, Light/Old Asphalt, Dark/New Asphalt, and Painted/Metal 

Surfaces.  Although the final classification had fewer classes, these classes allowed for 

more separation between classes than fewer, more generalized classes would have.  The 

ROI were selected based on ground-truth knowledge of the area which included driving 

around the study area and using Google Maps, especially the street view feature. 

After the ROI were selected, a Maximum Likelihood (ML) classification algorithm 

was employed.  The ML classifier assumes that the statistics for each class in each band 

are normally distributed and calculates the probability that a given pixel belongs to a 

specific class. Each pixel is assigned to the class that has the highest probability. If the 

highest probability is smaller than a threshold, the pixel remains unclassified (Richards 

1999). The discriminant functions for each pixel in the image are implemented in the 

ML classification (Equation 1):  
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         (1) 

 
where: 

 
i = class 

 
x= n-dimensional data (where n is the number of bands) 

 
      = probability that class    occurs in the image and is assumed  
   the same for all classes 
 
     = determinant of the covariance matrix of the data in class     
 
   

 = its inverse matrix 
 
   = mean vector.  

 
 
Classes were then combined to form 6 Classes: 

1)  Grass (Natural Grass and Irrigated Grass) 

2) Tree/Shrub (Tree and Shrub) 

3) Bare Soil 

4) Painted/Metal Surfaces 

5) Concrete or Light/Old Asphalt (Concrete and Light/Old Asphalt) 

6) Dark/New Asphalt 

Natural Grass and Irrigated Grass were combined because the separation of the two 

is not required for this study.  Tree and Shrub were combined to reduce the occurrence 

of shrubs appearing at the edge of forest stands.  Shrubs were also a nominal portion of 

the study area.  After the classification was performed, areas of Concrete and Light/Old 

Asphalt were significantly mixed.  Concrete and Light/Old Asphalt were nearly 

inseparable.  Asphalt grays as it loses it ages because the oil in it evaporates.  As the 
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asphalt grays it becomes spectrally similar to concrete.  The Painted/Metal Surfaces class 

was used to separate buildings and water towers from concrete as much as possible. 

After combining the classes, a majority filter with a 3x3 window was passed over the 

image to remove some of the salt and pepper effects of the classification.  The Bare Soil 

class was eliminated by the majority filter because it was a very small class and often put 

in areas of Painted/Metal Surfaces and Concrete or Light/Old Asphalt. National 

Hydrology Dataset data was downloaded at the High Resolution level.  The Waterbody 

layer was overlaid onto the classification to create the water class.  The final class list 

(Figure 3 and Table 1) is: 

1) Grass (Natural Grass and Irrigated Grass) 

2) Tree/Shrub (Tree and Shrub) 

3) Painted/Metal Surfaces 

4) Concrete or Light/Old Asphalt (Concrete and Light/Old Asphalt) 

5) Dark/New Asphalt 

6) Water 
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Figure 3. Final classified NAIP image employed by unsupervised classification scheme 

 

Table 1. Final classification type and area results. 
 

Classification Type Area (m²)  
Grass (Natural Grass and Irrigated Grass) 117021918 
Tree/Shrub (Tree and Shrub) 68773773 
Painted/Metal Surfaces 1504439 
Concrete or Light/Old Asphalt  201929938 
Dark/New Asphalt 34344686 
Water 1876422 
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The original NAIP image to that of the re-classified impervious surfaces was 

compared (Figure 4). Building roof tops, streets, buildings are classified by impervious 

surface type.  

 
 
 

 
Figure 4. Result comparison of NAIP image (upper panel) with reclassification of urban 
impervious surfaces (lower panel) (adapted from NAIP 2008a). 

 

 

The accuracy assessment (Table 2) was achieved by generating a stratified random 

sampling and Kappa analyses. Stratified random sampling gives each class a number of 

points based on the percentage of each area. The Kappa analysis measures the agreement 

between the classified image results and the reference data.  A total of 160 points were 
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sampled.  These points were then viewed in Google Maps to identify their true 

classification.  If the class could not be determined through Google Maps, the point was 

ground-truthed by visiting the site and identified. The overall accuracy was 85%, and the 

kappa coefficient was 0.7993 (Table 2). 100% of the grass could be correctly identified 

as grass, but nearly 42% of the dark asphalt was misidentified. Misclassification 

happened in areas covered by shadows.  These areas were most often incorrectly 

classified as Dark/New Asphalt.  For the accuracy assessment, the test areas were 

identified as ground cover, not as shadow. Extremely new concrete and bare soil from 

construction were sometimes misclassified as painted/metal surface.  

 

 

Table 2. Classification accuracy assessment results. 

 

 

Class Name Reference 
Totals 

Classified 
Totals 

Number 
Correct 

Users 
Accuracy 

Grass 72 57 57 100.00% 

Tree/Shrub 33 34 33 97.06% 

Painted/Metal 6 8 5 62.50% 

Dark/Asphalt 10 21 9 42.86% 

Concrete/Asphalt 29 32 26 81.25% 

Water 7 8 6 75.00% 

Overall Accuracy 85.00% Kappa Coefficient 0.80 
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Conclusions 

Impervious surfaces have been recognized as an indicator to assess urban 

environments. Many studies have focused on the classifying impervious surfaces based 

population density and land use type. However, accurate extraction of impervious areas 

from images still presents a challenge due to the complexity of urban and suburban 

landscapes. Misclassifications in the extraction of impervious surfaces from images are 

often due the heterogeneity of urban environments.  

In this study, impervious surface distribution and classification were derived from 

the 2008 NAIP imagery by applying a supervised classification maximum likelihood 

algorithm and classified each individual impervious surface. Surfaces were classified as 

grass (natural grass and irrigated grass), tree/shrub (tree and shrub), painted and metal 

surfaces, concrete or light/old asphalt (concrete and light/old asphalt), and dark and new 

asphalt. The results from this classification produced a unique impervious surface type 

classification. The overall accuracy assessment of 85% is good and areas that were most 

often misclassified were dark and new asphalt. Sometimes new concrete and bare soil 

were misclassified as metal surface. Shadows from buildings and trees also cause 

misclassification of impervious surfaces. 

Lu and Weng (2006) reported an overall classification accuracy of 83.78% in their 

attempt to successfully classify five urban land use classes using medium spatial 

resolution remotely sensed data using a linear spectral mixture analysis. Johnson (2004) 

reported 75.33-81.33% overall accuracies derived from three different seasonal dates of 
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Landsat TM multi-spectral imagery. My higher overall accuracy can likely be attributed 

to my use of a supervised maximum likelihood classification scheme.  

 Based on my results, this breakdown of classes would be beneficial in predictive 

hydrological modeling of impervious surfaces and sources of contaminants for urban 

water quality. My research demonstrates a unique way of extracting impervious surface 

types from remotely sensed data.  
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CHAPTER III 

MEASURING NUTRIENTS IN SIMULATED RUNOFF IN  

BRAZOS COUNTY, TEXAS 

 

Introduction 

Impervious surfaces not only contribute to enhanced nonpoint source pollution in 

urban watersheds, but have also been proven to alter the hydrological cycle (Lazaro 

1990, Tsihrintzis and Hamid 1997, Brabec et al. 2002, Tong and Chen 2002, Shuster et 

al. 2005).  Urbanization generally increases flow velocity, runoff volume and flooding 

intensity in urban streams and rivers (e.g. Hall 1984, Leopold 1968). Urban watersheds 

replace native ground cover with paved and impervious surfaces. Drainage networks 

from paved surfaces serve as a transportation conduit for an abundance of nutrients and 

metals.  

There is a growing need to focus on monitoring and accurately assessing the effects 

of urbanization on urban runoff volume and water quality (Spångberg and 

Niemczynowic 1992, Goonetilleke et al. 2005). The United States Environmental 

Protection Agency (EPA) stated that nonpoint source pollution is a major contributor to 

water quality issues (U.S. EPA 1994). Road pollutants, dust and debris, and dry 

deposition accumulate in runoff from impervious surfaces during rain events and the 

pollutants in this runoff are known to impair urban stream chemistry. As a measurable 

contributor to enhancing pollutant runoff, impervious surface coverage, has been 

intensely studied by the National Urban Runoff Program (NURP) (U.S. EPA 2002). 
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Runoff from impervious surfaces impairs surface waters chemically, 

microbiologically and physically. Nutrients such as phosphorous and nitrogen are known 

contributors in the depletion of water quality. Steele et al. (2010) noted that surface 

water in urban environments contains higher phosphorous concentrations than rural 

surface waters. Inputs of phosphorous to surface waters can be linked to fertilizers, waste 

water treatment plants or failing septic systems, and atmospheric deposition (Steele et al. 

2010). Nitrogen sources, in the form of organic nitrogen, are often linked to waste water 

treatment plants or failing septic tanks, and can be recognized as a major contributor of 

nitrogen in urban areas (Steele et al. 2010). Over a period of time, organic nitrogen is 

converted to ammonia nitrogen.  In oxygenated watershed soils ammonium-N is 

converted to nitrites then nitrates if enough labile carbon is available but in reduced or 

low oxygen soil environments nitrification of ammonium-N cannot occur and the typical 

reaction is denitrification of any nitrates present in the soil environment.  Hence surface 

water riparian zones are important because they alternate between reducing and 

oxidating conditions which remove N and ultimately reduce nitrate entering surface 

waters.  

Numerous research studies have determined that surface water chemistry is linked to 

the percentage land use and land cover in a watershed (e.g. Aitkenhead et al. 1999, 

Aitkenhead-Peterson et al. 2009 and 2010b, Brabec et al. 2002, Hope et al. 2004,  

Sansalone et al. 1998,  Brun and Band 2000,  Scheuler 1994). Several methods have 

been explored to examine runoff and water quality for impervious surface areas. For 

example, Sheuler (1994) examined 40 runoff monitoring sites illustrating the 
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relationship between impervious cover and an increased runoff coefficient. Li et al. 

(2008) designed and simulated urban rainfall to prove the feasibility of implementing 

urban rainfall management. Infiltration conditions on surfaces can be effectively used to 

reduce runoff.  Roy et al. (2003) found concentrations of total suspended solids (5.10 mg 

L-1), NO3/NO2-N (368 µg L-1), NH4-N (1.32µg L-1), and soluble reactive phosphorus 

(77.3 µg L-1) to be significantly and positively correlated with increased urban land 

cover and decreased forest land in the Etowah River Basin, Georgia, USA. Aitkenhead-

Peterson et al. (2009 and 2010b) reported that urban open areas explained between 61 

and 71% of the variance in bicarbonate and sodium in urban and rural streams and that 

high density urban areas typically classified as impervious surfaces are highly and 

positively correlated with electrical conductivity, dissolved organic carbon (DOC) and 

sodium in urban streams.  In our growing cities, parking lot surfaces generate a 

significant amount of runoff containing a wide range of nutrients, salts and novel organic 

carbon compounds (e.g. Kaushal et al. 2005 and 2008). These can be caused by removal 

of riparian zones that are typically instrumental in denitrification thus reducing nitrate 

concentrations in receiving waters (Kaushal et al. 2008). Application of NaCl for de-

icing in northern urban regions (Kaushal et al. 2005) and leaking parked vehicles, 

insufficient parking lot cleaning, and little to none continuous flow of traffic (Tsihirintzis 

and Hamid 1997) also combine to render impervious surface run off to surface waters 

high in pollutants. 

In addition to land use change, rainfall intensity and duration are also critical factors 

in determining runoff volumes and pollution loads. Urban ecosystems tend to have 
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increased rainfall, for example, urban heat islands tend to increase rainfall over and 

downwind of major cities in the USA (Heisler and Brazel 2010, Shepherd et al. 2010). 

Niemcyznomicz (1999) acknowledged the importance of rainfall data accuracy and 

collection and understanding the fundamental relationships between them. For this 

reason, it was suggested that hydrological data acquired from meteorological service 

agencies may be inadequate for urban hydrology and researchers have to create 

techniques and tools to generate data on a smaller spatial scale and over shorter periods 

of time. Therefore because of its important role in hydrological processes, rainfall is an 

important input in modeling and predicting runoff. Simulating rainfall events provides 

an alternative to a lack of accurate data.   One issue in obtaining first flush data over a 

city is the expense of man-power to collect samples during that first flush event over a 

wide area or the expense of instrumenting storm drains so that first-flush samples can be 

collected. Herngren (2005) simulated rainfall to understand event mean concentrations 

(EMC) on paved surfaces and further to correlate heavy metal distribution among 

suspended solids particle size in runoff samples. Their study reported that dissolved 

organic carbon (DOC) and total suspended solids (TSS) influenced the distribution of 

metal concentration. In addition, they concluded that creating rainfall artificially was a 

preferred choice for generating rainfall data due to the limited rainfall events in 

Brisbane, Australia, and the limitations associated with them. Similarly, Hope et al. 

(2004) quantified the maximum amounts of readily soluble nutrients on 38 parking lot 

plots and reported high concentrations of DOC (26.1 to 295.9 mg L-1) and that asphalt 

sites were dominated by NO3
-N (15.4 mg L-1). Thus simulating rain events has proven 
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feasible in mimicking natural rainfall conditions but more importantly allows researchers 

to standardize runoff results.   

The objectives of this study were to examine the first flush of nutrients in storm 

runoff by means of a custom constructed rainfall simulator under differing „scenarios‟ a) 

two types of impervious surfaces, b) three parking lot traffic intensities and c) days since 

last rain event. I hypothesized that concrete would have greater nutrient concentration 

than asphalt when supplied with a similar sized event. I also hypothesized that parking 

lots with higher parking intensity would have more pollutants than those with low 

parking intensity because vehicle dry deposition was less.  In addition, I hypothesized 

that first flush contamination concentration is dependent on time since the previous 

rainfall event. 

 

Materials and Methods 

A custom-designed rainfall simulator (Figure 5) was used on several sites which 

were selected based on their parking surface material and assumed vehicular use in 

which to simulate rainfall events. The research study sites (Figure 6) were located in 

College Station, TX, USA which has a population of approximately 68,000. College 

Station has a humid subtropical climate and averages ~1000 mm rainfall per year in a 

bimodal pattern with most of the precipitation falling in the spring and fall seasons.  

Rain events are typically high intensity and of short duration. 
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Figure 5. Dimensions of rainfall simulator used in this study. 
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 Figure 6. Parking lot study areas. Site 1 Parking for Recreational area, Site 
2Commercial parking for Strip Mall, Site 3 Parking for large shopping Mall and Site 4 
Parking for apartment complex (adapted from NAIP 2008a). 
 

 

I used three variables for parking intensity a) low: recreation parking which is only 

highly used during weekends and holidays; b) medium: residential parking which is long 

term parking overnight by the same vehicles and c) high: shop parking: parking at big 

box stores that will have multiple different vehicles in and out of the parking lot for an 

extended period of time. 

I used two variable for parking surfaces a) concrete and b) asphalt (Table 3) and two 

variables for time since last rain event a) 7 days and b) 23 days.  
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Wolf Pen Creek Park and Amphitheater, site (1), is recreational park and 

amphitheater, hosting crowds up to 10,000. This park hosts some of the community‟s 

outdoor concert series, festivals and fitness recreation. Study site (2) was a parking lot 

located in a nearby commercial strip development area. Consisting of 8 retail stores, this 

shopping center receives moderately low-minimum traffic.  Study site (3) is home of the 

areas only and busiest shopping mall. Home of 121 retail stores and 5, 228 parking 

spots, this concrete/cement parking lot plot area can be attributed with poor surface 

quality. A close-by apartment community serves as site (4). Known for having frequent 

flooding, this 150 apartment community has poor concrete/cement surface. Lastly, a 

popular grocery store in the area is site (5). The asphalt located within this study area is 

good condition. 

 

Table 3. Parking lot location, identification and classification. 

Site ID  Site Location Site Classification 

(1)  96°18′10.772″W 30°37′3.837″N Recreational park and 
amphitheater  

(2)  96°18′24.444″W 30°37′25.984″N Commercial strip 
development, low-minimum 
traffic 

(3)  96°18′11.068″W 30°37′28.035″N Shopping mall, high traffic 
density 

(4)  96°18′37.165″W 30°37′28.531″N Apartment community 
(5)  96°19′5.371″W 30°36′46.389″N Grocery shopping center 
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Field Sampling 

A rainfall simulator consisting of a rectangular-framed structure of 0.43 m wide and 

0.81 m long hosted 8 1 L Nalgene bottles. Each Nalgene bottle contained 1L of distilled 

water.  Surface runoff was captured within the box structure beneath the simulator using 

a portable shop-vac vacuum cleaner. At each location sterile whirlpack bags were used 

for samples of water runoff.  Aliquots of unfiltered samples were measured for electric 

conductivity (EC) and pH within 6 hours of collection. Samples were filtered through 

pre-washed ashed Whatman GF/F filters and oven-dried for 2-3 days and then 

reweighed. Suspended solids (mg L-1) were calculated.  

 

Chemical Analysis 

 

Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were quantified 

using high temperature Platinum-catalyzed combustion with a Shimadzu TOC-VCSH 

and Shimadzu total measuring unit TNM-1 (Shimadzu Corp. Houston, TX, USA). 

Dissolved organic carbon was measured as non-purgeable carbon which entails 

acidifying the sample (250 µL 2M HCl) and sparging for 4 min with C-free air.  

Ammonium was analyzed using the phenate hypochlorite method with sodium 

nitroprusside enhancement (U.S. EPA method 350.1) and nitrate was analyzed using Cd-

Cu reduction (U.S. EPA method 353.3).  Alkalinity was quantified using methyl orange 

(U.S. EPA method 310.2).  Alkalinity was converted to the major carbonate species 

using geochemical software (AqQA, Rockware Inc., Denver, CO) which, in this study 

was bicarbonate.  All colorimetric methods were performed with a Westco Scientific 

Smartchem Discrete Analyzer (Westco Scientific Instruments Inc. Brookfield, CT, 
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USA).  Calcium, magnesium, potassium and sodium were quantified by ion 

chromatography using an Ionpac CS12A analytical and Ionpac CG12A guard column for 

separation and 20 mM methanosulfonic acid as eluent at a flow rate of 1 mL min-1 and 

injection volume of 25 µL (DIONEX ICS 1000).    Fluoride, chloride and sulfate were 

quantified using Ionpak AS20 and Ionpak AG20 analytical and guard columns for 

separation with 35 mM KOH as eluent at a flow rate of 1 mL min-1 and an injection 

volume of 25 µL (DIONEX ICS 1000; DIONEX Corp. Sunnyvale, CA, USA).  

Dissolved organic nitrogen was estimated by deducting inorganic-N (NH3-N + NO3-N) 

from TDN. 

 

Statistical Analysis  

A Univariate analysis of variance with three factors a) days since last rain event, b) 

parking surface substrate and c) parking intensity and interactions among factors was 

examined to determine what factors in an urban environment might have a significant 

effect on urban runoff chemistry.  Means and standard deviations of each runoff 

chemistry analyzed were calculated for a) days since last rain event, b) parking surface 

substrate and c) parking intensity.  Two-tailed Student‟s two-sample student‟s t-tests 

with unequal variance were run to determine significant difference among factors.   

Pearson bivariate correlation analysis was completed on all the runoff data to examine 

correlations among nutrients irrespective of parking, substrate surface and days since last 

rainfall factors. 
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Results 

 

Local environmental controls on runoff chemistry: Univariate analysis of variance 

gave some interesting results for the chemistry of our runoff solution using a rainfall 

simulator. Surface type which was either concrete or asphalt had a significant effect on 

runoff dissolved organic carbon, ammonium-N, sodium, magnesium, calcium, fluoride 

and sulfate (Table 4).  Parking intensity which was defined as very low for residential 

areas to high for „big box‟ parking lots had an effect on runoff alkalinity and fluoride 

(Table 4).  The most significant affect on runoff chemistry was days since the last rain 

event.  Here all nutrients tested with the exception of sodium and fluorides were 

significantly affected by the number of days since the last rain event (Table 4).  

Interactions between factors were found for surface and days where DOC, ammonium-

N, sodium, magnesium, calcium fluoride and sulfate were significantly affected.  

Parking intensity and day interactions were found for runoff chemistry alkalinity, 

sodium, calcium and fluoride (Table 4). 

Concrete typically produced higher concentrations of all nutrients than did asphalt 

(Table 5).  Sodium was the only nutrient however that was significantly higher in runoff 

from concrete (Table 5). Density of vehicles or type of parking lot had a significant 

effect on runoff alkalinity where we found that alkalinity concentrations were 

significantly higher in recreational parking areas than in residential areas (Table 5).  

Days since the last rain event also had a significant effect on runoff chemistry where 

DOC, nitrate-N, ammonium-N, orthophosphate-P, potassium, magnesium, calcium, 
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chloride, sulfate and DON were all significantly higher in runoff after 23 days with no 

rain compared to runoff after 7 days with no rain (Table 5).  

 

Discussion 

The major aim for this study was to examine the first flush of nutrients in storm 

runoff using rainfall simulation at five study sites in the Bryan/ College Station region. 

Rainfall simulation allowed for field sampling to mimic natural rainfall and runoff 

conditions.  The rainfall simulator was highly mobile due to its size, and was easily 

transportable. The rainfall simulator allowed for control over variables such as intensity, 

duration, and sampling area type although I only examined one rainfall intensity and 

duration for my study. Additionally, the rainfall simulator provided a time and cost-

efficient method to examine parking lot runoff. The rain simulator provided 2.808 mm 

rain over an average 30.54 ±3.9 seconds which is equivalent to an average of 341.6 ± 

45.1 mm hr or 13.4 ± 1.8 inches per hour, much higher than the intensity reported by 

Herngren (2005) whose  rainfall simulator give multiple settings of rainfall intensity 

ranging from 14 to 200 mm hr-1.  Herngren (2005) achieved an average discharge rate of 

between 13.9 to 15.1 L min-1, slightly lower than our average rate of 16.8 ±1.91 L min-1.  

I did not examine factors such as drop size and kinetic energy of raindrops in this study.  

Moore et al. (1983) also used a rainfall simulator with a high discharge Veejet 80100 

nozzle which produced a rainfall intensity of around 580 mm hr-1 when spraying 

continuously over a plot, almost twice the intensity of our rainfall simulator.  Pulsed  
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Table 4. Results of univariate analysis of variance with three factors.  Bold typeface indicates a significant effect. Ns is not 
significant. 

 
DOC DON NO3-N NH4-N PO4-P Alkalinity Na+ K+ Mg2+ Ca2+ Cl- F- SO4

2- 

 
Significance 

  Surface Type 0.013 0.54 0.83 0.3 0.09 0.13 0.003 0.66 0.01 < 0.001 0.29 0.004 0.049 
Parking Intensity 0.15 0.60 0.91 0.72 0.75 0.021 0.26 0.3 0.08 0.16 0.25 0.001 0.284 
Days since last rain  0.007 0.001 0.001 0.001 0.001 0.015 0.8 0.012 <0.001 <0.001 0.007 0.073 <0.001 

Surface * Parking ns ns ns ns ns ns ns ns ns Ns ns ns Ns 
Surface * Days 0.002 0.18 0.18 0.02 0.22 0.89 0.006 0.85 0.005 <0.001 0.42 0.045 0.006 

Parking * Days 0.13 0.5 0.82 0.16 0.5 0.004 0.004 0.286 0.2 0.02 0.35 0.013 0.073 
Surface * Parking * Days ns ns ns ns ns ns ns ns ns Ns ns ns Ns 
Mean Square Error 45.1 0.05 0.001 0.005 0.0002 9.03 0.94 1.78 0.005 0.54 1.99 0.000 0.84 
Adj. R2 0.58 0.51 0.57 0.56 0.79 0.61 0.49 0.27 0.64 0.91 0.42 0.58 0.65 
 



 

 
 

50 

 

Table 5.  Mean concentrations of nutrients in runoff according to a) surface substrate, b) parking type and c) days since last 
rain.  Values in parenthesis are standard deviation. Different lower case letters indicate significant difference in runoff 
chemistry within each of the individual factors. 

 

DOC 
mg L-1 

DON 
mg L-1 

NO3-N 
mg L-1 

NH4-N 
mg L-1 

PO4-P 
mg L-1 

Alkalinity 
mg L-1 

Na+ 

mg L-1 
K+ 

mg L-1 
Mg2+ 

mg L-1 
Ca2+ 

mg L-1 
Cl- 

mg L-1 
F- 

mg L-1 
SO4

2- 

mg L-1 

Surface 

             
Asphalt 

8.0a 

(6.5) 
0.31a 

(0.29) 
0.12a 

(0.06) 
0.13a 

(0.10) 
0.03a 

(0.02) 
18.4a 

(2.9) 
4.5a 

(0.6) 
0.8a 

(0.5) 
0.09a 

(0.04) 
2.2a 

(0.7) 
1.9a 

(0.5) 
0.01a 

(0.01) 
1.10a 

(0.9) 

Concrete 
12.1a 

(11.9) 
0.45a 

(0.35) 
0.13a 

(0.07) 
0.14a 

(0.11) 
0.04a 

(0.03) 
21.8a 

(5.4) 
5.6b 

(1.5) 
1.7a 

(1.9) 
0.15a 

(0.15) 
3.8a 

(3.0) 
3.3a 

(2.2) 
0.01a 

(0.02) 
1.55 

(1.8) 
Parking 

             
Recreational 

10.0a 

(7.7) 
0.57a 

(0.34) 
0.14a 

(0.07) 
0.15a 

(0.08) 
0.05a 

(0.03) 
25.2b 

(6.0) 
5.4a 

(0.8) 
2.5a 

(2.8) 
0.12a 

(0.11) 
3.9a 

(3.8) 
4.2a 

(3.2) 
0.00a 

(0.00) 
1.4a 

(1.1) 

Shopping 
12.0a 

(12.0) 
0.36a 

(0.34) 
0.12a 

(0.06) 
0.15a 

(0.12) 
0.04a 

(0.02) 
19.4ab 

(3.3) 
5.2a 

(1.6) 
1.0a 

(0.6) 
0.14a 

(0.14) 
3.2a 

(2.1) 
2.2a 

(0.9) 
0.01a 

(0.002) 
1.6a 

(1.8) 

Residential 
4.6a 

(0.8) 
0.21a 

(0.10) 
0.08a 

(0.01) 
0.06a 

(0.01) 
0.03a 

(0.03) 
16.6a 

(2.8) 
4.7a 

(0.3) 
1.2a 

(0.6) 
0.09a 

0.07) 
1.9a 

(1.2) 
2.4a 

(0.2) 
0.00a 

(0.00) 
0.35a 

(0.25) 
Days  

             
7 

6.1a 

(5.3) 
0.21a 

(0.16) 
0.08a 

(0.03) 
0.08a 

(0.04) 
0.02a 

(0.01) 
19.1a 

(3.3) 
4.9a 

(0.8) 
0.8a 

(0.4) 
0.06a 

(0.05) 
1.8a 

(1.0) 
2.0a 

(0.5) 
0.01a 

(0.02) 
0.54a 

(0.55) 

23 
18.0b 

(12.5) 
0.70b 

(0.31) 
0.19b 

(0.04) 
0.24b 

(0.11) 
0.07b 

(0.02) 
23.0a 

(6.1) 
5.6a 

(2.0) 
2.4b 

(2.2) 
0.23b 

(0.14) 
5.6b 

(2.4) 
4.0b 

(2.6) 
0.00a 

(0.01) 
2.79b 

(1.65) 
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 rainfall to give intermittent rainfall has been used in other rain simulator studies (e.g. 

Floyd 1981, Grierson and Oades 1977, Moore et al. 1983).Some rainfall simulator 

studies use distilled water and others collect rainfall or produce synthetic rainwater for 

experimentation.  One difference between my study and that of Herngren (2005) was 

that he used a minimum slope of 2.5% and collected water downslope of his collecting 

trough thus emulating runoff whereas my sites had no slope and runoff water was 

vacuumed up.  My runoff collection efficiencies were extremely poor compared to 

Herngren (2005).  My collection trough had rubberized sealant and there was no 

evidence of leakage from the weighted down collection trough yet my collection 

efficiency was below 5% compared to a collection efficiency of 33 to 97% reported by 

Herngran (2005). Mean temperatures in the Herngren study were 20.9º C in July and 

28.9º C in December compared to our average temperatures of   36º C during simulated 

rain events which may have caused larger than expected evaporation of  rain water.  

Typically rainfall is reported as mm or inches for a 24 hour period with no indication 

of the duration of the individual event. However the general consensus is that high 

intensity rain events are typically of short duration.  Locatelli and Hobbs (1995) reported 

an event which deposited 305 mm (12 inches) of rain in 42 minutes in Holt, Missouri in 

1947.  High-intensity and short-duration rainfall events, derived from data collected 

between 1990 and 2008; show an increase in exceptional rainfall events in Italy (Floris 

et al. 2010).  Violent rain showers are categorized as those producing > 50 mm hr in 

Great Britain (Met Office 2007).  Thus the simulated rainfall intensity of my simulator 

may be considered relevant for extreme events of high intensity short duration rainfall. 
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Change in rain event intensity can be due to the urban heat island effect (Shepherd et 

al. 2010).  The urban heat island can warm cities between 0.6º and 5.6º C above the 

surrounding suburbs and rural areas thus inducing additional shower and thunderstorms.  

Furthermore some cities can induce an annual precipitation increase of around 51%. 

Dixon and Mote (2003) examined the urban heat island-initiated storm events in Atlanta, 

Georgia. Most events reported in this study occurred during the night and near high 

density urbanized areas.  

Runoff collection was attempted during an actual rainfall event. This method of 

collection presented many challenges such as stagnant puddles at collection sites after 

the rain event had terminated and changes in rainfall duration and intensity over the 

course of the day. In attempt to solve for such problems, methods such as a stormwater 

team for collection and placement of collection bottles in stormwater drains were 

considered. Manpower, along with the cost to employ such techniques proved to be 

overwhelming and the rainfall simulator method was chosen as the best method in 

reproducing relatively natural rainfall events to collect stormwater runoff.  

Runoff was characterized by the characteristics of the surface, dry atmospheric 

deposition, rainfall intensity and duration. Dry atmospheric deposition is significantly 

increased in the urban environment from the dust, aerosol and gas particles accumulated 

on the grounds surface (Göbel et al. 2007, Hope et al. 2004). Findings from my study 

suggested that there is a significant increase amount of accumulation of pollutants on 

parking lot surfaces after 23 days since the last rain event. The predominance of 

nutrients such as DOC, nitrate-N, ammonium-N and dissolved organic nitrogen may be 
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attributed to gaseous nitrogen oxides from vehicle combustion and management of 

surrounding landscapes.  

Parking intensity significantly increased alkalinity and fluoride concentrations in my 

study. This might be attributed to pollutant sources from road abrasion and drip loss 

(grease, brake fluid, antifreeze, etc.). However as bicarbonate and fluoride are signatures 

of municipal tap water in my research region (Aitkenhead-Peterson et al. 2010b), 

irrigation of turf and landscaped strips in parking lots likely led to water runoff onto the 

parking lot which consequentially evaporated in the high Texas temperatures resulting in 

bicarbonate and fluoride build-up. Parking lot substrate in this study had a significant 

effect on runoff DOC, ammonium, sodium, magnesium, calcium, fluoride and sulfate 

concentrations where concrete typically produced higher concentrations of nutrients than 

asphalt. This might be attributed to pollutants being more strongly attached to the 

asphalt. My rainfall velocities may not have been enough to wash off additional 

pollutants from the asphalt. Asphalt surfaces are characterized by having deeper, rougher 

pores than concrete.  

The results reported here are precursors to further work. This study can be improved 

by 1) increasing conducting more rainfall simulations events, 2) increasing parking lot 

type and replication, and; (3) repeating the study addressing seasonal variability.  
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Conclusions 

My rainfall simulator was successfully used to simulate rainfall at five study sites in 

this study. However, a number of limitations were observed with the use of the rainfall 

simulator and data collection. These were: 

(1) low collection efficiencies, which can be attributed to higher summer 

temperatures and water being absorbed by pavements,  

(2) Limited variety in rainfall intensity compared to natural rainfall, 

(3) Limited variations in sites selected; and  

(4) Limited data collection over seasonal periods of time. 

The limitations noted above can be reduced or improved by increasing the number of 

study sites and increasing replications at each site with various rainfall intensities. 

Additionally, rainfall simulation should be conducted during every season to properly 

address seasonal variations in runoff quality. For example, traffic intensities for Brazos 

County, TX increases during the fall and spring and decreases during the summer and 

winter months. This essentially can increase or decrease runoff nutrient concentrations.  

Also, in this study, the first flush of nutrients from storm runoff under three scenarios 

has been quantified: 

(1)  Days since the last rain event had the most significant effect on surface water 

quality. 

(2) Parking intensity had an effect on runoff alkalinity and fluoride. 
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(3) Concrete produced higher DOC, DON, K, Ca runoff concentrations than did 

asphalt.  
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CHAPTER IV 

EVALUATING THE RELATIONSHIP BETWEEN LAND USE AND SURFACE 

WATER QUALITY USING BASINS PLOAD 

 

Introduction 

Surface runoff serves as sources of non point source pollution (Yong and Chen, 

2002). During a rain event, as water drains from an impervious surface, pollutants and 

contaminants are wash-off and carried from the land surface. This becomes a source of 

non point source pollution. With this phenomena, the quality of water in receiving water 

bodies are often degraded and it is conceivable that land-use has a direct affect on water 

quality.  

Section 303(d) of the Clean Water Act as regulated by US EPA Water Planning and 

Management Regulations require states to identify water within their jurisdiction that do 

not meet WQ limits. States are required to develop Total Maximum Daily Loads 

(TMDLs) for those specific pollutants of concern. TMDLs are the allowable amount of 

pollutants a stream can receive and still meet Federal mandated water quality standard 

and met its specific use(s).  

As a result, when identifying one of the most studied aspects of impervious land 

cover is its relationship with runoff and water quality it is better to understand the 

process. In a study of its effects, predictive modeling is the modern approach to linking 

water pollution to urbanization utilizing spatially generated maps (Lenzi and Di Luzio 

1997). Models are often used as an extrapolating mechanism to estimate and predict 
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future outcomes of hydrological processes and the evolution of hydrological variables 

such as water quality and quantity over time. Modelers can examine and evaluate the 

predicted outcomes and impact of management practices and development on future 

hydrological responses. Additionally, the use of models allows the loadings into a 

surfaces‟ waterbody to be predicted.  

Models are tools that can used to support the development of TMDLs (Borah et al. 

2006). Models examine the source of pollutants and water, anthropogenic impacts on 

land cover and use, and the possibility of changing the use on future outcomes. Engel et 

al. (1993) evaluated three NPS pollution models integrated with GIS. Their model 

simulated watershed responses to a series of varying rain events. The correlation 

coefficients for the Areal Nonpoint Source Watershed Environment Response 

Simulation (ANSWERS) hydrograph response compared with the actual response with a 

correlation coefficient between 0.87 and 0.98. In another study, Lenzi and Luzio (1997) 

used the Agriculture Non-Point Source (AGNPS) model to examine runoff and soil 

erosion in the Alpone watershed. This model properly measured estimates of nitrogen 

and phosphorous and provided realistic estimates of nutrient runoff.  

There is an increasing interest in applying remote sensing and Geographic 

Information Systems (GIS) to map and monitor urbanization, land use/land cover change 

and the effects on the hydrological cycle (Jat et al. 2009), furthermore, GIS is a useful 

tool for estimating non point source pollution over spatial and temporal variability.   

The United States Environmental Protection Agency created a multi-purpose 

environmental analysis system for use by regional, state and local stakeholders for 
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watershed studies. Better Assessment Science Integrating Point and Non Point Sources 

(BASINS) is a decision making support mechanism utilized by integrating management 

alternatives, environmental examination, and analysis support (US EPA 2001a). 

Designed to be flexible, BASINS supports GIS based tools and operates in a GIS 

environment. Tong and Chen (2002) used BASINS to model the effects of land use on 

water quality in the East Fork Little Miami River Basin, a tributary to the Ohio River. 

Their study simulated total nitrogen, total phosphorus and Fecal Coliform using 

BASINS Non Point Source Model. All their simulated values were close to USGS 

monitored values reported in a modeling scenario using L-THIA.  

In this study, GIS will be applied as an automated tool for estimating pollutants in 

Brazos County, Texas. Developed by CH2M HILL, BASINS Pollutant Loading 

Application (PLOAD) v3.0 (2001) mechanism is used to evaluate pollutant loadings 

within a particular watershed, limiting watershed scales to 2.6 km2.   

PLOAD, a simplified, GIS-based model, has the capability of estimating non point 

source pollution for urban and suburban watersheds on an annual basis using a GIS 

interface that can be used by planners and managers. PLOAD has the ability to estimate 

any user-specified pollutant, i.e., total suspended solids, nutrients, metals and fecal 

coliform. PLOAD requires both GIS and tabular data, land use data, watershed boundary 

data, pollutant loading data tables, and impervious spatial data, PLOAD can evaluate the 

data and illustrate the distinct relationship between land use and water quality impacts 

(PLOAD 2001b). 
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The objective of this study was to spatially explore a correlation between impervious 

areas and the effects on water quality utilizing Better Assessment Science Integrating 

Point and Non Point Sources (BASINS) Pollutant Loading Application (PLOAD), 

Geographic Information Systems and Remote Sensing using a watershed-based 

approach, and to model the impacts of different land types in a local watershed. The 

aims of this study were to further enhance our understanding of the effects of land use on 

hydrological processes.  

 

Study Area  

For this study, PLOAD v.3 (US EPA 2001b) was used. This study consisted of two 

parts: predicted watershed annual loads using 2001 National Land Cover Data (NLCD) 

data set and 2008 National Agriculture Imagery Program digital ortho quarter quad tiles 

(DOQQs) classified impervious surface image.  

Three (3) independent watersheds located in Brazos County, Texas were selected 

(Figure 7). Tributaries to the Brazos River, this study encompass 21114 acres located in 

the cities of Bryan and College Station, Texas and their local surrounding rural areas. It 

is located at (northern point – N 30˚43΄7.188˝ W 96˚21΄29.053˝ and southern point N 

30˚33΄55.833˝ and W 96˚19΄26.364˝). The study is located in a humid subtropical 

climatic zone which averages 1000 mm rainfall per year. Rainfall events are typically 

high intensity and of short duration.  
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As the Brazos Valley population grows, land use is undergoing significant changes. 

As of the 2000 Census, Bryan and College Station metropolitan area population was 

184, 885 and an estimated population of 212, 268 in 2009.  

 

 

 

Figure 7. Watershed boundaries for PLOAD model. 
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Materials and Methods 

 Data Preparation  

 Input data files for PLOAD were organized based on GIS data supplied by the 

Spatial Sciences Laboratory (SSL), Texas A&M University, City of College Station, 

Texas and City of Bryan, Texas GIS Departments and tabular data. The 2004 National 

Sediment Quality Database (NSQD) version 1.1 (Table 6) was utilized. Pitt et al. (2004) 

collected and evaluated stormwater data from nationwide National Pollutant Discharge 

Elimination System (NPDES) municipal separate storm sewer system (MS4) stormwater 

permit holders from 17 states across the U.S. and 3,770 separate storm events. Values 

were derived from more than 200 municipalities and collected over a 10-year period. 

NSQD data set includes a summary of the national EMC values obtained. Relevant 

regional Event Mean Concentration (EMC) data tables (Table 7) were compiled from 

existing published values in mg/L as provided in the 1998 Future Needs Assessment 

Report for Austin, Texas (Barrett et al. 1998).  Barrett et al. (1998) examined 18 

watersheds with varying land uses of commercial, industrial, single-family residential, 

multifamily residential, office, transportation, and developed. This study calculated 

EMC values for Austin, Texas urban watersheds as a part of the City of Austin 

Stormwater Monitoring Program to develop estimates of local pollutant loadings. This 

regional data set is provided by the PLOAD user‟s manual.  Additionally, local area 

pollutant loading values were collected through rainfall simulation and field sampling as 

completed in Chapter II (Table 8) were used in the simulation of runoff. Imperviousness 

tables were taken from the United States Department of Agriculture‟s Technical Release 
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55 document (U.S. SCS 1986) in the format of impervious fraction (0.00 to 1.00) (Table 

9). 

 
 
 

Table 6. 2004 National Stormwater Quality Database NSQD, version 1.1 (Pitt et al. 
2004). 

 
Landuse TDS 

(mg L-1) 
TSS 

(mg L-1) 
NH3 

(mg L-1) 
NO2 + NO3 

(mg L-1) 
TKN 

(mg L-1) 
TP 

(mg L-1) 
Residential 72 49 0.32 0.60 1.40 0.30 

Mixed Residential 86 68 0.39 0.60 1.35 0.27 

Commercial 74 42 0.50 0.60 1.60 0.22 

Mixed Commercial 70 54 0.60 0.58 1.39 0.26 

Industrial 92 78 0.50 0.73 1.40 0.26 

Mixed Industrial 80 82 0.43 0.57 1.00 0.20 

Institutional 52.5 17 0.31 0.60 1.35 0.18 

Freeways 77.5 99 1.07 0.28 2.00 0.25 

Mixed Freeways 174 81 nd 0.60 1.60 0.26 

Open Space 125 48.5 0.18 0.59 0.74 0.31 

Mixed Open Space 109 83.5 0.51 0.70 1.12 0.27 
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Table 7. Event mean concentration data table complied from regional studies used in our PLOAD model (Barrett et al. 1998). 

Land use Type Ammonia-N  
(mg L-1) 

BOD 
(mg L-1) 

DP 
(mg L-1) 

Nitrate 
(mg L-1 ) 

TKN 
(mg L-1) 

TP 
(mg L-1) 

TSS 
(mg L-1) 

Commercial 0.35 16.75 0.27 0.66 2.28 0.45 210.30 
Industrial 0.31 11.67 0.15 1.46 1.68 0.63 205.30 

Multiple Family Residence 0.26 14.50 0.32 0.50 1.35 0.40 206 
Office 0.22 14 0.14 0.89 1.58 0.22 66 

Single Family Residence 0.22 8.60 0.16 0.76 1.24 0.31 181 
Transportation 0.40 8 x 0.05 1.15 0.26 231.50 
Undeveloped 0.74 4 0.04 1.23 0.88 0.15 95 

 

 

 

Table 8. Field sampling event mean concentration data table and roof EMC adapted values (Aitkenhead-Peterson et al. 2010a). 
Land use Type NO3-N 

 
NH3-N 

 
PO4-P 

 
Alkalinity Na+ K+ Mg2+ Ca2+ NO3

- SO4
2- 

 (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) (mg L-1) 
Commercial 0.12 0.15 0.04 19.43 5.16 0.98 0.14 3.20 0.59 1.58 
Recreational 0.08 0.06 0.03 16.64 4.67 1.21 0.09 1.89 1.27 0.35 

Multiple Family Residential 0.14 0.15 0.05 25.20 5.40 2.46 0.14 3.88 1.52 1.42 
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Table 9. Imperviousness data table used in our PLOAD model. This table reports the percent 
imperviousness associated with each land use.  

Level 2 Classification Impervious Percentage  

Residential 0.5 
Commercial and Services 0.85 
Industrial 0.72 
Trans, Comm, Utilities 0.65 
Industrial and Commercial Complexes 0.75 
Mixed or Urban Built-up 0.6 
Other Urban or Built-Up 0.15 
Cropland and Pasture 0.02 
Orch, Grov, Vnyrd, Nurs, Orn 0.02 
Confined Feeding Ops 0.25 
Other Agriculture Land 0.02 
Herbaceous Rangeland 0.02 
Shrub and Brush Rangeland 0.02 
Mixed Rangeland 0.02 
Deciduous Forest Land 0.02 
Streams and Canals 1 
Lakes 1 
Reservoirs 1 
Forested Wetland 0.02 
Non-forested Wetland 0.02 
Bare Rock Exposed 1 
Strip Mines 0.5 
Transitional Areas 0.5 

 

 

The map with 3 independent watersheds was obtained by the SSL and was used as the 

watershed boundary. Using the Soil and Water Assessment Tool (SWAT) watershed boundaries 

were delineated at the catchment level. A hydrological modeling extension to ArcGIS 9.1 

Desktop was used to generate a polygon shape file with catchment boundaries. Land cover data 

sets provided for the study were available in raster (grid) format and were converted to vector 

(polygon files) using the Spatial Analyst extension in ArcGIS 9.1. The 2001 NLCD land use and 

impervious data (Figure 8) for the study area were obtained from the Landsat Thematic Mapper 

data set acquired by the Multi-Resolution Land Characteristics Consortium (MRLC). The 2008 
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NAIP (Figure 9) imagery was classified using a supervised classification and converted to vector 

(polygon) format as reported in Chapter II.  

 

 

Figure 8. PLOAD boundaries for the three independent watersheds with 2001 NLCD impervious 
cover.  
 

 

 

Carter

Bee

Wolf Pen

2001ImperviousNLCD

GRIDCODE

11

21

22

23

24

31

41

42

43

52

71

81

82

90

95

Open Water

Developed, Open Space

Developed,  Low Intensity

Developed,  Medium Intensity

Developed,  High Intensity

Barren Land

Mixed Forest

Evergreen Forest

Deciduous Forest  

Scrub/Shrub

Grassland/Herbaceous

Pasture/Hay

Cultivated Crops

Woody Wetlands

Emergent Herbaceous Wetland

PLOAD WATERSHED BOUNDARY 

2001 NLCD Impervious Cover 



66 
 

 
 

 

63 

 

Figure 9. PLOAD boundaries for the three independent watersheds with classified NAIP 
impervious cover.  
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Figure 10. PLOAD conceptual framework used to determine scenario modeling direction.
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The Analyses 

This study developed a series of predicted annual pollutant loads scenarios to use 

PLOAD. The idea was to model several scenarios that reflect data availability and 

accuracy. PLOAD has the ability to produce maps with total pollutant loads per 

watershed in lb/yr (Figure 10).  All formulas and equations that will require utilizing 

PLOAD will come from the PLOAD user‟s manual (U.S. EPA 2001b).  There are two 

main equations that are required to calculate loads for each of the specified pollutant 

type, using the “simple method.”  First, the runoff coefficient for each land use type 

must be derived with the equation: 

Rvu = 0.05 + (0.009 * Iu)     (2) 

             where: Rvu = Runoff Coefficient for land use type u, inches (runoff) / inches (rainfall)
  
                          Iu   = Percent Imperviousness  
  

The pollutant loads are then calculated with the following equation: 

                                            (3) 

             Where:     = Pollutant load, lb/yr 
 
                          P = Precipitation, in/yr (assumed 46 for study area) 
 
                             = Ratio of storms producing runoff (default = 0.9) 
 

       = Runoff Coefficient for land use type u, inches (runoff) / inches  

(rainfall) 

 

                                      CU = EMC for land use type u, mg/1 
 
                          AU = Area of land use type u, in ac 
   (PLOAD converts areas from sq m to ac prior to using the information in the above 
equation) 
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EMCs are single indexes used to characterize constituent concentrations of 

pollutants. Using values from the state of Texas, these values represent a flow 

concentration that will be calculated as the total pollutant load divided by the total runoff 

volume for an event duration tr. 

To begin the analysis, for the first scenario (Figure 10), the commonly used 2001 

NLCD land cover map (Di Luzio et al. 2005, Geza and McCray 2008, White et al. 2010) 

for the 3 independent watersheds was selected. This area was clipped by the watershed 

study area boundary. PLOAD prompts specified user parameters. Watershed boundary 

and land-use polygons files were selected. The 3 independent watersheds were selected 

for evaluation. The simple method calculation method was selected and prompted user 

annual precipitation and ratio of storms (Figure 11). National, regional, and local EMC 

values were used to evaluate data numbers. Pollutants loads were evaluated without best 

management practices and selected out puts were produced. 
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Figure 11. Scenario I and II flow chart. 
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The second scenario (Figure 10) utilized the impervious surface classified image 

created in Chapter II for the 3 local independent watersheds. This scenario applied the 

EMC values collected from field sampling data and selected maps and tabular outputs 

were produced. The purpose of these scenarios was to develop the capacity for using this 

model with local and regional data to demonstrate the appropriateness of accurate, up-to-

date data. Pitt et al. (2004) indicated that stormwater managers need to establish a local 

monitoring program to obtain reliable estimates of stormwater quality. Factors such as 

landuse classification, seasonality, rainfall intensity and duration, runoff amounts all 

affect the reported pollutant concentrations in national and regional reports. Di Luzio et 

al. (2005) assessed the impact of input data variation on water runoff and sediment yield 

outputs. Results from this study showed land use land cover maps have a significant 

effect on predicted runoff concentrations and sediment loads. The simulations of annual 

pollutant loads under the two scenarios were conducted and output maps with total 

pollutant loads per watershed in lbs/yr were produced. Additionally, tabular output 

summary tables with total pollutant were for the study area in lb/yr.  

GIS analysis predicted yearly pollutant loads for the watershed selected. In scenario I 

the 2001 NLCD along with national, regional, and local water quality data (Pitt et al. 

2004 and Barrett et al. 1998), PLOAD estimated predicted loads for Wolf Pen, Bee and 

Carter Creek Watersheds (Table 10). The result of the modeling application estimates 

pollutant loads over a period of a year. For example, Wolfpen can be expected to 

produce loads of over 203 lbs per year of NH3-N, 28369 lbs per year of total suspended 
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solids, and 126.44 lbs per year of total phosphorus when modeling with Pitt et al. (2004) 

national data set.  

 

Table 10. PLOAD estimated output loads for scenario I.  

    
NH3-N 
(lbs/yr) 

NO2+NO3 
(lbs/yr) 

NO3
- 

(lbs/yr) 
TKN 
(lbs/yr) 

TP 
(lbs/yr) 

TSS 
(lbs/yr) 

Wolfpen 
       

 
National 203 309.53 x 678.74 126.44 28369 

 
Regional 124 x 321.18 761.72 760.46 72273 

 
Local 25 x 282.7 x x x 

Bee 
       

 
National 507 804 x 1716.28 334.55 75758 

 
Regional 305 x 839.02 1843.89 389.5 173341 

 
Local 48 x 749.96 x x x 

Carter 
       

 
National 1130 1799.25 x 3931.06 763.71 164622 

 
Regional 717 x 2016.06 4355.19 870.04 377705 

 
Local 134 x 1953.86 x x x 

 

 

The results of the modeling application in Scenario II estimated yearly pollutant 

loads for the three selected watersheds (Table 11). Scenario II utilized the re-classified 

NAIP imagery from Chapter I. This image allows for the user to gain a better estimate of 

which surface types in urban areas are producing higher nutrient concentration. For 

example, Carter Creek was estimated to produce 110 lbs per year of NO3-N and 101 lbs 

per year for NH4-N. Additionally, results produced from scenario II showed (Figures 12 

and 13)  that Wolf Pen, a completely 100% urbanized area, produced more NO3-N and 

NH3-N than other watersheds. This can be attributed to recent construction of new 
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apartments and strip developments. Additionally, several pet owners‟ visits Wolf Pen 

Amphitheater and animal feces can also increase pollutant concentrations. Lastly, Wolf 

Pen is irrigated and regularly fertilized which increased levels of nitrogen, phosphorous 

and potassium.  

 

  

Figure 12. Comparison of watersheds nutrient concentrations results in lbs./ac./yr. 

 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

N
u

tr
ie

n
t 

co
n

ce
n

tr
at

io
n

s 
in

 lb
s.

/a
c.

/y
r

Event mean concentration nutrients

Wolf Pen

Bee

Carter



74 
 

 
 

49 

  

Figure 13. Comparison of watersheds EMC results in lbs./ac./yr. 

 

 

 

Table 11. PLOAD estimated outputs from scenario II. 
Watershed NO3-N 

(lb/yr) 
NH3-N 
(lb/yr) 

PO4-P 
(lb/yr) 

Alkalinity 
(lb/yr) 

Na+ 

(lb/yr) 
K+ 

(lb/yr) 
Mg2+ 

(lb/yr) 
Ca2+ 

(lb/yr) 
NO3

- 

(lb/yr) 
SO4

2- 

(lb/yr) 

Wolfpen 21 20 7 4891 1216 258 22 546 212 150 

Bee 52 48 17 11890 2957 627 53 1328 516 364 

Carter 110 101 36 24989 6215 1317 112 2792 1084 765 

 

 

 

 

The comparison of the estimated NH4-N pollutant load between data set types in 

scenario I was found to report a significant difference (Figure 14). For example, 
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Wolfpen NH4-N estimated values acquired from the national data in scenario I were 

approximately 62 % higher than values acquired from regional data. Additionally, NH4-

N estimated national values were approximately 700% higher than those collected 

locally from rainfall simulation.  

 

 

 

Figure 14. Comparison of the estimated NH3-N pollutant load from scenario I. Scenario I 
employed runoff data from the National NSQD, Austin, TX and local rainfall simulation 
data sets.  
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Discussion 

The estimated pollutant loads and observed data in the modeling application provide 

users with resourceful information in deciding data applicability for a watershed, water 

quality prediction model.  

In this study, PLOAD was used to estimate pollutant loads for three watersheds in 

Brazos County, TX. Pollutant loads estimated from national, regional, and local data 

reported a vast difference. The pollutant load differences between the three data sets may 

be attributed to data collection and methodology. For example, the NSQD was collected 

from „grab sampling‟ during the first part of 3,770 separate storm events over a ten-year 

period. The events varied in intensity and duration and were collected over several parts 

of the U.S. Some communities within this study collected grab samples during the first 

30 minutes of a storm event. Others were collected as composite samples. This data set 

contained factors that may affect stormwater pollutant concentrations and quite likely 

contribute to the different pollutant loads observed. National data sets were separated 

into five land use categories, residential, mixed residential, commercial, mixed 

commercial and industrial. Mixed land uses were not taken into consideration in their 

data set and will be evaluated at a later time. Almost 2/3rds of the monitoring sites in the 

National data set contained percent impervious data. Additionally, some samples 

represent “first flush” while other samples represented composite sampling techniques. 

The regional data lacked information on the sample period and sampling techniques. 

Local data was obtained using the data generated in Chapter III. Limitations from that 

study include data lacking seasonal variation and limited site selection. The local data set 
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only sampled parking lots and not other impervious surfaces such as roof runoff which 

would have been a valuable addition to the study and easier to collect relative to parking 

lot runoff. The data for the local study only represented the “first flush” of runoff under 

higher rainfall intensities utilizing a rainfall simulator.  The local data would also have 

benefited by using different rainfall intensities. 

Goldshleger et al. (2009) combined data sets from case studies in Israel with data 

sets from Australia and the USA to generalize the relationship between runoff, rainfall 

and impervious areas. Although the data sets they used had different measuring systems 

and methodologies, their study produced gross estimates of storm runoff in urban 

regions with three hydrological models. My methodology was similar to that of 

Goldshleger et al. (2009) in that the data used in the PLOAD model came from three 

very different sources with differing methodologies for collection of data. The difference 

in my study relative to that of Goldshleger et al. (2009) was that I wished to compare 

data collected at different resolutions; national, regional and local to allow 

recommendations for the resolution needed for modeling nutrient runoff from 

impervious surfaces. 

It is important when drawing conclusions for urban and city ordinances that local 

data is used, if possible. Scenario I in my results illustrated the practical application of 

capturing local land use data when using programs such as PLOAD to model pollutant 

runoff. Furthermore data used from local runoff chemistry may prevent  misleading  

decision making that can be made from predictive modeling. 
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When basing pollution loading in urban watersheds on runoff collected from 

impervious surfaces, other factors such as runoff from urban open areas such as games 

parks and neighborhood lawns under turfgrass or landscapes are not taken into account 

as contributing to urban freshwater pollution as demonstrated by Aitkenhead-Peterson et 

al. (2009, 2010b).  Use of local data changed the estimates for NO3
- and NH3-N runoff. 

While this may be a result of bias because the local data was collected from parking lot 

surfaces, it nevertheless demonstrates the contribution of nutrients from impervious 

surfaces in urban and suburban watersheds. Wolfpen creek watersheds houses the Texas 

A&M golf course as well as several neighborhood parks and greenspace for the 

amphitheater.  These green spaces in Wolfpen watershed are irrigated regularly with 

municipal tap water high in bicarbonate and sodium which may be inducing sodic soil 

conditions, the result is release and runoff of carbon and orthophosphate to impervious 

surfaces as well as grassy swales and surface waters (Aitkenhead-Peterson et al. 2009, 

2010b).  Runoff of fertilizer N from these highly managed greenspaces in Wolfpen is 

also highly likely.  The consequence of this irrigation runoff to local impervious 

surfaces, especially during hot summer months when evaporation is high, is a buildup of 

nutrients on impervious surfaces, ready to be mobilized during a rain event. 

Furthermore, Wolfpen was undergoing significant construction of new lofts, 

condominiums and apartments during sampling time which may also have contributed to 

a higher pollution load.  Inversely, Bee and Carter watersheds have 30% less urban open 

greenspace areas and most of these are older sub-divisions with neighborhood parks that 
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are not as intensely managed or irrigated thus reducing the contribution of fertilizer 

runoff to impervious surfaces.  

As rainfall frequency, volume and intensity are important characteristics in 

estimating runoff volume and concentration of constituents, differences in flow rates and 

therefore the runoff produced when using data from the national, regional and local data 

sets may affect the accuracy of the PLOAD model.  Combining data sets with additional 

national, regional and a revised local data set could possibly be used to reflect similar 

collection methodologies and land use types in future studies. The local data set was 

limited in site selection and seasonality. The regional data set lacked information in 

collection techniques and the national data set was collected using various collection 

methods and a combination of smaller datasets. Therefore, limitations are taken into 

consideration to increase PLOAD‟s capabilities in estimating pollutant loads for local, 

regional and national data sets.  
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CHAPTER V 

SUMMARY 

 

As communities increase in population size, more land is covered with impervious 

surface to fit the need of the growing city. There is a direct negative correlation between 

urbanization and water quality. Impervious surfaces such as hard-packed soils, concrete 

and asphalt all impact the transport of chemicals to downstream waterbodies. Concrete 

produces the highest percentage of runoff flow as opposed to hard-packed soils, which 

produce less runoff than concrete and asphalt. Rainfall frequency, volume and intensity 

are important characteristics in estimating runoff volume and concentration of 

constituents. Arid or semi-arid regions are known to produce high nutrient EMCs. The 

most common pollutants impairing water quality from impervious are sediments, 

nutrients, heavy metals and oxygen demanding matter. Evaluating all the factors that 

affect runoff from an urban environment can assist land use planners in making effective 

land use policies to help reduce the effects of urbanization on water quality.  

The first objective of this study was to effectively use ENVI‟s remote sensing 

software to accurately determine impervious surfaces to enhance water quality modeling. 

Results indicated that the classified image had an overall accuracy assessment of 85%. 

The results from this classification are beneficial in pinpointing exact impervious types 

and the source of pollutants emitted from them. Asphalt accuracy was lowered due to 

shadows. 
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This dissertation also aimed to establish a relationship between impervious surfaces 

and water quality, while focusing on surface materials such as asphalt and concrete. The 

use of rainfall simulation in the examination of first flush of nutrients in storm runoff 

allowed for field sampling to mimic natural rainfall and runoff condition. This method 

control physical factors and increase the mobility of site selection. However, my rainfall 

runoff efficiencies were extremely poor as compared to the Herngren (2005) study.  

Concrete produced higher DOC, DON, K, Ca runoff concentrations than did asphalt. 

Additionally, days since last rainfall event had the most significant effect on surface 

water quality. Parking intensity had an effect on runoff and alkalinity. 

Lastly, this study spatially explored the correlation between impervious area and the 

effects on surface water quality using BASINS PLOAD modeling application. This 

study demonstrated the importance of using local data in hydrological modeling. Results 

shown that using local data coupled with classified impervious type image yields a better 

result and more detailed outputs.  

 

Limitations and Future Research  

Although the methodology and relationships established throughout this research 

will strengthen the knowledge of impervious surfaces and the effects on surface water 

quality, there still remain a number of critical areas that have not been addressed through 

this research. Therefore, it is recommended that future research to be undertaken in the 

following areas: 
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(1) The collection and examination of seasonal variability on samples collected 

from rainfall simulation parking lot sites. Samples were collected in only one 

season and results shown the number of dry days prior to rain event had a 

significant impact on surface water quality 

(2) Increasing the number of selected sites for rainfall simulation to included 

various parking intensities and surface types 

(3) Random selections of study site areas 

(4) Employing an unsupervised classification to extract impervious surface types 

areas to compare the difference in methodology.  

(5) Validation of the PLOAD model to include more regional and local parking 

lot study areas to compare the accuracy of using local, up-to-date data in 

estimating urban runoff. Additionally, include other land use types, i.e., 

pervious and impervious surfaces, to increase the models‟ accuracy and 

reduce bias.  
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APPENDIX A 

ID X Y Reference 

ID#1 751285.50000000000 3391666.50000000000 6 
 ID#2 759920.50000000000 3395771.50000000000 2 
 ID#3 754458.50000000000 3387753.50000000000 1 
 ID#4 761690.50000000000 3386016.50000000000 1 
 ID#5 755939.50000000000 3399101.50000000000 1 
 ID#6 754195.50000000000 3400867.50000000000 7 
 ID#7 754836.50000000000 3386895.50000000000 1 
 ID#8 761874.50000000000 3388759.50000000000 2 
 ID#9 751986.50000000000 3393777.50000000000 1 
 ID#10 750622.50000000000 3394704.50000000000 1 
 ID#11 756054.50000000000 3387650.50000000000 2 
 ID#12 749806.50000000000 3388888.50000000000 1 
 ID#13 759898.50000000000 3391846.50000000000 2 
 ID#14 757779.50000000000 3384900.50000000000 1 
 ID#15 749915.50000000000 3400637.50000000000 2 
 ID#16 752490.50000000000 3399015.50000000000 1 
 ID#17 753560.50000000000 3389289.50000000000 1 
 ID#18 751649.50000000000 3402441.50000000000 1 
 ID#19 757662.50000000000 3394220.50000000000 2 
 ID#20 758270.50000000000 3389847.50000000000 1 
 ID#21 758391.50000000000 3400559.50000000000 1 
 ID#22 753372.50000000000 3391997.50000000000 2 
 ID#23 749930.50000000000 3393927.50000000000 2 
 ID#24 750633.50000000000 3384250.50000000000 1 
 ID#25 759313.50000000000 3390004.50000000000 1 
 ID#26 755186.50000000000 3395331.50000000000 1 
 ID#27 760047.50000000000 3398369.50000000000 1 
 ID#28 756401.50000000000 3386867.50000000000 1 
 ID#29 750938.50000000000 3401058.50000000000 1 
 ID#30 750246.50000000000 3398717.50000000000 1 
 ID#31 756054.50000000000 3397641.50000000000 1 
 ID#32 754895.50000000000 3397155.50000000000 2 
 ID#33 751000.50000000000 3387581.50000000000 1 
 ID#34 751244.50000000000 3397201.50000000000 5 
 ID#35 757204.50000000000 3398858.50000000000 1 
 ID#36 754890.50000000000 3391438.50000000000 6 light colored rooftop 

ID#37 751467.50000000000 3395482.50000000000 1 
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ID#38 759500.50000000000 3389767.50000000000 1 
 ID#39 760302.50000000000 3401660.50000000000 2 
 ID#40 758105.50000000000 3388362.50000000000 2 
 ID#41 760739.50000000000 3389282.50000000000 2 
 ID#42 761219.50000000000 3400708.50000000000 2 
 ID#43 757138.50000000000 3399922.50000000000 1 
 ID#44 749873.50000000000 3388057.50000000000 2 
 

ID#45 757952.50000000000 3390849.50000000000 6 
light colored 

rooftop 

ID#46 750909.50000000000 3393758.50000000000 1 
 ID#47 753511.50000000000 3390616.50000000000 6 
 ID#48 755311.50000000000 3394700.50000000000 1 
 ID#49 751160.50000000000 3396518.50000000000 6 
 ID#50 756398.50000000000 3403092.50000000000 4 metal roof 

ID#51 751500.50000000000 3389822.50000000000 0 

dirt parking lot, 
looks like 
concrete 

ID#52 756484.50000000000 3389034.50000000000 2 
 ID#53 760401.50000000000 3396672.50000000000 1 shadow from tree 

ID#54 750400.50000000000 3385496.50000000000 2 
 ID#55 758904.50000000000 3398697.50000000000 1 
 ID#56 751774.50000000000 3384299.50000000000 2 
 ID#57 751236.50000000000 3402478.50000000000 1 
 ID#58 755430.50000000000 3384726.50000000000 2 
 ID#59 761926.50000000000 3395654.50000000000 1 
 

ID#60 752934.50000000000 3393982.50000000000 6 
light colored 

rooftop 

ID#61 761632.50000000000 3384449.50000000000 2 
 ID#62 758559.50000000000 3397983.50000000000 1 
 ID#63 750591.50000000000 3392886.50000000000 2 
 ID#64 758173.50000000000 3387660.50000000000 1 
 ID#65 761996.50000000000 3389734.50000000000 2 
 ID#66 755616.50000000000 3402051.50000000000 1 
 ID#67 758543.50000000000 3385649.50000000000 6 
 ID#68 752408.50000000000 3387434.50000000000 1 
 ID#69 759691.50000000000 3399659.50000000000 1 
 ID#70 758620.50000000000 3386589.50000000000 1 
 ID#71 751044.50000000000 3384958.50000000000 2 
 ID#72 760243.50000000000 3399944.50000000000 1 
 ID#73 751742.50000000000 3385057.50000000000 2 
 ID#74 753687.50000000000 3394559.50000000000 5 asphalt roof 
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ID#75 757446.50000000000 3400232.50000000000 2 
 ID#76 759931.50000000000 3393652.50000000000 2 
 ID#77 755850.50000000000 3387811.50000000000 6 
 ID#78 750019.50000000000 3398243.50000000000 1 
 ID#79 762388.50000000000 3390968.50000000000 2 
 ID#80 752335.50000000000 3397663.50000000000 1 shadow from tree 

ID#81 753513.50000000000 3399841.50000000000 4 
 ID#82 753784.50000000000 3392103.50000000000 2 
 ID#83 751983.50000000000 3397133.50000000000 2 
 ID#84 754785.50000000000 3397989.50000000000 1 
 ID#85 749802.50000000000 3401756.50000000000 2 
 ID#86 756386.50000000000 3397472.50000000000 1 
 ID#87 761606.50000000000 3390746.50000000000 1 
 ID#88 758185.50000000000 3393478.50000000000 1 
 ID#89 758029.50000000000 3389589.50000000000 1 
 ID#90 749890.50000000000 3398141.50000000000 1 
 ID#91 759096.50000000000 3401512.50000000000 2 
 ID#92 762417.50000000000 3401695.50000000000 1 
 ID#93 760446.50000000000 3389610.50000000000 2 
 ID#94 756836.50000000000 3397474.50000000000 2 
 ID#95 759659.50000000000 3401762.50000000000 2 
 ID#96 762207.50000000000 3395699.50000000000 1 shadow from tree 

ID#97 760031.50000000000 3384982.50000000000 0 

shadow from 
constructioin 
equipment on 

bare soil 

ID#98 759380.50000000000 3387351.50000000000 1 
 ID#99 750611.50000000000 3389194.50000000000 1 
 ID#100 760161.50000000000 3400476.50000000000 1 
 ID#101 757871.50000000000 3400530.50000000000 1 
 ID#102 758347.50000000000 3400494.50000000000 1 
 ID#103 755829.50000000000 3386829.50000000000 1 
 ID#104 753484.50000000000 3394174.50000000000 6 
 ID#105 754316.50000000000 3398561.50000000000 1 
 

ID#106 750711.50000000000 3398670.50000000000 6 
shadow over 

railroad 

ID#107 761930.50000000000 3401167.50000000000 1 
 ID#108 757310.50000000000 3399374.50000000000 1 
 ID#109 758296.50000000000 3396295.50000000000 1 
 ID#110 758268.50000000000 3397440.50000000000 1 
 ID#111 752354.50000000000 3400409.50000000000 1 
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ID#112 758913.50000000000 3398926.50000000000 1 
 ID#113 755275.50000000000 3394230.50000000000 6 
 ID#114 755270.50000000000 3395924.50000000000 6 
 ID#115 754298.50000000000 3390290.50000000000 6 
 ID#116 756186.50000000000 3389703.50000000000 5 asphalt roof 

ID#117 755270.50000000000 3396848.50000000000 5 asphalt roof 

ID#118 755969.50000000000 3388063.50000000000 5 
 ID#119 751578.50000000000 3398127.50000000000 1 junk in a field 

ID#120 749710.50000000000 3401105.50000000000 6 
 ID#121 752904.50000000000 3387102.50000000000 6 
 ID#122 756476.50000000000 3394936.50000000000 1 sparse grass 

ID#123 755866.50000000000 3388853.50000000000 5 asphalt roof 

ID#124 758216.50000000000 3394999.50000000000 1 shadow from roof 

ID#125 755956.50000000000 3388323.50000000000 6 
 ID#126 754751.50000000000 3387287.50000000000 6 
 ID#127 755277.50000000000 3391663.50000000000 6 
 ID#128 757029.50000000000 3386074.50000000000 6 
 ID#129 755648.50000000000 3393049.50000000000 6 
 

ID#130 753805.50000000000 3394903.50000000000 1 
shadow from 

building 

ID#131 762443.50000000000 3396032.50000000000 1 
shadow from 

building 

ID#132 752408.50000000000 3396444.50000000000 5 asphalt roof 

ID#133 756268.50000000000 3386837.50000000000 6 
 ID#134 749797.50000000000 3397601.50000000000 1 shadow from tree 

ID#135 754324.50000000000 3396009.50000000000 6 
 ID#136 750974.50000000000 3400078.50000000000 5 asphalt roof 

ID#137 753649.50000000000 3397237.50000000000 6 
 ID#138 752474.50000000000 3400993.50000000000 6 
 ID#139 757331.50000000000 3394619.50000000000 7 stream 

ID#140 755295.50000000000 3392546.50000000000 5 asphalt roof 

ID#141 759191.50000000000 3384807.50000000000 6 
 ID#142 752444.50000000000 3401066.50000000000 6 
 ID#143 760873.50000000000 3393138.50000000000 1 shadow from tree 

ID#144 751394.50000000000 3394999.50000000000 1 
 ID#145 761805.50000000000 3394160.50000000000 6 
 ID#146 760615.50000000000 3389313.50000000000 5 
 ID#147 754931.50000000000 3402622.50000000000 7 
 ID#148 758158.50000000000 3391117.50000000000 4 
 ID#149 755371.50000000000 3387398.50000000000 6 
 ID#150 757119.50000000000 3400708.50000000000 1 
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ID#151 755602.50000000000 3403071.50000000000 7 
 ID#152 755604.50000000000 3398006.50000000000 1 
 ID#153 761788.50000000000 3386495.50000000000 0 bare soil 

ID#154 753543.50000000000 3387232.50000000000 4 
 

ID#155 753605.50000000000 3388418.50000000000 6 
concrete parking 

lot 

ID#156 752721.50000000000 3392762.50000000000 7 
 ID#157 750397.50000000000 3394348.50000000000 7 
 ID#158 754426.50000000000 3392395.50000000000 4 
 ID#159 753333.50000000000 3386571.50000000000 7 
 ID#160 753781.50000000000 3384119.50000000000 4 
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